
Scientific Data Systems
A XEROX COMPANY

X1ClS SIGMA 5/7 FLAG

Reference Manual

FLAG
REFERENCE MANUAL

for

XDS SIGMA 5/7 COMPUTERS

PRELIMINARY EDITION

90 16 54A

September 1 969

Pri ce: $4. 00

Xerox Data Systems/701 South Aviation Boulevard/EI Segundo, California 90245

© 1969, Xerox Data Systems, Inc. Printed in U.S.A.

ACKNOWLEDGMENT

The FLAG (Fortran Load And Go) Compiler was developed by Norman Wheeler, Robert
Horton, Phillip Sherrod, and Douglass Henry under the direction of Dr. George Haynam
of the Vanderbi It University Computer Center, Nashvi lie, Tennessee.

In cooperation with Vanderbi It University, Xerox Data Systems is making the FLAG Com
piler available to those customers who require the characteristics of a fast load-and-go
FORTRAN.

The reference material in this manual was largely taken from the XDS Sigma 5/7 FORTRAN
IV-H Reference Manual (XDS 90 0966) though several important sections have been ex
cerpted from the XDS Sigma 5/7 FORTRAN IV Reference Manual (XDS 900956), notably
all the material in Chapter 6 dealing with FORMAT statements and specifications and with
extended input/output capabilities. Furthermore, FLAG provides most of the function sub
programs that are available to FORTRAN IV users. These subprograms are listed in "Table 9
Intrinsic and Basic External Functions", taken from the previously mentioned FORTRAN IV
Reference Manua I.

RELATED PUBLICATIONS

Title

XDS Sigma 5 Computer Reference Manual

XDS Sigma 7 Computer Reference Manual

XDS Sigma 5/7 Batch Processing Monitor Reference Manual

XDS Sigma 5/7 Batch Processing Monitor Operations Manual

XDS Sigma 5/7 FORTRAN IV-H Reference Manual

XDS Sigma 5/7 FORTRAN IV Reference Manual

XDS Sigma 5/7 FORTRAN IV Operations Manual

XDS Sigma 5/7 FORTRAN IV Library Technical Manual

NOTICE

Publication No.

900959

90 0950

900954

901198

900966

900956

90 11 43

90 15 24

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their XDS sales representative for details.

ii

CONTENTS

l. INTRODUCTION Input/Output Statements 28

How This Manual Is Organized
The FLAG Compiler 1
FLAG Programs 1
Conditional Compilation - X Cards 3

Formatted Input/Output Statements 29
Acceptable FORTRAN II Statements 30
Intermediate Input/Output Statements 31
END and ERR Forms of the READ Statements 32

NAME LIS T Statement 32
Simplified Input/Output 32

2. DATA 5 OUTPUT Statement 33

Limits on Values of Quantities 5
Constants 5

Integer Constants 5
Real Constants 6
Double Prec ision Constants 6
Complex Constants 6
Double Complex Constants 7
Logical Constants 7
Literal Constants 7

Identifiers 8
Variables 8

Sca lars 8
Arrays 8

Functions 9

INPUT Statement Using NAME LIST 34
FORMA T Statement 37

F Format (Fixed Decimal Point) 38
- E Format (Normalized, with E Exponent) 39

D Format (Normalized, with D Exponent)--- 40
G Format (General) -- 40
I Format (Integer) 42
L Format (Logical) 42
A Format (Alphanumeric) 43
R Format (Alphanumeric, Right-Justified) ___ 44
Z Format (Hexadecimal) 45
M Format (Machine Dependent) 46
H Format (Hollerith) 47
'Format (Hollerith) 47
X Specification (Skip; Space or Backspace) __ 48
T Specification (Tab) 49

3. EXPRESSIONS 10 P Specification (Scale Factoror Power of 10) 49

Arithmetic Expressions 10
Evaluation Hierarchy 10

Mixed Expressions 12
Relational Expressions 13
Logical Expressions 14

Logical Operators 14
Evaluation Hierarchy 15

/ Specification (Record Separator) 51
Parenthesized FORMAT Specifications 52
Adjustable FORMAT Specifications 53
Numeric Input Strings 54

Widthless Numeric Input 55
Numeric Input with Width Specified 56

Comma Field-Termination 56
FORMA T and List Interfac ing 57

4. ASSIGNMENT STATEMENT 16
FORMATs Stored in Arrays 58
Extended Input/Output Capabilities 59

5. CONTROL STATEMENTS 18 Memory-to-Memory Data Conversion 59
ENCODE Statement 60

Labels 18 DECODE Statement 60
GOT 0 Statem ents 18 Direct Input/Output 61

Unconditional GO TO Statement 18 BUFFER IN 62
Assigned GO TO Statement 18 BUFFER OUT 62
Computed GO TO Statement 19 Random Access Input/Output Statements 63

ASSIGN Statement 19 Auxi I iary Input/Output Statements 63
IF Statements 20 REWIND Statement 64

Arithmetic IF Statement 20 BACKSPACE Statement 64
Logical IF Statement 20 END FILE Statement 64

CALL Statement 21 Carriage Control for Printed Output 64
RETURN Statement 22
DO Statement 22
CONTINUE Statement 25 7. DECLARATION STATEMENTS 65

PAUSE Statement 25 Classification of Identifiers 65
STOP Statement 25 Implicit Declarations 65
END Statement 26 Explicit Declarations 65

Confl icting and Redundant Declarations 65

6. INPUT/OUTPUT 27 Array Declarations 66
Array Storage 66

Input/Output Lists 27 References to Array Elements 66
List Items 27 DIMENSION Statement 67
Special List Considerations 28 IMPLICIT Statement 67

iii

Explicit Type Statements 68 APPENDIXES
Optional Size Specifications 69
Storage Allocation Statements 70 A. FLAG STATEMENTS 98
COMMON Statement 70 B. DIAGNOSTIC MESSAGES 100

Labeled COMMON 71
Blank COMMON 71
Arrangement of COMMON 72
Referencing of Data in COMMON 73

EQUIVALENCE Statement 73
Interactions of Storage Allocation Statements _ 75 ILLUSTRATIONS EXTERNAL Statement 76
BLOCK DATA Subprograms 76

1. Sample XDS FLAG Program 2
DA T A Statement 77

DATA Variable List 77 2. Array Storage 66
DA T A Constant Li st 78

3. FLAG Job Setup - Single Program 96
Placement and Order of Declaration Statements 79

4. FLAG Job Setup - Multiple Programs in Batch

8. PROGRAMS AND SUBPROGRAMS 80 Processing Mode 97

Main Programs 80
Subprograms 80

Statement Functi ons 80
FUNCTION Subprograms 81
SUBROUTINE Subprograms 82 TABLES

Arguments and Dummies 83
Dummy Scalars 84 l. Sample Program 3
Dummy Arrays 84

2. Mode of Mixed Expressions Using
Adjustable Dimensions 85

Operators + - * / 12
Dummy Subprograms 86

Library Subprograms 86 3. Valid Type Combinations for Exponentiations 12
Basic External Functions 86

4. Evaluation of Logical Expressions 14
Additional Library Subprograms 86

r:::. f\,~ixed VOiiob!e Types and Expression "-Aodes __ 16 -'.

9. OPERATIONS 93 6. Standard Unit Assignments 28

Running a FLAG Job 93 7. FORTRAN II/FORTRAN IV Equivalent Statements_ 30
The FLAG Control Card 93

8. Permissible Correspondences Between Arguments Job Setup Examples 95
F LA G Debug Mode 96 and Dummies 83

9. Intrinsic and Basic External Functions 87

INDEX 104 10. FLAG Option Codes 94

iv

l

1. INTRODUCTION

How This Manual is Organized
Most of the material in this manual was taken from the Sigma 5/7 FORTRAN IV-H Reference Manual (XDS 90 09 66B),
though several important sections are from the Sigma 5/7 FORTRAN IV Reference Manual (XDS 90 09 56C). For the
convenience of those who may already be familiar with XDS FORTRAN IV-H, material in this manual that differs from
the FORTRAN IV-H Manual is indicated by a bracket in the left hand margin of the page.

The remainder of this Chapter summarizes the most important features of FLAG and then briefly presents information
of general interest to the new user. Chapters 2 through 8 are a detailed description of the FLAG language. Chapter 9
contains the essential operations information for compiling and running FLAG programs.

Users already familiar with XDS FORTRAN IV-H will probably perfer to scan Chapters 1 through 8 noting the changed
areas marked by brackets, and then read Chapter 9 for an explanation of FLAG operations. Such users wi II thus be
able to start running FLAG programs with minimum delay.

The FLAG Compiler

The FLAG (FORTRAN Load And Go) system for XDS Sigma 5/7 computers is essentially a FORTRAN IV-H compiler
designed to be compatible with other compilers of this class. However, FLAG provides to the user a unique set of
operating characteristics:

• Comprehensive diagnostic messages at compile and execute time.

• Fast compi lation.

• Significant reduction in total processing time for small-to-medium sized programs.

• Special accounting and processing features to minimize Monitor system overhead.

FLAG may be used in preference to standard FORTRAN compilers when the user is in the debugging phase of devel
oping his program. Further, it should be the primary FORTRAN compiler system in the typical university environ
ment where the job stream contains numerous small programs, many of which are written by novice programmers.

FLAG Programs

FLAG programs are comprised of an ordered set of statements that describe the procedure to be followed during exe
cution of the program and the data to be processed by the program. Some data values to be processed may be exter
nal to the program and read into the computer during program execution. Similarly, data values generated by the
program can be written out while processing continues. Statements belong to one of two general classes:

1. Executable statement/, that perform computation, input/output operations, and program flow control.

2. Nonexecutable statement/, that provide information to the compi ler about storage assignments, data types and
program form, as well as providing information to the program during execution about input/output formats and
data initial ization.

Statements defining a FLAG program follow a prescribed format. Figure 1 is a sample FORTRAN Coding Form. Each
I ine on the form consists of 80 spaces or columns; however, the last eight col umns are used only for identification or
sequence numbers and have no effect on the program. Col umns 1 through 72 are used for the statements.

The first field, columns 1 through 5, is used for statement labels. Statement labels allow statements to be referenced
by other portions of the program. Labels are written as decimal integers, with all blanks (leading, embedded, or
trailing) ignored. Chapter 5, IIControl Statements II, contains a more extensive discussion of statement labels.

t See Appendix A.

Introduction

The body of each statement is written in columns 7 through 72, but if additional space is required, a statement may
be continued. FLAG accepts an unl imited number of continuation I ines. Each continuation I ine must contain a char
acter other than blank or zero in column 6. The initial line of each statement contains only the characters blank or
zero in column 6. If a statement is labeled, the label must appear on the initial I ine of the statement; labels appear
ing on continuation I ines are ignored.

Column 1 may contain the character C to indicate that the line is to be treated as a comment only, with no effect
upon the program. Comment lines may appear anywhere in the program, except within a statement (i.e., inter
spersed with continuation lines).

Statements may have blanks inserted as desired to improve readabil ity, except within literal fields (e. g., in Hollerith
constants and in FORMAT statements).

The set of characters acceptable to FLAG is

Letters t : ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z

Digits: 0123456789

Speci al characters:
(useful) t

+ - * / = () • , $ I & blank

Special characters: II

(other)

This character set conforms to the Extended Binary-Coded Decimal Interchange Code (EBCDIC) standard.

Figure 1 illustrates a sample FLAG program. An explanation is given in Table 1.

PROBLEM Sa m pi e S!:I:»ls
~ '--
SCIENT:FIC DATA SYSTEMS

FORTRAN CODING FORM
PROGRAMMER ____________________ _ Identification

FORTRAN STATEMENT

II NT EGE R FACTOR, K
I-r--.-.,--r---t"""""+-"', T I • , • ii' Ii' • • , i .·-,.--r··--~"T"-.,._r_r_l--y--r--rj-,--,--.,..--,r--r--.--.--...--.---.--,--...... ·

iK =
iii , • • • • ! ~. .,. ,'--' ,---r--r--r---r-...---r--.---r--r ..-, -,..---r-. -,-,........,-, -r,---.----.--r--.---.--.. --r""'-'--T-"-r-~

~-.--,.--r-+-!,lR.;;E=;A,D, ,(,1, • ,5,), , 'f~-,.~TR-,-T-·,--y---r--,.__,__.-,---r---.--r-......,........-r--T"'" ",-,---'---r--~..---r-,--r-r-I
hI.O~J,F, ,(,F,A,C,T,~R,) ,l-1r,J-r3.,J .1, lr-~T-r--T-r-.--,---rl---r-.,...--,. y-1-.----.-.- T-,"'·"- ~-;-'-""---'

1 1 I lK = K • F AC T (j R
lJFACT6R = '

.... ,,--...... , '·~·-T--~-- ,---1'

1 2
1 3

WRI T E (1 O'S , 6) 'K~'-' . -'~·TT-'~-,.-.. -T----r-r---.--' -r·-r-r-.-· ... I-..--
T

.... '-'-'---'-"--,---"

Iii ' iii i 1 iii I i * ---,---"'" ·--TM-"...-----r-- "'l"'--,. , i , i T~.--.--r-r-r--T • Iii ¥ ,.-.~

STC:SP
5 F eRMA T (t'6)

t--.-·-,-.--r-=6~f-'-+1~_.~R,M: ~ T . (::~ :",~-,_T"~ -., :-1""': ~-r_~-Q: f:=:-~=~·~..,...-y-~,---,--.--r. -r........-.,.--.,...-r. ~-r:---,---r-...,.....,r-T--r--,--,
'~';jEND

t--r-T-,-----r-+-+I,!=-r--"'--.=....-,-, --.--.----r-.......-r,--r-, .--.--.----., ir---r-", ~"-r""""-'" "r ··Y· ,...........,.--....,.._·......--.-, ~, . ..,--.--......--,-._,.......,., --.--.-.-• ..,.....-rj -.-...,..---,.-~

- .. ------' --_ _-----------

Figure 1. Sample XDS FLAG Program

tThe dollar sign ($) character is accepted, though not recommended, as a letter of the alphabet. It may therefore
be used in FORTRAN identifiers, such as $, FIVES, or $300. For the purposes of the IMPLICIT statement (see
Chapter 7), $ follows Z in the set of letters.

2 FLAG Programs

Line

1,2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Table 1. Sample Program

Meaning

The character C in column 1 defines these I ines as comments.

A nonexecutabl e statement that defines to the compiler the variabl es FACTOR and K as integers.

An assignment statement that sets K equal to 1.

An input command that causes the value of FACTOR to be read into storage. The value is read
from unit 1. The form in which the value of FACTOR appears external to the computer is speci
fied by FORMAT 5 (line 14).

Statement 10 tests the value of FACTOR and transfers control to statement 11, 12, or 13 as follows:

If FACTOR < 0, control is transferred to statement 12.

If FACTOR = 0, control is transferred to statement 13.

If FACTOR > 0, control is transferred to statement 11.

Statement 11 is another assignment statement that assigns to K the value of the expression K times
factor. In other words, the current valueofK is replaced by the currentvalue of K multiplied
by the value of FACTOR.

The statement appearing on lines 8 and 9 is an assignment statement, written as an initial line
and one continuation line.

The C in column6causesline9 to bea continuation of line 8. This statement assigns to FACTOR
the value of the current value of FACTOR minus 1.

When the GO TO statement is executed, an unconditional transfer of control to statement 10
(I ine 6) occurs;

Statement 12, an assignment statement, assigns the value zero to the variable K.

The WRITE output statement, 13, causes the name of the variable K and its value to be
written out on unit 108, which is normally assigned to the Printer (see statement 6, line 15
for designated FORMAT statement).

The control statement STOP causes execution of the program to be terminated.

FORMAT statement corresponding to READ statement on line 5.

FORMA T statement correspond i ng to WRITE statement on line 12.

The END line informs the processor during compilation that it has reached the physical end of
the source program.

In this program, if the value of FACTOR is initially 3 as read .by line 5, statement 10 will be
executed four times, the statements on line 7 through 10 wi II be executed three times, and the
statements on lines 4, 5, 12, and 13 will be executed once each.

Conditional Compilation - X Cards

FLAG provides a means for conditional compilation of statements. Any line that contains an X in column 1
is processed as a statement only when the CX option is specified on the FLAG control card (see Chapter 9).
Otherwise, the card is treated as a comment.

Conditional Compilation - X Cards 3

This feature enables the programmer to include in his program additional statements for checkout purposes, such as
intermediate output and special error checking. When checkout has been completed, these statements do not have
to be removed from the program. Instead, the program is compiled without the CX option and the statements are
treated as comments only. These statements remain in the listing, however, and may serve as documentation or
checkout procedures. Also, they may easily be reinstated at any time.

Continuation lines for X cards should also be X cards; furthermore, a normal line may have a continuation line that
is also an X card. For example:

~ C FOR COMMENT

-lsTATEMENT J FORTRAN STATEMENT
NUMBER

1 5 6 7 10 15 20 25 30 35 40 45

X· 'l!r •• _,

A. B .J ...•

. . .
:c~PRINT 3 • C.

I I

X D. E • F
3 FeRMAT (X. 6F . 7')

.
. I

PR I NT 3 • U . V. W . I

x , X, Y I ~
I I

-.~ ~--.. --

4 Conditional Compi lotion - X Cards

2. DATA

Numerical quantities - constants and variables - as distinguished in FLAG are a means of identifying the nature of
the numerical values encountered in a program. A constant is a quantity whose value is expl icitly stated. For ex
ample, the integer 5 is represented as 115 11 ; the number IT, to three decimal places, as 113. 14211. A variable is a
numerical quantity that is referenced by name rather than by its explicit appearance in a program statement. During
the execution of the program, a variable may take on many values rather than being restricted to one. A variable
is identified and referenced by an identifier.

All data processed by a FLAG program can be classed as one of seven types:

Integer

Reai

Double precision

Complex

Doubl e Compl ex

Logical

Literal

lim its on Values of Quantities

Integer data are precise representations of the range of integers from -2, 147,483,648 to +2, 147,483,647;
that is, -231 to +231 - 1. Integer data may only be assigned integral values within this range.

Real data (sometimes known as floating-point data) can be assigned approximations of real numbers, the magnitudes
of which are within the range 5.398 x 10-79 to 7.237 x 1075 (i.e., 16-65 to 1663). A real datum may acquire
positive or negative values within this range or the value zero. Real data have an associated precision of 6+ sig
nificant digits. That is, the sixth most significant digit will be accurate, while the seventh will sometimes beaccu
rate, depending on the value assigned to the datum.

Double precision data may approximate the identical set of values as real data. However; double precision data
have an associated precision of 15+ significant digits.

Complex data are approximations of complex numbers. These approximations take the form of an ordered pair of
real data. The first of the two real data approximates the real part, and the second real datum approximates the
imaginary part of the complex number. The values that may be assigned to each part are identical to the set of
val ues for real data.

Double complex data have the same form as complex data except that both the real and imaginary parts are double
precision values.

Logical data can acquire only the values IItrue 'l or IIfalse ll
•

Literal Data are character strings of up to 255 characters. Like logical data, literal data do not have numeric val
ues. Any of the characters discussed in Section 1 may appear in literal data.

Constants

Constants are data that do not vary in value and are referenced by naming their values. There are constants for
each type of data. AI though numeric constants are considered as being unsigned, they may be preceded by the
pi us or minus operators. The operator is not considered part of the constant, however. (See Chapter 3.)

Integer Constants

Integer constants are represented by strings of digits. The magnitude of an integer constant must not exceed
2, 147,483,647.

Examples:

382

13

997263

1961

1000000000

323344224

000546

382437

8

o

Data 5

Rea I Constants

Real constants are represented by strings of digits with a decimal point and/or an exponent. The exponent follows
the numeric value and consists of the letter E, followed by a signed or unsigned 1- or 2-digit integer that represents
the power of ten by which the numeric value is to be multiplied. Thus, the following forms are permissible:

n.m n. .m

n. mE±e n. E±e nE±e

where

n, m, and e are strings of digits.

The plus sign preceding e is optional.

For example, . 567E5 has the meaning. 567 x 105 and can also be represented by any of the following equivalent
forms:

0.567E+05

567000. E-1

5. 67E4

567E02

56700.

56700.000E-00

The val ue of a real constant may not exceed the I imits for real data. Any number of digits may be written in a real
constant, but onl y the 7 most significant digits are retained.

Since any real constant may be written in a variety of ways, the user has freedom of choice regarding form.

Examples:

5.0

0.01

7.6E+5

6.62E-37

3.141592265358979323846

.58785504

Double Precision Constants

Double precision constants are formed exactly like real constants, except that the letter D is used instead of E in
the exponent. To denote a constant specifically as double precision, the exponent must be present. Thus, a
double precision constant may be written in any of the following forms:

n. mD±e n. D±e nD±e

where

n, m, and e are strings of digits

D signifies a double precision constant

The plus sign preceding e is optional.

The value of a double precision constant may not exceed the limits for double precision data. Any number of digits
may be written in a double precision constant, but only the 15 most significant digits are retained.

Examples:

1. 2345678765432D1

.9963D+3

Complex Constants

576.3D+01

.1254D-02

312. D-4

885. D+3

Compl ex constants are expressed as an ordered pair of constants in the form

6 Constants

where

c 1 and c
2

are signed or unsigned, real constants.

The complex constant (c
1
,c

2
) is interpreted as meaning c

1
+ c

2
i, where i = /=1. Thus, the following complex

constants have values as indicated:

(1. 34,52.01)

(98. 344E 11,34452E-3)

(- 1 . , - 1 000.)

1. 34 + 52.0li

983. 44 + 34. 452i

- 1. 0 1 000. Oi

Neither part of a complex constant may exceed the value limits established for real data.

Double Complex Constants

Double complex constants are formed in exactly the same way as complex constants. If either the real or imaginary
part is a double precision constant, the complex constant becomes a double complex constant.

Examples:

(.757D6,3D-4)

(7. ,ODO)

(-4. 286DO, 1. 3)

757000.0DO

7.0DO

+ .0003DOi

+ O.ODOi

-4.286DO + 1. 3DOi

Neither part of a double complex constant may exceed the value limits established for double precision data.

Logical Constants

Logical constants may assume either of the two forms

. TRUE. . FALSE .

where these forms have the logical values "true" and "false", respectively.

Literal Constants

A literal constant has the form

where

is a string of up to 255 alphanumeric and/or special characters. Note that blanks are significant in such
character strings.

Within a literal constant, two consecutive quotation marks may be used to represent a single quotation mark (or
apostrophe). For example, 'AB"CD' represents the five characters AB'CD. However, quotation (') marks separated
by blanks are not considered to be consecutive.

Examples:

'ALPHANUMERIC INFORMATION '

'IIDON"T!'"

Literal constants can appear in three contexts:

1. An argument to a function or subroutine

2. A constant item in a DATA statement

3. A PAUSE statement ('Sl form only)

A I iteral constant cannot appear as an element of an expression.

Constants 7

Identifiers

[Identifiers are strings of letters and decimal digits, the first of which must be a letter, used to name variables as well
as subprograms and COMMON blocks. (See Chapters 7 and 8 for discussions of COMMON and subprograms.)

[

8

Identifiers in FLAG may consist of up to six alphanumeric characters. Blank characters embedded in identifiers are
ignored; therefore, ON TIME and ONTIME are identical. There are no restricted identifiers in FLAG; however,
for clarity, it is advisable not to use identifiers that correspond to FLAG statement types.

Examples:

X A345Q

ELEVAT

Variables

STRESS

L9876

J3

DIFFER

MELVIN

SETUP

QUANTY

Variables are data whose values may vary during program execution and are referenced with an identifier. Vari
ables may be any of the data types. (There is no such entity as a literal variable; any type of variable may contain
a I iteral string. Normally, integer variables are used.)

If a variable has not been assigned to a particular data type (see "C lassification of Identifiers", Chapter 7), the
following implicit typing conventions are assumed:

1. Variables whose identifiers begin with the letters I, J, K, L, M, or N are classified as integer variables.

2. Variables whose identifiers begin with any other letter are classified as real variables.

These classifications are referred to as the IIUKLMN rule".

Consequently, double precision, complex, double complex, and logical variables must be explicitly declared as
such (see "Explicit Type Statements" in Chapter 7). The values assigned to variables may not exceed the limits
established for the applicable data types.

Scalars

A scalar variable is a single datum entity accessed via an identifier of the appropriate type.

Examples:

Jl NAME SCALAR EQUATE E NEW DHO XXX8

Arrays

An array is data in which the data form an ordered set. Associated with an array is the property of dimension.
FLAG arrays may have up to seven dimensions and are referenced by an identifier. For a complete discussion
on arrays see "Array Declarations" in Chapter 7.

Array EI ements

An array el ement is a member of the set of data comprising an array. Array el ements are referenced by the array
identifier, followed by a list of subscripts enclosed in parentheses

where:

v is the array name

si is a subscript (see below)

n is the number of subscripts, which must be equal to the number of dimensions of the array (0 < n ~ 7)

Subscripts

A subscript may be any expression that has a resultant mode of integer, real, or double precision; if the result is
not integer it is converted to integer mode (by truncation).

Identifiers/Variables

The evaluated result for a subscript must always be greater than zero. For example, if an array element is desig
nated as ALPHA(K-4), the value of K must be greater than 4.

Examples:

MATRIX

CUBE

DATA

J35Z

BOB

Functions

Subscripts

(3,9,5,7,6,1,2)

(5* J, P, 3)

(I, J, K, L, M, N)

(1+4, 6*KRAN-2, ITEMP)

(3,IDINT(DSQRT(D)))

Array Elements

MATRIX(3, 9,5,7,6, 1,2)

CUBE(5* J, P, 3)

DATA(I, J, K, L, M, N)

J35Z(I+4, 6*KRAN-2, ITEMP)

BOB(3,IDINT(DSQRT(D)))

Functions are subprograms that are referenced as basic elements in expressions. A function acts upon one or more
quantities, called arguments, and produces a single quantity, called the function value. The appearance of a func
tion reference constitutes a reference to the value produced by the function, when operating on the given argument.
A function reference is denoted by the identifier that names the function, followed by a list of arguments enclosed
in parentheses

where

a.
I

is the name of the function

is an argument. Arguments may be constants, variables, expressions, or array or subprogram names (see
IIArguments and Dummies ll

, Chapter 8).

Functions are classified in the same way as variables; that is, unless the type is specifically declared otherwise, the
[IJKLMN rule applies. The type of a function is not affected by the type of its arguments.

Examples of function references are:

SIN(A+B) CH ECK(7. 3, J, ABS(Y)) KOST(ITEM)

Many library functions are provided in FLAG. In addition, the user may define his own functions (see Chapter 8).

[

Functions 9

3. EXPRESSIONS

Expressions are strings of operands separated by operators. Operands may be constants, variables, or function refer
ences. An expression may contain subexpressions; subexpressions are expressions enclosed in parentheses. Operators
may be unary - that is, they may operate on a single operand. They may also be binary, operating on pairs of
operands. Expressions may be classed as arithmetic, logical, or relational. All expressions are single valued,
and the evaluation of any expression has a unique result.

Arithmetic Expressions

An arithmetic expression is a sequence of integer, real, double preCISion, complex, and/or double complex con
stant, variabl e, or function references connected by arithmetic operators.

The arithmetic operators are:

Operator

+

*

/
**

Operation

Addition {binary} or Positive (unary)

Subtraction (binary) or Negative (unary)

Multiplication

Division

Exponentiation

Arithmetic expressions may be of a relatively simple form

A

-TERM

1. 2607

ACE - DEUCE

W90ML * DE + W9CMI / XKA9RU

F(5.8E2) = A / B9J (L)

or the more compl icated form

x + (112 * (G) ** L(3) + N / SDS) - (H)

-B + SQRT(B ** 2 - 4 * A * C) + T * (S + B / I * (K(J) / (V1 - VO) + (Z 1 - ZO»)

(X + Y) ** 3 + O. 7352986E-7

-((M + N) * (Z - Q(J»)

Evaluation Hierarchy

The expressi on

A + B/C

might be eval uated as

(A + B) / C

or as

A + (B / C)

10 Expressions

I
L

Actually, the latter form is the way the expression is interpreted without explicit grouping. This exampleillustrates
that it is necessary to formulate rules for expression evaluation so that such ambiguities do not occur.

Subexpressions have been defined as expressions enclosed in parentheses. It is also possible to have nested subexpres
sions as in

x * (Z + Y * (H - G / (I + L) - W) + M(8))

where (I + L) may be called the innermost subexpression, and (H - G / (I + L) - W) is the next innermost subexpres
sion. The evaluation hierachy is, therefore, as follows:

1. The innermost subexpressi on, followed by the next innermost subexpressi on, unti I all subexpressi ons have been
eval uated.

2. The arithmetic operations, in the following order of precedence:

Operation Operator Order

Exponentiation ** 1 (highest)

Multiplication *
and Division /

2

Additi on and +
Subtracti on

3

Some additional conventions are necessary.

1. At anyone level of evaluation, operations of the same order of precedence (except for exponentiation) are
evaluated from left to right. Consequently, 1/ J / K / L is equivalent to ((I / J) / K) / L.

2. Consecutive exponentiations are performed left to right. Thus

A ** B ** C

is interpreted as (A ** B) ** C

The use of parentheses is recommended, as many FORTRAN systems interpret consecutive exponentiation
differentl y.

3. The sequence "operator operator" is not permissible. Therefore, A * -B must be expressed as A * (-B).

4. As an algebraic notation, parentheses are used to define evaluation sequences explicitly.
written as (A + B) / c.
Example:

The expressi on

A * (B + C * (D - E / (F + G) - H) + P(3))

is evaluated in the sequence

r =
1

F + G

D - r - H
2

r = C * r 4 3

r 5 = B + r 4 + P(3)

r = A * r
6 5

where the r are the vari ous level s of eval uati on.
i

A+B
Thus, -C- is

Arithmetic Expressions 11

Mixed Expressions

V/hen an arithmetic expression contains elements of more than one type, IT IS Known as a mixed expression. Logicai
elements may not appear in an arithmetic expression except as function arguments (see rule 2, ,below). When an
expression contains more than one type of element, the mode of the expression is determined by the type and length
specifications of its elements. Table 2 illustrates how the mode for mixed expressions is determined.

Table 2. Mode of Mixed Expressions Using Operators + - * /

DOUBLE

+-*/ INTEGER REAL PRECISION COMPLEX

INTEGER Integer Real Double Complex
Precision

REAL Real Real Double Complex
Precision

DOUBLE Double Double Double Double
PRECISION Precision Precision Precision Complex

COMPLEX Complex Complex Double Complex
Complex

DOUBLE Double Double Double Double
COMPLEX Complex Complex Complex Complex

It can be seen that a hierarchy of type and length specifications exists. The order of precedence is:

Type

Doubie Compiex

Complex or Double Precision

Real

Integer

Precedence

1 (highest)

2

3

4

DOUBLE
COMPLEX

Double
Complex

Double
Complex

Double
Complex

Double
Complex

Double
Complex

I During evaluation of mixed expressions the mode of an operand will be converted, if necessary, so that the
L resultant mode of each operation will be as shown in Table 2.

The foil owi ng rul es al so appl y to mi xed expressi ons:

1. Subscripts and arguments are independent of the expression in which they appear. These expressions are evalu
ated in their own mode (i. e., integer) and neither affect nor are affected by the mode of the outer expression.

2. Only expression elements of the types shown in Table 3 may be combined with an exponentiation operator.

Table 3. Valid Type Combinations for Exponentiations

Base Exponent

T ... +o,..,or "
, T_,,~~~~

£ ... ~~~.

} {
1I11"'~"'"

Real ** Real

Double Precision Doubl e Preci si on

Complex } ** Doubl e Compl ex Integer

12 Mixed Expressions

The mode of the results of an exponentiation operation can be determined in the same manner as that for other
arithmetic operations (see Table 1).

4. Complex and double precision elements have the same level of precedence. If an expression contains both of
these types, it acquires double complex type. This is the only case in which an expression may have a type
that is higher than (or different from) all its constituents.

5. Integer, real, and double precision values that appear in complex or double complex expressions are assumed
to have imaginary parts of zero.

6. Values of expressions, subexpressions, and elements may not exceed the value limits associated with the mode
of the expression.

Relational Expressions

The form of a relational expression is

where

e
1

and e
2

are arithmetic expressions whose mode is integer, real, or double-precision

is a relational operator (see below)

Evaluations of relational expressions result in either of the two values IItrue ll or "falsell
, i.e., relational ex

pressions are of logical type.

Relational operators cause comparisons between arithmetic expressions.

Operator

.IT.

.LE.

.EQ.

.NE.

.GE.

.GT.

Examples:

l.LT.6

O.GT.8

Meaning

less than «)

Less than or equal to (~)

Equal to (=)

Not equal to (I)

Greater than or equal to (:;:::)

Greater than (»

is true.

is false.

O. LT. (2. ** N)

O. LT. - (2. ** N)

is always true, while

is always false.

When two arithmetic expressions are compared, using a relational operator, the two expressions are first evaluated,
each in its own mode. The comparison is then made in the mode of higher precedence; i. e., the value of the lower
mode expression is converted to the mode of higher precedence.

A test for equality between real or double precision quantities may not be meaningful on a binary machine. Since
these quantities are only approximations to most values, numbers that are "essentially" equal may differ by a small
amount in their binary representations. It can only be said that computations whose operands and results have exact
binary representations will produce these results.

It is not permissible to nest relational expressions such as

(L.LT. (X .GT. O.2345E6))

where (X .GT. O. 2345E6) is a relational subexpression, rather than an arithmetic expression, as the definition of
relational expressions requires.

Relational Expressions 13

logical Expressions

Logica! expressions are expressions of the form

where

e. are logical elements.
I

c. are the binary logical operators (see below).
I

Evaluations of logical expressions result in either of the two values, "true" or "false".

Logical elements are defined as one of the following entities:

1. a ·Iogical variable or logical function reference

2. a logical constant

3. a relational expression

4. any of the above encl osed in parentheses

5. a logical expression enclosed in parentheses

6. any of the above, preceded by the unary logical operator .NOT.

Logical Operators

There are three logical operators:

Operator Type

.NOT. unary

.AND. binary

.OR. binary

Table 4 illustrates the meanings of the logical operators.

1. . NOT. e is "true" only when e is "false".

2. e
1

.AND. e
2

is "true" only when both e
1

and e
2

are "true".

3. e
1

.OR. e
2

is "true" when either or both e
1

and e
2

are "true".

Table 4. Evaluation of Logical Expressions

Expression Values
Evaluation

.NOT. e e
1

.AND. e
2

e
1

.OR. e
2

e True --- False --- ---

e False --- True ---

e
1

False e
2

False --- False False

e
1

True e
2

False --- False True

e 1 False E2 True --- False True

e
1

True e
2

True --- True True

14 Logical Expressions

Evaluation Hierarchy

Parentheses are used to define evaluation sequences explicitly, ina manner similar to that discussed for arithmetic

expressi ons. Consequentl y,

A .AND. B .OR. 0(3) .NE. X

does not have the same meaning as

A .AND. (B .OR. 0(3) .NE. X)

where (B .OR. 0(3) .NE. X) may be called a logical subexpression.

The evaluation hierarchy for logical expressions is

1. arithmetic expressions

2. relational expressions (the relational operators are all of equal precedence).

3. the innermost logical subexpression, followed by the next innermost logical subexpression, etc.

4. the logical operations, in the following order of precedence:

Operator Order

.NOT. 1 (highest)

.AND. 2

.OR. 3

For example, the expression

L .OR •. NOT. M .AND. X .GE. Y

is interpreted as

L .OR. «.NOT. M) .AND. (X .GE. Y))

Note: It is permissible to have two contiguous logical operators only when the second operator is .NOT. i in
other words

e
1

.AND .. OR. e
2

is not valid, while

e
1

.AND .. NOT. e
2

is legal. Two consecutive .NOT. operators are not permissible. The logical expression to which the oper
ator .NOT. applies should be enclosed in parentheses if it contains two or more quantities. For example,
if X and Z are logical variables having the values TRUE and FALSE, respectively, the following expressions
are not equival ent:

.NOT. X .AND. Z

.NOT. (X .AND. Z)

In the first expression .NOT. X is evaluated first and produces the value FALSE. This, when ANDed with
Z (also, FALSE), results in the value FALSE for the expression.

In the second expression X .AND. Z is evaluated first and produces the value FALSE. Then the value FALSE
is NOTed, resulting in the value TRUE for the expression.

Log i ca I Express ions 15

4. ASSIGNMENT STATEMENT

Many kinds of statements are recognized by the FLAG compiler. The most basic of these is the assignment state
ment, which defines a computation to be performed and is used in a manner similar to equations in normal mathe
matical notation.

A si mpl e assignment statement has the form

v = e

where

v is a variable (a scalar or an array element of any type)

e is an arithmetic or logical expression. (v must be a logical variable only if e is a logical expression)

This statement means, lIassign to v the value of the expression e. II It is not an equation in the true sensei it does
not declare that v .!.:. equal to e, but rather it sets v equal to e. Thus, the statement

N = N + 1

is not a contradiction: it increments the current value of N by 1.

The expression need not be the same type as the variable, although in practice it usually is. When it is not, the
expression is evaluated in its own mode, independent of the type of the variable. Then, if permissible, it is con
verted to the type of the variable according to Table 5 and assigned to the variable.

Table 5. Mixed Variable Types and Expression Modes

Expression Mode
Variable

I
Type integer real

double
complex

double
logical

precision complex

integer X I I I
I

I N

real F
1

X P R i R N

double I
precision F P X D D N

complex R R R X P N

double
complex D D D P X N

logical N N N N N X

The symbols used in Table 5 have the following meanings:

Symbol

X

F

Meaning

Direct assignment of the exact value.

The value is truncated to integer. The truncated value is equal to the sign of the expression times
the greatest integer less than or equal to the absolute val ue of the expression (e. g., 4274.9983 is
truncated to 4274, and -0.6 to 0). Values that are greater than the maximum size of an integer
will be truncated at the high-order end as well. Results in this case generally are not meaningful.

The variable is assigned the real or double-precision approximation of the value. Since real pre
cision is less than that of integers, conversion to real precision may cause a loss of significant digits.

16 Assignment Statement

P

R

D

N

Examples:

A = B

Meaning

The precision of the value is increased or decreased accordingly.

The real part of the variable is assigned the real approximation of the expression. The imaginary
part of the variabl e is set to zero.

The real part of the variable is assigned the double precision approximation of the expression. The
imaginary part of the variable is set to zero.

Not allowed.

Q(I) = Z ** 2 + N * (L - J)

L = F .OR .. NOT. C .AND. (R. GE. 23. 9238E-l)

CRE(8, ED) = R (ALL, MEN)

PI = 4 * (ATAN(O. 5) + ATAN(O. 2) + ATAN(O. 125))

Assignment Statement 17

5. CONTROL STATEMENTS

Each executable statement in a FLAG program is executed in the order of its appearance in the source program, un
less this sequence is interrupted or modified by a control statement.

Labels

If program control is to be transferred to a particular statement, that statement must be identified. Statements are
identified by labels. Nonexecutable statements may have labels, but, except for FORMATs, the labels should not
be referenced.

Statement labels consist of up to five decimal digits and must be greater than zero. Embedded blanks and leading
zeros are not significant. The following labels are equivalent.

857 00857 8 5 7 085 7

Statement labels may be assigned in any order; their numerical values have no effect on the sequence of statement
compilation or execution.

GO TO Statements

GO TO statements transfer control from one point in a program to another. FLAG includes three forms of GO TO
statements: unconditional, assigned, and computed.

Unconditional GO TO Statement

This statement has the form

GOTO k

where k is a statement label. The result of the execution of this statement is that the next statement executed is the
one whose label is k. For example, in

GO TO 502
98 X = Y

502 A = B

statement 502 will be executed immediately after the GO TO statement.

Assigned GO TO Statement

The format of the assigned GO TO is

r..n Tn "rtk k I., I., \1
....,...., •, • 'L\ l' 2' "3' ... , "n'J

where

v is a nonsubscripted integer variable that has been assigned {via an ASSIGN statement, see below} one of
the statement labels k 1 - kn·

k j is a statement label (the list enclosed in brackets is optional).

18 Control Statements

Each label appearing in the I ist must be defined in the program in which the GO TO statement appears (i. e., must
be the label of a program statement). This statement causes control to be transferred to the statement label (k.) that
corresponds to the current assignment Of the variabl e (v). I

Examples:

ASSIGN 5371 TO LOC

GO TO LOC, (117,56, 101,5371)

The GO TO statement transfers control to the statement labeled 5371. Note that v (the variable 11 LOCI in the above ex
ample) must have been set bya previously executed ASSIGN statement prior to its execution in the GO TO statement.

Computed GO TO Statement

The computed GO TO statement is expressed as

where

k. is a statement I abel
I

v is a nonsubscripted integer variable whose value determines to which of the k. control will be transferred.
I

This statement causes control to be transferred to the statement whose label is kj, where j is the integer val ue of the
variable v, for 1 ~ j ~ n. If j is not between 1 and n, no transfer occurs, and control passes to the statement follow
ing the computed GO TO statement. In most previous FORTRAN systems, this situation has been considered an error,
but is no longer so considered.

Examples:

Statement

GO TO (98, 12,405(3), N

GO TO (1,8,7,562), I

GO TO (4,88, 1), N

GO TO (63,9,3,2), J

ASSIGN Statement

Expression Value

3

2

o
8

Transfer to

405

8

next statement

next statement

The ASSIGN statement, used to assign a label to a variable, has the form

ASSIGN k TO v

where

k is a statement label

v is a nonsubscripted integer variable

Examples:

ASSIGN 5 TO JUMP

ASSIGN 22 TO M

ASSIGN 1234 TO IRETURN

ASSIGN 99999 TO IERROR

A variable that has had a label assigned to it may be used only in an assigned GO TO statement.

ASSIGN Statement 19

A variable that has most recently had a label assigned to it should not be used as a numeric quantity. Conversely,
a variable that has not been assigned a label may not appear in any context requiring a label. The following case
ill ustrates improper usage:

ASSIGN 703 TO HI

A = HI/LOW

This usage is not permissible because the value of HI is indeterminate, since its value depends on where the program
is loaded. Furthermore,

M = 5

cannot be substituted for

ASSIGN 5 to M

or vice versa, because the integer constant "5" is implied in the first case, and the label "5" in the second.

IF Statements

Very often it is desirable to change the logical flow of a program on the basis of some test. IF statements, which
may be called conditional transfer statements, are used for this purpose. There are two forms of IF statements:
arithmetic and logical.

Arithmetic IF Statement

The format for arithmetic IF statements is

where

e is an expression of integer, real, or double precision modes.

are statement labels.

The arithmetic IF statement is interpreted to mean

IF e < 0, GO TO k1

IF e = 0, GO TO k2

IF e> 0, GO TO k3

If e is a real or double precision expression, a test for exact zero may not be meaningful on a binary machine. If
the expression involves any amount of computation, a very small number is more likely to result than an exact zero.
For this reason, floating point arithmetic IF statements generall y should not be programmed to have a unique branch
for zero.

Examples:

Statement

IF (K) 1,2,3

IF (3 * M(J) -7) 76,4,3

IF (C(J, 10) + A / 4) 23, 12, 12

IF (NEXT + LAST) 3,156,3

Logical IF Statement

Expression value

47802

-6

0.0002

o

The logical IF statement is represented as

IF (e) s

20 IF Statements

Transfer to

3

76

12

156

[

where:

e is a logical mode expression

is any executable statement except a DO statement or another logical IF statement

The statement s is executed if the expression e has the value IItrue"; otherwise, the next executable statement fol
lowing the logical IF statement is executed. The statement following the logical IF will be executed in any case
after the statement s, unless the statement s causes a transfer.

Examples:

IF (FLAG .OR. L) GO TO 3135

IF (OCTT * TRR .L T. 5.334E4) CALL THERMAL

IF (.NOT. SWITCH2) REWIND 3

CAll Statement

This statement, used to call or transfer control to a subroutine subprogram (see Chapter 8), may take either of the
foil owi ng forms:

CALL P

CALL p (a 1, a
2

, a
3
,··· ,an)

where

P is the identifier of the subroutine subprogram.

a.
i

is an argument, which may be any of the following: Constants; subscripted or nonsubscripted variables,
arithmetic or logical expressions, statement label arguments (&a., where a. is the statement label), or array or
subprogram names. (See "Arguments and Dummies", Chapter 8.i I

A subroutine is similar to a function except that it does not necessarily return a value, and must not, therefore, be
used in an expression. Furthermore, while a function must have at least one argument, a subroutine may have none.
For example,

CALL CHECK

Arguments that are scalars, array elements, or arrays may be modified by a subroutine, effectively returning as
many results as desired. The following call might be used to invert the matrix A, consisting of K rows and columns,
store the resulting matrix in the array B, and set D(J) equal to the determinant of B ..

CALL INVERT(A, K, B, D(J))

A complete discussion of the usage and forms of arguments to supprograms is contained in Chapter 8.

A subroutine name has no type (e.g., real, integer) associated with it; it merely identifies the block of instructions
to be executed as a resul t of the CALL. Therefore, the appearance of a subprogram name in a CALL statement does
not cause it to take on any implicit type.

Other examples of CALL statements are given below. Statement labels are identified by a preceding ampersand.

CALL ENTER(&44, N)

CALL RX23A(X ** Y - 7,0, SQRT(A * A + B * B) / DIV, TEST)

CALL EVALUE

CALL Statements 21

[

[

RETURN Statement

The RETURN statement causes an exit from a subprogram. It takes one of the forms

RETURN

RETURN v

where v is an integer constant or INTEGER variable whose value must be greater than zero, but no greater than the
number of asterisks that appear in the SU BROUTINE statement (see 11 SUBROUTINE Subprograms" and 11 Arguments
and Dummies" in Chapter 8 for a discussion on the use of asterisks in SUBROUTINE statements).

A RETURN statement must be, chronologicall y, the last statement executed in any subprogram, but it need not be last
physically. There may be any number of RETURN statements in a subprogram. A RETURN statement should not
appear in a main program.

The first form, RETURN (without the v) is the statement usually used. In a subroutine, it returns control from the
subroutine to the first executable statement following the CALL statement that call ed the subroutine. In a functi on,
it causes the latest value assigned to the function name to be returned, as the function value, to the expression in
which the function reference appeared. (See also, IIFUNCTION Subprogramsll, Chapter 8.)

The second form, RETURN v, is used to provide an alternate exit from a SUBROUTINE subprogram. The value of v
is used to determine which statement label in the calling argument list will be used as the return. The vth asterisk
(counting from left to right in the SUBROUTINE statement) corresponds to the statement label that will be used. If
the entry to the subprogram did not contain any asterisks in the dummy list, the RETURN statement will cause a
compile-time diagnostic to be produced.

Examples:

Calling Program

33 CALL IT (LOCK, RET, QR, & 11, &883)

66 X(8) = Y(C, K) + CHEBY(Z, Y)

Subprograms

SUBROUTINE IT (i, X, P, *, *)

RETURN 1

RETURN 2
END
FUNCTION CHEBY (ARG, EXP)

RETURN
END

When subroutine IT is called by statement 33, return is to statement 11 if the RETURN 1 exit is executed, or to
statement 883 if the RETURN 2 exit is executed. When the function subprogram CHEBY is called by statement 66,
the return from the function is to the point of ca II in 66.

DO Statement
These statements are used to control the repetitive execution of a group of statements. The number of repetitions
depends on the value of a variable. The DO statement may be written

DO k v = e
1
,e

2
,e

3
, or

DOkv=e
1
,e

2
where

k is a statement label not defined before the DO statement.

v is a nonsubscripted integer variable.

el' e2' and e3 are integer constants greater than zero or unsigned nonsubscripted integer variables whose
value is positive.

In the second form, e3 and the preceding comma are omitted; in this case the value 1 is assumed for e3.

22 RETURN/DO Statements

[

[

[

[

A DO statement indicates that the block of statements following it are to be executed repetitively. Such a block is
called a DO loop, and all statements within it, except for the opening DO statement, constitute the range of the
DO statement. The last statement in a DO loop is the terminus and bears the statement label k.

The execution of a DO loop proceeds in the following manner:

1. The variable v is assigned the value of e1.

2. The range of statements is executed for one iteration.

3. After each iteration, the value of v is incremented by the value of e
3

. If e
3

is not present, the value 1 is used.

4. The value ofv is then compared with the terminal value (e
2

).

5. If v is greater than e2' control is passed to the statement following the terminus (i. e., to the statement follow
ing the one whose label is k). Otherwise, the process is repeated from step 2.

6. The actua I number of iterations defined by the DO statement is given by

([
e2 - e 1])

max ~ + 1, 1 for e
3

-I 0

where the brackets represent the largest integra I va lue not exceeding the va lue of the expression.

The range of a DO loop will always be executed at least once, even if the conditions for termination are met initial
ly. For this reason, it is recommended that initially satisfied DO loops should not be used, especially since other
FORTRAN systems may interpret this situation differently.

The terminal statement of a DO range (i. e., the statement whose label is k) may be any executable statement other
than one of the following:

DO statement

GO TO statement

Arithmetic IF statement

RETURN statement

STOP statement

PAUSE statement

Logical IF statements are specifically allowed as terminal statements of a DO range.

Example:

22 DO 54 I = 1, 15

25 SUM = SUM + O(I)

IF (SUM. LT. 0.0) SUM = 0.0

SIGMA = SUM + R(I)

IF (SIGMA - H ** 3/ T) 54,54, 12

54 CONTINUE

12 L = Y(I)

In the example that begins with statement 22, the range of statements 25 through 54 wi II be executed 15 times,
unless the arithmetic IF statement causes a transfer to statement 12. If a II 15 iterations are completed, control is
passed to statement 12 at the end of the fifteenth iteration.

The value of the variable v appearing in a DO statement depends on the number of iterations completed. The value
of v during anyone iteration is

e 1 + (i - 1) * e
3

where i is the number of the current iteration, and e1 and e3 have the meanings discussed previously. If a transfer
is made out of the range of a DO before all iterations have been completed, the value of v will be that of the itera
tion during which the transfer occurred.

Caution: If the entire number of iterations specified for a DO loop ~ executed, the value of v becomes
undefined when program control passes out of the DO loop.

The value of the indexing parameters (v,e
1
,e2'e

3
) cannot be modified within the range of the DO, nor can they be

modified by a subprogram called within the range of the DO.

DO Statement 23

[

A transfer out of the range of a DO loop is permissible at any time; however, a transfer into the range of a DO may
only occur if there has been a prior transfer out of the DO range (assuming that none of the indexing parameters
(v,e

1
,e

2
,e

3
) are changed outside the range of the DO). For example:

DO 25 H = K, Y, 1

GO TO 8605

24 A = H /8

25 JGU = Y(H) ** 3

8605 R = SIN(G(H» + JSU

8606 GO TO 24

is permissible; in fact, the statements 8605 through 8606 are considered part of the DO range. The sequence

GO TO 11

DO 32 J = 2,36,2

11 R(J) = 47. E-7 * T(J)

32 T(J) = Q

is not val id because no transfer could possibly occur out of the DO range.

A DO loop may include another DO loop. Do loops may be nested; however, they cannot be overlapped. In a nest
of DO loops, the same statement may be used as the terminal statement for any number of DO ranges; however, trans
fers to this statement can be made only from the innermost DO loop. Up to 25 DO ranges may be nested. Only if a
transfer is made out of the range of the innermost DO loop can a return transfer into the range of nested DO loops be
made. In this case, the return transfer must be to the innermost DO loop.

Examples:

10

100

1000

DO 1000 I = 1, II ------.

DO 100 J = 1, JJ-----.

~O 10 K = 1, K K l
CONTINUE----.J

DO 100 L = 1, LL

~OlM=l'MMJ

A=B

~ONTINUE ----LJ I
THIS = DO END~

III egal

200

201

2000

20

2

D0200W= 1, WW---

D0200X= 1, XX-

DO 20 Y = 1, yy--+ __

CONTINUE

DO 200 Z = 1, ZZ.-J

D02U=l, UU-

Q = R-------+----........

~ONTINUE-T

IT = WRONG-.J

The terminal statement of a range may not physically precede the DO statement, as is shown in the case of state
ments 200 and 201 in the illegal example above.

24 DO Statement

[

CONTINUE Statement

This statement is written as

CONTINUE

and must appear in that form. The CONTINUE statement does not cause the compiler to generate machine instruc
tion and, consequently, has no effect on a running program. The purpose of the CONTINUE statement is to allow
the insertion of a label at any point in a program. For example:

DO 72, 1= 1,20

IF (X ** I + O. 9999E-5) 72, 72, 88

72 CONTINUE

88 H(33) = T(3, R, L, E) /22.5

CONTINUE statements are most often used as the terminal statement of a DO range, as in the example above.

PAUSE Statement

PAUSE statements are written as

PAUSE

PAUSE n

PAUSE 's'

where

n is an unsigned integer constant of up to five digits (1 ~ n ~ 99999).

's' is a literal constant.

This statement causes the program to cease execution temporarily, presumably for the purpose of allowing the com
puter operator to perform some specified action. The operator can then signal the program to continue execution,
beginning with the statement immediately after the PAUSE.

If an integer or a literal constant is appended to the PAUSE statement, the word PAUSE and this value will be dis
played to the computer operator when the program pauses; otherwise, the word PAUSE is displayed.

STOP Statem ent

STOP statements are written in the form

STOP

STOP n

where

n is an unsigned integer constant

This statement terminates the execution of a running program. If it appears within a subprogram, control is not
returned to the calling program. If an integer is appended to the STOP statement, it will be output immediately
before termination.

CONTINUE/PAUSE/STOP Statements 25

[

END Statement

,A,n END statement is used to inform the FLAG compiler that it has reoched the physical end of a program. The state
ment must appear in the form

END

If program control reaches an END statement during the execution of any program (or subprogram) the effect is that
of a STOP statement.

The following restriction applies to any statement that begins with the character string END:

If the compiler has encountered only the characters END at the end of a line, it assumes that the statement is
an END statement and will act accordingly. An END statement may not appear on a continuation line.

This limitation is due to an historic FORTRAN feature; namely, the way in which continuation is specified. As in
dicated by the following examples, certain statements, although legitimate FORTRAN statements, will be processed
as though they were END statements.

Processed as EN D Statements

column: 6

x

x

7 •••

END
FILE 2

END

END

RATE = A * B

(I, J, K) = .NOT. Q

Not Processed as END Statements

6

x

x

7

END FILE
2

END RA

END (I, J
, K) = .NOT. Q

E
1 N
2 D

TE = A * B

Similarly, illegal statements of the same nature as those in the first column will be treated as END statements.

26 END Statement

6. INPUT jOUTPUT

The FORTRAN language provides a series of statements that determine the control of and condition for data transmis
sion between computer storage and external data handling devices, such as magnetic tape and paper tape handlers,
typewriters, card units, and line printers. These statements are of three types:

1. READ and WRITE statements that cause specified lists of data to be transmitted between computer storage and
one of the group of external devices

2. FORMAT statements used in conjunction with the input/output of formatted records to provide conversion and
editing information that specifies their internal and external representation

3. Auxiliary I/O statements for positioning and demarcation of external files (as on magnetic tapes)

The data transmitted by input/output statements are transmitted as records of sequential information consisting of
binary-coded strings of characters or unformatted binary values in a form similar to internal storage. For either type
of transmission the I/O statements refer to external devices, lists of data names, and - for formatted data - to format
specificati on statements.

Input/Output lists

An input/output list represents an ordered group of data names that identify the data to be transmitted and the order
of their transmission. These lists have the form

where

m. are I ist items separated by commas, as shown.
I

List Items

A list item may be either a single or multiple datum identifier.

A single datum identifier is the name of a scalar variable or an array element.

Examples:

A B

MAT RIX(25, L) ALPHA(J,N)

Multiple data identifiers are in one of two forms:

1. An array name appearing in a list without subscripts is considered equivalent to the listing of each element in
the array. ---

Example:

If B is a 2-dimensional array, the list item B is equivalent to

B(l, 1), B(2, 1), B(3, 1), •.. , B(l,2), B(2,2), .•• , B(j, k)

where

j and k are the dimension I imits of B

2. DO-implied items are lists of one or more identifers or other DO-implied items followed by a comma character
and an expression of one of the forms

v = e
1
,e

2

enclosed in parentheses.

Input/Output 27

The elements v, e1' e2' and e3 have the same meaning as defined for the DO statement. The items enclosed in
parentheses with a DO implication are considered to be in the range of the DO implication. For input lists the
: ... ,..J",,,: ... ,,, ... "' .. '· .. ·n",+", .. "" c c nnrl c mn" nnn",nr in thic:: rnnn'" nnlv nc:: C::llhc::rrintc::_
'II,","""I"~ t'''--I'-oIII _.oJ TI -1' -2' _ .. - -3 ... _, -1""'.--* - --"\::)- _ ... / -- ------.r·- ...

Examples:

DO-impl ied List

(X(I), 1= 1,4)

(A(I), I = 1, 10,2)

«C(I,J),D(I,J), J = 1,3), 1=1,4)

Special List Considerations

Equival ent Lists

X(l), X(2), X(3), X (4)

A(l), A(3), A(5),A(7), A(9)

C(l,l),D(1,1),C(1,2),D(1,2),C(1,3),D(l,3)

C(2, 1), D(2, 1), C(2, 2), D(2,2), C(2, 3), D(2, 3)

C(3, 1), D(3, 1), C(3,2), D(3,2), C(3, 3), D(3, 3)

C(4, 1), D(4, 1), C(4, 2), D(4, 2), C(4, 3), D{4, 3)

Since J is the innermost index, it varies more rapidl y than I.

1. The ordering of a list is from left to right with repetition of items enclosed in parentheses (other than subscripts)
when accompanied by controlling DO-implied indexing parameters.

2. An unsubscripted array name in a list implies the entire array.

3. Constants may appear in input/output lists only as subscripts or as indexing parameters.

4. For input lists the DO-implying index parameters (v, e
1
, e

2
, e

3
) may not appear within the parentheses as list items

For example, as an input list

(I, J, A (I), I = 1, J, 2)

I, J, (A(I), I = 1, J, 2)

As an output list

(I,J,A(I), 1= l,J,2)

is not allowed

is allowed

is allowed

5. The number of items in a single list is limited only by the statement length specifications.

Input/Output Statements

All input/output statements specify a device unit number, u. This number may be either an integer constant or an
integer variable reference whose value then identifies the unit. This unit number corresponds to an actual physical
device in one of two ways:

1. The number may be assigned to a device at program run time.

2. The number may be a standard unit number assignment, which is recognized as referring to a particular device.
These standard assignments may be overridden by run-time assignments, if necessary.

Table 6 shows standard device assignments for FLAG. There are no standard unit assignments for magnetic tapes or
random access devices.

Table 6. Standard Unit Assignments

Unit Number

5, i05

6,108

7,106

Standard Assignments

Card reader

Line printer

Card punch

If nonstandard unit numbers are used in a program they must be assigned to the desired device by use of ASSIGN
control cards placed in front of the FLAG control card (see Chapter 9). The default function of an assigned, non
standard unit number is OUTIN (scratch mode). If a unit is to be assigned to an input device (e. g., card

28 Input/Output Statements

[

reader or magnetic tape} the IN option should be specified on the ASSIGN control card. Some sample assign-

ments follow. To assign unit number 1 to the card reader:

!ASSIGN F:l, (DEVICE, 51), (IN)

To assign unit number 2 to the I ine printer:

!ASSIGN F :2, (DEVICE, LO, L)

To assign unit number 3 to a labeled magnetic tape with serial number 'PHS' from which data will be read:

!ASSIGN F:3, (LABEL, DATAFILE), (INSN, PHS), (IN)

To assign unit number 4 to a scratch disc file:

!ASSIGN F:4, (FILE, TEMP4)

Formatted Input/Output Statements

Formatted I/o statements are used to process binary-coded (BCD) records. These statements have the forms

READ{u, f)k

WRITE(u, f)k

where

u is a device unit number {unsigned integer or integer variable}.

is a FORMAT statement label or an unsubscripted array name.

k is an input/output list, which may be omitted. A comma may optionally precede the list k.

A formatted READ statement causes the character string in the external record to be converted, according to the

FORMAT specified, into binary values. These are then assigned to the variables appearing in the list k, or the
equivalent simple list, if k contains a DO-implication. Conversely, a formatted WRITE statement converts internal

values into character strings and outputs them.

Each formatted input/output statement begins processing with a new record. It is not possible to process a particular
record using more than one READ or WRITE statement. More than one record may be processed by these statements
if specifically requested by the FORMAT statement. However, attempting to read (or write) more characters on a
record than are (or can be) physically present does not cause processing of a new record; on output the extra char

acters are lost, on input they are treated as blanks.

A BCD record has a maximum size of 132 characters. Certain devices may impose other restrictions on the size of
records. For example, a punched card contains 80 characters. A record may contain as few as zero characters, in

which case it is considered to be blank or empty. In other words, a record into which any number of blanks have
been specifically written is indistinguishable (within the program) from an empty record. However, on devices such
as magnetic or paper tape, the FORMAT statement may determine the actual size of record written (see the XDS

Sigma Monitor reference and operations manuals for a complete description of BCD records).

The list k may be omitted from a formatted input/output statement. Normally, this has the effect of skipping one
record (on input) or writing one blank record (on output). However, information may actually be processed, and/or
more than one record used, if the FORMAT statement begins with Hollerith or slash specifications, in which case
information is either read into or written from the locations in storage occupied by the FORMAT statement {see
IIH Format Codes ll under IIFORMAT Statements ll

}.

Examples:

READ(105, 6)X, Y, T(3, 5)

READ(5, FORM) (A{I), 1= 1,40), H,Q

WRITE(N,FMT)(MASS(J,3),J=l, 100, 1)

WRITE(102,93) MESAGE, ERR NO

Input/Output Statements 29

Acceptable FORTRAN II Statements

The following FORTRAN II statements are accepted by FLAG. Each of these statements designates a specific phy
sical device, as shown in Table 7.

Table 7. FORTRAN II/FORTRAN IV Equivalent Statements

FORTRAN II FLAG Standard
Statement Equivalent Assignment

READ f, k READ (105, f)k Card reader

PUNCH f, k WRITE (106, f)k Card punch

PRINT f, k WRITE (108, f) k Line Printer

READ Statement

This FORTRAN II input statement has the form

READ f, k

where

is a statement label or an array name of the FORMAT statement describing the data

k is an input list as described earlier in this chapter

The READ statement causes the character stri ng in the external record to be read from devi ce 105 and converted,
according to the FORMAT specified, into binary values which are then assigned to the variables appearing in the
list k, or the equivalent simple list if k contains a DO-implication.

PUNCH Statement

This FORTRAN II output statement has the form

PUNCH f, k

where

f is a statement label or an array name of the FORMAT statement describing the data

k is an output list described earlier in this chapter

This statement causes internal data to be converted into character strings, as specified by the applicable FORMAT
statement, and to be output on devi ce 106.

PRINT Statement

The form of the FORTRAN II PRINT statement is

PRINT f, k

where

f is a statement label or an array name of the FORMAT statement describing the data

k is an output list as described earlier in this chapter

The PRINT statement causes internal data to be converted into character strings, as specified by the applicable
FORMAT statement, and to be output on device 108 (see also "Carriage Control for Printer Output" in this
Chapter).

30 Input/Output Statements

II FORMA T -Free" READ and PRINT Statements

"FORMAT-free" forms of the READ and PRINT statements are also provided. The general forms are as follows:

READ, k

PRINT, k

where k is an input/output variable list of the usual form. Output values will be printed 8 per line; input values
for "FORMAT-free" READ should be separated by either a comma or one or more blanks; if more than 8 values are

to be read by one READ statement the values should be punched 8 per card using as many cards as necessary. (The
actual FORMAT specifications used by "FORMAT-free ll READ and PRINT are (8G) and (8* (2XG.6)) respectively).

Intermediate Input/Output Statements

These statements process information in internal (binary) form and are designed to provide temporary storage on mag

netic tapes, discs, and drums. They have the form

READ(u) k

and

WRITE(u) k

where

u is a device unit number

k is an input/output I ist, which may be omitted (see below)

The binary READ/WRITE statements process data as a string of binary digits, arranged into words, depending on the

size of the items in the list k (see "Allocation of Variable Types", Chapter 7). All the items appearing in the list
of a binary READ/WRITE statement are contained in one logical record.

A logical record may consist of several physical records; however, it is treated as a single record, as far as the
programmer is concerned. (See The SDS Sigma Monitor reference and operations manuals for a description of the
format of intermediate binary information.) This means that the information output by a single binary WRITE state

ment must be input by one and only one READ statement. It is permissible to read less information than is present in
the record. If the input list requests more data from a binary record than is present, an error will occur. There is
no limit to the number of items that can be processed by a single READ/WRITE statement, since only one logical
record will be read or written, regardless of the amount of data to be transferred.

The records produced by binary WRITE statements do not consist of just the data to be generated. Control words are
included in the records to facilitate reading or backspacing the proper number of physical records. Thus".. the infor
mation produced by an intermediate binary WRITE statement is meant to be read subsequently by a binary READ state

ment. Other FORTRAN systems will not necessarily interpret the records in the same way. Similarly, binary tapes

produced on other machines or by other programs cannot, in general, be input using a binary READ statement.

If the list k is omitted from a binary READ/WRITE statement, a record is skipped, or an empty record is written.
Unlike formatted input/output statements, no data transfer can occur in such an operation. If an empty record is

written, it can only be processed by a READ statement with no list and, therefore, has little purpose.

Examples:

READ(3) E 1 (K), (M(K, L), L = 1,22)

READ (N) ARRAY

WRITE(MIN)R(J), G(J)

WRITE(3)VALUE

Input/Output Statements 31

END and ERR Forms of the READ Statements

Both the formatted and intermediate binary READ statements may optionally include a specification of action to be
performed if an error occurs or an end-of-fi!e mark is read. The statements are written

READ(u, f, END=s l' ERR=S2)k

READ(u, END=Sl' ERR=s2)k

where sl and s2 are each a statement label. Both the END=sl and the ERR=s2 are optional; if both are present,
either may appear first.

If an end-of-file mark is encountered during the processing of the READ statement, control will be transferred imme
diately to statement sr If an error occurs, control will be transferred to statement s2'

NAME LIST Statement

The NAME LIST statement is used to define the variables that may be processed by INPUT statements. It has the
form

NAME LIST v l' v 2' v 3' ... , v
n

where the v. are scalar or array identifiers. Dummy variables may not appear.
I

When an array name appears in a NAME LIST declaration, all elements of the array may be processed by an INPUT
statement.

A NAME LIST statement with no identifiers following it causes all appropriate variables that appear in the program
to be placed in the name list; i. e., all nondummy scalars and arrays. This can be helpful during program checkout,
since it enables the user to input any variable without knowing at compile time which variables it will be desirable
to input.

The NAME LIST variables defined in a program unit are independent of those defined in any other program units.
Each program has its own NAME LIST. This means the following:

1. A variable that appears in one program may not be processed by an INPUT statement in another program unless,
for example, the variable is in COMMON and aiso appears in the other program.

2. If two or more programs have separate variables with the same name, it is possible to input into either of them.
It simply depends on which program is doing the inputting. There is no ;onflict between the separate NAME
LISTs.

Examples of NAME LIST statements:

NAME LIST T, G, I, F, RATE, COUNT, ITEM QUANTITY

NAME LIST NORM, BOB, PHIL, DOUG

NAME LIST

Simplified Input/Output

This is the most straightforward form of input/output. It does not require the programmer to learn anything about
FORMAT statements or other kinds of input/output which, although more versatile, are also more complicated. It
can process every type of variable and is suitable for almost any FORTRAN application that does not require special
editing or formatting. Values may be written out in a natural form chosen by the compiler. Similarly, data can be
input in a very free form without the usual FORTRAN requirement that the user know exactly what FORMAT is con
trolling the input operation.

32 NAME LIST Statement/Simplified Input/Output

OUTPUT Statement

The OUTPUT statement may have any of the following forms:

OUTPUT k

OUTPUT, k

OUTPUT(u) k

OUTPUT(u), k

where

k is an output list, consisting of variables, expressions, and/or character strings.

u defines the logical unit number of the device on which the output data is to be written. It may be any
unsigned integer or integer variable. If no unit number is specified, the output will automatically be on
unit 108, which is the standard print unit.

The name of each list item will be output, followed by an equal sign and then the value of the item, in an appro
pri ate format.

For exampl e,

OUTPUT X, Y, X + Y, SQRT(X**2 + Y**2)

might produce the following lines of output:

X =.500000

Y = 1. 20000

X + Y = 1. 70000

SQRT(X**2 + Y**2) = 1.30000

Complex values are output as complex constants; the other data types are also output in natural forms, as shown in
the following example:

DOUBLE PRECISION D

COMPLEX C

LOGICAL L

OUTPUT(6), I, R, D, C, L

which might result in these lines:

I = 79

R = 4370.72

D = 99301. 3922310385

C = (-56.2234,334.882)

L = T

Each value is written on a separate line, beginning in column 2 (so that no carriage control will take place). The
maximum width of any line is 132 characters; excess characters will be lost.

If the first item in the output list begins with a left parenthesis, and no unit number is specified, there must be a
comma~er the word OUTPUT. Otherwise, the list item will appear to be a unit number. For exampl~

OUTPUT, (A + B), X(I)

When an unsubscripted array name appears in the output list, the entire array is output in storage order (see "Array
Storage ", Chapter 7). For example,

DIMENSION M(2,2), A (2)

OUTPUT M, A

OUTPUT Statement 33

r which could print the following:

M = 553

-4

o
11245

A .472962

-33.0000

To output headings or other alphanumeric information, a list item may be a character string enclosed in quotes (i. e.,
a literal constant). In this case, no equal sign or value will be ~eneratedi only the character string itself is output,
as in

OUTPUT 'FINAL COORDINATES'

which generates the line

FINAL COORDINATES

Implied DO loops may be used, as in the following example. Note that the list begins with a parenthesis and is
therefore preceded by a comma.

OUTPUT, (K, A(K)/B(K), K = N 1, N2)

which could produce this output:

K=3

A(K)/B(K) = 14.6135

K =4

A(K)/B(K) = 15.0873

etc.

Another feature is provided which enables OUTPUT records to be read subsequently by a "NAMELIST" INPUT state
ment. An OUTPUT list item may consist of a single asterisk (*), which will cause the characters *END* to be out
put on a record. This wiii cause an iNPUT statement to terminate reading. For exampie,

OUTPUT (4) X, I, J, AA, *

The actual format specifications used to output the various types of data are shown below, although the programmer
need not be concerned about them, since they are provided automatically. Note that all the formats are widthless.

Data Type

integer

real

double precision

complex

double complex

logical

Format Specifications

lPG.6

lPG.15

lP, lH(G.6, -X, lH,G.6,-X, lH)

lP, lH(G. 15, -X, lH, G. 15, -X, lH)

L

INPUT Statement Using NAME LIST
The INPUT statement is the counterpart of the OUTPUT statement, except that it is written without a specific list
of variabl es. The forms of the statement are shown below.

INPUT

INPUT(u)

where u is the unit number, as described under the OUTPUT statement. When not specified, it is assumed to be 105.

34 INPUT Statement Using NAME LIST

This form of the INPUT statement is designed to do self-identified input. That is, the variables being input are
identified by the input itself, rather than being named explicitly in an input list within the program. This enables
the user to decide at run time which variables (if any) are to be input, and to select different input variables from
run to run.

This statement processes records of the form

where the r. are each a form of replacement (similar to an assignment statement). Either semicolons (;), as indicated,
or commas thay be used to separate the r.. There may be any number of r. on a record. Except within constants,
blanks are ignored. I I

Each of the replacements r. may take one of the following forms:
I

v = c

In the first form,

v is a scalar variable and

c is a constant of an appropriate type.

The second form is used to input into an array element. Here,

a is the identifier of an array,

s. is a subscript, which may be a signed or unsigned integer, and
I

c is an appropriate constant.

The third form specifies input into an entire array, in the same manner as described for explicit input/output lists
(see IIInput/Output Lists ll

). In this case,

a is an array name,

c. is a constant of an appropriate type, and
J

m is equal to the number of elements in the array.

When an entire array is specified as above, the constants c. are assigned to successive array elements in the order
in which the array is stored (i. e., columnwise; see Figure J 2, Chapter 7). Note that there must be the same number
of constants as there are elements in the array. The constants may appear on separate input records, in which case
the separating comma is optional.

Example:

ALPHA = 1. 7302, -67,

4E-5

.87, 24.0983281640957

100000000000. ; X = 0; etc.

This is the only case in which a single INPUT item (an r.) may overlap from one record to another.
I

Variables that are to be processed by an INPUT statement must have been referenced by a NAME LIST statement so
that their names can be recognized at run time. Note that this can be done by using a NAME LIST statement with
no identifier list after it, which causes a" permissible scalars and arrays to be placed in the name list.

The permissible forms of a constant that appears on an input record depend on the type of the variable to which the
constant is to be assigned.

INPUT Statement Using NAME LIST 35

r
I

1. For integer, real, and double precision variables, the constant is scanned according to a G.O {width less} field
specification. The constant may therefore take any of the forms described under "Numeric Input Strings" for
widthless formats. This includes all the forms discussed in Chapter 2 for integer, real, and double precision
constants (except Hollerith). Note, howevei, that since they are scanned with a widthless format, these con
stants are terminated at the first blank that follows a digit or decimal point. A good rule is not to embed blanks
within constants. If this rule is followed, INPUT replacements may be written exactly as assignment statements.

2. For complex variables, the constant must be of the form

where c 1 and c2 may each be any of the forms discussed above for real data. The meaning is the same as for a
complex constant as described in Chapter 2.

3. For I ogi cal variabl es, the constant may take either of the forms

. TRUE. or . FALSE •

or the constant may be any character string that can be processed by a widthless format; that is, one in which
the letter Tor F appears. Such a field is terminated by the first comma or nonleading blank.

Thus, T, F, TRUE, and FALSE are all permissible input strings for logical variables.

Note that if the items in an OUTPUT statement are restricted to scalars, array elements (with constant subscripts),
and arrays, the resultant output records can be processed by an INPUT statement.

INPUT processing terminates when an asterisk character is found in the input string, wherever that may be. For
example,

T = 55E-2; A(l, 1,3) = 4, DSL = 2

J = -3746E 02 i LGL(12, -2) = . FALSE.

CPX = (7. 32D-2, 3) k'=() ARRAV=() I ," , , ,... -,

0, 14, 3.71*

or

R(55,-2) = 55.349384531062851907

J=9

SOOLE = T i FLAG = F ORTRAN4

C = (2, 7.08364724286E-03)

ARRAY = 1. 0

2.718281828459046

3. 141592653589793

-3944483

END

The *END* at the end of the second example is the form of end record generated by the OUTPUT statement, and
enables the user to separate OUTPUT records into "files" that can later be processed by one or more INPUT state
ments. For exampl e

OUTPUT (4) A, S, C, *, ARRAY, *, CPX, J(3), *

generates records that can be processed by three separate INPUT statements.

36 INPUT Statement Using NAME LIST

FORMAT Statement

The FORMAT statement is used to specify the conversion to be performed on data being transmitted during formatted
(BCD) input/output or DECODE/ENCODE operations. It is nonexecutable and may be placed anywhere in the pro
gram. In general, conversion performed during output is the reverse of that performed during input. FORMAT state
ments are expressed as

FORMAT (Sl,S2,S3"",Sn)

where

n ~ 0

S.
I

is either a format specification of one of the forms described below or a repeated group of such specifica
tions in the form

r(S l' S2' S3' •.. ,S m)

where

m ~ o.
is a repeat count as described below.

S. is as described above; in other words, repetitions may be nested (to ten levels).
J

The commas between the Si (and Sj) are optional except where ambiguities would arise from not separating speci
fications. In the absence of a comma, the compiler attaches as much as possible to the left-hand specification.
For example, the specifications

123F27.13X

wi II be interpreted as

123 , F27.13 , X

and not as

12 , 3F27.1 , 3X

To obtain the latter interpretation, the commas are required.

Every FORMAT statement should be labeled so that references may be made to it by formatted input/output state
ments. An entire FORMAT (the parentheses and the items they enc lose) may be stored in an array variable through
the use of assignment statements or input statements. In this case, as described under "FORMATs Stored in Arrays",
the array itself is referenced by the input/output statements.

Format specifications describe the kind or type of conversion to be performed, specific data to be generated, scaling
of data values, and editing to be executed. Each integer, real, double precision, or logical datum appearing in
an input/output list is processed by a sing Ie format specifi cation, whi Ie complex data are operated on by two con
secutive format specifications. Format specifications may be any of the following forms:

rFw.d rlw rZw iX

rEw.d rLw rMw Tw

rDw.d rAw r1s I iP

rGw.d rRw nHs r/

where

the characters F, E, D, G, I, L, A, R, Z, M, H, quotation mark (I), X, T, P, and slash (/) define the type
of conversion, data generation, scal ing, editing, and FORMAT control.

is an optiona I, unsigned integert that indicates that the specification is to be repeated r times. When r
is omitted, its value is assumed to be 1. For example,

316

is equivalent to

16,16,16

tSee also "Adjustable Format Specifications".

FORMA T Statement 37

r
I

w is an optional unsigned intege/ that defines width in characters {including digits, decimal points, alge
braic signs, and blanks} of the external representation of the data being processed. If w is not present in
a specification, the size of the external field depends on the characteristics of the data and the type of
cOiiveis;on pSifoimed. This is discussed individually under eCich specification.

d for F, E, D, and input G specifications, is an optional, unsigned intege/ that specifies the number of frac
tional digits appearing in the magnitude portion of the external field. If d is not present, its value is as
sumed to be zero, and the decimal point character preceding it should not appear. That is, Ew.O and Ew
are equivalent.

For output G specifications, d is also an unsigned integer/ but in this context it is used to define the
number of significant digits that appear in the external field; therefore, its value should not be zero.

n is an unsigned, decimal integer that defines the number of characters being processed.

is a string of the characters acceptable to the FLAG processor (see Chapter 1).

is a signed integert {plus signs are optional}. The function of i is described under X and P specifications.

F Format (Fixed Decimal Point)

Form:

rFw.d

Integer, real, double preCISion, or either part of complex data may be processed by this form of conversion.
Double precision values are converted with full precision if sufficient width is specified by w, and the value of d
a lIows for the appropriate number of digits in the fractiona I portion of the field.

Output. Internal values are converted to real constants, rounded to d decimal places with an overall length of w.
The field is right justified with as many leading blanks as necessary. Negative values are preceded with a minus
sign. Consequently, for the specification F11. 4,

273.4 is converted to

7 is converted to

-.003 is converted to

-442.30416 is converted to

273.4000

-, r\nr\1"\
I.UVVV

-.0030

-442.3042

When no width is speGified (i.e., w is not present), the converted field contains only the number of digits necessary
to express the value, plus one blank to the right of the field. Therefore, for the specification F. i,

349.5203

70000

-22

is converted to

is converted to

is converted to

349 • .%

70000.00

-22.Ob

and for the specification 2F.4, the output list

.03359, -67 is converted to .0336'O-67.000Ob

where 1) represents the character blank.

If a value requires more positions than are allowed by the magnitude of w, only w digits wi II appear, and the digits
lost wi II be from the left or most significant portion of the field. This is not treated as an error condition. Thus,
for the specification F4.4,

-1.22315

432034.

is converted to

is converted to

2232

0000

In order to insure that such a loss of digits does not occur, the following relation must hold true:

w ~ d+2+n

where n is the number of digits to the left of the decimal point.

t See also II Adjustable Format Specifications n.

38 FORMAT Statement

Input. Input strings may take any of the integer, real, or double precision constant forms discussed under "Numeric
Input Strings". Each string will be of length w with d characters in the fractional portion of the value. If a decimal
point is present in the input string, the va lue of d is ignored, and the number of digits in the fractiona I portion of
the value will be explicitly defined by that decimal point. For the specification FlO.3,

33

802142

.34562

-7.001

is converted to

is converted to

is converted to

is converted to

.033

802.142

.34562

-7.001

If the width w is not specified, conversion starts with the first non-blank character in the input string and ends with
the first comma or blank that follows a digit or a decimal point. The comma or blank is bypassed before conversion
of the next field begins. For the specification 2F.2, the string

333, .003

is converted to the va lues

3.33 .003

E Format (Normalized, with E Exponent)

Form:

rEw.d

Integer, real, double preCISion, or either part of complex data may be processed by this form of conversion. Double
precision va lues are converted with full precision if sufficient width is specified by wand the value of d allows for
the appropriate number of digits in the fractiona I portion of the fie Id.

Output. Internal values are converted to real constants of the forms

.ddd •.• dE ee

.ddd ••• dE-ee

where ddd ... d represents d digits, while ee or -ee is interpreted as a multiplier of the forms

lO±ee

Internal values are rounded to d digits, and negative values are preceded by a minus sign. The external field is
right justified and preceded by the appropriate number of blanks. The following are examples for the specification
E15.8:

90.4450 is co nverted to .90445000E 02

-435739015. is converted to - .43573902E 09

.000375 is converted to .37500000E-03

-1 is converted to -. 1 OOOOOOOE 01

.2 is converted to .20000000E 00

0.0 is converted to .OOOOOOOOE 00

When the width w is not present in the format specification, the converted field contains only the number of charac
ters necessary to express the value of the data, plus one blank to the right of the field. If the specification 2E.5 is
used, the output list

-774.119,1.00001977

is converted to

-.77412En03n.l0000EhOlu

where 1) represents the character blank.

The field, counted from the right, includes the exponent digits, the sign (minus or space), the letter E, the magni
tude digits, the decimal point, and the sign of the value (minus or space). If a width specification is of

FORMA T Statement 39

insufficient magnitude to allow expression of an entire value, only w digits will appear. The digits lost are from
the left or most significant portion of the field. This is not treated as an error condition.

i=V',......,·u .. 'I.lor.
_" IIIt-'I "".

Value EllA E8A E6A

-2013.55 -.2014E 04 2014E 04 14E 04

.361887 .3619E 00
~

3619E 00 19E 00

.000134 .1340E-03 1340E-03 40E-03

To prevent a loss of this kind, it is necessary to ensure that the relation

w ~ d+6

is satisfied by the specification. Note that the above feature can be used intentiona Ily to obtain the exponent field,
which is an indicationof magnitude range for any datum. For example, for the specification E3.0,

60255.034

0.0000072

is converted to 05

is converted to -05

Input. The discussion "Numeric Input Strings ll containsa description of the forms permi~sible for strings of input
characters. Conversion is identical to F format conversion. In particular, input fields for conversion in E format
need not have exponents specified.

Examples:

Input Value Specification Converted to

-113409E2 E9.6 -11.340900

-409385E-03 E.2 -4.09385

849935E-02 E10.5 .0849935

6851 E.O 6851.0

First, the decimal point is positioned according to the specification; then, the value of the exponent is applied to
determine the actual position of the decimal point. In the first example, -113409E2 with a specification of E11.6
is interpreted as -.113409E02; which, when evaluated (i.e., -.113409 x 102), becomes -11.340900.

o Format (Normalized, with 0 Exponent)

Form:

rDw.d

This format is similar to E format, with the exception that for output, the character D will be present instead of the
character E. For example,

for E12.6, -667.334 is converted to -.667334E 03

and

for D 12.6, -667.334 is converted to -.667334D 03

Input under D format is the same as for E and F formats.

G Format (General)

Form:

rGw.d

G format is the only format that may be used with any type of data, including logical. The form of conversion it
performs depends on the type of the list items. For a Gw.d specification, the following table shows the equivalent
format that is used when processing list items of the various types.

40 FORMAT Statement

List Item Type Input Output

integer Iw Iw

real Fw.d (see below)

double precision Fw.d (see below)

logical Lw Lw

Note that, as with all other formats, complex values are processed as two separate items; the real and imaginary
parts require individual specifications, and conversion occurs as shown above for real or double precision data.

For integer and logical list items, the d (in Gw.d) need not be specified; if it is present, it wi II be ignored. This
is the only case in which d is not assumed to be zero if not specified. G format is very useful in a widthless form.
When so used, the equivalent formats shown above become width less also (see "Numeric Input Strings ").

Output of Real and Double Precision Data Under G Format. The form of output conversion used with real and double
precision values depends on the magnitude of the values. G format attempts to express numbers in the most natural
way; that is, they are expressed in F format whenever possible, but in E format for values that are too large or too
small. Specifica Ily, d is interpreted as indicating the number of significant digits desired, and this is exactly the
number of digits that wi II be output. If the va lue of the number is such that it can be expressed by placing the deci
ma I point anywhere within or at either end of those d digits, that is what wi II be done, and no exponent wi II be
appended. If, however, preceding or trailing zeros would be required to express the va lue correctly, F format will
not be used; instead the number will be normalized and output with a fol.lowing exponent.

To express this algebraically, let M represent the magnitude of the value to be output (rounded to d significant dig
its). Select an integer i such that

lOi- 1 :s M < 10i (if M = 0.0, then i = O)

Assuming a specification of Gw.d, let n = w-4 and m = d-i. Then, if O:s i :s d, conversion takes place accord
ing to the specification

Fn.m,4X

If i is less than 0 or greater than d, the specification used is

Ew.d

Note that when F format is used, four blanks are output following the number, in the positions where an exponent
would otherwise be. In this way, numbers that are output in columns will tend to line up underneath each other in
a more readable way. The following examples illustrate the effect of G format output on values of various sizes:

Value G 10. 3 G 10.1

.02639 .264E-Ol .3E-Ol

.2639 .264 .3

2.639 2.64 3.

26.39 26.4 .3E 02

263.9 264. .3E 03

2639. .264E 04 .3E 04

Note that the choice of F or E format is independent of the value of the width w. If w is not large enough, digits
are lost at the left as in other numeric conversions. To ensure that this will not happen, the following relation
should hold true:

w ~ d+6

When no width is specified, the number will be followed by a single blank; values output in F form will not be
followed by four blanks.

Scale factors (see lip Specifications ") apply to G format only when the E form is used, not w}1en the F form is used.
This has the effect that all values output in G format are unchanged (except for rounding). It also has the effect
that values output in F form with a P scale factor cannot subsequently be input using the same FORMAT; the scale

FORMA T Statement 41

r factor will take effect during input but not during output. Thus, the new value will be different from the old by
a power of 10.

Note that the rounding applied to M {above} to determine whether to use E or F format is not necessarily the same
rounding that is appl ied when the number is actually output. Consider the following case:

PRINT 5,99.76
~ FORMAT(lP, G.2)

In principle, F form is to be used if the value lies in the range .1 :5 M < 100. The value 99.76 does lie in this range,
but when rounded to two digits it becomes 100., which is outside the range; so E form is used. First the unrounded
value of M is normalized (.9976E 02), then the P scale factor is applied (9.976E 01), and finally this value is rounded
giving 9.98E 01, which is the way it is printed. If the first rounding had been used throughout, the final value would
have been 1.00E 02, which is less accurate.

I Format {Integer}

Form:

rIw

Integer, real, double precision, or either part of complex data may be processed by this form of conversion. If the
width specification w is of sufficient magnitude, real and double precision values are converted in full precision.
In other words, values greater than the maximum permissible size of integer data may be processed, without the
truncation of the most signifi cant digits that is normally associated with integer operations.

Output. Internal values are converted to integer constants. Real and double precision data are truncated to integer
values; however, the integers may contain as many digits as are specified by w. Negative values are preceded by
a minus sign, and the field wi II be right-justified and preceded by the appropriate number of blanks. The specifica
tion 16 impl ies that

273.4 is converted to 273

7 is converted to 7

-.003 is converted to 0

-44204.965 is converted to -44204

The converted field occupies the minimum number of positions required to express the data value whenever w is un
specified. This minimum numberofdigits is followed by one blank. Forexample, for the specification 51 the output list

345.9, 70000, -2, -.999, 3030.3030

is converted to

345b700000-2b~30300

where -IS represents the character blank.

If the magnitude of data requires more positions than is permitted by the value of the width w, only w digits appear
in the external string, and the digits lost are the most significant. This is not treated as an error condition. Thus,
for the specification 12,

-778801 is converted to 01

Input. External input strings may take any of the forms discussed under "Numeric Input Strings" and conversion will
be identical to F format processing, with the exception thatfractional portions of a val ue are lost through truncation.
As noted above, however, the most significant digits will not be truncated. For example, the input field

4570000000000000000000000.942

processed by an I (widthless) format, into a real or double precision variable, wou Id produce the internal value

4.57 x 1024

L Format (Logical)

Form:

rLw

Only logical data may be processed with this form of conversion; any other data type causes an error to occur.

42 FORMA T Statement

Output. Logical values are converted to either a T or an F character for the values II true II and "false", respectively.
The T and F characters are preceded by w-l blanks. For examples, using the specification L4,

.TRUE.

.FALSE.

is converted to

is converted to

where 15 represents the character bl ank.

Specifications in which w is undefined will cause the following conversions:

.TRUE • is converted to

• FALSE. is converted to

Input. If a width is specified, the first T or F encountered in the next w characters determines whether the value is
"true" or "falsel~ respectively. If no Tor F is found before the end of the field, the value is "false". Thus a blank
field has the value "false". Characters appearing between the Tor F and the end of the field are ignored, except
for commas, which terminate the input string (see IIComma Field-Termination II). For example, the following input
fields, processed by an L7 format, have the indicated values:

True False

T F

TRUE FALSE

. TRUE. • FALSE •

RIGHT READ

STAFF LEFT

24T+T42 (blank)

For widthless logical input, the field terminates at the first comma or non-leading blank. In other words, if the
first non-blank character is a comma, it terminates the field; if it is not a comma, the next blank or comma wi II
terminate the field. The first T or F encountered within the field determines the ~alue. If neither a T nor an F
appears, the field has the value IIfalse". As above, characters appearing between the first Tor F and the blank or
comma are ignored.

A Format (Alphanumeric)

Form:

rAw

Output. Internal binary values are converted to character strings at the rate of eight binary digits (two hexadeci
mal digits) per character. The most significant digits are converted first. That is, conversion is from left to right.
The number of characters produced by an item depends on the number of words of storage allocated for that type of
item (see IIStorage Allocation Statements ll

, Chapter 7). Assuming standard size specifications, the following exam
ples illustrate the form of A format conversion:

Data Type

integer, real,
or logical

double precision

Interna I Binary/Hexadecima I

1100 1001 1101 0101 1110 0011 0101 1100
C 9 D 5 E 3 5 C

1100 0100 1101 0110 1110 0100 1100 0010
C 4 D 6 E 4 C 2

1101 0011 1100 0101 0111 1011 1111 0010
D 3 C 5 7 B F 2

where 1) represents the character blank.

Aw Externa I S tri ng

A4 INTi,

A2 IN

A6 1mINT~',

A INT*

A8 DOUBLE=2

A6 DOUBLE

All 1m1'5DOUBLE=2

A DOUBLE=2

FORMA T Statement 43

As with all other format conversions, complex data are treated either as two real or as two double precision values.
In each of the examples above, the first A format specifies exactly the number of characters required to express the
data fully, and therefore has the same effect as the widthless form. Normally, alphanumeric information is used
with integer variabies. In the exampies, note that when the magnitude of w does not provide for enough positions
to express the data value completely, the external field is shortened from the right (least significant) portion. This
is not treated as an error condition. When w has a value greater than necessary, the external character string is
preceded by the appropriate number of bl ank characters.

When the field width is not specified, the external character string consists of only the number of positions necessary
to fully express the character value of the data. The external character string is not followed by a blank.

AI phanumeric conversions are normally used to output Hollerith information that has been created in one of the fol
lowing ways:

1. Previously input using an alphanumeric format (A or R)

2. Using a I iteral constant (i. e., in a DATA statement, or passed as an argument)

It is not recommended that this form of conversion be used with random numeric values created other than as above.
The reason for this is that not all the 256 possible characters that can be produced can actually be printed. The
non-printable characters may, however, be useful in other contexts (e. g., on cards, or in ENCODE operations).

Input. When the width w is larger than necessary (that is, when its magnitude is greater than the number of charac
ters associated with the data type of the corresponding list item), the list item is filled with the rightmost characters.
For example, if the list item is integer, and the specification A 10 is used,

ABCDEFGHIJ is converted to GHIJ

However, when the value of w is less than the number of characters associated with the data type of the list item,
the most significant positions of the list item are filled with w characters, and the remainder of the positions are
filled with blanks. Consequently, when the list item is double precision and the field specification is A6,

UVWXYZ is converted to UVWXYZb'1:>

where -6 represents the character bl ank.

Naturally, if the width has a value equal to the number of characters associated with the data type of the list item,
the list item is completely filled with the external field.

Widthless specifications cause the! 1st item to be fi II ed by the next n characters from the input string, where n is the
number of characters associated with the data type of the list item. If a list contained references to a real variable,
an integer variable, and a double precision variable, in that order, and a field specification of 3A were used, pro
cessing would be in the following manner:

ABCDEFGHIJKLMNOP

is converted to

ABCD EFGH IJKLMNOP

A general rule for this type of conversion is that internal values are considered to be left-justified, while external
fields are considered to be right-justified.

R Format (Alphanumeric, Right-Justified)

Form:

rRw

This form of conversion is similar to A conversion, but the rule of internal justification is reversed. In other words,
internal values are considered to be right-justified with leading binary zeros, whereas with A format they are left
justified with trailing Hollerith blanks.

Output. When the size of w is insufficient to allow expression of the complete internal value, R format takes char
acters from the rightmost (least significant) portion of the internal value. In all other respects it is identical to A
format output. This difference is illustrated in the examples at the top of the following page.

44 FORMA T Statement

Data Type

integer, real,
or logical

double precision

Internal
Character Va lue

DOUBLE=2

where 1) represents the bl ank character.

w

4

2

6

none

8

6

10

none

A Format R Format

INT* INTi~

IN T*

f>1>INT* f1DINT~~

INTi~ INTi~

DOUBLE=2 DOUBLE=2

DOUBLE UBLE=2

1>f:>DOUBLE=2 1')"oDOUBLE=2

DOUBLE=2 DOUBLE=2

Input. As on output, R format differs from A format only when the specified width (w) is less than the number of
characters associated with the type of the input I ist item. In this case, R format fi lis the least significant (right
most) portion of the I ist item with w characters from the input string, preceded by enough binary zeros to fi II the
remaining portion. In other words, R format right justifies the characters and inserts leading binary zeros, whi Ie
A format left justifies the characters and inserts trailing Hollerith blanks. For example,

list Item
Data Type

integer, real,
or logical

double precision

where

Externa I String

XYINT*

85DOUBLE=2

w

4

6

2

none

8

6

10

none

1> represents the Hollerith character blank and

z represents eight binary zeros.

Interna I after Interna I after

A Conversion R Conversion

XYIN XYIN

INT"'~ INT~'~

XYf1I) zzXY

XYIN XYIN

85DOUBLE 85DOUBLE

85DOUBfrl) zz85DOUB

DOUBLE=2 DOUBLE=2

85DOUBLE 85DOUBLE

Note that the Hollerith character zero is not represented interna lIy as eight binary zeros. Consequently, if the
external field

OOABAB

were processed by the format specifications A4,R2 into two integer variables, the resulting values would be the
Hollerith constants 4HOOAB and 2RAB, which are not equivalent. For input as true right-justified integers, R for
mat should be used.

Z Format (Hexadecimal)

Form:

rZw

Z conversion is similar to R conversion, except that the internal data is processed 4 bits at a time instead of 8, and
the external field consists of hexadecimal digits, which are:

o 123456789ABCDEF

FORMA T Statement 45

Output. Internal binary values are converted to hexadecimal digit strings at the rate of 4 bits per digit. The num
ber 'of characters produced by an item depends on the number of words of storage allocated for that type of item (see
"Storage Allocation Statements", Chapter 7). For exampl e, an integer produces 8 di gits, a double precision number, 16.

If w is not specified large enough, the leftmost digits are lost, as in other numeric formats. If w is larger than the
number of positions necessary to express the data, the digits are right-justified in the field, with preceding blanks.

Wher:l field width permits, all of the digits in an item are output, including leading zeros.

When w is not specified, the full number of digits necessary to express the value is output, followed by a blank. The
blank is to facilitate subsequent rereading of the value (see below).

Examples:

Data Type

integer,
real, or
logical

Internal Binary/Hexadecimal

0000 0000 0000 1000 1110 0011 0101 1100
a a a 8 E 3 5 C

double 0100 0001 0011 0010 0100 0011 1111 0110
precision 4 1 3 2 4 3 F 6

1010 1000 1000 1000 0101 1010 0011 0000
A 8 8 8 5 A 3 a

wheref> represents a blank character.

Zw Externa I Stri ng

z8 0008E35C

Z6 08E35C

Z10 f>f>0008E35c

Z 0008E35C

Z16 413243F6A8885A30

Zl1 3F6A8885A30

z18 f>n413243F6A8885A30

Z 413243F6A8885A30

Input. When the width w is larger than necessary (i. e., when its magnitude is greater than the number of digits asso
ciated with the data type of the corresponding I ist item), the I ist item is fi II ed with the rightmost characters in the fi eld.

When w is too small, the digits are right-justified in the I ist item, as wi th R format. As usual, when the width exactly
corresponds to the number of digits associated with the list item, the item is completely filled with the external field.

There is, however, a significant difference between Z and R format on input. Z format is a numeric format, not
al phanumeri c. Therefore, commas may be used to terminate a hexadecimal input string. Furthermore, the length of
a widthless Z input string is not dependent on the size associated with the list item; a widthless hexadecimal input
string terminates at the first ~mma or non-leading blank, like all other numeric formats. Excess digits will be lost
at the left. (Note that, when w is specified, blanks are treated as zeros.)

The following are examples of Z format input (assuming an integer list item):

External Input Field

3A70049B
f:>f:>b3A7iJ'b
1:>D68,470 19
DCBA987654321
52CA91,
123456789 ABC,

1:>1)4%1>3

where 15 represents a blank.

M Format (Machine Dependent)

Format

Z5
Z8
Z8
Z12
Z
Z
Z

Internal Hexadecimal Value

0003A700
0003A700
00000D68
98765432
0052CA91
56789ABC
00000049

M format is intended primarily for output. It provides a machine-independent method of dumping information in the
format most appropriate to the machine on which the program is running. Thus, on an octal machine it would

46 FORMAT Statement

be interpreted as 0 format, and on a character machine, as A format. On the Sigma 5/7, it is interpreted exactly
the same as Z (hexadecimal) format. Thus, it could also be used for input, though this is not recommended.

H Format (Hollerith)

Form:

nHs

where

n :s 255

Output. The n characters in the string s are transmitted to the external record. For instance,

Specification External String

IRE E

8R'b1>VALUE: 'b1WALUE:

5R$3.95 $3.95

9HX(2,5)'b=1) X(2,5)1>='b
where1S represents the character blank.

Care should be taken that the character string s contains exactly n characters, so that the desired external field will
be created, and so that characters from other format specifi cations are not used as part of the string.

Input. The n characters in the string s are replaced by the next n characters from the input record. This replacement
~s as shown in the following examples:

Specification Input String Resultant Specification

3H123 ABC 3HABC

1 OHNOWf>IS'bTHE 1:>T IMEf>FOR1> lOHf>TlMEf>FORf>

5HTRUEf> FALSE 5HFALSE

6H'b1>f>f>f>f> RANDOM 6HRANDOM
where1S represents the character blank. This feature can be used to change the titles, dates, column headings, etc.,
that are to appear on an output record generated by the H specification.

If n is not present, its value is assumed to be 1.

, Format (Hollerith)

This is an alternate format for Hollerith transmission similar to that done by H format. This has the advantage of not
requiring the characters in the string to be counted.

Form:

The string s may contain not more than 255 characters. Any Hollerith characters may appear (see Chapter 1); how
ever, note the restrictions below concerning the I character. A repeat count, r, may optionally precede the
specifi cation.

Output. The string s is transmitted to the external device in a manner similar to that for H format. Thus,

is output as the stri ng

ABLE BODIED

Within a I string the I character is represented by two adjacent I characters; thus, Ip ILL TAKE FIVE is output as

FORMAT Statement 47

r Inp·ut. The characters appearing between the quotes are replaced by the same number of characters taken se
quentiall y from the input string. Therefore, if the specifi cation

is used to process the input field

MATRIX

the specification itself is changed to

'MATRIX'

Blanks in FORMAT statements are significant only in Hand' specifications.

X Specification (Skip; Space or Backspace)

The form of the X specification is

iX

This specification causes no conversions to occur. Instead, it causes i positions of the external field to be "skipped ".
If i is positive, it has an effect similar to that of a space bar on a typewriter; if it is negative, it has an effect simi
lar to that of the backspace control on a typewriter. In particular, an attempt to backspace beyond the beginning
of a record is equivalent to backspacing ~ the beginning of the record. ---

Output.
below}.

For positive values of i, the next i positions in the output record will be blanks (normally, however, see
In other words, a field of i blanks will be created. For example, the specifications

'WXYZ' , 4X, 'IJKL'

generate the following external string:

WXYZfr&Of>IJKL

where b represents the character blank.

_A~ negative value of i causes processing to "beck up" in the record. The next field vIi!! then begin I i I ChOicctCiS

to the left, assuming that this is not beyond the beginning of the record. For example, the specifications

'FORTRAN' , -3X, 'KNOX'

are equivalent to the specification

'FORTKNOX'

Note that when either backing up or moving forward by means of an X specification, characters that may have been
previously produced in the positions being skipped are not destroyed. Thus, in the exampl e given above under X
output, it is not necessarily true that the specification 4X will produce four blanks. It will, however, if no other
characters have been generated in those positions, since all output records are initially set to blanks.

The ability to specify a negative count in an X specification makes it possible to backspace over the blank that is
produced at the end of external fields by widthless numeric formats (i. e., D, E, F, G, and I). For example, for
K = 13 and Q(13) + 350.8, the statements

PRINT 5, K , Q(K)

5 FORMAT('Q(' -X ') F.2)

generate the string

Q (13) = 350. 80

As illustrated in the above example, if i is not specified it is assumed to be 1. Thus, the following specifications are
equivalent:

XXXX

4X

48 FORMA T Statement

Input. The next i characters from the input string are ignored whenever i is positive (that is, they are skipped). For
example, with the specifi cations

F5.3, 6X, 13

and the input stri ng

76.4lIGNORE697

the characters

IGNORE

will not be processed.

Negative val ues of i cause iii characters from the input string to be processed again. Consequentl y, the specifica
tions

13, -lX, E4.l

and the string

123456

are equiva lent to

13, E4.1

and the stri ng

1233456

T Specification (Tab)

The form of the T specification is

Tw

This specification causes processing (either input or output) to begin at character position w in the record, regard
less of the position in the record that was being processed before the T specification. It functions exactly like an
X specification; no transfer of data occurs. For example, the following FORMATs are equivalent:

1 FORMAT(5X

2 FORMAT(T6

AS

AS

-2X 17

Tl2 , 17

It can be seen from the above example that it is permissible to tab either forward or backward. Furthermore, a T
specification provides a capability that an X specification does not, namely that of tabbing to a given print position
when width less formats are being used and the character position is thus unknown. For example, to print (or read)
three columns of numbers beginning in positions 1, 21, and 41, the following FORMAT statement could be used:

3 FORMA T(G. 7, T21, G. 7, T 41, G. 7)

Note that backward tabbing can cause previously output information to be overwritten, or previously read input to
be processed again.

As with X specifications, it is not possible to tab to a position previous to the beginning of the record.

If no w is given, it is assumed to be 1. That is, T is the same as T1.

P Specification (Scale Factor or Power of 10)

The form of the P specification is

iP

A P specification causes the value of the scale factor to be set to i, where the scale factor is treated as a multiplier
of the forms

i
10 for output

and

-i
10 for input

FORMA T Statement 49

r At the beginning of each formatted input/output operation, before any processing occurs, the scale factor is set to
zero. Any number of P specifications may be present in a FORMAT statement, thereby causing the value of the
scale factor to be chanQed several times during a formatted input/output operation. If a FORMAT is re-scanned
within a single input/o~tput operation due to the number of items in a list (see "FORMAT and List Interfacing"),
the value of the scale factor is not reset to zero.

Scale factors are effective only with F, E, and D conversions, floating-point input G conversions, and E-type out
put G conversions.

Output. The value of the list item is scaled by the multiplier lOi. This scaling causes the decimal point to be
shifted right i places. On D- and E-type conversions, the exponent field (±ee) is correspondingly reduced by 1.
Thus, for D- and E-type output, the external number is equal to the internal value (except for rounding), while
for F format output it is not (unless i is 0). Scale factors do not affect numbers whose value is zero. The following
examples illustrate output scaling:

Format External field when internal value is:

2.71828 -2.71828 0.00000 0.09999

2PFI0.3 271.828 -271.828 .000 9.999
1 PFI0.3 27.183 -27.183 .000 1.000
OPFI0.3 2.718 -2.718 .000 .100

-1 PFlO.3 .272 -.272 .000 .0lO
-2PFI0.3 .027 -.027 .000 .001
-3PFI0.3 .003 -.003 .000 .000
-4PFI0.3 .000 -.000 .000 .000

2PE14.3 27.183E-Ol -27.183E-Ol .OOOE 00 99.990E-03
1 PE14.3 2.718E 00 -2.718E 00 .OOOE 00 9.999E-02
OPE14.3 .272E 01 -.272E 01 .OOOE 00 .100E 00

-1 PE 14.3 .027E 02 -.027E 02 .OOOE 00 .010E 01
-2PE14.3 .003E 03 -.003E 03 .OOOE 00 .00lE 02
-3PE14=3 .OOOE 04 -.OOOE 04 .OOOE 00 .OOOE 03
-4PE14.3 .OOOE 05 -.OOOE 05 .OOOE 00 .OOOE 03

The examples for E conversion above are simi lar to those that would result from D conversion and E-type G conver
sion. When G conversion uses the F form, however, sca Ie factors do not apply. Thus, a number output in G format
always represents the internal value.

Note that when a scale factor is in effect, output rounding takes place after the scaling--has been performed. In the
case of E format, this may cause additional scaling to be required, as shown above in the output of 0.09999. Note
the discontinuity in the way the exponent changes.

Input. During F, E, D, and G input conversions, if the input string contains an exponent field, the scale factor
has no effect. ':'owever, when the input string does not contain an exponent field, the value of the external field
is scaled by 10-1; that is, the decimal point is moved left i places. The following examples indicate the effect of
scaling during an input operation:

External Field

-71. 436

-71. 436E 00

Scale Factor

OP

3P

-lP

3P

-lP

Effective Value

-71. 436

-.071436

-714.36

-71. 436

-71. 436

It can be seen that, on both input and output, if the external number has an exponent specified, it is equal to the
internal value; if it does not, then

external value = internal value x Wi

50 FORMA T Statement

Once a sca Ie factor has been established during an input/output operation, it remains in effect throughout the oper
ation, unless redefined by an additional P specification. To reset the scale factor to zero, it is necessary to write
a OP specification. For the list

A, K, X, B

and the FORMAT

FORMAT(2(F .3, 2P), E 12.4, -2P)

A, K, and B are all converted using the F.3 format specification, but all three have different scale factors in effect,
as illustrated below:

Effective
List Format

'Item Speci fi cat ion

A F.3

K 2PF.3

X 2PE12.4

B -2PF.3

When i is not specified, its value is assumed to be zero. Therefore,

P is equivalent to OP

/ Specification (Record Separator)

The form of the / specification is

r/ or /

Each slash(/) specified causes another record to be processed. In the case of contiguous slash specifications (i .e.,
/ / // ••. / or r/), since no conversion occurs between each of the slash specifications, records are ,ignored during
input, and blank records are generated during output operations. The same condition can occur when a slash speci
fication and either of the parenthesis characters surrounding the field specifications are contiguous; a slash preceding
the final right parenthesis in a FORMAT statement is not ignored.

Output. Whenever a slash specification is encountered, the current record being processed is output, and another
record is begun. If no conversion has been performed when the slash is encountered, a blank record is created. The
statements

WRITE (5, 10) X, Y

10 FORMAT (F5. 3//113)

are processed in the following manner:

1. A record is begun, and X is converted with the specification F5.3.

2. The first slash is encountered, the record containing the external representation of X is terminated, and another
record is begun.

3. The second slash is encountered, the second record is terminated, and a third record is started. Note that since
no conversion occurred between the terminations of the first and second records, the second record was blank.

4. The value of the variable Y is converted with the 113 specification, the closing right parenthesis character is
encountered, and the third record is terminated.

FORMAT Statement 51

r
I

If a th i rd i tern Z were added to the output Ii st, as in

WRITE (5, 10) X, Y, Z

the following additional steps would occur:

5. A fourth record is begun, and Z is converted using the specification F5.3.

6. The first slash is re-encountered, the fourth record is terminated, and a fifth record is begun.

7. Again, the second slash is processed; the fifth record, which is blank, is terminated; and the sixth record is
started.

8. Since there are no more list items, the specification 113 is not processed, a termination occurs, and the final
or sixth record, which is also blank, is output.

Note that the processing of Z in steps 5 through 8 is equivalent to processing with the statement

10 FORMAT (F5.3,//)

since the specification 113 was not utilized.

The original FORMAT statement could also have been written as

10 FORMAT (F5.3, 2/113)

or

10 FORMAT (F5.3,2/,113)

both of which would cause identical effects.

The two statements

WRITE (M,4) X

4 FORMAT (3/EA/)

cause the generation of three blank records, followed by a record containing the value of X (converted by the.
specification EA), followed by another blank record.

Input. The effect of slash specifications during input operations is similar to the effect for output, except that for
input, records ary ignored in the cases where blank records are created during output. For example, the statements

READ (M,4) X

4 FORMAT (3/EA/)

cause three records to be bypassed, a va lue from the fourth record to be converted (with the specification EA) and
assigned to X, and a fifth record to be bypassed. This means that, as with the last example for output, recordscre
ated with a FORMAT statement containing slash specifications can be input by use of the identical FORMAT state
ment, which is not true in FORTRAN systems that ignore a final slash.

Parenthesized FORMAT Specifications
Within a FORMAT statement any number of specifications may be repeated by enc losing them in parentheses,
preceded by an optional repeat count, in the form shown on the following page.

where r and the S. are defined previously, and m ~ O. For example, the statement
I

3 FORMAT (3(A4, F. 2, 3X), 31)

is equivalent to

3 FORMAT (A4, F. 2, 3X, A4, F. 2, 3X, A4, F. 2, 3X, 31)

There is no limit to the number of repetitions of this form that can be present in a FORMAT statement.

During input/output processing each repetitive specification is exhausted in turn, as is each singular specification.

52 Parenthesized FORMAT Specifications

The following are additiona I examples of repetitive specifications:

34 FORMAT (4X, 2(A8, X,7G.3), I4,3(D, L5))

1125 FORMAT (I, R4, F.7, 5(E 14.8, 2/), E 14.8)

8 FORMAT (2(18, 2(3X, F 12.9), F12. 9), A 16)

In the last example above, repetitions have been nested. Nesting of this type is permissible to a depth of ten levels.

The presence of parenthesized groups within a FORMAT statement affects the manner in which the FORMAT is re
scanned if more list items are specified than are processed the first time through the FORMAT statement. In parti
cular, when one or more such groups have appeared, the rescan begins with the group whose right parenthesis was
the last one encountered prior to the final right parenthesis of the FORMAT statement. A more complete discussion
of this process is contained in "FORMAT and List Interfacing".

Adjustable FORMAT Specifications
The adjustable FORMAT specifications feature often el iminates the need to write a great number of FORMAT
statements in order to handle slightly different situations. Furthermore, it facilitates the input of records whose
form is highly variable, and which could not be processed without this feature.

Any of the quantities r, W, d, or i (see "FORMAT Statement") may be replaced by the letter N in a format specifica
tion. When an N is encountered, its value is obtained from the next input or output list item. The letter N is
merely a form of specification and does not conflict with any variable, subprogram, etc., whose identifier may be
N. Also, there is no limit to the number of N characters that may be used in a FORMAT statement or to the number
of quantities replaced by N in a format specification. For example,

32 FORMAT (NX, FNA, N(3X, E.5), NP, NGN.N)

is a valid statement, and seven values will be taken form the list.

The following set of rules defines the manner in which the value of N must be specified in a list and the way in which
the values are utilized:

1. Integer, real, double precision, or either part of complex data may be supplied as values for N. Non-integer
data wi II be truncated to integer value.

2. wand d (width and decimal point) specifications may be replaced only by N, whereas r (repeat count) and i
(skip or scale factor count) specifications may be replaced by N or -N.

3. The resultant value (negated if preceded by a minus sign) may be negative only when N is used to replace i.

4. When N appears one or more times in a single specification, its values must appear sequentially in the list and
prior to th e items (if any) that are to be processed by the specification. An example is the list

3,4, 1,A,B,C, 12,-2,D

and the statement

3 FORMAT (NEN.N, NX, NP, G 14.8)

which are equivalent to the list

A,B,C,D

and the statement

3 FORMAT (3E4.1, 12X, -2P, G 14.8)

5. Whenever N is used with a specification that is enclosed in repetition-type parentheses (see "Parenthezised
Format Specifications"), one value must be supplied for each repetition of the specifications enclosed. Con
sequently, the difference between the following two examples should be noted:

7, A, B, C and 3FN.2 7, A, 7, B, 7, C and 3(FN.2)

are equivalent to are equivalent to

A, B, C and 3F7.2 A, B, C and 3F7.2

Adjustable FORMAT Specifications 53

r 6. In the above example, it was noted that in the specification 3FN.2, one value of N is required, regardless of
the value of the repeat count; whereas, in 3(FN.2}, the number of values required for N is equal to the repeat
count. The same rule can be extended to include repeat counts whose values are zero:

a. When the repeat count (r) of a single specification is replaced by N and its value is zero, any Ns appear
ing in that specification must be supplied. For example, the following combination of list and FORMAT,

0,4, Y and NG20.N, F8.4

are equivalent to

Y and F8A

b. However, when the repeat count of a parenthesized group is replaced by N and its value is zero, all the
specifications appearing within the parentheses are bypassed, inc luding any Ns that may appear. Thus,

0, Y and N(G20.N}, F8.4

are equivalent to

y and F8.4

In both of the above examples, no value was supplied for the G specification; however, enclosing the specifi
cation within parentheses can be used to determine whether or not the value of N will be supplied.

The abi lity to specify zero repeat counts in this way gives the programmer the facility of selecting or skipping
certain specifications within a FORMAT statement. For example,

T=O

IF (BOOlE) T = 1

F = 1 - T

PRINT 17, BOOlE, T, F

17 FORMA T(Ll, N(3HRUE), N' AlSE '}

outputs the strings TRUE or FALSE depending on the value of BOOlE. Note that although an N cannot replace
the n in an H specification, the form shown in statement 17 above can be used.

7. The value of N may be supplied by an expression in either an input or an output list, but an expression used for
this purpose in an input list is not considered to be a true input list item.

As an example of the flexibility provided by adjustable format specifications, consider the statements

READ(101,205) K, K, (A(J), J=l,K}, CODE

205 FORMAT(I, NE , A4}

The value input for K defines not only the number of va lues to be input into the array A, but also the number of con
versions to be performed by the E specification. At the same time, the alphanumeric value of CODE can be contig
uous to the last field input into A, regardless of the number of such fields. Thus, all the following input records can
be correctly processed by the above statements:

1, 67.49, HOPA

5 -14.3 37 .09711623 0 3E12 JASU

,NONE

This example illustrates not only adjustable format specifications, but also widthless formats and comma field termi
nation (see below).

Numeric Input Strings

The permissible kinds of input strings that may be processed by numeric conversions are exactly the same for F, E,
D, G, and I conversion. Any fie Id that can be read using one of these formats can be read using any of the others.
In other words, numbers for input with E format need not have exponents, numbers for input with I format need not
be integers, etc.

54 Numeric Input Strings

A numeric input string consists of a string of digits with or without a leading sign, a decimal point, and/or a trailing
exponent. An exponent is normally specified as

E±e

where the plus sign is optional and e is a one- or two-digit number. The form ±e is also accepted (without the E),
in which case the plus sign is not optional. Thus, a variety of forms may be used to express data for numeric input:

±n ±n.m ±n. ±.m

±nE±e ±n.mE±e ±n.E±e ±.mE±e

±n±e ±n.m±e ±n.±e ±.m±e

where the plus signs are optional except in an exponent field without an E (as described above).

When input fields contain no decimal point (as in the first column above) the decimal point is positioned according to
the d in the format specification (as in Ew.d). If none is specified it is assumed to be zero. The decimal point is
placed d positions to the left of the beginning of the exponent, or if no exponent is present, d positions to the left of
the end of the field. Note that the exponent may begin with either a D, E, +, or-.

A D may be substituted for the E in an exponent field, with no change in meaning or value. It is not necessary to
indicate that data is double precision, nor is it necessary to use a D format. Regardless of the format used or the
form of exponent (if any), a numeric string will be converted with full double precision if the input list item to
which it is to be assigned is double precision.

Any numeric type of list item may be used with any numeric type of format specification. If the list item is integer,
the input value wi II be processed in floating-point, if necessary, and then converted to integer. When the I format
specification is used (with any type of list item), the fractional portion of the value is lost.

A comma may be used to terminate any numeric field, as described below. Leading blanks are always ignored. The
interpretation of embedded and trailing blanks depends on whether or not the format specification used is widthless
(no width specified).

Width less Numeric Input

The principle behind widthless input is that the field ends when the number is finished. A comma always indicates
that the number is finished. A blank also indicates that the number is finished, if it is meaningful to finish the num
ber at that point. Thus:

1. Leading blanks do not cause termination; they are ignored.

2. Any number of blanks may appear in the following places:

a. Between the leading plus or minus sign and the first digit.

b. Between the E and the pi us or minus sign or first digit of the exponent.

c. Between the plus or minus sign in the exponent and the first digit of the exponent.

3. A blank that follows a digit or decimal point terminates the field.

4. When a widthless (or any other) field runs off the end of the input record, the extra characters will be interpreted
as blanks. Normally, a widthless format does not terminate until at least one non-blank character has been
found. Special provision is made, however, to terminate widthless fields at the end of the record. Thus, any
number of numeri c values may be read from a blank record, and they wi II all be zero.

For clarity, numbers should generally be written without any embedded blanks. The first blank will then terminate
the field. Although the terminating blank or comma does not affect the value of the number, it is considered part
of the field it has terminated. Therefore, the next field begins with the character following the blank or comma.

The following is a typical widthless numeric input line consisting of eight values:

73 2E-4 .0007 -35.4 0 0 -16 27.08614E 12

Numeric Input Strings 55

r
I

The following is not a typical widthless numeric input line:

3E + 2 + 3.7 4 17E 2 5- 03

but ~ou Id be interpreted as five values, namely,

-300. 3.7 -4. 1700. .005

Numeric Input with Width Specified

When a width is specified, the field terminates only when the width is exhausted or a comma is found. The following
rules apply to blanks in numeric fields with a width specified:

1. Leading blanks are ignored, except that they are counted as part of the field width.

2. Once any nonblank character has been found, all blanks beyond that point are treated as zeros.

3. Any string of digits that is omitted has an assumed value of zero.

For a format specification such as F10.0, with no P scale factor, all the input strings in each of the columns below
produce the value shown in the top line of the column. The first three I ines in each column are typical numeric fields;
the others are permissible, but less readable.

- .00.4 7'.5 E 12 0
- 4 E - 3 . 7'50+13 0.0

- .004 750E10
- 4 - 4 75 E'l 0 + -0

- . 40 75 + o 1 OE
-4 - 8 . 75 E 16 + -

Note, in the fourth example of the middle column above, that the exponent is interpreted as 10 rather than as 1, be
cause the trailing blank is equivalent to a zero. Care should always be taken to assure that exponents are right
justified in their fields. Failure to do this is a common pitfall that can also be avoided by using comma termination
and/or widthless formats.

Input strings being processed under control of F, E, D, G, I, or L specifi cations may be terminated at any point by
the presence of a comma in the string. t In other words, whenever a comma appears in such an input string, the field
currently being processed is considered ended, and no additional characters are converted. This termination occurs
regardless of the value of w in the field specification. The comma is not processed, and the next field begins with
the character following the comma. For example, th-e specification 2F13.3 and the string

3450,88412,

are equivalent to F4.3, F5. 3 and

345088412

The string containing the commas would also be correctly processed by the specifications 2F. 3 or 2F8. 3.

Two contiguous comma characters indicate an empty field, which has the value zero. Therefore, for the specifica
tion 516, the string

303, , - 1, , 000450

is converted to the values

303 0 -1 0 450

tFor consistency with symbolic input (via the INPUT statement), the characters semicolon, asterisk, and right paren
thesis are also accepted as field terminators. Use of the comma is recommended, however.

56 Comma Field-Termination

and the stri ng

0, , '"

is converted to the values

o 0 0 0 0

The comma must, of course, fall within the field it is meant to terminate. For example, if the format specification
F4.0 were used to process the input string

1234,

the value would already be terminated because of field width, and the comma would terminate the following field,
giving it a value of zero.

FORMAT and List Interfacing

Formatted input/output operations are controlled by the FORMAT requested by each READ or WRITE statement. Each
time a formatted READ or WRITE statement is executed, control is passed to the FORMAT processor. The FORMAT
processor operates in the following manner:

1. When control is initially received, a new input record is read, or construction of a new output record is begun.

2. Subsequent records are started only after a slash specification has been processed (and the preceding record has
been terminated) or the final right parenthesis of the FORMAT has been sensed. Attempting to read (or write)
more characters on a record than are (or can be) physically present does not cause a new record to be begun;
on output the extra characters are lost, on input they are treated as blanks.

3. During an input operation, processing of an input record is terminated whenever a slash specification or the
final right parenthesis of the FORMAT is sensed, or when the FORMAT processor requests an item from the list
and no I ist items remain to be processed. Construction of an output record terminates, and the record is written
on occurrence of the same conditions.

4. Every time a conversion specification (i. e., F, E, D, G, I, L, A, R, Z, M, or N specifi cation) is to be pro
cessed, the FORMAT processor requests a I isf item. If one or more items remain in the I ist, the processor per
forms the appropriate conversion and proceeds with the next field specification. (If conversion is not possible
because of a conflict between a specification and a data type, an error occurs.) If the next specification is one
that does not require a I ist item (i. e., H, " X, T, P, or /), it is processed whether or not another I ist item
exists. Thus, for example, the statements

WRITE(6, 12)

12 FORMAT(///4HABCD)

would produce three blank records and one record containing ABCD before reaching the final right parenthesis.
When there are no more items remaining in the list and the final right parenthesis has been reached or a con
version specification has been found, the current record is terminated, and control is passed to the statement
following the READ or WRITE statement that initiated the input/output operation.

5. When the final right parenthesis of a FORMAT statement is encountered by the FORMAT processor, a test is
made to determine if all list items (including those to be used as values of N in adjustable specifications) have
been processed. If the list has been exhausted, the current record is terminated, and control is passed to the
statement following the RE~r WRITE statement that initiated the il1put/output operation. However, if
another list item is present, an additional record is begun, and the FORMAT statement is rescanned. The re
scan takes place as follows:

a. If there are no parenthesized groups of specifications within the FORMAT statement, the entire FORMAT
is rescanned.

b. If one or more parenthesized groups do appear, however, the rescan is started with the group whose right
parenthesis was the last one encountered prior to the final right parenthesis of the FORMAT statement. In
the following example, the rescan begins at the point indicated.

FORMA T and list Interfacing 57

I I I I I i II
FORMAT{3X,{F7.2,A5),{X 'ABC'3(3I4,2(G 15.7 //),R3)),E20.12,3HXYZ)

1 1 1
rescan begins
here.

last closing
parenthesis
of internal
group.

final right
parenthesis
of FORMAT.

c. If the group at which the rescan begins has a repeat count (r) in front of it, the previous value of the re
peat count is used again for each rescan. In particular, if the repeat count was specified with an N, a
new value of N is not supplied when the rescan takes place; the old va lue is used. Thus for example, the
statements

PRINT 5, CODE, 5, (A(J), J= 1,50)

5 FORMAT(A4 / N(G20.8))

are equivalent to the statements

PRINT 5, CODE, (A(J), J=l, 50)

5 FORMAT(A4/ 5(G20.8))

6. Each list item to be converted is processed by one specification or one iteration of a repeated specification,
with the exception of complex data, whichare processed by two such-specifications.

7. Each READ or WRITE statement containing a non-empty list must refer to a FORMAT statement that contains at
least one adjustable or conversion (see step 4 above) specification. If this condition is not met, the FORMAT
statement wi II be processed, but an error wi 1\ occur.

8. The same rules apply to DECODE and ENCODE operations as to READ and WRITE. The interpretations of multi
pie records in these cases is described under "Memory-to-Memory Data Conversion".

FORMATs Stored in Arrays

As mentioned previously, a FORMAT, including the beginning left parenthesis, the final right parenthesis, and the
specifications enclosed therein, may be stored in an array. The FORMAT must be stored as a Hollerith string (i.e.,
a string of characters), usually by use of an input statement or an assignment statement.

READ or WRITE statements that refer to a FORMAT stored in an array must reference only the identifier of the array,
with no subscripts. For example,

WRITE (4, R) E, F, G

while

refers to a FORMAT stored in an array R,

WRITE (4, R(l» E, F, G refers to a FORMAT statement whose location has been ASSIGNed to R(l).

If the variable M is an integer array, the following are two methods that may be used to store a FORMAT in M:

the externa I stri ng

(F8.5,4HNAIL,I3)

and the statements

READ (N,90)(M(I),I = 1,4)

90 FORMAT (4A4)

1

J

f are equiva lent TO

1

the statements

M(l) 4H(F8.

'1' /'l' I.TTe '.'n
1"11.L.) "'tn.J,"'tn

M(3) 4HNAIL

M(4) 4H,I3)

Alternatively, M could be a dummy array corresponding to a literal constant argument (see IIArguments and Dummies ll
).

Care must be taken when storing into an array a FORMAT containing specifications of the nHs and's' forms.
In these cases, all characters in the string s, including blank characters, are significant, while blank characters

58 FORMATs Stored in Arrays

are insignificant in all other specifications. For example, if M in the above READ statement were double precision
instead of integer, the following results would occur:

Element Storage after READ

M(l) (F 8 • 'Df>'Df>

M(2) 5,4Hf>f)"of>

14(3) NAIL 1>f>f:l'f)

M(4) ,I3)'M>M>

which is not the desired result, since it is equivalent to the FORMAT

(F8.5, 4Ho'G'O'O, NA, I, L,I3)

where'G represents the character blank.

Even though a FORMAT may be quite short, such as

(I8)

it must be stored in an array. It may not be stored in a scalar variable, since a reference to a scalar vari
able (or an array element) will be treated as though the scalar were assigned the location of a FORMAT statement,
rather than as if the scalar contained the FORMAT.

Extended Input/Output Capabilities

The statements described below under the headings

"Memory-to-Memory Data Conversion"

"Direct Input/Output"

"Random Access Input/Output Statements"

are optional features within the FLAG language. Programmers wishing to use any of these statements should ensure
that the FLAG system avai lable for their use includes these optional statements.

Memory-to-Memory Data Conversion

The statements ENCODE and DECODE are similar to formatted (BCD) WRITE and READ statements, respectively. In
an ENCODE/DECODE operation, however, no actual input/output takes place; data conversion takes place between
an input/output list and an internal buffer area. This buffer area is specified by the programmer and is usually an
integer array. Whereas an external record has a certain physical length, the length of the simulated internal record
in an ENCODE/DECODE operati on may be specified by the programmer. When mu Itiple records are specifi ed by the
FORMAT being used, records after the first record follow each other in memory in order of increasing storage address.
These statements have the form

ENCODE(c, f, s, n} k DECODE(c, f, s, n} k

or or

ENCODE(c, f, s} k DECODE(c, f,s) k

where

c defines the number of characters per internal record. It may be an integer constant or an integer non-
subscripted variable.

specifies a FORMAT statement. It may be the statement label of a FORMAT statement or the name of an
array in which a FORMAT has been stored.

indicates the first element or starting location of the internal buffer. It may be an array name, an array
element, or a scalar variable.

n is an optional integer variable into which will be stored, upon completion of the operation, the number
of characters actually processed (generated or scanned).

k is an input/output I ist of the usual form, and

a comma may optionally precede the list k.

Extended Input/Output Capabi lities/Memory-to-Memory Data Conversion 59

r Thus, the ENCODE/DECODE statements can be illustrated as

r ENCODEl

lOECODE I (characters, format, start, count) jist

Characters in the buffer are processed at the rate of four per word without regard to the type of the variable speci
fied as the starting location. When a new record is begun, it starts at the first character following the previous
record; in other words, at character c + 1. It is recommended that c be an integral multiple of four characters.

ENCODE Statement

The ENCODE statement causes the list items to be converted to BCD character strings, according to the FORMAT
specified by f, and to be placed in storage beginning at location s.

If the number of characters generated by the FORMAT statement is greater than the specified size of the record, the
extra characters are lost; they are not filled into the following record. If fewer characters are generated than are
necessary to fill the record, it is filled out with trailing blanks. In fact, on ENCODE operations, as on WRITE BCD
operations, the first thing done with each record is to fill it with blanks; this is done before any characters are stored
{generated} into it.

For example, the following statements might be used to create, for later use, a FORMAT stored in the array M:

K = 12

L=5

ENCODE(l2, 3, M) K, L

3 FORMAT(2H(F , I, 1H. , I, 1H))

The FORMAT so created would occupy the first three elements of M and would appear as

(F 12n. 56)niSiS

where b represents the character bl ank.

DECODE Statement

The DECODE statement causes the character string beginning at location s to be decoded, according to the FORMAT
specified by f, and stoied into the items in list k.

As with formatted READ operations, if the FORMAT statement requires more characters from a record than are spec
ified by the count (c), the extra characters are assumed to be blanks; they are not obtained from the next record. A
new record is begun only when specifically requested by the FORMAT (see "FORMAT and list Interfacing").

If n is specified, it will be set to the number of characters scanned. When scanning with widthless formats, this
can be very useful. The following example makes use of this feature:

INTEGER KARD(80), DAVE/DAVE 1/
READ 4, KARD

4 FORMAT(20A4)

DECODE(80,5, KARD, NC) KODE, J

5 FORMAT(A4, I)

IF (KODE .EQ. DAVE) DECODE(80,6, KARD) NC, J, (A(I), 1=1, J)

6 FORMAT(NX, NF)

The above statements could be used to read records of the form

DAVE 2, 1. 75, 80.91

Note that, in the above example, the first DECODE statement is used to decide how to interpret the rest of the card.
DECODE essentially provides the capability of "reading the card twice". ENCODE cannot be used in quite the same
way because it initially fills its buffer with blanks.

60 Memory-to-Memory Data Conversion

Direct Input/Output

FLAG provides the facility to perform asynchronous input/output operations through the two library routines

BUFFER IN and BUFFER OUT

which have two major capabilities.

1. They permit the processing, both on input and output, of records of arbitrary length and format. Ordinary for
matted READ and WRITE statements handle records only up to 132 characters in length, and unformatted, or
binary, READ and WRITE statements process information that is intended for communication only with a FORTRAN
environment. That is, in FORTRAN, binary information is considered to be a form of intermediate storage, an
extension of computer memory, and as such, binary records have special ized control information and are broken
into fixed-length physical records that comprise a logical record (see the XDS Sigma 5/7 FORTRAN IV Opera
tions manual). The BUFFER IN and BUFFER OUT routines, however, process information exactly as specified,
giving the programmer complete control over the data and enabling him to do such things as:

interpret binary tapes produced on other machines or by other programs,

read and write binary cards, and

in conjunction with the ENCODE and DECODE statements, process long formatted records.

2. BUFFER IN and BUFFER OUT proceed in parallel with the program and other input/output operations. This en
ables the programmer to initiate an operation, continue with computation and other processing while the input/
output is taking place, and to test the status of the BUFFER IN or BUFFER OUT operation at some later point in
the program.

The BUFFER IN and BUFFER OUT subroutines are called in the following fashion:

CALL BUFFER IN(u, m, s, w, i, n)

and

CALL BUFFER OUT{u, m, s, w, i, n)

where

u is an integer constant or an integer nonsubscripted variable that specifies the logical unit number of the
device on which the operation is to be performed.

m is an integer constant or an integer nonsubscripted variable that determines the mode of the operation;
if m=O, the mode is BCD; otherwise, the mode is binary. (An integer 0 or 1 is customary.)

indicates the starting location of the internal buffer. Normally, s is the identifier of an array, but it may
also be a scalar. It may be of any type, although integer is recommended for ease of manipulation.

w specifies the number of words to be input or output, starting at s, and must be an integer constant or scalar
of positive val ue.

is an integer scalar into which is dynamically stored an indication of the status of the operation. The status
is indicated as follows:

1 = operation incompl ete

2 = successful compl etion; no errors

3 = end-of-fi I e encountered

4 = operation complete but error has occurred

n is optional, but when specified is an integer scalar into which is stored, upon completion of the operation,
the number of words actually input or output. It is not continuously set up lion the flyll as the operation is
in progress. In general this count is significant only for BUFFER IN operations; in BUFFER OUT operations,
n is normally equal to w (see below)

Thus, the BUFFER IN/BUFFER OUT calls can be illustrated as

{
BUFFER IN }

CALL BUFFER OUT (unit, mode, start, words, indicator, count)

Direct Input/Output 61

I
I

A BUFFER IN or BUFFER OUT operation always results in the processing of only one physical record. Data is read
into, or written from, consecutive words in memory with no regard to the type of the variable specified as the start
ing location of the buffer. That iSI the variable s merely specifies the starting location.

It is permissible to intermix asynchronous operations and standard READ/WRITE operations in any order and on any
device, including intermixing on the same unit~

BUFFER IN

A call on BUFFER IN causes data to be read into memory from the specified unit, beginning at the location specified,
in the specified mode. The actual number of words entered into memory is the minimum of wand n. That is, if more
words are specified by w than are actually present in the physical record that is read, only the number of words ap
pearing in the record are changed in memory, and that fact will be reflected by the value of n. However, if more
words are present on the record than are speci fi ed by w, the extra words wi II be lost, and n wi II be greater than w.

When an end-of-file is read, i is set to 3; magnetic tape units will remain positioned immediately following the end
of-file. No data will be read into memory upon encountering an end-of-file.

The error status will be indicated when an irrecoverable error occurs. However, the data will be read into memory
despite the error, and can be used if the programmer chooses to ignore the error.

Example:

The following statements could be used to list binary tapes, in hexadecimal, ten words per line, preceded by the
record length:

INTEGER BUFFER (5000)

1 CALL BUFFER IN (5, 1, BUFFER, 5000, J, N)

2 GO TO (2,3,4,3,), J

3 M = MIN (N,5000)

PRINT 5, M, (BUFFER(K), K = 1, M)

GOTO 1

4 STOP

5 FORMAT (/X, ILENGTH = I 1/ (X, lOZlO))

BUFFER OUT

A calion BUFFER OUT causes data to be written from memory, beginning with the specified location, in the speci
fied mode. The number of words requested is always written, unless it is larger than the maximum size of a physical
record on the device being used, in which case n will be less than w (it can never be greater). For example, an
attempt to write 30 words on a card, in BCD, would result in n being set to 20.

If the indicator variable {i} has been set to indicate an error, an irrecoverable write error has occurred. The data
has, nonetheless, been .written on the specified device.

As mentioned above, records written in binary by BUFFER OUT are not the same as those produced by a binary WRITE
statement. This has one important ramification: the BACKSPACE statement may not be used to backspace over binary
records created by BUFFER OUT. It can be used to backspace over any kind of BCD record Sf but in binary records
it expects to find the control words generated by a binary WRITE statement so that it may backspace over the entire
logical record {which may consist of several physical records}.

Note that the output produced in BCD by BUFFER OUT is virtually identical to that produced by a BCD WRITE state
ment using IAI format. However, this does not include carriage control on printed output or any restrictions on the
size of magnetic tape records.

62 Direct Input/Output

Example:

The statements below could be used to read BCD cards and pack them onto binary cards.

INTEGER M(40)

1 READ (105,2) M

2 FORMAT (20A4)

CALL BUFFER OUT (106, 1, M,40, INDIC)

3 IF (INDIC < 2) GO TO 3

GOTO 1

Note that the reference to the array M in the READ statement causes two cards (40 words) to be read and causes the
FORMA T to be scanned twi ce.

Random Access Input/Output Statements

FLAG a Ilows full use of random access devices through util ization of the following two statements.

READ DISC u, s, k WRITE DISC u, s, k

where

u is an integer constant or nonsubscripted integer variable whose value specifies the logical unit number of
the disc.

is also an integer constant or nonsubscripted integer variable whose value defines the starting disc address
(see below).

k is an input/output I ist, as described previously.

Random access input/output operations are performed in binary, and therefore do not reference a FORMAT statement.
They differ from the standard binary READ/WRITE statements, however, in two ways:

1. They refer to random access files rather than to sequential files. Consequently, the REWIND, BACKSPACE,
and ENDFILE operations are not applicable to them.

2. Information is not thought of as being broken into unit records. Data is processed exactly as specified, with no
control words or record boundaries. As many locations of the disc or drum are used as are required for the items
specified in the input/output list. With a knowledge of the required sizes of various items the programmer is not
bound by the binary READ/WRITE restriction that the data written by one WRITE statement must be input with
one and only one READ statement.

As an analogy, the disc may be thought of as a one-dimensional array, from which it is possible to select an
element or group of elements in any random order, much as in an ENCODE or DECODE statement (see II Memory
to-Memory Data Conversi on II) .

In READ DISC statements, words are read into the items defined by the list k, starting from the disc location defined
by s. Reading is from the appropriate device.

With WRITE DISC statements, the binary word values of the list items are written on the appropriate device, starting
at the location defined by s.

The value of s may be considered to be an address relative to the start of the user1s file.

Auxiliary Input/Output Statements

The following set of statements enables the programmer to manipulate magnetic tapes and sequential disc files.

Random Access/ Auxi I iary Input/Output Statements 63

REWIND Statement

This statement is expressed as

REWIND i

where i is an unsigned integer constant or integer variable.

Execution of a REWIND statement causes the unit whose logical unit number is i to be rewound.

BACKSP ACE Statement

The BACK SPACE statement has the form

BACKSPACE i

where i is an unsigned integer constant or integer variable.

When a BACKSPACE statement is executed, the unit referenced by the integer value i is backspaced one logical
record. For binary tapes, a logical record may consist of more than one physical record. In this case a logical
record is interpreted as all the information output by one binary WRITE statement.

REWIND and BACKSPACE statements that are executed for tapes already positioned at IIload pointll have no effect.

END FILE Statement

This statement causes end-of-file marks to be written on the specified unit, and has the form

END FILE i

where i is an unsigned integer constant or integer variable whose value determines the unit on which an end-of-file
mark is to be written.

Sometimes, it is desirable to take a program that has been written for output on magnetic tape and assign that logi
cal unit number to some other device, such as a I ine printer. Since such programs often write end-of-fi Ie and re
wind their tapes at the end of the job, it is permissible to specify an ENDFILE or REWIND operation on any device;
the monitor will recognize this anomaly and handle the situation appropriately. It is not permissible to BACKSPACE
such devices.

Carriage Control for Printed Output

The first character in an output record that is intended for printing may control the printer carriage by containing
certain characters:

Character

o

Effect

Skip to first I ine of page before printing

Space two lines before printing

If one of these characters is present, it is replaced by a blank before the record is printed. The record is not shifted
left one position. For example, the second character is printed in column 2.

Any other character appearing as the first character in a record causes the carriage to be single spaced before the
record is printed; the record remains unchanged. This includes the 11+11 character, whose traditional function (over
printing) cannot be performed without hampering the printing speed on all lines.

64 Carriage Control for Printed Output

[

7. DECLARATION STATEMENTS

Declaration statements are used to define the data type of variables and functions, the dimensions of arrays, storage
allocation, initial values of variables, and to provide similar information.

Note: All declaration statements discussed in this chapter are subject to the rules for statement placement and
order given at the end of the chapter.

Classification of Identifiers
An identifier may be classified as referring to any of the following:

scalar

array

subprogram

COMMON block

The category into which an identifier is placed and the type (if any) associated with it depend on the contexts in
which the identifier appears in the program. These appearances constitute explicit or implicit declarations of the
way the identifier is to be classified.

Implicit Declarations

Unless specifically declared to be in a particular category or type, identifiers that appear in executable or DATA
statements are implicitly classified according to the following set of rules.

1. When appl icable, an identifier is integer if it begins with I, J, K, L, M, or N. It is real if it begins with any
other letter (implicit type classification may be altered by use of the IMPLICIT statement).

2. An identifier that is called with a CALL statement is a subprogram.

3. An identifier is a function subprogiam if it appeOis in an expression, followed by an argument jist enciosed in
parentheses. This does not apply to declared arrays.

4. An identifier is a statement function definition if it appears to the left of an equal sign, followed by a dummy
list enclosed in parentheses. It must also comply with the rules given in Chapter 8 under 11 Statement FunctionslJi
otherwise, it is an error. Again, this does not apply to declared arrays.

5. An identifier is classified as a scalar variable if it makes any other appearances within an executable or DATA
statement (i.e., other than followed by a left parentheses or in a CALL statement).

6. An identifier is implicitly classified as a scalar if it does not appear in an executable or DATA statement, but
does appear in a COMMON, EQUIVALENCE, or NAMELIST statement.

7. Library functions have an inherent type associated with them, as shown in Table 6 (see Chapter 8). Inherent
type is not equivalent to implicit type. Chapter 8 contains a complete description of these functions.

Explicit Declarations

All other declarations are explicit declarations. Explicit declarations are required in order to classify an identifier
in any way other than those described above. Explicit declarations include

array declarations

type dec larations

storage a !location declarati ons

subprogram dec larations

subprogram definitions

Conflicting and Redundant Declarations

Except where specifically noted to the contrary, definitions and declarations of the classification of an identifier
may not conflict. For example, an identifier may not be both a subprogram name and an array name, both integer
and real type, or defined as a subprogram in more than one place, etc.

Declaration Statements 65

Array Declarations

Array dec larations explicitly define an identifier as the name of an array variable and have the form

v(d
l
, d

2
, d

3
,···, d

n
)

where

v is the identifier of the array

n is the number of dimensions associated with the array

d. is an unsigned integer that defines the maximum value of the corresponding dimension. Arrays may have up
I to seven dimensions (see "Arrays" in Chapter 3). When v is a dummy array in a subprogram, d

1
through d

may be scalar variables instead of integers (see "Adjustable Dimensions" in Chapter 8). n

Array dec larations may appear in

DIME NSION statements

Explicit type statements

C aMMON statements

Examples:

x (10)

ARRAY (5, 15, 10)

CUBE (4,7)

DATA (4,3,6,12)

Array Storage

Although an array may have several dimensions, it is placed in storage as a linear string. This string contains the
array elements in sequence (from low address storage toward high address storage), such that the leftmost dimension
varies with the highest frequency, the next leftmost dimension varies with the next highest frequency, and so forth
(i. e.: 2-dimensiona I arrays are stored "column-wise"). Figure 2 illustrates array storage.

array A(3, 3,2)

Item Element

1 A(l,l,1)

I
2 A(2,l,l)

3 A(3, 1, 1)
4 A(1,2,l}
5 A(2, 2,1)
6 A(3, 2, 1)
7 A(l,3,l)
8 A (2, 3, 1)
9 A(3, 3, 1)

10 A(1,1,2)
11 A(2,l,2)
12 A(3,l,2)
13 A(1,2,2)
14 A(2,2,2)
15 A(3, 2,2)
16 A(l,3,2)
17 A(2,3,2)
18 A(3,3,2)

Figure 2. Array Storage

References to Array Elements

References to array elements must contain the number of subscripts corresponding to the number of dimensions de
clared for the array (except as discussed for EQUIVALENCE statements). References that contain an incorrect num
ber of subscripts are treated as errors.

66 Array Declarations

[

[

[

Furthermore, the value of each subscript should be within the range of the corresponding dimension, as specified in
the array declaration. Otherwise, the references may not be to data belonging to the set of elements that comprise
the array.

DIMENSION Statement

This statement is used only to define the dimensions of arrays, and has the form

DIMENSION v 1' v2' v3'···, v n

where the Vi are array declarations as described previously. A DIME NSION statement does not affect the type or
a lIocation of the arrays dec lared. For example:

DIME NSION MGO(l7), L TO(15), BB(36,22, 34)

DIMENSION AD(184), X(2,3, 4,5, 10), PETROL(5,6)

IMPLICIT Statement

This statement is used to alter the conventions for implicit typing from the IJKLMN rule discussed under I1Implicit
Dec larati ons l1. It has the form

IMPLICIT

where

each C. is a type convention of the form
I

type(c l' c2, c 3, ... ,c m)

and type is one of the six type declarations/

INTEGER
REAL
COMPLEX
LOGICAL
DOUBLE PRECISION
DOUBLE COMPLEX

c.
J

is a single alphabetic character or two such characters separated by a dash (minus sign); the second
character must follow the first in alphabetic sequence. For example,

Z, A-G, M-N, S

An IMPLICIT declaration may override the normal (IJKLMN) rule of implicit type classification. It, in turn, may
be overridden by an explicit type declaration (see below). As an example, the statement

IMPLICIT COMPLEX(C), LOGICAL(T, F, L-N), INTEGER(H-J, W)

would cause the following implicit type conventions to be in force:

1. Identifiers beginning with C are complex.

2. Identifiers beginning with T, F, L, M, or N are logical.

3. Identifiers beginning with H,I,J, or Ware integer. The I and J are redundant here, because these are normally
integer.

4. Identifiers beginning with K are integer (normal convention).

5. All other identifiers are rea! (normal convention).

The statement

IMPLICIT REAL(A-Z)

would cause all identifiers to be real unless explicitly declared otherwise.

t .. Optiona I Size Specifications" later in this chapter describes the declaration of double precision and double
complex types.

DIMENSION/IMPLICIT Statements 67

[

Whilean implicit type declatation may be redundant, it must not conflict with any other implicit type declaration.
For exampl e, the statement

iMPliCIT REAL(A-Z) I iNTEGER(N)

is ill egal because N is declared to be both real and integer.

An IMPLICIT statement does not affect the types of basic external library functions.

Explicit Type Statements

These statements are used to define, explicitly, the type of an identifier. They have the form

where

type is one of the declaration/

S.
I

INTEGER COMPLEX

REAL LOGICAL

DOUBLE PRECISION DOUBLE COMPLEX

is a type specification that is either the identifier of a scalar, array, function, or is an array decla
ration. Optionally, a scalar, array, or array declaration may be followed by a DATA constant list
enclosed in slashes, for the purpose of defining initial values for the variables. In other words, each
type specification may take any of the following forms:

identifi er

array declaration

identifier/DATA constant I ist/

array declaration/DATA constant list/

For a descdption of DATA constant lists, and their function, see "DATA Statement" later in this chapter.

Note that

REAL X, Y, Z/3.7 /

initializes only Z, while

DA TAX, Y, Z/3.7, 3.7, 3.7/

initializes X, Y, and Z.

Exampl es of expl i ci t type statements:

COMPLEX C3,ALPHA,CARRY(5,5), XYZ

LOGICAL BINARY, BOOLE(4, 4, 4, 4), TRUTHF

INTEGER GEORGE, NETRTE(9)/O,l,l,2,3,5,8, 13, 21/,MASS/O/

INTEGER ROOT, PP

tSee also "Optional Size Specification II in this chapter.

68 Explicit Type Statements

[

An explicit type declaration overrides any implicit declaration. Thus, the statements

IMPLICIT LOGICAL{L-P)

REAL LEVEL, PERCNT

in combination with the standard implicit typing rule, would cause the following identifiers to have the types
indicated:

LEVEL3 - logical

LEVEL - real

KAPPA - integer

POROUS - logical

PERCNT - real

X - real

Optional Size Specifications

In addition to the standard type declarations, an optional form is provided that specifies the exact size of the
data. This option takes the form

*n

where n is the number of bytes occupied by the data (there are four bytes in a word, and eight bits in a byte). In
the case of integer and logical, only the standard size is permitted, and the option has no effect. However, this
option is used to change ieci to double piecision and complex to double complex, as shown below.

Standard Optional
Type Size (bytes) Size (bytes)

Integer 4

Real 4 8

Complex 8 16

Logical 4

Double precision data are identical to real data with size specification of 8 bytes; double complex data are identi
cal to complex data with size specification of 16 bytes. Thus,

INTEGER*4 INTEGER

REAL*4 REAL

REAL*8 double precision

COMPLEX*8 COMPLEX

COMPLEX*16 doubl e compl ex

LOGICAL*4 LOGICAL

The *n modifier may appear in three kinds of statements: IMPLICIT statements, FUNCTION statements (discussed
in Chapter 8), and explicit type statements. This podtion of the *n relative to the type declaration that it modi
fies, depends on the statement, as follows:

1. In the IMPLICIT statement, the *n is appended to the type declaration word, as in

IMPLICIT REAL*8{I-K), INTEGER*4(A-H), LOGICAL(L, N)

Optional Size Specifications 69

2. In the FUNCTION statement, the *n is appended to the name of the function, rather than to the type word.

REAL FUNCTION MULT*8(X, Y, Z)

COMPLEX FUNCTION CNVERT* 16(C)

3. In explicit type statements, the *n can be appended to the type word, or the identifiers being declared, or
both. When appended to the type word, the *n holds for all identifiers listed, excepting those with an indi
vidual size specification of their own. In other words, the *n appended to an identifier takes precedence
over the * n appl yi ng to the whol e statement. For exampl e:

COMPLEX*8 CUM, LAUDE* 16

LOGICAL FLAG(lO), TRUTH*4(1O)

In the first example CUM and LAUDE are both of type complex; CUM has 8 bytes, while LAUDE has 16. In
the second example FLAG and TRUTH are arrays, each having 10 elements. Four bytes are required for each
element of array FLAG, and 4 bytes per element are required for array TRUTH.

Storage Allocation Statements

These statements are used to arrange variable storage in special ways, as required by the programmer. If no storage
allocation information is provided, the compiler allocates all variables within the program in an arbitrary order.
The storage allocation statements are

COMMON statement

EQUIVALENCE statement

To make proper use of the storage allocation statements, it is often necessary to know the amount of storage required
by each type of variable. The following table indicates the standard size associated with each type.

Tvne
"/1- -

integer

real

double precision

complex

doubl e compl ex

logical

COMMON Statement

Words

2

2

4

The COMMON statement is used to assign variables to a region of storage called COMMON storage. COMMON
storage provides a means by which more than one program or subprogram may reference the same data.

The COMMON statement has the form

COMMON w
1

w
2

w3 ... wn

where

the w. have the form
I

/c/v 1, v2' v3,···, v m

where

c is either the identifier of a labeled COMMON block or is absent, indicating blank COMMON

Vi is a scalar, array name, or array declaration

70 Storage Allocation Statements/COMMON Statement

When W1 (the first specification in the statement) is to specify blank COMMON, the slashes may be omitted. In
all other places, blank COMMON is indicated by two consecutive slashes. For exampl e:

COMMON MARKET, SENSE /GROUP3/X, Y, JUMP // GHIA, COLD

For each specification (wi), the variables listed are assigned to the indicated COMMON block or to blank COM
MON. The variables are assigned in the order they appear. Thus, in the above example, MARKET, SENSE,
GHIA, and COLD are assigned to blank COMMON, while X, Y, and JUMP are placed in labeled COMMON
block GROUP3.

Label ed COMMON

Labeled COMMON blocks are discrete sections of the COMMON region and, as such, are independent of each
other and blank COMMON.

Any labeled COMMON block may be referenced by any number of programs or subprograms that comprise an exe
cutable program (see Chapter 8). References are made by block name, which must be identical in all references.
All labeled COMMON blocks need not be defined in anyone program; in fact, only those blocks containing data
needed by the program require definition.

The variables defined as being in a particular labeled COMMON block do not necessarily have to correspond in
type or number between the program in which the block is referenced. However, the definition of the overall size
of a labeled COMMON block must be identical in all the programs in which it is defined. For example:

SUBROUTINE A

REAL T, V, W, X(21)

COMMON /SET1/T, V, W, X

SUBROUTINE B

COMPLEX G, F(ll)

COMMON/SET l/G, F

Both references to the COMMON block; SET 1: correspond in size. That is, both subprograms define the block
SET1 as containing 24 words; the definition in subroutine A specifies 24 items of real type, and the definition in sub
routine B declares 12 items of complex type.

Reference may be made to the name of a labeled COMMON block more than once in any program. Multiple refer
ences may occur in a singl e COMMON statement, or the block name may be specified in any number of individual
COMMON statements. In both cases the processor links together all variables, defined as being in the block, into
a single labeled COMMON block of the appropriate name.

Block names must be unique with respect to:

1. Subprogram names defined, explicitly or implicitly, to be external references

2. Other block names

A labeled COMMON block may have the same name as an identifier in any classification other than those above;
however, it is usually preferable to choose block names that are totally unique.

Blank COMMON

The section of the COMMON region assigned to blank (or unlabeled) COMMON is not discrete; in other words,
there is only one such area, and empty block name specifications always refer to it. Furthermore, as opposed to
labeled COMMON, blank COMMON areas, defined in the various programs and subprograms that comprise an
executable program (see Chapter 8), do not have to correspond in size. For instance, the following two sub
programs define blank COMMON areas of different sizes, and yet both may be portions of the same executable
program.

SUBROUTINE GAMMA

COMMON E, D(20, 10), S

SUBROUTINE ETA

COMMON R(10), N(5)

COMMON Statement 7]

72

Subroutine GAMMA defines a minimum of 202 words in blank COMMON; subroutine ETA declares a blank
COMMON that contains a maximum of 60 words, depending on the types of the variables E, D, S, R, and N.

Any number of references may be made to blank COMMON with a program. The multiple references may occur in
a single COMMON statement or in several COMMON statements. In either case, all variables defined as being in
blank COMMON will be placed together in the blank COMMON area.

Variables in blank COMMON may not be initialized (using a DATA statement) while those in labeled COMMON
may (see "DATA Statement" later in this chapter).

Arrangement of COMMON

Each labeled COMMON block and the blank COMMON area contain, in the order of their appearance, the vari
abies declared to be in the labeled block or the unlabeled area. The variables in each section of the COMMON
region are arranged from low address storage toward high address storage. The first variable to be declared as being
in a particular section is contained in the low address word or words of that section. Array variables are stored in
their normal sequence (see "Array Storage") within the COv'\MON block or area. For example the statements

COMMON /E/W, X(3, 3) //T, B, Q/E/J

COMMON K,M/E/Y //C(4), H, N(2), Z

cause the following arrangement of COMMON:

Item

1
2
3
4
5
6
7
8
9

10
11
12
13

Block E

W
X(l,l)
X(2, 1)
X(3,1)
X(1,2)
X(2,2)
X(3,2)
X(1,3)
X(2,3)
X(3, 3)
J
Y

Blank COMMON

T
B
Q

K
M
C(l)
C(2)
C(3)
C(4)
H
N(l)
N(2)
Z

Since a segment of the COMMON region may be defined differentl y in each program, it may be quite important to
be aware of which items in a segment contain certain variables. For example,

SUBROUTINE TOM SUBROUTINE DICK SUBROUTINE HARRY

COMMON IS/A, B(101)
COMMON IS/A, X(51) COMMON /S/ALPHA(52)

COMMON /S/y(50) COMMON /S/y(50)

will define the block S as follows:

Item TOM DICK HARRY

1 A A ALPHA(l)
2 B(l) X(l) ALPHA(2)
3 B(2) X(2) ALPHA(3)

52 B(51) X(51) ALPHA(52)
53 B(52) Y(l) Y(l)
54 B(53) Y(2) Y(2)

102 B(101) Y(50) Y(50)

COMMON Statement

which allows the routine TOM and DICK to access the variable A by that identifier, the routines DICK and HARRY
to access the array variable Y by that identifier, and yet the integrity of the block S is maintained (these examples
assume A, B, X, Y, and ALPHA are of the same type).

Referencing of Data in COMMON

Incorrect referencing of COMMON data will terminate execution. To ensure correct referencing of data, COM
MON blocks must be constructed so that the displacement of each variable in the block is an integral multiple of
the reference number associated with the variable (displacement is the number of bytes from the beginning of the
block to the first storage location of the variable). The reference number for type of variable is shown in the
following chart:

Type of Variable Reference Number

Integer 4

Real 4

Double Precision 8

Complex 8

Double Complex 8

Logical 4

The FLAG system automatically begins every COMMON block as if its specification were 8, thus allow
ing a variable of any length to be the first assigned within a block. To obtain the correct displacement for other
variables in the same block, it may be necessary to insert an unused variable in the block. For example, if the
variables R, I, and CPX are REAL, INTEGER, and COMPLEX, respectively, and a COMMON block is defined as

COMMON R, I, CPX

the displacement of these variables within the block is as shown below:

-t displacement = 0 bytes

R 4 bytes

+ displacement = 4 bytes

4 bytes

-!
1

displacement = 8 bytes

I
CPX 8 bytes

_I
displacement = 16 bytes

The displacements for I and CPX are evenly divisible by their reference numbers. However, if R were REAL *8
(instead of length 4), the displacement of CPX would be 12, which is incorrect. In that case, an extra word
with a length of 4 bytes would have to be inserted between R and I or between I and CPX to provide the

proper displacement for CPX.

EQUIVALENCE Statement

The EQUIVALENCE statement controls the allocation of variables relative to one another. Generally, it is used to
assign more than one variable to the same storage location or locations. It is expressed as

EQUIVALENCE sl' s2' s3'···' sn

EQUIVALENCE Statement 73

where each of the s. is an equivalence set of the form
I

(v 1' v2' v3'···' v m)

Each equival eliCe set sPedfi eS that all the v. aie to be assigned the same storage location.
the foil owi ng three forms: I

1. A scalar or array name. For arrays, the location referenced is that of the first element.

The v. may be one of
I

2. An array element, where the subscripts are unsigned integers. For example, the statements

DIMENSION A(3, 3)

REAL B, C, A, X(ll)

EQUIVALENCE (A(l,3), B), (C, X(l»

would make Band A(l,3) equivalent, and, similarly, C and X(l) equivalent.

When multiple subscripts are to be used in an EQUIVALENCE statement, that statement must be preceded by a
DIMENSION statement in which the array is declared.

3. An array name followed by an unsigned integer element count enclosed in parentheses. The meaning of this
count is as follows: the location of the first element of the array is denoted as position 1; the element immedi
ately following is position 2; and so on. Thus, if X is a 3 x 3 array, X(l) means the same as X(l, 1); X(3) is
two elements beyond X and refers to X(3, 1), where the size (in words) of an element is dependent on the type
of X (see IIAllocation of Variable Types ll

).

REAL B, C, A(3,3)

EQUIVALENCE (A(7), B)

would make A(l,3) and B equivalent.

See also IIInteractions of Storage Allocation Statements ll
, below, for further rules concerning equivalences

that cannot be implemented.

Example:

The effect of the statements

DIMENSION W(3), X(3,3), LC(7)

REAL W, X

INTEGER LC, J

REAL * 8 ELSIE

COMPLEX C

EQUIVALENCE (W, LC(2), ELSIE), (X(6), J, C(3»

is to cause the indicated equivalences:

Word

2

3

4

5

6

7

8

9

Variables - Set 1

LC(l)

LC(2) = W(l) = ELSI E1

LC(3) = W(2) = ELSI E2

LC(4) = W(3)

I rlc\
L\..\J}

LC(6)

LC(7)

Variabl es - Set 2

X(l, 1)

X(2, 1) = C 1

X(3, 1) = C2

X(l,2)

X(3,2) = J

X(l,3)

X(2, 3)

X(3,3)

where the arrangement of set 1 has no bearing on the arrangement of set 2.

74 EQUIVALENCE Statement

The statement

EQUIVALENCE (LC(2), W), (W(l), ELSIE), (C(3), J), (J, X(6))

has the same results as the EQUIVALENCE statement in the previous example, and the set (J, X(3, 2)) is the
same as the set (J, X(6)) in this case.

Interactions of Storage Allocation Statements

No storage allocation declaration is permitted to cause conflicts in the arrangement of storage. Each COMMON
and EQUIVALENCE statement determines the allocation of the variables referenced in them Therefore, no
EQUIVALENCE set should contain references to more than one variable than has previously been allocated. When
thi s is not followed, such references are either redundant or contradictory. The redundancy is normal I y ignored;
the contradictory reference is not allowed.

In all cases, the storage allocation sequence specified in a COMMON statement takes precedence over any
EQUIVALENCE specifications. Consequently, EQUIVALENCE statements are not allowed to define conflicting
allocations of COMMON storage; that is, two variables in the same COMMON block or in different COMMON
blocks can not be made equivalent.

It is permissible for an EQUIVALENCE to cause a segment of the COMMON region to be lengthened beyond the
upper bound established by the last item defined to be in that segment. However, it is not permissible for an
EQUIVALENCE declaration to cause a segment to be lengthened beneath the lower bound established by the first
item declared to be in that segment. Both conditions are demonstrated in the exampl es below.

COMMON /BLK1/A(5), B/BLK2/E(4), H, Y(2,2)

DIMENSION Z(lO), V(5)

EQUIVALENCE (A, Z), (V(4), E(2))

The first EQUIVALENCE set is a permissible extension of the block BLK1, whereas the second set illegally defines
an extension of the block BLK2. The declared storage allocation would appear as shown below.

Item

2

3

4

5

6

7

8

9

10

BLK1

A(l) == Z(l)

A(2) == Z(2)

A(3) == Z(3)

A(4) == Z(4)

A(5) == Z(5)

B == Z(6)

Z(7)

Z(8)

Z(9)

Z(lO)

B LK2 (i II ega I extension)

V(l)

V(2)

E(l) + V(3)

E(2) == V(4)

E(3) == V(5)

E(4)

H

Y(l, 1)

Y(2, 1)

Y(l,2)

Y(2, 2)

Note: Assume all items are of the same data type.

Interactions of Storage Allocation Statements 75

L

[

The fact that COMMON segments may be lengthened by EQUIVALENCE dedarations in no way nullifies the
requirement that labeled COMMON blocks of the same name, which are defined in separate programs or sub
programs comprising portions of an executable program, contain the identical number of words.

EXTERNAL Statement

The EXTERNAL statement has the form

where the p. are subprogram identifiers.
I

The EXTERNAL statement declares, as a subprogram, names that might otherwise be classified implicitly as scalars,
so that they may be passed as arguments to other subprograms (see II Arguments and Dummies ll in Chapter 8). For
example, if the subprogram name F appears in the statement

CALL ALPHA(F)

but appears in no other context to indicate that it is a subprogram, it would be implicitly classified as a scalar.
The EXTERNAL statement can be used to avoid this.

Example:

EXTERNAL F

Library functions (see Table 8) may not appear as arguments to a subprogram. If the name of a library function
(e. g., SIN) appears in an EXTERNAL or explicit type statement, it must refer to a variable or a user-supplied
subprogram.

BLOCK DATA Subprograms

FLAG permits variables in labeled COMMON to be initialized in a special program called a BLOCK DATA sub
program, which begins with a statement of the form

BLOCK DATA

and may contain only declaration statements (described in this chapter) and DATA statements described below. The
subprogram must be terminated with an END statement. Since BLOCK DATA subprograms may not be called by other
programs, they have no names nor are they executed in the usual sense.

BLOCK DATA subprograms must appear before the main program and all other subprograms.

Within a BLOCK DATA subprogram, initialization of labeled COMMON variables must be accomplished by one or
more DATA statements; type statements may not be used for initialization.

When initiaiizing variabies in iabeied COMMON, compiete deciarations snouid be included for oJ; the variables
in each COMMON block, so that

1. The position within the block of those variables that are being initialized will be correctly established.

2. The size of each COMMON block will correspond to the size declared in all other programs that use it.

Data may be entered into more than one COMMON block in a single BLOCK DATA subprogram.

76 EXTERNAL Statement/BLOCK DATA Subprograms

DATA Statement

The DATA statement has the form

where

S. is a data set specification of the form
I

variabl e-I i st/constant-I i st/

The primary purpose of the DATA statement is to give names to constants: for example, instead of referring to rr as
3. 141592653589793 at every appearance, the variable PI can be given that value with a DATA statement and used
instead of the longer form of the constant. This also simplifies modifying the program, if a more accurate value is
required.

Giving PI a value with a DATA statement is somewhat different from giving it a value with an assignment statement.
With the DATA statement the value is assigned when the program is loaded; with the assignment statement, PI re
ceives its value at execution time.

Consider another exampl e that profits even more from the use of the DATA statement: An ARCTAN function can be
written using a power series expansion. The efficient way to program this in FORTRAN is with a DO loop, stepping
through the constants. But constants cannot be subscripted, and the timing of the routine is adversely affected if an
array must be initial ized each time into the routine using assignment statements, such as:

C(O) 0

C(l) . 1243549945

C(2) .2447786631

etc.

Here, the DATA statement can be used to great advantage. It is not recommended that the DATA statement be used
to give "initial" values to variables that are going to be changed. This causes proper initialization of the program
to depend on loading and disallows restarting the program once it has changed these values. Good programming
practice dictates that such initialization be done with executable statements, e.g., with assignment statements.

The effect of the DATA statement is to initialize the variables in each data set to the values of the constants in the
set, in the order listed. For example, the statement

DA TAX, A, L/3. 5, 7, • TRU E./ , ALPHA/O/

is equival ent to the assignment statements

X = 3.5

A = 7

L = . TRUE.

ALPHA = 0

except that the DATA statement is not executable; its assignments take place upon loading.

Variable and constant lists in DATA statement may be constructed as described in the following two sections.

DATA Variable List

A DATA variable list is similar to an input list (see Chapter 6), in that it may contain scalars or subscripted or unsub
scripted arrays. It may not contain implied DO loops. Subscripts must be integers.

DATA Statement 77

[

I
I
!

OAT A Constant List

A DATA constant list is of the form

where

the C. are either constants or repeated groups of constants in the following forms:
J

c

r*c

where

c is a signed or unsigned constant of an appropriate type (see below).

is an unsigned integer repeat count, whose value (nonzero) indicates the number of times the group
is to be repeated.

The constant may be any of the forms described in Chapter 2, including literal constants. Hexadecimal constants
may also be used. The type of the constant must be the same as the type of the variable that it is initializing. The
following rules apply in DATA statements:

1. Integer, real, double precision and complex variables may be initialized with constants of those types.

2. Logical constants may be expressed as . TRUE. and. FALSE. or abbreviated as T and F.

3. literal constants may be used with any type of variable, although integer is recommended. A literal constant
is broken up on a character-by-character basis and depends on the nu~ber of words of storage occupied by the
variable (see "Storage Allocation Statements" earlier in this chapter). That is, an integer variable requires 4
characters, a complex variable, 8 characters, and a double complex variable, 16 characters.

Variable items will be initialized as required to use up the characters specified. If there are insufficient char
acters in any literal constant to fill the last variable used, it will be filled out with trailing blanks.

4. Numeric and logical constants may not be used for more than one variable list item; one literal constant may
initialize successive list items or successive elements of an array appearing as a list item.

5. Hexadecimal constants may be used to initialize any type of variable. The form of a hexadecimal const.ant is
the character Z followed by from 1 to 32 hexadecimal digits. These digits are

0123456789ABCDEF

As an example, the hexadecimal constant ZBOD represents the bit string 101100001101.

The maximum number of digits allowed in a hexadecimal constant depends on the type of variable being initial
ized. The following list shows the maximum number of digits for each variable type:

Type of Maximum number of
Variable Hexadecimal Digits

LOGICAL 8

INTEGER 8

REAL 8

REAL*8 16

COMPLEX 16

COMPLEX*16 32

If the number of digits is greater than the maximum, the leftmost hexadecimal digits are truncated; if the number of
digits is less than the maximum, hexadecimal zeros are supplied to the left.

78 DA T A Statement

The following examples illustrate some of the features described above:

INTEGER MM(3)

COMPLEX C1, C2

DATA MM/ABCDEF 1
, IGH 1

/, C1,C2/(17.8, -4.0), (17.8, -4.0)

The above DATA statement causes the following assignments to be made:

MM(l)

MM(2)

MM(3)

C1

C2

4HABCD

2HEF

2HGH

(17.8, -4.0)

(17.8, -4.0)

The constant list must completely satisfy the variable list and there may not be any remaining unused constants.

Dummy variables and variables in blank COMMON cannot be initialized with the DATA statement. Variables in
labeled COMMON may be initialized, but only in a BLOCK DATA subprogram.

Placement and Order of Declaration Statements

The following rules govern the placement and order of appearance of declaration statements within a main program
or subprogram when using FLAG.

1. All declaration statements must appear prior to the appearance of the first executable statement within a
program.

2. Declaration statements (if present) should appear in the following order within a program:

subprogram declaration statement

IMPLICIT statement

type statements

DIMENSION statements

COMMON statements

EQUIVALENCE statements

EXTERNAL statements

DA T A statements

NAME LIST statements

Failure to follow this order may result in one or more compiler diagnostic messages.

3. Identifiers that appear both in type statements and in EQUIVALENCE statements may not have initial data
values specified within the type statementi they may be initialized by one or more subsequent DATA
statements.

4. Identifiers appearing in type statements within a BLOCK DATA subprogram may not have values for data
initialization specified within the type statementi all identifiers within a BLOCK DATA subprogram must be
initialized by means of one or more DATA statements (or left uninitialized).

Placement and Order of Declaration Statements 79

[

[

8. PROGRAMS AND SUBPROGRAMS

A complete set of program units executed together as a single job is called an executable program. An executable
program consists of one main program and all required subprograms. Subprograms may be defined by the programmer,
as described in this section, or may be preprogrammed and contained in the run-time or system libraries.

Main Programs

A main program is comprised of a set of FLAG statements, the first of which (other than comment lines) cannot be
one of the following statements, and the last of which is an END statement.

a FUNCTION statement

a SUBROUTINE statement

a BLOCK DATA statement

Main programs may contain any statement except a FUNCTION, SUBROUTINE, ENTRY, or BLOCK DATA statement.
Once an executable program has been loaded, execution of the program begins with the first executable statement
in the main program.

Subprograms

Subprograms are programs which may be called by other programs; they fall into the two broad classes of functions
and subroutines.t These may be further classified as follows:

Functions

Statement functions

FUNCTION subprograms

Basic external functions

Subrouti nes

SUBROUTINE subroutines

A function is referenced by the appearance of its identifier within an expression and returns a value (see Chapter 2).
Subroutines are referenced with CALL statements and do not necessarily return a value (see Chapter 5). A number of
library functions and subroutines are included in FLAG. These are described at the end of this chapter.

Statement Functions

Statement functions are functions that can be defined in a singl e expression. A statement function definition has
the form

f(d l' d2, d
3

, ••• , d n) = e

where

f is the name of the function

d. is the identifier of a dummy scalar variable (see below)
I

e is an arithmetic or logical expression

tThe BLOCK DATA subprogram, which is neither a function nor a subroutine, is also provided (see Chapter 7).

80 Program and Subprograms

[

A statement function must have at I east one dummy argument. Statement function dummi es are treated onl y as
scalars; they cannotbedummy arrays or subprograms (see "Arguments and Dummies" in this chapter). The expression
e should contain at least one reference to each dummy. The identifier f may not appear in the expression, since
this would be a recursive definition. References to other statement functions may be made onl y to previousl y de
fined functions.

Examples:

F(X) = A * X ** 2 + B * X + C

EI(THETA) = CMPLX(COS(THETA), SIN(THETA))

AVG(PT, NUM, TOT) = 3 *(PT + NUM)/TOT + 1

Since each di is merely a dummy and does not actually exist, the names of statement function dummies may be the
same as the names of other variables in the program. Note, however, that if a statement function dummy is named
X, and there is another variable in the program called X, then the appearance of X within the statement function
expression refers to the dummy. The onl y relation between a statement function dummy and any other quantity with
the same name is that they will both have the same type. This enables the programmer to declare the types of state
ment function dummies using explicit (or implicit) type statements.

The statement function itself is typed like any other identifier: it may appear in an explicit type statement; if it
does not, it will acquire implicit type (see "Implicit Declarations" in Chapter 7).

A statement function may be referenced only within the program unit in which it is defined. Statement function
definitions must precede all executabl e statements in the program in which they appear.

FUNCTION Subprograms

Functions that cannot be defined in a singl e statement may be defined as FUNCTION subprograms. These subpro
grams are introduced by a FUNCTION statement, of the form

or

where

f

d.
I

type

is the identifier of the function.

is a dummy argument of any of the forms (except asterisk), described in "Arguments and Dummies ll later
in this chapter.

is an optional type specification, which may be any of the following/

INTEGER COMPLEX

REAL LOGICAL

DOUBLE PRECISION DOUBLE COMPLEX

Every FUNCTION subprogram must have at least one dummy. Values may be assigned to dummies within the
FUNCTION subprogram, with certain restrictions (see "Arguments and Dummies").

A FUNCTION subprogram must contain at least one RETURN statement. A RETURN statement should be the last
statement in a FUNCTION subprogram; i. e., it should be the last statement executed for each execution of the
FUNCTION.

tSee also "Optional Size Specifications" in Chapter 7.

Subprograms 81

The identifier of the function must be assigned a value at least once in the subprogram as the argument of a CALL
statement, a DO control variable f the variable on the left side of an arithmetic statement, or in an input list (READ
statement) within the subprogram.

Within the function the identifier of a FUNCTION subprogram is treated as though it were a scalar variable and
should be assigned a value during each execution of the function. The value returned for a FUNCTION is the last
one assigned to its identifier prior to the execution of a RETURN statement.

A FUNCTION subprogram may contain any FORTRAN statement except a SUBROUTINE statement, another FUNC
TION statement, or a BLOCK DATA statement.

FUNCTION statement examples:

INTEGER FUNCTION DIFFEQ (R, S, N)

REAL FUNCTION IOU (W, X, Y, Z 1, Z2)

FUNCTION EXTRCT (N,A, B, C, V)

LOGICAL FUNCTION VERDAD(E, F, G, H, P)

FUNCTION subprogram examples:

COMPLEX FUNCTION GAMMA (Z, N)

COMPLEX Z

M = 1

GAMMA = Z

DO 5 J = N, 10

M = M * J

5 GAMMA = GAMMA * (Z + J)

GA,V"VA ...:. M * N + Z / GAMtv'A

RETURN

END

SUBROUTINE Subprograms

SUBROUTINE subprogramsr like FUNCTION subprogramsr are self-contained programmed procedures. Unlike
FUNCTIONS, however SUBROUTINE subprograms do not have values associated with them and may not be refer
enced in an expression. Instead, SUBROUTINE subprograms are accessed by CALL statements (see Chapter 5).

SUBROUTINE subprograms begin with a SUBROUTINE statement of the form

SUBROUTINE p(d 1, d2, d
3
,.·., d

n
}

or

SUBROUTINE p

where

p is the identifier of the subroutine

d. is a dummy argument of Elny of the forms described in IIArguments and Dummies ll later in this chapter.
I

Note that while a FUNCTION must have at least one dummy, a SUBROUTINE need have none.

A SUBROUTINE subprogram must contain at least one RETURN statement; a RETURN statement should be logically
the last statement in a SUBROUTINE subprogram (that is, it should be the last statement executed for each execution
of the SUBROUTINE).

A SUBROUTINE subprogram may return values to the calling program by assigning values to the d. or to variables
in COMMON storage. I

82 Subprograms

[

[

A SUBROUTINE subprogram may contain any FORTRAN statements except a FUNCTION statement, another SUB
ROUTINE statement, and/or a BLOCK DATA statement. The SUBROUTINE subprogram may use one or more of its
arguments to return va lues to the ca Iling program. The SUBROUTINE name must not appear in any other statement
in the SUBROUTINE program.

Arguments and Dummies

Dummy arguments provide a means of passing information between a subprogram and the program that ca lied it.
Both FUNCTION and SUBROUTINE subprograms may have dummy arguments. A SUBROUTINE need not have any,
however, while a FUNCTION must have at least one. Dummies are merely IIformal ll parameters and are used to
indicate the type, number, and sequence of subprogram arguments. A dummy does not actually exist, and no stor
age is reserved for it; it is only a name used to identify an argument in the calling program. An argument may be
any of the following:

a scalar variable

an array element

an array name

an expression

a statement label

a constant of any type (including literal)

a subprogram name

A dummy itself may be classified within the subprogram as one of the following:

a scalar variable

an array

a subprogram

an asterisk denoting a statement labe I

Table 8, below, indicates the permissible kinds of correspondence between an argument and a dummy.

Table 8. Permissible Correspondences Between Arguments and Dummies

Dummy
Argument

scalar array subprogram asterisk

scalar or array element yes yest no no

expression yes no no no

statement label no no no yes

array name yest yes no no

I iteral constant yest yes no no

subprogram name no no yes no

tA correspondence of this kind may not be entirely meaningful (see "Dummy Arraysll).

Arguments and Dummies 83

A statement label argument is written as

&k

where k is the actual statement label and the ampersand distinguishes the construct as a statement label argument
(as opposed to an integer constant).

Within a subprogram, a dummy may be used in much the same way as any other scalar, array, or subprogram identi
fier with certain restrictions; namely, dummies may not appear in the following types of statements:

COMMON

EQUIVALENCE

DATA

NAME LIST

The reason for the above restriction is that dummies do not actually exist. Furthermore, classification of a dummy
as a scalar, an array, or a subprogram identifier occurs in the same manner as with other (actual) identifiers, in both
implicit and explicit classifications (see "Classification of Identifiers" in Chapter 7).

In general, dummies must agree in type with the arguments to which they correspond. For example, the following
situation is in error because the types of the arguments and the dummies do not agree.

COMPLEX C FUNCTION F (LL, CC)

LOGICA.L L LOGICAL LL

X = F (C, L) COMPLEX CC

Reversing the order of either the arguments in the calling reference or the dummies in the FUNCTION statement
would eliminate the error in this example.

There are two exceptions to the rul e of type correspondence:

i. A statement number passed as an argument has no type.

2. A SUBROUTINE name (as opposed to a FUNCTION name) has no type.

All arithmetic or logical expressions appearing as actual arguments in the calling program are first evaluated and
then placed in a temporary storage location. The address of that temporary storage location is then passed as the
argument (this action is referred to as "call by value"). For al! other arguments the actual address of the argument
is passed (this is referred to as IIcail by name II).

NOTE: All constants are passed by name; therefore, if the called subprogram stores into a dummy corresponding
to a constant in the calling sequence, that constant will be changed. Obviously, this is not recommended.

Dummy Scalars

Dummy scalars are single valued entities that correspond to a single element in the calling program. Dummies that
are not declared (implicitly or explicitly) to be arrays or subprograms are treated as scalars.

Dummy Arrays

A dummy argument may be defined as an array, by the presence of its identifier in any array declaration within the
subprogram (the fact that a calling argument is an array does not in itself define the corresponding dummy to be an
array). A dummy array does not actually occupy any storage, it merely identifies an area in the calling program.
The subprogram assumes that the argument supplied in the calling statement defines the first (or base) element of an
actual array and calculates subscripts from that location.

84 Arguments and Dummies

Normal! y, a dummy array is given the same dimensions as the argument array to which it corresponds. This is not
necessary, however, and useful operations can often be performed by making them different. For example,

DIMENSION A(lO, 10)

CALL OUT (A(l,6))

SUBROUTINE OUT (B)

DIMENSION B(50)

In this case, the 1-dimensional dummy array B corresponds to the last half of the 2-dimensional array A (i. e.,
elements A(l,6) through A(lO, 10)). However, since an array name used without subscripts as an argument refers
to the first element of the array, if the calling statement were

CALL OUT(A)

the dummy array B would correspond to the first half of the array A.

Arguments that are literal constants are normally received by dummy arrays. A literal constant is stored as a con
secutive string of characters in memory, and its starting location is passed as the argument address. For instance,
in the example

CALL FOR('PHILIP MORRIS')

the following correspondences hold:

M(l) = 4HPHIL

M(2) = 4HIP-bM

M(3) = 4H ORRI

M(4) = 4HSb'h6

SUBROUTINE FOR(M)

DIMENSION M (5)

M(5) is undefined and should not be referenced

where"b represents the character blank. Literal constants are fill ed out with trail ing blanks to the nearest word
boundary (multiple of four characters). Therefore, passing such a constant to a dummy of a type that occupies more
than one word per elementt (e.g., double precision) may result in dummy elements that are only partially defined.
For this reason, integer arrays are recommended.

If an array corresponds to something that is not an array or a literal constant, the latter will correspond to the first
element of the array. This is true whether the calling argument is an array and the dummy is not, or vice versa.
For example, if the calling argument is a scalar and the dummy is an array, references in the subprogram to elements
of the array other than the first el ement wi II correspond to whatever happens to be stored near the scalar. Care must
be taken in creating correspondences of this nature since they may depend upon a particular implementation.

Adjustable Dimensions

Since a dummy array does not actually occupy any storage, its dimensions are used only to locate its elements, not
to allocate storage for them. Therefore, the dimensions of a dummy array do not have to be defined within the sub
program in the normal manner. Instead, any or all the dimensions of a dummy array may be specified by dummy
scalar variables rather than by constants. This permits the calling program to supply the dimensions of the dummy
array each time the subprogram is called. The following statements demonstrate adjustable dimensions:

DIMENSION P(lO, 5), Q(9, 3)

X = SUM(P, 10,5)

Y = SUM(Q, 9,3)

FUNCTION SUM (R, N, M)

DIMENSION R(N, M)

tSee "Allocation of Variable Types" in Chapter 7.

Arguments and Dummies 85

[

[

Only a dummy array can be given adjustable dimensions, and the dimensions must be specified by dummy integer
scalars. The variables used as adjustable dimensions may be referenced elsewhere in the subprogram but should not
be changed.

When running in the "debug" mode (see Chapter 9) the size of a variably dimensioned array is calculated each time
the subprogram is entered, and subscripted elements of the array are checked to make sure that the subscript is in
the range of the array. If a one-dimensional dummy array is dimensioned with size 1 no subscript range checking
is done.

Dummy Subprograms

A dummy subprogram must correspond to an argument that is a subprogram name, and it is the only kind of dummy
that can do so. The dummy name merely serves to identify a closed subprogram whose actual location is defined by
the calling program. Therefore, a calion a dummy subprogram is actually a calion the subprogram whose name is
specified as the argument. A dummy subprogram is classified in the same manner as any other subprogram (see
"Classification of Identifiers" in Chapter 7).

Example:

EXTERNAL SIN, DSIN, SQRT, DSQRT FUNCTION DIFF(F, DF, Z)

A = DIFF(SIN, DSIN, X) DOUBLE PRECISION DF

B = DIFF(SQRT, DSQRT, Y) DIFF = DABS(F(Z) - DF(DBLE(Z)))

RETURN

END

(The programmer must provide the functions SIN, DSIN, SQRT, and DSQRT.)

A subprogram identifier, to be passed as an argument, must previously appear in an EXTERNAL statement {otherwise,
it may be classified as a scalar variable}.

Library Subprograms

FLAG includes a number of library subprograms. These are specially recognized by the compiler; which generates
special machine codes for them. Most of the library subprograms are functions, although several uti lity subroutines
are also provided.

Basic External Functions

The basic external function subprograms evaluate commonly used mathematical functions. These subprograms have
a special type that is known to the compiler. This type is not necessarily the same as the type it would acquire by
implicit typing rules. The arguments to these functions must have the proper type, as shown in Table 9.

Table 9 lists the function subprograms provided by FLAG. When a formula is shown in the column "Definition of
Function", it is not necessari Iy the formula that is actually used in implementing the function; it is intended only
to clarify the definition of function.

Additional library Subprograms

In addition to the functions listed in Table 9, the following subprograms are supplied in the FLAG library:

EXIT

Form:

CALL EXIT

[The effect is identical to that of the STOP statement.

86 Library Subprograms

Intrinsic
Names

ABS

ACOS

AIMAG

AINT

ALOG

ALOG10

AMAX1

AMAXO

AMIN1

AMINO

AMOD

ASIN

{
ATAN }
ATAN2

CABS

CACOS

CASIN

CATAN

CCOS

Number of
Arguments

N ~ 2

N ~ 2

N~2

N ~ 2

2

1,2

Table 9. Intrinsic and Basic External Functions

Type of
Argument

Real

Real

Complex

Real

Real

Real

Real

Integer

Real

Integer

Real

Real

Real

Complex

Complex

Complex

Complex

Complex

Type of
Result

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Real

Complex

Complex

Complex

Complex

Definition of Function

Absolute value. For complex, see CABS.

Arc cosine in radians. For complex, see
CACOS.

Imaginary part of argument (zero if not com
plex) expressed as a real value.

Integer part of argument (fractional part
truncated) .

Natural logarithm (base e).

Common logarithm (base 10).

Maximum value. All arguments are con
verted to and compared as real values.

Maximum value. All arguments are con
verted to and compared as integer values.

Minimum value. All arguments are con
verted to and compared as real values.

Minimum value. All arguments are con
verted to and compared as integer values.

Arg1 (mod arg2)' Evaluated as

arg
1

- arg
2

*AINT(arg
1
/arg

2
)

i. e., the sign is the same as arg1 .
Function undefined if arg2 = O.

Arc sine in radians. For complex, see
CASIN.

Arctangent in radians. Arg1 = ordinate (y),
arg2 = abscissa (x). If arg2 is not present,
assumed 1. Resul t (R) is arctangent of
arg1/arg2 quadrant allocated in the range
- 1T< R S 1T. ATAN(O,O) = O. For complex,
see CATAN.

Complex absolute value (i. e., modulus).

CABS(x + iy) =.y x2 + y2

Complex arc cosine. CACOS(Z)

= -i . CLOG(Z + CSQRT(Z2 - 1))

Complex arc sine. CASIN(Z)

= -i . CLOG(i . Z + CSQRT(l - Z2))

Complex arctangent. CATAN(Z)

= u + iv = - ~ (CLOG(l + iZ)

- CLOG(l - iZ)), allocated such that
-1T<US1T.

Complex cosine. CCOS(Z)

= (e iZ + e -iZ)/2.

Library Subprograms 87

r Table 9. Intrinsic and Basic External Functions (cont.)

Intrinsi c Number of Type of Type of
Names Arguments I Argument I Result I Definition of Function

CCOSH 1 Complex Complex Complex hyperbolic cosine. CCOSH(Z)
Z -Z

= (e + e)/2.

CDABS 1 Complex*16 Real*8 Double complex absolute value (modulus).
See CABS.

CDACOS 1 Complex*16 Complex*16 Double complex arc cosine. See CACOS.

CDASIN 1 Complex*16 Complex*16 Double complex arc sine. See CASIN.

CDATAN 1 Complex*16 Complex*16 Double complex arc tangent. See CATAN.

CDBLE 1 Complex Complex*16 Converts complex to double complex.

CDC as 1 Complex*16 Complex*16 Double complex cosine. See CCOS.

CDCOSH 1 Complex*16 Complex*16 Double complex hyperbolic cosine. See
CCOSH.

CDEXP 1 Complex*16 C-omplex* 16 Double complex exponential. See CEXP.

CDLOG 1 Complex*16 Complex*16 Double complex natural logarithm (base e).
See CLOG.

CDSIN 1 Complex*16 Complex*16 Double complex sine. See CSIN.

CDSINH 1 Complex*16 Complex*16 Double complex hyperbolic sine. See
rC' rio. II I
\.....)lI n.

CDSQRT 1 Complex*16 Complex*16 Double complex square root. See CSQRT.

CDTAN 1 Complex*16 Complex*16 Double complex tangent. See CTAN.

CDTANH

I
1

I

Complex*16 Complex*16 Double complex hyperbolic tangent. See

I CTANH.

CEXP 1 Complex Complex Complex exponential (e ** arg).
CEXP(x + iy)
= EXP(x) . (COS(y) + i . SIN(y)).

CLOG 1 Complex Complex Complex natural logarithm (base e)
CLOG(Z) = CLOG(x + iy)
= u + iv = In Izi + i . ATAN (y,x)

a /located such that -IT < v:s IT •

CMPLX 2 Real Complex Converts two noncomplex numbers to a com-
plex number. CMPLX(x,y) = x + iy.

CONJG 1 Complex Complex Complex conjugate. CONJG(x + iy) =x-iy.

COS 1 Real Real Cosine of angle in radians. For complex,
see CCOS.

COSH 1 Real Real Hyperbolic cosine. For complex, see CCOSH.

CSIN 1 Complex Complex Complex sine. CSIN(Z)

= (e i Z _ e -i Z) / (2i).

88 Library Subprograms

Table 9. Intrinsic and Basic External Functions (cont.)

Intrinsic Number of Type of Type of
Names Arguments Argument Result Definition of Function

CSINH 1 Complex Complex Complex hyperbolic sine. CSINH(Z)

Z -Z = (e - e) /2.
CSNGL 1 Complex*16 Complex Converts double complex to complex.

CSQRT 1 Complex Complex Complex square root. CSQRT(z)
. (In Z) /2

allocated such = u + IV = e ,
that u ~ O.

CTAN 1 Complex Complex Complex tangent. CTAN(Z)
= CSIN(Z) / CCOS(Z)

_ (i Z -i Z) / . (i Z + - i Z) - e -e lee.

CTANH 1 Complex Complex Complex hyperbolic tangent.
CTANH(Z) = CSINH(Z)/CCOSH(Z)

Z -Z Z -Z = (e - e) / e + e).

DABS 1 Real*8 Real*8 Double precision absolute value.

DACOS 1 Real*8 Real*8 Double precision arc cosine in radians.

DASIN 1 Real*8 Real*8 Double precision arc sine in radians.

{DATAN } 1,2 Real*8 Real*8 Double precision arctangent in radians.
DATAN2

See ATAN.

DBLE 1 Real Real*8 Argument converted to a val ue with double
precision.

DCMPLX 2 Real*8 Complex*16 Converts two noncomplex numbers to a
double complex number. See CMPLX.

DCONJG 1 Complex*16 Complex*16 Double complex conjugate. See CONJG.

DCOS 1 Real*8 Real*8 Double precision consine of angle in radians.

DCOSH 1 Real*8 Real*8 Double precision hyperbolic cosine.

DDIM 2 Real*8 Real*8 Double precision positive difference.
See DIM.

DEXP 1 Real*8 Real*8 Double precision exponential (e ** arg).

DFLOAT 1 Integer Real*8 Argument converted to double precision.
Same as DBLE, but generally used with
integer arguments.

DIM 2 Real Real Positive difference. DIM (x,y)
= x - min (x,y).

DIMAG 1 Complex*16 Real*8 Imaginary part of a double complex argu-
ment, expressedasadouble precisionvalue.

DINT 1 Real*8 Real*8 Integer part of the argument expressed as
a double precision value.

DLOG 1 Real*8 Real*8 Double precision natural logarithm
(base e).

Library Subprograms 89

r Table 9. Intrinsic and Basic E;I(ternal Functions (cont.)

Intrinsic Number of Type of Type of
Names I Arguments I Argument I Resuit I Definition of Function I

DLOG10 1 Rea 1*8 Real*8 Double precision common logarithm
(base 10).

DMAXl N:::2 Real*8 Real*8 Double precision maximum value. All argu-
ments are converted to and compared as
double precision values.

DMINl N:::2 Real*8 Real*8 Double precision minimum value. All argu-
ments are converted to and compared as
double precision values.

DMOD 2 Real*8 Real*8 Double precision arg
1

(mod arg2).
See AMOD •.

DREAL 1 Complex*16 Real*8 Real part of a double complex argument,
expressed as a double precision value.

DSIGN 2 Real*8 Real*8 Double precision magnitude of argl with
sign of arg

2
.

positive.
If arg

2
is zero, the sign is

DSIN 1 Real*8 I Real*8 Double precision sine of angle in radians.

DSINH 1 Real*8 Real*8 Double precision hyperbolic sine.

DSQRT 1 Real*8 Real*8 Double precision square root (positive value).

DTAN 1 Rea!*8 Rea!*8 I [)nllhlp nrpric;inn tnnnpnt

I
- ---.- 1-·--'-'-" ·_··v-··· ..

DTANH 1 Real*8 Real*8 Double precision hyperboli c tangent.

EXP 1 Real Real Exponential (e ** arg). For complex,
see CEXP.

I FLOAT 1 Integer I Real Argument converted to a real value.
I

lABS 1 Integer
,

Integer Integer absolute value.

lAND 2 Integer Integer Logical AND (extract).

ICOMPL 1 Integer Integer Logical NOT (lis complement). Same as
INOT.

IDIM 2 Integer Integer Integer positive difference. IDIM(j,k)
= j - MIN(j,k).

IDINT 1 Real*8 Integer Argument converted to an integer value.

IEOR N ::: 2 Integer Integer Logical EOR (exclusive OR).

IEXCLR N ::: 2 Integer Integer Logical EOR (exclusive OR). Same as
IEOR.

INOT 1 Integer Integer Logical NOT (lis complement).

{INT}
IFIX

1 Real Integer Argument converted to an integer va lue.

90 library Subprograms

Intri nsi c
Names

lOR

ISA

ISC

ISIGN

ISL

MAX 0

MAX 1

MINO

MINl

MOD

REAL

SIGN

SIN

SINH

SNGL

SQRT

TAN

TANH

Number of
Arguments

2

2

2

2

2

N ~ 2

N ~ 2

2

1

2

Table 9. Intrinsic and Basic External Functions (cont.)

Type of
Argument

Integer

Integer

Integer

Integer

Integer

Integer

Real

Integer

Real

Integer

Complex

Real

Real

Real

Real*8

Real

Real

Real

Type of
Result

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Integer

Real

Real

Real

Real

Real

Real

Real

Real

Definition of Function

Logical OR (merge).

Integer shift arithmetic. Arg1 is shifted left
arithmetically the number of bits specified
in arg2' If arg 2 is negative, the shift is to
the right.

Integer shift circular. Arg1 is shifted left
circularly the number of bits specified in
arg2' If arg2 is negative, the shift is to the
right.

Integer magnitude of arg) with sign of arg2'
If arg2 is zero, the sign IS positive. Arg2
is not converted to integer .

Integer shift logical. Arg1 is shifted left
logically the number of bits specified in
arg2' If arg2 is- negative, the shift is to the
right.

Integer maxi mum val ue.

Integer maximum value.

Integer minimum value. All arguments are
converted to and compared in integer.

Integer minimum value. All arguments are
converted to and compared in double
precision.

Arg1 (mod arg2)' Evaluated as

argl - arg2 * [arg1/arg2J

where the brackets indi cate integer part;
i. e., the sign is the same as arg1'
Function is undefined if arg2 = O.

Real part of a complex number.

Magnitude of arg 1 with sign of arg2' If
arg

2
is zero, the sign is positive.

Sine of angle in radians. For complex,
see CSIN.

Hyperbolic cosine. For complex, see
CSINH.

Argument converted to a value with real
(single) precision.

Square root (positive va lue). For complex,
see CSQRT.

Tangent of angle in radians. For complex,
see CTAN

Hyperbolic tangent. For complex, see
CTANH.

li brary Subprograms 91

[

[

[

92

SLITET - Sense Light Test

Form:

CALL SLITET (n,v)

where

n is an integer constant or scalar variable specifying whi ch sense light is to be tested (1 :s n :s 4).

v is an integer variable in which the result of the test wi II be stored.

Sense light n is tested. If the sense light is on, the value 1 will be stored in Vi if it is off, the value 2 will be
stored. Following the test, the sense light will be turned off.

SLITE - Set Sense Light

Form:

CALL SLITE (n)

where

n is an integer constant or scalar variable (O:s n :s 4).

If n is 0, all sense lights will be turned Offi if n is 1,2,3, or 4, the corresponding sense light will be turned on.

OVERFL - Floating Overflow Test

Form:

CALL OVERFL (s)

where

is an integer variable into which will be stored the result of the test.

If a floating overflow has occurred, s is set to 1 i if no overflow condition exists, s is set to 2. If a floating under
flow condition exists, s is set to 3. The machine is left in a no overflow (underflow) condition following the test.
Overflow and underflow are defined in the Sigma computer reference manual.

DVCHK - Divide Check

Form:

CALL DVCH K (s)

where

is an integer variable into which will be stored the result of the test.

This is another entry to the OVERFL subprogram described above.

library Subprograms

9. OPERATIONS

FLAG operates under control of the Sigma 5/7 Batch Processing Monitor (BPM). Preparing a FLAG job for compila
tion or combined compilation and execution is a simple procedure requiring the preparation of a few control cards.
This is one of FLAG's most attractive features, together with its foci lity for rapid compi lation and execution of
programs.

The user has a number of convenient processing options at his- disposal, all of which can be controlled by option codes
on the FLAG control card. Option codes are explained later in this chapter in Table 10.

Running a FLAG Job

Figures 3 and 4 later in this chapter show sample deck setups for compiling and executing FLAG jobs. The JOB,
ASSIGN, EOD, and FIN cards shown in the examples are standard BPM control cards. Many installations using
BPM arrange for the computer operator to insert these control cards in the FLAG deck, the programmer supplying only
the FLAG control card required for his job.

The ASSIGN cards shown in the examples are necessary only if the programmer requires file or I/o device assignments
different from the standard ones provided at his installation. The source program decks and EOD cards would be omit
ted if M:SI were not assigned to the card reader. That is, the program decks together with their appropriate end-of
data indications could be read from magnetic tape or disc. Detailed information on all control cards, except the
FLAG card, is available in the Sigma 5/7 Batch Processing Monitor Reference Manual (SDS 90 09 54).

The FLAG Control Card

Every FLAG job must be preceded by a FLAG control card. Its format is

The exclamation mark must be placed in column 1. The FLAG control command is usually begun in column 2, though
it may begin in any column after the! character. The optioni are option codes that control processing and execution
of the program. Option codes are not requiredi if none are specified, FLAG wi II perform certain operations by de
fault. If option codes are given, they must be separated by commas, and the first code must be preceded by at least
one blank column. (The brackets around the option list shown above must not be entered on the card: they indicate
only that the list of options is not required.) The option codes are given in Table 10. In Table 10, the notation
DEFAULT indicates which options are in effect unless their complementary options have been selected.

When the BJ option code is specified on the ! FLAG card, FLAG enters the batch job mode. In this mode, FLAG
will successively compile and execute any number of separate FLAG programs, or IIsubjobs". Use of this option sub
stantially reduces the processing time required for each program in the job stream.

Once FLAG has read the BJ option code on the! FLAG card it expects to find a :FLAG card immediately preceding
each subjob. Figure 5 illustrates how the :FLAG card is used in batch processing. Format of the :FLAG card is

:FLAG [(account number, name)] [,option
1
,option

2
,.·. ,optionnJ

On this card the characters :FLAG must appear in columns 1-5. The user's account number and name are required
on every :FLAG card if the AC option has been specified on the ! FLAG card; otherwise they are optional. All
standard! FLAG option codes are valid on a :FLAG card except for NOBJ, AC, and NOAC. (The brackets around
account number, name, and the list of option codes indicate only that these items are not required; the brackets are
not actually entered on the card.)

Operations 93

r
Any I/O unit number assignments in effect when the batch job run is started remain in effect for all subjobs.

The source program deck for each subjob must be separated from its data by an :EOD card. (An IEOD card will also
work but :EOD is preferred.) If no data is present, the :EOD card is still required to terminate the source program
deck.

The batch job stream is terminated by the first! control card encountered (other than :EOD).

Option Code

DB

NODB

GO

NOGO

LS

NOLS

BC

NOBC

LO

NOLO

AD

NOAD

CX

NOCX

M,!l

94 Running a FLAG Job

Table 10. FLAG Option Codes

Meaning

The program is compiled and executed in "debug" mode.

The program is not compi led in "debug" mode. (DEFAULT)

Note that use of the DB option will cause substantially more machine instructions to be
generated for the program (typically 30 to 40% more), and that some programs that are
too large to run with "debug" may be able to run without it.

The program is executed when compilation is finished, whether or not errors have been
detected during compilation.

When compilation is finished, the program is not executed. This option allows syntax
checking of the source program without execution.

Note that if neither GO nor NOGO are specified, the compiled program will still be
executed unless one or more serious errors have been detected during compilation.

A printed listing of the FORTRAN statements in the source program is produced. (DEFAUL n
No I isting of the source statements is produced.

FLAG will compile a series of source programs, each followed by a single end-of-data
(EOD) indication, until two successive end-of-data indications are encountered. Then
the series will be executed, if appropriate.

This option is mainly intended for use where a main program and subprograms are to be
compiled as a unit but have been stored on magnetic tape, and therefore each program is
followed by an EOD record. The BC option code alerts FLAG to this condition and pre
vents it from assuming "end-of-program" when a single EOD is encountered.

FLAG will terminate compilation upon encountering an IEOD card or some other single
end-of-data indicator. (DEFAULT)

A machine-language I isting of the instructions generated by FLAG is produced in a for
mat similar to a Meta-Symbol listing.

No machine-language I isting is produced. (DEFAUL n
All REAL variables, constants, and functions are implicitly REAL *8; all COMPLEX vari
ables, constants, and functions are implicitly COMPLEX*16. This option is useful for
analyzing the improvement in accuracy that results from double precision calculations.

No "automatic double precision" is invoked. (DEFAUL n
Source card-images containing an X in column 1, wi II have the X replaced by a space,
and will be compiled by FLAG.

Source card-images containing an X in column 1 will be treated as comment cards by
FLAG. (DEFAULT)

(Where!!.. is a digit 1 through 9) FLAG divides total available memory into two segments.
One segment consists of the noninitialized variables that aie used iii the piogiam. The
other segment contains the machine instructions generated for the program and also any
variables that were initialized in a DATA statement. The!!.. value specifies how many
tenths of the available memory are to be used for the noninitial ized data area. For ex
ample, M8 specifies that 8/10 of memory is to be used for non initial ized variables and
2/10 is to be used for the program code and initialized variables. This option need not be

Option Code

M.!J.
(cont .)

BJ

NOBJ

AC

NOAC

TL = sss

PL=ppp

PS =nnn

Job Setup Examples

Table 10. FLAG Option Codes (cont.)

Meaning

specified unless FLAG indicates by one of the following error messages that a memory
size allocation problem has occurred:

Error Message

ARRAYS TOO LARGE
PROGRAM TOO LARGE
DICTIONARY OVERFLOW
The default option is M7.

Action to Take

increase n
decrease -n
increase n

Enter "batch job" mode. A sub job beginning with a :FLAG card must immediately follow
the! FLAG control card. All subsequent subjobs must also begin with :FLAG cards.

Run in standard (nonbatch) mode. (DEFAULT)

Punch separate accounting records for each subjob in the batch. The AC option, when
used, should appear on the! FLAG control card that initiates the batch run.

No accounting records wi II be punched for sub jobs. (DEFAULT)

Set time limit for current job or subjob, where sss is the number of seconds that the job
may run. This time includes compilation and execution.

Set page limit for current job or subjob, where ppp is the number of output pages that
will be allowed.

Note that if either the TL or PL option appears on a !FLAG control card that also has the
BJ option, the value specified is used as the default limit for each of the subjobs that fol
low. Furthermore, the limit specified on a ! FLAG control card becomes the maximum
limit that may be specified on a subjob's :FLAG control card.

Set program size for current job or sub job, where nnnn is the number of words of memory
that may be used to hold the program and any variables that were initialized in a DATA
statement. The remainder of avai!able memory vIi!! be used to hold the noninitia!ized
vqriables. The PS option is similar to the Mn option but allows for more accurate alloca
tion of memory size. The actual amount of memory used by the program and initialized
variables is given at the end of the source program listing.

When attempting to run very large programs, it is sometimes a good idea to make the first
compilation using the NOGO and M9 options. When NOGO is specified no machine in
structions are stored into memory, hence substantially less memory is needed for the pro
gram and initialized variable area. The actual program size, which is listed at the end
of the NOGO compilation, is correct and is the same as the size of the program when
NOGO is not specified. If the actual total size is less than the available total size, it
is possible to run the program, and the program should be submitted again, this time with
the PS option set equal to the indicated size of the program and initialized variable area.

Figure 3 shows the deck setup required for compiling and executing a single program. The !JOB card signals the
beginning of a new job to BPM, and specifies that the job is to be run under account number 1234, the user is
SHERROD, and the job has priority 1.

As previously explained, the !ASSIGN card (with assignment codes) would be present only if the programmer re
quired nonstandard assignments.

The! FLAG card summons the FLAG compiler to begin compilation of the source program. The option codes fol
lowing the FLAG command are explained in Table 10. Briefly, the codes shown in the example request the pro
gram to be compi led and executed in "debug ll mode (DB), execute the program when compi lation is finished
regardless of errors (GO), produce a listing of the source program statements (LS), and produce a listing of the
machine-language statements generated by the compi ler (LO).

The! FLAG card is followed by the source program deck, in turn followed by an ! EOD card which indicates the end
of the deck to the compiler. If the source program did not require a data deck, the! EOD card could be omitted
and end-of-program could be indicated by some other terminator such as a ! FIN card or a new !JOB card. The
source deck and its terminating! EOD card would be omitted if M:SI were not assigned to the card reader.

Job Setup Examples 95

r
I

Figure 3. FLAG Job Setup - Single Program

The source program deck can consist of either a single program or a main program followed by a number of subpro
grams. Either wi II compile and execute correctly. For the latter case, it is not necessary to use the BC option or
separate the programs and subprograms with EOD cards as long as M:SI is assigned to the card reader.

Figure 4 illustrates the deck setup for compiling and executing a series of independent programs in the batch job
mode. The functions of the !JOB, !ASSIGN, and !FLAG cards are the same as explained for Figure 3.

The BJ option on the !FLAG card specifies that FLAG is to enter the batch job mode. Each of the following pro
grams must then be preceded by a :FLAG card containing option codes, if appropriate, for the program. Note that
each program deck is followed by an :EOD card, even source program number 2, which does not have a data deck.
The series can continue indefinitly until terminated by a ! FIN card.

FLAG Debug Mode

If the user elects compilation and execution in "debug" mode (see FLAG DB option), the FLAG compiler will
generate extra instructions in the compiled program so that program errors that cannot be detected during com
pilation will be detected during program execution. This enables the user to detect errors in program logic
that otherwise might go undetected or cause unexplainable program failures. The following errors are reported
by the "debug" option:

1. Subscripts having values that are negative, zero, or larger than the specified dimension size.

2. Inconsistencies in type or number of arguments passed to subprograms.

3. Arithmetic underflow, overflow, and division by zero. (If the intrinsic subprogram DVCHK or OVERFL has
been referenced, these conditions are not considered errors, and no debug error message will be produced.)

Additionally, when any of the errors mentioned above is detected, or when an error is detected within an intrinsic
subprogram or input/output routine, debug mode compilation will cause the program name and line number of the
FORTRAN statement being executed to be listed, along with a listing of all subprogram calls in effect at the time
of the error.

96 FLAG Debug Mode

Figure 4. FLAG Job Setup - Multiple Programs in Batch Processing Mode

FLAG Debug Mode 97

[

[

[

[

r
L

Statement

ASSIGN

Assignment

BACKSPACE

BLOCK DATA

CALL

COMMON

COMPLEX

CONTINUE

DATA

DECODE

DIMENSION

DO

DOUBLE COMPLEX

DOUBLE PRECISION

ENCODE

END

END FILE

EQUIVALENCE

EXTERNAL

FORMAT

FUNCTION

GOTO

IF

IMPLICIT

INPUT

INTEGER

LOGICAL

NAMELIST

98 Appendix A

APPENDIX A. FLAG STATEMENTS

Executable Nonexecutab I e Page

X 19

X 16

X 64

X 76

X 21

X 70

X 68

X 25

X 77

X 60
i i

X 67

X 22

I
X

I
68

!
X I 68

i

I
X 60

I
X 26

I

I
X

I I 64
I

X I 73

I X 76

I
X 37

X 81

X 18

X 20

X 67

v 34

I
/\

X 68

X 68

X 32

Statement Executable Nonexecutable Page

[OUTPUT X 33

PAUSE X 25

PRINT X 30,31

PUNCH X 30

READ X 29-32

[READ DISC X 63

REAL X 68

RETURN X 22

REWIND X 64

STOP X 25

SUBROUTINE X 82

Statement Function
X 80 Definition

WRITE X 29,31

[WRITE DISC X 63

Appendi x A 99

r
I

APPENDIX B. DIAGNOSTIC MESSAGES

listed below are all the diagnostic messages that FLAG can produce during compi lation or execution of programs.
The messages are printed on the device assigned as M:LO, and are interspersed with th~ symbolic listing of the
source statements. Many of the messages have a name or a statement number either inserted in the message or fol
lowing it to indicate the source of the error. Some messages are merely warnings to the programmer and will not
cause the job to be aborted. Other messages are notifications of serious error; these will cause the job to be aborted
once the compilation is completed. During compilation of a source program, messages that are only warnings are
not printed unless compi lation is being performed in the debug mode (DB option).

ABORTED INSTRUCTION = X'dddddddd'
ACCOUNT # AN D NAME MISSING
ACTUAL PROGRAM SIZE:
ADDRESS OF ABORTED INSTRUCTION = X'ddddd'
ARGUMENT NUMBER
ARITH OVRFL:
ARITHMETIC ASSIGNMENT STATEMENT
ARRAYS TOO LARGE
'ASSIGN' MISSPELLED
ASSIGNMENT MEMORY SIZE:

'BACKSPACE' MISSPELLED
BAD HOLLERITH COUNT
BAD REPEAT COUNT
BLANK CARD IN PROGRAM
'BLOCK DATA' NOT FIRST PROGRAM
'BLOCK DATA' NOT FIRST STMNT

CANNOT REACH STMNT : #
CHANGED SIZE OF BLOCK
CHANGED VALUE OF DO INDEX:
COMMON AFTER DATA STMNT
COMMON AFTER EQUIVALENCE
COMMON EXTENDED BACKWARD BY xxxxx
'COMMON'MISSPELLED
'COMPLEX' MISSPELLED
CO,ky1PLEX NO. RAISED TO NON-INTEGER POWER
'CONTINUE' MISSPELLED

DEGENERATE EQUIVALENCE GROUP
DICTIONARY OVERFLOW
'DIMENSION' MISSPELLED
DIMENSIONED VARIABLE HAS NO SUBSCRIPT:
DIV BY ZERO
DO ENDS ON PREVIOUS STMNT
DO INTERSECTS ANOTHER DO
DO'S NESTED TOO DEEPLY
'DOUBLE COMPLEX' MISSPELLED
'DOUBLE PRECISION' MISSPELLED
DUMMY IN EQUIVALENCE
DUPLICATE STMNT # :
DUPLICATE SUBPROGRAM NAME

EARLIER STMNT TRANSFERS TO FORMAT.
EFFECTIVE ADDRESS = X'ddddd'
x ENCOUNTERED INSTEAD OF NAME
END AND ERR OPTIONS NOT ALLOWED IN WRITE STMNT
'END FILE' MISSPELLED
EQUAL SIGN MISSING
EQUIVALENCE AFTER DATA INITIALIZATION
EQUIVALENCE CONTRADICTION.

100 Appendix B

'EQUIVALENCE' MISSPELLED
ERROR IN ABS READ FROM DO
ERROR IN IMPLIED DO
ERROR TO LEFT OF EQUAL SIGN.
ERRORED AT LINE #
IXXXXI EXCEEDS 5 DIGITS
IXXXXI EXCEEDS 6 CHARS.
EXCESS INFORMATION IGNORED
EXECUTABLE STMNT IN BLOCK DATA
EXPRESSION MUST BE INTEGER OR REAL
'EXTERNAL' MISSPELLED
EXTRA COMMA
EXTRA IMPLICIT IGNORED

FLAG VERSION 34
FORMAT ARRAY NOT DIMENSIONED:
I FORMA P MISSPELLED.
FORMA T MUST HAVE STMNT # •
FORMAT NOT USED: #
FUNCTION HAS NO DUMMIES
FUNCTION HAS TOO MANY ARGUMENTS:
'FUNCTION' MISSPELLED
'FUNCTION' STMNT NOT FIRST STMNT

ILLEGAL ARGUMENT TYPE IN
ILLEGAL EQUIVALENCE OF xxxxxxxx TO xxxxx
ILLEGAL EXPONENTIATION POWER
ILLEGAL SUBSCRIPT VALUE
**ILLEGAL TRAP ••• JOB ABORTED
ILLEGAL TYPE WITH RELATIONAL
ILLEGAL USE OF '.NOT.'
ILLEGAL USE OF COMMA
ILLEGAL USE OF DIMENSIONED VARIABLE:
ILLOGICAL EXPRESSION
'IMPLICIT' MISPLACED
'IMPLICIT' MISSPELLED
IMPROPER STMNT WITH LOGICAL IF
INCOMPLETE DATA.
'INPUT' MISSPELLED
'INTEGER' MISSPELLED
INTEGER TOO BIG
INVALID ARGUMENT
INVALID ARGUMENT TO xxxx
INVALID COMPLEX CONSTANT.
INVALID DATA VALUE.
INVALID DELIMITER
INVALID DIMENSION SIZE
INVALID EXPONENT
INVALID EXPRESSION
INVALID FLAG-CARD OPTION ••. JOB ABORTED.
INVALID FORMAT SYNTAX
xx INVALID IN CALL TO xxxx
INVALID LOGICAL OPERATOR
INVALID MESSAGE IN PAUSE STMNT
INVALID MODE.
INVALID 2ND USE OF xxxxx
INVALID SIZE SPECIFICATION
INVALID STMNT #
INVALID SYNTAX
INVALID SYNTAX IN I/O LIST
INVALID TERMINAL STMNT OF DO LOOP
I/O DEVICE # MISSING
10 DEVICE # MUST BE UNSIGNED INTEGER

Appendix B 101

'LOGICAL' MISSPELLED
LOGICAL MODE WITH ARITHMETIC OPERATOR

**MAX PAGES OUT ••• JOB ABORTED
**MAX TIME ••• JOB ABORTED
MISALIGNED DOUBLE-WORD VARIABLE:
MISMATCHED PARENS
MISPLACED DECLARATIVE 5TMNT.
MISPLACED OPERATOR
MISSING COMMA
MISSING DELIMITERS
MISSING END STATEMENT
MISSING :EOD CARD ••• THAT'S A NO NO ••• JOB ABORTED
MISSING FORMAT: #
MISSING OPEN PAREN
MISSING OPERATOR
MISSING OR INVALID INDEX VARIABLE
MISSING OR INVALID INITIAL DO VALUE
MISSING SIZE SEPCIFICA TION
MISSING SLASH
MISSING STMNT : #
MISSING SUBPROGRAM:
MIXED LOGICAL & ARITH EXPRESSIONS
MIXED PRECISION COMPLEX CONSTANT
MORE THAN 1 MAIN PROGRAM
MUST BE INTEGER:
MUST BE UNSIGNED INTEGER CONSTANT

NAMELIST CONTAINS DUMMY VARIABLE:
'NAME LIST' MISSPELLED
NAME PREVIOUSLY USED AS FUNCTION:
NO DIMENSIONING INFORMATION
NO to/lAIN PROGRAM
NON-ALPHABETIC ORDER.
NON-DIMENSIONED VARIABLE HAS SUBSCRIPT:
NON-DUMMY HAS VARIABLE DIMENSION:
NON-INITIALIZED DATA =
NUMBER EXCEEDS LIMITS
NUMBER OF FATAL ERRORS DETECTED =
NUMBER OF NAMES DOES NOT MATCH NUMBER OF VALUES.

1 OR MORE INVALID CHARS SKIPPED
ONLY DIGITS MAY FOLLOW 'STOP'
ONLY 1 ARGUMENT TO xxxx
OPERATOR FOLLOWS OPERATOR
'OUTPUT' MISSPELLED
OVER 7 DIMENSIONS
OVER 7 SUBSCRIPTS
OVER 19 CONTINUATION CARDS ••• JOB ABORTED

PREVIOUS STMNT TRANSFERS INTO DO LOOP
PROGRAM AND INITIALIZED DATA =
PROGRAM EXECUTION NOT ATTEMPTED
PROGRAM HAS INPUT STMNT BUT NO NAME LIST STMNT
PROGRAM TOO LARGE

'RETURN' MISSPE LLE D
RETURN STMNT IN MAIN PROGRAM
'REWIND' MISSPELLED

STATEMENT MUST BEGIN WITH A LETTER
STMNT NUMBERS MISSING
SUBPROGRAM CALLS ITSELF:

102 Appendix B

SUBPROGRAM NOT USED:
ISUBROUTINEI MISSPELLED
'SUBROUTINEI STMNT NOT FIRST STMNT
SUBSCRIPT HAS ILLEGAL MODE
SUBSCRIPT MUST BE INTEGER CONSTANT
SUBSCRIPT OUT OF RANGE
SUBSCRIPT OUT OF RANGEl LINE #

TOO MANY I/O UNIT-NUMBER ASSIGNMENTS
TOTAL =
TRANSFER STMNT ENDS DO LOOP
TRANSFERS INTO DO LOOP AT STMNT #
TRANSFERS TO FORMAT: #
TRANSFERS TO NONEXECUTABLE STMNT : #
TRANSFERS TO SELF
TYPE ALREADY ASSIGNED:

UNDEFINED VARIABLE:
UNIMPLEMENTED SIZE IGNORED
UNIMPLEMENTED STATEMENT
UNNUMBERED CONTINUE STMNT
UNNUMBERED STMNT FOLLOWS RETURN
UNNUMBERED STMNT FOLLOWS STOP
UNNUMBERED STMNT FOLLOWS TRANSFER
UNRECOGNIZABLE STATEMENT
UNSATISFIED DO : #
UNTERMINATED QUOTE FIELD
USE CONFLICTS WITH PRIOR DECLARA nON:

VALUE NOT SAME TYPE AS xxxx
VARIABLE ALREADY DIMENSIONED:
VARIABLE ALREADY IN COMMON:
VARIABLE APPEARS fvVICE IN DUMMY LIST
VARIABLE DECLARED BUT NOT USED:
VARIABLE DEFINED BUT NOT USED:
VARIABLE MAY NOT BE DIMENSIONED:

WRONG NUMBER OF ARGS TO xxxx
WRONG NUMBER OF ARGUMENTS
WRONG NUMBER OF SUBSCRIPTS

Appendix B 103

INDEX

Note: For each entry in this index, the number of the most significant page is I isted first. Any pages thereafter are listed
in numeri ca I sequence.

&k (statement label argument), 84
END, 34,36
*n size modifier, 69
* (asterisk) as output list item, 34
* (asteri sk) chara cter, 36
* (asterisks) in subroutine statements, 22
, (comma) field termination, 56
$ (dollar sign) character, 2
() (parentheses), 11, 14, 15
+ (plus) character for overprinting, 64
II (quotes), 7
I format, 47
/ (slash) specification, 51

A
A format, 43
addition, 11
adjustable dimensions, 85
adjustable FORMAT specifications, 53
ampersand k (statement label argument), 84
arguments, 9,83
arguments and dummies, correspondences between, 83
arithmetic expressions, 10, 13
array

declarations, 66
elements, 8
references to, 66
storage, 66
variable, 8
formats stored in, 58

ASSIGN control card, 28,29,93
ASSIGN statement, 19
assignment statement, 16
asterisk (*), as output list item, 34
asteri sk character, 36
asterisk n size modifier, 69
asterisks in SUBROUTINE statements, 22
auxi Iiery input/output statements, 63,27

B

BACKSPACE, 64
END FILE, 64
REWIND, 64

BACKSPACE statement, 64,62
basic external functions, 80
BCD record size, 29
blank COMMON, 70,71,79
blanks, 2,7,8
BLOCK DATA

statement, 76, 80
subprogram, 76, 79

BUFFER IN, 62,61
BUFFER OUT, 62,61

104 Index

c
CALL statement, 21,65,80,82
carriage control for printed output, 64
character

set, 2
strings, 34,36,43,47,60

classification of identifiers, 65
cod i ng form, 2, 1
comma field-termination, 56
comment lines, 2
COMMON block, 76
COMMON statement, 70,65,66,75,79
COMMON storage, 70

arrangement of, 72
displacement of variables in, 73
referencing of data in, 73

COMPLEX
explicit type statement, 68
IMPLICIT type declaration, 67
type specification, 81
*16 size specification, 69
*8 size specifi cation, 69

complex constants, 6,78
~~ __ I~._ ...I_L_ t;.
~VllltJll::)\' UUIU, .,J

complex variables, 36
conditional compi lation, 3
conflicting and redundant declarations, 65
constants, 5
continuation lines, 2,4
CONTINUE statement, 25
control statements, 18

ASSIGN, 19
CALL, 21,65,80,82
CONTINUE, 25
DO, 22
END, 26
GO TO, 18
IF, 20
PAUSE, 25
RETURN, 22,81,82
STOP, 25

CX option, 4

o
D format, 40
data, 5,69
DATA

constant list, 78,68
statement, 77,65,79
variable list, 77

data size specifications, optiona I, 69
debug mode, 96,86,100

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed
in numerical sequence.

declaration statements, 65
array, 66
BLOCK DATA, 76,80
COMMON, 70,65,66,75,79
DATA, 77,65,79
DIMENSION, 67,66,74,79
EQUIVALENCE, 73,65,75,79
EXTERNAL, 76,79
explicit type, 68,66
IMPLICIT, 67,65,79
NAME LIST, 32,35,65,79
placement and order of, 79

DECODE statement, 60,37,59
device unit number, 28
diagnosti c messages, 100,79
DIMENSION statement, 67,66,74,79
direct input/output, 61
division, 11
DO loop, 23

nesting, 24
range, 23,24

DO statement, 22
DO-implied list items, 27
dollar sign ($) character, 2
DOUBLE COMPLEX

explicit type statement, 68
IMPLICIT type declaration, 67
type specification, 81

double complex constants, 7
double complex data, 5
DOUBLE PRECISION

expl i cit type statement, 68
IMPLICIT type declaration, 67
type specification, 81

double precision constants, 6,78
double precision data, 5
double precision variables, 36
dummies, 83
dummy

E

argument, 81
array, 84,85,86
list, 65
scalars, 84
subprograms, 86

E format, 39,41,42
EBCDIC character set, 2
ENCODE statement, 60,37,59
END and ERR forms of READ statements, 32
END FILE statement, 64
END statement, 26
ENTRY statement, 80
EOD card, 94
equal sign, 65
EQUIVALENCE statement, 73,65,70,75,79
evaluation of logical expressions, 14

executable program, 80
executable statements, 1
expl i cit declarati ons, 65
explicit type statements, 68,66
exponent, 6
exponentiation, 12, 11, 13
expression eva luation hierarchy

arithmetic, 10
mixed, 15

expression modes, 16
expressions, 10
extended input/output, 59
EXTERNAL statement, 76,79

F
F format, 38, 41, 42
FALSE, 7, 13, 14,36,43
FLAG control card, 93
FORMAT and list interfacing, 57
FORMAT specifi cations, 37

A, 43
adjustable, 53
D, 40
E, 39,41,42
F, 38,41,42
G,40
H,47
I, 42
L, 42
M,46
P, 49
parenthesized, 52
quote (I), 47
R, 44,46
slash (/), 51
stored in arrays, 58
T, 49
X, 48,49
Z,45

FORMAT statement, 37,27
FORMA T -free READ and PRINT statements, 31
formatted (BCD) input/output, 37
FORTRAN II statements, 30
FUNCTION

statement, 81,80
subprograms, 81,80,83
subprograms, basic external, 86

functions, 80,9

G

G format, 40
GO TO statement, 18

assigned, 18
computed, 19
unconditional, 18

Index 105

Note: For each entry in this index, the number of the most significant page is listed first. Any pages thereafter are listed
in numerical sequence.

H J
H format, 47
hexadecimal constants, 78
Hollerith information, 44

I format, 42
identifiers, 8

classification of, 65
IF statement, 20

arithmetic, 20
logical, 20

IJKLMN rule, 8,65,67
implicit declarations, 65
IMPLICIT statement, 67,65,79
implicit data-type conventions, 8
INPUT statement, 34,32
input strings, numeric, 54
input/output, 27

direct, 61
extended, 59

input/output lists, 27
input/output statements, 28

auxiliary, 63
BACKSPACE, 64,62
BUFFER IN, 62,61
RIII=I=I=R (JIlT I,,? I" 1 __ "_I~,., ""_,"".

DECODE, 60,37,59
direct, 61
ENCODE, 60,37,59
END and ERR forms of READ, 32
END FILE, 64
FORt'jAT, 37,27
FORMAT-free READ and PRINT, 31
formatted, 29
INPUT, 34,32
intermediate, 31
OUTPUT, 33,36
PRINT, 30
PUNCH, 30
random access, 63
READ, 29-32,27,63
READ DISC, 63
REWIND, 64
unit assignments, 28,94
WRITE, 29,27,31,63
WRITE DISC, 63

INTEGER
explicit type statement, 68
IMPLICIT type declaration, 67
type specification, 81
*4 size specification, 69

integer constants, 5,78
integer data, 5
integer variables, 36
intermediate storage, 61
internal buffer, 61

106 Index

job setup examples, 95

L
L format, 42
labeled COMMON, 71,76,79
labels (see "statement labels")
library functions, 65
I ibrary subprograms, 86
list considerations, 28
list items, 27
I itera I constant, 7, 78, 85
literal data, 5
LOGICAL

expl i cit type statement, 68
IMPLICIT type declaration, 67
type specification, 81
*4 size specification, 69

logical

M

constant, 7, 14,78
data, 5
expression, 14, 15
function reference, 14
opere/tors, 14, 15
record, 31,61,62
variable, 36, 14

M format, 46
main programs, 80
memory-to-memory data conversion, 59
mixed expressions, 12, 16

mode of, 12
multiple data identifiers, 27
multiplication, 11

N
N in a format specification, 53,57,58
NAME LIST statement, 32,35,65,79
nonexecutable statements, 1
nonstandard unit assignments, 28,94
numeric constants, 78
numeric input

width specified, 56
width less, 55

numeric input strings, 54

n
U

operands, 10
operations, 93
operators

arithmetic, 10, 11
logical, 14, 15
relational, 13

option codes, 93,94

Note: For each entry in this index, the number of the most significant page is I isted first. Any pages thereafter are listed
in numerical sequence.

optional data size specifications, 69
output format specifications, 34
OUTPUT statement, 33,36

p
P specification, 49
parentheses, 11, 14, 15
parenthesized FORMAT specifications, 52
PAU SE statement, 25
plus (+) character for overprinting, 64
precedence of operations (see expression evaluation hierarchy)
PRINT statement, 30

FORMAT-free, 31
program errors, 96
programs and subprograms, 80
PUNCH statement, 30

o
quotation marks, 7
quote (I) format, 47

R
R format, 44,46
random access input/output statements, 63
READ DISC statement, 63
READ statement, 29-32,27,63

binary, 31,61
END and ERR forms of, 32
FORMAT -free, 31
formatted, 29,61

REAL
explicit type statement, 68
IMPLICIT type declaration, 67
type specification, 81
*4 size specification, 69
*8 size specification, 69

real constants, 6,78
real data, 5
real variables, 36
references to array elements, 66
relational expression, 13, 14
relational operators, 13
RETURN statement, 22,81,82
REWIN D statement, 64

s
scalar variable, 8
scale factor, 49
self-identified input, 35
simplified input/output, 32
single datum identifier, 27
slash (j) specification, 51
standard unit assignments, 28,94

statement
function dummy, 81
functions, 80
labels, 18-20, 1

STOP statement, 25
storage allocation statements, 70

COMMON, 70,65,66,75,79
EQUIVALENCE, 73,65,70,75,79
interactions of, 75

subexpressi ons, 10, 11
subprogram declaration statement, 79
subprograms, 80,9

additional library, 86
SUBROUTINE statement, 82,80
subroutine subprogram, 82,21,22,83

dummy, 82
SUBROUTINE subroutines, 80
subscripts, 8
subtraction, 11

T
T specification, 49
TRUE, 7, 13, 14,36,43
type statement, 79

v

COMPLEX, 67,68
DOUBLE COMPLEX, 67,68
DOUBLE PRECISION, 67,68
INTEGER, 67,68
LOGICAL, 67,68
REAL, 67,68

variable types, 16
variables, 8,5

w

maximum hexadecimal digits for, 78
storage required for, 70

width less formats, 36
WRITE DISC statement, 63
WRITE statement, 29,27,31,63

x

binary, 31,61,62
formatted, 29,61,62

X cards, 3,4
X specification, 48,49

z
Z format, 45
zero

in column 6, 2
tests for, 20

Index 107

