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1. INTRODUCTION 

How This Manual is Organized 
Most of the material in this manual was taken from the Sigma 5/7 FORTRAN IV-H Reference Manual (XDS 90 09 66B), 
though several important sections are from the Sigma 5/7 FORTRAN IV Reference Manual (XDS 90 09 56C). For the 
convenience of those who may already be familiar with XDS FORTRAN IV-H, material in this manual that differs from 
the FORTRAN IV-H Manual is indicated by a bracket in the left hand margin of the page. 

The remainder of this Chapter summarizes the most important features of FLAG and then briefly presents information 
of general interest to the new user. Chapters 2 through 8 are a detailed description of the FLAG language. Chapter 9 
contains the essential operations information for compiling and running FLAG programs. 

Users already familiar with XDS FORTRAN IV-H will probably perfer to scan Chapters 1 through 8 noting the changed 
areas marked by brackets, and then read Chapter 9 for an explanation of FLAG operations. Such users wi II thus be 
able to start running FLAG programs with minimum delay. 

The FLAG Compiler 

The FLAG (FORTRAN Load And Go) system for XDS Sigma 5/7 computers is essentially a FORTRAN IV-H compiler 
designed to be compatible with other compilers of this class. However, FLAG provides to the user a unique set of 
operating characteristics: 

• Comprehensive diagnostic messages at compile and execute time. 

• Fast compi lation. 

• Significant reduction in total processing time for small-to-medium sized programs. 

• Special accounting and processing features to minimize Monitor system overhead. 

FLAG may be used in preference to standard FORTRAN compilers when the user is in the debugging phase of devel
oping his program. Further, it should be the primary FORTRAN compiler system in the typical university environ
ment where the job stream contains numerous small programs, many of which are written by novice programmers. 

FLAG Programs 

FLAG programs are comprised of an ordered set of statements that describe the procedure to be followed during exe
cution of the program and the data to be processed by the program. Some data values to be processed may be exter
nal to the program and read into the computer during program execution. Similarly, data values generated by the 
program can be written out while processing continues. Statements belong to one of two general classes: 

1. Executable statement/, that perform computation, input/output operations, and program flow control. 

2. Nonexecutable statement/, that provide information to the compi ler about storage assignments, data types and 
program form, as well as providing information to the program during execution about input/output formats and 
data initial ization. 

Statements defining a FLAG program follow a prescribed format. Figure 1 is a sample FORTRAN Coding Form. Each 
I ine on the form consists of 80 spaces or columns; however, the last eight col umns are used only for identification or 
sequence numbers and have no effect on the program. Col umns 1 through 72 are used for the statements. 

The first field, columns 1 through 5, is used for statement labels. Statement labels allow statements to be referenced 
by other portions of the program. Labels are written as decimal integers, with all blanks (leading, embedded, or 
trailing) ignored. Chapter 5, IIControl Statements II, contains a more extensive discussion of statement labels. 

t See Appendix A. 
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The body of each statement is written in columns 7 through 72, but if additional space is required, a statement may 
be continued. FLAG accepts an unl imited number of continuation I ines. Each continuation I ine must contain a char
acter other than blank or zero in column 6. The initial line of each statement contains only the characters blank or 
zero in column 6. If a statement is labeled, the label must appear on the initial I ine of the statement; labels appear
ing on continuation I ines are ignored. 

Column 1 may contain the character C to indicate that the line is to be treated as a comment only, with no effect 
upon the program. Comment lines may appear anywhere in the program, except within a statement (i.e., inter
spersed with continuation lines). 

Statements may have blanks inserted as desired to improve readabil ity, except within literal fields (e. g., in Hollerith 
constants and in FORMAT statements). 

The set of characters acceptable to FLAG is 

Letters t : ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z 

Digits: 0123456789 

Speci al characters: 
(useful) t 

+ - * / = () • , $ I & blank 

Special characters: II 

(other) 

This character set conforms to the Extended Binary-Coded Decimal Interchange Code (EBCDIC) standard. 

Figure 1 illustrates a sample FLAG program. An explanation is given in Table 1. 

PROBLEM Sa m pi e S!:I:»ls 
~ '--
SCIENT:FIC DATA SYSTEMS 

FORTRAN CODING FORM 
PROGRAMMER ____________________ _ Identification 

FORTRAN STATEMENT 

II NT EGE R FACTOR, K 
I-r--.-.,--r---t"""""+-"', T I • , • ii' Ii' • • , i .·-,.--r··--~"T"-.,._r_r_l--y--r--rj-,--,--.,..--,r--r--.--.--...--.---.--,--...... · 

iK = 
iii , • • • • ! ~. .,. ,'--' ,---r--r--r---r-...---r--.---r--r ..-, -,..---r-. -,-,........,-, -r,---.----.--r--.---.--.. --r""'-'--T-"-r-~ 

~-.--,.--r-+-! .....,lR.;;E=;A,D, ,( ,1, • ,5, ), , 'f~-,.~TR-,-T-·,--y---r--,.__,__.-,---r---.--r-......,........-r--T"'" ",-,---'---r--~..---r-,--r-r-I 
hI.O~J,F, ,( ,F,A,C,T,~R,) ,l-1r,J-r3.,J .1, lr-~T-r--T-r-.--,---rl---r-.,...--,. y-1-.----.-.- T-,"'·"- ~-;-'-""---' 

1 1 I lK = K • F AC T (j R 
lJFACT6R = ' 

.... , ... .,--...... , '·~·-T--~-- ,---1' 

1 2 
1 3 

WRI T E (1 O'S , 6) 'K~'-' . -'~·TT-'~-,.-.. -T----r-r---.--' -r·-r-r-.-· ... I-..--
T 

.... '-'-'---'-"--,---" 

Iii ' iii i 1 iii I i * ---,---"'" ·--TM-"...-----r-- "'l"'--,. , i , i T~.--.--r-r-r--T • Iii ¥ ,.-.~ 

STC:SP 
5 F eRMA T (t'6) 

t--.-·-,-.--r-=6~f-'-+1~_.~R,M: ~ T . (::~ :",~-,_T"~ -., :-1""': ~-r_~-Q: f:=:-~=~·~..,...-y-~,---,--.--r. -r........-.,.--.,...-r. ~-r:---,---r-...,.....,r-T--r--,--, 
'~';jEND 

t--r-T-,-----r-+-+I,!=-r--"'--.=....-,-, --.--.----r-.......-r,--r-, .--.--.----., ir---r-", ~"-r""""-'" "r ··Y· .... ,...........,.--....,.._·......--.-, ~, . ..,--.--......--,-._ . ....,.......,., --.--.-.-• ..,.....-rj -.-...,..---,.-~ 

- .. ------' --_ .... _-----------

Figure 1. Sample XDS FLAG Program 

tThe dollar sign ($) character is accepted, though not recommended, as a letter of the alphabet. It may therefore 
be used in FORTRAN identifiers, such as $, FIVES, or $300. For the purposes of the IMPLICIT statement (see 
Chapter 7), $ follows Z in the set of letters. 
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Line 

1,2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Table 1. Sample Program 

Meaning 

The character C in column 1 defines these I ines as comments. 

A nonexecutabl e statement that defines to the compiler the variabl es FACTOR and K as integers. 

An assignment statement that sets K equal to 1. 

An input command that causes the value of FACTOR to be read into storage. The value is read 
from unit 1. The form in which the value of FACTOR appears external to the computer is speci
fied by FORMAT 5 (line 14). 

Statement 10 tests the value of FACTOR and transfers control to statement 11, 12, or 13 as follows: 

If FACTOR < 0, control is transferred to statement 12. 

If FACTOR = 0, control is transferred to statement 13. 

If FACTOR > 0, control is transferred to statement 11. 

Statement 11 is another assignment statement that assigns to K the value of the expression K times 
factor. In other words, the current valueofK is replaced by the currentvalue of K multiplied 
by the value of FACTOR. 

The statement appearing on lines 8 and 9 is an assignment statement, written as an initial line 
and one continuation line. 

The C in column6causesline9 to bea continuation of line 8. This statement assigns to FACTOR 
the value of the current value of FACTOR minus 1. 

When the GO TO statement is executed, an unconditional transfer of control to statement 10 
(I ine 6) occurs; 

Statement 12, an assignment statement, assigns the value zero to the variable K. 

The WRITE output statement, 13, causes the name of the variable K and its value to be 
written out on unit 108, which is normally assigned to the Printer (see statement 6, line 15 
for designated FORMAT statement). 

The control statement STOP causes execution of the program to be terminated. 

FORMAT statement corresponding to READ statement on line 5. 

FORMA T statement correspond i ng to WRITE statement on line 12. 

The END line informs the processor during compilation that it has reached the physical end of 
the source program. 

In this program, if the value of FACTOR is initially 3 as read .by line 5, statement 10 will be 
executed four times, the statements on line 7 through 10 wi II be executed three times, and the 
statements on lines 4, 5, 12, and 13 will be executed once each. 

Conditional Compilation - X Cards 

FLAG provides a means for conditional compilation of statements. Any line that contains an X in column 1 
is processed as a statement only when the CX option is specified on the FLAG control card (see Chapter 9). 
Otherwise, the card is treated as a comment. 

Conditional Compilation - X Cards 3 



This feature enables the programmer to include in his program additional statements for checkout purposes, such as 
intermediate output and special error checking. When checkout has been completed, these statements do not have 
to be removed from the program. Instead, the program is compiled without the CX option and the statements are 
treated as comments only. These statements remain in the listing, however, and may serve as documentation or 
checkout procedures. Also, they may easily be reinstated at any time. 

Continuation lines for X cards should also be X cards; furthermore, a normal line may have a continuation line that 
is also an X card. For example: 

~ C FOR COMMENT 

-lsTATEMENT J FORTRAN STATEMENT 
NUMBER 

1 5 6 7 10 15 20 25 30 35 40 45 

X· 'l!r •• _, 

A. B .J ...• 

. . . 
:c~PRINT 3 • C. 

I I 

X D. E • F 
3 FeRMAT ( X. 6F . 7') 

. 
. I 

PR I NT 3 • U . V. W . I 

x , X, Y I ~ 
I I 

-.~ .... ~--.. --
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2. DATA 

Numerical quantities - constants and variables - as distinguished in FLAG are a means of identifying the nature of 
the numerical values encountered in a program. A constant is a quantity whose value is expl icitly stated. For ex
ample, the integer 5 is represented as 115 11 ; the number IT, to three decimal places, as 113. 14211. A variable is a 
numerical quantity that is referenced by name rather than by its explicit appearance in a program statement. During 
the execution of the program, a variable may take on many values rather than being restricted to one. A variable 
is identified and referenced by an identifier. 

All data processed by a FLAG program can be classed as one of seven types: 

Integer 

Reai 

Double precision 

Complex 

Doubl e Compl ex 

Logical 

Literal 

lim its on Values of Quantities 

Integer data are precise representations of the range of integers from -2, 147,483,648 to +2, 147,483,647; 
that is, -231 to +231 - 1. Integer data may only be assigned integral values within this range. 

Real data (sometimes known as floating-point data) can be assigned approximations of real numbers, the magnitudes 
of which are within the range 5.398 x 10-79 to 7.237 x 1075 (i.e., 16-65 to 1663 ). A real datum may acquire 
positive or negative values within this range or the value zero. Real data have an associated precision of 6+ sig
nificant digits. That is, the sixth most significant digit will be accurate, while the seventh will sometimes beaccu
rate, depending on the value assigned to the datum. 

Double precision data may approximate the identical set of values as real data. However; double precision data 
have an associated precision of 15+ significant digits. 

Complex data are approximations of complex numbers. These approximations take the form of an ordered pair of 
real data. The first of the two real data approximates the real part, and the second real datum approximates the 
imaginary part of the complex number. The values that may be assigned to each part are identical to the set of 
val ues for real data. 

Double complex data have the same form as complex data except that both the real and imaginary parts are double 
precision values. 

Logical data can acquire only the values IItrue 'l or IIfalse ll
• 

Literal Data are character strings of up to 255 characters. Like logical data, literal data do not have numeric val
ues. Any of the characters discussed in Section 1 may appear in literal data. 

Constants 

Constants are data that do not vary in value and are referenced by naming their values. There are constants for 
each type of data. AI though numeric constants are considered as being unsigned, they may be preceded by the 
pi us or minus operators. The operator is not considered part of the constant, however. (See Chapter 3.) 

Integer Constants 

Integer constants are represented by strings of digits. The magnitude of an integer constant must not exceed 
2, 147,483,647. 

Examples: 

382 

13 

997263 

1961 

1000000000 

323344224 

000546 

382437 

8 

o 
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Rea I Constants 

Real constants are represented by strings of digits with a decimal point and/or an exponent. The exponent follows 
the numeric value and consists of the letter E, followed by a signed or unsigned 1- or 2-digit integer that represents 
the power of ten by which the numeric value is to be multiplied. Thus, the following forms are permissible: 

n.m n. .m 

n. mE±e n. E±e nE±e 

where 

n, m, and e are strings of digits. 

The plus sign preceding e is optional. 

For example, . 567E5 has the meaning. 567 x 105 and can also be represented by any of the following equivalent 
forms: 

0.567E+05 

567000. E-1 

5. 67E4 

567E02 

56700. 

56700.000E-00 

The val ue of a real constant may not exceed the I imits for real data. Any number of digits may be written in a real 
constant, but onl y the 7 most significant digits are retained. 

Since any real constant may be written in a variety of ways, the user has freedom of choice regarding form. 

Examples: 

5.0 

0.01 

7.6E+5 

6.62E-37 

3.141592265358979323846 

.58785504 

Double Precision Constants 

Double precision constants are formed exactly like real constants, except that the letter D is used instead of E in 
the exponent. To denote a constant specifically as double precision, the exponent must be present. Thus, a 
double precision constant may be written in any of the following forms: 

n. mD±e n. D±e nD±e 

where 

n, m, and e are strings of digits 

D signifies a double precision constant 

The plus sign preceding e is optional. 

The value of a double precision constant may not exceed the limits for double precision data. Any number of digits 
may be written in a double precision constant, but only the 15 most significant digits are retained. 

Examples: 

1. 2345678765432D1 

.9963D+3 

Complex Constants 

576.3D+01 

.1254D-02 

312. D-4 

885. D+3 

Compl ex constants are expressed as an ordered pair of constants in the form 
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where 

c 1 and c
2 

are signed or unsigned, real constants. 

The complex constant (c
1
,c

2
) is interpreted as meaning c

1 
+ c

2
i, where i = /=1. Thus, the following complex 

constants have values as indicated: 

(1. 34,52.01) 

(98. 344E 11,34452E-3) 

( - 1 . , - 1 000. ) 

1. 34 + 52.0li 

983. 44 + 34. 452i 

- 1. 0 1 000. Oi 

Neither part of a complex constant may exceed the value limits established for real data. 

Double Complex Constants 

Double complex constants are formed in exactly the same way as complex constants. If either the real or imaginary 
part is a double precision constant, the complex constant becomes a double complex constant. 

Examples: 

(.757D6,3D-4) 

(7. ,ODO) 

(-4. 286DO, 1. 3) 

757000.0DO 

7.0DO 

+ .0003DOi 

+ O.ODOi 

-4.286DO + 1. 3DOi 

Neither part of a double complex constant may exceed the value limits established for double precision data. 

Logical Constants 

Logical constants may assume either of the two forms 

. TRUE. . FALSE . 

where these forms have the logical values "true" and "false", respectively. 

Literal Constants 

A literal constant has the form 

where 

is a string of up to 255 alphanumeric and/or special characters. Note that blanks are significant in such 
character strings. 

Within a literal constant, two consecutive quotation marks may be used to represent a single quotation mark (or 
apostrophe). For example, 'AB"CD' represents the five characters AB'CD. However, quotation (') marks separated 
by blanks are not considered to be consecutive. 

Examples: 

'ALPHANUMERIC INFORMATION ' 

'IIDON"T!'" 

Literal constants can appear in three contexts: 

1. An argument to a function or subroutine 

2. A constant item in a DATA statement 

3. A PAUSE statement ('Sl form only) 

A I iteral constant cannot appear as an element of an expression. 
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Identifiers 

[ Identifiers are strings of letters and decimal digits, the first of which must be a letter, used to name variables as well 
as subprograms and COMMON blocks. (See Chapters 7 and 8 for discussions of COMMON and subprograms.) 

[ 

8 

Identifiers in FLAG may consist of up to six alphanumeric characters. Blank characters embedded in identifiers are 
ignored; therefore, ON TIME and ONTIME are identical. There are no restricted identifiers in FLAG; however, 
for clarity, it is advisable not to use identifiers that correspond to FLAG statement types. 

Examples: 

X A345Q 

ELEVAT 

Variables 

STRESS 

L9876 

J3 

DIFFER 

MELVIN 

SETUP 

QUANTY 

Variables are data whose values may vary during program execution and are referenced with an identifier. Vari
ables may be any of the data types. (There is no such entity as a literal variable; any type of variable may contain 
a I iteral string. Normally, integer variables are used.) 

If a variable has not been assigned to a particular data type (see "C lassification of Identifiers", Chapter 7), the 
following implicit typing conventions are assumed: 

1. Variables whose identifiers begin with the letters I, J, K, L, M, or N are classified as integer variables. 

2. Variables whose identifiers begin with any other letter are classified as real variables. 

These classifications are referred to as the IIUKLMN rule". 

Consequently, double precision, complex, double complex, and logical variables must be explicitly declared as 
such (see "Explicit Type Statements" in Chapter 7). The values assigned to variables may not exceed the limits 
established for the applicable data types. 

Scalars 

A scalar variable is a single datum entity accessed via an identifier of the appropriate type. 

Examples: 

Jl NAME SCALAR EQUATE E NEW DHO XXX8 

Arrays 

An array is data in which the data form an ordered set. Associated with an array is the property of dimension. 
FLAG arrays may have up to seven dimensions and are referenced by an identifier. For a complete discussion 
on arrays see "Array Declarations" in Chapter 7. 

Array EI ements 

An array el ement is a member of the set of data comprising an array. Array el ements are referenced by the array 
identifier, followed by a list of subscripts enclosed in parentheses 

where: 

v is the array name 

si is a subscript (see below) 

n is the number of subscripts, which must be equal to the number of dimensions of the array (0 < n ~ 7) 

Subscripts 

A subscript may be any expression that has a resultant mode of integer, real, or double precision; if the result is 
not integer it is converted to integer mode (by truncation). 
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The evaluated result for a subscript must always be greater than zero. For example, if an array element is desig
nated as ALPHA(K-4), the value of K must be greater than 4. 

Examples: 

MATRIX 

CUBE 

DATA 

J35Z 

BOB 

Functions 

Subscripts 

(3,9,5,7,6,1,2) 

(5* J, P, 3) 

(I, J, K, L, M, N) 

(1+4, 6*KRAN-2, ITEMP) 

(3,IDINT(DSQRT(D))) 

Array Elements 

MATRIX(3, 9,5,7,6, 1,2) 

CUBE(5* J, P, 3) 

DATA(I, J, K, L, M, N) 

J35Z(I+4, 6*KRAN-2, ITEMP) 

BOB(3,IDINT(DSQRT(D))) 

Functions are subprograms that are referenced as basic elements in expressions. A function acts upon one or more 
quantities, called arguments, and produces a single quantity, called the function value. The appearance of a func
tion reference constitutes a reference to the value produced by the function, when operating on the given argument. 
A function reference is denoted by the identifier that names the function, followed by a list of arguments enclosed 
in parentheses 

where 

a. 
I 

is the name of the function 

is an argument. Arguments may be constants, variables, expressions, or array or subprogram names (see 
IIArguments and Dummies ll

, Chapter 8). 

Functions are classified in the same way as variables; that is, unless the type is specifically declared otherwise, the 
[ IJKLMN rule applies. The type of a function is not affected by the type of its arguments. 

Examples of function references are: 

SIN(A+B) CH ECK(7. 3, J, ABS(Y)) KOST(ITEM) 

Many library functions are provided in FLAG. In addition, the user may define his own functions (see Chapter 8). 

[ 
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3. EXPRESSIONS 

Expressions are strings of operands separated by operators. Operands may be constants, variables, or function refer
ences. An expression may contain subexpressions; subexpressions are expressions enclosed in parentheses. Operators 
may be unary - that is, they may operate on a single operand. They may also be binary, operating on pairs of 
operands. Expressions may be classed as arithmetic, logical, or relational. All expressions are single valued, 
and the evaluation of any expression has a unique result. 

Arithmetic Expressions 

An arithmetic expression is a sequence of integer, real, double preCISion, complex, and/or double complex con
stant, variabl e, or function references connected by arithmetic operators. 

The arithmetic operators are: 

Operator 

+ 

* 

/ 
** 

Operation 

Addition {binary} or Positive (unary) 

Subtraction (binary) or Negative (unary) 

Multiplication 

Division 

Exponentiation 

Arithmetic expressions may be of a relatively simple form 

A 

-TERM 

1. 2607 

ACE - DEUCE 

W90ML * DE + W9CMI / XKA9RU 

F(5.8E2) = A / B9J (L) 

or the more compl icated form 

x + (112 * (G) ** L(3) + N / SDS) - (H) 

-B + SQRT(B ** 2 - 4 * A * C) + T * (S + B / I * (K(J) / (V1 - VO) + (Z 1 - ZO») 

(X + Y) ** 3 + O. 7352986E-7 

-((M + N) * (Z - Q(J») 

Evaluation Hierarchy 

The expressi on 

A + B/C 

might be eval uated as 

(A + B) / C 

or as 

A + (B / C) 
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Actually, the latter form is the way the expression is interpreted without explicit grouping. This exampleillustrates 
that it is necessary to formulate rules for expression evaluation so that such ambiguities do not occur. 

Subexpressions have been defined as expressions enclosed in parentheses. It is also possible to have nested subexpres
sions as in 

x * (Z + Y * (H - G / (I + L) - W) + M(8)) 

where (I + L) may be called the innermost subexpression, and (H - G / (I + L) - W) is the next innermost subexpres
sion. The evaluation hierachy is, therefore, as follows: 

1. The innermost subexpressi on, followed by the next innermost subexpressi on, unti I all subexpressi ons have been 
eval uated. 

2. The arithmetic operations, in the following order of precedence: 

Operation Operator Order 

Exponentiation ** 1 (highest) 

Multiplication * 
and Division / 

2 

Additi on and + 
Subtracti on 

3 

Some additional conventions are necessary. 

1. At anyone level of evaluation, operations of the same order of precedence (except for exponentiation) are 
evaluated from left to right. Consequently, 1/ J / K / L is equivalent to ((I / J) / K) / L. 

2. Consecutive exponentiations are performed left to right. Thus 

A ** B ** C 

is interpreted as (A ** B) ** C 

The use of parentheses is recommended, as many FORTRAN systems interpret consecutive exponentiation 
differentl y. 

3. The sequence "operator operator" is not permissible. Therefore, A * -B must be expressed as A * (-B). 

4. As an algebraic notation, parentheses are used to define evaluation sequences explicitly. 
written as (A + B) / c. 
Example: 

The expressi on 

A * (B + C * (D - E / (F + G) - H) + P(3)) 

is evaluated in the sequence 

r = 
1 

F + G 

D - r - H 
2 

r = C * r 4 3 

r 5 = B + r 4 + P(3) 

r = A * r 
6 5 

where the r are the vari ous level s of eval uati on. 
i 

A+B 
Thus, -C- is 
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Mixed Expressions 

V/hen an arithmetic expression contains elements of more than one type, IT IS Known as a mixed expression. Logicai 
elements may not appear in an arithmetic expression except as function arguments (see rule 2, ,below). When an 
expression contains more than one type of element, the mode of the expression is determined by the type and length 
specifications of its elements. Table 2 illustrates how the mode for mixed expressions is determined. 

Table 2. Mode of Mixed Expressions Using Operators + - * / 

DOUBLE 

+-*/ INTEGER REAL PRECISION COMPLEX 

INTEGER Integer Real Double Complex 
Precision 

REAL Real Real Double Complex 
Precision 

DOUBLE Double Double Double Double 
PRECISION Precision Precision Precision Complex 

COMPLEX Complex Complex Double Complex 
Complex 

DOUBLE Double Double Double Double 
COMPLEX Complex Complex Complex Complex 

It can be seen that a hierarchy of type and length specifications exists. The order of precedence is: 

Type 

Doubie Compiex 

Complex or Double Precision 

Real 

Integer 

Precedence 

1 (highest) 

2 

3 

4 

DOUBLE 
COMPLEX 

Double 
Complex 

Double 
Complex 

Double 
Complex 

Double 
Complex 

Double 
Complex 

I During evaluation of mixed expressions the mode of an operand will be converted, if necessary, so that the 
L resultant mode of each operation will be as shown in Table 2. 

The foil owi ng rul es al so appl y to mi xed expressi ons: 

1. Subscripts and arguments are independent of the expression in which they appear. These expressions are evalu
ated in their own mode (i. e., integer) and neither affect nor are affected by the mode of the outer expression. 

2. Only expression elements of the types shown in Table 3 may be combined with an exponentiation operator. 

Table 3. Valid Type Combinations for Exponentiations 

Base Exponent 

T ... +o,..,or " 
, T_,,~~~~ 

£ ... ~~~. 

} { 
1I11"'~"'" 

Real ** Real 

Double Precision Doubl e Preci si on 

Complex } ** Doubl e Compl ex Integer 
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The mode of the results of an exponentiation operation can be determined in the same manner as that for other 
arithmetic operations (see Table 1). 

4. Complex and double precision elements have the same level of precedence. If an expression contains both of 
these types, it acquires double complex type. This is the only case in which an expression may have a type 
that is higher than (or different from) all its constituents. 

5. Integer, real, and double precision values that appear in complex or double complex expressions are assumed 
to have imaginary parts of zero. 

6. Values of expressions, subexpressions, and elements may not exceed the value limits associated with the mode 
of the expression. 

Relational Expressions 

The form of a relational expression is 

where 

e
1 

and e
2 

are arithmetic expressions whose mode is integer, real, or double-precision 

is a relational operator (see below) 

Evaluations of relational expressions result in either of the two values IItrue ll or "falsell
, i.e., relational ex

pressions are of logical type. 

Relational operators cause comparisons between arithmetic expressions. 

Operator 

.IT. 

.LE. 

.EQ. 

.NE. 

.GE. 

.GT. 

Examples: 

l.LT.6 

O.GT.8 

Meaning 

less than «) 

Less than or equal to (~) 

Equal to (=) 

Not equal to (I) 

Greater than or equal to (:;:::) 

Greater than (» 

is true. 

is false. 

O. LT. (2. ** N) 

O. LT. - (2. ** N) 

is always true, while 

is always false. 

When two arithmetic expressions are compared, using a relational operator, the two expressions are first evaluated, 
each in its own mode. The comparison is then made in the mode of higher precedence; i. e., the value of the lower 
mode expression is converted to the mode of higher precedence. 

A test for equality between real or double precision quantities may not be meaningful on a binary machine. Since 
these quantities are only approximations to most values, numbers that are "essentially" equal may differ by a small 
amount in their binary representations. It can only be said that computations whose operands and results have exact 
binary representations will produce these results. 

It is not permissible to nest relational expressions such as 

(L.LT. (X .GT. O.2345E6)) 

where (X .GT. O. 2345E6) is a relational subexpression, rather than an arithmetic expression, as the definition of 
relational expressions requires. 
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logical Expressions 

Logica! expressions are expressions of the form 

where 

e. are logical elements. 
I 

c. are the binary logical operators (see below). 
I 

Evaluations of logical expressions result in either of the two values, "true" or "false". 

Logical elements are defined as one of the following entities: 

1. a ·Iogical variable or logical function reference 

2. a logical constant 

3. a relational expression 

4. any of the above encl osed in parentheses 

5. a logical expression enclosed in parentheses 

6. any of the above, preceded by the unary logical operator .NOT. 

Logical Operators 

There are three logical operators: 

Operator Type 

.NOT. unary 

.AND. binary 

.OR. binary 

Table 4 illustrates the meanings of the logical operators. 

1. . NOT. e is "true" only when e is "false". 

2. e
1 

.AND. e
2 

is "true" only when both e
1 

and e
2 

are "true". 

3. e
1 

.OR. e
2 

is "true" when either or both e
1 

and e
2 

are "true". 

Table 4. Evaluation of Logical Expressions 

Expression Values 
Evaluation 

.NOT. e e
1 

.AND. e
2 

e
1 

.OR. e
2 

e True --- False --- ---

e False --- True ---

e
1 

False e
2 

False --- False False 

e
1 

True e
2 

False --- False True 

e 1 False E2 True --- False True 

e
1 

True e
2 

True --- True True 
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Evaluation Hierarchy 

Parentheses are used to define evaluation sequences explicitly, ina manner similar to that discussed for arithmetic 

expressi ons. Consequentl y, 

A .AND. B .OR. 0(3) .NE. X 

does not have the same meaning as 

A .AND. (B .OR. 0(3) .NE. X) 

where (B .OR. 0(3) .NE. X) may be called a logical subexpression. 

The evaluation hierarchy for logical expressions is 

1. arithmetic expressions 

2. relational expressions (the relational operators are all of equal precedence). 

3. the innermost logical subexpression, followed by the next innermost logical subexpression, etc. 

4. the logical operations, in the following order of precedence: 

Operator Order 

.NOT. 1 (highest) 

.AND. 2 

.OR. 3 

For example, the expression 

L .OR •. NOT. M .AND. X .GE. Y 

is interpreted as 

L .OR. «.NOT. M) .AND. (X .GE. Y)) 

Note: It is permissible to have two contiguous logical operators only when the second operator is .NOT. i in 
other words 

e
1 

.AND .. OR. e
2 

is not valid, while 

e
1 

.AND .. NOT. e
2 

is legal. Two consecutive .NOT. operators are not permissible. The logical expression to which the oper
ator .NOT. applies should be enclosed in parentheses if it contains two or more quantities. For example, 
if X and Z are logical variables having the values TRUE and FALSE, respectively, the following expressions 
are not equival ent: 

.NOT. X .AND. Z 

.NOT. (X .AND. Z) 

In the first expression .NOT. X is evaluated first and produces the value FALSE. This, when ANDed with 
Z (also, FALSE), results in the value FALSE for the expression. 

In the second expression X .AND. Z is evaluated first and produces the value FALSE. Then the value FALSE 
is NOTed, resulting in the value TRUE for the expression. 
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4. ASSIGNMENT STATEMENT 

Many kinds of statements are recognized by the FLAG compiler. The most basic of these is the assignment state
ment, which defines a computation to be performed and is used in a manner similar to equations in normal mathe
matical notation. 

A si mpl e assignment statement has the form 

v = e 

where 

v is a variable (a scalar or an array element of any type) 

e is an arithmetic or logical expression. (v must be a logical variable only if e is a logical expression) 

This statement means, lIassign to v the value of the expression e. II It is not an equation in the true sensei it does 
not declare that v .!.:. equal to e, but rather it sets v equal to e. Thus, the statement 

N = N + 1 

is not a contradiction: it increments the current value of N by 1. 

The expression need not be the same type as the variable, although in practice it usually is. When it is not, the 
expression is evaluated in its own mode, independent of the type of the variable. Then, if permissible, it is con
verted to the type of the variable according to Table 5 and assigned to the variable. 

Table 5. Mixed Variable Types and Expression Modes 

Expression Mode 
Variable 

I 
Type integer real 

double 
complex 

double 
logical 

precision complex 

integer X I I I 
I 

I N 

real F 
1 

X P R i R N 

double I 
precision F P X D D N 

complex R R R X P N 

double 
complex D D D P X N 

logical N N N N N X 

The symbols used in Table 5 have the following meanings: 

Symbol 

X 

F 

Meaning 

Direct assignment of the exact value. 

The value is truncated to integer. The truncated value is equal to the sign of the expression times 
the greatest integer less than or equal to the absolute val ue of the expression (e. g., 4274.9983 is 
truncated to 4274, and -0.6 to 0). Values that are greater than the maximum size of an integer 
will be truncated at the high-order end as well. Results in this case generally are not meaningful. 

The variable is assigned the real or double-precision approximation of the value. Since real pre
cision is less than that of integers, conversion to real precision may cause a loss of significant digits. 
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P 

R 

D 

N 

Examples: 

A = B 

Meaning 

The precision of the value is increased or decreased accordingly. 

The real part of the variable is assigned the real approximation of the expression. The imaginary 
part of the variabl e is set to zero. 

The real part of the variable is assigned the double precision approximation of the expression. The 
imaginary part of the variable is set to zero. 

Not allowed. 

Q(I) = Z ** 2 + N * (L - J) 

L = F .OR .. NOT. C .AND. (R. GE. 23. 9238E-l) 

CRE(8, ED) = R (ALL, MEN) 

PI = 4 * (ATAN(O. 5) + ATAN(O. 2) + ATAN(O. 125)) 
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5. CONTROL STATEMENTS 

Each executable statement in a FLAG program is executed in the order of its appearance in the source program, un
less this sequence is interrupted or modified by a control statement. 

Labels 

If program control is to be transferred to a particular statement, that statement must be identified. Statements are 
identified by labels. Nonexecutable statements may have labels, but, except for FORMATs, the labels should not 
be referenced. 

Statement labels consist of up to five decimal digits and must be greater than zero. Embedded blanks and leading 
zeros are not significant. The following labels are equivalent. 

857 00857 8 5 7 085 7 

Statement labels may be assigned in any order; their numerical values have no effect on the sequence of statement 
compilation or execution. 

GO TO Statements 

GO TO statements transfer control from one point in a program to another. FLAG includes three forms of GO TO 
statements: unconditional, assigned, and computed. 

Unconditional GO TO Statement 

This statement has the form 

GOTO k 

where k is a statement label. The result of the execution of this statement is that the next statement executed is the 
one whose label is k. For example, in 

GO TO 502 
98 X = Y 

502 A = B 

statement 502 will be executed immediately after the GO TO statement. 

Assigned GO TO Statement 

The format of the assigned GO TO is 

r..n Tn "rtk k I., I., \1 
....,...., • ...., • 'L\ l' 2' "3' ... , "n'J 

where 

v is a nonsubscripted integer variable that has been assigned {via an ASSIGN statement, see below} one of 
the statement labels k 1 - kn· 

k j is a statement label (the list enclosed in brackets is optional). 
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Each label appearing in the I ist must be defined in the program in which the GO TO statement appears (i. e., must 
be the label of a program statement). This statement causes control to be transferred to the statement label (k.) that 
corresponds to the current assignment Of the variabl e (v). I 

Examples: 

ASSIGN 5371 TO LOC 

GO TO LOC, (117,56, 101,5371) 

The GO TO statement transfers control to the statement labeled 5371. Note that v (the variable 11 LOCI in the above ex
ample) must have been set bya previously executed ASSIGN statement prior to its execution in the GO TO statement. 

Computed GO TO Statement 

The computed GO TO statement is expressed as 

where 

k. is a statement I abel 
I 

v is a nonsubscripted integer variable whose value determines to which of the k. control will be transferred. 
I 

This statement causes control to be transferred to the statement whose label is kj, where j is the integer val ue of the 
variable v, for 1 ~ j ~ n. If j is not between 1 and n, no transfer occurs, and control passes to the statement follow
ing the computed GO TO statement. In most previous FORTRAN systems, this situation has been considered an error, 
but is no longer so considered. 

Examples: 

Statement 

GO TO (98, 12,405(3), N 

GO TO (1,8,7,562), I 

GO TO (4,88, 1), N 

GO TO (63,9,3,2), J 

ASSIGN Statement 

Expression Value 

3 

2 

o 
8 

Transfer to 

405 

8 

next statement 

next statement 

The ASSIGN statement, used to assign a label to a variable, has the form 

ASSIGN k TO v 

where 

k is a statement label 

v is a nonsubscripted integer variable 

Examples: 

ASSIGN 5 TO JUMP 

ASSIGN 22 TO M 

ASSIGN 1234 TO IRETURN 

ASSIGN 99999 TO IERROR 

A variable that has had a label assigned to it may be used only in an assigned GO TO statement. 
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A variable that has most recently had a label assigned to it should not be used as a numeric quantity. Conversely, 
a variable that has not been assigned a label may not appear in any context requiring a label. The following case 
ill ustrates improper usage: 

ASSIGN 703 TO HI 

A = HI/LOW 

This usage is not permissible because the value of HI is indeterminate, since its value depends on where the program 
is loaded. Furthermore, 

M = 5 

cannot be substituted for 

ASSIGN 5 to M 

or vice versa, because the integer constant "5" is implied in the first case, and the label "5" in the second. 

IF Statements 

Very often it is desirable to change the logical flow of a program on the basis of some test. IF statements, which 
may be called conditional transfer statements, are used for this purpose. There are two forms of IF statements: 
arithmetic and logical. 

Arithmetic IF Statement 

The format for arithmetic IF statements is 

where 

e is an expression of integer, real, or double precision modes. 

are statement labels. 

The arithmetic IF statement is interpreted to mean 

IF e < 0, GO TO k1 

IF e = 0, GO TO k2 

IF e> 0, GO TO k3 

If e is a real or double precision expression, a test for exact zero may not be meaningful on a binary machine. If 
the expression involves any amount of computation, a very small number is more likely to result than an exact zero. 
For this reason, floating point arithmetic IF statements generall y should not be programmed to have a unique branch 
for zero. 

Examples: 

Statement 

IF (K) 1,2,3 

IF (3 * M(J) -7) 76,4,3 

IF (C(J, 10) + A / 4) 23, 12, 12 

IF (NEXT + LAST) 3,156,3 

Logical IF Statement 

Expression value 

47802 

-6 

0.0002 

o 

The logical IF statement is represented as 

IF (e) s 
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76 

12 

156 
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where: 

e is a logical mode expression 

is any executable statement except a DO statement or another logical IF statement 

The statement s is executed if the expression e has the value IItrue"; otherwise, the next executable statement fol
lowing the logical IF statement is executed. The statement following the logical IF will be executed in any case 
after the statement s, unless the statement s causes a transfer. 

Examples: 

IF (FLAG .OR. L) GO TO 3135 

IF (OCTT * TRR .L T. 5.334E4) CALL THERMAL 

IF (.NOT. SWITCH2) REWIND 3 

CAll Statement 

This statement, used to call or transfer control to a subroutine subprogram (see Chapter 8), may take either of the 
foil owi ng forms: 

CALL P 

CALL p (a 1, a
2

, a
3
,··· ,an) 

where 

P is the identifier of the subroutine subprogram. 

a. 
i 

is an argument, which may be any of the following: Constants; subscripted or nonsubscripted variables, 
arithmetic or logical expressions, statement label arguments (&a., where a. is the statement label), or array or 
subprogram names. (See "Arguments and Dummies", Chapter 8.i I 

A subroutine is similar to a function except that it does not necessarily return a value, and must not, therefore, be 
used in an expression. Furthermore, while a function must have at least one argument, a subroutine may have none. 
For example, 

CALL CHECK 

Arguments that are scalars, array elements, or arrays may be modified by a subroutine, effectively returning as 
many results as desired. The following call might be used to invert the matrix A, consisting of K rows and columns, 
store the resulting matrix in the array B, and set D(J) equal to the determinant of B .. 

CALL INVERT(A, K, B, D(J)) 

A complete discussion of the usage and forms of arguments to supprograms is contained in Chapter 8. 

A subroutine name has no type (e.g., real, integer) associated with it; it merely identifies the block of instructions 
to be executed as a resul t of the CALL. Therefore, the appearance of a subprogram name in a CALL statement does 
not cause it to take on any implicit type. 

Other examples of CALL statements are given below. Statement labels are identified by a preceding ampersand. 

CALL ENTER(&44, N) 

CALL RX23A(X ** Y - 7,0, SQRT(A * A + B * B) / DIV, TEST) 

CALL EVALUE 
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RETURN Statement 

The RETURN statement causes an exit from a subprogram. It takes one of the forms 

RETURN 

RETURN v 

where v is an integer constant or INTEGER variable whose value must be greater than zero, but no greater than the 
number of asterisks that appear in the SU BROUTINE statement (see 11 SUBROUTINE Subprograms" and 11 Arguments 
and Dummies" in Chapter 8 for a discussion on the use of asterisks in SUBROUTINE statements). 

A RETURN statement must be, chronologicall y, the last statement executed in any subprogram, but it need not be last 
physically. There may be any number of RETURN statements in a subprogram. A RETURN statement should not 
appear in a main program. 

The first form, RETURN (without the v) is the statement usually used. In a subroutine, it returns control from the 
subroutine to the first executable statement following the CALL statement that call ed the subroutine. In a functi on, 
it causes the latest value assigned to the function name to be returned, as the function value, to the expression in 
which the function reference appeared. (See also, IIFUNCTION Subprogramsll, Chapter 8.) 

The second form, RETURN v, is used to provide an alternate exit from a SUBROUTINE subprogram. The value of v 
is used to determine which statement label in the calling argument list will be used as the return. The vth asterisk 
(counting from left to right in the SUBROUTINE statement) corresponds to the statement label that will be used. If 
the entry to the subprogram did not contain any asterisks in the dummy list, the RETURN statement will cause a 
compile-time diagnostic to be produced. 

Examples: 

Calling Program 

33 CALL IT (LOCK, RET, QR, & 11, &883) 

66 X(8) = Y(C, K) + CHEBY(Z, Y) 

Subprograms 

SUBROUTINE IT (i, X, P, *, *) 

RETURN 1 

RETURN 2 
END 
FUNCTION CHEBY (ARG, EXP) 

RETURN 
END 

When subroutine IT is called by statement 33, return is to statement 11 if the RETURN 1 exit is executed, or to 
statement 883 if the RETURN 2 exit is executed. When the function subprogram CHEBY is called by statement 66, 
the return from the function is to the point of ca II in 66. 

DO Statement 
These statements are used to control the repetitive execution of a group of statements. The number of repetitions 
depends on the value of a variable. The DO statement may be written 

DO k v = e
1
,e

2
,e

3
, or 

DOkv=e
1
,e

2 
where 

k is a statement label not defined before the DO statement. 

v is a nonsubscripted integer variable. 

el' e2' and e3 are integer constants greater than zero or unsigned nonsubscripted integer variables whose 
value is positive. 

In the second form, e3 and the preceding comma are omitted; in this case the value 1 is assumed for e3. 
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A DO statement indicates that the block of statements following it are to be executed repetitively. Such a block is 
called a DO loop, and all statements within it, except for the opening DO statement, constitute the range of the 
DO statement. The last statement in a DO loop is the terminus and bears the statement label k. 

The execution of a DO loop proceeds in the following manner: 

1. The variable v is assigned the value of e1. 

2. The range of statements is executed for one iteration. 

3. After each iteration, the value of v is incremented by the value of e
3

. If e
3 

is not present, the value 1 is used. 

4. The value ofv is then compared with the terminal value (e
2

). 

5. If v is greater than e2' control is passed to the statement following the terminus (i. e., to the statement follow
ing the one whose label is k). Otherwise, the process is repeated from step 2. 

6. The actua I number of iterations defined by the DO statement is given by 

([
e2 - e 1] ) 

max ~ + 1, 1 for e
3 

-I 0 

where the brackets represent the largest integra I va lue not exceeding the va lue of the expression. 

The range of a DO loop will always be executed at least once, even if the conditions for termination are met initial
ly. For this reason, it is recommended that initially satisfied DO loops should not be used, especially since other 
FORTRAN systems may interpret this situation differently. 

The terminal statement of a DO range (i. e., the statement whose label is k) may be any executable statement other 
than one of the following: 

DO statement 

GO TO statement 

Arithmetic IF statement 

RETURN statement 

STOP statement 

PAUSE statement 

Logical IF statements are specifically allowed as terminal statements of a DO range. 

Example: 

22 DO 54 I = 1, 15 

25 SUM = SUM + O(I) 

IF (SUM. LT. 0.0) SUM = 0.0 

SIGMA = SUM + R(I) 

IF (SIGMA - H ** 3/ T) 54,54, 12 

54 CONTINUE 

12 L = Y(I) 

In the example that begins with statement 22, the range of statements 25 through 54 wi II be executed 15 times, 
unless the arithmetic IF statement causes a transfer to statement 12. If a II 15 iterations are completed, control is 
passed to statement 12 at the end of the fifteenth iteration. 

The value of the variable v appearing in a DO statement depends on the number of iterations completed. The value 
of v during anyone iteration is 

e 1 + (i - 1) * e
3 

where i is the number of the current iteration, and e1 and e3 have the meanings discussed previously. If a transfer 
is made out of the range of a DO before all iterations have been completed, the value of v will be that of the itera
tion during which the transfer occurred. 

Caution: If the entire number of iterations specified for a DO loop ~ executed, the value of v becomes 
undefined when program control passes out of the DO loop. 

The value of the indexing parameters (v,e
1
,e2'e

3
) cannot be modified within the range of the DO, nor can they be 

modified by a subprogram called within the range of the DO. 

DO Statement 23 



[ 

A transfer out of the range of a DO loop is permissible at any time; however, a transfer into the range of a DO may 
only occur if there has been a prior transfer out of the DO range (assuming that none of the indexing parameters 
(v,e

1
,e

2
,e

3
) are changed outside the range of the DO). For example: 

DO 25 H = K, Y, 1 

GO TO 8605 

24 A = H /8 

25 JGU = Y(H) ** 3 

8605 R = SIN(G(H» + JSU 

8606 GO TO 24 

is permissible; in fact, the statements 8605 through 8606 are considered part of the DO range. The sequence 

GO TO 11 

DO 32 J = 2,36,2 

11 R(J) = 47. E-7 * T(J) 

32 T(J) = Q 

is not val id because no transfer could possibly occur out of the DO range. 

A DO loop may include another DO loop. Do loops may be nested; however, they cannot be overlapped. In a nest 
of DO loops, the same statement may be used as the terminal statement for any number of DO ranges; however, trans
fers to this statement can be made only from the innermost DO loop. Up to 25 DO ranges may be nested. Only if a 
transfer is made out of the range of the innermost DO loop can a return transfer into the range of nested DO loops be 
made. In this case, the return transfer must be to the innermost DO loop. 

Examples: 

10 

100 

1000 

DO 1000 I = 1, II ------. 

DO 100 J = 1, JJ-----. 

~O 10 K = 1, K K l 
CONTINUE----.J 

DO 100 L = 1, LL 

~OlM=l'MMJ 

A=B 

~ONTINUE ----LJ I 
THIS = DO END~ 

III egal 

200 

201 

2000 

20 

2 

D0200W= 1, WW---

D0200X= 1, XX-

DO 20 Y = 1, yy--+ __ 

CONTINUE 

DO 200 Z = 1, ZZ.-J 

D02U=l, UU-

Q = R-------+----........ 

~ONTINUE-T 

IT = WRONG-.J 

The terminal statement of a range may not physically precede the DO statement, as is shown in the case of state
ments 200 and 201 in the illegal example above. 
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CONTINUE Statement 

This statement is written as 

CONTINUE 

and must appear in that form. The CONTINUE statement does not cause the compiler to generate machine instruc
tion and, consequently, has no effect on a running program. The purpose of the CONTINUE statement is to allow 
the insertion of a label at any point in a program. For example: 

DO 72, 1= 1,20 

IF (X ** I + O. 9999E-5) 72, 72, 88 

72 CONTINUE 

88 H(33) = T(3, R, L, E) /22.5 

CONTINUE statements are most often used as the terminal statement of a DO range, as in the example above. 

PAUSE Statement 

PAUSE statements are written as 

PAUSE 

PAUSE n 

PAUSE 's' 

where 

n is an unsigned integer constant of up to five digits (1 ~ n ~ 99999). 

's' is a literal constant. 

This statement causes the program to cease execution temporarily, presumably for the purpose of allowing the com
puter operator to perform some specified action. The operator can then signal the program to continue execution, 
beginning with the statement immediately after the PAUSE. 

If an integer or a literal constant is appended to the PAUSE statement, the word PAUSE and this value will be dis
played to the computer operator when the program pauses; otherwise, the word PAUSE is displayed. 

STOP Statem ent 

STOP statements are written in the form 

STOP 

STOP n 

where 

n is an unsigned integer constant 

This statement terminates the execution of a running program. If it appears within a subprogram, control is not 
returned to the calling program. If an integer is appended to the STOP statement, it will be output immediately 
before termination. 
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END Statement 

,A,n END statement is used to inform the FLAG compiler that it has reoched the physical end of a program. The state
ment must appear in the form 

END 

If program control reaches an END statement during the execution of any program (or subprogram) the effect is that 
of a STOP statement. 

The following restriction applies to any statement that begins with the character string END: 

If the compiler has encountered only the characters END at the end of a line, it assumes that the statement is 
an END statement and will act accordingly. An END statement may not appear on a continuation line. 

This limitation is due to an historic FORTRAN feature; namely, the way in which continuation is specified. As in
dicated by the following examples, certain statements, although legitimate FORTRAN statements, will be processed 
as though they were END statements. 

Processed as EN D Statements 

column: 6 

x 

x 

7 ••• 

END 
FILE 2 

END 

END 

RATE = A * B 

(I, J, K) = .NOT. Q 

Not Processed as END Statements 

6 

x 

x 

7 ..... 

END FILE 
2 

END RA 

END (I, J 
, K) = .NOT. Q 

E 
1 N 
2 D 

TE = A * B 

Similarly, illegal statements of the same nature as those in the first column will be treated as END statements. 
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6. INPUT jOUTPUT 

The FORTRAN language provides a series of statements that determine the control of and condition for data transmis
sion between computer storage and external data handling devices, such as magnetic tape and paper tape handlers, 
typewriters, card units, and line printers. These statements are of three types: 

1. READ and WRITE statements that cause specified lists of data to be transmitted between computer storage and 
one of the group of external devices 

2. FORMAT statements used in conjunction with the input/output of formatted records to provide conversion and 
editing information that specifies their internal and external representation 

3. Auxiliary I/O statements for positioning and demarcation of external files (as on magnetic tapes) 

The data transmitted by input/output statements are transmitted as records of sequential information consisting of 
binary-coded strings of characters or unformatted binary values in a form similar to internal storage. For either type 
of transmission the I/O statements refer to external devices, lists of data names, and - for formatted data - to format 
specificati on statements. 

Input/Output lists 

An input/output list represents an ordered group of data names that identify the data to be transmitted and the order 
of their transmission. These lists have the form 

where 

m. are I ist items separated by commas, as shown. 
I 

List Items 

A list item may be either a single or multiple datum identifier. 

A single datum identifier is the name of a scalar variable or an array element. 

Examples: 

A B 

MAT RIX(25, L) ALPHA(J,N) 

Multiple data identifiers are in one of two forms: 

1. An array name appearing in a list without subscripts is considered equivalent to the listing of each element in 
the array. ---

Example: 

If B is a 2-dimensional array, the list item B is equivalent to 

B(l, 1), B(2, 1), B(3, 1), •.. , B(l,2), B(2,2), .•• , B(j, k) 

where 

j and k are the dimension I imits of B 

2. DO-implied items are lists of one or more identifers or other DO-implied items followed by a comma character 
and an expression of one of the forms 

v = e
1
,e

2 

enclosed in parentheses. 
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The elements v, e1' e2' and e3 have the same meaning as defined for the DO statement. The items enclosed in 
parentheses with a DO implication are considered to be in the range of the DO implication. For input lists the 
: ... ,..J",,,: ... ,,, ... "' .. '· .. ·n",+", .. "" c c nnrl c mn" nnn",nr in thic:: rnnn'" nnlv nc:: C::llhc::rrintc::_ 
'II,","""I"~ t'''--I'-oIII ....... _.oJ TI -1' -2' _ .. - -3 ... _, -1""'.--* ....... - --"\::)- _ ... / -- ------.r·- ... 

Examples: 

DO-impl ied List 

(X(I), 1= 1,4) 

(A(I), I = 1, 10,2) 

«C(I,J),D(I,J), J = 1,3), 1=1,4) 

Special List Considerations 

Equival ent Lists 

X(l), X(2), X(3), X (4) 

A(l), A(3), A(5),A(7), A(9) 

C(l,l),D(1,1),C(1,2),D(1,2),C(1,3),D(l,3) 

C(2, 1), D(2, 1), C(2, 2), D(2,2), C(2, 3), D(2, 3) 

C(3, 1), D(3, 1), C(3,2), D(3,2), C(3, 3), D(3, 3) 

C(4, 1), D(4, 1), C(4, 2), D(4, 2), C(4, 3), D{4, 3) 

Since J is the innermost index, it varies more rapidl y than I. 

1. The ordering of a list is from left to right with repetition of items enclosed in parentheses (other than subscripts) 
when accompanied by controlling DO-implied indexing parameters. 

2. An unsubscripted array name in a list implies the entire array. 

3. Constants may appear in input/output lists only as subscripts or as indexing parameters. 

4. For input lists the DO-implying index parameters (v, e
1
, e

2
, e

3
) may not appear within the parentheses as list items 

For example, as an input list 

(I, J, A (I), I = 1, J, 2) 

I, J, (A(I), I = 1, J, 2) 

As an output list 

(I,J,A(I), 1= l,J,2) 

is not allowed 

is allowed 

is allowed 

5. The number of items in a single list is limited only by the statement length specifications. 

Input/Output Statements 

All input/output statements specify a device unit number, u. This number may be either an integer constant or an 
integer variable reference whose value then identifies the unit. This unit number corresponds to an actual physical 
device in one of two ways: 

1. The number may be assigned to a device at program run time. 

2. The number may be a standard unit number assignment, which is recognized as referring to a particular device. 
These standard assignments may be overridden by run-time assignments, if necessary. 

Table 6 shows standard device assignments for FLAG. There are no standard unit assignments for magnetic tapes or 
random access devices. 

Table 6. Standard Unit Assignments 

Unit Number 

5, i05 

6,108 

7,106 

Standard Assignments 

Card reader 

Line printer 

Card punch 

If nonstandard unit numbers are used in a program they must be assigned to the desired device by use of ASSIGN 
control cards placed in front of the FLAG control card (see Chapter 9). The default function of an assigned, non
standard unit number is OUTIN (scratch mode). If a unit is to be assigned to an input device (e. g., card 
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reader or magnetic tape} the IN option should be specified on the ASSIGN control card. Some sample assign-

ments follow. To assign unit number 1 to the card reader: 

!ASSIGN F:l, (DEVICE, 51), (IN) 

To assign unit number 2 to the I ine printer: 

!ASSIGN F :2, (DEVICE, LO, L) 

To assign unit number 3 to a labeled magnetic tape with serial number 'PHS' from which data will be read: 

!ASSIGN F:3, (LABEL, DATAFILE), (INSN, PHS), (IN) 

To assign unit number 4 to a scratch disc file: 

!ASSIGN F:4, (FILE, TEMP4) 

Formatted Input/Output Statements 

Formatted I/o statements are used to process binary-coded (BCD) records. These statements have the forms 

READ{u, f)k 

WRITE(u, f)k 

where 

u is a device unit number {unsigned integer or integer variable}. 

is a FORMAT statement label or an unsubscripted array name. 

k is an input/output list, which may be omitted. A comma may optionally precede the list k. 

A formatted READ statement causes the character string in the external record to be converted, according to the 

FORMAT specified, into binary values. These are then assigned to the variables appearing in the list k, or the 
equivalent simple list, if k contains a DO-implication. Conversely, a formatted WRITE statement converts internal 

values into character strings and outputs them. 

Each formatted input/output statement begins processing with a new record. It is not possible to process a particular 
record using more than one READ or WRITE statement. More than one record may be processed by these statements 
if specifically requested by the FORMAT statement. However, attempting to read (or write) more characters on a 
record than are (or can be) physically present does not cause processing of a new record; on output the extra char

acters are lost, on input they are treated as blanks. 

A BCD record has a maximum size of 132 characters. Certain devices may impose other restrictions on the size of 
records. For example, a punched card contains 80 characters. A record may contain as few as zero characters, in 

which case it is considered to be blank or empty. In other words, a record into which any number of blanks have 
been specifically written is indistinguishable (within the program) from an empty record. However, on devices such 
as magnetic or paper tape, the FORMAT statement may determine the actual size of record written (see the XDS 

Sigma Monitor reference and operations manuals for a complete description of BCD records). 

The list k may be omitted from a formatted input/output statement. Normally, this has the effect of skipping one 
record (on input) or writing one blank record (on output). However, information may actually be processed, and/or 
more than one record used, if the FORMAT statement begins with Hollerith or slash specifications, in which case 
information is either read into or written from the locations in storage occupied by the FORMAT statement {see 
IIH Format Codes ll under IIFORMAT Statements ll

}. 

Examples: 

READ(105, 6)X, Y, T(3, 5) 

READ(5, FORM) (A{I), 1= 1,40), H,Q 

WRITE(N,FMT)(MASS(J,3),J=l, 100, 1) 

WRITE(102,93) MESAGE, ERR NO 
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Acceptable FORTRAN II Statements 

The following FORTRAN II statements are accepted by FLAG. Each of these statements designates a specific phy
sical device, as shown in Table 7. 

Table 7. FORTRAN II/FORTRAN IV Equivalent Statements 

FORTRAN II FLAG Standard 
Statement Equivalent Assignment 

READ f, k READ (105, f)k Card reader 

PUNCH f, k WRITE (106, f)k Card punch 

PRINT f, k WRITE (108, f) k Line Printer 

READ Statement 

This FORTRAN II input statement has the form 

READ f, k 

where 

is a statement label or an array name of the FORMAT statement describing the data 

k is an input list as described earlier in this chapter 

The READ statement causes the character stri ng in the external record to be read from devi ce 105 and converted, 
according to the FORMAT specified, into binary values which are then assigned to the variables appearing in the 
list k, or the equivalent simple list if k contains a DO-implication. 

PUNCH Statement 

This FORTRAN II output statement has the form 

PUNCH f, k 

where 

f is a statement label or an array name of the FORMAT statement describing the data 

k is an output list described earlier in this chapter 

This statement causes internal data to be converted into character strings, as specified by the applicable FORMAT 
statement, and to be output on devi ce 106. 

PRINT Statement 

The form of the FORTRAN II PRINT statement is 

PRINT f, k 

where 

f is a statement label or an array name of the FORMAT statement describing the data 

k is an output list as described earlier in this chapter 

The PRINT statement causes internal data to be converted into character strings, as specified by the applicable 
FORMAT statement, and to be output on device 108 (see also "Carriage Control for Printer Output" in this 
Chapter). 
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II FORMA T -Free" READ and PRINT Statements 

"FORMAT-free" forms of the READ and PRINT statements are also provided. The general forms are as follows: 

READ, k 

PRINT, k 

where k is an input/output variable list of the usual form. Output values will be printed 8 per line; input values 
for "FORMAT-free" READ should be separated by either a comma or one or more blanks; if more than 8 values are 

to be read by one READ statement the values should be punched 8 per card using as many cards as necessary. (The 
actual FORMAT specifications used by "FORMAT-free ll READ and PRINT are (8G) and (8* (2XG.6)) respectively). 

Intermediate Input/Output Statements 

These statements process information in internal (binary) form and are designed to provide temporary storage on mag

netic tapes, discs, and drums. They have the form 

READ(u) k 

and 

WRITE(u) k 

where 

u is a device unit number 

k is an input/output I ist, which may be omitted (see below) 

The binary READ/WRITE statements process data as a string of binary digits, arranged into words, depending on the 

size of the items in the list k (see "Allocation of Variable Types", Chapter 7). All the items appearing in the list 
of a binary READ/WRITE statement are contained in one logical record. 

A logical record may consist of several physical records; however, it is treated as a single record, as far as the 
programmer is concerned. (See The SDS Sigma Monitor reference and operations manuals for a description of the 
format of intermediate binary information.) This means that the information output by a single binary WRITE state

ment must be input by one and only one READ statement. It is permissible to read less information than is present in 
the record. If the input list requests more data from a binary record than is present, an error will occur. There is 
no limit to the number of items that can be processed by a single READ/WRITE statement, since only one logical 
record will be read or written, regardless of the amount of data to be transferred. 

The records produced by binary WRITE statements do not consist of just the data to be generated. Control words are 
included in the records to facilitate reading or backspacing the proper number of physical records. Thus".. the infor
mation produced by an intermediate binary WRITE statement is meant to be read subsequently by a binary READ state

ment. Other FORTRAN systems will not necessarily interpret the records in the same way. Similarly, binary tapes 

produced on other machines or by other programs cannot, in general, be input using a binary READ statement. 

If the list k is omitted from a binary READ/WRITE statement, a record is skipped, or an empty record is written. 
Unlike formatted input/output statements, no data transfer can occur in such an operation. If an empty record is 

written, it can only be processed by a READ statement with no list and, therefore, has little purpose. 

Examples: 

READ(3) E 1 (K), (M(K, L), L = 1,22) 

READ (N) ARRAY 

WRITE(MIN)R(J), G(J) 

WRITE(3)VALUE 
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END and ERR Forms of the READ Statements 

Both the formatted and intermediate binary READ statements may optionally include a specification of action to be 
performed if an error occurs or an end-of-fi!e mark is read. The statements are written 

READ(u, f, END=s l' ERR=S2)k 

READ(u, END=Sl' ERR=s2)k 

where sl and s2 are each a statement label. Both the END=sl and the ERR=s2 are optional; if both are present, 
either may appear first. 

If an end-of-file mark is encountered during the processing of the READ statement, control will be transferred imme
diately to statement sr If an error occurs, control will be transferred to statement s2' 

NAME LIST Statement 

The NAME LIST statement is used to define the variables that may be processed by INPUT statements. It has the 
form 

NAME LIST v l' v 2' v 3' ... , v 
n 

where the v. are scalar or array identifiers. Dummy variables may not appear. 
I 

When an array name appears in a NAME LIST declaration, all elements of the array may be processed by an INPUT 
statement. 

A NAME LIST statement with no identifiers following it causes all appropriate variables that appear in the program 
to be placed in the name list; i. e., all nondummy scalars and arrays. This can be helpful during program checkout, 
since it enables the user to input any variable without knowing at compile time which variables it will be desirable 
to input. 

The NAME LIST variables defined in a program unit are independent of those defined in any other program units. 
Each program has its own NAME LIST. This means the following: 

1. A variable that appears in one program may not be processed by an INPUT statement in another program unless, 
for example, the variable is in COMMON and aiso appears in the other program. 

2. If two or more programs have separate variables with the same name, it is possible to input into either of them. 
It simply depends on which program is doing the inputting. There is no ;onflict between the separate NAME 
LISTs. 

Examples of NAME LIST statements: 

NAME LIST T, G, I, F, RATE, COUNT, ITEM QUANTITY 

NAME LIST NORM, BOB, PHIL, DOUG 

NAME LIST 

Simplified Input/Output 

This is the most straightforward form of input/output. It does not require the programmer to learn anything about 
FORMAT statements or other kinds of input/output which, although more versatile, are also more complicated. It 
can process every type of variable and is suitable for almost any FORTRAN application that does not require special 
editing or formatting. Values may be written out in a natural form chosen by the compiler. Similarly, data can be 
input in a very free form without the usual FORTRAN requirement that the user know exactly what FORMAT is con
trolling the input operation. 
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OUTPUT Statement 

The OUTPUT statement may have any of the following forms: 

OUTPUT k 

OUTPUT, k 

OUTPUT(u) k 

OUTPUT(u), k 

where 

k is an output list, consisting of variables, expressions, and/or character strings. 

u defines the logical unit number of the device on which the output data is to be written. It may be any 
unsigned integer or integer variable. If no unit number is specified, the output will automatically be on 
unit 108, which is the standard print unit. 

The name of each list item will be output, followed by an equal sign and then the value of the item, in an appro
pri ate format. 

For exampl e, 

OUTPUT X, Y, X + Y, SQRT(X**2 + Y**2) 

might produce the following lines of output: 

X =.500000 

Y = 1. 20000 

X + Y = 1. 70000 

SQRT(X**2 + Y**2) = 1.30000 

Complex values are output as complex constants; the other data types are also output in natural forms, as shown in 
the following example: 

DOUBLE PRECISION D 

COMPLEX C 

LOGICAL L 

OUTPUT(6), I, R, D, C, L 

which might result in these lines: 

I = 79 

R = 4370.72 

D = 99301. 3922310385 

C = (-56.2234,334.882) 

L = T 

Each value is written on a separate line, beginning in column 2 (so that no carriage control will take place). The 
maximum width of any line is 132 characters; excess characters will be lost. 

If the first item in the output list begins with a left parenthesis, and no unit number is specified, there must be a 
comma~er the word OUTPUT. Otherwise, the list item will appear to be a unit number. For exampl~ 

OUTPUT, (A + B), X(I) 

When an unsubscripted array name appears in the output list, the entire array is output in storage order (see "Array 
Storage ", Chapter 7). For example, 

DIMENSION M(2,2), A (2) 

OUTPUT M, A 
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r which could print the following: 

M = 553 

-4 

o 
11245 

A .472962 

-33.0000 

To output headings or other alphanumeric information, a list item may be a character string enclosed in quotes (i. e., 
a literal constant). In this case, no equal sign or value will be ~eneratedi only the character string itself is output, 
as in 

OUTPUT 'FINAL COORDINATES' 

which generates the line 

FINAL COORDINATES 

Implied DO loops may be used, as in the following example. Note that the list begins with a parenthesis and is 
therefore preceded by a comma. 

OUTPUT, (K, A(K)/B(K), K = N 1, N2) 

which could produce this output: 

K=3 

A(K)/B(K) = 14.6135 

K =4 

A(K)/B(K) = 15.0873 

etc. 

Another feature is provided which enables OUTPUT records to be read subsequently by a "NAMELIST" INPUT state
ment. An OUTPUT list item may consist of a single asterisk (*), which will cause the characters *END* to be out
put on a record. This wiii cause an iNPUT statement to terminate reading. For exampie, 

OUTPUT (4) X, I, J, AA, * 

The actual format specifications used to output the various types of data are shown below, although the programmer 
need not be concerned about them, since they are provided automatically. Note that all the formats are widthless. 

Data Type 

integer 

real 

double precision 

complex 

double complex 

logical 

Format Specifications 

lPG.6 

lPG.15 

lP, lH(G.6, -X, lH,G.6,-X, lH) 

lP, lH(G. 15, -X, lH, G. 15, -X, lH) 

L 

INPUT Statement Using NAME LIST 
The INPUT statement is the counterpart of the OUTPUT statement, except that it is written without a specific list 
of variabl es. The forms of the statement are shown below. 

INPUT 

INPUT(u) 

where u is the unit number, as described under the OUTPUT statement. When not specified, it is assumed to be 105. 
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This form of the INPUT statement is designed to do self-identified input. That is, the variables being input are 
identified by the input itself, rather than being named explicitly in an input list within the program. This enables 
the user to decide at run time which variables (if any) are to be input, and to select different input variables from 
run to run. 

This statement processes records of the form 

where the r. are each a form of replacement (similar to an assignment statement). Either semicolons (;), as indicated, 
or commas thay be used to separate the r.. There may be any number of r. on a record. Except within constants, 
blanks are ignored. I I 

Each of the replacements r. may take one of the following forms: 
I 

v = c 

In the first form, 

v is a scalar variable and 

c is a constant of an appropriate type. 

The second form is used to input into an array element. Here, 

a is the identifier of an array, 

s. is a subscript, which may be a signed or unsigned integer, and 
I 

c is an appropriate constant. 

The third form specifies input into an entire array, in the same manner as described for explicit input/output lists 
(see IIInput/Output Lists ll

). In this case, 

a is an array name, 

c. is a constant of an appropriate type, and 
J 

m is equal to the number of elements in the array. 

When an entire array is specified as above, the constants c. are assigned to successive array elements in the order 
in which the array is stored (i. e., columnwise; see Figure J 2, Chapter 7). Note that there must be the same number 
of constants as there are elements in the array. The constants may appear on separate input records, in which case 
the separating comma is optional. 

Example: 

ALPHA = 1. 7302, -67, 

4E-5 

.87, 24.0983281640957 

100000000000. ; X = 0; etc. 

This is the only case in which a single INPUT item (an r.) may overlap from one record to another. 
I 

Variables that are to be processed by an INPUT statement must have been referenced by a NAME LIST statement so 
that their names can be recognized at run time. Note that this can be done by using a NAME LIST statement with 
no identifier list after it, which causes a" permissible scalars and arrays to be placed in the name list. 

The permissible forms of a constant that appears on an input record depend on the type of the variable to which the 
constant is to be assigned. 
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I 

1. For integer, real, and double precision variables, the constant is scanned according to a G.O {width less} field 
specification. The constant may therefore take any of the forms described under "Numeric Input Strings" for 
widthless formats. This includes all the forms discussed in Chapter 2 for integer, real, and double precision 
constants (except Hollerith). Note, howevei, that since they are scanned with a widthless format, these con
stants are terminated at the first blank that follows a digit or decimal point. A good rule is not to embed blanks 
within constants. If this rule is followed, INPUT replacements may be written exactly as assignment statements. 

2. For complex variables, the constant must be of the form 

where c 1 and c2 may each be any of the forms discussed above for real data. The meaning is the same as for a 
complex constant as described in Chapter 2. 

3. For I ogi cal variabl es, the constant may take either of the forms 

. TRUE. or . FALSE • 

or the constant may be any character string that can be processed by a widthless format; that is, one in which 
the letter Tor F appears. Such a field is terminated by the first comma or nonleading blank. 

Thus, T, F, TRUE, and FALSE are all permissible input strings for logical variables. 

Note that if the items in an OUTPUT statement are restricted to scalars, array elements (with constant subscripts), 
and arrays, the resultant output records can be processed by an INPUT statement. 

INPUT processing terminates when an asterisk character is found in the input string, wherever that may be. For 
example, 

T = 55E-2; A(l, 1,3) = 4, DSL = 2 

J = -3746E 02 i LGL(12, -2) = . FALSE. 

CPX = (7. 32D-2, 3) k'=() ARRAV=() I ," ..... , , ......... ,... -, 

0, 14, 3.71* 

or 

R(55,-2) = 55.349384531062851907 

J=9 

SOOLE = T i FLAG = F ORTRAN4 

C = (2, 7.08364724286E-03) 

ARRAY = 1. 0 

2.718281828459046 

3. 141592653589793 

-3944483 

*END* 

The *END* at the end of the second example is the form of end record generated by the OUTPUT statement, and 
enables the user to separate OUTPUT records into "files" that can later be processed by one or more INPUT state
ments. For exampl e 

OUTPUT (4) A, S, C, *, ARRAY, *, CPX, J(3), * 

generates records that can be processed by three separate INPUT statements. 

36 INPUT Statement Using NAME LIST 



FORMAT Statement 

The FORMAT statement is used to specify the conversion to be performed on data being transmitted during formatted 
(BCD) input/output or DECODE/ENCODE operations. It is nonexecutable and may be placed anywhere in the pro
gram. In general, conversion performed during output is the reverse of that performed during input. FORMAT state
ments are expressed as 

FORMAT (Sl,S2,S3"",Sn) 

where 

n ~ 0 

S. 
I 

is either a format specification of one of the forms described below or a repeated group of such specifica
tions in the form 

r(S l' S2' S3' •.. ,S m) 

where 

m ~ o. 
is a repeat count as described below. 

S. is as described above; in other words, repetitions may be nested (to ten levels). 
J 

The commas between the Si (and Sj) are optional except where ambiguities would arise from not separating speci
fications. In the absence of a comma, the compiler attaches as much as possible to the left-hand specification. 
For example, the specifications 

123F27.13X 

wi II be interpreted as 

123 , F27.13 , X 

and not as 

12 , 3F27.1 , 3X 

To obtain the latter interpretation, the commas are required. 

Every FORMAT statement should be labeled so that references may be made to it by formatted input/output state
ments. An entire FORMAT (the parentheses and the items they enc lose) may be stored in an array variable through 
the use of assignment statements or input statements. In this case, as described under "FORMATs Stored in Arrays", 
the array itself is referenced by the input/output statements. 

Format specifications describe the kind or type of conversion to be performed, specific data to be generated, scaling 
of data values, and editing to be executed. Each integer, real, double precision, or logical datum appearing in 
an input/output list is processed by a sing Ie format specifi cation, whi Ie complex data are operated on by two con
secutive format specifications. Format specifications may be any of the following forms: 

rFw.d rlw rZw iX 

rEw.d rLw rMw Tw 

rDw.d rAw r1s I iP 

rGw.d rRw nHs r/ 

where 

the characters F, E, D, G, I, L, A, R, Z, M, H, quotation mark (I), X, T, P, and slash (/) define the type 
of conversion, data generation, scal ing, editing, and FORMAT control. 

is an optiona I, unsigned integert that indicates that the specification is to be repeated r times. When r 
is omitted, its value is assumed to be 1. For example, 

316 

is equivalent to 

16,16,16 

tSee also "Adjustable Format Specifications". 
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r 
I 

w is an optional unsigned intege/ that defines width in characters {including digits, decimal points, alge
braic signs, and blanks} of the external representation of the data being processed. If w is not present in 
a specification, the size of the external field depends on the characteristics of the data and the type of 
cOiiveis;on pSifoimed. This is discussed individually under eCich specification. 

d for F, E, D, and input G specifications, is an optional, unsigned intege/ that specifies the number of frac
tional digits appearing in the magnitude portion of the external field. If d is not present, its value is as
sumed to be zero, and the decimal point character preceding it should not appear. That is, Ew.O and Ew 
are equivalent. 

For output G specifications, d is also an unsigned integer/ but in this context it is used to define the 
number of significant digits that appear in the external field; therefore, its value should not be zero. 

n is an unsigned, decimal integer that defines the number of characters being processed. 

is a string of the characters acceptable to the FLAG processor (see Chapter 1). 

is a signed integert {plus signs are optional}. The function of i is described under X and P specifications. 

F Format (Fixed Decimal Point) 

Form: 

rFw.d 

Integer, real, double preCISion, or either part of complex data may be processed by this form of conversion. 
Double precision values are converted with full precision if sufficient width is specified by w, and the value of d 
a lIows for the appropriate number of digits in the fractiona I portion of the field. 

Output. Internal values are converted to real constants, rounded to d decimal places with an overall length of w. 
The field is right justified with as many leading blanks as necessary. Negative values are preceded with a minus 
sign. Consequently, for the specification F11. 4, 

273.4 is converted to 

7 is converted to 

-.003 is converted to 

-442.30416 is converted to 

273.4000 

-, r\nr\1"\ 
I.UVVV 

-.0030 

-442.3042 

When no width is speGified (i.e., w is not present), the converted field contains only the number of digits necessary 
to express the value, plus one blank to the right of the field. Therefore, for the specification F. i, 

349.5203 

70000 

-22 

is converted to 

is converted to 

is converted to 

349 • .% 

70000.00 

-22.Ob 

and for the specification 2F.4, the output list 

.03359, -67 is converted to .0336'O-67.000Ob 

where 1) represents the character blank. 

If a value requires more positions than are allowed by the magnitude of w, only w digits wi II appear, and the digits 
lost wi II be from the left or most significant portion of the field. This is not treated as an error condition. Thus, 
for the specification F4.4, 

-1.22315 

432034. 

is converted to 

is converted to 

2232 

0000 

In order to insure that such a loss of digits does not occur, the following relation must hold true: 

w ~ d+2+n 

where n is the number of digits to the left of the decimal point. 

t See also II Adjustable Format Specifications n. 
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Input. Input strings may take any of the integer, real, or double precision constant forms discussed under "Numeric 
Input Strings". Each string will be of length w with d characters in the fractional portion of the value. If a decimal 
point is present in the input string, the va lue of d is ignored, and the number of digits in the fractiona I portion of 
the value will be explicitly defined by that decimal point. For the specification FlO.3, 

33 

802142 

.34562 

-7.001 

is converted to 

is converted to 

is converted to 

is converted to 

.033 

802.142 

.34562 

-7.001 

If the width w is not specified, conversion starts with the first non-blank character in the input string and ends with 
the first comma or blank that follows a digit or a decimal point. The comma or blank is bypassed before conversion 
of the next field begins. For the specification 2F.2, the string 

333, .003 

is converted to the va lues 

3.33 .003 

E Format (Normalized, with E Exponent) 

Form: 

rEw.d 

Integer, real, double preCISion, or either part of complex data may be processed by this form of conversion. Double 
precision va lues are converted with full precision if sufficient width is specified by wand the value of d allows for 
the appropriate number of digits in the fractiona I portion of the fie Id. 

Output. Internal values are converted to real constants of the forms 

.ddd •.• dE ee 

.ddd ••• dE-ee 

where ddd ... d represents d digits, while ee or -ee is interpreted as a multiplier of the forms 

lO±ee 

Internal values are rounded to d digits, and negative values are preceded by a minus sign. The external field is 
right justified and preceded by the appropriate number of blanks. The following are examples for the specification 
E15.8: 

90.4450 is co nverted to .90445000E 02 

-435739015. is converted to - .43573902E 09 

.000375 is converted to .37500000E-03 

-1 is converted to -. 1 OOOOOOOE 01 

.2 is converted to .20000000E 00 

0.0 is converted to .OOOOOOOOE 00 

When the width w is not present in the format specification, the converted field contains only the number of charac
ters necessary to express the value of the data, plus one blank to the right of the field. If the specification 2E.5 is 
used, the output list 

-774.119,1.00001977 

is converted to 

-.77412En03n.l0000EhOlu 

where 1) represents the character blank. 

The field, counted from the right, includes the exponent digits, the sign (minus or space), the letter E, the magni
tude digits, the decimal point, and the sign of the value (minus or space). If a width specification is of 
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insufficient magnitude to allow expression of an entire value, only w digits will appear. The digits lost are from 
the left or most significant portion of the field. This is not treated as an error condition. 

i=V',......,·u .. 'I.lor. 
_" ..... IIIt-'I ..... "". 

Value EllA E8A E6A 

-2013.55 -.2014E 04 2014E 04 14E 04 

.361887 .3619E 00 
~ 

3619E 00 19E 00 

.000134 .1340E-03 1340E-03 40E-03 

To prevent a loss of this kind, it is necessary to ensure that the relation 

w ~ d+6 

is satisfied by the specification. Note that the above feature can be used intentiona Ily to obtain the exponent field, 
which is an indicationof magnitude range for any datum. For example, for the specification E3.0, 

60255.034 

0.0000072 

is converted to 05 

is converted to -05 

Input. The discussion "Numeric Input Strings ll containsa description of the forms permi~sible for strings of input 
characters. Conversion is identical to F format conversion. In particular, input fields for conversion in E format 
need not have exponents specified. 

Examples: 

Input Value Specification Converted to 

-113409E2 E9.6 -11.340900 

-409385E-03 E.2 -4.09385 

849935E-02 E10.5 .0849935 

6851 E.O 6851.0 

First, the decimal point is positioned according to the specification; then, the value of the exponent is applied to 
determine the actual position of the decimal point. In the first example, -113409E2 with a specification of E11.6 
is interpreted as -.113409E02; which, when evaluated (i.e., -.113409 x 102), becomes -11.340900. 

o Format (Normalized, with 0 Exponent) 

Form: 

rDw.d 

This format is similar to E format, with the exception that for output, the character D will be present instead of the 
character E. For example, 

for E12.6, -667.334 is converted to -.667334E 03 

and 

for D 12.6, -667.334 is converted to -.667334D 03 

Input under D format is the same as for E and F formats. 

G Format (General) 

Form: 

rGw.d 

G format is the only format that may be used with any type of data, including logical. The form of conversion it 
performs depends on the type of the list items. For a Gw.d specification, the following table shows the equivalent 
format that is used when processing list items of the various types. 
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List Item Type Input Output 

integer Iw Iw 

real Fw.d (see below) 

double precision Fw.d (see below) 

logical Lw Lw 

Note that, as with all other formats, complex values are processed as two separate items; the real and imaginary 
parts require individual specifications, and conversion occurs as shown above for real or double precision data. 

For integer and logical list items, the d (in Gw.d) need not be specified; if it is present, it wi II be ignored. This 
is the only case in which d is not assumed to be zero if not specified. G format is very useful in a widthless form. 
When so used, the equivalent formats shown above become width less also (see "Numeric Input Strings "). 

Output of Real and Double Precision Data Under G Format. The form of output conversion used with real and double 
precision values depends on the magnitude of the values. G format attempts to express numbers in the most natural 
way; that is, they are expressed in F format whenever possible, but in E format for values that are too large or too 
small. Specifica Ily, d is interpreted as indicating the number of significant digits desired, and this is exactly the 
number of digits that wi II be output. If the va lue of the number is such that it can be expressed by placing the deci
ma I point anywhere within or at either end of those d digits, that is what wi II be done, and no exponent wi II be 
appended. If, however, preceding or trailing zeros would be required to express the va lue correctly, F format will 
not be used; instead the number will be normalized and output with a fol.lowing exponent. 

To express this algebraically, let M represent the magnitude of the value to be output (rounded to d significant dig
its). Select an integer i such that 

lOi- 1 :s M < 10i (if M = 0.0, then i = O) 

Assuming a specification of Gw.d, let n = w-4 and m = d-i. Then, if O:s i :s d, conversion takes place accord
ing to the specification 

Fn.m,4X 

If i is less than 0 or greater than d, the specification used is 

Ew.d 

Note that when F format is used, four blanks are output following the number, in the positions where an exponent 
would otherwise be. In this way, numbers that are output in columns will tend to line up underneath each other in 
a more readable way. The following examples illustrate the effect of G format output on values of various sizes: 

Value G 10. 3 G 10.1 

.02639 .264E-Ol .3E-Ol 

.2639 .264 .3 

2.639 2.64 3. 

26.39 26.4 .3E 02 

263.9 264. .3E 03 

2639. .264E 04 .3E 04 

Note that the choice of F or E format is independent of the value of the width w. If w is not large enough, digits 
are lost at the left as in other numeric conversions. To ensure that this will not happen, the following relation 
should hold true: 

w ~ d+6 

When no width is specified, the number will be followed by a single blank; values output in F form will not be 
followed by four blanks. 

Scale factors (see lip Specifications ") apply to G format only when the E form is used, not w}1en the F form is used. 
This has the effect that all values output in G format are unchanged (except for rounding). It also has the effect 
that values output in F form with a P scale factor cannot subsequently be input using the same FORMAT; the scale 
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r factor will take effect during input but not during output. Thus, the new value will be different from the old by 
a power of 10. 

Note that the rounding applied to M {above} to determine whether to use E or F format is not necessarily the same 
rounding that is appl ied when the number is actually output. Consider the following case: 

PRINT 5,99.76 
~ FORMAT(lP, G.2) 

In principle, F form is to be used if the value lies in the range .1 :5 M < 100. The value 99.76 does lie in this range, 
but when rounded to two digits it becomes 100., which is outside the range; so E form is used. First the unrounded 
value of M is normalized (.9976E 02), then the P scale factor is applied (9.976E 01), and finally this value is rounded 
giving 9.98E 01, which is the way it is printed. If the first rounding had been used throughout, the final value would 
have been 1.00E 02, which is less accurate. 

I Format {Integer} 

Form: 

rIw 

Integer, real, double precision, or either part of complex data may be processed by this form of conversion. If the 
width specification w is of sufficient magnitude, real and double precision values are converted in full precision. 
In other words, values greater than the maximum permissible size of integer data may be processed, without the 
truncation of the most signifi cant digits that is normally associated with integer operations. 

Output. Internal values are converted to integer constants. Real and double precision data are truncated to integer 
values; however, the integers may contain as many digits as are specified by w. Negative values are preceded by 
a minus sign, and the field wi II be right-justified and preceded by the appropriate number of blanks. The specifica
tion 16 impl ies that 

273.4 is converted to 273 

7 is converted to 7 

-.003 is converted to 0 

-44204.965 is converted to -44204 

The converted field occupies the minimum number of positions required to express the data value whenever w is un
specified. This minimum numberofdigits is followed by one blank. Forexample, for the specification 51 the output list 

345.9, 70000, -2, -.999, 3030.3030 

is converted to 

345b700000-2b~30300 

where -IS represents the character blank. 

If the magnitude of data requires more positions than is permitted by the value of the width w, only w digits appear 
in the external string, and the digits lost are the most significant. This is not treated as an error condition. Thus, 
for the specification 12, 

-778801 is converted to 01 

Input. External input strings may take any of the forms discussed under "Numeric Input Strings" and conversion will 
be identical to F format processing, with the exception thatfractional portions of a val ue are lost through truncation. 
As noted above, however, the most significant digits will not be truncated. For example, the input field 

4570000000000000000000000.942 

processed by an I (widthless) format, into a real or double precision variable, wou Id produce the internal value 

4.57 x 1024 

L Format (Logical) 

Form: 

rLw 

Only logical data may be processed with this form of conversion; any other data type causes an error to occur. 
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Output. Logical values are converted to either a T or an F character for the values II true II and "false", respectively. 
The T and F characters are preceded by w-l blanks. For examples, using the specification L4, 

.TRUE. 

.FALSE. 

is converted to 

is converted to 

where 15 represents the character bl ank. 

Specifications in which w is undefined will cause the following conversions: 

.TRUE • is converted to 

• FALSE. is converted to 

Input. If a width is specified, the first T or F encountered in the next w characters determines whether the value is 
"true" or "falsel~ respectively. If no Tor F is found before the end of the field, the value is "false". Thus a blank 
field has the value "false". Characters appearing between the Tor F and the end of the field are ignored, except 
for commas, which terminate the input string (see IIComma Field-Termination II). For example, the following input 
fields, processed by an L7 format, have the indicated values: 

True False 

T F 

TRUE FALSE 

. TRUE. • FALSE • 

RIGHT READ 

STAFF LEFT 

24T+T42 (blank) 

For widthless logical input, the field terminates at the first comma or non-leading blank. In other words, if the 
first non-blank character is a comma, it terminates the field; if it is not a comma, the next blank or comma wi II 
terminate the field. The first T or F encountered within the field determines the ~alue. If neither a T nor an F 
appears, the field has the value IIfalse". As above, characters appearing between the first Tor F and the blank or 
comma are ignored. 

A Format (Alphanumeric) 

Form: 

rAw 

Output. Internal binary values are converted to character strings at the rate of eight binary digits (two hexadeci
mal digits) per character. The most significant digits are converted first. That is, conversion is from left to right. 
The number of characters produced by an item depends on the number of words of storage allocated for that type of 
item (see IIStorage Allocation Statements ll

, Chapter 7). Assuming standard size specifications, the following exam
ples illustrate the form of A format conversion: 

Data Type 

integer, real, 
or logical 

double precision 

Interna I Binary/Hexadecima I 

1100 1001 1101 0101 1110 0011 0101 1100 
C 9 D 5 E 3 5 C 

1100 0100 1101 0110 1110 0100 1100 0010 
C 4 D 6 E 4 C 2 

1101 0011 1100 0101 0111 1011 1111 0010 
D 3 C 5 7 B F 2 

where 1) represents the character blank. 

Aw Externa I S tri ng 

A4 INTi, 

A2 IN 

A6 1mINT~', 

A INT* 

A8 DOUBLE=2 

A6 DOUBLE 

All 1m1'5DOUBLE=2 

A DOUBLE=2 
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As with all other format conversions, complex data are treated either as two real or as two double precision values. 
In each of the examples above, the first A format specifies exactly the number of characters required to express the 
data fully, and therefore has the same effect as the widthless form. Normally, alphanumeric information is used 
with integer variabies. In the exampies, note that when the magnitude of w does not provide for enough positions 
to express the data value completely, the external field is shortened from the right (least significant) portion. This 
is not treated as an error condition. When w has a value greater than necessary, the external character string is 
preceded by the appropriate number of bl ank characters. 

When the field width is not specified, the external character string consists of only the number of positions necessary 
to fully express the character value of the data. The external character string is not followed by a blank. 

AI phanumeric conversions are normally used to output Hollerith information that has been created in one of the fol
lowing ways: 

1. Previously input using an alphanumeric format (A or R) 

2. Using a I iteral constant (i. e., in a DATA statement, or passed as an argument) 

It is not recommended that this form of conversion be used with random numeric values created other than as above. 
The reason for this is that not all the 256 possible characters that can be produced can actually be printed. The 
non-printable characters may, however, be useful in other contexts (e. g., on cards, or in ENCODE operations). 

Input. When the width w is larger than necessary (that is, when its magnitude is greater than the number of charac
ters associated with the data type of the corresponding list item), the list item is filled with the rightmost characters. 
For example, if the list item is integer, and the specification A 10 is used, 

ABCDEFGHIJ is converted to GHIJ 

However, when the value of w is less than the number of characters associated with the data type of the list item, 
the most significant positions of the list item are filled with w characters, and the remainder of the positions are 
filled with blanks. Consequently, when the list item is double precision and the field specification is A6, 

UVWXYZ is converted to UVWXYZb'1:> 

where -6 represents the character bl ank. 

Naturally, if the width has a value equal to the number of characters associated with the data type of the list item, 
the list item is completely filled with the external field. 

Widthless specifications cause the! 1st item to be fi II ed by the next n characters from the input string, where n is the 
number of characters associated with the data type of the list item. If a list contained references to a real variable, 
an integer variable, and a double precision variable, in that order, and a field specification of 3A were used, pro
cessing would be in the following manner: 

ABCDEFGHIJKLMNOP 

is converted to 

ABCD EFGH IJKLMNOP 

A general rule for this type of conversion is that internal values are considered to be left-justified, while external 
fields are considered to be right-justified. 

R Format (Alphanumeric, Right-Justified) 

Form: 

rRw 

This form of conversion is similar to A conversion, but the rule of internal justification is reversed. In other words, 
internal values are considered to be right-justified with leading binary zeros, whereas with A format they are left
justified with trailing Hollerith blanks. 

Output. When the size of w is insufficient to allow expression of the complete internal value, R format takes char
acters from the rightmost (least significant) portion of the internal value. In all other respects it is identical to A 
format output. This difference is illustrated in the examples at the top of the following page. 
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Data Type 

integer, real, 
or logical 

double precision 

Internal 
Character Va lue 

DOUBLE=2 

where 1) represents the bl ank character. 

w 

4 

2 

6 

none 

8 

6 

10 

none 

A Format R Format 

INT* INTi~ 

IN T* 

f>1>INT* f1DINT~~ 

INTi~ INTi~ 

DOUBLE=2 DOUBLE=2 

DOUBLE UBLE=2 

1>f:>DOUBLE=2 1')"oDOUBLE=2 

DOUBLE=2 DOUBLE=2 

Input. As on output, R format differs from A format only when the specified width (w) is less than the number of 
characters associated with the type of the input I ist item. In this case, R format fi lis the least significant (right
most) portion of the I ist item with w characters from the input string, preceded by enough binary zeros to fi II the 
remaining portion. In other words, R format right justifies the characters and inserts leading binary zeros, whi Ie 
A format left justifies the characters and inserts trailing Hollerith blanks. For example, 

list Item 
Data Type 

integer, real, 
or logical 

double precision 

where 

Externa I String 

XYINT* 

85DOUBLE=2 

w 

4 

6 

2 

none 

8 

6 

10 

none 

1> represents the Hollerith character blank and 

z represents eight binary zeros. 

Interna I after Interna I after 

A Conversion R Conversion 

XYIN XYIN 

INT"'~ INT~'~ 

XYf1I) zzXY 

XYIN XYIN 

85DOUBLE 85DOUBLE 

85DOUBfrl) zz85DOUB 

DOUBLE=2 DOUBLE=2 

85DOUBLE 85DOUBLE 

Note that the Hollerith character zero is not represented interna lIy as eight binary zeros. Consequently, if the 
external field 

OOABAB 

were processed by the format specifications A4,R2 into two integer variables, the resulting values would be the 
Hollerith constants 4HOOAB and 2RAB, which are not equivalent. For input as true right-justified integers, R for
mat should be used. 

Z Format (Hexadecimal) 

Form: 

rZw 

Z conversion is similar to R conversion, except that the internal data is processed 4 bits at a time instead of 8, and 
the external field consists of hexadecimal digits, which are: 

o 123456789ABCDEF 
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Output. Internal binary values are converted to hexadecimal digit strings at the rate of 4 bits per digit. The num
ber 'of characters produced by an item depends on the number of words of storage allocated for that type of item (see 
"Storage Allocation Statements", Chapter 7). For exampl e, an integer produces 8 di gits, a double precision number, 16. 

If w is not specified large enough, the leftmost digits are lost, as in other numeric formats. If w is larger than the 
number of positions necessary to express the data, the digits are right-justified in the field, with preceding blanks. 

Wher:l field width permits, all of the digits in an item are output, including leading zeros. 

When w is not specified, the full number of digits necessary to express the value is output, followed by a blank. The 
blank is to facilitate subsequent rereading of the value (see below). 

Examples: 

Data Type 

integer, 
real, or 
logical 

Internal Binary/Hexadecimal 

0000 0000 0000 1000 1110 0011 0101 1100 
a a a 8 E 3 5 C 

double 0100 0001 0011 0010 0100 0011 1111 0110 
precision 4 1 3 2 4 3 F 6 

1010 1000 1000 1000 0101 1010 0011 0000 
A 8 8 8 5 A 3 a 

wheref> represents a blank character. 

Zw Externa I Stri ng 

z8 0008E35C 

Z6 08E35C 

Z10 f>f>0008E35c 

Z 0008E35C 

Z16 413243F6A8885A30 

Zl1 3F6A8885A30 

z18 f>n413243F6A8885A30 

Z 413243F6A8885A30 

Input. When the width w is larger than necessary (i. e., when its magnitude is greater than the number of digits asso
ciated with the data type of the corresponding I ist item), the I ist item is fi II ed with the rightmost characters in the fi eld. 

When w is too small, the digits are right-justified in the I ist item, as wi th R format. As usual, when the width exactly 
corresponds to the number of digits associated with the list item, the item is completely filled with the external field. 

There is, however, a significant difference between Z and R format on input. Z format is a numeric format, not 
al phanumeri c. Therefore, commas may be used to terminate a hexadecimal input string. Furthermore, the length of 
a widthless Z input string is not dependent on the size associated with the list item; a widthless hexadecimal input 
string terminates at the first ~mma or non-leading blank, like all other numeric formats. Excess digits will be lost 
at the left. (Note that, when w is specified, blanks are treated as zeros.) 

The following are examples of Z format input (assuming an integer list item): 

External Input Field 

3A70049B 
f:>f:>b3A7iJ'b 
1:>D68,470 19 
DCBA987654321 
52CA91, 
123456789 ABC, 

1:>1)4%1>3 

where 15 represents a blank. 

M Format (Machine Dependent) 

Format 

Z5 
Z8 
Z8 
Z12 
Z 
Z 
Z 

Internal Hexadecimal Value 

0003A700 
0003A700 
00000D68 
98765432 
0052CA91 
56789ABC 
00000049 

M format is intended primarily for output. It provides a machine-independent method of dumping information in the 
format most appropriate to the machine on which the program is running. Thus, on an octal machine it would 
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be interpreted as 0 format, and on a character machine, as A format. On the Sigma 5/7, it is interpreted exactly 
the same as Z (hexadecimal) format. Thus, it could also be used for input, though this is not recommended. 

H Format (Hollerith) 

Form: 

nHs 

where 

n :s 255 

Output. The n characters in the string s are transmitted to the external record. For instance, 

Specification External String 

IRE E 

8R'b1>VALUE: 'b1WALUE: 

5R$3.95 $3.95 

9HX(2,5)'b=1) X(2,5)1>='b 
where1S represents the character blank. 

Care should be taken that the character string s contains exactly n characters, so that the desired external field will 
be created, and so that characters from other format specifi cations are not used as part of the string. 

Input. The n characters in the string s are replaced by the next n characters from the input record. This replacement 
~s as shown in the following examples: 

Specification Input String Resultant Specification 

3H123 ABC 3HABC 

1 OHNOWf>IS'bTHE 1:>T IMEf>FOR1> lOHf>TlMEf>FORf> 

5HTRUEf> FALSE 5HFALSE 

6H'b1>f>f>f>f> RANDOM 6HRANDOM 
where1S represents the character blank. This feature can be used to change the titles, dates, column headings, etc., 
that are to appear on an output record generated by the H specification. 

If n is not present, its value is assumed to be 1. 

, Format (Hollerith) 

This is an alternate format for Hollerith transmission similar to that done by H format. This has the advantage of not 
requiring the characters in the string to be counted. 

Form: 

The string s may contain not more than 255 characters. Any Hollerith characters may appear (see Chapter 1); how
ever, note the restrictions below concerning the I character. A repeat count, r, may optionally precede the 
specifi cation. 

Output. The string s is transmitted to the external device in a manner similar to that for H format. Thus, 

is output as the stri ng 

ABLE BODIED 

Within a I string the I character is represented by two adjacent I characters; thus, Ip ILL TAKE FIVE is output as 
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r Inp·ut. The characters appearing between the quotes are replaced by the same number of characters taken se
quentiall y from the input string. Therefore, if the specifi cation 

is used to process the input field 

MATRIX 

the specification itself is changed to 

'MATRIX' 

Blanks in FORMAT statements are significant only in Hand' specifications. 

X Specification (Skip; Space or Backspace) 

The form of the X specification is 

iX 

This specification causes no conversions to occur. Instead, it causes i positions of the external field to be "skipped ". 
If i is positive, it has an effect similar to that of a space bar on a typewriter; if it is negative, it has an effect simi
lar to that of the backspace control on a typewriter. In particular, an attempt to backspace beyond the beginning 
of a record is equivalent to backspacing ~ the beginning of the record. ---

Output. 
below}. 

For positive values of i, the next i positions in the output record will be blanks (normally, however, see 
In other words, a field of i blanks will be created. For example, the specifications 

'WXYZ' , 4X, 'IJKL' 

generate the following external string: 

WXYZfr&Of>IJKL 

where b represents the character blank. 

_A~ negative value of i causes processing to "beck up" in the record. The next field vIi!! then begin I i I ChOicctCiS 

to the left, assuming that this is not beyond the beginning of the record. For example, the specifications 

'FORTRAN' , -3X, 'KNOX' 

are equivalent to the specification 

'FORTKNOX' 

Note that when either backing up or moving forward by means of an X specification, characters that may have been 
previously produced in the positions being skipped are not destroyed. Thus, in the exampl e given above under X 
output, it is not necessarily true that the specification 4X will produce four blanks. It will, however, if no other 
characters have been generated in those positions, since all output records are initially set to blanks. 

The ability to specify a negative count in an X specification makes it possible to backspace over the blank that is 
produced at the end of external fields by widthless numeric formats (i. e., D, E, F, G, and I). For example, for 
K = 13 and Q(13) + 350.8, the statements 

PRINT 5, K , Q(K) 

5 FORMAT( 'Q(' -X ') F.2) 

generate the string 

Q (13) = 350. 80 

As illustrated in the above example, if i is not specified it is assumed to be 1. Thus, the following specifications are 
equivalent: 

XXXX 

4X 

48 FORMA T Statement 



Input. The next i characters from the input string are ignored whenever i is positive (that is, they are skipped). For 
example, with the specifi cations 

F5.3, 6X, 13 

and the input stri ng 

76.4lIGNORE697 

the characters 

IGNORE 

will not be processed. 

Negative val ues of i cause iii characters from the input string to be processed again. Consequentl y, the specifica
tions 

13, -lX, E4.l 

and the string 

123456 

are equiva lent to 

13, E4.1 

and the stri ng 

1233456 

T Specification (Tab) 

The form of the T specification is 

Tw 

This specification causes processing (either input or output) to begin at character position w in the record, regard
less of the position in the record that was being processed before the T specification. It functions exactly like an 
X specification; no transfer of data occurs. For example, the following FORMATs are equivalent: 

1 FORMAT( 5X 

2 FORMAT( T6 

AS 

AS 

-2X 17 

Tl2 , 17 

It can be seen from the above example that it is permissible to tab either forward or backward. Furthermore, a T 
specification provides a capability that an X specification does not, namely that of tabbing to a given print position 
when width less formats are being used and the character position is thus unknown. For example, to print (or read) 
three columns of numbers beginning in positions 1, 21, and 41, the following FORMAT statement could be used: 

3 FORMA T(G. 7, T21, G. 7, T 41, G. 7) 

Note that backward tabbing can cause previously output information to be overwritten, or previously read input to 
be processed again. 

As with X specifications, it is not possible to tab to a position previous to the beginning of the record. 

If no w is given, it is assumed to be 1. That is, T is the same as T1. 

P Specification (Scale Factor or Power of 10) 

The form of the P specification is 

iP 

A P specification causes the value of the scale factor to be set to i, where the scale factor is treated as a multiplier 
of the forms 

i 
10 for output 

and 

-i 
10 for input 
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r At the beginning of each formatted input/output operation, before any processing occurs, the scale factor is set to 
zero. Any number of P specifications may be present in a FORMAT statement, thereby causing the value of the 
scale factor to be chanQed several times during a formatted input/output operation. If a FORMAT is re-scanned 
within a single input/o~tput operation due to the number of items in a list (see "FORMAT and List Interfacing"), 
the value of the scale factor is not reset to zero. 

Scale factors are effective only with F, E, and D conversions, floating-point input G conversions, and E-type out
put G conversions. 

Output. The value of the list item is scaled by the multiplier lOi. This scaling causes the decimal point to be 
shifted right i places. On D- and E-type conversions, the exponent field (±ee) is correspondingly reduced by 1. 
Thus, for D- and E-type output, the external number is equal to the internal value (except for rounding), while 
for F format output it is not (unless i is 0). Scale factors do not affect numbers whose value is zero. The following 
examples illustrate output scaling: 

Format External field when internal value is: 

2.71828 -2.71828 0.00000 0.09999 

2PFI0.3 271.828 -271.828 .000 9.999 
1 PFI0.3 27.183 -27.183 .000 1.000 
OPFI0.3 2.718 -2.718 .000 .100 

-1 PFlO.3 .272 -.272 .000 .0lO 
-2PFI0.3 .027 -.027 .000 .001 
-3PFI0.3 .003 -.003 .000 .000 
-4PFI0.3 .000 -.000 .000 .000 

2PE14.3 27.183E-Ol -27.183E-Ol .OOOE 00 99.990E-03 
1 PE14.3 2.718E 00 -2.718E 00 .OOOE 00 9.999E-02 
OPE14.3 .272E 01 -.272E 01 .OOOE 00 .100E 00 

-1 PE 14.3 .027E 02 -.027E 02 .OOOE 00 .010E 01 
-2PE14.3 .003E 03 -.003E 03 .OOOE 00 .00lE 02 
-3PE14=3 .OOOE 04 -.OOOE 04 .OOOE 00 .OOOE 03 
-4PE14.3 .OOOE 05 -.OOOE 05 .OOOE 00 .OOOE 03 

The examples for E conversion above are simi lar to those that would result from D conversion and E-type G conver
sion. When G conversion uses the F form, however, sca Ie factors do not apply. Thus, a number output in G format 
always represents the internal value. 

Note that when a scale factor is in effect, output rounding takes place after the scaling--has been performed. In the 
case of E format, this may cause additional scaling to be required, as shown above in the output of 0.09999. Note 
the discontinuity in the way the exponent changes. 

Input. During F, E, D, and G input conversions, if the input string contains an exponent field, the scale factor 
has no effect. ':'owever, when the input string does not contain an exponent field, the value of the external field 
is scaled by 10-1; that is, the decimal point is moved left i places. The following examples indicate the effect of 
scaling during an input operation: 

External Field 

-71. 436 

-71. 436E 00 

Scale Factor 

OP 

3P 

-lP 

3P 

-lP 

Effective Value 

-71. 436 

-.071436 

-714.36 

-71. 436 

-71. 436 

It can be seen that, on both input and output, if the external number has an exponent specified, it is equal to the 
internal value; if it does not, then 

external value = internal value x Wi 
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Once a sca Ie factor has been established during an input/output operation, it remains in effect throughout the oper
ation, unless redefined by an additional P specification. To reset the scale factor to zero, it is necessary to write 
a OP specification. For the list 

A, K, X, B 

and the FORMAT 

FORMAT(2(F .3, 2P), E 12.4, -2P) 

A, K, and B are all converted using the F.3 format specification, but all three have different scale factors in effect, 
as illustrated below: 

Effective 
List Format 

'Item Speci fi cat ion 

A F.3 

K 2PF.3 

X 2PE12.4 

B -2PF.3 

When i is not specified, its value is assumed to be zero. Therefore, 

P is equivalent to OP 

/ Specification (Record Separator) 

The form of the / specification is 

r/ or / 

Each slash(/) specified causes another record to be processed. In the case of contiguous slash specifications (i .e., 
/ / // ••. / or r/), since no conversion occurs between each of the slash specifications, records are ,ignored during 
input, and blank records are generated during output operations. The same condition can occur when a slash speci
fication and either of the parenthesis characters surrounding the field specifications are contiguous; a slash preceding 
the final right parenthesis in a FORMAT statement is not ignored. 

Output. Whenever a slash specification is encountered, the current record being processed is output, and another 
record is begun. If no conversion has been performed when the slash is encountered, a blank record is created. The 
statements 

WRITE (5, 10) X, Y 

10 FORMAT (F5. 3//113) 

are processed in the following manner: 

1. A record is begun, and X is converted with the specification F5.3. 

2. The first slash is encountered, the record containing the external representation of X is terminated, and another 
record is begun. 

3. The second slash is encountered, the second record is terminated, and a third record is started. Note that since 
no conversion occurred between the terminations of the first and second records, the second record was blank. 

4. The value of the variable Y is converted with the 113 specification, the closing right parenthesis character is 
encountered, and the third record is terminated. 
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If a th i rd i tern Z were added to the output Ii st, as in 

WRITE (5, 10) X, Y, Z 

the following additional steps would occur: 

5. A fourth record is begun, and Z is converted using the specification F5.3. 

6. The first slash is re-encountered, the fourth record is terminated, and a fifth record is begun. 

7. Again, the second slash is processed; the fifth record, which is blank, is terminated; and the sixth record is 
started. 

8. Since there are no more list items, the specification 113 is not processed, a termination occurs, and the final 
or sixth record, which is also blank, is output. 

Note that the processing of Z in steps 5 through 8 is equivalent to processing with the statement 

10 FORMAT (F5.3,//) 

since the specification 113 was not utilized. 

The original FORMAT statement could also have been written as 

10 FORMAT (F5.3, 2/113) 

or 

10 FORMAT (F5.3,2/,113) 

both of which would cause identical effects. 

The two statements 

WRITE (M,4) X 

4 FORMAT (3/EA/) 

cause the generation of three blank records, followed by a record containing the value of X (converted by the. 
specification EA), followed by another blank record. 

Input. The effect of slash specifications during input operations is similar to the effect for output, except that for 
input, records ary ignored in the cases where blank records are created during output. For example, the statements 

READ (M,4) X 

4 FORMAT (3/EA/) 

cause three records to be bypassed, a va lue from the fourth record to be converted (with the specification EA) and 
assigned to X, and a fifth record to be bypassed. This means that, as with the last example for output, recordscre
ated with a FORMAT statement containing slash specifications can be input by use of the identical FORMAT state
ment, which is not true in FORTRAN systems that ignore a final slash. 

Parenthesized FORMAT Specifications 
Within a FORMAT statement any number of specifications may be repeated by enc losing them in parentheses, 
preceded by an optional repeat count, in the form shown on the following page. 

where r and the S. are defined previously, and m ~ O. For example, the statement 
I 

3 FORMAT (3(A4, F. 2, 3X), 31) 

is equivalent to 

3 FORMAT (A4, F. 2, 3X, A4, F. 2, 3X, A4, F. 2, 3X, 31) 

There is no limit to the number of repetitions of this form that can be present in a FORMAT statement. 

During input/output processing each repetitive specification is exhausted in turn, as is each singular specification. 
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The following are additiona I examples of repetitive specifications: 

34 FORMAT (4X, 2(A8, X,7G.3), I4,3(D, L5)) 

1125 FORMAT (I, R4, F.7, 5(E 14.8, 2/), E 14.8) 

8 FORMAT (2(18, 2(3X, F 12.9), F12. 9), A 16) 

In the last example above, repetitions have been nested. Nesting of this type is permissible to a depth of ten levels. 

The presence of parenthesized groups within a FORMAT statement affects the manner in which the FORMAT is re
scanned if more list items are specified than are processed the first time through the FORMAT statement. In parti
cular, when one or more such groups have appeared, the rescan begins with the group whose right parenthesis was 
the last one encountered prior to the final right parenthesis of the FORMAT statement. A more complete discussion 
of this process is contained in "FORMAT and List Interfacing". 

Adjustable FORMAT Specifications 
The adjustable FORMAT specifications feature often el iminates the need to write a great number of FORMAT 
statements in order to handle slightly different situations. Furthermore, it facilitates the input of records whose 
form is highly variable, and which could not be processed without this feature. 

Any of the quantities r, W, d, or i (see "FORMAT Statement") may be replaced by the letter N in a format specifica
tion. When an N is encountered, its value is obtained from the next input or output list item. The letter N is 
merely a form of specification and does not conflict with any variable, subprogram, etc., whose identifier may be 
N. Also, there is no limit to the number of N characters that may be used in a FORMAT statement or to the number 
of quantities replaced by N in a format specification. For example, 

32 FORMAT (NX, FNA, N(3X, E.5), NP, NGN.N) 

is a valid statement, and seven values will be taken form the list. 

The following set of rules defines the manner in which the value of N must be specified in a list and the way in which 
the values are utilized: 

1. Integer, real, double precision, or either part of complex data may be supplied as values for N. Non-integer 
data wi II be truncated to integer value. 

2. wand d (width and decimal point) specifications may be replaced only by N, whereas r (repeat count) and i 
(skip or scale factor count) specifications may be replaced by N or -N. 

3. The resultant value (negated if preceded by a minus sign) may be negative only when N is used to replace i. 

4. When N appears one or more times in a single specification, its values must appear sequentially in the list and 
prior to th e items (if any) that are to be processed by the specification. An example is the list 

3,4, 1,A,B,C, 12,-2,D 

and the statement 

3 FORMAT (NEN.N, NX, NP, G 14.8) 

which are equivalent to the list 

A,B,C,D 

and the statement 

3 FORMAT (3E4.1, 12X, -2P, G 14.8) 

5. Whenever N is used with a specification that is enclosed in repetition-type parentheses (see "Parenthezised 
Format Specifications"), one value must be supplied for each repetition of the specifications enclosed. Con
sequently, the difference between the following two examples should be noted: 

7, A, B, C and 3FN.2 7, A, 7, B, 7, C and 3(FN.2) 

are equivalent to are equivalent to 

A, B, C and 3F7.2 A, B, C and 3F7.2 

Adjustable FORMAT Specifications 53 



r 6. In the above example, it was noted that in the specification 3FN.2, one value of N is required, regardless of 
the value of the repeat count; whereas, in 3(FN.2}, the number of values required for N is equal to the repeat 
count. The same rule can be extended to include repeat counts whose values are zero: 

a. When the repeat count (r) of a single specification is replaced by N and its value is zero, any Ns appear
ing in that specification must be supplied. For example, the following combination of list and FORMAT, 

0,4, Y and NG20.N, F8.4 

are equivalent to 

Y and F8A 

b. However, when the repeat count of a parenthesized group is replaced by N and its value is zero, all the 
specifications appearing within the parentheses are bypassed, inc luding any Ns that may appear. Thus, 

0, Y and N(G20.N}, F8.4 

are equivalent to 

y and F8.4 

In both of the above examples, no value was supplied for the G specification; however, enclosing the specifi
cation within parentheses can be used to determine whether or not the value of N will be supplied. 

The abi lity to specify zero repeat counts in this way gives the programmer the facility of selecting or skipping 
certain specifications within a FORMAT statement. For example, 

T=O 

IF (BOOlE) T = 1 

F = 1 - T 

PRINT 17, BOOlE, T, F 

17 FORMA T(Ll, N(3HRUE), N' AlSE '} 

outputs the strings TRUE or FALSE depending on the value of BOOlE. Note that although an N cannot replace 
the n in an H specification, the form shown in statement 17 above can be used. 

7. The value of N may be supplied by an expression in either an input or an output list, but an expression used for 
this purpose in an input list is not considered to be a true input list item. 

As an example of the flexibility provided by adjustable format specifications, consider the statements 

READ(101,205) K, K, (A(J), J=l,K}, CODE 

205 FORMAT( I, NE , A4} 

The value input for K defines not only the number of va lues to be input into the array A, but also the number of con
versions to be performed by the E specification. At the same time, the alphanumeric value of CODE can be contig
uous to the last field input into A, regardless of the number of such fields. Thus, all the following input records can 
be correctly processed by the above statements: 

1, 67.49, HOPA 

5 -14.3 37 .09711623 0 3E12 JASU 

,NONE 

This example illustrates not only adjustable format specifications, but also widthless formats and comma field termi
nation (see below). 

Numeric Input Strings 

The permissible kinds of input strings that may be processed by numeric conversions are exactly the same for F, E, 
D, G, and I conversion. Any fie Id that can be read using one of these formats can be read using any of the others. 
In other words, numbers for input with E format need not have exponents, numbers for input with I format need not 
be integers, etc. 
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A numeric input string consists of a string of digits with or without a leading sign, a decimal point, and/or a trailing 
exponent. An exponent is normally specified as 

E±e 

where the plus sign is optional and e is a one- or two-digit number. The form ±e is also accepted (without the E), 
in which case the plus sign is not optional. Thus, a variety of forms may be used to express data for numeric input: 

±n ±n.m ±n. ±.m 

±nE±e ±n.mE±e ±n.E±e ±.mE±e 

±n±e ±n.m±e ±n.±e ±.m±e 

where the plus signs are optional except in an exponent field without an E (as described above). 

When input fields contain no decimal point (as in the first column above) the decimal point is positioned according to 
the d in the format specification (as in Ew.d). If none is specified it is assumed to be zero. The decimal point is 
placed d positions to the left of the beginning of the exponent, or if no exponent is present, d positions to the left of 
the end of the field. Note that the exponent may begin with either a D, E, +, or-. 

A D may be substituted for the E in an exponent field, with no change in meaning or value. It is not necessary to 
indicate that data is double precision, nor is it necessary to use a D format. Regardless of the format used or the 
form of exponent (if any), a numeric string will be converted with full double precision if the input list item to 
which it is to be assigned is double precision. 

Any numeric type of list item may be used with any numeric type of format specification. If the list item is integer, 
the input value wi II be processed in floating-point, if necessary, and then converted to integer. When the I format 
specification is used (with any type of list item), the fractional portion of the value is lost. 

A comma may be used to terminate any numeric field, as described below. Leading blanks are always ignored. The 
interpretation of embedded and trailing blanks depends on whether or not the format specification used is widthless 
(no width specified). 

Width less Numeric Input 

The principle behind widthless input is that the field ends when the number is finished. A comma always indicates 
that the number is finished. A blank also indicates that the number is finished, if it is meaningful to finish the num
ber at that point. Thus: 

1. Leading blanks do not cause termination; they are ignored. 

2. Any number of blanks may appear in the following places: 

a. Between the leading plus or minus sign and the first digit. 

b. Between the E and the pi us or minus sign or first digit of the exponent. 

c. Between the plus or minus sign in the exponent and the first digit of the exponent. 

3. A blank that follows a digit or decimal point terminates the field. 

4. When a widthless (or any other) field runs off the end of the input record, the extra characters will be interpreted 
as blanks. Normally, a widthless format does not terminate until at least one non-blank character has been 
found. Special provision is made, however, to terminate widthless fields at the end of the record. Thus, any 
number of numeri c values may be read from a blank record, and they wi II all be zero. 

For clarity, numbers should generally be written without any embedded blanks. The first blank will then terminate 
the field. Although the terminating blank or comma does not affect the value of the number, it is considered part 
of the field it has terminated. Therefore, the next field begins with the character following the blank or comma. 

The following is a typical widthless numeric input line consisting of eight values: 

73 2E-4 .0007 -35.4 0 0 -16 27.08614E 12 
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The following is not a typical widthless numeric input line: 

3E + 2 + 3.7 4 17E 2 5- 03 

but ~ou Id be interpreted as five values, namely, 

-300. 3.7 -4. 1700. .005 

Numeric Input with Width Specified 

When a width is specified, the field terminates only when the width is exhausted or a comma is found. The following 
rules apply to blanks in numeric fields with a width specified: 

1. Leading blanks are ignored, except that they are counted as part of the field width. 

2. Once any nonblank character has been found, all blanks beyond that point are treated as zeros. 

3. Any string of digits that is omitted has an assumed value of zero. 

For a format specification such as F10.0, with no P scale factor, all the input strings in each of the columns below 
produce the value shown in the top line of the column. The first three I ines in each column are typical numeric fields; 
the others are permissible, but less readable. 

- .00.4 7'.5 E 12 0 
- 4 E - 3 . 7'50+13 0.0 

- .004 750E10 
- 4 - 4 75 E'l 0 + -0 

- . 40 75 + o 1 OE 
-4 - 8 . 75 E 16 + -

Note, in the fourth example of the middle column above, that the exponent is interpreted as 10 rather than as 1, be
cause the trailing blank is equivalent to a zero. Care should always be taken to assure that exponents are right
justified in their fields. Failure to do this is a common pitfall that can also be avoided by using comma termination 
and/or widthless formats. 

Input strings being processed under control of F, E, D, G, I, or L specifi cations may be terminated at any point by 
the presence of a comma in the string. t In other words, whenever a comma appears in such an input string, the field 
currently being processed is considered ended, and no additional characters are converted. This termination occurs 
regardless of the value of w in the field specification. The comma is not processed, and the next field begins with 
the character following the comma. For example, th-e specification 2F13.3 and the string 

3450,88412, 

are equivalent to F4.3, F5. 3 and 

345088412 

The string containing the commas would also be correctly processed by the specifications 2F. 3 or 2F8. 3. 

Two contiguous comma characters indicate an empty field, which has the value zero. Therefore, for the specifica
tion 516, the string 

303, , - 1, , 000450 

is converted to the values 

303 0 -1 0 450 

tFor consistency with symbolic input (via the INPUT statement), the characters semicolon, asterisk, and right paren
thesis are also accepted as field terminators. Use of the comma is recommended, however. 
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and the stri ng 

0, , '" 

is converted to the values 

o 0 0 0 0 

The comma must, of course, fall within the field it is meant to terminate. For example, if the format specification 
F4.0 were used to process the input string 

1234, 

the value would already be terminated because of field width, and the comma would terminate the following field, 
giving it a value of zero. 

FORMAT and List Interfacing 

Formatted input/output operations are controlled by the FORMAT requested by each READ or WRITE statement. Each 
time a formatted READ or WRITE statement is executed, control is passed to the FORMAT processor. The FORMAT 
processor operates in the following manner: 

1. When control is initially received, a new input record is read, or construction of a new output record is begun. 

2. Subsequent records are started only after a slash specification has been processed (and the preceding record has 
been terminated) or the final right parenthesis of the FORMAT has been sensed. Attempting to read (or write) 
more characters on a record than are (or can be) physically present does not cause a new record to be begun; 
on output the extra characters are lost, on input they are treated as blanks. 

3. During an input operation, processing of an input record is terminated whenever a slash specification or the 
final right parenthesis of the FORMAT is sensed, or when the FORMAT processor requests an item from the list 
and no I ist items remain to be processed. Construction of an output record terminates, and the record is written 
on occurrence of the same conditions. 

4. Every time a conversion specification (i. e., F, E, D, G, I, L, A, R, Z, M, or N specifi cation) is to be pro
cessed, the FORMAT processor requests a I isf item. If one or more items remain in the I ist, the processor per
forms the appropriate conversion and proceeds with the next field specification. (If conversion is not possible 
because of a conflict between a specification and a data type, an error occurs.) If the next specification is one 
that does not require a I ist item (i. e., H, " X, T, P, or /), it is processed whether or not another I ist item 
exists. Thus, for example, the statements 

WRITE(6, 12) 

12 FORMAT(///4HABCD) 

would produce three blank records and one record containing ABCD before reaching the final right parenthesis. 
When there are no more items remaining in the list and the final right parenthesis has been reached or a con
version specification has been found, the current record is terminated, and control is passed to the statement 
following the READ or WRITE statement that initiated the input/output operation. 

5. When the final right parenthesis of a FORMAT statement is encountered by the FORMAT processor, a test is 
made to determine if all list items (including those to be used as values of N in adjustable specifications) have 
been processed. If the list has been exhausted, the current record is terminated, and control is passed to the 
statement following the RE~r WRITE statement that initiated the il1put/output operation. However, if 
another list item is present, an additional record is begun, and the FORMAT statement is rescanned. The re
scan takes place as follows: 

a. If there are no parenthesized groups of specifications within the FORMAT statement, the entire FORMAT 
is rescanned. 

b. If one or more parenthesized groups do appear, however, the rescan is started with the group whose right 
parenthesis was the last one encountered prior to the final right parenthesis of the FORMAT statement. In 
the following example, the rescan begins at the point indicated. 
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FORMAT{3X,{F7.2,A5),{X 'ABC'3(3I4,2(G 15.7 //),R3)),E20.12,3HXYZ) 

1 1 1 
rescan begins 
here. 

last closing 
parenthesis 
of internal 
group. 

final right 
parenthesis 
of FORMAT. 

c. If the group at which the rescan begins has a repeat count (r) in front of it, the previous value of the re
peat count is used again for each rescan. In particular, if the repeat count was specified with an N, a 
new value of N is not supplied when the rescan takes place; the old va lue is used. Thus for example, the 
statements 

PRINT 5, CODE, 5, (A(J), J= 1,50) 

5 FORMAT( A4 / N(G20.8) ) 

are equivalent to the statements 

PRINT 5, CODE, (A(J), J=l, 50) 

5 FORMAT( A4/ 5(G20.8) ) 

6. Each list item to be converted is processed by one specification or one iteration of a repeated specification, 
with the exception of complex data, whichare processed by two such-specifications. 

7. Each READ or WRITE statement containing a non-empty list must refer to a FORMAT statement that contains at 
least one adjustable or conversion (see step 4 above) specification. If this condition is not met, the FORMAT 
statement wi II be processed, but an error wi 1\ occur. 

8. The same rules apply to DECODE and ENCODE operations as to READ and WRITE. The interpretations of multi
pie records in these cases is described under "Memory-to-Memory Data Conversion". 

FORMATs Stored in Arrays 

As mentioned previously, a FORMAT, including the beginning left parenthesis, the final right parenthesis, and the 
specifications enclosed therein, may be stored in an array. The FORMAT must be stored as a Hollerith string (i.e., 
a string of characters), usually by use of an input statement or an assignment statement. 

READ or WRITE statements that refer to a FORMAT stored in an array must reference only the identifier of the array, 
with no subscripts. For example, 

WRITE (4, R) E, F, G 

while 

refers to a FORMAT stored in an array R, 

WRITE (4, R(l» E, F, G refers to a FORMAT statement whose location has been ASSIGNed to R(l). 

If the variable M is an integer array, the following are two methods that may be used to store a FORMAT in M: 

the externa I stri ng 

(F8.5,4HNAIL,I3) 

and the statements 

READ (N,90)(M(I),I = 1,4) 

90 FORMAT (4A4) 

1 

J 

f are equiva lent TO 

1 

the statements 

M(l) 4H(F8. 

'1' /'l' I.TTe '.'n 
1"11.L.) "'tn.J,"'tn 

M(3) 4HNAIL 

M(4) 4H,I3) 

Alternatively, M could be a dummy array corresponding to a literal constant argument (see IIArguments and Dummies ll
). 

Care must be taken when storing into an array a FORMAT containing specifications of the nHs and's' forms. 
In these cases, all characters in the string s, including blank characters, are significant, while blank characters 
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are insignificant in all other specifications. For example, if M in the above READ statement were double precision 
instead of integer, the following results would occur: 

Element Storage after READ 

M(l) (F 8 • 'Df>'Df> 

M(2) 5,4Hf>f)"of> 

14(3) NAIL 1>f>f:l'f) 

M(4) ,I3)'M>M> 

which is not the desired result, since it is equivalent to the FORMAT 

(F8.5, 4Ho'G'O'O, NA, I, L,I3) 

where'G represents the character blank. 

Even though a FORMAT may be quite short, such as 

(I8) 

it must be stored in an array. It may not be stored in a scalar variable, since a reference to a scalar vari
able (or an array element) will be treated as though the scalar were assigned the location of a FORMAT statement, 
rather than as if the scalar contained the FORMAT. 

Extended Input/Output Capabilities 

The statements described below under the headings 

"Memory-to-Memory Data Conversion" 

"Direct Input/Output" 

"Random Access Input/Output Statements" 

are optional features within the FLAG language. Programmers wishing to use any of these statements should ensure 
that the FLAG system avai lable for their use includes these optional statements. 

Memory-to-Memory Data Conversion 

The statements ENCODE and DECODE are similar to formatted (BCD) WRITE and READ statements, respectively. In 
an ENCODE/DECODE operation, however, no actual input/output takes place; data conversion takes place between 
an input/output list and an internal buffer area. This buffer area is specified by the programmer and is usually an 
integer array. Whereas an external record has a certain physical length, the length of the simulated internal record 
in an ENCODE/DECODE operati on may be specified by the programmer. When mu Itiple records are specifi ed by the 
FORMAT being used, records after the first record follow each other in memory in order of increasing storage address. 
These statements have the form 

ENCODE(c, f, s, n} k DECODE(c, f, s, n} k 

or or 

ENCODE(c, f, s} k DECODE(c, f,s) k 

where 

c defines the number of characters per internal record. It may be an integer constant or an integer non-
subscripted variable. 

specifies a FORMAT statement. It may be the statement label of a FORMAT statement or the name of an 
array in which a FORMAT has been stored. 

indicates the first element or starting location of the internal buffer. It may be an array name, an array 
element, or a scalar variable. 

n is an optional integer variable into which will be stored, upon completion of the operation, the number 
of characters actually processed (generated or scanned). 

k is an input/output I ist of the usual form, and 

a comma may optionally precede the list k. 
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r Thus, the ENCODE/DECODE statements can be illustrated as 

r ENCODEl 

lOECODE I (characters, format, start, count) jist 

Characters in the buffer are processed at the rate of four per word without regard to the type of the variable speci
fied as the starting location. When a new record is begun, it starts at the first character following the previous 
record; in other words, at character c + 1. It is recommended that c be an integral multiple of four characters. 

ENCODE Statement 

The ENCODE statement causes the list items to be converted to BCD character strings, according to the FORMAT 
specified by f, and to be placed in storage beginning at location s. 

If the number of characters generated by the FORMAT statement is greater than the specified size of the record, the 
extra characters are lost; they are not filled into the following record. If fewer characters are generated than are 
necessary to fill the record, it is filled out with trailing blanks. In fact, on ENCODE operations, as on WRITE BCD 
operations, the first thing done with each record is to fill it with blanks; this is done before any characters are stored 
{generated} into it. 

For example, the following statements might be used to create, for later use, a FORMAT stored in the array M: 

K = 12 

L=5 

ENCODE(l2, 3, M) K, L 

3 FORMAT(2H(F , I, 1H. , I, 1H) ) 

The FORMAT so created would occupy the first three elements of M and would appear as 

(F 12n. 56)niSiS 

where b represents the character bl ank. 

DECODE Statement 

The DECODE statement causes the character string beginning at location s to be decoded, according to the FORMAT 
specified by f, and stoied into the items in list k. 

As with formatted READ operations, if the FORMAT statement requires more characters from a record than are spec
ified by the count (c), the extra characters are assumed to be blanks; they are not obtained from the next record. A 
new record is begun only when specifically requested by the FORMAT (see "FORMAT and list Interfacing"). 

If n is specified, it will be set to the number of characters scanned. When scanning with widthless formats, this 
can be very useful. The following example makes use of this feature: 

INTEGER KARD(80), DAVE/DAVE 1/ 
READ 4, KARD 

4 FORMAT(20A4) 

DECODE(80,5, KARD, NC) KODE, J 

5 FORMAT(A4, I) 

IF (KODE .EQ. DAVE) DECODE(80,6, KARD) NC, J, (A(I), 1=1, J) 

6 FORMAT(NX, NF) 

The above statements could be used to read records of the form 

DAVE 2, 1. 75, 80.91 

Note that, in the above example, the first DECODE statement is used to decide how to interpret the rest of the card. 
DECODE essentially provides the capability of "reading the card twice". ENCODE cannot be used in quite the same 
way because it initially fills its buffer with blanks. 
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Direct Input/Output 

FLAG provides the facility to perform asynchronous input/output operations through the two library routines 

BUFFER IN and BUFFER OUT 

which have two major capabilities. 

1. They permit the processing, both on input and output, of records of arbitrary length and format. Ordinary for
matted READ and WRITE statements handle records only up to 132 characters in length, and unformatted, or 
binary, READ and WRITE statements process information that is intended for communication only with a FORTRAN 
environment. That is, in FORTRAN, binary information is considered to be a form of intermediate storage, an 
extension of computer memory, and as such, binary records have special ized control information and are broken 
into fixed-length physical records that comprise a logical record (see the XDS Sigma 5/7 FORTRAN IV Opera
tions manual). The BUFFER IN and BUFFER OUT routines, however, process information exactly as specified, 
giving the programmer complete control over the data and enabling him to do such things as: 

interpret binary tapes produced on other machines or by other programs, 

read and write binary cards, and 

in conjunction with the ENCODE and DECODE statements, process long formatted records. 

2. BUFFER IN and BUFFER OUT proceed in parallel with the program and other input/output operations. This en
ables the programmer to initiate an operation, continue with computation and other processing while the input/ 
output is taking place, and to test the status of the BUFFER IN or BUFFER OUT operation at some later point in 
the program. 

The BUFFER IN and BUFFER OUT subroutines are called in the following fashion: 

CALL BUFFER IN(u, m, s, w, i, n) 

and 

CALL BUFFER OUT{u, m, s, w, i, n) 

where 

u is an integer constant or an integer nonsubscripted variable that specifies the logical unit number of the 
device on which the operation is to be performed. 

m is an integer constant or an integer nonsubscripted variable that determines the mode of the operation; 
if m=O, the mode is BCD; otherwise, the mode is binary. (An integer 0 or 1 is customary.) 

indicates the starting location of the internal buffer. Normally, s is the identifier of an array, but it may 
also be a scalar. It may be of any type, although integer is recommended for ease of manipulation. 

w specifies the number of words to be input or output, starting at s, and must be an integer constant or scalar 
of positive val ue. 

is an integer scalar into which is dynamically stored an indication of the status of the operation. The status 
is indicated as follows: 

1 = operation incompl ete 

2 = successful compl etion; no errors 

3 = end-of-fi I e encountered 

4 = operation complete but error has occurred 

n is optional, but when specified is an integer scalar into which is stored, upon completion of the operation, 
the number of words actually input or output. It is not continuously set up lion the flyll as the operation is 
in progress. In general this count is significant only for BUFFER IN operations; in BUFFER OUT operations, 
n is normally equal to w (see below) 

Thus, the BUFFER IN/BUFFER OUT calls can be illustrated as 

{
BUFFER IN } 

CALL BUFFER OUT (unit, mode, start, words, indicator, count) 
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A BUFFER IN or BUFFER OUT operation always results in the processing of only one physical record. Data is read 
into, or written from, consecutive words in memory with no regard to the type of the variable specified as the start
ing location of the buffer. That iSI the variable s merely specifies the starting location. 

It is permissible to intermix asynchronous operations and standard READ/WRITE operations in any order and on any 
device, including intermixing on the same unit~ 

BUFFER IN 

A call on BUFFER IN causes data to be read into memory from the specified unit, beginning at the location specified, 
in the specified mode. The actual number of words entered into memory is the minimum of wand n. That is, if more 
words are specified by w than are actually present in the physical record that is read, only the number of words ap
pearing in the record are changed in memory, and that fact will be reflected by the value of n. However, if more 
words are present on the record than are speci fi ed by w, the extra words wi II be lost, and n wi II be greater than w. 

When an end-of-file is read, i is set to 3; magnetic tape units will remain positioned immediately following the end
of-file. No data will be read into memory upon encountering an end-of-file. 

The error status will be indicated when an irrecoverable error occurs. However, the data will be read into memory 
despite the error, and can be used if the programmer chooses to ignore the error. 

Example: 

The following statements could be used to list binary tapes, in hexadecimal, ten words per line, preceded by the 
record length: 

INTEGER BUFFER (5000) 

1 CALL BUFFER IN (5, 1, BUFFER, 5000, J, N) 

2 GO TO (2,3,4,3,), J 

3 M = MIN (N,5000) 

PRINT 5, M, (BUFFER(K), K = 1, M) 

GOTO 1 

4 STOP 

5 FORMAT (/X, ILENGTH = I 1/ (X, lOZlO)) 

BUFFER OUT 

A calion BUFFER OUT causes data to be written from memory, beginning with the specified location, in the speci
fied mode. The number of words requested is always written, unless it is larger than the maximum size of a physical 
record on the device being used, in which case n will be less than w (it can never be greater). For example, an 
attempt to write 30 words on a card, in BCD, would result in n being set to 20. 

If the indicator variable {i} has been set to indicate an error, an irrecoverable write error has occurred. The data 
has, nonetheless, been .written on the specified device. 

As mentioned above, records written in binary by BUFFER OUT are not the same as those produced by a binary WRITE 
statement. This has one important ramification: the BACKSPACE statement may not be used to backspace over binary 
records created by BUFFER OUT. It can be used to backspace over any kind of BCD record Sf but in binary records 
it expects to find the control words generated by a binary WRITE statement so that it may backspace over the entire 
logical record {which may consist of several physical records}. 

Note that the output produced in BCD by BUFFER OUT is virtually identical to that produced by a BCD WRITE state
ment using IAI format. However, this does not include carriage control on printed output or any restrictions on the 
size of magnetic tape records. 
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Example: 

The statements below could be used to read BCD cards and pack them onto binary cards. 

INTEGER M(40) 

1 READ (105,2) M 

2 FORMAT (20A4) 

CALL BUFFER OUT (106, 1, M,40, INDIC) 

3 IF (INDIC < 2) GO TO 3 

GOTO 1 

Note that the reference to the array M in the READ statement causes two cards (40 words) to be read and causes the 
FORMA T to be scanned twi ce. 

Random Access Input/Output Statements 

FLAG a Ilows full use of random access devices through util ization of the following two statements. 

READ DISC u, s, k WRITE DISC u, s, k 

where 

u is an integer constant or nonsubscripted integer variable whose value specifies the logical unit number of 
the disc. 

is also an integer constant or nonsubscripted integer variable whose value defines the starting disc address 
(see below). 

k is an input/output I ist, as described previously. 

Random access input/output operations are performed in binary, and therefore do not reference a FORMAT statement. 
They differ from the standard binary READ/WRITE statements, however, in two ways: 

1. They refer to random access files rather than to sequential files. Consequently, the REWIND, BACKSPACE, 
and ENDFILE operations are not applicable to them. 

2. Information is not thought of as being broken into unit records. Data is processed exactly as specified, with no 
control words or record boundaries. As many locations of the disc or drum are used as are required for the items 
specified in the input/output list. With a knowledge of the required sizes of various items the programmer is not 
bound by the binary READ/WRITE restriction that the data written by one WRITE statement must be input with 
one and only one READ statement. 

As an analogy, the disc may be thought of as a one-dimensional array, from which it is possible to select an 
element or group of elements in any random order, much as in an ENCODE or DECODE statement (see II Memory
to-Memory Data Conversi on II) . 

In READ DISC statements, words are read into the items defined by the list k, starting from the disc location defined 
by s. Reading is from the appropriate device. 

With WRITE DISC statements, the binary word values of the list items are written on the appropriate device, starting 
at the location defined by s. 

The value of s may be considered to be an address relative to the start of the user1s file. 

Auxiliary Input/Output Statements 

The following set of statements enables the programmer to manipulate magnetic tapes and sequential disc files. 
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REWIND Statement 

This statement is expressed as 

REWIND i 

where i is an unsigned integer constant or integer variable. 

Execution of a REWIND statement causes the unit whose logical unit number is i to be rewound. 

BACKSP ACE Statement 

The BACK SPACE statement has the form 

BACKSPACE i 

where i is an unsigned integer constant or integer variable. 

When a BACKSPACE statement is executed, the unit referenced by the integer value i is backspaced one logical 
record. For binary tapes, a logical record may consist of more than one physical record. In this case a logical 
record is interpreted as all the information output by one binary WRITE statement. 

REWIND and BACKSPACE statements that are executed for tapes already positioned at IIload pointll have no effect. 

END FILE Statement 

This statement causes end-of-file marks to be written on the specified unit, and has the form 

END FILE i 

where i is an unsigned integer constant or integer variable whose value determines the unit on which an end-of-file 
mark is to be written. 

Sometimes, it is desirable to take a program that has been written for output on magnetic tape and assign that logi
cal unit number to some other device, such as a I ine printer. Since such programs often write end-of-fi Ie and re
wind their tapes at the end of the job, it is permissible to specify an ENDFILE or REWIND operation on any device; 
the monitor will recognize this anomaly and handle the situation appropriately. It is not permissible to BACKSPACE 
such devices. 

Carriage Control for Printed Output 

The first character in an output record that is intended for printing may control the printer carriage by containing 
certain characters: 

Character 

o 

Effect 

Skip to first I ine of page before printing 

Space two lines before printing 

If one of these characters is present, it is replaced by a blank before the record is printed. The record is not shifted 
left one position. For example, the second character is printed in column 2. 

Any other character appearing as the first character in a record causes the carriage to be single spaced before the 
record is printed; the record remains unchanged. This includes the 11+11 character, whose traditional function (over
printing) cannot be performed without hampering the printing speed on all lines. 
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7. DECLARATION STATEMENTS 

Declaration statements are used to define the data type of variables and functions, the dimensions of arrays, storage 
allocation, initial values of variables, and to provide similar information. 

Note: All declaration statements discussed in this chapter are subject to the rules for statement placement and 
order given at the end of the chapter. 

Classification of Identifiers 
An identifier may be classified as referring to any of the following: 

scalar 

array 

subprogram 

COMMON block 

The category into which an identifier is placed and the type (if any) associated with it depend on the contexts in 
which the identifier appears in the program. These appearances constitute explicit or implicit declarations of the 
way the identifier is to be classified. 

Implicit Declarations 

Unless specifically declared to be in a particular category or type, identifiers that appear in executable or DATA 
statements are implicitly classified according to the following set of rules. 

1. When appl icable, an identifier is integer if it begins with I, J, K, L, M, or N. It is real if it begins with any 
other letter (implicit type classification may be altered by use of the IMPLICIT statement). 

2. An identifier that is called with a CALL statement is a subprogram. 

3. An identifier is a function subprogiam if it appeOis in an expression, followed by an argument jist enciosed in 
parentheses. This does not apply to declared arrays. 

4. An identifier is a statement function definition if it appears to the left of an equal sign, followed by a dummy 
list enclosed in parentheses. It must also comply with the rules given in Chapter 8 under 11 Statement FunctionslJi 
otherwise, it is an error. Again, this does not apply to declared arrays. 

5. An identifier is classified as a scalar variable if it makes any other appearances within an executable or DATA 
statement (i.e., other than followed by a left parentheses or in a CALL statement). 

6. An identifier is implicitly classified as a scalar if it does not appear in an executable or DATA statement, but 
does appear in a COMMON, EQUIVALENCE, or NAMELIST statement. 

7. Library functions have an inherent type associated with them, as shown in Table 6 (see Chapter 8). Inherent 
type is not equivalent to implicit type. Chapter 8 contains a complete description of these functions. 

Explicit Declarations 

All other declarations are explicit declarations. Explicit declarations are required in order to classify an identifier 
in any way other than those described above. Explicit declarations include 

array declarations 

type dec larations 

storage a !location declarati ons 

subprogram dec larations 

subprogram definitions 

Conflicting and Redundant Declarations 

Except where specifically noted to the contrary, definitions and declarations of the classification of an identifier 
may not conflict. For example, an identifier may not be both a subprogram name and an array name, both integer 
and real type, or defined as a subprogram in more than one place, etc. 
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Array Declarations 

Array dec larations explicitly define an identifier as the name of an array variable and have the form 

v(d
l
, d

2
, d

3
,···, d

n
) 

where 

v is the identifier of the array 

n is the number of dimensions associated with the array 

d. is an unsigned integer that defines the maximum value of the corresponding dimension. Arrays may have up 
I to seven dimensions (see "Arrays" in Chapter 3). When v is a dummy array in a subprogram, d

1 
through d 

may be scalar variables instead of integers (see "Adjustable Dimensions" in Chapter 8). n 

Array dec larations may appear in 

DIME NSION statements 

Explicit type statements 

C aMMON statements 

Examples: 

x (10) 

ARRAY (5, 15, 10) 

CUBE (4,7) 

DATA (4,3,6,12) 

Array Storage 

Although an array may have several dimensions, it is placed in storage as a linear string. This string contains the 
array elements in sequence (from low address storage toward high address storage), such that the leftmost dimension 
varies with the highest frequency, the next leftmost dimension varies with the next highest frequency, and so forth 
(i. e.: 2-dimensiona I arrays are stored "column-wise"). Figure 2 illustrates array storage. 

array A(3, 3,2) 

Item Element 

1 A(l,l,1) 

I 
2 A(2,l,l) 

3 A(3, 1, 1) 
4 A(1,2,l} 
5 A(2, 2,1) 
6 A(3, 2, 1) 
7 A(l,3,l) 
8 A (2, 3, 1) 
9 A(3, 3, 1) 

10 A(1,1,2) 
11 A(2,l,2) 
12 A(3,l,2) 
13 A(1,2,2) 
14 A(2,2,2) 
15 A(3, 2,2) 
16 A(l,3,2) 
17 A(2,3,2) 
18 A(3,3,2) 

Figure 2. Array Storage 

References to Array Elements 

References to array elements must contain the number of subscripts corresponding to the number of dimensions de
clared for the array (except as discussed for EQUIVALENCE statements). References that contain an incorrect num
ber of subscripts are treated as errors. 
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Furthermore, the value of each subscript should be within the range of the corresponding dimension, as specified in 
the array declaration. Otherwise, the references may not be to data belonging to the set of elements that comprise 
the array. 

DIMENSION Statement 

This statement is used only to define the dimensions of arrays, and has the form 

DIMENSION v 1' v2' v3'···, v n 

where the Vi are array declarations as described previously. A DIME NSION statement does not affect the type or 
a lIocation of the arrays dec lared. For example: 

DIME NSION MGO(l7), L TO(15), BB(36,22, 34) 

DIMENSION AD(184), X(2,3, 4,5, 10), PETROL(5,6) 

IMPLICIT Statement 

This statement is used to alter the conventions for implicit typing from the IJKLMN rule discussed under I1Implicit 
Dec larati ons l1. It has the form 

IMPLICIT 

where 

each C. is a type convention of the form 
I 

type(c l' c2, c 3, ... ,c m) 

and type is one of the six type declarations/ 

INTEGER 
REAL 
COMPLEX 
LOGICAL 
DOUBLE PRECISION 
DOUBLE COMPLEX 

c. 
J 

is a single alphabetic character or two such characters separated by a dash (minus sign); the second 
character must follow the first in alphabetic sequence. For example, 

Z, A-G, M-N, S 

An IMPLICIT declaration may override the normal (IJKLMN) rule of implicit type classification. It, in turn, may 
be overridden by an explicit type declaration (see below). As an example, the statement 

IMPLICIT COMPLEX(C), LOGICAL(T, F, L-N), INTEGER(H-J, W) 

would cause the following implicit type conventions to be in force: 

1. Identifiers beginning with C are complex. 

2. Identifiers beginning with T, F, L, M, or N are logical. 

3. Identifiers beginning with H,I,J, or Ware integer. The I and J are redundant here, because these are normally 
integer. 

4. Identifiers beginning with K are integer (normal convention). 

5. All other identifiers are rea! (normal convention). 

The statement 

IMPLICIT REAL(A-Z) 

would cause all identifiers to be real unless explicitly declared otherwise. 

t .. Optiona I Size Specifications" later in this chapter describes the declaration of double precision and double 
complex types. 

DIMENSION/IMPLICIT Statements 67 



[ 

Whilean implicit type declatation may be redundant, it must not conflict with any other implicit type declaration. 
For exampl e, the statement 

iMPliCIT REAL(A-Z) I iNTEGER(N) 

is ill egal because N is declared to be both real and integer. 

An IMPLICIT statement does not affect the types of basic external library functions. 

Explicit Type Statements 

These statements are used to define, explicitly, the type of an identifier. They have the form 

where 

type is one of the declaration/ 

S. 
I 

INTEGER COMPLEX 

REAL LOGICAL 

DOUBLE PRECISION DOUBLE COMPLEX 

is a type specification that is either the identifier of a scalar, array, function, or is an array decla
ration. Optionally, a scalar, array, or array declaration may be followed by a DATA constant list 
enclosed in slashes, for the purpose of defining initial values for the variables. In other words, each 
type specification may take any of the following forms: 

identifi er 

array declaration 

identifier/DATA constant I ist/ 

array declaration/DATA constant list/ 

For a descdption of DATA constant lists, and their function, see "DATA Statement" later in this chapter. 

Note that 

REAL X, Y, Z/3.7 / 

initializes only Z, while 

DA TAX, Y, Z/3.7, 3.7, 3.7/ 

initializes X, Y, and Z. 

Exampl es of expl i ci t type statements: 

COMPLEX C3,ALPHA,CARRY(5,5), XYZ 

LOGICAL BINARY, BOOLE(4, 4, 4, 4), TRUTHF 

INTEGER GEORGE, NETRTE(9)/O,l,l,2,3,5,8, 13, 21/,MASS/O/ 

INTEGER ROOT, PP 

tSee also "Optional Size Specification II in this chapter. 
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An explicit type declaration overrides any implicit declaration. Thus, the statements 

IMPLICIT LOGICAL{L-P) 

REAL LEVEL, PERCNT 

in combination with the standard implicit typing rule, would cause the following identifiers to have the types 
indicated: 

LEVEL3 - logical 

LEVEL - real 

KAPPA - integer 

POROUS - logical 

PERCNT - real 

X - real 

Optional Size Specifications 

In addition to the standard type declarations, an optional form is provided that specifies the exact size of the 
data. This option takes the form 

*n 

where n is the number of bytes occupied by the data (there are four bytes in a word, and eight bits in a byte). In 
the case of integer and logical, only the standard size is permitted, and the option has no effect. However, this 
option is used to change ieci to double piecision and complex to double complex, as shown below. 

Standard Optional 
Type Size (bytes) Size (bytes) 

Integer 4 

Real 4 8 

Complex 8 16 

Logical 4 

Double precision data are identical to real data with size specification of 8 bytes; double complex data are identi
cal to complex data with size specification of 16 bytes. Thus, 

INTEGER*4 INTEGER 

REAL*4 REAL 

REAL*8 double precision 

COMPLEX*8 COMPLEX 

COMPLEX*16 doubl e compl ex 

LOGICAL*4 LOGICAL 

The *n modifier may appear in three kinds of statements: IMPLICIT statements, FUNCTION statements (discussed 
in Chapter 8), and explicit type statements. This podtion of the *n relative to the type declaration that it modi
fies, depends on the statement, as follows: 

1. In the IMPLICIT statement, the *n is appended to the type declaration word, as in 

IMPLICIT REAL*8{I-K), INTEGER*4(A-H), LOGICAL(L, N) 
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2. In the FUNCTION statement, the *n is appended to the name of the function, rather than to the type word. 

REAL FUNCTION MULT*8(X, Y, Z) 

COMPLEX FUNCTION CNVERT* 16(C) 

3. In explicit type statements, the *n can be appended to the type word, or the identifiers being declared, or 
both. When appended to the type word, the *n holds for all identifiers listed, excepting those with an indi
vidual size specification of their own. In other words, the *n appended to an identifier takes precedence 
over the * n appl yi ng to the whol e statement. For exampl e: 

COMPLEX*8 CUM, LAUDE* 16 

LOGICAL FLAG(lO), TRUTH*4(1O) 

In the first example CUM and LAUDE are both of type complex; CUM has 8 bytes, while LAUDE has 16. In 
the second example FLAG and TRUTH are arrays, each having 10 elements. Four bytes are required for each 
element of array FLAG, and 4 bytes per element are required for array TRUTH. 

Storage Allocation Statements 

These statements are used to arrange variable storage in special ways, as required by the programmer. If no storage 
allocation information is provided, the compiler allocates all variables within the program in an arbitrary order. 
The storage allocation statements are 

COMMON statement 

EQUIVALENCE statement 

To make proper use of the storage allocation statements, it is often necessary to know the amount of storage required 
by each type of variable. The following table indicates the standard size associated with each type. 

Tvne 
"/1- -

integer 

real 

double precision 

complex 

doubl e compl ex 

logical 

COMMON Statement 

Words 

2 

2 

4 

The COMMON statement is used to assign variables to a region of storage called COMMON storage. COMMON 
storage provides a means by which more than one program or subprogram may reference the same data. 

The COMMON statement has the form 

COMMON w
1 

w
2 

w3 ... wn 

where 

the w. have the form 
I 

/c/v 1, v2' v3,···, v m 

where 

c is either the identifier of a labeled COMMON block or is absent, indicating blank COMMON 

Vi is a scalar, array name, or array declaration 

70 Storage Allocation Statements/COMMON Statement 



When W1 (the first specification in the statement) is to specify blank COMMON, the slashes may be omitted. In 
all other places, blank COMMON is indicated by two consecutive slashes. For exampl e: 

COMMON MARKET, SENSE /GROUP3/X, Y, JUMP // GHIA, COLD 

For each specification (wi), the variables listed are assigned to the indicated COMMON block or to blank COM
MON. The variables are assigned in the order they appear. Thus, in the above example, MARKET, SENSE, 
GHIA, and COLD are assigned to blank COMMON, while X, Y, and JUMP are placed in labeled COMMON 
block GROUP3. 

Label ed COMMON 

Labeled COMMON blocks are discrete sections of the COMMON region and, as such, are independent of each 
other and blank COMMON. 

Any labeled COMMON block may be referenced by any number of programs or subprograms that comprise an exe
cutable program (see Chapter 8). References are made by block name, which must be identical in all references. 
All labeled COMMON blocks need not be defined in anyone program; in fact, only those blocks containing data 
needed by the program require definition. 

The variables defined as being in a particular labeled COMMON block do not necessarily have to correspond in 
type or number between the program in which the block is referenced. However, the definition of the overall size 
of a labeled COMMON block must be identical in all the programs in which it is defined. For example: 

SUBROUTINE A 

REAL T, V, W, X(21) 

COMMON /SET1/T, V, W, X 

SUBROUTINE B 

COMPLEX G, F(ll) 

COMMON/SET l/G, F 

Both references to the COMMON block; SET 1: correspond in size. That is, both subprograms define the block 
SET1 as containing 24 words; the definition in subroutine A specifies 24 items of real type, and the definition in sub
routine B declares 12 items of complex type. 

Reference may be made to the name of a labeled COMMON block more than once in any program. Multiple refer
ences may occur in a singl e COMMON statement, or the block name may be specified in any number of individual 
COMMON statements. In both cases the processor links together all variables, defined as being in the block, into 
a single labeled COMMON block of the appropriate name. 

Block names must be unique with respect to: 

1. Subprogram names defined, explicitly or implicitly, to be external references 

2. Other block names 

A labeled COMMON block may have the same name as an identifier in any classification other than those above; 
however, it is usually preferable to choose block names that are totally unique. 

Blank COMMON 

The section of the COMMON region assigned to blank (or unlabeled) COMMON is not discrete; in other words, 
there is only one such area, and empty block name specifications always refer to it. Furthermore, as opposed to 
labeled COMMON, blank COMMON areas, defined in the various programs and subprograms that comprise an 
executable program (see Chapter 8), do not have to correspond in size. For instance, the following two sub
programs define blank COMMON areas of different sizes, and yet both may be portions of the same executable 
program. 

SUBROUTINE GAMMA 

COMMON E, D(20, 10), S 

SUBROUTINE ETA 

COMMON R(10), N(5) 
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Subroutine GAMMA defines a minimum of 202 words in blank COMMON; subroutine ETA declares a blank 
COMMON that contains a maximum of 60 words, depending on the types of the variables E, D, S, R, and N. 

Any number of references may be made to blank COMMON with a program. The multiple references may occur in 
a single COMMON statement or in several COMMON statements. In either case, all variables defined as being in 
blank COMMON will be placed together in the blank COMMON area. 

Variables in blank COMMON may not be initialized (using a DATA statement) while those in labeled COMMON 
may (see "DATA Statement" later in this chapter). 

Arrangement of COMMON 

Each labeled COMMON block and the blank COMMON area contain, in the order of their appearance, the vari
abies declared to be in the labeled block or the unlabeled area. The variables in each section of the COMMON 
region are arranged from low address storage toward high address storage. The first variable to be declared as being 
in a particular section is contained in the low address word or words of that section. Array variables are stored in 
their normal sequence (see "Array Storage") within the COv'\MON block or area. For example the statements 

COMMON /E/W, X(3, 3) //T, B, Q/E/J 

COMMON K,M/E/Y //C(4), H, N(2), Z 

cause the following arrangement of COMMON: 

Item 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Block E 

W 
X(l,l) 
X(2, 1) 
X(3,1) 
X(1,2) 
X(2,2) 
X(3,2) 
X( 1,3) 
X(2,3) 
X(3, 3) 
J 
Y 

Blank COMMON 

T 
B 
Q 

K 
M 
C(l) 
C(2) 
C(3) 
C(4) 
H 
N(l) 
N(2) 
Z 

Since a segment of the COMMON region may be defined differentl y in each program, it may be quite important to 
be aware of which items in a segment contain certain variables. For example, 

SUBROUTINE TOM SUBROUTINE DICK SUBROUTINE HARRY 

COMMON IS/A, B(101) 
COMMON IS/A, X(51) COMMON /S/ALPHA(52) 

COMMON /S/y(50) COMMON /S/y(50) 

will define the block S as follows: 

Item TOM DICK HARRY 

1 A A ALPHA(l) 
2 B(l) X(l) ALPHA(2) 
3 B(2) X(2) ALPHA(3) 

52 B(51) X(51) ALPHA(52) 
53 B(52) Y(l) Y(l) 
54 B(53) Y(2) Y(2) 

102 B(101) Y(50) Y(50) 
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which allows the routine TOM and DICK to access the variable A by that identifier, the routines DICK and HARRY 
to access the array variable Y by that identifier, and yet the integrity of the block S is maintained (these examples 
assume A, B, X, Y, and ALPHA are of the same type). 

Referencing of Data in COMMON 

Incorrect referencing of COMMON data will terminate execution. To ensure correct referencing of data, COM
MON blocks must be constructed so that the displacement of each variable in the block is an integral multiple of 
the reference number associated with the variable (displacement is the number of bytes from the beginning of the 
block to the first storage location of the variable). The reference number for type of variable is shown in the 
following chart: 

Type of Variable Reference Number 

Integer 4 

Real 4 

Double Precision 8 

Complex 8 

Double Complex 8 

Logical 4 

The FLAG system automatically begins every COMMON block as if its specification were 8, thus allow
ing a variable of any length to be the first assigned within a block. To obtain the correct displacement for other 
variables in the same block, it may be necessary to insert an unused variable in the block. For example, if the 
variables R, I, and CPX are REAL, INTEGER, and COMPLEX, respectively, and a COMMON block is defined as 

COMMON R, I, CPX 

the displacement of these variables within the block is as shown below: 

-t displacement = 0 bytes 

R 4 bytes 

+ displacement = 4 bytes 

4 bytes 

-! 
1 

displacement = 8 bytes 

I 
CPX 8 bytes 

_I 
displacement = 16 bytes 

The displacements for I and CPX are evenly divisible by their reference numbers. However, if R were REAL *8 
(instead of length 4), the displacement of CPX would be 12, which is incorrect. In that case, an extra word 
with a length of 4 bytes would have to be inserted between R and I or between I and CPX to provide the 

proper displacement for CPX. 

EQUIVALENCE Statement 

The EQUIVALENCE statement controls the allocation of variables relative to one another. Generally, it is used to 
assign more than one variable to the same storage location or locations. It is expressed as 

EQUIVALENCE sl' s2' s3'···' sn 
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where each of the s. is an equivalence set of the form 
I 

(v 1' v2' v3'···' v m) 

Each equival eliCe set sPedfi eS that all the v. aie to be assigned the same storage location. 
the foil owi ng three forms: I 

1. A scalar or array name. For arrays, the location referenced is that of the first element. 

The v. may be one of 
I 

2. An array element, where the subscripts are unsigned integers. For example, the statements 

DIMENSION A(3, 3) 

REAL B, C, A, X(ll) 

EQUIVALENCE (A(l,3), B), (C, X(l» 

would make Band A(l,3) equivalent, and, similarly, C and X(l) equivalent. 

When multiple subscripts are to be used in an EQUIVALENCE statement, that statement must be preceded by a 
DIMENSION statement in which the array is declared. 

3. An array name followed by an unsigned integer element count enclosed in parentheses. The meaning of this 
count is as follows: the location of the first element of the array is denoted as position 1; the element immedi
ately following is position 2; and so on. Thus, if X is a 3 x 3 array, X(l) means the same as X(l, 1); X(3) is 
two elements beyond X and refers to X(3, 1), where the size (in words) of an element is dependent on the type 
of X (see IIAllocation of Variable Types ll

). 

REAL B, C, A(3,3) 

EQUIVALENCE (A(7), B) 

would make A(l,3) and B equivalent. 

See also IIInteractions of Storage Allocation Statements ll
, below, for further rules concerning equivalences 

that cannot be implemented. 

Example: 

The effect of the statements 

DIMENSION W(3), X(3,3), LC(7) 

REAL W, X 

INTEGER LC, J 

REAL * 8 ELSIE 

COMPLEX C 

EQUIVALENCE (W, LC(2), ELSIE), (X(6), J, C(3» 

is to cause the indicated equivalences: 

Word 

2 

3 

4 

5 

6 

7 

8 

9 

Variables - Set 1 

LC(l) 

LC(2) = W(l) = ELSI E1 

LC(3) = W(2) = ELSI E2 

LC(4) = W(3) 

I rlc\ 
L\..\J} 

LC(6) 

LC(7) 

Variabl es - Set 2 

X(l, 1) 

X(2, 1) = C 1 

X(3, 1) = C2 

X(l,2) 

X(3,2) = J 

X(l,3) 

X(2, 3) 

X(3,3) 

where the arrangement of set 1 has no bearing on the arrangement of set 2. 
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The statement 

EQUIVALENCE (LC(2), W), (W(l), ELSIE), (C(3), J), (J, X(6)) 

has the same results as the EQUIVALENCE statement in the previous example, and the set (J, X(3, 2)) is the 
same as the set (J, X(6)) in this case. 

Interactions of Storage Allocation Statements 

No storage allocation declaration is permitted to cause conflicts in the arrangement of storage. Each COMMON 
and EQUIVALENCE statement determines the allocation of the variables referenced in them Therefore, no 
EQUIVALENCE set should contain references to more than one variable than has previously been allocated. When 
thi s is not followed, such references are either redundant or contradictory. The redundancy is normal I y ignored; 
the contradictory reference is not allowed. 

In all cases, the storage allocation sequence specified in a COMMON statement takes precedence over any 
EQUIVALENCE specifications. Consequently, EQUIVALENCE statements are not allowed to define conflicting 
allocations of COMMON storage; that is, two variables in the same COMMON block or in different COMMON 
blocks can not be made equivalent. 

It is permissible for an EQUIVALENCE to cause a segment of the COMMON region to be lengthened beyond the 
upper bound established by the last item defined to be in that segment. However, it is not permissible for an 
EQUIVALENCE declaration to cause a segment to be lengthened beneath the lower bound established by the first 
item declared to be in that segment. Both conditions are demonstrated in the exampl es below. 

COMMON /BLK1/A(5), B/BLK2/E(4), H, Y(2,2) 

DIMENSION Z(lO), V(5) 

EQUIVALENCE (A, Z), (V(4), E(2)) 

The first EQUIVALENCE set is a permissible extension of the block BLK1, whereas the second set illegally defines 
an extension of the block BLK2. The declared storage allocation would appear as shown below. 

Item 

2 

3 

4 

5 

6 

7 

8 

9 

10 

BLK1 

A(l) == Z(l) 

A(2) == Z(2) 

A(3) == Z(3) 

A(4) == Z(4) 

A(5) == Z(5) 

B == Z(6) 

Z(7) 

Z(8) 

Z(9) 

Z(lO) 

B LK2 (i II ega I extension) 

V(l) 

V(2) 

E(l) + V(3) 

E(2) == V(4) 

E(3) == V(5) 

E(4) 

H 

Y(l, 1) 

Y(2, 1) 

Y(l,2) 

Y(2, 2) 

Note: Assume all items are of the same data type. 
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The fact that COMMON segments may be lengthened by EQUIVALENCE dedarations in no way nullifies the 
requirement that labeled COMMON blocks of the same name, which are defined in separate programs or sub
programs comprising portions of an executable program, contain the identical number of words. 

EXTERNAL Statement 

The EXTERNAL statement has the form 

where the p. are subprogram identifiers. 
I 

The EXTERNAL statement declares, as a subprogram, names that might otherwise be classified implicitly as scalars, 
so that they may be passed as arguments to other subprograms (see II Arguments and Dummies ll in Chapter 8). For 
example, if the subprogram name F appears in the statement 

CALL ALPHA(F) 

but appears in no other context to indicate that it is a subprogram, it would be implicitly classified as a scalar. 
The EXTERNAL statement can be used to avoid this. 

Example: 

EXTERNAL F 

Library functions (see Table 8) may not appear as arguments to a subprogram. If the name of a library function 
(e. g., SIN) appears in an EXTERNAL or explicit type statement, it must refer to a variable or a user-supplied 
subprogram. 

BLOCK DATA Subprograms 

FLAG permits variables in labeled COMMON to be initialized in a special program called a BLOCK DATA sub
program, which begins with a statement of the form 

BLOCK DATA 

and may contain only declaration statements (described in this chapter) and DATA statements described below. The 
subprogram must be terminated with an END statement. Since BLOCK DATA subprograms may not be called by other 
programs, they have no names nor are they executed in the usual sense. 

BLOCK DATA subprograms must appear before the main program and all other subprograms. 

Within a BLOCK DATA subprogram, initialization of labeled COMMON variables must be accomplished by one or 
more DATA statements; type statements may not be used for initialization. 

When initiaiizing variabies in iabeied COMMON, compiete deciarations snouid be included for oJ; the variables 
in each COMMON block, so that 

1. The position within the block of those variables that are being initialized will be correctly established. 

2. The size of each COMMON block will correspond to the size declared in all other programs that use it. 

Data may be entered into more than one COMMON block in a single BLOCK DATA subprogram. 
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DATA Statement 

The DATA statement has the form 

where 

S. is a data set specification of the form 
I 

variabl e-I i st/constant-I i st/ 

The primary purpose of the DATA statement is to give names to constants: for example, instead of referring to rr as 
3. 141592653589793 at every appearance, the variable PI can be given that value with a DATA statement and used 
instead of the longer form of the constant. This also simplifies modifying the program, if a more accurate value is 
required. 

Giving PI a value with a DATA statement is somewhat different from giving it a value with an assignment statement. 
With the DATA statement the value is assigned when the program is loaded; with the assignment statement, PI re
ceives its value at execution time. 

Consider another exampl e that profits even more from the use of the DATA statement: An ARCTAN function can be 
written using a power series expansion. The efficient way to program this in FORTRAN is with a DO loop, stepping 
through the constants. But constants cannot be subscripted, and the timing of the routine is adversely affected if an 
array must be initial ized each time into the routine using assignment statements, such as: 

C(O) 0 

C(l) . 1243549945 

C(2) .2447786631 

etc. 

Here, the DATA statement can be used to great advantage. It is not recommended that the DATA statement be used 
to give "initial" values to variables that are going to be changed. This causes proper initialization of the program 
to depend on loading and disallows restarting the program once it has changed these values. Good programming 
practice dictates that such initialization be done with executable statements, e.g., with assignment statements. 

The effect of the DATA statement is to initialize the variables in each data set to the values of the constants in the 
set, in the order listed. For example, the statement 

DA TAX, A, L/3. 5, 7, • TRU E./ , ALPHA/O/ 

is equival ent to the assignment statements 

X = 3.5 

A = 7 

L = . TRUE. 

ALPHA = 0 

except that the DATA statement is not executable; its assignments take place upon loading. 

Variable and constant lists in DATA statement may be constructed as described in the following two sections. 

DATA Variable List 

A DATA variable list is similar to an input list (see Chapter 6), in that it may contain scalars or subscripted or unsub
scripted arrays. It may not contain implied DO loops. Subscripts must be integers. 

DATA Statement 77 



[ 

I 
I 
! 

OAT A Constant List 

A DATA constant list is of the form 

where 

the C. are either constants or repeated groups of constants in the following forms: 
J 

c 

r*c 

where 

c is a signed or unsigned constant of an appropriate type (see below). 

is an unsigned integer repeat count, whose value (nonzero) indicates the number of times the group 
is to be repeated. 

The constant may be any of the forms described in Chapter 2, including literal constants. Hexadecimal constants 
may also be used. The type of the constant must be the same as the type of the variable that it is initializing. The 
following rules apply in DATA statements: 

1. Integer, real, double precision and complex variables may be initialized with constants of those types. 

2. Logical constants may be expressed as . TRUE. and. FALSE. or abbreviated as T and F. 

3. literal constants may be used with any type of variable, although integer is recommended. A literal constant 
is broken up on a character-by-character basis and depends on the nu~ber of words of storage occupied by the 
variable (see "Storage Allocation Statements" earlier in this chapter). That is, an integer variable requires 4 
characters, a complex variable, 8 characters, and a double complex variable, 16 characters. 

Variable items will be initialized as required to use up the characters specified. If there are insufficient char
acters in any literal constant to fill the last variable used, it will be filled out with trailing blanks. 

4. Numeric and logical constants may not be used for more than one variable list item; one literal constant may 
initialize successive list items or successive elements of an array appearing as a list item. 

5. Hexadecimal constants may be used to initialize any type of variable. The form of a hexadecimal const.ant is 
the character Z followed by from 1 to 32 hexadecimal digits. These digits are 

0123456789ABCDEF 

As an example, the hexadecimal constant ZBOD represents the bit string 101100001101. 

The maximum number of digits allowed in a hexadecimal constant depends on the type of variable being initial
ized. The following list shows the maximum number of digits for each variable type: 

Type of Maximum number of 
Variable Hexadecimal Digits 

LOGICAL 8 

INTEGER 8 

REAL 8 

REAL*8 16 

COMPLEX 16 

COMPLEX*16 32 

If the number of digits is greater than the maximum, the leftmost hexadecimal digits are truncated; if the number of 
digits is less than the maximum, hexadecimal zeros are supplied to the left. 
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The following examples illustrate some of the features described above: 

INTEGER MM(3) 

COMPLEX C1, C2 

DATA MM/ABCDEF 1
, IGH 1

/, C1,C2/(17.8, -4.0), (17.8, -4.0) 

The above DATA statement causes the following assignments to be made: 

MM(l) 

MM(2) 

MM(3) 

C1 

C2 

4HABCD 

2HEF 

2HGH 

(17.8, -4.0) 

(17.8, -4.0) 

The constant list must completely satisfy the variable list and there may not be any remaining unused constants. 

Dummy variables and variables in blank COMMON cannot be initialized with the DATA statement. Variables in 
labeled COMMON may be initialized, but only in a BLOCK DATA subprogram. 

Placement and Order of Declaration Statements 

The following rules govern the placement and order of appearance of declaration statements within a main program 
or subprogram when using FLAG. 

1. All declaration statements must appear prior to the appearance of the first executable statement within a 
program. 

2. Declaration statements (if present) should appear in the following order within a program: 

subprogram declaration statement 

IMPLICIT statement 

type statements 

DIMENSION statements 

COMMON statements 

EQUIVALENCE statements 

EXTERNAL statements 

DA T A statements 

NAME LIST statements 

Failure to follow this order may result in one or more compiler diagnostic messages. 

3. Identifiers that appear both in type statements and in EQUIVALENCE statements may not have initial data 
values specified within the type statementi they may be initialized by one or more subsequent DATA 
statements. 

4. Identifiers appearing in type statements within a BLOCK DATA subprogram may not have values for data
initialization specified within the type statementi all identifiers within a BLOCK DATA subprogram must be 
initialized by means of one or more DATA statements (or left uninitialized). 
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8. PROGRAMS AND SUBPROGRAMS 

A complete set of program units executed together as a single job is called an executable program. An executable 
program consists of one main program and all required subprograms. Subprograms may be defined by the programmer, 
as described in this section, or may be preprogrammed and contained in the run-time or system libraries. 

Main Programs 

A main program is comprised of a set of FLAG statements, the first of which (other than comment lines) cannot be 
one of the following statements, and the last of which is an END statement. 

a FUNCTION statement 

a SUBROUTINE statement 

a BLOCK DATA statement 

Main programs may contain any statement except a FUNCTION, SUBROUTINE, ENTRY, or BLOCK DATA statement. 
Once an executable program has been loaded, execution of the program begins with the first executable statement 
in the main program. 

Subprograms 

Subprograms are programs which may be called by other programs; they fall into the two broad classes of functions 
and subroutines.t These may be further classified as follows: 

Functions 

Statement functions 

FUNCTION subprograms 

Basic external functions 

Subrouti nes 

SUBROUTINE subroutines 

A function is referenced by the appearance of its identifier within an expression and returns a value (see Chapter 2). 
Subroutines are referenced with CALL statements and do not necessarily return a value (see Chapter 5). A number of 
library functions and subroutines are included in FLAG. These are described at the end of this chapter. 

Statement Functions 

Statement functions are functions that can be defined in a singl e expression. A statement function definition has 
the form 

f(d l' d2, d
3

, ••• , d n) = e 

where 

f is the name of the function 

d. is the identifier of a dummy scalar variable (see below) 
I 

e is an arithmetic or logical expression 

tThe BLOCK DATA subprogram, which is neither a function nor a subroutine, is also provided (see Chapter 7). 
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A statement function must have at I east one dummy argument. Statement function dummi es are treated onl y as 
scalars; they cannotbedummy arrays or subprograms (see "Arguments and Dummies" in this chapter). The expression 
e should contain at least one reference to each dummy. The identifier f may not appear in the expression, since 
this would be a recursive definition. References to other statement functions may be made onl y to previousl y de
fined functions. 

Examples: 

F(X) = A * X ** 2 + B * X + C 

EI(THETA) = CMPLX(COS(THETA), SIN(THETA)) 

AVG(PT, NUM, TOT) = 3 *(PT + NUM)/TOT + 1 

Since each di is merely a dummy and does not actually exist, the names of statement function dummies may be the 
same as the names of other variables in the program. Note, however, that if a statement function dummy is named 
X, and there is another variable in the program called X, then the appearance of X within the statement function 
expression refers to the dummy. The onl y relation between a statement function dummy and any other quantity with 
the same name is that they will both have the same type. This enables the programmer to declare the types of state
ment function dummies using explicit (or implicit) type statements. 

The statement function itself is typed like any other identifier: it may appear in an explicit type statement; if it 
does not, it will acquire implicit type (see "Implicit Declarations" in Chapter 7). 

A statement function may be referenced only within the program unit in which it is defined. Statement function 
definitions must precede all executabl e statements in the program in which they appear. 

FUNCTION Subprograms 

Functions that cannot be defined in a singl e statement may be defined as FUNCTION subprograms. These subpro
grams are introduced by a FUNCTION statement, of the form 

or 

where 

f 

d. 
I 

type 

is the identifier of the function. 

is a dummy argument of any of the forms (except asterisk), described in "Arguments and Dummies ll later 
in this chapter. 

is an optional type specification, which may be any of the following/ 

INTEGER COMPLEX 

REAL LOGICAL 

DOUBLE PRECISION DOUBLE COMPLEX 

Every FUNCTION subprogram must have at least one dummy. Values may be assigned to dummies within the 
FUNCTION subprogram, with certain restrictions (see "Arguments and Dummies"). 

A FUNCTION subprogram must contain at least one RETURN statement. A RETURN statement should be the last 
statement in a FUNCTION subprogram; i. e., it should be the last statement executed for each execution of the 
FUNCTION. 

tSee also "Optional Size Specifications" in Chapter 7. 
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The identifier of the function must be assigned a value at least once in the subprogram as the argument of a CALL 
statement, a DO control variable f the variable on the left side of an arithmetic statement, or in an input list (READ 
statement) within the subprogram. 

Within the function the identifier of a FUNCTION subprogram is treated as though it were a scalar variable and 
should be assigned a value during each execution of the function. The value returned for a FUNCTION is the last 
one assigned to its identifier prior to the execution of a RETURN statement. 

A FUNCTION subprogram may contain any FORTRAN statement except a SUBROUTINE statement, another FUNC
TION statement, or a BLOCK DATA statement. 

FUNCTION statement examples: 

INTEGER FUNCTION DIFFEQ (R, S, N) 

REAL FUNCTION IOU (W, X, Y, Z 1, Z2) 

FUNCTION EXTRCT (N,A, B, C, V) 

LOGICAL FUNCTION VERDAD(E, F, G, H, P) 

FUNCTION subprogram examples: 

COMPLEX FUNCTION GAMMA (Z, N) 

COMPLEX Z 

M = 1 

GAMMA = Z 

DO 5 J = N, 10 

M = M * J 

5 GAMMA = GAMMA * (Z + J) 

GA,V"VA ...:. M * N + Z / GAMtv'A 

RETURN 

END 

SUBROUTINE Subprograms 

SUBROUTINE subprogramsr like FUNCTION subprogramsr are self-contained programmed procedures. Unlike 
FUNCTIONS, however SUBROUTINE subprograms do not have values associated with them and may not be refer
enced in an expression. Instead, SUBROUTINE subprograms are accessed by CALL statements (see Chapter 5). 

SUBROUTINE subprograms begin with a SUBROUTINE statement of the form 

SUBROUTINE p(d 1, d2, d
3
,.·., d

n
} 

or 

SUBROUTINE p 

where 

p is the identifier of the subroutine 

d. is a dummy argument of Elny of the forms described in IIArguments and Dummies ll later in this chapter. 
I 

Note that while a FUNCTION must have at least one dummy, a SUBROUTINE need have none. 

A SUBROUTINE subprogram must contain at least one RETURN statement; a RETURN statement should be logically 
the last statement in a SUBROUTINE subprogram (that is, it should be the last statement executed for each execution 
of the SUBROUTINE). 

A SUBROUTINE subprogram may return values to the calling program by assigning values to the d. or to variables 
in COMMON storage. I 
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A SUBROUTINE subprogram may contain any FORTRAN statements except a FUNCTION statement, another SUB
ROUTINE statement, and/or a BLOCK DATA statement. The SUBROUTINE subprogram may use one or more of its 
arguments to return va lues to the ca Iling program. The SUBROUTINE name must not appear in any other statement 
in the SUBROUTINE program. 

Arguments and Dummies 

Dummy arguments provide a means of passing information between a subprogram and the program that ca lied it. 
Both FUNCTION and SUBROUTINE subprograms may have dummy arguments. A SUBROUTINE need not have any, 
however, while a FUNCTION must have at least one. Dummies are merely IIformal ll parameters and are used to 
indicate the type, number, and sequence of subprogram arguments. A dummy does not actually exist, and no stor
age is reserved for it; it is only a name used to identify an argument in the calling program. An argument may be 
any of the following: 

a scalar variable 

an array element 

an array name 

an expression 

a statement label 

a constant of any type (including literal) 

a subprogram name 

A dummy itself may be classified within the subprogram as one of the following: 

a scalar variable 

an array 

a subprogram 

an asterisk denoting a statement labe I 

Table 8, below, indicates the permissible kinds of correspondence between an argument and a dummy. 

Table 8. Permissible Correspondences Between Arguments and Dummies 

Dummy 
Argument 

scalar array subprogram asterisk 

scalar or array element yes yest no no 

expression yes no no no 

statement label no no no yes 

array name yest yes no no 

I iteral constant yest yes no no 

subprogram name no no yes no 

tA correspondence of this kind may not be entirely meaningful (see "Dummy Arraysll). 
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A statement label argument is written as 

&k 

where k is the actual statement label and the ampersand distinguishes the construct as a statement label argument 
(as opposed to an integer constant). 

Within a subprogram, a dummy may be used in much the same way as any other scalar, array, or subprogram identi
fier with certain restrictions; namely, dummies may not appear in the following types of statements: 

COMMON 

EQUIVALENCE 

DATA 

NAME LIST 

The reason for the above restriction is that dummies do not actually exist. Furthermore, classification of a dummy 
as a scalar, an array, or a subprogram identifier occurs in the same manner as with other (actual) identifiers, in both 
implicit and explicit classifications (see "Classification of Identifiers" in Chapter 7). 

In general, dummies must agree in type with the arguments to which they correspond. For example, the following 
situation is in error because the types of the arguments and the dummies do not agree. 

COMPLEX C FUNCTION F (LL, CC) 

LOGICA.L L LOGICAL LL 

X = F (C, L) COMPLEX CC 

Reversing the order of either the arguments in the calling reference or the dummies in the FUNCTION statement 
would eliminate the error in this example. 

There are two exceptions to the rul e of type correspondence: 

i. A statement number passed as an argument has no type. 

2. A SUBROUTINE name (as opposed to a FUNCTION name) has no type. 

All arithmetic or logical expressions appearing as actual arguments in the calling program are first evaluated and 
then placed in a temporary storage location. The address of that temporary storage location is then passed as the 
argument (this action is referred to as "call by value"). For al! other arguments the actual address of the argument 
is passed (this is referred to as IIcail by name II). 

NOTE: All constants are passed by name; therefore, if the called subprogram stores into a dummy corresponding 
to a constant in the calling sequence, that constant will be changed. Obviously, this is not recommended. 

Dummy Scalars 

Dummy scalars are single valued entities that correspond to a single element in the calling program. Dummies that 
are not declared (implicitly or explicitly) to be arrays or subprograms are treated as scalars. 

Dummy Arrays 

A dummy argument may be defined as an array, by the presence of its identifier in any array declaration within the 
subprogram (the fact that a calling argument is an array does not in itself define the corresponding dummy to be an 
array). A dummy array does not actually occupy any storage, it merely identifies an area in the calling program. 
The subprogram assumes that the argument supplied in the calling statement defines the first (or base) element of an 
actual array and calculates subscripts from that location. 

84 Arguments and Dummies 



Normal! y, a dummy array is given the same dimensions as the argument array to which it corresponds. This is not 
necessary, however, and useful operations can often be performed by making them different. For example, 

DIMENSION A(lO, 10) 

CALL OUT (A(l,6)) 

SUBROUTINE OUT (B) 

DIMENSION B(50) 

In this case, the 1-dimensional dummy array B corresponds to the last half of the 2-dimensional array A (i. e., 
elements A(l,6) through A(lO, 10)). However, since an array name used without subscripts as an argument refers 
to the first element of the array, if the calling statement were 

CALL OUT(A) 

the dummy array B would correspond to the first half of the array A. 

Arguments that are literal constants are normally received by dummy arrays. A literal constant is stored as a con
secutive string of characters in memory, and its starting location is passed as the argument address. For instance, 
in the example 

CALL FOR('PHILIP MORRIS') 

the following correspondences hold: 

M(l) = 4HPHIL 

M(2) = 4HIP-bM 

M(3) = 4H ORRI 

M(4) = 4HSb'h6 

SUBROUTINE FOR(M) 

DIMENSION M (5) 

M(5) is undefined and should not be referenced 

where"b represents the character blank. Literal constants are fill ed out with trail ing blanks to the nearest word 
boundary (multiple of four characters). Therefore, passing such a constant to a dummy of a type that occupies more 
than one word per elementt (e.g., double precision) may result in dummy elements that are only partially defined. 
For this reason, integer arrays are recommended. 

If an array corresponds to something that is not an array or a literal constant, the latter will correspond to the first 
element of the array. This is true whether the calling argument is an array and the dummy is not, or vice versa. 
For example, if the calling argument is a scalar and the dummy is an array, references in the subprogram to elements 
of the array other than the first el ement wi II correspond to whatever happens to be stored near the scalar. Care must 
be taken in creating correspondences of this nature since they may depend upon a particular implementation. 

Adjustable Dimensions 

Since a dummy array does not actually occupy any storage, its dimensions are used only to locate its elements, not 
to allocate storage for them. Therefore, the dimensions of a dummy array do not have to be defined within the sub
program in the normal manner. Instead, any or all the dimensions of a dummy array may be specified by dummy 
scalar variables rather than by constants. This permits the calling program to supply the dimensions of the dummy 
array each time the subprogram is called. The following statements demonstrate adjustable dimensions: 

DIMENSION P(lO, 5), Q(9, 3) 

X = SUM(P, 10,5) 

Y = SUM(Q, 9,3) 

FUNCTION SUM (R, N, M) 

DIMENSION R(N, M) 

tSee "Allocation of Variable Types" in Chapter 7. 
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Only a dummy array can be given adjustable dimensions, and the dimensions must be specified by dummy integer 
scalars. The variables used as adjustable dimensions may be referenced elsewhere in the subprogram but should not 
be changed. 

When running in the "debug" mode (see Chapter 9) the size of a variably dimensioned array is calculated each time 
the subprogram is entered, and subscripted elements of the array are checked to make sure that the subscript is in 
the range of the array. If a one-dimensional dummy array is dimensioned with size 1 no subscript range checking 
is done. 

Dummy Subprograms 

A dummy subprogram must correspond to an argument that is a subprogram name, and it is the only kind of dummy 
that can do so. The dummy name merely serves to identify a closed subprogram whose actual location is defined by 
the calling program. Therefore, a calion a dummy subprogram is actually a calion the subprogram whose name is 
specified as the argument. A dummy subprogram is classified in the same manner as any other subprogram (see 
"Classification of Identifiers" in Chapter 7). 

Example: 

EXTERNAL SIN, DSIN, SQRT, DSQRT FUNCTION DIFF(F, DF, Z) 

A = DIFF(SIN, DSIN, X) DOUBLE PRECISION DF 

B = DIFF(SQRT, DSQRT, Y) DIFF = DABS(F(Z) - DF(DBLE(Z))) 

RETURN 

END 

(The programmer must provide the functions SIN, DSIN, SQRT, and DSQRT.) 

A subprogram identifier, to be passed as an argument, must previously appear in an EXTERNAL statement {otherwise, 
it may be classified as a scalar variable}. 

Library Subprograms 

FLAG includes a number of library subprograms. These are specially recognized by the compiler; which generates 
special machine codes for them. Most of the library subprograms are functions, although several uti lity subroutines 
are also provided. 

Basic External Functions 

The basic external function subprograms evaluate commonly used mathematical functions. These subprograms have 
a special type that is known to the compiler. This type is not necessarily the same as the type it would acquire by 
implicit typing rules. The arguments to these functions must have the proper type, as shown in Table 9. 

Table 9 lists the function subprograms provided by FLAG. When a formula is shown in the column "Definition of 
Function", it is not necessari Iy the formula that is actually used in implementing the function; it is intended only 
to clarify the definition of function. 

Additional library Subprograms 

In addition to the functions listed in Table 9, the following subprograms are supplied in the FLAG library: 

EXIT 

Form: 

CALL EXIT 

[ The effect is identical to that of the STOP statement. 
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Intrinsic 
Names 

ABS 

ACOS 

AIMAG 

AINT 

ALOG 

ALOG10 

AMAX1 

AMAXO 

AMIN1 

AMINO 

AMOD 

ASIN 

{
ATAN } 
ATAN2 

CABS 

CACOS 

CASIN 

CATAN 

CCOS 

Number of 
Arguments 

N ~ 2 

N ~ 2 

N~2 

N ~ 2 

2 

1,2 

Table 9. Intrinsic and Basic External Functions 

Type of 
Argument 

Real 

Real 

Complex 

Real 

Real 

Real 

Real 

Integer 

Real 

Integer 

Real 

Real 

Real 

Complex 

Complex 

Complex 

Complex 

Complex 

Type of 
Result 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Complex 

Complex 

Complex 

Complex 

Definition of Function 

Absolute value. For complex, see CABS. 

Arc cosine in radians. For complex, see 
CACOS. 

Imaginary part of argument (zero if not com
plex) expressed as a real value. 

Integer part of argument (fractional part 
truncated) . 

Natural logarithm (base e). 

Common logarithm (base 10). 

Maximum value. All arguments are con
verted to and compared as real values. 

Maximum value. All arguments are con
verted to and compared as integer values. 

Minimum value. All arguments are con
verted to and compared as real values. 

Minimum value. All arguments are con
verted to and compared as integer values. 

Arg1 (mod arg2)' Evaluated as 

arg
1 

- arg
2 

*AINT(arg
1
/arg

2
) 

i. e., the sign is the same as arg1 . 
Function undefined if arg2 = O. 

Arc sine in radians. For complex, see 
CASIN. 

Arctangent in radians. Arg1 = ordinate (y), 
arg2 = abscissa (x). If arg2 is not present, 
assumed 1. Resul t (R) is arctangent of 
arg1/arg2 quadrant allocated in the range 
- 1T< R S 1T. ATAN(O,O) = O. For complex, 
see CATAN. 

Complex absolute value (i. e., modulus). 

CABS(x + iy) =.y x2 + y2 

Complex arc cosine. CACOS(Z) 

= -i . CLOG(Z + CSQRT(Z2 - 1)) 

Complex arc sine. CASIN(Z) 

= -i . CLOG(i . Z + CSQRT(l - Z2)) 

Complex arctangent. CATAN(Z) 

= u + iv = - ~ (CLOG(l + iZ) 

- CLOG(l - iZ)), allocated such that 
-1T<US1T. 

Complex cosine. CCOS(Z) 

= (e iZ + e -iZ)/2. 
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r Table 9. Intrinsic and Basic External Functions (cont.) 

Intrinsi c Number of Type of Type of 
Names Arguments I Argument I Result I Definition of Function 

CCOSH 1 Complex Complex Complex hyperbolic cosine. CCOSH(Z) 
Z -Z 

= (e + e )/2. 

CDABS 1 Complex*16 Real*8 Double complex absolute value (modulus). 
See CABS. 

CDACOS 1 Complex*16 Complex*16 Double complex arc cosine. See CACOS. 

CDASIN 1 Complex*16 Complex*16 Double complex arc sine. See CASIN. 

CDATAN 1 Complex*16 Complex*16 Double complex arc tangent. See CATAN. 

CDBLE 1 Complex Complex*16 Converts complex to double complex. 

CDC as 1 Complex*16 Complex*16 Double complex cosine. See CCOS. 

CDCOSH 1 Complex*16 Complex*16 Double complex hyperbolic cosine. See 
CCOSH. 

CDEXP 1 Complex*16 C-omplex* 16 Double complex exponential. See CEXP. 

CDLOG 1 Complex*16 Complex*16 Double complex natural logarithm (base e). 
See CLOG. 

CDSIN 1 Complex*16 Complex*16 Double complex sine. See CSIN. 

CDSINH 1 Complex*16 Complex*16 Double complex hyperbolic sine. See 
rC' rio. II I 
\.....)lI .... n. 

CDSQRT 1 Complex*16 Complex*16 Double complex square root. See CSQRT. 

CDTAN 1 Complex*16 Complex*16 Double complex tangent. See CTAN. 

CDTANH 

I 
1 

I 

Complex*16 Complex*16 Double complex hyperbolic tangent. See 

I CTANH. 

CEXP 1 Complex Complex Complex exponential (e ** arg). 
CEXP(x + iy) 
= EXP(x) . (COS(y) + i . SIN(y)). 

CLOG 1 Complex Complex Complex natural logarithm (base e) 
CLOG(Z) = CLOG(x + iy) 
= u + iv = In Izi + i . ATAN (y,x) 

a /located such that -IT < v:s IT • 

CMPLX 2 Real Complex Converts two noncomplex numbers to a com-
plex number. CMPLX(x,y) = x + iy. 

CONJG 1 Complex Complex Complex conjugate. CONJG(x + iy) =x-iy. 

COS 1 Real Real Cosine of angle in radians. For complex, 
see CCOS. 

COSH 1 Real Real Hyperbolic cosine. For complex, see CCOSH. 

CSIN 1 Complex Complex Complex sine. CSIN(Z) 

= (e i Z _ e -i Z) / (2i). 
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Table 9. Intrinsic and Basic External Functions (cont.) 

Intrinsic Number of Type of Type of 
Names Arguments Argument Result Definition of Function 

CSINH 1 Complex Complex Complex hyperbolic sine. CSINH(Z) 

Z -Z = (e - e ) /2. 
CSNGL 1 Complex*16 Complex Converts double complex to complex. 

CSQRT 1 Complex Complex Complex square root. CSQRT(z) 
. (In Z) /2 

allocated such = u + IV = e , 
that u ~ O. 

CTAN 1 Complex Complex Complex tangent. CTAN(Z) 
= CSIN(Z) / CCOS(Z) 

_ ( i Z -i Z) / . ( i Z + - i Z) - e -e lee. 

CTANH 1 Complex Complex Complex hyperbolic tangent. 
CTANH(Z) = CSINH(Z)/CCOSH(Z) 

Z -Z Z -Z = (e - e ) / e + e ). 

DABS 1 Real*8 Real*8 Double precision absolute value. 

DACOS 1 Real*8 Real*8 Double precision arc cosine in radians. 

DASIN 1 Real*8 Real*8 Double precision arc sine in radians. 

{DATAN } 1,2 Real*8 Real*8 Double precision arctangent in radians. 
DATAN2 

See ATAN. 

DBLE 1 Real Real*8 Argument converted to a val ue with double 
precision. 

DCMPLX 2 Real*8 Complex*16 Converts two noncomplex numbers to a 
double complex number. See CMPLX. 

DCONJG 1 Complex*16 Complex*16 Double complex conjugate. See CONJG. 

DCOS 1 Real*8 Real*8 Double precision consine of angle in radians. 

DCOSH 1 Real*8 Real*8 Double precision hyperbolic cosine. 

DDIM 2 Real*8 Real*8 Double precision positive difference. 
See DIM. 

DEXP 1 Real*8 Real*8 Double precision exponential (e ** arg). 

DFLOAT 1 Integer Real*8 Argument converted to double precision. 
Same as DBLE, but generally used with 
integer arguments. 

DIM 2 Real Real Positive difference. DIM (x,y) 
= x - min (x,y). 

DIMAG 1 Complex*16 Real*8 Imaginary part of a double complex argu-
ment, expressedasadouble precisionvalue. 

DINT 1 Real*8 Real*8 Integer part of the argument expressed as 
a double precision value. 

DLOG 1 Real*8 Real*8 Double precision natural logarithm 
(base e). 
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r Table 9. Intrinsic and Basic E;I(ternal Functions (cont.) 

Intrinsic Number of Type of Type of 
Names I Arguments I Argument I Resuit I Definition of Function I 

DLOG10 1 Rea 1*8 Real*8 Double precision common logarithm 
(base 10). 

DMAXl N:::2 Real*8 Real*8 Double precision maximum value. All argu-
ments are converted to and compared as 
double precision values. 

DMINl N:::2 Real*8 Real*8 Double precision minimum value. All argu-
ments are converted to and compared as 
double precision values. 

DMOD 2 Real*8 Real*8 Double precision arg
1 

(mod arg2). 
See AMOD •. 

DREAL 1 Complex*16 Real*8 Real part of a double complex argument, 
expressed as a double precision value. 

DSIGN 2 Real*8 Real*8 Double precision magnitude of argl with 
sign of arg

2
. 

positive. 
If arg

2 
is zero, the sign is 

DSIN 1 Real*8 I Real*8 Double precision sine of angle in radians. 

DSINH 1 Real*8 Real*8 Double precision hyperbolic sine. 

DSQRT 1 Real*8 Real*8 Double precision square root (positive value). 

DTAN 1 Rea!*8 Rea!*8 I [)nllhlp nrpric;inn tnnnpnt 

I 
- ---.- 1-·--'-'-" ·_··v-··· .. 

DTANH 1 Real*8 Real*8 Double precision hyperboli c tangent. 

EXP 1 Real Real Exponential (e ** arg). For complex, 
see CEXP. 

I FLOAT 1 Integer I Real Argument converted to a real value. 
I 

lABS 1 Integer 
, 

Integer Integer absolute value. 

lAND 2 Integer Integer Logical AND (extract). 

ICOMPL 1 Integer Integer Logical NOT (lis complement). Same as 
INOT. 

IDIM 2 Integer Integer Integer positive difference. IDIM(j,k) 
= j - MIN(j,k). 

IDINT 1 Real*8 Integer Argument converted to an integer value. 

IEOR N ::: 2 Integer Integer Logical EOR (exclusive OR). 

IEXCLR N ::: 2 Integer Integer Logical EOR (exclusive OR). Same as 
IEOR. 

INOT 1 Integer Integer Logical NOT (lis complement). 

{INT} 
IFIX 

1 Real Integer Argument converted to an integer va lue. 
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Intri nsi c 
Names 

lOR 

ISA 

ISC 

ISIGN 

ISL 

MAX 0 

MAX 1 

MINO 

MINl 

MOD 

REAL 

SIGN 

SIN 

SINH 

SNGL 

SQRT 

TAN 

TANH 

Number of 
Arguments 

2 

2 

2 

2 

2 

N ~ 2 

N ~ 2 

2 

1 

2 

Table 9. Intrinsic and Basic External Functions (cont.) 

Type of 
Argument 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Real 

Integer 

Real 

Integer 

Complex 

Real 

Real 

Real 

Real*8 

Real 

Real 

Real 

Type of 
Result 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Integer 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Real 

Definition of Function 

Logical OR (merge). 

Integer shift arithmetic. Arg1 is shifted left 
arithmetically the number of bits specified 
in arg2' If arg 2 is negative, the shift is to 
the right. 

Integer shift circular. Arg1 is shifted left 
circularly the number of bits specified in 
arg2' If arg2 is negative, the shift is to the 
right. 

Integer magnitude of arg) with sign of arg2' 
If arg2 is zero, the sign IS positive. Arg2 
is not converted to integer . 

Integer shift logical. Arg1 is shifted left 
logically the number of bits specified in 
arg2' If arg2 is- negative, the shift is to the 
right. 

Integer maxi mum val ue. 

Integer maximum value. 

Integer minimum value. All arguments are 
converted to and compared in integer. 

Integer minimum value. All arguments are 
converted to and compared in double 
precision. 

Arg1 (mod arg2)' Evaluated as 

argl - arg2 * [arg1/arg2J 

where the brackets indi cate integer part; 
i. e., the sign is the same as arg1' 
Function is undefined if arg2 = O. 

Real part of a complex number. 

Magnitude of arg 1 with sign of arg2' If 
arg

2 
is zero, the sign is positive. 

Sine of angle in radians. For complex, 
see CSIN. 

Hyperbolic cosine. For complex, see 
CSINH. 

Argument converted to a value with real 
(single) precision. 

Square root (positive va lue). For complex, 
see CSQRT. 

Tangent of angle in radians. For complex, 
see CTAN 

Hyperbolic tangent. For complex, see 
CTANH. 
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SLITET - Sense Light Test 

Form: 

CALL SLITET (n,v) 

where 

n is an integer constant or scalar variable specifying whi ch sense light is to be tested (1 :s n :s 4). 

v is an integer variable in which the result of the test wi II be stored. 

Sense light n is tested. If the sense light is on, the value 1 will be stored in Vi if it is off, the value 2 will be 
stored. Following the test, the sense light will be turned off. 

SLITE - Set Sense Light 

Form: 

CALL SLITE (n) 

where 

n is an integer constant or scalar variable (O:s n :s 4). 

If n is 0, all sense lights will be turned Offi if n is 1,2,3, or 4, the corresponding sense light will be turned on. 

OVERFL - Floating Overflow Test 

Form: 

CALL OVERFL (s) 

where 

is an integer variable into which will be stored the result of the test. 

If a floating overflow has occurred, s is set to 1 i if no overflow condition exists, s is set to 2. If a floating under
flow condition exists, s is set to 3. The machine is left in a no overflow (underflow) condition following the test. 
Overflow and underflow are defined in the Sigma computer reference manual. 

DVCHK - Divide Check 

Form: 

CALL DVCH K (s) 

where 

is an integer variable into which will be stored the result of the test. 

This is another entry to the OVERFL subprogram described above. 
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9. OPERATIONS 

FLAG operates under control of the Sigma 5/7 Batch Processing Monitor (BPM). Preparing a FLAG job for compila
tion or combined compilation and execution is a simple procedure requiring the preparation of a few control cards. 
This is one of FLAG's most attractive features, together with its foci lity for rapid compi lation and execution of 
programs. 

The user has a number of convenient processing options at his- disposal, all of which can be controlled by option codes 
on the FLAG control card. Option codes are explained later in this chapter in Table 10. 

Running a FLAG Job 

Figures 3 and 4 later in this chapter show sample deck setups for compiling and executing FLAG jobs. The JOB, 
ASSIGN, EOD, and FIN cards shown in the examples are standard BPM control cards. Many installations using 
BPM arrange for the computer operator to insert these control cards in the FLAG deck, the programmer supplying only 
the FLAG control card required for his job. 

The ASSIGN cards shown in the examples are necessary only if the programmer requires file or I/o device assignments 
different from the standard ones provided at his installation. The source program decks and EOD cards would be omit
ted if M:SI were not assigned to the card reader. That is, the program decks together with their appropriate end-of
data indications could be read from magnetic tape or disc. Detailed information on all control cards, except the 
FLAG card, is available in the Sigma 5/7 Batch Processing Monitor Reference Manual (SDS 90 09 54). 

The FLAG Control Card 

Every FLAG job must be preceded by a FLAG control card. Its format is 

The exclamation mark must be placed in column 1. The FLAG control command is usually begun in column 2, though 
it may begin in any column after the! character. The optioni are option codes that control processing and execution 
of the program. Option codes are not requiredi if none are specified, FLAG wi II perform certain operations by de
fault. If option codes are given, they must be separated by commas, and the first code must be preceded by at least 
one blank column. (The brackets around the option list shown above must not be entered on the card: they indicate 
only that the list of options is not required.) The option codes are given in Table 10. In Table 10, the notation 
DEFAULT indicates which options are in effect unless their complementary options have been selected. 

When the BJ option code is specified on the ! FLAG card, FLAG enters the batch job mode. In this mode, FLAG 
will successively compile and execute any number of separate FLAG programs, or IIsubjobs". Use of this option sub
stantially reduces the processing time required for each program in the job stream. 

Once FLAG has read the BJ option code on the! FLAG card it expects to find a :FLAG card immediately preceding 
each subjob. Figure 5 illustrates how the :FLAG card is used in batch processing. Format of the :FLAG card is 

:FLAG [(account number, name)] [,option
1
,option

2
,.·. ,optionnJ 

On this card the characters :FLAG must appear in columns 1-5. The user's account number and name are required 
on every :FLAG card if the AC option has been specified on the ! FLAG card; otherwise they are optional. All 
standard! FLAG option codes are valid on a :FLAG card except for NOBJ, AC, and NOAC. (The brackets around 
account number, name, and the list of option codes indicate only that these items are not required; the brackets are 
not actually entered on the card.) 
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r 
Any I/O unit number assignments in effect when the batch job run is started remain in effect for all subjobs. 

The source program deck for each subjob must be separated from its data by an :EOD card. (An IEOD card will also 
work but :EOD is preferred.) If no data is present, the :EOD card is still required to terminate the source program 
deck. 

The batch job stream is terminated by the first! control card encountered (other than :EOD). 

Option Code 

DB 

NODB 

GO 

NOGO 

LS 

NOLS 

BC 

NOBC 

LO 

NOLO 

AD 

NOAD 

CX 

NOCX 

M,!l 
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Table 10. FLAG Option Codes 

Meaning 

The program is compiled and executed in "debug" mode. 

The program is not compi led in "debug" mode. (DEFAULT) 

Note that use of the DB option will cause substantially more machine instructions to be 
generated for the program (typically 30 to 40% more), and that some programs that are 
too large to run with "debug" may be able to run without it. 

The program is executed when compilation is finished, whether or not errors have been 
detected during compilation. 

When compilation is finished, the program is not executed. This option allows syntax 
checking of the source program without execution. 

Note that if neither GO nor NOGO are specified, the compiled program will still be 
executed unless one or more serious errors have been detected during compilation. 

A printed listing of the FORTRAN statements in the source program is produced. (DEFAUL n 
No I isting of the source statements is produced. 

FLAG will compile a series of source programs, each followed by a single end-of-data 
(EOD) indication, until two successive end-of-data indications are encountered. Then 
the series will be executed, if appropriate. 

This option is mainly intended for use where a main program and subprograms are to be 
compiled as a unit but have been stored on magnetic tape, and therefore each program is 
followed by an EOD record. The BC option code alerts FLAG to this condition and pre
vents it from assuming "end-of-program" when a single EOD is encountered. 

FLAG will terminate compilation upon encountering an IEOD card or some other single 
end-of-data indicator. (DEFAULT) 

A machine-language I isting of the instructions generated by FLAG is produced in a for
mat similar to a Meta-Symbol listing. 

No machine-language I isting is produced. (DEFAUL n 
All REAL variables, constants, and functions are implicitly REAL *8; all COMPLEX vari
ables, constants, and functions are implicitly COMPLEX*16. This option is useful for 
analyzing the improvement in accuracy that results from double precision calculations. 

No "automatic double precision" is invoked. (DEFAUL n 
Source card-images containing an X in column 1, wi II have the X replaced by a space, 
and will be compiled by FLAG. 

Source card-images containing an X in column 1 will be treated as comment cards by 
FLAG. (DEFAULT) 

(Where!!.. is a digit 1 through 9) FLAG divides total available memory into two segments. 
One segment consists of the noninitialized variables that aie used iii the piogiam. The 
other segment contains the machine instructions generated for the program and also any 
variables that were initialized in a DATA statement. The!!.. value specifies how many 
tenths of the available memory are to be used for the noninitial ized data area. For ex
ample, M8 specifies that 8/10 of memory is to be used for non initial ized variables and 
2/10 is to be used for the program code and initialized variables. This option need not be 
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(cont .) 

BJ 

NOBJ 

AC 

NOAC 

TL = sss 

PL=ppp 

PS =nnn 
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Table 10. FLAG Option Codes (cont.) 

Meaning 

specified unless FLAG indicates by one of the following error messages that a memory 
size allocation problem has occurred: 

Error Message 

ARRAYS TOO LARGE 
PROGRAM TOO LARGE 
DICTIONARY OVERFLOW 
The default option is M7. 

Action to Take 

increase n 
decrease -n 
increase n 

Enter "batch job" mode. A sub job beginning with a :FLAG card must immediately follow 
the! FLAG control card. All subsequent subjobs must also begin with :FLAG cards. 

Run in standard (nonbatch) mode. (DEFAULT) 

Punch separate accounting records for each subjob in the batch. The AC option, when 
used, should appear on the! FLAG control card that initiates the batch run. 

No accounting records wi II be punched for sub jobs. (DEFAULT) 

Set time limit for current job or subjob, where sss is the number of seconds that the job 
may run. This time includes compilation and execution. 

Set page limit for current job or subjob, where ppp is the number of output pages that 
will be allowed. 

Note that if either the TL or PL option appears on a !FLAG control card that also has the 
BJ option, the value specified is used as the default limit for each of the subjobs that fol
low. Furthermore, the limit specified on a ! FLAG control card becomes the maximum 
limit that may be specified on a subjob's :FLAG control card. 

Set program size for current job or sub job, where nnnn is the number of words of memory 
that may be used to hold the program and any variables that were initialized in a DATA 
statement. The remainder of avai!able memory vIi!! be used to hold the noninitia!ized 
vqriables. The PS option is similar to the Mn option but allows for more accurate alloca
tion of memory size. The actual amount of memory used by the program and initialized 
variables is given at the end of the source program listing. 

When attempting to run very large programs, it is sometimes a good idea to make the first 
compilation using the NOGO and M9 options. When NOGO is specified no machine in
structions are stored into memory, hence substantially less memory is needed for the pro
gram and initialized variable area. The actual program size, which is listed at the end 
of the NOGO compilation, is correct and is the same as the size of the program when 
NOGO is not specified. If the actual total size is less than the available total size, it 
is possible to run the program, and the program should be submitted again, this time with 
the PS option set equal to the indicated size of the program and initialized variable area. 

Figure 3 shows the deck setup required for compiling and executing a single program. The !JOB card signals the 
beginning of a new job to BPM, and specifies that the job is to be run under account number 1234, the user is 
SHERROD, and the job has priority 1. 

As previously explained, the !ASSIGN card (with assignment codes) would be present only if the programmer re
quired nonstandard assignments. 

The! FLAG card summons the FLAG compiler to begin compilation of the source program. The option codes fol
lowing the FLAG command are explained in Table 10. Briefly, the codes shown in the example request the pro
gram to be compi led and executed in "debug ll mode (DB), execute the program when compi lation is finished 
regardless of errors (GO), produce a listing of the source program statements (LS), and produce a listing of the 
machine-language statements generated by the compi ler (LO). 

The! FLAG card is followed by the source program deck, in turn followed by an ! EOD card which indicates the end 
of the deck to the compiler. If the source program did not require a data deck, the! EOD card could be omitted 
and end-of-program could be indicated by some other terminator such as a ! FIN card or a new !JOB card. The 
source deck and its terminating! EOD card would be omitted if M:SI were not assigned to the card reader. 
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Figure 3. FLAG Job Setup - Single Program 

The source program deck can consist of either a single program or a main program followed by a number of subpro
grams. Either wi II compile and execute correctly. For the latter case, it is not necessary to use the BC option or 
separate the programs and subprograms with EOD cards as long as M:SI is assigned to the card reader. 

Figure 4 illustrates the deck setup for compiling and executing a series of independent programs in the batch job 
mode. The functions of the !JOB, !ASSIGN, and !FLAG cards are the same as explained for Figure 3. 

The BJ option on the !FLAG card specifies that FLAG is to enter the batch job mode. Each of the following pro
grams must then be preceded by a :FLAG card containing option codes, if appropriate, for the program. Note that 
each program deck is followed by an :EOD card, even source program number 2, which does not have a data deck. 
The series can continue indefinitly until terminated by a ! FIN card. 

FLAG Debug Mode 

If the user elects compilation and execution in "debug" mode (see FLAG DB option), the FLAG compiler will 
generate extra instructions in the compiled program so that program errors that cannot be detected during com
pilation will be detected during program execution. This enables the user to detect errors in program logic 
that otherwise might go undetected or cause unexplainable program failures. The following errors are reported 
by the "debug" option: 

1. Subscripts having values that are negative, zero, or larger than the specified dimension size. 

2. Inconsistencies in type or number of arguments passed to subprograms. 

3. Arithmetic underflow, overflow, and division by zero. (If the intrinsic subprogram DVCHK or OVERFL has 
been referenced, these conditions are not considered errors, and no debug error message will be produced.) 

Additionally, when any of the errors mentioned above is detected, or when an error is detected within an intrinsic 
subprogram or input/output routine, debug mode compilation will cause the program name and line number of the 
FORTRAN statement being executed to be listed, along with a listing of all subprogram calls in effect at the time 
of the error. 
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Figure 4. FLAG Job Setup - Multiple Programs in Batch Processing Mode 
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Statement 

ASSIGN 

Assignment 

BACKSPACE 

BLOCK DATA 

CALL 

COMMON 

COMPLEX 

CONTINUE 

DATA 

DECODE 

DIMENSION 

DO 

DOUBLE COMPLEX 

DOUBLE PRECISION 

ENCODE 

END 

END FILE 

EQUIVALENCE 

EXTERNAL 

FORMAT 

FUNCTION 

GOTO 

IF 

IMPLICIT 

INPUT 

INTEGER 

LOGICAL 

NAMELIST 
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APPENDIX A. FLAG STATEMENTS 

Executable Nonexecutab I e Page 

X 19 

X 16 

X 64 

X 76 

X 21 

X 70 

X 68 

X 25 

X 77 

X 60 
i i 

X 67 

X 22 

I 
X 

I 
68 

! 
X I 68 

i 

I 
X 60 

I 
X 26 

I 

I 
X 

I I 64 
I 

X I 73 

I X 76 

I 
X 37 

X 81 

X 18 

X 20 

X 67 

v 34 

I 
/\ 

X 68 

X 68 

X 32 



Statement Executable Nonexecutable Page 

[ OUTPUT X 33 

PAUSE X 25 

PRINT X 30,31 

PUNCH X 30 

READ X 29-32 

[ READ DISC X 63 

REAL X 68 

RETURN X 22 

REWIND X 64 

STOP X 25 

SUBROUTINE X 82 

Statement Function 
X 80 Definition 

WRITE X 29,31 

[ WRITE DISC X 63 
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APPENDIX B. DIAGNOSTIC MESSAGES 

listed below are all the diagnostic messages that FLAG can produce during compi lation or execution of programs. 
The messages are printed on the device assigned as M:LO, and are interspersed with th~ symbolic listing of the 
source statements. Many of the messages have a name or a statement number either inserted in the message or fol
lowing it to indicate the source of the error. Some messages are merely warnings to the programmer and will not 
cause the job to be aborted. Other messages are notifications of serious error; these will cause the job to be aborted 
once the compilation is completed. During compilation of a source program, messages that are only warnings are 
not printed unless compi lation is being performed in the debug mode (DB option). 

ABORTED INSTRUCTION = X'dddddddd' 
ACCOUNT # AN D NAME MISSING 
ACTUAL PROGRAM SIZE: 
ADDRESS OF ABORTED INSTRUCTION = X'ddddd' 
ARGUMENT NUMBER 
ARITH OVRFL: 
ARITHMETIC ASSIGNMENT STATEMENT 
ARRAYS TOO LARGE 
'ASSIGN' MISSPELLED 
ASSIGNMENT MEMORY SIZE: 

'BACKSPACE' MISSPELLED 
BAD HOLLERITH COUNT 
BAD REPEAT COUNT 
BLANK CARD IN PROGRAM 
'BLOCK DATA' NOT FIRST PROGRAM 
'BLOCK DATA' NOT FIRST STMNT 

CANNOT REACH STMNT : # 
CHANGED SIZE OF BLOCK 
CHANGED VALUE OF DO INDEX: 
COMMON AFTER DATA STMNT 
COMMON AFTER EQUIVALENCE 
COMMON EXTENDED BACKWARD BY xxxxx 
'COMMON'MISSPELLED 
'COMPLEX' MISSPELLED 
CO,ky1PLEX NO. RAISED TO NON-INTEGER POWER 
'CONTINUE' MISSPELLED 

DEGENERATE EQUIVALENCE GROUP 
DICTIONARY OVERFLOW 
'DIMENSION' MISSPELLED 
DIMENSIONED VARIABLE HAS NO SUBSCRIPT: 
DIV BY ZERO 
DO ENDS ON PREVIOUS STMNT 
DO INTERSECTS ANOTHER DO 
DO'S NESTED TOO DEEPLY 
'DOUBLE COMPLEX' MISSPELLED 
'DOUBLE PRECISION' MISSPELLED 
DUMMY IN EQUIVALENCE 
DUPLICATE STMNT # : 
DUPLICATE SUBPROGRAM NAME 

EARLIER STMNT TRANSFERS TO FORMAT. 
EFFECTIVE ADDRESS = X'ddddd' 
x ENCOUNTERED INSTEAD OF NAME 
END AND ERR OPTIONS NOT ALLOWED IN WRITE STMNT 
'END FILE' MISSPELLED 
EQUAL SIGN MISSING 
EQUIVALENCE AFTER DATA INITIALIZATION 
EQUIVALENCE CONTRADICTION. 

100 Appendix B 



'EQUIVALENCE' MISSPELLED 
ERROR IN ABS READ FROM DO 
ERROR IN IMPLIED DO 
ERROR TO LEFT OF EQUAL SIGN. 
ERRORED AT LINE # 
IXXXXI EXCEEDS 5 DIGITS 
IXXXXI EXCEEDS 6 CHARS. 
EXCESS INFORMATION IGNORED 
EXECUTABLE STMNT IN BLOCK DATA 
EXPRESSION MUST BE INTEGER OR REAL 
'EXTERNAL' MISSPELLED 
EXTRA COMMA 
EXTRA IMPLICIT IGNORED 

FLAG VERSION 34 
FORMAT ARRAY NOT DIMENSIONED: 
I FORMA P MISSPELLED. 
FORMA T MUST HAVE STMNT # • 
FORMAT NOT USED: # 
FUNCTION HAS NO DUMMIES 
FUNCTION HAS TOO MANY ARGUMENTS: 
'FUNCTION' MISSPELLED 
'FUNCTION' STMNT NOT FIRST STMNT 

ILLEGAL ARGUMENT TYPE IN 
ILLEGAL EQUIVALENCE OF xxxxxxxx TO xxxxx 
ILLEGAL EXPONENTIATION POWER 
ILLEGAL SUBSCRIPT VALUE 
**ILLEGAL TRAP ••• JOB ABORTED 
ILLEGAL TYPE WITH RELATIONAL 
ILLEGAL USE OF '.NOT.' 
ILLEGAL USE OF COMMA 
ILLEGAL USE OF DIMENSIONED VARIABLE: 
ILLOGICAL EXPRESSION 
'IMPLICIT' MISPLACED 
'IMPLICIT' MISSPELLED 
IMPROPER STMNT WITH LOGICAL IF 
INCOMPLETE DATA. 
'INPUT' MISSPELLED 
'INTEGER' MISSPELLED 
INTEGER TOO BIG 
INVALID ARGUMENT 
INVALID ARGUMENT TO xxxx 
INVALID COMPLEX CONSTANT. 
INVALID DATA VALUE. 
INVALID DELIMITER 
INVALID DIMENSION SIZE 
INVALID EXPONENT 
INVALID EXPRESSION 
INVALID FLAG-CARD OPTION ••. JOB ABORTED. 
INVALID FORMAT SYNTAX 
xx INVALID IN CALL TO xxxx 
INVALID LOGICAL OPERATOR 
INVALID MESSAGE IN PAUSE STMNT 
INVALID MODE. 
INVALID 2ND USE OF xxxxx 
INVALID SIZE SPECIFICATION 
INVALID STMNT # 
INVALID SYNTAX 
INVALID SYNTAX IN I/O LIST 
INVALID TERMINAL STMNT OF DO LOOP 
I/O DEVICE # MISSING 
10 DEVICE # MUST BE UNSIGNED INTEGER 
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'LOGICAL' MISSPELLED 
LOGICAL MODE WITH ARITHMETIC OPERATOR 

**MAX PAGES OUT ••• JOB ABORTED 
**MAX TIME ••• JOB ABORTED 
MISALIGNED DOUBLE-WORD VARIABLE: 
MISMATCHED PARENS 
MISPLACED DECLARATIVE 5TMNT. 
MISPLACED OPERATOR 
MISSING COMMA 
MISSING DELIMITERS 
MISSING END STATEMENT 
MISSING :EOD CARD ••• THAT'S A NO NO ••• JOB ABORTED 
MISSING FORMAT: # 
MISSING OPEN PAREN 
MISSING OPERATOR 
MISSING OR INVALID INDEX VARIABLE 
MISSING OR INVALID INITIAL DO VALUE 
MISSING SIZE SEPCIFICA TION 
MISSING SLASH 
MISSING STMNT : # 
MISSING SUBPROGRAM: 
MIXED LOGICAL & ARITH EXPRESSIONS 
MIXED PRECISION COMPLEX CONSTANT 
MORE THAN 1 MAIN PROGRAM 
MUST BE INTEGER: 
MUST BE UNSIGNED INTEGER CONSTANT 

NAMELIST CONTAINS DUMMY VARIABLE: 
'NAME LIST' MISSPELLED 
NAME PREVIOUSLY USED AS FUNCTION: 
NO DIMENSIONING INFORMATION 
NO to/lAIN PROGRAM 
NON-ALPHABETIC ORDER. 
NON-DIMENSIONED VARIABLE HAS SUBSCRIPT: 
NON-DUMMY HAS VARIABLE DIMENSION: 
NON-INITIALIZED DATA = 
NUMBER EXCEEDS LIMITS 
NUMBER OF FATAL ERRORS DETECTED = 
NUMBER OF NAMES DOES NOT MATCH NUMBER OF VALUES. 

1 OR MORE INVALID CHARS SKIPPED 
ONLY DIGITS MAY FOLLOW 'STOP' 
ONLY 1 ARGUMENT TO xxxx 
OPERATOR FOLLOWS OPERATOR 
'OUTPUT' MISSPELLED 
OVER 7 DIMENSIONS 
OVER 7 SUBSCRIPTS 
OVER 19 CONTINUATION CARDS ••• JOB ABORTED 

PREVIOUS STMNT TRANSFERS INTO DO LOOP 
PROGRAM AND INITIALIZED DATA = 
PROGRAM EXECUTION NOT ATTEMPTED 
PROGRAM HAS INPUT STMNT BUT NO NAME LIST STMNT 
PROGRAM TOO LARGE 

'RETURN' MISSPE LLE D 
RETURN STMNT IN MAIN PROGRAM 
'REWIND' MISSPELLED 

STATEMENT MUST BEGIN WITH A LETTER 
STMNT NUMBERS MISSING 
SUBPROGRAM CALLS ITSELF: 
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SUBPROGRAM NOT USED: 
ISUBROUTINEI MISSPELLED 
'SUBROUTINEI STMNT NOT FIRST STMNT 
SUBSCRIPT HAS ILLEGAL MODE 
SUBSCRIPT MUST BE INTEGER CONSTANT 
SUBSCRIPT OUT OF RANGE 
SUBSCRIPT OUT OF RANGEl LINE # 

TOO MANY I/O UNIT-NUMBER ASSIGNMENTS 
TOTAL = 
TRANSFER STMNT ENDS DO LOOP 
TRANSFERS INTO DO LOOP AT STMNT # 
TRANSFERS TO FORMAT: # 
TRANSFERS TO NONEXECUTABLE STMNT : # 
TRANSFERS TO SELF 
TYPE ALREADY ASSIGNED: 

UNDEFINED VARIABLE: 
UNIMPLEMENTED SIZE IGNORED 
UNIMPLEMENTED STATEMENT 
UNNUMBERED CONTINUE STMNT 
UNNUMBERED STMNT FOLLOWS RETURN 
UNNUMBERED STMNT FOLLOWS STOP 
UNNUMBERED STMNT FOLLOWS TRANSFER 
UNRECOGNIZABLE STATEMENT 
UNSATISFIED DO : # 
UNTERMINATED QUOTE FIELD 
USE CONFLICTS WITH PRIOR DECLARA nON: 

VALUE NOT SAME TYPE AS xxxx 
VARIABLE ALREADY DIMENSIONED: 
VARIABLE ALREADY IN COMMON: 
VARIABLE APPEARS fvVICE IN DUMMY LIST 
VARIABLE DECLARED BUT NOT USED: 
VARIABLE DEFINED BUT NOT USED: 
VARIABLE MAY NOT BE DIMENSIONED: 

WRONG NUMBER OF ARGS TO xxxx 
WRONG NUMBER OF ARGUMENTS 
WRONG NUMBER OF SUBSCRIPTS 
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Note: For each entry in this index, the number of the most significant page is I isted first. Any pages thereafter are listed 
in numeri ca I sequence. 

&k (statement label argument), 84 
*END*, 34,36 
*n size modifier, 69 
* (asterisk) as output list item, 34 
* (asteri sk) chara cter, 36 
* (asterisks) in subroutine statements, 22 
, (comma) field termination, 56 
$ (dollar sign) character, 2 
() (parentheses), 11, 14, 15 
+ (plus) character for overprinting, 64 
II (quotes), 7 
I format, 47 
/ (slash) specification, 51 

A 
A format, 43 
addition, 11 
adjustable dimensions, 85 
adjustable FORMAT specifications, 53 
ampersand k (statement label argument), 84 
arguments, 9,83 
arguments and dummies, correspondences between, 83 
arithmetic expressions, 10, 13 
array 

declarations, 66 
elements, 8 
references to, 66 
storage, 66 
variable, 8 
formats stored in, 58 

ASSIGN control card, 28,29,93 
ASSIGN statement, 19 
assignment statement, 16 
asterisk (*), as output list item, 34 
asteri sk character, 36 
asterisk n size modifier, 69 
asterisks in SUBROUTINE statements, 22 
auxi Iiery input/output statements, 63,27 

B 

BACKSPACE, 64 
END FILE, 64 
REWIND, 64 

BACKSPACE statement, 64,62 
basic external functions, 80 
BCD record size, 29 
blank COMMON, 70,71,79 
blanks, 2,7,8 
BLOCK DATA 

statement, 76, 80 
subprogram, 76, 79 

BUFFER IN, 62,61 
BUFFER OUT, 62,61 
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c 
CALL statement, 21,65,80,82 
carriage control for printed output, 64 
character 

set, 2 
strings, 34,36,43,47,60 

classification of identifiers, 65 
cod i ng form, 2, 1 
comma field-termination, 56 
comment lines, 2 
COMMON block, 76 
COMMON statement, 70,65,66,75,79 
COMMON storage, 70 

arrangement of, 72 
displacement of variables in, 73 
referencing of data in, 73 

COMPLEX 
explicit type statement, 68 
IMPLICIT type declaration, 67 
type specification, 81 
*16 size specification, 69 
*8 size specifi cation, 69 

complex constants, 6,78 
~~ __ I~._ ...I_L_ t;. 
~VllltJll::)\' UUIU, .,J 

complex variables, 36 
conditional compi lation, 3 
conflicting and redundant declarations, 65 
constants, 5 
continuation lines, 2,4 
CONTINUE statement, 25 
control statements, 18 

ASSIGN, 19 
CALL, 21,65,80,82 
CONTINUE, 25 
DO, 22 
END, 26 
GO TO, 18 
IF, 20 
PAUSE, 25 
RETURN, 22,81,82 
STOP, 25 

CX option, 4 

o 
D format, 40 
data, 5,69 
DATA 

constant list, 78,68 
statement, 77,65,79 
variable list, 77 

data size specifications, optiona I, 69 
debug mode, 96,86,100 
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declaration statements, 65 
array, 66 
BLOCK DATA, 76,80 
COMMON, 70,65,66,75,79 
DATA, 77,65,79 
DIMENSION, 67,66,74,79 
EQUIVALENCE, 73,65,75,79 
EXTERNAL, 76,79 
explicit type, 68,66 
IMPLICIT, 67,65,79 
NAME LIST, 32,35,65,79 
placement and order of, 79 

DECODE statement, 60,37,59 
device unit number, 28 
diagnosti c messages, 100,79 
DIMENSION statement, 67,66,74,79 
direct input/output, 61 
division, 11 
DO loop, 23 

nesting, 24 
range, 23,24 

DO statement, 22 
DO-implied list items, 27 
dollar sign ($) character, 2 
DOUBLE COMPLEX 

explicit type statement, 68 
IMPLICIT type declaration, 67 
type specification, 81 

double complex constants, 7 
double complex data, 5 
DOUBLE PRECISION 

expl i cit type statement, 68 
IMPLICIT type declaration, 67 
type specification, 81 

double precision constants, 6,78 
double precision data, 5 
double precision variables, 36 
dummies, 83 
dummy 

E 

argument, 81 
array, 84,85,86 
list, 65 
scalars, 84 
subprograms, 86 

E format, 39,41,42 
EBCDIC character set, 2 
ENCODE statement, 60,37,59 
END and ERR forms of READ statements, 32 
END FILE statement, 64 
END statement, 26 
ENTRY statement, 80 
EOD card, 94 
equal sign, 65 
EQUIVALENCE statement, 73,65,70,75,79 
evaluation of logical expressions, 14 

executable program, 80 
executable statements, 1 
expl i cit declarati ons, 65 
explicit type statements, 68,66 
exponent, 6 
exponentiation, 12, 11, 13 
expression eva luation hierarchy 

arithmetic, 10 
mixed, 15 

expression modes, 16 
expressions, 10 
extended input/output, 59 
EXTERNAL statement, 76,79 

F 
F format, 38, 41, 42 
FALSE, 7, 13, 14,36,43 
FLAG control card, 93 
FORMAT and list interfacing, 57 
FORMAT specifi cations, 37 

A, 43 
adjustable, 53 
D, 40 
E, 39,41,42 
F, 38,41,42 
G,40 
H,47 
I, 42 
L, 42 
M,46 
P, 49 
parenthesized, 52 
quote (I), 47 
R, 44,46 
slash (/), 51 
stored in arrays, 58 
T, 49 
X, 48,49 
Z,45 

FORMAT statement, 37,27 
FORMA T -free READ and PRINT statements, 31 
formatted (BCD) input/output, 37 
FORTRAN II statements, 30 
FUNCTION 

statement, 81,80 
subprograms, 81,80,83 
subprograms, basic external, 86 

functions, 80,9 

G 

G format, 40 
GO TO statement, 18 

assigned, 18 
computed, 19 
unconditional, 18 
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H J 
H format, 47 
hexadecimal constants, 78 
Hollerith information, 44 

I format, 42 
identifiers, 8 

classification of, 65 
IF statement, 20 

arithmetic, 20 
logical, 20 

IJKLMN rule, 8,65,67 
implicit declarations, 65 
IMPLICIT statement, 67,65,79 
implicit data-type conventions, 8 
INPUT statement, 34,32 
input strings, numeric, 54 
input/output, 27 

direct, 61 
extended, 59 

input/output lists, 27 
input/output statements, 28 

auxiliary, 63 
BACKSPACE, 64,62 
BUFFER IN, 62,61 
RIII=I=I=R (JIlT I,,? I" 1 __ "_I~ ........ ......,., ""_,"". 

DECODE, 60,37,59 
direct, 61 
ENCODE, 60,37,59 
END and ERR forms of READ, 32 
END FILE, 64 
FORt'jAT, 37,27 
FORMAT-free READ and PRINT, 31 
formatted, 29 
INPUT, 34,32 
intermediate, 31 
OUTPUT, 33,36 
PRINT, 30 
PUNCH, 30 
random access, 63 
READ, 29-32,27,63 
READ DISC, 63 
REWIND, 64 
unit assignments, 28,94 
WRITE, 29,27,31,63 
WRITE DISC, 63 

INTEGER 
explicit type statement, 68 
IMPLICIT type declaration, 67 
type specification, 81 
*4 size specification, 69 

integer constants, 5,78 
integer data, 5 
integer variables, 36 
intermediate storage, 61 
internal buffer, 61 
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L 
L format, 42 
labeled COMMON, 71,76,79 
labels (see "statement labels") 
library functions, 65 
I ibrary subprograms, 86 
list considerations, 28 
list items, 27 
I itera I constant, 7, 78, 85 
literal data, 5 
LOGICAL 

expl i cit type statement, 68 
IMPLICIT type declaration, 67 
type specification, 81 
*4 size specification, 69 

logical 

M 

constant, 7, 14,78 
data, 5 
expression, 14, 15 
function reference, 14 
opere/tors, 14, 15 
record, 31,61,62 
variable, 36, 14 

M format, 46 
main programs, 80 
memory-to-memory data conversion, 59 
mixed expressions, 12, 16 

mode of, 12 
multiple data identifiers, 27 
multiplication, 11 

N 
N in a format specification, 53,57,58 
NAME LIST statement, 32,35,65,79 
nonexecutable statements, 1 
nonstandard unit assignments, 28,94 
numeric constants, 78 
numeric input 

width specified, 56 
width less, 55 

numeric input strings, 54 

n 
U 

operands, 10 
operations, 93 
operators 

arithmetic, 10, 11 
logical, 14, 15 
relational, 13 

option codes, 93,94 
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optional data size specifications, 69 
output format specifications, 34 
OUTPUT statement, 33,36 

p 
P specification, 49 
parentheses, 11, 14, 15 
parenthesized FORMAT specifications, 52 
PAU SE statement, 25 
plus (+) character for overprinting, 64 
precedence of operations (see expression evaluation hierarchy) 
PRINT statement, 30 

FORMAT-free, 31 
program errors, 96 
programs and subprograms, 80 
PUNCH statement, 30 

o 
quotation marks, 7 
quote (I) format, 47 

R 
R format, 44,46 
random access input/output statements, 63 
READ DISC statement, 63 
READ statement, 29-32,27,63 

binary, 31,61 
END and ERR forms of, 32 
FORMAT -free, 31 
formatted, 29,61 

REAL 
explicit type statement, 68 
IMPLICIT type declaration, 67 
type specification, 81 
*4 size specification, 69 
*8 size specification, 69 

real constants, 6,78 
real data, 5 
real variables, 36 
references to array elements, 66 
relational expression, 13, 14 
relational operators, 13 
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SUBROUTINE subroutines, 80 
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T specification, 49 
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