
Preliminary
SCP 86-DOS

Single-User Disk Operating System for the 8086

Introduction

86-DOS provides the tools needed to develop programs for the 8086, as
well as a hardware-independent environment in which to run these programs. It
is a very modular system. At its core is the disk file manager and I/O device
handler, and everything else is considered a "user program". This allows the
system to be easily tailored to any custom requirements.

The disk file manager allows programs to create and access disk files
by name. Files may be read or written sequentially or randomly, any number of
records at a time. File space on the disk is allocated dynamically, so that
no "compaction" phase is ever required.

A program called COMMAND provides the interface between the user at
the console and the file manager. COMMAND allows the user to display the disk
directory, rename, destroy, or copy files, and execute other programs, such
as the assembler, editor, or source code translator.

The assembler reads a source file of Intel-like 8086 mnemonics from
disk, and produces a listing file and an Intel hex format object file. The
program HEX2BIN may be used to convert the hex file to executable binary
form.

The editor is line oriented, suitable for creating and maintaining
program files. "Dynamic" line numbers, which are not actually present in the
text, are used to identify lines to be listed, deleted, edited, etc. Global
searching and global text replacement are also provided. After editing a
file, the original file (before editing) is preserved as a back-up.

The source code translator can translate most Z80 source code into
8086 source code acceptable to the assembler after minor manual correction.
This provides a relatively quick and easy way to transport programs between,
the processors.

A debugger is not yet provided with 86-DOS. The SCP 8086 Monitor
provides good debugging aids in the interim.

SPECIAL NOTE: 86-DOS is not related to the popular CP/M operating system of
Digital Research. Disk directory formatting and space allocation are
completely different and incompatible. 86-DOS does, however, provide a
utility called RDCPM which will transfer files from CP/M disks to 86-DOS
disks. Further, operating system calls and calling conventions have been
provided which make possible automatic translation of Z80 programs written
for CP/M into 8086 programs that run under 86-DOS.

Operating System Calls

The purpose of the operating system core is to provide a high-level,
hardware independent interface between a user program and its hardware
environment. Most functions that the user may request can be grouped into two
categories: simple device I/O and disk file I/O.

The simple I/O functions are:

Input console character
Output console character
Input from auxiliary
Output to auxiliary
Output to printer
Output character string to console
Input Buffered line from console
Check console for input character ready

The disk I/O functions include:

Reset disk system
Select default disk
Scan disk directory
Create file
Open file
Close file
Delete file
Rename file
Read/Write file record(s)
Set disk transfer address

Interrupt Table Usage

The first 1K of memory, absolute address 00000 to 003FF hex, is
reserved by the BOB6 for the interrupt table. Within this table, locations
OOOBO to OOOFF, which correspond to interrupt types 20 to 3F hex, are
reserved for B6-DOS. Specific interrupt types have been defined as follows
(types in hex):

20 - Program terminate. The terminate and Ctrl-C Exit addresses are restored
to the values they had on entry to the terminating program. All file buffers
are flushed, but files which have been changed in length but not closed will
not be recorded properly in the disk directory. Control .transfers to the
Terminate address.

21 - Function request. See "Requesting a Function", below.

22 - Terminate address. On entry to a program, this is the address to which
control will transfer when the program terminates. This address is copied
into low memory in the program segment when it is created by Function 3B. A
program may change this address, but this does not affect what happens when
it terminates, since the Terminate address is restored from the copy in the
program segment. If the program executes a second program, it must set the
Terminate address to the location that the second program will transfer to on
termination. If this is all clear to you, you will have no trouble
understanding the rest of this manual.

23 - Ctrl-C Exit address. If the user at the console types Ctrl-C during
console input or output, an interrupt type 23 hex is executed. If the Ctrl-C
routine preserves all registers, it may end with a return-from-interrupt
instruction (IRET) to continue program execution. If the Ctrl-C handler does
nothing but an "IRET", Ctrl-C will appear to have no effect.

If the program executes a second program which itself changes the
Ctrl-C Exit address, then on termination of the second program and return to
the first, the Ctrl-C address is restored to value it had before the second
program changed it.

25 - Absolute disk read. Control transfers directly to the I/O system disk
read routine. On return, the original flags are still on the stack (put there
by the INT instruction), which is necessary because return information is
passed back in the flags. Be sure to pop the stack to prevent uncontrolled
growth.

26 - Absolute disk write. See above.

Requesting a Function

The user program requests a function by putting a function number in
the AH register, possibly setting another register according to the function
specifications, and performing an interrupt type 21 hex. When B6-DOS takes
control it switches to an internal stack and saves all the user's registers
except AL. Thus the user's stack need only enough space to perform the
interrupt (6 bytes), and all registers, including the flags but excepting AL,
will be unchanged on return unless noted otherwise in the function
specification.

The Standard Functions (as opposed to the Extended Functions), whose
function numbers are 36 or less, are also available through a different call
mechanism. The function number is placed in the CL register, any other
registers are set in their usual way according to he function specifications,
and a normal (intra-segment) "call" is made to location 5 in the current code
segment. Register AX is always destroyed by this calling method, but
otherwise it is the same as the normal (interrupt) method. This form is
provided to simplify translation of BOBO/ZBO programs into BOB6 code, and is
not recommended for new programs.

Simple Device I/O Functions

1 - Console input. Waits for a character to be typed on the console, then
echos the character (as in Function 2) and returns it in AL. The character is
checked for a control function as described in Function 2 below.

2 - Console output. The character in register DL is output to the console.
Control characters other than carriage return, linefeed, backspace, and tab
are displayed as an up-arrow followed by the associated letter. Tabs are
expanded in columns of B. Rubout (7F hex) is output but is not counted in tab
counting. After output, the console is checked for a control function:

Ctrl-S suspends everything until any key is typed.

Ctrl-P sends all console output to the printer also.

Ctrl-N stops sending output to the printer.

Ctrl-C causes an interrupt to the Ctrl-C address.

3 - Auxiliary input. Waits for a character from the auxiliary input device,
then returns that character in AL.

4 - Auxiliary output. The character in DL is output to the auxiliary output
device.

5 - Printer output. The character in DL is output to the printer.

6 - Direct Console I/O. If DL is FF hex, then AL returns with a console input
character if one is ready, otherwise 00. If DL is not FF hex, then DL is
assumed to have a valid character which is output to the console.

9 - Print string. On entry, DS:DX must point to a character string in memory
terminated by a "$" (24 hex). Each character in the string will be output to
the console in same form as Function 2, including subsequent status check.

10 - Buffered console input. On entry, DS:DX point to an input buffer. The
first byte must not be zero and specifies the number of characters the buffer
can hold. Characters are read from the console and placed in the buffer
beginning with the third byte. Reading the console and filling the buffer
continues until carriage return is typed. If the buffer fills to one less
than maximum, then additional console input is ignored until a carriage
return is received. The second byte of the buffer is set to the number of
characters received excluding the carriage return (OD hex), which is always
the last one.

A number of control functions are recognized while reading the
console:

Tab, Ctrl-S, Ctrl-P, Ctrl-N, Ctrl-C have the same effects as listed
under Function 2.

Rubout, delete, backspace, Ctrl-H (7F hex or 08 hex): Backspace.
Removes the last character from the input buffer and erases it from the
console.

Linefeed, Ctrl-J (10 hex): Physical end-of-line. Outputs a carriage.
return and linefeed but does not effect the input buffer.

Ctrl-X (18 hex): Cancel line. Outputs a back slash, carriage return,
and linefeed and resets the input buffer to empty.

SPECIAL EDITTING COMMANDS. A number of special editing commands are
available to the user entering a line at the console. All of these involve a
"template", which is a valid input line available to the user for
modification. There are two ways to obtain a template.

If the input buffer already contained a valid input line on entry to
Function 10, then this is a template. A valid input line is one in which the
character count at the second byte of the buffer is less than the buffer
length, and a carriage return (OD hex) immediately follows the text in the
buffer. Note that a buffer that has previously been used for input and has
not been modified will meet these requirements.

The user at the console may also create a template. One of the
editing commands is to convert that part of the line entered so far into the
template, and restart the line entry. This allows an error near the start of
a line to be corrected without retyping the rest of the line.

Each editing command is selected by typing ESCAPE and a letter. Since
many terminals provide keys which produce such an "escape code" with a single
keystroke, the letter used after the ESCAPE may be set for each command
during 86-DOS customization. The standard escape sequences correspond to the
special function keys of a VT-52 or similar terminal, as noted in each case
by parentheses.

ESC S (F1) - Copy one character from the template to the new line.

ESC T (F2) - Must be followed by any character. Copies all characters
from the template to the new line, up to but not including the next
occurrence in the template of the specified character. If the specified
character does not occur, nothing is copied to the new line.

ESC U (F3) - Copy all remaining characters in the template to the new
line.

ESC V (F4) - Skip over one character in the template.

ESC W (F5) - Must be followed by any character. Skips over all
characters in the template, up to but not including the next occurrence in
the template of the specified character. If the specified character does not
occur, no characters are skipped.

ESC P (BLUE) - Enter insert mode. As additional characters are typed,
the current position in the template will not advance.

ESC Q (RED) - Exit insert mode. The position in the template is
advanced for each character typed. When editing begins, this mode is selected
by default.

ESC R (GRAY) - Make the new line the template. Prints an "@", a
carriage return, and a line feed. Buffer is set to empty and insert mode is
turned off.

11 - Check console status. If a character is waiting at the console, AL will
be FF hex on return. Otherwise, AL will be 00.

Disk I/O Functions

Disk files are identified by a disk drive code, a file name of up to
8 characters, and an extension of up to 3 characters. The drive code may
explicitly specify a drive, or the default drive may be used. Case is
lrrelevent in the file name or extension, since only upper case is used
internally. If the file name or extension includes a question mark ("?") in
any position, then that position will match any character. Thus a single file
name with embedded question marks may match more than one directory entry.

Generally, functions operating on disk files will use a File Control
Block, or FCB. The FCB is a 33- or 35-byte segment of memory with information
about a file, formatted as follows:

BYTE 0 - Drive Code. Zero specifies the default drive, 1=drive A, 2=drive B,
etc. Note that other functions which use a drive number use O=drive A,
1=drive B, etc.

BYTES 1-8 - File Name. If the file name is less than 8 characters, the name
must be left justified with trailing blanks.

BYTES 9-11 - Extension. If less than 3 characters, must be left justified
with trailing blanks. May also be all blanks.

BYTES 12-13 - Current Block. This word (low byte first) specifies the current
16K block, relative the start of the file, in which sequential disk reads and
writes occur. If zero, then the first 16K of the file is being accessed; if
one, then the second 16K; etc. Combined with the current record field, byte
32, a particular 128-byte record is identified.

BYTES 14-31
closed.

Reserved for system use once the file is opened and until it is

BYTE 32 - Current Record. Identifies the record within the current 16K block
that will be accessed with a sequential read or write function.

BYTES 33-34 - Random Record. This word (low byte first) need be present only
when the file is accessed with a random read or write function. This 16-bit
number is the position in the file of a 128-byte record.

Notice that there are two ways to address a -record within a file. The
Current Block and Current Record fields together address a record when the
file is accessed with the sequential read and write functions. The Random
Record field addresses a record when the file is accessed with the random
read and write functions. The appropriate fields may be set before either a
sequential or random transfer to select the next record to be accessed.

An unopened FCB is one in which only the first 12 bytes have been
filled in, i.e., name and drive code. An opened FeB is one that has been
through a successful open or create operation (Functions 15 or 22) and has
its Random Record or Current Block/Current Record fields set as necessary.

13 - Disk reset. Selects drive A as the default drive, sets the disk transfer
address to DS:80 hex, and 'flushes all file buffers. Files which have been
changed in size will not be properly recorded in the disk directory until
they are closed. This function need not be called before a disk change if all
files which have been written to are closed.

14 - Select disk. The drive specified in DL (O=A, 1=B, etc.) is selected as
the default disk.

15 - Open file. On entry, DS:DX point to an unopened FCB. The disk directory
is searched for the named file and AL returns FF hex if it is not found. If
it is found, AL will return a 00 and the FCB is filled as follows:

If the Drive Code was zero (default disk), it is changed to actual
disk used (A=1, B=2, etc.). This allows changing the default disk without
interfering with subsequent operations on the file.

The Current Block field is set to zero.

All remaining fields, up to but not including the Current Record
field, are filled with system information. It is the calling program's
responsibility to set the Current Record or Random Record fields as
necessary.

16 - Close file. This function must be called after file writes to insure all
directory information is updated. On entry, DS:DX point to an opened FCB. The
disk directory is searched and if the file is found, its position is compared
with that kept in the FCB. If the file is not found in its correct position .
in the directory, it is assumed the disk has been changed and AL returns FF
hex. Otherwise, the directory update is completed and AL returns 00.

17 - Search for first entry. On entry, DS:DX point to an unopened FCB. The
disk directory is searched for the first matching name and if none are found,
AL returns FF hex. Otherwise, the first 16 bytes at the current disk transfer
address are filled with the dirctory entry and AL returns 00. The first 11
bytes are the 8-character file name and 3-character extension.

18 - Search for next entry. After Function 17 has been called and found a
match, Function 18 may be called to find the next match in the directory.
Additional matches will be found because of duplicate names or because of
"?"s appearing in the file name. Return information is the same as Function
17. Since the file name was copied into an internal buffer by Function 17, no
parameters are required, but also no intervening disk operations may occur
between a call to Function 18 and the previous call to Function '17 or 18.

19 - Delete file. On entry, DS:DX point to an unopened FCB. All matching
directory entries are deleted. If no directory entries match, AL returns FF,
otherwise AL returns 00.

20 - Sequential read. On entry, DS:DX point to an opened FCB. The 12B-byte
record addressed by the Current Block and Current Record fields is loaded at
the disk transfer address, then the record address in incremented. If
end-of-file in encountered, AL returns 01, otherwise AL returns 00.

21 - Sequential write. On entry, DS:DX point to an opened FCB. The 12B-byte
record addressed by the Current Block and Current Record fields is written
from the disk transfer address, then the record address in incremented. If
the disk is full, AL returns 01, otherwise AL returns 00.

22 - Create file. On entry, DS:DX point to an unopened FCB. The disk
directory is searched for an empty entry, and AL returns FF hex if none is
found. Otherwise, the entry is initialized to a zero-length file, the file is
opened (see Function 15), and AL returns 00.

23 - Rename file. On entry, DS:DX point to a modified FCB which has a drive
code and file name in the usual position, and a second file name starting 6
bytes after the first (DS:DX+17) in what is normally reserved area. Every
matching occurence of the first file name is changed to the second name. If
question marks (3F hex) appear in the second file name, then the
corresponding positions in the original name will be unchanged. AL returns FF
hex if no match was found, otherwise 00.

25 - Current disk. AL returns with the code of the current default drive
CO=A, 1=B, etc.).

26 - Set disk transfer address. The disk transfer address is set to DS:DX.

27 - Allocation table address. On return, DS:BX point to the allocation table
for the current drive, DX has the number of allocation units, and AL has the
number of records per allocation unit. This function is intended only for
system utilities written by SCP.

31 - Disk parameter address. On return, DS:BX point to an internal table of
parameters for the current default disk. This function is intended only for
system utilities written by SCP.

33 - Random read. On entry, DS:DX point to an opened FCB. The Current Block
and Current Record are set to agree with the Random Record field, then the
128-byte record addressed by these fields is loaded at the disk transfer
address. If end-of-file is encountered, AL returns 01, otherwise AL returns
00.

34 - Random write. On entry, DS:DX point to an opened FCB. The Current Block
and Current Record are set to agree with the Random Record field, then the
128-byte record addressed by these fields is written from the disk transfer
address. If the disk is full, AL returns 01, otherwise AL returns 00.

35 - File size. On entry, DS:DX point to an unopened FCB. The disk directory
is searched for the first matching entry and if none is found, AL returns FF
hex. Otherwise the Random Record field is set with the size of the file (in
128-byte records) and AL returns 00.

36 - Set Random Record field. On entry, DS:DX point to an opened FCB. This
function sets the Random Record field to the same file address as the Current
Block and Current Record fields.

39 - Random block read. On entry. DS:DX point to an opened FCB, and CX
contains a record count which must not be zero. The specified number of
records are read from the file address specified by the Random' Record field
into the disk transfer address. If end-of-file is reached before all records
have been read. then AL returns 01. If wrap-around above address FFFF hex in
the disk transfer segment would occur. as many records as possible are read
and AL returns 02. If all records are read successfully, AL returns 00. In
any case, CX returns with the actual number of records read, and the Random,
Record and Current Block/Current Record fields are set to address the next
record (the first record NOT read).

40 - Random block write. Essentially the same as Function 39 above. except
for writing. If there is insufficient space on the disk. AL returns 01 and no
records are written. If CX is zero on entry, then no records are written. but
the file is truncated at that point. i.e., all records beginning with the one
addressed by the Random Record field are released to free space.

Miscellaneous Functions

o - Program terminate. The Terminate and Ctrl-C Exit addresses are restored
to the values they had on entry to the terminating program. All file buffers
are flushed, but files which have been changed in length but not closed will
NOT be recorded properly in the disk directory. Control transfers to the
Terminate address.

37 - Set vector. The interrupt type specified in AL is set to vector to the
address DS:DX.

38 - Create new program segment. On entry, DX has the segment number at which
to set up a new program segment. The entire 100 hex area at location zero in
the current program segment is copied into location zero of the new program
segment. The memory size information at location 6 is updated, and the
current Terminate and Ctrl-C Exit addresses are saved in the new program
segment starting at OA hex.

Running a User Program

The! operating system core provides no direct means to run user
programs. Ipstead, to run a given program represented by a disk file, the
file must b~ opened and read into memory using the normal system functions.
These functions are requested by the user program that is currently running.

The first user program to run is the initialization routine that
follows a system boot, which normally loads and executes the file
COMMAND. COM. This is a user program that accepts commands from the console
and translates them into system function calls. COMMAND includes the
capability to load and execute other program files; when these other programs
terminate, COMMAND regains control. Thus COMMAND is responsible for the
initial conditions that are present when a program is executed.

A standard set of initial conditions is provided by COMMAND on entry
to another program. It is possible for programs other than COMMAND to load
and executel program files, and they must also provide the same initial
conditions ~o that a consistent interface may be assumed by the newly
executing program. These initial conditions are as follows:

All four segment registers have the same value, and the corresponding
absolute memory address is the base of a "program segment". The program is
loaded and begins execution at location 100 hex in the program segment. Other
assignments l in the program segment are:

00 - 01: Termination point. Contains an interrupt type 20 hex, which returns
control to the originating program. Thus a JMP 0 or INT 20H are the normal
ways to terminate a program.

02 - 03: Memory size. Contains the first segment number after the end of
memory.

05 - 05: Standard Function request entry point. See "Requesting a Function" .•

06 - 07: Segment size. This is the number of bytes available in the program
segment.

08 - 09: Reserved.

OA - 00: Terminate address. The address, in displacement:segment format, to
which control will transfer on termination.

OE - 11: Reserved.

12 - 3F: Default stack. The stack pointer is initially 3E hex, with a word.of
zeros on the top. Thus executing a "return" instruction will cause a transfer
to location a and the program will terminate normally. This stack may be used
as-is, or a new one may be set up.

I

5C - 67,
6C - 77: Formatted parameters. Each of these areas may contain a parameter,
usually a file name. The first byte of each area is zero unless a disk drive
is being specified, in which case 1=drive A, 2=drive B, etc. The rest is
blanks if no parameter is present. No lower-case letters are allowed in these
fields--they must be converted to upper case. If the parameter is a file
name, then the next 8 bytes have the name, followed by the 3-character
extension. Thus each parameter is properly formatted as an unopened FCB,
except that the reserved area of the first overlaps onto the second. If both
parameters are used as file names, the second one must be moved to a
different area or it will be destroyed when the first is opened.

80 - FF: Unformatted parameters. Any information to be passed may be placed
in this area. The disk transfer address is initially set to 80 hex.

COMMAND prepares the parameter areas from the console input line that
specified the program to be executed. For example, if COMMAND sees an line of
the form

<progname> <file1> <file2>

this is a request to execute the file <progname>. <file1> and <file2> each
mayor may not include a disk specifier or a file name extension, but in any
case they appear in the formatted parameters at 5C hex and 6C hex. In
addition, the entire input line after the last letter of <progname> appears
in the unformatted parameter area beginning at 81 hex, with the number of
characters placed at 80 hex.

Suppose the input line is

COPY T.BAK B:TEST.ASM

The formatted parameter at 5C hex will contain

00 "T BAK"

at 6C hex will be

02 "TEST ASM"

and at 80 hex will be

17 " T.BAK B:TEST.ASM"

where the 17 is decimal.

Using Operating System Functions

Disk File Reading and Writing

It is strongly recommended that all disk IIO use the block read and
block write functions, Functions 39 and 40, rather than Functions 20, 21, 33,
or 34. Since the block read and write functions update the Random Record
field of the FCB, they may be used for sequential access as well as random,
or any intermixing. Programs which would ordinarily sequentially read or
write one record at a time might experience considerable improvement in
performance if several records were buffered instead of just one. The block
IIO functions allow this buffer size to be variable, depending, for example,
on available memory size.

The Line Editor: Function 10

The 'most straighforward use of the editing features provided by
Function 10, buffered console input, is allowing the user to correct mistakes
in the line currently being entered. However, their are two other important
uses, both of which take advantage of the fact that a template may already be
present in the input buffer before the system call is made.

The simpler of the two is used by COMMAND, which processes user
commands. By simply re-using the same buffer each time an input line is
requested, then the previous line entered becomes the template for the new
line. This allows the user to easily repeat a command, or to correct an error
in the previous command. Or when used with a BASIC interpreter, for example,
the user could correct the last program line entered (since the line number
insures the old line will be replaced), or the line number could be changed
so that several similar lines could be entered easily.

If the program wishes to actively use the editing features, it may
load any arbitrary text into the buffer before requesting Function 10. Note
that the second byte of the buffer must be set with the character count and.
an ASCII carriage return must immediately follow the text in the buffer.
EDLIN, the text editor provided with 86-DOS, uses this method to provide
editing within a line. A BASIC interpreter with an EDIT command could load
the specified line into the buffer and let Functi'on 10 do the rest. Any
program in which there is a "typical response" at a given moment could make
the template this response to allow the user to select it easily.

It is important for any program that wishes to provide line editing
to use the features of Function 10 to do so. This provides the user with a
set of editing operations that are consistent from program to program, and
that have been tailored in one step to match the user's terminal (during
86-DOS customizing).

CUSTOMIZING THE I/O SYSTEM

In order to provide the user with maximum flexibility, the disk and
simple device I/O handlers of 86-DOS are a separate subsystem which may be
configured for virtually any real hardware. This I/O system is located
starting at absolute address 400 hex, and may be any length. The DOS itself
is completely relocatable and normally starts immediately after the I/O
system.

Beginning at the very start of the I/O system (absolute address 400
hex) is a series of 3-byte jumps (long intra-segment jumps) to various
routines Hithin the I/O system. These jumps look like this:

0000 JMP INIT System initialization
0003 JMP STATUS Console status check
0006 JMP CONIN Console input
0009 JMP CONOUT Console output
OOOC JMP PRINT Printer output
OOOf JMP AUXIN Auxiliary input
0012 JHP AUXOUT Auxiliary output
0015 JMP READ Disk read
0018 JMP WRITE . Disk write ,
001B JMP FLUSH Empty disk buffers

The first jump, to INIT, is the entry point from the system boot. All
the rest are entry points for subroutines called by the DOS. Inter-segment
calls are used so that the code segment is always 40 hex (corresponding to
absolute address 400 hex) with a displacement of 3, 6, 9, etc. Thus each
routine must make an inter-segment return when done (RET L with our
assembler) •

The function of each routine is as follo\OlS:

INIT - System initialization

Entry conditions are established by the system bootstrap loader and
should be considered unknown. The following jobs must be performed:

A. All devices are initialized as necessary.

B. A local stack is set up and DS:SI are set to point to an
initialization table. Then an inter-segment call is made to the first byte of
the DOS, using a displacement of zero. For example:

MOV AX,CS ; Get current segment
MOV DS,AX
MOV SS,AX
MOV SP,STACK
MOV SI,INITTAB
CALL O,DOSSEG

READ - Di sk read
WRITE - Disk write

On entry,

AL = Drive number (starting with zero)
AH = Directory flag (WRITE only)
ex = Number of 128-byte records to transfer
DX = Logical record number
DS:BX = Transfer address.

The number of records specified are transfered between the given drive and
the transfer address. "Logical record numbers" are obtained by numbering each
record sequentially starting from zero, and continuing across track
boundaries. Thus for standard floppy disks, for example, logical record 0 is
track 0 sector 1, and logical record 53 is track 2 sector 2. This conversion
from logical record number to track and sector is done simply by dividing by
the number of records per track. The quotient is the track number, and the
remainder is the record on that track. (If the first sector on a track is 1
instead of 0, as with starndard floppy disks, add one to the remainder.)

"Sector mapping" is not used by this scheme, and is not recommended
unless contiguous sectors cannot be read at full speed. If sector mapping is
desired, however, it may be done after the logical record number is broken
down into track and sector. The 8086 instruction XLAT is quite useful for
this mapping.

All registers except the segment registers may, be destroyed by these
routines. If the transfer was successfully, completed, the routines should
return with the carry flag clear. If not, the carry flag should be set, and
ex should have the number of records remaining to be transfered (including
the record in error) •

. On disk writes only, register AH is zero for normal writes and
non-zero for directory writes. Thus if disk IIO is being buffered in memory.
as would be the case if physical sector size is greater than 128 bytes, then
this memory buffer must be flushed to disk when AH is non-zero to insure the
directory is updated.

FLUSH - Empty disk buffers

This routine is called when a file is closed or when the disk system
is reset. It may be used to write to disk any disk buffers that have been
kept in memory. On entry, AL has the drive number whose buffers should be
flushed, or if AL = -1, then flush all buffers. All registers may be
destroyed except the segment registers. If memory buffering is not used, this
routine may simply return (inter-segment).

STATUS - Console input status

If a character is ready at the console, this routine returns a
non-zero value in AL and the zero flag is clear. If no character is ready, AL
returns zero and the zero flag is set. No registers other than AL may be
changed.

CONIN - Console input

Wait for a character from the console, then return with the character
in AL. No other registers may be changed.

CONOUT - Console output

Output the character in AL to the console. No registers may be
affected.

PRINT - Printer output

Output the character in AL to the printer. No registers may be
affected.

AUXIN - Auxiliary input

Wait for a byte from the auxiliary input device, then return with the
byte in AL. No other registers may be affected.

AUXOUT - Auxiliary output

Output the byte in AL to the auxiliary output device. No registers
may be affected.

An example of code which performs this task is given:

MOV
MOV
INT
MOV

DS must be
MOV
MOV
MOV
MOV
INT
OR
JNZ
MOV
MOV
MOV
INT
JCXZ
CMP
JNZ
MOV
MOV
MOV
MOV
XOR
PUSH
MOV
MOV
INT
PUSH
MOV
PUSH
RET

COMERR:
MOV
t10V
INT

STALL: JHP

BADCOM: DB

FCB: DB

DX, 100H
AH,26
21H
BX,DS

set to CS so we
AX,CS
DS,AX
DX,FCB
AH,15
21H
AL,AL
COMERR
[FCB+33J,O
CX,200H
AH,39
21H
COMERR
AL,1
COMERR
DS,BX
ES,BX
SS,BX
SP,40H
AX,AX
AX
DX, BOH
AH,26
21H
BX
AX,100H
AX
L

DX,BADCOM
AH,9
21H
STALL

13,10,"Bad or

;Set transfer address to DS:100H
;Save segment for later

can point to the FCB

;File Control Block for COMMAND. COM

;Open COMMAND. COM

;Error if file not found
;Set Random Record field
;Load maximum records

;Block read
;Error if no records read

;Error if not end-of-file
;All segment reg.s must be the same

;Stack must be 40 hex

;Put zero of top of stack

;Set transfer address to default

; Jump to COMMAND

;Print error message
;Don't know what to do

missing Command Interpreter", 13, 10, "$"

1,"COMMAND-COM"

Below is a sample of a complete initialization table for four
single-density IBM format disk drives:

INITTAB:
DB
OW
DW
DW
DW
DW
DW
DW
D\'i

ORIVEO:
DRIVE 1:
DRIVE2:

I

DRIVE3:
; All drives

DB
DB
DW
DB
DB
DB
OW

ORG

ATO: OS
AT1 : DS
AT2: DS
AT3: OS

4
. DRIVEO

ATO
DRIVE 1
AT1
DRIVE2
AT2
DRIVE3
AT3

Number of drives

are defined the same
1 Records/sector
4 Records/allocation unit
52 Reserved records (two tracks)
6 Allocation table size, records
2 Number of allocation tables (1 backup)
8 Number of directory records (64 entries)
482 Number of allocation units (512 bytes ea.)

o Allocation tables are in their own segment

300H Six 128-byte records
300H
300H
300H

c. When the DOS returns to the INIT routine in the I/O system, DS has
the segment of the start of free memory, where a program segment has been set
up. The remaining task of INIT is to load and execute a program at 100 hex in
this segment, normally COMMAND. COM. The steps are:

1. Set the disk transfer address to DS:100H.

2. Open COMMAND.COM. If not on disk, report error.

3. Load COMMAND using the block read function (Function 39). If
end-of-file was not reached, or if no records were read, report an error.

4. Set up the standard initial conditions and jump to 100 hex in the
new program segment.

The initialization table provides the DOS with information about the
disk system. The first byte is the number of drives (16 or fewer), followed
by two 2-byte entries for each drive. The first of the two entries for each
drive is the address (in the same data segment) of a disk drive parameter
table (OPT). Similar drives may point to the same DPT.

Below is a brief description of each entry of the OPT. A more
complete description with instructions for making OPTs for different types of
disks will be available soon.

1. Number of 128-byte records per physical sector. 1 byte.

2. Number of 128-byte records per allocation unit. byte.

3. Number of reserved 128-byte records at beginning of disk. 2 bytes.

4. Size of allocation table, in 128-byte records. Each allocation
unit (item 1) requires 1.5 bytes in the allocation table. byte.

5. Number of allocation tables l{ept on the drive. byte.

6. Number of 128-byte records devoted to the directory. There are 8
directory entries per record. 1 byte.

1. Number of allocation units on the drive. 2 bytes.

The second of the two entries for each drive is the displacement of
the allocation table for that drive. Normally, the first drive will be given
a displacement of zero, and each subsequent drive will be assigned a space
immediately after the previous drive's table ends. The size of the table for
any drive is 128 bytes times the number of records specified in item 4 ab~ye.
Note that no space need be provided by the I/O system for the allocation
tables; this space is assigned by the DOS during initialization.

I

CONFIGURATION INFORMATION

This copy of 86-DOS includes disk drivers for the Cromemco 4FDC disk
controller. Console I/O uses the serial port of the SCP CPU Support Card, and
printer output goes to the Support Card parallel port. The disk configuration
assumed is:

TWO 8" DRIVES (A PERSCI 277) AND ONE 5" DRIVE

The CPU Support Card should simply be set for normal Monitor
operation, with all switches of SI on. Monitor versions 1.4C or 1.5C are
needed to boot the disk. Switch 0 of S2 may be turned on to automatically
boot without entering the Monitor. Be sure the disk controller board has been
modified per the addendum to 8086 Monitor manual.

The first two tracks of the disk are reserved for the 86-DOS system.
Track 0, sector 1 is loaded and executed at absolute address 200 hex by the
Boot command of the Monitor. This small program at 200 hex then loads the.
rest of track 0 and all of track 1, starting at absolute address 400 hex.
Control transfers with an inter-segment jump to location 400 hex such that
the instruction pointer is 0 and the code segment register is 40 hex (JMP
0,40H with our assembler).

The I/O system occupies the next 8 sectors (IK bytes) on the disk
after the boot sector, i.e., track 0 sectors 2 through 9. The present I/O
drivers occupy only about half-- this bpacc. -.

86-DOS starts 'on track 0, sector 10. It occupies less than 4K (32
sectors), which means it overlaps partly onto track 1.

There is nothing sacred about assignments within the first two tracks
of the disk. In particular, the I/O system may be any size, with 86-DOS
starting right after it. 86-DOS is relocatable to any 16-byte (segment)
boundary. See the section called "Customizing the I/O System" for information
on changing the I/O system and linking it to 86-DOS.

THE COMMAND INTERPRETER

When 86-DOS is first initialized after the "system boot", a program
called COMMAND is loaded and executed. COMMAND provides the interface between
the user and the operating system by accepting lines of input from the
console and converting them to system calls.

COMMAND prompts with a letter indicating the "default" disk drive,
followed by a colon. Up to 16 drives are allowed in the system, labeled "A"
through "P". The default drive is the one ~hat will be used by any disk
operation that does not specify a drive explicitly. Initially, the default
drive is A, but the user may change this by entering a line consisting of a
valid drive letter followed by a colon.

The general form of an input line for COMMAND is a command name
followed by zero or more parameters. These parameters may be separated from
the command name and each other by blanks, tabs, commas, semicolons, or
"equals" signs. The number and meaning of the parameters is entirely
dependent on the individual command.

Many commands accept a file name as a parameter. File names may have
up to three parts: 1) an optional disk drive specifier; 2) the,'name; 3) an
optional extension. The drive specifier, if present, consists of a valid
drive letter followed by a colon. The name consists of 1 to 8 characters. The
extension, if present, is a period followed by 1 to 3 characters. If the name
or extension include a "?" in any position, then that position will match any
character when a directory search is made for the file name.

The command themselves are of two types. The "internal commands" are
built in to COMMAND and are executed immediately upon recognition. The
"external commands", on the other hand, are kept on disk as program files and
must first be loaded into memory before they can be executed. Any file on the
disk with an extension of "COM" is considered to be a valid external command.

The internal commands are the following:

DIR List directory entries

RENAME Rename files

ERASE Delete files

COpy Copy a file

TYPE Display the contents of a file

CLEAR Format a disk directory, erasing all files

Each is described below, with all valid forms of their parameters shown. In
this list, "drive" means a valid disk specifier (a drive letter followed by a
colon), while "file" means a file name as described above.

DIR
DIR drive
DIR file

If no parameters are present, all directory entries on the default
disk are listed at the console. If a drive specifier is present, then all
entries on specified disk are listed. If a file name is given, then only
matching files are listed.

RENAME file1 file2

Every matching occurence of the first file name is changed to the
second name. A disk drive specifier on the second file name is ignored. If
question marks ("?") appear in the second file name, then corresponding
positions in the original name will be unchanged. Care should be taken not to
give two files the same name.

ERASE file

All files matching the given file name are deleted from the disk
directory.

COpy
COpy
COpy

file1
file1
file1

drive
file2

The contents of file1 are copied into a second file. If a second file
name is not given, then a copy with the same name is made on the specified
(or default) drive. If the destination file already exists, it will be
overwritten; otherwise, a new file will be created. Do not attempt to copy to
a file of the same name on the same disk--the file will be destroyed.

TYPE file

The specified file is transfered from the disk to the console. Tab
characters are expanded with blanks to every eighth column, but otherwise no
formatting is performed.

CLEAR drive

Before any disk medium may be used with 86-DOS, its directory must be
initialized to empty. To prevent catastrophe, the user will be prompted
before formatting takes place. A "Y" response is required to continue.

RDCPM
RDCPM
RDCPM

file1
file1
file1

drive
file2

Some External Commands

Very similar to COPY, except that the source, file1, is assumed to be
on a disk formatted by a CP/M-compatible system. The destination file must be
on a different drive, assumed to be formatted by 86-DOS.

ASM file

The resident 8086 Assembler, called by this command, is essentially
identical to the SCP 8086/Z80 Cross Assembler, which is described in a
separate manual. There are certain procedural differences:

1. The assembler is called ASM, not ASM86, and it runs on the 8086
under 86-00S, not on the Z80 under CP/M.

2. The extension of the file must be "ASM", not "A86".

TRANS file

The Z80-to-8086 Source Code Translator, called by this command, is
essentially identical to our version that runs on the Z80, which is described
in the back of the Assembler manual. The only differences:

1. The Translator is called TRANS, not TRANS86, and it runs on the
8086 under 86-00S, not on the Z80 under CP/M.

2. The extension of the output file is "ASM", not "A86".

HEX2BIN file

The specified file is assumed to be in Intel hex format, as produced
by the Assembler. If no extension is given, "HEX" is assumed. A file of the
same name but with an extension of "COM" is produced which is the absolute
binary equivalent of the hex input file, offset downward by 100 hex.

SYS drive

Transfers a copy of the system from Drive A to the specified drive.

