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ABSTRACT 

The development of corr~uter operating systems has been motivated by 
a desire to achieve more effective utilization of total system resources. 
Resource sharing is the fundamental concept. Different classes of operating 
systems can be distinguished by looking at the relative importance given to 
basic computing resources, including that of the human user. 

Operating systems share resources among several processes, although 
most resources can only be used by one process at a time. It is for this 
reason that such a wide variety of systems have been called "time-sharing" in 
papers and advertising. In the most common concept of "time-sharing", the 
user is a prime system resource and is effectively made a part of the system 
by being able to interact on-line from a terminal with a wide range of 
hardwe.re - software resources; receiving in turn rapid response from the 
system. 

This paper explores some of the meanings of the phrase "time­
sharing" in current usage, introduces in detail basic hardware - software 
concepts found implemented in varying forms in "time-sharing" s;y""Stems, and 
discusses some of the difficulties and trends which have developed and are 
developing in the field. Most of the examples in the discussion are taken 
from the SDS-940 or the Multics (GE-645) time-sharing systems. This survey 
differs from other introductions to time-sharing in its greater level of 
detail and its attempt to make clear the motivations for various developments 
in the field. 
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INTRODUCTION TO TIME-SHARING CONCEPTS 

Introduction 

The development of computer operating systems has been motivated 
by a desire to achieve more effective utilization of total system resources. 
Resource sharing is the fundamental concept and different classes of operating 
systems can be distinguished by looking at the relative importance given to 
basic computing system resources such as the 

arithmetic-logic unit, 

main memory, 

auxiliary memory (drums, disks etc.), 

peripheral devices (card readers, printers etc.), 

communications equipment (communication lines, remote terminals), 

compilers, 

data files, 

service and application routines, and 

programming and debugging time. 

Because operating systems share or multiplex resources, most of which can 
only be used by a single process at a time, all operating systems could be 
called "time-sharing" systems. This sharing of resources sequentially in 
time is the reason such a wide variety of systems have been called "time­
sharing", the user is a prime system resource and is effectively made a part 
of the system by being able to interact on-line from a terminal with a wide 
range of hardware-software resources; receiving in turn rapid response from 
the system. s )io )26 }3J. )47) 

The purpose of this paper is to explore some of the meanings of 
the phrase "time-sharing" in current usage, to introduce important basic 
concepts found implemented in varying forms in "time-sharing" systems and to 
discuss some of the difficulties and trends which have developed and are 
developing in the field. This paper is written to be self contained, 
although some knowledge of computing is assumed. The paper is divided into 
two main parts, one introducing hardware concepts, and the other introducing 
software concepts. Because hardware and software are so intimately 
interrelated, some software concepts are introduced during the hardware 
discussion and vice versa. For example, software concepts are introduced 
during the discussion of segmentation and hardware concepts are introduced 
during the discussion of terminal input/output. The reader approaching this 
material for the first time should pass by the more detailed examples. 

A wide variety of systems can be classified. A classification 
having some utility is the following: 

9) See Bibliography. 
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Class 1) General purpose time-sharing systems 
(Examples being the GE-645, IBM 360/67, RCA Spectra 46, SDS 940, 
DEC PDP-10, SDC-Q32, MIT CTSS) 

Class 2) On-line file maintenance and retrieval systems 
(Examples being the American Airlines Sabre System, Banking and 
Stock Information Systems, Shell's STADAC II System, On-line 
Inventory Control Systems) 

Class 3) Multiprogramming batch systems allowing remote access 
(Examples being IBM's OS/360, UNIVAC's Exec 8, GE's GECOS, CDC's 
SCOPE) 

Class 4) Special purpose time-sharing systems 
(Examples being RAND's JOSS, GE's BASIC, IBM's QUICKTRAN) 

The examples listed above are by no means exhaustive. We are primarily 
interested in class 1 systems in this report, although the other classes are 
discussed briefly to help clarify the differences among them. All four 
classes share many fundamental building blocks in their implementation. To 
understand the detailed design concepts of any one class provides solid 
foundation for the study of the others. A detailed discussion is given of 
requirements for, and concepts of, class 1, the general purpose time--sharing 
systems. After the discussion of general puTpose time-sharing systems the 
other classes of system listed above are considered. 

3 

The discussion takes most of its examples from two systems, the 
SDS-940 and the Multics (GE-645) systems. These two systems were chosen 
because one, the SDS-940 was designed with modest goals in mind, is easy to 
understand, has been commercially successful and illustrates well the major 
concepts in the design of a time-sharing system. The second system, the 
Multics system, was designed with the ambitious goal of making a quantwn jump 
in the conceptual state of the art, is more difficult to understand, is still 
in the research and development phase, and illustrates at a high level 
generality the major concepts in the design of a time-sharing system. The 
SDS-940 was developed at the University of California, Berkeley and is a 24 
bit medium scale system giving good response to around 24 on-line users. The 
Multics system is being developed at MIT's project JVJ.A.C in a joint effort 
between GE, MIT and the Bell Telephone Laboratories and is a 36 bit large 
scale system expected when operational to give service to over 100 on-line 
users.a) Although Multics is run on the GE-645, we prefer to use the 

a) The number of users a system will support with good response is difficult 
to estimate. This number is a function of the type of computations each 
user has placed on the system. For example, a system might be able to 
support several hundred users (assuming enough teletype connections were 
available) performing small engineering calculations, but might be able 
to support less than fity users with large linear programming or 
general data manipulation type jobs. 
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name Multics to indicate the developmental nature of the project and thus the 
fact there is not yet a commercial version of the system called the GE-645. 
Besides drawing examples from the above two systems other systems will be used 
in examples where appropriate. 

General Purpose Time-Sharing Systems 

One of the distinguishing features of a general purpose time­
sharing system, besides rapid response to on-line users, is the capability 
for concurrent utilization of a large variety of software facilities. Such 
facilities include text editors, debugging aids, assemblers, a variety of 
compilers, a library of special application routines, file management 
facilities and an open ended ability to add additional facilities. No 
limitations are placed on the type of files created or the users ability to 
create programs to manipulate these files. Further, such systems are designed 
to allow upwards of two dozen or more users to interact with this generality 
and to expect rapid system response to their terminal actions. 

Some General Conclusions 

General purpose time-sharing systems are one class of resource 
sharing system. It is not yet clear that one system can be designed to meet 
economically the requirements of the four classes of system described above. 
However, many important functional capabilities are required in common by 
these various classes of system. The detailed implementation of the functions 
vary among systems, because each class gives greater emphasis to a different 
set of resources. The prime resource to be shared iS main memory. The 
hardware design must take into account all aspects of memory design; memory 
addressing, memory protection, memory allocation, flow of information within 
memory hier~rchies, and memory bus organization and design. No current 
machine has a memory system design fully adequate for a large scale general 
purpose time-sharing system. Such systems as the IBM 360/67, and GE 645, 
while containing many important memory system ideas, should still be 
considered research and development efforts and not commercial products. 
Resource sharing computers, because of the intimate interrelation of 
hardware-software, must be designed by men with experience in both areas. 
Such men are only now being trained by universities and industry. Promising 
developments in various aspects of memory system design exist on several 
machines or are in the research and development phase. Experience with 
these systems coupled with decreasing hardware costs should lead to economical 
large scale time-sharing systems in the mid 1970's. 

The problem of 11swapping 11 , which results because not all programs 
can reside in main memory and therefore must be moved (swapped) between main 
and auxiliary storage, must be taken into account from the earliest system 
design phases. Many current difficulties have resulted because it was 
assumed resource allocation algorithms could be designed independently of 
hardware performance characteristics. 

Simulation and mathematical analysis as design tools can be 
expected to receive increasing attention. Early comments in the time-sharing 
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field that this type of system was too complicated to simulate or analyze 
resulted from the designers lack of experience in this area and unwillingness 
to devert the effort required to develop the appropriate techniques. These 
same tools should also prove useful to computer users in configuring systems 
and choosing resource allocation algorithms appropriate to their installation. 

System protection is another very important area in the design of a 
resource sharing system. At present most of the protection mechanisms exist 
as software. As experience is gained, more protection mechanisms will appear 
in the hardware, thus leading to system efficiencies. 

Until the past two years, time-sharing development was primarily 
found in the universities. The rapid rise of time-sharing service bureaus and 
the use of these services and inhouse time-sharing systems by industrial and 
research firms has broadened the area of time-sharing knowledge,and research 
and development. The difficulties and opportunities in implementing and 
utilizing such systems, now being more widely recognized,should lead, in the 
next few years, to systems being designed from the ground up for resource 
sharing, rather than having features just tacked on to facilitate 
resourch sharing as has occurred on second and third generation s~stems. 

General Concepts 

The most general term which can be used to cover the four classes of 
systems listed above is multiprogrammed. Multiprogramming is the concurrent 
execution of two or more processes in one computer system. By concurrent we 
mean that two or more processes are in partial states of completion and that 
resources are being allocated among these processes to balance system loads 
and to meet response or throughput requirements. In a system which is not 
multiprograrnmed,one job is completed before the next one begins. The term 
multiprogramming is not to be confused with that of multiprocessing which is 
used to designate a system having more than one central processing unit 
(arithmetic logical unit). 

Present technology and the technology of the f orseeable future 
places constraints on the size of main storage available. This fact has two 
main effects: 1) not all processesaJ in a time-sharing system can be in main 
storage at once and 2) the size of the physical address space available to a 
process is restricted. Because all processes can not be simultaneously in 
main storage,some must reside on auxiliary storage devices such as drums or 
disks between times in which they are executing instructions. This movement 
of processes between main and auxiliary storage is commonly called "swapping". 
Another way to look at the problem is to think of auxiliary storage as 
containing the totality of information required for the complete execution of 
all computations; it is the task of the system to maintain in main memory a 
portion of the totality that is relevant to some subset of the active 
computations. Another way to look at the problem is to consider each resource 
as having certain properties relating to its ease of sharing or multiplexing. 
For example, processors are easy to multiplex among processes because only a 
few fast registers need to be changed. Memory is more difficult to multiplex, 

a) The terms process, program, user, and job are defined later in this 
section. 
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possibly requiring a swap operation. This swap operation limits the speed 
with which memory may be multiplexed. The multiplexing properties of memory 
create major problems for both the hardware and software designers. These 
problems are discussed in this paper. 

In order that processes can be started and stopped in such a way 
that this swapping is invisible to a process, certain information must be 
saved. This collection of information is often called a "state vector" 
because it)defines the state of the machine at the time the process is 
stopped. is 

The state vector of the total machine includes: 

1) the contents of the program counter 

6 

2) the contents of the central registers of the machine. These 
registers include programmer accessible registers and, depending 
on the machine addressing structure, may include some non­
programmer accessible registers. 

3) the address space of the machine and the contents of every 
address in it. 

4) the state of all input/output (I/O) devices attached to the 
machine. 

The state vector for a given process requires less information than 
listed above because the individual process does not need to know the state of 
all the I/O devices nor the contents of all the addresses. Further, code 
techniques exist which give indirect information about a process' address 
space which allow a process' state vector to be stored in a few machine words. 
In effect, switching from one process controlling the machine to another is 
acconrplished by switching the state vectors controlling the system. 

The concept of address space needs clarification because it is 
related both to the swapping problem and the addressing problem as seen by a 
programmer. Addressing is the means by which a process distinguishes among 
the storage locations in its address space. Two address spaces exist: 
1) the physical address space which consists of the actual main and auxiliary 
storage locations physically and directly addressablG and 2) an abstract or 
logical address space (often called the name spaceisJ) which consists •Of the 
contents of abstract or logical locations addressed by processes. If the 
logical address space is larger than the physical address space of main 
memory, the term virtual memory is commonly used. The term virtual memory 
has also been used in place of logical memory. In this paper the term 
virtual memory will denote a logical space larger than the physical space of 
main memory. The mapping from an abstract address space to physical addresses 
is handled by both hardware and software techniques. Some of the more common 
are discussed in appropriate sections of this report. 

A processor is an entity which performs transformations of 
information. More simply put,a processor executes instructions stored in 
main memory. A processor can be implemented in software such as an operating 
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system or compiler or else can be implemented in hardware such as an 
arithmetic-logic unit, or an input-output unit. In this paper the term 
"processor" denotes a hardware device. A process is an entity which can 
control a processor: it is a set of commands or instructions and data. For 
the purposes of this paper a process is an entity which has a state vector 
and is thus capable of being swapped.a) The time-sharing system may be 
designed so that sub-processes are allowed, each of which can have a state 
vector which is created by a process higher in the hierarchy of processes. 
This hierarchy of processes can have its members executing independently as 
seen by the system. Processes are made up of programs and subprograms or, 
equivalently, procedures. 

7 

Every process in the system is part of a job which can be thought of 
as a tree of processes. The basic feature of a job is its complete 
independence from other jobs as far as the system is concerned. The root of 
the tree of processes is created by the system and is responsible for 
recognizing commands to the system, handling illegal actions by lower order 
processes, and initiating and destroying subprocesses. 

A job is a convenient unit for accounting p111°poses, although 
accounting could in principle be handled for individual processes. The term 
user has a wide variability of usage, being a synonym for process or job or 
for the human sitting at the console. A user can create multiple jobs. A 
user has the following attributes: 

1) a name 

2) authority to expend certain resources 

3) a collection of permanent and temporary files holding data, and 
possibly authority to access other files 

4-) a collection of 0 or more jobs. 

Associated with the user are certain protection and access rights. A user is 
a named accounting entity and thus could be one or more people using this 
authority to access the system. Generally throughout this paper we use the 
term user to refer to a person sitting at a terminal, but the properties of a 
user given above should be borne in mind. 

Hardware Concepts 

The type of hardware features required for general purpose time­
sharing systems are f o~ the :qiost part also required for the other classes 
above as well. 18 )19 ) 24 J3o) 3 iJ32 ) 3 s) 45 ) 54 ) The essential characteristic of 
such systems is the dynamic allocation of system resources. The major hard­
ware features required by such systems are: 1) protection mechanisms to 
safeguard one process from another and the system from itself and user 

a) In IBM's terminology,the term task is used in a manner similar to the 
usage here of the term process:--:A"nother synonym for process is 
computation and for variety we use the two terms interchangeably in this 
paper. 
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processes, and 2) mechanisms which allow efficient dynamic allocation of 
resources. Both requirements above are interrelated. An additional require­
ment of such systems is high reliability. 

Resource Allocation 

The central resource in current systems is main memory. It is main 
memory which holds instructions for the arithmetic-logic processors (CPU's) 
and for the input-output processors (IOP's), is used as a buffer for infor­
mation passing over communication lines and moving between various I/O and 
secondary storage device.s, and holds the code for the resident operating 
system. The proper design of the memory system is critical to the success of 
a large scale time-sharing system. Up until the past few years the standard 
computer system model used by most people was that of Figure 1. In this 
model the arithmetic-logic processor is shown in the center and has been 
called the central processing unit. 

system: 
There are five major problem areas in the design of a total memory 

1) development of memory addressing techniques which allow 
processes to address a logical address space, possibly larger 
than the physical space of main memory, 

2) development of physical memory allocation techniques and 
techniques for mapping the logical address space into the 
physical address space, 

3) development of memory protection techniques, 

4) development of a memory organization and bus structure which 
permits all processors and devices utilizing main memory to 
operate at full speed with minimal interference, 

5) development of techniques to utilize a hierarachy of storage 
devices in a device independent manner. 

The latter problem is briefly discussed in a later section. Problems 1, 2 
and 3 are usually solved with interrelated techniques and have been given 
considerable attention. Problem 4, while being recognized, has not until very 
recently been given the attention required. 

Memory Addressing and Allocaticn Techniques 

The multiplexing properties of main memory devices must be fully 
considered, in order to specify an appropriate addressing and allocation 
scheme for a time-shared computer. In principle, any fraction of main memory 
may be allocated to a process. This is not true of processors, which may 
only be allocated as a unit. Processors can be multiplexed rapidly while 
main memory cannot be as easily multiplexed because of the swapping require­
ment. The design of an addressing scheme for a time-shared computer must 
emphasize the allocation advantages of main memory and make it possible to 
minimize the multiplexing disadvantages. Movement of information between 

249-68 Figures 1 and 2 follow 
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main memory and auxiliary storage in one of the major sources of machine 
overhead and idle time. 

In order to minimize this movement, one wants to utilize main 
memory as effectively as possible. 

For example, one would prefer to have only one copy of a particular 
procedure, say a compiler, in core used by several processes rather than 
requiring each process to obtain a separate copy. Programs which are 
designed to be shared by several processes are often called reentrant programs 
or pure procedures. A reentrant program has two characteristics, 1) none of 
its instructions or addresses are modified during its execution and 2) tempo­
rary storage and data areas are maintained outside the procedure itself, 
usually in the memory space of the calling programs. Although programs with 
the above capability can be written for machines with a wide variety of 
addressing techniques, some addressing techniques make the writing and 
protection of such programs simpler. 

Another way to utilize memory more effectively is to be able to 
have flexibility with respect to where in physical memory process may be 
placed. This ability to dynamically relocate processes in physical memor;y 
can be achieved with a variety of addressing and allocation techniques. 

The effect of the addressing and allocation scheme on the user must 
also be considered. The cost of designing and implementing application 
systems and even the possibility to attack classes of problems is likely to 
be affected by the properties of the addressing and allocation scheme. The 
various trade offs possible in the design of an addressing and allocation 
system must take into account user needs as well as system considerations. 

The first decision a designer must make is the size of the logical 
address space, in particular, is it going to be smaller than, equal to, or 
larger than the physical address space. The structure of the logical 
address space must then be determined. Many structures are possible such as 
the large linear array commonly used, or a set of linkable linear arrays as 
found in Multics, or a tree structure, and so forth. The decision must be 
made as to how much of this structuring to perform in hardware and how much 
to perform in software. After this decision is made, the technique of 
translating or mapping the logical addresses to physical addresses must be 
determined.') There are three points at which this mapping can take 
place.32)44 

249-68 

1) When the procedure is prepared as an operable computer program. 

2) 

3) 

The result is an absolute program which, in effect, is 
assigned the same resources each time it is run. 

When the program is loaded. This is known as static 
relocation. 

When the program is in execution. This is called dynamic 
relocation. 
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Memory protection schemes are easily developed for any of the above approaches 
and a discussion of this topic is given i11 a separate section. In this section, 
some of the factcrs influencing the choice of a structure and mapping 
tech..."1.ique are considered. We consider only the linear array or set of linear 
arrays, because more specialized structures such as trees or rings are 
usually left for implementation by software processors. 

The translation of data references to physical addresses is easily 
accomplished during program preparation, but suffers from the severe 
problems which arise when one attempts to share or change programs. Further, 
translation at that time restricts the logical address space to that of the 
physical address space. 

The process of static relocation is not trivial and involves a 
fair amount of computation. With static relocation,a user can be initially 
loaded anywhere in memory. However, when the process is removed to auxiliary 
storage and then returned during swapping, it must be placed in the same 
locations as before, to avoid the loading process. (Even to go through the 
loading process again implies that the procedure and data must meet special 
conditions.) The major gain of static relocation is that during the loading 
process, independently written programs and data can be combined into a 
computation with proper linking of parts. The proper mapping to the physical 
address space is performed by the loader. Each program can be written in a 
logical space of its own, but no duplication of symbolic location names is 
allowed, although programming techniques can be developed to resolve such 
duplication. 

The ability to load programs anywhere in physical memory is useful 
in the linking process above, but of little value in achieving effective 
memory utilization in a time-shared system. For example, when a new program 
is to be started, the system can attempt to find a computation which would 
fit in an available block of cells. If such a computation can be found and 
it can remain in main memory until completion, static relocation is sufficient 
to enable several computations to be share main memory. (The assumption of 
some sort of memory protection scheme is implicit. This topic is covered in 
a separate discussion.) A more usual situation will be that the total number 
of free cells available is equal to that number required by a new computation, 
but that these cells are not in a contiguous block. If swapping is required, 
then even if a contiguous block was available on initial loading, the same 
contiguous block is not likely to be available each time the computation is 
run, without moving some information to another spot in main memory or 
moving it to secondary storage. Because of the above reasons, systems without 
dynamic relocation hardware, when used for time-sharing, generally)have 
allowed only one computation to reside in memory at a given time. 9 Thus, 
during the swapping process the system must remain idle. It is the above 
situation which.motivated the development of dynamic relocation methods. 

Pynamic Relocation 

Base Registers. The simplest and most common dynamic 
relocation technique uses base registers.32 ) A base register is a register 
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that can have its contents added to the address of each memory operation. By 
adding the contents of a base register to all addresses, one can load a 
computation anywhere in memory in a block of contiguous cells and then set 
the appropriate base address of the program into the base register. Using 
base registers, programs are initially loaded using static relocation 
techniques, but can be dynamically relocated as a unit later; without going 
through the loading process. This flexibility results because the loading is 
to logical space not physical space. The base registers in effect form a 
hardware map which maps logical space to physical space. Further flexibility 
is gained if there is more than one base register, which facilitates sharing 
of programs and gives the possibility of splitting a program for loading into 
non-contiguous storage areas. 

Program sharing is performed in a system using base registers by 
writing the reentrant programs to make memory references to themselves 
through one base register and to make memory references to data in the 
calling process through a second base register. The size of the logical 
address space using static relocation or dynamic relocation using base 
registers is usually equal to or less than the size of the physical address 
space. A larger physical space can be simulated by the user by explicitly 
overwriting a portion of his computation not immediately required with 
another part brought in from auxiliary storage. This process is called 
overlaying. Overlaying is closely related to the concept of swapping, except 
that overlaying is a user responsibility whereas swapping is a system 
responsibility. Overlaying requires careful organization by the programmer 
of the physical memory requirements of his computation. Careful planning 
is required to assure that no two procedures or data structures which are to 
be used concurrently occupy the same positions in logical or physical space. 
Whether or not overlay planning should be looked upon as a chore or as an 
opportunity for programming discipline is a question open for discussion. 
Certainly one can provide the prograrnn~r with system aids to facilitate 
overlay planning and implementation. 

One of the problems uncovered with static relocation was the fact 
that once loaded a computation's address references were bound to a certain 
contiguous area of memory and that during swapping the computation had to 
be returned to the same area of main memory each time it was to be given 
control of the processor. Using base registers, this restriction no longer 
holds. When the processor is to be switched to a computation not in main 
memory, a free contiguous block of main memory must be found for it to reside 
in. If such a block exists, then no information needs to be transferred to 
auxiliary memory. The more usual situation which results is that while 
enough free cells may be available in main memory for the computation, 
they are not in a large enough contiguous block. In this case, a system 
designed to use base-registers can do three things: 1) search for a process 
which will fit into one of the available contiguous blocks, 2) swap out part 
of some process presently in main memory bordering on a free area inorder to 
make a large enough contiguous area, or 3) perform a compacting operation on 
main memory. Systems giving good user response can be designed using one 
or more of the above approaches. 1 ) 
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One possible way out of the problem mentioned above of finding a 
large enough contiguous area would be to use multiple base registers so 
that smaller pieces of the process could be loaded into existing free spaces. 
This approach would be impractical because the instructions of a given piece 
must refer to the correct base register. Thus, the programmer or compiler 
must decide how to split up the process and which base registers to assign 
which pieces. Binding of base register addresses at load time constitutes a 
binding of the process to a portion of logical space. The system could not 
perform this function dynamically because it would be very time consuming 
and complicated. When a process is started up, the proper nwnbers must be 
placed in the base registers, which implies that system conventions must be 
established so that the system knows which base register a given program 
piece is using. Conventions would also be required so that shared programs 
could use different base registers from those of the calling process or other 
shared processes being used concurrently. Even with all the above complexity, 
the problem would not be solved because pieces of free space smaller than 
the program pieces would result after the system had been running. To get 
around this problem one could break up processes and physical memory into 
uniform sized pieces. Such a step le :.ds us to the concept of paging introduced 
below. 

The difficulties with the base register approach are: 

1) Software difficulties arise if more than two base registers are 
used. This limitation to two base registers implies that 
memory cannot be fully utilized because contiguous free areas 
smaller than needed by many computations will develop during 
operation. The inability to achieve full memory utilization 
may lead to conrpaciting or swapping which theoretically could 
be avoided if the free areas could be fully utilized. 

2) Logical address space is limited in size by the size of 
physical address space. This statement is not a theoretical 
limitation because one can devise ways of creating virtual 
memory using base registers; but a few minutes reflection 
demonstrates that pratical difficulties make such schemes 
uneconomic. 

The question has been asked whether the added hardware and software 
complexity and expense, to overcome the problems listed above, introduced by 
more sophisticated dynamic relocation techniques really results in a 
corresponding increase in system efficiency, improved response and 
programming ease. We discuss some of the arguments pro and con after 
introducing further dynamic relocation concepts. 

Paging. The characteristic of dynamic relocation using base 
registers, which requires programs to be located in contiguous areas of main 
memory, leads to difficulties, as pointed out above, in fully utilizing main 
memory, because free areas develop which are not large enough to be used. 
If, however, programs and main memory could be broken into small units and 
the program pieces could be located in corresponding sized blocks anywhere in 
main memory, then the possibility exists of more effectively utilizing main 
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memory. "Paging" is the name given to a set of techniques which enable such 
memory fragmentation to be implemented. Paging techniques can also allow 
economic implementation of a logical memory space larger than the physical 
memory space. 15) 

In a paged system, physical memory is considered to bG broken up 
into blocks of a fixed size, usually 512 words, 1024 words or 2048 words. In 
recent systems the page size can be changed dynamically by the system. The 
memory can be more fully utilized by the resident monitor system if small 
page sizes are available (64,256 words). The use of multiple page sizes does 
lead to increased time spent by the system in swapping, as discussed later, 
and therefore, this use should be restricted. The programs are also 
considered to be split into ~ of a size equal to the block size of 
physical memory. Thus, the address in such a system is considered to be 
represented by two numbers: 1) a page address or number and 2) a line-within­
page address. For a machine with an n-bit address field, the top p bits are 
considered the page address and the remaining n-p bits are the line address. 
The addressing scheme on the SDS-940 is paged and illustrates the concepts 
involved. 

A process in the SDS-940 can be as large as 16Ka) words. Physical 
memory in the SDS-9!~0 can be as large as 64K and thus the logical address 
space is smaller than the physical address space. The more general case of 
a paged system yielding a virtual memory is discussed later. A process in 
the SDS-9li-O is broken up into 2K word pages and memory is similarly broken 
into 2K word blocks. There are 11+ bi ts in the address field of a 940 
instruction word broken into two parts, a 3 bit page number and an 11 bit 
line-within-page number. The relocation mechanism, illustrated in Figure 3, 
consists of eight 6 bit registers called a memory map. These registers are 
considered numbered O to 7 and correspond to logical pages. Within the 
map register is a number for the actual physical block containing the code 
for the logical page. For example, in Figure 3 logical page O is in physical 
block 32, logical page 1 is in physical block 3 and so forth. 

The logical address is converted to a physical address as shown 
in Figure 4. 

The 3 bit page number indicates which map register contains the 
physical block number where the page actually resides. The map register is 
6 bits long and is shown in Figure 5. 

a) K = 1024. 

249-68 Figures 3 and 4 follow 
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protect bit 

Five bits contain the physical block number and 1 bit is for memory protection 
to be discussed later. The physical address is simply formed by concatenating 
the physical block number with the line number to form a 16 bit address. 
With 16 bits,64K of memory can be addressed. 

The above hardware mechanism is quite simple, but to work as part 
of the total system requires additional software tables to be discussed later 
in this report. The basic idea is that when a user procedure is to be 
brought into main storage, the software monitor examines the state of main 
storage and swaps out only as many pages as are required in conjuction with 
free pages to meet the needs of the incoming process. The monitor then 
assigns the available physical blocks to the logical pages of the incoming 
process and swaps its pages into these blocks. The monitor then changes 
the memory map, which is structured as two 24 bit words. Then after restoring 
the active registers and program counter to the values which they had when 
the process was executing when it was terminated, the process is restarted. 

The most important general concept introduced above is that of a 
memory mapping. A map translates the logical address space into the physical 
address space. In the dynamic relocation techniques, the map is a set of 
tables in memory or a set of hardware registers. In the static relocation 
technique the map is a program. In the dynamic relocation method using base 
registers, the base registers are the map. The page map can be looked at 
as a way of efficiently implementing multiple base registers. The paging 
process is completely invisible to the user and compilers, which function as 
if they were working with one contiguous logical block. The memory 
fragmentation ability made possible with paging gives greater flexibility in 
allocating memory and allows the possibility of decreasing the time lost 
through swapping by being able to maintain more processes or process fragments 
in memory at a given time. Thus, memory can be more effectively utilized. 
The concept of a memory map which dynamically converts logical addresses to 
physical addresses has been an important innovation in machine organization. 

The SDS-940 paging mechanism does not allow a straightforward 
implementation of a virtual memory space. A more general approach to paging 
is shown in Figure 6. Here the map is a table (page table) in main memory. 
One page table exists for each job. The physical block number corresponding 
to a given page is found by a table lookup in this page table. The control 
bits can be used to indicate whether or not the page resides in memory or 
on an auxiliary storage device. The page table base register points to the 
base of the page table for the process currently in control of the machine. 
The page number from the logical address when added to the contents of the 

249-68 Figure 6 follows 
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page table base register indicates which word in the page table contains the 
block number in which the page resides. The number in the "block" portion of 
the table can indicate an actual starting address for the page in main 
memory or a location in auxiliary storage at which the page can be found. 
If the control bits indicate that the latter case holds, then a call to the 
system can be generated to fetch the page to memory before resuming compu­
tation. Using this approach, the logical address space can be larger than 
the physical address space. The factors limiting the size of the virtual 
memory are 1) the number of available address field bits which can be 
generated, and 2) an economical limit for a page table size. The difficulty 
with the approach just outlined is that all memory references require an 
additional access time to get the block number from the page table. It would 
be too expensive to implement the large page table required for a virtual 
memory of any size in hardware, as well as requiring too much time to change 
this hardware table each time processes controlling the machine are switched. 
Therefore, to eliminate the extra memory reference most of the time, a 
special hardware map using an associative lookup can be implemented.24 ) Such 
a map is shown in Figure 7. The map is called an associative map because it 
is addressed by association or content rather than explicit address. Using 
the associative map, the page number of the logical address is simultaneously 
compared against all the page numbers in the map. If the page number is 
found, the block number is output and the physical address is formed by 
concatinating the line number with the block number. If no match is found 
between the page number of the logical address and the page numbers of the 
map, reference must be made to the page table in main memory. The new page 
number - block number pair is inserted into the map replacing one of the 
entries there. The optimum associative map size and the optimum strategy 
for replacing entries already in the map are design problems of such a paged 
system. 

Using a paging scheme such as outlined above, the entire process 
would not have to be loaded into main memory at the time computation began. 
Only those pages initially required could be loaded and as reference was 
made to pages not in main memory, the page table would indicate this fact by 
generating a call to the supervisor. The supervisor would then bring in the 
page. The pros and cons of this "demand paging" approach are discussed in 
the section on swapping. 

The sharing of programs and data is an important requirement for a 
time-sharing system, as mentioned earlier. There are many ways that sharing 
can be implemented. One way would require each job to obtain a separate copy 
of the procedure or data structure to be shared. Obtaining separate copies 
increases the rremory requirement and leads to increased swapping activity. 
Therefore, it is desirable to share frequently used procedures and data in 
such a way that only one copy is required in core. Figure 8 illustrates how 
such sharing is accomplished in a paged system. In Figure Sa, two source 
programs A and B share a compiler C. The compiler's pages are labeled C1 , 

C2 and C3 • Note that entries for the compiler's pages must be placed in the 
map of each job which uses it, although only one copy of the compiler exists 
in physical memory. Note further, that the compiler's entries must be in the 
same relative positions in each map. Similarly the source programs SA and SB 

249-68 Figures 7 and 8 follow 
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must have consecutive entries starting at the same relative position in the 
two maps. The above requirement results because at the time the compiler is 
initially loaded into the system its memory references are bound to fixed 
areas of the logical address space. When the compiler is loaded it is in 
effect loaded into logical space and the address field contains a page nwnber 
and a line within the page number. The page number is the index to the entry 
in the map which contains the base location of the block of memory containing 
the page. Every time the compiler is executing it is referencing the same 
relative location in a map. Therefore, every process using the compiler must 
contain entries in its map for the compiler and in the correct positions 
which were determined at the time the compiler was loaded into the system. 
The initial loading could place the compiler anywhere in logical space. 
This concept of loading as a binding process, to positions in physical space 
in the case of static relocation, and to positions in logical space in 
the case of systems using base registers or paging, is a very irr~ortant 
concept which should be grasped before proceeding. 

An alternative to placing the compilers pages in the same relative 
location in each users logical space is to have a separate map for the 
compiler. This map would be invoked when the compiler was called. If the 
compiler is shared, the difficulty arises as to how to handle the logical 
placement of the users source code in the compiler 1 s map. Because each source 
code program being compiled must be stored starting in the same position in 
the compiler's logical space, the compiler's map would have to be modified 
each time control is switched to a different job. Another alternative is to 
have some way of indicating that certain memory references are to be made 
through the compiler's map and others (those referring to the source code) 
are to be made through the user's m&p. The above alternatives introduce extra 
complexity and are of little value. 

Let us now consider the problem of two procedures PA and PB 
sharing data. This case is illustrated in Figure 8b. To share data the 
logical page 11D11 , representing the data, can be in different locations in 
each map. The above situation holds true as long as the data itself contains 
no addresses. For example, if indirect addressing through D back to PA and 
PB could take place, then PA and PB would have to reside in the same relative 
locations in logical space. This location would be determined at the time 
the data was created. If indirect references through D to itself were to be 
allowed, then PA and PB could occupy different relative locations, but D 
would have to be placed in the same relative location in each map. 

The above discussion shows how programs and data can be shared if 
certain conventions are followed. What are the implications of these 
conventions? The implications are: 
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The latter problem can be avoided if the logical space is large enough and the 
bookkeeping of the installation careful enough inorder to insure that all 
shared programs and their data which could be used concurrently are loaded 
into the system in different positions in logical space. Thi8 solution would 
require large page tables (maps). Another way around the problem is to use 
hardware base registers as part of the address formation process before going 
through the paging schemes above. This latter approach is impractical because 
it would require multiple base registers, very careful bookkeeping and the 
establishment of conventicns on base register usage. Use of base registers 
to perform relocation in logical space is a step toward segmentation. 
Therefore, rather than mix hardware mapping techniques, a better design 
procedure is to step back and examine the problems to be solved and then to 
produce if possible a integrated approach to their solution. The introduction 
of segmentation, described in the next section, is an attempt to produce such 
an integrated approach. 

Besides restricting the full generality of program and data 
sharing, paging techniques do not aid the programmer in dealing with memory 
allocation for data bases such as lists, symbol tables and push down stacks 
which can grow and contract during execution. The programmer must explicitly 
plan for such situations so that the map can be set properly. In the SDS-940 
system this problem is reduced somewhat through system calls, which allow the 
process the ability to interact with the system to change its map. Thus, 
the process has considerable power to control the contents of its logical 
address space. This latter ability, however, is more in the line of 
facilitating overlays than in fundamentally altering the structure of the 
logical space one can obtain with paging. 

The structure of the logical space that one obtains with paging 
is identical to that obtained using base registers. The structure obtained 
in either case is that of a large contiguous array which is dynamically 
relocatable. To the user there is no difference in the way he would program 
using either approach. What is gained in using paging over using base 
registers is a method which possibly may yield more effective memory 
utilization through memory fragmentBtion. One also obtains a practical 
method for the implemention of a large virtual memory. More flexibility may 
also be given the system programmer in his design of program and data sharing 
conventions. The apparent disadvantages of paging over the use of base 
registers are: 1) paging requires a hardware memory map to be efficient, 
2) the software implementation may be more canplex if the full advantage of 
paging is to be utilized, and 3) the resident software system will probably 
be larger, thus requiring more main memory. Given the trend toward decreasing 
hardware costs, the extra cost of a hardware map is a very small part of that 
of the total system. The software complexity and system memory required to 
utilize paging is not great as seen in the discussion of the SDS-940 system 
in the second half of this paper. Better utilization of memory enables more 
p1~ocesses to reside concurrently in main memory, which increases the 
possibility of performing useful computation in one process while the 
swapping of another takes place. Faster auxiliary storage devices can 
minimize this advantage, however. The small extra cost of paging hardware 
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would seem worthwhile considering the extra flexibility offered the system 
programmer to experiment with CPU, memory allocation, and swapping algorethms. 

Segmentation. The concept of segmentation, inspite of the 
many words written about it, is not yet widely understood. The reasons for 
the confusion about the concept are several: 1) the motivations for its 
development have not been made clear, 2) varying versions of the concept 
exist in different machines, for example, segmentation as it exists in the 
IBM 360/67 system has important differences from segmentation as it exists in 
the GE-645 system; 3) the distinctions between a logical address space and a 
physical address space are not widely understood; and 4) because many of the 
implementation mechanisms are similar between paging systems and segmentation 
systems these two distinctly different concepts tend to be blurred together. 
In this section, we try to give a clear explanation of segmentation as we 
understand its most general form, indicate some of the differences between 
various versions of the concept, emphasize again the difference between 
logical and physical address space, make clear the distinction between paging 
and segmentation, review the motivation for the development of segmentation, 
and finally question some of the basic assumptions underlying present 
implementations. Segmentation is looked at from a slightly different point of 
view in the discussion on file systems later in this paper. 

The discussion of dynamic relocation to this point showed that 
there were certain problems with physical memory allocation inherent in 
systems using base registers; solutions to these physical memory allocation 
problems were offered by the introduction of paging. Paged systems inturn 
were shown to have some problems with logical memory allocation which exist 
if programs and data are to be shared with full generality and if data 
structures are to be allowed to grow and contract at will without explicit 
allocation planning by the programmer. Segmentation offers solutions to 
these problems. The above problems could be solved in a paged system if a 
very large logical memory space could be created. Then all shared procedures 
could occupy a unique position in this space and data structures could occupy 
positions far enough apart from each other and procedures so that they could 
grow at will. The above solution could be achieved in a paged system by 
having enough address bits and a large logical to physical memory map (page 
table) for each job. Such a solution is impractical because the map for 
each job, to as~ure that there would be no conflicts of positioning in 
logical space,a) would have to be very large. This map would contain large 
gaps if one wanted to allow data structures to grow at will. Gaps would also 
arise because concurrently shared procedures could occupy widely separated 
positions in logical space. Further, careful bookkeeping would be required 
to assure that no two shared procedures which might be used concurrently 
occupied the same position in logical space. It is imperative for the reader 
to understand the above argument if the motivation for segmentation is to be 
fully grasped. If at this point it is not clear we suggest a review of the 

a) Conflicts of position in logical space are sometimes referred to as 
name conflicts because the position in space of an element is also its 
name. We prefer the use of the term "position conflict" because it 
illustrates more graphically the nature of the problem. 
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discussion on paging where examples are given of the importance of the 
position in logical space of shared procedures and data. 
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In summary then, the difficulty of using paging for sharing 
procedures and data in full generality and allowing for data structure growth 
results l) because of the large, possibly sparsely filled, map required and 
2) because careful bookkeeping by the installation and system would have to 
be maintained a) to be certain procedures being used concurrently do not 
occupy the same position in logical space (i.e., have the same name) and 
b) to position shared data properly which have ad.dress ref er enc es. Again many 
of the papers in the literature may be clearer if "name" is translated to 
"position in logical space". 15 )s4) 

The technique of segmentation was developed as a way to more easily 
manage a very large logical space. A large logical space is required to solve 
the problem discussed above. Segmentation is a technique for dealing with 
logical space allocation and should be kept separate in ones mind from paging 
which is a concept for dealing with physical space allocation. The fact that 
some implementations of the segmentation concept also use paging for physical 
memory allocation should not be allowed to confuse the distinction between 
the concepts. 

A ·segment is an ordered set of data elements having a name. A 
particular data element is referenced by a symbolic segment name, symbolic 
data item name within the segment, <S>/[a]. 

Segmentation is often referred to as a two dimensional logical 
address space. A paging system is not considered two dimensional, even though 
the address has a page number and a line number pair because these conventions 
are invisible to the user. To be general one could consider base-register and 
paged systems as segmented systems allowing one segment and thus the segment 
name is implicit. In a general segmented system, the user programs his 
addresse.$ using a pair notation, <S>/[;_'r.]. The notation <S> indicates a 
symbolic segment name S, and the notation [a] indicates a symbolic element 
within segment name a. A segment is a self contained logical entity of 
related information such as a procedure, data array, symbol table or push-down 
stack. There is no logical restriction on the length of a segment, although 
in any given iIEf?lementation there will be an upper bound on segment 
length.!8 ) 19 ) 36 ) 52 ) Segments can grow and contract as needed. A segmented 
system provides a logical space of non homogeneous units called segments. 
A base register or paged system provides a logical space of one homogeneous 
unit. Each segment is a separate logical entity. The problems to be solved 
and the parameters to be determined in developing an implementation of the 
segmentation concept are 1) developing a method for mapping symbolic address 
pairs <S>/[a] to physical locations, 2) determining the number of segments 
to be allowed and their size, 3) developing a method of linking segments 
together, 4) developing a method for sharing of segments, and 5) developing a 
method for protection of segments. A variety of solutions to these problems 
have been iI!Iftlemented in h~dware or su~geste~ in the 
literature.2Jll)l5)1a)1s)20;2s)s2)sa)44JS4)22) We discuss in some detail 
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the implementation of one segmentation system, the Multics (GE-645) system 
and then briefly discuss some variations found in other proposals or 
implemented systems, 

The logical address space or virtual memory of the GE-645 system 
can contain up to 214 segments, each of which can be up to 218 36-bit words 
in length. The GE-6lt5 CPU has an accumlater register, multiplier/quotient 
register, eight index registers and a program counter which perform the 
normal function of such registers. 
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Additional registers are required to implement the segmentation 
concept. These registers are, a descriptor base register, a procedure base 
register, and four base pair registers. The purpose of these extra registers 
is briefly introduced here and their function expanded on in more detailed 
discussion to follow. The descriptor base register points to the location 
in memory of the segment descriptor table, discussed below. The procedure 
base register contains the segment nwnber (name) of the procedure being 
executed. Each of the four base pair registers constains a segment name/ite1n 
name pair and has a specific function as described below. The most general 
form of an address is a symbolic segment name/item name pair. Eventually this 
pair of symbolic names must be converted to a physical memory location. The 
discussion to follow indicates how this mapping takes place for the more 
common types of memory references. 

Associated with each process there is a segment descriptor table 
(often called a descriptor segment) which is itself a segment. This table 
contains one word called a segment descriptor for each segment known to the 
computation. Each segment descriptor contains the base address in main memory 
for the segment (we defer the introduction of how paging is used with 
segmentation until the main concepts have been introduced) or its location in 
auxiliary memory. The segment descriptor also contains control bits used for 
memory protection and other purposes not of interest here. The segment 
descriptor table can be thought of as an array of base registers. Before going 
on to look at implementation details let us see how segmentation solves the 
problem of handling a large logical address space and provides for dynamic 
relocation within this space. To see how segmentation solves the problem 
of sharing of procedures and data in full generality, we introduce later in 
this section one additional major concept, that of the linkage segment. 

A large logical space within which procedures and data can be 
relocated is obtained by breaking up a computation into self contained 
procedure and data units called segments. The use of the segment descriptor 
table allows these units to be relocated in logical space. Another way of 
stating it is that the solution is obtained through the use of two dimensional 
addressing <S>/[a]. All addresses in a program or data are relative to the 
start of a segment. All segments can be positioned in logical space so that 
there is no conflict of position by proper relocation through the use of the 
segment descriptor table. The segment descriptor table is in effect an array 
of base registers as shown in F~gure 9a. The segment name <S'>, or as we shall 
see a transformation of <S>, indicates the proper segment descriptor (base 
register) to combine with the location within segment address [a] to yield 
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an address in a one dimensional logical space as shown in Figure lOb. This 
logical address is then converted directly to a physical address or is 
converted through a map. 

The segment descriptor table as an array of base registers is a 
satisfactory solution to the relocation problem in logical space whereas a 
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set of hardware base registers was not a satisfactory solution because 1) the 
same hardware base register had to be used for a procedure or data structure 
base by every computation sharing that procedure or data structure 2) the 
same hardware base register had to be used for a procedure or data structure 
base each time the procedure or data structure is used by the same computation. 
These restricutions resulted because the address of the base register was 
bound into the instruction word at the time of loading. A segment descriptor 
for a given segment <S> can occupy different positions at different times in 
the same computations segment table. The mechanisms which make this possible 
are outlined below. The above discussion is not to imply that it is 
theoretically impossible to perform equivalent relocation in logical space 
with physical base registers, but to imply that as intricate as some of the 
segmentation implementation details become, the implementation of an 
equivalent user invisible function using physical base registers would be much 
more involved and thus practically infeasible. Segmentation in effect offers 
a technique for dynamic allocation of base registers (segment descriptors); 
the set of base registers required for a given computation is called the 
segment descriptor table. 

When a segment is loaded into the system it is not bound in logical 
space because all addresses are relative to the beginning of some segment. 
Only at the time a segment is made known to a process by creating a segment 
descriptor does binding of the segments location take place. This binding is 
caused by the transformation of the segment name into an index in the 
segment descriptor table of the created segment descriptor. Different 
processes using the same segment and even the same process on different 
occassions can have the segment descriptor in different places in a segment 
descriptor table. One can think of the position in the segment descriptor 
table as a position in logical space. Because this same segment can have a 
descriptor at different positions in the descriptor tables of different jobs 
or in different positions in the descriptor table of the same job on 
different occassions, one has a dynamically relocatable logical space. Base 
registers and paging gave a dynamically relocatable physical space. 

To enable a segmentation system to work, the segments must be 
properly linked together. This linkage must be implemented in such a way as 
to allow the realization of sharing of segments with full generality. This 
linkage problem is handled by associating with each segment, making external 
references, another segment called the linkage segment. All intersegment 
references are handled by indirect addressing through a linkage segment. 
The details of how the linkage segment is set up and used are given later in 
this section. 

Segmentation has been developed to achieve full generality in the 
allocation of logical space. If segmentation is to be usefully criticized 
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this must be performed at two levels: 1) at the level of the fundamental 
assumption; namely, full generality in manipulating logical space is truly 
required, and 2) at the level of a particular implementation; namely, is the 
implementation being examined the most effective way to achieve the goal. 
As any system designer knows, there are many cost-generality trade offs in 
the implementation of a set of concepts. One can question a particular 
segmentation implementation as to whether the appropriate trade offs were 
made. The payoff to achieve a given level of generality measured in numbers 
of applications or value of applications requiring this level of generality 
must be weighed against the costs as measured in hardware expense, software 
development expense and machine running expense associated with achieving 
this level of generality. 
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For example, the decision made in the development of the Multics 
system, was to achieve full generality without cost being considered seriously. 
As a research and development decision, this is clearly a valid one and one 
which will yield much information about how and at what cost full generality 
of allocation of logical space can be achieved. If GE decides to implement 
a version of the system as a commercial product, then careful questioning is 
required of the cost-generality trade offs made against an installations 
expected usage of the levels of generality offered with the system. 

Examples of the type of question one could ask are: 

1) How frequently are multiple users going to concurrently share 
two or more procedures in a given computation, thus introducing the pos­
sibility of position conflicts of these procedures in logical space? 

2) Is this frequency of use great enough and the memory require­
ments of the procedure to be shared large enough so that the price associated 
with obtaining full generality of sharing gives an adequate return on the 
investment; or would it not be better to make a trade off and share one copy 
of very frequently used procedures such as standard compilers, but allow 
sharing through the use of multiple copies of other classes of procedure? 
That is, one can allow sharing without trying to avoid multiple copies for 
all such procedures or data structures. 

3) Is requiring the use of overlays for large programs really a 
serious problem, which cannot be more effectively handled through machine 
aids other than that of providing a large virtual memory? 

We do not believe that the above type of questions have been 
adequately dealt with by proponents of segmentation. If the costs associated 
with implementing segmentation in full generality were low, then such 
questions would be irrelevent. However, as we see below where details of an 
implementation are discussed, the present state of the art requires that a 
substantial price must be paid for a segmentation implementation both in 
development, hardware, and system overhead dtu?ing operation. Our conclusion 
at this point in time is that a segmentation implementation in full generality 
makes a valuable research project, but that the results must be carefully 
analyzed before the concept is generally accepted as a requirement for large 
scale time sharing. 
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We now outline some of the details of the segmentation implement­
ation in the Multics system. Software and hardware are so closely inter­
linked that concepts in both areas are introduced. For the initial 
discussion, we assume all segments required by a computation are "known" 
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and thus have entries in the segment descriptor table. We outline later the 
steps required to make a segment known. The relative location within the 
segment table of the descriptor for a segment with symbolic name <S> is 
called the segment number, S#, of segment <S>. The segment <S> may be shared 
by several computations and have a different segment number in each; that is, 
the descriptors for segment <S> may appear in different relative locations 
within the segment descriptor table for each computation. Figure 9a shows a 
process in memory with segments A, B, c, D and T. Note that the contents of 
the descriptor base register points to the base of the segment descriptor 
table (also called the descriptor segment). Figure 9b shows two processes 
resident in memory sharing segments A and T. Each process has a different 
location in its segment descriptor table for the segment descriptors for A 
and T. Therefore, each process refers to segments A and T with different 
segment numbers. The descriptor base register's contents are changed each 
time a different process is given control of the machine so that it points 
to the beginning of the correct segment descriptor table. 

To make a memory reference, two numbers are necessary: 1) a 
segment number is required to make reference to the correct segment descriptor 
in the segment descriptor table, 2) a location within the segment. The pair 
segment number/location number within the segment is called a generalized 
address. The notation S#/a is used, where &ff is the segment number and a 
is the location within <S> of the symbolic element name [a]. We now outline 
some of the ways in which a generalized address is formed. First consider 
instruction fetches. The segment number of the executing segment is contained 
in the procedure base register. The location within the segment is contained 
in the program counter. If the procedure segment is executing a sequence of 
instructions that lie entirely within the segment, the contents of the 
procedure base register remain unchanged. 

There are two types of GE-645 instruction words, type O and type 1. 
Type O instructions obtain their operands from within the executing segment. 
The segment number is obtained from the procedure base register and the 
location within the segment is obtained through the normal process of address 
modification, possibly involving indexing and indirect addressing within 
the executing segment. 

The type 1 instructions are used to reference data in a segment 
outside the one executing and form a generalized address as shown in 
Figure lOa. The segment tag is used to point to one of the four base pair 
registers. Part of this register contains the segment number (how the 
proper segment number got there is outlined later) and the remainder contains 
a location base within the segment which when combined with the address field 
and possible indexing yields the location number within the segment. 
Figure lOb indicates how the actual operand address in logical space is 
obtained from the generalized address. The segment number is added to the 
number in the descriptor base register to locate the correct segment 
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descriptor in the segment descriptor table which in turn points to the base of 
the segment. The location nwnber is added to the address in the segment 
descriptor to form the location required. 

The above mechanism provides the solution to the problem of allowing 
data structures to grow and contract at will without the progr8lillller having to 
worry about memory allocation. If the data structure is a segment, it can 
grow to any size up to the maximum segment size imposed by the implementation 
or shrink at will. Only as much physical memory is used as presently required 
by the data structure. In the actual implementation, the segments are paged 
and the pointer in the segment descriptor really points to the base of a 
page table containing E_age d~scriptors for the pages of the segment. A page 
descriptor contains the address in main or auxiliary storage where the given 
page is stored. The location nwnber is broken into two parts) a page number 
and a line within the page. The actual physical address is obtained via a 
double table look up as shown in Figure 11. 

If the scheme were left as above it would be unsatisfactory because 
of the time required to c~mpute each address. To get around this problem a 
small ~ssociative memorya is incorporated in the processor as a memory 
map. 19 ) The key used to address this memory is the corritiined page and segment 
number. If the double indexing described above had recently been performed, 
the page and segment number along with the actual page address would have been 
inserted.in· the associative memory. Then when this page-segment number is 
used again, the page address is retrieved directly and the lookup in the 
segment and page descriptor tables is avoided. 

The associative memory is restricted in size and therefore hardware 
algoretbms have to be implemented which determine which page-segment numbers 
to replace when)it is full and pages not in the associative memory are 
addressed.is) is 

Let us now back track and discuss indirect addressing through 
segments outside the one executing. Indirect addressing is heavily used for 
the segment linking scheme to be discussed below. Whenever an indirect word 
address is even, the GE-645 fetches a pair of words. The location of the 
indirect pair is obtained as in Figures 10 and 11. This pair, based on the 
setting of certain bits, can be interpreted in three ways: 1) fetch the 
operand from the same segment as the indirect word, 2) fetch the operand from 
the segment which has the segment nwnber contained in the first word of the 
pair at the location within the segment given by the second word, or 3) fetch 
the operand from the segment given by the base-pair register indicated in 
the first word and location within the segment indicated in the second word. 

Indirect addressing and indexing can proceed to any level and thus 
pass through several segments. Indirect addressing may go several levels in 
one segment before reaching the operand or before passing to another segment. 

a) .An associative memory was described earlier fOr a paged machine in which 
the key was the page number. The concept is identical here except that a 
longer key is required containing the segment number and the page 
number. 
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In effect indirect addressing on the 645 is identical conceptually with 
indirect addressing on conventional machines except that one obtains a segment 
number as well as location number at each level. The latter can be modified 
by indexing. 

With the above outline of addressing on the GE-645, we can now 
discuss the techniques used to liilk segments. In a system using static 
relocation, dynamic relocation using base-registers or paging, all procedures 
and data are liilked together at the time of loading into physical or logical 
space or at the time the map is set up when the process is initialized. The 
philosophy of the Multics system is that liilking is only to take place at the 
time a process reaches the point where a given segment is actually required. 
Prior to this point, the required segment is simply a file stored somewhere 
within the auxiliary memory hierarchy. The supervisor segment is invoked when 
the segment is required. The supervisor fetches the segment from auxiliary 
memoryJ records the segment as known in the proper tables of the calling 
process and then returns control to the calling process. The above, in the 
most general terms, is the linking process. The linking process must satisfy 
three goals: 1) enable segments to be swapped, 2) enable segments to be 
shared with full generality, and 3) enable segments to be loaded as needed. 
Let us consider the latter case first. 

The motivation for the load as needed requirements is the desire to 
m1n1m1ze the memory required by a computation and thus to minimize swapping. 
A segment is needed when the first reference is made to it. For example, 
consider the code 

load accumulater <S>/[place l] 
store accumulater <S>/[place 2] 

which is executing in a segment <Ji>. The two dimensional symbolic addresses 
ref er to a segment different from <Ji>. The outline of the process for linking 
segments <.A> and <S> is the following. Associated with every segment is 
another segment called the linkage segment which, for example, for segment 
<A> we call <link A>. This segment is created by the assembler or compiler. 
There is clearly not enough room in the address field of an instruction for 
a two dimensional symbolic name and so what the compiler creates is a pair of 
indirect words in the lilikage segment associated with each out-of-segment 
reference. During the indirect addressing operation a certain code in the 
indirect word causes a transfer to take place to the supervisor if the 
referenced segment address is in symbolic form. The indirect pair actually 
contain pointers to the symbol strings. 
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When a symbolic segment name is ecnountered, the supervisor searches 
the known segment table for a symbolic segment name the same as the one in 
the instruction. If the name is found 1 the associated segment number is 
placed in the first indirec-i; word. The symbolic location within segment name, 
for example, [place l] above, must now be converted to a relative location 
within the segment. Each segment carries with it a symbol table of all 
symbols which may be referenced by external segments. Thus once the segment 
number is known2 the segment can be located and the segment symbol table 
searched to find the location of [place l], for example. This number replaces 
the contents of the second indirect word associated with the given instruction 
in the linkage segment. The code bits of the indirect pair are modified to 
indicate that now a generalized address exists there and the memory reference 
can be allowed to proceed as discussed earlier for indirect addresses. 

If the search of the known segment table fails to find a segment 
name equal to the one given in the instruction, then supervisor routines 
called the Hfile systemn are ilwoked to find the segment. When the segment 
is found, using other tables called the file directories, it is loaded into 
main memory. A segment descriptor for the segment is set up. 

The re1a-Give location of this descriptor in the segment descriptor 
table becomes the segment number. A symbolic segment name/segment number pair 
are added to the known segment table and then addressing proceeds as just 
described above. 

The above scheme is completely general. The segment number can 
vary from computing session to computing session or be different for different 
processes sharing the segment. Just because a segment is known by one process 
does not mean i-t will be known by another process. Part of the J'Ob of the 
file system is to determine if a segr11ent had already been loaded previously 
because another computation was using it. The segment descriptor of the 
second process is set up to point to the base of the present location of the 
segment} thus requiring 011ly one copy to be in memory. 

The price paid for the above generality is: 

1) The memory space for the known segment table; linkage segments, 
and the symbol table carried with each segment. 

2) The time spent in the supervisor changing two dimensional 
symbolic addresses into two dimensional generalized addresses the first time 
instructions referring to external segments are referenced. 

3) The time spent referencing external segments with indirect 
addresses. The alert reader probably still has the question, how does a 
segment know where its linkage segment is located? The answer is that one 
of the base--pair registers is assigned by convention to this task. 

We are now ready to see what happens when a segment is swapped. 
The segment may be returned to a different place in memory each time. This 
problem is simply handled by modifying the contents of the segment descriptor. 
All the previous linking steps do not need to be repeated because the segment 
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descriptor location in the segment descriptor table is not altered. Thus 
the segment number remains the same. At a further level of detail one should 
remember that when we refer to a segmen-Gs location,we really mean the location 
of the page table for the segment. The page table in turn indicates where in 
physical memory the segment actually resides. We see another price paid for 
the generality, the time required to change the segment descriptor and page 
descriptors on each swap. 

We are now ready to see how segmentation allows sharing to take 
place with full generality. The interesting question is, how does the shared 
procedure, which must be a pure procedure, access the correct data segments 
for the process which is presently in control? This problem is solved by 
associating with the shared i)rocedure a linkage segment for each process 
using it. Or from another point of view each process using a shared segment 
has a linkage segment for the shared segment. When the sha1·ed procedure is 
initially created a linkage segment is created. A copy of this linkage 
segment is obtained by the system for each process using the shared segment. 
These linkage segments are 11filled in" as described above to provide the 
proper coupling. The correct linkage segment is referenced at a given time 
because the base··pair registers are saved and restored as pa.rt of the machine 
state. 

The previous discussion showed how multiple shared procedures can 
be used simultaneously without conflicts of location in logical space through 
relocation by use of the segment descriptor table. The solution to the 
problem of sharing data containing addresses now needs to be pointed out. 
If the addresses are internal to the data segment, they appear relative to 
the start of the segment. The starting point of the segment is given by 
the segment descriptor and thus no ccnflict of positioning in logical space 
can occur for this case. If the addresses refer back to a procedure segment 
then a linkage segment, is set up for ea.ch process using the shared data. 
The linkage segment assures that no conflict can occur in positioning of the 
data segment or procedure segments using the data. 

The linkage segment is thus a key concept in the implementation of 
a segmented system. The r·eader may still wonder wby use the linkage segment 
for intersegment references when the addressing mechanism allows intersegment 
references to take place more directly with the base···pair registers? There 
are only four base·-pair registers. Thus, we would have conflicts in 
addressing these registers if very great care was not taken to be sure shared 
procedures being used concurrently did not refer to the same base register. 
In other words we would have one of the problems we were t~ing to avoid by 
using segmentation. 

In the Multics system, procedures and data will, in general, occupy 
different segments. Requiring indirect address references in the inner loop 
of a matrix multiply routine, for example, would be very costly. This is one 
of the prices paid to obtain full generality. By use of assembly level 
coding one can get around -~his extra memory reference by using a base-pair 
register, but again this must be done with ca.re or conflicts can arise and 
is not likely to be undertaken by most users. 
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The above discussion of the segmentation implementation in the 
Multics system has left out many details which the reader can obtain from 
reference 37. HopefullyJ however, the general outlines of the scheme are 
clear and in particular the reader has some feeling for the price paid to 
achieve full generality. 

Let us now examine briefly some other implementations to see a 
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few possible variations of the segmentation concept. The earliest implement-· 
ation of segmentation, known to us, occurred on the Burroughs B-·5000. A 
process in the B-5000 could contain 1024 segments. Procedure segments may be 
ariy length and data segments are limited to 1024 words. Data structures 
requiring greater space use multiple segment.s. The segments are not paged and 
are thus also the unit of physical memory allocation. The table equivalent 
to the segment descriptor table, in the B·-5000 system, is called the 11 program 
ref'erence table 11 • No attempt is made to use segmentation in its fu:J_l 
generality and therfore a more efficient system is made possible. 52 ) 

In a segmentation scheme such as that of Multics where any segment 
can reference in principle the entire logical add:ress space (all segments), 
many bits of address information are required in the implementation. Thus, 
requiring pair-base registers, paired indirect words and so forth. In 
practice any given segment only needs to communicate wit);l a limited number of 
segments. A segmentation scheme of Evans and Le Clerc29 ) allows any given 
segment to address a small number of other segments; each of these in 
turn can address other segments so that the total address space is very large, 
but the addressing and protection hardware required may be simplified. 

The system other than Multics which has received CO:\).siderable 
attention within the computer profession is the IBM 360/67. 18 J) This system 
is based on a scheme developed at the University of Michigan. 2 The 
segmentation system of the RCA Spectra ~ro/46 is very similar. The first major 
difference between the GE-645 and the IBM 360/67 is the way a generalized 
address (segment number/location within segment) is formed. 

All generalized addresses in the IBM 360/67 are formed using 
conventional indexing and indirect addressing. The address formed after full 
modification is broken into two parts, a segme11t number and a location within 
segment number (the location within segment number is paged as in the GE-645, 
but, we ignore that level of detail). In the GE--645 the segment number could 
not be modified by indexing. The two types of segmentation have been 
called linear and symbolic segmentation respectively. 44 ) With symbolic 
segmentation (GE--645), the segments are logically independent in the sense 
that there are no contiguous addresses across segment boundaries. That 
is, there is no relationship between the last address of segment n and the 
first address of segment n+l. There is no wa;y using address modification 
·through indexing to obtain an address in segment n+l from an address in 
segment n. With linear segmentation (IBM 360/67) addresses are contiguous 
across segment boundaries. The last address of segment n is contiguous with 
the first address of segment n+l. That is, one can modify an address in 
segment n to produce an address in segment n+l. 
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The above difference has many implications, one of the more important 
is that, because the segment number is the relative position of a segment 
descriptor in the segment descriptor table, the position in the segment de­
scriptpr table of a descriptor is very important in a linear segmented system. 
A linear segmented space is not two dimensional, but is a large one dimensional 
logical space. Another way to look at the difference is that linear seg ... 
mentation blurs segmentation as a logical concept with the concept of 
physical memory allocation. 

The 24 bit address version of the IBM 360/67 can only address 16 
segments, which makes it necessary to pack several independent programs in the 
same segment. With such a usage one can reduce the number of page tables 
required over what a strictly paged system would require because the page 
tables of shared programs can be shared, but the full logical generality of 
segmentation is lost. That is, used in this way segmentation facilitates 
physical memory utilization; but ceases ·i:,o be strictly a logical concept; 
thus, losing much of its justification for existence. 

As with the GK-645, the IBM 360/67 uses an associative map to try 
and reduce the number of times the double table lookup in segment and page 
descriptor tables is required. The IBM 360/67, however, has the quirk that 
the instruction fetches are not made through the full map, but through a 
separate associative register which acts like a base register for the program 
counter. The situa·tion of a loop executing across page boundaries requires 
references to the maps in main memory. This situation would not occur in the 
GE-645, because both pages of the loop would have entries in the associative 
map. Another quirk of the 360/67 is that memory protection is based on blocks 
of.physica1 memory and not on logical units like segments, as on the GE-645. 
It seems reasonable to assume that. the designers of the IEM 360 /67· did not 
fully understand the motivation for segmentation, because their implemen-i:,ation 
does not show carefully thought out, valid cost-generality trade offs. The 
implementation instead is a rather inhomogeneous mixture of blurred concepts. 

What, then~ car1 be said about the present state of the art with 
regard to segmentation? The 360 /67 has failed to materialize as an econonom-· 
ically justifiable commercial product in spite of the thousands of man hours 
and millions of dollars invested in the system by IBM. The failure of this 
system is not entirely to be blamed on the segmentation implementation, 
however. A major portion of the blame is to be given to the swapping 
philosophy chosen and to the inadequate attention given to the total memory 
and I/O system design. The swapping philosophy is based on demand paging; 
which tries -Co maintain in memory only those pages required by a process and 
to swap in a page only on dem&1d. The auxiliary storage ui1i~s qhosen for 
svrapping mediums were poorly matched to such a philosophy. 34 135 ) Swapping 
is discussed in some detail in the next section. 

The Multics system is behind schedule. Although the entire design 
of the segmentation implementation is logically consistent, the costs 
associated with achieving this level of generality and consistency are high. 
The swapping philosophy of the Multics system is also based on demand paging. 
Although the GE auxiliary swapping storage is of higher performance than that 
of the 360/67, it is still not well suited to be used with demand paging. 

249-68 



30 

There are no reasons to believe that initial versions of Multics will be any 
more economical than the 360/67. Again one must remember that Multics is a 
research project trying to determine the tecl1niques required and the costs 
associated with achieving full generality of segmentation. Based on experience 
with ea1·ly versions of the system, the developers should be able to experiment 
with improved swapping and resource allocation algorithms and determine what 
extra or modified hardware could ease bottlenecks. The designers can then 
examine the various cost·-generali ty t.rade offs available and redesign the 
system in a modular fashion such that in a cormnercial version installations 
can pay for the generality required. 

The Burroughs B·-5000• computer and its successors are successful 
commercial products) but segmentation was not implemented with the same degree 
of generality att,empted with the IEM 360 /67 or Multics systems. Burroughs is 
presently designing a large scale system, the Burroughs B-8500 for general 
purpose time--sharing. The first version of this machirLe had an inadequate 
memory bus and I/O system design for handling efficient swapping. A new 
version is being designed. Hopefullyi this system can capitalize on Burroughs 
experience with segmented systems and the experience of the IEM and the 
Multics groups. 

We can sum up in conclusion the following points: 1) large scale 
systems attempting to achieve a large logical memory space and full generality 
of procedure and data sharing are still very much in a research and develop­
ment stage, 2) segmentation is a sound logical concept if one accepts the 
basic assumption that a very large logical space and full generality of pro­
cedure and data sharing are required in a large scale time-sharing system, 
3) if one does not accept this basic assumption, then one can still achieve 
large logical and physical memory spaces economically in more conventional 
base-register or paged systems without the full generality in sharing single 
copies of procedures and data. Procedures and data can still be shared, 
however, 4) the rapidly changing technology of large scale circuit integration 
may alter significantly the design philosophy of future segmentation 
implementations, 5) decreasing hardware costs and experience with present 
systems should make more economical segmentation systems possible by the mid 
1970's. The same decrease in hardware costs and increase in understanding may 
still favor more straight forward systems, because effective utilization of 
memory may not be such an ill!f?ortant criteria. Full generality in sharing pro­
cedures and data can be looked at as a way to conserve memory. However, as 
hardware costs drop, the same effect, as seen by the programmer, can be 
achieved by allowing multiple copies of some procedures and data to exist. 

Miscellaneous Memory Allocations and Addressing Problems 

An aspect of addressing which needs mentioning is that related to 
I/O devices. When a user requests certain information to be written into or 
out of main storage in a system utilizing paging or segmentation, he uses log­
ical addresses, and thus the I/O processor ideally should also access memory 
through the same type of map used by the central processing unit. 50 ) This 
requirement is particularly important for block transfers where part of the 
block is in one page and the remainder is in one or more other pages. In a 
conventional I/O processor the starting address of a transfer and the number 
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of words to be transferred is given to the I/O processor by the CPU and then 
the specified block of information· .is transferred. In a paged system without 
mapping in the I/O processor, a new address needs to be sent to the I/O 
processor by the CPU when a page b0Ul1dary is passed. This_process slows down 
the I/O operation and, on transfers to devices such as high speed drums, could 
result in lost information. 

On the SDS-940, the direct access connnunication (DACC) channels are 
sent two page numbers before a transfer is started so that when a page 
boundary is crossed, the second page nun1ber is automatically used to control 
the transfer. Then a signal is sent to the CPU to send the next page number 
and the CPU has the time corresponding to a page transfer to respond. .Another 
approach is being taken with ~ cathode ray tube display process to be attached 
directly to the 940 memory.531 In this device a full memory map is used 
identical to that in the CPU. 

The remaining topic which requires some discussion is the question of 
how system routines access memory. In the SDS-940 system there are, in fact, 
two hardware memory maps, one for user processes a.11d the other for the system. 
The system would not require mapping if system routines occuppied fixed core 
positions. Some system routines are not used frequently enough or required 
to give such a fast response that they must permanently reside in main memory. 
OJ.1e would like to be able to dynamically allocate memory to these routines as 
they are needed. The SDS-940 system achieves this ability by using a system 
map. The machine uses one or the other of the two maps depending on the mode 
in which it is operating, either system mode or user mode. These modes are 
discussed in the section on protection. Use of two maps enables the system to 
perform its functions without requiring changes to the users map. 

The Multics system uses a different approach. System segments ar·e 
assigned to each job's segment descriptor table and logically become part of 
each user's computation. These system routines use the same mapping mechanism 
as the user·' s routines. The potential difficulty with this approach is that 
system interrupt and allocation routines and user calls in the system which 
occur during the execution of a user process will cause changes to ·t,he 
associative map, thus necessitating frequent double table look ups to restore 
the map when control returns to the user process. We have seen no comment on 
the above problem in the literature. Whether or not it is a potentially 
serious problem depends on the frequency of interrupts and transfers to the 
system. There are no readily available statistics on the above problem. 
This lack of statistics is one of the problems facing system designers. There 
is an increasing in-iierest·in the computer profession in collecting statistics 
on system parameters, which when they become available should be valuable to 
the designers of the next generation of machines. 

Swapping 

Let us now look in more detail at the problems encountered with 
demand paging in particular and swapping in general. If there were 
enough main memory, swapping would be unnecessary, or at least might have 
to be performed less frequently. The prime limitation on the present 
capacity of main memories is cost, although signal propagation time is also 
a factor. Hardware technology is changing rapidly, however, and the cost 
and size of main memory can be expected to decrease. As an example of 
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the rapidly changing hardware technology, large scale integrated circuit 
memories costing 1--2 cents per bit will be commercially available in- the early 
1970 1 s. These memories will have read·-wri te cycle times of 100 nanoseconds or 
less and capacities in the millions of bits. By comparison core memories with 
500 nanoseconds cycle times now cost around 5 cents per bit. The availability 
of the low cost, highly reliable large scale integrated circuits will make 
possible hardware solutions to many of the problems now solved with software. 
Thus simpler more efficient impl·ementations of segmentation--paging concepts 
will be possible in the next generation of machines. 

Even with the type of main memory cost reduction illustrated above, 
main memory is still an order of magnitude more expensive than auxiliary 
storage such as drums and, therefore, designers will try to take advantage of 
this cost differential by designing systems which utilize swapping. There are 
two importai1t parameters of an auxiliary storage device used for swapping, 
1) the average length of time required to access the required block of 
information, and 2) the time required to transfer the block to or from main 
memory. The former is called the average access time and the latter is 
inversely proportional to the transfer rate. The average access time for most 
drums used for swapping_, to da·~e, is between 15-40 milliseconds, al though 
UNIVAC has a small 1.5 x 106 character drum with an average access time of 
4.25 milliseconds. Transfer rates can vary on drums from a few hundred thou.sand 
six-bit characters per second to several million six-bit characters per second. 
Besides the times mentioned above associated with the hardware characteristics, 
there is the additional time required to locate the required information. It 
has been stated, by MIT's Professor Corbato at a course given on problems in 
time-sharing du.ring the summer of 1968, that when a Multics page fault (a 
missing page) occurred, the routines handling the condition required as long as 
75 milliseconds to perform their processing when two page sizes (64 words and 
1000 words) were used. When one page size (1000 words) was used, this time was 
reduced to 4 milliseconds. Even at t.he lower figure, this time is significant. 

Randell and Kuebner44 ) have suggested a measure of memory utilization 
called the SEace-time-uroduct; space being the amoui1t of main memory a process 
is occupying, and the ·t;ime being the length of time the space is occupied. The 
measure is useful because even if the computation for one process can be 
overlapped with the swapping of another, the process requiring the swapping is 
taking up space in memory for some length of time. Thus, this idle process is 
using a valuable resource. The choice of a swapping algorithm must be chosen 
to minimize the total space-time-product of all processes run in the system 
and still meet rapid response cri ter·ia to the users. The choice of a swapping 
algorithm and the success or failure of a total paged system is related to, 
1) the page demand characteristics of programs, 2) the software time required 
to locate pages on auxiliary memory, and 3) the accessing and transfer 
characteristics of auxiliary storage devices. 

Fine et al.f7 ) and Varian and Coffmans)si) have investigated the 
dynamic behavior to be expected in a paged computer and have produced some 
pessimistic results. In the Fine study five rather large programs were studied. 
Program size varied from 14K to 44K words and averaged 30K words. Each program 
was considered divided into lK word pages. None of the programs were in any 
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way designed for a paged machine. This is not an important limitation because 
Coffman5 J argued that programs designed for a paged machine will yield similar 
results. A plot of data presented by Fine is shown in Figure 12. This plot 
shows that very early in a time slice (at 30 milliseconds) 18 to 20 pages are 
required. In fact they found that if a program required 20 pages, 25% of the 
time the program required these pages within 7 milliseconds. This high page 
demimd means that very frequently, using a demand paging swapping algorithm, 
the process is going to be halted waiting for a page. If one plots the 
space-time··product based on such a curve as above one gets the result shown in 
Figure 13. This figure shows the active periods followed by· periods 
of inactivity. The attempt to mask these periods of inactivity by running 
other processes is only going to be successful if the ratio of inactive to 
active time is low. Using Fine's data, the first 10 active periods have a 
total active time of 0.8 milliseconds (on the SDC-Q.32). Using a demand paging 
strategy and a drum with 17 millisecond average access and an infinite transfer 
rate, the inactive time during the period would be 170 milliseconds. Thus 
the ratio is higher than 200 to 1. Because all other processes in the system 
are going to behave with similar statistics as well as be halted for other 
I/O services, demand paging from even a fast drum is rapidly going to result 
in an I/O boTu.~d system. Nielsen•s simulation of the IBM 360/6734 ) 35 ) showed 
similar results. 

Several approaches have been suggested to improve this situation. 
The more important ones are: 1) user or compiler optimization of program 
structure to decrease the page demand rate, 2) starting each process with a 
11working set 11 of pages (affinity paging), and 3) minimize the average access 
time for the swapping mediUJn. No practical pr9posals for accomplishing 
suggestion 1) above have appeared and Coffman5 J and Fine17 ) are not optimistic 
that this approach can yield significant improvements. Th~ second suggestion 
is quite workable and will undoubtedly be used. Denningi4 J has suggested a 
method for determining a working set to be used in an affinity paging algor­
ithm. He defines the worldng set of information W( t, -r) of a process at time 
t to be the collection of data items referenced by the process during the 
process time interval (t--r, t). The parameter -r must be selected to reflect 
other parameters such as main memory size, auxiliary storage transfer rates 
and access time • .Another design problem is determining w(t, -r). Denning 
makes a proposal for a hardware device which resides in main memory and 
collects the necessary statistics. The reader interested in the details is 
referred to his paper. He further makes the important point that the sched­
u1ing process and memory management are intimately interrelated for a system 
using a swapping algorithm based on a working set. The important point here 
is that main memory and auxilia:r"J memory parameters will indicate what the 
nature of the basic swapping philosophy will be. This latter choice will 
inturn influence the other important resource allocation algorithms. The net 
result is that resource allocation and swapping algorithms for an efficient 
economical system are intimately related to hardware performance character­
istics. This statement seems obvious, but its truth does not seem to be 
reflected in the stated objective of the Multics design, which is to 
implement a hardware independent system. 

249-68 Figures 12 and 13 follow 
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Faster swapping mediums such as bulk core are being experimented 
with. Bulk core is slower speed random access storage (access time being 
3-8 microseconds) then main storage and less expensive by about a factor of 
2·-4. Decreasing the average access time of rotating devices below the UNIV AC 
drwns 4 milliseconds will require making drums even smaller, which will require 
breakthroughs in increasing information packing densities. Otherwise large 
numbers of such drums will be required, thus decreasing the cost advantage of 
drurns over bulk core. Some improvements can be expected in this area, but a 
factor of two seems optimistic. Bulk core is still expensive relative to 
rotating devices, but total system performance may make it economical. 
Affinity paging will be used with rotating devices because a working set of 
pages can be brought into main memory ver<-J rapidly compared to the average 
access time. Disk storage with its longer average access time and slower 
transfer rates is a poor choice for a swapping medium. 

Let us consider the use of bulk core briefly as its use is expected 
to be more common, particularly as its cost drops. There are two basic types 
of bulk core presently on the market. One type is marketed by IBM and called 
large capacity storage (LCS). The other type is marketed by CDC called 
extended core storage (ECS). These two types of storage have fundamentally 
different properties as bacldng stores and would lead to the implementation 
of very different swapping systems. At Carnegie-Mellon Ins-t;i tute tl1ey are 
experimenting with LCS as a swapping medium for their IBM 360/67.28 ) LCS has 
an 8 µsec cycle time and a 4 µsec access time and can be directly accessed by 
the CPU. In addition, transfers can be made in blocks via a storage channel 
making the LCS appear as a drum with an 8 µsec avP-rage access time and a 
transfer rate of 400, 000 32-·bi t words per second. In an LCS system there are 
in effect two different page sizes, a 1024 word page size which is swapped 
via the channel and an LC.S double word which can be directly accessed. If 
the monitor 11lmew 11 that only a few words in a page were to be referenced, it 
wo1..::_ld be cheaper to access the words directly in LCS rather than perf arming 
the swap. How the monitor is to know such a fact is an unsolved problem, 
but the opportunity is there. It takes 2.5 milliseconds to swap a lK word 
page from LCS and assuming some time to process the page demand this means 
latency for LCS is about 3-4 milliseconds. This is a significant improvement 
over a drum and if the cost (about 3 cents per bit presently) can be reduced 
by a factor of five or so, LCS will be economically competitive with drums as 
a swapping medium. Experience at Carnegie-Mellon using LCS has shown a 
significant performance improvement, as would be expected. The use of bulk 
core storage still does not solve the swapping problem completely because 
without placing restrictions on program size it may not be economically 
possible to keep all users programs and data in bulk storage and thus the 
11 swapping problemn is pushed back one level in the storage hierarchy between 
bulk core and drurns or disks. 

CDC 1 s extended core storage cannot be directly accessed by the 
CPU and requires 3 µsecs to access the first 60 bit word. Once the first 
word is _located a transfer rate of 10 million 60 bit words per second can be 
maintained. Thus a lK word block can be transferred in 100 µsecs. This high 
speed has two implications: 1) swapping and computation cannot be overlapped 
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because the transfer requires all the memory cycles and 2) processing 
necessary to loca"l:;e the required block in ECS constitutes the major delay in 
accessing the block. 

The main unit of information transfer in an ECS system is probably 
more suited to be the program or segment rather than the page and thus a 
machine designed around ECS can probably be designed with a simpler storage 
management system than one designed around a drum or LCS. 

Memory Bus and Control Structure 

It has been stated that the central resource in resource sharing 
systems is main memory. In such syst.ems high transfer rate secondary storage 
devices in addition to numerous input-output devices share access to the 
memory with the central processing m1it(s). The processors which control the 
secondary storage and I/O devices and communication with memory are usually 
referred to as channels,I/O controllers,or I/0 processors. Sometimes the 
function of several :processors is combined into a device called a generalized 
I/O controller (GIOCJ19 • The design problem is to provide the various 
processors with an adequate data transfer capability to and from main memory. 
Ideally each processor should be able to transfer a datum to or from main 
memory at its convenience without regard to the ability of the memory to 
accept or supply the datum at that particular moment, or the ability of the 
processor-to-memory transfer··addressing path (memory bus) to effect the 
transfer. Unfortunately economic and technical considerations relegate the 
above ideal to a sta:1.1dard against which practical systems can be compared. 

In practical systems the rate at which data can be transferred 
between processors and main memory is limited by the transfer capabilities of 
the memory its elf and the memory busses. '£he rate at which the memory can 
transfer inf orma.tion is often ref erred to as the memory bandwidth, usually 
measured in words per second. Bandwidth limitations also exist for the 
memory busses. Because the memory system is shared by several processors, 
care must be taken in the design to keep performance from being seriously 
degraded due to interference ca.used by simultaneous attempts on the part of 
the several processors to utilize a facility such as a memory bus or portion 
of memory its elf. Figure 14 shows the usual method for organizing the memory 
structure in a resource sharing system. 

The memory, instead of being considered one monolithic unit with 
one set of addressing circuitry and one set of read-write circuits, is broken 
into some number n of smaller boxes each with its own set of addressing and 
read-Write circuits. In the SDS-940 for example a 64K memory is broken into 
four 16K boxes. Accessing· ea.ch box are up tom data-address busses. Each 
data-address bus has cables for data to and from memory and the required 
address. The quantity m in present systems usually varies from 2 to 5. A 
schematic of one representative memory box is shown in Figure 15. Any 
combination of busses, a, b, c, or d may request access to the memory box 
simultaneously. The priority access control must decide which bus is to be 
given access on this particular memory cycle and the requests on the other 
busses must remain hanging until the next cycle or be cancelled and renewed 

249-68 Figures 14 and 15 follow 



249-68 
64692 

Box l Box 2 Box 3 . . . Box 17 

~~I ... a) ] . . . l .. . J . .. 
.... b_l -... 

-- ... c) 
. 

m) . . 

Figure 14. MEMORY ORGANIZATION IN A RESOURCE SHARING SYSTEM 



249-68 
64692 

I Storage Cel Is I 
Address Data 
Register Register 

l Priority 
Access Control 

L I ' ~ 

a) 

bl 
c) 

d) 

Figure 15. DETAIL OF A MEMORY BOX 



on the next cycle. The term bus structure is frequently used to refer to 
the bus-priority control complex. 

The scheme shown in Figure. 14 cuts interference by allowing 
simultaneous access to more than one box. That is, if bus (a) requests 
access to box 2 at the same time bus (b) requests access to box 3 both 
accesses are granted because each box has its own addressing and read-write 
circuitry. Even given the scheme shown in Figure 14 serious interference 
could result if memory addresses were contiguous in the boxes, for example, 
box 1 having addresses 1 to 16K and box 2 addresses 16K + 1 to 32K etc. If 
this were the case, transfer from a high speed drum might tie up a box during 
the period of transfer and cause interference with the arithmetic-logical 
unit. To get around this problem designers have developed the technique 
called interleaving. In an interleaved memory, consecutive addresses are in 
different memory boxes. For example, in a two-memory-box system all the 
even addresses would be in one box and all the odd addresses in the other. 
With an interleaved memory probability of one processor tying up the memory 
for a significant time is greatly decreased. 

To make a memory reference in one of these multi-bus configurations, 
a processor first makes a request for use of its memory bus; and when this 
request is granted, uses this bus to transmit its memory reference request 
to the appropriate memory module. If either of these requests is rejected 
the processor repeats the procedure or leaves its request hanging. 

To resolve conflicting requests for either a memory bus or memory 
box some type of priority mechanism must be employed. Priorities typically 
are assigned to processors and to memory busses; the former are used to 
resolve conflicting for a memory module. The design of the total memory 
structure including the priority scheme is critical if bottlenecks in this 
important area are to be avoided and expansion capability is to be provided 
for the addition of new I/O devices and processors. 

A discussion of some of the present systems is instructive as it 
shows the variety of approaches which exist. Two basic types of memory 
systems exist, synchronous and asynchronous. In synchronous systems, requests 
for memory can occur only at discrete time points and thus the concept of 
"simultaneous requests" can be used. The point of request is usually just 
prior to the start of a memory cycle and at this time all processors 
requesting a memory reference place their requests on the lines and the 
priority mechanism arbitrates between them. In asynchronous systems, a 
processor can request a memory reference at any point in time and the concept 
of simultaneous requests loses meaning. In systems such as the GE 645, 
asynchronous memory access is used, while the SDS-940 is an example of a 
synchronous system. The argument for using asynchronous memory references 
and asynchronous communication among major system modules is that it allows 
replacement of modules with others having different performance character­
istics without requiring modifications to the unreplaced system modules. 
Further, asynchronous communication can take place at maximum rates not 
restricted by the times fixed for synchronous systems. These advantages are 
real, but have an associated cost. In asynchronous systems the concept of 
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priority has little meaning because the requests for access generally are 
handled on a first come first served basis. Therefore, physical and 
statistical properties of the various processes cannot be adequately taken 
advantage of to improve the performance at a given cost point by the sharing 
of memory busses and allowing the use of variable priority requests. 

A typical asynchronous system is shown in Figure 16. In this figure 
each central processing unit has its own bus to memory. In a system with 
faster CPU's than the GE 645 using instruction look ahead [fetching of the 
next instruction or n instructions while the current instruction (s) are 
being executed], each CPU might have more than one memory bus to handle the 
overlap of instruction and operand fetch. Note that the fast secondary 
storage device used for swapping (th~ drum) has its own bus to each memory 
module. Finally a processor called the GIOC (general I/O controller) has a 
separate bus to each module. The GIOC is a complex piece of hardware 
combining the functions of dedicated channels and multiplexor channels along 
with buffering, assemblya) and device control functions. 19 ) One of its 
major functions is to schedule access to its one bus to each memory module. 
Because the system is asynchronous, access to a memory module is on a first 
come first serve basis. The memory modules are interleaved. This 
asynchronous approach does provide ease of replacement of CPU's or memories 
with faster units with little or no hardware and software modifications, but 
is expensive of hardware and possibly somewhat restricttve on the approaches 
one can take to adding fast I/O devices other than the drum. 

An example of a synchronous system which can inexpensively use 
simple priority schemes to increase memory and bus bandwidth is the SDS-940. 
A schematic of the SDS-940 is shown in Figure 17. 

There are two busses to 940 memory. The memory is interleaved four 
ways. In the SDS-930, which served as the basis for the 940, the bus called 
B2 (second path) in the figure always had priority over bus B1 (first path). 
This arrangement of priority is common in second generation machines and 
many third generation machines and is based on the idea that high speed 
devices such as drums and discs must have access to memory when required or 
data can be lost, because these devices are constantly rotating. In the 
Direct Access Communications Channel (DACC) of the 930 there is a one 
register buffer as shown in Figure 18. 

a) Assembly is the operation of accepting characters from the attached 
devices and assembling them into computer words. A dedicated channel 
allows only one high speed device to be attached at a time for commun­
ication with main memory. A multiplexor channel allows many slow speed 
devices to be attached at one time for communication with main memory. 
The multiplexor channel in effect communicates between attached 
devices in such a way that each device functions as though it is 
attached to a dedicated channel. 

249-68 Figures 16 and 17 follow 
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The assembly register packs four 6 bit characters in.a 24 bit word and then 
transfers the word to the buffer register on input from a device. On output 
to a device an analogous operation results in the opposite direction. At this 
point the 930 DACC requests a memory cycle to store the contents of the 
buffer register. Because the second path has priority over the first path 
this request is granted and the potential value of the buff er register is 
not obtained. To see the effect of this arrangement on memory interference 
consider the following example. If a high speed drum were transferring 
characters at the memory rate (i.e., one word every four memory cycles) and 
the memory consisted of two boxes not interleaved an interference rate of 
25% could result. If the two boxes were interleaved 12% interference could 
result. Even 12~; is a high interference factor and is unnecessary if the full 
buffering capability of the buffer register is used. 

When the assembly register transfers a word to the buffer register, 
the buffer register has at least three memory cycles and possibly four in 
which to transfer its contents to memory before the assembly register 
transfers its next word to it. Therefore, during any one of these three to 
four cycles the buffer register could accomplish its transfer task. It is 
the purpose of buffering to gain time. Therefore, what the developers of 
the 94o did was to take advantage of this potential buffering action by 
allowing the second path to request memory access with either a higher or 
lower priority than the first path. For example, after the assembly register 
transfers its contents to the buffer register, the DACC makes its first 
request for memory with low priority. If this request is granted then one 
knows that no interference resulted. If this request is not granted, 
then a second low priority request is made. If this second request is not 
granted then the third request is a high priority one. SinAflations have 
shown)th~t with this system memory interference with the CPU is less than 
l~. 40 41) 
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Making use of this priority feature, a high performance general 
purpose display processor has been designed for attachment to ERC's 940. In 
a display the picture on the screen must be repainted on the screen 30 - 60 
times per second to give the illusion of a continuous picture. The display 
conunands must be stored in a memory. With a computer not having the 940 1 s 
priority scheme, attachment directly to main memory would cause serious 
interference with the CPU and thus the display would have to be maintained 
from the memory of a separate small computer or separate memory. With the 
940 1 s priority scheme and with the display accessing memory on an average 
of every 11 µs, less than 2% interference with the CPU is expected. 53 ) 

There is one additional priority problem and that is for the second 
bus itself if several devices are attached to it. In the 930,devices are 
strung on the second bus daisy chain fashion as shown in Figure 19. 

'i\ 

~.1 I~ 
Memory i LJ , . 
r 1 T 1 I DACC2 l-I DACCili-----.1(---'---·--'-1 ____ .._, _____ ! __ _ 

Figure 19. 930 SECOND BUS STRUCTURE 

Priority for the second path is determined by position. That is, the further 
from the memory the device is attached, the higher its priority. For 
example, DACC2 has a higher priority than DACC1 • Such a scheme is fine for 
the case where the second path always has priority over the first path, but 
inefficient when devices on the second path can request access with variable 
priority. For in this case DACC2 may be requesting with a low priority and 
DACC1 with a high priority, but DACC2 is tying up the bus. Therefore, simple 
changes to the logic were made so that devices on the second path request 
access to the bus with an A, B or C priority, with A being higher priority 
than B. The device requesting with the highest priority gains control of 
the bus. In case two or more devices request access with the same priority, 
physical position is used to distinguish among them. Priority with respect 
to the CPU is determined as follows: A equals high and B or C equal low. 

In contrast to the machine discussed above let us consider a 
machine with a memory organization we consider inadequate to meet the demands 
which may be placed on it in a time-sharing system, the IBM 360/50. A 
schematic of the 360/50 1 s memory access path is shown in Figure 20. 
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In the 360/50, memory is not interleaved and only one path to memory exists. 
Further, this one path shares access and addressing registers with the CPU. 
When the Selector Channels (Selector Channels are processors which can connect 
any one high speed I/O device to the bus) require to transfer a word to or 
from memory, the CPU is halted because there are common registers involved. 
There is another type of channel available on the 360/50 called a Multiplexor 
Channel (a multiplexor channel allows multiple slower speed I/O devices to 
be connected to a data path simultaneously). The hardware for assembly of 
characters from the slower speed devices into words uses CPU registers. 
Further, temporary storage for addresses associated with the slower speed 
devices and the partially assembled words is part of main storage. Thus, 
during character transfers from the slower speed devices CPU interference 
results. 

Recent Developments 

As mentioned earlier there are two major problems in designing a 
hardware system for resource sharing: 1) achieving the memory addressing 
capacity and speeds required, and 2) achieving the rate of information flow 
required between the memory and the processors. Large memory addressing 
capacity and high speed are incompatible requirements because of the physical 
distances over which the signals must travel. Thus even if cost were not 
an important factor, design of the storage system would require careful 
attention. 

In present systems main store is made up of core or thin film 
memory. In systems like the IBM 360/67 and GE 645 mechanisms have been 
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devised as discussed earlier in order to make the distinction between the 
levels of the storage hierarchy invisible to the user. The user thinks he is 
dealing with a large "virtual" store all of which operates at the same speed. 
This is an important concept, but has yet to be economically demonstrated in 
its full generality because of the problems brought out earlier. The problem 
results primarily because of the rotational, accessing and transfer delays 
inherent in the rotational stores. The substitution of slower bulk core in 
place of drums as in the Carnegie system results in a substantial improvement 
in performance, but at a considerable cost. Costs of hardware are decreasing 
and this approach will be used more frequently in the future. However,use of 
bulk core in place of drums as the first level of backup storage still does 
not come to grips with the speed differential of the logic of the processors 
versus that of core and thin film memory. Further, the problem of supplying 
adequate memory bandwidth so that all processors can operate at their full 
rate is still not solved. 

Two machines, the IBM 360/858 ) recently announced and the Scientific 
Control Corporation (sec) 6700, under development at the University of 
California, Berkeley, offer related but different approaches to the above two 
problems. Both these systems use a programmer invisible level of high speed 
solid state buffer storage between core storage and the CPU, in the case of 
the 360/85, and between all processors in the case of the sec 6700. The goal 
is to use this high speed buffer storage in such a way that the processor 
"thinks" that all the storage is constructed of this high speed solid state 
memory. Before making a comparison between the systems a brief description 
of each is given. The discussion of the SCC 6700 is based on unpublished 
discussions with researchers at the University of California, Berkeley. 

A schematic of the Model 85 memory system is given below. 

Main Storag~ 

[Bus Control Unit 1~ ____ ==J channels I 
l Buffer Storage 

I CPU 

Figure 21. IBM 360/85 MEMORY SYSTEM 

Main storage in this system has a cycle time of about 1 microsecond. For 
storage configurations of 500K and lOOOK words (32 bit), storage is inter­
leaved four ways. For smaller storage configurations, storage is interleaved 
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two ways. Note that the buffer storage is only available to the CPU and not 
to the I/O or other processors. The buffer storage has a cycle time of 80 
nanoseconds. The buffer storage is either 4K, 6K or BK words. The goal in 
designing this system was oriented toward increasing the effective speed of 
memory as seen from the CPU. The importance of high data transfer rate 
between all processors and memory has not been highly developed in this 
machine because it is still seen as primarily a batch processing machine for 
CPU-bound scientific applications. The memory bus is 4 words wide in order to 
achieve the bandwidth required for the main applications envisioned. For 
business applications which are primarily I/O bound the organization of the 
360/85 offers little advantage. 

Main memory and the buffer storage are organized into sectors of 
256 words. During operation, a correspondence is set up between buffer 
storage sectors and main storage sectors in which each buffer storage sector 
is assigned to a single different main storage sector. Because of the limited 
number of buffer storage sectors, most main storage sectors do not have any 
buffer storage sectors assigned to them. Each of the buffer storage sectors 
has a 14-bit sector address register, which holds the address of the main 
storage sector to which it is assigned. 

The assig~.ment of buffer storage sectors is dynamically adjusted 
during operation, so that they are assigned to the main storage sectors that 
are currently being used by programs. If the program causes a fetch from a 
main storage sector that does not have a buffer storage sector assigned to it, 
one of the buffer storage sectors is then reassigned to that main storage 
sector. To make a good selection of a buffer storage sector to reassign, 
enough information is maintained to order the buffer storage sectors into an 
activity list. 

When a buffer storage sector is assigned to a different main 
storage sector, the entire 256 words located in that main storage sector is 
not loaded into the buffer at once. Rather each sector is divided into 16 
blocks of 4 words each, which are located on demand. 

Storage operations always cause main storage to be updated. If the 
main storage sector being changed has a buffer storage sector assigned to it, 
the buffer is also updated, otherwise, no activity related to the buffer takes 
place. Since all the data in the buffer are also in main storage, it is not 
necessary on a buffer storage sector reassignment to move any data from the 
buffer to main storage. 

Two 80 nanosecond cycles are required to fetch data that are in the 
buffer. The first cycle is used to examine the sector address and the 
validity bits to determine if the data are in the buffer. The second cycle is 
then used to read the data out of the buffer. If the data are not present in 
the buffer, additional cycles are required while the block is loaded into the 
buffer from main storage. 

Simulation was used extensively during the design of this memory 
system as well as that for the SCC-6700. There are many imp0rtant parameters 
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such as choice of a replacement algorithm, buffer size, sector and block 
sizes which must be determined. 

With the simulation running a representative scientific oriented 
job mix, it was found that mean performance of this si¥"stem as compared to an 
ideal system consisting of only 80 ns memory was 81%. ) That is, 8li of the 
time on average the CPU obtained information from the Buffer Storage. Although 
the simulation technique used by IBM is sound, there has been controversy over 
the advertising claims based on the simulations in the trade journal 
"Computerworld", (see May 22, 1968 issue). 

The Scientific Control Corporation (SCC) 6700 machine is being 
developed jointly by SCC and researchers at the University of California, 
Berkaley. The group at the University of California is the same one which 
developed the SDS-940. The orginal goal was to develop a hardware organization 
for resource sharing which would incorporate as many hardware features as 
possible which research and development centered around the 940 showed would 
be desirable (several PhD theses and MS papers resulted from work on the 940 
and generalized developments on that machine) and at the same time would 
allow much of the software developed for the SDS-940 to run with minor changes. 
As development proceeded the constraint on being compatible with 940 software 
has relaxed and the SCC-6700 will allow larger user processes than were 
allowed on the 940 and will require extensive software changes in the.system. 
User programs written for the 940 will require fewer changes to run on the 
scc-6700 however. 

A few changes from the user point of view are mentioned here before 
going into the memory bus and memory organization because of the wide spread 
knowledge of the 940 within Shell. The addressing structure has been modified 
so that the users program sees a virtual memory of 512K. New instructions for 
byte manipulation and 48-bit floating point arithmetic have been added; 
modifications of the branch, skip, shift and I/O instruction groups have also 
been made. 

The designers of this system recognized that memory organization, 
both main and secondary, was the central problem and all the other areas of 
the machine design should pivot around this point. Designers of the 
IBM 360/67, 360/85 and GE 645 were stuck with modifying existing machines and 
therefore were not in our view able to shift their point of view sufficiently 
to a memory centered one, although many valuable ideas have been introduced 
into these machines. A schematic of the 6700 memory organization is shown 
in Figure 22. 

The basic machine has 8 memory boxes containing 16K of 1 µsec core 
memory and 6 fast 200 nanosecond register sets to be described. Additional 
memory boxes can be added. The memory is interleaved 8 ways and a 48 bit 
double word (instructions and fixed point data are 24 bits) is always fetched. 
It is beyond the scope of this report to go into all the details of the 
addressing and priority scheme, but some highlights can be mentioned. The 6 
fast register sets in each box consist of storage for a double word, an 
address, and various status and priority bits. 
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It was mentioned earlier that sophisticated priority schemes could 
not be used with an asynchronous system because the concept of simultanerty 
cannot be made precise. Yet synchronous systems which have as a basic unit 
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of time a memory cycle cannot run as fast as asynchronous systems. The 
designers of this system have chosen to make it synchronous, but in order to 
give the processors greater freedom to proceed at their own pace and to 
effectively use the 200 nsec memory, the machine uses 100 nsec intervals as 
the basic timing unit and the points at which requests can be made to a memory 
box. 

Two main priorities are involved in this system, priority for access 
to a memory box, and priority for access to the core part of each box. The 
first priority problem is handled in two ways: 1) each request for memory is 
made either with a high or low priority request, 2) if two or more processors 
request access to the same box at the same time with the same priority a hard 
wired priority among the busses resolves the conflict. However, if a bus with 
a low hardwired priority requests a cycle indicating it wants it with high 
priority it gets access even if a bus with a higher hardwired priority is 
requesting a cycle with low priority. Once access to a box is granted the 
address is compared to the addresses of the fast memory and if it is found on 
a fetch and the status bit indicates that the data portion is valid, the data 
are delivered to the processor after 100 nanoseconds. Otherwise a hardwired 
algorithm releases a register set to this request. Additional core-access 
priority information comes with the requests to indicate whether a low, 
warning, medium or high priority is required for access to core. This 
priority is used to determine which request in the fast registers to service 
on the next core cycle. The warning level is used to reserve a fast register 
set by processors which know ahead of time in which box their next request 
will occur. When a second warning request comes along all previous warning 
requests are reset to a high priority. 

Because the CPU's are designed around instruction and operand fetch 
look ahead they can make requests far enough in advance so that the required 
information will be in fast reemory at the time it is actually required. 
Similarly the drum and discs on block transfers know ahead of time which 
boxes are going to be required. On stores, the information is left in fast 
memory by a processor and this information is later used to update core. If 
a fetch to the same location is then made at a slightly later time the 
information can be obtained from fast storage. For tight loops all 
information may reside in the fast storage. The result of this memory 
organization is that simulations have shown that more than 15 million words 
per second can flow to and from memory to keep all processors running at 
close to full capacity. The decision to use 6 fast register sets was arrived 
at through the simulation, which showed this number as optimum from a cost­
performance point of view. 

Besides the memory organization given above, the SGC-6700 has another 
unique design approach. The various I/O processors are microprogrammed to 
allow them considerable independence of the CPU to perform tasks previously 
requiring software. An example is the drum processor which has been given 
capabilities to handle swapping functions previously involving the CPU. A 
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useful way to think of the above processors is to view the processors as 
forming a hierarchy much as the various storage media fcrm a hierarchy. 

The main advantage of the memory buffer organization of the 6700 
over the 360/85 is that fast memory is available to all processors and not 
just the CPU. Furthe; stores in the 6700 are made to fast memory and not to 
the slower core memory. In a time-sharing system, transfers between main 
storage and secondary storage are one of the critical bottlenecks and thus 
this system approach of the 6700 is particularly important. The scheme of 
the 6700 should require less hardware and therefore be less expensive. The 
synchronous approach of the 6700 also allows development of a priority scheme 
which uses all available information to decrease interference for core 
requests. 

System Protection 

There are many levels of pr~tection required in a resource sharing 
system, both hardware and software. 20 J27 ) Even though resource sharing 
systems have been in operation for a decade, they are still in early develop­
mental stages. Therefore, the full range of protection mechanisms and the 
costs of the various protection mechanisms which are implemented or could be 
implemented is not fully known. Computer system design practice is to put 
in hardware only the most general purpose mechanisms or to solve clearly seen 
system bottlenecks with hardware. TbUEl,most of the protective mechanisms 
exist as software routines rather than as hardware. As experience is gained 
with present systems and designers gather statistics on the cost of the 
various protection mechanisms and see how they can be generalized and related 
to one another, more hardware protection will evolve. In this section we 
examine the main protection methods which exist in hardware and leave until 
later discussions of protection mechanisms existing in the software. The 
following varieties of protection have been distinguished. 
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1) Protection of the system from user processes. It is imperative 
that users not be able to take actions which would stop the 
system from running or destroy information essential to the 
system. 

2) Protection of users from each other. A user must not be allowed 
to take any action which would harm the operation of another 
users process. 

3) Protection of users from themselves. A user may have several 
processes in execution or one process with several subprocesses 
all of which are in intercommunication. A user may want to 
protect these processes from each other in terms of memory 
access, execution times or interaction paths. 

4) Protection of the system from itself. A time-sharing system is 
a very complex entity which is constantly evolving. It is very 
desirable to have protection mechanisms which limit the 
damage which a malfunctioning module can perform. 
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For hardware design purposes, the above protection requirements 
have been reduced to two main areas: 

a) protection against accessing, changing or transferring control 
to certain words in the physical memory of the machine (memory 
protection) 

b) protection against executing certain instructions (control 
protection). 

Given a set of hardware protection features, the software designer can use 
these features in many ways to develop a total protection scheme for the 
system. In this section we present various hardware protection features found 
on current or proposed machines and later in the section on software 
protection, the subject is treated again from the software point of view. 

~~ Protection 

In memory protection schemeo, areas of memory can be given different 
classifications such as 

1) inaccessible 

2) read-write 

3) read only 

4) execute only. 

Examples of uses for the various categories of protection above are 
the following: 

Many programs may be residing in main memory at a given time as 
well as the monitor system and therefore some areas of store must be made 
inaccessible. Full read-write privilege is required by most programs. Some 
subsystems such as compilers, test editors and debugging aids as well as 
library routines may be shared by many users and thus by making them read 
only they can be properly protected. In a computer utility, renting time for 
use of special programs will be a significant business. In order to protect 
proprietary programming or other techniques one wants to prevent users from 
reading the code, but one does want the user to be able to execute the code, 
thus illustrating a situation requiring execute only protection. 

Memory protection can be applied to the physical address space or 
to the logical address space. To protect the physical address space, the 
physical memory is broken up into blocks of a fixed size and a protection key 
is assigned to each block as a hardware register. This key indicates the 
type of access allowed to its corresponding block. The difficulty with this 
approach is that it does not'distinguish among processes. Any process can 
write in a block with a write attribute key or execute a block with an 
execute attribute key. In a system using shared information some people need 
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write privileges to certain codes and other persons are only to be allowed 
read access to the same code. To use such a system the software monitor would 
have to run around memory changing the protection keys each ti.~e the system 
switched control to a different process. Such an approach would greatly 
increase system overhead and result in an awkward design. 

In an attempt to improve the situation somewhat, the IBM 360 uses 
two keys. One set of keys is assigned to memory blocks as described above 
and another key is kept as a status word with each process. Access of a 
particular degree is granted to a block if the key of the status word bears 
a specified logical relation to the key of the block. This scheme is still 
very inadequate because any process which has a key which.might inadvertently 
bear a write relation to a block can write in a block. To guard against this 
would require very large keys. The IBM 360 uses a four bit key which gives 
only 16 combinations. Adequate protection using such a system still requires 
extensive software intervention. 

A much better place to apply protection, which gets around the type 
of problem discussed above, is to protect the logical address space rather 
than the physical address space. In systems which use relocation or base 
registers to map the logical space to the physical, protection is provided 
with "bounds registers". The bounds register splits the memory into two 
parts, a contiguous region between the area pointed to by the base register 
and bound by the bounds register and the remainder of memory. Access is 
granted a process in the former area and den.i.ed the process in the latter 
area. This approach is an improvement over the previous memory protection 
schen~ because protection is more easily changed as processes controlling the 
machine charge but still suffers from a serious defect. The type of pro­
tection offered by the bounds register approach is all or nothing. In a 
time-sharing system finer distinctions of protection are essential. Because 
protection is limited to contiguous areas, the sharing of procedures will 
require frequent changes of base-bounds register pairs. 

The best approach to protection, we believe, is found on those 
systems having paging and/or segmentation hardware. The IBM 360/67 has the 
poor design feature that protection is maintained on physical blocks of 
memory, even though the system has elaborate segmentation hardware. In a 
protection scheme based on the paging or segmentation hardware, a procedure 
can more easily be given access only to those procedures and data segments 
necessary to accomplish its task and then only the type of access required to 
do its task. 

The SDS-940, for example, has a simple protection scheme utilizing 
the map registers described above. 30 ) It will be recalled that each map 
register contained 6 bits, but only five were used for the block address and 
the remaining bit was used to define a protection classification. If the 
protect bit is a One then the page is "read only", that is information can,be 
retrieved from the page, but no information can be written into the page. 
If an attempt is made to write into a read only page, a fault interrupt is 
generated which transfers control to the proper system routine. If the protect 
bit is a Zero then the user can read from,or write on the page if it has been 
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assigned to the user. Map registers corresponding to pages not assigned to 
the user have the protect bit set to a 1 and the other bits set to 0. This 
means that the user could never be assigned real block O which is always 
used by the system. The map registers are set to the type of access to be 
granted from information maintained in other tables. 
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A more general system of protection is employed on the GE-645 
where protection is at the segment leve1. 20 ) Part of the information stored 
in the segment descriptor word is the type of access to be granted the seg­
ment, write only, read only, read-write, execute only, no access, access 
only by system level processes. This protection information is set into the 
segment descriptor at the time a process requests access to the segment. 
The segment is located in the file system through a directory which not only 
indicates where en auxiliary storage the segment is stored, but which users 
can access the segment and with what type of access. Based on this infor­
mation a segment descriptor word is set up. Another level of protection 
exists on the GE-645 and a similar mechanism exists on the IBM 360/67. The 
descriptor base register, and segment descriptors have associated with them 
a bounds field indicating the maximum defined segment number and segment 
length respectively. These bounds are compared against the two components 
of a generalized address and a failure to be within these bounds generates 
memory access violation. 

There is one difficulty with the above approach; protection is 
essentially defined on the segment global to all other segments in the same 
computation; the computation being that entity which uses all the segments 
in the segment descriptor table. That is, any segment in the computation 
has the same access rights to a given segment as defined in that segment's 
descriptor. The difficulty can be seen using the example of a debugging 
program. The debugging segment requires read-write access to itself and to 
the program being debugged. The user program segment should have no access 
to the debugging segment and full access to itself. Both debugging segment 
and user program segment form a computation having one segment descriptor 
table. The question then is what access rights should be placed in the 
segment descriptor of the debugging segment? In the GE-645 system the issue 
is sidestepped through the design chosen for the total software protection 
scheme. The difficulty arose because protection was placed on the segment 
rather than the access path to the segment. The directed segmentation 
scheme of LeClerc29 ) places protection on the path by use of a protection 
connection matrix. A similar result could be achieved in a system such as 
the f45. A computation can have n possible segments. Each segment can have 
n possible access paths (including reference to itself). Thus, each segment 
may be assigned a protection vector consisting of n sets of capabilities. 
A segment will be given access to the jth segment in the computation's s~g­
ment table in a manner defined by the jth entry in its protection vector. 
The protection vector can be stored in memory with the segment descriptor and 
implemented in the hardware map. It should be pointed out that on the present 
GE-645 the protection information in the segment descriptor for a segment is 
also el;_ltered in the hardware map when one of its pages is set up in the 
map.is; 
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Even with the flexible protection scheme existing in hardware on 
the GE-645,considerable software is required to implement the total protec­
tion system as we shall see in a later section. Some small additions to the 
hardware could reduce the software required as discussed later. 

Control Protection 

Certain instructions in the machine must not be generally available 
for any process to execute. 18 ) 19 ) 30 ) For example, processes must be prevented 
from directly performing I/O instructions because other processes may be using 
a particular device. All attempts to perform I/O operations should go 
through the system so that these requests for service can be scheduled. 
Further, user processes must be prevented from halting the machine or execu­
ting any other instructions which might interfere with the system or other 
users. 

To handle the above problem, machines are designed to operate in 
two modes, one usually called system mode and the other called user mode. 
In system mode, all instructions in the machine are executable. In user mode, 
certain classes of instructions, called privil~instructions are prohib­
ited. If an attempt is made to execute a privileged instruction, a fault 
interrupt is generated which transfers control to the system. For example, 
in the SDS-940,the following instructions are privileged; all I/O instructions 
all instructions to control interrupts, all instructions to sense conditions 
of I/O devices or console switches, all unused operation codes, the halt 
instruction. This ability to interact with the system gives greater flexi­
bility to the user in developing his own systems to run under the time­
sharing system. Further, depending on the addressing scheme used, addressing 
may be different in the two modes. For example, in the SDS-940 there are 
two memory maps, one for the system routines and one for the user routines. 
A simple scheme exists in the 940 to allow the system to use the user map 
also, which facilitates communication between. .modes and simplifies the 
writing of reentrant routines. 

In the above approach the mode classification is associated with a 
process. Other schemes have been suggested such as associating mode clas­
sification with areas of memory, thus tying the problem of privileged instruc­
tions to the memory protection system. Such a suggestion has the advantage 
of increasing flexibility in the software design. 

This problem of communication between modes is one requiring care­
ful consideration, because if the design of the· mode switching scheme has not 
been carefully considered, programming can be awkward and time can be wasted 
in e~tra checking on the validity of the calls between modes. 

The cleanest mode switching scheme known to us (from a programming 
and protection viewpoint) is that implemented on the SDS-940. 28 )30 ) This 
scheme utilizes 12.~ogrammed operators. The programmed operator concept is in 
effect a method for making subroutine calls logically appear to the user as 
machine instructions. When a bit in the instruction word signifying a 
progralIIIDed operator is detected, the bits which are normally interpreted as 
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the operation code are then interpreted as an address to which control is 
transferred. Two types of programmed operator exist on the SDS-940: 1) a 
system programmed operator in which the transfer is made to locations in the 
system code and the mode is switched to system mode (the previous mode is 
saved and 2) a user progranm1ed operator in which transfer is made to locations 
in the user's process. All calls to the system for assistance are thus made 
with system programmed operators. To return from system mode to user mode, 
the systerr1 executes a jump instruction addressed through the user map rather 
than the system map. While in system mode the system can access locations 
in user processes by use of the user map. Besides giving a simple interface 
between modes, the programmed operator concept allows the user to thinlc 
he is programming a machine very different and more powerful than is provided 
by the bare hardware. 

The mode switching mechanism used in the Multics system requires 
considerable overhead to check the validity of system calls. In Multics, 
shared system segments are assigned to each process and have entries in each 
users segment descriptor table. Transfers to the system are handled in the 
same way as normal intersegment references. The control bits of the system 
segment descriptors indicate that system segments operate in system mode. 

The extra overhead involved in switching to system segments results 
because of the software implemented ring structure protection method 
implemented in Multics. The details are discussed in the section on software 
protection. As mentioned earlier, because the system segments use the same 
hardware map as the users segments, extra overhead involved in modification 
to this map result on each system call. The Multics mode switching mechanism 
is general and integral in the sense that system calls are treated uniformly 
with all intersegment references, but a price has been paid. 

Another important feature required by a resource sharing system is a 
priority interrupt system. 19 ) 30 ) The basic concept of the interrupt is very 
simple, but yet did not exist in developed form on most machines until third 
generation equipment. The GPU starts and stops various I/O processors and 
for some devices effects detailed control over the device. Without an 
interrupt system,the CPU spends much time testing sense bits associated with 
the devices to determine when they require service. With an interrupt system 
the CPU ignores the devices until an explicit signal is received from the 
device. 

The simplest thing that happens when a device signals on an 
interrupt line is that the CPU branches to a fixed location and executes the 
instruction there,which in turn is usually a branch to a routine to handle 
the interrupt. This routine stores in ten~orary locations the contents of 
any CPU registers which it may need to use and then restores these registers 
when it is finished. A transfer is then made back to the program which was 
interrupted. 
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Most present systems have several interrupt lines with priorities 
associated with each, such that if an interrupt on level four occurs and before 
the routine associated with this level is finished an interrupt occurs on 
level two,then control is transferred to the routine associated with this 
higher priority level. When the level two routine finishes, control passes 
back to the level four routine which when finished returns control to the 
program originally interrupted. 

The recess of handling interru ts can be considered as the driving 
point of resource sharing systems. All the algorithms for scheduling I 0 
and resource allocation are started, stopped and conditioned by the various 
interrupts. All interrupts are explicit calls to the system for action or 
assistance. 

A user program can be considered to be in one of three states: 
1) ready to execute, 2) blocked waiting for some I/O or other process to 
finish or 3) running. When the system receives an interrupt, the effect is to 
change the state of one or more user programs and the system. There are two 
major classes of interrupts: 1) interrupts generated external to the CPU 
(I/O interrupts, clock interrupts are examples) and 2) interrupts generated 
within the CPU, examples being arithmetic overflow, or illegal instruction 
executions. Because these two. classes require different handling in a 
multiprocess system a clear distinction is made between them in the GE-645 
system, although this is not the case in most other systems. 

Let us examine briefly four types 0£ interrupts and see the type of 
effect they have on the system and programs. 
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I/O interrupts~ These interrupts are generated by the successful or 
unsuccessful completion of an input/output operation. Such an 
interrupt is generated when a channel has completed transmission of 
a block of data or a device has completed some operations such as a 
tape rewind or disk arm positioning. In most systems, the interrupt 
level identifies the device requesting attention, but the exact 
meaning of the signal can only be determined by obtaining additional 
status information contained with the device itself. 

Upon receipt of the signal and determination of the meaning of 
the signal several things can happen, some typical examples being: 

1) a device may be ready to transmit information to or from 
an I/O buffer in system memory. 

2) a device may be finished with a transmission which causes 
the device to be freed for other users and changes the status of a 
user from blocked to ready. 

3) An error condition may occur requiring system attention. 



Timer interrupt: Time sharing systems have attached to them one 
or more hardware clocks which generate an interrupt at fixed 
intervals. (The clock on the 940 generates an interrupt every 
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16 ms. ) These timing marks are used for accounting purposes, as 
system protection, and as major input into the scheduling routines. 
The system protection uses are varied, but usually involve periodic 
checks of I/O operations to be sure that they are completed within 
expected times and that some hardware or software malfunction has 
not occurred which could tie up an important piece of equipment. 

User program interrupts: Two subclasses of interrupts can be 
generated, one from arithmetic operations resulting in divide check, 
or arithmetic overflow or underflow, and the other from attempts 
to execute illegal instructions or reference illegal memory 
locations. 

Hardware Failure interrupts: These interrupts result from hardware 
failures such as errors detected on data transmission, or power 
failure. 

Accounting during interrupt processing is handled in two ways. In the 
SDS-940 system, the user whose program is running during an interrupt is 
charged for the interrupt processing time even if the interrupt is serving 
another users program. The justification for this approach is that over a 
given period of time the interrupt time required for each program will average 
out and thus the hardware-software expense required to sort out interrupt 
processing charges is not worth attempting. 

In the GE-645 system on the other hand, interrupt processing time 
will be charged to the user whose program is being serviced. 

An example of a machine with a weak interrupt system from a time­
sharing point of view is the IBM 360/67. On the average, to isolate the 
source of an interrupt and transf~r control to the appropriate routine 
requires over 300 microseconds.34 )35 ) Given the frequency of interrupts in 
a time-sharing system, particularly one with demand paging, such an overhead 
was one of the factors leading to the problems of the 360/67. 

Reliability and Maintenance 

To say that a time-sharing system should be reliable and easy to 
maintain is clearly to state the obvious. It is useful however, to briefly 
review some of the problems and approaches encountered in achieving these 
goals. When a system used for batch processing fails, little damage is done 
other than that of causing a delay in returning a job to a user. In a time­
sharing system on the other hand, a user may have several hours of work 
invested at a console which can be destroyed if a system failure occurs. 
Failures can be of two types, hardware failures and software failures. The 
term crash is often used to refer to a failure. 
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Time-sharing systems (particularly the larger ones such as the 645) 
have considerably more hardware than comparable batch systems and thus high 
reliability is even harder to achieve. The very close coupling of hardware 
and software systems frequently malrn it difficult to determine where respon­
sibil.i ty for trouble is to be found. 

All machines are usually delivered with a set of diagnostic programs 
which exercise the hardware and can be used by maintenance engineers to locate 
trouble spots. These routines usually have required full control of the 
machine. In a time-sharing system,the goal is to have continuous availability 
of the system. In a single processor system the failure of the processor 
clearly takes the system out of usage until the proper repairs are made. 
However, there are many components of even a single processor system which if 
they fail do not require that the system be removed from usage from all users. 
The failure of a memory box or noncritical I/O gear are examples of such 
noncatastrophic failures In such a situation one desires diagnostic 
programs which can be run as special user programs and which enable the 
failure to be located and repaired without stopping the system. There are 
many classes of failures which are not permanent, but are intermittent or 
data dependent. These failures are difficult to isolate and may not require 
that the system be stopped if diagnostic routines can be run as special user 
programs. It is further desirable that hardware facilities be provided that 
allow maintenance engineers to place nonprogrammer accessible circuitry in 
test states in a way which does not interfere with the general operation as 
seen by other console users. 

The most common conceptual approach to increasing reliability has 
been to provide a duplicated system as shown in Figure 16. In this system, 
duplicate information paths exist from I/O equipment to the two processors. 
Either processor can handle the system functions. The increase in performance 
of such dual systems is not well known as yet, but is not estimated to be 
over about 201)• This low performance increase is caused by the hardware and 
software interlocks which must be set to avoid the multiple processors 
interfering with each other. Performance increase is not usually the 
motivation for such systems, however. The idea is to enable at least a 
crippled system to continue to provide service in case of a failure. 

Another type of duplication designed into single processor versions 
of IBM 360/67 and the GE-645 is multiple data paths to auxiliary store and 
peripheral devices. For example, one could expand Figure 16 to show a path 
from each GIOC to each device. Thus, if one GIOC goes down another path to 
the device exists. Similarly each device could have two controllers. When a 
system module fails, the operator can reconfigure the system by altering 
appropriate system tables and manual switches and the device can be repaired. 
This idea of remcving failed units also applys to memory banks as well. 

The use of error detection and correction codes for data transfers 
between main memory and auxiliary storage and peripherals is commonJ.y used. 
The use of these codes to protect the memory operations is increasing used as 
well to protect data transfers within the processors. Use of codes which.are 
preserved under arithmetic operations is also becoming a common practice. 
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Practical versions of these codes can usually detect an error in one or more 
bit positions of a unit of information such as a character or full wnrd. 
Correction of one bit in error is also practical. 

As systems have increased in complexity, increasing attention is 
being given to designing features for increased reliability and ease of main­
tenance into the system from the earliest design period. 

The hardware concepts introduced in the sections above should enable 
the reader to understand the more detailed literature in the resource sharing 
system design area. The very important area of communications technology has 
not been cove~ed An introduction to this area is contained in 
references. 38 J39 } Some additional hardware concepts are introduced in the 
discussion of software concepts where it seemed more appropriate for clarity 
to link the two areas more closely together. 

Software Concepts 

There are three major parts of a time-sharing software system: 
l) the routines which must permanently reside in main memory because they are 
used frequently or must react quickly to the changing demands for system 
resources, 2) the routines which are swapped in and out of main storage as 
part of the system, or are assigned to user processes which perform communi­
cation between the system and the user, and perform infrequently required 
system functions and 3) the subsystems such as compilers, text editors, debug­
ging aids, mathematical routines and other user oriented routines. The resi­
dent routines handle requests for service of I/O devices, schedule processes, 
allocate memory and I/O devices, handle communications with user terminals and 
all other tasks which occur at a great enough frequency or require sufficiently 
fast response. Associated with these resident routines are many tables con­
taining status information about user processes and system resources. 

The swapped system routines are associated with less frequently 
required services such as allocation of subsystems, logging users in and out 
of the system, accounting, and opening and closing of files. 

The subsystems are swapped and, along with other system routines, 
are written as reentrant routines. 

In many time-shared systems, methods for allowing users to logically 
incorporate system facilities within their cwn programs are available and 
therefore there may be very fuzzy lines between the categories given above. 

In this report little is said about the subsystems themselves except 
to discuss briefly how they are linked to the rest of the system. Primary 
attention is given to a discussion of software concepts usually found in the 
resident routines. Because of the close interaction of software and hardware 
in a time-sharing system, many software concepts were introduced during 
earlier sections. 
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The Resident Routines 

The central problem is the following. Only one process can be 
executing at a time in a single processor system, although I/O for other 
processes in or out of various buffers may be going on concurrently (the 
problem of intercommunication in a multi-processor system is beyond the scope 
of this report). A scheduling process decides when programs are to be blocked 
or started. When the system is to begin execution of a different process, 
allocation of main memory must take place. In a demand paging scheme such as 
that of the IBM 360/67 or Multics systems, memory allocation may take place 
more frequently and in smaller pieces, but the problems are similar to those 
encountered in a system such as the SDS-940 where an entire process and data 
reside in main memory at the time execution begins. 

Processes in the system are created by setting up a state vector for 
the process. The point of creation may be at the point a user logs into the 
system from a terminal or may take place invisible to the user. A user job 
may consist of several processes which in effect operate in parallel with one 
another, each of which has its own state vector and may in turn create other 
processes. One of the problems in the design of the software system is to 
develop methods of communication among related processes. 

Scheduling 

In the terminology of the MIT time-sharing group, a process can be 
in one of three states, running, ready to run;. or blocked. A blocked process 
is one which cannot run until some signal arrives to unblock it. These 
unblocking signals are referred to as wakeup signals and change the status of 
a process from blocked to ready to run. A signal which causes one process to 
be unblocked may also cause another to be blocked. These signals can come 
from many sources, such as the terminal communications equipment, a timer, 
completion of a disk seek, or execution of an instruction with an illegal 
memory address. In general these signals arrive through the hardware 
inte1~rupt system, but may also be generated by the system or other processes 
which generate such a signal on the basis of a value stored in a register or 
memory location. The latter source of signals is the main one used for 
interprocess communications. 

These wakeup signals are sent along with related status information 
to a part of the system often called the scheduler. 27 ) In the Multics system 
the term traffic controller is used. 46 ) One of the defining differences 
between classes of multiprogramming systems, besides the range of available 
facilities, is the design of the scheduler. In an on-line file management 
system or other I/O oriented system, the prime wakeup signals are associated 
with the I/O devices, while in a general purpose time-sharing system the 
signals from clock sources are given increased importance. From the point of 
view of the system, the life history of a process is an alternation of 
running and blocked periods. Each running period is terminated by a signal to 
block this process. This blocking signal may be made by the process itself, a 
system process or some other user process. A simple example is a request by a 
process for a character from an I/O device. If the character is not available, 
then the process may be blocked until the arrival of the character. The 
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request for the character may wakeup a system routine to refill a buffer from 
the required I/O device. During the discussion of the handling of various 
specific resources, additional examples of signals for blocking and wakeup 
are given. 

There are two main approaches to the communication of blocking and 
wakeup signals. In one approach the process generating the signal must be 
explicitly aware of all the processes affected. In the other approach the 
process generating the signal need not be explicitly aware of which processes 
are affected, but only need perform simple actions such as incrementing a 
certain memory cell. The latter approach is taken with the SDS-940 system. 27 ) 

For example, when a process is blocked a word in its state vector is set 
indicating the reason for it being blocked. This word also has an address to 
be checked by the scheduler and bits indicating what condition the scheduler 
should find which would awaken the process. The I/O or other routine which 
is to awaken the process at the completion of some action does not know 
explicitly which process it is servicing, but does know to set a particular 
location when it is finished. 

The former approach is more natural and the one primarily used in 
hardware communication between modules, but requires more code when irrvlemented 
in software. The latter approach results in code which may be easier to 
modify because of the decoupling possible between system modules, but requires 
extra time to determine which process to run next, because the appropriate 
scheduling routine must check one or more cells designated by each process in 
some order until it finds a process to run. 

In the discussion on scheduling up to this point,we have ignored 
the fact that the number of processors in a system is generally going to be 
much smaller than the number of unblocked processes. Therefore, it is 
necessary to have some algorithm for deciding which, of the several processes 
that are ready to run, should be run next. This algorithm is often called the 
scheduling algorithm. The scheduling algorithm is an in~ortant part of the 
scheduler, but as we have seen above is by no means the whole of the scheduler. 

The criteria for the design of a scheduling algorithm are: 27 ) 

1) to minimize the effort expended by the system in switching 
processes, 

2) to be able to react rapidly to the changing collection of 
processes ready to run so that the most important process is 
being run at every instant. 

There is much discussion in the literature about wh~t features a 
scheduling algorithm should have to meet the above criteria. 5 ) However, the 
simplified mathematical models used as a basis for many of these studies are 
quite removed from the features of real systems. The use of system simulation 
as a means ~or adjusting scheduling algorithms to particular :machine configur­
ations and user environuonts is slowly grovring end does lead to useful l'esul ts. 
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Many of the algorithms used on current machines were designed based on the 
designers intuitions and are far from optimal. The goals of designing a 
scheduling algorithm which is both responsive and inexpensive of system 
resources are contradictory and therefore,tradeoffs in both areas are required 
for practical algorithms. 

Basic to any scheduling algorithm is some scheme for keeping track 
of the processes which are ready to run. A list of such processes is called 
a ready list. The ready list has a structure which can be quite complex or 
very simple depending on the algorithm design. The simplest list is one in 
which a process ready to run is placed on the end of the ready list and the 
processes are run on a first come-first served basis. 

Once a process is started running, it cannot be allowed to run as 
long as it might require, if responsiveness to all users is to be maintained. 
Therefore, one of the important sources of blocking signals is a clock source. 
A clock source is a device for producing an interrupt at some fixed frequency 
which can be used to increment registers for recording elapsed time. The 
length of time which a process is allowed to run before it is blocked is 
called a quantum. A quantum size is one of the important parameters of a 
scheduling algorithm. The quantum size may be fixed or variable in size 
depending on some other parameters such as process size, process priority, 
or the length of time the process ran last time. 

A more complex ready list structure than mentioned above splits the 
ready list into sections such that the various sections have different 
priorities. Thus, at the point where a process must be chosen to run, the 
scheduling algorithm always starts looking at the highest priority section 
first. The processes on the lower priority levels only get run if there are 
no processes ready to run on the higher priority levels. There is always 
the possibility, unless additional features are added to the scheme, that 
some processes on the lower priority levels may not get run or may run so 
infrequently that the response is not acceptable. 

One scheme to avoid this problem has been incorporated in the SDS-
940 system. The ready list is broken up into four parts. The highest 
priority level is assigned to processes which were blocked waiting for 
teletype input/output, the second priority level is assigned to processes 
blocked for other I/O, the third level is assigned to processes blocked at 
the end of a short quantum and the fourth level is assigned to processes 
blocked at the end of a long quantum. (The scheduling algorithm uses two 
quantum numbers. One quantum number is called a short quantum and the other 
a long quantum.) A process .is always allowed to run for a short quantum and 
if at the end of this time no other process is ready to run it can continue. 
During the time a process is running the number stored in the machine 
associated with this process' long quantum is decremented on each clock 
pulse. When the process is blocked the present value of the long quantum is 
stored and the decrementing continued next time the process is run. Thus, 
eventually the long quantum runs out and the process is moved to the lowest 
priority queue. This method insures that all processes will run with 
reasonable respone to each. This scheme is just one of many which could be 
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devised to limit the number of times a process can appear on the high priority 
levels of the ready list. Additional complexity can be added to a scheduling 
algorithrn to take into account maximum utilization of memory or any other 
resource. In the previous discussion of swapping we indicated that 
scheduling algorithms could not be designed independently of the algorithms 
chosen for swapping and memory allocation. All the algorithms must be chosen 
to reflect the performance characteristics of the hardware and to some extent 
the characteristics of the user community at a particular installation. 

The above discussion of scheduling has applied primarily to user 
processes. The scheduler must also control system processes. The system 
processes are blocked and unblocked by interrupts, by requests for service by 
user processes, and by status information from I/O devices. Most of the 
system activity is performed by resident routines which do not require swap­
ping. When an interrupt or user request arrives, control is transferred to 
the appropriate routine, the required action is performed, and control is 
returned to the user process. The system may have ready lists of its own to 
handle requests for I/O and other services on devices which can be used by 
only one process at a time. 

When a system routine is required which does not normally reside in 
main memory, a state vector for this process may be set up and this process 
placed on the ready list. In the SDS-940 system, for example, the major 
part of the nonresident system is considered a process which is assigned to 
all users. It is written as reentrant code so that only one copy is required 
in main memory which is shared by all the users. In the Multics system, 
system segments are assigned as part of each users computation. 

A page of memory invisible to the user is also assigned to each 
user job in the 91~0 system and is swapped as part of the user's processes. 
This page of memory is used for constants, tables, I/O buffers and temporary 
storage required by the system during the running of the user's processes. 
The nature of some of the tables in the linkage page is discussed in the 
sections below. 

Besides the priorities assigned to various processes, the scheduler 
must superimpose priorities associated with a balanced utilization of system 
resources. For example, when swapping is involved and considerable system 
resources are expended in bringing a process into main memory, the scheduler 
must maintain some deferral power over incoming blocking signals to avoid 
situations where a process is brought into main memory only to be immediately 
blocked. To complicate the discussion further, the operator and user 
processors in some systems (the SDS-940 being an example) can interact with 
the system to alter scheduling priorities or in other ways directly affect 
the scheduling process. This effect is accomplished by creation of sub­
processes or by giving commands to the ~cheduler. 

The scheduling problem is highly complex with many possible 
approaches available and parameters to be determined. A scheduling algorithm 
which may be appropriate for one configuration of equipment or for one 
installation and set of users may not perform satisfactorily for another. 
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Hopefully manufacturers of time~sharing systems can design their systems and 
develop accurate simulators which can aid in the choice of some of the 
parameters to match a given installation. 

Memory Allocation 

59 

The memory allocation problem can be stated quite simply. To be 
able to perform memory allocation the system must know which processes are in 
main memory and where, and the system must know which areas of main memory 
are free. Assuming more than one process is residing in memory at a given 
time and that a process residing on auxiliary storate is to be brought into 
main memory, then the system must decide which process(es) or parts of 
processes are to be moved to auxiliary storage to make room for the new 
process about to be started. The system must also know where on auxiliary 
storage to place the processes to be removed. 

The exact details of how the above problems are solved naturally 
varies from system to system, but there are common features in the various 
implementation approaches, because the main concepts involved are in the 
nature of the tables required. At this point we discuss the memory allocation 
scheme used in the SDS-940 because, if the reader understands the basic 
approach used there, then he has a good basis for understanding other systems. 
Also many of the memory allocation concepts of the Multics and IBM 360/67 
systems were discussed earlier. To understand the following discussion the 
reader should be familiar with the SDS-940 paging mechanism and relabeling 
(map) registers described earlier. 

When a process is running, the actual physical locations in main 
memory in which the logical pages of the program are stored are indicated by 
the real relabeling registers as described earlier. To determine the physical 
blocks in main memory to be assigned to an incoming process, the memory 
allocation routines work with two tables. One table is called the real memory 
table (RMI') which contains information about which logical pages of which 
processes are using the various physical blocks of main memory. The other 
table is called the ~eal memory counter (RMC) which contains information 
about the nuniber of processes using the code stored in the various physical 
blocks. For example, the text editing system, which is reentrant, may be 
being used by several users and thus efficiencies are gained if it is not 
swapped if possible. Additional counters are used to indicate frequency of 
physical block usage to assist in determining which blocks should be selected 
for assignment to the incoming process. The actual pages associated with a 
job, possibly containing several processes, are kept track of in a table 
called the program memory table (PMI'). There is a word of storage in the 
PMI' for each of the users logical pages. This word indicates where that page 
is located in physical storage (main memory or auxiliary storage). When the 
page is in main memory this word indicates the starting physical address in 
which it is stored; when it is on auxiliary storage the physical address is 
given here. The RMI' does not actually contain explicit information, but 
pointers back into the Pl'1I'. \if.hen the memory allocation routines determine 
that certain physical blocks are to be assigned to an incoming process, then 
any information of value in them must be removed to auxiliary storage. By 
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use of the RMI' the system can reset the address in the proper PMT entry to 
indicate the auxiliary storage location to which the page has been removed. 

Within the PMT there is no necessary ordering; that is, the 
position of the entries in the PMl' does not necessarily correspond to the 
logic2l ordering of pages in a process, although all pages belonging to one 
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user are in contiguous P~IT cells. The logical ordering is stored in two words 
of the state vector. These words have the same format as the real relabeling 
registers and are referred to as pseudo relabeling registers. The difference 
between them is that the pseudo relabeling registers point not to real memory, 
but to entries in the PMT. The order of bytes in the pseudo relabeling 
registers is the logical order of the program's pages. That is, byte 1 points 
to an entry in the PMT where information about logical page 1 is stored, and 
so on. The use of the above mentioned tables is shown in Fig~e 23. Through 
calls to the system, processes can change the contents of the pseudo relabeling 
registers and in this way perform overlays. 

In capsule form the following events take place when a process is 
blocked and another process is to be run. 

1) A check is made using the PMI' to determine if the process to 
run is already in main memory and if not how many physical 
blocks are required. If the new process resides in memory 
already, transfer of control takes place immediately. 

2) Using the RMI', RMC and usage routines, the memory allocation 
routines determine which blocks are to be freed. 

3) Using the pseudo relabeling registers and the PMT, the location 
and logical order of the pages to be brought into main memory 
are determined. 

4) I/O commands for transferring pages into and out of memory are 
prepared and the swap takes place. 

5) The real relabeling registers are set up. 

6) The machine registers are restored from the values stored in 
the state vector and the process is started. 

The methods for allocating space on the auxiliary storage device (a drum in 
the case of the SDS-940) are important concepts and are discussed below. 

To make the swapping process more efficient, use can be made of the 
fact that some pages of processes are read only and of the fact that not all 
pages contain locations which are modified when a process is run. Read only 
and unmodified pages do not need to be returned to auxiliary storage during a 
swap because copies of these pages already exist there. On the SDS-940 the 
above concept is implemented by use of software and the hardware memory 
protection system. When the real relabeling registers for a process are set 
up all pages have the read only bit set. A software code exists in the PMT 

249-68 Figure 23 follows 



249-68 
64692 

Psuedo Relabeling Registers 

0 16 12 11 19 17 0 0 

Real Page 

Q_ 

9 

10 

11 

12 

21 

31 

RMT 

. 
• . 
-
.... 

-
... 

. 
• . 
--

--

_.. 
~ 

"' .. 

... .... 

--~ 
.... 

Other Users PMT .. 

Other Users PMT ... 
r 

Other Users PMT ... .. 

Other Users PMT 
..... 

PMT Entry for One User 

0 
. . . 

Drum 
l 1 _... ..... 

12 
Real Page 

• 
13 

14 ... Real Pas.e 
r 

15 

16 
Drum_. 

17 ... Real Pae..e ..... 

• . . 
N 

Figure 23. RELATION OF MEMORY ALLOCATION TABLES 

9 

21 

12 



61 

indicating whether or not the page is really read only or not. Then when the 
process attempts to vJrite into the page a memory fault interrupt is generated. 
The system checks to see whether or not the page is truly read only. If the 
page is not, a bit in the PMT is set to indicate that this page has been 
written into, the read only bit in the relabeling register for this page is 
cleared, and the vJrite instruction allowed to proceed. 

In the 940 system the user can interact directly with the memory 
allocation routines to change the PMT entries or the pseudo relabeling 
registers. This interaction ability aids in the design of overlays and can 
lead to increased system efficiency. 

The Multics and IBM 360/67 system have mechanisms for memory 
allocation similar to, but more general than those mentioned above. These 
systems maintain tables equivalent to the real memor;y table of the SDS-91~0 
system. Mechanisms for determining which pages to replace also exist. 
The role played in the SDS-940 by the pseudo relabeling registers and PMT 
in defining a users logical space and inventory of currently loaded pages is 
played by the segment descriptor and paging tables in a more general way in 
Multics and the IBM 360 /67, as was discussed in some detail earlier. 

Teletype and Other Terminals 

In this report we only consider character oriented terminals. In 
a separate report (53) a detailed discussion is given of a general purpose 
graphic terminal. There are two main approaches to terminal communication: 
one approach transmits on a single character basis and the other approach 
transmits a block of characters at a time. The former approach gives the 
user greater flexibility than the latter in designing interactive systems, 
but requires more system time in character handling. The SDS-940 system uses 
the single character approach for teletype input-output. Many of the 
character oriented graphic terminals require blocl\: transfers. The IBM 
Q,uiktran system transmits on a line at a time basis. The software handling 
of either approach has much in common and only the single character approach 
is discussed here. 

On the SDS-940, the communications interface is connected to the 
direct I/O lines and each character input or output requires about 300 micro­
seconds of processing by the system. An alternative approach commonly used, 
and the one used on the GE-6!~5, is to input characters directly into memory 
through a multiplex channel. For a system such as the 940, which usually has 
16-32 teletypes attached, the overhead involved in handling the terminal I/O 
is not excessive. For large systems using 50-200 terminals this approach 
is to inefficient. Designers of such systems are beginning to use separate 
small processors to handle the terminal communications through their own 
direct access to main memory. Efficient instructions for packing and 
unpacking characters from machine words are also important in decreasing the 
system effort expended in character handling. The SDS-940 does not have 
such instructions. 
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The wide range of ava~lable character oriented terminal devices and 
range of data rates associated with these devices make it essential that the 
terminal interface hardware and software be modular in design. Devices are 
available with varying charac~er sets which must be recognized by software 
routines. Each device may have special control codes for its operation. 
Data rates of available devices range between 10-240 characters per second. 
Systems such as the SDS-940, which were designed for teletypes as the main 
terminal, have required extensive modifications to the software routines to 
add other terminals and modifications to the hardware interface equipment to 
accomodate the higher data rates of character oriented graphics terminals. 
It is to be expected that future systems will be more modular in design so 
that a variety of terminals can be used with few if any system modifications. 

The important concept to understan~ about I/O in general as well as 
terminal I/O,is that the user program never communicates directly with the 
I/O device, but rather communicates with a buffer (a buffer is a storage area 
in main core usually maintained by the system). Large block transfers to or 
from secondary storage using a tape or disc may take place from user memory 
and this case is discussed in the section on general I/O. In the case of 
terminal I/O, when the user program issues an instruction which is to 
send a character to a terminal, the system interpretively executes this 
instruction (a system call is actually generated by use of a system programmed 
operator as discussed earlier anJ the system performs the required function) 
and places the character to be sent to the terminal in an output buff er 
associated with this process. Later, other system routines which are "aware" 
of the I/O activity to all terminals can remove the characters from the 
buffers and send them to the terminals. If a process has a great deal of 
output to the terminal it could overflow the buffer. The system watches the 
load level of the output buffer and, if it is about to be filled, the 
process is blocked until the buffer has been emptied. 

On input, the characters from the terminal are automatically loaded 
by the system into an input buffer. When a process is executing and issues 
an input character instruction, it is interpretively executed b;y the system 
which takes a character from the input buffer and places it in a register 
assigned by convention or in a user designated core location. If no 
characters are in the buffer, the process is blocked until a sufficient 
number of characters arrive in the buffer. 

The user may have written his process to accept single character 
commands. In this case setting some limit on the number of characters 
which must be in the buff er before the process is unblocked would be unwork­
able. The SDS-940 and other systems use a concept of break characters to 
get around this problem. Certain characters or possibly all characters (the 
number and extent of the break character set is set by commands which the 
user can give the system) have the significance that when they are received, 
the process is unblocked so that when its turn for execution comes up it can 
obtain the character from the buffer. All characters are entered into the 
buffer and when the input buffer reaches a particular limit the users program 
is unblocked so that within a short time it will be placed in execution and 
can empty the buffer. 
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Another concept associated with terminal I/O is called echoing in 
the 940 system and is found on other systems as well. This mechanism makes 
use of the fact that terminal send and receive units are usually logically 
separate from one another, although they may exist in the same physical frame. 
In the echoing approach, when the user presses a key the character code goes 
into the central computer and is not printed on the terminal by the user's 
action. The system accepts the character and then puts it in a buffer 
separate from the other output (so as not to mix it with the process generated 
output). The system then outputs the e.c.ho buffer. Teletypes have a switch 
which could directly connect the input and output mechanisms together so that 
when a key is pressed the character is printed. The question then is why go 
through the more expensive echo procedure? There are two main advantages: 

1) the echoing process gives an error detection ability. If the 
correct characters come back, then the user knows that the 
characters were correctly received. The usefulness of this 
type of assurance for data input is clear. 

2) the echoing process gives a code conversion or translation 
capability by which a user can send in one character and 
receive the same, a different, or no character back. 

Another feature available on many systems allows terminals to be 
linked together on input or output or both. There are many uses for such a 
feature when instruction is taking place or two or more people are working 
together on a problem. 

System response can be significantly speeded up if the teletype 
routines handle simple editing chores rather than require the various 
subsystems to have separate editing routines. Thus, when a user hits the 
wrong key and then sends an editing character to cancel the last character or 
entire line, this frequently required editing task can be performed 
immediately without requiring the expense of swapping in a subsystem. 

G~neral I/O 

In this section, we discuss briefly the scheduling of access to I/O 
devices. In the next section, a discussion is given 0£ some of the problems 
associated with allocation of storage space on direct access devices such as 
disks or drums. Most I/O devices are not easily shared among users. These 
resources are more effectively dedicated to a specific user for a given time 
period, despite the fact that the user may not make maximum use of the 
resource. Devices in this category are tape drives and reels, line or other 
printers, card equipment and optical character scanning equipment. Devices 
such as disks and drums, while only allowing access by one process at a time, 
can rapidly be switched from process to process and thus are not considered 
dedicated devices. 
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Two major functions must be performed in handling I/O devices. 

1) reserving and allocating these resources13 ) 



2) protection of the resource dedicated to one user from inter­
ference by another user. 38 ) 
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During transfer operations, proper handling of the main memory buffer areas 
is also required. 

A user can explicitly ask for access to a device from a terminal 
or his process may issue an I/O request. An example of the former is a 
request to transfer a character file from storage on the disk to a line 
printer. In order to efficiently utilize the I/O devices, the system main­
tains buffer areas which can be allocated to the different devices. On 
input, for example, the system attempts to maintain a buffer full of infor­
mation so that when a process requests information from a device, the system 
has anticipated the request and the information is in main storage. Thus the 
process receives the required information and can keep executing. Without 
the buff ei~ing, the process would have had to be blocked and the system might 
have to swap in another process while the required information is brought 
into main storage. On output the system fills a buffer and automatically 
outputs it to the required device. When the buffer is full the process is 
blocked until it is emptied. There are two types of records maintained by 
the system 1) .logical records and 2) physical records. A file is made up of 
one or more logical records. Logical records may be of arbitrary length and 
structure and are process dependent. Physical records are of fixed length 
appropriate to the particular device. Logical records can be made up of one 
or more physical records. If the logical records are smaller than the 
physical records, more than one logical record will be packed in a physical 
record to increase I/O transfer and storage efficiency. Further discussion 
of this area is given in the section on the file system. The buffer size is 
equal to the size of a physical record and is variable depending on the · 
device. 

A user may want to transmit blocks of information larger than the 
standard physical records and thus define his own physical records. In this 
case the buffering is handled directly within the user memory. Earlier it 
was mentioned that a page of memory not directly accessible to the user was 
swapped with the user process in the SDS-940. The system-maintained buffers 
are kept in this area. If a user requests a word of data from an I/O device 
which is not available in a buffer, the process is blocked, but the page of 
memory containing the buff er is locked in memory until the buff er has been 
filled. Similarly, if the process attempts to output to a buffer which is 
full the process is blocked until the buffer is emptied. The page containing 
the buffer is kept in main.memory even though the rest of the process is 
swapped out. Identical actions are ta1~en if the buffer is maintained by the 
user in his accessible rremory. 

The above discussion assurned that the I/O device to or from which 
information was being transferred had been allocated to the process. This 
allocation takes place through a process called opening a device. When a 
process is finished with the device, the device rs-closed. These functions 
are handled by the system routines invisible to the"-W3er processes. When the 
system attempts to open a device for a process it checks a table containing 
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information about the particular device. The name device control blocks is 
often given to these tables. If the device is presently in use, the table will 
indicate this fact. When the device is in use two things can happen depending 
on the system design, 1) the process may be dismissed and required to replace 
its request when its turn in the ready list arrives, or 2) a request for this 
device can be placed on a queue and the process blocked until the device can 
be assigned to this process. 

Assuming that the device is free it is assigned to the requesting 
process and it is opened for the process. The tables associated with the 
device are consulted to determine the size of buffer required as well as other 
device dependent information. A file control block is set up associated with 
this transfer which contains all device and process dependent information 
required for the generalized I/O and interrupt handling routines to actually 
perform the required I/O. Associated with the I/O transfer is a file name 
which is the users handle on the transfer. This file name is translated to 
a number by the system which is used to gain access to the correct file 
control blocl{ for the transfer. Protection of the device is gained because 
all processes must request service from the systew1 which can then check to 
see if a device is free. 

Allocation of Space on Direct Access Devices 

As mentioned above, the user works with logical records and the 
system works with physical records. On a magnetic tape system, the physical 
records are arranged sequentially on the tape. Tape files have the dis­
advantage that they are difficult to change by addition or deletion without 
re·wri ting the entire file. The characteristics of direct access devices make 
it easy to modify parts of a file without changing the remainder of the file. 
Besides this flexibility available for use in file updating, direct access 
devices can also give rapid access to the required information. The organi­
zation of the storage space on these devices to yield these advantages can be 
handled in many ways. We discuss one set of techniques here to give a feeling 
for the concepts involved. Our discussion applies to disk units and to drums. 
A disk unit is made up of a stack of plates coated with a magnetic material. 
These plates are constantly rotating. The plates are organized into concentric 
circles called tracks on which information is stored. The tracks are also 
commonly broken up into sections called sectors. In most systems the minimwn 
quantity of information which can be transferred is a sector. The organization 
is shown in Figure 24. There are two types of disk unit. One type has a 
read/w~ite head associated with each track so that access to a particular 
track can be gained at electronic speeds. The other type has one or more 
head/arm assemblies which mu.st be mechanically positioned to the required 
track. This positioning operation is called a seek. Time required to perform 
a seek ranges upwards from about 75 inilliseconds depending on the number of 
head/arm assemblies, and on disk size. To address information on the disk, 
the unit must be sent a plate, track and sector address. Files of information 
are organized on the disk in physical records equal in size to a sector. The 
physical records can be stored anywhere on the disk, although for transfer 
and seek efficiency many systems try to store the physical records in 
contiguous sectors. There are two problems that have to be solved: one is 
to keep track of the locations and proper sequencing of physical records on 
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free space which can be used for the disk and the other is to keep track of 
new files and the expansion of old files. 
using all available space, restrictions on 
are also required. 

In order to prevent a few users from 
the space individual users can tal-rn 

There are many trade-offs available with regard to storage space used 
to keep track of where files are stored, available free space, and the time 
(measured in nunmer of disk accesses) required to access a file. The technique 
used on the SDS-940 for keeping track of the physical records of a file 
uses what are called index blocks. An index block is nothing more than a 
table of contiguous words, the ith of which has the address of the physical 
record for the ith logical record in the file sequence. A file may be of 
such size that several index blocks are required. These blocks can be 
chained together by using one word in the index block to contain the address 
of the next index block in sequence. The index blocks are kept on the disk 
and are usually a sector in length. The address of the first index block is 
maintained in a table called a file directory to be discussed later. 

To keep track of free space many methods could be used depending on 
the size of the disk file, acceptable time to find a free sector and so forth. 
One method is to chain free sectors together which is simply done and takes 
little main storage space, but does require access time if the system is to 
obtain more than one sector. J-\nother method is to use a bit map. In the bit 
map a sequence of words large enough so that there is onebit available for 
each sector is set aside. The bits are set if the corresponding sectors are 
free and cleared if they are in use. Given the bit position in the map, simple 
calculations can determine the corresponding physical address of the sector on 
the disk. This procedure works well for devices with limited capacity, but 
requires excessive storage for the map if used with large files. 

This entire subject of direct access device organization is very 
important and a detailed presentation of concepts in this area is contained 
in reference ( 25) . 

The File Systema) 

What is a file? A file is a collection of related information with 
a name. Files are stored in a computer system as a string of elements, bits, 
characters, computer words and so forth. Examples of files are procedures, 
strings of text, arrays of numbers. A file has all the characteristics given 
in the definition of a segment. And in fact, the words "file" and "segment" 
are interchangeable in the Multics system. The Multics system is designed to 
treat files in a very general and uniform manner. We have seen some of the 
costs associated with achieving this goal. The SDS-940 system does not treat 
all files in a uniform manner, but does in the end offer the user the main 
functions he desires in a file system, although at a cost to the user of 
more explicit interaction with the system. 

a) The author wishes to acknowledge his debt to M. D. Kudlick for discussions 
on the relationship between the Multics and SDS-940 file systems. 
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Because the characteristics of the file system are of such importance 
to the user, a separate report on time-sharing file systems is in preparation 
(21). The discussion given here introduces many of the basic concepts and 
ties together the concepts related to files with those introduced previously 
for addressing and memory allocation. The need for a file system arises 
because of the limitations on the size of main memory. Because of these 
limitations auxiliary storate is required in the form of disks, drwns, tape 
strip, paper tape, magnetic tape, cards, photo stores and so forth. 

The file system is that portion of the total memory management 
system dealing primarily with auxiliary storage. The file system must inter­
face smoothly with the schemes used for addressing and allocation of main 
memory. In systems such as Multics where the logical address space is very 
large, the total memory management system is the file system. That is, 
Multics is designed so that the programmer thinks that he is using a very 
large main memory (his logical address space) and all movements of information 
between auxiliary storage devices and main memory are invisible to him. In 
the SDS-940 system, on the other hand, the user must deal explicitly with the 
file system. We see in the discussion to follow some of the advantages and 
disadvantages of the two approaches and the type of cost generality trade offs 
available. 

A general purpose time-sharing file system should satisfy the 
following requirements. 

1) The user should be able to create, change and delete files. 

2) The users should be able to access each others files, inorder to 
build on each others work. 

3) The user should be able to control who has access to his files 
and the type of access allowed such as read, write, and execute. 

4) The user should be able to structure his files in a form 
appropriate to his problem. 

5) The user needs to communicate information between files. 

Let us examine how the above abilities are achieved in the SDS-940 
and Multics systems. The two systems approach the problem of sharing files 
and allowing users to access each others files in very different ways. 
Multics, as we have seen, treats all files as segments and all segments are 
treated in a uniform manner. All segments can be relocated in logical space 
and thus can be shared with complete generality, with only one copy of each 
residing in the system. In the SDS-940 system, the designers realized that, 
based on frequency and type of usage, there are different classes of files and 
that system economies can be achieved if these classes are treated differently. 

One of the Multics design goals was to remove all concern for 
storage management from the user. There are in fact several classes of users, 
which might be classified as application programmers, system programmers 
developing compilers and other tools which are application oriented, and system 
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Multics has succeeded in removing many storage management burdens from the 
application programmers, but has placed very many additional burdens on the 
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last two classes of users. One of the original Multics design goals had been 
to remove many of the storage management conventions and concerns from system 
programmers as well as the application programmers, but as in~lementation 
proceeded, it was apparently found impossible to meet this goal. This failure 
is ur..fortunate because one of the uses of a large scale time-sharing system is 
for groups of users such as chemical Oi" other engineers to develop large machine 
aided design systems which will need special languages. Further, inorder to 
run efficiently these systems will need to use special systems programming to 
get around the intersegment linking costs described earlier. To implement 
large machine aided design systems on a time-sharing system with a design 
philosophy similar to that of the SDS-940 would also require system 
programming. The important point to be made is that generality has an asso­
ciated cost. Unfortunately the cost does not seem to be a linear function 
of generality. The SDS-940 system requires some awareness of storage manage­
ment on the part of the application programmer, but much less knowledge is 
required of the other classes of users. 

In the Multics system a file is a segment and therefore any file 
in the system can be directly addressed by name and location. The system 
locates the file by use of tables called file directories to be discussed late 
later. If the user addressing the segment is ·-allowed access, it is made known to 
him as was discussed earlier. No explicit file instructions are required to 
access the file. All the instructions of the machine which address operands 
can access any file (segment) in the system. The user of Multics can create 
a file just by performing output to a new segment which he names. The user 
deletes a file by explicit command to the system. All procedures in Multics 
are written as reentrant and therefore can be fully shared, with only one 
copy existing in the system. All compilers or other "subsystems" are segments 
in Multics and treated in a uniform manner with all other system and user 
segments. Data segments can be fully shared even if they contain address 
pointers for structuring purposes. 25 ) Only one copy of such common data bases 
are required in the system and no position conflicts result in the logical 
space of the users. 

The design goals of the Multics file system are very desirable if 
they could be economically achieved. We have spent considerable space in 
this paper pointing out the costs associated with achieving these goals because 
they have not been fully reported in the literature. The design of Multics 
can be looked upon as an attempt to achieve a certain level of theoretical 
purity and as such many valuable insights have resulted from this effort. 

The designers of the SDS-940 took a more pragmatic engineering 
approach and sacrificed generality wherever frequency of use and associated 
cost did not seem to merit it. The fact that the SDS-940 is a much less 
powerful computer than the GE-645 should not obscure the point we would like 
to make here, namely that a more pragmatic philosophy is also possible on 
systems larger than the SDS-940. 
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There are three classes of files in the SDS-940 system: 

1) Files which can be sl1ared by multiple users with only one copy 
existing in the system. These files are all procedures such as compilers, 
text editors, debugging routines and assemblers and are called "subsystems". 
At present there is no provision for sharing single copies of data files and 
later we j_ndicate how such sharing would take place when the need develops. 

2) Files which all users can access by acquiring a separate copy. 
These files are called "system library files". 

3) Files which are semi-private to each user. 

Each of the above class of file is accessed in a slightly different manner. 

Subsystems are accessed by command from the termirnd to the SDS-940 
system. The system fetches the subsystem, assigns it space in the users 
program memory table, sets up pseudo relabeling registers for the subsJstem, 
and finally transfers control to the subsystem. The subsystem may then ask 
for the names of additional files it may require. An example is a compiler 
requesting the name of the file containing s~m1bolic source code input and 
the name of the file to output the compiled binary code. Only one subsystem 
at a time can be running for a given user. This latter restriction on 
generality is not serious considering the nature of the procedures running as 
subsystems. This i~estriction is one of the cost generality trade offs 
available. 

The library file mechanism o.llows users to build on each others work 
and concurrently use multiple ·procedures developed by others. The price paid 
with this mechanism is possibly that of introducing multiple copies of a 
given procedure into main memory. The designers felt that the frequency was 
low with which a given library file would be used concurrently by several 
processes and therefore, introducing the mechanisms to allow sharing of one 
copy with full generality was not worth the associated costs. If because of 
the nature of the work at a particular installation a given set of library 
routines should frequently be used concurrently by several processes, then 
these routines could be made into a subsystem. The amount of effort required 
to make such a conversion depends on whether or not the procedures were 
original written with such a possibility in mind. No conflicts in positioning 
in logical space result through use of multiple library routines by a single 
process, because since each process using a given library routine has its own 
copy, the library routine can be loaded anywhere in the processes logical 
space. 

A user can access another users semi-private files, if he has 
permission, by commanding the system to copy the desired file to his file 
space. The result is that two copies of the file exist in the system. Again 
ease of system development was traded for slightly extra effort on the user's 
part and some waste of secondary storage space. However, to make a more 
general mechanism as in Multics requi:r·es a large resident system, over 50 x 103 

words, and an even larger non resident system. So there is a trade off between 
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user file and memory requirements and system file and memory requirements. 
When a use1~ develops a file which is to be used frequently by others, then it 
can be easily made a library file or with more effort converted to a subsystem. 

The case of sharing one copy of data files needs to be discussed. 
At present the SDS-940 system contains no mechanism for this purpose. Data 
files can be accessed by multiple users only through the library or semi­
private file mechanism. Paging as we saw earlier, placed no restrictions on 
sharing of single copies of data if the data did not contain addresses. If 
the data contains address pointers for structuring purposes, then such shared 
data would have to be placed in the same position in each users map which 
accesses it. Such data structures require special programs to interput the 
structure, however, and there seem few reasons why the subsystem mechanism 
could not be ge~eralized at the cost of system development effort to handle 
such cases if the need should develop. Users wishing to develop special 
programs to transform such data would have to get the subsystem to create an 
intermediate file which their special programs could access. Another approach 
would be to use many of the linkage techniques of Multics, such as linkage 
segments, for special subsystems. The SDS-940 and Multics system represent 
two poles in design philosophy and there are many trade offs possible between 
them. 

We have discussed problems related to sharing of files and now 
indicate briefly how a user communicates between files. The user of Multics 
can communicate directly between files just by addressing data files with the 
normal machine load and store instructions or by transferring between procedure 
files by normal machine transfer instructions. The linkage process was 
discussed earlier. The user of the SDS-940 system must explicitly "open" the 
required data files with system calls as discussed earlier and then input and 
output to the files with special system programmed operators, which to the 
programmer are, however, as easy to use as load and store instructions. The 
system handles the buffering and the actual transfers between main memory and 
secondary storage. To communicate between procedure files the user must create 
intermediate data files, transfer control to the system and then explicitly 
request that control be given to a new procedure file by command from the 
terminal. Thus, a cost paid in the SDS-940 system is that the user must have 
more knowledge of what is going on and may have to interact more frequently 
with the system from his terminal. We feel that future economical large 
scale time-sharing file systems will be based on a corr~romise between the 
philosophies represented by the SDS-940 and the Multics system. For a very 
large number of applications, the SDS-940 file system approach is quite 
adequate; however, there are many applications requiring structured data files 
which require a more general file system. 

Let us now examine briefly the mechanisms by which the time-sharing 
system keeps track of files on secondary storage. The basic concept is that 
of the file directory. Each user has a file directorya) which is maintained 

a) In Multics a user can have multiple directories structured as a tree. 
This ability to structure groups of files may be of aid in developing 
large systems. 12 ) 21 ) 
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permanently on disc or other storage media between sessions. During a session, 
a given user's directory can be brought into main memory by the system. The 
system must maintain a master directory containing the location of each users 
directory. 

The directory contains the following types of information for each 
file, usually stored as a table of contiguous computer words. 

1) the file name as a character string or a pointer to such a 
character string 

2) type of file (file type means binary, character or other type as 
defined in a particular system) 

3) access protection (possibly a list of other users who have 
access to the file and the kind of access which they are allowed 
such as read only, write only, read-write, execute only) 

4) information indicating directly where the file is stored or a 
pointer to further tables containing such information (i.e., a 
pointer to the index block discussed earlier) 

5) other information such as date of definition, frequency of use 
or additional facts felt to be useful by an installation or 
system designer. 

In large systems the number of files which must be stored may exceed 
the capacity of a single disk or other single storage device and therefore, 
a hierarchy of storage media such as tape strip, photo store and magnetic tape 
may also be required. One wants the most frequently used information on the 
small capacity, higher speed devices and the infrequently used information 
on the slower, larger capacity, devices. The system must keep usage statistics 
to enable it to move the information in the hierarchy to satisfy the above 
goals. The problems of handling a storage hierarchy in a user invisible 
manner are new and little experience has been gained witb working systems, 
although systems such as Multics and the IBM 360/67 are attempting to deal 
with this problem. 

Other very important problems exist in the design of file backup 
systems to give file protection. For systems with a small volume of files, 
backup protection can be easily obtained by periodically dumping the files 
from the disk to magnetic tape. However, most installations will eventually 
have file volumes in which Gumping could take hours just to move the tapes 
and therefore more sophisticated backup procedures must be devised. The 
subject of file dumping is discussed further in references (12) and (21). 

System Protection 

The design of the protection system is one of the more critical 
aspects of a time-sharing system. System protection exists at many levels, 
both in hardware and software. 20 ) 27 ) Two ways of looking at protection are 
1) protection of resources (software and hardware) and 2) protection of access 
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paths of processes with respect to each other. A well designed system will 
have an integrated approach to both points of view, uniformly and clearly 
implemented throughout the system. Also, a well designed system will offer 
many levels and types of access rights to those facilities it requires with the 
minimum level of control required. Such an approach will increase system 
reliability by limiting the area of damage caused by hardware and software 
bugs. 

The protection scheme of the GE-645 is expensive of system time, but 
is conceptually useful because protection throughout the system has been 
treated in a very general and uniform manner. On the 940 system, in contrast, 
protection exists at many points, but is handled in a non integrated way. The 
GE-645 ring approach (to be described below) offers many levels of protection 
whereas the 940 offers only twoo The ability to have many levels is a 
desirable feature as seen from experience on the SDS-940. The two basic 
levels of protection available in the SDS-940 system are executive status and 
non-executive status. A user with executive status has access to all system 
routines and great power to modify various tables and other parameters. For 
this reason users are not given this status and yet some users could usefully 
employ some of the system routines. The risks involved, however, are very 
great because the executive status user then has uncontrolled access and this 
risk prevents giving any u.ser executive status. 

Within the software system, protection for specific resources is 
maintained in various tables associated with these resources. For example) 
as was discussed above, the files are protected with information stored in 
the table called a file directory. In the case of the GE-645, protection 
information for a segment (in the 645 the terms file and segment are identical) 
is transferred to the segment descriptor table when a segment is activated. 
Access to subsystems can be similarly restricted with information stored in 
users account tables and the tables used to initialize the subsystems as is 
accomplished on the SDS-940. Users of the SDS-940 have a subsystem status 
which defines the subsystems they have access to. I/O devices are protected 
by information stored in device and file control blocks. For example, a 
user's account table could indicate whether the user has access to magnetic 
tape drives or graphical displays, or similar information could be kept in 
tables associated with the devices. The most general problem is defining 
access privileges of processes with respect to each other. The most general, 
integrated and clearly defined approach to this problem is found on the Multics 
system. 20 ) The protection scheme is based on the idea of concentric rings of 
protection with the inner rings having the highest protection. Segments are 
assigned to these rings. The most critical system segments (those interfacing 
to the hardware) are in ring 0 and less critical system segments are in 
ring 1 and so forth. User segments are assigned to rings further out in the 
series. In outline the system works e.s follows. A segment can directly 
access any other segment in the sarre ring. If a ring boundary is crossed a 
call to the system is made. Access is freely granted to segments in higher 
ring numbers, but restricted for segments in lower ring numbers. To call an 
inner ring only certain entry points are allowed. The system checks the 
t~rget address against the entries on a valid entry list for the target seg­
ment. If the user is allowed access and the target entry point is valid, then 
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further checking takes place. Because addresses can be passed as arguments 
they must be checked to see that the calling segment has access to the segments 
they refer to. This is necessary because the inner ring has greater access 
privileges and these adresses might not be checked when used. The addresses 
passed as arguments, tf improper, could cause the inner segment to perform 
erroneous action and thus cause considerable damage to itself or other system 
segments. 

In the earlier discussion on switching between system and user modes, 
we indicated that considerable overhead was involved in this process in the 
Multics system because a call to the system is a transfer to another segment 
and uses standard intersegment ·~ransfer conventions. Some of the protection 
conventions have been outlined above and should show some of the costs 
associated with calls to system segments which occupy positions in the inner 
rings. 

Other problems with the ring system exist because two processes can 
share segments and after validation one process may be blocked and another 
process started which can use the segment in the inner ring without validation. 
To avoid difficulties in this area, careful handling of interrupts must be 
performed during the validation process. The ring system uses the protection 
available in the hardware fully, but still requires much software manipulation 
for validation and for remembering which ring is presently in control and in 
which ring to return control after a routine in a particular ring is completed. 
Simple additions to the hardware could decrease significantly the bookkeeping 
required for the latter. The simple additions would be to add additional bits 
to the procedure base register described earlier to indicate the ring number 
of the segment in executio/,; and to add a ring number to the information stored 
as a segment descriptor.20 Presently this information is maintained in the file 
directory. This is an example of the type of improvement one can expect when 
further experience is gained with the total system. 

The Non-resident Portion of the System 

All .i:'Outines which are not required to respond within micro-seconds 
or a few milliseconds to requests for service are candidates for being made 
non-resident. The other criterion to be applied is frequency of use. If 
the routines are infrequently used, the resources expended in bringing them 
into main memory are justified by the savings in memory requirements. In a 
large system such as Multics, with hundreds of thousands of words of code, it 
is one of the important design problems to clearly define which routines can 
be made non-resident. 

There are a large number of routines associated with serving the 
interface between the user at a terminal and the system which are generally 
non-resident. Many routines associated with defining and searching for files 
are also commonly non-resident, as are routines used with I/O devices which 
are not heavily used. The interface with the user and other non-resident 
routines are lwnped together in the SDS-940 system in a reentrant procedure 
called the executive. The Multics system consists of segments,some of which 
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are locked in core, resident segments, and others of which are available on 
call-non-resident segments. The particular segment interfacing with the user 
is called the command system. 

Time-sharing commands are available: 

1) to log in and out of the system, 

2) to create, destroy, and manipulate files, 

3) to gain access to subsystems (subsystems may also have a conllnand 
language of their own), 

4) to determine system status, 

5) privileged commands are usually available to the operator to 
define new users, delete users, change user privileges, access 
accounting information and access more detailed system status 
information then is available to the general user. 

When a user logs-in to the system, various tables are set up for the 
user and the command system is made available to him. The command system is 
written with reentrant code and logically each user thinks he has a private 
copy of the command system. The user can gain access to the command system 
at any time, even though he may be communicating with a subsystem or one of 
his own programs, by pressing a character conventionally assigned by the system 
for this task. When the teletype handling routines "see" this character, 
transfer is made to the routines required to bring the command system into 
memory if it is not already there. 

The command system collects a string of characters forming a 
command, decodes the command and transfers to the routine for handling the 
decoded command. Any arguments for the command are passed to the routine also. 

If the command is a call for a subsystem, the subsystem is assigned 
to the user by setting up the appropriate memory tables of the calling user 
and, if the subsystem is not in core, it is then read into core by calls to 
the appropriate I/O routines. Information required to set up a subsystem is 
stored in special tables. 

The handling of the file directory, and the checking of user status 
to determine the nature of access allowed to a given file is often handled by 
non-resident routines, as defining files doGs not happen frequently enough to 
warrant permanent residency. 

The Concept of Overhead 

The term "overhead" is heard frequently in discussions on time­
sharing. The meaning of the term is very fuzzy and is generally used to denote 
the per• cent time the machine is occupied performing system functions such as 
swapping, protection, scheduling and so forth. The general implication is 
that overhead is inherently bad. Looked at in this way system functions are 
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not seen in proper perspective. One certainly wants to minimize, relative to 
a given level of service performed by the system, the time the machine spends 
on system functions, but one must recognize the·usefulness of system 
functions in the total work of the user. In a system in which there is much 
use of shared information, the time spent by the system in protection functions 
may have to be increased, but hopefully the use of shared information increases 
significantly the users productivity. Similarly, the use of large virtual 
memory spaces will increase the time spent in system routines, but possibly 
to the total advantage of designers of large user systems. The determination 
of tolerable overhead is only possible with a sound weighing of all the costs 
associated with a con~uter operation, which must include the user. Varying 
figures will be acceptable by different installations depending on the nature 
of their work load. 

A more meaningful measure of system utilization then overhead is 
system idle time. The amount of idle time is a direct indication of the total 
design balance of hardware component performance characteristics with each 
other and the resource allocation algorithms. Nielsen 1 s34 )35 ) simulations of 
the IBM 360/67 system showed clearly the results on idle time of a poorly 
balanced system. Measurement of system component utilization (hardware­
software) is a long overdue engineering discipline which has been started in 
the past two years. It is only with sound data that show clearly the in~or­
mation flow bottlenecks that more economical time-sharing systems can be 
developed. 

Some Concluding Remarks on Time~Sharing 

This paper has tried to set forth the major concepts involved in 
the design of present time-shared computer systems. Based on an understanding 
of these concepts and their underlying assumptions and motivations, it should 
be possible to set up criteria for evaluating such systems. The most important 
point to be emphasized is that there are many cost-generality trade offs which 
must be considered if efficient economical systems are to be made available at 
a given point in the developing state of the art. Not only must the designers 
of such systems consider these factors, but each installation planning or 
acquiring such a system must consider them in light of their own projected 
needs. 

The central problem around which time-sharing development has 
pivoted to date is the limitation imposed by the cost of main memory. The 
attempt to develop schemes such as paging to enable main memory to be fully 
utilized, to develop schemes such as segmentation to limit the requirement 
for multiple copies of shared data and procedures, to develop elaborate 
swapping schemes to cut costs through use of less expensive auxiliary storage 
devices such as drums, develop elaborate memory organizations and bus struc­
tures to allow several processors to concurrently use a given block of memory, 
all result because of the present cost of main memory. Looking at trends in 
the development of large scale circuit integration, there seems to be a high 
probability that major cost-performance improvements can be expected within 
the next five years. Such improvements will, in our opinion, make possible 
the design of more straight forward systems. This trend will result because 
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one will then be able to trade ease of system design and implementation for a 
less efficient utilization of main n:emory. 

What the field desparately needs are statistics on system utilization 
so that bottlenecks and costs can be seen more clearly. Simulation and 
analytical tools are also required so that various trade offs can be carefully 
studied. Some researchers in the time-sharing field have tried to indicate 
that their systems are too complicated to study with simulation and that the 
first version of the system is in fact the simulation. Work on simulation at 
UC Berkeley, 40 ) SDC, 17 ) Stanford34 )35 J and MIT49 ) shows that the above view 
should not be readily accepted. The pessimistic view indicates more the fact 
that early system developers did not want to stop and develop these tools 
before moving on to implementation than the fact that useful simulation is 
impossible. 

We can expect that the experience of the growing number of time­
sharing service bureaus is going to have a large impact on future developments 
in this field. These firms more so than industrial research laboratories 
or universities, where most time-shared computer systems are installed, are 
going to 1) be very sensitive to cost-generality trade offs and 2) have a 
collective experience with a very wide range of user requirements. To date 
universities have been the major source of time-sharing developments. Computer 
manufacturers have been building competence in the time-sharing area and can 
be expected to take a more decisive hand in the mid 1970 1 s. 

The time-sharing field has been subject to bursts of enghusiasm for 
concepts such as segmentation without carefully examining the underlying 
assumptions, costs or alternative ways to achieve the same goals. Concepts 
have been very easy to generate to date, but many have proven q'J.ite difficult 
to implement in practice. Many firms have ordered systems on the basis of a 
manufacturers promise or on the basis of a working prototyke only to be very 
disappointed by the manufacturers failure to deliver or by the l€rgth of time 
required to turn the prototyke into a system meeting commercial standards of 
reliability. All of the above factors coupled with increasing knowledge of 
the concepts involved in time-shared systems are helping to produce a more 
mature questioning attitude on the part of potential time-sharing system 
customers. 

With the above we cl0se our introduction to concepts involved in the 
design of a general purpose time-sharing system and now move to a brief dis­
cussion of on-line file maintenance and retrieval systems, multiprogramming 
batch systems allowing remote access, and special purpose time-sharing systems 
to examine some of the characteristics which differentiate them. 

On-line File Maintenance and Retrieval Systems 

Examples of this class of systems are airline reservation systems, 
computer assisted instruction systems, stock transaction systems, and ordering 
and inventory control systems, a well known specific example being the 
American Airline SABRE System. 16 ) Inputs to these systems are queries from 
user terminals. Their outputs are answers to the queries obtained by 

249-68 



77 

analyzing the contents of a large data base. Most of these systems are 
special purpose and do not allow the users to generate procedures, or generate 
queries outside a fixed set. There are systems developing in this class though 
which do allow users to generate simple procedures to manipulate the inf or­
mation retrieved from the data base. Interrupts from the I/O devices are the 
major signals driving the scheduling algorithms. 45 ) Each message has a 
priority and security level associated with it. These systems are primarily 
I/O limited. Although the users view the system as providing a fixed set of 
processing capabilities oriented toward the particular application, different 
users may be using different capabilities at the same time with different 
levels of priorities. Because the arithmetic logical operations on the data 
are usually limited, once a process is started it usually remains in main 
memory until completed unless space is required for a higher priority process. 
More than one process occupies main memory at any given time to allow proc­
essing to take place during the frequent I/O requests of the processes in this 
class of system. 

This class of system requires capabilities for protection, fOJ' 

rapid transmission of information between main and secondary storage, 
routines for handling terminal devices, and priority scheduling and alluc~~:~vn 
algorithms, as does the general purpose time-sharing system. In summary one 
can list the following characteristics of this class of system: 
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1) the entire system is I/O bound, 

2) the system performance times are critically affected by the 
order in which various I/O tasks are performed, 

3) it is important to have many different jobs in main memory, 
each placing requests into an I/O queue so that the monitor can 
best schedule the order of peripheral storage accesses, 

4) swapping should be kept to a minimum to avoid aggravating an 
already I/O bound system, 

5) each user should be capable of making logically independent 
requests for service, 

6) each user expects responses to his query to be returned rapidly 
because his task usually will require a sequence of queries to 
be presented. 

7) The state of main storage is likely to be one of the prime 
factors influencing the scheduling process. The following types 
of questions would be looked at by the scheduler: 

a) Is enough free storage available to satisfy the request? 

b) If the request is granted will the job free storage? 

c) Will the job be making additional requests for storage? 
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In a system one of the major delays results from positioning of access 
mechanisms.12 ) Therefore, the I/O scheduler should make some attempt to order 
requests to minimize positioning time. Other factors such as job priority, 
elapsed time since the request was entered, and main storage availability will 
affect the I/O scheduler also. 

Multiprogramming Batch Systems With Remote Access 

A separate study is being undertaken at ERO defining characteristics 
of this class of system and therefore only a very brief discussion is given 
here. Systems in this class include as examples IBM's OS/360, UNIVAC's Exec 
8, and GE's GECOS. These systems have all the same general features as the 
general purpose time-sharing system for scheduling and resource allocation. 
The main difference between these two classes lies in the specific emphasis 
given in the design details of the various modules. These systems have been 
designed primarily for batch throughput and, while adaptable to conversational 
computing, tend to be expensive when used in this manner. This tJPe of on­
line usage, in our opinion, needs to be reflected in the design details of the 
entire system. 

In practive these systems usually can allow a limited number of on­
line terminals access to a reentrant subsystem such as a text editora) for the 
preparation of source code to be used with a compiler for a language such as 
FORTRAN. When the code is prepared, it is entered on the batch queue usually 
with a high priority in order to achieve reasonable response at the terminal. 
Although features which enable swapping may be available, present systems in 
this class were not designed to efficiently handle this type of usage and 
usually restrict program size to keep them in main memory. The conversational 
features of present systems are more often second thoughts patched into the 
original batch oriented structure, than original design goals reflected 
throughout the system. 

The design goals of OS/360 and the MULTICS operating system on the 
GE-645 have many features in common in their attempts to be all things to all 
users and have suffered as a result. They differ though in the prime emphasis, 
one on batch throughput, the other on conversational computing and manipulation 
of resources. It is not clear that any one system can ever be designed to 
perform economically and efficiently on both classes of service, although 
either can handle some of the type of work primarily designed for the other. 
The computer field is really only in the second generation of operating 
system design and the question as to whether or not one system can be designed 
for both classes of usage will be JUOre clearly answered when the lessons 
learned on this generation have been absorbed and reflected in changes in 
hardware design and software design on the next generation. Our observations 
of the present evolution of these two classes of system are that they each 
are beginning to incorporate features found initially in the other. 

a) At present os/360 has no such editor, although one is planned for UNIVAC's 
Exec 8. Various OS users have developed text editors. The discussion 
here is general to this class of system to indicate the type of approach 
usually followed. 
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One difference is particularly noticeable at present between these 
two classes of system and that is the hardware organization. Both classes 
require the same basic features and yet, due to the fact that universities are 
providing the prime source of general purpose time-sharing system ideas, the 
hardware organization of systems oriented toward general purpose time-sharing 
is generally richer in aids to effective sharing of resources. Another impor­
tant difference between these two classes of systems is that the multipro­
grammed batch-oriented systems are often designed to run on a family of 
machines. Therefore, the designers of these systems have tried to avoid 
producing algorithms which utilize time dependencies of any machine or device 
in the line. This approach decreases the cost of producing operating systems 
for a family of machines and offers the user expansion capability at minimal 
cost, but does not lead to the design and implementation of the most efficient 
systems. The smaller models of such a family tend to dictate many features of 
the design of compatible software and larger models tend not to be effectively 
utilized. The designers of many of the available time-sharing systems, on the 
other hand, have tried to utilize as much knowledge as possible of the timing 
characteristics of their hardware to achieve greater efficiency and faster 
response. 

With the above general introduction let us briefly examine the 
structure of the most general version of IBM's os/360 called MVT (Multipro­
gramming with a Variable number of Tasks) which is representative of this 
class of system. 23 ) In OS terminology the word task is used to represent the 
type of entity called a process throughout this report. A job is an accounting 
entity logically separate from all other jobs and consists of one or more 
tasks. A task is a program and its data, for example, a compiler and the 
source program to be compiled. A task can create subtasks. 

More than one task is resident in main memory at one time. There 
are two main schedulers in the system, one to schedule jobs and the other to 
schedule tasks. When the user enters his job into the system he indicates a 
priority and main storage requirement. Jobs are scheduled into the system 
based on these two parameters. 

Main memory is allocated by what IBM calls partitions. A partition 
is a contiguous area of memory equal to the requirement input with the job. 
Once a job is entered into main memory it remains there until it is finished. 
There are several jobs in different partitions in main memory simultaneously. 
The tasks of a job are either defined explicitly with control information 
entered with the job or implicitly by tasks setting up further subtasks. 
There may be several tasks in a partition. Each task has associated with it a 
Task Control Block (TCB) which contains state information for the task and is 
used by the task scheduler. To review, a job scheduler determines which jobs 
are to be brought into main memory. A task scheduler then determines which 
task is to be run at a given time. The task scheduler gains control on each 
interrupt and examines the task queue to determine the highest priority task 
ready to run to place in execution next. There is no time slicing among tasks 
in present versions of MV'T, but clock interrupts can be put in the system to 
perform this function as this type of interrupt is the same in principle as any 
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other. Without the time interrupt, a task once placed in execution is allowed 
to run until it generates a call to the system or an I/O operation for some 
other task is completed. 

A feature called rollout is being implemented which allows a high 
priority task to gain more memory than initially assigned by explicitly asking 
the system for more memory. The additional memory is obtained by forcing a 
lower priority task to be moved to the disk. When the higher priority job is 
completed the unfinished task can be moved from the disk back to main memory. 
There is no provision for swapping as understood in general purpose time 
sharing systems. 

To implement a "time-sharing" like ability with OS there are several 
possible approaches, two of which are mentioned here to give the reader a 
feeling for what is involved. Under OS, software support can be placed in a 
partition whicb is given the highest priority to provide limited conversational 
abilities. 

One way to provide this ability directly within the structure of OS 
is to allow each remote terminal to create tasks which are like any other OS 
task. 22 ) By the use of a clock interrupt and the variation of task priority 
numbers the system can commutate its resources among the tasks in the 
partition. 

Another approach is to set up a very high priority task in , 
partition which is actually a submonitor. It then performs its own scheduling 
of user tasks and could perform rather inefficient swapping by standard calls 
to the appropriate OS I/O routines. 

From the above discussion and that of general purpose time-sharing 
given earlier, one can see that there are significant differences at the 
implementation level in scheduling, memory allocation and resource handling 
(software and hardware) between general purpose time-sharing systems and on­
line usage of batch multiprogramming systems with remote access. Besides the 
differences in resource allocation which exist between the two classes of 
systell} there are important differences in the protection features which are 
available. Sharing of information in the sense occurring in a general purpose 
time-sharing system does not take place in a batch system and therefore a 
batch oriented system will have a weaker protection system. 

Special Purpose Time-sharing Systems 

The main defining characteristic of special purpose time-sharing 
systems is that these systems allow programs to be w.ritten in a very limited 
number of languages (usually one). Examples are the JOSS system at Rand4 ) or 
the IBM Quiktran system. These systems require very limited file manipulation 
and simple file structures. Because the size of programs generated are 
usually not large, several programs can be maintained in main storage simul­
taneously and overlapped computing and swapping are easily achieved. These 
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systems and their language are designed for a specific application area and 
are noted more for the careful attention given to ease of use and learning 
than to features of their system design. 
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