
Bug, Feature, or Code Rot? Adventures in OS Debugging
Bob Supnik, 24-Mar-2002 (updated 11-Feb-2003)

Summary

In bringing up an old operating system on a simulator, the assumption must be
that any problem is the simulator’s fault; after all, the operating system worked on
real hardware. This assumption has not always proved to be true. Simulators on
modern PC’s are often significantly faster than real hardware and thus may
expose race conditions or timing bugs. Simulators may exercise code paths that,
in late stage operating systems, were no longer used, such as full installs.
Simulators may create configurations that were not practical, due to physical or
financial limitations. Finally, simulators may present late stage operating
systems with hardware configurations that, while nominally supported, could in
practice no longer be tested.

Timing Problems

On modern PC’s, simulators for a computer architecture are often significantly
faster than any real hardware that was ever built. PDP-10 simulators, for
example, have been clocked at over 10 mips; the fastest DEC PDP-10 (the
KL10) was 1.5 mips. Simulated devices are often much faster than their real
counterparts. These speed changes can expose timing dependencies in
operating system code.

A trivial case is a timing loop. Some software environments, such as console - or
microcomputer-based games, are very dependent on timing loops. Timing loops
also occur in system bootstraps. For example, the VAX KA655 boot code uses
delay loops executing directly from boot ROM to run “slowly” as a wait loop on
clock ticks. Finally, timing loops show up frequently in diagnostics.

More subtle problems occur around interrupts. Operating system code often
assumes that a large amount of time elapses between initiation of an I/O
operation and receipt of the completion interrupt. If the interrupt “too soon”, it
may be misinterpreted or lost. All versions of the RSX11M+ MSCP driver prior to
V4.5 had this problem in the initialization sequence. VAX NetBSD driver has this
problem during normal operations, as Kevin Handy documented in this note to
the author:

Starting at '1->', we set up a mscp packet to put the drive online. At '2->' we ping the
mscp controller to take a look at it's packets. And '3->' waits up to (100*100) time units
for the controller to respond with an interrupt.

The problem, is that by the time it gets to '3->', the interrupt has already occurred and
been processed. It's waiting for an interrupt that has already occurred, thus the timeout
fails. You can see it by single stepping through the code (it suddenly jumps out of the
sequence, putters around for a while, then jumps back in).

The CPU is expecting to have enough time to set up a timeout routine before it will get a
response back. It's not expecting an instant response back. You need to delay the
responses from your emulated controllers for <mumble> instructions/microseconds, and
then you will then get past this problem.

Ken Harrenstein found a similar problem in the disk driver in ITS.

To address these issues, the SIMH MSCP simulator simulates ‘delays’ between
initialization steps, and between initiation of an operation and completion. The
delays have to be tuned experimentally to get the right values. For example, M+
requires at least 200 instructions between initialization steps, but RSTS/E can
tolerate virtually no delay after the completion of step 4.

Finally, the changed timing of the simulation environment may expose race
conditions and bugs that have lain dormant in the code. RSX11M+ has a
compound bug in which a coding error in MSCP device initialization is masked,
on real hardware, by the outcome of a timing race condition. If the boot device is
an MSCP disk, M+ routine RVEC brings up first the controller (routine $KRBSC)
and then the boot disk (routine $UCBSC) by issuing three MSCP commands:

- Set controller characteristics
- Unit online
- Get unit status

There is a bug in the MSCP driver’s handling of the get unit status command. In
the interrupt handler for command completion, routine RQRCT destroys the
success status code and overwrites it with 0310 (bad block replacement
needed). If the MSCP disk is ‘fast’, or the driver code paths are really long, the
get unit status command completes before control returns to $UCBSC. $UCBSC
sees an error status and marks the disk as offline, causing the bootstrap to fail.
This is what happens on the simulator with M+ V3.0.

On the other hand, if the MSCP disk is slow, or the driver code paths tighter,
control returns to $UCBSC while the get unit status is still in progress. The error
status code is from the successful unit online, and $UCBSC marks the boot disk
as online and returns. This is what happens on the simulator with M+ V4.0 or
later, and, apparently, with real hardware.

Even with the timing race falling the ‘right’ way, it requires another bug to prevent
routine RVEC from seeing the erroneous status code from the get unit status.
When $UCBSC returns, RVEC sees that the unit online sequence is not
complete and waits for the get unit status to set a final status code. When that
status (the erroneous 0310) is set, it is ignored. RVEC only checks to see
whether the disk is online. And the disk is online, because $UCBSC set status
from the unit online command, rather than the get unit status command.

Interestingly, when the bug in RQRCT was addressed in M+ V4.0, the fix was
incorrect, and the code continued to work only because of the timing race
condition.

To get around this race condition, the SIMH MSCP simulator command
completion delay must be tuned experimentally. M+ 3.0 requires at least 175
instructions between initiation and completion of a command.

Unused Paths

Simulator users routinely perform full installations of operating systems onto
empty disks; indeed, a full installation is one of the litmus tests for simulator
success. But in real life, this path might no longer be used or tested. DEC
ceased production on DECsystem-10’s in the early 80’s but continued to update
TOPS-10 through 1988. When the last release (7.04) came out, there were no
new DECsystem-10’s requiring full installs, and the code path was insufficiently
tested. And, in fact, it contains a bug. This problem burned Tim Stark during
debug of TS10, as documented in this note to KLH10 author Ken Harrenstein:

There's also a bug that interferes with TOPS-10 7.04 from being built correctly from
scratch; that was presumably not found because no one was doing clean installs in 1988.
It has to do with enumerating magtape channels or units; the code's counting loop
overflows from the MTCS2 formatter select field into the Unibus address inhibit, so that
the next magtape read doesn't work. SIMH got away with it because I didn't implement
address inhibit, but Tim Stark got burned in TS10 because he did. (He thought the driver
required it.)

Because SIMH doesn’t accurately follow the hardware, it is, ironically, immune
from this problem.

A more complex case is a magtape boot bug in TOPS-20 V4.1 for the KS10.
The magtape bootstrap is read into low memory and then relocated to high
memory for execution. For some reason, the move is done with EXCH
instructions rather than conventional moves, thus replacing the low core image
with the contents of high memory. The bootstrap contains the instruction
WRCSTM [77B5]. After relocation of the bootstrap, the WRCSTM’s address is
still pointing to low core, which has been overwritten. The WRCSTM writes
garbage to the CSTM, and the boot fails, as documented in this note in
alt.sys.pdp10:

The tape bootstrap moves itself into high memory with a routine that exchanges memory
locations, rather than copies them. (I have no idea why.) The WRCSTM instruction in
the boot references absolute address 40127, but that's been copied to high memory, and
garbage (zero for the simulator) exchanged into its place. When paging is turned on, the
simulator gets an age page fail error, because the CSTM is all 0's, and the age bit gets
zeroed on the second page fill. Ugh. If I run the boot again, in the same core image, it
works, because the contents of 40127 are already in high memory and are brought back
to the right spot by the exchange.

How could such an obvious problem been overlooked? One suggestion – that
the tape bootstrap of V4.1 had simply not been tested on the KS10 – was
indignantly rejected by veterans of the TOPS-20 group. They insisted that the
code worked on a real KS10 CPU but could not explain how.

The answer, perhaps, lies in the observation that the bootstrap succeeds the
second time, because the exchange moves a copy of the bootstrap back to low
memory, and the WRCSTM retrieves the correct data. On a real KS10, the front-
end console had a watchdog timer. If the main CPU failed to respond with a
heartbeat in a given amount of time, the console would reboot the system –
without disturbing memory. The second bootstrap would succeed. From the
viewpoint of anyone debugging the bootstrap process on real hardware, there
would be a small tape movement, a delay, a backspace, and then a normal boot.
If the tape motion wasn’t noticed, the delay could be ascribed to self-test
procedures in the front-end console or other “normal” delays. The system did
boot; there was no need to look deeper.

Impractical Configurations

In today's computers with megabytes of memory and gigabytes of storage, the
largest configuration of a historic computer represents a tiny fraction of the
available resources. Simulators can create configurations that for physical or
financial reasons were impractical with real hardware. For example, the S IMH
PDP-15 simulator supports an RF15 fixed head disk controller with up to 8 RS09
fixed head disks. In practice, no customer would buy that many fixed head disks;
instead, the customer would buy an RP15/RP02 disk pack, which provided five
times the storage at lower cost.

Apparently, the maximum RF15 configuration was never tested with the PDP-
15's DOS-15 operating system. The predecessor operating system, ADSS-15,
had been limited to 4 RS09 disks. DOS-15 increased this to 8, but the
configuration was never tested, as Hans Pufal documented in a mail message:

The OS exits to IOPS error code 21 when it reaches a platter
number 010. The problem is that with 8 platters there will never be a
NED indication. I think the problem is in the OS code:

75072: CLA ; set platter to 0
75073: IOT 7045 ; force controller idle, clear done
75074: IOT 0 ; padding
75075: IOT 0
75076: IOT 0

 ; Top of platter loop
75077: IOT 7065 ; set disk platter
75100: IOT 0 ; padding
75101: IOT 0
75102: DSSF ; skip on error (NED)
75103: JMP 75106 ; jump if disk exists

75104: DSCD ; clear status
75105: JMP 75113 ; found NED, AC equals number of platters

 ; Disk exists, inc disk and loop back if not done 8
75106: DSCD ; clear status
75107: TAD 75401 = 001 ; add 1
75110: SAD 75722 = 010 ; compare with 010
75111: JMP 75231 ; jmp out if disks = 8
75112: JMP 75077 ; not 8 so go back for next disk

75113: DAC 75072 ; store # of platters
75114: SNA CLL ; skip if AC = 0
75115: JMP 75231 ; jump to IOPS error

 ; Error path
75231: LAC 75131
75232: DAC* 75731
75233: LAW 21 ; IOPS number
75234: JMP 75240 ; go do IOPS error

I think the JMP at 75111 should be a SKP.

And indeed it should. A maximum RF15 configuration, impractically expensive at
the time, was never tested.

Untestable Configurations

A simulator can mimic any implementation of a computer architecture. Further, it
can implement an arbitrary assemblage of peripherals. This flexibility may
significantly exceed the testing capabilities available to real developers in late
stage operating systems. For example, the SIMH PDP-11 simulator emulates a
KDJ11A CPU with broad set of peripherals ranging from DECtape (out of
production by the early 70s) to MSCP disks (still current in the early 90s). DEC
in its heyday would have been hard pressed to assemble such an eclectic set of
devices. Therefore, it is not surprising that by the late 90’s, the skeleton crew
maintaining the PDP-11 operating systems could no longer test older hardware.

This problem is evident in the behavior of RSX11M+ V4.5 autoconfigure. V4.2
correctly identifies the simulator as an LSI-11/73 (KDJ11A CPU). But V4.5
identifies it as an “M11”, Mentec’s 1997 re-implementation of the J-11 in gate
arrays. What happened?

M+ autoconfigure implements a series of tests that act as a sieve to eliminate
classes of PDP-11 processors. When the tests are done, one and only one CPU
model should be flagged. The tests are very fine grained, but the KDJ11A and
M11 are almost identical. Both respond with MFPT = 5 and maintenance ID =
20. To distinguish them, the following code was added to autoconfigure in V4.5
(as disassembled by the simulator):

 ;;; PDR7 has W bit set
131640: MOV @#172317,@#172317 ;;; write odd byte of kernel PDR7
131646: BIT #100,@#172316 ;;; is W bit still set?
131654: BEQ 131664 ;;; if eq no
131656: BIC #200,R4 ;;; if ne yes, clear J11 bit (ie, it's an M11)
131662: BR 132124
131664: BIC #20000,R4 ;;; if eq no, clear M11 bit (ie, it's a J11)
131670: BR 132056

This code sequence cannot work as written. On the KDJ11A, and presumably
on the M11, the MOV instruction accesses an odd address and traps while
fetching the source address. The trap handler simply RTI’s, and the third word of
the MOV is executed as an instruction ADDF F3,(PC), which is harmless.
Because the PDR is not actually written, the W bit isn’t cleared, and the CPU is
always classified as an M11. What is going on?

The answer comes by comparison with the CPU identification code in routine
SAVSIZ:

20$: MOV #KISDR7+1,R0 ;;;POINT TO KERNEL PDR7 ;DC535
 MOVB (R0),(R0) ;;;WRITE THE HIGH BYTE OF THE PDR ;DC535
 BITB #100,-(R0) ;;;DOES IT SHOW WRITTEN? ;DC535
 BNE 60$;;; IF NE, YES, WE HAVE AN M11 ;DC535

This sequence will work. The MOVB doesn’t trap. On a KDJ11A, a write to the
PDR clears the W bit, even if the PDR is mapping itself. On the M11, apparently,
it does not.

How did the bug in autoconfigure go undetected? One possibility is that
autoconfigure was not tested. But a more compelling hypothesis is that the
developer simply didn’t have a KDJ11A available for testing. The KDJ11A is a
relatively rare survival as a system processor; most J11-based PDP-11 systems
were built with the KDJ11B, D, or E processor modules. The developer tried the
code on an M11, and it worked; he probably didn’t have a KDJ11A available to
see that it didn’t.

Conclusion

In debugging a simulator, 99% of all problems that occur in bringing up an
operating system will be the simulator’s fault. Occasionally, the problem will be
in the operating system itself. Operating systems contain timing dependencies
that simulated devices break or may not have been tested against all possible
hardware configurations. Late stage operating systems suffer from inadequate
staffing, incomplete test facilities, and other limitations. The result is introduction
of bugs through coding mistakes or “code rot” (code breakage as a side effect of
new features). Locating these problems, and tracing them to root causes, is one
of the most difficult challenges in simulator debugging.

Acknowledgements

Once again, the Internet gang of historical computer enthusiasts played an
indispensable role in the work documented in this paper. Doug Carman raised
the initial alarms about RSX11M+’s behavior under simulation and provided
access to critical sources. Robert Alan Byer showed that there were
inconsistencies in several different versions of autoconfigure. Brian McCarthy,
one of the stalwarts of M+ development, provided crucial insights into the
autoconfigure algorithm. Tim Shoppa demonstrated the sensitivity of RSTS/E to
processor and clock parameters, and John Dundas suggested how to work
around the problems. Tim Stark uncovered the TOPS-10 7.04 and TOPS-20
4.01 bugs. Kevin Handy debugged the MSCP simulator issues in VAX NetBSD.
Ken Harrenstein documented the ITS disk driver bug. Hans Pufal recovered
DOS-15 from archival DECtapes, restored it to operation, and found the
RF15/RS09 bug.

SIMH is on the web at http://simh.trailing-edge.com.

