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INTRODUCTION 

This book deals with a class of digital magnetic-core circuits 
that consist of magnetic components and interconnecting conductors, 
and which offer extremely high reliability, long life, and adapta
bility to special environments, e.g., high-intensity radiation. The 
history of such core-wire circuits, as we refer to them in this 
book, spans some 15 to 20 years, from the first discussions of 
theoretical possibility to the large array of techniques and varia
tions at present. 

Four potential areas of study for any device and circuit tech
nology are (1) the physics of the devices, (2) the development of 
engineering models for use in circuit analysis, (3) the develop
ment of circuit synthesis techniques, and (4) the development of 
quantitative circuit-design methods. Part I is concerned with 
areas (3) and (4) and is based on the use of a highly abstracted 
magnetic-core model that greatly simplifies the discussion of 
basic circuit principles. The bulk of the writing in Part I covers 
many different core-wire techniques and represents an attempt to 
integrate the published work of many different authors. Parts of 
Chaps. 6 and 10 are concerned with circuit-design methods not 
previously published. Part II covers areas (1) and (2), based on 
use of more detailed, precise consideration of magnetic phenom
ena. Chapter 11 provides a condensed summary of the physics 
of magnetism for readers wishing some insight into the behavior 
of square-loop cores. Chapter 12 covers recently developed core 
models that permit accurate representation of flux switching in 
square-loop cores. 

Part I is a step-by-step development of the principles of 
magnetic-core circuit techniques. In Chap. 1 we introduce the 
language of flux linkage and current linkage, and show how ba
sically different the circuit action is when a core is loaded with 
resistive, inductive, or capacitive elements. In Chap. 2 we consider 
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VI INTRODUCTION 

flux transfer from one core to another core, in which case a 
change in flux linkage from the switching of a first core induces 
a coupling-loop current that switches the second core; the change 
in flux level, !':J.¢, becomes our basic signal. We are primarily 
interested in the ratio of received flux to transmitted flux, i.e., 
the flux-transfer ratio G, which is generally a function of the 
transmitted flux level !':J.¢T' Of special interest are the conditions 
for G > 1, that is, for !':J.¢ gain. 

In Chap. 3 we show that in order to achieve bistable gain 
characteristics, G must exhibit a certain form of functional 
dependence on !':J.¢T' Proper balancing of flux-gain and flux-loss 
mechanisms permits the realization of the required functional 
form. To maintain this transfer characteristic between two cores 
embedded in a chain of similar cores, certain requirements on 
forward and backward isolation must be met. It is shown how 
diodes readily serve in this role, which is the basis of the well
known core-diode logic circuits. 

In Chap. 4 we introduce several varieties of core-wire cir
cuits. This begins as an effort to replace the diodes in a core
diode circuit by other toroidal cores. A systematic replacement 
procedure is developed, and we show how any core-diode circuit 
can in fact be realized in core-wire form, i.e., as a circuit con
sisting simply of toroidal cores and interconnecting wire. We then 
extend the class of core-wire circuits and develop new circuit 
forms that have no equivalent core-diode forms. We also intro
duce more complex core shapes, i.e., multileg cores, and show 
their advantages over functionally equivalent arrays of simple 
toroidal cores. 

In Chap. 5 we show how to transform a core circuit to a 
magnetic-network representation in which rate of flux change is 
the flow variable. The network representation provides a common 
language for flux-transfer schemes. Many schemes that super
ficially appear different can be shown by the network representa
tion to be functionally equivalent. Also, it is generally simpler 
to convert from one type of scheme to another after transforming 
to the network domain. Examples of transformations and reverse 
transformations are given. In particular, it is shown that any 
given .network may often have many different forms of physical 
realization. 

In Chap. 6 we treat a specific core-wire scheme, designat~d 
by the term MAD-R, that has been studied and applied more than 
any other scheme. A quantitative design method for this form of 
circuit is presented, and it is shown that circuits of this type can 
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be designed to operate with very wide tolerances on temperature 
and power-supply conditions. 

The core-wire schemes known today were invented by many 
different persons and generally in a rather ad hoc and random 
fashion, a situation that characterizes the early advances in many 
fields. In Chap. 7, a technique is described by means of which one 
can search for all possible schemes for a given configuration of 
magnetic elements. Certain new schemes derived in this fashion, 
as well as a formal "re-inventing" of certain of the schemes 
discussed in Chaps. 4 and 5, are given by way of example. The 
method itself offers interesting insight into the operation of these 
circuits. 

A comment is in order on scheme identification as generally 
used throughout these chapters. Because it was not easy to de
velop nomenclature that clearly distinguishes between various 
schemes (in the fashion of the terms DCTL, TRL, and the like, 
as applied to transistor circuits), we decided instead to identify 
a scheme or method of approach by the name of the person with 
whom it is associated, as far as we know, either by patent dis
closure or publication. We depart from this policy in the case of 
better-known schemes when a name has been established (e.g., the 
MAD-R scheme). 

In Chaps. 8 and 9 we introduce other methods of approach to 
circuit synthesis that open up whole new families of schemes, 
some of which offer Significant potential for future practical ap
plication. Three different techniques are introduced in Chap. 8, 
each leading to new scheme types. Together these techniques pave 
the way in Chap. 9 for an important class of bipolar schemes. In 
the bipolar representation, the binary states (designated one and 
zero) are symmetrieally represented; i.e., they are characterized by 
flux transfer of equal amplitudes but opposite polarities, as opposed 
to high and low levels of flux transfer in the unipolar schemes. A 
number of especially interesting schemes based on the use of co
herent rotation of magnetization in thin films fall into the bipolar 
category. 

Through Chap. 9 we are concerned strictly with the develop
ment of basic transfer schemes, i.e., flux transfer along a simple, 
iterative chain of circuits, without regard to logical fan-in or 
fan-out. In Chap. 10 we investigate methods of general logic 
synthesis with core-wire circuits. 

Part IT is concerned with. the magnetic devices themselves. 
Chapter 11 is a highly condensed, step-by-step exposition of 
the physics of magnetism that leads to the basic square-loop 
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characteristic and the basic mechanisms of flux SWitching. It pro
vides the reader with some background to appreciate the empirical 
models for flux switching that are discussed in detail in Chap. 12. 

The goal of Chap. 12 is to model the static and dynamic flux 
properties of square-loop magnetic cores. It is shown that a pair 
of simple mathematical equations can model the major hysteresis 
loop of a typical ferrite material, from which hysteresis loops for 
thick-walled toroidal cores are derived and shown to fit experi
mental data quite accurately. Parameters derived from these 
static hystereSiS curves are used in the dynamic switching models. 
From the results of basic flux-switching experiments, it is shown 
that the familiar elastic and inelastic components of flux switch
ing can best be modeled in terms of two components each. The 
two components of elastic switching are due to rotation of mag
netization and local domain-wall movements; the two components 
of inelastic SWitching relate to what are referred to as minor and 
major wall displacements. Mathematical equations for all four com
ponents are derived, and it is shown how these relations quite 
accurately model flux switching of ferrite cores over a large 
range of drive amplitudes, conditions of loading, and SWitching 
speed (from nanoseconds to microseconds). Computational methods 
for the models are also discussed. These models are presently 
being applied with considerable success to computer-aided analy
sis of complex magnetic-core circuits. 

Two primary reasons can be singled out for the erratic de
velopment of core-wire logic circuits over the past fifteen years: 
the general lack of background, training, and understanding of 
magnetics by engineers who are the potential users; and the rapid 
growth of semiconductor technology, which has generally offered 
circuits with performance superior to that of core circuits under 
most, though not all, conditions. This book was begun over seven 
years before publication, and the enthusiasm for following it to 
completion has been similarly erratic. We finally came to the 
conclusion, independently of short-time variations in general in
terest, that core-wire or other magnetic-core logic circuits in one 
form or another will likely find their niche-if not based on rugged
ness and reliability one year, then on radiation immunity and ab
sence of standby power the next. This factor provided a major 
impetus to complete the book. But equally important, although the 
underlying thread of this book is the highly specialized technology 
of core-wire circuits, much of the material is relevant to mag
netic devices and circuits in general. 
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ELEMENTARY CIRCUITS 
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In order to develop some background for dealing with flux trans
fer between cores, which is basic to any digital magnetic-core 
circuit, we consider in this first chapter the properties of simple 
circuits utilizing a single magnetic element in combination with 
certain of the more common electrical components. The primary 
intent is qualitative understanding rather than engineering detail. 

1-1 Introduction 

Let us first review the fundamental rules governing induced 
electromotive force (emf) and induced magneto motive force (mmf). 
Consider a vector field B representing magnetic flux density at 
any point in space. If B changes with time, then an electric field E 
is induced, as described by one of Maxwell's equations, namely 

curl E '" \l x E = _ aB 
at 

(1-1) 

By vector manipulation, Eq. (1-1) may be converted to the integral 
form 

i Eo dl -!!... fBodA 
at }I 

3 

(1-2) 
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usually referred to as Faraday's law of induction, where P is any 
closed path, and A is any surface bounded by P. The line integral 
of E along P is the loop emf e, and J B . dA is the magnetic flux 
linking the closed loop P. When the same quantity of flux ¢ is 
encircled N times by the loop P, that is, a winding of N turns, 
then, effectively 

fB.dA = N¢ (1-3) 

and for this case, Eq. (1-2) may be rewritten as 

e = -N d¢ (1-4) 
dt 

The minus sign in Eq. (1-4) implies that the induced emf tends to 
produce current with associated flux linkage opposing the original 
Nd¢/dt, in accordance with Lenz's law and use of a left-hand rule. 
Normally we will be concerned with a coupling loop, i.e., a closed 
path formed by an electrical conductor, in which the current that 
flows is such that the total voltage drop around the loop is always 
equal to the induced emf e. 

In core circuits we are primarily concerned with magnetic 
fields that are concentrated within the surface boundaries of cores. 
In Fig. 1-1, assume that the field B is confined entirely to the two 
core legs A and B with total flux values of ¢A and ¢8' respectively. 
The flux in each of these legs closes through some external mag
netic structure. If the closed path P encircles these legs N A and N 8 

times, as shown, then the total flux linking the path is actually 
NA ¢A + N8 ¢B' 

Fig. 1·1. Interconnecting two magnetic legs 
with a coupling loop of N A and N B turns; 
polarities are consistent with +d¢Aldt or 
+d</> Bldt inducing a positive loop current il . 

Consider next a vector current density J that generates a mag
netic field, according to another of Maxwell's equations 
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curl H '" 'V x H = J (1-5) 

The displacement-current term aD/at that normally belongs in this 
equation is omitted here because it is generally negligible in the 
circuits in which we are primarily interested. Equation (1-5) can 
be converted to the integral form 

J: H.dl = ,(J.dA 
~, h' 

(1-6) 

usually referred to as Ampere's law, where p' is a closed path and 
A' is any surface bounded by P'. The line integral of H is the loop 
mmf F, and J J . dA is the total current linkage of the closed loop P'. 
For a set of discrete currents i j linking p' we can rewrite Eq. (1-6) 
as 

F = LN.i. 
. J J 

(1-7) 
1 

If p' follows along Leg B, then the component of mmf generated by 
current ir is N B ir, with direction given by the familiar right-hand 
rule. 

From Fig. 1-1 we see that any flux change in Leg A threads 
the electric loop N A times and that any loop current encircles 
Leg A the same number of times. This illustrates that the number 
of interlinkages between a magnetic leg and an electric loop is 
actually independent of which one wraps around the other. It also 
brings out the distinction between total flux linkage through an 
electric loop, versus simply the flux in a magnetic leg, and simi
larly for total current linkage through a magnetic core versus 
simply the current in a conductor. 

Figure 1-2 shows the general circuit configuration to be con
sidered in the following sections, in which we analyze separately 
the effects of resistive, inductive, and capacitive loads on a core 
connected to a drive current id applied through Nd turns. We will 
assume some highly simplified core characteristics that are ade
quate for the purposes of this chapter, and, in fact, for most of 
Part I. 

First we assume that the core exhibits the idealized static ¢-F 
hysteresis loop shown in Fig. 1-3(a). By the term static, it is 
meant that this is the curve that would be traced out if the mmf F 
were changed very slowly (quasi-statistically) in time and the cor
responding ¢ values plotted. The horizontal top and bottom of the 
loop represent positive and negative flux saturation levels and the 
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vertical sides imply that flux changes between negative and posi
tive saturation with IFI only slightly greater than the threshold 
value F o' An actual curve has finite slopes at the top and bottom, 
which account for an inductive component in switching, often re
ferred to as the elastic-flux component. (The source of this com
ponent is discussed in detail in Chap. 12.) In any case, if a 
core is driven into saturation and the drive is then reduced to 
zero, that is, F = 0, the resulting remanent flux level is desig
nated as 9r • A core with a hysteresis loop approaching the 
ideal shape shown in Fig. 1-3(a) is commonly referred to as having 
a square-loop characteristic. 

-Fo 

+</> 

-</>r 

(0) 

T 

NT ~R~L fc 
ld 19 

--..,. 

</>T 

~ -lime 

Fig. 1-2. General circuit to be analyzed with a 
resistive, inductive, or capacitive load connected 
separately. 

+Fo 
F 

(b) (c) 

Fig. 1·3. Equivalent circuit for a core, based on an idealized ¢ - F loop. 

In addition to this simple static model, we assume for most pur
poses in Part I that dynamic change of flux ¢ == d9/dt in the range 
-9 r < 9 < 9 r is governed by the relation 

¢ p(F - Fo) for F > Fo 
and (1-8) 

¢ p<F + Fo) for F < -Fo 
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where p (the average value of the inelastic switching parameter p) 
is a constant and where F is equal to the mmf J..N. i .• According 

1 ] ] 

to this model, the rate of flux change is proportional to the excess 
mmf, Le., the amount by which F exceeds the threshold Fa' In 
Chap. 12 it is shown that the switching parameters are by no 
means constant, as assumed here for p and Fa' but depend strongly 
on the instantaneous flux state, on how this state was reached, and 
also on F itself. Since the models for p and Fa developed in 
Chap. 12 are relatively complex, we have chosen here to assume 
constant values of p and Fa for mathematical simplicity in demon
strating principles. Curves subsequently calculated from the 
switching model of Eq. (1-8) are therefore accurate only in their 
grosser aspects. 

Based on this model, there is a simple electrical equivalent 
circuit for a core under the conditions that I cP I < cPr and F ~ Fa' 
In Fig. 1-3(b) is shown a core with no coupling-loop load. For 
simplicity, the winding for i d is drawn as if to link the core only 
once, but Nd linkages are assumed. The emf ed due to switching 
is 

"d ~ pNd(Ndid - Fo> - NlP(d -::) (1-9) 

This expression may be represented by the equiva-lent circuit of 
Fig. 1-3(c). where the diode is assumed to have zero forward 
resistance and infinite back resistance. This ideal diode and the 
current generator F a/N d in parallel with it together behave as a 
current sink accepting all input current id up to the value Fa/Nd' 

without supporting any voltage. For i d > F a/N d' the diode is cut off 
and e d > O. The equivalent circuit is valid until the core saturates. 
i.e., until a time T such that cP = +cPr or /l,.cP = 2cPr• where 

(1-10) 

assuming the core starts in negative saturation -cPr' When the 
core saturates at +cPr' and therefore terminates switching. the 
equivalent switching resistance becomes zero and the core ef
fectively represents a short circuit except for the inductance 
term due to the elastic-flux component. which is ignored in 
this chapter. 
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1-2 Resistive Load; t.lt/> Dissipation 

Consider the case in which the coupling loop of Fig. 1-2 con
nects the core T, called a transmitter core, to a resistive element. 
The loop inductance is assumed negligible. The core is driven by a 
step idW current pulse from an initial state ¢ = -¢r' During the 
the pulse the net mmf drop F in the core is Ndid - NTif and hence 
from Eq. (1-8) 

(1-11) 

Solution of the above two equations yields 

(1-13) 

and 

N 
if = p(Ndid - Fo) T 

R + NT 2 P 
(1-14) 

Note that the effect of the resistive loading is to reduce the 
rate of switching by the factor R/(R + Nlp), relative to the no
load case. If R -> 0, then 4>T -> 0, and the core cannot be switched 
in finite time. For the case R = 0, there is in a sense no "re
ceiver" in the coupling loop to accept any transmitter flux-linkage 
change NT /':!.¢T' This is a useful interpretation that is worth pur
suing further. By integration of Eq. (1-12) with respect to time, 
we have 

(1-15) 

where qf is the net electric charge flow in the loop. The quantity 
Rqr may be viewed as an equivalent flux-linkage change N/':!.¢ = Rqf 

absorbed by the resistance. It is sometimes useful to think of this 
process as "dissipation" of flux linkage, or alternatively as /':!.¢ 

dissipation of an amount Rqe/NT' When flux transfer from a trans
mitter core to a receiver core is considered in Chap. 2, dissipa
tion of a /':!.¢ in the coupling-loop resistance will be found to be an 
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important loss term subtracting from the !!.CP otherwise available 
to the receiver core. 

We could also derive Eqs. (1-13) and (1-14) by extending the 
equivalent circuit introduced in Fig. 1-3. Let Eq. (1-11) be re
written in the form 

. - 2 (. Fo NT.) ed = NdcPT = pNd 'd - -- -Ir 
Nd Nd 

(1-16) 

The term NT ie IN d is the only one not accounted for in the previous 
equivalent circuit, and it may be viewed as a current in the secon
dary of an ideal transformer of turns ratio N d : NT' as shown in 
Fig. 1-4. The ideal transformer and the load R may in turn be re
placed by an equivalent resistance (NiINT 2)R, and from this 
equivalent circuit Eqs. (1-13) and (1-14) can be derived directly. 

L ______________ ~ 

Fig. 1-4. Equivalent circuit of a core driven by currentid throughNd 
turns and loaded by resistance R across NT turns. 

For the simple flux-switching model assumed here, the circuit 
within the dashed boundary in Fig. 1-4 is valid regardless of the 
nature of the excitation and load at the terminals as long as F > F 0 

and I cP I < cPr. In conventional transformer terms, the differential 
switching resistance Nip is just a core-loss resistance (in ferrite 
cores, due primarily to internal damping effects rather than eddy 
currents). This loss element and the current sink of value F olN d 

represent the departures from an ideal transformer. It should be 
emphasized once more that for quantitative analysis of core dy
namics, it is necessary to make use of the more accurate flux
switching models described in Chap. 12. 

1-3 Inductive Load; ~cf> Storage 

Let us next consider the case where the transmitter core in 
Fig. 1-2 is loaded only by a linear inductance. The emf Ldirldt 



10 DIGITAL MAGNETIC LOGIC 

induced in the load must be exactly balanced by the emf across the 
core, since we are assuming zero loop resistance. Hence 

or, by integration 

die 
L

dt 
(1-17) 

(1-18) 

Recalling that self-inductance is defined as the change in flux 
linkage per unit change of current in the same element, then Ll1ie 
is simply the change in flux linkage for a change l1ie in loop cur
rent. This quantity represents all the flux linkage of the loop out
side the core, including the contribution from wire inductance as 
well as any lumped inductance in the loop. 

Assume now that the step id(f) current pulse causes the core 
to switch, given the initial conditions cP = -cPr and ie = O. As 
flux switches, the load current if increases according to if = 

(NT/Ll I1cPT. But, in accordance with Eq. (1-11), as if increases, 
the rate of flux switching necessarily decreases. By substituting 
Eq. (1-11) into Eq. (1-17) we obtain 

die (NT2p). (NTP) . at + -L- Ie = L (Ndld - Fo) (1-19) 

Since id is constant during switching, Eq. (1-19) is simply a first
order linear differential equation whose solution is 

. _ Ndid - Fo (1 -<Nr2p/W) Ie - - e 
NT 

(1-20) 

Thus, any changes in output current ie are associated with an L/R 
time constant, where R = NT 2p is the equivalent resistance of the 
core as viewed across the NT turns. 

Equation (1-20) is valid only so long as the core flux does not 
reach saturation. If <PT reaches the value +<Pr' then ¢ = 0 and we 
see from Eq. (1-18) that ie remains constant at the value NT (2 <pr)/L. 
Otherwise, we see from Eq. (1-20) that if approaches the asymptotic 
value 

(1-21) 
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and the net current linkage of the core is then equal to the thresh
old value Fo' 

For a given amplitude of id , there exists a unique value of in
ductance Lefor which /').cPT approaches 2 cPr exactly in conjunction 
with ir approaching the maximum value given by Eq. (1-21). For 
this value of inductance, in other words, the net mmf Ndid - NTir 

drops toward threshold just as the core approaches positive 
saturation. From Eqs. (1-18) and (1-21) we have 

NT (2cP r} Ndid - Fo 

Le NT 
(1-22) 

or 

Le 
NT 2 (2 cPr) 

Ndid - FO 
(1-23) 

For L < Le , the loop current reaches it maximum value before the 
core saturates, and we see from Eqs. (1-18), (1-21), and (1-23) 
that 

/').cPTfinal = ~ (2cP ) 
L r 

e 

(1-24) 

For L > L e' the core saturates before the loop current reaches 
iemax , and the final value of ir is 

i final 
r 

L 
C • max -!e 

L 
(1-25) 

For L > L e' the time T that it takes for the core to saturate can 
be found by solving Eq. (1-20) for the time required for the current 
to build up to i/inal. We find 

or 

L 
1 - ----=

L 
(1-26) 

For L = 00, (that is, for an open secondary), the simple result 
T = 2¢/(5(Nd id - Fo} can be derived from Eqs. (1-26) and (1-23). 
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A family of curves of load current as a function of time, for a 
rectangular drive pulse of duration ·T l' is shown in Fig. 1-5. Note 
that the load current is in a direction tending to switch the core 
back toward -¢r' If ie > Fo/NT at t = Tl' then for t > T1• ir decays 
towards a final value of Fo/NT with the same time constant L/NT2(i 
found in Eq. (1-20). As a result, the core switches back by the 
amount (L/N T) [ie - (F o/N T)]' and the net flux change is LF o/N T 2 , in 
agreement with Eq. (1-18). 

L=O 

L=<1l T(L=<1l) = \c_ : 
I NT P I 

. final Lc . max 
--l£ =""[ lX 

~-------------_J~--_.t o 

Fig. 1-5. Loop current if as a function of time in the circuit of Fig. 1-2 with an 
inductive load. 

It is very useful to consider the notion of a flux-linkage change 
Lie' or flux change /',.¢ = Lie/NT' as being "stored" in the inductance. 
This is based on the observation that the inductor can actually 
drive the core, returning some flux linkage to it (the inductance 
being the transmitter in this case), provided the loop current ex
ceeds the core threshold Fo/NT after the drive id terminates. 
However, in any actual circuit where loop resistance is not zero, 
/',.¢ storage in inductance can only be temporary, since any flux 
linkage not returned to the transmitter core is eventually dis
sipated in the resistance. 

1-4 Capacitive Load; t:.¢ Transformation 

The effects of capacitive loading are qualitatively different 
from those for inductive loading, although one might correctly 
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guess that there is an RC time constant associated with the load 
current, where R = NT 2(i is again the switching resistance of the 
core, as viewed from the capacitor. 

Consider the circuit of Fig. 1-2 with only the capacitor at
tached. Assuming that the capacitor is not charged initially, the 
voltage across the core winding must also be zero initially, im
plying a starting value of load current ie = (Ndid - Fo)JNT • As the 
capacitor charges and its voltage increases, the load current must 
decrease to permit the core to switch correspondingly faster. The 
equation of voltage buildup can be obtained as follows. Substitution 
of the relations ie = Cdve/dt and ve = e'1' = NT¢T into Eq. (1-11) 
results in 

dVe ve PNT (Ndid - Fo) 
-+-
dt RC RC 

(1-27) 

with the solution 

(1-28) 

where R = NT 2(i. A family of curves of ve versus t, with C as a 
parameter, is shown in Fig. 1-6. Note that all curves tend to build 
to the same asymptotic value of voltage, va = pNT(Ndid - Fo). 
This is not surprising, for if the core did not saturate, equi
librium would finally be reached with zero load current and a 
constant output voltage va = NT ¢T whose value would depend only 
on the drive strength. Thus, with a capacitive load, a switching 
voltage NT ¢T can be sustained without any load current ie' whereas 
with an R or L load, a nonzero value of ¢ is not possible unless 
a loop current ie is flowing (and changing in the latter case). 

Increasing C , 
_::,::.-_=..-=--=----vc -----

Core saturation 

Area under each 
curve = NT (2 ~r) 

Fig. 1-6. Output voltage Vc as a function of 
time in the circuit of Fig. 1-2 with a capaci
tive load. 
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Integrating Eq. (1-28) in order to find the flux change, we ob
tain 

N il.-/. • It dt = Vc' RC rRtC - (1 _ e-t/RC~ 
T iJ.'I'T = 0 Vc U J (1-29) 

From this equation we see that flux switched in the core increases 
monotonically with time until the core saturates. Saturation oc
curs at a time found by substituting t.¢T = 2¢r into Eq. (1-29). 
When the core saturates at +¢r' the sWitching resistance of the 
core drops to zero, and the capacitor discharges rapidly, the 
discharge current driving the core still further into positive 
saturation. There is, of course, an abrupt drop in voltage when 
saturation is reached, as indicated in the family of curves of 
Fig. 1-6. (In actual practice, there would be a damped oscilla
tion after saturation is reached because of the saturation induc
tance of the core and the parasitic inductance and resistance of 
the coupling loop.) The areas under the curves in Fig. 1-6 are 
clearly identical, since each curve represents the same magnitude 
of flux switching, namely, 2¢r' 

Here we must note a very important difference between ca
pacitive and inductive loading. An inductive load tends to maintain 
the load current in the same direction after termination of drive, 
whereas the capacitive discharge current is opposite to that of the 
initial charging current. Thus, whereas the inductor discharge 
current tends to switch the core back toward its original state, 
the capacitive discharge current tends to keep the core switching 
in the same direction as originally (see the examples in Fig. 12-30). 

Let us finally consider the case of terminating the drive cur
rent before saturation is reached, at time tl in Fig. 1-7. From 
the arguments above, the capacitor discharge current will keep the 
core switching in the same direction for some time. The pertinent 
equation in this case is 

(1-30) 

with the solution 

(1-31) 

where again R = NT 2p, and Vc (t1) is the value of voltage reached 
when the drive is terminated. A typical response curve is shown 
in Fig. 1-7{a). 
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I, ,, ____ I 0 I, '---_ 
I ------.",(-pN F) ,I I ----=--(-pN F) 

I I TOJLd TO 
, : I 
l d ,-------, 

---l ~I I 

(a) (b) 

Fig. 1-7. Changing the ratio of flux switched during the drive pulse to that switched 
after the drive pulse from> 1 in (a) to < 1 in (b), by varying the magnitude of i d' 
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An important observation is that the magnitude of flux switched 
subsequent to drive termination can actually be larger than that 
switched by the drive itself. We can see this from the following 
argument. With a stronger drive, the voltage builds towards a 
higher asymptotic value, and therefore the capacitor can be 
charged to the same value in shorter time. Thus, the area under 
the buildup portion of the curve can, in principle, be made vanish
ingly small, although the curve during discharge is totally un
affected by the initial drive strength. For example, compare the 
curves of Fig. 1-7(a) and (b). In the limit of very strong drive, we 
have the possibility of charging the capacitor to any specified 
voltage with a negligible amount of core flux being switched. 

A capacitor thus offers an interesting capability of tJ.¢ trans
formation, the capacitor being able to deliver to the core more, 
or less, flux linkage than the core delivers to the capacitor dur
ing the charging phase. There is nothing particularly mysterious 
about this, since there are no basic constraints on the inte
gral of capacitor voltage, even though the voltage itself is unique 
for any particular charge state. Similarly, in the case of an 
inductor, the current is fixed for any given flux-linkage state, 
but there is no basic constraint on the integral of current, i.e., 
on charge. 

1-5 Summary 

Using a very simple core model, we have treated separately 
the cases of core switching with resistive, inductive, and capacitive 
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loads. With a resistive load, the loop current is simply propor
tional to ¢, and flows, therefore, only so long as flux is switch
ing (the flux switching is dissipative). With an inductive load, 
the loop current is directly proportional to the magnitude of flux 
change /11> and this we interpret simply as flux-linkage storage, 
in the sense that the same magnitude of flux linkage in the core is, 
so to speak, regenerated in the linear inductance. We are able to 
define an L/R time constant, where R is the equivalent resistance 
of the switching core as viewed from the coupling loop winding. With 
a capacitive load, we find an RC time constant, where R is the same 
as in the inductive case, and steady state is reached when the 
voltage generated in the core winding exactly equals that across 
the capacitor, and no loop current flows. In this case, the magni
tude of equivalent flux linkage stored in the capacitor during 
charge can be less than, equal to, or greater than the flux linkage 
subsequently delivered from the capacitor during discharge. This 
is an important property interpreted as /11> transformation. 

This simplified treatment is of little value in quantitative pre
diction, and is primarily for developing insight into manipulation 
of flux change as a signal parameter. It should be intuitively clear 
that the ability to dissipate, store, and transform this parameter 
is important in circuit synthesis. Quantitative analysis of core 
switching with various sorts of loads, using a better engineering 
model for the core. is treated in Sec. 12-6. 
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In the previous chapter we saw that loading a core with a re
sistance, an inductance, or a capacitance results in 11¢ dissipation, 
storage, or transformation, respectively. Now let us consider 
loading a core with another core, in which case we have the possi
bility of 11¢ transfer, i.e., transmission of flux from a transmitter 
core to a receiver core. 

2-1 Flux Transfer Ratio G 

The flux transfer takes place through an electrical coupling 
loop which is assumed for the moment to be purely resistive 
(Fig. 2-1(a)). For such a coupled pair of cores, we are generally 
concerned with the 11¢ transfer ratio 

(2-1) 

17 
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where !!.cPR and !!.cPT are the fl\lX changes in the receiver and 
transmitter, respectively. In contrast with conventional electronic 
circuits, the appropriate signal parameter here is !!.cP, rather than 
voltage or current, and of special concern are the conditions for 
achieving a transfer ratio G > 1. 

(a) 

(b) 

r-
eT 1 + L--N_~_p_(_N_d_l~_~_F o_T_l ___ N_~_P_~_o:--.J 

( c) 

Fig. 2-1. Flux transfer from Transmitter Core T to Receiver 
CoreR. 

Assume that each of the coupled cores starts in the -CPr flux 
state and switches towards the +cPr state, as governed by the flux
switching model of Eq. (1-8). A transmitter drive pulse id of con
stant magnitude is also assumed. Under these assumptions, the 
rates of change of flux ¢T and ¢R are independent of time (as long 
as neither core reaches positive saturation), and the transfer ratio 
G is simply equal to the ratio of switching rates, or 

G = 
!!.cPR ¢R 

(2-2) 
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In this chapter we are primarily concerned with the general effects 
on the transfer ratio of turns ratio, loop impedance, receiver 
threshold, and receiver loading resistance. 

2-2 Requirement on Turns Ratio for G > 1 

In the circuit of Fig. 2-1(a), the coupling loop is assumed to 
have a resistance Rp, but negligible inductance. Equating the net 
emf around the loop to the voltage drop in Re, we have 

(2-3) 

Integrating each term with respect to time, and rearranging, we 
obtain 

(2-4) 

where qe = J;/ iy dt. This equation is similar to Eq. (1-15) for re
sistive loading except that of the transmitted flux linkage here, 
only part, namely, Reqy, is dissipated as a loss in Re, and the re
mainder N R I'l.¢R reaches the receiver core. 

Based on Eqs. (2-1) and (2-4), we may write 

NT Reqy (, Reqy) 
G = N R - N R I'l.¢T = n \1 - NT I'l.¢T 

(2-5) 

where n is the turns ratio NT/Nw Thus, despite the inevitable loss 
of flux linkage during transfer, transfer gain G > I is nevertheless 
possible if n > 1 by an amount sufficient to overcome the effect of 
the subtractive term Ry qy/N T I'l.¢T' Note that this term is just the 
ratio of dissipated flux linkage to transmitted flux linkage. 

2-3 Limit on Loop Resistance 

Let us now assume that n > 1 and consider how large Rp can be 
while maintaining G ~ 1. Based on our simple model, the circuit of 
Fig. 2-1(a) may be represented by the equivalent circuit shown in 
Fig. 2-1(b). The cores are assumed identical, with the same p and 
the same threshold value Fa = FaT = FOR' though the latter symbols 
are kept distinct for the purpose of discussing transmitter and re
ceiver thresholds separately. 
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Assuming that the drive current i d is large enough to make 
NR ie 2:. FOR' the diodes in the core model are nonconducting and 
may be neglected. Then with current generators transformed to 
equivalent voltage generators, and all quantities referred to the 
transformer secondary, we obtain the equivalent circuit of Fig. 
2-1(c) where eT = NT¢T and eR = NR¢w Under the specifiedcondi
tion of G 2:. I, it is clear that the highest upper limit on loop 
resistance is obtained when the effective receiver threshold is 
equal to zero. This condition can be approached with strong driving 
so that Ndid » Fa. Alternately, the receiver threshold can be ef
fectively reduced by applying a bias mmf N bib = Fa, as shown ap
plied to both cores in Fig. 2-2. The term bias is used in the usual 
electrical engineering sense of determining an operating point, the 
bias signal by itself nominally not causing any flux switching. It 
may be either a dc bias or a constant-amplitude pulse synchronized 
with the current id • 

T R£ R 

~~ 
i-~ 

Lb Nb Nb 
Nbib~Fo 

Fig. 2-2_ Use of a bias mmf to over
come the switching thresholds of trans
mitter and receiver. 

G 

With the transmitter and receiver 
each biased to threshold, that is, 
with Nbib = Fa, we simply have 

and 

Equations (2-6) and (2-3) may be 
solved for G in the form 

(2-8) 

This result is also clear from the equivalent circuit of Fig. 2-1(c), 
where, with receiver threshold cancelled out, the emf ratio 

. . 2 ( 2 ) eRleT = NRcPRINTcPT is readily seen to be equal to NR pi Re + NR p • 
The above results may be interpreted as follows: of the total 

flux linkage NT~cPT injected into the loop, a fraction Gin reaches 
the receiver core, and the remaining portion 1 - Gin is lost by 
dissipation in Re. The exact division of transmitted flux linkage is 
generally very dependent on drive magnitude Ndid , and is inde
pendent of drive here only because of our assuming idealized 
core properties and the biasing of the receiver core exactly to 
threshold. 
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Based on the requirement that G ~ 1, we obtain directly from 
Eq. (2-8) an upper limit on Re, namely 

(2-9) 

from which we see that there 1s no limit on the ratio Re/NR2p so 
long as n can be made arbitrarily large. But by rewriting Eq. (2-9) 
in terms of transmitter resistance NT 2p , we find 

Re::: e :21)Nlp (2-10) 

and thus see that the upper limit on Re/NT2p is 1/4, which is ob
tained with a two-to-one turns ratio (n = 2), in which case N R 2p = Re• 
In other words, for G ~ 1 the loop resistance can never be more than 
1/4 the transmitter resistance. 

There are many other important factors relevant to choice of 
coupling-loop turns ratio. The simple result here is most likely 
to be significant where there is practical difficulty in constructing 
a low-resistance coupling loop. In that case, it may be helpful to 
specify NT/NR = 2 in order to allow as large a value of Re as pos
sible relative to NT 2P' 

2-4 Effect on G of Transmitter and 
Receiver Thresholds 

It is not always possible, or even desirable, to eliminate the 
core thresholds by bias, so it is necessary to understand the ef
fects of threshold on the transfer ratio. Let us consider the case 
of constant drive and no biasing at all. From the equivalent cir
cuit of Fig. 2 -1 (c), we can write 

NT2p[(Nd i d - FOT)/NT] + NR2p(FOR/NR) 
(2-11) 

and 

(2-12) 

For substitution into Eq. (2-5), we obtain the ratio 
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Rfqf 
Reit iedt 

0 Rf if 

NTtl.<PT 
NT [t ¢T dt 

NT¢T 
(2-13) 

Substitution of this ratio, as evaluated from Eqs. (2-11) and (2-12), 
into Eq. (2-5) yields 

G = n (nN R2p(Nd id F'OT) - (Re + Nlp)F'OR ) 

n(Re + NR2p)(Nd id - F'OT) - NT2PF'OR 
(2-14) 

Equation (2-14) is valid only if Ndid is large enough that 
NRip'::: F'OR" The limiting condition G = 0, corresponding tONRip = 

F'OR' is obtained when Ndid has the critical value 

(Ndid)c = F'OT + n(l + Rp_)F'OR 
NT 2P 

For any lower value of drive, G = ° also. 

(2-15) 

The form of G as a function of N did has been sketched in 
Fig. 2-3. Note that for Ndid » (Ndialc' G approaches asymptotically 
the value given by Eq. (2-8), since the threshold terms become 
relatively insignificant. Also note that if we view F' aT and F' OR as 
the effective thresholds, then for the previous case of receiver 
biasing, that is, F'OR = 0, Eq. (2-14) again reduces to Eq. (2-8). In 
this case, the transmitter threshold has no effect on the transfer 
ratio G, although the individual rates of switching are lower than 
they would be if F'OT were zero also. In fact, from Eq. (2-14) we see 
that the effect of nonzero F' a T on G may always be overcome simply 
by increasing Ndid by the amount F'OT' which is equivalent to bias
ing the transmitter. The effect of nonzero F' OR in reducing G, 

G 

Fig. 2-3. Sketch of flux-transfer ratio as a 
function of drive strength, from Eq. (2-14). 
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however, cannot be completely overcome with any finite value of 
Ndid· 

2-5 Effect on G of Coupling-Loop Inductance 

The control of coupling-loop inductance Lf is often as important 
as the control of the resistance Rf • When Lf is taken into account, 
the values of if and ¢ are no longer constant in time. Omitting 
detailed analysis here, it can be reasoned that storage of the flux 
linkage Lf if in Lf is at least a temporary flux loss en route to the 
receiver. Furthermore, if the receiver stops switching at time T s 
(whether due to saturation or to lack of sufficient mmf), then a flux 
linkage equal to Lfif<Ts> is leftstoredinLf , and this is transformed 
into a permanent flux-linkage loss dissipated in R f as if decays 
exponentially. 

2-6 Effect on G of Receiver Loading 

For the circuit of Fig. 2-2, we say that G ~ 1 can be obtained 
for any value of Rf by making the turns ratio n sufficiently large. 
However, if the receiver is also loaded, it may not be possible to 
obtain G ::. 1 for any value of n. Consider, for example, the case 
in Fig. 2-4(a), where the secondary winding of the receiver con
tains the same number of turns NT as that of the transmitter. For 

T Rt R 

(a) 

ib Nbib~Fo 

Rj 

+T 
2 

i+ 
(b) eT ";Rc 1 1 NT 

-

Fig. 2·4. Loading the receiver with resistance R L through a winding 
of NT turns. 
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the special case of RL = Re. this circuit may be viewed as deriving 
from an iterative core circuit in which the next core in the chain 
beyond Core R is in some manner prevented from switching. 

For simplicity of analysis, and in order to minimize the effect 
of receiver loading. both cores are again assumed biased to thresh
old. The equivalent circuit of Fig. 2-1(c) may then be expanded to 
include the load by connecting RL as shown in Fig. 2-4(b). Solving 
for the ratio eRleT from this circuit and noting that 

¢R eRINR 
G = - = 

¢T eTINT 

we obtain 

G 
n 

(2-16) 

For the case of equal loop resistances RL = Re, Eq. (2-16) re
duces to 

G(n,Ry) = 

n2 + (Rf/N R 2P) + 1 

n 
(2-17) 

With respect to Rf , the largest value of G, 

G(n) = n 
(2-18) 

Is obtained as Re/NR2p -> 0, and maximization of Eq. (2-18) with re
spect to the turns ratio n = N TIN R yields 

1 
G = -

max 2 (2-19) 

for n = 1. Thus. with RL = Rf it Is not only impossible to achieve 
G ~ 1 with a large turns ratio, but rather n = 1 results in the high
est possible value of G. Furthermore, with RL = Rf , we obtain the 
highest gain not by making RL large, but rather for the heaviest 
possible receiver loading, i.e., as RL -> O. The latter result 
merely means that G is more affected by the coupling-loop resis
tance than by the loading resistance. 

Since G ~ 1 cannot be obtained for RL = Re, let us derive the 
minimum value of RLIR f for which the condition G = 1 can be 
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achieved. To emphasize the RflRL dependence, let us assume 
that Re is already small compared with N R 2p so that Eq. (2-16) 
becomes 

G 
n 

(2-20) 

Hence, for G 2'. 1 

RL n2 
-> 
Ry n - 1 

For G = 1, the minimum value 

4 (2-21) 

is obtained for turns ratio n = 2. Thus, with all conditions idealized, 
it is necessary to have loading resistance at least four times the 
loop resistance to obtain G 2'. 1. This result has considerable sig
nificance in connection ',vith the iterative core circuits that we 
shall treat, beginning in the next chapter. 

2-7 Flux Pumping 

The use of a turns ratio greater than unity could be viewed as 
the gain mechanism for achieving G 2'. 1 in the manner shown in the 
previous sections. We will later describe other gain mechanisms 
by which it is possible to achieve G > 1 even in cases where 
N TIN R ~ 1. To 11lustrate this possibility, let us show here that 
by the use of multiple transfers we can "pump" the receiver to a 
fully switched condition even when the transfer ratio is less than 
unity on any single transfer. 

In the circuit of Fig. 2-4(a), suppose that both cores are initially 
in negative remanence and that we apply a symmetrical pattern of 
positive and negative currents that drive the transmitter repeatedly 
between -¢r and +¢r' With G < 1, the receiver will then be driven 
repeatedly between -¢r and some flux level lower than +¢r' The 
resulting history is sketched in Fig. 2-5(a). With a suitable asym
metry, however, so that the receiver switches less flux in the 
negative-going direction, the operating level in the receiver ap
proaches closer and closer to positive saturation, as suggested in 
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Fig. 2-5(b). In other words, we can ultimately achieve a net gain 
(G ~ 1) relative to the I'1¢T transmitted during a single transfer. 
This is true even if the receiver is heavily loaded with a value of 
RL < Re· 

T R 

If if !III!!II - ~ 

t t 
(a) 

T R 

If if \lIIJlI I 

( b) 

Fig. 2-5. Illustrating symmetrical switching cycles in (a), and 
showing receiver pumping effect with asymmetrical switching 
cycles in (b). 

As shown by Eq. (2-14), G is a function of drive strength as 
long as the receiver threshold is nonzero. Hence, suitable asym
metry could be achieved merely by using different drive strengths 
in the two directions of switching, as in Fig. 2-6(a). A different 
method is shown in Fig. 2-6(b), where a dc receiver bias aids the 
loop current in the positive switching direction, but opposes it in 
the negative switching direction. 

JlJu-t 
(a) ( c) 

Fig. 2-6. Two different ways to apply de bias to achieve asymmetrical switching in (a, b); 
pumping a single transmitter to fully switch a number of identical receiver cores in (c). 

If a number of receiver cores are linked by the loop, as in 
Fig. 2-6(c), all could be pumped to a fully switched level with a 
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sufficient number of cycles. By doubling the number of pumping 
cycles, Le., by doubling the time, we can double the net gain. This 
becomes a "gain-bandwidth" problem for digital transfer (Chap. 3), 
since the maximum bit rate is inversely proportional to transfer 
time. Even within a single cycle there is a gain-bandwidth rela
tion. Net gain per cycle could be increased if the amount of flux 
switched back during the negative half cycle were reduced. In the 
limit, if loop current magnitude during the negative half cycle were 
below the effective receiver threshold, no receiver flux would 
switch back at all. In this case, the loop resistance would dissipate 
the entire flux linkage NT (-2¢r) injected by the transmitter, and 
the time for this operation would be correspondingly increased. 
We will see that this is an important mode of circuit operation, 
I.e., a transmitter slowly dissipating a flux-linkage change in loop 
resistance. 

2-8 Direct-Current Drive; Implicit Phasing 

A dc mmf less than threshold can serve as a bias source in the 
conventional sense of setting an operating point. A de mmf greater 
than threshold can cause significant switching, however, and there
fore act as a driver. For example, in Fig. 2-7 a negative dc mmf 
normally holds the first core in satu-
ration. Upon application of a positive N 
pulse large enough to overcome the dc 
mmf plus the core threshold, the first 
core can be switched to positive satu
ration, and flux is transmitted to the 
second core. Upon termination of the 
pulse, the dc mmf drives the first core 
back to its original condition. If the dc 
drive is less than the net positive 
drive, then with repeated application 
of the drive pulse, the second core 
can be pumped as shown in Fig. 2-5(b). 

JLJL 
-I 

Fig. 2·7. Two-phase operation with 
a single pulse source and a de mmf 
large enough to switch the core back 
to its original state. 

With a dc mmf just slightly above threshold, the first core 
switches back slowly, and essentially all flux linkage is dissipated 
in loop resistance during the negative half cycle. 

We see that it is possible to have more phases of circuit 
operation than there are explicit pulse drivers. We can think of 
the circuit of Fig. 2-7 as having a two-phase nature though only 
one clock-pulse is needed, the second phase being achieved 
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implicitly. The use of dc current for this purpose is not only 
practical but often results in considerably simplified driver 
systems. 

There are two points to note about dc current sources in this 
type of application. First, there cannot be any net energy exchange 
between the dc current source and any core linked by this source. 
Starting at time t = 0, the net energy transferred from the current 
source Ide to the core of Fig. 2-7 can be expressed simply as 

w Ide (t N d¢ dt 
)t=O dt 

where e is the induced emf in the winding, and ¢r and ¢i are the 
final and initial values of the flux, respectively. Thus, there is as 
much energy delivered from the current source during one polarity 
of flux change as is delivered back to the source during the opposite 
polarity of flux change. After each complete cycle of switching, 
¢ r = ¢ i' or tJ.¢ = 0 , and there is no net exchange of energy, no matter 
how complex the circuitry attached to the core. 

tV 

Fig. 2·8. Use of a series inductance to 
stabilize a dc current source of magnitude 
Ide = VIR. 

A current source is often syn
thesized with a large voltage source 
V and large series resitance R 
(where V /R is the desired current). 
V being large compared to the larg
est expected voltage drop in the driv
en circuitry. However, the power 
lost in the series resistance makes 

this type of current source very inefficient. A large improvement 
can generally be achieved by incorporating an inductance in series 
with the load. Thus, for a relatively large L in Fig 2-S, a flux
linkage change l N i tJ.¢ i across the core circuit can be absorbed, or 
balanced, by a current change on the order of tJ.I ~ lNitJ.¢/L, 
which can be made arbitrarily small with a large inductance. This 
is similar to the result in Eq. (I-IS) where a change in flux linkage 
results in a certain change in loop current that subsequently decays 
with a time constant L/R, where R is the circuit resitance. The 
use of a series inductance often simplifies the dc-source design 
and permits the use of much smaller values of V and R than would 
otherwise be possible. This technique is particularly useful for 
magnetic-core circuits that are cyclically operated because of the 
bipolar nature of the load voltages. With unipolar loads, it would 
be necessary to delay a certain number of L/R time constants 
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between switching operations in order to prevent cumulative 
current changes. 

2-9 Summary 

In this chapter we have treated specifically the case of a 
second core acting as a load on a first core. Primary interest 
is in the flux transfer ratio G, the ratio of flux change in the 
receiving core to the flux change in the transmitting core, and 
more particularly, in achieving transfer ratios greater than 
unity, I.e., actual signal gain. An important method for achieving 
G > 1 is to use a turns ratio greater than unity in the coupling loop 
between transmitter and receiver. We make some basic observa
tions on the effect on the gain of various circuit and device param
eters such as loop resistance, loading resistance, and the static 
thresholds of the transmitter and receiver elements. In particu
lar. maximum limits on loop resistance and load resistance are 
derived for the condition G 2: 1. Another gain mechanism, namely, 
flux pumping, is also considered, although this is mainly of 
academic interest. Finally, we consider the practically important 
case of core switching with a dc current, which, upon termination 
of a switching pulse, automatically restores the core to its 
original state. 
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We wish now to consider some of the basic requirements for 
synthesizing digital transfer systems. In particular, we will show 
how cores and diodes, or alternately cores and capacitors, can be 
used in combination to achieve circuits for digital transfer. Since 
core-diode circuits are discussed in detail elsewhere, for example, 
by Meyerhoff (1960), their treatment in this book is limited to the 
material of this section. Discussion of core-capacitor schemes is 
also limited to this section, since such circuits are mainly of 
academic interest and in any case are outside the primary interest 
of this book. It is considered worthwhile to introduce these schemes 
before starting the treatment of core-wire schemes in order to 
develop insight into tJ.¢ gain and loss mechanisms, and into methods 
for achieving isolation between various parts of a magnetic core 
circuit. Diodes are obvious devices for achieving isolation, and 
it is therefore easy to illustrate the principles of digital transfer 
with core-diode circuits. In Chap. 4 we will use certain of these 
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core-diode schemes as an introduction to the general synthesis of 
core-wire schemes. 

3-1 Binary Shift Register 

A general logic network is a highly interconnected network of 
digital circuits through which binary variables can be stably trans
mitted. If we follow anyone path of the network, we find many other 
paths merging with it (fan-in), and other paths branching off from 
it (fan-out). To simplify the study of digital transmission, it is con
venient to concentrate on just the requirements for stable storage 
and transfer of binary variables along a simple path with no side 
branches, i.e., a common binary shift register. If a particular 
circuit scheme can be used to build a shift register, then the basic 
scheme can almost invariably be expanded for generallogic realiza
tion. Thus, we can profitably evaluate and compare schemes on 
the basis of shift register synthesis alone, without becoming much 
involved in general logic techniques. 

A binary shift register is basically a chainof storage elements, 
such as flip-flops or magnetic cores, so interconnected that the 
stored binary pattern can be shifted along the chain. The chain 
may be arbitrarily long and may be closed on itself so that a binary 
pattern can be continually circulated in the closed loop. We gen
erally speak of an N-bit shift register, where N is the capacity of 
the register, i.e., the number of bits in the shifting pattern. 

There are many ways to structure a register. Suppose, for 
example, that we have an N-bit binary pattern held in Cells 1 through 
N of a closed ring of N + 1 storage cells, such as in Fig. 3-1. Upon 
application of clock pulse C1 , the bit 
stored in the first cell is advanced C, C2 

into Cell N + l,formerlyempty. Upon 
application of clock pulse C2 , the bit 
stored in Cell 2 is advanced into Cell 
I, and so on. The shifting occurs in 
caterpillar fashion in this case, and 
shifting an N -bit pattern requires 
N + 1 clock sources. 

A more common method of struc
turing is to arrange for shifting all 
data simultaneously. This mode re-
quires more storage cells but only a 
small, fixed number of clock drivers, 

Fig. 3-t. N-bit register with (N + 1) cores 
and (N + 1) clock sources. 
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independent of the number of bits N. A common arrangement uses 
two storage cells per bit and two clock pulses, as shown sche
matically in Fig. 3-2, where the square boxes represent storage 
cells and the arrowed lines represent interconnecting circuitry. 
It is common to refer to the alternate cells as 0 (for odd) and E 
(for even). To shift an N-bit pattern that is stored in the O-rank, 
we activate the coupling circuitry between each 0 -cell and its 
right-hand E neighbor, and thereby simultaneously shift the pattern 
to the E-rank. This is referred to as an 0 -> E shift. Next we ac
tivate an E -> 0 shift, and the pattern is transferred back to the 
o -rank, but shifted one place to the right as required. The shifting 
rate, or bit rate, depends on the time it takes to complete this basic 
two-phase shift cycle. 

1----------------------------------1 
- I I 01 0j_1 OJ OJ+1 ON I 

! /A ... . .. A I 
L_-/" Y , Y 

El Ej- 1 Ej Ej+l EN 

Fig. 3-2. N-bit register with 2N cores and two clock sources. 

An important aspect of binary transfer is the isolation required 
between adjacent storage cells. In the transfer from Cell OJ to Ej' 
during an 0 -> E transfer, the switching of E j must be prevented 
from affecting the following 0j+l cell, i.e., forward isolation is re
quired, and the switching or readout from OJ must be prevented 
from acting on Ej_l' which is acting as a receiver from Cell 0j_l' 
i.e., back isolation is also necessary. During an E -> 0 transfer, 
the roles must be reversed, the inactivated paths becoming ac
tivated, and vice versa. 

Although there are other possible shifting schemes, we con
centrate primarily on this simultaneous shifting technique, which 
is the most common. This results in no particular loss of gen
erality. 

3-2 Digital Transfer 

In the previous section, we represented bistable storage cells 
symbolically without specifying any particular device technology. 
Pursuing this symbolic approach, we can derive some important 
requirements for digital transfer between cells. 



DIG!TAL TRl\NSFER !N !TERAT!VE CORE C!RCU!TS 33 

!'J.¢ Gain Requirements. The register circuit of Fig. 3-2 is re
drawn along a single row in Fig. 3-3(a), with cells renumbered in 
sequence. Let us follow just one of the bits of the pattern as it 
moves along the chain. Suppose that the particular bit of interest 
is initially stored in Cell j - 1. At the next shift pulse, there is a 
transfer from Cell j - 1 to Cell j with !'J.¢ transfer ratio 

!'J.q, j 
G = -- (3-1) 

!'J.¢j_l 

where !'J.¢j represents the magnitude of flux switched in Cell j, and 
!'J.¢j_l is the magnitude of flux simultaneously switched in Cell j - 1. 
We will assume here that the value of !'J.¢ when the cell is acting as 
a transmitter is the same as the value of !'J.q, switched when the 
same cell was previously a receiver (though 'there are important 
exceptions, as we shall see in later chapters). 

6¢ 
Go_1-

6¢ i-I 

j-1 j+1 j +2 
(a) 

1~ 
1 I I I I 
I 1 I I I 
1 I II 11 I 
1 1 I 

(b) (c) 

Fig. 3-3. Flux-gain requirements for multistable flux transfer. 

/ 

If the transfer ratio were exactly unity in each transfer, inde
pendent of the magnitude of !'J.¢, then we would have a very useful 
"analog delay line"; any level of !'J.¢ injected at one end of the chain 
would emerge unchanged at the far end at a later time. However, 
the transfer ratio generally depends on many different circuit pa
rameters, and it is impossible to keep these parameters sufficiently 
controlled to actually achieve unity transfer ratio over a range of 
!'J.¢ levels. Instead, let us consider different ranges of signal level, 
and ask what form of gain characteristic G(!'J.¢) is required to en
sure that an initial signal level within anyone range should be main
tained within that range regardless of the length of the transmis
sion chain. A form of G (!'J.¢) characteristic that would satisfy this 
requirement is indicated in Fig. 3-3(b). In some regions G > 1, in 
other regions G < 1. At signal levels marked !'J.¢l through !'J.¢5' the 
gain is exactly unity, but only levels !'J.q,l' !'J.¢3' and !'J.¢5 represent 
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stable levels. By this we mean the following: if initially 11¢3 < 11¢ < 
11¢4' then G < 1, or if initially 11¢2 < 11¢ < 11¢3' then G > 1, so that 
in either case the level will monotonically approach 11¢3 during 
subsequent transfers. If the initial signal level is exactly equal to 
11¢4' then any noise in the system will shift the signal level away 
from levell1¢4 toward either levell1¢3 or 11¢5. Thus the levels 11¢2 
and 11¢4 are unstable points of unity transfer ratio. 

The curve of Fig. 3-3(b) can be translated into the curve 
of Fig. 3-3(c), known as a 11¢-trans/er curve, where the 45 0 line 
is the locus of the stable and unstable unity-gain points. In the 
case of binary transmission, the transfer curve has the form 
shown in Fig. 3-4(a). We define the lower stable signal level as 
the binary zero level, labeled I1¢L' and the upper level as the bi
nary one level, labeled l1¢u. The intermediate, unstable unity-gain 
point is labeled l1¢r. This type of transfer curve applies to what is 
generally referred to as a unipolar representation (based on a high 
magnitude of signal for a one and a low magnitude of signal for a 
zero). An alternate data representation is shown in Fig. 3-4(b) 
where the two states have signal levels of equal magnitude but of 
opposite polarity. This is referred to as a bipolar data represen
tation (which is employed in the circuits discussed in Chap. 9). 

/ 

"'-11-'---4>-L -11'-4>-1 -I1-'--4>-u - .... I1</>j-1 

(0 ) ( b) 

Fig. 3-4. Flux-gain requirements for stable binary transmission: (a) unipolar mode; 
and (b) bipolar mode. 

Drive-Current Tolerances. For achieving wide operating toler
ances, the objective of design is to maintain the transfer curve 
within proper bounds over as wide a range of drive currents as 
possible. Here we wish only to point out the general nature of the 
effect of current variations on the transfer curve. 

Consider a register of the two-phase type shown in Fig. 3-2, 
with drive currents having magnitudes IO~E and IE~O. Assume that 
one of the currents, say IE~O' is held at a nominal operating value, 
and let us consider the effect of variations in the magnitude of the 
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other current lO~E' As lO~E in
creases, the gain ratio G normally 
increases for all values of /';.<Pj-l be
cause of lower percentage losses in 
coupling loops, as explained in Sec. 
2-4 for a coupled pair of cores. 
Therefore, the entire transfer curve 
shifts upward as drive current in
creases. But there is a maximum 
permitted value of I O~ E which cor
responds to the lower portion of the 

Fig. 3·5. Limits on drive pulse amplitude 
for bistable transfer. 

transfer curve becoming tangent to the 45° line, as indicated 
in Fig. 3-5. Any further increase in current results in G > 1 
for all values of /';.<P < /';.<Pu and the loss of a stable lower level. 
Similarly, there is a minimum permitted value of lO~E' below 
which there is no stable upper level. If we plot the permitted 
range in lO~E for each value of lE~O' we obtain a two-dimensional 
region, or range map, of allowable drive values (as illustrated 
later). 

3-3 Gain and Loss Mechanisms 

A gain or loss mechanism tends to raise or lower the transfer 
curve relative to the 45° line, as shown in Fig. 3-5. Since the 
overall effect of all the gain and loss mechanisms operating to
gether must be nonlinear, at least one of the individual mechanisms 
must be nonlinear. Gain is often obtained primarily by use of 
coupling-loop turns ratio n > 1, and this is a linear effect. There
fore, a nonlinear loss mechanism must be used if no other signifi
cant gain mechanism is present. We consider two such nonlinear 
loss mechanisms in this section. 

Given a zero-impedance coupling loop, and turns ratio n > 1, 
then the relation between /';.<Pj and /';.<Pj-l is represented by the 
dashed line of Fig. 3-6(a). Note that receiver saturation causes 
the curve to flatten at a value of /';.<P j = 2 <P r' Clipping away a certain 
portion of the transmitted flux /';.<Pj-l shifts the curve to the right 
(solid curve of Fig. 3-6(a», and we then have the desired bistable 
form. We wish to illustrate two basic types of flux clipping, one 
exemplified by the use of an explicit clipping toroid in the loop 
(inelastic clipping) and the other exemplified by coupling loop in
ductance (elastic clipping). 
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Fig. 3·6. Synthesizing a binary transfer characteristic with turns ratio n > 1 as the gain mech· 
anism and a flux clipper as a nonlinear loss element. 

For the inelastic method, an additional, small core C of flux 
capacity 8 is included in the loop (Fig. 3-6(b». Assume that the 
number of turns N c of the small core is such that the flux
linkage capacity N c 8 is relatively small (perhaps 10 to 20 per
cent of the transmitted linkage), and that the threshold of Core C 
is low compared to that of the receiver. Then, when the trans
mitter switches, this clipper core switches first with a relatively 
small loop current. When it saturates, the loop current increases 
to the point where the receiver begins switching. For this circuit 
we can write 

(3-2) 

or 

NT ( NcO) t.¢, = - t.¢ '-I - -
J N J N 

R T 
(3-3) 

Assuming that the received flux will later be transmitted as t.cPj' 
then Eq. (3-3) is indeed represented by the solid curve of Fig. 3-6(a). 
Note that for a transmitted flux less than N c 8/N T' no flux at all is 
available to the receiver. 

Elastic clipping can be achieved with loop inductance Lf • As 
the loop current if builds up, flux linkage equal to Le ie is stored in 
the inductance. When the transmitter stops switching, current 
still flowing in the loop inductance causes the receiver to con
tinue switching until ie falls to Fo/NR' after which the remaining 
flux linkage LeFo/NR stored in the inductance is dissipated in the 
loop resistance. This dissipated flux is a relatively large part of 
the low-level loss subtracting from transferred flux. 

This is a good point to summarize and preview some of the 
known types of gain and loss mechanisms for core-wire circuits, 
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exclusive of those unique to magnetic thin-film circuits, which will 
be described in Chap. 9. There are four main types of gain mech
anisms known: two of these are the use of turns ratio and the use 
of "soft-threshold" properties (described in connection with the 
scheme of Sec. 4-5); the third is some type of flux pumping, intro
duced in Sec. 2-7; the fourth is flux doubling, a circuit scheme de
scribed in Sec. 5-5. There are three main types of loss mechanism, 
all of which subtract an amount of t'1¢ from the the transmitted t'1¢ 
signal en route to the receiver. The first type is t'1¢ dissipation in 
loop resistance. Second is elastic clipping, which may be either 
undriven (necessarily so in parasitiC loop inductance) or explictly 
driven, as may be obtained either with use of a core of linear ma
terial or by driving a square-loop core into saturation. Third is 
inelastic clipping, which may also be driven or undriven at the 
time of clipping, although the clipping element must subsequently 
be cleared to its original state each cycle. The effect of receiver 
threshold (Sec. 2-4), though not a loss mechanism itself, causes 
the loss in loop inductance to be nonlinear. The loss in loop re
sistance is also nonlinear due to the actual nonlinear character of 
receiver resistance NR 2p, as shown in Chap. 12. 

3-4 Forward Decoupling in a Magnetic Chain 

The simplest possibility to consider for attempting to con
struct a shift register is merely to string together a chain 
of identical cores, neighboring cores being interconnected by 
a set of identical coupling loops, as in Fig. 3-7. In such a 
simple chain, however, receiver loading by adjacent cores (in 
the sense of Sec. 2-6) is so great that G > 1 cannot actually be 
achieved. To achieve G > 1, it is necessary to decouple each 
receiver element from the remainder of the chain. Such de
coupling is readily achieved with a diode element inserted in 
each loop in the manner of Fig. 3-8. Assume that Core j + ] is 
in negative remanence (clockwise flux) and that Core j has been 

Fig. 3-7. In a simple iterative core chain with no decoupJing, receiver loading 
results in G < 1. 
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preset to a certain flux level. When Core j is explicitly cleared to 
negative remanence by the current pulse ie' a coupling-loop 
current ij +1 flows and switches a certain amount of flux in Core 
j + 1. The diode in the output circuit of Core j + 1 prevents 
receiver-loading current from flowing, and G > 1 can therefore 
be obtained. 

Fig. 3·8. Forward decoupling by means of a series diode in each loop. 

In the transfer from Core j to Core j + I, the diode in the out
put circuit of Core j + 1 not only provides the necessary loop de
coupling to achieve gain but also provides a forward isolation 
function by assuring that the switching of Core j + 1 will not affect 
Core j + 2. However, we must now consider a potentially serious 
lack of back isolation, since the switching of Core j also results in 
a back-loop current ij that might affect the switching of Core j - 1. 

3-5 Backward Isolation; Core-Diode Transfer Schemes 

Instead of assuming a drive only for the jth Core, as in Fig. 3-8, 
let us now consider the case of interest, namely, a simultaneous 
drive, first for all the O-cores, and then for all the E-cores, as in 
Fig. 3-9. Each drive pulse unconditionally drives its associated 
set of driven cores to their zero condition, i.e., clockwise flux. 
As described in Sec. 3-1, a basic shifting cycle thus consists of 
an 0 -+ E pulse followed by an E -+ 0 pulse. With repetitive appli
cation of clock pulses in this sequence, data is continually shifted 
to the right along the string of cores (and possibly back to the first 
core on the left via an end-around loop). 

Let us now examine the potentially serious problem of backward 
isolation. Suppose that initially Core 0j_l holds a zero and Core OJ 
a one. During the 0 -+ E pulse, a large magnitude of flux switches 
in OJ' resulting in a relatively large back current i j that tends to 
switch Core Ej _1• The latter core should nominally not be switched, 
except possibly for a low zero level of ""'-¢ received from Core OJ_I' 
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Any flux switched in Core Ej _1 due to current ij represents back 
transfer of /1¢. This /1¢ would subsequently be transmitted for
ward during the next E -> 0 pulse, and we see then the possibility 
of spurious buildup of a zero to a one as a result of this back
transfer problem. In the present case, since N R < NT' the amount 
of /1¢ transmitted backwards is less than that transmitted forward, 
and with sufficiently careful design this circuit can actually be made 
to operate reasonably well. We will now consider three techniques 
for greatly improving backward isolation, with corresponding im
provement in performance. In effect, what we wish to do is increase 
the directional asymmetry in the line. In contrast, if we were to set 
NT = NR in Fig. 3-9, there would be no asymmetry at all, and 
there would be the same tendency for transfer of flux to the left as 
to the right. 

,--------------------------------, 

i ! 

~:~~~" 
Fig. 3-9. Demonstrating the need for backward decoupling. 

The first scheme for reducing back transfer is indicated in Fig. 
3-10(a), where a shunt diode is introduced into each coupling loop. 
The polarity of the diode is such that it does not interfere with for
ward transfer, though it short-circuits any back transfer. The re
sistor R is necessary so that the shunt diode does not present a 
short circuit to the switching core itself. Another scheme for re
ducing back transfer is shown in Fig. 3-10(b). Here, back-to-back 
diodes in each loop prevent the flow of loop current except when 
one of the diodes is deliberately forward biased (by a current 

R 

(a) (b) 

Fig. 3-10. Backward decoupJing by means of: (a) a shunt diode in each loop; and (b) an ad
ditional reversed diode which is forward biased only during forward transfer. 
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source), so that a particular loop can be used for forward transfer. 
More practical circuits of this type can be arranged so that only a 
single extra pair of diodes is required, rather than one extra diode 
per loop. (Both of these techniques lead to high performance, and 
circuits of this type have found wide application.) 

The above two methods for increasing the directional asym
metry of the line involve the addition of extra elements per loop. 
An equally important technique involves the use of additional loops. 
Returning to Fig. 3-9. we see that the back current i j would cause 
no harm if Core Ej _1 were not used as a receiver during the OJ --> Ej 

transfer. This situation can be provided by rearranging the drive 
lines to the form shown in Fig. 3-11(a). Now when Core Bj is the 
transmitter and Core Cj the receiver, Core Aj is prevented from 
switching by mmf applied to the winding labeled Hold. The drive 
line shown is intended to provide simultaneous transfer from all 
B cores to the neighboring C cores. The coupling loops between 
the C and A cores are not shown completed, in order to emphasize 
that the diodes prevent any forward current in these loops during 
Clock Pulse B. If the A cores are held from SWitching, as shown, 
then there can be no back transfer either, and we therefore have 
achieved nominally perfect isolation during the B --> C transfer. 
Although not shown in the figure, if two other clock lines labeled 
A and C are similarly provided and properly displaced along the 
chain, then excellent performance can be achieved by applying 
clock pulses in the sequence A, B, C, A, B, C, .... 

Drive Hold Drive Hold 

(a) 

8---' 

(b) 

Fig. 3-11. A 3-core-per-bit register requiring a three-clock driver. 
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The explicit Hold windings shown in Fig. 3-11 (a) can actually be 
eliminated if the clock pulses are made to overlap in time in the 
manner shown in Fig. 3-11 (b). Thus, if the B pulse is applied be
fore the A pulse terminates, then current through the A windings, 
which previously drove each of the A cores to its reference, or 
clear, state now plays the role of holding the A cores in this cleared 
condition. 

Note in Fig. 3-11 that if NT could be set equal to NR , then the 
physical chain would be perfectly symmetrical and the direction 
of shifting could be reversed merely by altering the clock sequence 
to A, C, B, A, C, B, ... (in the manner of reversing a three-phase 
motor). Although this is not possible here, because NT > NR is 
required for achieving flux gain, we will next consider a transfer 
scheme in which bidirectional transfer can, in fact, be achieved 
in just this manner, due to gain being achieved by a different 
mechanism that allows N TIN R to be set equal to unity. 

3-6 Transfer Schemes Using Capacitance 

In this section, we consider two types of registers using ca
pacitors, in conjunction with cores, to illustrate several basic 
points. The first scheme has not, to our knowledge, been put to 
significant use, though the second one has been applied practically 
and is described in detail in Chap. 14 of Meyerhoff (1960). 

Core-Capacitor Scheme. This scheme, described by Dumaire, 
Jeudon, and Lilamand (1958), makes use of the 114> -transformation 
effect described in Sec. 1-4. If Core A in Fig. 3-12(a) is initially 
in the one state, then Pulse A switches the core and charges the 
capacitor. The charging current if cannot switch Core B because 
it tends to drive Core B further into saturation. Just as Core A 
begins to saturate, the capacitor discharges in the direction to 
switch Core B. The capacitor voltage as a function of time is 
sketched in Fig. 3-12(b). It was shown in Sec. 1-4 that the equiva
lent flux linkage (measured in terms of the volt-second area under 
the capacitor voltage curve) can actually be greater during dis
charge than during charge, which may result in G > I even with 
unity turns ratio. 

Figure 3-12(c) shows a register chain based on this transfer 
scheme. With unity turns ratio, we have bilateral symmetry in the 
structure, and there could be no directional preference with only 
two clock phases and two cores per bit. Therefore we use three 
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-+ Time 

(0) 

C1 C2 C3 

Rl ib if RJ RQ 
A 
B Hold Drive Hold Drive ----

(c) 

Fig. 3-12. A 3-core-per-bit symmetrical register with one capacitor per loop and a unity turns ratio. 

cores per bit and employ the timing asymmetry and the same 
drive-hold configuration as in Fig. 3-11. In Fig. 3-12(c), as 
Core A switches, a back current ib and a forward current if charge 
the respective capacitors C1 and C2• As Core A begins to saturate, 
these capacitors start to discharge, both currents then being in a 
direction to drive Core A further into saturation. Capacitor C1 

discharges rapidly, the reversed current i b being limited pri
marily by the coupling-loop impedance and the saturation inductance 
of the cores. (In order to avoid oscillations and to limit the holding 
mmf required, the loop resistance R f must be larger than a certain 
minimum value.) Discharge current from C2 switches Core B, as 
desired. But Capacitor C3 is a load on Core Bj as a result, C2 ini
tially discharges rapidly and C3 charges rapidly until their voltages 
are equal. Then both capacitors discharge simultaneously to con
tinue the switching of Core B. In this manner, upon application of 
the drive pulse A, all cores labeled A simultaneously transfer 
their data states to their B neighbors. 

To achieve continuous shifting, we require three clocks, as in 
the three-phase register of Fig. 3-11. As there, we are able to 
achieve the holding function without special Hold windings, by 
overlapping the A, B, and C pulses (provided that Rf is large enough 
to prevent the maximum backloop mmf from overriding the drive 
mmf retained on the previous core for holding it clear). By thus 
omitting the Hold windings, and with turns ratio n = 1, shifting to 
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the left is achieved merely by reversing the order of the clock 
pulses, as suggested at the end of Sec. 3-5. 

Core-Diode-Capacitor Scheme. Although a register for simul
taneous shifting of all data must have at least two storage cells 
per bit, it is not necessary that each of the storage elements be 
capable of holding data indefinitely. It is sufficient if one set of ele
ments provides only temporary, or dynamic, storage during the rela
tively brief interval in which the long-term storage elements are 
being cleared in order to be ready to receive the data back 
again, in the shifted position. A common type of register of this 
form is shown in Fig. 3-13, where the dynamic storage is provided 
by the capacitors. Such a register requires only a single-phase 
clock. The circuits are arranged so that during the drive pulse, 
data is transferred to the right from cores to capacitors, and in the 
interval between drive pulses the capacitors "transmit to," i.e., 
discharge into, the neighboring cores to the right. 

j-1 j jt1 j+2 

~ ~~ 
Drive 

Fig. 3-13. A single-core-per-bit register requiring only a single-phase pulsing. 

To follow the operation, assume that Core j is in the one state 
when the drive pulse is applied. Core j therefore switches, and 
forward and back loop currents if and ib flow. The forward cur
rent if charges Capacitor Gjt1' but is not able to set Core (j + 1) 

because the drive pulse is still applied to this core. When the 
drive pulse terminates (timing is arranged so that the drive ter
minates when the switching cores reach saturation), the series 
diode becomes cut off and the capacitor discharges through 
Core (j + 1), setting it strongly. The backloop current i b , result
ing from Core j switching, tends to charge capacitor Gj , but be
cause of the relatively high impedance in this charging circuit, and 
because of the lower number of receiver turns, Cj tends to charge 
to a considerably smaller voltage than Gjt1• Nevertheless, a cur
rent i/" small compared to if' tends to flow through Core (j - 1). 

The shunting thus provided by the capacitor is generally not as 
good as that provided by the shunt diode in the circuit of Fig. 3-10(a). 
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Hence, the isolation between transfers is not perfect(even ideally), 
but it is sufficient for obtaining good performance. Single-phase 
core-diode-capacitor circuits such as these have been used quite 
widely. 

3-7 Summary 

This chapter covers the basic requirements for stable binary 
transfer in a chain of magnetic elements. First we show that for 
bistability it is necessary to have the flux transfer ratio G > 1 for 
large values of to.¢ and G < 1 for small values of to.¢, where we 
assume that a binary zero state is represented by a small, ideally 
zero, level of to.¢, and a one state by a relatively large magnitude 
of to.¢. Various gain and loss mechanisms for shaping the gain 
curve as a function of the to.¢ level are discussed. From the limits 
on coupling loop and load resistance found in Secs. 2-3 and 2-6, we 
see that in order to achieve G > 1 in an iterative chain of identical 
stages, it is necessary to unload each stage that is switching as a 
receiver element; we refer to this as forward decoupling. Back
ward de coup ling is also required where a number of independent 
stages are switched together along the magnetic chain. Diodes are 
effective in providing these forward and backward decoupling func
tions, and various core-diode schemes are discussed. It is also 
shown how capacitors can be employed to provide the necessary 
flux-gain mechanism, in terms of the to.¢ -transformation property 
of Sec. 1-4, and also to provide temporary storage in coupling 
loops. Although the capacitor schemes are of secondary interest, 
they provide good practice in the tracing and manipulation of flux 
signals and aid in the understanding of basic requirements on flux 
gain and loss mechanisms. 
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In this chapter, we first show how the combination of a toroidal 
core and a resistance, along with use of an extra clock phase, can 
replace each diode of a core-diode circuit. This replacement leads 
to a class of circuits generally known as resistance-type core-wire 
circuits. Every core-diode circuit has such a core-wire equivalent, 
although as we will see, the converse is not true. In these circuits, 
dissipation of flux linkage in the coupling-loop resistance dur
ing some portion of the clock cycle is a basic part of the operation. 

Second, we show how the requirement for loop resistance can 
in turn be eliminated by the use of still other cores, leading to 
circuits generally known as nonresistance-type core-wire circuits. 
In these circuits, resistive flux dissipation is not required (in fact, 
is undesired) in any part of the cycle, though any dissipation that 

45 
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does occur must be accounted for in detailed quantitative analysis. 
The resistance circuits are generally much slower than the non
resistance circuits but are much more tolerant to variations in 
circuit components and drive-pulse amplitude. 

The resistance and nonresistance types of circuits can each be 
realized either with toroidal cores or with multileg cores. Each 
of the possibilities is illustrated by example in this chapter. These 
examples are specifically chosen to illustrate basic principles and 
important differences in various types of core-wire circuits. Al
though none of these examples represents schemes presently in 
practical use, all have been successfullyoperatedinthe laboratory. 

The development of the various types of circuits in this chapter 
is somewhat tedious, but the indulgence of the reader is sought, for 
in this way one can better understand the very many possibilities 
inherent in these circuits. The general principles on flux gain and 
current tolerances that were introduced in Chap. 3 apply here, but 
the emphasis will be on qualitative details for obtaining decoupling 
and other basic requirements with the different circuit types. 
Given the essential qualitative characteristics, detailed design for 
bistable transfer can be accomplished by the methods discussed 
later. 

4-1 Simulation of Diode Action 

Assume that the core of Fig. 4-1 is in negative remanence -¢r. 
A positive current +i would drive the core further into negative 

+l 
• f I>*-I -"T--

I I 
L-0--...l 

-Hold 

Fig. 4-1_ Simulating diode ac
tion with a core; + i symbolizes 
the forward (low impedance) 
direction for both the diode 
and its core replacement. 

saturation, with small induced emf, whereas 
a negative current - i would switch the core 
towards +¢r' with relatively large emf in
duced in the winding. In analogy to diode 
notation, the direction of current in which 
the core is driven into saturation is called 
the forward (low-impedance) direction; the 
other direction is referred to as the reverse 
direction. If a current in a separate winding 
(shown dashed in the figure) tends to hold the 
core in its -¢r condition, then the core will 
exhibit low impedance to either direction of 
current flow as long as the mmf in the re
verse direction is less than the holding mmf. 
The same effect is achieved· with a diode by 
applying a current bias, in which case a 
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"backward current" equal to the holding current can flow before 
the diode circuit opens. 

We note, however, the following differences between a diode and 
its potential replacement: 

1. For a constant applied current, the switching voltage is not 
constant in time (the constant-p core model noted earlier is only a 
rough approximation), i. e., the effective impedance of a switching 
core is not constant. 

2. A back impedance can be sustained only so long as the core 
is actually switching. Once the core becomes saturated, the im
pedance is again essentially zero. 

3. When the core reaches the opposite state of saturation, the 
"magnetic diode" has effectively been reversed, so that an oppo
site polarity current will now cause the high-impedance state. 

4. The ability to use a number of electrically isolated windings 
on the same core, some of which may carry control currents (such 
as holding currents), is an important property that has no diode 
counterpart. 

An example of diode replacement by a core is shown in Fig. 
4-2. In Fig. 4-2(a), the diode prevents loop current from flowing 
when the left-hand core (assumed to be a receiver core) is 
switched by the drive mmf NR if. The flux linkage injected by the 
left core is dissipated in the back resistance of the diode. (This 
can be achieved with very small loop current because of the high 
value of back resistance.) In Fig. 4-2(b), we replace the diode with 
a core, making use of the polarity convention of Fig. 4-1. Now the 
flux linkage injected by the left-hand core is balanced by flux 
switching in the "diode core." If the latter has a low threshold, 
and does not saturate before switching in the left-hand core is 
completed, thE;ln the loop current ie is again very small, and no 
flux switches in the right-hand core. 

~ _N_R~~ ______ ~ ______ ~~ 
If If 

(a) 

Fig. 4·2. Replacing the diode of (a) with a core and loop resistance in (b) along with the 
addition of a clock phase. 

We see then that both the diode and its replacement core can 
accept flux linkages with very small current flow. An important 
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difference, however, is that the core must be explicitly restored 
to its original, or clear, state before it can play the same diode 
function again. This is the role of the extra clock phase. In order 
not to disturb either the left- or right-hand cores during the restore 
operation, the restoring mmf Nrir must switch the core slowly, 
and, since neither of the other two cores are to switch, there must 
be a resistance in the loop to dissipate the injected flux linkage. 
Thus, we see how a core and a loop resistance, along with use of 
an extra clock phase, can replace the diode. In this fashion, each 
of the core-diode circuits of Chap. 3 could be transformed to a 
core-wire circuit. In the following section we consider a specific 
example of such a circuit. 

Briggs Scheme. A direct core-wire equivalent of the circuit of 
Fig. 3-10(b) is shown in Fig. 4-3. For simplicity, only the 0 -> E 
advance line is shown, although a similar E -> 0 line is also neces
sary. During OJ -> Ej +1 transfer, the small shaded cores B and F 
are switched by very small loop currents and provide the required 
backward and forward isolation functions, respectively. (In Fig. 
3-10(b), these functions are provided by the corresponding diodes.) 
This circuit is easily arranged with a single drive line that pro
vides both the advance and hold functions , as indicated by the dashed 
line in the figure, so that only a single power source is actually 
needed for this phase of operation. 

(------------------------------, 
'----I ,-------------, ~----- I 

"0': J 
Fig. 4-3. Core-wire equivalent of the core-diode circuit of Fig. 3-10(b). 

Although no windings are shown in Fig. 4-3 for the restoring 
function, a single line linking all of the diode cores could be used. 
A current pulse on this line following each advance pulse would 
restore all of the small cores that were switching during the ad
vance phase and leave unaffected the cores already in their clear 
states. Alternatively, the restore line could be energized with 
direct current, which would automatically restore these cores 
following each advance pulse (see Sec. 2-8). In this case, the re
sulting circuit operation still has a four-phase rhythm (0 -> E, 
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Restore, E -> 0, Restore), even though only two explicit clock 
pulses are applied. The primary effect of applying the restore 
current continuously is that the diode cores then have somewhat 
poorer back resistance, in the sense that loop currents must 
achieve higher values before overcoming the dc mmf. The circuit 
of Fig. 4-3 is essentially identical to the one described by Briggs 
(1952). 

4-2 Core-Wire Scheme with No Core-Diode Equivalent 

We noted earlier that although every core-diode circuit has a 
core-wire equivalent, the converse is not true. To illustrate, we 
will now show the development of a core-wire circuit that re
quires only a single "diode core" per loop, but which has no 
operable core-diode equivalent. To start, consider the arrange
ment of Fig. 4-4(a) in which a diode shunts to ground between each 
pair of cores. Assume that Core Ej contains a one. During the 
E -> ° transfer, Core Ej switches to -¢r and a forward current if 
tends to flow through Diode D1• Since the main objective is to 
switch Core ° j' we wish Current if to link that core, but go no 

----------------1 r---
I I 

E j +1 

(0 ) 

Restore 
( b) 

Fig. 4-4. A core-wire register with no core-diode equivalent is shown in (b). The core-diode 
version in (a) is inoperable because of lack of a gain mechanism. 
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further. This is accomplished by forward-biasing the diode O:'l' 
with Current I b3' as shown in the figure. The diodes 01 and 03 
in effect then establish a coupling loop between Cores E. and 0 .. 

] J 
All other E cores are simultaneously driven by the same E ... 0 

pulse, and every other diode to the right of an 0 core is therefore 
similarly forward biased, as shown by the dashed parts of Fig. 
4-4(a). During the alternate 0 ... E drive periods, the other set of 
diodes is similarly forward biased. To this extent, the core-diode 
circuit appears proper. However, there is no place to obtain a 
turns ratio > 1 for flux gain, and no other I'l¢ gain mechanism 
is present, so that in fact the circuit of Fig. 4-4(a), as it stands, is 
inoperable as a shift register. 

Russell Type -II Resistance Scheme. Simply replacing the di
odes of Fig. 4-4(a) with cores (and, of course, coupling-loop re
sistance) offers no advantages regarding flux gain. However, by 
the use of a separate pair of windings of turns NT and N R' on each 
shunt core (Item 4 of Sec. 4-1), we quite easily obtain the required 
I'l¢ gain (Fig. 4-4(b». Each advance-pulse line in Fig. 4-4(b) links 
alternate shunt cores in order to· hold them clear, analogous to for
ward biasing on the corresponding diodes in Fig. 4-4(a). The 
Restore line can again be dc operated. This type of register, using 
one shunt core per loop, was introduced by Russell (1957) and is 
referred to as the Russell Type-II scheme. 

Thus we see that although all core-diode circuits can be trans
formed to core-wire circuits, the reverse is not true; in subse
quent chapters, we will treat other examples of core-wire circuits 
with no core-diode equivalents. 

4-3 Replacement of Loop Resistance by a Core 

We would like to show now how the coupling-loop resistance as 
a functional element may, in turn, be replaced by another core. In 
doing so we obtain an example of a nonresistance core-wire 
scheme. 

Russell Nonresistance Scheme. The Russell-II scheme of the 
previous section has a corresponding nonresistance version (Rus
sell, 1959) that is identical in structure and clock sequence except 
that the loop resistance is replaced with another core, as shown 
in Fig. 4-5(a). For simplicity, only the E ... 0 drive winding is 
shown in the figure. For shifting a bit in from the left, during an 
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_----1.0 
- __ ..... Restore 0 

" 

( a) 

( b) 

Fig. 4·5. Replacing the functional loop resistance of Fig. 4-4 with another core to obtain 
a nonresistance-type of core-wire circuit. 

° -> E transfer, the coupling core E1 and the receiver core E2 are 
both switched as before. During this transfer, the coupling-loop 
current i1 is positive. The next operation is to restore the coup
ling core E1• But now the /1¢ from Core E1 is not dissipated in 
coupling-loop resistance, but rather is transferred to Core E3 • 

(Let Restore-E be the operation of returning E1 to its clear state.) 
During the following E -> ° pulse, which clears Core E2 , a posi

tive loop current i1 switches the coupling core 01' as a result of 
which the receiver 02 is also switched (the right-hand coupling 
core E4 being held clear during this operation). Assume for the 
moment that Core E3 does not switch during this transfer operation. 

Consider now the Restore-O phase during which the coupling 
Core 01 is restored. In the resistance version, flux linkages from 
Core 01 are balanced by resistive flux dissipation in both the for
ward and back loops. Here, however, there is no need for dissipa
tion in the back loop, for if we clear Core E3 simultaneously, the 
flux linkage earlier stored in Core E3 can 'balance the flux linkage 
from Core 01. In other words, if Cores 01 and E3 were cleared at 
the same rate, then zero voltage would appear between points 
a - a', and there would simply be no back transfer, regardless of 
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the rate of clearing. Now in the forward loop, a negative current 
i2 tends to clear Core 02 at the same time that it tends to set 
Core °3 , To minimize switching of Core °2 , this core can be biased 
(up to threshold) in a direction to hinder switching, as shown in 
Fig. 4-5(b), while at the same time Core 03 is biased forward to 
minimize the required switching current. We might ask why Core 03 
couldn't simply be small, compared with Core 02' so that we 
would not have to forward-bias Core 02 in this manner. To answer 
this, we observe that during the subsequent ° ... E transfer phase, 
Core 03 must be prevented from switching (as was earlier noted 
for Core E3 during the E ... ° phase). Hence, the effective backward 
threshold of Core 03 must be larger than the effective forward 
threshold of Core E4 (when loaded by E5 , which is equal in size 
to 02)' We conclude that the two cores on each loop are preferably 
of comparable size. 

Let us now see how it is that we can achieve higher-speed 
operation in this nonresistance version. Consider again the resist
ance version of Fig. 4-4(b). For low flux loss during transfer, the 
loop resistance should be as low as possible. On the other hand, 
for a high rate of flux dissipation during Restore, the resistance 
should be as high as possible. The loop resistance, of course, 
has the same value during each operation. By substituting a core 
for resistance, however, as in Fig. 4-5, we can achieve a signifi
cant difference in average core impedance during the two opera
tions, by the selective biasing discussed above. In other words, 
during a restore phase, a forward-biased core has a relatively 
high effective impedance as seen by loop current (and hence 
switches rapidly), whereas during the subsequent transfer phase, 
the same core (still biased forward) presents a relatively low 
impedance to the opposite polarity of loop current, making possible 
a low loss of the transmitted f'..¢. Thus, at the expense of additional 
core components and drive complexity, we can in general achieve 
a considerably higher transfer speed in a nonresistance-type cir
cuit than in its resistance-type counterpart. 

4-4 Extra Isolation with Multileg Cores 

Multileg Core. We now introduce a more complex core shape. 
One of the earliest such devices was the transfluxor (Rajchman and 
Lo, 1955), in which a single, small (or minor) aperture was added 
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to a simple core (Fig. 4-6(a». Let us note some basic properties 
of this device. 

1. A current i of large amplitude results in a clockwise flux 
throughout the entire core of Fig. 4-6(a), in particular in the legs 
on both sides of the small aperture, just as in an ordinary toroid. 
We refer to this clockwise flux state as the clear state. 

(a) 

(c) (d) 

Fig. 4·6. Multileg core: (a) clear state; (b) set state; (c) driving the output 
aperture with a small mmf; (d) separate input aperture for digital setting. 

2. Now consider a slowly increasing mmf of the opposite po
larity (Fig. 4-6(b». At some threshold value of current, flux be
gins switching counterclockwise along the inner wall of the toroid; 
as mmf increases further, flux switches to larger and larger values 
of radius. At some particular magnitude of current, exactly half of 
the flux is switched, as shown in Fig. 4-6(b). (The switched flux is 
indicated by the double arrow.) This state, in which the flux is in 
opposite directions (relative to the major aperture) in the legs ad
jacent to a minor aperture, is referred to as the set state. 

3. With the core in the set state, it takes a relatively small 
mmf to switch flux locally about the minor aperture (Fig. 4-6(c». 
The resulting flux pattern is shown by the dashed lines. The low 
value of mmf results from the short SWitching path about this aper
ture. In fact, in this state, flux canbe switched back and forth con
tinuously with a small current of alternating polarity applied to the 
minor aperture. 

4. The set state can be achieved "digitally," i.e., without re
quiring a precise magnitude of input current, by the use of a sepa
rate input aperture, as in Fig. 4-6(d). In this case, starting with a 
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cleared core, a suffiently large input current i causes a complete 
switching of flux in the leg linked by the input Winding. If the cur
rent i in Fig. 4-6(d) rises relatively slowly, then flux switching 
occurs along the shortest physical path around the major aperture, 
so that nominally no flux change links the output winding in this 
setting operation. (In this figure, shaped areas are shown around 
the minor apertures to suggest the desirability in general of having 
constant cross-sectional area everywhere around the major aper
ture. The subject of core shaping is discussed further in Sec. 6-9.) 

With these simple notions regarding a multileg core, we can 
proceed to show new possibilities in core-wire circuits and to 
show why core-wire circuits involving multileg cores are generally 
superior in performance to those synthesized strictly with toroids. 

Cores with more than one aperture have been called by various 
names: multiaperture cores, MADs, multileg cores, multipath 
cores. In the following chapter each leg of a core will be repre
sented by a branch in a general magnetic network representation, 
and for this reason we prefer the term multileg. However, the 
acronym MAD, from MultiAperature Device, has been applied to 
certain schemes for a sufficiently long time that this term has 
been retained in the names of those schemes. 

Briggs-Lo Scheme. In Fig. 4-7(a), each multileg core incor
porates into one element both the storage and coupling-core func
tions of the Russell-II circuit of Fig. 4-4(b), and, as we will see, 
contributes an important new function as well. This scheme was 
initially discussed by Briggs and Lo (1961). 

Assume that each of the E cores in Fig. 4-7 (a) has been cleared, 
i.e., is in its zero state, and that binary data is stored in the 0 
cores. The advance 0 -> E pulse switches all of the 0 cores to 
their clear states, and transfers, in the process, the state of each 
o core to its right-hand E neighbor. Assume that Core 01 is in the 
set state in the sense of Fig. 4-6(b). The 0 -> E pulse clears Core 
0 1 , inducing a loop current i that in turn sets E1 , accomplishing 
thereby the desired transfer. (If 0 1 were in its clear state, no 
loop current would flow, and El would remain in its clear state.) 

In more detail, note that when 01 is cleared, flux switches 
only through its inner leg; flux in the outer leg is already in the 
clockwise or clear direction. Therefore there is no back transfer. 
In the forward loop, the current i sets El by SWitching flux in its 
outer leg and around the main aperture. But no flux can switch 
in the inner leg, which is already saturated in the direction of the 
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input mmf; thus unlike the case of the original Russell-II scheme, 
no holding current is necessary for prevention offorward transfer. 

(0 ) 

Restore 

(b) 

( c) 

Fig. 4-7. In (a) and (b), Briggs-Lo multileg-resistance scheme similar to the Russell-II 
scheme of Fig. 4-4(b), but not requiring holding; (c) Engelbart reduction. 

Of the three legs in each multileg core, the major one can be 
thought of as replacing the storage core in Fig. 4-4(b), and the 
outer small leg as replacing the coupling core. The inner small 
leg is somehow extra, and its presence happens to be the reason 
that the holding function of the Russell-II scheme is no longer 
necessary here. In terms of the network approach of the next 
chapter we will see more clearly the role of such "extra" circuit 
elements. 

To continue with the cycle of operation, consider Fig. 4-7(b), 
where a restore current (applied to all cores) switches flux slowly 
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about the minor aperture of E1 , injecting flux linkages into both the 
forward and back loops, which is dissipated in the loop resis
tances. The cycle is completed with an E --> ° transfer followed 
by another restore pulse. We thus have a four-phase cycle, though 
the restore line can again be energized by a single dc source, so 
that actually only two explicit clock pulses are required. 

Engelbart Reduction. With one more step we can obtain a scheme 
with even one less clock phase, and only one coupling loop per bit. 
But we must reintroduce a holding current. This scheme is indi
cated in Fig. 4-7(c), where the multileg element El has been re
placed by a simple toroid of the same general size, and both coup
ling loops are merged into one. This scheme was devised by 
D. C. Engelbart of Stanford Research Institute (unpublished notes). 
(In connection with Fig. 7-7(c), we will show that this is a minimal 
scheme in terms of the number of elements per bit.) 

To see how it is that we save a clock phase, and why hold
ing is necessary, assume again that a one is initially stored in 
Core 01' During the subsequent ° --> E phase, a large positive 
loop current sets Core E1• Although this current is in a direction 
to set Core °2 , the setting mmf is necessarily less than the simul
taneous drive on Core °2 , and so holding is not necessary during 
this phase. 

We might have considered the restoring function in Fig. 4-7(b) 
to be a flux transfer, in effect, from the outer to the inner leg of 
Core El with subsequent transfer from the inner leg. There is no 
equivalent function in Fig. 4-7(c), and the E --> ° pulse can therefore 
be applied immediately following the ° --> E pulse. A high positive 
loop current flows during this E --> ° phase, setting 02' This cur
rent also tends to set the inner leg of 01' But since this leg is now 
in its cleared state, it can be unconditionally held that way, as in
dicated in the figure. The resulting system then has only one 
toroid and one multileg core per bit, and a three-phase cycle 
.•• , E --> 0, Restore, ° --> E, ••. , but holding is again required to 
prevent back transfer. 

4-5 Isolation of Input and Output in Separate Apertures 

Having introduced multileg resistance schemes above, we wish 
now to treat one last circuit arraJigement, namely a multileg non
resistance scheme. In the circuits of Fig. 4-7, the input and output 
windings connect to the same minor aperture. Functional decoupling 
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is achieved by a restore phase, which we noted can be considered 
as a local flux transfer from the input leg to the output leg (around 
the minor aperture), during which time we have balancing flux dis
sipation in the loop resistances. Let us consider more explicit 
isolation based on separate apertures for the input and output 
windings. 

MAD-N Scheme. The particular circuit to be discussed here, 
which is shown in abridged form in Fig. 4-8, is referred to as the 
MAD-N scheme, N for Nonresistance type (Crane, 1959). It uses 
two multileg cores per bit and is based on a four-phase clock cycle. 
Assume that each E core is initially in its clear state and that 
Core 01 stores a one, Le., is in its set state. We will follow the 
transfer of this binary one through one complete clock cycle to 
Core 02. The flux states at each step are shown below the circuit, 
and flux changes at any particular step are shown by double arrows. 

Clear E 

I niti a I tal 101 101 
state 

O-"E lf~I tal 
'j~ 

Clear 0 !~~ ~,_/ 
tol 

E-"O 101 {~ 
"'-"'~ 

Clear E tot I~ 
~ 

Fig. 4-8. Using separate apertures for input and output, resulting in the MAD-N scheme. 

A pulse on the ° --> E line causes flux to switch locally around 
the output aperture of Core 01. The resultant loop current + i sets 
receiver Core E1 , the flux nominally switching in the shortest path 
that includes Legs 1, m, and 3. The output circuit is therefore ef
fectively decoupled from the primary flux-switching path when the 
core acts as a receiver. Since flux switches only locally about the 
output aperture of the transmitter, transmission is said to be 
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nondestructive. Though this basic nondestructive read-out feature 
is very useful, it implies here that the 0 element must be explicitly 
cleared, i.e., driven to its zero state, before it can subsequently 
be used as a receiver. 

Clearing of the transmitter is achieved with a pulse on the 
Clear 0 Winding. The result is that flux is again reversed through 
the output winding, and a negative loop current -i reverses flux 
locally around the input aperture of the receiver, Core E1• The 
significance of this operation is that the input leg of El is now back 
to its initial (cleared) direction, so that when the E core is sub
sequently cleared there will be no flux linkage generated in the 
input winding and hence no back transfer. The full clock cycle for 
this register has the familiar four beat rhythm: 0 ... E, Clear 0, 
E ... 0, Clear E, •.•• 

For zero transfer, the advance pulse should cause no flux 
switching in the transmitter, and the receiver nominally remains 
in its cleared state. To ensure no flux switching, the advance mmf 
applied to Leg 4 of the transmitter must be limited to the threshold 
for switching around the major aperture. But for one transfer, 
this magnitude of drive mmf is not adequate to induce enough loop 
current for switching flux around the major aperture of the re
ceiver. In other words, the circuit shown in Fig. 4-8 is not 
actually workable in the abridged form shown. 

Exchange of Flux Gain and Excess MMF. To increase the maxi
mum amount of drive mmf allowed, we can bias the transmitter and 
receiver as shown in Fig. 4-9. Let F 0 represent the threshold for 
major-aperture switching. In addition to applying this much mmf 
to Leg 4 of the transmitter, a similar amount can be applied to the 
receiver to bias it to threshold, as well as a similar amount in the 
clear direction of Leg 3 of the transmitter. The latter mmf is 
limited to a single threshold unit to prevent flux from being lost by 

o E 

Fig. 4-9. Increasing the drive mmf and biasing the 
receiver. 
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unsetting around the transmitter major aperture in the case of one 
transmission. (Actually, because of the soft-threshold effects dis
cussed in the next section, Leg-3 bias must generally be kept 
somewhat below this amount.) 

With this bias arrangement, we have a drive mmf 2Fo available 
to switch flux around the transmitter output aperture, and since 
the receiver is biased to threshold, any loop mmf N R ie is com
pletely effective in causing switching of the receiver. An upper 
limit on loop current is therefore 2FoiNT (assuming zero mmf 
drop in the transmitter), and hence an upper limit on excess mmf 
that can be supplied to the receiver is (N RIN T) 2 F o. But with turns 
ratio as the flux-gain mechanism, the maximum gain ratio is 
N TIN R. Hence an upper limit on the product of gain ratio and excess 
mmf ("gain-excess" product) is simply 2Fo• This result, which is 
typical for many nonresistance circuits, implies that increasing 
flux gain by increasing N TIN R necessarily results in a reduction in 
the maximum excess mmf, and hence reduces the maximum trans
fer speed and potentially the drive-current range. (When actual 
losses are taken into account, including nonlinear loss for main
taining a stable zero level, there is some optimum turns ratio, 
typically < 2 for nonresistive circuits, atwhichdrive-currentrange 
is a maximum.) 

Soft-ThresholdGainMechanism. We have thus far assumed that 
I1¢T (j) = I1¢R (j), i.e., that an element starting in the clear state -¢r 
is set to a certain flux level during one clock pulse (receive time) 
and is returned to the initial clear state during some subsequent 
clock pulse (transmit time). But this is not always the case. In 
particular, for the MAD-N scheme of this section, the advance 
operation and the clear operation are quite distinct. Furthermore, 
the main aperture mmf is in the same direction during both the 
receive and transmit phases. This creates the possibility of trans
mitting a larger amount of flux than was actually received. 

To see how this can work, assume in Fig. 4-10(a) that only 
about half of the flux capacity of the input leg of the 0 element is 
switched during the input clock phase E -> O. During the subse
quent C1ear-E pulse, a negative loop current switches flux locally 
around the input aperture, Fig. 4-10(b). Now during the following 
o -> E phase (Fig. 4-10(c», an amount of flux equal to the received 
flux is easily switched around the output aperture. But, additional 
flux, labeled 11¢*, can simultaneously be switched around the main 
aperture as well, resulting in anetoutputflux I1¢T(j) = I1¢R (j) + 11¢*. 
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Fig. 4-10. Use of the soft-threshold flux-gain mechanism. 

Although we are now discussing one transfer, we must keep in 
mind that for zero transfer, fI..¢T (and hence also fI..¢*) should 
nominally be zero. To be a useful gain mechanism, therefore, 
we must be able to achieve a significant magnitude of fI..¢* during 
one transfer, but only a negligible amount during zero transfer. 
Since the strength of the advance pulse is independent of data state, 
this could only occur if there were a significant difference in the 
main aperture threshold for the two states. And this is precisely 
what may occur. 

A typical family of output curves is shown qualitatively in 
Fig. 4-10(d). Note that the main-aperture threshold, shown by the 
dashed line, significantly decreases with the level of flux fI..¢R set 
during the input phase. Thus with an mmf Fa applied, fI..¢* will be 
v"ery small for fI..¢R '" 0, whereas a significant level of fI..¢* can be 
obtained for larger values of fI..¢w The transfer ratio can be written 

G 
fI..¢T(j + 1) fI..¢R(j + 1) + fI..¢* 

(4-1) 

but 
fI..¢T (j) fI..¢T (j) 

fI..¢R (j + 1) = 
NTfI..¢T(j} - fI..¢loss (4-2) 

NR 
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where i'1¢loss represents the amount of flux-linkage loss in the 
coupling-loop resistance and inductance. Thus 

NT i'1¢loss i'1rb* 
+-_.-

N R N R i'1¢T (j) i'1¢T (j) 
G (4-3) 

With the relationship of i'1rb* 1i'1¢T(j) versus i'1¢T(j) suggested by the 
dashed line in Fig. 4-10(e), and with [(NTIN R) - i'1¢los/NR i'1¢T(j)] 
assumed constant, as a first approximation, we see that it is pos
sible to achieve a proper digital gain curve even with N TIN R = l. 
Operation based on soft-threshold gain has in fact been verified 
in the laboratory with NT = NR = 1, that is, with single turn wind
ings, though with relatively small circuit tolerances. 

A potential advantage of exploiting the soft-threshold gain 
mechanism is that a unity turns ratio is thus allowed, and the 
resulting symmetry permits bidirectional shifting. It is easily 
verified that if the bias winding on the E -core in Fig. 4-9 is re
placed by a figure-eight winding, symmetrical with the drive wind
ing on the O-core (and similarly for the E -> 0 drive windings), then 
shifting can be caused to proceed to the left instead of to the right 
simply by reversing the order of the two clear pulses. In any 
case, whether this soft-threshold effect is relied on as the primary 
gain mechanism or not, it contributes to the overall transfer char
acteristic for many types of schemes. 

4-6 Summary 

In this chapter we have introduced a number of basically dif
ferent core-wire schemes in order to illustrate a number of dif
ferent aspects of these circuits. Although all of the schemes 
discussed are actually operable, none are of any special practical 
interest. They are introduced here primarily because they have 
a certain direct simplicity, and through them one can quickly gain 
insight into the basic operations. Perhaps it is no accident that 
these were among the schemes reported earliest in the literature. 

In Sec. 4-1 we show how a diode can be replaced by a core
resistance combination together with an extra clock phase to 
"restore" the core so that it can again perform its diode function. 
The resistance is required for i'1¢ dissipation (in the sense of 
Sec. 1-2) during the restore operation. The resistance thus intro
duced into the circuit with this replacement technique leads to 
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what are called resistance-type core-wire circuits. Every core
diode circuit has such a core-wire equivalent, though it is shown 
in Sec. 4-2 that the converse is not true. 

In Sec. 4-3, we show how the resistance function can be re
placed in turn by still another core, leading to the synthesis of 
nonresistance core-wire circuits, which are generally faster than 
the resistance type circuits, but also have lower operating mar
gins. Finally, it is shown in Secs. 4-4 and 4-5 how important 
improvements in circuit isolation are obtained by the use of still 
more complex cirCUits, in particular by the use of multileg cores. 
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In the preceding chapters, digital magnetic core circuits were 
evolved by matching the functional properties of cores to the re
quirements for digital transfer in iterative circuits. In the pro
cess, the effects of electrical elements in core circuits were con
sidered. We also indicated a number of different ways in which 
cores, coupled by wire only, could provide all of the properties 
needed for realization of digital transfer. Later, we consider still 
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other ways to synthesize such circuits. As an important aid 
in deriving and understanding such a diversity of schemes and 
techniques, we introduce in this chapter a generalized magnetic
network representation for magnetic-core circuits. 

As used here, a magnetic network is an abstract representation 
of a circuit. In general, such a network consists of magnetic 
branches and nodes and electrical mutual coupling (conductive 
coupling loops), just as an electric network consists of electric 
branches and nodes and magnetic mutual coupling (transformers). 
In a magnetic network it is particularly easy to trace flux switch
ing paths, just as in an electric network it is easy to trace current 
flow paths. Magnetic-network concepts are primarily useful here 
for qualitative analysis and for derivation of new transfer schemes. 

The main qualitative aspects that distinguish one form of trans
fer circuitry from another are: (1) the basic topology; (2) the sig
nificant flux states, and the mode of sequencing between these 
states; and (3) the physical types of elements involved. Item (1) is 
reflected in the structure of the network. Item (2) relates to the 
order in which network elements are switched when the circuit is 
cycled through a series of flux states. Item (3) involves specification 
of whether the flux change in some network branch is an actual flux 
change in a magnetic element, or whether it represents an equiva
lent flux-linkage change in another type of element, e.g., dissipa
tion in a resistance (Sec. 1-2). 

The transformation of circuits into network terms helps in the 
classification of known schemes. It is also useful for the derivation 
of new schemes, by means of a number of network operations that 
we will develop. Also, with the network notation we can more 
readily see how to trade off between wiring complexity, e.g •• an 
array of toroids, and core complexity. 

In the first section of the chapter, magnetic-network concepts 
are introduced in terms of a single multileg core linked by current
carrying windings. Then. we consider the transformation of more 
general core circuits into the magnetic-network domain. In Sec. 5-3 
we describe a number of network operations that facilitate the 
derivation of variations of a given basic transfer scheme. In Secs. 
5-4 and 5-5, we show how the network methods can be applied in 
the derivation of new schemes as well as aid in understanding the 
operation of relatively complex schemes. Though these last two 
sections are excellent exercises in deriving new schemes, and in 
developing facility with network methods, they may be bypassed 
without loss of continuity. 
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5-1 Network Representation 

We take the view that a complex core consists of legs connected 
at junctions, and that each leg maybe treated as a distinct magnetic 
element, with properties similar to those of a toroidal core. Inter
action between the legs is represented by constraints on the amount 
of flux entering a junction and on the total mmf along a closed path 
in the core. Additional constraints imposed by inter coupling elec
tric circuitry may be represented in similar fashion, thus provid
ing a common representation for both the cores and the wiring. 
Several persons have contributed to the evolution of this represen
tation to its present form, but the original impetus was provided 
by D. C. Engelbart (unpublished notes). 

Drawing Network Structures. In Fig. 5-1, three multileg cores 
are shown, each of which consists of several legs and junctions, the 
latter indicated by dots. Assume that the minimum cross-sectional 
area of Legs 1, 2, 3, and 4 is the same in each of these cores and 
the same as that of Leg 7 in Fig. 5-1(c). Also, assume that Legs 5 
and 6 each have minimum cross-sectional areas twice that of the 
other legs. It is helpful to consider the cores to have uniform 
height (in the third dimension), in which case the above statements 
apply to leg widths. We assume in Fig. 5-1 that all small legs are 
of width w. 

5 5 

(a) (e) 

Fig.S·l. Different forms of multileg cores having two minor apertures. 

In Fig. 5-2, we show the basic magneti,c-network structures of 
the respective cores of Fig. 5-1. Here we represent only the legs 
of the cores and how they are connected at junctions. Hence, it is 
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sufficient to represent each leg by a line and each junction 
by a node. 

5 5 

~ 
l~g 
~ 

5 

6 
(a) (b) 

lW4 

(e) 

Fig. 5-2. Magnetic network representation of the muItiIeg cores of Fig. 5-1. 

The network structures of Fig. 5-2(a) and 5-2(b) may be con
sidered equivalent because the amounts of flux in Legs 5 and 6 are 
constrained to be the same. In fact, we may view Fig. 5-2(b) as a 

-reduction to unbalanced form of the balanced network of Fig. 5-2(a), 
and hence as a reduced network representation of the core of 
Fig. 5--1 (a) as well as a direct representation of the core of Fig. 
5-1(b)_ 

Loop and Node Constraints. In electric circuit theory, the basic 
variables are voltage drop and current, the product of which is 
power. We consider the analogous variables for magnetic circuits 
to be mmf drop F, and rate of change of flux ¢, the product of 
which is also power. 

The constraint on each network node (following from Maxwell's 
equation 'V. B = 0) is simply 

o (5-1) 

implying 

(5-2) 

where the summation is over all flux values emanating from the 
node. For the case of no linking currents, as in Figs. 5-1 and 5-2, 
the constraint on each network loop, following from Eq. (1-7), is 

(5-3) 

where the summation is over all mmf drops around the loop. 
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Representation of Saturation Flux States. Considering the pos
sibility of partial switching of cores, an unlimited number of flux 
states are possible; however, we are concerned primarily with 
digital flux states associated with nominal saturation of one or 
more legs of a core. With this constraint, let us consider further 
the network of Fig. 5-2 (b), but now with orientation arrows drawn 
on the branches, as in Fig. 5-3, where we show all the possible 
flux states, assuming that each of the Legs 1, 2, 3, and 4 must be 
saturated one way or another. Arrows represent only the direction 
of flux saturation in this diagram. Though the flux states in Fig. 
5-3(d), (e), and (f) are exactly the opposite of those in Fig. 5-3(a), 
(b), and (c), respectively, it is important, relative to schemes 
described later, to consider all of these possibilities. 

(a) (b) (e) (d) (e) (I) 

Fig. 5·3. All possible minor-leg saturation flux states for the network of Fig. 5-2(b). 

The network diagrams drawn thus far give no indication of 
areas or length of legs, but it is apparent that cross-sectional 
areas are crucial relative to consideration of the saturation flux 
states. Also, relative mmf thresholds of legs must be taken into 
account when we consider whether it is possible to actually se
quence through a given series of flux states. Therefore, we often 
want some means for suggesting the relative cross-sectional areas 
and lengths of legs. Where this is necessary, each branch can be 
drawn as a rectangle rather than a simple line, as in Fig. 5-4, where 
the length and width of the rectangle are 
suggestive of the length and cross-sec
tional area of the leg, respectively. Lines 
drawn between the rectangles and nodes 
represent the connections of the legs at 
the junctions. These lines may be thought 
of as ideal magnetic-flux conductors. In 
many cases, it is convenient to treat one 
node of a network as a reference or a 
"ground" node, as shown in Fig. 5-4. 

The use of rectangles also provides 
a convenient means for showing the pres
ent flux state of all of the branches, as is 

Fig. 5-4. Rectangular branch 
representation to indicate rela
tive lengths and relative cross
sectional areas. 



68 DIGITAL MAGNETIC LOGIC 

done in Fig. 5-4 for the core state shown in Fig. 5-3(b). The fact 
that ¢ = 0 in the main leg may be indicated either with opposing 
arrows, as in Fig. 5-4, or with no arrows at all. The clear or 
reference state of the core may be indicated with triangular pointers 
on the rectangles, as shown in Fig. 5-4 for the usual clear state of 
a core of this type, i.e., clockwise saturation around the major 
aperture. 

Representation of Drive MMF. In order to sequence between 
flux states, it is necessary to provide electric-current excitation. 
A way to view currents in windings is as current linkages, analo
gous to rate of change of flux linkages N¢ in an electric circuit. 
When current linkages are present, Eq. (5-3) must be generalized 
to the form 

(5-4) 

where N k i k is the mmf due to the kth winding linking the network 
loop, with polarities defined such that positive values of the ik tend 
to produce positive values of the F i' This equation is just another 
way of writing the integralformof Ampere's law given by Eq. (1-6). 

i l 
!2----++----' 
L3-+-----1 '-------

(0) (b) 

Fig. 5-5. Network representation of drive mmf. 

In Fig. 5-5(a) is shown a core linked by independent source 
currents iI' i2 , and i3 , in windings of N1 , N2 , N3 turns, respectively, 
and a dependent, induced loop current if in a winding of NT turns. 
A way to represent these mmf in the network is shown in Fig. 5-5(b), 
where the current-linkage sources N 1 iI' N 2 i2, and N 3 i3 are shown 
as mmf generators in appropriate branches of the network. The 
variable output current if is shown simply as a conventional loop 
since we are not yet prepared to show the representation of 
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dependent currents in network terms. (Note that Legs E and Ii' are 
both represented by a single branch G.) 

Though the representation of Fig. 5-5(b) is very useful, we 
must note that when all current linkages in a loop are transformed 
into discrete generators in series with certain branches, then the 
node potentials thus defined are artifices rather than unique physical 
quantities. This is so because for a given excitation pattern, only 
the total loop mmf are specified, in the sense of Eq. (5-4), and the 
assignment of particular moo to particular branches is not unique. 
For example, a completely equivalent choice for representing the 
generators is to move the moo Nl i l to be in series with branch B 
(shown dashed, and with opposite polarity) instead of branch A, and 
to adjust the magnitude of the generator in series with branch G to 
N3 i3 - NI i l • But the total drive moo in every closed path is iden
tical in the two schemes, and of course the resultant moo drop in 
any leg (such as Ii' A in Leg A) is unique, and independent of the par
ticular equivalent set of moo generators chosen. 

Sequencing between Flux States. To see how the sequencing from 
one flux state to another may be represented in a network, con
sider Fig. 5-6, where we assume the vertical branches to be iden
tical and the clear state to be the same as shown in Fig. 5-4. On 
the basis of Eq. (5-2), any flux change entering a particular node 
through one branch must be balanced by a flux change in one or 
more other branches leaving the same node. In many cases, we 
are concerned only with flux entering a node in a single branch and 
leaving it in only one other branch. It is apparent that any such 
flux change must occur in a single closed path in the network. 

In Fig. 5-6(a), the initial flux state, as indicated by the arrows 
within the boxes, is the clear state. Assume that a drive moo NI i1 

(0) (b) (c) (d) 

Fig. 5·6. Sequencing between flux states. 
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is applied, which is sufficient to produce a flux change in the path 
indicated by the dashed line. With this excitation alone, the flux 
change would tend to divide equally between the branches C and D. 
However, an mmf N 2 i2 is applied simultaneously to Branch D in 
order to hold it in its clear state. In Fig. 5-6(b), an mmf Nl ii is 
applied to cause a local flux reversal in Branches A and B. (The 
arrows inside the boxes in Fig. 5-6(b) represent the flux state 
resulting from the switching in Fig. 5-6(a).) In Fig. 5-6(c), the 
mmf N2 i2, produces a similar local change in Branches C and D. 
It is assumed that the mmf Nl ii and N2 i2, are too low in magnitude 
to produce inelastic flux changes along the path including Branch G. 
In Fig. 5-6(d), mmf N3 i3 forces the core back to its clear state. 

In the cycle of Fig. 5-6, each leg is switched from its clear 
state to a second state and then back to the clear state. Only two 
switching steps are required for a cycle of changes in anyone 
branch, but note that we have used four steps in sequencing the 
whole network through this cycle of flux changes. Note also that this 
sequence of changes is exactly the one undergone by a core in the 
MAD-N scheme of Sec. 4-5. (The network representation for this 
scheme is treated further in Sec. 5-4.) 

Representation of Electrical Loads. In Fig. 5-7 (a), a core is 
shown driven by a current id through Nd turns and loaded with an 
eleotrical loop oontaining series elements R, L, and C aoross NT 
turns. The network representation is shown in Fig. 5-7(b), with 
the drive shown as an mmf generator Ndid inserted into Leg B. 
Sinoe the loading current if through NT turns constitutes a back 
mmf NTi y , it is shown as an mmf potential difference NTiy in
serted into Leg C. This mmf is not a fixed generator but depen
dent on other oonditions in the oore and loading circuit. It is ter
minated by a pair of nodes in anticipation of inserting appropriate 
equivalent network elements. Small ciroles are placed around 
these nodes to distinguish them from the solid-dot nodes repre
senting physical magnetic junctions. 

The equation for the eleotrioalloop in Fig. 5-7(a) is 

o dif 0 1 fo 
NT ¢ = L - + Rly + - I Y dt 

dt C 

whioh may be rewritten as 
d(NT if} 

¢=Cm --
dt 

(5-5) 

(5-6) 
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(a) 

(c) 

Fig. 5-7. Network representation of electrical loads. 

where 

em 
L 

N 2 
T 

1 G = 
R (5-7) 

Rm 
m N 2 

T 

Lm = NT2e 

The quantity NTi f is the mmf drop between the pair of circled 
nodes. The three terms on the right of Eq. (5-6) may be inter
preted as equivalent amounts of "magnetic current" adding up to 
the actual ¢ in Leg e. Three branches for carrying these "mag
netic currents" are shown on the right side of Fig. 5-7(b). Note 
that the magnetic representation for the loading circuit is com
pletely dualistic to the physical electric circuit. That is, the 
series combination of the linear parameters L, R, and e transforms 
to the equivalent parallel circuit consisting of C, G, and L, each 
multiplied by the appropriate scale factor as given by Eq. (5-7). 
The emf NT ¢ transforms to "magnetic current" ¢ (with scale 
factor liNT)' electric current if transforms to the mmf drop NTif 
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(with scale factor NT)' A voltage v inserted into the loop would 
transform into a magnetic current generator of value v/NT applied 
across the node pair in Fig. 5-7(b). 

The circled nodes associated with transformed electric cir
cuitry will generally be termed synthetic nodes in order to be dis
tinguished from physical nodes representing core junctions. The 
general equation for ¢ continuity at a synthetic node is 

L¢ = 0 (5-8) 
i 

where "ii¢ includes the equivalent magnetic currents corre
sponding to voltages in the electrical loop. (Equation (5-6) may be 
put into this form by transferring all terms to one side of the 
equation.) Integration of the terms in Eq. (5-8) results in 

(5-9) 

where K is a general constant. 
Equation (5-8) for a synthetic node is identical with Eq. (5-2) 

for a physical node. Equation (5-9) differs from Eq. (5-1), how
ever, since K is not necessarily equal to zero. The reason is that 
the values of equivalent ¢i deriving from branches that represent 
electric elements are actually only integrals of voltages, over 
arbitrary lengths of time, and hence need not satisfy the flux con
tinuity law. This fact makes it very important to distinguish syn
thetic nodes from physical nodes in networks. 

In the network of Fig. 5-7(b), there is one physical node for 
each core junction and a pair of synthetic nodes in place of the 
electrical loop. The same "ii¢i = 0 equation applies to both mem
bers of this pair of synthetic nodes. Figure 5-7(c) shows this 
network reduced to the equivalent unbalanced form, with boxes 
inserted in the branches to represent the three physical magnetic 
legs. The single synthetic node represents the coupling loop. 

Trans/ormation 0/ Coupling Loops. Let us next consider the 
transformation of a coupling loop that links two cores, as in Fig. 
5-8(a). Having previously shown how electrical elements transform, 
we now assume an ideal zero-impedance coupling loop, since it is 
a straightforward process to reintroduce electric impedance pa
rameters into the loop. In Fig. 5-8(b) , the coupling loop mmf acting 
on each core is represented by magnetic potentials NT iy and N R iy 
between synthetic node pairs cc' and dd', respectively. For NT = NR 

these potentials are identical and the two node pairs can be merged 
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directly into a single node pair, as suggested by the dashed lines. 
The network could then be transformed to an unbalanced form, as 
in the example of Fig. 5-7(c). 

(a) 

Fig. 5-8. Network representation of coupling loops. 

~c 

~c 
(b) 

o 

For most purposes where network manipulations are useful, it 
is sufficient to assume a coupling loop with a unity turns ratio, in 
which case we can transform the circuit in the straightforward 
manner shown above. Even if a loop with a nonunity turns ratio 
is required in the final circuit, it may be substituted for a unity
ratio loop after reverse transformation of the desired network into 
the circuit domain (Sec. 5-3). Although we thus need not consider 
the general transformation for NT ;;< N R' we shall show the nature 
of such a transformation. 

Merging of the node pairs in Fig. 5-8(b) can be accomplished 
for the case NT ;;< N R by transforming to another set of mmf and ;p 
variables in one network or the other while maintaining equiva
lent internal magnetic behavior. This transformation is performed 
here on the single-branch network on the right, since this is the 
simpler one. Referring to Fig. 5-9(a), we define an equivalent 

e' 
(a) ( b) 

Lav L av 
[DJ 0 n D 

Fig. 5-9. An equivalent receiver element for Fig. 5-8 that allows substitution 
of a unity-turns-ratio coupling loop. 
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branch [D], across whose terminals the mmf drop is equal to NT ie, 
matching with the left-hand network of Fig. 5-8(b). Transformed 
quantities are designated by square-bracketed subscripts, e.g., 
¢[D] in Fig. 5-9(a) replacing ¢D in Fig. 5-8(b). The meaning of 
"equivalent magnetic behavior" is that the average B and H fields 
in the branch remain unchanged, i.e., that 

B[ av _ B av 
D] - D (5-10) 

Given the area AD and average length lD av of Core D, we may 
then write 

whence 

and 

whence 

NTie F[D] 

NR if F D 

H[D]av l[DtV 

HDavlDav 

l av 
[D] 

N 
T l av 

- D 
NR 

B[DtV A[D] 

BDav AD 

(5-11) 

(5-12) 

The toroid equivalent of Branch [D] is shown in Fig. 5-9(b). In 
effect, we have replaced the coupling loop of turns-ratio NTINR by 
a loop of unity turns ratio N TIN T and scaled the area and the path 
length in opposite directions by the ratio n = N TIN R. Since AD and 
lD av scale by reciprocal factors, the volume AD lD av remains un
changed. 

With this equivalent toroid, the node pairs cc' in Fig. 5-8(b) 
and ee' in Fig. 5-9(a) may be directly merged and we arrive at the 
same simple network form as with the original core and a unity 
turns ratio. Processing from this point would be the same in either 
case. As already noted, however. we generally need not concern 
ourselves with this step of finding equivalent cores, but rather we 
assume unity turns ratio directly and make any necessary cor
rections as a final step. 
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5-2 Ladder and Lattice Networks 

We have seen above how to represent both magnetic and electric 
circuitry in a magnetic network. Let us now apply these principles 
to iterative core circuits of the type introduced in Chap. 4. Our ob
jective is to relate the nature of the circuit coupling to features of 
the corresponding network. An understanding of these relations in 
transforming from circuit to network will aid considerably in re
verse transformation from network to circuit. 

A stage of the MAD-N circuit of Fig. 4-8 is shown again in 
Fig. 5-10(a), without drive lines but with coupling-loop resistance 
and inductance indicated. Following the procedure outlined earlier 
in this chapter, the balanced network of Fig. 5-10(b) is obtained. 

(a) 

( b) 

(e) 

Fig. 5-10. Ladder network representation of the MAD-N scheme. 
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The network is in the form of a simple ladder, with two synthetic 
nodes per coupling loop and one physical node per core junction. 
By combining corresponding pairs of series branches along the two 
rails of the ladder, we may reduce the network to the unbalanced 
form of Fig. 5-10(c), in which there is one synthetic node per loop 
and one physical node per pair of junctions. Any balanced ladder 
network can be converted to such an unbalanced form in which one 
rail serves merely as the reference node. 

A level of complexity beyond the ladder is the lattice network, 
shown in skeletal form in Fig. 5-11, which in iterative form is 
nonplanar. An example of a circuit leading to a lattice network is 
shown in Fig. 5-12(a). This circuit (which is treated further in 
Sec. 5-5) transforms to the lattice network of Fig. 5-12(b), which 
is even more complex than the lattice of Fig. 5-11 since it also 
contains transverse branches between each node pair. In order to 
derive this network, we may proceed, as before, by representing 
each loop with node pairs aa' and bb' in Fig. 5-13(a). Branches 
01 and °2 , which represent toroids linked by only a single loop, 
may be immediately drawn as shown. Unlike previous examples, 
however, this circuit also includes cores that are linked by more 
than one coupling loop each. Core A2 , which is driven by the dif
ference of the two loop currents, may be represented by the two 
series halves shown in Fig. 5-13(b). Core 82, which is driven by 
the sum of the two loop currents is similarly represented by two 
series halves but drawn as in Fig. 5-13(c) in order to have mmf 
potential (i a + i b) applied to it in a closed path including both 
members. The final network of Fig. 5-12(b) is obtained by com
bining the various elements of Fig. 5-13. 

Fig. 5-11_ A lattice form of magnetic network. 

Quite independently of the iterative nature of the circuit here, 
additional discussion is needed on the type Elf coupling. For sim
plicity, consider the truncated circuit of Fig. 5-14(a), which has 
the balanced network representation shown in Fig. 5-14(b). If we 
attempt to reduce this network to unbalanced form by drawing a 
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( 0) 

( b) 

Fig. 5-12. A toroidal core circuit and its lattice network representation. 

b 0 ~A2 

+f 1 1 G c::::::::D 

la C1 C2 lb La 

-l J- iG <r::::::J , 
b' 

, 
~A2 0 0 b' 

( 0) (b) 

0 b 

+f ~B2 1 ~ B2 La Lb 

-1 1 , 
b' 0 

(c) 

Fig. 5-13. Elements in the transformation of Fig. 5-12. 
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(a) 

( c) 

Fig. 5·14. Illustrating a case of irreducibility of a balanced lattice network to an unbalanced 
network having no electrical loops. 

(a) 

(b) 

Fig. 5·15. Toroid realizations of the networks of Figs. 5·14(c) and (b), 
respectively. 
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ground rail and combining the two parts of A2 as in Fig. 5-14(c), 
we find it necessary to attach an ideal coupling loop, in order to 
assure that identical flux switching prevails at all times in both 
parts of B2• The loop current ix that flows will be such that ia - ix 
will exactly equal ib + ix, as otherwise there would be a difference 
in switching rates of the two halves of B2• 

In general, when one constructs a network using two (or more) 
branches to represent a single core leg, these branches must be 
linked by ideal coupling loops in such a way as to guarantee the 
same flux switching conditions in each branch representing part 
of a given leg. This is not necessary in the network of Fig. 5-14(b) 
only because of the symmetrical lattice form. By symmetrical, we 
mean that the two A branches are identical, including equal divi
sion of any drive mmf applied to.A, and likewise the two B branches. 

We see then that the network representation of a given circuit 
may validly take more than one form. (The network of Fig. 5-14(c) 
is a correct representation, even though it is not purely in a mag
netic form.) It is also true, as we shall show now, that there is 
generally more than one circuit realization of a given network. 

For example, if in Fig. 5-14(c), we let Nodes a and b each be 
replaced by a coupling loop and let each branch be replaced by a 
toroid, we obtain the circuit of Fig. 5-15(a). Provided the two B 
cores have the same initial state, this circuit must be equivalent 
in behavior to that of Fig. 5-14(a). Alternately, if we interpret 
each node in Fig. 5-14(b) as having a potential with respect to 
some isolated ground node, and then replace each node by a sepa
rate coupling loop, we obtain the circuit of Fig. 5-15(b). If we de
fined anyone of the nodes in Fig. 5-14(b) as "ground," then the 
corresponding loop in Fig. 5-15(b) would vanish, since a zero value 
of current would be implied. In this way we see that anyone of the 
four loops could be removed without changing the basic nature of 
the circuit. An intuitive reason for this is that only the values of 
current differences applied to the cores are significant, and these 
values are not constrained by arbitrarily fixing the value (in par
ticular, at zero) of anyone current. 

We can readily deduce a set of conditions on a toroidal-core 
circuit in order for it to have a purely magnetic network repre
sentation on the basis of just a single branch per toroid. Any given 
branch is connected to exactly two nodes, and it experiences the 
difference of potential between the two nodes. Hence, with each 
nodal potential representing a coupling-loop current, a single 
branch cannot possibly represent a toroid unless: (1) that toroid 
is linked by no more than two coupling-loop currents; and (2) the 
currents (if there are two) are of oppositely defined polarity. It is 
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clear, from the way it was derived, that the circuit of Fig. 5-15(b) 
satisfies these conditions, but that the circuits of Figs. 5-14(a) 
and 5-15(a) do not. 

5-3 Manipulation of Nodes; Reverse Transformations 

Given a circuit, we have seen how to convert it to magnetic 
network form. The reasons for making such a transformation 
are that it helps us to understand the operation of known circuits, 
or to develop new circuits that are basically different in the trans
fer method, or to find variations that permit easier physical real
ization. We would like to consider now some manipulations that 
increase the scope of physical realization possibilities. First we 
will consider the effects of reversing node types-from a physical 
node to a synthetic node, and vice versa-and then possibilities 
arising from simply inserting new nodes into a network. 

Exchange of Node Types. By reversing node types in a network, 
we can often obtain a pair of circuits that are magnetically equiva
lent but have very different physical form. For example, starting 
with a coupling loop that transforms into a synthetic node in the 
network, let us consider the effect of exchanging this node for a 
physical node (a physical core junction). There is actually no 
problem in substitllting a physical node for a synthetic node in this 
manner, if we assume a zero impedance coupling loop and if the sum 
of the flux values entering the node (linking the loop) is equal to 
zero. Whenever this condition is not satisfied, however, as in 
Fig. 5-16(a), then the synthetic-to-physical exchange can be made 
only by the artifice of adding a dummy branch across the node-pair 
representing the loop, as in Fig. 5-16(b), for the purposes of proper 
flux closure. The flux in this new branch must remain constant at 
the negative of the sum of flux values in the other branches attached 
to the same node. To prevent a flux change in this branch, it must 

(0) (b) 

Fig. 5·16. Flux constraints at synthetic and physical nodes. 
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either be held in a saturated state, e.g., by applying current to a 
winding on it, or else it must have a large threshold so that it 
functions like a permanent magnet relative to the rest of the 
network. 

There is also no problem in substituting a synthetic node for a 
physical node, if again we hypothesize zero-impedance coupling 
loops and require the initial value of total flux linking each coup
ling loop to be zero. If, as often occurs, some legs of a multipath 
element are required only for proper flux closure, as noted above, 
but do not otherwise switch at any time, then the toroids corre
sponding to these legs may be eliminated, the only effect being that 
2.i¢i tc 0 in coupling loops that would have coupled such toroids. 

The above comments on node reversals are based on the as
sumption of ideal coupling loops. Though generally not affecting 
the gross logical properties of a network structure, the finite re
sistance and inductance of coupling loops must be taken into account 
when the operation of a circuit is analyzed in detail, especially in 
connection with obtaining a bistable gain characteristic for a trans
fer circuit (see Chap. 3). In some cases of replacing a physical 
node by a synthetic node, one must also take care to avoid the 
phenomenon of "flux creep," where even small /'I,.¢ losses in loop 
resistance may accumulate over many cycles to result in a spur
ious first-order change of total flux in the set of cores linked by a 
coupling loop. The flux pumping arrangements of Fig. 2-6 make 
deliberate use of this creep possibility in a coupling loop with non
zero resistance. This phenomenon cannot occur at a physical node, 
since 2.i¢i in the attached branches is necessarily equal to zero. 

Once we can independently choose the node type for each node 
in the network, we have a vast array of possibilities for the specific 
form of the physical realization-from all-toroid circuits, i.e., all 
synthetic nodes, to a single magnetic element, Le., all physical 
nodes, and many possibilities between. Actually, networks with a 
mixture of physical and synthetic nodes are the ones most com
monly dealt with, and for good reasons. Toroidal-core circuits, as 
in Fig. 5-12(a) , require the largest number of individual cores and 
the largest amount of coupling wiring. A circuit consisting of only 
a single-core poses great fabrication problems for other than 
trivially simple circuits. (We consider a specific example of a 
s ingle-core circuit in Sec. 5-5.) Furthermore, /'I,.¢ -gain is readily 
achieved by means of coupling-loop turns ratio, and we rely on 
gain by this means for most transfer schemes. (In Sec. 5-4 we 
illustrate some network manipulations that lead to variations in 
the physical form of multileg core circuits.) 
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Insertion of Nodes. Let us consider two specific types of net-
work modification, namely, insertion of synthetic nodes and in
sertion of physical nodes. In the first case, we break certain 
branches by insertion of a synthetic node, usually to allow incor
poration of turns ratio for flux gain, but sometimes solely for the 
purpose of breaking a complex structure into parts that can be 
more readily fabricated. For an example of this type of insertion, 
consider the ladder network of Fig. 5-17(a), which has no synthetic 
nodes and therefore would call for realization as a single magnetic 
component. Suppose that a synthetic node is inserted in the center 
of each A branch having an even subscript, as in Fig. 5-17(b). The 
shunt loss branches associated with the loop parameters Rf and Ly 
are shown. Although the original branch Az has been divided into 
halves, and is realized in Fig. 5-17(c) as two legs in two different 
cores, the change in structure is not logically significant as long 
as coupling-loop losses are kept minor. (Should 6.¢ storage in 
Ly or 6.¢ dissipation in Ry become significant, compared to flux 
changes in the cores, then the alteration is logically as well as 

1\ 

10 ) 

Ib) 

Ie) 

Fig. 5·17. Insertion of synthetic nodes in an otherwise aU·physical-node network. 
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practically significant, since independent sWitching of the two 
halves of A2 is implied.) 

We see then that insertion of synthetic nodes can help divide 
a circuit into more manageable pieces. On the other hand, inser
tion of physical nodes is generally done in order to incorporate 
more elements of the network into a single core. For example, 
consider the iterative network and corresponding circuit of Fig. 
5-18(a) and (b). To incorporate the toroid 01 into one of the multileg 
cores, it must be associated with either the branch to the left, or 
with that to the right, of the synthetic node to which it is attached, 
as shown in Fig. 5-18(c) and (e), respectively. But in either case, 
an additional branch, El or F 2' must be inserted, thus generating 
the new physical node Xl or Y2' respectively. Figure 5-18(d) and (f) 
shows circuit realizations for incorporating the toroid to the left or 
right, respectively. Which of the two realizations is the more 
favorable depends upon the scheme in which the circuit is being 

(a) (b) 

(c) 

A A 

~ 
( e) (I) 

Fig. 5·18. Insertion of physical nodes to incorporate more elements of the network into a single core. 



84 DIGITAL MAGNETIC LOGIC 

used and on practical design details. If the coupling-loop resis
tance is very small, then the new branch (E1 or F 2) must switch in 
conjunction with A2 in the first case and with C1 in the second case. 
However, if resistance R were used in a first-order way (meaning 
a resistance type of scheme), then the new branch may sWitch in
dependently of the mate just indicated for it, and its possible use 
in the two realizations might be quite different. In any case, be
cause of the additional leg E1 or F 2' it can be seen that incorpora
tion of a toroid into a multileg core may do more than just result 
in fewer separate cores in the circuit, but may actually augment 
the capabilities of the circuit due to the increased complexity of 
the structure. Conversion from the circuit of Fig. 4-4(b) to that 
of Fig. 4-7(a) may be interpreted in this sense. 

5-4 Flux-State Sequencing in Magnetic Networks 

In Sec. 5-1, it was shown in an abstract way how one could cycle 
through a sequence of flux states in a simple network. In this sec
tion, we wish to consider in more detail the sequencing of flux 
states in specific netWorks. As a first example we consider op
eration of the MAD-N scheme of Sec. 4-5 from the netWork point 
of view. We then show how the network representation is useful 
in deriving a number of variations on this scheme. One of these 
variations in turn is used in the derivation of the flux-doubling 
scheme of Sec. 5-5, an interesting scheme whose network repre
sentation is that of the lattice of Fig. 5-12(b). 

MAD-N Sequencing in Network Form. In connection with Fig. 
4-8, it was indicated how the pattern of flux representing a binary 
one is propagated along the structure. To increase facility with 
the network representation, let us follow the same flux switching 
in terms of the network diagram of Fig. 5-19(a), in which branches 
representing coupling-loop impedance are ignored. As a starting 
point, we assume that a one is introduced from the left during the 
first 0 --> E pulse (Fig. 5-19(b». (Drive generatorswillbe indicated 
in later phases.) It is clear from the initial state of BE that no flux 
can be switched in it during this advance operation. Flux could 
switch through output leg DE' but there is no closing path of low 
magnetic impedance comparable to the path through C E' The re
sulting flux state is shown by the arrows inside the boxes of 
Fig. 5-19(c). which now portray the "present" flux state just 
prior to application of the Clear-O pulse. 
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Fig. 5-19. Tracing the flux-switching sequence in the network representation of the MAD-N scheme. 
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In response to the Clear-O pulse, flux switches in input ele
ments AE and BE' that is, locally about the input minor aperture. 
Flux could conceivably switch along the path GE CE as well, but the 
mmf drop across Branch BE is so small that one can assume 
negligible flux switching along the much longer path. 

The flux switching path during the subsequent E --> 0 pulse is 
indicated in Fig. 5-19(d). In accordance with the drive arrange
ment of Fig. 4-9, E --> 0 drive generators are shown in series with 
Branches DE' CE , and Go (the latter providing receiver bias). The 
switching path, which includes all three of the E --> 0 generators, is 
the same as in Fig. 5-19(b), except for being shifted one stage along 
the network. The subsequent Clear-E generator appears in series 
with the driven leg GE (Fig. 5-19(e». The resulting flux switching 
is again as in Fig. 5-19(c), but shifted one stage to the right along 
the network. 

We have now translated the entire shifting sequence to the mag
netic network representation. Of course, nothing new was added in 
the process, since we simply converted from one form of repre
sentation to another. We will find in the subsequent study, however, 
that this network form is very useful. After a bit of practice, one 
may use shortcuts such as not drawing boxes at all on each branch, 
and so on. This permits rapid sketching of different types of shift
ing schemes. 

Note in Fig. 5-19 that each branch is cycled once, i.e., switched 
two times, during a single shift cycle. This is generally true for 
transfer schemes, except where nonswitching branches are present 
solely for the sake of static flux closure. Hence, if there are n 
branches per bit length (excluding the static-closure type), there 
must be 2n switchings per bit length during one clock cycle, when 
a one is being transferred. Hence it is necessary that 

(5-13) 

where mi is the number of switchings during the ith phase. From 
Fig. 5-19(d) and (e) it is easy to see that in this example all the mi 

have the same value, namely, 5, and that indeed n = 10, that is, 
there are 10 branch elements per bit length. 

The closed paths required for flux changes define the least 
complex structure required for any particular scheme. The 
structure is usually augmented in one way or another, however, 
with nodes and branches that are not essentialto the basic scheme, 
but which allow certain desired types of physical realization and 
provide practical improvement for actual circuit design and 
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operation. For example, the network structure just considered is 
not the minimal one for this particular sequence of flux changes in 
the paths indicated, and thereby provides us with the opportunity to 
illustrate a number of different points, namely: 

1. network reduction by node and branch elimination, in order 
to arrive at the minimal structure; 

2. some advantages in the nonminimal structure; and 
3. the use of exchange and addition of nodes (and branches) in 

order to obtain an alternate nonminimal realization. 

All of these variations will involve the identical sequencing of flux 
states, although the alternate core shapes and circuits obtained will 
look quite different from the original ones. 

Stabler and Engelbart Variations. Suppose we first exchange all 
of the synthetic nodes of Fig. 5-19(a) for physical nodes, and then 
eliminate these nodes, as indicated in Fig. 5-20(a) , on the basis 
that two branches of the same material and cross-sectional area 
connected in series are functionally identical to a single branch. 
Conversion of this reduced network to all synthetic nodes now 
leads to the toroid-wire circuit of Fig. 5-20(b), which was de
scribed by Stabler (1961). 

Further examination of fig. 5-20(b) shows that Branches DE and 
Ao in fact serve no function necessary to the scheme of sequencing, 
except that the E -> 0 drive is applied on Branch DE (Fig. 5-19(d». 
However, an equivalent drive may be achieved with generators on 
Branches C E and GE (equivalent in the sense of providing the same 
net drive mmf in each network loop). Branches D + A may thus be 
eliminated and the pair of flanking nodes combined into one single 
node, as shown in Fig. 5-20(c). This network is minimum in the 
sense that no further reduction can be made for the sequence of 
flux-change paths involved. The toroidal-core circuit realization 
of this minimal network is shown in Fig. 5-20(d). This develop
ment was originally done by Engelbart (1959). 

Variations Avoiding Interaction of Adjacent Bits. Although this 
minimum form of the scheme can be successfully operated, we would 
like to point out the type of difficulty that one may encounter when 
eliminating nonessential branches as we have done in going from 
the network of Fig. 5-19(a) to the network in Fig. 5-20(a) and then 
to the one in Fig. 5-20(0). 

Let us consider the case of two adjacent ones propagating along 
the register. Suppose in Fig. 5-21(a) that a one is stored in the 0 
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( b) 

( c) 

GE Go 

--+0 O-+----
-8/ ~8---8/ ~8-

BE CE BO Co 

(d) 

Fig. S·20. The Stabler and Engelbart reductions of the MAD·N scheme. 
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Fig. S·21. Interaction of adjacent bits in the Engelbatt circuit. 
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stage, in which case Cores Bo and Go are in their set states. Sup
pose that a one is also stored in the preceding 0 stage to the left 
(not shown). At the next 0 -> E pulse, Core GE will be switched by 
loop current io (as indicated by the double-lined arrow), and a 
current i l will flow. Since Bo is in a set state (due to a one stored 
in the 0 stage), the loop current i l tends to simultaneously switch 
some flux in both Cores C E and Bo' as indicated by the double
lined arrows above both of them. But, any flux switched in Core Bo 
is pumped back into Core CE during the very next Clear-O pulse, 
and the final flux configuration is nominally the same as though 
Cores GE and C E had switched simultaneously in the first place (as 
would have been the case if the right-hand 0 stage had held a zero). 
However, although the final flux configuration is nominally the 
same, it is clear that there will be slight differences in tl¢ losses 
(because of the extra transfers through resistive coupling loops), 
depending on information states, and this may result in a problem 
of sensitivity to the information state. With either of the "aug
mented" schemes of Figs. 5-19(a) or 5-20(a), this interaction can 
be prevented because the "redundant" branches are in their clear 
states during this transfer and therefore can be unconditionally 
held clear. This would provide complete isolation between stages, 
except for small elastic flux changes induced by the holding mmf 
and by loop currents. 

The ability to hold these redundant cores in their clear states, 
so as to achieve inter stage isolation, is even more important with 
regard to back transfer. This can readily be seen in connection 
with Fig. 5-21(b). If during the Clear-O phase, we merely drive 
Core Go' then back current + i2 tends to set output Core C E (which 
could be very harmful since C E is to be a transmitter on the next 
E -> 0 pulse), in addition to clearing Core Bo as desired. To mini
mize switching of Core C E' we can drive Cores Bo and Go simul
taneously. If these cores could be switched at exactly the same 
rate, there would be zero voltage across terminals a-a', and hence 
no back transfer. However, it is difficult to ensure that two cores 
switch at exactly the same rate, especially when they are of dif
ferent size and when one is loaded during the SWitching (output 
circuit loading on Go) and the other is not. Note that it is not a 
sure solution to deliberately drive Bo harder than Go' since a 
current - i2 then tends to clear C E' which would be harmful in the 
case of CE containing a one. 

Isolation between bits in the nonminimal schemes is achieved 
by the series network branch (DE + Ao) between adjacent bit storage 
positions. In the minimum scheme of Fig. 5-20(c),no such element 
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separates CE from Bo' and tt is for this reason that these branches 
thus become simultaneously involved with the set state patterns of 
two bits. 

It may be noted that in the Russell scheme of Fig. 4-5(a), which 
has the identical circuit configuration as that of Fig. 5-20(d), the 
two singly linked cores in any loop are simultaneously in a set 
state only in connection with the same bit of information. (This 
results from setting and then immediately clearing the preceding 
coupling core on adjacent clock phases.) Hence the coupling cores 
of that circuit provide the type of isolation that is obtained for the 
present scheme only from the additional coupling cores occurring 
in an augmented version. (Still another scheme with this same 
circuit configuration and in which this type of isolation can be ob
tained in the minimal form is treated in Sec. 7-4.) 

Network Variations Resulting in Major-Aperture Coupling. We 
wish now to show how one may depart from the minimum structure 
of Fig. 5-20(c) in a way that produces a nonminimum network with 
some potential advantages (as well as possible disadvantages) rela
tive to the other nonminimal networks of this section, and that re
sults in a multileg circuit realization that is quite different from 
the original circuit of Fig. 5-10(a). 

Following the techniques of Sec. 5-3, let us introduce new nodes 
by dividing each G branch of Fig. 5-20(c) and inserting a new syn
thetic node between the halves as shown in Fig. 5-22(a). A physical 
realization of this network is shown in Fig. 5-22 (b), with turns 
ratio N TIN R inserted, and with clear states indicated by the arrows. 
Note that what we have been calling an 0 stage or E stage no longer 
corresponds directly to anyone given multileg element. Rather, 
"half of an E stage" appears on one multileg core, and the other 
half on the adjacent core, and similarly for the 0 stages. To 
emphasize this fact, the cores are labeled alternately as OE, EO, 
and OE. The flux-switching path for 0 -> E transfer of a one is 
shown by the dashed line in Fig. 5-22(a). 

The operation of both multileg versions, Figs. 5-10(a) and 
5-22 (b) , is clearly similar. However, the geometries are very 
different, and thus there could be important differences in details 
of operation-for example, in terms of soft-threshold properties 
(see Sec. 4-5). An obvious advantage of the present circuit is that 
the coupling loops link major instead of minor apertures. This 
makes physical wiring easier, and also, because larger wire could 
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Fig. 5-22. Achieving major-aperture coupling by inserting new synthetic nodes. 

be used, there would be greater flexibility in the design of the 
coupling-loop impedance. 

One other effect must be noted in order to underline an im
portant difference that can result from manipulation of nodes. 
During one transfer, there is a maximum net drive of 2Fo - Fo = Fo 
tending to switch flux in the backward direction (around the major 
aperture of the transmitter in Fig. 5-10(a)). Neglecting soft
threshold effects, this mmf would cause no backward major
aperture switching. In the circuit of Fig. 5-22(b) , however, the 
drive 2 F 0 applied to the transmitter tends to switch flux about 
the directly coupled half of the transmitter, since the effective 
threshold of this leg is just F 0/2 plus the portion of transmitter 
bias applied to it. As a result, coupling-loop current - i 1 flows. 
However, the resulting mmf NT i1 acting on the left-hand part of 
the E stage cannot exceed its effective threshold. Hence, except 
for parasitic impedance, the coupling loop presents a short circuit 
on the left-hand side of the EO core, which is thus largely pre
vented from switching. But the small amount of switching that 
would occur represents a flux loss to be accounted for in quanti
tative analysis. 
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With careful design, any of the nonresistance circuits in this 
section can. be made to operate reasonably well. These circuits 
are primarily of academic value, however, because for proper 
operation, the advance current pulses must be kept within too 
limited a range, at least in the case of existing cores. In the next 
section we illustrate an improved, "flux-doubling" scheme, which 
has actually been used for design of a prototype system. We will 
see how the network representation greatly aids in understanding 
the basic operation of this relatively complex but very intriguing 
scheme. 

5-5 The Flux-Doubling Scheme and Its Network Representation 

We now derive a scheme whose network representation is pre
cisely that of the lattice of Fig. 5-12(b). We will see that there is 
an inherent flux-doubling feature in the basic transfer scheme, 
which provides an important flux-gain mechanism. To derive this 
scheme, we return to the circuit of Fig. 5-21(b) where we noted a 
potential back-transfer problem during the Clear-O pulse if Cores 
Bo and Go switch at different rates. As a first step towards 
equalizing their switching rates, we might try using identical cores 
iIi these positions, as suggested in Fig. 5-23(a). The turns N4 and 
N5 (on the Clear-O winding) are adjusted so as to equalize as much 
as possible the net mmf on Cores Go and Bo during the Clear-O 
pulse. 

Note that the drive conditions for Cores GE and BE are very 
similar, GE being set by a counterclockwise loop current at 0 -> E 
drive time and BE by a comparable magnitude of clockwise loop 
current at Clear-O drive time. In fact, in order to prevent GE 
from being cleared by the latter loop current, positive bias wind
ings on GE and BE have been added to the Clear-O line. But out
put conditions for Cores GE and BE are still very different. Spe
cifically, any flux switched in GE is coupled on ahead, whereas flux 
switched into BE "dead ends" there, being used merely to balance 
the t.¢ from GE to prevent back transfer during Clear-E. The 
question arises as to whether we can make Core BE comparable to 
Core GE relative to output as well as input, i.e., make BE a coup
ling core also. Actually, all that is required is to thread the trans
mitting ends of the coupling loops through the B as well as the G 
cores, as indicated by the dashed lines in Fig. 5-23(a) and by the 
solid lines in Fig. 5-23(b), where the coupling circuit is abstracted 
and redrawn more symmetrically. Since loop current during the 
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Fig. 5·23. The all·toroid flux doubler. 

o ... E phase now negatively links Bo in addition to Go' Bo is posi
tively biased (dashed winding in Fig. 5-23{a» to oppose the clear
ing tendency of loop current. Further, based on symmetry, we can 
now set N5 = N4 , achieving a circuit described by Bennion, et al. 
(1961). 

Demonstration of the Doubling Effect. The above alteration makes 
it much easier to switch Bo and Go at approximately equal rates, 
but along with this we have actually achieved a much more in
teresting property. We wish to show that inherent doubling of b.¢ 
is now achieved during transfer (and hence that we do not require 
NT/NR > 1 in order to achieve a transfer ratio G > 1). As an aid, 
note first that the coupling circuit of Fig. 5-23(b) is exactly that 
of Fig. 5-12(a), and hence the network representation is the lattice 
network of Fig. 5-12(b), redrawn in Fig. 5-24(a). To verify that 
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Fig. 5·24. Flux state sequencing in the flux doubler. 
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flux doubling actually occurs, let us review the sequence of flux 
transfers during a half cycle of operation. Suppose that we ini
tially have one unit of set flux stored in each of the Bo and Go 
branches and two units in Branch Co' and suppose that these quan
tities represent less than half the capacities for each of the 
branches. Let the arrows inside the boxes of Fig. 5-24(b) repre
sent the directions of set flux. The 0 -> E drive causes the two 
units of flux in Co to be transferred to GE (Fig. 5-24(c». Then the 
Clear-O drive causes the two units of flux stored in Bo and Go 
together to be transferred to BE (Fig. 5-24(d». During these two 
phases, the flux switched into GE and BE is coupled additively into 
CE , resulting in four units of flux being set into CEo Thus, after 
this half cycle of operation, we have the E branches set comparably 
to the initial state of the corresponding 0 branches, but with twice 
the original amount of signal flux. These statements of course 
apply also to the corresponding cores of Fig. 5-23. 

As the flux state is transferred along the register, the level 
increases until saturation of either the C cores or the B and G 
cores causes limiting. For steady-state register operation, this 
limiting effect ensures that overall unity gain is achieved, though 
we start with flux gain of 2:1 before losses are counted, as com
pared to 1:1 for any of the previous schemes, assuming the same 
turns ratio in each case. 

Derivation of the Multileg-Core Doubler. Although the back 
transfer problem was reduced in converting to a doubling scheme, 
the toroid doubler of Fig. 5-23 still suffers from potential prob
lems of adjacent-bit interaction. Let us now develop a much im
proved, multileg-core version of the doubler. We could proceed by 
adding branches to the network a step at a time in order to mini
mize interaction; instead, however, let us start on a different track 
and compare the results. 

Suppose that we wish to utilize a double-transmitter arrange
ment, as in Fig. 5-25(a), in order to increase flux gain. Then we 
must ensure that these elements are both in the same state before 
transmission. One technique for accomplishing this is to transmit 
from one element to the other before transmitting from both to
gether. Such an arrangement is indicated in Fig. 5-25(a), the local 
transmitter-to-transmitter transfer being affected by a pulse 
labeled TT. The sequence is: (1) read into the top element; 
(2) transmit to the lower element: then (3) read from both simul
taneously. The TT transmission can take place during clearing of 
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Fig. 5-25. Multileg-core flux doubler. 

the previous stage, so that no extra time is actually required for 
this operation.) 

As indicated in Fig. 5-25(b), the TT loop need not connect with a 
separate aperture of the upper core but in fact can connect to the 
same input aperture. Not only does this reduce" the number of 
apertures required, but it improves the operation. Assuming a one 
had been received during the previous E -> 0 transfer, then during 
the simultaneous Clear E and TT operation, negative input current 
(resulting from the clearing of the previous E element) aids in 
switching around this aperture. 

A flux-transfer arrangement based on this scheme is indicated 
in Fig. 5-25(c). An NT/NR ratio of unity has been shown, in par
ticular NT = N R = 1, which is convenient for such a scheme. The 
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TT loops have been drawn symmetrically here, and a second set of 
input windings have been suggested by the dashed lines. (In terms 
of the design example of Sec. 10-5, we will see that this doubler 
circuit leads naturally to the formation of a two-input OR function 
x + y, as indicated by the labeling of input and output variables in 
Fig. 5-25(c).) 

There is a basic similarity of the toroid doubler and the multi
leg version. Legs C1 and C2 of Fig. 5-25(a) play the role of the 
output toroid C in Fig. 5-23. During the input operation, a unit of 
/",.¢ is switched in Leg C1 , and stored there, then /",.¢ is switched 
in Leg C2 , and stored there, and then both units of /",.¢ are trans
mitted simultaneously to the next receiver. Legs 01 and 02' which 
are needed for static flux closure in the multileg elements, have 
no counterpart in Fig. 5-23, though they provide extra isolation 
between stages, as discussed in connection with Fig. 5-21. Thus, 
again, the multileg version has the advantage of decreased bit
interaction problems, as is usual when using input apertures. The 
multileg version also has the easy facility for adding an extra input, 
as in Fig. 5-25(c), which is important in general logic circuits. 

Continuous Magnetic Circuit. A magnetic network with only 
physical nodes transforms to a continuous circuit with no coupling 
loops at all. Though such a circuit is conceptually simple, physical 
realization is very difficult. Further, with no coupling loops 
present in the circuit, we must obviously rely on some other 
/",.¢ -gain mechanism to achieve a transfer ratio > 1. The flux
doubling effect is an ideal one for this purpose. 

Assume that all synthetic nodes in the flux-doubler network of 
Fig. 5-24(a) are replaced by physical nodes. The nonplanar circuit 
realization is then as shown in Fig. 5-26, with the clear state in
dicated, and with the method of driving suggested by the 0 -> E 
drive line. The doubling effect takes place in this structure in 
exactly the fashion described in connection with the network dia
grams of Fig. 5-24, thus making it unnecessary to rely on any 
other gain mechanism to achieve G > 1. 

One problem in designing an operating circuit in this form is 
the need for built-in flux clipping, or some other nonlinear 
loss mechanism, for making G < 1 for low values of /",.¢. But this 
problem is generally not difficult to solve so long as one has 
ample inherent /",.¢ gain to begin with, as is the case here. Such 
structures have been designed and analyzed relative to flux-clipping 
ratio and other parameters, and special devices have actually 
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been fabricated, with laboratory operation demonstrated in one case 
of simulation with a planar continuous structure (Van De Riet and 
Bennion, 1965). However, fabrication for practical use appears to 
be infeasible at this time. 

O .... E Bias Drive 

(at E+O time) 

Fig. 5-26. Continuous magnetic circuit. 

5-6 Summary 

In an electrical diagram of a core-wire circuit, current flow 
can be traced simply by following the lines representing electrical 
conductors. It is generally not easy, nowever, to follow the flow of 
flux change. By converting to a magnetic diagram, however, where 
the lines now represent magnetic conductors, it is equally easy to 
follow flux flow. Since flux linkage is our primary signal param
eter, the ability to quickly sketch magnetic equivalents of core
wire circuits is very useful. 

In Secs. 5-1 to 5-3 we have shown how to convert from an elec
trical circuit to an equivalent magnetic network and to reconvert 
from a network to its corresponding circuit form. With a few basic 
principles, the conversion and reconversion is actually quite simple 
and the rewards of mastering the techniques well warrant the 
effort. Not only is the network representation useful in circuit 
analysis, but it provides a useful domain in which to vary the basic 
structure and derive thereby new variations and new schemes. In 
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other words, it is often more convenient to work in the magnetic 
network domain than in the electric circuit domain. By means of 
the network representation, it is often easy to show the equiva
lence between circuit forms that on the face appear to be very 
different. Also, it is simpler with network techniques to show how 
to combine various core elements, e.g., simple toroidal cores, 
into more complex multileg cores. 

In Secs. 5-4 and 5-5, some new core-wire scheme variations 
are derived, partly as an exercise in network manipulation. The 
flux-doubling scheme of Sec. 5-5 is of particular interest in that 
it well illustrates the power of the network representation as an 
aid in understanding the basic operation of a relatively complex 
scheme; further, this basic scheme is utilized in construction of a 
core-wire logic system that is discussed in Sec. 10-5. 
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This scheme was developed independently by Briggs and Lo (1961), 
Giano1a (1960), Bennion (1960), and possibly others. Because of the 
importance of the MAD-R scheme, three different derivations of it 
are presented in this chapter, as summarized in Fig. 6-1. Though 
the reader may bypass the second and third of these without any loss 
of continuity, each derivation emphasizes different aspects of the 
circuit. 

Following these derivations, the remainder of the chapter is 
concerned with design techniques for this type of circuit. Though 
the basic circuit form is quite simple in appearance and can 
readily be made operable, considerable care is required to obtain 
optimum performance. The design technique presented here is 
rather bulky and cumbersome (typical of highly nonlinear pro
cesses), though, in fact, it is rather simple to apply, with a little 
practice, and highly useful. By following this procedure, one almost 
invariably obtains a near-optimum design in short order. The 
method is a mixture of cut-and-try and rule of thumb based on 
empirical data, though there is plausible reasoning and purpose 
behind each step, which we try as much as possible to present as 
we go along. 

MAD -N scheme 

=©=©= 
(Fig.4-8) 

First derivation 
=====> 

Russell-l scheme 

MAD-R 

(minor-aperture input) 

~ U- ===?- ~--NW---(\'(\_ .JZY~- ~cond derivation 

(Fig 3-9) MAD-R 

S,,,,,,"',h""tdi,'" R' y~(. t t) ]JLDJ uJCQJ / - mOjor-aper ure Inpu 

===? Third derivation 
- -NV' -

(Fig.3-IO(a)) R 

Fig.6-1. Outline of three different derivations of the MAD-R scheme. 

6-1 Derivation from MAD-N Scheme 

For convenience, the circuit of the MAD-N scheme is redrawn 
in Fig. 6-2(a). For this circuit, recall that the advance currents 



102 

E 

0 

NT 

O--E 

Clear 0 

(a) 

0 

O+E and Clear 0 

( b) 

o 

Prime 0 
( c) 

DIGITAL MAGNETIC LOGIC 

E 

NR 
it 

Rt E 

E 

Fig. 6·2. Derivation of the MAD·R circuit from the MAD·N scheme. 

must be great enough to cause transfer of flux with unity gain for 
the one state, yet are strictly "threshold-limited" at high levels 
in order not to cause spurious setting of a transmitter in the zero 
state. In the interest of enlarging this operating range, note that 
if it were possible to transfer flux to the receiver simultaneously 
with clearing the transmitter, then the drive current would no longer 
be threshold-limited, since a zero flux state in the transmitter 
could not be inelastically disturbed. To be able to operate in this 
manner, we must, first of all, reverse the polarity of one end of 
the coupling loop, as shown in Fig. 6-2 (b) , where the desired flux
switching paths during 0 .. E are indicated. Second, to achieve the 
required transmitter state prior to 0 .. E transfer, flux must be 
reversed locally around the output aperture (after still earlier 
setting), as indicated in Fig. 6-2(c). The polarity of induced loop 
current during this local flux reversal is such as not to switch the 
receiver (Core E), and the transmitter flux change during this 
phase is dissipated in loop resistance Re. Thus a resistance type 
of scheme is indicated. 
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The operation indicated in Fig. 6-2(c) is commonly called 
priming and the associated drive current is labeled Prime O. This 
phase of operation is analogous to the "restore" phase of Secs. 
4-1 to 4-3, though here the elements being restored and the ele
ments that we must avoid disturbing in the process are legs of 
multiaperture cores. We will see in a moment why the prime 
phase, like the restore phase, is relatively slow, so that what
ever advantages are to be gained by this scheme relative to the 
MAD-N scheme are at the expense of some loss in speed of 
operation. 

The priming mmf in this circuit is provided by current through 
Winding N p in the output minor aperture. The winding N b is used to 
bias the main aperture of the core so as to increase the maximum 
allowable priming mmf. Since the main-aperture mmf due to prim
ing current must always be kept below main-aperture threshold, 
priming current can simultaneously be applied to the receiver 
elements without disturbing them, as indicated by the dashed 
windings in Fig. 6-2(c). In fact, the priming current may even be 
left on continuously, as its effects during the transfer phases are 
readily overcome by the advance currents. Thus, priming may be 
achieved with a single dc current applied to all cores, as in the 
case of the restore currents of Secs. 4-1 to 4-3. Pulsed driving is 
required, therefore, for only two of the four phases of operation 
and is optional for the other two. 

In summary, the basic clock cycle is Prime a, a -> E, Prime E, 
E -> a, .... The effect of priming, following an E -> a transfer, is 
to switch flux locally about all a-core output apertures that were 
set during the E -> a transfer. (Flux is dissipated in loop resistance 
during this phase.) Flux transfer during the subsequent a -> E 
transfer, which simultaneously clears all a-elements, is indicated 
in Fig. 6-2(b). An important point to note is that the flux switched 
in a core while it is being cleared links the back loop, thereby in
ducing a back-loop current (ib in Fig. 6-2(b» in a direction to set 
(hence disturb a zero state) in the previous receiver core. To 
prevent such switching, a Hold-E winding of NH turns is placed on 
the output leg of each receiver core. 

A physical wiring arrangement for this circuit that has some
times been used is shown in Fig. 6-3 (AMP, 1960; Sweeney, 1961), 
where the multileg elements are shown in cross section. Typical 
numbers of turns are indicated on each winding. The clear wind
ings are each wired straight through the main apertures of each 
bank of cores. Because NH , Nx' and Np generally have equal values 
(in this case 3) they are realized by a single common winding 
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o Cores =;> 
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Fig. 6-3. A physical wiring arrangement for the MAD-R circuit. 

wired straight through the output apertures of all the cores. The 
two phases of clock-pulse currents may be provided by two 
triggered switches (e.g., four-layer diodes, silicon-controlled 
rectifiers, transistors, thyratrons), discharging damped half- sinu
soidal pulses from a common RC charging circuit. The dc source 
need not have a very large source resistance for dc current, but 
should be well isolated from the pulse sources (as in Sec. 2-8, 
for example, by the use of a series inductance). For applications 
in which zero standby power is desired, it is possible to arrange 
the wiring such that the very same current that recharges the 
driver capacitor C simultaneously constitutes the prime current 
as well. 

Current Tolerances Versus SPeed. We will now derive an ap
proximate value for the upper limit on speed of this circuit, rela
tive to the MAD-N scheme, and then consider what has been gained 
in terms of drive current tolerances. The clearing phase for the 
MAD-N scheme and the advance phase for the MAD-R scheme can 
both be operated at relatively high speed and high tolerances, and 
hence we need compare limits only on the advance phase for the 
former and the priming phase for the latter. 

First, consider the speed of the MAD-N circuit (Fig. 6-2(a». 
With the 0 -> E current equal to its maximum value Fo' the receiver 
is biased to threshold, and hence its rate of SWitching can be 
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estimated by 

;PR = p<F - Fo) = p(NR if + FO - FO) = pNR if (6-1) 

assuming the core model of Sec. 1-1. Assuming the transmitter 
minor-aperture path length to be ideally zero, so that the advance 
mmf 2 F 0 is fully bucked by coupling-loop mmf NT i r, then ir = 

2Fo/NT' or 

(6-2) 

as an upper limit, assuming a unity turns ratio, that is, NT = Nw 
The corresponding minimum value of switching time T is equal to 
2¢/¢Rmax , that is, 

Tmin 

¢r 

pFo 
(6-3) 

For the MAD-R scheme, the maximum current coupled into the 
loop during priming is also 2 Fo/NT , but the emf NT;PT must now be 
balanced by dissipation in R r; hence NT;PT = ir R r or 

(6-4) 

By integration of Eq. (6-4) over a priming time T, we obtain the 
value 

T (6-5) 

where Rtax is the largest value of Rr for which G :::. 1 can be ob
tained during advance time. From Eq. (2-9), we see that even with 
arbitrarily large advance drive to remove the effect of receiver 
threshold, G = 1 implies 

R max e 

From Eqs. (6-5) and (6-6) 

T 

(6-6) 

n - 1 pFo 
(6-7) 
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where n = NT/NR• By minimizing T with respect to turns ratio n, 
we find 

T min (6-8) 

with n = 2. 
Based on this highly idealized comparison, we see from Eqs. 

(6-3) and (6-8) that the MAD-R scheme is on the order of four 
times slower than the MAD-N scheme. This approximate result 
can be shown to be true for comparison of many other resistance 
and nonresistance schemes as well. 

In deriving approximate current tolerances for the two schemes, 
we again need consider only the priming drive for the MAD-R scheme 
and the advance drive for the MAD-N scheme, since only these cur
rents have strict upper, as well as lower, limits (governed by the 
core threshold). At the upper limits, either spurious setting in the 
zero case or spurious unsetting in the one case OCCUi'S. The 
upper limit on mmf is the same in both cases, namely, an amount 
related to the minimum path length 1M min around the major aper
ture. However, the lower limit on mmf, especially for very low
speed operation, can be much more favorable in the case of prim
ing, since the priming mmf need be only large enough to switch 
flux slowly around the output aperture, whereas for the MAD-N 
scheme, advance mmf must switch the transmitter rapidly enough 
to set the receiver without undue losses in the coupling loop. The 
priming current ratio Imax/1min is therefore directly proportional 
to the IMmin/1m max path-length ratio, where 1m max is the maximum 
length of the flux-switching path around the output minor aperture. 
In contrast, as we decrease advance mmf for the MAD-N scheme, 
and realistically assume that receiver bias decreases along with 
it, enough loop current must be induced to bring the receiver up to 
threshold from the lowered bias point and to supply excess mmf 
for switching at some minimum rate. Practically speaking, an ad
vance current ratio Ima/1min of more than about 2/1 for the MAD-N 
scheme is difficult to obtain, even for large values of path-length 
ratio IMmin/lm max. Yet with very practical values of this ratio, say 
about 4/1, priming current ratios Ima/1min of 6/1 and even greater 
are obtained. (Such large current tolerances are particularly im
portant for operation over a wide temperature range, because of 
the shift of threshold with temperature •. A detailed analysis in 
Sec. 6-8 demonstrates how such large tolerances are actually 
achievable.) 
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6-2 Second Derivation, from Russell Type-I Scheme 

This derivation helps to emphasize the importance of holding 
output legs of receivers against back transfer and also the ad
vantages of the MAD-R circuit relative to similar schemes using 
only toroidal cores. The circuit of Fig. 3-9, with one series diode 
per loop, is redrawn in Fig. 6-4(a), and its corresponding core
wire version, referred to as the Russell Type-I scheme, is drawn 
in Fig. 6-4(b). This circuit tends to be marginal in operation, be
cause of a back-transfer problem (Sec. 4-2). We find that one type 
of alteration to remove this problem leads naturally to the MAD-R 
scheme, emphasizing its advantages in the use of "holding" to 
avoid back transfer. 

The magnetic network for this circuit is shown in Fig. 6-4(c). 
Flux directions within the elements are those resulting from one 
transfer during 0 ~ E, that is, setting of GE and DE' with subse
quent "priming" of Core DE' that is, slow clearing of Core DE' 
with dissipation into the shunt resistance. The back transfer prob
lem is now obvious. During the subsequent E -> 0 transfer, there 
is just as much tendency to switch the previous Go element as the 
forward Go element, as suggested by the dashed sWitching path. 
The forward direction is favored only because of the asymmetry 
resulting from NT> N R. 

To eliminate the back transfer problem, it is necessary to pro
vide an effective shunt path between the GE branch and the left-hand 
Go branch. The shunt branch Do is in the desired position, but is 
already saturated in the intended switching direction. However, 
loop resistance can also serve as a shunt path. To take advantage 
of this fact, let us add (in each stage) a new series magnetic 
branch labeled H (to anticipate the fact that we will use this new 
branch for holding against back transfer). In Fig. 6-4(d), if the 
clear state of the new Ho branch is in the direction indicated, then 
it can be unconditionally held during the E -> 0 transfer, thereby 
eliminating any chance of back transfer. Now to provide a suitable 
shunt path for transfer, R~ is added at the new coupling-loop node 
s. (We will see ina moment that resistance Rm is no longer needed.) 
To obtain proper E -> 0 transfer, flux must be set into the corre
sponding new branch HE prior to E ~ 0 drive. In this case, the 
flux switching path during E ~ 0 transfer, as indicated in Fig. 
6-4(d), is through R~, GE , and HE' to Go and Do (not shown) in 
the next stage. Prior reversal of flux in branch HE is easily 
achieved by altering the priming operation. In the original scheme 
of Fig. 6-4(b) and (c), the DE core is primed immediately after 
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Fig. 6-4. Derivation of the MAD-R circuit from the Russell Type-J scheme. 
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o -> E transfer, the flux being dissipated in R. If we eliminate the 
corresponding branch Rm , however, as in Fig. 6-4(e), then branch 
DE can be restored only by simultaneously switching flux in the new 
element H, with an identical amount of flux being dissipated in the 
new resistance branch R~. Reverse transformation of the network 
of Fig. 6-4(e) with the E -> 0 windings of Fig. 6-4(d) added, yields 
the circuit of Fig. 6-5(a), which has previously been described by 
Dick (1963). (Additional windings for priming the 0 cores and for 
the 0 -> E transfer are of course also required.) 

Prime E 

E .... O Hold Drive 
(a) 

E ...... O Hold Drive 
(b) 

Fig. 6·5. An all-toroid version in (a), and a multileg verion in (b), of the MAD-R network 
of Fig. 6-4(e). 

Returning again to Fig. 6-4(e), now assume that the nodes labeled 
t are all converted to physical nodes, with the G branches doubled 
in width to satisfy the constraints of flux continuity. Reverse 
transformation leads to the circuit of Fig. 6-5(b), which is iden
tical to that of Fig. 6-2(b) except for the use of seperate input 
apertures. (Though the use of a minor aperture for input is not 
actually required for proper MAD-R operation, this practice leads 
to certain advantages that will be discussed in Sec. 6-4.) 

The circuit of Fig. 6-5(a) is the all-toroid version of the MAD-R 
circuit using major-aperture input. Although this circuit is func
tionally equivalent to the multlleg version of Fig. 6-5(b), there is 
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significant operational advantage, relative to the priming operation, 
in favor of realization with multileg cores. This results from the 
fact that there will always be some finite resistance R in the loop 
linking Cores D and H in Fig. 6-5(a), and Core H will exhibit 
some finite amount of sWitching in response to any mmf larger than 
its own individual threshold. To minimize the amount of this 
switching in the zero state, we oould oonsider the following 
measures (though, all in all, the multileg oirouit provides a muoh 
greater oombination of flexibility and performance than the all
toroid version of the same scheme): 

1. Bias Core H only to its own threshold or less. (Practically 
speaking, this may mean no bias at all since H is suoh a small 
core.) This would result in a very signifioant reduction in prim
ing to1eranoes and speed, however, sinoe Core H would now be 
driven only from the loop ourrent resulting from the sWitohing of 
Core D, and there would be a significant 1'1f/J loss in any coupling 
resistance R. This would place a lower limit on the rate of prim
ing. These problems can be alleviated somewhat by using a 10wer
threshold material for Core H only, as indioated by Dick (1963). 

2. Apply do priming to both cores (H and D), but operate the 
circuit near the maximum rate to minimize the time for spurious 
flux switching in Core H before the latter core is cleared again. 

3. Employ pulsed rather than dc priming. Even here, however, 
there would tend to be some increase of the zero 1'1f/J level, be
cause of some flux switching in Core H during the relatively long 
priming period, as well as a reduced one level because of flux loss 
in R during priming. 

6-3 Third Derivation, Based on Series-Shunt Core-Diode Circuit 

Here we return to the circuit of Fig. 3-10(a) with a series and 
a shunt diode in each loop, redrawn in Fig. 6-6(a), followed by its 
equivalent core-wire oircuit in Fig. 6-6(b), and its network repre
sentation in Fig. 6-6(c). Let us try to alter the circuit so as to 
eliminate the need for more than one loop resistance per stage. 
Comparing the network of Fig. 6-6(c) with that of Fig. 6-4(e), we 
see that the main difference is the reversed clear-state polarity 
of the Sh and H branches. Apparently then we can eliminate the 
need for one resistance, namely Rm , simply by reversing the po-
1arityof Branch Sh in each stage. 
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Fig. 6-6. Derivation of MAD-R from the series-and-shunt diode transfer scheme. 

Let us consider why the clear state of the Sh elements must be 
reversed if we are to eliminate one of the loop resistances. The 
question is whether the circuit can be rearranged so as to elimi
nate the need for resistance R. If so, when the series element Se 
is restored by priming, a counterbalancing voltage drop in the loop 
must be provided either by the switching of the previous G element 
or the following Sh element. Since we do not wish to disturb the 
state of G, after having just read into it, the only alternative is to 
switch the Sh element simultaneously with the Se element, and it is 
for this reason that the clear state of the Sh element must there
fore be reversed from that shown in Fig. 6-6(c). 

Through this route we see that if we try to view the reversed 
Sh branch as a shunt "diode core" and if we were to try to draw 
an equivalent core-diode version, the shunt diode would point in 
the opposite direction from that in the original core-diode circuit 
of Fig. 6-6(a). This new circuit could not work, obviously, since 
forward transmission would be short-circuited. Furthermore, 
pointing in this new direction, the shunt diode would not even pre
vent back transmission. Thus, the core-diode circuit correspond
ing directly to the MAD-R circuit is not operable. Proper opera
tion is achieved in the core-wire version only because, viewing S 
again as a "diode core," it is possible to effectively reverse the 
polarity of the core operating as a diode (recall property (3) of 
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Sec. 4-1). By making use of this different capability of a core 
versus a diode, the MAD-R circuit is actually a significant im
provement over the core-wire circuit of Fig. 6-6(b), the most 
similar scheme that does have a core-diode equivalent. 

6-4 Minor-Aperture Input and Output 

Input. In the first derivation of the MAD-R scheme, minor
aperture input evolved directly from the use of a separate input 
aperture in the MAD-N scheme. In the two subsequent deriva
tions, input was applied directly to the major aperture. Clearly, 
both methods of input are functionally identical, though the use 
of an input aperture affords some extra design and operational 
flexibility: 

1. Effective clipping can be obtained with minor-aperture input, 
as will be described in Sec. 6-9. 

2. It is possible to prime the input aperture simultaneously 
with the output aperture so that during subsequent advance (when 
the transmitter is being cleared) there is no flux switched through 
the input winding. This has the advantage of decreasing the re
quired drive strength and eliminating the need for holding against 
back transfer. A disadvantage is a reduction in the upper prime
current limit, because mmf applied around both apertures are 
additive relative to major-aperture setting. If the input and output 
apertures are primed separately, however, then the range for each 
priming current is as before. 

3. Several input signals can be applied to a core without first
order cross talk. If the various inputs each linked the main aper
ture, any flux switched in the core would link each input winding. 
With separate inputs applied to independent minor apertures, how
ever, such linking is largely avoided. 

Nondestructive Transfer. There are also important variations 
that can be applied at the output. Previously, transmission was 
accomplished by clearing the transmitter element. However, it is 
possible to effect transfer nondestructively, i.e., without clearing 
the transmitter core, by driving only around the output aperture. 
An appropriate drive arrangement in this case is the figure-eight 
winding indicated in Fig. 6-7, where it is assumed that after 
priming both output apertures, we drive one set of receivers 
during the (E ~ 0)1 pulse, a second set during (E -> 0)2' and only 
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then clear the transmitter. Although this arrangement requires 
extra drivers, the increased flexibility obtained can be useful, 
for example, for high "fan out" in certain logic circuits. 

AC Readout. We have seen above how 
nondestructive transfer within the system 
can be achieved by switching flux only 
locally around an output aperture of the 
transmitter. We can also apply an alter
nating waveform (e.g., a sine wave, typi
cally in the range of 0.1 to 5 megacycles) 
to a minor aperture, to obtain continuous 
nondestructive readout from a core. With 
the drive amplitude adjusted to avoid Fig. 6·7. Separating the Advance 

switching around the major aperture, the and Clear functions in the trans-
mitter. 

output ¢ level is low and primarily elas-
tic in nature for a zero output from a cleared core (Fig. 6-8(a)), 
but is relatively high from local inelastic switching for a one 
output (Fig. 6-8(b)). The output power obtainable from typical 
cores used in logic circuits is of the order of a tenth of a watt 
and hence may be used directly to drive incandescent bulbs or to 
trigger power devices such as relays. (There is some discussion 
in Sec. 6-9 regarding the shaping of minor apertures in order to 
obtain a large one/zero readout ratio.) 

Ac drive 

~. 

¢out 

(a) 

Q Set 

( b) 

Fig. 6-8. Continuous nondestructive readout from a minor aperture. 

Aside from merely indicating the internal binary state, minor
aperture output may be used for actual switching of analog signals 
(e.g., audio signals), with good fidelity, as described by Crane and 
English (1963), or for other control purposes. This on-off control 
capability is an important feature of systems based on unipolar 
schemes using multileg cores. 
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6-5 An Approach to Circuit Design 

The constant-p- core model of Sec. 1-1 is useful primarily in 
the demonstration of principles, and for obtaining rough quantita
tive values for switching time, drive-current levels, average 
switching voltages, etc. Its use in Sec. 6-1, for example, provided 
a ratio for limits of switching speed for the MAD-R and MAD-N 
schemes. In no case, however, are realistic waveforms of circuit 
variables, e.g., coupling-loop current, obtained analytically by using 
the constant-p- model. The model is thus inadequate for detailed 
circuit design, which depends on transient analysis. 

In Chap. 12, accurate engineering models for core switching 
are described, and their use in computer-aided analysis is illus
trated. Though these models are quite complex, the obvious way to 
future analysis and design of core-wire circuits is the further de
velopment and application of such models and computer methods. 
In the remainder of this chapter, we wish to describe a manual 
method, which, though rather simple, has nevertheless been ex
tremely useful in circuit design. 

In the past, it has been found possible to design many core 
circuits without dependence on precise analysis, though in some 
cases such design amounted to nothing more than the making of 
educated guesses followed by laboratory testing, typically followed 
by several additional cycles of cut-and-try methods. Without ap
propriate models, it is impossible to do away with the phase of 
laboratory testing of circuits followed in general by some re
design. In the case of MAD-R circuits, certain methods of measure
ment and use of test data have been developed that make this pro
cess quite systematic, and which have resulted in consistently 
good design procedures with a surprisingly small amount of 
iteration. With well-designed cores (see Sec. 6-9), one can 
readily design MAD-R transfer circuits that have virtually no 
upper limit on advance current and with very wide prime-current 
range, at least for room-temperature use. 

The primary objective in design of the coupling loops and 
advance windings is minimization of voltage and current require
ments on the driver while maintaining wide drive-current tol
erances. This aspect is treated in Sec. 6-6. Procedures for ac
quiring core data and for testing circuits in order to find and 
adjust values of design parameters are described in Sec. 6-7. An 
analysis leading to a design procedure for the priming circuit is 
discussed in Sec. 6-8. The implications of the circuit design pro
cedure on those features that are desirable in the core design 
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itself are discussed in Sec. 6-9. (Extension of the design procedure 
to logic circuits is considered briefly in Sec. 10-6.) 

6-6 Design of Coupling Loops and Advance Circuit 

The MAD-R circuit of Fig. 6-2 is shown in more detail in 
Fig. 6-9. Assume that a one is initially stored in a primed state 
in the center transmitter core T. The initial states of this core 
and of the two adjacent receivers R and R' are designated by the 
row of arrows representing minor-leg flux directions. Upon ap
plication of an advance pulse i A , loop currents if and ib are induced, 
and the flux changes indicated by arrows within cores T and R occur. 
The major reversals are I'l¢Tl and I'l¢T4 in the transmitter, and 
I'l¢Rl and I'l¢Rm (closing through Leg 3) in the receiver. The arrows 
in Legs 2 and 3 of T and Leg 2 of R represent flux changes that 
are of second-order magnitude, but sometimes still significant. 
A half cycle of operation is completed by application of the prime 
current ip to each receiver core, switching the flux signal from 
Leg 3 to Leg 4 (I'l¢R4 ~ I'l¢R3) in Core R and inducing a loop current 
ir • 

f\:-' A(t), one-half cycle of a damped sinusoid 

LA 
'" NH N c Nxr--~_-----. 

o 
R' 

t t t t 

Fig. 6·9. MAD-R circuit shown in detail. 

Np 

ir 

fjrpR4;fjrpR3 

(prime phase) 

~ ~ 

Choice of Design Point. A typical range map for a MAD-R 
register is shown in Fig. 6-10, where IA and lp represent peak 
advance and prime currents, respectively. The open-ended top 
indicates that no upper limit on I A is detected within the region 
of measurement. (The top may "close in" due to either zero 
buildup or one dropout if poor cores or poor circuit designs are 
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used.) The choice of the nominal operating value of 1 A is then 
merely a matter of how much tolerance one wishes to reserve 
above the minimum value. The nominal priming current might be 
chosen for equal plus and minus tolerances. 

For aspects of design considered in this section, we choose a 
tentative value of priming current 1 p nom (the exact value not being 
critical), and then consider operating conditions at the correspond
ing value of minimum advance current 1 A min as indicated in Fig. 6-10. 
This point serves as an operational design point for the coupling 
loops and the advance circuit. 

OL---~------~------------~------o Imin Inom rmax lp 
p p p 

Fig. 6-10_ A typical form of the range map for the MAD-R circuit (the 
shaded area being the allowed operating range). 

We assume that advance current i A has the form of one-half 
cycle of a damped sinusoid, as indicated in Fig. 6-1l(a), with rise 
and fall times T r and T f • This pulse shape is easily obtained by 
discharging a capacitor through an L-R drive line linking the MAD-R 
circuit (see Fig. 6-3). A circuit designed in this fashion will also 
operate well when driven by pulses of other shapes, e.g., triangular, 
provided certain general characteristics are retained: in particular, 
similar pulse width and appropriate limits on rates of rise and 
fall. Baer and Heckler (1962) describe other practical drivers for 
core-wire circuits based on adaptation of Melville pulse-com
pression circuits, which also use nonlinear magnetic cores. 

Coupling-Loop Design. The coupling-loop design problem, in 
greatest generality, involves the choice of coupling loop turns NT 

and NR and coupling-loop impedance in terms of wire resistance 
and inductance Rf and Lf so as to satisfy the necessary flux gain 
requirements during flux transfer. The basic relation can be 
derived by summing the emf and voltage drops in the forward 
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Fig.6-11. Typical waveforms for ¢ and /I.¢, for both transmitter and receiver, 
and for forward and backward loop currents, in response to Advance Current 
Pulse of amplitude I A min. 

coupling loop of Fig. 6-9 during transfer, namely 

dif 
NT ¢T4 -NR¢Rl = REif + LE-

dt 
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(6-9) 

Since if = 0 initially, integration over time from 0 to t yields 

(6-10) 
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where the !'!.c/J's are the net flux changes and qr is the charge flow 
in the loop, that is 

(6-11) 

Typical waveforms of ¢ and !'!.c/J for both transmitter and re
ceiver, and of forward and back loop currents, for I A = I A min, are 
shown in Fig. 6-11. Note that ¢ and loop-current waveforms re
verse in sign toward the end of the advance pulse. This is pri
marily because of elastic-flux components. The peak magnitude 
of if in the negative direction is related to the rate of fall of ad
vance current, and for this reason the rate of fall of i A must be 
limited to insure against spurious unsetting of flux in the receiver. 
As seen in Fig. 6-11, the transmitter begins switching almost 
immediately after time t = 0 (when the advance pulse is turned 
on), but there is a delay in SWitching of the receiver until the 
forward loop current builds up to the threshold of the receiver. 
The switching time TR of the receiver is defined as the difference 
in the times tl and t2 at which ¢Rl is 10 percent of its peak value. 
(In some cases, more consistent results are obtained by measuring 
TR on the main-aperture ¢Rm waveform because of the absence of 
elastic flux clipped out by closure through Leg 2.) 

We wish to consider Eq. (6-10) at the instant t = t2 , when the 
inelastic flux SWitching is nominally complete. For I A > I A min. the 
receiver would complete switching before the transmitter. As lA 
is decreased, the difference in SWitching times decreases, until at 
I A = I A min, both cores complete their switching together at t = t2 • 

Thus, as implied by Fig. 6-11, both !'!.c/J T4 and !'!.c/JR1 reach peak 
values very slightly after t2 , and following Eq. (6-10). 

(6-12) 

Figure 6-12 illustrates a c/J-F characteristic for flux switching 
via the path including Legs 1, m, and 3 of the receiver in Fig. 6-9. 
The mmf applied to this path is simply F = NR if since we assume 
that the priming current ip is zero during the advance pulses. (The 
equations to be derived can readily be modified for the case of dc 
priming, once the principles are understood.) The limiting cross
sectional area is usually that of Leg 3; here we assume that 2 c/Jr in 
Fig. 6-12 represents the maximum flux-setting capacity of Legs 
1 and 3 in series. The dashed line in Fig. 6-12 represents the 
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Fig. 6-12. The ¢-F characteristic for flux switching via the path including Legs 1, 
m, and 3 of the receiver. 
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dynamic ¢ (F) variation during transfer. The value N R if <t2 ), may be 
viewed as a "stop-switching threshold," which we call Fos. Be
cause of the complexities of dynamic switching, this point does not 
necessarily fall exactly on the static ¢ (F) curve (as indicated in 
Fig. 6-12) but may be on one side or the other. The question of 
how to make measurements for estimating accurately just where 
this point F os occurs in an operating circuit is one of the crucial 
aspects of the design procedure, and this matter 1s covered in 
Sec. 6-7. 

In most cases, we have simply a single receiver turn, that is, 
N R = 1, but to retain flexibility for certain cases where it is de
sirable to scale the values of N Rand NT' we define a parameter 

(6-13) 

which represents the total charge-turns that are required for 
setting the receiver, up to the time t2 • We may then rewrite 
Eq. (6-12) in the form 

(6-14) 

where, for simplicity, we have suppressed the superscript "peak," 
though I'1¢T4 and I'1¢Rl are here understood to be peak values. 
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Equation (6-14) is the primary expression relating to coupUng
loop design. It contains core-related parameters i'1¢T4' i'1¢Rl' IIR, 
and Fos' and coupling-loop parameters NT' NR, R£, and L£. It turns 
out that IIR is the only one of the parameters that varies signifi
cantly with coupling-loop design. Very roughly, we can write 

(6-15) 

where TR = t2 - t1 is the receiver switching time, where IIo is the 
value of charge-turns required for rapid switching (Le., for 
T R -7 0), and where k is an empirical constant with a value de
pending on other core and circuit parameters, but usually in the 
range of 1.0 to 2.0. (It can be shown that IIo "-' ISw' where I is path 
length and Sw is the switching coefficient, as represented in 
Eq. (12-121), and also that k "-' 1 + tl/2TR. However, these results 
and Eq. (6-15) are given only to indicate roughly how IIR varies 
with T R and will not be used further.) 

The suggested coupling-loop design procedure starts with a 
choice of values of NT and NR (usually 2 and 1, respectively) and 
of IIR and T R' Then a coupling loop is chosen with wire cross 
section and length to provide a combination of values of R£ and L£ 
that result in satisfaction of Eq. (6-14). Practical considerations 
of core and circuit dimensions may then dictate that the process 
be repeated for different values of NT' NR, and IIR (or TR ). This 
process presumes that we have already determined the quantities 
i'1¢T4' i'1¢Rl' Fos' and IIR as a function of TR for the cores being 
used. The experimental determination of these quantities is the 
subject of Sec. 6-7. 

In order to aid the choice of wire size and length, we rewrite 
Eq. (6-14) in the form 

(6-16) 

where n = N TIN R" The choice of a wire loop for satisfying Eq. (6-16) 
is complicated by the fact that the inductance of a loop of a given 
shape and wire size is a nonlinear function of the total length of 
wire. On the helpful side, however, it has been found empirically 
that loops with N TIN R = 2/1, wound loosely without contro111ng the 
shape, generally have an inductance approximately equal to (3/4) Le' 
where Le is the inductance of a circular loop of the same length 
and wire size. (To reduce the inductance substantially below this 
value, it is necessary to make the loop into the form of a strip-line 
or at least to twist the wires very closely.) Considering this fact, 
and also since the value L£Fos is usually considerably smaller than 
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ReIIR' it has normally been found accurate enough to set 

Le = O.75LC (6-17) 

for the purpose of design. 
Curves of Le as well as Re may therefore be plotted as func

tions of wire length Ie' for various wire gauges, and graphical 
procedures may be established for selecting wire length and 
gauge to yield a pair of values of Re and Le to satisfy Eq. (6-16). 
However, we often know approximate wire length in advance, in 
which case the use of a linear approximation for Lf is expedient. 
That is, we set 

L f = ~Lc = ~(-a + blf ) 
4 4 

(6-18) 

where a and b are positive parameters characteristic of a given 
wire size. (For example, for wire of gauge AWG No. 33, with If in 
the range of 1.5 inch to 3.0 inches, a = 0.010 microhenry and b = 
0.0295 microhenry/inch.) We may also set Rf proportional to 
If ' that is . 

(6-19) 

Substitution of the above two equations into Eq. (6-16) results in 
the following formula for If 

NR2 (n!l¢T4 - !l¢Rl} + O.75 aFos 
~ = . 

,;IIR + O.75bFos 
(6-20) 

If the calculated length If for the assumed wire size turns out 
to be an impractically short length, there are several possibilities 
for adjustment. A wire of larger diameter may be considered, if 
the minor-aperture size allows it. Or the number of coupling-loop 
turns may be scaled upward (e.g., from 2/1 to 4/2), with an in
crease by a factor NR2 (for example, 4 to 1 for scaling of 2 to 1) in 
the allowed values of Rf and Le. as can be seen from Eq. (6-16). Or, 
finally, it may be necessary to reduce the design value of IIR (also 
reducing TR ), in order to allow a higher-impedance loop, and then 
repeat the procedure to find a new value of Ie. 

Design of Advance Circuit. What we wish to find now are the 
specifications for the advance windings NH, Nc ' and Nx. In particular, 
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we desire a design solution in which we have small integral turns 
ratios so that these windings, which are driven in common, can be 
realized with a small number of turns. 

For convenience in calculating advance-current charge (i.e., 
the integral of advance current to time t2 ), we assume that 

T r = t2 (6-21) 

although we shall see that we can allow adjustment to certain 
values of T r < t2 once a good circuit design has been obtained. 
Next, it is necessary to consider values of advance-current 
charge qA «2) and back-loop charge qb «2 ) (Fig. 6-11) in compari
son to the forward-loop charge qr(t2)' First consider the Nx drive 
around the output leg of the transmitter, which is not essential, but 
nevertheless useful, for enhancement of flux gain. This winding is 
normally chosen to approximately cancel the loop charge-turns 
acting back on the transmitter (thus minimizing elastic-flux 
effects), i.e., such that at time t2 

(6-22) 

In order to guarantee sufficient holding mmf with N H' it is 
necessary for the back-loop charge-turns to be canceled out in 
Core R' in Fig. 6-9, that is 

(6-23) 

Let us assume that we can achieve the lower limit indicated 
by Eq. (6-23), and hence that Core R' makes no contribution of 
flux-linkage change to the back loop. Then the back-loop equation 
integrated to time t2 yields 

(6-24) 

By dividing Eq. (6-14) by Eq. (6-24), with the definitions of ilR and 
F' as considered, we obtain 

NT t.¢T4 - NRt.¢Rl 

NR t.¢Tl 

Re qr«2 ) + L£ ir«2) 

Re qb «2) + Le ib «2) 
(6-25) 

For simply finding the value of NH required, it has been found 
empirically to be a good enough approximation to assume that the 
ratio of inductive flux storage to resistive flux loss is the same 
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in the back loop as in the forward loop at time t2 , and also that all 
of the ~¢'s on the left side of Eq. (6-25) are equal. Then Eq. (6-25) 
yields the approximate result 

q b ((2) 
q r(t2) 

(6-26) 
n - 1 

From Eqs. (6-26) , (6-22), and the lower limit of Eq. (6-23), we 
obtain 

NH ~ 
Nx 

(6-27) 
n ~ 1 

The transmitter and receiver cores switch at about the same 
rate; hence, we can assume that the net charge-turns driving the 
transmitter are equal to the charge-turns IIR = NR qr(t2 ) driving the 
receiver. That is, recalling that NXqA «2) cancels N T Qr((2)' we can 
write 

(6-28) 

From Eqs. (6-26), (6-28), and the lower limit of Eq. (6-23), 

whence 

(6-29) 

In summary, then, from Eqs. (6-27) and (6-29) we find that 
Nc ~ NH ~ Nx/(n - 1). For the usual case of n = 2, we see that 
N H = N x . A practical effect of this result is that a single line 
wound through all output apertures and fed in common from the 
two Nc lines, through the 0 and E sets of cores, serves the pur
pose of both the Nx and NH windings, with roles alternating for the 
two advance pulses, as shown in Fig. 6-3. 

Though Eqs. (6-27) and (6-29) are approximate, Eq. (6-27) has 
been found to be satisfactory over a wide range of conditions. For 
lOW-drive designs (large T R)' however, it has sometimes been found 
that a value of Nc equal to NH , as in Eq. (6-29), does not result in 
sufficient clearing of transmitters. In such cases, it has been 
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found possible to increase N c (typically to N c = 4 if N H = N x = 3) 
without causing insufficient holding, and such a value generally 
obviates any possible problem of insufficient clearing. 

In specifying parameters for the advance-pulse shape, a rule 
of thumb for avoiding unsetting during the fall time is to set 

(6-30) 

where Tr and Tr are defined as in Fig. 6-1l(a). In order to obtain 
a rough estimate of the peak advance current fA (while still assum
ing T r is to be set equal to t2 ), we first recall from Eq. (6-22) that 
NxqA ([2) = N T qr <t2). Because of the damped-sinusoid nature of the 
advance pulse 

and from Eq. (6-22) we obtain 

NT qr<t2) 

fA "".:! ---
2 Nx t2 

(6-31) 

(6-32) 

Though we have assumed that T r = t2 until now, it has been found 
empirically that we may, for actual operation, scale down Tr and 
T f until T r "" (2/3) t2 , without affecting transfer circuit operation 
significantly, but economizing on power from the advance driver 
appoximately in proportion to the scaling. (In actual designs, t2 is 
equal to about (3/2) TR • An actual value can be measured when the 
first trial circuit is built, at which time the width of the advance 
pulse may be readjusted.) 

Redesign. Once a first design has been achieved, based on es
timated values of i'l¢T4' i'l¢Rl' TR , and llR' the usual practice is 
to build a short closed-loop register as a test circuit. With good 
cores, such a circuit is always at least operable. If the circuit 
does not operate within specifications, however, then measurements 
are taken on the actual test circuit for redesign. 

It is easy to obtain actual measurements of TR , i'l¢T4' and 
i'l¢Rl at the bottom of the range map (the design point), as will be 
described in Sec. 6-7. The parameter F os can be assumed un
varied from the initial measurement. One may then use Eq. (6-14) 
for determining an empirical value of llR on the basis of the circuit 
measurements, and this result provides an improved data point on 
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the empirical curve of IIR versus TR , which very roughly has the 
form of Eq. (6-15). The design procedure may then be repeated 
with revised values of I'1rPT4' I'1rPR1' and IIR• For simple transfer 
circuits, it is seldom necessary to do more than one iteration, if 
even that. 

So far the design procedure has been based on one transfer. If 
zero buildup should turn out to be a problem, any specific amount 
of clipping may be obtained by building it into the input aperture 
(Sec. 6-9) or by incorporating flux-source clipping as used for logic 
circuits (Sec. 10-5). 

Placement of Drive Windings. There are two extreme ways for 
making multiple-turn drive windings. By the "straight-through" 
method, a single turn links all cores before the next turn is started. 
By the "lumped-winding" method, each winding is completed in a 
tight coil before the next winding along the drive line is started. 
The straight-through method is better for quick, economical wiring, 
but the lumped-wiring method results in shorter drive lines of 
lower intrinsic impedance. In either case, return paths for lines 
should be bundled as closely as possible to the threading lines, 
because large return loops can result in air fields large enough to 
affect operation adversely. 

6-7 Measurement of Design Parameters 

If the core or circuit parameters are unknown to begin with, it 
is desirable to make initial measurements on a test core before 
attempting to build any transfer circuits. On the other hand, if these 
parameters are known approximately, a test circuit (typically a 
four-bit closed-loop register)· can be designed and built im
mediately, and then measurements can be made under operation 
for adjustment of the design. One example of the latter case is the 
use of a new batch of cores of specified shape and material con
tent, but suffering from typical batch-to-batch variations. Another 
example is a new design with a completely known core but for 
lowered advance-current requirements. In any case, for simplicity 
in measuring test parameters, we assume a coupling-loop turns 
ratio N TIN R = 2, which generally yields good enough initial param
eter measurements even if some other ratio is eventually to be used. 

Core Test Circuit for Initial Measurements. For the first mea
surements on a relatively unknown core, the test circuit of 
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i~ 

--I 

(b) 

Fig. 6-13. Test circuit for obtaining design parameters. 

Fig. 6-13(a) may be used. ThrOl-!ghout this section, we add the 
subscript t to designate this test circuit and results obtained from 
it. The prime-pulse amplitude is generally set roughly in the 
middle of its range, which can be estimated by taking the average 
between a value for switching fully around the minor aperture and 
a value for just reaching the major-aperture threshold. The turns 
N pt and N bt are generally set at 3 and 1, respectively. As an ap
proximation to the coupling-loop current shape. a half-sinusoid 
test current it is used. (For the moment, ignore the precursor 
current icc indicated with the dashed line.) Rectangular pulses of 
controllable amplitude may be used for the other currents iet and 
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iHt required for the test. The timing sequence for applying the 
four required current pulses is indicated in Fig. 6-13(b). The test 
current it' of peak value It and width T t' and the waveforms of the 
resulting ¢it and t'1.¢it are shown in Fig. 6-14. At the instant t2t , 

when ¢it drops to 10 percent of its peak value, we wish to make a 
measurement to obtain approximate values of IIR (as a function of 
TR ) as well as values of Fos and t'1.¢Rl' 

Ltltl 

• peak 
~ Lt 

Area = ITt IN Rt ' 

an approximation to ITRINRt 

_______ /Second 10% point 

~r--------------+-~--~----~t 

I':. peak 
~ Lt 

o 

---------
___ r---_ 

Fig. 6·14. Test current waveform it and resulting input waveforms ¢ it andf.¢it. 

Experience has shown that this objective can be achieved quite 
satisfactorily with a procedure consisting of the following three 
main steps: 

1. Find the amplitude I t of test current corresponding to the 
design point of Fig. 6-10. 
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2. Simulate the relative drive mmf acting on the transfer cir
cuit at time t2t • 

3. Make final adjustments and actual measurements. 

These steps will be detailed below, but note first that the only re
maining parameter needed for the design equations (6-15) and (6-16), 
namely t.¢T4' may be approximated by measurement of the output 
flux t.¢ot (Fig. 6-13(a» during the clear pulse iCt' again based on 
appropriate adjustment of drive mmf values. 

Simulation of Design-Point OPeration. The first of the three 
steps outlined above is the most interesting part of the test, 
namely, finding the critical amplitude for the test pulse relating 
to the design point of Fig. 6-10. The sequence of steps indicated 
below is suggested as a useful procedure, though the designer, 
with experience, may develop his own specific procedure. 

Consider Fig. 6-15, where half-sine input test pulses of vari
ous amplitudes are shown together with the corresponding ¢it 

waveforms. Assuming that a design is desired for a given transfer 
time T, for example, T = 1.0 microsecond, then we proceed as fol
lows: First, select a value of test pulse width T t somewhat greater 
than T, say 1.5 T. Second, with the test sequence of Fig. 6-13(b) and 
with fixed-amplitude values of iHt and iCt well above threshold, 
increase the test-current amplitude It to just above threshold, say 
It(1) in Fig. 6-15. Third, consider the resulting ¢it(1) waveform 
and note t2t (l) when ¢it(1) falls to 10 percent of its peak value. In 
this low range, the amount of switching is not flux-limited, so that 
for a small increase in current, say from amplitude It(l) to It(2)' 

a greater amount of flux is switched and the second 10-percent point 
on ¢it moves to the right (from t2t (1) to t2t (2». During further in
crease of current amplitude, a transition is passed having the 
following characteristics: 

1. The time of the second 10-percent point on ¢it reaches a 
maximum value t~t' for some specific amplitude l~ with corre
sponding ¢it waveform ¢~t' and then decreases steadily for higher 
amplitudes, e.g., to t2t(3) for amplitude It(3) in Fig. 6-15. 

2. At about this same point, i.e., where t2t is maximum, the 
shape of the decaying portion of the ¢it waveform undergoes a 
striking change, becoming rapidly steeper. This change in shape 
is related to the fact that inelastic switching terminates at about 
the base of the "Wing" on the ¢-F loop of Fig. 6-12, which is 
just about the point of operation desired for the design simulation. 
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Fig. 6-15. ¢ for different amplitudes of half-sinusoid test current. 

3. For amplitudes of current greater than I;, switching may be 
considered to be flux-limited; this observation fits with the fact 
that the width of ¢it then decreases as the peak of ¢it increases, 
whereas the area l'J.¢it hardly increases further. 

For test purposes, the amplitude of it is set to the value I; found 
where this transition occurs. 

Simulation ojDrive MMF. In principle, the drive levels through 
Winding NHt at setting time, and through Windings Net and NXt 

at clearing time should simulate transfer-circuit drive levels, 
correcting for the expected back mmf values in the coupling loops, 
which are not present in the test circuit of Fig. 6-13(a). From ex
perience, it has generally been found sufficiently realistic to set 
the holding mmf about equal to the peak test mmf, that is, 

(6-33) 
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This relation need be satisfied only approximately during any test 
sequence-say within 10 percent. since holding is a relatively non
critical function. 

On a similar basis. at the time of clearing the test core with 
current iet • minor-aperture drive conditions for the transfer cir
cuit. including loading by both input and output loops. are adequately 
simulated by setting Net = 2NXt ' as indicated in Fig. 6-13(a). and 
adjusting iet so as to have output-aperture mmf Nxtlet equal to 
the test mmf NRtlt used for setting, that is 

(6-34 ) 

Greater care is required to satisfy Eq. (6-34) than Eq. (6-33), 
since the measurement of i'!¢ot is fairly sensitive to minor
aperture drive. It should be emphasized that the main point is one 
of consistency in how some rather arbitrary rules are adhered to. 
since the simulation of actual circuit conditions is approximate 
in any event. 

Finally. in order to assure that any input-aperture flux-clipping 
capacity (a matter of core design discussed in Sec. 6-9) is in a 
"prepared" or "cleared" state. it is desirable to apply to the 
input aperture. prior. to the test current it' the negative current 
pulse icc indicated in Fig. 6-13. The mmf value should be great 
enough to just switch any uncleared flux in the input leg around 
the input aperture. The pulse need not be rectangular and of 
course could be applied on a separate additional winding instead 
of on NRt • 

Final Adjustment and Actual Measurements. After the first set
ing of the amplitude of it' as described earlier, the amplitudes of 
iHt and iet are adjusted to satisfy Eqs. (6-33) and (6-34). In gen
eral. It will then no longer be set at the critical transition point, 
which will have shifted slightly, and the adjustment procedure for 
It' followed by that for IHt and let' may have to be iterated one or 
more times. but convergence to definite final values is rapid. 

When the two aspects of mmf simulation have been simul
taneously achieved, then a set of measurements may be made. 
The waveforms (Pit and (Pot are integrated as indicated in Fig. 
6-13(a) and we assign i'!¢R = i'!¢itpeak and i'!¢T = i'!¢o/eak. Refer
ring to Fig. 6-14. the switching time Tt is measured between 
10 percent-points on ¢it (or ¢mt if preferred). and Fos is measured 
as the value of NRtit at time t2t• The waveform it could also be 
integrated to time t2t to obtain a value of II/NRt• However. because 
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of the half-sine shape, the area may readily be calculated as a 
function of It' Tt,and either t2t or F'os. 

In general, the first pair of values of II t and T t will not match 
the original design specification, whether the latter is in terms of 
IIR or TW However, the procedure may be repeated with a second 
trial value of T t' resulting in a second point on the curve of II t 

versus T t (generally without much change in the i':!.¢ and F' os mea
surements). With two or more such measurements, we may in
terpolate or extrapolate to the set of parameters matching a 
specified switching time (or some other original specification). 

Transfer-Circuit Measurement for Redesign. From the set of 
parameters obtained as described above, a design for coupling 
loops and advance windings may be obtained by the procedures of 
Sec. 6-6. Though design of priming circuitry will be covered in 
Sec. 6-8, we may build a test circuit using priming pulses and 
windings as specified for the test core of Fig. 6-13(a). A range 
map such as in Fig. 6-10 may then be plotted. (If no range of 
operation exists, it usually means that either the cores are very 
poor, e.g., they have a low degree of squareness, or that the 
original specification for switching time is unreasonably low or 
high.) The left-hand and lower boundaries are governed by one 
dropout in a single-one pattern of information, due to insufficient 
Prime current or Advance current, respectively. The right-hand 
boundary is governed by either zero buildup or one dropout (or 
preferably both simultaneously for the "matched" case discussed 
in Sec. 6-8) due to excessive priming current. The upper boundary 
(if detectable) is usually due to zero buildup from inelastic re
ceiver switching induced by excessive elastic switching of the 
transmitter, but may also be due to one dropout caused by various 
"unsetting" effects, such as can occur from too rapid a fall of 
advance current. 

The next step is to set a nominal value I p nom-preferably the 
same value used for the core tests-and then decrease [A to the 
lower range boundary. Revised values of i':!.¢T' i':!.¢R and TR are then 
measured, using sense windings on the transmitter and the receiver 
associated with one of the coupling loops. It is extremely difficult 
to measure loop current (and hence F'os and IIR), however, without 
affecting loop impedance. Fortunately, F'os can generally be as
sumed unchanged from the core measurement, and hence a revised 
experimental value of IIR may be calculated from Eq. (6-14). 

Based on the new pair of values obtained for IIR and r R' the 
curve of II t versus r t obtained from core measurements may be 
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scaled to match the new point. A new design for a different value 
of TR may then be tried in the test circuit, a further adjustment 
made in the ITt - Tt design curve, and so on, until design data as 
precise and complete as desired is obtained. If just a single good 
design is required, this can usually be achieved on the first or 
second trial after a little experience with the procedures has been 
obtained. 

6-8 Design of Priming Circuitry 

As indicated in Sec. 6-7, it is easy to design for wide priming
current range, at least for a single, constant temperature. Fol
lowing Nitzan (1965), we now wish to show how priming range may 
in fact be greatly enhanced and operation thereby achieved even 
over a large range of temperature, though at the cost of a reduced 
speed of operation. 

In Fig. 6-16, the range map of Fig. 6-10 is shown, for room 
temperature and for specified minimum and maximum tempera
tures. Due to the effect of temperature T on the threshold field of 
the core material, both I p min and I p max decrease as T increases, 
and vice versa. For operation within the temperature range 
T min .::: T .::: T max' the priming range is therefore reduced to a band 
narrower than at any single temperature. 

Increased priming range at any given temperature can be 
achieved by use of a priming pulse with a slowly rising front, 
e.g., a ramp or a half-sine pulse, rather than a rectangular 
pulse, in conjunction with control of the ratio N /N b. In this way, 
the overlap range between given temperature extremes can be 
greatly increased. In fact, an overlap range can be created with 
a ramp pulse for temperature extremes (e.g., over the range from 
-50°C to lOO°C) where typically no overlap range even exists for 
rectangular pulse priming. An alternative (and more costly) way 
to obtain a wide temperature range is to design a compensated 
prime-driver circuit that automatically supplies decreasing cur
rent amplitude with increasing temperature, and vice versa. 

We will first analyze the case of a rectangular pulse more 
accurately than previously, as a basis for comparison, and then 
show how to obtain improved designs with a slowly rising pulse
specifically a ramp function. We will present quantitative results 
that are useful for actual design for ramp-pulse priming. Similar 
results can be obtained with other slowly rising pulse shapes, such 
as a half-sine pulse, as described by Nitzan (1965). 
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Rectangular Priming Current. Consider a rectangular priming 
cu:r:rent pulse of amplitude I p and duration T p' We wish to calculate 
I mIll and 
p 

I max = min (I max I max) 
p pol, 'p't (6-35) 

where I p ~ax and I p ~ax are the maximum values of I p which cause a 
one dropout or a zero buildup, respectively. For flux changes re
ceived by Leg 3 and then primed into Leg 4 (Fig. 6-9), a full one 
corresponds to fo,,¢3 = !1¢4 = 2¢r' where ¢r is the maximum residual 
flux of a minor leg. Suppose that !1¢3 and !1¢4 are gradually re
duced below 2¢r by varying Ip or lA or both. Initially, the one re
mains stable, but when !1¢3 reaches a certain fraction y of 2¢r' 
for example, y ~ 0.9, the one drops to a zero, because flux gain 
falls below unity. The corresponding !1¢ primed into Leg 4 is 
!1¢4 = TJ!1¢3 = TJy2¢r' where TJ < 1 as a result of insufficient priming. 
Calculation of y and TJ is complex, especially because of second
order effects of I A on y. A value of TJY ~ 0.8 has been observed to 
be a good approximation in many cases of one dropout. 

Interestingly enough, one dropout may .be caused by I p being 
either too small or too large. For Ip < Ip mIll, Nplp is too small to 
switch enough flux through Legs 3 and 4, and priming may be said 
to be mmf-limited. For Ip > Ip~ax, Nb1p causes flux to be unset 
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around the major aperture, so that the amount of primed flux 
is insufficient to sustain one transfer, and the priming may be 
said to be flux-limited. 

To derive a formula for I p min, consider Fig. 6-17. The static 
cP (F) curve around the minor aperture, i.e., for Legs 3 and 4 in 
series, is plotted as cP4 versus F. The unsaturated portion of 
cP4 versus F is approximated by a straight line that intersects the 
horizontal lines cP = -cPr and cP = +cPr at two points whose F values 
are FI and F2 , respectively. Thus, in this region 

F = a + f3cP4 (6-36) 

where 
F2 + FI 

a 
2 

(6-37) 

and 

(6-38) 

The value of cP4 for which a one drops to zero is (-cPr + rrr2cPr), and 
the corresponding F value is denoted by F.j.. Substitution of 
cP4 = -cPr + "Iy2 cPr into Eq. (6-36) gives 

For a very long priming pulse, Nplp min = F",j hence 

I p min = ~ [F I + "IY (F 2 - F I)] 
Np 

(6-39) 

(6-40) 

For a rectangular pulse of duration T p' it can be shown that 
Eq. (6-40) is modified to the form 

where 

I min = 
p 

r = 
N 2 

T 

F2 - FI Re 

Note that as T p --> 00, Eq. (6-41) reduces to Eq. (6-40). 

(6-41) 
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Consider next the case of a one dropout due to excessive flux 
unsetting around the major aperture via Legs 3 and 1. Since the 
main leg is initially in a partially set state, the static ¢ (F) curve 
for unsetting around the major aperture is narrower and rounder 
than if the core were initially in a clear state, Let us denote by P~ 
the soft threshold corresponding to the critical amount of flux 
unsetting around the main leg. If N b 1 p ~ p~, a one drops to zero; 
hence 

p* 
max M 1 = -

p. N 
b 

(6-42) 

Finally, we examine the condition for a spurious zero buildup. 
It can be seen from Fig. 6-9 that the mmf (N p - N b) 1 p acts around 
the major aperture along a closed path including Legs 4 and 2. Let 
the dc threshold of this path be denoted by PM' Although /":,.¢m may 
increase up to a certain fraction (e.g., up to about 20 percent) of 
2¢r before a zero builds up, to be conservative we assume that, 
due to the sharpness of the static ¢ (P) curve near its threshold, a 
zero buildup occurs if (N p - N b)[ p ~ PM' Hence 

1 max = 
pt N _ N 

p b 

The function of an N b -turn priming winding 
thus clear-namely, to increase 1 p rr;ax. 

(6-43) 

on the main leg is 
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Following Eq (6-35) we set I max = I max = I max for an opti-• , p p~ pt 

mum, matched case. Thus, when the circuit is properly designed, 
Eqs. (6-42) and (6-43) give 

FM 
1 +

F* M 

(6-44) 

For typical ferrites that have been used for MAD-R circuits, 
F M ~ 2 F~; hence, if N b = 1, then N p = 3 N b = 3, which are the 
values specified in Fig. 6-3. Note that "rectangular" priming is 
implied when dc priming is used, since the priming current be
comes fully effective immediately after the advance pulse ter
minates. 

For the matched-case condition, and assuming a very long 
priming pulse, then from Eqs. (6-40), (6-42), and (6-44), the maxi-
mum value of I p max II p min is found to be 

F~ + FM 
g{ = 

max 
(6-45) 

Ramp Priming Current. The maximum value of range ratio g{ 

that can be obtained with a very long rectangular priming pulse is 
expressed in Eq. (6-45). We shall show now that much higher 
values of g{ can be achieved if we let the prime drive current ip (t) 

rise slowly so that in the one case, cP3 reaches -cPr just before 
N b ip (t) reaches F~. Beyond this latter point, ip «) continues to 
rise toward its peak without causing any switching around the 
major aperture, provided the peak value does not finally exceed 
the zero-buildup upper-limit F M/(N p - N b)' In effect, what we will 
find is that the longer the time we allow for the ramp, the closer the 
optimal N/N b ratio approaches unity (compared with (NpINb)opt = 3 
noted above for the rectangular-pulse case); in the limit, N p = N b' 

and we can see from Eq. (6-43) that I ~ax -> "", 
p 

We assume that the ramp priming current has variable slope k 
and constant duration T p' that is, ip = kt during 0 S t S T p' and 
ip = 0 for t> Tp. The slope k = IplTp varies between kmin and kmax 
as the peak value I p varies between I p mm and I p max. Flux switching 
around Legs 3 and 4 starts at t = To = F /(N p k). The resulting volt
age NT ¢4 induces a current if = NT¢4IRe in the forward loop. Since 
flux switching is relatively slow during priming, we assume that 
the net mmf follows the static curve, Fig. 6-17; furthermore, since 
!'1cP4 does not exceed Tly2cPr in the conditions under investigation, we 
can equate this net mmf to the linear approximation previously 
given in Eq. (6-36), that is, F = ex + f3cP4' Combining of these relations 
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results in a first-order linear differential equation whose solution 
is 

where 

T 

N 2 
T 

{3R f 

is the time constant with which ¢4 rises. 

(6-46) 

(6-47) 

Let T s denote the time when prime switching is completed. As 
k is increased (from some value corresponding to a stable one), 
kT s increases despite the decrease in T s. For the maximum value 
of k, namely, kmax ' ip reaches IpTax = F~/Nb at t = Ts ' that is, when 
1>4 <tl = -1>r + 1Iy21>r' as we see in Fig. 6-18. (If k > kmax ' a one 
drops to a zero.) To find kmax ' we substitute the relations t = T s = 

F~/(Nbkmax}' To '= Fl/(Npkmax}' and 1>4 (t) = -1>r + 1Iy21>r into Eq. 
(6-46) and obtain 

(6-48) 

which, for given core and circuit parameters, is a transcendental 
equation with one and only one solution for kmax • 

For a value of k = kmax ' once priming is completed, ip <tl may 
continue to rise beyond t = T s with no effect on flux unsetting, be
cause Leg 3 is already in negative saturation. But, in order to 
prevent zero buildup, the rise of ip <tl must terminate before reach
ing Ip,:ax, that is at t = T pm' as shown in Fig. 6-18, where 

Tpm = 
kmax (N p - N b) 

(6-49) 

The resulting ip<tl waveform in this case, that is, k = kmax and 
t = T pm' is considered to be a matched case because its slope and 
amplitude have upper-limit values determined by both the one
dropout and the zero-buildup criteria. (Note that the matched case 
cannot be realized if I p ~ax > I p ~ax.) The duration T pm is the border 



138 

Lp 

lmax = ~ 
p t Np-Nb 

---

DIGITAL. MAGNETIC L.OGIC 

o Beginning of switching 

______ F1+'7Y (F2-F1) 

iL Np 
Np 1M§=====----L_---1 __ -L-___ ---L ____ Tp; t 

To Ts Tp Tpm Tp 
(Case a) (Case b) 

Fig. 6-18. Plot of Ipmax and Ipmin as a function of ramp dura,tion T p ; T p ~ T pm in case 
(a), and Tp 2. Tpm in case (b). If k 2. kmax or Ip ~ IpmlR, a one drops to zero; if 
Ip 2. I p~ ax, a zero builds up to a one. 

between two cases of Tp. If 

then 

and, if 

then 

I max 
p 

I max = I max 
p pt 

Np - Nb 

The lower limit of k, namely, kmin , is calculated for both Case a 
and Case b by substituting the relations t = T p' To = P I/(N p kmin), and 
cP4 (t) = -cPr + TfY 2 cPr into Eq. (6-46). We can thus derive the relation 

{ [ 
-[Tp - (PI/kminNp)]]} PI + Tfy<F'2 - PI) 

k. T - T 1 - exp = (6-50) 
mm p T N 

p 

from which kmin can be determined transcendentally. As Tp in
cr~ases (for given N iN b)' kmin decreases at such a rate that 
lp mm = kmin T p decreases, and thus the range ratio :R increases. 
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Since I p max also increases with T p in Case a, the increase of :R 
with T p is faster in Case a than in Case b. 

In normal operation we would set the priming duration equal to 
the matched value since at this duration the range ratio is already 
just about maximum. But the matched-value duration depends on 
the turns ratio N /N b' In particular, we would like now to show that 
the longer the priming duration, the closer N /N b --> 1 for the matched 
case. In the limit, N INb = 1, and I max --> 00, and hence also :R --> 00. 

p P max 
Recall from Eq. (6-44) that N /N b typically has a value = 3 for a 
matched case of rectangular-pulse priming. 

To show this dependence on N /N b let us assume a matched de
sign in terms of Fig. 6-18, that is, T p = T pm' and trace the effects 
of a change in N /N b' From the limiting relations for k max and 
lp~ax, we can deduce that if either Np decreases, or Nb increases, 
or both, then kmax decreases and I p ~ax increases. Thus, assume 
that we increase the prime duration Tp' For this new duration to 
represent a matched design, the intersection point of Fig. 6-18 
must be moved to the right. But this can only be achieved by de
creasing N /N b' which results in an increase in I p~ax and a de
crease in kmax• (Increasing N piN b would move the intersection 
point to the left.) Thus, the larger the allowed priming time the 
closer N /N b --> 1 for a matched design. 

The ramp ip (t) waveform may be modified to advantage by re
placing the sudden fall at t = T p by a gradual fall (such as an ex
ponential decay) beyond t = T p' The values of k max and I p max are 
the same as for the simple ramp except for a minor increase in 
k max if T p is slightly below T s' On the other hand, kmin and I p min 

are lower, because switching may continue beyond t = T p' As a 
result, :R is even higher than for a ramp ip W. For the same rea
son, an even better modification than a gradual fall is to maintain 
p constant for a specified time beyond t = T p. The resulting 
overall ip (t) waveform is then trapezoidal. Similarly, improved 
results can be obtained with a half-sine priming current, as 
shown by Nitzan (1965). 

For a typical core used in MAD-R logic circuits, with minor 
aperture about 1/10 the diameter of the major aperture, computed 
and measured values of I max and I min versus T at room tem-p p p 
perature are compared in Fig. 6-19 for a ramp priming current 
with exponential decay of time constant 7 f = T /2. Two N /N b 

values are shown: 6/6 = 1 and 6/4 = 1.5. Note that the unity-ratio 
case, N/Nb = 616 = 1, results in lp~ax --> 00, that is, no flattening 
of the curve, as predicted. But note that the case of N /N b = 1 is 
actually superior to the case of N /N b = 1.5 only if T p > 450 !1 sec. 
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Fig, 6-19_ Calculated and measured I p m a x and I pm in vs. T p with 
N piN b as a parameter (T = 25°C). 

Effect on Core Designs. Enlargement of the minor apertures 
may be desirable in order to reduce the cost of fabrication (be
cause wiring is easier), but this reduces priming range. With the 
technique of slow-rise priming just described, however, some re
duction in range ratio ~ may be tolerated. For example, with a 
minor aperture as much as 1/4 the area of the major aperture, we 
calculate for a given core material at 25°C, ~max = 4.8 with 
N/Nb = 7/5 for a bit rate of 500/sec.,or ~max = 10 for N/Nb = 6/5 
for 60/sec. In comparison, we calculate ~max = 2.5 for a bit rate 
of 60/sec. using a rectangular pulse. (This result as compared to 
the results in Fig. 6-19 gives an idea of how relative path lengths 
around major and minor apertures must be considered in con
junction with overall core design, discussed in the next section.) 
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6-9 Core Design 

The purpose of this section is to outline the major considera
tions in the design of multileg cores. Though the emphasis is on 
aspects important to MAD-R circuitry, the underlying principles 
are of more general nature. We consider only the geometrical 
aspects of core design. The problems of designing material mixes 
for certain specifications, and for controlling the mixing, pressing, 
and firing operations are beyond the scope of this book. (It should 
be mentioned, however, that there is the potential of using two dif
ferent ferrite materials in different sections of the same core, in 
order to enhance the ratio of major/minor aperture thresholds to 
a value greater than the ratio of major/minor aperture path 
lengths, as described by Heckler (1967).) 

Gross Aspects of Size and Shape. Since the required drive cur
rents are proportional to core path lengths (assuming a single ma
terial), and switching voltage is proportional to cross-sectional 
area, core miniaturization is important for achieving low current 
and low power levels. An additional factor against large size, for 
ferrite cores, is the press-and-die problem, since very high 
pressures are required during the forming process to achieve 
high-density uniform packing of the constituent metal-oxide powders. 
On the other hand, miniaturization tends to be limited by such 
mechanical factors as fragile elements in the core-forming dies, 
fragility of the cores themselves, and inadequate space for windings. 

Of these factors, the size limitations based on requirements for 
coupling loops are the most significant and fundamental. For ex
ample, suppose we start with a well-designed circuit with NR = 1 
and specify that wire length and all core dimensions are to be 
scaled down uniformly, but that wire cross section is to be ad
justed so as to maintain unchanged the ratio of loop resistance to 
receiver switching resistance, namely, ReINR2(i, in order to main
tain a good design with transfer and priming times unchanged. The 
switching resistance N R 2(i can be rewritten as N R 2 I'J.¢RISw I, where I 
is path length and S w is the switching coefficient of the material. 
(For more discussion of Sw' see Sec. 12-6.) Since I'J.¢R is pro
portional to the cross-sectional area of the core, then Ii is pro
portional to area/length-or just to the linear scaling factor since 
all core dimensions are scaled uniformly. Since Re is proportional 
to length/area of the wire, then with wire length scaled down with 
core dimensions, the wire cross section must be kept constant in 
order for ReiN R 2(i to remain constant. This means that the ratio of 
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aperture area to wire cross section decreases as the square of the 
scale factor. For typical cores and circuits (with minor-aperture 
diameters of 20-30 mils), coupling-loop wires already fill a sub
stantial portion of minor-aperture space, so in fact very little 
further miniaturization is possible without sacrifice in perform
ance. (The practical lower limit on minor-aperture diameter for 
MAD-R circuits, depending on other details of the cores, is prob
ably in the range of 10-20 mils.) 

Path-length ratio, i.e., the ratio of switching path lengths 
around the major and minor apertures, affects drive tolerances 
for all core-wire schemes, but has a most direct affect on the 
priming range of MAD-R circuits (see Sec. 6-8). On the basis of 
the desired path-length ratio and a minimum practial minor
aperture size, an overall core size in the planar view may be 
selected. There is still a question of how thin to make the core 
(in the third dimension), the objective being to minimize voltage 
requirements. Aside from the question of the mechanical strength 
of the core, problems relating to air-flux leakage become signifi
cant if the thickness of the core is substantially reduced in pro
portion to the other dimensions. (The minimum practical thickness 
is also of the order of 10-20 mils.) 

The number of minor apertures required may range from one 
(adequate for simple shift registers with major-aperture input) to 
four, five, or more, for logic-circuit cores-say, two apertures 
for inputs, two for outputs, and one, perhaps, for readout to a 
power output device, as indicated in Fig. 6-8. 

Shaping to Minimize Soft-Threshold Effects. Consider the three
leg core of constant thickness shown in Fig. 6-20(a), which has one 
minor aperture in an otherwise purely toroidal core. In this case, 
after a clearing mmf Nc ic has been applied and then removed, 
Leg m cannot remain saturated because wm > w3 + w4 ' where W 

represents the minimum leg width. The resulting soft threshold 
of Leg m is undesirable as it may cause spurious setting (for 
example, during the priming phase in MAD-R operation). To over
come this problem, we may design the core so that wm = w3 + w4• 

This is generally accomplished by shaping Leg 4 as shown in 
Fig. 6-20(b). Four alternative ways for shaping a core with two 
minor apertures are illustrated in Fig. 6-20(c) to (f). In Fig. 6-20(e), 
two slots are made in the upper and lower parts of Leg m as an 
alternative to shaping around the minor apertures. In Fig. 6-20(f), 
the axes of the major and minor apertures are perpendicular, and 
Legs 1, 2, 3, and 4 are shaped in the third dimension. 
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(b) 

(c) (d) (e) (I) 

Fig. 6-20. Different methods of core shaping that maintain constant cross-sectional area, as 
compared to the core in (a). 

Design/or High Ratio o/One/Zero Output. As discussed in Sec. 
6-4, the flux state of a multi aperture core may be detected non
destructively by applying an ac drive to a minor aperture. Our ob
jective now is to consider the effect on readout voltage (or flux) 
as we vary the magnitude of w3 + w4 as compared with w m' 

First, consider the case of a core with w3 + w4 > wm' An mmf 
N c ic large enough to saturate all legs is applied in the clear 
direction to Leg m (Fig, 6-21(a». As ic is removed, a magnetic pole 
distribution is established, as indicated by the plus and minus 
signs in Fig. 6-21 (a), causing partial demagnetization of Leg 3 
along the shortest path length. With ac drive applied as in Fig. 6-8, 
some flux can now switch inelastically around the minor aperture, 
in amount proportional to (w3 + w4 - w m)/2. The magnitude of 
switchable inelastic flux for the core in the set state is propor
tional to [min(w3• w4)], that is, the lesserofthe two values w3 and w4 • 

Therefore, the one/zero ratio of output flux values is approximately 

(6-51) 

where 8 is a correction term for elastic flux, assumed the same 
for both the one and zero cases. Following Eq. (6-51), the highest 
one/zero ratio is obtained for w3 + w4 = wm and w3 = w4 • 
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m 

(a) 

Fig.6-21. Circuits for testing the effect 
of differences in cross-sectional areas of 
the major leg versus the sum of the minor 
leg areas on (a) one/zero readout ratio, 
and (b) input-aperture clipping. 

If W3 + w4 < w m ' then after the clearing pulse, the polarity of 
the poles is reversed from that shown in Fig. 6-21(a), and the re
maining static field causes Legs 3 and 4 to be magnetically stressed 
in the clear direction. The elastic permeability is therefore lower, 
and the a terms of Eq. (6-51) are therefore even smaller than 
in the case of w3 + w4 = w m' though the signal output for the set 

state is very nearly the same as for w3 + w4 = w m • Thus, we can 
actually obtain an enhanced one/zero ratio with w3 = w4 and 
w3 + w4 slightly less than w m' (It is not practical, however, 
to design for equally enhanced one! zero ratios from each of 
two or more apertures, because of dimensional variations. The 
highest ratio will actually be obtained from the aperture that 
happens to end up with the smallest effective cross-sectional 
area in its adjacent legs.) 

Minor-Aperture Flux Clipping. Consider again the case 
w l + w 2 > wm and the drive arrangement of Fig. 6-21 (b). After a 
large clearing mmf has been applied, Legs m and 1 will be left in 
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a hard clear state and Leg 2 will be partially demagnetized. In this 
case, some inelastic flux will switch in Leg 2 in response to a rela
tively low level of input information current ir• In other words, flux 
clipping may be achieved for Leg-1 input if Leg 2 is unsaturated 
at the beginning of the input phase. This condition is assured in 
Fig. 6-21(b) by the linking of a Clear winding around Leg 1 to 
ensure that this leg is saturated by the Clear mmf. This provi
sion is not actually necessary for typical MAD-R circuits, since 
the back-loop current generally reverses in direction after re
moval of the Clear pulse, with sufficient magnitude to assure full 
clearing of the leg that is linked by the input coupling loop. 

6-10 Summary 

This chapter is concerned exclusively with the MAD-R scheme, 
which to date has received the greatest study with respect to de
sign and application. In Secs. 6-1 to 6-3, three different deriva
tions of the MAD-R scheme are presented, each one starting from 
a scheme that was developed earlier in the book. The approach is 
to try to eliminate the prominent weakness of the previous scheme, 
and in so doing, we end up in each case with a MAD-R circuit. 
Each derivation adds emphasis to different aspects of the MAD-R 
circuit and each therefore helps to convey some feeling for why this 
scheme, though relatively simple in structure, exhibits such good 
performance. (In Secs. 8-3 and 9-1, variations on the MAD-R 
scheme are presented which hold promise of even further im
proved performance, but at the expense of increased physical 
complexity. ) 

The remainder of this chapter is concerned with techniques that 
have been developed for practical design of the various portions of 
MAD-R circuits, primarily the coupling loops and the advance and 
prime circuits, as well as design of the cores themselves. 
Coupling-loop design involves the choice of transmitter turns and 
receiver turns, as well as the choice of wire size and length, 
which in turn govern the values of coupling-loop resistance and 
inductance. Starting in Sec. 6-6, we develop basic design equations 
for the coupling-loop and advance circuits, assuming the availability 
of certain key design parameters. Then we describe relatively 
simple experimental techniques for deriving quantitative expres
sions for these design parameters. Analysis of the priming circuit 
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shows the basic trade-off that is possible between speed of opera
tion and drive-current tolerances. In particular, it is shown how 
these circuits are relatively easily designed for operation over a 
wide temperature range, e.g., from -50 to +75°C. Finally, it is 
noted how certain aspects of the design of the multlleg cores them
selves affect performance. 

The design techniques presented here are relatively crude 
by comparison with those that might be developed, based on the 
computer models for cores described in Chap. 12. However, these 
techniques are actually quite simple to apply, and they have proven 
to be very effective in the development of practical MAD-R circuits. 
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In the previous chapters, many of the concepts and principles 
important to the subject of core-wire transfer circuits were intro
duced, and a number of different types of schemes were derived. 
In Chaps. 8 and 9, we will discuss still other kinds of core-wire 
schemes, some of which may become quite practical, depending on 
application requirements and future material developments. All of 
these schemes, the earlier ones as well as those to be discussed 
later, were discovered in rather random fashion, independently, 
and it is therefore important to develop tools whereby the inter
relations of these various schemes can be more clearly seen. The 
network representation of Chap. 5 is helpful in that it provides an 
easy way to follow sequencing between flux states. The method of 
this chapter is another step in this direction; it provides some 
formal steps for dissecting and classifying schemes, and leads to 
an interesting overall way to view them. The technique is not es
sential for understanding the remainder of the book, however, and 
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the reader may therefore bypass this chapter without loss of con
tinuity. The main reason for presenting this material now is that 
it offers a more consolidated overall view of the relatively simple 
schemes developed thus far, before we go on to the more complex 
schemes of Chaps. 8 and 9. 

The primary approach is: (1) choose a certain network con
figuration to study; (2) list all possible flux patterns for this net
work; (3) form a set-state chart, by investigating which flux 
patterns can be converted into which other patterns by a f\.¢
transfer operation; and (4) form sequences of connected states 
that represent closed cycles. Each such sequence represents a 
potential scheme to study further, and all schemes can thus be 
systematically searched. Though only a few simple types of 
configurations have thus far been investigated in this manner, 
the process has resulted in a systematic "rediscovery" of some 
of the schemes already discussed, as well as some new ones. 

7-1 Van De Riet Representation 

In Sec. 5-3, it was noted that by manipulating node types, a 
given scheme could be realized in various circuit configurations. 
No matter how different the physical appearance, however, we 
nevertheless considered the variations as realizations of the same 
basic scheme. Differences between schemes were described only 
on the basis of (1) the basic network form, and (2) the particular 
sequence of flux states. For these criteria the node type is not 
important. For consistency in discussion of schemes, then, we 
might profitably think in terms of network diagrams in which all 
nodes are deliberately of the same type; following Van De Riet 
(1963) we will use all synthetic nodes, corresponding to an all
toroid form of realization. 

A given number of toroids can be interconnected in a large 
number of ways. Our job is to find those methods of interconnec
tion which lead to useful transfer schemes. We assume the same 
method of data representation used in the previous chapters: a 
binary one is represented by storage or transfer of a certain unit 
of f\.¢, and a binary zero is represented by nominally zero f\.¢ 

transfer. We temporarily add another constraint, namely that all 
bits of a register are processed identically at every instant. 

Configurations (a) to (d). By the configuration of a toroid-wire 
circuit, we mean the specific way in which the toroids and coupling 
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loops are linked together. Two toroid-wire circuits have the same 
configuration if they can be made to coincide geometrically by 
stretching, twisting or bending the loops and elements. The con
figuration of a circuit is important in classifying a scheme but we 
will see that it is not complete in itself. In most cases, different 
sequences of flux-state patterns can be shifted along the same 
configuration, each of these then amounting to a different scheme 
of transfer. 

The number of coupling loops linking a given toroid is an im
portant aspect of the circuit configuration and of the structure of 
the equivalent network. A core linked by only a single coupling 
loop will be referred to here as a loop core. A core that couples 
a pair of coupling loops, by virtue of being linked by both, will be 
referred to as a coupling core. The method discussed here has not 
been developed in sufficient generality to handle circuits that con
tain other than such singly and doubly linked cores. 

It is convenient to distinguish between simple and complex con
figurations. In a simple configuration, two adjacent loops are 
coupled through only a single core so that there are just two 
coupling cores linking each loop (though any number of loop cores). 
Thus, a simple configuration can always be transformed to a ladder 
network (see Sec. 5-2). In a complex configuration, there may be 
more than two coupling cores in some loops. For example, in the 
toroid-wire flux doubler of Fig. 5-23, there are four coupling 
cores and one loop core per coupling loop. (In the orthogonal 
scheme of Fig. 8-13, we will find eight coupling cores and no loop 
cores per coupling loop.) We consider here only simple configura
tions, although there is no reason why the technique cannot be ex
tended to complex configurations. 

A simple configuration can be represented by a chain of 
coupling loops, each pair of adjacent loops being interconnected 
by a single coupling core. Some examples of simple configurations, 
with their corresponding unbalanced network representations, are 
sketched in Fig. 7-1. (No winding polarities are shown in the figure 
because we need not be concerned with such details at the moment.) 
Recall from Chap. 5 that each coupling loop is represented by only 
a single node in an unbalanced network, there being one ground 
node for the entire network. Coupling cores are represented by 
series branches between two nodes, and loop cores are represented 
by shunt branches to ground. 

Iterative or periodic configurations have been indicated for all 
the examples shown. The sbortest section that repeats is called 
the period. In Examples (a), (b), and (d), the period brackets only 
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Fig. 7-1. Some simple configurations with their corresponding network representations. 

a single coupling loop. In Example (c), the period encompasses 
two coupling loops. It is clear that aside from polarities, simple 
configurations can differ only in the number of loop cores in the 
coupling loops. Thus, all possible simple configurations can be 
drawn by systematically increasing the number of loop cores in 
each loop. We will treat schemes having the configurations shown 
in the last three parts of Fig. 7-1, that is, schemes with configura
tions (b), (c), or (d). (There can be no schemes having the con
figuration of Fig. 7-1(a), since there can be no flux switching ex
cept in all cores simultaneously.) 

Transfer between Set-State Patterns. With idealized zero
impedance coupling loops, there are only certain patterns of 
saturation states that can exist in a coupling loop, because there 
can never be a net change in flux linkage in the loop. We will al
ways assume one of these patterns to be the clear state, arbitrarily 
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(but not restrictively) defined as the state in which all cores are 
saturated clockwise. Any set-state pattern then requires two or 
more cores to be set, or saturated, counterclockwise. If anyone 
core in the circuit switches, then some other core in the same loop 
must switch simultaneously. Assuming for now that all cores have 
the same flux capacity and that if a core switches at all, it switches 
completely, then only an even number of cores can switch simul
taneously in every coupling loop. 

Let us consider the set-state patterns involving only one pair 
of set cores per loop, as in Fig. 7-2(a), (c), and (e), where the set 
cores are shown shaded. From these patterns it can be inferred 
that any pattern limited to a single pair of set cores per loop will 
always be made up of two loop cores that are set, and some arbi
trary number of set coupling cores between these two loop cores. 
The networks corresponding to the circuits of Fig. 7-2(a), (c), and 
(e) are shown in Fig. 7-2(b), (d), and (f). 

(a) (b) 

(e) (d) 

(e) (f) 

Fig. 7·2. Set-state patterns involving only one pair of cores per loop. 

Though no winding polarities are shown in Fig. 7-2, allowable 
polarity combinations can be readily determined. If two cores that 
are linked by the same loop are switched simultaneously, they must 
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have winding polarities that lead to emf cancellation in the loop. 
Thus if two such cores are in their clear states (or both in their 
set states) prior to SWitching, then they must have opposite winding 
polarity; and conversely, with their initial states opposite, the 
winding polarities must be the same. 

Let us now consider the transition from one data state, or flux
state pattern, to another. For purposes of illustration we use the 
Engelbart scheme of Fig. 5-20(d). The circuit for a three-bit sec
tion of register is indicated in Fig. 7-3, where the bit length en
compasses two periods of the structure. A one is represented by 
each triple-core set-state pattern shown shaded (in the first and 
second bit positions). The same group of toroids would contain a 
zero if all toroids in the group were initially in their clear states. 
During the shifting operation, different groups of toroids will hold 
the set-state pattern. For example, the pattern for 110 is shown 
in the figure and it is assumed that there is a zero to the left. The 
drive sequence ° --> E, Clear 0, E --> 0, Clear E, advances the pat
tern exactly two periods, or one bit length, to the right, as indi
cated below the figure. After one complete clock cycle, the triplet 
of cores initially holding the set-state pattern for the jth bit again 
holds the same pattern, but now representing the (j + 1) st bit. 

In the logical concept of a shift register, a shift is a one-step 
process in which all bits simultaneously move one position. In the 
register representation, however, there may be a number of inter
mediate steps involved before a shifting cycle is completed, and 
during these steps, a one is not represented by a unique set-state 

Register 
Representation 

I---- Bit length -------i 

E 0 E r--O -I E-------j 0 

o 0 0 0 00 00 

Bit content 

O-E 
Clear 0 

0 

Clear E 

jtt jtt 

j tt jtt 

jtt 

jtt jtt 

jtt jtt jtt 

jtl jtt 

j j j 

j j j j 

j j j 

jtt jtt j j j 

itt itt jtt j i 

Fig. 7-3. Cycle of set-state patterns for the Engelbart scheme of Fig. 5-20(d). 

j 

j 



FORMAL DERIVATION OF TRANSFER SCHEMES 153 

pattern, but rather by a sequence of such patterns. Our main goal 
now is to search for all of the possible sequences of set-state pat
terns that can lead to proper binary transfer. (We might note that 
a flux transfer, or transmission, can be thought of as the setting 
of one core as the result of clearing another core linking the same 
coupling loop. If necessary, bias drives are applied to aid the 
switching of the receiver and inhibit the spurious switching of 
other cores. It will be assumed here that proper clearing and 
bias currents can be provided, and only the sequence of the trans
fer will be considered, although it is possible to devise flux
transfer sequences that satisfy all flux-state transition require
ments, but yet cannot be driven in such a way as to be operable.) 

7-2 Set-State Chart 

Schemes with Configuration (b). The configuration of Fig. 7-1 (b) 
will be used to show a technique for generating all possible schemes 
in a given category. One bit-length of a register having this con
figuration is shown in Fig. 7-4. The bit-length is chosen as three 

v x z 
Possible 

State Set cores I next state 
1 2 2 1 1 1 2 
2 2 2 1 1 3.4 
3 2 2 2 1 1 4 
4 2 2 2 5.6 
5 2 2 2 2 6 
6 2 2 2 7.8 
7 3 3 2 2 2 8 
8 3 3 2 2 9.10 
9 3 3 3 2 2 10 

10 3 3 3 11.12 
11 3 3 3 3 12 
12 3 3 3 

Fig. 7-4. List of set-state patterns for the configuration of Fig. 7-1(b) and a bit
length of three periods. 
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periods long because, as we will see, there are no schemes with 
bit-lengths of only one or two periods for this configuration. As
sume the bit-length of Fig. 7-4 holds part or all of a set-state 
group which represents ::t one. Assume also that there are ones in 
both adjacent bits, and let the three bits be represented by set
state patterns labeled 1, 2, and 3. 

In general, there is a relatively large number of possible set
state patterns, though we will now describe a simple procedure 
for listing all of the patterns for a given configuration. Consider 
the second bit-length of some arbitrary simple configuration, and 
draw the configuration with a coupling core as the leftmost core. 
Build up the pattern, as in Fig. 7-4, by setting the two leftmost 
cores and record it by placing a 2 in each of the two leftmost 
columns. Now set other cores, as necessary, to meet the require
ment of identical bit processing and an even number of set cores 
in any given loop. Where there is more than one possibility, order 
them so that the· states with the leftmost set cores come first. 
Following these rules, we obtain the first six rows of the chart in 
Fig. 7-4. (The bottom six rows are identical to the top six rows 
except that the numbering is advanced by one. Though redundant, it 
is useful later to have these rows labeled independently.) 

When we draw only a single bit-length, some of the cores in a 
set-state pattern will of course not be shown because they are in 
adjacent bit lengths. However, their location is known because there 
will be set cores in the bit-length in question, corresponding to 
the ones not shown. In other words, the position of all cores in any 
set-state pattern is known though only one bit-length is shown. 
Thus we can readily see that in Row 1 the basic set-state pattern 
contains four set toroids per bit, but that in Rows 2 and 4 there 
are only three set toroids per bit in the set-state pattern. 

Permitted Transitio.ns. From the above, we see that under the 
temporary restriction of processing all bits identically, there are 
six and only six possible set-state patterns in a bit-length of the 
configuration of Fig. 7-4. Any transfer scheme using this con
figuration must therefore use set-state patterns included in the 
above list, and any shifting process will simply represent a series 
of changes from one set-state pattern to another. 

In terms of the patterns listed in Fig. 7-4, a shift cycle is ac
complished when all the numbers in the final set-state pattern 
correspond in position to the numbers in the initial pattern, but 
advanced by one. For example, a complete shift cycle should 
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convert the pattern of Row 1 to the pattern of Row 7. To determine 
what set-state patterns might be involved in a complete shift cycle, 
it is necessary to determine for each pattern which other patterns 
it can be changed to in one step. These changes are just the trans
fers described earlier, where clearing of one loop core causes the 
setting of some other loop core on the right, either directly in the 
same loop, or indirectly through a chain of coupling cores. For 
example, the set-state pattern of Row 1 can be changed or trans
ferred in one step to that of Row 2 by clearing Cores X and Y and 
setting Core Z. The set state in effect is taken out of Loop Core X 
and put into Loop Core Z, reversing Coupling Core Y as it passes. 

Finding which set-state pattern can be changed in one step into 
which other ones can be done by inspection, provided we keep in 
mind some simple rules. Basically, we check to see if one set
state pattern can be changed into another one by the clearing of 
one loop core and the setting of another, while reverSing the state 
of all intermediate coupling cores, according to these rules: 

1. Only one loop core can be cleared in a bit length and only 
one loop core set during one clock time. 

2. No core being cleared can be set during the same clock 
time. 

3. Between the pair of loop cores being set and cleared, there 
can be no coupling cores which hold part of a set-state 
pattern representing a different bit. 

Following these rules, we find the allowed transitions listed to the 
right of each set-state pattern in Fig. 7 -4. 

Shift Cycles. It now becomes clear that finding all possible 
schemes for a particular configuration is just a matter of finding 
the possible paths between all pairs of set-state patterns repre
senting endpoints of a complete shift cycle. To find these paths, 
it is convenient to write down the row numbers for all of the set
state patterns and to draw a line between each pair of numbers 
for Which a transfer is possible in one step. In this way we ob
tain the transfer diagram of Fig. 7-5. 

The problem of finding all possible cycles is now simple. 
Consider, for example, the set-state patterns 2 and 8, which are 
different by exactly one shift cycle. From Pattern 2 we can go to 
Pattern 4; from 4 to 6: and from 6 to 8. This scheme requires 
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three steps to accomplish the shift, each of these 
steps corresponding to one of three clock pulses. 
This particular scheme is shown in network form 
in Fig. 7-6, along with the flux switching path for 
the State-4 to State-6 transition. In this transi
tion Branches V, W, and X are initially set, and 
the idea is to transfer from V to Z, via Branches 
Wand Y, but without disturbing X. For this trans
fer to be accomplished, the shunt branches must 
have a relatively high threshold compared to the 
coupling branches, so that proper biasing can be 
applied. 

We would like now to show that there are no 
other possible schemes with the configuration of 
Fig. 7-4 for three or less stages per bit. At first 
glance, we might think that we could develop a 
four-clock state sequence of theform2,4, 5,6,8, 
or even a six-clock sequence involving all of the 
states. To see that these sequences are in fact 
not possible, we must note an additional require
ment of consistency for the entire sequence of 
states, in addition to the rules for a single transi
tion between two states. Fig. 7-5. Diagram of 

all possible set-state 
transitions for the con
figuration of Fig. 7-4. 

Consider States 4, 5, and 6. The transition to 
State 4 must occur with Cores W and X switching 
together from their initial clear states. This 

implies that the two cores must have opposite winding polarities. 
The transition from State 5 to State 6 also requires Cores Wand X 
to switch together, but this time starting from opposite flux states. 
This requires that they have the same winding polarity in the loop. 
The two requirements are clearly inconsistent and therefore make 
it impossible to have a scheme in which these three states appear. 
Similarly, none of the other states in the left-hand column of Fig. 
7 -5 can be included. Thus we see how the requirement of overall 

u 

Fig. 7-6. Three-clock scheme corresponding to set-state transition 
sequence 2-4-6-8. 
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consistency means that some transitions cannot appear in a given 
cycle with certain other transitions. 

From the above, we see that with a three-period bit-length for 
Configuration (b), the three-clock scheme of Fig. 7-4 is the only 
possible one. If we had assumed a bit-length of only two periods, 
the set-state chart would have shown only two possible states, 
with no allowed transition, and in the case of a single-period bit 
length, there are no possible set states at all. Hence, we need at 
least three periods per bit with this configuration. 

7-3 Schemes with Configuration (c) 

We could proceed to develop a new set-state chart and search 
for permitted sequences based on Configuration (c) of Fig. 7-1(c), 
but we can short-cut this entire effort based on the following ob
servation. Configuration (c) is derived directly from Configura
tion (b) if we can eliminate one of the coupling cores, specifically, 
Core Y in the conversion from Fig. 7-7(a) to (b). We can be sure 
that with this configuration and bit-length, there are no additional 

I ' Bit length ~--.. 'I 
L 1 L2 /' ~ 

~~/?~~~/~ 
,;U xU ;U 

(a) 

, 0 
CP(y) / 

() 
(b) 

(e) 

Fig. 7-7. Converting from Configuration (b) of Fig. 7-1 to Configuration 
(c) by eliminating Core Y; and then to a corresponding resistance scheme 
by replacing Core Z by a resistor. 
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schemes beyond those already shown for Configuration (b), since 
the set-state chart for this abridged configuration would if any
thing be more confined than the original. 

Let us see now why Core Y can in fact be eliminated. First, 
Core Y is not required for turns ratio since there are other coup
ling cores in the chain available for this function. Second, by trac
ing the state sequence 2 -> 4 -> 6 in Fig. 7-4 we see that Core Y is 
set and cleared on adjacent clock pulses, and therefore serves no 
essential memory function. The primary role of Core Y is in 
isolating against back transfer (during transfer out of Core Z), 
but it is not absolutely necessary. Thus the same three-clock 
scheme derived for Configuration (b) applies also to Configuration 
(c), though more care is required in the drive circuits. (One 
might think that we could eliminate Core W as well, leaving only a 
single coupling loop per bit, but there would then no longer be 
sufficient isolation between bits.) 

The physical process of eliminating Core Y can be thought of 
as follows. Since Core Y is not required for turns ratio, we can 
assume equal input and output turns. In this case, the voltages 
generated in the two windings are always identical, and the two 
windings may therefore be connected together, as indicated by the 
dashed lines in Fig. 7-7(a). The circuit then has the form of 
Fig. 7-7(b), and unless Core Y is used for holding against back 
transfer, as described above, it can simply be eliminated. 

A corresponding resistance version can be arranged by replac
ing Core Z by a resistance, as in Fig. 7-7(c). This circuit is just 
the all-toroid version of the Engelbart circuit of Fig. 4-7(c). Thus 
we see that the latter arrangement is minimal in the sense of the 
total number of branches required per bit, namely, four core 
branches and one resistance branch. No known scheme in the 
categories considered thus far has fewer cores and resistors per 
bit (though in Sec. 9-2 we will find a scheme that requires only 
1 1/2 magnetic elements and 1 1/2 resistors per bit, based on the 
coherent-rotation property of thin films). 

7-4 Schemes with Configuration (d) 

The configuration shown in Fig. 7-1(d) is one in which a number 
of different schemes have been discovered. The set-state chart 
and transfer diagram for this configuration are shown in Figs. 7-8 
and 7-9, respectively. From the·rather complicated nature of the 
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** Set - state patterns 

** *** 

*** Set-state pattern number to which one-step transfer may be made 

Fig. 7-8. Set-state chart for Configuration (d). 

diagram, it seems as though one might find a large number of 
three- and four-phase schemes. However, there are really only 
two different three-phase schemes, and about ten significant four
phase schemes (though the latter have not been exhaustively ex
amined and counted). The reason for relatively so few schemes, 
in spite of the large number of paths on the diagram, is that the 
diagram indicates many schemes which are only trivially different 
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Fig. 7-9. Transfer diagram for Configuration (d). 

from each other. These trivial differences are of two types, related 
to (1) starting point difference, and (2) differences due to loop-core 
interchanges: 

1. A scheme is a repeating sequence of set-state patterns, and 
there is no real starting or ending pattern as such. Thus any given 
sequence will show up as a scheme as many different times as 
there are set-state patterns in the sequence, each scheme starting 
with a different set-state pattern but having in effect the same 
sequence. 

2. Reversing the roles of two loop cores on the same loop 
produces only trivially different schemes. The two sets of schemes 
that result from this interchange manifest themselves in a mirror
image symmetry, such that for every scheme path; there is another 
that is exactly symmetrical with respect to a vertical line through 
the center of the transfer diagram. 
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We have already seen two four-phase schemes having this con
figuration, namely, the Engelbart and Russell schemes of Secs. 5-4 
and 4-3, respectively. Referring to the earlier derivations of these 
schemes, it is readily verified that the set-state sequences are 

3 --> 7 --> 12 --> 15 --> 17 (3) for Engelhart, and 

3 --> 9 --> 12 --> 14 --> 17 (3) for Russell, 

which are sketched on the abridged diagram of Fig. 7-10. 

YOOh"".$\ 0 

000 

o ([55 ..... -

00 

: 
I 
I 
I 
I 
I 

\ 

o 

00 
Fig. 7-10. Abridged transfer diagram showing the four-phase 
schemes. 

The circuits for these two schemes are shown together for com
parison in Fig. 7-11(a) and (b), with the four clock phases indicated 
by the notation 1, 2, 3, and 4. Recall that the Russell scheme has 
better isolation than the Engelbart scheme, because the coupling 
core is set and cleared on adj acent clock phases and therefore 
can be unconditionally held to give good isolation. (For example, 
in Fig. 7-11 (b) we set E2 through the coupler E1, and then im
mediately set E3 while clearing the coupler.) But recall also that 
this resulted in the need for two large cores in the coupling loop, 
which tends to increase flux losses because of the larger loop 
currents that are therefore required. 
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Fig. 7-11. Four-phase schemes based on Configuration (d). 

By still another change in sequencing we obtain the Yochelson 
(1960) scheme in which we find that we can make Ea a small core, 
as shown in Fig. 7-11 (c). The set-state sequence for this scheme 
is 2 ... 9 ... 10 ... 14 ... 16 (2). In the Russell scheme we transmit 
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from Cores E2 and E3 in the same sequence that they are set, first 
from E2 and then from E3 • However, in the Yochelson scheme we 
transmit from E3 before E2 , so that E3 is set and cleared on ad
jacent clock phases (i.e., it serves no storing role during any other 
clock phase) and can be held unconditionally during transfer from 
E2 • It is for this reason thatE3 can be a small core, with the advan
tage of smaller drive currents and therefore smaller flux losses. 

Finally, in Fig. 7-11(d), we diagram the Russell Type-I 
scheme of Fig. 6-4(b). Though this is a resistance scheme, we can 
determine the appropriate set-state sequence by imagining the 
loop resistance to be replaced by a core. The sequence of flux 
states thus obtained is shown below the circuit. Note that this 
scheme is quite different from the other three, because of the 
"within-the-loop" transfer, that is, /I,¢ transfer from 02 to the 
loop resistance, or to its replacement core, at the time we clear 
02. The circled "2" in the chart is a reminder that in the resist
ance version of the scheme, the transmitted /I,¢ is actually dissi
pated. 

Though the set-state charts derived thus far are on the basis 
of identical data-state representation in adjacent bit positions, 
Van De Riet (1963) found one four-clock scheme, Fig. 7-12, that 
uses nonidentical representation. The set state sequence for this 
scheme is 2 -> 11 -> 20 -> 26 -> 30 (2). 

2 
11 
20 
26 
30 

r-- Bit length 1 + Bit length 2 -+- Bit length 3 ~I 

4 4 3 3 3 2 2 2 1 
4 4 4 3 3 3 2 2 2 

5 5 4 4 4 3 3 3 2 
5 5 5 4 4 4 3 3 3 

6 6 5 5 5 4 4 4 3 

Fig. 7-12. Van De Riet double-speed four-phase scheme. 

1 

2 

3 

This sequence was found from an expanded transfer diagram, 
discussed by Van De Riet, of the type shown in Fig. 7-9 but where 
the states for several bits of transfer are followed. State 30 of the 
sequence comes from this extended diagram. An interesting point 
regarding this scheme is that each data bit moves two bit pOSitions 
in a single four-phase cycle. From the flux states shown below the 
figure, we see that each coupling core processes a new data bit 
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every two clock phases. But each loop core responds only to every 
other data bit. Core Bl responds to the even bits, and Core C1 to the 
odd bits. In the neighboring loop, Core El responds to the odd 
bits and Core F 1 to the even bits. 

Van De Riet also shows that there are just two different three
phase schemes that are possible with Configuration (d). One of 
these has the sequence 2 -> 6 -> 12 -> 16 (2), and the other one has 
the only slightly different sequence. 2 -> 9 -> 12 -> 16 (2). The first of 
these has a 2 -> 6 within-the-Ioop transition, as in the Russell-I 
scheme. The other sequence has a 2 -> 9 transfer, which implies 
that the data at one time is stored solely in the two loop cores in 
a single loop, with no coupling cores involved. This is true also 
of the Russell and Yochelson schemes, though not for the Engel
bart scheme. 

For Configuration (d), we have treated the only two possible 
three-phase schemes and five of the four-phase schemes. These 
five were selected from the ten or so significant ones for a cross
section representation of the more distinctly different types of se
quencing of states. Each of the remaining schemes is quite similar 
to one or the other of the ones considered. 

7-5 Summary 

A method is illustrated by which all possible transfer schemes 
can be derived for any given core-wire configuration. Though the 
technique may be cumbersome for complex configurations, it is 
relatively easy to apply for simple configurations, and we were 
able by this method to formally derive and identify a number of the 
schemes already discussed previously, as well as several new 
schemes. Derivation within the framework of a formal method 
such as this provides additional insight into the relationship be
tween these different schemes. We were able to show examples 
of: (1) different configurations, (2) schemes with different num
bers of clock phases within a given configuration, and (3) even dif
ferent schemes for the same configuration and the same number of 
clock phases. However, exhaustive derivation of all possible trans
fer schemes in this way would be extremely tedious and is an area 
in which automated computer search could offer great aid. 
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Three concepts not discussed earlier are considered in this 
chapter: flux sources, orthogonal switching, and dynamic bias. An 
array of new schemes evolves with each of these concepts. 

In the schemes developed thus far, a high or low level of flux is 
transmitted according to whether a similar level of flux was re
ceived previously. In Sec. 8-1 we consider the inverse situation, 
where a high level of received flux leads to a low level subse
quently transmitted, and vice versa. This mode of transfer is 
referred to as negation transfer, in distinction to the first type 
which may be termed simple transfer. Except in a few cases, 
every simple-transfer scheme can be converted to a negation
transfer scheme, and the use of flux sources is a primary way to 
achieve this conversion. In Sec. 8-2, the notion of modes of switch
ing, as opposed to individual paths of switching, is developed. A 
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number of new schemes evolve from consideration of orthogonal 
modes in particular. In Sec. 8-3, dynamic-bias techniques for 
effectively eliminating core threshold are introduced. These lead 
to schemes of increased physical complexity, but improved per
formance. (We will see in Chap. 9 how these concepts can be 
effectively combined with the bipolar mode of data representation 
to achieve still other transfer schemes of potentially practical 
importance.) 

8-1 Negation-Transfer Schemes 

By the term negation, we mean complementation of the data 
state, that is, replacement of each one by a zero, and vice versa. 
Since negation is one of the basic logical operations, techniques 
discussed here are relevant to general logic synthesis, as discussed 
in Chap. 10. Here, however, we are interested in negation transfer 
only from the standpoint of generating an additional class of trans
fer schemes. We will show two methods that can be used to convert 
most simple-transfer schemes to negation-transfer schemes, after 
we point out some general properties of the latter. 

FLux-Transfer Properties for Negation. Consider the two-stage
per-bit transfer circuit of Fig. 8-1(a) in which all transfers are 
assumed to be negative. The basic response of each negation stage 
is shown in Fig. 8-1(b) and can be expressed as 

(8-1) 

where !!..¢R (j) is the received !!..¢ and !!..¢T (j) is the flux available for 
subsequent transmission from the jth stage. Suppose datais stored 
in the E stages. After two transfers the data is again held in the E 
stages, in identical form but one bit-length removed, since two 

lIh(jl 

E 0 E 0 

\¢r(j+2) 
lI¢R(j+2) 00 2¢r II ¢R(j) 

(0 ) ( b) 

Fig. 8·1. Negation transfer: the transfer chain of (a) is composed of stages having the basic 
l1<jJ T - l1<jJ R characteristic shown in (b). 
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negation transfers are logically equivalent to a simple transfer. 
However, there are some special properties of this double
negation mode of achieving transfer. In particular, flux clipping 
(or any other low-level loss mechanism) is not required, and the 
symmetry of the range maps is significantly altered. 

Suppose that we introduce a gain mechanism by letting N TIN R = 

n > 1. Assuming a loss less loop, then provided the receiver is not 
saturated, that is, I1¢R (j + 1) < 2¢r' we have 

(8-2) 

Under these conditions, substituting Eq. (8-1) into Eq. (8-2) yields 

(8-3) 

which is plotted in Fig. 8-2(a). Note that for I1¢R (j) S some 
value 11¢ a' then I1¢R (j + 1) = 2 ¢r because of the saturation prop
erties of the receiver. By substituting I1¢R (j + 1) = 2 ¢r into 
Eq. (8-3), the magnitude of 11¢ a is found to be 2 ¢r (n - 1)ln. 

The overall transfer curve for two stages has the bistable form 
of Fig. 8-2(b), characterized by the equation 

(8-4) 

which is derived by extending Eq. (8-3) to the next stage. For 
I1¢R(j) S l1¢a' I1¢R(j + 1) = 2¢r' and hence I1¢R(j + 2) = O. Similarly, 
for I1¢R (j) ~ l1¢b' I1¢R (j + 1) S l1¢a' and therefore I1¢R (j + 2) = 2¢r' 
Thus, with negation transfer we see that core saturation leads to 
bistable operation with just a linear gain mechanism, without the 
need for a subsidiary nonlinear loss mechanism. 

In general, realistic negation transfer curves depart con
siderably from the straight-line characteristics of Fig. 8-2(a) and 
(b), being more like those of Fig. 8-2(c) and (d). The stable unity 
gain points at levels l1¢c and l1¢d are found by intersection of the 
single-stage transfer curve with its own reflection across the 45 0 

line, as in Fig. 8-2(c). 
Let us now consider the change in symmetry in the range maps 

with negation transfer. For the four-clock MAD-N scheme with 
simple transfer, we saw that there was essentially no upper limit 
on the clear currents. Plotting the allowed ranges of the two 
advance currents, we obtain a map that has a certain symmetry 
about the 45 0 line, as indicated in Fig. 8-3(a) •. An increase in IE - a 
leads to increased gain on the E -> 0 phase. This can be compensated 
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/ 
2¢r 

/ 

Fig. 8·2. Bistable flux·gain characteristic with negation transfer: (a,b) flux saturation in 
the basic transfer characteristic leads to bistable response in two transfers; (c,d) more 
realistic forms of response. 

IO_E I O- E 

% 
/ , 

/ / 
/ / 
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I E_o I E- o 
(a) (b) 

Fig. 8-3. Difference in range-map symmetry for (a) simple transfer, and 
(b) negation transfer. 
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by a corresponding decrease in I 0 ~ E' so that the overall transfer 
function for two stages preserves two stable levels. In other 
words, an increase in one current is compensated by a reduc
tion in the other current, resulting in elongation perpendicular to 
the 45° line. The opposite effect occurs for negation transfer. 
Suppose that I E ~ 0 increases. This results in an increase in the 
low level of flux transfer and a subsequent reduction in the high 
level of flux for the following transfer. To compensate, we must 
increase the following drive I 0 ~ E' Hence for negation transfer we 
obtain the orthogonal elongation of the range map shown in Fig. 
8-3(b). This new symmetry could result in practical advantage, 
because with most driver arrangements the various clock pulse 
amplitudes tend to vary in the same direction in response to 
supply-voltage variations. Also, changes in core thresholds with 
ambient temperature generally call for a similar scaling in both 
driver currents, so that for a given set of clock drivers we can get 
a larger range of temperature operation for negation circuits 
without the need for compensation. 

Driving the Transmitter to the Set State. Most schemes for 
simple transfer can be converted to negation transfer simply by 
driving the transmitter cores toward their set rather than clear 
states and reversing the polarity of coupling to the receiver cores. 
Then, if a transmitter core had previously been fully set by an in
coming one, only a zero level of flux would be transferred; but if a 
zero, Le., no flux, had been previously received, then the trans
mitter core would be set by the drive, causing the receiver core to 
set, i.e., to receive a one. 

For example, Fig. 8-4(a) shows the Engelbart scheme with the 
appropriate sequence of set states from Fig. 7-8 tabulated below. 
In Fig. 8-4(b) is shown the negation version. Note that with a one 
initially in the E-stage, a zero is now transmitted to the a-stage 
during the E -> a and clear-E phases. But if the E-stage initially 
stores a zero, then the setting of C E (by the driver) causes Go and 
Co to be set, and the subsequent clearing of CE causes Core Bo to 
be set, thus completing the same set-state pattern in the receiving 
group of toroids that would have existed after simple transfer of 
a one. 

For typical four-phase schemes, the negation process can be 
repeated for each half bit-length of a transfer chain, thus resulting 
in double negation in each bit length. Except for the double-speed 
register of Fig. 7-12, all of the four-phase schemes described in 
previous chapters, when realized in toroid-wire form, can be 



170 DIGITAL MAGNETIC LOGIC 

Clear E 

E-O 
Transfer 

GE Go G' E 

CE Bo Co B' E 

Set-state I 
pattern no I 

3 I 2 2 
7 I 2 2 2 
12 I 2 2 2 
15 i 3 3 2 2 
17(3) I 

3 3 2 2 I 

(a) 

Clear E 

BE CE Bo Co B' E 

Start 11~1 l1~1 11~1 
E-O l1 ~1 l1~1 l1~1 l1~0 11~0 

Clear E 11~0 11~0 11~0 
o -E l1 ~o I1 ~o l1~1 11~1 
Clear 0 11~1 l1 ~1 

Note: Start with one in E; transfer zero to 0; end with one in E'. 

(b) 

Fig. 8-4. Comparison of flux-state sequences in corresponding simple- and negation
transfer schemes: (a) Englebart scheme of Fig. 5-20(d); and (b) after conversion to 
negation transfer. 

converted to negation-transfer schemes by this technique without 
requiring additional cores. But for realizations employing multileg 
cores, this conversion generally cannot be done without alteration 
of the core shape, because of the static flux-closure requirements. 
To see why this is so, consider the multileg MAD-N scheme in 
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network form (Fig. 8-5), but with the E -> 0 drive source shown in 
a direction to set Branch C E for negation transfer on the E -> 0 
phase. According to this method it is also necessary to reverse the 
elements to the right of the dashed line; however, it is impossible 
to reverse the reference state of DE without also altering the ref
erence state of GE or C E' since these three branches connect at a 
physical node. Hence, to achieve negation with this scheme we 
must derive an alternate form of multileg core, which we now 
consider. 

,,---
I 
I 

, 
,----

Fig.8-S. Conversion of the MAD-N scheme of Fig. 5-19 to negation 
requires reversal of drive and reversal of element orientation to the 
right of dashed line. 

For negation transfer, the reference states of the legs adjacent 
to the input and output apertures must be as shown in Fig. 8-6(a). 
To satisfy the flux closure requirements, we insert a cross leg F, 
as suggested by the dashed lines, which is held against actual 
switching. (An actual holding mmf would not be required if the 
cross leg F had a sufficiently high threshold.) In this way, any 
flux switched through the input leg AE is forced to switch through 
Let CEo 

The corresponding network for this new magnetic circuit is 
shown in Fig. 8-6(b). The main leg GE is in effect divided into two 
parts, labeled G1 and G2 • With this arrangement, the net flux 
through G2 , in the cleared state, is zero. Since an unsaturated 
region can lead to soft-threshold problems, Leg G2 should be made 
as short as possible, i.e., the crosspiece should be moved close 
to the output aperture. 

In Fig. 8-6(c) is shown an alternative arrangement that over
comes the soft-threshold problem by providing a separate Branch 
G3 for flux switching, while utilizing single-width Legs G1 and G2 
for satisfying flux-closure requirements. A direct physicalrealiza
tion of this element is shown in Fig. 8-6(d), where it is assumed 
that Legs G1 and G2 are held in their clear states at all times. 
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(a) ( b) 

(c) (d) 

Fig. 8-6. Alteration of the basic multileg core shape to permit the required reversals of Fig; 8-5 for 
negation transfer. 

In terms of the device of Fig. 8-6(d), it is correct to think of 
the logical operation of negation as taking place within the multi
leg core itself. Note that this same core can be used for simple 
transfer by reversing the clear state of Leg G2 and still holding 
Legs G1 and G2 clear, resulting in zero net flux in Leg F. 

Negation by Use oj a ¢ or 1'l4> Source. In the method just con
sidered, a transmitter core, driven in the set direction, switches 
only if it has previously received a zero. An alternate method is 
to drive a transmitter core to its clear state, as for simple trans
fer, but to incorporate in the coupling loop a suitable voltage source 
v <t) with polarity to oppose the transmitted signal, as indicated in 
Fig. 8-7(a) for tne configuration of Fig. 8-4. As in the previous 
method, the polarities of the receiver cores (but not of the.E -> 0 
drive) are reversed. Thus, at E -> 0 time, if the transmitter has 
received a one, its flux-linkage signal cancels the integrated value 
of v<t) j if it had received a zero, the new source sets the receiver 
cores Go and Co to the one state, and negation transfer is thus 
accomplished. For completing the cycle, the source is required 
to provide a voltage of the opposite polarity at the next clock phase 
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(Clear E), either to balance the emf due to the clearing of GE or to 
cause setting of B o' depending upon whether Go had received a 
zero or a one, respectively. 

Clear E 

(a) 

( b) 

Fig. 8-7. Use of a ¢ or A¢ source for negation transfer. 

The network representation for the circuit of Fig. 8-7(a) is 
shown in Fig. 8-7(b), where the voltage source is represented by 
a ¢ source that injects flux at a specified rate into the node repre
senting the coupling loop. By use of preferential biasing during 
E -> 0 transfer, such that the effective threshold of Branch Go is 
less than that of Branch GE but more than that of Branch CE , the 
mmf drive in series with Branch C E may be eliminated, and the ¢ 
source will cause switching in the paths a or b depending upon 
whether CE is set or cleared, Le., contains a one or zero, re
spectively. 

Let us return again to the network of Fig. 8-5, where it was 
found that the first method of converting to negation transfer could 
not be applied without changing the form of the multileg cores. 
Note that to replace the mmf generator in series with CE by a ¢ 
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generator in parallel with CE , that is, connected to Node m, would 
require a synthetic node. However, by sliding the ¢ generator to 
the other side of Branch DE' that is, to Node n, and by reversing 
all branches to the right of Node n, we can achieve exactly what is 
desired, as shown in Fig. 8-8(a). (This network is seen to be ex
actly the same as that of Fig. 8-7 except for insertion of Branches 
DE and Ao.) The circuit realization of the network of Fig. 8-8(a) 
is shown in Fig. 8-8(b). With this method we can thus achieve 
negation transfer with the same multileg elements as previously 
used for simple transfer, but we must have means for providing a 
suitable voltage source or ¢ source. In the case of a voltage 
source, it must be energized for just the length of time needed to 
inject the proper amount of flux linkage (measured in terms of 
volt-seconds). To eliminate this additional requirement, the volt
age source can be replaced by a t-.¢ source that injects just the 
desired amount of flux linkage. An unconditionally driven toroid 
can serve as such a source, in which case the network takes the 
form of Fig. 8-8(c), with the corresponding circuit of Fig. 8-8(d). 

GE 0 A Go 

~ 
(a) ( b) 

( c) 

Fig. 8-8. Applying a 1> or D.¢ source for negation transfer with minor-aperture input and output_ 

Conversion of the MAD-R scheme of Fig. 8-9(a) to negation, by 
the two methods discussed, is summarized in Fig. 8-9(b) and (c). 
With both methods applied in conjunction, as indicated in Fig. 8-9(d), 
the effect is double negation in two phases (Prime 0 followed by 
o -> E), resulting in simple transfer as the net effect in transferring 
from an 0 to an E stage, or from an E to an 0 stage. 



FLUX SOURCES, ORTHOGONALITY, AND DYNAMIC BIASING 175 

(a) Simple 

(b) Negation 

(e) Negation 

O-+E 

id I ~I 1r----__ {f:'11---~ Simple 

O-E 

Fig. 8-9. Summary of transfer methods: (a) simple transfer; (b) negation 
transfer by driving to the set state; (c) negation transfer by use of a flux 
source; (d) simple transfer by simultaneous application of both negation 
transfer techniques. 

In Secs. 8-3 and 8-4 we discuss other ways that 6.¢ sources 
can be employed in achieving simple transfer. In Chap. 10, we 
show how 6.¢ sources can be used not only for NEGATION syn
thesis, but for synthesizing many other logic functions as well. 

8-2 Engelbart Orthogonal-Mode Technique 

It can be instructive and helpful to study the switching charac
teristics of certain modes of a magnetic system, where a mode 
involves the interaction of two or more cores, in addition to the 
switching dynamics of individual toroids or core legs. To illus
trate the method of modes as described by Engelbart (1963), 
consider the two-toroid circuit of Fig. 8-10(a) for which we de
fine the two modes as the flux linkages Aa = ¢l + ¢2 and Ab = ¢l - ¢2 
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(c ) 

Leg 2 
Leg 1 

Leg 1 

+ 

Fig. 8·10. Orthogonal modes in: (a) a pair oftoroids, (b) a multileg core, aud (c) a Biax element. 

(for simplicity we assume every winding to have a single turn). 
Assuming zero-impedance coupling loops, ~Aa is the time-integrated 
voltage across terminals a-a, and ~Ab is the time-integrated volt
age across terminals b-b. For a voltage V applied across terminals 
a-a for an interval T, then ~Aa is simply equal to VT no matter how 
cPl and cP2 change individually. If cPl and cP2 change identically, then 
~Ab = 0, and the modes are said to be orthogonal; otherwise ~Ab l' O. 
In other words, the modes represent the terminal characteristics. 
Given Aa and Ab , we can immediately solve for cPl and cP2' and 
vice versa. 

The situation may be summarized in the plot of Fig. 8...,11 in 
which mode axes Aa and Ab are superimposed on the cPl' cP2 axes. 
Suppose we start at some initial point A and trace the trajectory 
ABC. A positive voltage applied to terminals a-a of the Mode-a 
winding generates a positive current ia that causes the necessary 
flux switching. Assuming a constant-p model, so that both cores 
switch at the same rate, then the induced voltages cancel in the 
Mode-b winding, though they add in the Mode-a winding. As long 
as the switching is symmetrical, there is no change of state in 
Mode b as Mode a increases its flux along the path AB. At Point B, 
however, Core 1 saturates (cPl = cPr)' and Mode a obtains all of its 
additional flux from Core 2. With only one core switching, equal 
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(but opposite) voltages appear at the two mode-winding terminals 
as flux switches along the path BC. 

G D 

Saturation 
limit 

~--r-+--r-+~~~~-+~~r-~-r~¢1 

'" '¢r 
E 

Fig. 8-11. Relation between core flux values 1> 1 and 1>2 and 
mode flux values I\a = 1>1 + 1>2 and I\b = 1>1 - 1>2" 

At Point C, both of the cores 1 and 2 are saturated in their 
positive directionsj Mode a is saturated in its positive direction 
(Aa = 2cP r) and Mode b is at the midpoint of its range, that is, 
Ab = O. Switching either core to the opposite saturation limit 
would send Mode b to one of its limits, and Mode a to its midpoint. 

Now we turn our attention to Fig. 8-10(b) and the multileg 
realization of the two-mode system. We have labeled three legs 
in this figure, but the flux displacement in the three legs is not 
independent, since cP3 = cPl + cP2' If we consider Legs 1 and 2 as 
independent, and express the modes as Aa = cPl + cP2 and Ab = cPl - cP2' 
we find that Fig. 8-11 is directly applicable, where Mode a repre
sents the flux encircling the major aperture and Mode b represents 
flux encircling the minor aperture. Note that two turns link the 
minor aperture as opposed to one through the major aperture and 
that flux switches in Mode b with considerably lower current than 
for Mode a. The familiar characteristics of cores with minor 
apertures are easily derived from Fig. 8-11 if it is kept in mind 
that any switching of Aa takes considerably more mmf than for Ab • 

For example, suppose that Mode b is excited at an mmf level 
intermediate between the switching thresholds for the two modes. 
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If the system state is at Point C, that is, the core is in its clear 
state, no displacement in Mode b can occur, because a similar dis
placement would be required in Mode a , which the mmf is too small 
to permit. But if some larger ~mf in either mode causes a dis
placement in Mode a, say to Point F (that is, major-aperture 
switching) then Mode b can be independently switched back and 
forth between the saturation limits at D and E. 

In the Biax core (Wanlass, 1959) of Fig. 8-10(c), there are four 
directly linkable legs, assuming that the two orthogonal apertures 
intersect. However, flux-closure constraints demand that the dis
placements of all four legs sum to zero, which reduces the num
ber of independent variables to three. Further, if the core and its 
switching characteristics are symmetrical, the fact that the mmf 
from Modes a and b act in equal but opposite manner upon Leg 1 
and Leg 3, and in equal but opposite manner upon Leg 2 and Leg 4, 
adds one more independent equation (either ¢l + ¢3 = 0 or ¢2 + ¢4 = 

0). Therefore, when driven by the windings shown, the Biax flux 
state is completely characterized by ¢l = -¢3 and ¢2 = -¢4' and we 
find again that Aa = ¢l + ¢2 and Ab = ¢l + ¢4 = ¢l - ¢2. Figure 8-11 
is then seen to characterize the Biax core with symmetrical 
characteristics as qualitatively identical to the toroidal-core 
system of Fig. 8-10(a). 

Nonideal Orthogonality: The Threshold Burden. Current in a 
given mode winding causes an mmf in the system. This mmf can 
be considered on the flux plane of Fig. 8-11 as a force vector try
ing to move the flux-state point parallel to the mode axis. Current 
in the other mode winding causes a similar vector parallel to the 
other mode axis. In a truly orthogonal system, not only would the 
mode axes be geometrically orthogonal, but the movement of the 
flux-state point in response to any resultant mmf vector would be 
exactly parallel to that vector (assuming that we have not reached 
a saturation-limit boundary). All of the nominally orthogonal mag
netic systems depart from this ideal for two reasons, both of which 
stem from nonlinear switching characteristics of the individual 
legs. The first reason is associated with the threshold mmf for 
flux switching, and the second is due to the actual nonlinearity of 
core switching resistance. To understand the first effect, consider 
the system of Fig. 8-10(a). The mmf Fl acting on Core lis ia + i b , 

and the mmf F2 is equal to ia - ib • A necessary condition for any 
flux switching in Core 1 or Core 2 is that the absolute value of F 1 

or F2 , respectively, begreaterthanthresholdFo. Thus, a necessary 
condition for any switching to occur in either one of the cores is 
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that 
(8-5) 

If only one core is switching, then both modes are switching si
multaneously with the same absolute magnitudes of A. To have one 
mode switching more than the other one, it is necessary that both 
cores be switching simultaneously, and for this we have the addi
tional necessary condition 

(8-6) 

Based on these conditions on mmf, it is readily seen that whenever 
the two modes have different switching rates, the one with the larger 
absolute value of A must carry the entire mmf burden of bringing 
the two cores up to threshold plus the switching increment in ex
cess of threshold. The low-A mode need essentially provide only 
the mmf required to "steer" or redistribute the relative amount 
of 4> in the two cores. On the flux-plane of Fig. 8-11 this mmf 
burden skews the total A vector away from the total mmf vector, 
toward a horizontal or vertical axis. This effect can produce a 
rather marked dependence of the current required in one mode (to 
yield a given A) upon the concurrent switching rate of the other 
mode. For example, a strong dependence will be found in both of 
the symmetrical systems of Fig. 8-10(a) and (c), though for the 
asymmetrical multileg core system of Fig. 8-10(b), it is only the 
burden of the threshold mmf around the small aperture that is 
passed back and forth to whichever mode has the higher A, and 
the effect is not so noticeable. 

Nonideal Orthogonality: Variable Switching Resistance. The 
second effect stems from the variation of switching resistance 
with change in flux state. Based on the more realistic parabolic 
4><¢) model (derived in Sec. 12-5), we find that a core whose flux 
state is nearer its zero value yields a greater 4> for a given mmf. 
In general, therefore, if a flux-state point is subjected to a switch
ing mmf from one of the modes, the switching trajectory will pro
ject a A component onto the undriven-mode axis. (The only ex
ception is a flux-state point lying on one of the mode axes and 
being driven in that same mode. We will see in the next section 
that it is just this condition that is important in dynamic bias.) 
Thus, even if the threshold burden were carried by an outside mmf 
source, the A vector resulting from a given mmf vector (resultant 
of the two separate mode mmf) is not generally parallel to the mmf 
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vector, and thus the two modes do not have truly independent 
switching characteristics. 

Nonorthogonal Modes; MAD-R Example. The above deviations 
from truly orthogonal modes can often be tolerated when the coup
ling between modes can be countered by mrnf that are smaller 
than the threshold mrnf of some critical, associated flux path. 
Going further, the same threshold effects allow the use in some 
circuits of modes that are not even nominally orthogonal. An ex
ample is the arrangement of Fig. 8-12(a), in which an output 
winding links only a single output leg. Here Aa = CPl + CP2 and 
Ab = CP2' and the mode axes, rather than being orthogonal, are 

skewed, as in Fig. 8-12(b), where the trajectory GHIG for the 
MAD-R scheme (Chap. 6) is traced. During the input phase, we 
switch Mode-a flux. Without other constraints, this would result 
in a change in Mode-b flux as well, since flux tends to switch on 
both sides of the output aperture. But current in the very low
impedance output circuit prevents any significant Mode-b switch
ing, and the operating point of Fig. 8-12(b) moves orthogonally to 
Mode b, from G to H. Priming moves the operating point orthog
onally to Mode a, from H to 1. Clearing finally switches flux in 
both modes simultaneously. 

(a) 

Set 
H 

Clear 

----~--------~~---------+----~~1 

(b) 

Fig. 8-12. Mode piot for the MAD-R scheme. 

Prime 

~ 
~ 
~ 
~ 
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Engelbart Orthogonal Scheme. It is not possible to build a non
resistance transfer scheme with the simple two-mode (orthogonal) 
arrangement of Fig. 8-13(a) as the basic stage to be iterated, for 
the following reason. To receive a certain magnitude of linkage 
L\\n without forward coupling, both cores would be set at identical 
rates. To transfer out of the pair, without backward coupling, both 
cores would be driven at equal and opposite rates, but then it would 
be impossible to clear the pair without intolerable coupling, both 
forward and backward. 

0 E 

NT 

':BJ-b 
NT NR 

~ NT NR 

'~-b II NT l2 NR 
+La 

(0 ) (b) (c) 

Fig. 8-l3. Engelbart orthogonal-mode scheme. 

One way to satisfy the decoupling requirements is to arrange 
two two-mode circuits, as in Fig. 8-13(b). Assume each core in 
this figure is cleared to a clockwise flux state. An input current 
+ i a sets Cores A and B at the same rate, and there is zero forward 
transfer. A subsequent current -ia switches Cores C and 0, also 
at the same rate, again with no forward transfer. Forward transfer 
is also a two-step process-Cores A and C being cleared first, and 
then Cores Band D-with no back transfer in either case. 

Iterating the arrangement of Fig. 8-13(b), Engelbart (1963) 
developed the nonresistance transfer scheme of Fig. 8-13(c), which 
has the particularly interesting feature of containing only doubly
linked (coupling) cores. The basic operation can be summarized 
as follows. A binary zero is represented by nominally zero flux 
switching, typical of unipolar schemes. For the case of a binary 
one, let us assume that all four toroids of the 0 stage have been 
set. An 0 -> E pulse clears Ao and Co' which results in a positive 
i2 that sets cores AE and BE' Orthogonality ensures no back trans-
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fer from the 0 stage or forward transfer from the E stage. The 
Clear-O pulse now clears Cores 80 and Do, resulting in a negative 
i2 that sets CE and DE again with orthogonal isolation. Thus, the 0 
cores are cleared and the E cores set, and the cycle is completed 
with an E -> 0 pulse followed by a Clear-E pulse. 

The network representation of this scheme takes the form of 
the lattice of Fig. 5-11, redrawn in Fig. 8-14, and on which the 
switching paths noted above are easily traced. Starting with all 
cores of the 0 stage having been set, as illustrated by the internal 
arrows, the 0 -> E and Clear 0 operations have the symmetrical 
switching paths shown in Fig. 8-14(b). The paths for subsequent 
E -> 0 and Clear- E switching are similar, but displaced one stage 
along the register. 

O-E 

Clear a 
(b) 

Fig. 8·14. Network representation of the orthogonal-mode scheme. 

We thus have a scheme configuration that is different from 
any that we have previously discussed, namely. a configuration 
that involves only coupling cores. Pursuing the orthogonal coupling 
technique further, we will later find still a different configuration 
in the bipolar, orthogonal-mode, thin-film scheme of Sec. 9-2. 

8-3 Dynamic Bias 

Besides the requirement of driving a transmitter core in order 
to achieve flux transfer, we have seen that it is generally necessary 
in the case of nonresistance schemes, and sometimes desirable in 
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the case of resistance schemes, to bias receiver or other cores 
towards the set state. For example, in the scheme of Fig. 7-6, 
redrawn in Fig. 8-15, suppose we start with a binary one, i.e., a 
set-state pattern, stored in Cores V, W, and X. On the next phase, 
V and Ware driven clear, inducing loop currents i1 and i2• Posi
tive bias is applied to Core X, to prevent it from being unset by it' 
and to Core Z to lower its effective threshold relative to i2 • If 
these two cores are biased exactly to threshold, and if the drive is 
limited so that i1 comes just short of unsetting Core X, then this 
condition results in the largest possible value of i2 , which supplies 
the excess mmf for switching the receiver core Z. 

w y 

z 

Bias -------' L--____ -' 

(a) (b) 

Fig. 8·15. Applying bias to the transfer scheme of Fig. 7·6. 

Now consider the nature of the circuit tolerance for reducing 
the drive below this maximum value. If the bias line is pulsed in 
series with the drive line, then not only do loop currents decrease 
with drive, but they must now provide part of the threshold of 
Core Z, resulting in a still greater decrease of excess mmf acting 
on Core Z. For typical wire-resistance values, relative loop 
losses increase rapidly as loop currents, and therefore core 
switching rates, decrease. Under these conditions, the lower end 
of the current range is reached quickly as drive is decreased. 

To increase the operating range, what is sought is a bias tech
nique that can effectively maintain full-threshold bias over a range 
of bias mmf. The clue to this achievement is provided by the 
orthogonal-mode analysis of Sec. 8-2, where it was found that when 
one mode of an orthogonal pair is switching more rapidly than the 
other, the entire threshold burden is supplied by the current driving 
the former mode, and the current for the slower-switching mode 
acts entirely as excess mmf. Thus let us consider replacing the 
receiver core Z in Fig. 8-15{b) by the pair of orthogonally linked 
cores of Fig. 8-16{a). Corresponding to the terminology used in 
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Sec. 8-2. we define Mode a relative to the bias windings and Mode b 
relative to the coupling-loop windings. To guarantee that Mode a 
carries the entire threshold burden, the bias current must be set 
somewhat greater than threshold. Thus for the case of i2 = 0 (nom
inally so for zero transfer), the cores Z and Z' switch equally, and 
there is no coupling into the loop, i.e., no Mode-b switching. Dur
ing one transfer, i2 > 0 and therefore ¢z > ¢z, (ideally, ¢z, = 0). 
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Fig. 8-16. A pair of orthogonally connected cores for purposes of applying dynamic bias.in (a); 
its mode-plot representation in (b); and a single equivalent multileg core in (c). 

The amount of flux-linkage signal stored in the Z-pair is the dif
ference M z = !!'cPz - !!.CPz" and it is this amount of flux-linkage that 
is available for later transmission. Because the bias current 
causes switching in both receiver cores, regardless of binary 
state, it is commonly termed dynamic bias. 
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Note that if the bias current continues to switch flux after the 
loop current has terminated, we have the danger that both cores 
may be forced to positive saturation, thus forcing the difference 
component, i.e., the signal, to zero. To better see what may happen, 
consider the mode plot of Fig. 8-16(b). The signal mode !'lAb for a 
one is the distance perpendicular to the Aa axis in the direction of 
positive Ab • It is seen that this can have a maximum value of 2¢r 
in the case where the change in the common mode !'lAa is also just 
equal to 2 ¢r' The solid arrows, terminating on the A b axis, indicate 
the desired changes for zero and one transfer (in the latter case 
only Core Z would switch). But if the bias current is not ter
minated, then switching will continue along the dashed lines, forc
ing the states for zero and one to come closer together, yielding a 
smaller !'lAb' as the maximum point on the positive Aa axis is 
approached. 

Limiting with a !'l¢ Source. The answer to the above problem 
is that the bias current should be derived from a flux source 
of capacity exactly equal to 2 ¢r' This could be applied from 
a voltage source V energized for a period r = 2¢/V, though, as 
suggested in Fig. 8-8, a more practical way is simply to use 
another core, having the same flux capacity as each Z core. 
Such an arrangement is indicated by the dashed circuitry of 
Fig. 8-16(a), where the drive on the source core Sz can vary 
over quite a range and still cause proper dynamic biasing of the 
Z cores. Incorporation of flux limitation makes dynamic bias a 
valuable technique. Thus, we see another use of a !'l¢ source in 
addition to those described in Sec. 8-1. This technique of flux
limited dynamic bias was first applied to a unipolar scheme by 
Heckler and Baer (1964). 

By network transformation, the triplet of cores Z, Z', and Sz 
can be converted to the single multileg core of Fig. 8-16(c), a 
basic core shape devised by Newhall (1963) for use in bipolar cir
cuits (Sec. 9-1). The clear state is shown by the solid arrows. 
(Note that it has been necessary to add an extra leg for proper flux 
closure.) For receiving a zero, the flux reversed in the source leg 
Sz (dashed arrow) switches equally (ideally) through the two out
side legs; for one reception, flux switches predominantly through 
the left-hand leg. 

If each loop core in Fig. 8-15 is replaced by a triplet of cores, 
the circuit of Fig. 8-17 is obtained. To transfer from Cores V and 
W to Cores Y and Z, we clear Source Core Sv and set Source Core 
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Sz' but do not apply dynamic bias to the X cores, since we do not 
wish switching to occur in either one. However, there is even less 
need now for biasing the X cores, since the operating loop currents 
tend to be lower with dynamic bias on the Z cores, and in fact 
some unsetting can even be tolerated, provided the coupling loop 
turns ratio is > 1. Nevertheless, it is still possible to supply or
dinary bias to the X cores, as indicated by the dashed line, as a 
possible means of improving the circuit performance still further. 
We can also improve the transfer by unconditionally clearing 
Coupling Core W as well as Loop Cores V and V', as suggested in 
the figure. (This assures good return to the clear state.) In the 
circuit, as shown, the current il must still overcome the threshold 
of Core Y, but the coupling cores may be made small compared to 
the loop cores. (In Sec. 9-1, we will take the additional step of also 
replacing each coupling core by a dynamically biased pair of cores, 
and we will then find that a radically different type of behavior is 
obtained.) 

To summarize to this point, a general way for incorporating dy
namic bias is, first, to start with the scheme in toroidal-core form. 
Second, each toroid selected for dynamic biasing (generally in
cluding all the larger ones) is replaced by a pair of orthogonal
mode cores connected to a third core acting as a flux source, as 
in Fig. 8-17. If such a core is a coupling rather than a loop core, 
then the pair of cores is linked by both input and output windings in 
the same mode as well as a winding from the source core in the 
orthogonal mode. Third, network methods are then used to trans
form the circuit from the all-toroidal form to whatever other form 
may be desired. 
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Fig. 8·17. Using the orthogonally connected core pairs of Fig. 8·16 to replace all of 
the loop cores in Fig. 8-15, for purposes of applying dynamic bias. 

The manner of achieving dynamic bias has been described in 
terms of a particular scheme but, like the conversions to negation 
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transfer in Sec. 8-1, it is generally applicable to all of the schemes 
earlier described, including the resistance types. 

Dynamically Biased MAD-R. For the MAD-R scheme (Chap. 6), 
which already exhibits very good range, the benefit to be expected 
from dynamic bias is higher speed. A straightforward way to in
corporate dynamic bias in MAD-R is to start with the toroid-wire 
equivalent of Fig. 6-5(a), sketched again in Fig. 8-18(a). To over
come the threshold of the large cores with dynamic bias, we re
place each of these by triplets as shown in Fig. 8-18(b). The 
remaining part of the problem is to convert this circuit to a 
practical form using multileg cores. The magnetic-network trans
formation methods of Chap. 5 are very useful in making this 
conversion. 

Fig. S-lS. Applying dynamic bias to the main elements of the MAD-R circuit. 

Inclusion of the flux-source cores (So and SE) in the transfor
mation results in undue complication; hence we leave them out of 
consideration for the moment, but they will have to be restored in 
the final circuit after the conversion is otherwise completed. We 
also assume single-turn coupling loops, so that we will have to 
restore turns ratio > 1 after the conversion also. With these items 
in mind, we now proceed to construct a network representation for 
the circuit of Fig. 8-18(b). 

Each of the coupling loops of Fig. 8-18(b) is represented by a 
node pair in Fig. 8-19(a), with the loop current appearing as the 
associated mmf potential difference. Each toroid is represented 
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by a single branch or pair of equal branches attached to the nodes 
in such a way that the mmf acting on each branch or branch pair 
are equal to the mmf imposed on the toroids by loop currents. For 
example, the total mmf in series with the D pair of branches is 
i c - i b' as required. Some of these nodes must be converted to 
physical nodes (representing core junctions) in order to obtain a 
realization using multileg cores. Let us replace the synthetic 
nodes to which the C branches are attached by physical nodes. 
The nodes to which resistance is attached must of course remain 
synthetic. All the branches between the a and c node pairs can now 
represent legs of one multileg core; the branches with E sub
scripts represent the next multileg core; etc. 
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Fig. 8-19. Converting to a multileg version of the dynamically biased toroid circuit of Fig. 8-18(b). 

The reverse transformation, from network to circuit form, 
amounts to rejoining the a and a' ends of the Ao and Bo branch 
pairs and the c and c' ends of the Do branch pairs, followed by 
restoration of appropriate coupling loops (Fig. 8-19(b», except that 
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if all legs are interpreted as having the same width, the net clear
state flux does not sum to zero at each node, as required. A 
straightforward physical realization is shown in Fig. 8-19(c), in 
which an extra, double-width leg (Eo) has been added to provide the 
necessary flux closure. 

Aside from the A and B legs being different in length, the core 
of Fig. 8-19(c) is a difficult one to make because of the long slot. 
A simpler version is the core of Fig. 8-20(a), with the B leg 
flipped to the other side. Further, by splitting the E leg in two 
halves, to be stretched out along the A and B legs, we obtain the 
even simpler core of Fig. 8-20(b), to which a toroidal flux source 
is shown connected. This design at first looks poor since the 
entire right-hand leg remains in a soft-state after clearing. How
ever, with dynamic bias present, good advance current range can 
be retained and the main effect of the soft state is a moderate re
duction of the upper limit on priming current (applied to Legs C 
and 0 in figure-eight fashion, though not shown here). 
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J 
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Fig. 8-20. Alternate forms of multileg cores for the dynamically biased version of MAD-R. 

Laboratory results with experimental cores of the type shown 
in Fig. 8-20(b) have shown that unity gain can be obtained with a 
coupling-loop resistance several times higher than in the basic 
MAD-R scheme, with a corresponding ratio of improvement 
in priming speed of about 3 to 1 (unpublished notes of W. K. English 
of Stanford Research Institute). This result illustrates the higher
speed potential of dynamically biased resistance-type circuits. 
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8-4 Summary 

In this chapter, we first discuss techniques for achieving 
negative transfer, by which we mean transfer of a high level of 
flux if a low level had previously been received, and vice versa. 
One technique involves the specific use of flux-source cores in 
the coupling circuitry. Though negation transfer is important for 
general logic synthesis, the main interest here is the derivation of 
basically different flux-transfer methods. We then develop the 
notion of orthogonal modes of flux transfer, where we consider the 
state of flux in several cores at once rather than in each core in
dividually. This is a useful and important concept not only for 
generating new transfer schemes, but also as a basic tool, as in 
the development of the dynamic-bias technique. 

Previously, bias was employed as a means of bringing certain 
selected cores to their static switching threshold, with the bias 
itself causing no switching. We have here shown how an improve
ment in performance can be obtained by replacement of certain 
selected cores by orthogonally connected pairs of cores. These 
cores are driven from a flux-source core and switch unconditionally, 
but equally, when excited only by the drive current. The information
bearing coupling-loop currents then need be only large enough to 
"steer" or "tip" the switching, i.e., to cause a differential in 
switching rates of the two cores in a pair. The term dynamic 
bias is used to describe this type of technique. 

In Chap. 9, we will extend the use of dynamic bias to achieve a 
completely symmetric circuit form in which the magnitude of flux 
transfer is uniform, but of one polarity or the other depending on 
the data state, referred to as a bipolar mode of transfer. 
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With the unipolar representation used thus far a binary one is 
represented by a high level of flux transfer and a binary zero by 
nominally zero flux transfer. In an alternate representation, the 
binary states are symmetrically represented and binary transfer 
involves equal magnitudes of flux, of one polarity or the other. On 
the basis of this bipolar principle, many important new schemes 
can be evolved. A number of such schemes are developed in Sec. 
9-1, some of which may have significant practical importance. We 
will see that the technique of dynamic bias developed in Chap. 8 is 
rather naturally adapted to use in bipolar circuits; in a sense, bi
polar techniques are a natural step after dynamic bias. 

191 
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In Sec. 9-2, several magnetic thin-film transfer schemes are 
considered. Of special interest is a distinctly different gain mech
anism obtained from coherent rotation of magnetization in thin 
films, which makes thin-film components ideally adapted to bipolar 
operation. Because of the generally higher speed of thin-film 
components, the thin-film circuits typically operate at higher rates 
than the ferrite circuits; megacycle bit rates are not unusual, as 
we will see, for example, in the elegantly simple multimegacycle 
scheme of Dick and Farmer. 

It becomes clear that unipolar and bipolar techniques do not ex
haust the data representation possibilities when, in Sec. 9-3, we 
consider still another form referred to as non-return-to-reference 
(NNR). In an NRR scheme, not all cores are unconditionally driven 
to their reference state once each cycle, but rather, switching oc
curs only to signal a change in the bit pattern; i.e., no switching 
occurs during transmission of a string of zeros or a string of 
ones. One such scheme is described; although it is not of any 
particular practical interest, it has a basic elegance and is dis
tinguished as the only two-phase core-wire circuit presently known 
to have been built and operated. It, too, is naturally adapted to the 
use of bipolar transfer, 

9-1 Bipolar Schemes 

Complete Dynamic Biasing: Newhall Scheme. By the proced
ure given in Sec, 8-3 for applying dynamic bias to a toroidal-core 
circuit, not all the toroids were replaced by dynamically biased 
pairs. But suppose we do attempt to use full dynamic biasing so 
that loop currents do not have to overcome even the minor thresh
olds of the small coupling cores. For example, let us also replace 
Cores Wand Y in the circuit of Fig. 8-17 by such biased pairs, as 
shown in Fig. 9-1. 

For transfer from the V cores to the Z cores, the V and W cores 
are unconditionally cleared and the Sy andSz sources are activated, 
but not the Sx source. With exactly zero net flux transmitted from 
the clearing of the W pair, loop current i1 is zero and there is only 
common-mode switching (in the sense defined in Sec. 8-3) in the 
Y pair, with no linkage to the forward or back coupling loops. How
ever, if l'1.¢w > l'1.¢w" the resulting flux linkage injected into the 
loop induces a + i1 loop current, which causes transmission of 
signal-mode flux through the Y cores to the Z cores. 
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w' 

~ 
\ 

Fig. 9-1. Newhall bipolar scheme derived by dynamic biasing of all of the coupling cores and 
loop cores in Fig. 8-17. 

With the threshold burdens and primary switchingmmfprovided 
by the sources, and with no flux-clipping introduced into the loop, 
the transfer ratio tends to be as highfor low levels of signal as for 
higher levels. Hence, with a gain mechanism present, even a small 
signal will build up to a level limited only by core saturation, as 
indicated by Point a in Fig. 9-2(a). The really interesting point, 
however, is that with all cores other than sources occurring in 
symmetrical pairs, a negative value of flux linkage, resulting from 
!'!..¢w < !'!..¢w" can be transmitted as readily as a positive value. 
Negative loop currents -i1 and -i2 will then flow, and this negative 
signal mode will cause Core Z' to be set by a larger amount than 
Core Z. The transfer curve for negative !'!..¢ is therefore just the 
reflection of the positive curve through the origin, with a stable 
pOint b at the same magnitude of !'!..¢ as the stable point a. By let
ting the positive level of !'!..¢ at Point a represent a one, and the 
negative !'!..¢ at Point b represent a zero, we have in effect a bi
polar scheme. 
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Fig. 9·2. Bipolar gain curve: (a) with no low-level loss mechanism, and (b) with a low-level loss 
mechanism leading to a third stable state. 
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In terms of the orthogonal-mode plot of Fig. 8-16(b), zero 
transfer is now represented by an arrow (not shown) veering off 
toward the negative end of the Ab axis, symmetrical with the arrow 
shown going toward the positive end. Because of the full dynamic 
biasing, the symmetrical nature of the transfer curve, and the 
elimination of the need for clipping or some other low-level loss 
mechanism, even greater drive tolerances can be obtained for this 
circuit than for the dynamically biased unipolar circuit of Fig. 8-17. 

For the present scheme, no biasing at allof the X cores is used 
during transfer to the Z cores. Actually, for a coupling-loop turns 
ratio of 2/1, it has been found experimentally that a considerable 
amount of signal-flux loss in the X cores can be tolerated, thus 
resulting in an even greater range of operation than originally 
anticipated. 

The circuit of Fig. 9-1 is one form of the bipolar scheme de
scribed by Newhall (1963). Newhall also shows how this scheme 
may be realized in terms of cores of the general type shown in 
Fig. 8-16(c)-either taken individually, or themselves built into 
more compound structures to reduce the amount of wiring. 

Modification for Ternary Operation. Suppose that all of the 11¢ 
sources for the coupling cores (Sw' Sy, etc.) are removed, or are 
simply not activated. Then the circuit can still operate in bipolar 
fashion, but of each coupling pair, only the upper core (W, Y, etc.) 
will switch for one transfer and only. the lower core (W', V', etc.) 
will switch for zero transfer. But more important, either polarity 
of loop current i1 will have to overcome the threshold of a coupling 
core, resulting in some bipolar flux-clipping due to the inductance 
of the loop. Consequently, the transfer ratio can again be less than 
unity for values of signal near zero, resulting in a third stable 
point, at the origin, as indicated in Fig. 9-2(b). This stable 
common-mode range of operation is undesired for the normal 
case of a bipolar binary register, though it has potential use for 
storing and shifting ternary information, each digit having possible 
values -1, 0, +1. This ternary mode of operation is readily 
achieved in bipolar circuits without the use of any dynamic bias 
at all. With dynamic bias applied to the loop cores only, and with 
small, bilateral clipping (which could be increased by inserting a 
pair of small, oppositely cleared toroids in the loop), current 
tolerances for all three states should be comparable to those for 
dynamically biased unipolar circuits. 

Derivation from a Pair of Complementary Registers. It has 
been assumed that the shape of the current pulse on each drive 
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line is independent of the information state. However, for a uni
polar scheme, where flux is switched only for transfer of a one, the 
load imposed on the driver circuit is very dependent on the total 
information state. For driving a long register that holds arbitrary 
information, it is thus desirable to have a relatively high source 
impedance in order to minimize drive-pulse variations. Such 
drivers can be expensive and inefficient since they require a large 
voltage source compared to the maximum switching voltage of the 
register. 

One way to reduce this driver problem is to add a second 
register that carries the complement of the information in the first 
register and is driven by the same driver, as indicated sche
matically in Fig. 9-3. For an N -bit register, the total number of 
ones in both registers is always equal to N: thus the load due to 
core switching is independent of information and equal to the maxi
mum load from one register alone. Because of this constant load, 
the requirements on driver voltage and internal impedance are 
greatly reduced. In fact, the driver now can be basically a con
trolled voltage source, or flux source, that injects the proper 
magnitude of flux linkage into the drive line. 

Fig. 9·3. Schematic representation of a coupled pair of registers that contain complementary 
information, in order to make the driver load independent of the data state. 

A pair of complementary registers based on the circuit of 
Fig. 8-15 is shown in Fig. 9-4. This balanced circuit can really 
be viewed as a form of bipolar circuit in the sense that at any 
position of the register a unit of flux is transmitted in one coupling 
loop, say the upper loop, for a one and an equal magnitude of flux 
is transmitted in the other loop for a zero. What we would like to 
do now is show how to convert the circuit of Fig. 9-4 to the bipolar 
circuit of Fig. 9-1 and in the process show why the circuit of 
Fig. 9-1 is superior even to the balanced circuit of Fig. 9-4. 

Dynamic bias can be applied to the pair of complementary 
registers, without adding any additional cores other than I!..¢ 
sources, since corresponding loop cores can be connected in 
pairs to a I!..¢ source, as indicated in Fig. 9-5. Drive is shown 
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Fig. 9·4. Coupling a pair of unipolar registers of the form of Fig. 8-15 into a complementary 
pair in the manner of Fig. 9-3. 
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Fig. 9-5. Dynamically biasing the loop cores of Fig. 9-4 with the addition of one flux 
source for each pair of loop cores. 
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Fig. 9·6. Converting the circuit of Fig. 9-5 to a fully biased bi
polar register of the same form as in Fig. 9-1. 
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applied for the case of V -> Z transfer, where Cores V and V' are 
being cleared, and Cores Z and Z' are the receiver cores for the 
two registers. Suppose now that we alter this circuit further by 
breaking each pair of corresponding coupling loops and reconnect
ing them into a single loop in the manner shown for one pair of 
loops in Fig. 9-6. Now the current causing one transfer along the 
upper side flows in a dirction to actually oppose any flux switching 
along the lower side, and vice versa for zero transfer. As a result, 
there is increased differential flux switching in receiver cores, 
and hence effectively higher gain in the circuit of Fig. 9-6 as com
pared to Fig. 9-5. 

But note that the coupling-loop connection in the circuit of 
Fig. 9-6 is exactly the same as in the circuit of Fig. 9-1, except 
with the cores arranged in a different order. By merely adding 
Sw and Sy sources (shown with dashed lines) for dynamic biasing 
of the coupling cores, we have exactly the bipolar circuit of 
Fig. 9-1. By having derived it this way, however, we see that the 
bipolar circuit of Fig. 9-1 is superior to the balanced circuit of 
Fig. 9-4, or even to the partially coupled circuit of Fig. 9-5. 

Unipolar-to-Bipolar Conversion. To convert unipolar resistance 
and nonresistance schemes to bipolar schemes, in general, one 
need merely start with the unipolar circuit in toroidal-core form 
and then replace each toroid by a pair of dynamically biased toroids 
or by a core of the type shown in Fig. 8-16(c), as was done in the 
conversion from the circuit of Fig. 8-15 to that of Fig. 9-1. Then, 
if desired, network methods can be used to transform the circuit 
to a form using a smaller number of more complex multileg cores. 

Bipolar MAD-R with Dynamic Bias. A straightforward approach 
to a bipolar MAD-R scheme is shown in Fig. 9-7. This circuit does 
not utilize dynamic bias and, though operable. is considerably 
poorer even than the basic unipolar MAD-R circuit. By placing 

Fig. 9·7. Bipolar MAD·R without dynamic bias. 
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two minor apertures in the center leg of each element, as shown 
in Fig. 9-8(a), W. K. English (unpublished notes) has shown how 
dynamic bias can be incorporated into this circuit. The leg be
tween the two minor apertures serves as a one-unit flux source 
that sets one-half unit of flux in each half of the core when no input 
signal is present. Each of the other central legs must have 1-1/2 
units of capacity for proper flux closure, as indicated by the pairs 
of long and short arrows. 

Drive for 
flux source 

(a) 

Fig. 9-8. Incorporating dynamic bias into the bipolar MAD-R circuit of 
Fig. 9-7: (a) by the use of two minor apertures in the central leg; and (b) 
by the use of three minor apertures in the central leg, in which case the two 
input windings may be replaced by a single input winding of twice the turns 
through the central minor aperture, as shown. 

The wiring is more complex for this circuit than for the 
dynamically-biased unipolar MAD-R circuits of Sec. 8-3, though 
the flux source is now built into the multiaperture core, making 
an auxiliary toroid unnecessary. Laboratory results with experi
mental cores of this type have shown that unity gain can be ob
tained with a coupling loop resistance four to five times higher 
than in· the basic MAD-R scheme, with a corresponding ratio of 
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improvement in priming speed. (As noted in Sec. 8-3, with the 
dynamically biased unipolar version, the maximum increase is 
about three to one.) 

To illustrate the variety of form possible with bipolar cir
cuits, we take note of one particularly interesting variation. By 
dividing the flux source leg by still another aperture, as in Fig. 
9-8(b), then the two receiver input windings of Fig. 9-8(a) may be 
merged to a single winding through the added central aperture of 
Fig. 9-8(b). As a result, the two transmitter windings and the 
single receiver winding may now have the same number of turns 
(in particular, single turn windings) without loss in flux gain. This 
is in effect a flux-doubling configuration resulting from the fact 
that during transfer, the input winding (of twice the turns) is linked 
by only half of the signal flux, i.e., the difference flux, that is set 
around the output apertures. For example, in the limiting case of 
complete steering by the input current, the entire capacity of the 
flux source switches to one side of the core, as indicated by the 
dashed lines in Fig. 9-8(b), but only half of this flux actually links 
the input winding. 

9-2 Thin-Film Schemes 

In the description of transfer schemes in previous chapters, 
the basic elements have generally been assumed to be fabricated 
from ferrite material, although any type of magnetic element with 
reasonable threshold, saturation, and switching properties could 
actually be used. In particular, considerable attention has been 
given to the use of magnetic thin films in the realization of core
wire circuits. The primary motivation is the potential of batch 
fabrication, miniaturization, and low power consumption. Further
more, higher speed and other increased functional capability might 
be expected because of the coherent rotation properties of thin films. 

Interconnected Thin-Film Patches; Coherent Rotation. In Fig. 
9-9 we show a pair of planar thin films interconnected by a strip
line coupling loop (ignore the dashed lines for the moment). Film 
patches are typically of the order of a micron or less in thickness 
and therefore have a much lower flux capacity than typical ferrite 
toroids. The requirement of relatively low flux losses during 
transfer therefore implies that the absolute magnitude of losses 
be much lower than with ferrite cores, and hence (assuming com
parable loop current and switching speed) that the value of loop R 



200 DIGITAL MAGNETIC LOGIC 

and L must be very small. (It is for this reason that a wide strip
line configuration is shown for the coupling loop.) 

L d T R 

~ / / 

, Thin-film 1/1 
patches I 

_--.-----J L __ 
L b 

Fig. 9·9. A pair of planar thin films con· 
nected by a strip-line coupling loop. 

Considering practical limitations on strip lines (such as a 
minimum spacing due to the requirement of a reliable insulation 
layer), it was shown by Engelbart (1959) that transfer would be 
extremely difficult to achieve with strip-line coupling loops unless 
some functional difference were realized in the direct replace
ment of ferrite toroids with thin films. Such differences are in 
fact realized because flux switching by coherent rotation, rather 
than by domain-wall motion, can readily be achieved with thin 
films, resulting not only in increased speed and reduced loop 
losses, but also in a new flux-gain mechanism. 

The basic property of coherent rotation is illustrated in 
Fig. 9-10. Each oriented film has preferred (Le., "easy") di
rections of magnetization, as indicated in Fig. 9-10(a) by the 
arrows on the film. In Fig. 9-10(b) a current id drives the mag
netization into the "hard" direction, i.e., at right angles to the 

CD 
(0 ) ( b ) ( c ) 

Fig. 9-10. Coherent rotation of magnetization: (a) easy directions of 
magnetization; (b) driving to the hard state of magnetization; and (c) steering 
the direction of coherent fallback of magnetization (for id = 0) with a tipping 
current ± i 
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preferred directions. This is an unstable condition of magnetiza
tion, and if id were now removed the magnetization would fall back 
either coherently to one or the other states of easy magnetization, 
Le., as a single domain-see Sec. 11-3, or more likely the mag
netization would break up into some complex domain pattern. If, 
prior to removal of i d ' however, an orthogonal steering (or 
"tipping") current ±i is applied, then the fallback can be guided 
to one or the other easy directions of magnetization. To ensure 
coherent fallback, the steering current must be sufficient to tip 
the magnetization vector beyond some small (critical) angle from 
the hard direction. Once started, the magnetization falls back co
herently without further guidance (i.e., with i = 0) to the easy di
rection toward which it was steered. 

Let us now consider the basic mode of operation as devised 
by Engelbart, in order to make use of coherent rotation. First, a 
bias current ib is applied to the receiver of Fig. 9-9, as shown, 
to initially force the magnetization of the receiver into the hard 
direction. Then, a drive current id switches the transmitter film 
to the hard direction, thereby inducing a loop current of one po
larity or the other, depending on the initial easy-direction of mag
netization of the transmitter. Assuming that the loop current tips 
the magnetization vector of the receiver sufficiently (in the sense 
of Fig. 9-10(c», then the receiver magnetization falls (coherently) 
in the steered direction. Hence the initial direction of magnetiza
tion of the transmitter is transferred to the receiver under control 
of a relatively small steering current in the coupling loop. In this 
tipping mode, the loop-loss quantity of importance is just that which 
occurs up to the point in time where the receiver magnetization 
passes the critical angle. The magnitude of received /).~ to just 
reach the critical angle is proportional to the sine of the critical 
angle, and is therefore small compared to the total /).~ transmitted. 
Hence, loop losses can be allowed to absorb a major part of the 
transmitted /).~ , up to this point in time, after which the remainder 
of the switching process is automatic. Because of relatively high 
losses in the coupling loop, however, the transmitter finishes 
switching, and loop current decreases to zero, before the receiver 
itself can finish switching. Completion of receiver switching in
duces a reverse current in the coupling loop, but this merely has 
the effect of slowing down the final state of receiver switching. 

A study by Green (195P) includes theoretical calculations and 
some experiments with films of about 0.1 micron in thickness. 
Based on applying this technique to the scheme of Fig. 5-20(d), it 
was concluded that a logic system is possible but probably not 
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practical. It is interesting, therefore, that Dick and Doughty (1963) 
were able to achieve quite good performance with a change to a 
cylindrical film geometry and a more favorable transfer scheme 
for this type of operation, as described in the following section. 

Dick and Doughty Bipolar Orthogonal Scheme. It was shown in 
connection with Fig. 8-13(a) that a workable scheme could not be 
synthesized with a simple two-mode configuration as the basic 
stage. Figure 8-13(b) illustrated an expansion to a 4-mode con
figuration that was used as the basic stage in Fig. 8-13(c). We 
would like now to show an alternate 4-mode derivation that leads 
to still a different configuration. 

(a) (b) 

Fig.9-11. Dick and Doughty orothogonal-mode, bipolar, thin-fJJ.m register. 

In the arrangement of Fig. 9-11(a), Cores A and B are set in 
response to a positive input current i (just as in Fig. 8-13(b» and 
Cores C and D are subsequently set in response to a negative input 
current. During either phase, there is zero voltage developed 
across the output terminals bi b2• A series of such stages could be 
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arranged into a register using N R turns on all windings connecting 
to terminals a1 a2 , and NT turns on all windings linking terminals 
bi bz. But let us ignore the problem of /I,.¢ gain for the moment and 
set NT = N R" In this case, the voltage across terminals b1 b2 is ex
actly the same as that across terminals bi bz. Using the former as 
output terminals, and dispensing with the latter, we have a con
ventional bridge circuit that can be rearranged in the form of a 
lattice. A register consisting of a chain of these lattice circuits 
is shown in Fig. 9-11(b). 

Disregarding the fact that we do not yet have a gain mechanism, 
let us consider paths of switching for unipolar one transfer. (For 
a zero state, there would be no flux switching at all.) Assume all 
o cores are set. The 0 -> E pulse clears Ao and Coso that a volt
age is developed across terminals b1 b2 , of the polarity shown, and 
the induced currents i1 and i2 then set AE and BE' respectively. 
Note that this results in zero voltage across terminals a1 a2 and 
c1 c2 ; that is, there is no spurious forward or back transfer. During 
the Clear-O phase, Cores Bo and Do are cleared, with the result 
that Cores CE and DE are set. Thus, in two phases, all of the 0 
cores are cleared and the E cores are set. The cycle is completed 
with E -> 0 and Clear-E pulses. (Note the similarity of this lattice 
electric circuit and the lattice magnetic network of Fig. 8-14.) 

Dick and Doughty (1963) use the configuration of Fig. 9-1l(b) 
to construct a bipolar, thin-film register, where the coherent ro
tation of the films supplies the necessary flux-gain mechanism. 
Cylindrical films about 1.0 micron thick are electrodeposited on 
each branch wire (in place of a separate toroid), as shown in 
Fig. 9-11(c), with the easy directions of magnetization being 
circumferential. A zero is represented by all films in a given 
column being magnetized, say clockwise, looking down the regis
ter, and a one by counterclockwise magnetization. Films in al
ternate lattice sections, which are not storing data, are magnetized 
in a hard direction by solenoidal drive fields. During 0 -> E trans
fer, Ao and Co are driven to their hard direction, by applying 
solenoidal drive fields, and the drive fields are relaxed on AE and 
BE. The potential across terminals b1 b2 , and hence the induced 
currents i1 and i2 , are positive or negative depending on whether 
a zero or one is being transferred, and the coherent fallback of 
magnetization in AE and BE is steered accordingly. 

During the following Clear-O phase, films Bo and Do are driven 
to their hard direction, and the solenoidal fields are relaxed on C E 
and DE' Now Currents i1 and i2 are of opposite polarity than during 
the first phase and properly steer films C E and DE during their 
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fallback. Thus, in two phases, the E films are magnetized to the 
same easy direction as the 0 films previously were. The cycle is 
completed with E -> 0 and Clear-E pulses. This, then, is a bipolar 
thin-film scheme relying on coherent rotation for overcoming 
losses and for achieving f\.¢ gain. 

Dick and Farmer Bipolar Resistance Scheme. A recent develop
ment by Dick and Farmer (1966) is a resistance scheme that re
quires a surprisingly small number of elements per bit, and which 
has operated at quite high bit rates. Only three elements (1-1/2 
magnetic elements and 1-1/2 resistive elements) per bit are re
quired as compared to five per bit for the minimal scheme of 
Sec. 7-3. Operation is reported at bit rates of a few Mc/s which is 
2-3 orders of magnitude higher than those typical of resistance 
schemes using ferrite cores (1 to 50 kc/s). 

The scheme is illustrated in Fig. 9-12(a), where the cylinders 
represent cyclindrical film elements electroplated on a central 
conductive wire, and the coupling loop resistance is provided by 

A A _. 
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Fig. 9·12. Dick and Farmer thin-film bipolar resistance scheme. 
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the resistance of a parallel wire outside the film. The preferred, 
or easy, directions of magnetization are circumferential; let 
downward magnetization represent a zero and upward magnetiza
tion a one. Bits of information are stored in two out of three ele
ments, leaving one out of three ready for reception. The labels 
T and R (for transmitter and receiver) correspond to transfer of 
the first and third bits that takes place during the Advance-A phase 
of drive. One or another of the three advance pulses is energized 
at all times, with overlapping as indicated in Fig. 9-12(b). The 
solid arrows in Fig. 9-12(a) represent the states of magnetization 
at the time t1 , just prior to application of the A pulse. At this 
instant, Current C is still energized and holding the receivers R 
in their hard direction of magnetization. 

Application of the A pulse turns the magnetization of each trans
mitter into the hard direction and the resulting loop currents turn 
the magnetization of each receiver toward the direction formerly 
stored in the corresponding transmitter. Release of the previous 
advance pulse C, near the peak of the transfer current, allows the 
receiver magnetization to fall back toward the appropriate pre
ferred direction, resulting in the dashed directions being reached 
by' the time t2 , just prior to application of the B advance pulse. 
This coherent fallback causes reversal of direction of the transfer 
currents, as described earlier in connection with Fig. 9-9, which 
are allowed to decay prior to the start of the next advance pulse. 

There will also be currents induced in all the other loops, e.g., 
in those coupling the element storing Bit # 2, but of insufficient 
level to turn the magnetization of the second bit significantly away 
from the preferred direction. Thus every third core acts as a 
buffer that obviates the problem of back transfer. Large receiver 
loading exists, but the effect is overcome by the high gain mech
anism inherent in coherent rotation. In the earlier three-phase 
schemes (see, for example, Figs. 3-11 and 3-12) buffering was 
achieved by unconditionally holding each third core in a satura
tion state to prevent back transfer. It is interesting that in the 
present case this isolation is obtained not by explicit holding but 
by the strongly preferred directions of easy magnetization. Thus, 
effective isolation is obtained even though the buffering element 
itself holds useful data. This is a good example of an effectively 
large threshold that is readily overcome, when required, by the 
use of dynamic bias. 

Continuous Thin Film with Reverse Domains. The possibility 
of transfer techniques using continuous strips of thin films is 
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attractive because explicit coupling loops would not be required. 
One such scheme based on the use of a continuous strip of film is 
illustrated in Fig. 9-13. The strip of film, although uniform, has 
been divided into segments with imaginary dotted lines. Three seg
ments are required per bit (as indicated by the labeling A, B, C) 
and we assume that information is initially stored in the B seg
ments. The film is oriented longitudinally, with the zero state 
represented by magnetization M pointing uniformly to the right, 
as in B', the same as the clear state in the adjacent A and C seg
ments. A one is represented by M pointing to the left, as in B, 
that is, by a reverse domain relative to the adjacent segments. 
Any reverse domain must of course involve flux closure through 
the air. The high magnetic-pole densities (see Sec. 11-3) asso
ciated with opposing M vectors result in complex domain-wall con
figurations (suggested by the jagged lines at the boundaries of B) 
that form in such a way as to spread out the pole densities until 
field strengths at the edges of adjacent strips are just at threshold 
or less. 

A B c A' B' c' 
I~ ~ 

B 

, 
J;L. l - - t , : 

t 
- f-- t+- , --- , - -f-o- -f--~ -~ , , , 

"Strip of film '-----

~ 

7 DrIVe line 

Fig. 9-13. Continuous-film register in which data states are represented by local polarity of 
magnetization. 

In order to shift information from the B to the C segments, a 
drive current IBis energized, which applies clear-direction mmf 
to all B segments and set-direction mmf to all C segments. Wher
ever a one state is held in a B segment, the left edge of the 
neighboring C segment is biased toward threshold by the poles ex
isting at the boundary. As a result, only a low drive current is re
quired to reverse the segment C by means of wall movement from 
the right side of B to the right side of C. Similarly, the domain 
wall at the left side of B (the left boundary of the reverse domain) 
moves to the left side of C. Thus the reverse domain travels one 
segment to the right. A significantly higher current level is re
quired, however, to nucleate a new reverse domain where a zero 
is being transferred, as at C' , and hence C' remains in its original 
state, with M pointing to the right, and thus correctly represents the 
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zero bit formerly stored in B'. Two other drive lines symmetrical 
with the one shown are needed to shift from the C to the A seg
ments, and then to the B segments one bit-length ahead, to com
plete the cycle. 

Because of the physical symmetry, at least three clock phases 
are needed for directivity. However, more than three clock phases 
may be used for additional isolation between information segments 
containing reverse domains. Bobeck and Fischer (1959) realized 
this type of scheme with a magnetic wire, as opposed to a strip of 
film, in connection with a five-phase cycle. Broadbent (1960) de
scribed a convenient wiring arrangement involving only two drive 
lines for a four-phase clock cycle (based on opposite polarities 
being applied alternately to each of the drive lines). Recent work 
has been done on this scheme at Bell Telephone Laboratories, for 
example, by D. H. Smith (1965). Spain, Jauvitz, and Fuller (1965) 
describe a similar scheme based on the easy direction being trans
verse to the direction of propagation. 

Smith Continuous-Film Scheme; Sense of Wall Rotation. In any 
domain wall there are two senses in which the spin vectors can 
rotate, in turning from the direction in one domain to the direction 
in the other domain (see Chap. 11). For Bloch walls, the spin vec
tors turn to point out the plane of the film, as shown in Fig. 
9-14(a) and (b), representing "right-hand" and "left-hand" walls, 
respectively. In ultrathin films, Neel walls occur, for which rota
tion is within the plane of the film, as shown in Fig. 9-14(c) and (d), 
again for the right-hand and left-hand walls, respectively. 

tl!:lMM ! I ! I I I 
8 - -

0t8 0-8 0-8 
(b) (c) (d) 

Fig. 9-14. 1800 domain walls: (a,b) Bloch walls in which the spins are perpendicular to the 
plane of the film; and (c,d) Neel walls in which the spins are in the plane of the wall. 

A transfer scheme described by Smith (1961), based on data 
representation by polarity of spin rotation, is illustrated in 
Fig. 9-15. As indicated by the arrows on the films, the preferred, 
or easy, directions here are transverse to the film. A bit of in
formation is represented by the sense of the spin rotation within 
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Fig. 9-15. Smith thin-film scheme, in which data states are represented by direction of rotation of 
spin in the 1800 waIls between adjacent transverse domains. 

a wall at each A position of Fig. 9-15(a). The domain magnetization 
vectors between the walls alternate as shown, independent of infor
mation state. The Phase-1 clock pulse is applied so as to produce 
a field that varies with distance as indicated in Fig. 9-15(b). These 
fields cause a shift of the walls to the B positions. The Phase-2 
clock pulse applies a similar field pattern, but shifted half a seg
ment to the right, so that walls are again shifted to the A positions, 
but one bit position advanced from the original. After these two 
phases, all domain directions are exactly opposite to the original 
ones. Third and fourth clock pulses are then applied to the same 
drive lines, but with polarities opposite to those of the first and 
second phases, respectively. Thus a four-phase clock cycle is 
needed, but the information (stored in the walls) is transferred 
two bit positions each cycle (cf. Van De Riet scheme of Fig. 7-12). 

The alternating field pattern of Fig. 9-15(b) is physically awk
ward because it requires currents of alternating polarity flowing 
along the film. The solution given by Smith for this problem is to 
apply currents across the film at a slant, as indicated with the 
Phase-1 drive line in Fig. 9-15(c). The fields from the slanting 
segments cancel to a resultant field of zero at points along the film 
in line with ends of segments such as B, but reach maximum values 
at points such as A. Thus the net vertical component of the field 
due to the crossing currents has approximately the variation indi
cated in Fig. 9-15(b). 
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9-3 Non-Return-to-Reference Schemes 

In every scheme discussed thus far, each magnetic element in
volved in information transfer is cleared to a reference state at 
least once each clock cycle, and hence these schemes have a 
"return to reference" nature. For unipolar schemes, the ref
erence state is nominally equivalent to the zero state. For bipolar 
schemes it is an intermediate state. The term "non-return to 
reference" (NRR) is related to the term "non-return to zero" 
(NRZ) as used in digital magnetic recording. For NRR schemes, 
at least one core in each stage remains constantly in the one state 
during the shifting of a set of adjacent ones. Such a core is switched 
to the zero state only for a change from one to zero in the informa
tion sequence, and it remains in a zero state until there is a change 
to one in the sequence. 

A Method of Converting Schemes to NRR OPeration. To illus
trate a method for potentially converting a large class of schemes 
to NRR operation, let us return to the Van De Riet representation 
(Chap. 7) and consider as an example the Engelbart scheme of 
Fig. 7-3 for which the set-state pattern for two adjacent ones, 
flanked by zeros, is represented. The same information pattern 
in NRR operation is shown in Fig. 9-16. A string of ones of any 
length would be similarly represented, with a pair of set loop 
cores representing the boundaries of the string and with all inter
vening coupling cores in the one state. For transfer of such a 
one-state pattern, all loop cores are driven to their reference 
states in the same sequence as before, but no more than bias 

E 0 E 0 E 0 

~: 
j+1 j / j 

(O~E)1 j +1 j j j j 

(0 -E)2 j+1 J j J 
(E -0)1 j+ 1 J J J J 
(E -0)2 j+l J J J 

Fig. 9·16. Illustrating the use of the Engelbart scheme of Fig. 7·3 with a non·return-to-reference 
data representation. 
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levels of drive mmf, Le., not exceeding core threshold, are ever 
applied to coupling cores. What was formerly the reference state 
of a coupling core is now simply the zero state, and we view the 
clock sequence as consisting of four advance pulses rather than 
two advance and two clear pulses. (Data is still shifted one bit 
position per clock cycle.) 

The effect of NRR operation on core switching during transfer 
can be seen by comparing the chart in Fig. 9-16 with that in Fig. 
7-3. The designations j and j + 1 indicate that the boundaries of the 
one-state pattern correspond to bit numbers j and j + 1 in this case. 
After any phase of operation, each intervening core that is in the 
set state is indicated by a check mark. 

One advantage of NRR operation is the reduction of total core
switching energy, since cores are switched only at the bound
aries of a string of ones. Transfer of the alternating pattern, 
•.• 10101010 .•• , requires more cores to be switched each cycle 
than any other pattern, but only half as many cores as for a pat
tern of all ones in the case of return-to-reference operation. In 
other words, for a given bit rate, conversion to NRR operation, 
in the manner described, reduces the peak core-switching power 
by 50 percent and also reduces the average power required for 
random information. This would tend to lessen the problem 
of driver design and also, for high-speed operation, the problem of 
core heating. A serious disadvantage, however, is thatthe coupling 
cores, being switched by information currents only, are never 
driven hard into saturation and hence exhibit soft-state switching 
properties at all times. This factor alone very seriously reduces 
the range of operation. In fact, the only successfully operated NRR 
scheme thus far reported is a very interesting two-phase NRR 
resistance scheme, which is bipolar in nature. This scheme will 
now be described. 

Mina and Walters Bipolar NRR Scheme. In the version of the 
Mina and Walters (1964) circuit shown in Fig. 9-17, only one multi
leg core is needed for each bit-length of the register. The right 
side of the core (Legs D, E, F', G, and H) has a definite reference 
state (as shown by the solid arrows) to which it is unconditionally 
driven by each advance pulse. (Actually, Legs F', G, and H never 
switch, but simply provide for proper flux closure.) The left side 
of the core (Legs A, B, and C), which is driven only by coupling 
loop current, is in the one or zero state for clockwise or counter
clockwise direction of flux, respectively. For illustration, we as
sume that the bits initially stored in Cores.n and n + lare a zero 
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and a one, respectively, as indicated by the dotted arrows in 
Fig. 9-17. 

r-----:----- Core n ~ r Zero state ~ clearl 

Prime C E 

Advance 
Hold Hold 

Fig. 9-17. Mina and Walters bipolar non-return-to-reference scheme, 

The first phase of operation, i.e., priming, is accomplished 
with a current within a range of magnitude large enough to cause 
switching around one of the two small central apertures but not 
around the large left-hand aperture. With the priming line linking 
the pair of small apertures symmetrically, switching can occur 
only around the lower aperture in case of a zero and only around 
the upper one in case of a one. During this phase, there is slow 
dissipation of 1'1.¢ in the loop resistance Re ' as usual, via induced 
loop currents which are of opposite polarity for the two different 
information states. 

After priming, application of the advance drive (including 
holding on Leg H) switches Leg 0 or E into its original (refere,nce) 
direction. There is a resulting flux change linking either N Tl or 
N TO' with polarity to induce currents in or ieo , respectively, 
depending on information state. If the information state at the 
receiving end of a loop is opposite to that at the transmitting end 
(as in the case here for Core n + 1 versus Core n), then the loop 
current causes reversal in Leg A and in Legs C and D (if ip = ieo) 
or in Legs Band E (if ie = in)' Assuming NT! and N TO are each 
> N R to provide flux gain, then the information state in the re
ceiving core is thus changed. If the adjacent information states 
are the same, however, then i r cannot switch Leg A inelastically, 
and the transmitted flux is all dissipated in loop resistance, just 
as during the priming phase. The advance mmf can be larger than 
the priming mmf without disturbing existing information states, 
since if the loop current does not switch the receiver, it simply 



212 DIGITAL MAGNETIC LOGIC 

drives the receiver further into its present flux direction. Thus 
less time is required for the transfer phase than for priming. 

Several aspects of this interesting scheme deserve comment. 
First, the two phases required are one less than the minimum of 
three found in Chap. 7 for the class of schemes considered there. 
Second, dc priming may be used (in which case priming begins 
immediately as each advance phase is completed), so that only a 
single pulse is actually required for the two-phase operation. 
Third, the scheme is bipolar in the sense that loop currents are 
bipolar and the circuit is symmetrical with respect to one and 
zero storage and transfer. But it is different from the bipolar 
schemes of Sec. 9-1 in that storage is in terms of two polarities 
of flux in the same path, rather than in terms of flux in two sym
metrical but different paths. 

In spite of considerable bit-to-bit interaction with two-phase, 
single-clock-pulse operation, substantial tolerances on drive cur
rents are reported by Mina and Walters for a coupling-loop turns 
ratio of 3:1. 

9-4 Summary 

In Chap. 8 we saw that with dynamic bias the driver circuit 
assumes the entire "threshold burden" and that signal currents 
need only steer the division of the uncondldonally sWitching flux 
in favor of one path or another. Here we show that by dynamically 
biasing all cores in the circuit we achieve a complete symmetry 
of operation in which positive and negative loop currents have 
equal but opposite flux-steering effects. This leads directly to a 
bipolar representation in which transferred binary states are 
represented by flux linkages of one polarity or the other, rather 
than by presence of flux linkage, or not, as in the case of unipolar 
representation. The advantage of bipolar transfer schemes is a 
significant increase in performance over unipolar schemes, but at 
the cost of substantial increase in circuit complexity. 

We also discuss schemes based on the use of magnetic film 
films. It is first shown why schemes using isolated thin-film 
patches must depend on the use of coherent rotation as a gain 
mechanism, a mode of operation in which the film is driven to a 
hard direction of magnetization and the signal current simply 
controls the direction of coherent magnetization fallback to either 
of the two easy directions of magnetization. This naturally leads 
to a symmetrical bipolar representation. It is also possible to 
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synthesize continuous-film transfer schemes, however, in which 
magnetization states are shifted along a continuous film without 
the use of coupling loops. In one scheme, information is rep
resented in the polarity of magnetization. In a second scheme, 
information is contained in the sense (clockwise or counterclock
wise) of spin rotation in the walls separating oppositely magnetized 
domains along a continuous film strip. In spite of the simple ele
gance of thin film schemes, a general practical difficulty is that of 
sensing information states, because of the very low signal levels 
involved. 

Finally, we consider a non-return-to-reference representation 
in whioh flux switching occurs only to signal a ohange in state in a 
binary string, similar to the non-return-to-zero technique of mag
netic recording. Thus, during transfer of a string of ones embedded 
in a string of zeros, switching to the one state signals the zero-to
one transition, and there is no further core switching until the left 
end of the string is reached, at which time there is a switch to 
the zero state. The Mina and Walters non-return-to-reference 
scheme, though primarily of academic interest, is particularly 
interesting in that it is the only two-phase core-wire scheme known 
to have been operated successfully, and with dc priming only one 
clock pulse is actually required. 

In this chapter we have introduced a number of very elegant 
techniques that are discussed in the literature. But in spite of 
their great elegance and intellectual appeal they have as yet found 
no practical application. The bipolar schemes suffer primarily 
from relatively great circuit complexity, and as we will see in 
Chap. 10, the large gain in performance achieved in simple trans
fer circuits can be rather quickly dissipated in more complex 
logic circuits. The thin-film schemes, as we already noted above, 
suffer from very low signal levels and from a general difficulty 
in extending them to general logiC. The non-return-to-reference 
scheme offers only the potential for a single-clock system and at 
the cost of circuit complexity and relatively poor performance. 

In fact, of all the schemes discussed to date, only the MAD-R 
scheme has withstood the technological and economic tests of 
practical application, and, where applied, these circuits have per
formed superbly, especially with respect to achieving the very high 
levels of reliability of which such circuits are inherently capable. 

With this chapter we end the treatment of basic flux-transfer 
techniques. Our hope was that the step by step development would 
permit the reader not only to become acquainted with all of the 
basic techniques and schemes presently known, but also to see the 
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relationship between all of the various schemes-in particular, 
to see how to transform from one scheme to another and thereby 
judge the advantages and disadvantages of each scheme by the 
nature of the transformations involved. We now enlarge the scope 
of the treatment, and consider how independent units of flux, which 
represent different binary logic variables, can be combined to 
achieve a general logic synthesis. 
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10-1 Introduction 

Thus far the main emphasis has been to describe the nature of 
core-wire circuits, in particular the properties of flux transfer 
along chains of magnetic elements that have neither logical fan-in 
nor fan-out. We wish to consider in this chapter methods for ex
tending the basic circuit techniques to the synthesis of digital logic 
circuits. 

There are many possibilities for the formation of logical func
tions in core-wire circuits because of the inherent electrical iso
lation between windings, with the result that: (1) transmitter 
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windings can be arranged in different series-parallel combinations; 
(2) the polarity of any transmitter signal can be reversed merely 
by reversing the sense of the corresponding winding; and (3) the 
same signal current can be made to link a number of different re
ceiver cores, to provide branching, or fan-out. Because of this 
flexibility, there generally exists a number of different ways to 
synthesize any given logical function, even a very simple function. 
The circuits that result from these different synthesis methods 
often exhibit significant differences in performance, as well as in 
the number of devices required and the number of windings used. 

A disadvantage of core-wire circuits generally is that they have 
low gain, compared, say, with ordinary transistor circuits. The 
result is that performance is more dependent on exact circuit con
ditions-the degree of loading, and so on-and the degree of fan-out 
in one step is always of relatively low degree. There is need, 
therefore, to know the best ways to exploit the inherent flexibility 
in order to achieve efficient design. 

In Sec. 10-2 we review the general organization of a syn
chronous digital logic system, and in Sec. 10-3 we turn the dis
cussion to the synthesis of synchronous core-wire systems in 
particular. The general synthesis of logic functions is considered 
in Sec. 10-4, and an actual design example is given in Sec. 10-5. 
The design method for the MAD-R scheme (Chap. 6) is extended to 
logic circuits in Sec. 10-6. 

10-2 Synchronous Logic System 

A convenient representation of a synchronous logic system is 
indicated in Fig. 10-1(a). It recognizes that two types of com
ponents are required, namely, storage units (e.g., transistor flip
flops) and logic units. At any instant, the state of the system is 
determined by the state of the storage elements. At each clock 
pulse, the storage elements are altered to a new state. The new 
state (or "next" state, as it is generally called) of any particu
lar storage element is determined by a logical combination of 
the present state of some set of storage elements (and possibly 
some set of external inputs, e.g., switches). Thus, the relation 
between the set of next states and the set of present states is de
termined by the specific arrangement of the combinational-logic 
network. 

In the one-clock system of Fig. 10-1(a), a minimum delay must 
be present somewhere in each loop between the input and output of 
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Fig. 10-1. Representation of a synchronous logic system: (a) single-clock system, 
and (b) two-clock system. 
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each storage element. Without such delay, some storage elements 
might tend to change state more than once during the same clock 
pulse. The need for delay is eliminated in a two-clock system, 
where there are two separate groups of storage and logic elements, 
as in Fig. lO-l(b). At Clock Pulse C1 , storage elements 51 are 
altered to their next state, under control of the state of storage 
elements 52. No circuit delay is required since the information 
state of the elements 52 cannot be changed except during Clock 
Pulse C2 , which follows C1 after a minimum time delay to ensure 
that the elements 51 have reached their new steady state. During 
Clock Pulse C2 , the storage elements 52 are altered to their next 
state, under control of the state of storage elements 51. Logical 
functions can be synthesized on each step. It is of course possible 
to arrange for even more than two groups of storage and logic sets, 
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with a corresponding increase in the number of clock-pulse 
sources. 

10-3 Magnetic Synchronous Logic System 

With all cores of a core-wire circuit being of the square-loop 
type, we might at first think that all cores are therefore storage 
elements. Though this is true from the point of view of flux stor
age, it is not true for the handling of logic states. Some cores, 
for example, might be driven only by the clocks and never store 
any of the system variables at all. We must be careful there
fore to distinguish between core types in terms of the way they 
are used. We should also note that, whereas in a conventional 
transistor system, for example, the dc voltages are the primary 
power sources (the clock signals providing a timing function
opening and closing the low-powered gates in the proper sequence), 
in a core-wire system the clocks are the source of all switching 
energy as well as of timing. 

In this section we first show how direct replacement of each 
transistor flip-flop by a one-bit shift register would permit direct 
synthesis of magnetic logic systems in the image of familiar tran
sistor logic synthesis. We will readily see, however, that such a 
direct mapping would lead to impractical systems. With this map
ping as an introduction, we then show a variation that is well 
suited to magnetic logic systems. 

Simulating a Transistor Flip-Flop. To achieve a bistable gain 
characteristic, transistors are arranged in pairs, in familiar flip
flop configuration. One can view a flip-flop as a pair of negation 
transfer circuits, in the sense of Fig. 8-2, Where an increase in 
signal level from one element, or stage, results in a subsequent 
decrease from the other stage, which causes a still further in
crease in signal from the first stage, regeneratively, i.e., with 
gain greater than unity, until a stable (saturation) state is achieved. 
There is an important difference in operation, however, from a 
practical point of view. The transistor operates from dc voltages 
and exhibits what we might call dc gain. Square-loop magnetic 
cores, on the other hand, are basically flux-storage devices, which 
can exhibit only ac (or dynamic) gain, andregenerative action must 
be specifically clocked. Thus, with a bistable gain characteristic, 
if the signal level is initially on one side or the other of the inter
mediate unity-gain point, then the signal will monotonically build 
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to one or the other stable states, but only so long as the clock pulses 
are operating. If the clock pulses are stopped, then the regeneration 
stops, but it picks up again from the same point whenever the clock 
pulses are turned on again. (This leads to one of the practical ad
vantages of magnetic logic circuits in applications where energy is 
at a premium. With the clocks stopped, the present state of the 
system is maintained indefinitely with no energy dissipation what
ever.) 

With this analogy in mind, we can consider a possible structure 
for a synchronous magnetic logic system. We might note first, 
though, that we here introduced a negation-transfer register only 
because the negation transfer is analogous to the polarity-inverting 
transistor stage. However, a simple-transfer register could serve 
just as well, such being more analogous to a coupled pair of the 
earlier point-contact transistors, which exhibited voltage gain even 
in the non-inverting emitter-follower configuration. 

Timing Clocks and Pumping Clocks. Based on the use of "mag
netic flip-flops" (one-bit registers) the direct synthesis of a 
magnetic logic system in the fashion of Fig. 10-1(b) is straight
forward (assuming the ability to do magnetic combinational logic). 
In terms of Fig. 10-2, the basic operation would be as follows: 
Clock Pulse Cl causes a shift from the right-hand to the left-hand 
storage elements, followed by a set of clocks I C 51 l energized to 
build up, or regenerate, the flux levels in the left-hand storage 
registers. Then Clock Pulse C2 causes transfer to the right-hand 
elements, and a second set of clocks I C52 l restores the levels 
there. Constructed in this way, the logic system would be com
pletely analogous to the transistor flip-flop system of Fig. 10-1(b). 

Fig. 1 ()'2. Replacing the transistor flip· flops with one-bit shift registers and pumping clocks 
lCsd andlcs2l. 
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However, this method would be impractical because of the large 
number of clock drivers that would be required. 

We should distinguish between the two different types of 
clock pulses required in Fig. 10-2. The clock pulses {CSl land 
I C S2 l really have no logical function in the sense of timing or 
gating, but simply serve the role of energizing the ac-gain mech
anism in the magnetic storage registers. We refer to -these clocks 
therefore as "pumping clocks," in contrast to the "timing clocks" 
C land C 2 that effect the actual transfer, via logic circuits, from 
one storage bank to the next. 

It is the need for separate sets of pumping clocks that makes 
this technique impractical. Let us consider how we may reduce the 
number of clock pulses that are required. 

Combined Clocking System for Timing and Pumping. It is clear 
that we require the equivalent of what we have called pumping 
clocks, for in one way or another we much achieve signal gain. 
But perhaps the same pumping clocks can be used as timing clocks 
as well. That this is clearly possible can be deduced from our 
previous study of core-wire shift registers. A shift register is a 
simple logic circuit, but a logic circuit nevertheless, in which the 
"next" state of an element is the present state of its neighboring 
element. Any of the transfer schemes with symmetrical 0 and E 
clock phasing, corresponding to two sets of elements that we have 
generally designated as Odd and Even sets, satisfy the purpose of 
the argument. We can arrange these two sets of storage elements 
as in Fig. 10-3. The.E -> 0 clock pulse is in effect the timing clock 

O-E 

E-O 

Fig. 1 ()"3. Arranging for a single set of clocks to serve for both flux gain 
and timing. 
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C l' and the 0 -> E clock pulse is in effect the timing clock C 2. The 
difference between the systems of Fig. 10-2 and Fig. 10-3 is that in 
the latter system each transfer exhibits gain, whereas in the former 
system what is implied is an alternate decay and then regeneration 
or pumping up of signal level (whether in a transistor or a core 
version). In other words, in Fig. 10-2 the transfer signal levels 
need be just large enough to correctly steer the next state of each 
flip-flop, and the signal levels are automatically restandardized 
after each transfer. In the system of Fig. 10-3, however, logical 
processes and gain are· intermingled; and it is lack of high-gain 
capability in the basic transfers that leads to the generally low 
fan-out. Nevertheless, the lower-gain-per-transfer approach of 
Fig. 10-3 is far more practical for core circuits; and although the 
relatively low fan-out may require the slower buildup of complex 
logic expressions over several clock cycles, with a little practice 
it is not a particularly difficult synthesis technique. Let us now 
move on, then, to the topic of logic-function synthesis. 

10-4 Combinational Logic 

General. Combinational logic is the formation of a new (output) 
binary variable {(Xl' X2 ' X3 ' ••• , xn) whose state depends upon the 
state of other (input) binary variables Xl' x2 ' ••• , x n • If the output 
variable { is to be uniquely defined, the state of ( must be specified 
for each of the 2n possible states of the input variables. Since there 
is a choice of one or zero output for each of the input states, there 
is a total of 2(2 n

) possible output functions. A useful way to denote 
the functional relationship is in terms of a table (generally referred 
to as a truth table), in which each of the 2n rows of the table denotes 
one of the 2n possible input combinations, and each column repre
sents one of the 22n possible functions. 

In the case of two input variables X and y there are 2(22) = 16 
possible functions! f.l ofthese two variables, as shown in Table 10-1. , 

Table 10.1 

x y fo fl f2 f3 f4 f 5 f6 f7 fa f9 flO fll fI2 f13 fI4 fI5 

0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

0 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
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Six of these functions, namely fo' f3' f5' flO' f12 , f15 , are trivial in 
the sense of not being functions of both variables, e.g., flO = x. The 
remaining ten functions can be considered in three groups: those 
that are one for only a single input state, those that are one for 
two input states, and those that are one for three input states. These 
three groups are referred to as AND functions, exclusive-OR func
tions, and (inclusive) OR functions, respectively, and are written 
as shown in Table 10-2. The special symbol Ell is used to specify the 
exclusive-OR function fs ' which is one only if one or the other, but 
not both, of the input variables· is one. 

Table 10.2 

AND functions Exclusive-GR functions OR functions 

f7 x + y 

fll x + y 

f13 x + y 

f14 x + y 

Note that functions fs and fg , which are the complements of 
each other, can also be written in the form xy + xy and xy + xy, 
respectively, i.e., as the OR function of two AND functions. Thus, 
we see that any function of two variables can be synthesized with 
the three logical operations NEGATION, OR, and AND. However, 
by the well-known De Morgan's theorem (which states that the 
complement of any function can be obtained by: (1) replacing each 
variable by its complement, and (2) interchanging the symbols for 
OR and AND). we find that only two of the three logical operations 
are actually required. For example, we can synthesize the AND 
function itself in terms of OR and NEGATION, namely xy = x + y, 
so that any function of two variables can be written solely in terms 
of NEGATION and OR. A similar derivation shows that any func
tion of two variables can also be written solely in terms of 
NEGA TION and AND. 

It can be shown that De Morgan's theorem can be applied to 
functions of any number of variables, and therefore that any func
tion can be synthesized solely with an array of NEGATION and OR 
circuits, or alternately with an array of NEGATION and AND cir
cuits. This is a well-known result of switching theory. 

A final result of importance is that OR or AND circuits with 
just two inputs are sufficient for general logic synthesis. This is 
shown from the associative property of the OR and AND functions. 
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For example, the OR function (xl + Xz + x3 + ... + Xn) can be written 
in the nested form ( ... « (xl + x z ) + x3 ) + x4 ) + ... + xn ), where the 
OR functions are formed two at a time. The same result applies 
for the AND function. The availability of circuits that can handle 
more than two input variables simultaneously, or realize directly 
such functions as the exclusive-OR function, leads to considerable 
reduction of system complexity and of the total number of elements 
required. Nevertheless, we see that this extra capability is not an 
essential requirement for synthesis of even the most complex 
functions. 

We wish now to introduce various ways of generating the basic 
logic functions. 

OR Function. Formation of an OR function of two or more 
variables implies that the receiver element is set to the one state 
if anyone or more of the transmitters are in the one state. A 
common technique for achieving this function with semiconductor 
elements is to merge the various input signals through a diode 
network. Applying this principle to core circuits, we obtain the 
core-diode circuit of Fig. lO-4(a). In this case, if more than one 
transmitter holds a one, then the mmf drive on the receiver dur
ing transfer is accordingly higher. 

It is also possible to merge the outputs in series instead of in 
parallel, as in Fig. lO-4(b), in which case no mixing diodes are 
needed. Now, multiple one transmission results in flux summation, 
as compared with mmf summation in Fig. lO-4(a). 

(a) (b) 

Fig. 10-4. Synthesis of the logical OR function; 
(a) parallel input (mmf summation), and (b) series 
input (1'1¢ summation). 

In analyzing any particular OR configuration, the primary con
cern is that the receiver be properly set if any number of trans-
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mitters are in the one state. With either of the above arrangements 
the general performance deteriorates as the number of transmitters 
increases, primarily because of the increased level of !oJ.¢ transfer 
for the zero state. If we let 0 represent the nominal magnitude of 
!oJ.¢ for zero transfer, then with n transmitters in series, the all
zero-state flux is no and an amount of flux (n - 1)0 must be clipped 
in order to restore the same zero level as for a simple transfer. 
If n is very large, then for a single transmitter in the one state, 
the received flux is the difference between the two relatively large 
numbers, and the operation is sensitive to small differences from 
core to core. 

For two input variables, the series OR connection for the 
MAD-R scheme takes the form indicated in Fig. lO-5(a). For x = 0 
and y = 1, priming results in flux switching along the dashed line 
of the network representation in Fig. lO-5(b). After priming, flux 
states in D x and D yare in opposite directions with respect to their 
common node and, hence, the driving of Dy would tend to switch 
flux in D x' However, the advance-drive generator in the D x circuit 
prevents such switching, and the full flux linkage from y is there
fore directed to the receiver. In other Words, with only a single 
transmitter in the one state, there is nominally no effect from the 
presence of the second transmitter. 

Adv 

(a) ( b) 

Fig. 10-5. Series OR connection for MAD-R logic. 

In the circuit of Fig. lO-5(a), the transmitters are coupled by a 
single coupling loop and primed flux from both transmitters dissi
pates in a common loop resistance. In terms of the network repre
sentation, we see that flux from both transmitters is summed in 
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only one of the input legs of the receiver. By network manipulation 
we can derive a more symmetrical input arrangement, as in 
Fig. 10-6(a), where both input branches of the receiver are sym
metrically linked. In the corresponding circuit (Fig. 10-6(b», the 
transmitter coupling loops are isolated, each linking a receiver 
input leg separately. Because of the separate resistance in each 
of the two loops, full priming in the double-one case here will take 
no more time than the priming of a single one, whereas full prim
ing in the double-one case of Fig. 10-5(a) would nominally be twice 
as long as for a single one. 

(a) ( b) 

Fig. 10-6. Series OR connection for MAD-R logic with independent in
puts merging in the receiver element. 

In a direct core-wire equivalent of the parallel connection 
scheme of Fig. 10-4(a) we substitute a core for each diode ele
ment, as shown in Fig. 10-7(a). It is possibly easier to understand 
the operation in this case if the circuit from each transmitter is 
visualized as being linked to the receiver separately with the same 
number of receiver turns, as in Fig. 10-7(b). Now we see that if 
the receiver is switched from one ofthe inputs, flux is injected into 
the other input loop and is absorbed by the input "diode core" with 
very small current flow. In the double-one case, there is nominally 
double mmf drive on the receiver. The input cores can be in
corporated into the receivers as in Fig. 10-7(c), where each 
winding now couples through a separate input aperture. 

By combining the OR schemes of Figs. 10-5 and 10-7, we can 
compound the input mixing, as in Fig. 10-8(a), where we illustrate 
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X+ Y 

X~~ 0 0 

y X + Y 

(0 ) (b) (c) 

Fig. 10-7. Parallel OR connection for MAD-R logic. 

the synthesis of a four-input function (w + xl + (y + zl. The other 
two-input OR functions, x + y, x + y, x + y, are also easily syn
thesized. For example, x + y can be derived with parallel input in 
the form of Fig. lO-8(b) where the flux-source negation technique 
of Sec. 8-1 is indicated. 

(0 ) ( b) 

Fig. 10-8. OR functions: (a) combined series-parallel input of four variables, and (b) 
application of negation transfer to one input. 

AND Function. For the AND function, the receiver is to be set 
only if all of the transmitters are in a state to transmit flux. Either 
of the elementary OR circuits can be converted to an AND circuit 
merely by establishing a suitable mmf or 11¢ threshold, as shown 
for two-input circuits in Figs. 10-9(a) and 10-10(a), respectively. 
In the first circuit we apply a negative bias -iT to the receiver 
(where iT is the nominal transmitter output current in the case 
of a one) so that the receiver is set only if mmf coincidence occurs 
in both transmitter loops. In Fig. 10-10(a) we insert into the loop 
a negative flux source of nominal capacity Ns l1¢s = -NT I1¢T (where 
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Advance Advance 

(a) (b) 

Fig. 10-9. Synthesis of the logical AND function: (a) parallel input with mmf bias; (b) elimination 
of "diode cores" and of the need for mmf bias. 

Clear 

Advance 
(a) ( b) 

Fig. 10-10. Series AND connection: (a) with a separate flux source, and (b) with the flux source 
incorporated into the receiver. 

;\..¢T is the nominal one signal level) so that the receiver is again 
prevented from switching except for coincidence of flux transfer 
from both transmitters. 

The term "coincidence" is intended to refer to information and 
not necessarily to time, although for the circuit of Fig. lO-9(a) the 
mmf signals must also be coincident in time. This difference in 
current-threshold and flux-threshold operation comes about be
cause of the capability for flux storage but not for current storage. 
For example, if the source S has a low threshold and is left un
driven at the time of transfer, then the transmitters can be driven 
sequentially. The first transmission would switch the ;\..¢ source 
(or rather, in this case, the ;\..¢ sink), with small current, and the 
second transmission would result in a loop current large enough 
to switch the receiver. 
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The parallel input arrangement of Fig. 10-9(a) can actually be 
realized without the use of an mmf threshold, simply by eliminat
ing the input diode elements, as in Fig. 10-9(b). Now if both trans
mitters are primed to the one state, then during transfer both out
put currents sum to set the receiver. But if only a single trans
mitter is in the one state, the other acts as an effective shunt (short 
circuit) and there can be no transfer. In fact, for zero-resistance 
transmitter windings it would not even be possible to prime either 
transmitter unless both primed together, since a zero-state ele
ment would also be a short circuit during priming. This method of 
achieving an effective threshold is preferable to applying a 
negative bias directly to a receiver, because in the latter case 
loop currents, and hence losses in loop impedance, are much 
larger. 

We can transform the series circuit of Fig. 10-10(a) to the 
separate input arrangement of Fig. 10-10(b), for two inputs, in the 
same manner as we did in Fig. 10-6 for the OR circuit. The flux 
sink, which takes the form of Leg S, switches and become saturated 
by the first unit of input flux. Flux switches around the main 
aperture, therefore, only if both input legs are switched. (The 
opposing arrows in Leg S merely indicate a demagnetized state 
initially.) Although this is a practical circuit arrangement, the 
circuit in Fig. 10-10(a) is the one found most useful to date mainly 
because of its reliance on a simpler multiaperture core shape. 

Exclusive -OR Function. The two-input exclusive-OR function is 
similar to the inclusive OR function except that for an input of two 
ones, the output is again zero. A way to accomplish this is to 
arrange for the 1'1.¢ signals representing two input ones to cancel 
each other, but yet result in transfer if either input variable alone 
is a one. Another way is to employ 1'1.¢ summation as for OR, but 
to make provision that the two input ones cause saturation or 
blocking at the output of the receiver stage, just as for an input of 
two zeros. 

We can achieve 1'1.¢ opposition in a coupling loop by arranging 
the two transmitter windings with opposite polarity, as shown in 
Fig. 10-11. But now the induced loop mmf are of opposite polarity 
for the two cases of a single one, implying the need for some type 
of rectification in order that either polarity input can set the re
ceiverR through the same input winding. A straightforward method 
is to insert a bridge rectifier into the circuit, as shown in the 
figure. The dashed line shows the path of current flow for the 
case x = 1, y = o. 
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Advance 

Fig. 10-11. Synthesizing the exclusive-OR function with a diode bridge input. 

Replacing each diode with a core, and providing isolating 
windings on Cores A, C,andR,weobtainthe circuit of Fig. 10-12(a), 
with the corresponding network of Fig. 10-12(b). The latter is 
shown rearranged in Fig. 10-12(c), where Cores A and D are given 
the same label, L 1 /2, since they switch identically, as is true also 
for Cores Band C, which are labeled L2/2. From this form it is 
clear that an alternate circuit realization to Fig. 10-12(a) is that 
shown in Fig. 10-13(a). (Recall the derivation illustrated by 

( L,I2) 

(a) (b) ( c) 

Fig. 10-12. Core-wire synthesis of the bridge of Fig. 10-11. 

(a) 

Fig. 10-13. Exclusive-OR: (a) alternate ciJ:cuit realization of lattice net
work of Fig. 10-12(c), and (b) incorporating cores Ll and L2 into the 
receiver element. 

R 
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Fig. 5-14.) In terms of the equivalent orthogonal-mode arrange
ments of Fig. 8-10, we see that the cores Ll and L2 can be inte
grated into a single multileg receiver core with a figure-eight 
input winding, as in Fig. 10-13(b). (In this form, it is readily evi
dent that either polarity of input will set the receiver.) 

Thus far we have considered a bridge network at the input of 
the receiver, though the bridge could also be used on the output 
of the receiver, as shown in Fig. 10-14(a), corresponding to a 
figure-eight winding linking the output (Fig. 10-14(b». However, 
whereas in Fig. 10-12(c) the x and y inputs are opposed to one 
another, in Fig. 10-14(a) the x and y inputs connect symmetrically 
and their flux contributions sum up in setting the two output legs 
Ll and L2 • Thus, with a single input one, a full unit of flux is avail
able for priming and subsequent transfer, as indicated by the primed 
state shown in Fig. 10-14(a). But with two units of input flux, prim
ing is again blocked, just as with no inputs, and clearing both output 
legs results in no net signal at the output of the bridge (recall that 
in Fig. 10-12(c), the double-one case results in no flux transfer into 
the bridge). 

(0) (b) 

Fig. 10-14. Synthesis of exclusive-OR with a bridge network at the output. In (b), internal 
arrows show primed state for input of a single one. 

Fan-Out. Fan-out ratio refers to the number of receivers that 
can be set from a single transmitter. A fan-out ratio of 2:1 is suf
ficient for general system design, though higher ratios lead to 
more efficient design (without necessitating repeated branching 
in order to achieve effectively higher fan-out ratios). 

In Fig. 10-15(a) and (b) are shown series fan-out and parallel 
fan-out circuits, respectively. In the series circuit, loop current 
induced by driving the transmitter tends to set the two receivers 
equally. To obtain the same flux-transfer gain for each receiver 
that would be obtained with only a single receiver in the circuit, 
the transmitter turns must at least be doubled. For a given level 
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T 

A d vance Advance 

(a) ( b) 

Fig. 10-15. Series and parallel fan-out. 

of loop current, this implies at least a doubling of transmitter load 
mmf (or in general for n receivers an n-fold increase in loading). 
In the parallel circuit, the transmitter turns may remain nominally 
unchanged, though again there is a doubling of load mmf for the 
same input current to each receiver. Thus, it can be concluded that 
for either type of circuit, the maximum "gain-excess product" 
(Sec. 4-5) is only half as great as for the case of single transfer; 
or in general, lin times that for single transfer. This reduction 
results in lower current tolerances, and for this reason fan-out 
ratios of more than two or three in a single step are seldom used 
in practical core-wire circuits. 

It is possible to maintain the basic current tolerances with 
fan-out > 1, though at the cost of increased time for transfer, or 
for priming, depending on the scheme. Each mmf-limited phase 
may, for example, be divided into a number of sub-phases equal 
to the fan-out ratio required. Thus, in Fig. 10-16 the advance 
pulse (Q -> Ell reverses flux locally around the upper output aper
ture and transfers to Receiver Rl' but 
without significant effect on the flux con-
dition at the other output aperture or in 
the remainder of the core. Transfer to (O~E)I (RI 

R2 is accomplished subsequently with the 
advance (Q -> El2 pulse. Each transfer 
therefore has properties similar to simple 
transfer. The cost is an n-fold multipli
cation of advance drivers and time for 
completing the transfer. (This type of sub-
clock fan-out is employed in the system ( R2 

described in Sec. 10-5.) 

Bipolar Logic Synthesis. In Chap. 9, 
we noted that bipolar transfer is usually 

Fig. 10-16. Increasing fan-out 
by means of subclocks. 
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used with the aid of dynamic bias, and that with dynamic bias, flux 
is easily steered with relatively small mmf through one or the other 
of two equal paths. Extending this approach, as discussed by 
Newhall (1963), we can divide each of these branches again and 
use still another input signal to steer flux through these new legs. 
Thus, with two input currents il and i2 (associated with input 
variables xl and x 2 ' respectively), flux can be steered to anyone 
of the four equal legs of Fig. 10-17. For + il (implying xl = 1), t::.¢ 
is steered through the right-hand branch, and fo:!' -il (or xl = 0), 
t::.¢ is steered through the left-hand branch. In each of these 
branches, input current i2 in turn determines whether t::.¢ shall 
switch through the left- or right-hand sub-branches. We readily 
see, then, that flux switches through the extreme left branch only 
if xl = x 2 = 0, or xl x2 = 1. This branch is therefore labeled xl x2• 

Similarly, the other branches are labeledxl x2 , x lx2 ,and xl x2 ' re
spectively. To form an output function, we simply link with one 
polarity those legs corresponding to ones in the truth table, and 
the remaining legs with the opposite polarity. This will result in a 
plus or a minus output, i.e., a bipolar output, for every possible 
input state. For example, formation of S = x l x2 + xl x 2 = Xl ffi x2 and 
C = xl x2 ' that is, the sum and carry functions for a two-input adder, 
are shown in Fig. 10-17. 

Li >0 if Xi'1 
tJ~ 

II <0 if xl'O t 

x 1 

L2 

X2 

Sum X1E1l X2 

Carry X1X2 

X1 X2 

X'X2 

Fig. 1 (),17. Logic synthesis based on flux steering 

While this arrangement is logically correct, we must note an 
important unbalance effect when a winding links a different number 
of legs in one direction than the the other; namely, for il = i2 = 0, 
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the output flux linkage will no longer be zero even though /I.e/> di
vides equally between the four legs. In other words, the flux-gain 
curve does not pass through the origin, as in the curve of Fig. 9-2, 
and this can seriously reduce the otherwise wide range of opera
tion that is possible. The unbalance can be lessened in two ways. 
In the case of the carry winding, for example, the right-hand leg 
could be linked with three turns, so that the net /I.e/> linking the 
output winding would be zero even with equal flux division. A 
second technique is to provide a flux-source core of capacity /l.e/>/2 
in series with the carry winding. With either method, however, the 
output currents themselves tend to unbalance the steering currents, 
because the output currents add in different combinations on the 
various legs and therefore result in different net values of mmf 
on these legs. 

With this synthesis technique there 
are potentially 2n legs required, where 
n is the number of input variables in
volved, though in many cases it would 
not be necessary to have all legs avail
able separately. For the AND function 
of Fig. 10-17, for example, the three 
left legs are similarly linked andneed 
not be separately provided, if not 
otherwise needed for the formation of 
other output functions. 

The threshold methods for logic 
synthesis discussed above for unipolar 
synthesis can also be applied to bipolar 
synthesis. Although we have discussed 
threshold logic for only two input vari
ables, a more general theory for any 
number of input variables exists. In 
the general threshold synthesis of 
logic, a set of input variables are 
weighted and summed, the result being 

Coupling 
cores 

- ] 

a one if the sum passes some thresh- Fig. 10·18. Majority-logic synthesis of 

old, and zero otherwise. bipolar logic circuits. 

Applying this method to the bipolar 
scheme of Fig. 9-1, we realize the AND function for three variables 
as in Fig. 10-18, where there is a coupling core for each input 
variable, a core for bias, and a loop core Z in which the output 
function is formed. The flux linkage from each input core is ±l 
unit. The schematic core form implies a core of the type discussed 
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earlier in connection with Fig. 8-16(c). In this case, the bias core 
is doubly linked in order to provide -2 units of flux linkage. (It is 
assumed that the bias signal has the same form and amplitude as 
the variables, but of fixed polarity.) The net magnitude of flux link
age transferred to Core Z depends on the input state, and can vary 
from -5 units for w = x = y = 0 to +1 for w = x = y = 1. To accom
modate this variable magnitude of flux linkage, either the flux ca
pacity of the Z element must be made appropriately larger, or else 
for some input combinations the Z core saturates before the coup
ling cores are fully switched, and switching in the coupling cores 
then becomes heavily loaded. Where these same cores are not 
used for other output functions simultaneously, this may be per
missible; however, where several output circuits are excited 
simultaneously, early termination of switching in one circuit can 
significantly affect the proper operation of the others. In any case, 
note that here too, as in Fig. 10-17. the output current differen
tially affects the switching of the various coupling cores. and it 
may be difficult to maintain the high tolerances that are achieved 
in simple register circuits. 

The potential for bipolar circuits is not yet clear. It will de
pend eventUally on the practical trade-off between increased com
plexity and the net improved performance actually achievable. 

10-5 Design Example: Decimal Arithmetic Unit 

We will describe briefly a system design that illustrates clearly 
a number of the circuit and logic principles discussed earlier. This 
system was purely experimental and, in fact, was the first core
wire system of any size ever built. The function of the unit was to 
provide decimal addition, subtraction, and multiplication under 
control of a manual keyboard. The circuit design and logic design 
(based on an extension of the nonresistance MAD-N scheme) are 
discussed in detail by Crane and Van De. Riet (1961) and Crane 
(1961), respectively. The main purpose here is to note some of 
the main points of the design. 

The entire system was built with a single type of circuit 
module that formed the OR function x + y of two inputs and could 
transmit x + y, or x + y, independently to each of three receivers. 
To assure sufficient flux gain for the relatively long coupling loops 
in the machine, the multileg flux-doubling circuit of Fig. 5-25 was 
adopted. Thus, each circuit module consisted of two identical 
multileg cores. The cores thatwereusedhadfour minor apertures, 
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which were assigned one for input and three for output. Fan-out 
was achieved by the use of subclocks, in the manner of Fig. 10-16, 
and only a single receiver was driven from each corresponding 
pair of transmitter apertures. The basic clock system thus had 
the form (0 -> 0\, (0 -> 0)2' (0 -> 0)3' Clear 0, (0 -> 0)1' (0 -> 0)2' 
(0 -> 0)3' Clear 0, ... , where symbols 0 and 0 are substituted for 
the more familiar E and 0 symbols (for Even and Odd). The (0, 0) 

notation leads to simpler logic diagrams since we can readily 
show which phase a particular module belongs to, simply by draw
ing the module directly in the 0 or 0 shape. 

To minimize the effects of variable coupling-loop impedance, 
due to the wide range in physical coupling-loop length, the ap
proach taken was to achieve minimum possible impedance through 
the use of strip transmission lines, and to synthesize the required 
lOW-level flux loss, required for bistability, by the use of flux
clipper cores, as in Fig. 3-6. 

The basic circuit arrangement can be seen in Fig. 10-19. The 
cores are mounted in pairs, in the manner shown in Fig. 10-19(a), 
where each pair represents one circuit module, that is, one flux
doubling circuit. All of the 0 -> 0 coupling loops are wired on one 
side of the board and all 0 -> 0 coupling loops are wired on the 
opposite side of the board. The actual wiring takes the form shown 
in Fig. 10-19(b). Single-turn transmitter windings and single-turn 
receiver windings are used exclusively, the coupling loop itself 
being in the form of a strip transmission line (made of copper shim 
stock with plastic tape insulation). Each coupling loop incorporates 
a single-toroid flux clipper. Negation transfer is achieved by the 
use of a flux source, as discussed in Sec. 8-1, so that those loops 
wired for negation transfer also incorporate a flux source, which 
consists of a stack of five toroids, each the same as the clipper 
core. 

The multileg cores are shown schematically in Fig. 10-19(c), 
with all three output apertures drawn close together, and offset, 
for convenience of drawing. Each transfer from a given circuit 
module is at a different subclock phase, and all clipper cores and 
flux-source cores are arranged spatially into three separate columns 
according to whether they belong to the (0 -> 0\, (0 -> 0)2' or 
(0 -> 0)3 subclock phase. This facilitates straight-through wiring 
of large groups of modules at once. Assuming that the upper and 
lower left-hand modules hold variables x and y, respectively, then 
according to the wiring sketched in Fig. 10-19(c), we see that x + y 

is formed in the upper right-hand module, and x + y is formed in 
the lower right-hand module. Variable x is transferred to the 
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Fig. 10-19. Circuit design of decimal arithmetic unit: (a) three-dimensional view of 
element layout, (b) coupling-loop construction, and (c) transfer-circuit detail. 
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upper and lower modules on the first and third subphases, re
spectively, and y is transferred on the second and third sub
phases, respectively. (The actual clock-drive wiring is not shown 
on the figure.) Following the <0 -> 0) transfer, the OR function is 
formed in each of the right-hand modules by transmitting between 
the two receiver cores of each module, as discussed in connection 
with the TT operation of Fig. 5-25. Thus, if either core of the 
module had been set, then both become set, and we thereby syn
thesize the OR function. 

The overall logic schematic is shown in Fig. 10-20. The ab
breviations IER, ICAND, and PROD stand for multiplier, multi
plicand, and product, respectively. The ICAND is stored in a bank 
of ten-bit shift registers, where the position of a single one in each 
register represents the decimal digit. The PROD registers hold 
decimal numbers in a biquinary representation. Each line on the 
diagram represents a single coupling loop. Double lines between a 
pair of modules represents double transfer, i.e., at two different 
phases, which of course is logically redundant, but nevertheless 
increases the net flux gain. A dot on the line near the transmitter 
indicates NEGATION transfer. A pair of 0 and 0 symbols within 
a larger rectangle indicates a one-bit negation register (negation 
coupling not shown), which forms a logical flip-flop in the sense 
discussed in Sec. 10-3. The flip-flop holds its state until explicitly 
changed by one of its inputs. 

The basic operation is as follows: Each keyboard operation 
starts the clocks (see START signal in lower right of diagram), 
which run until a STOP signal is obtained (right center of dia
gram). When any keyboard button is pressed, current flows through 
certain set and reset windings which sets up the machine for the 
particular operation (in the manner of presetting flip-flops in a 
transistor machine). The set-up current also sets the toroid at the 
lower right. Release of the keyboard button resets this core and 
sends a signal to start the clock generators. This assures that all 
cores are properly reset before the generator starts and elimi
nates any problems from switch bounce. 

For multiplication, each digit of the IER is entered separately, 
and the partial products from this IER are added to the PROD 
registers, in proper registration, before the next IER digit is 
entered. If the IER digit were a 5, for example, then the ICAND 
registers would cycle, i.e., shift, completely five times, adding 
their contents into the PROD registers once each cycle. On the 
last, i.e., the fifth cycle, the ICAND registers are connected end
to-end, and the ICAND shifts one decimal place, ready for the next 
IER entry. After each IER entry, the clocks remain energized for 
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eight more "dummy" cycles to allow for the maximum possible 
carry propagation delay in the PROD registers for n = 10, that is, 
a 10 by 10 digit multiplication. Timing of these extra eight cycles 
is accomplished by the "cycle counter," which consists of a chain 
of three binary scalers that count to 23 = 8. (Synthesis of a binary 
scaler is discussed in connection with Fig. 10-22(a).) 

Because of the relatively small fan-in and fan-out, logic func
tions are built up relatively slowly, as discussed earlier. Thus, 
some of the flip-flops in the "logic control7t section are controlled 
by tap-offs from the cycle-timer, and these tap-offs must be chosen 
so that the flip-flop state is changed at just the right time. For 
example, some of these flip-flops control the gating between the 
ICAND and PROD registers. To exercise gate control of (2 n - 1) 

ICAND registers require several stages of fan-out, as shown by 
the fan-out networks at the bottom of the logic section. To have 
these control signals available at the proper moment, the flip-flop 
gating must in turn occur at the proper earlier moment. Although 
this seems to lead to a complex design problem, there are some 
simple tricks that greatly facilitate the design. For example, note 
in Fig. 10-20 that only 0 elements or 0 elements appear across 
any given horizontal row. This synchronizes all (vertical) move
ments of ones in the various registers and timers so that, in fact, 
tap-off points for control are automatically determined. 

Although not shown in the diagram, all ICAND and PROD regis
ters incorporate ac nondestructive readout in the manner dis
cussed in Fig. 6-8. Thus, the decimal numbers held in the ICAND 
registers are displayed visually in a one-out-of-ten code. For a 
similar display for the PROD registers, each biquinary PROD 
register has a built-in decimal decoder, as shown in the figure. 
Thus, the results of each operation are immediately visible on 
incandescent lamps. 

Though this system operated quite well, and demonstrated that 
large-scale systems were at least feasible, it is clearly not a 
practical approach because of the large number of clock drivers 
required, the need for two cores per stage, and the need for strip 
transmission-line wiring to maintain low losses. In the next sec
tion we will see that with the MAD-R approach (which was not well 
developed at the time this first experimental system was built), 
we require only two clock drivers, have far greater tolerance in 
coupling-loop construction, require only one core per stage, and. 
can achieve very wide operating tolerances over a large tempera
ture range. 
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10-6 Extension of the MAD-R Scheme to General Logic Synthesis 

We now wish to consider more explicitly the logic capabilities 
of MAD-R circuits, and to provide some notes on extension of the 
circuit-design method of Secs. 6-5 to 6-8. 

A Configuration for Synthesizing All Two -Input Logic Functions. 
We have already seen how to realize the ten nontrivial functions of 
two variables. The circuits for at least two of these, for example, 
x + y in Fig. 10-8(b) and xy in Fig. 10-10, make use of flux 
sources in the coupling loops. We will now show how the type of 
AND circuit in Fig. 10-10, when generalized to the circuit of 
Fig. 10-21, can be designed-by choice of windings, polarities, and 
size of the flux source-to yield anyone of the two-input logic 
functions (Nitzan and English (1967». 

R 

O ..... E 

E-O 
• 

(a) 

( b) 

Fig. 10-21. MAD-R configuration for realization of any two-input logic function. 
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The general form of coupling loop shown in Fig. 10-21 (a) is used 
for realizing all two-input logic functions except the exclusive-OR 
functions x EEl y and x EEl y, which, in line with Fig. 10-13(b), are 
realized with the same basic circuit modified for a figure-eight 
input winding, as shown in Fig. 10-21(b). The transmitter windings 
NTx and NTy are in each case 2, 0, or -2 turns, as shown in 
Table 10-3. The input winding N R is just a single turn (or a single
turn figure-eight winding). The ratio of source flux linkage to 
transmitter flux level has the nominal values shown in the table. 
The assumptions resulting in these nominal values, along with the 
procedure for designing more exact values of N s /).C/>S and specify
ing coupling-loop impedance, are covered in the next subsection. 

Table 10.3 

f(x,y) x x xy xy xy x+y x+y x + y x Ell Y XEllY 

NTx 2 -2 2 -2 -2 2 -2 -2 2 2 

NTy 0 0 2 2 -2 2 2 -2 -2 2 

N s l'1<PS/I'1¢T 0 2.5 -2 0.5 3 -0.5 2 4.5 0 -2.5 

Designing Coupling Loops and Flux Sources. We will now show 
a simple extension of the design method of Sec. 6-6 to the more 
general circuit of Fig. 10-21, in order to explain Table 10-3 and to 
indicate how to obtain quantitative designs of coupling-loop param
eters Re, Le, and NsM)s. The basic approach is to assume that 
good operation is achieved by the design methods of Chap. 6, for th~ 
case of a single transmitter, and proceed to see what additional 
design criteria must be met in order to obtain similarly good 
operation for each case of the general two-input logic circuit of 
Fig. 10-21. We will see that it is possible to specify a value of 
flux source for each logic function such that the worst case of 
zero transfer matches the zero transfer for the single transmitter 
case, and, under the same conditions, the one signal then also 
matches the single-transmitter case. This is true at least for 
every function except the exclusive-OR and its inverse. (In these 
two cases, the available one signal is somewhat lower, implying 
the need for a lower loop impedance (lower Re and Le) and hence 
longer priming time than for any other logic circuits.) Applica
tion to general logic circuits of design parameters obtained from 
simple register measurements-sometimes termed similarity de
sign-usually results in an excellent first cut for design of a logiC 
circuit. 

The basic coupling-loop equation of Eq. (6-9) is expanded to 
the following form for the two-input circuit of Fig. 10-21: 
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. . . . . di, 
NTx¢Tx + NTy¢Ty + NS¢S - NR ¢R = Rf I, + Lf - (10-1) 

dt 

One or more of the values of N Tx ' N Ty ' or Ns may be negative, cor
responding to winding polarities opposite to those shown in Fig. 
10-21(a). With no loss of generality, NR may be assumed positive, 
except in the two cases of a figure-eight input winding, where the 
receiver input winding may be assumed to have two values, NR and 
N~, of opposite polarity. 

Integrating each term of Eq. (10-1) to time t2 , in the sense of 
Fig. 6-11, and substituting from Sec. 6-6 the expressions Fos = 

NR i,<t2> and fiR = N R Q,<t2>, for the stop-switching mmf and receiver 
charge-turns, respectively, we obtain 

(10-2) 

where /}.¢f represents the net flux linkage that must be absorbed by 
dissipation in Rf and storage in Lf (at time t2 ). For the case of 
only a single transmitter, and no flux source, we have /}.¢n = 

NT/}.¢T - /}.¢R for transfer of a one and /}.¢fO = NT/}.¢TO - /}.¢Ro'for 
transfer of a zero, where /}.¢T and /}.¢R' and /}.¢TO and /}.¢RO 

represent, respectively, the one and zero flux levels produced by 
the transmitter and absorbed by the receiver. We assume here 
that /}.¢T = /}.¢R' (/}.¢T is not necessarily the same as /}.¢R pri
marily because of flux clipping in the receiver. However, the dif
ference is generally small for high-level one transfer, so that 
setting /}.¢T = /}.¢R is actually a good assumption.) 

We now state a simple, but important, zero flux-level condition. 
It has been found experimentally that good shift-register perfor
mance is achieved in almost all cases if the transmitter zero out
put is limited to no more than 

(10-3) 

and if enough flux-clipping occurs in the receiver to allow zero re
ceiver flux 

(10-4) 

For the worst-case condition encompassed by Eqs. (10-3) and 
(10-4), and following the assumption that /}.¢R = /}.¢T' then 

(10-5) 
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which serves as an empirical rule-of-thumb for the maximum 
coupling-loop loss of flux linkage that one should assume for 
design purposes. (If the limiting condition (10-3) is violated, 
i.e., if tlif>T 0 > 0.25 tlif>T' then it may still be possible to keep tlif>e 

within the limit speCified by Eq. (10-5) if tlif>RO is, or can be made 
to be, suitably greater than 0.1 tlif>R , for example, by incorporating 
greater flux clipping into the receiver. If not, then it may be 
necessary to use a negative flux source (Core S in Fig. 10-21) for 
additional clipping, although this is usually not necessary.) 

We now show how to derive values for the flux source for 
each of the two-input logic functions, assuming the worst-case 
zero condition of Eq. (10-5), namely, tlif>eo = O.4tlif>T. Let us first 
consider the AND function xy. Selecting NTx = NTy = 2, NR = 1, and 
assuming that tlif>R = tlif>T' then for the worst case of zero transfer, 
i.e., when one of the transmitters, say x, contains a one, we find 
from Eq. (10-2) that 

or 

(10-6) 

which verifies the nominal value in Table 10-3. Assuming this 
source value, we find from Eq. (10-2) that the loop dissipation tlif>n 
for the case of one transfer, that is, x = y = 1, is 

or 

(10-7) 

which is also the same as for the single-transmitter case. Hence, 
satisfaction of the design equation (10-2) results in specification of 
essentially the same coupling loop as provided by Eq. (6-16) for a 
single transmitter. An important difference in the present case, 
however, is that the loop must thread more cores, and hence there 
is less freedom in choosing wire size. The tendency, of course, is 
for a longer loop, with increased loop inductanceLe, so that to main
tain a comparable ~if>-loss level the loop resistance Re must cor
respondingly be reduced, resulting in the need for a larger diam
eter of wire. A result of reduced loop resistance is a longer 
priming time even when only a single transmitter contains a one. 
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Let us now consider the OR function x + y. Repeating the 
similarity-design procedure, we obtain for a double-zero transfer 
the following 

O.4~cf>T = O.5~cf>T + O.5M>T + Ns~cf>s - O.l~cf>T 
or 

(10-8) 

which again verifies the nominal value in Table 10-3. Substituting 
into Eq. (10 .. 2) for single-one transfer, i.e., the weakest one
transfer case, we again obtain the result shown by Eq. (10-7). 

What we have done in essence, to achieve a similarity design 
for OR and AND, is to choose a value of flux source to exactly 
cancel the second-transmitter flux for the state that contributes 
the strongest zero transmission. Thus, for the AND function, we 
desire zero transfer even if the !;Iecond transmitter is in the one 
state and we simply set Ns~cf>s = -2~cf>T. This guarantees the same 
net flux availability for one transfer when the first transmitter is 
also in the one state. For the OR function, we cancel only the 
zero-level flux from the second transmitter, which again guaran
tees full one transfer levels if the first transmitter (or by sym
metry, if either transmitter) is in the one state. 

This method does not work for exclusive-OR, however, because 
the need for symmetrical bipolar-loop-current transfer requires 
that ~cf>s = O. Setting NTx = 2 and NTy = -2, we see that there is no 
difficulty with zero transfer since for both x = y = 0 and x = y = 1 
the transmitter flux linkages exactly cance1. However, for one 
transfer, we have from Eq. (10-2) that ~cf>fl is only as large as 
2~cf>T - 2('25)~cf>T - ~cf>R = 1.5~cf>T - ~cf>w Thus we see, as pre
viewed above, that there is less flux available for loop losses than 
is given by Eq. (10-7) for the previous two cases. The practical 
effect is that a lower impedance loop must be used for this 
function (the same is true for its inverse x (f) y) resulting again 
in more difficult wiring and longer priming time. 

Taking values of NTx and NTy from Table 10-3, and using the 
above process for all of the functions, we obtain all of the flux
source values shown in the table. These were derived on the basis 
of minimal explicit clipping, and under the assumed limiting con
ditions of equality in Eqs. (10-4) and (10-5). With a larger amount 
of clipping, i.e., more zero suppression, but at the price of 1ower
impedance loops, all the values in Table 10-3 except the final two 
entries for exclusive-OR may be algebraically decreased by as 
much as 0.5 units (the limit corresponding to full clipping of zero 
flux from the transmitters), and this also includes the case of 
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simple transfer even though a toroidal clipper was not considered 
in Sec. 6-6. 

Advance Circuit. It is important to consider the effect that a 
flux source in the loop has on the number of turns of all advance 
windings. Note that in addition to the turns Nx ' NH , and Ne • we now 
also have Nss for setting the source core (during 0 -> E transfer in 
this case) and Nes for clearing it (during E -> U transfer). The 
charge-balance principle expressed by Eq. (6-22), namely NXqA = 

NT q f is still applicable. However, the selection of N H is a little 
more involved than for a simple transfer since the amount of hold
ing required now depends on the clearing of source cores and on 
the polarity of transmitter output windings. For example, in the 
case of the AND function xy, Eq. (6-24) is replaced by 

(10-9) 

and since INs t-.¢s I '" 2 t-.¢T for the AND function. then roughly 
speaking, qb' and hence NH also, will be about tripled in comparison 
to simple transfer. (Such high-drive windings must be placed care
fully in order to avoid air fields any larger than necessary.) The 
values of Ne , Nss' and Nes must similarly be carefully chosen in 
the light of loop mmf levels to be expected; in particular, the value 
of Ne is dependent on the logic function performed in the input loop. 

Multiple Coupling Loops. Thus far we have considered the for
mation of only a single logic function. When we consider the re
quirements for fan-out and multiple function formation, the situa
tion becomes more complex. Let us consider the example of a 
binary scaler, which in effect is a flip-flop with a single input 
arranged such that the flip-flop changes state with each input 
pulse. A schematic form of such a scaler is shown in Fig. 10-22(a). 
The basic flip-flop consists of the upper two elements x and x EI1 y 

coupled in a loop, where y represents the control input. For y = 0, 
X EI1 Y = x and the upper pair of elements will simply circulate the 
state of x (either zero or one). But for y = 1, x EI1 Y = x and the 
state of the flip-flop is unconditionally reversed. (These functions 
were synthesized from OR and NEGATION functions for the design
example of Sec. 10-5.) 

A binary counter consists of a cascade of such stages where the 
input signal, Le., the y signal, to each stage derives from a "carry" 
signal from the previous stage, for example, see the CYCLE 
COUNTER of Fig. 10-20. If the y signal is considered a carry 
input. then a carry output (in the arithmetic sense) occurs only if 
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(0) ( b) 

Fig. 10-22. Binary scaler: (a) schematic representation, and (b) MAD-R realization with compound 
coupling loops. 

x = 1 when y = 1. The carry output y' is then simply the AND 
function xy. 

A MAD-R synthesis of the scaler, using the circuits of Table 
10-3, is shown in Fig. 10-22(b), where the same pair of trans
mitters simultaneously drives two coupling loops wired for the two 
different functions, exclusive-OR and AND. 

An important point to consider in the case of multiple coupling 
loops is that the priming of one transmitter can cause loop cur
rents that affect the simultaneous priming of the other transmitter. 
Fortunately, for the particular combination in Fig. 10-22(b), the 
two loop currents cancel in the other transmitter when only one 
transmitter is being primed. But many other combinations do not 
match so well, and if such combinations must be used, then it is 
especially important to exploit the techniques of Sec. 6-8 to obtain 
whatever prime-current tolerances are needed. (Recall that there 
exists a large range over which operating speed can be sacrificed 
for operating tolerances.) 

Using the design method outlined above, a large set of com
patible logic circuits can be designed, as evidenced by the set of 
range maps shown in Fig. 10-23(a) for a particular design ex
ample. (By compatible it is meant that the range maps overlap, 
as shown in the figure.) The symbol 3 x for one of the curves 
implies a triple fan-out of x; xy and xy means a double fan-out 
of x, where x is combined in one circuit with y and in the other 
circuit with y. (These curves were obtained with advance and 
prime currents of nominally a damped half-sinusoid shape with 
respective rise and fall times of approximately 2.0 f.1sec and 
5.0 f.1sec for Advance, and 125 f.1sec and 200 f.1sec for Prime.) 
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Starting from the values obtained by the design method, in essen
tially every case only minor adjustment of parameters was re
quired to achieve the closely matched set of range maps. 

The particular set of functions shown in Fig. 10-23(a) has been 
used in actual system designs. Condon (1963) has described one 
experimental system, which was designed for control inside an 
atomic reactor and which involved the use of about two hundred 
cores. The overall range map for this particular system is shown 
in Fig. 10-23(b) for a number of different operating temperatures. 

As seen above and in Chap. 6, the design procedure becomes 
relatively complex in detail. However, it is quite straightforward 
in practice; furthermore, it need be done only once to obtain a 
compatible set of designs for any given core type. 

10-7 Summary 

In Secs. 10-2 and 10-3, we review the general structure of a 
synchronous digital system and show how, in principle, magnetic
core systems could be synthesized in the same manner as tran
sistor flip-flop systems, by substitution of one-bit shift registers 
on a one-for-one basis for the flip-flops. With this approach, 
however, we not only require the usual logic clocks but also sets 
of clocks to pump up the one-bit registers to standardized signal 
levels after each transfer (as occurs automatically in a transistor 
flip-flop). This results in an impractical synthesis technique be
cause of the large number of clock sources required. A more 
practical arrangement is to have all transfers incorporate signal 
gain, in which case a single set of clocks plays both the logic
stepping role and flux-pumping role, and a general logic system 
then needs no more clock pulses than a simple register. 

In Sec. 10-4 we review some general aspects of combina
tional logic and show techniques for synthesizing the basic logic 
functions with both unipolar and bipolar schemes. We then discuss 
an actual design example that illustrates a large number of basic 
circuit and logic principles. This is a decimal arithmetic unit 
based on an extended version of the nonresistance MAD-N scheme. 

Finally, we consider a basic MAD-R circuit configuration that 
yields all functions of two variables. We show how the circuit
design approach of Chap. 6 can be extended to the design of this 
circuit for all of the different logic combinations, and we show 
performance data typical of some actual system designs. These 
results verify the very wide operating tolerances that can be 
achieved with such core-wire circuits. 
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This chapter summarizes the basic physical properties of 
magnetic materials that are applicable in digital magnetic circuits. 
In Sec. 11-1, the sources of magnetization are discussed; Sec. 11-2 
deals with the various types of magnetism; in Sec. 11-3, domain 
theory is reviewed; and in Sec. 11-4, the mechanisms involved in 
the change of magnetization are introduced. 
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11-1 Magnetization 

Magnetic Flux Density. (Ramo and Whinnery (1956); Panof.sky 
and Phillips (1956).)* Consider two loops, Loop 1 and Loop 2, con
ducting currents i l and i2 in vacuum, as shown in Fig. 11-1. The 
force df due to Loop 1 acting on an element of length d12 in Loop 2 
at Point P is 

(11-1) 

where B is the magnetic flux density at Point P. Using mks units, 

(11-2) 

where f.Lo = 417.10-7 henry/meter, and, following Ampere's law, 

(11-3) 

is the magnetic field at Point P due to Current i l in Loop 1 (aT being 
a unit vector along the line of length r connecting dl l and Point Pl. 

Loop 2 

Fig. 11-1. Interaction between true currents. 

The magnetic field H (and hence B = f.Lo H) is generated by a true 
current i l • If Point P is inside a material, an additional contribu
tion to B may arise from atomic currents consisting of orbiting 
and spinning electrons. Such a contribution is represented by the 
magnetization vector 

(11-4) 

*References at the head of each subsection in Chap. 11 are given as selective examples where 
more detailed information on the subjects under discussion may be found. 
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where L\v is a small volume element surrounding Point P, and mj 

is the magnetic moment of the jth atom in L\v. The mks units of M 
are the same as those of H, and the total flux density at Point P is 

B = 110 (H + M) (11-5) 

Angular Momentum and Magnetic Moment. (Peaslee (1956); 
Chikazumi (1964).) In Fig. 11-2, a single electron of charge -e 
and mass me orbits with an angular velocity Co) along a circle of 
radius r. Associated with this orbital motion is an angular 
momentum 

L 

and a loop magnetic moment 

_er2 
m --Co) 

The ratio 

Y = -
L 

2 

e 
110 --

2m e 

(11-6) 

(11-7) 

(11-8) 

is called the gyromagnetic constant. For an electron spin (to be 
discussed later), y is twice this value. By adding a "g factor," 
Eq. (11-8) is modified to the general form 

y = 
L 

gllo _e_ = 1.105· 105 g (meter/ampere-second) 
2me 

where g = 1 for orbiting electron and g = 2 for electron spin. 

(11-8a) 

If a magnetic field H is applied along, say, the z axis (making 
an angle e with w), a torque 

dL 

dt 
(11-9) 

is developed. Since m is collinear with L, then following Eq. (11-9) 
dL/ dt is perpendicular to both Land H , and, thus, both L and m pre
cess in the same direction around H, i.e., clockwise looking along 
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dL 
dI 

Fig. 11·2. Precession of orbi
tal magnetic moment and an
gular momentum of an electron 
around an applied magnetic 
field. 
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H, as shown in Fig. 11-2. The frequency 
of precession, called the Larmor fre
quency, can be shown to be 

V L = ~yH = 17.6· 103gH (11-10) 
277 

For an orbiting electron (g = 1), v L is 17.6 
kc per (ampere-turn/meter) or 1.4 Mc per 
oersted (1 oersted = 103/(477) ampere
turns/meter). For an electron spin, since 
g = 2, v L is twice this value. 

Quantized Orbital and Spin Land m of 
an Electron. (Born; Richtmyer et ale 
(1955); Peaslee (1956).) Accordingtoclas-
sical mechanics, the magnitude and direc

tion of L (and hence also of m) may vary continuously. On the 
other hand, in quantum mechanics, the magnitude of L is quantized; 
for an electron of a hydrogen like atom, it is 

LZ=.!!:...VZ<l+1) 
277 

(11-11) 

where h is Planck's constant (h = 6.625 . 10-34 Joule-second) and 1 is 
the azimuthal quantum number, which varies from 0 to n - 1 (n 

being the principal quantum number). The orientation of L/ (and 
the corresponding magnetic moment mz) is determined by quan
tizing one of its three spatial components, in this case the com
ponent along the applied magnetic field H, arbitrarily assumed to 
be along the z axis, so that 

LZ,z 
h 
-m 
277 

(11-12) 

where m is the magnetic quantum number, which varies in 21 + 1 
unit steps from -1 to +1. For example, for 1 = 2, L z = v'6 h/(277) , and 
five cones of precession of L around H are possible, as shown in 
Fig. 11-3(a). For electrons of nonhydrogenlike atoms, the quan
tization of Lz is much more complex than described above. 

In addition to L/ (and mz), the electron possesses an angular 
momentum (and a magnetic moment) associated with the electron 
spin. In the presence of H, the spin angular momentum Ls is 
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(a) Orbital, 1~2 (b) Spin 

Fig. 11-3. Quantized orbital and spin angular momentum vectors in units of 
h/< 27T), Each vector precesses clockwise around the 2 axis. 

quantized according to Eqs. (11-11) and (11-12), except that I is 
replaced by a single-valued spin quantum number s = 1/2. Thus, 
Ls has a magnitude Ls = v3/4 h/(2rr) and two possible z components, 
L = ah/(2rr) , where a = ±l/2, as shown in Fig. 11-3(b). As pointed 

S,2 

out in connection with the gyro magnetic ratio-see Eq. (l1-Sa)-
g '" gz = 1 for orbital motion, whereas g '" gs = 2 for a spin. 

Combining Eqs. (l1-Sa), (11-11), and (11-12), the magnitude of 
the orbital magnetic moment mz is 

(11-13) 

and its z component is 

(11-14) 

where 

eh 0.927 . 10-23 ampere-turn-(meter)2 (11-15) I1B = 
4rrme 

is known as the Bohr magneton. Replacing gz by gs = 2 and m by 
a = ±l/2 in Eq. (11-14), the components of spin magnetic moment 
along the applied H, that is, along the z axis, may have the value 
+I1B or -I1B. 
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Atomic Shells. (Born; Richtmyer et al. (1955); Peaslee (1956).) 
Following Pauli's exclusion principle, different electrons are char
acterized by different quantum numbers n, I,m, and a. The nucleus 
of the atom is surrounded by electrons that are classified into 
shells of different quantum numbers n (n = 1, 2, 3, 4, .. .l. Each shell 
of quantum number n is divided into n subshells; each subshell is 
characterized by a quantum number I (l = 0, 1, ... , n - 1) and is 
designated by the letter s, p, d, {, ... corresponding to I = 0, 1, 2, 3, .... 
Electrons occupying the same subshell, which are called equiva
lent electrons, have the same n and I quantum numbers. and thus 
must differ from each other by their m and a quantum numbers. 
There are, therefore, 2 (21 + 1) electrons in a full subshell, and 
L~:~-12(21 + 1) = 2n2 electrons in a full shell. 

Quantized Orbital and Spin Land m of an Atom. (Born; Peaslee 
(1956); Kittel (1957); Chikazumi (1964); Morrish (1965).) In a light 
atom with strong s-s coupling and I-I coupling, the spin and orbital 
angular momenta (and magnetic moments) of the electrons add 
vectorially (each precessing around the resulting vector sum) ac
cording to Russell-5aunders (or L-S) coupling (see Fig. 11-4): The 
spins add vectorially to form a resultant Ls (and ms) of quantum 
number S. and the orbital momenta add vectorially to form a re
sultant L£ (and m£) of quantum number ~; these resultants then add 
vectorially into overall resultants L J (and m), where J is an integer 
or a half-integer. (Addition of two L vectors may be viewed as a 
precession of these vectors about their sum, inthis case LJ .) Note 
that since gs = 2gz' then from Eq. (11-8a), ms/m£ = 2 Ls/L£ ' and LJ 
and m are not collinear. However, with ms anti parallel to Ls and 
with m£ antiparallel to L£, the sum m is then regarded as precessing 
around LJ • Consequently, the time average of the component of m 

Fig. 11-4. Russell-Saunders (or L-S) coupling of moments in a light 
atom. 
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normal to LJ disappears, and the net time average of m is its com
ponent D1J along L J • The magnitude of mJ is 

(11-16) 

where, as can be shown from Fig. 11-4, the atomic g factor, called 
Lande splitting factor, is 

3 S(S + 1) - ~ (~ + 1) 
g = - + -------- (11-17) 

2 2J(J+1) 

In a magnetic field, the z components of L J and D1J' L Jz and mJz' 

are quantized; thus, mJz = g9RfLB' where M = -J, -J + 1, ... , J 
(totally, 2J + 1 possible values). 

The values of S, ~, and J of an atom in its ground state are 
determined by Hund's rule: With decreasing m values, the maxi
mum number of spins in a subshell are aligned parallel without 
violating Pauli's exclusion principle, thus establishing the values 
of a and m of every electron in the subshell. Correspondingly, 
S = la, ~ = Lm, and J = If - S I if the subshell is less than half 
full, but if the subshell is more than half full, then J = ~ + S. 

If all the subshells of an atom are filled, then S = ~ = J = 0, and 
mJ = 0 (i.e., no spontaneous magnetization). We are, therefore, con
cerned only with atoms with at least one unfilled subshell. 

The value of J given by Hund's rule is also valid in a crystal, 
provided that the electrons in the unfilled subshell(s) of an atom are 
shielded from the electrostatic field produced by the surrounding 
atoms. This is the case of a rare-eartl). ion whose unfilled 4 f sub
shell lies deep inside the atom. On the other hand, the unfilled 3d 

subshell of an ion of the iron group (Elements No. 22 through 29) 
is not shielded, and as a result of the nonuniform electrostatic 
field generated by the surrounding ions in the crystal, L Jz averages 
to zero, ~ = 0, and the orbital moment is quenched, i.e., it is about 
zero. For most magnetic materials that contain elements of the 
iron group, the magnetic moment is thus essentially due to the 
spins only. (These results are further modified by concepts from 
band theory, which are not considered here.) 

11-2 Types of Magnetism 

The magnetic properties -of materials are classified into sev
eral types: dia-, para-, ferro-, antiferro-, and ferrimagnetism. 
Diamagnetism results from Lenz's law: an applied H induces M 



262 DIGITAL MAGNETIC LOGIC 

that opposes the applied H. Diamagnetism is induced in every 
material, but its effect on the net M of nondiamagnetic materials 
(to be discussed next) is negligible. 

Magnetism Due to Permanent Atomic Moments. (Kittel (1957); 
Smit and Wijn (1959); Chikazumi (1964); Morrish (1965).) The 
types of magnetism other than diamagnetism result from per
manent atomic magnetic moments. In the absence of ~ applied 
magnetic field, the net magnetization is affected by two opposing 
factors: (1) thermal agitation, which tends to reduce M by distri
buting the atomic magnetic moments randomly in all directions, 
and (2) a coupling between the atomic moments, which tends to 
align the moments parallel or antiparallel. If the coupling is weak, 
then the thermal agitation predominates, and the material is 
paramagnetic (e.g., iron-group ionic salts and the rare earths). 
If the coupling is strong, then two cases are distinguished: 
(a) The moments are aligned parallel by a direct exchange inter
action between electron spins of neighboring atoms whose orbital 
wave functions overlap; in this case the material is ferromagnetic 
(e.g., iron, cobalt, nickel, and some of their alloys). (b) The mo
ments are aligned antiparallel by an indirect exchange (super
exchange) interaction between the spins of two cations via a 
neighboring nonmagnetic anion, such as oxygen; in this case the 
material is respectively antiferromagnetic or ferrimagnetic de
pending on whether the antiparallel magnetic moments exactly 
compensate or not. Many oxides, such as MnO, are antiferro
magnetic, whereas ferrites, such as MnFe20 4, are ferrimagnetic. 

The various types of magnetism are shown schematically in 
Fig. 11-5. Ferromagnetic and ferrimagnetic materials possess a 
spontaneous moment, i.e., a net nonzero magnetic moment even 
without the application of an external magnetic field. The volume 
density of this spontaneous magnetic moment is called saturation 
magnetization, and is denoted by Ms' The value of Ms for ferrites 
is usually smaller than the Ms value for ferromagnetic metals, 
primarily because it results from the difference between aligned 
spins. On the other hand, for diamagnetic, paramagnetiC, and 
antiferromagnetic materials, M s = 0, and in order to obtain a non
zero magnetization, an external H field must be applied. These 
are related according to 

M = xM (11-18) 

where X is the susceptibility. The diamagnetic X is negative and its 
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magnitude is of the order of 10-6• The paramagnetic X is positive 
and its magnitude varies from about 10-6 to about 10-3 • 

flftlll!t!!r 
lttllt11ill\ 

(b) Ferromagnetism 

liliiitlii.li 
!lll!!l!l!l! 

Ie) Anti ferromagneti sm 

tttttttttrttttt 

!lllllil 
(d) Ferrimagnetism (x o 114) 

A 
sites 

Fig. 11·5. Schematic spin-order arrangements in 
different types of magnetism. 

Effects of Temperature. (Kittel (1957); Smit and Wijn (1959).) 
Due to thermal agitation, both Ms and X are affected by tem
perature T. Schematic plots of Ms and l/x vs. T are shown in 
Fig. 11-6. For ferromagnetic and most ferrimagnetic materials, 
Ms decreases with T, reaching zero at the Curie temperature Te , at 
which point the thermal energy is equal to the exchange energy. 
For T > T e' the thermal agitation predominates and the material 
becomes paramagnetic. 

Ferrites are discussed next because of their application in 
digital magnetic circuits. 
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Fig. 11-6. M sand l/X vs. temperature. 

Ferrites. (Gorter (1954); Smit and Wijn (1959); Chikazumi 
(1964); Morrish· (1965); Yafet and Kittel (1952).) The unit cell of 
a simple ferrite consists of eight Me++Fe~++04 molecules in a 
spinel structure. Here, Me++ stands for a divalent cation, such as 
Mn++, Fe++, Co++, Ni++, Cu++, Mg++, Zn++, Cd++, or the mixture 
Li~.5Fe~~5+. The octants of a spinel unit cell are shown in Fig. 11-7. 

(a) Division of a unit cell into 8 octants. 
Octants 1,4,6,and 7 - Type A 
Octants 2,3,5, and 8 - Type B 

Q 12 

Type A 
a 12 

Type B 

(b) Two neighboring octonts 

0 Oxygen ion 

® A - site ion 

0 B - site ion 

Fig. 11-7. Octants of a Spinel Unit Cell. (Oxygen ions are larger in proportion 
than is shown.) 
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The length of a unit-cell edge is denoted by a (typically, a ~ 8.3 A). 
The interstices occupied by the cations are classified into A sites 
and B sites: An A site is surrounded by four oxygen ions forming 
a tetrahedron; a B site is surrounded by six oxygen ions forming 
an octahedron. (To visualize the latter, examine the nearest oxygen 
ions in the corresponding octant and in three neighboring octants.) 
There are eight A sites and sixteen B sites per unit cell. 

The site occupation per molecule is expressed as 

(11-19) 

A sites B sites 

where 0 :s x :s 1. If x = 1, the spinel is "normal" (the A sites are 
occupied by Me ++ ions); if x = 0, the spinel is "inverse" (the A 
sites are occupied by Fe +++ ions). 

There are three types of negative superexchange (indirect ex
change) interaction among the cation spins, which tend to align 
them antiparallel: A-A between the spins of the A-type cations; B-B 
between the spins of the B-type cations; and A-B between the spins 
of the A-type and the B-type cations. The oxygen ion plays an im
portant role in each of these indirect exchange interactions; as a 
result, the interaction is strong if (a) the Me-O distances between 
an oxygen ion and the neighboring cations are short and (b) 
the angle Me-O-Me is large (maximum 180°). On the basis of 
these criteria, it can be shown that the A-B interaction is the 
strongest, the B-B interaction is intermediate, and the A-A inter
action is the weakest. It is impossible for neighboring spins of one 
type to be antiparallel both to each other and to a neighboring spin 
of the other type. Therefore, since the (negative) A-B interaction is 
the strongest, the A-type spins are aligned antiparallel to the B
type spins. As a result, spins of the A -type cations are forced to 
be aligned parallel to each other, thus forming the A sublattice of 
moment rnA. If the B-B interaction is not strong enough, then the 
spins of the B-type cations are also forced to be aligned parallel 
to each other, thus forming the B sublattice. However, if the A-B 
and B-B interactions are comparable in magnitude, then the parallel 
alignment of the B sub lattice is perturbed, and the B sublattice is 
split into two sublattices B' and B" whose moments are canted 
(though equal in magnitude). In any case, the net moment rnB is 
antiparallel to rnA and, since mB Ie mA' there is a nonzero net 
spontaneous magnetic moment whose magnitude is 1 mB - mA I. 
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Effects of Applied H. (Kittel (1957); Smit and Wijn (1959); 
Chikazumi (1964); Morrish (1965).) The relation M = xH (Eq. 
(11-1S» for dia-, para-, and antiferromagnetism is characteristic 
of a linear magnetic material. In contrast, a ferromagnetic or 
ferrimagnetic material is nonlinear, and is characterized by an 
M(H) hysteresis loop, as shown in Fig. 11-S(b). This loop results 
from the existence of small regions, called domains, which are 
discussed in the following section. Each domain is saturated along 
a certain preferred direction, which is different from its neighbor's. 
(The value of M s of each domain decreases with increasing tem
perature, as shown in Fig. 11-6.) Changing of M by a low applied H 
is usually achieved by domain-boundary displacements. However, 
application of a high H is required to saturate the entire specimen 
by rotating all the domain-magnetization vectors into alignment 
with II. As the applied H is then dropped to zero, these vectors 
rotate back into alignment with their nearest preferred directions, 
which are randomly distributed within an angle whose magnitude 
depends on the material. The resulting M is the maximum remanent 
magnetization, Mr' 

Mt Mt 

a H~ 

'-M r 
(a) (b) (e) 

Fig. 11·8. M (H) Loops of ferromagnetic and ferrimagnetic materials. 

Extending the MUD loop in Fig. 11-S(b), two extreme cases are 
distinguished. In Fig. 11-S(a), Mr ~ 0 and, in a limited region of H, 
the material is essentially a high-X linear material. In Fig. 11-S (c), 
Mr ~ M s' and the M (H) loop is "square." 

11-3 Domain Theory 

Introduction. (Kittel and Galt (1956).) A weak magnetic field, 
e.g., a fraction of an oersted, can change the magnetization of 
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certain ferromagnetic and ferrimagnetic materials to any value 
between the positive and negative remanent states Mr and -Mr (see 
Fig. 11-8). This change is not caused by overcoming the exchange 
interaction between neighboring spins; the magnetic field required 
to overcome spin alignment is extremely high (about 107 oersteds 
for iron; a dc field of such magnitude has yet to be produced in the 
laboratory). This change in magnetization is explained by domain 
theory. 

Magnetic Domains. (Kittel and Galt (1956); Chikazumi (1964); 
Morrish (1965); Carey and Isaac (1966).) As mentioned above, an 
unsaturated ferromagnetic or ferrimagnetic specimen is divided 
into small regions, called magnetic domains. Each domain is held 
essentially in saturation by exchange forces. 

The boundary between two neighboring domains is called a do
main wall. The magnetization M of the specimen is the vector sum 
of the magnetization vectors of the individual domains. An example 
of a demagnetized state (M = OJ of a single crystal is shown in 
Fig. 11-9(a). Upon application of an external field H (at a constant 
temperature), M may change in two ways: (1) by wall displacement 
that increases the volume of those domains whose magnetization 
vectors point closest to H and decreases the volume of those 
domains whose magnetization vectors point farthest from H, 
Fig. 11-9(b), and (2) by rotation of magnetization toward alignment 
with H, Fig. 11-9(c). For the same amount of change in the com
ponent of M along the applied H, rotation of magnetization usually 
requires a higher H than wall motion. 

Ht~ ~ .• Domain t j wall 

- Domain Ht~ 
(a) MoO (b) Wall motion (c) Rotation of M 

Fig. 11-9. Magnetic domains and changes of M by wall motion and 
rotation of magnetization. 

Domain structure follows a rule which is simple in principle: 
domains are formed in such a way that the total energy involved 
in the resulting structure is minimum. This energy has four com
ponents-exchange, magnetostatic, anisotropy, and magnetoelastic
which are described briefly below. 
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Exchange Energy. (Kittel and Galt (1956); Chikazumi (1964); 
Morrish (1965).) Exchange energy stems from the electrostatic 
interaction between adjacent orbiting electrons, which tends to 
align their spins parallel or antiparallel. Exchange energy per 
unit volume is 

= -2J 82 "cos 1"" 
e '-- 'J 

i > j 

(11-20) 

where J e is the exchange integral, 8 is the spin angular momentum 
(in units of h/(217», and I"ij is the angle between two neighboring 
spins. If 1" .. is small, then Eq. (11-20) reduces to 

'J 

eex = J e 82 L lOil + constant 
i>j 

(11-21) 

For ferromagnetism, Je > 0 and eex is minimal if "'ij = 0 (spins are 
parallel); for antiferromagnetism and ferrimagnetism, J e < 0 and 
eex is minimal if lOij = 17 (spins are antiparallel). Misalignment of 
neighboring spins is energetically unfavorable because it involves 
an increase in e ex. 

Magnetostatic Energy. (Kittel and Galt (1956); Chikazumi (1964); 
Morrish (1965).) Magnetostatic energy stems from the interaction 
between a magnetic moment m and the magnetic field " which tends 
to align m and" parallel. Per unit volume, if M and" are inde
pendent, the magnetostatic energy is 

e = -/I ". M mag '-0 (11-22) 

If M varies in space (as at the poles of a permanent magnet), 
then, satisfying Maxwell's equation v . B = 0, a demagnetizing field 
"dm is generated in opposition to M in order to maintain B continu
ous. Since B = fLo (M + H) and V. B = 0, then v." = -v. M 0= Pm' 

where Pm is defined as volume density of magnetic poles. Accord
ing to this model, these poles may be assumed to be the source of 
the demagnetizing field. Since "dm is generated by M itself, the 
corresponding emag is self energy and a factor of 1/2 must be 
included, that is, 

e mag , self (11-23) 
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Note that since Hdm and M tend to be directed oppositely, that is, 
Hdm . M < 0, emag , self is always positive. In other words, creation 
of magnetic poles is energetically unfavorable because it involves 
an increase in energy. 

Anisotropy Energy. (Kittel and Galt (1956): Chikazumi (1964): 
Morrish (1965).) Anisotropy energy results from the preference of 
the magnetic moment of each atom to be aligned along certain di
rections of the crystal lattice, which are called directions of easy 
magnetization. For a cubic crystal, such as the body-centered 
cubic crystal shown in Fig. 11-10, the expression for the anisotropy 
energy per unit volume, based on the crystal symmetry, is 

( 2 2 2 2 2 2) K 2 2 2 1 24 e an = KI al a2 + a 2 a 3 + a3 a l + 2 O!l a 2 a 3 + ... (1- ) 

where aI' a2 , and a3 are the direction cosines of M, and KI and K2 

are the anisotropy constants. The sum a1 2 a22 + a22 a 32 + a 32 al 2 

varies between a minimum value of zero (when M is aligned with a 
cubic edge) and a maximum value of 1/3 (when M is aligned with a 
cube diagonal). Since a deviation of M from an easy axis results in 
an increase in ean , then KI > 0 ifthe cubic edge is an easy direction, 
but if the cube diagonal is an easy direction, then KI < O. Thus, 
for example, KI > 0 for iron, but for nickel and ferrites, KI < 0 
(for cobalt ferrites, however, Kl > 0). 

e -edge. e.g. [100] 

I -lace diagonal. e.g. [110] 

c-cube diagonal,e.g. [111] 

Fig. 11-10. Body-centered cubic crystal. 

In the case of a uniaxial crystalline anisotropy (e.g., in cobalt, 
whose crystal is hexagonal, and in permalloy thin films), due to 
the symmetry, 

(11-25) 

where e is the angle between M and the easy direction. 
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Magnetoelastic Energy. (Kittel and Galt (1956); Chikazumi (1964); 
Morrish (1965).) Magnetoelastic (or magnetostriction) energy is the 
change in the crystal anisotropy energy caused by interaction be
tween the magnetization and a mechanical stress. If a uniaxial 
mechanical tension T m is applied, the volume density of this energy 
is given by the expression 

(11-26) 

where A is the coefficient of isotropic magnetostriction and () is 
the angle between T m and the saturation-magnetization vector. 
Conversely, if application of H field causes M of a specimen to 
change by rotation of magnetization, then the specimen will de
form spontaneously along M, becoming longer if A > 0 and shorter 
if A < O. (However, a. change in M due to 180°-wall displacement 
will cause no such deformation.) For iron, A > 0; for nickel, A < 0; 
for Permalloy (81 percent nickel and 19 percent iron), A ~ O. 

Types of Anisotropy and Anisotropy Field. (Smitand Wijn (1959); 
Chikazumi (1964).) The term anisotropy is used to designate the 
preference of the magnetization vector of a domain to be aligned 
along certain directions in order to minimize a given type of 
energy. We have already encountered the crystalline anisotropy. 
Another type of anisotropy is strain anisotropy, which is as
sociated with the magnetoelastic energy. 

A third type of anisotropy is the shape anisotropy. It amounts 
to the preference of M to align along the direction of minimum de
magnetizing field Hdm in order to minimize the self magneto static 
energy (Eq. (11-23». The value of Hdm depends on the shape of the 
specimen. For example, a prolate (needle-like) ellipsoid is char
acterized by a uniaxial shape anisotropy along the long axis where 
the demagnetizing field is minimal. Note that even powers of the 
sin () function describe uniaxial anisotropy of any kind: crystalline 
(Eq. (11-25», strain (Eq. (11-26», and shape anisotropy. 

Anisotropy energy e an is required to turn the domain-magnetiza
tion vector M (of magnitude M s) away from its preferred direction 
by some angle (). The stiffness that tends to turn M back toward 
the preferred direction may be viewed as giving rise to an an
isotropy field Hk directed along the preferred direction and acting 
on M. Thus ean is equivalent to -fLo Hk . M (Eq. (11-22», or ean = 

- fLo H k M s cos (); hence, for a small (), that is, cos () "" I, we obtain 
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(11-27) 

It can be shown from Eqs. (11-24) and (11-25) that for both cube
edge anisotropy and uniaxial anistropy, e an '" K1e2 if e is small, 
and hence 

(11-27a) 

For a preferred direction along a cube diagonal (such as for nickel 
or ferrites), it can be shown that e an '" (K/3) - (2K/3)e2 if 8 is 
small, and hence 

(1l-27b) 

Domain Walls. (Kittel and Galt (1956); Chikazumi (1964); Mor
rish (1965); Carey and Isaac (1966).) A domain wall is the transi
tion layer in which the spin direction changes gradually between 
two neighboring domains. In bulk materials and films that are not 
too thin (for example, 80-20 Ni-Fe film of thickness larger than 

o 
about 1000 A), the spins rotate in the plane of the wall in such a 
way that no volume poles are created in the wall. This type of 
wall is called a Bloch wall. A 180 0 Bloch wall is shown in Fig. 
11-11. The width of a 180 0 wall is of the order of 200 atomic 
layers, Le., lattice spacings. 

Front view End view 

Fig.ll·ll. A 180° Bloch wall. 

The energy Ew involved in formation of a domain wall is pro
portional to the wall area Aw' that is, Ew = awAw' where aw is the 
energy per unit area of wall. The components of Bloch-wall energy 
are: (1) exchange energy, because neighboring spins across the 
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wall are tilted relative to each other; (2) anisotropy energy, be
cause the spins in the wall volume are not directed along the easy 
axes; and (3) magneto static energy, due to magnetic poles at the 
surface of the specimen. The last component is generally negli
gible in bulk materials, but not in thin films. In fact, in very thin 

o 
films, e.g., of less than ",300 A thickness for 80%-20% Ni-Fe film, 
the surface poles force the spins to rotate essentially in the plane 
of the film, thus creating positive and negative poles within the 
film. This type of wall is called a Neel wall. 

Domain Formation. (Kittel and Galt (1956); Chikazumi (1964); 
Morrish (1965); Carey and Isaac (1966).) Domain formation, which 
is based on the principle of minimization of the total energy E of a 
specimen of volume V, is illustrated in Fig. 11-12 by hypothetically 
adding the various energy components one at a time. Assuming that 
J e > 0, all spins must be parallel in (a) in order to minimize eex 

(Eq. (11-20». In (b), e due to the demagnetizing field (Eq. 
mag 

(11-23» is added, and the spins line head-to-toe in order to re-
duce the magnetic poles. In (c), cube-edge crystalline anisotropy 
is added, thus forcing the magnetic moments to line along the easy 
directions. This results in the formation of four domains that are 
separated by one 180 0 wall and four 90 0 walls. The top and bottom 
domains are called domains of closure. In (d), a uniaxial strain 
anistropy is induced by a mechanical stress, and more domains 
are formed in order to decrease the volume of the domains of 
closure where M is not aligned along a preferred direction. The 
mechanical stress may be applied externally or may be developed 
internally due to the tendency of each closure domain to deform 
along the direction of its magnetization. The same domain formation 
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Fig. 1I·l2. Domain formation to minimize the total energy. 
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in (d) may also result in the absence of a mechanical stress if 
the material is characterized by a uniaxial crystalline anisotropy, 
e.g., cobalt. It would seem that the subdivision into domains in 
(d) should continue indefinitely in order to decrease the total 
volume V of the closure domains to zero. However, this sub
division increases the total area Aw of the 180 0 domain walls. 
A balance is reached when the total energy E = Ve + Awuw is 
minimum, where e is the total volume energy density of the closure 
domain. 

t Easy I Easy 

(0) Large E mag (b) Small Emag 

Fig. 11·13. Nonmagnetic inclusion in a domain. 

Imagine now a cubic imperfection, as shown in Fig. 11-13. Neel 
calculated the magnetostatic energy in (a) and found it to be much 
larger than the total energy associated with the domains of closure 
in (b). He thus predicted the formation of spiky domains of clo
sure, such as those shown in (b), around nonmagnetic inclusions. 
Such "Neel spikes" were observed experimentally later. In the 
upper domain of closure in Fig. 11-13(b), the angle between each 
wall and the incoming M is larger than the angle between the wall 
and the outgoing M; as a result, positive poles are generated. The 
converse is true for the lower domain of closure. The resulting 
angle e is such that the total energy is minimum. 

Observation of Domain Patterns. (Kittel and Galt (1956); Chika
zumi (1964); Carey and Isaac (1966).) The most direct proof for 
the existence of magnetic domains is the experimental observa
tion of such domains. There are several techniques for such an 
observation. The most common one is the magnetic powder tech
nique, known also as the Bitter technique. A drop of colloidal sus
pension of Fe 30 4 powder of small particle size (about 100 to 
1000 A) is placed on a carefully polished surface and flattened by a 
microscope cover glass. The particles move randomly (Brownian 
motion) in the suspension until they are trapped by the inhomogeneous 
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magnetic field near the wall. The particle size is smaller than the 
wavelength of visible light. However, a magnetic dipole-dipole 
interaction between these particles forms visible particle chains 
along H above the domain wall. Because of strains and nonpreferred 
directions at the surface of a specimen, the observed domain pat
terns are usually more complex than they actually are inside the 
specimen. Simple domain patterns are observed only after special 
specimen preparation. 

11-4 Mechanisms of Magnetization Switching 

Changing the Magnetization. (Stoner and Rhodes (1949); Chika
zumi (1964).) So far, we have discussed the static states of mag
netization and domain patterns. We now turn to the mechanisms 
by which the magnetization is changed. Such a process is commonly 
referred to as magnetization switching. 

Consider a specimen of volume V which contains n domains. Its 
net magnetization vector with reference to a specified direction is 

M (11-28) 

where U j and Mj are the volume and the magnetization vector of the 
jth domain. The magnitude of M is 

1 n 
M = - L: U oM 0 cos f{J 0 

V j=l J J J 
(11-28a) 

where f{Jj is the angle betweenMj andM. Differentiating Eq. (11-28a) 
with respect to time, we obtain 

dM . 
- '" M 
dt 

= _ L: U 0 cos 'P 0 _J + M 0 cos 'P 0 _J - U 0 M 0 sin cp 0 _J 
1 n ( dM 0 du 0 d'P 0) 
V j'; 1 J J dt J J dt J J J dt 

(11-29) 

The three terms in Eq. (11-29) correspond to the three mecha
nisms that may be responsible for a change in M: 

1. A change in the magnitude of Mj of a domain (due to tem
perature effect on Ms ' for example) 
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2. A change in domain volume (i.e., by domain-wall motion) 
3. Rotation of magnetization of a domain 

Assuming that the environmental conditions (temperature, etc.) 
are fixed, M may be generated by either domain-wall motion or ro
tation of magnetization, or both. However, since wall motion in
volves rotation of spins within the wall, a domain-wall motion may 
be viewed as a sequential rotation of magnetization. Rotation of M 
is, therefore, common to both mechanisms, and will be treated first. 

Rotation oj Magnetization. (Chikazumi (1964); Morrish (1965).) 
Combining Eqs. (11-8) and (11-9) and dividing by the volume, we 
obtain 

M = -yM x H (11-30) 

where II is the total field. Since this relation describes an endless 
precession of M around II, that is, with a constant e in Fig. 11-2, a 
rotation of M into alignment with H would be impossible unless 
another term that causes e to change with time is added to -yM x II. 
Such a term stems from the dissipation of energy due to viscous 
damping associated with the change in M. Two phenomenological 

forms have been proposed for this term: _(A/Ms2)(M x M x Hl by 

Landau-Lifshitz, and (aIM)(M x M) by Gilbert, where Ms = (M. M)1I2 is 
the saturation magnetization, and where ,.\ and a are viscous
damping constants. It can be shown that the two dissipative terms 
are equivalent if 

(11-31) 

and a 2 «1. The resulting differential equations are the Landau
Lifshitz equation 

,.\ 
-yM x H - - (M x M x Hl 

M 2 
s 

and the Gilbert equation 

M = -yM x H + ~ (M x M) 
Ms 

(11-32) 

(11-33) 

By using spherical coordinates Ms' e, and ~, it can be shown 
that . either equation becomes a set of two differential equations 
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1 . 8 -- sm (11-34) 
T 

and 

.p 0 (11-35) 

where 

Ms 
(Landau-Lifshitz) 

Ali (11-36) 
T 

1 + a2 
(Gilbert) 

ayH 

and 

r (Landau-Lifshitz) 

0= ~ (Gilbert) 
(11-37) 

1 + a2 

If H is constant in time, then the solution of Eqs. (11-34) and (11-35) 
yields 

(11-38) 

and 

(11-39) 

where 80 and <Po are the initial values of f) and <P, respectively. 
Initially, M is aligned along the internal field Hi = Hk + Hdm • 

where Hk is the total anisotropy field and Hdm is the demagnetizing 
field. Upon application of an external field Hap. M spirals into 
alignment with the total field H = Hi + Hap' as shown in Fig. 11-14. 
The internal field Hi may vary during the transient time, in which 
case Eqs. (11-38) and (11-39) are invalid and the solution of MW is 
very complex. 

A distinction is made between elastic and inelastic rotation of 
magnetization. The rotation is elastic if 80 is smaller than the angle 
between H and any preferred direction other than the original one 
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because, upon removal of Hap' Hi returns M back to its original 
orientation. (In ferrites, whose easy axes are along the cube di
agonals, the maximum value that eo may have while satisfying this 
condition is 54.73°.) On the other hand, if M falls into a new pre
ferred direction, then the rotation of magnetization is inelastic, as 
is the case in Fig. 11-14. 

H 

C_..l-:':;::;:J;?~ Initio I M 

Fig. 11-14. Spiraling during rotation of 
magnetization. 

The Landau-Lifshitz and Gilbert equations are equivalent if 
(}'2 « I (cf. Eqs. (11-36) and (11-37». In the limit, as (}' -> 0 (that is, 
no damping), both equations predict that T -> 00 (that is, infinite 
switching time) because of endless precession of M. On the other 
hand, for (}' -> 00 (that is, infinite damping), T -> 0 according to the 
Landau-Lifshitz equation, whereas T -> 00 according to the Gilbert 
equation. Since M cannot actually move if (}' -> 00, the Landau
Lifshitz equation is invalid for this condition. From the Gilbert 
expression for T in Eq. (11-36), T is found to be minimum for (}' = 1; 
hence, Tmin = 2/(yH). 

Domain-Wall Displacements. (Stoner and Rhodes (1949); Tebble 
(1955); Chikazumi (1964); Knowles (1960).) Consider a 180 0 Bloch 
wall of area Aw in a ferromagnetic or ferrimagnetic crystallite. 
Assume that the wall lies in the x-y plane and separates two do
mains whose saturation-magnetization vectors are along the +x 

and -x directions. Suppose that, under the influence of applied field 
Hap' the wall moves slowly along the z direction toward a nonmag
netic inclusion. Assuming that the wall remains rigidly planar, its 
interaction with the inclusion is illustrated in Fig. 11-15. In (a), 
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there is no interaction as yet. In (b), the wall touches the spiky 
domains of closure, and there is a sudden change to the (c) con
figuration because in (c) the walls bisect the angles between the 
magnetization vectors and, as a result, the magnetic poles in (b) 
are eliminated and the energy is reduced. The energy is further 
reduced by decreasing the wall area and volume of the closure 
domains, (d), until the state of minimum energy in (e) is reached. 
As the wall departs from (e), the energy increases as domains of 
closure stretch out, (f), with essentially no poles. However, as the 
length of the closure domain increases from (g) to (h), it is ener
getically more favorable for the closure domains to narrow down 
in order to reduce their volume and their wall area, despite the 
development of poles. As the closure domains become narrow 
spikes, (h), the wall breaks free and the spiky domains snap back 
to an optimal shape. (i). 

. 

t~1 ~ ttl + 
+) + + 

1 __ = _.~ .j 

Hop) 

Z 
(0) (b) (c) (d) (e) 

t ... , I 

( f) (g) 

Fig. 11·15. Interaction between a 1800 wall and a nonmagnetic inclusion. 

The example in Fig. 11-15 illustrates how the total energy E 
may vary with the wall position z as a result of inhomogeneities 
in the material. In the absence of an applied field Hap' the wall 
settles where E is minimum, i.e •• where dE/dz = 0 and d2E/dz2 > o. 
With Hap applied along the ±x axis, a force 2/l0MsHapAw moves the 
wall along the ±z axis in a direction to expand the domain whose 
magnetization vector points along Hap' This motion is opposed by a 
restoring (or stiffness) force dE/dz • 
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It is convenient to examine the net effect on the wall motion 
by comparing the applied H with C(dE/dz) as a function of z, where 
c = 1/(2110 M sAw)' Schematic plots of C(dE/dz) vs. z are shown in 
Fig. 11-16 for two typical walls (in the same crystallite) whose 
positions at Points Rand R', respectively, correspond to the 
remanent state M = -Mr of the crystallite. By definition, as Hap is 
applied, a wall is displaced elastically if, upon removal of Hap' the 
restoring field c(dE/dz) returns the wall to its original position; 
but if a new position is reached, the wall displacement is inelastic. 

v' 
,,----------..-----

H t h I----f" 

, , , , , , 

W 
0 

z 

s 

(0 ) ( b) 

Fig. 11-16. Schematic plots of energy gradient vs. wall position and elastic (dotted line) and 
inelastic (dashed line) displacements of two domain walls_ (a) Elastic and minor inelastic wall 
displacements. (b) Elastic and major inelastic wall displacements. 

Suppose that the wall of Fig. 11-16(a) is initially situated at 
Point R. The threshold field imposed by the first energy hill is 
marked by Hth • Three types of elastic wall displacement are dis
tinguished: 

1. Displacement due to a negative Hap pulse; for example, 
Displacement R-S 

2. Displacement due to a positive Hap pulse, provided that 
Hap < H th ; for example, Displacement R-T 

3. Displacement due to a positive Hap pulse whose amplitude 
exceeds Hth , provided that the pulse duration is short 
enough to prevent z from reaching the position of maximum 
energy Zc at Point C; for example, Displacement R-U 
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If Hap> Hth and the pulse duration is not as short as in Case 3 
above, the wall overcomes its energy barrier, andits displacement 
is inelastic. (This is the source of the Barkhausen noise.) It is use
ful to distinguish between minor and major wall displacements. A 
minor inelastic wall displacement is relatively short or local; 
hence, the wall area is essentially constant during the switChing 
time. On the other hand, a wall experiencing a major inelastic 
displacement travels a relatively long distance and thus may 
collide with other walls; its area will vary during the switching 
time (usually increasing in the beginning and decreasing in the 
end). A minor inelastic wall displacement results from the ob
struction of the wall motion by an energy hill whose C<dE/dz)max > Hap 
in the vicinity of the initial wall position. For example, Displace
ment R-V in Fig. 11-16(a) is composed of a potentially elastic dis
placement followed by a minor inelastic displacement. (In order to 
avoid ambiguity, we might assume that the displacement is elastic 
if z < Zc and inelastic if z ::: zc' However, because of the effect of 
the wall mass, the boundary value of z is actually somewhat smaller 
than zo>. Upon termination of the Hap pulse, the wall pulls back 
(elastically) to Point W, and the net /}.z is the difference between 
the z values at Points Wand R. In contrast, a major inelastic wall 
displacement is long because no obstructing energy hill is en
countered by the wall in the vicinity of its original position. For 
example, the larger of the positive Hap pulses of Fig. 11-16(a) may 
force another wall in the same specimen to experience a major 
inelastic displacement, such as Displacement R'- V' in Fig. 11-16(b). 

A stable wall position can be achieved only in the range where 
d2E/dz2 > O. Thus, the energy gradient in Fig. 11-16(b) is meta
stable, i.e., it includes a number of z regions where this condi
tion is satisfied. For Hap = 0, the wall may settle at the quiescent 
point, where dE/dz = O. in any of these regions. 

To be exact, a distinction should be made between elasticity 
and reversibility of a magnetic process, i.e., of wall motion or ro
tation of magnetization. Reversibility isa thermodynamic prop
erty: a magnetic process is reversible if it is performed quasi
statically (i.e., infinitely slowly) with no energy dissipation; other
wise, it is irreversible. The area enclosed between the transition 
path and the plot of c (dE/ dz) is proportional to the dissipated energy. 
Thus, all the elastic and inelastic wall displacements shown in 
Fig. 11-16 (for which the rise time of the Hap pulse is short com
pared to the switching time) are irreversible. Only if Hap were 
changed quasi-statically would displacements R-S and R-T be 
reversible, because only then would they follow the curve C<dE/dz) 
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(which thermodynamically represents the equation of states of 
equilibrium at a constant temperature), and would thus involve 
no energy dissipation. But if Hap is increased very slightly beyond 
Hth , the wall breaks free and moves irreversibly to a position be
tween Points V and W, where C<dE/dz) = Hth• (Note that reversible 
tracking of Hap along c(dE/dz) in the region where d2E/dz2 < 0 is 
unrealizable because wall positioning in this region is unstable.) 

If the magnetization M of a crystallite changes by the motion of 
a single wall, then ~M is proportional to ~z. In Fig. 11-17, the 
major static M (H) curve of such a crystallite is obtained by essen
tially reversible and irreversible wall displacements as Hap is 
changed quasi-statically in the negative and then in the positive 
directions. The two extreme stable positions ofthe wall, designated 
by R(-l and R(+l, correspond to the remanent values of magnetiza
tion -Mr and +Mr' respectively. For M between -Mr and Mr' Hth may be 
smaller than Hth near M = -Mr' An example is shown in Fig. 11-17, 
where a minor static M(H) loop is traversed. Furthermore, if the 
peaks of ddE/dz) near R(-l are higher than the following ones in an 
appreciably wide z region, then the major M (H) curve is said to be 
re -entrant. 

Major static M(H) curve 

t + 

Fig. 11·17. Schematic construction of static M (H) major 
curve and minor loop due to reversible and irreversible 
displacements of a single domain wall. 

So far we have examined the displacements of a 180 0 domain 
wall in a single crystallite. Consider now a polycrystalline 
"square-Iooptl specimen, e.g., a ferrite core used in memory or 
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logic circuits. The specimen contains many 180 0 walls having 
C(dE/dz) vs. z plots of different shapes whose features (including 
the direction of z) vary randomly. Upon application of a step-H 
field Hap' a number n of domain walls will be displaced inelastically. 
We assume that these displacements are classified into two groups: 
np minor displacements (as in Fig. 11-16(a» and n(1 - p) major 
displacements (as in Fig. 11-16(b», where p is the portion of the 
inelastic displacements that are minor (0 ::: p ::: 1). The distribution 
of Hth (for both types of displacement) may be described by a 
probability-density function f<Hth) with a mean value in the neigh
borhood of the threshold Hdmin of the major static M(H) curve, as 
shown in Fig. 11-18. On the basis of this description, n increases I Hap 

with Hap because n is proportional to f<Hth)dHth• Assuming 
o . 

that major inelastic wall displacements can occur only if Hap ,:(, H d mm, 

t 
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Fig. 11-18. Relations among a static M(H) curve for 
positive H, a probability-density function of H th , and 
the portions of minor and major wall displacements 
in a poly crystalline square-loop specimen. 



ELEMENTARY PHYSICS OF MAGNETISM 283 

then p is essentially unity in the region 0 < H ~ H dffiin , but as Hap . ap 
increases beyond H d ffim, p decreases gradually, as shown sche-
matically in Fig. 11-18. The length of an irreversible wall dis
placement is also a random variable with a similar probability
density function. Due to these random distribution functions, the 
static M (H) curve of the specimen may appear to be smooth, as 
shown in Fig. 11-18, but actually consists of a large number of 
relatively small Barkhausen jumps. In addition to elastic wall 
displacements and elastic rotation of magnetization, this curve 
results from minor inelastic wall displacements in the region 
o < Hap ~ Hdffiin and from major and minor inelastic wall displace
ments in the region H d mm ~ Hap. The contribution of the major 
inelastic wall displacements to the total L'lM for Hap> Hdffim is 
predominant. The applied magnetic field He at which M = 0 corre
sponds to L'lM = M r' and is called the coercive force. 

Elastic and inelastic changes in M due to a trapezoidal applied 
H pulse of amplitude Hap and duration T are superimposed on a 
static M (H) loop of a polycrystalline square-loop core in Fig. 11-19. 
Let us examine these changes in the light of the wall displacement 
in Fig. 11-16: Transition A-B is elastic regardless of the magni
tudes of Hap and T. Transition C-D is elastic regardless of T, pro
vided that Hap is smaller than Hth of any of the walls corresponding 
to Point C. Transition A-E is elastic (cf. Newhouse (1957» even 
though Hap is much larger than Hth at Point A, provided T is so short 
that Hap is removed before any wall reaches the peak of its first 

1M 

Long 
Hap pulse 

Short Hap pulse 

B A '-M r 
E 

Fig. 11-19. Elastic and inelastic changes in magnetization of a polycrystalline 
square-loop core. 
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energy hill. On the other hand, Transition E-F is inelastic because, 
for most of the walls, Hap> Hth and T is long enough. Transition 
F-G for a long fall time of Hap is inelastic, but for Transition F-G' , 

elastic fallback predominates over any inelastic changes that may 
occur during the short fall time of Hap. (Referring to Fig. 11-16(b), 
domains move more slowly where c(dE/dz) > 0 than where C(dE/dz) < 0, 
so that, statistically. more domains are expected to fall back (elas
tically) than to fall forward (inelastically) when Hap is suddenly re
moved.) Finally, Transitions G-J and G'-( are both elastic. 

11-5 Summary 

Magnetic flux density B = Ilo <H + M) results from two components: 
magnetic field H due to true currents, and magnetization M due to 
orbital and spin moments of electrons in a small volume t.\v. Dif
ferent electrons have different quantum numbers n, l, m, andcr whose 
values may be n = 1,2, 3, ... ; l = 0, 1, ... , n - 1; m = -l, -l + 1, ... , l; 
and a = ±l/2. With the z components (along H) of the orbital and 
spin angular momenta of an electron quantized, the corresponding 
quantized magnetic moments may have the values mz,z = lllllB and 
ms,z = ±IlB' respectively, where IlB is the Bohr magneton. For an 
atom in its ground state, the electron spin and orbital moments add 
vectorially to resultants of quantum numbers S = Ia and 2. = ~m, 
which then add vectorially to a resultant of quantum number 
J = 12. - S I (or 2. + S) for a subshelliess (or more) than half full. 
The quantized component of the total m along H is m J z = g1m1l B' where 
1m = -J, -J + 1, ... , J and g = (3/2)+ [S(S + 1) - 2.(2. + 1)]/[2J(J + 1)]. In 
most magnetic materials that contain iron-group elements, as a 
result of the electrostatic crystal field, the orbital moment may 
be "quenched," that is, f '" 0, and m is essentially the net spin 
moment only. 

The net magnetization M of materials having nonzero atomic 
magnetic moments is affected by thermal disorder (which tends 
to cause paramagnetism) and direct or indirect exchange inter
actions, which tend to align neighboring spins parallel (causing 
ferromagnetism) or antiparallel (causing antiferromagnetism if 
spin moments exactly cancel or ferrimagnetism otherwise). Be
low the Curie temperature T c' a ferromagnetic or ferrimagnetic 
material possesses a nonzero saturation magnetization M s' but 
above Tc it becomes paramagnetic and Ms = O. The cations in a 
simple ferrite, whose unit cell consists of eight Me++Fe~++04 
molecules in a spinel structure, are divided into A and B types 
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(each comprising one or two sublattices) of oppositely aligned 
spins due to a predominant negative A-8 superexchange interaction, 
but since mB F mA' the net Ms = 1mB - mA I is nonzero. The M(H) 

characteristics of magnetic materials vary between two extremes, 
a linear M(H), M = xH, for which Mr ~ 0, and a square-loop M(H), for 
which Mr = M s' where Mr is the maximum remanent M. 

A partially demagnetized ferromagnetic (or ferrimagnetic) 
specimen is divided into magnetic domains, each saturated along 
a certain direction by exchange (or superexchange) interaction. A 
domain structure corresponds to the minimum sum of four ener
gies that are involved in creating the domains and the walls be
tween them: exchange, magneto static , anisotropy, and magneto
elastic energies. 

An applied magnetic field may change the magnetization of a 
specimen, elastically or inelastically, by rotation of magnetization 
or domain-wall motion or both. Rotation of magnetization with low 
viscous damping may be described by the phenomenological Landau
Lifshitz or Gilbert equation, although for high viscous damping, 
the latter should be used. A schematic plot of energy gradient 
versus wall position may be used to illustrate the difference be
tween elastic and inelastic (and between reversible and irreversible) 
wall displacements. A distinction is made between minor and 
major inelastic wall displacements, which involve constant and 
varying wall areas, respectively. A random variation of such wall 
displacements in a polycrystalline specimen results in relatively 
smooth major and minor static M (H) loops. 
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metallic cores if the effects of eddy currents are included. In 
Sec. 12-1, relations are established for magnetomotiveforce (mmf) 
and magnetic flux in single-leg and multileg cores. Experiments 
for studying the switching properties of a core are presented in 
Sec. 12-2. Models for static properties are proposed in Sec. 12-3. 
Elastic flux-switching models are developed in Sec. 12-4; it is 
shown that two separate components of elastic switching may be 
identified and modeled. Models for inelastic flux-switching, which 
usually accounts for most of the flux switching, are developed in 
Sec. 12-5; we similarly identify and model two different com
ponents of inelastic switching. These models are applied in Sec. 
12-6 to computation on a digital computer of flux switching in 
magnetic circuits, and the results are compared with experimental 
data. 

12-1 MMF and Flux in Magnetic Cores 

The basic properties of magnetic materials are described in 
Chap. 11 in terms of the magnetization M and the magnetic field H. 
The magnitudes of M and H, which are point quantities, cannot be 
measured directly in magnetic circuits. Instead, their values may 
be deduced under simple geometrical conditions from measure
ments of certain bulk properties of a magnetic core. 

Magnetic Field and Magnetomotive Force. Consider a closed
path magnetic core of uniform material and uniform cross section, 
as shown in Fig. 12-1. Currents it' i2 • and i3 , which are applied to 

Fig. 12·1. Application of magneto· 
motive force to a closed-path mag
netic core. 
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three windings of N1, N2, and N3 turns, respectively, generate a 
magnetic field H along the core. By definition, the mmf (magneto
motive force) along a path 1 is 

F=jH'dl (12-1) 

Following Ampere's circuital law, the line integral of H . dl over a 
closed path is equal to the ampere-turns of the current linkage en
closed, that is 

(12-2) 

For reference, we assume that Nkik is positive ifik inside the 
closed path comes out of the paper (generating H in the counter
clockwise direction by the right-hand rule) and vice versa. Thus, 
the mmf acting on the core of Fig. 12-1, for example, is 

F = Nl i1 - N2 i2 + N3 i3 
(12-3) 

If the component of H along the path of integration is constant, 
then Eq. (12-2) reduces to 

(12-4) 

where l also designates the length of Path I. A constant circum
ferential H along the core of Fig. 12-1 may be realized by using a 
large number of turns uniformly distributed along the core. With a 
toroidal core, a constant circumferential H may also be achieved 
with a single-turn central conductor. (The current returns via 
a remote wire or via a concentric tube outside the core.) In most 
practical magnetic circuits, neither of these winding conditions is 
met; nevertheless, Eq. (12-4) is still applicable because the vari
ations in the circumferential H along the core are negligible. 
Hammond (1955) explained this phenomenon by considering a coil 
of N turns that carries a step current I, as shown in Fig. 12-2(a). 
The magnetic field H A at Point A (the middle of the coil) is much 
larger tha!l the magnetic field HB at Point B (far from the coil). 
Suppose that the same coil is now wrapped around a switchable 
ferromagnetic (or ferrimagnetic) core, as shown in Fig. 12-2(b). 
At the instant that a step I is applied, we have HA » HB as in 
Fig. 12-2(a), and, assuming that HA and HB are in a direction to 
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switch M· inelastically, then M at Point A changes much more than M 
at Point B. This results in a large build-up of magnetic poles 
(\7 • M) throughout the core and especially on the core surface, as 
shown in Fig. 12-2(b). These poles generate a magnetic field that 
subtracts from the H due to NI at Point A and adds to the H due to 
NI at Point B. As a result, the initial difference between the mag
nitudes of M at Points A and B is reduced, and the pole density is 
decreased until H A ~ H B (H A is finally only slightly larger than H B)' 

In other words, the presence of magnetic poles in a switchable 
core tends to equalize H along the core, and therefore Eq. (12-4) 
is applicable to inelastic switching of practical (not too thin) cores 
even if the winding is not applied symmetrically. 

Fig. 12-2. Effect of magnetic poles on eqUalization of H (Hammond, 
1955). 

Magnetic Flux. The magnetic flux through a surface of area A 
is, by definition, 

¢ = [B. dA (12-5) 

where B = !La (M + Hl (Eq. (11-5». If the normal component of the 
flux density, Bn , is constant over A, then Eq. (12 -5) reduces to 

(12-6) 

Multileg Magnetic Core. Equations (12-1) through (12-6) are 
applicable to multileg cores as well as to single-leg cores. As 
expressed by Eq. (5-4), and also following Eqs. (12-1) and (12-2), 
for every closed magnetic path composed of E legs and linked by m 

windings, we have 

(12-7) 
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where F j is the mmf along the jth leg. Neglecting air flux, follow

ing Eq. (12-5) and Maxwell's equation i B . dA = 0, then in every 

core junction of n legs 

(12-8) 

where ¢j is the flux of the jth leg, and hence also 

n 

:E¢j = 0 
j=1 

(12-9) 

Consider, for example, the saturable core and its mmf drives 
in Fig. 12-3. The core consists of three legs, 1,2, and 3, and two 
junctions, A and B. Assume that the positive direction of F in each 
leg is the same as that shown for ¢, that is, counterclockwise 
around the large aperture. Applying Eqs. (12-7) and (12-9) to this 
case, we obtain 

(12-10) 

(12-11) 

and 

(12-12) 

Note that there are two independent loop (path) equations and one 
independent node (junction) equation. These three equations include 
six unknowns, Le., the ¢ and F of each of the three legs. The other 

Fig. 12·3. Current drives and flux closure in a 
three-leg core. 
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three equations that are necessary to solve for these six unknowns 
are based on the functional relationship 

(12-13) 

for each leg (j = 1, 2, 3). Derivation of the functional form of this 
relationship, which describes the magnetic flux-switching proper
ties of a leg, is the main topic of this chapter. 

In general, if a core has ne legs and nj junctions, there are 
(ne - nj + 1) independent loop equations and (n j - 1) independent 
node equations (Guilleman (1953», i.e., a total of ne independent 
network equations. (For a single-leg core, such as a toroid, 
ne = nj = 1 since the leg closes on itself.) These ne equations are 
supplemented by additional ne flux-switching equations, each of the 
form of Eq. (12-13), providing a total of 2ne equations for the solu
tion of the 2 ne unknowns, i.e., the ¢ and F' of each of the ne legs. 

The magnetic properties of each leg in a multileg core are 
similar to the properties of a si)lgle-leg core of the same mate
rial and of the same cross section and length. However, the 
measurement of these properties in a multileg core is difficult 
because the F' and ¢ of each leg depend on the F' and ¢ of all the 
other legs (as is illustrated in the example above). Consequently, 
whenever possible, these properties are measured on a single-leg 
core with the simplest geometry, namely, a toroid. 

12-2 Flux-Switching Experiments 

Flux-switching models to be developed here are based on the 
results of fundamental flux-switching experiments performed on a 
thin toroidal ferrite core. Two arrangements of the core and the 
drive and sense windings are shown in Fig. 12-4. The arrangement 
in Fig. 12-4(a) may be used if the rise time of the test mmf (which 
sets the core or drives it further into saturation) is not too short 
(e.g., about 20 nanoseconds or longer). However, for shorter rise 
times, an arrangement such as in Fig. 12-4(b) should be used 
in order to minimize the ringing and distortion due to the capaci
tance of the sense and drive windings. 

In Fig. 12-4(a), the core is driven by two mmf drives: (1) A 
clear mmf F' CL' generated by a current pulse of amplitude ICL 

through a distributed winding of NCL turns, which switches the core 
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to negative saturation, and (2) a test mmf F , generated by a current 
pulse of amplitude I through a single-turn, central-conductor wind
ing, which switches the core to any level between saturation flux 
levels -cPs and +cPs• The resulting ¢(t) is sensed by a sense wind
ing of Nv turns, and the voltage Nv¢(t) is applied to an oscilloscope, 
or to an integrator if we wish to measure the change in flux, 
tlcP • 

Test 
winding 

k 
_____ To oscilloscope 
~ or 

From 
mercury-relay 
pulser 

I-

\. Li~~measurement 
'\ Instrument 

Sense winding 
Sense winding , 

(1Icm long. Awg,no.48wire) 

(a) For medium-rise-time test pulses (b) For short -rise-time test pulses 

Fig. 12·4. A thin core and windings in flux·switching experiments (Nitzan et ai" 1966), 

The arrangement of Fig. 12-4(b) is similar to that of Fig. 12-4(a) 
except for the following: First, both the clear and test moo are 
generated by applying currents of opposite polarities to a single
turn, central-conductor winding. Second, ¢ is sensed by a single
turn winding made of as short and fine a wire as practical in order 
to minimize its capacitance. Third, the short-rise-time clear and 
test current pulses are generated by discharging a coaxial trans
mission line into a matched termination via a mercury-relay 
switch. We shall refer to this arrangement later in this chapter 
when dealing with fast-rising drive pulses. 

Typical waveforms of trapezoidal clear and test pulses used in 
Fig. 12-4(a) are shown in Fig. 12-5(a). The clear pulse has a 
duration T CLf and the test pulse has a 10-percent to 90-percent 
rise time T r and a duration T. The resulting ¢ (t) waveforms are 
shown in Fig. 12-5(b). The corresponding variations of cP versus F 
and ¢ versus cP are shown in Fig. 12-5(c) and (d), respectively. 

In order to assure a reproducible remanent state of cP = -cPr' 
the amplitude NCL1CL and the duration TCL must be large enough 
to switch the core far into negative saturation. In some cases it is 
desirable to switch the core first into positive saturation, before 
switching it into negative saturation, in order to wipe out possible 
360 0 Bloch walls (see Hewitt and Overn (1963)). 
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(o)Fvs.t 

i, (t)o¢,,(t)+¢,w(t) ¢i(t) 

!¢ 

( ~t"~ 

¢ld(t) [deCaYing minor ¢l (tl] 

T 
¢lm(t)[mOln ¢L(tl] 

(b) ¢ vs. t 

tF 

Static ¢(F) 
loop 

iJ ¢CL 

(c) ¢ vs. F 

(d) ¢ vs. ¢ 

Fig. 12-5. Waveforms of F(t) and ¢(t) and variations of ¢(F) and ¢(¢) during 
a full cycle in a flux-switching experimem. 
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The resulting ¢«) waveform (Fig. lZ-5(b» is composed of an 
elastic ¢ (t) spike, denoted by ¢ E «), and a bell-shaped inelastic ¢ «), 
denoted by ¢iW. We shall show later that ¢E «) has two components, 
¢a(t) due to elastic rotation of magnetization and ¢EW (t) due to 



294 DIGITAL MAGNETIC LOGIC 

elastic domain-wall motion, and, if F is too low to cause inelastic 
rotation of magnetization, that ¢i(t) also has two components, a 
decaying component ¢id(t) due to minor domain-wall displace
ments, and a bell-shaped main component ¢im (t) due to major 
domain-wall displacements. The smaller the values of T r and F, 
the more distinguishable are t~e components ¢EW and ¢id W , 
Masking of these components by ¢im (t) during the clearing time in 
Fig. 12-5(b) is caused by the relatively long rise time and high 
amplitude of the clear mmf pulse. 

With a long test pulse (ideally, T -> 00 ), flux switching is com
pleted during the pulse, that is, ¢ reaches a static value, ¢d • 

(See Fig. 12-5(c) and compare with Figs. 11-17 and 11-18.) 
The measurement of the flux change !'I.¢ needed to determine 
¢ d is performed by applying the sensed voltage N v ¢ (t) (Fig. 
12 -4(a» to an R-C integrator. Due to integrator decay, however, 
the measured I'I.¢ has an error which is smaller the smaller the 
switching time. For this reason, the set flux I'I.¢ = ¢r + ¢d is 
determined by measuring the flux change I'I.¢CL during the clear
ing time and subtracting the elastic component, that is, I'I.¢CL 

corresponding to F = 0 (see Fig. 12-5(c». By repeating the mea
surement of ¢d for various positive and negative values of F , 
one obtains the major static ¢ (F) curve. If F is large enough to 
saturate the core, then ¢d(+F) = -¢d(-F). On the basis of this 
anti symmetry , the reference ¢ = 0 is established by letting F = 

NCL ICL = -F CL and dividing the corresponding I I'I.¢CL I by two, 
that is, ¢d at F = NCL ICL is equal to I I'I.¢CL I /2. Once the ref
erence ¢ = 0 is established, the remanent flux ¢r is determined 
by equating -¢r to ¢d corresponding to F = O. The static ¢<F) 

curve intersects the Faxis (¢d = 0) at the coercive mmf Fe' If 
we now add a second curve anti symmetric to the static ¢(F) curve, 
we obtain the overall static ¢<F) loop, which is shown dotted in 
Fig. 12-5(c). 

Flux-switching properties from a remanent state ¢ = -¢r' 
such as is shown in Fig. 12-5, are classified into three cate
gories: 

1. static ¢ (F) curve 
2. elastic ¢(t): ¢E W = ¢aW + ¢EWW 
3. ine lastic ¢ (t): ¢ i (t) = ¢ id W + ¢ im (t) 

Flux-switching models describing each of these properties are 
presented in the following three sections. 
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12-3 Static ¢ (F) Models 

Hyperbolic Model for Static M (H). Consider a toroidal core 
of dimensions ri (inside radius), ro (outside radius), and h (height). 
If the core is thin (that is, riri is close to unity) and driven cen
trally, as in Fig. 12-4, then M and H may be assumed to be uniform 
across the core. In this case, the static M (H) curve may be obtained 
directly from the static ¢(F) curve in Fig. 12-5(c) by using the 
relations 

(12-14) 

and 

(12-15) 

It is found empirically that the static M (H) curve of a ferrite core 
may be described quite closely by two hyperbolas, one for the sat
uration region and the other for the nonsaturation region, which 
intersect at H = H dmin , as shown in Fig. 12-6. Denoting the static M 
value for a given H value by Md ' we find that 

)
i -M _ (M _ M ) _H_ 

r s rH_H 
a 

for H < H min 
- d (12-16a) 

) H - H 
( -Mr + (M s + Mr) ---q 

H - Hn 
for H > H min 

- d (12-16b) 

where Ms is the saturation magnetization and H a, Hn' and Hq are 
empirical material parameters. Note that the asymptotes of the 
hyperbola describing Md(H) for H S H dmin are M = -Ms and H = Ha 

and that the asymptotes of the hyperbola describing Md(H) for 
H ::::. H d m in are M = M sand H = H n • 

For either a thin or a thick core, M/M s = ¢/¢s ' where ¢s = 

Msflo h(ro - ri ) is the saturation flux. Equating Eqs. (12-16a) and 
(12-16b) in order to find their intersection point, and replacing 
M/M s by ¢/¢s' the following expression is found for the static 
threshold field 

where 

H min 
d 

¢r 
H + H + Hn + - (H a + H - Hn) 

a q ¢ q 
s 

(12-17) 

(12-18) 
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By equating Eq. (12-16b) first to zero and then to Mr , and again 
replacing M/Ms by ¢/¢s' we obtain expressions for the coercive 
force He and the field Hr at which Md = Mr (see Fig. 12-6) 

and 

¢r 
He = Hq + - <Hq - Hn} 

¢s 

Hq + <Hq - 2Hn)(¢/¢) 

1 - (¢/¢) 

(12-19) 

(12-20) 

The squareness of the static M(H) curve for H ? Hdmin may be 
described by the ratio H/Hn, where H/Hn ? 1. The closer H/Hn is 
to unity, the sharper is the upper knee of the static M (H) curve. In 
the limit, as HqlHn -> 1, the static M(H) region expressed by Eq. 
(12-16b) becomes ideally square. 

~:~·-=~~~~=-=====-I-----/~-
Hmin I I L 

t d~ H J H / I Asymptote 
Md Hq -M +(M +M ) --q / I 

r s r H-Hn I I 
Hn\ I / I 

Fig. 12-6. Hyperbolic model for the static M(H) curve of a ferrite core. 

A Model for the Static ¢ (F) Curve. The hyperbolic functions in 
Eqs. (12-16a) and (12-16b) describe the static M (H) curve of the 
core material and also, in conjunction with Eqs. (12-14) and (12-15), 
the static ¢ (F) curve of a thin toroid. This hyperbolic model will 
now be used to calculate the static ¢ (F) curve of a constant-width 
leg of more general shape. 

Fig. 12-7 shows the top view of a leg of constant width w, con
stant height h, angle ex, length of the short edge I;, and length of 
the long edge 10 , (For a toroid, ex =.277, Ii = 277T i• and 10 = 277To') 



MAGNETIC FLUX-SWITCHING MODELS 297 

A curve of length 1 is drawn at a distance x from the short edge. 
Let R be the radius of curvature of the short edge (R varies along 
the leg). A segment of angle de is drawn perpendicular to the leg 
edges. The difference between the segment elements dl and dl i is 
d(l - li) = (R + x) de - Rde = xd8, which, upon integration along the 
leg, yields (l - 1 i) = xa. Hence, 

li + ax (12-21) 

where, since 1 = lo for x = w, 

1 - l. a , 
(12-22) 

w 

The angle a may vary between two extremes: a = 0 (for a leg 
whose ends are parallel and, therefore, li = lo) and a = 277 (for a 
single-leg core, such as in Fig. 12-1, or a toroid). 

(R+x)dB 
RdB 

R 

Fig. 12-7. A constant-width leg. 

Assuming that H = FIl, that is, H is constant along a path 
of constant x in Fig. 12-7, application of Eq. (12-21) gives 

H = 
F 

Ii + ax 
(12-23) 

Substitution of Eq. (12-23) into the hyperbolic model for static 
M(H) (Eqs. (12-16a) and (12-16b» results in Md(F',x) functions. 
Integrating ilOMd(F',x)hdx from x = 0 to x = w, we obtain the 
following expressions for the static ¢ (F) curve in three regions 
of F: 
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where 

and 
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VI F En a a _ ¢ (
F - H l ~ 
F-Hl. r 

a I 

for F < F min - d 

[ (1 1) (F -Hn lo~ Vz l - l. + F - - - En - ¢ 
a I H H F-H t. r 

n q n I 

for H minl < F 
d a -

VI 
¢s - ¢r 

([0 - lil Ha 

Vz 
<¢s + ¢rlHq 

([0 - lil Hn 

F min - H min l 
d - d i 

(12-24a) 

(12-24c) 

(12-25) 

(12-26) 

(12-27) 

Note that the material at the inner wall of the core reaches 
switching threshold as F reaches Hdminli' and that the material at 
the. outer wall reaches threshold as F reaches Hdmin lo. For 
F d mIll S F S H d mIll la, the term representing flux change in the outer 
section of the leg, where H < Hdmin , is negligible compared with 
the total flux change. For this reason, this term is not included in 
Eq. (12-24b). 

The contribution of "air flux" ¢air is also not included in Eqs. 
(12-24) because in practical applications it is usually negligible 
(unless I F I » Fe). However, to determine the magnitude of ¢air 

in the core itself, we apply Eq. (12 -2 3), and integrate hllo Hdx = 

hila Fdx/([ i + axl from x = 0 to x = w. We thus obtain 

AIlO (lo) ¢. = F-- En-
au l _ l. l. 

a I I 

(12-28) 

where A = hw is the cross-sectional area of the leg. The total air 
flux linking a loose winding around the core is larger than ¢ air 

given by Eq. (12-28). 
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Determination of Parameters. Seven parameters are needed to 
compute cPd(F): Ii and 10 (dimensions), cPr and cPs (flux capacities), 
and H a' H n' and H q (material field parameters). Because of possible 
tapering in a ferite core, Ii and 10 should be measured on both 
faces of the core and averaged. The value of cPr is readily avail
able from the measured static cP(F) curve (Fig. 12-5(c». The re
maining parameters may be computed by curve fitting of Eqs. 
(12-24) with the measured static cP (F) curve. (For some ferrite 
cores, cPs ~ 1.1cPr in a region of practical interest, e.g., for 
IF I :s 10 F c' and, therefore, cPs need not be computed.) Curve 
fitting of experimental data with a given model is generally 
achieved by the method of least-mean-square error, i.e., by 
minimizing the sum L. EJ.2, where E. is the difference between the 

J J 
computed and the measured variable. In this case, E j = cP d, comp -

cPd at the F value of the jth experimental point. This type of ,exp 
computation is most economically performed on a digital computer. 

Experimental Verification. The model for static cP (F) in Eqs. 
(12-24) is found to be quite useful for a variety of ferrite cores. 
An example of a very close agreement with experimental data is 
shown in Fig. 12-8. In this example, a three-leg core was utilized 

30,---,---,---,---,----,---,---,---, 

20 

t 
o 0 0 Measured 
-- Calculated 

10 

>< 0 
:2' 

-& 
-10 

-20 

-30L---~--J----L--~~~----~--~--~ 

-2.0 -1.5 -1.0 -0.5 o 0.5 1.0 1.5 2.0 
F.At ~ 

Fig. 12-8. Measured and computed static 10 (F) curve at room temperature. 
Material (Telemeter Magnetics T-5 ferrite) parameters: 10 r = 25.67 Mx; 10 s= 
27.6 Mx; H a = 230 At/m; Hn= 32.0 At/m; H q= 36.0 At/m. Dimensions: Ii = 
10.56 mm; 10= 16.47 mm; h= 1.31 mm. (Nitzan, 1964.) 
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in forming a "core" consisting effectively of two legs of identical 
cross section. Flux switching in the third leg Was prevented by 
linking it with a short-circuited turn. The values of li and lo given 
in the figure caption are the sums of 1 i and lo of the two switchable 
legs. 

Discontinuous Static <p (F) Curves. If the static M (H) curve is re
entrant, then, as the applied H reaches the H threshold, Md jumps 
to some value Mdd between -Mr and +M r • As explained in connection 
with Fig. 11-17, this phenomenon occurs if the peaks of the energy 
gradient versus wall position corresponding to M = -Mr are higher 
than the following peaks in the region -Mr < M .:s M dd • In this case, 
Eqs. (12 -16) are still directly applicable, except that H d min is 
replaced by a threshold field larger than Hdmin calculated from 
Eqs. (12-17) and (12-18). 

Similarly, if the measured static <p (F) curve exhibits a jump to 
some value <Pdd between -<Pr and <P r , then Eqs. (12-24) in conjunc
tion with Eqs. (12-17) and (12-18) are still directly applicable, 
except that F min > H min 1 (Note that if F min > H min 1 then 

d d i· d d o' 
Eq. (12-24b) is bypassed.) An example is shown in Fig. 12-9 for 
three nominally identical commercial ferrite cores. 
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Fig. 12-9. Measured and computed discontinuous static cP (F) curves at T = 25°C. Core type: 
Lockheed 100SCl (100 mils OD; 70 mils ID); cPr= 6.52 Mx; cP s = 7.17 Mx; Ha = 307 At/.m; Hn = 
36.0 At/m; H q = 40.8 At/m; I i= 5.59 mm; 10 = 7.98 mm; h = 0.762 mm (Nitzan et al .. 1966). 



MAGNETIC FLUX-SWITCHING MODELS 301 

12-4 Elastic ¢ (t) Models 

Introduction. It was shown in Sec. 11-4 that application of an 
external H pulse, Hap' may cause the magnetization M to switch by 
either rotation of magnetization or by domain-wall motion or both. 
In each case, the switching may be inelastic or elastic, depending 
on whether or not there is a net change in magnetization when Hap 
is removed. Typical experimental data of elastic and inelastic ¢ (t) 
waveforms and the corresponding variation of ¢ (¢) and ¢ (F) were 
shown in Fig. 12-5. The elastic ¢(t) has two components, that is 

(12-29) 

where ¢ a (t) is generated by elastic rotation of magnetization and 
¢€w <t) is generated by elastic domain-wall motion. For relatively 
slow-rising F pulses, we will find that ¢ (t) may be modeled by the 

., € 

simple relation ¢ € = f F, where f is a coefficient. However, the 
response is more complex for fast-rising F pulses. The purpose 
of the following two sections is to develop the equations of motion 
for each of the ¢€ components, first assuming fast-rising F pulses 
and then simplifying the results for the cases of medium-rising 
and slow-rising F pulses. 

A Model for ¢€(t) Due to Rotation of Magnetization. Consider a 
single crystallite and assume that its magnetization M is saturated 
along an internal field Hi '" Hk + Hdm , where Hk is the anisotropy 
field (Eq. (11-27», and Hdm is the demagnetizing field. An applied 
field Hap causes M to spiral within a small solid angle eo into align
ment with the total field H = Hi + Hap' as shown in Fig. 12-10. Let 
the plane formed by Hi and Hap define the y - z plane, and let the 
resultant total field H = Hi + Hap be along the z axis. The angle be
tween H and Mo (the initial M) is eo' and the angle between H and 
Hap is t/J. 

Assuming that H is constant in time, then on the basis of the 
Landau-Lifshitz equation, Eq. (11-32), or the Gilbert equation, 
Eq. (11-33), the variations of ew and ",(t) during the transient time 
are expressed by Eqs. (11-38) and (11-39), respectively. The com
ponent of M W along Hap is sensed during this transient time. De
fining the direction of Hap as the y' axis, we wish to calculate MaW, 

the component of M (t) along the y' axis. 
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z' 

, 
X; X 

Fig. 12·10. Damped precession of a magnetization 
vector toward alignment with the total field H. 

The components of M in the (x, y, z) coordinate system are 

Mx = Ms sine cos'll ~ 
My = M s sin e sin'll 

Mz = Ms cose 

(12-30) 

where Ms is the magnitude of M. Since the (x', y; z') coordinate sys
tem is obtained by rotating the (x, y, z) coordinate system around 
the x axis by the angle (77/2 - ljJ), we obtain 

Ma = Ms (sine sin<p sinljJ + cose cosljJ) (12-31) 

Substitution of Eqs. (11-38) and (11-39) into Eq. (12-31) yields 

Ms 

[1 - e-2 (t/T) tan2 <eo/28 cosljJ - 2e-(t/T) tan(eo/2) cosmo sinljJ 

(12-32) 

where T and Q are expressed in Eqs. (11-36) and (11-37), re
spectively. Since, usually, the value of (fo under elastic-switching 
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conditions is small, then tan2Wo/2l « 1 and Eq. (12-32) reduces to 

M (t) = M cost/J - 2M sint/J tan (60) e-(tl T ) cosmo (12-33) 
ass 2 

Differentiating Eq. (12-33) with respect to time, we obtain 

We now wish to show that Eqs. (12-33) and (12-34) have the 
same forms as the solutions to the second-order differential 
equation 

(12-35) 

where Xr is the rotational susceptibility and MaO is the initial value 
of Ma' Assuming that initially !VIa = 0, the Laplace transform of 
Eq. (12-35) for a step Han (t) is 

(12-36) 

For the underdamped condition (that is,(\ < 2V7!r)' which is quite 
likely to be the case (cf. Smith (1958); Wolf (1961); Nitzan and 
Hesterman (1967)), the inverse function of Eq. (12-36) yields 

M (tl = M F _ XrHap -[8,/(27),)]1 ~ 
. a aO + Xr 'a e cos 

p Vl-[0//(47!rl ] 

where 

Or 'r = 2v7!; 

~ _(~)2 t _ sin-I,) 
7!r 27!r j 

(12-37) 

(12-38) 

Differentiating Eq. (12-37) with respect to time, we obtain 

!VIa(t) 
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Equations (12-33) and (12-37) are of the same form, except for 
the phase angle sin-1'r in the latter, which results from assuming 
the initial condition MaO = 0 in deriving Eq. (12-36), whereas ac
cording to Eq. (12-34), MaO = 2Ms sinl/J tan(eo/2}/r. In any case, if 
0r2 «2TJr (low damping), then 'r « I, and sin- 1 'r ~ O. Under this 
condition, the expressions for Ma (t) in Eqs. (12-33) and (12-37) are 
equivalent. By equating the terms representing the decay time 
constant and the frequency of oscillation, we obtain the relations 

2 TJ r 
(12-40) r 

or 

and 

n ~, -(:S (12-41) 

Using Eqs. (12-40) and (12-41), the low damping condition 
0r2 « 2TJ r is equivalent to the condition <Or}2 » I, which amounts to 
[A/(yM s)]2 « 1 according to the Landau-Lifshitz equation, and a 2 « 1 
according to the Gilbert equation (see Eqs. (11-36) and (11-37». 

Equating the expressions for r, Eqs. (11-36) and (12-40), and 
for n, Eqs. (11-37) and (12-41), we obtain the following relations: 

1 
(Landau-Lifshitz) 

H2 [Y2 + (A/Ms}2] 

TJ r (12-42) 
1 + a2 

(Gilbert) 
H2y2 

and 

2 (A/M) 
(Landau-Lifshitz) 

H [72 + (A/M s}2J 
(12-43) ° r 2a (Gilbert) 

Hy 

Equating the initial and final values of Ma in Eqs. (12-32) and 
(12-37), we obtain the relations 
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(12-44) 

and 
(12-45) 

Substituting Eq. (12-44) and the trigonometric relation Hap 

Hi sineo/sintjl into Eq. (12-45), we obtain 

(12-46) 

and with tjI » eo/2 , Eq. (12 -46) reduces to 

M 
8 • 2. 1• X ~ - sm 'I' 

r H. 
I 

(12-47) 

We have seen that a second-order differential equation, Eq. 
(12-35), may be used to describe the component of elastic rota
tion of magnetization of a single crystallite (or a domain) along 
the applied magnetic field that causes this rotation. Applied 
to every j th crystallite (of volume vj ) in a polycrystalline speci
men, Eq. (12-35) then describes the overall Ma of the specimen, 
provided that Xr represents an average value, that is 

1 M v. sin2 .1 •. 
~ _8 ~ J 'l'J 

Xr = ~ .l.JXrjVj ~ .l.J 
""J' vJ' i ~V. j H .. i J IJ 

(12-48) 

For simplicity, suppose that the leg is thin enough to assume 
uniform M and applied H across it. Substituting Hap = F/t and 
M = </>/(110 A) into Eq. (12-35), we finally obtain a model for the 
component of ¢ due to elastic rotation of magnetization. Thus, 

(12-49) 

where 

(12-50) 

is the elastic rotational change in the component of flux along the 
applied field, and 

A 
X flo-

r t (12-51) 
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The term TJr¢Er in Eq. (12-49) is negligible if Tr » 2TJ/or (for 
example, T ,(, 10"1/0 ). where T is the rise time of the F pulse. r T' r 
Under this condition, Eq. (12-49) reduces to 

(12-52) 

If, in addition, Tr » or' then Eq. (12-49) reduces further to 

(12-53) 

A Model jor ;PE(tl Due to Domain-Wall Motion. Consider a 180 0 

Bloch wall lying in the x-y plane and suppose that the wall undergoes 
a small elastic displacement in the z direction as a result of an 
applied field Hap' A schematic variation of the gradient of the total 
energy E with wall-position z is illustrated in Fig. 11-16. Per unit 
wall area, the applied force 2110MsHap is opposed by three forces 
(cf. Kittel and Galt (1956»: by dE/dz ~ kz, where k is the stiffness 
coefficient of a restoring force; by (3z, where (3 is the viscous
damping coefficient; and by mwz, where mw is the ejjective mass of 
the wall. The equation of motion of a small wall displacement from 
equilibrium is, then. 

(12-54) 

Assuming that Eq. (12-54) describes the motion of a typical wall 
whose properties represent the average properties of all the walls 
moving elastically, we may replace z by bM EW' where b is a pro
portionality constant and MEW is the change in M due to the elastic 
wall motion. Denoting the wall-motion susceptibility by xW' Eq. 
(12-54) then becomes 

MEW + 0WMEW + TJWMEW XwHap (12-55) 

where 

Ow 
(3 (12-56) 
k 

mw 
(12-57) TJ w 

k 

and 

2110 Ms 
(12-58) Xw 

kb 
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Multiplying Eq. (1.2-55) by flo A and replacing Hap by F II , we 
obtain a model for ¢ due to elastic wa.ll motion, which, like the 
¢Er model, is also a second-order differential equation: 

(12-59) 

where 

(12-60) 

The term TJW¢EW in Eq. (12-59) is negligible if Tr » 2TJwlaw (for 
example, T r ~ 10 TJja w ). Under this condition, Eq. (12-59) re
duces to 

(12-61) 

Furthermore, if also Tr » aw ' then Eq. (12-59) reduces further to 

(12-62) 

Total ¢o W. The total elastic ¢W is expressed in Eq. (12-29) 
as the sum of the rotational component ¢u(t) (Eq. (12-49» and the 
wall-motion component ¢EW(t) (Eq. (12-59». Theoretical waveforms 
of ¢u(t) and ¢EW(t), in response to an applied mmf pulse of ampli
tude F D and a short rise time T r , are drawn in Fig. 12-11. On the 
basis of experimental observation to be described later, it is as
sumed that ¢ u(t) is underdamped, whereas ¢ EW (t) is close to critic
ally damped (slightly underdamped or slightly overdamped). Thus, 
following Eqs. (12-49) and (12-52), the ¢u(t) component is oscilla
tory if Tr is not large compared with 271/ar• 

It was found experimentally that the parameters a, 'I, and E 

corresponding to either ¢EW or ¢ET may depend on T r• If Tr » 
max(TJwlaw; TJ/a r) and aw ~ ar = a, then Eqs. (12-52) and (12-61) may 
be combined to describe the overall ¢ E by 

(12-63) 

where 

(12-64) 

Furthermore, if also Tr» a, then Eq. (12-63) maybe Simplified to 

(12-65) 
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In other words, if F(t) is relatively slow-rising, then the elastic 
¢ is simply 

fF (12-66) 

as noted in the introduction to this section. 
For example, in a pulse experiment to be described later, it 

was found that or = 0.28 nsec, T/ r = 0.08 nsec 2 , Ow = 4 nsec, and 
T/ w = 2 nsec2 for a magnesium-manganese-zinc ferrite core. For 
this core, then, if T r,(, 3 nsec, then Eq. (12-49) may be approxi
mated by Eq. (12-52), and if Tr ,(, 5 nsec, then Eq. (12-59) may be 
approximated by Eq. (12-61). It was further found that or and Ow 
increase with T r; for example, for T r = 65 nsec, or ~ Ow ~ 6 nsec; 
hence, if Tr,(, 60 nsec, then ¢E ~ fF (Eq. (12-66)). Determination of 
f is discussed below. 

'-B
u 

V> 

'" W 

t~ 

Fig, 12-11. Post~lated wa,:eforms of <toE (t) and 
its components ¢Er(t) and ¢EW(t), in response to 
applied F (t) of amplitude F D and short rise time 
T r (less than a nanosecond), 

Let the top and bottom portions of the major static ¢ (F) loop, 
where I ¢ I > ¢r' be referred to as "saturation regions," in ab
breviation of "regions of approach to saturation." Any flux switch
ing occurring in a saturation region is elastic, and if the rise of 
F (t) is slow enough to justify the use of Eq. (12 -65), the ¢ E versus F 
traces the static ¢ (F) curve in this region. Recalling that initially 
¢E = 0, then ¢E versus F amounts to the change in ¢d versus F (Eq. 
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(12-24(a». If the change in F (around a bias value) is not excessive, 
then the switching is confined to a limited ¢d(F') region that may be 
approximated by a straight-line segment, i.e., with ( assumed 
to be constant and equal to d¢/dF. Extending Eq. (12-24a) to the 
positive saturation region by using the anti symmetry property 
¢d(F) = -¢d(-F), adding the air-flux term (Eq. (12-28», and dif
ferentiating with respect to F, we obtain the following relation for 
(F') , which is valid for either positive or negative saturation 

(12-67) 

If the switching takes place around F = 0, then ( '" dOl and Eq. 
(12-67) reduces to 

dOl 

On the basis of Eqs. (12-67) and (12-68), symmetrical plots of 
( versus F in negative and positive saturation regions are sketched 
in Fig. 12-12. 

Negative saturation 
region 

o 

€(O) 

'-........ 

........ -
Positive saturation 

region 

---------
F~ 

Fig. 12·12. E vs. F in saturation regions. 

Switching from a Partially Set State. Equations (12-67) and 
(12-68) are valid along the saturation regions, where I ¢ I > ¢r and 
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where I F I may be quite large. Now, if the initial flux CPo is between 
-CPr and CPr' then the core is in a partially set, or "soft," state. 
Assuming that the duration of F (() is not too short, no pure elastic 
switching can occur from this state unless I F I is below the corre
sponding static F threshold. We shall, therefore, confine our dis
cussion to elastic switching due to small changes in I F I around the 
zero value, i.e., examine only dO). Following the relation f = fr + fw 

(Eq. (12-64», dO) has two components, fr(O) due to rotation of 
magnetization and fw (0) due to domain-wall motion. Assuming that 
the magnetization vectors that have been involved in changing cP 
from -CPr to CPo have switched by 180 0 , the value of fr(O) may be 
considered independent of CPo because the small angle of rotation 
(due to the applied torque) is essentially the same for parallel and 
anti parallel magnetization vectors. In contrast, f w (0) depends very 
highly on the total domain-wall area LAw. Since LAw varies with 
CPo and since the same CPo value may correspond to different values 
of LAw' the function f w (0) versus CPo is not unique. It is said to be his
tory dependent in the sense that the value of fw (0) depends on how 
the flux state CPo was obtained. For a given value of CPo , the faster 
the previous switching, the larger the number of domains that have 
expanded inelastically and the larger is LAw; hence, the larger 
is fw (0). Therefore, dO) depends on both the initial cP and the flux
switching history in the manner illustrated schematically in Fig. 
12-13. Such a behavior has been observed experimentally by 
McKay (1959). 

Fast } 
Medium previous switching from-~r to ~o 

Slow I I 

o ~r 
~o~ 

Fig. 12-13. Effects of <PO and previous switching on elastic
switching coefficient E(O). 
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Fast-Switching Experiments. In order to examine the validity 
of the models for ¢ Er (t) and ¢EW (f), Eqs. (12-49) and (12-59), 
elastic-switching experiments using fast rising F (t) pulses were 
performed on a thin toroidal polycrystalline ferrite core. In 
Table 12-1 are given the composition, the dimensions, the static 
¢(F) parameters, the elastic sWitching parameters, and the inelas
tic switching parameters (to be defined in Sec. 12-5) of this core. 
Results of elastic and inelastic flux-switching experiments per
formed on this core will be referred to several times in the re
mainder of this chapter. 

Table 12-1 Parameters at T = 30°C of a Thin Toruidal Polycrystalline 

Ferrite Core Used in Several Flux-Switching Experiments 

Nominal composition: 

Dimensions: 

Static ¢ (F) parameters: 

¢ E parameters: 

¢ id parameters: 

¢im parameters: 

Note: 
Mx-maxwell 

t-turn 
A-ampere 

ns-nanosecond 

ri 3.53 mm; ro = 3.75 mm; ro/ri = 1.06; 

h 0.69 mm; W = 0.22 mm; A = 0.149 mm 2 • 

¢ r 3.45 Mx; ¢ s = 3.73 Mx; Ha = 950 At/m; 

Hq 35.0 At/m; Hn = 30.0 At/m; Fe = 0.90 At. 

Dr 0.28ns; 1)r=0.08(ns)2; 

Er 0.14(1 - 0.005FD) '10-9 HC2; 

OW 4.0 ns; 1) w = 2.0 (ns)2; 

Ew 0.266(1 - 0.008FD) .10-9 Ht-2. 

Fidmax 0.55 At; vid:::: 1.33; Aid:::: 0.013 Qt-2• 33A-o.33; 

C id 0.1 At-fIS. 

Fdmin 0.78 At; v' = 2.5; ,\ = 0.124 flt- 3 . 5A-1. 5; 

F; 0.92 At; v = 1.33; ,\ = 0.069 Ot- 2. 33 A-a.33; 

Fa 1.45 At; Pp = 0.113 flt- 2; 

F~ 1.08 At; F B = 3.12 At. 

fIs-microsecond 
H-henry 
fl-ohm 

The core was mounted in a section of a 50-0 coaxial trans
mission line, as shown in Fig. 12-4(b). Rectangular current pulses 
were generated by a mercury-relay pulser. The pulse amplitude [ 
was varied in five steps from 0.9 to 40 amperes', while the 10%-90% 
rise time Tr remained constant at 0.4 nanosecond. The current 
pulses switched the core elastically from ¢ = ¢r further into the 
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positive saturation region and back (sometimes referred to as 
"shuttle" switching). The resulting ¢E(t) was sensed by a single
turn winding of a short fine wire (1.1 em of AWG No. 48), chosen 
to minimize the winding capacitance. The waveforms of the drive 
current and the positive portion of ¢E(t) were photographed on a 
sampling oscilloscope with a 0.4 nanosecond response time. In
cluded in the ¢E(t) waveform was a component due to air flux 

(12-69) 

where Asw is the projection of the sense-winding area normal to 
the applied circumferential field H = F Il. The value of 110 Aswll was 
determined experimentally from the peak values of the ¢air (t) and 
F (t) waveforms observed with the core removed. 

The ¢E parameters in Table 12-1 were determined by fitting 
the computed sum ¢u(t) + ¢EW(t) + ¢air(t) with the observed ¢E(t) 

for all five values of drive. As may be seen in the table, values 
of (r and (w were found to decrease as the amplitude F D of the 
drive mmf increased. (The nonlinear relation of ( versus F in 
Fig. 12-12 is approximated here by a straight line.) 

Two examples of experimental and computed F (t) and ¢E(t) 

waveforms are compared in Fig. 12-14 for the extreme F D values 
of 0.9 and 40.0 ampere-turns. The oscilloscope response time was 
accounted for by assuming the computed F (t) to rise earlier than 

F F 

t 
if I; 

J I: 

Ii 10.25 At ,; 110 At 

1--+1 ns r+lns 

~ 1>. 4>. 
I; ! 0.05 Vlt f! t 2.0 Vlt 
,: \ /: 

IJ \ ,; \ 

if \ -~ - - -

Fig. 12-14. Experimental (dotted and solid line) and computed 
(dashed line) F(t) and ¢E(t) waveforms of a thin ferrite core 
(Table 12-1) using F(t) with T r = 0.4 ns and different values of 
amplitude F D (Nitzan and Hesterman, 1967). 
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the experimental F (t) according to the relation 

T ~ VT 2 T2 
r,obs r + T,OSC 

(12-70) 

where T r•obs is the observed T r , and Tr.os c is the response time of 
the oscilloscope. From Fig. 12-14, it is found that T b ~ 0.56 

T,O S 

nanosecond for both values of Fo; the same value of T b was 
f,O S 

found for all intermediate values of F o' Since Tr.os c = 0.4 nano-
second, then T r ~ 0.4 nanosecond for all values of F o' As expected, 
the experimental ¢E(t) waveforms lag behind the computed wave
forms due to the oscilloscope response time. For the same rea
son, the peaks of the computed ¢E (t) waveforms are found to be 
higher than the observed ¢ E peaks (they agree with ¢ E peaks ob
served on a much faster sampling oscilloscope, i.e., with Tr.os c = 
0.09 nanosecond). 

In another experiment, when a permanent-magnet field of about 
96' 103 amperes/meter was superimposed transversely to the ap
plied circu~erential field, the decaying ¢E(t) tail disappeared and 
the initial ¢€(t) spike became narrower, as 
shown in Fig. 12-15. The demagnetizing 
field was roughly 56.103 amperes/meter; 
hence, the net field was about 40 '103 am-
peres/meter. A magnetic field of such mag
nitude is high enough to annihilate most of 
the domain walls and to increase the net bias 
field appreciably. The disappearance of the 
decaying ¢€(t) tail confirms the hypothesis 
made in Fig. 12-11 that the wall-motion com
ponent ¢ €w (t) is characterized by appre
ciably slower switching than the rotational 
component ¢aW. The narrowing of the ¢€(t) 
spike (which may be identified with ;,.. (0) 'l'a 

agrees with Eqs. (11-37) and (12-34) in 
which 0 (the angular velocity of oscillation) 
becomes higher as H is increased. A fur
ther increase in the transverse field caused 
¢ a(t) to become still narrower and lower in 
amplitude. The latter effect is explained by 
the decrease in eo (Eq. (12-34», which is 
caused by the increase in the total quiescent 

F 

1.0 At 

!--+1ns 

I fO.25V/t I I I 
;~ ~ {without} clamping T \' With magnet : 

-h ~oirl I I I I J 

Fig. 12·15. Superposition of 
experimental waveforms of 
¢€(t) of a thin ferrite core 
(Table 12·1) without a mag· 
net, ¢€ (t) with a magnet, and 
q, air(t), in response to a step 
F(t) of T, = 0.4 ns and 
amplitude F D = 4.0 At (Nitzan 
and Hesterman, 1967). 

field while leaving Hap unchanged. 
The results of Figs. 12-14 

¢€r(t) + ¢€w(t) (Eq. (12-29», and 
and 12-15 verify that ¢€(t) = 

that the initial ¢€(t) spike is 
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primarily (P ,) t) and the decaying (P E <t) tail is primarily (PEW <t) • 

This conclusion agrees also with the fact that switching by rota
tion of magnetization (where spins rotate in unison) is inherently 
faster than switching by domain-wall motion (where spins rotate 
sequentially). Further support for this conclusion can be derived 
from the following: The (PEr component is underdamped since, 

following Eq. (12-38), 'r = ~8r"'r-t = 0.495 < 1, and from Eq. (12-41), 

0/(217) = ("'r-1 - i8r2 "'r-2) t /(217) = 487 Mc/s. For switching elastically 

further toward saturation, the (PEW component is overdamped since 

W = i 8w"'w -t = 1.414. These results are consistent with magnetic 

spectra (plots of the real and the imaginary components of the 
complex permeability Il = Il' - ill" versus frequency) of polycrys
talline ferrites, which exhibit resonance in the microwave region 
but mayor may not exhibit resonance in the radio-frequency re
gion (see Rado etal. (1950); SmitandWijn (1959); Rado et ale (1956); 
Harrison et al. (1958». The resonance in the microwave region is 
due to rotation of magnetization. The sources of resonance in the 
radio-frequency region are not completely understood, and may 
depend on the material composition. Rado (1950; 1956) showed that 
the radio-frequency dispersion (the plot of (Il' - 1) versus frequency) 
and the static initial permeability of magnesium ferrites are due 
to domain-wall displacements. A similar conclusion was drawn by 
Harrison et ale (1958) for manganese ferrites. 

On the basis of these switching experiments, we may determine 
approximate values for the viscous damping a and the anisotropy 
constant K1• Following Eqs. (12-42) and (12-43) 

8r 
(12-71) a 

V4"'r - 8/ 

and 

H 
2 (12-72) 

y,J4"'r - 8/ 

Substituting 8r = 0.28 nanosecond and "'r = 0.08 nanosecond2, we 
find that a = 0.57 and, since Hi » Hap and y == 2.21.105 meters/am
pere-second, that Hi"" 18.5 • 103 amperes /meter. From Eq. (11-2 7b), 
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the anisotropy constant Kl of materials whose easy axes are body 
diagonals, such as ferrites, is given by 

(12-73) 

For this magnesium-manganese-zinc ferrite core, 110 M = 0.262 
2 s 3 

weber/meter, and if Hdm « Hk , then Hk '" Hi and so Kl '" -3.6·10 
joules/meter3• This value lies between values of Kl for magnesium 
and manganese polycrystalline ferrites obtained by Rado et al. 
(1956) and Harrison et al. (1958), respectively. 

12-5 Inelastic ¢ (t) Models 

Introduction. In most applications of square-loop magnetic 
cores, it is the inelastic flux switching that plays the most im
portant role. Unfortunately, the physical mechanisms involved in 
inelastic flux switching are much more complex than those in 
elastic flux switching. It is thus of no surprise that so many dif
ferent models for inelastic switching of magnetization have been 
proposed in the past. Most of these models may be described 
generally by the differential equation 

(12-74) 

where Ho is the dynamic threshold field (to be discussed later), 
Hap (t) is the magnitude of the applied field, M is the magnetization 
component along Hap' and f(M) is some function of the instantaneous 
value of M. Let us first review some of these models. 

One may distinguish between physical models, which are de
rived from physical reasoning, and semiempirical models, for 
which f(M) and Ho are determined experimentally. Aphysical model 
is often derived primarily in order to verify a theory of flux
switching mechanism, whereas a semiempirical model is obtained 
for application in magnetic circuit analysis when the physical 
models are either too complex or inadequate. 

Among the physical models, we may distinguish between models 
that are based on domain-wall motion (Menyuk and Goodenough 
(1955); Conger and Essig (1957); Haynes (1958): Lindsey (1959): 
Knowles (1960): Hilberg (1964» and models that are based on rota
tion of magnetization (Coleman (1957): Gyorgy (1963». There is 
little doubt that flux switching occurs mainly by domain-wall motion 
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at low fields and mainly by coherent rotation of magnetization at high 
fields (see Gyorgy (1963». Itwasproposedby Gyorgy (1958) that at 
intermediate fields, flux switching occurs by incoherent rotation 
in such a way that, except near the core surface, the demagnetiz
ing fields effectively cancel due to formation of closely spaced 
surface poles of alternate polarity. 

For the SWitching models based on domain-wall motion, vari
ous probability-distribution functions of occurrence of nucleation 
centers have been assumed. Different domain configurations dur
ing switching were postulated, such as expanding and colliding 
ellipsoidal (Haynes (1958)) or cylindrical (Lindsey (1959)) domains, 
and domains with constant wall area (Knowles (1960». Although 
these physical models shed light on the mechanism of flux switch
ing, their parameters have to be measured rather than caJculated 
from more basic properties. This results from the difficulty in 
describing the details of the magnetic properties of materials, 
which are highly sensitive to inhomogeneities, such as impurities, 
strains, voids, and lattice imperfections. 

The semiempirical models may be classified according to 
the form of f(M), Ho' and the effect of core thickness. Let us ex
amine each of these features separately. 

According to several semiempirical models, such as the ones 
proposed by Chen and Papoulis (1958), Betts and Bishop (1961), 
Gilli and Meo (1963), and Ching and Stram (1963), f{M) or its 
equivalent is determined point by point from experimental data. 
Neeteson (1964) and Tancrell and McMahon (1960) assumed that 
f(M) is semicircular, i.e., proportional to [1 - (M/M s)2]!; hence, 
Eq. (12-74) results in a half-sinusoidal MW for a step Hap W. 
A parabolic f(M) that is proportional to [1 - (M/Ms)2] was assumed 
in the semiempirical model applied by Cushman and Park (1960). 
This f(M) function was modified by Holtwijk (1964) to the form 
{I - [(M + I'lM)/(Ms + I'lM)]2} where I'lM ~ 0.05 Ms' If f(M) in Eq. (12-74) 
is parabolic, then a step Hap (t) results in M which is a sech2 func
tion of time. Hesterman (1961) made a comparison between ex
perimental ¢ (t) of a common soft-ferrite material and ¢ W com
puted from the various mOdels that can be expressed analytically 
(including the physical models), and concluded that the best agree
ment (although not by far) is generally obtained if f(M) is para
bolic, and that the agreement for the semicircular f(M) is relatively 
poor. (However, a few soft ferrite materials do not exhibit a 
parabolic f(M) behavior. See, for example, Nitzan and Hesterman 
(1964).) It is interesting that f(M) is also parabolic in the physical 
models derived by Coleman (1957) al"d Gyorgy (1958) on the basis 
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of rotation of magnetization. The good agreement between experi
mental M W and the calculated M W based on a parabolic (M) offers 
some support for the rotational models. However, a similar good 
agreement is obtained in the region of low Hap' where the switching 
process occurs by domain-wall motion. 

o o 

Fig. 12·16. Inverse switching time and peak inelastic M vs. applied H field. 

Typical plots of two types of measured data from step-Hap 
switching experiments are shown in Fig. 12-16: l/Ts versus Hap' 
where T s is the time of switching essentially from -Mr to Mr , and 
Mp versus Hap' where Mp is the peak value of the inelastic MW, (To 
be exact, T s is commonly defined as the time between the points at 
which M = 0.1 M p') Both the l/T s versus Hap and M p versus Hap plots are 
usually characterized by linear portions whose slopes are l/Sw and 
(p' respectively, where Sw is called the switching coefficient, Most 
models assume a constant dynamic H threshold, regardless of Hap' 
whose value Ho may be determined in Fig. 12-16 by extrapolating to 
the Hap axis the linear portion of either l/Ts versus Hap or tV/p versus 
Hap' The extrapolated values of Ho obtained from the two sets of 
data are not necessarily the same, although they are likely to be 
close to each other. By assuming a constant Ho' the nonlinear re
gion of either l/Ts versus Hap or Mp versus Hap is ignored. The 
error introduced by this assumption may be quite significant be
cause many magnetic circuits operate in this nonlinear region, 
which, for some materials, may extend to Hap values three to ten 
times the coercive force. (Conger and Essig (1957) proposed that 
the threshold field for domain-wall motion in thin films is dis
tributed randomly over the range between the coercive force and 
the anisotropy field, As a result, the number of walls, in addition 
to the wall velocity, increases with Hap' thus causing the nonlinear
ityof l/T s versus Hap') 
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So far we have discussed flux switching in terms of M and Hap 

rather than ¢ and F. This is justified in the case of a thin toroid 
for which F = Hap I and ¢ = fLo MA. For a thick core, M«) varies 
with the radius r, and ¢ «) should be determined by integration of 
fLo M (r, t) hdr from r = r i to r = r o. For the models referred to so far, 
such an integration cannot be done analytically in a closed form, 
but can be approximated by Taylor series or performed numeri
cally. The latter method was used by Tancrell and McMahon 
(1960), Hesterman (1961), and Ching and Stram (1963). 

On the basis of experimental observation to be described next, 
we shall propose semiempirical models for the components of in
elastic flux switching. 

Observed Flux Switching. Typical results from a flux-switching 
experiment using a thin toroidal core (Fig. 12-4) were shown in 
Fig. 12-5. Waveforms of the setting F pulse and the resulting ¢«), 
as well as the variation of ¢ versus F during the switching time, 
are redrawn in Fig. 12-17. The amplitude F is shown larger than 
the coercive mmf Fe' but not large enough to fully switch ¢ to 
positive saturation. 
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Fig. 12-17. Step-F flux switching. 

The rotational and wall-motion components of ¢E«)were analyzed 
in detail in Sec. 12 -4. We shall now show that ¢ i (t), the inelastic 
¢ (t), may also be analyzed in terms of two components: a decaying 
inelastic ¢(t) component, ¢id(t), due to minor wall displacements, 
and a bell-shaped main inelastic ¢ (t) component, ¢im (t), due to major 
wall displacements, which starts at t = to and reaches its peak value 



MAGNETIC FLUX-SWITCHING MODELS 319 

¢p at t = tp' The main component is so termed because the cor
responding flux change I!..¢im = 1000 ¢imdt is much larger than I!..¢id = 

1000 ¢iddt due to ¢id(t)-except for F values near Fdmin • 

Suppose now that the above flux-switching experiment is re
peated with one modification: the step-F setting pulse is inter
rupted in the beginning of switching. This results in two F pulses 
of the same amplitude. A waveform of F (t) with amplitude of 
1. 3 Fe and a typical waveform of the resulting ¢ (t) for the thin 
ferrite core of Table 12-1 are shown in Fig. 12-18. Fast-switching 
elastic ¢ (t) spikes are shown during the rise and fall of the first F 
pulse and during the rise of the second F pulse. But most im
portant. note that during the first F pulse and in the beginning of 
the second F pulse, the overall inelastic component ¢i(t) is decay
ing despite the rise of the main inelastic component ¢im (t) (Fig. 
12-17(a». The difference between ¢i(t) and ¢im (t) is the decaying 
inelastic component ¢id(t). This component may be attributed to 
inelastic domain-wall motions. It is inelastic because there is a 
net flux change due to the first F pulse, which cannot be accounted 
for by the small contribution of the 1>im component only. It is due 
to domain-wall motions for the following two reasons: First, the 
relaxation time of ¢id(t) is much longer than typical relaxation time 
for rotation of magnetization, which in this case is on the order of 
5 nanoseconds (cf. Fig. 12-14). Second, ¢i(t) that follows the posi
tive ¢,,(t) spike of the second F pulse continues to decay smoothly 
from the same value at the end of the first F pulse; this is charac
teristic only of domain-wall motion. 

o t~ 

o 1 2 3 4 5 6 7 8 9 10 

t. JL sec 

fig. 12-18. Waveforms of interrupted F(t) and 
¢ (t),of a thin toroidal ferrite core (Table 12-1) 

Components of Inelastic 1> (t). The large difference in shape be
tween the waveforms of ¢id(t) and ¢im (t) implies that different 
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mechanisms are involved in generating these inelastic ¢ (t) com
ponents. The nature of these mechanisms is postulated as follows. 

For simplicity, suppose that the core is thin enough to assume 
uniform M and Hap across it; hence, F = lH ap and ¢ = /Lo AM. Refer
ring to Fig. 11-18, we have seen that the n inelastic wall displace
ments due to a step Hap (t) are divided into np minor displacements 
of essentially constant areas and n (1 - p) major displacements of 
varying areas, where p '<: 1. We now postulate that the minor wall 
displacements generate the ¢id(t) component, whereas the ¢im (t) 

component is generated by the major wall displacements. The 
waveform of each of these inelastic ¢ (t) components depends on 
the average velocity, the expected number, the average area, and 
the travel time of the corresponding walls. The first two factors 
affect ¢id(t) and ¢im (t) in a similar fashion, whereas the third and 
fourth factors affect each ¢ component differently. On the basis of 
these features, we shall next propose a model for each of these 
components. 

A Model for Decaying Minor ;Pi (t). As a first approximation, 
assume that the average velocity of walls moving inelastically is 
proportional to the excess of the applied H over an average 
threshold H th• Denoting Hth corresponding to minor wall displace
ments by. Hid' then ¢id is proportional to (Hap - Hid)' The magni
tude of ¢id also increases with the number np of the walls ex
periencing minor displacements. We have seen that n increases 
with Hap and that p is essentially unity in the region 0 < H ap ~ H d m~n, 

but that p decreases gradually as Hap increases beyond H d mm. 

Consequently, the product np increa.ses with Hap until it reaches a 
peak, and then decreases. For the ¢id(t) model proposed here, we 
shall assume that H is below the value at which np reaches its ap 
peak, i.e., that np increases with Hap' It has been found exreri-
mentally that, to a good approximation, the magnitude of ¢id is 
propor~ional to (Hap - H id)Vid, where v id > 1 (for example, v id ~ 1.5). 
Since ¢ id is proportional to (Hap - Hid) on the basis of wall velocity 
alone, the increase of np with Hap may account for the extra factor 
(H _ H. t id - 1 

ap ,d' . 
Under the assumption that ¢ id (t) is generated by minor wall 

displacements, the corresponding average wall area is unlikely 
to change significantly during the switching time; hence, ¢ id (t) 

should be essentially rectangular if these displacements were 
identical. However, since the length of the minor wall displace
ment is a random variable and since the wall velocities are not 
necessarily the same, the termination times of these displacements 
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will vary randomly among the walls. When a step Hap is applied, 
all np walls begin moving and generate ¢id; as one wall after 
another terminates its motion, ¢id(t) decays in an exponential-like 
manner. The time constant Tid associated with the ¢ id (t) decay is 
assumed to be inversely proportional to the average wall velocity; 
hence, Tid = Sii(Hap - Hid>' where Sid is a parameter. Thus, ¢id(t) 

generated by a step Hap is proportional to 

t t(H - H 'd~ (H H )Vid ap z 
ap -id exp-

Sid 

Suppose now that Ha W increases from zero to above Hid. Let-
p • 

ting Tid be the time when Hap reaches Hid (¢ id = 0 during 0 S. t S. Tid) 

and replacing Hap by F Il, then during t .2: Tid 

(12-75) 

where Aid is a constantofproportionaUty, Fid = Hid l , and Cid = Sidl. 

To a good approximation, Eq. (12-75) is applicable regardless 
of the rise time Tr and the shape of FW. Examples of constant-F 
drives with relatively short and long rise times are sketched in 
Fig. 12-19. As F increases with time, the term (F - F i/id tends 
to increase ¢id' while the exponential terms tends to decrease ¢idl 

as a result, ¢idW increases during Tid S. t S. Tr from zero to a peak 

FD~------r-----~--------~--~--~----

'" '" 

Case(t),Tr~Tr* --

Case (2). Tr ~ T; --

T idplll Tr(1) t-

Fig. 12·19. Sketched waveforms of ¢id(t) for two F(t) drives of the same 
amplitude F D', and different rise time T 7' 
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value ¢idp at t = T idp ' and then decreases. If the slope of F(t) is 
low enough, then T idp < Tr; ,otherwise, T idp = Tr • The shorter 
the rise time, the higher ¢idp; in the limit, as Tr -> 0, ¢idp -> 

v~ h ' Aid(F - F id) , , w ereas as Tr -> "", ¢idp -> O. 
In each of the examples in Fig. 12-19, FW rises linearly from 

zero to a constant value F D' The T r value that just coincides with 
the peaking time (when ¢id(t) = 0) can be shown to be 

GidVid F D 
T* =-----r 

2(F D :- Fid)2 

(12-76) 

Two cases are considered: if Tr .? T; (Case (1», then T idp ~ Tr and 

(12-77) 

(where e = 2.718 ••. ), but if Tr ~ T; (Case (2», then T idp = Tr and 
¢idp(2) is obtained by substituting t = Tr andF = FDinto Eq. (12-75). 

Although the values of Fid and G id have been assumed to be con
stant, there are actually functional dependences of F id on F and G id 

on T r' Recalling that Hid = Hth , we see from the probability
density function {(Hth) in Fig. 11-18 that as the magnitude Hap 
of a step Hap (t) increases from zero, Hid also increases from zero 
to an asymptotic value, denoted by Hidmax, which is in the neigh
borhood of H d min. Letting F id max = Hid max I, a function that satisfies 
this condition as well as the condition Hid ~ Hap is, for example, 

F'd = F'dmax tanh (~~ 
Z Z F max 

id 

(12-78) 

Let us next examine the effect of Tr on Gid • If a constant-F 
drive is left for a long enough time (theoretically, infinite time), 
then the flux change /l,.cPid(oo) = fooo ¢iddt increases with F D but is in
dependent of Tr • In order to obtain the dependence of /I,.¢id(oo) on 
F D' we substitute Eq. (12-78) into Eq. (12-75) and let Tid = T r = 0, 
that is, assume that FW = F D is a step function. We then find that 

(12-79) 
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Now, if Tr is considerably smaller than Tid' then /').¢id(ro) '" ¢idpTid' 

and since Tid '" G id/(F D - F id)' we obtain 

FD - Fid 
Gid '" /').¢id(ro) --.--

¢idp 

(12-80) 

Hence, for a given F D value, ¢idp G id '" constant, and since ¢idp 

increases as T r decreases, G id must decrease as T r decreases. 
According to Eq. (12-80), Gid depends also on F D' However, the 
increase of ¢idp with F D is such that ¢id/(F D - F id) may be ap
proximated by a constant for large F D values. This is evident 
from the illustrative plots in Fig. 12-20 of computed ¢idp versus F D 

for different Tr values, using the thin ferrite core of Table 12-1. 

20 

15 "'°0'7 flsec 

-- 0/ > 
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p""o.",,, ...... 
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Fig. 12-20. Computed ¢.dP vs. F D with T, as a parameter for a 
thin ferrite core (Table 12-1). (Nitzan, 1966.) 

(The ¢id(t) component is significant in connection with the 
signal-to-noise ratio of a coincident-current memory. Consider 
two essentially identical cores, one in an undisturbed one state 
(¢ '" ¢r) and the other in an undisturbed zero state (¢ '" -¢r). The 
difference between the ¢ outputs of the two undisturbed cores, 
generated by a partial-read pulse of amplitude near F dmin , is the 
so-called maximum delta noise. Since the difference in ¢/t> between 
the two cores is considerably smaller than ¢id(t) of the core driven 
away from saturation, this delta noise is essentially ¢ id (t). Applica
tion of a post-write disturb pulse before the partial-read pulse 
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decreases the delta noise appreciably by causing minor inelastic 
wall displacements to new stable positions, e.g., from Point R to 
Point W in Fig. 11-16(a). The longer the duration of this pulse, 
the larger the number of completed minor inelastic wall displace
ments, and thus the smaller the following delta noise. Further
more f previous partial-read and partial-write pulses also affect 
the delta noise by causing minor inelastic wall displacements in 
opposite directions. Since ¢id<t) is due primarily to domain-wall 
motion, one could possibly describe delta noise by incorporating 
the switching history into Eq. (12-75).) 

A Model jor Main ¢i(t). Referring to Fig. 11-18, the average 
threshold Hth corresponding to major inelastic wall displacements 
increases from a -yalue of H dmin to an asymptotic value as Hap in
creases above Hdmm• The corresponding number of walls , n(1- p)" 

increases with Hap because n increa~es and p decreases as Hap 

increases. Thus, as in the case of ¢id(t), the major component 
¢im(t) is proportional to (Hap - Hth)", where v? 1. However, unlike 
¢id(t), ¢im (t) is affected appreciably by a change in the average do
main-wall area versus time. According to Menyuk and Goodenough 
(1955), the domain-wall area increases in the early portion of 
switching, reaches a peak in the middle of switching (while do
mains collide with each other), and decreases with time toward 
the end of switching. The probability-density function of the 
domain SWitching time is more complex than in the case of ¢id(t) 

because it depends on domain collisions. Haynes (1958) extended 
Goodenough's work by calculating a model for ¢i(t) based on the 
assumption that nucleation centers (from where major wall dis
placements begin) are distributed randomly according to Poisson's 
distribution function. Independently, Lindsey (1959) caloulated a 
model similar to that of Haynes, except that he assumed the do
mains to be cylindrical. Models of this type were treated in a 
general way by Hilberg (1964). Eaoh of these models for ¢i(t) 

yields a reasonably satisfaotory agreement with experimental 
data. However, a parabolio ¢im(¢) model is preferred here 
simply beoause it offers better agreement with experimental 
data for many square-loop materials. Acoording to this model, 
¢im is proportional to a parabolic funotion of ¢, and reaohes a 
peak in the middle of switching. Qualitatively, therefore, the para
bolio model has the physioal features hypothesized by Menyuk and 
Goodenough (1955). 

Consider again the flux-switching experiment using a thin 
toroidal oore (Figs. 12-4 and 12-5). Typioal ¢ (¢) osoi11ograms 
for step-F switching of the thin ferrite core of Table 12-1 are 
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shown in Fig. 12-21 for amplitude values of 1.2 and 1.8 ampere 
turns. After approximately 15 percent of the total amount of 
switching is completed, ¢E'" 0 and ¢id« ¢im; thus, ¢(¢) '" ¢im(¢). 

In each case, the ¢im (¢) curve is extrapolated by a dashed line to 
the ¢ axis. The resulting overall ¢im (¢) curve is found to be very 
close to a parabola that intersects the ¢ axis at -¢r and at ¢d(F), 
where ¢d(F) (the static ¢(F) curve; see Fig. 12-17(b» may be cal
culated using the model in Eqs. (12-24). Similar parabolic ¢im (¢) 

oscillograms are typically observed for all values of F, except for 
very low F values, for ~xample, F ~ F c. Consequently, if F is 
larger, say, than Fc' then ¢im may be described by the differential 
equation 

(12-81) 

where ¢p (F) is the peak value of ¢im (see Fig. 12-17(a» for a given 
value of F. 

/ ....... 1\. / i\. 
H / \ ~ t J \ 

\V \ f1 \ 
1 \ \ 

.I '" 
-'I>r '1>+ 'l>d (F) -'I>r '1>+ 'l>d(F) 

(a) (b) 

Fig.12-21. ¢ (4)) oscillograms for step-F' switching of a thin ferrite core (Table 12-1). 
4> scale = 1.04 Mx/major div. (a) F' = 1.2 At; ¢ scale = 3.3 mV/t/major div. (b) F' = 1.8 
At; if, scale = 13.8 mV/t/major div. (Nitzan, 1966.) 

Experimental ¢p (F) data may be curve-fitted by several differ
ent functions, such as the ones shown in Fig. 12-22, where the 
curve is broken into four regions, i.e., 

0 for o < F < F min - - d (12-82a) 
, 

A'(F - F dmin)'/ for F min < F < F' (12-82b) 
¢p(F) 

d - - B 

A<F - F~t for ' < F < (12-82c) FB - - FB 

pp(F-Fo) for FB ~ F (12-82d) 
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pp( F -Fa) 

~pl 

'(F-F~')v 

\11 
,'(F_F min ( 'I I 

d I _II 
tan Pp 

0 
0 Fmin F" F' F: d 0 s 0 Fs F-

Fig. 12-22. Functions for ¢ p (F) curve fitting. 

where F d min is the static F threshold, F~ and F 0 are extrapolated 
values of dynamic threshold, F~ and F B are the F values at the 
boundaries between the ¢p (F) regions, A' and A are proportionality 
constants and v' and v are exponents for the nonl~near ¢p (F) re
gions, and Pp is the slope of the linear region of ¢p (F). For con
tinuity, the expressions for ¢p (F) and d¢p (F)/dF of neighboring 
regions must be equal at the borders F = F~ and F = F B' Con
tinuity at F = F~ imposes the relations 

v' 

and 

F' F min 
B - d 

v-----
F ' F" B - 0 

(v/v')V 
11.-------

(F' _ F min('-V 
B d 

and continuity at F = F B imposes the relations 

v 

and 

(12-83) 

(12-84) 

(12-85) 

(12-86) 
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These relations impose four constraints on the nine parameters in 
Eqs. (12-82). Hence, the values of only five parameters are 
needed to completely specify ¢p versus F • 

A computer program was developed for determination of the 
¢ p (F) parameters by least-me an-square curve fitting of Eqs. (12-82) 
to measured ¢p (F) data. The resulting curve fitting is illustrated 
in Fig. 12-23(a) for a commercial ferrite core at different tem
peratures. Since the resolution with a linear scale is poor at low 
F values, the results are redrawn in Fig. 12-23(b), using a semilog 
scale. 

The semiempirical model ¢im(F,¢) (Eqs. (12-81) and (12-82» 
is summarized graphically in Fig. 12-24. SWitching characteristics 
for three F values (F l' F 2' and F 3) are traced in the figure. For a 
given F value, the ¢d value is determined from Eqs. (12-24), and 
the ¢p value is determined from Eqs. (12-82). Knowing the value 
of ¢r' we can then plot the parabolic function ¢im versus ¢ of 
Eq. (12-81). 

------ ~P3 
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I'-------~_+::___-~ -t--+--
F, I I 

I'-------------+----~+ 
F2 I 

I 
I 

Fig. 12-24. Graphical relations among<Pd(F), ¢p(F) and¢im (F, <P). 
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The excess mmf in the region F' d min .:s F' .:s F'~ is so low that the 
variations in threshold during the switching time become signifi
cant. The assumption in Eq. (12-82b) that the mmf threshold in 
this region is constant may thus result in an appreciable error. It 
is more exact to replace F'dmin by the F' value on the static ¢(F') 
curve corresponding to ¢. If this modification is applied, then 
¢im (¢) is no longer parabolic and ¢ (() peaks at a value of ¢p (see 
Fig. 12-17) lower than the midpoint between -¢r and ¢d ' which 
agrees with observed behavior of certain ferrite cores. 

Fortunately, the model for ¢im (t) {Eqs. (12-81) and (12-82», is 
reasonably applicable even if the core is not thin (e.g., a toroid 
with r o/r i = 1. 6) and also for monotonic F' (t) functions other than a 
step function, though with some modification of the parameter 
values. The way to apply the model is to divide the switching time 
into small time intervals, at each of which ¢d<F') and ¢p (F') are 
computed from Eqs. (12-24) and (12-82); these values are then 
used to compute ¢im from Eq. (12-81). For a variable F'(t) function, 
the values of the switching parameters A, F'~, and other parameters 
of the same nature in Eqs. (12-82) are somewhat different from 
those for a step F' W. They are generally lower if F' (t) is mono
tonically increasing, and they are generally higher if F' W is mono
tonically decreasing. For example, as we shall see later in con
nection with Fig. 12-29, a good agreement with experimental data 
was obtained for a ramp function F' (t) = kt over a wide range of k 

(for example, 100:1) using fixed values of A and F'; that are 
lower than step-F' parameters by about 25 to 30 percent. 

Since the model for ¢im(t) is not restricted to step-F'(t) func
tions only, it may be used in computation of flux SWitching in 
square-loop core circuits in general. Such an application is dis
cussed in Sec. 12-6. 

Dependence of Main ¢i (t) on Other ¢ (t) Components. On the 
basis of the models for ¢aW, ¢EWW, and ¢id(t) (Eqs. (12-49), 
(12-59), and (12-75», these ¢W components are independent of each 
other. In contrast, the solution for ¢im W is dependent on the other 
¢ (() components because the required value of the flux ¢ in Eq. 
(12-81) is 

(12-87) 

where 

(12-88) 
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In the absence of these other components, the solution of Eq. (12-81) 
as it stands is absurd because, with nothing to change ¢<t> from its 
initial zero value, the core (or leg) would never start switching. 
Even if ¢E(t) were included, the resulting switching time could be 
unrealistically long because, without ¢id' the values of ¢im in the 
beginning of switching would be too low. 

The relative magnitude of each of the ¢ (t) components in the 
beginning of switching is illustrated in Fig. 12-25 for the thin 
ferrite core of Table 12-1, which was driven by an mmf pulse of 
amplitude F D = 2.22 Fe. The area under each waveform is the 
contribution of the corresponding ¢ (t) component to the increase of 
the total cp. It is evident from this example that the presence of the 
¢id(t) component is very important for the correct solution of 
¢im (t), and hence of ¢iW. The computed total ¢W was found to be 
very close to the experimental ¢ (t) waveform (Nitzan (1966». 
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Fig. 12-25. Computed ¢E' ¢id, ¢im' and if, vs. t during the beginning of 
switching ofa thin ferrite core (Table 12-1). (Nitzan, 1966.) 

Approximate Models for ¢i (t). For switching from cP = -CPr with 
F larger, say, than 2Fc' an approximate solution for [¢id(t) + ¢im(t>] 
may be calculated from Eq. (12-81) if CPr is replaced by cps. By 
making such a simple modification, the total inelastic ¢ W may be 
calculated from the approximation 
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(12-89) 

where ¢p (F) is the same as expressed in Eqs. (12 -82). With this 
model, the initial value of¢i isnotzero, and the switching proceeds 
even in the absence of the ¢EW components. Neglecting ¢EW, the 
¢i(t) waveform calculated from Eq. (12-89) closely resembles the 
waveform ¢i(t) = ¢idW + ¢im <t) calculated from Eqs. (12-75) and 
(12-81), as illustrated in Fig. 12-26 for a step F(t). 

Fig. 12·26. Resemblance between J, i( t) waveforms derived from different models for inelastic J, (t). 

The limitation of the model in Eq. (12-89) should be emphasized. 
For low F values (for example, F ;S F~ ), the contribution of ¢id(t) 
is not accounted for adequately by replacing ¢r by ¢s. In fact, for 
F ::; F dmin , Eq. (12-89) predicts ¢i = 0, since ¢p = 0 from Eq. 
(12-82a), whereas in reality, ¢i = ¢id > O. 

In many applications, F is suffiCiently high to make Eq. (12-89), 
in conjunction with ¢p (F) of Eq. (12-82), actually very useful. As 
with Eq. (12-81), Eq. (12-89) may be applied to compute ¢i<t) for 
an arbitrary monotonic F <t) function by computing the values of 
¢d(F) and ¢p (F) at each time interval. If F (t) is a step function and 
the contribution of ¢ E(t) to ¢ (t) is ignored, then the solution of 
Eq. (12-89), obtained by separation of variables,is 

¢s + ¢d(F) 
---- tanh 

2 

(12-90) 
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Differentiating Eq. (12-90) with respect to time, we obtain 

(12-91) 

Differentiating again and setting ¢i(t) equal to zero, we obtain an 
expression for the time at which ¢i reaches its peak value (see 
Fig. 12-17), that is 

(12-92) 

A further simplification in the model of ¢ i may be achieved if 
F is high enough to replace ¢ d (F) by ¢ s' for example, if F > F 3 in 
Fig. 12-24. Under this condition, Eq. (12-89) reduces to 

(12-93) 

We shall show later that under certain simplifying assump
tions, Eq. (12-93) may be applied to manual computation of in
elastic flux switching. In general, however, utilization of the 
flux-switching models presented in this chapter requires the use 
of a digital computer. In the following section we discuss the 
methods of computation involved in employing these models in 
computer analyses and compare some computed results with 
experimental data. 

12-6 Computation of Flux Switching in 
Magnetic-Core Circuits 

We now wish to apply the switching models to computation of 
flux switching in magnetic-core circuits. Both the complexity and 
the repetitious application of the switching models dictate numeri
cal computation by digital computer. Simple numerical methods 
that are suitable for this purpose will be illustrated by applying 
these methods to computation of flux switching of an unloaded core 
and a core loaded by different combinations of R, L, C, and a diode. 
We shall also derive from the main inelastic parabolic ¢ (¢) model 
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an approximate relation which is amenable to manual computation 
of flux switching. 

Unloaded Core. Consider an unloaded core whose flux is 
switched from -¢r toward positive saturation by an applied mmf 
F (t). The objective is to compute ¢ (t) and ¢ (t) and compare the 
results with experimental data. 

Let us temporarily make two simplifying assumptions: 

1. F is high enough to justify the use of Eq. (12-89) in com
putation of ¢ i (F, ¢). 

2. The elastic ¢ (t) component is negligible. 

On the basis of these assumptions, ¢ ~ ¢i and, since F is a function 
of time, ¢ is described by a first-order nonlinear differential equa
tion of the form 

¢ = ¢(t, ¢) (12-94) 

where t is an independent variable and ¢ is a dependent variable. 
We divide time t into small /',.t intervals and solve Eq. (12-94) 
numerically. There are several known methods of numerical 
solutions of differential equations (see, for example, Milne (1950); 
Scarborough (1950». For this problem, the following simple 
predictor-corrector method is adequate. 

For generality, let us replace ¢ by Y and look for the solution 
of the first-order differential equation y = y(t,y). Designating each 
variable by a subscript representing the time-interval index, con
sider the nth interval (t = tn) and suppose that the values of 
Yn-2' Yn-2' Yn-l' and Yn-l have already been determined. We now 
wish to compute Yn and Yn• As a first step, an approximate value of 
'Y n is predicted using the relation 

(12-95) 

We now compute Yn = y(tn'Yn) and correct Yn using the relation 

Yn+Yn-l 
Yn = Yn-l + /',.( ----

2 
(12-96) 

which is closer to the correct Yn value than the relation in Eq. 
(12-95). The last two steps (in which Yn and Yn are computed) are 
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repeated until convergence is achieved, i.e., the change in Yn (or 
Y n) is negligible. This predictor-corrector process is repeated 
for succeeding LWS until the end of switching, which we define as 
the time T s when ¢ <t) approaches ¢ d to within a small interval (for 
example, 0.001 ¢r) and hence, ¢ "" O. 

The smaller the value of /).t, the more accurate the results; 
however, the cost of computation may be higher. One way to de
termine /).t is to repeat a typical portion of the computation, using 
decreasing values of /).t, until the changes in the results are 
negligible. For some cases it is found that /).t should be below 
two percent of Ts. If M is chosen well below this empirical value, 
for example, /).t = T /200, then only a rough estimate of T s is needed 
in order to determine M. An alternative and more efficient way is 
to adjust /).t automatically in accordance with the number of itera
tions at the previous /).t. 

Assuming that T s is the switching time corresponding to 
/).¢ = 2¢r "" 1.8¢s' an adequate estimate for Ts may be obtained by 
substituting Eq. (12-93) into the relation l~d¢ = Jo's¢idt, from 
which we find that ' 

£ Ts ¢ (F)dt '" r¢' d¢ '" 3.25¢r (12-97) 
o p }-¢, 1 - (¢l¢s)2 

where ¢p (F) is given in Eqs. (12-82). For a step FW, ¢p (F) is not a 
function of time, and hence Eq. (12-97) yields 

3.25¢r 

¢p (F) 
(12-98) 

For a ramp function F = kt, evaluation of the integral in Eq. (12-97) 
is more complex because switching may occur while F increases 
from F d min through the three regions of ¢p (F), Eqs. (12-82). 
However, since T s need not be determined accurately, we shall 
consider only the middle ¢p (F) region. We thus assume that 
switching starts at to = F~/k, and by substituting ¢p (F) = ,.\ (kt _ F~)v = 

AF<t - to)v into Eq. (12-97), the approximate sWitching time is 
found to be 

1 

T s,ramp [
3.25(V + l)¢r]V+l 

Akv (12-99) 

Note that switching terminates at t = to + T S ,ramp' 
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Now that we have outlined the steps of computation of inelastic 
flux switching, let us remove Assumption (2) and include the 
elastic ¢ (t) component as well. First consider the case in which 
the rise of F(t) justifies the use of Eq. (12-63), that is 

(12-100) 

Since F and f may vary in time, this first-order differential equa
tion will be solved numerically. Here, again, we may use the 
simple predictor-corrector method represented by Eqs. (12-95) 
and (12-96). 

If the rise time of F(t) is very short (of the order of 1 nano
second), then ¢E(t) should be computed from Eqs. (12-49) and 
(12-59), each of which is of the form 

(12-101) 

In general, any differential equation of the nth order may be re
duced to a set of n first-order differential equations by introduc
ing (n - 1) dummy variables (see Milne (1950)). For the second
order differential equation under discussion, we introduce the 
dummy variable v E such that 

(12-102) 

and Eq. (12-101) becomes 

(12-103) 
1) 

Equations (12-102) and (12-103) are a set of two first-order 
differential equations that may be solved for vE and ¢E at each nth 
f\..t interval by using Eqs. (12-95) and (12-96). First, vEn is pre
dicted using Eq. (12-95) and then, since ¢En = vw ' the value of ¢En 
is predicted using Eq. (12-96). At each iteration cycle, vEn and vEn 

are computed from Eqs. (12-103) and (12-96) and ¢En and ¢w are 
computed from Eqs. (12-102) and (12-96). These iterations are 
repeated until convergence is achieved, and t is stepped up by f\..t. 

We finally remove Assumption (1), and compute ¢id(t) from 
Eqs. (12-75) and (12-78) and ¢im (t) from Eqs. (12-81) and (12-82). 

Computation of ¢(t) and ¢(t), on the basis of the selected 
switching models and the predictor-corrector method, is readily 
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performed on a digital computer. Since the same switching model 
may be applied in different computer programs, or several times 
within a given program, the steps of computation involved in this 
model are usually written as a separate "subroutine" or a "pro
cedure" that is "called" within the main program. 

Experimental verification of the model for each of the ¢ (t) 
components requires that the other components be relatively 
small. Experimental and computed results are compared in 
Fig. 12-27 for positive switching from cP = -CPr of the thin ferrite 
core of Table 12-1, using step-F drives and time durations chosen 
such that ¢E(t) followed by ¢id(t) are the predominant components. 
A similar comparison is made in Fig. 12-28 using step-F drives 
and time durations such that ¢im (t) is predominant. Note the wide 
range of F, from 0.8 to 20.0 ampere-turns, in which the switching 
models yield a satisfactory agreement with experimental data. 

--.i_ HH--+---+----+-+-+-t---I 
2.5mV/t 1'-_ 

-r-
1-.l-0.51's 

(a) Tr =62ns; Fo=0.8At 

--'---
5mV/t .-

Iii 
it 
~ r--1--

~O.ll's 

(b)Tr=13ns; Fo=1.18 At 

ofwt.· t -

I-l- 5 ns 

(c) Tr =O.4ns; Fo= 1.5At 

Fig. 12-27. Experimental (dotted or solid line) and computed (dashed line) 1> (t) waveforms ofa thin 
ferrite core (Table 12-1) in the beginning of switching using different step-F(t) drives of 10-90% rise
timeT r and amplitude F D which emphasize ¢E(t) and ¢id(tl. 
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I~JffiBl 
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Fig. 12-28. Experimental (dotted or solid line) and computed (dashed line) ¢ (t) waveforms of a thin 
ferrite core (Table 12-1) switched fully by different step-FIt) drives of 10-90% rise-time T rand 
amplitude F D. 

Experimental ¢<tl and computed ¢i(t) waveforms of switching 
caused by ramp FW, F = kt, are compared in Fig. 12-29 for thin 
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(a) Thin core (OD/ID = 1.06): k = 3.58 Ati/lsec; T = 29 ±0.5°C. Core 
parameters are given in Table 12-1. 
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(b) Thick core (OD/ID= 1.61): k = 0.8575 Atl/lsec; T = 30 ± 0.5°C. 
Core parameters: 'i = 1.143 mm; '0 = 1.84 mm; A = 1.244 mm2; cPr = 
31.0 Mx; cPs = 33.48 Mx; Ha = 250.0 At/m; Hq= 26.0 At/m; Hn = 22.5 
At/m; Fe = 0.28 At; Fa = 0.27 At; v = 1.43; A = 1.64nt-2. 43A- 0.43; 

Fo = 0.55 At; Pp = 2.27 UN; FB = 1.2 At. 

Fig. 12·29. Experimental and computed¢, (t) waveforms oframp·Fswitching (F = kt) 

of ferrite cores. Waveform A - Computed, using step·F values of A and pp. Wave
form' B - Computed, using A and Pp values which are a fraction (75% in (a); 70% in (b» 
of step·F values and shifted to the left (by 0.04 f.Lsec in (a); by 0.15 f.Lsec in (b». 
(Nitzan, 1965.) 
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and thick ferrite cores. For either case, the computed peak value 
of ¢ is higher than the experimental value if step-F switching 
parameters are used (Waveforms A). However, very good agree
ment is obtained for both cores (Waveforms B) if A. and Pp are 
lowered by 25 to 30 percent and time shifts of about 0.1 T S are 
introduced. These time shifts are significantly reduced by lower
ing the values of F~ and Fo as well. 
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Loaded Core. The switching behavior of a core with re-
sistive, inductive, and capacitive loads is analyzed in Chap. 1, 
using a very crude switching model. We now wish to apply the more 
sophisticated switching models of this chapter to such cases. 

Fig. 12·30. Flux switching in a loaded core. 

In Fig. 12-30, a core is coupled by NL turns to resistance Rv 
inductance L, capacitance C , and a p-n junction diode, all in series. 
The core is switched by drive-mmf NDiD(t) from cP = -CPr toward 
positive saturation. We wish to compute the various time variables 
during the switching time, and compare ¢ (t) and the load current 
iL (t) with experimental waveforms. 

The net mmf acting on the core is 

(12-104) 

The resulting ¢ is a function of F and cP, but since F is a function 
of iD and i L , and since iD is a given function of time, ¢ is a function 
of t, iL , and cp, formally expressed as 

(12-105) 

(12-106) 

where V pn is the voltage across the diode. 
Ignoring the diffusion and junction capacitances of the diode 

(cf. Gray et al. (1964); Searle et ale (1964», we use the model 

(12-107) 

where R d is the forward resistance ofthe diode, I sd is its saturation 
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current, and 

0.86 . 10-4 Trnd (12-108) 

in which k is the Boltzmann constant (k = 1.381 • 10-23 joule/oK), q 

is the charge of an electron (q = 1.602 • 10-19 coulomb), T is the 
absolute temperature in oK, and rnd is a factor which varies be
tween 1 and 2, depending on the junction type. 

Substituting Eq. (12-107) into Eq. (12-106) and letting R = 

RL + Rd ,we obtain 

:~JJ (12-109) 

where 

(12-110) 

Equations (12-105), (12-109), and (12-110) are a system of three 
simultaneous first-order differential equations in which t is an 
independent variable and ¢, iL , and q are the dependent variables. 
The solution of these time variables may be obtained numerically 
by using Eq. (12-95) and (12-96) or any other predictor-corrector 
method. 

If L = 0, then diL/dt cannot be expressed explicitly as in 
Eq. (12-109). Instead, the loop equation becomes implicit, i.e., 
transcendental, in iL 

Regardless of whether a diode is present or not, the loop equation 
is transcendental in iL because 1> (Eq. (12-105» is a function of iu 
Thus, at each iteration, while using the predictor-corrector equa
tions for evaluating ¢ and q, Eq. (12-111) is solved transcendentally 
for the root of iu If we use the Newton-Raphson iterative method 
(see Henrici (1963», then iL at the jth iteration is corrected 
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f<iL,j_l) 
iL,j-l -

(<iL,j-l) 
(12-112) 

where ('(iL) = df<iL)/diL' Differentiating Eq. (12-111) with respect 
to i L' we obtain 

r<iL ) ..!.. ~ + R + 8md + NL 2 a¢ (12-113) 
C diL/dt iL + Isd aF 

where a¢/aF is obtained by differentiating the ¢ (F, ¢) model 
(Eqs. (12-66), (12-89), (12-82), and (12-24» with respect to F. 
The Newton-Raphson method (Eq. (12-112» is powerful because 
it is characterized by quadratic convergence, i.e., the relative 
error at the jth iteration is the square of the one at the (j - l)th 
iteration. However, there is the danger that a low IrUL,j_l)lmay 
result in a divergence from the correct solution. Also, the cor
rection at the jth iteration following Eq. (12-112) will not neces
sarily yield the fastest convergence. If the convergence turns out 
to be oscillatory and too slow, then taking half of the change in i L 
prescribed by Eq. (12-112) will often yield the proper convergence 
within very few iterations. In general, convergence is guaranteed 
in a region where certain conditions are satisfied (see Henrici 
(1963». 

A computer program for computing the time variables may be 
written directly on the basis of these numerical methods. For 
example, using the ¢i<t) model in Eq. (12-89) with step-F param
eters and neglecting ¢E (t), computed waveforms of ¢ (t) and iL (t) 

with different step-F drives and different loads are compared with 
experimental oscillograms in Fig. 12-31 for the same thick core 
used in Fig. 12-29(b). In judging the agreement between the com
puted and the experimental waveforms in Fig. 12-31, one should 
keep in mind that step-F switching parameters were used in the 
computation, although the net F <t) of the loaded core was not con
stant because of variations in load current. The variation of com
puted ¢ versus F during switching is shown in Fig. 12-32 for each 
of the load cases. The time interval between any two adjacent 
marked points is constant for each curve. The resulting S-shaped 
¢ (F) curve is characteristic of a loaded core and may be observed 
even if the drive current iD <t) is a ramp. Typical effects of induc
tive and capacitive loads on ¢ during the switching time may be 
observed in Figs. 12-31 and 12-32: ¢ peaks early with an inductive 
load, and late with a capacitive load, as expected. 
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L =0.38I'H; C = 0.253I'F. 

(I) Nolo= 1.80 At; 

NL=2; R.L=0.131.o.; 

L=0.38I'H ;C=0.253I'F; 
lN3604 diode. 

Fig.12·31. Experimental (solid line) and computed (dashed line) ¢ (t) and iL (t) waveforms of a 
thick ferrite core (OD/ID = 1.61) switching with different loads and amplitudes NDID of step-F 
drive. Time scale = 0.5 f.Ls/div; ¢ scale = 0.5 V/i/div;iL scale = 0.5 A/div. (Nitzan,1965.) 
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Fig, 12-32, Variations of ¢ vs. F during the switching time, corresponding to the load cases in Fig. 
12-31 (Nitzan, 1965), 

Voltage Drive. Although flux switching has so far been based 
on evaluation of ¢ for given values of fr, F , and ¢ , in many appli
cations a core is driven by a voltage source rather than a current 
source, and there is a need then to compute the corresponding 
net magnetizing current. However, the same switching models 
used so far are applicable for computation of F' for given fr, ¢ , and 
¢. This is so because the functional relationship among the four 
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variables F, F', ¢ , and ¢ is the same regardless of which variable 
is solved for. However, since F' is implicit in the switching model 
(see Eq. (12-89)), computations of F' for given F, ¢, and ¢ must be 
performed transcendentally. 

Average «Switching Resistance." The switching models pre
sented so far are too complex to be applied manually. Quite often, 
however, a manual calculation of a rough approximation of flux 
change 1'1.¢ is very helpful. This need may arise when either a 
computer is not available, or if the circuit analysis is to be per
formed algebraically, or if only a rough estimate of the switching 
performance is needed. On the basis of the simplified parabolic 
model for ¢;(¢) (Eq. (12-93)) we shall now derive a relation that 
enables us to perform such a manual calculation. This relation is 
adequate for computing the net flux change 1'1.¢ but not the ¢ (t) 
waveform. Since the net ¢E is usually negligible compared with 
the net 1'1.¢;, we shall neglect ¢E and identify ¢i alone with ¢. 

Consider a core (or core leg) that is switched from an initial flux 
¢o = -¢r to some final flux ¢r by a net mmf F'<tl of arbitrary wave
form, and suppose that during most of the switching time, F' :c F' B 

(Eq. (12-82d)). The flux switching may become flux-limited by 
saturation, in which case it is complete and ¢r = ¢s' or it may be 
time-limited, in which case it is partial and ¢o < ¢r < ¢s' Let r s 

denote the switching time in either case. Since F':C F' B' then 
¢pW) = PpW - F'o), and Eq. (12-93) becomes 

¢ = p (F' - F' 0) (12-114) 

where 

(12-115) 

Since the units of ¢ and F' are volt/turn and ampere-turn, re
spectively, p is regarded as "switching resistance per· turn 
squared." Defining 

~ = (~) _ 1 [cPf(l)d¢ 
p P av ¢r - ¢o cPo P 

(12-116) 

then p is the average value of p during the switching time. Sub
stitution of Eq. (12-115) into Eq. (12-116) gives 
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P = (12-117) 
[<PI d¢ 

<Po pp[l - (¢!¢s)2] 

which provides a means for computing p over the flux change 
;\,.¢ = ¢r - ¢o· Assuing in Eq. (12-117) that ¢o = -¢r' then pversus 
¢r is found to be 

(¢r/¢) + (¢/¢s) 
P = Pp ----------

tanh-1 (¢r!¢s) + tanh-1 (¢/¢) 
(12-118) 

To see how to use p, note that from Eq. (12-114) we obtain 

[ <PI 1 iTS 
- d¢ = (F - F 0) dt 

<Po P 0 

(12-119) 

and from Eqs. (12-116) and (12-119) we obtain 

(12-120) 

where F ex = F - F 0 is the excess mmf and F ex is the average value 
of F ex over the switching time. (Note that Eq. (12-120) is identical 
with the crude flux-switching model, Eq. (1-8), used in Part 1.) 
Thus, in order to calculate the flux change due to a given mmf drive, 
we calculate p from Eq. (12-118) and multiply p by the "excess 
charge-turns" Fex T s. However, since p itself is a function of ¢r' 
the solution for ¢r is transcendental, and may require a few 
iterations. 

On the basis of Eq. (12-118), plots of p/pp versus ¢r!¢s are 
shown in Fig. 12-33 for three assumed ¢/¢s values: 0.84 (dashed 
line), 0.90 (solid line), and 0.96 (dashed line). Each plot is shown 
in the region where Eq. (12-118) is valid, i.e., where -¢r 'S ¢r 'S ¢s. 

Knowing the values of ¢/¢s' Pp' and FexTs' then ¢r may be deter
mined graphically instead of by the transcendental solution men
tioned above. An example is shown in Fig. 12-33 for ¢/¢s = 0.9 
(which is a reasonable value for many common square-loop fer
rites) and FexTs = 2¢/pp • The resulting value of ¢r/¢s cor
responds to the intersection point (open circle) of the curve 
p/pp versus ¢r!¢s (Eq. (12-118» and the straight line p/pp = 

[¢r + ¢ s (¢r!¢ )]j(pp F ex T s) (Eq. (12-120». 
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Note in Fig. 12-33 that for ¢/¢s = 0.9, p/pp reaches a maximum 
value of 0.695 (marked by x) at ¢r ~ 0.55¢s. If "efficiency" of flux 
switching is measured by the flux change due to a given quantity of 
charge-turns, then this pOint corresponds to the most efficient 
flux switching. As ¢/¢s increases from 0.84 to 0.96, the maximum 
value of p/pp decreases from 0.75 to 0.59 while the corresponding 
¢,I¢s value increases from 0.50 to 0.64. 

For ¢/ ¢ s = 0.9 and essentially full sWitching (¢r = ¢r)' we find 
that P = 0.61lpp (see the point marked by a square in Fig. 12-33). 
This result allows us to determine the average full-switching re
sistance from the slope Pp of the linear portion of the measured 
¢p(F) plot (Fig. 12-22). The value of P corresponding to ¢r = ¢r 
may also be related to the switching coefficient 

F - Fa 
Sw = (Hap - Halr = --- r sIs (12-121) 

where r s is the full-switching time under constant-F drive (see 
Fig. 12-16{a)), and I is the average SWitching-path length. Sub
stituting Eq. (12-121) and A¢ = 2¢r into Eq. (12-120), we obtain 
the relation 

(12-122) 
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The notion of average SWitching resistance is very useful in 
qualitative understanding of flux switching in complex magnetic
core circuits" Thus, with this section we reach full circle since 
the notion of average switching resistance was introduced in 
Chap. 1, and all of Part I relied on this simplifying notion. The 
reader was thus spared the necessity of treating complex core 
models while being introduced to circuit principles and techniques. 

12-7 Summary 

Flux ¢ and mmf F of each leg in a multileg core depend on the ¢ 
and F of other legs according to two rules: (1) along a closed path 
of E legs enclosing m windings, ~~=1 Fj = ~~=1 N k ik , and (2) in any junc
tion of n legs, ~7=1 ¢j = 0 (hence, also ~j=l ¢j = 0) .. Flux-switching 
models (the functional relationships among ¢' ¢, F, F, and t) for a 
leg are based on experimental results of flux switching in ferrite 
cores using constant-F drives. The models encompass the static 
¢(F) curve and the elastic and inelastic components of ¢<tl. 

The saturation and nonsaturation regions of a static M (H) curve 
for ferrites are described by two hyperbolic functions. Integra
tion of these functions over the leg cross section yields expres
sions for a three-region static ¢(F) curve, ¢d(F). This model can 
be modified to handle discontinuous static ¢ (F) curves resulting 
from "re-entrant" Md(H) curves. 

The elastic component of ¢(t), namely ¢oW. has two sub
components: a high-ampli~ude spike ¢u<tl due to rotation of 
magnetization, and a low ¢ow(t) tail due to domain-wall motion. 
Each component is described by a second-order differential equa
tion of the form ¢t + o¢o + 71¢o = EF (initially, ¢o = 0 and ¢E = 0). 
For ¢ EW (t), this equation results directly from the stiffness, 
viscous damping, and mass of an average domain wall. The 
solution of ¢ u<tl for a step F (t) is consistent with the Landau
Lifshitz and Gilbert equations. For either ¢o component, ¢o + o¢o = 

of if T r » 71/0 (for example, Tr > ;5 nsec), where T r is the ri~e ti~e 
of F(t), and if also Tr » 0 (for example, Tr> 65 nsec), then ¢o = of.~ 

The overall E peaks near ¢ = 0 and increases with the speed of pre
vious switching, but for \ ¢ \ > ¢r along the saturation regions, 
E = d¢d(F)/dF. 

Two components of inelastic ¢ (t) are distinguished: a decaying 
minor component ¢id(t) due to minor inelastic wall displacements 
of essentially constant wall areas, and the bell-shaped main com
ponent ¢im (t) due to major inelastic wall displacements (involving 
domain collisions) whose wall areas vary in time. Assuming that 
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initially ¢ = -¢r' the semiempirical models proposed for these 
components are 

where It id' F id' v id' and C id are switching parameters, and the non
linear differential equation 

where ¢p(Fl is the peak of ¢im(t) fora given step F(t), and where¢d 
is the static ¢ versus F. ExpressIOns are proposed for a four-region 
¢p(Fl curve fitting. For F.<. 2 Fe , where Fe is the coercive mmf, 
approximate ¢i may be obtained from the ¢im model above by re
placing ¢r by ¢s' Using this composite ¢i model for a step F(t), 

the solution ¢i(f) is a sech2 function of time. The ¢i models are 
also applicable for arbitrary monotonic F (f) functions encountered 
in square-loop-core circuits, e.g., a ferrite core driven by step 
or ramp F(t) and loaded by different combinations of R, L, C, and 
a diode. Such application requires the use of a digital computer, 
and involves numerical methods of integration and transcendental 
solutions of dependent variables for each increment of switching 
time T s' Experimental verification is given for a wide range of 
amplitude and different net F(t) waveforms. If an applied step F(f) 

is sufficiently high to drive the core into saturation, then ¢d = ¢s 
and the ¢ i model is further simplified to ¢ i = P (F ~ F 0 l, where 
P = p p [l ~ (¢!¢Yl and Fo is the threshold for high F. A calcu
lated time-averaged p for switching from ~¢r to ¢r is 

where ur = ¢/¢s and ur = ¢/¢s' For full switching, ur = ur = 0.9, 
and p = 0.61 Pp = 2¢/(Swll. where I is the average switching path 
and Sw = (H ap ~ Hol T s is the switching coefficient. Manual calculation 
of flux switching is based on the relation 11¢ = pF ex T s' where 
F ex = F ~ F 0 is the net excess mmf. The p model is the crude 
switching model used throughout Part I. 
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AC readout, 113, 239 
Adjacent-bit interaction (see Interaction of 

adjacent bits) 
Advance-circuit design, 121-124, 245 
Air flux: 

calculated, 298, 309 
experimental, 312-313 
leakage, 142 

Ampere's law,S, 68, 256, 288 
Analog signal switching, 113 
AND functions, 222, 226-228, 243 
Angular momentum: 

atomic, 260-261 
of electron: orbital, 257 

quantization of, 258 
spin, 258-259 

Anion, role in superexchange, 262 
Anisotropy: 

crystalline: of cobalt, 269, 273 
constant, 269, 315 
cubic, 269 
of iron, 269 
of nickel, 269 
of permalloy thin film, 269 
uniaxial, 269, 270 

shape, 270 
strain, 270 

Anisotropy constant, 269, 315 
Anisotropy field, 270-271, 276 

cubic, 271 
uniaxial, 271 

Antiferromagnetism, 262-263 
Applied magnetic field: 

effect on domain walls, 278 
effect on rotation of magnetization, 276, 

301-303 
pulse-duration effect, 283-284 
switching-time effect, 317 

Atomic angular momentum, 260-261 
Atomic ground-state rule, 261 
Atomic magnetic moment, 260-261 
Atomic shells, 260 
Atomic subshells, 260-261 
Average switching resistance (see Switch

ing resistance, average) 
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Backward decoupling, 32, 38 
back-to-back diodes, 39 
orthogonal modes, 181 
shunt diodes, 39 
three-phase system, 40-41 

Balanced network, 66 
(See also Magnetic network representa

tion) 
Barkhausen noise, 280 
Basic three-phase scheme: 

for bipolar logic, 233-234 
conversion to dynamic bias, 183-185 
derivation by Van De Riet technique, 155-

157 
Newhall bipolar version, 192-194 

Bias mmf: 
to adjust flux gain, 26, 58 
combined static and dynamic, 186 
to overcome threshold, 20 
(See also DYnamic bias; Holding mmf; 

Threshold logic) 
Biax element, 176, 178 

(See also Multileg-core circuit applica-
tion) 

Bidirectional shifting, 41-43, 61 
Binary counter, 245 
Binary pattern, 31-32, 152 
Binary scaler, 245-246 
Binary shift register: 

basic structure of, 31-32 
as a simple logic structure, 220 
use of complementary registers,194-197 

Bipolar flux clipping, 194 
Bipolar flux transfer, 34, 192-194 

derivation from complementary regis
ters, 194-197 

logic synthesis, 231-234 
unipolar to bipolar converSion, 197 

Biquinary representation, 237 
Bit length of a register, 152, 153 
Bit rate (see Shifting rate) 
Bitter technique, 273-274 
Bloch walls, 207, 271 

(See also Domain walls) 
Bohr magnet on, 259 
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Boltzmann constant, 339 
Bridge networks, 228-230 
Briggs-Lo scheme, 54-56 

Engelbart reduction of, 56, 158 
Briggs scheme, 48-49 

Capacitor: 
loading a core, 12-15,338-342 
(See also Core-capacitor scheme; Core

diode-capacitor scheme) 
Cations: 

in ferrites, 265 
interaction between, 262 

Cells, register, 31-32 
Centers of domain nucleation, 316-317 
Central-conductor winding, 288, 291-292 
Charge-turns, 119, 122,344 
Circumferential H, equalization of, 288, 

289 
Clear current pulse, 291-294 
Clear mmf pulse: 

experimental, 291-294 
requirements, 292 

Clear state, 38, 53, 69, ISO, 185 
Clocking arrangements (see Implicit drive 

phases; Pumping clocks; Single
clock schemes; Subclocks for fan
out; Three-phase schemes; Timing 
clocks) 

Closure domains, magnetic, 272-273 
Cobalt anisotropy, 269, 273 
Coefficient: 

magneto stricti on, 270 
switching, 120, 141,317 

Coercive force, 283, 293-294, 296 
Coercive mmf, 293-294 
Coherent rotation, 199-202,315-316 

(See also Flux gain and loss mechanisms) 
Collision of domain walls, 280, 316, 324 
Combinational logic (see Digital logic) 
Common-mode flux, 185 
Complementary shift registers, 194-197 
Complex networ!<, 149 
Components of </>(t): 

elastic, 301, 311-314 
(See also Elastic flux Switching) 

inelastic, 319-332 
(See also Inelastic flux switching) 

interdependence of, 329-330 
Computation of flux switching, 332-346 

differential equations, numerical solu
tion, 333-335, 339 

elastic switching, 335 
experimental verification: loaded core, 

340-341 
ramp F(t), 329, 337 
step F(t). 336 

inelastic switching, 333-337 
loaded core, 338-342 

equations, 338-340 
experimental verification, 340-341 
S- shaped </>(F) , 340, 342 

manual, 343-346 
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Computation of flux switching (Continued) 
Newton-Raphson method, 339-340 

modification of, 340 
predictor-corrector method, 333-335 
switching reSistance, average, 343-346 
switching time, 334 
time step, 333-334 
trapezoidal integration, 333 
unloaded core, 333-337 
voltage drive, 342-343 

Constant: 
anisotropy, 269, 315 
Boltzmann's, 339 
gyromagnetic, 257 
magneto stricti on, 270 
Plank's, 258 
SWitching, 120, 141, 317 
viscous damping: domain-wall motion, 

306 
rotation of magnetization, 275-277,304, 

314 
Constant-p' model (see Switching resistance, 

average) 
Core: 

coupling, 149, 181 
equalization of H, 289 
equivalent, 73-74 
holder, 292 
loading (see Core loading) 
loop, 149 . 
modeJs (see Elastic </>(t) models; Inelastic 

</>(t) models; Static </>(F) models) 
multileg (see under Multileg core) 
saturable, 290 
shaping (see Multileg-core design; Shap-

ing of a core leg) 
single-leg, 287,291 
Switching model (see Switching models) 
tape-wound, modeling, 286-287 
thin (see Thin ferrite core) 
three-leg saturable, 290 
threshold (see Threshold mmf) 
torOidal, thick, 337 

thin (see Thin ferrite core) 
unloaded, 333-337 

Core-capacitor scheme, 41-43 
Core-diode-capacitor scheme, 43-44 
Core-diode schemes, 38-41 
Core loading: 

by another core, 17-29 
capacitance, 12-15 
effect on flux gain, 23-25 
inductance, 9-12 
magnetic-network representation, 70-72 
quantitative analysis, 338-342 

equations of, 338-340 
experimental verification of, 340-341 
S- shaped </>(F), 340, 342 

reSistance, 8-9 
Core models: 

~lastic. ~(tl (see Elastic ¢(t) .models) 
Inelastic </>(t) (see Inelastic </>(t) models) 
simplified (see Switching reSistance, 

average) 
Core shaping (see Multileg-core design) 
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Core threshold (see Threshold mmf) 
Core-wire circuits, resistance-type, 

45 
higher tolerance capability of, 106 

Core-wire schemes: 
Briggs, 48-49 
Briggs-Lo, 54-56 
Dick and Doughty thin-film, 202-204 
Dick and Farmer thin-film, 204-205 
difference between resistance and non-

resistance, 45 
Engelbart orthogonal mode, 181-182 
Engelbart reduction of Briggs-Lo, 56 
Engelbart reduction of MAD-N, 87,161 
flux-doubler (see Flux-doubler schemes) 
MAD-N (see MAD-N scheme) 
MAD-R (see MAD-R scheme) 
Mina and Walters NRR, 210-212 
Newhall bipolar, 192-194 
with no core-diode equivalent, 49-50,111 
non-return-to-reference (NRR), 209-210 
Russell type I, 107, 161 
Russell type II, 50 
Smith thin-film, 207-208 
Stabler reduction of MAD-N, 87 
three-phase, basic (see Basic three-phase 

scheme) 
Van De Riet double-speed, 163 
Yochelson, 161-163 

Coupling of moments: 
atomic, 262 
L-S.260 
Russell-Saunders, 260 

Coupling core, 149, 181 
Coupling-loop design: 

basic MAD-R register, 116-121 
MAD-R logic Circuits, 241-245 

Coupling-loop inductance: 
effect on flux_transfer ratio, 23 
elastic flux clipping, 35-36 
in MAD-R design, 120-121, 241-244 
magnetic network representation, 70-71 
use of strip transmission lines, 199-200, 

235-236 
Coupling-loop resistance: 

effect on flux-transfer ratio, 19-21 
functional replacement by a core, 50 
in MAD-R design, 120-121, 241-244 
magnetic network representation, 70-71 
in resistance-type schemes, 48 

Crystal: 
cubic, 269 
deformation of, 270, 272 

Crystalline anisotropy (see Anisotropy, 
cry stalline) 

Cubic crystal, 269 
Curie temperature, 263-264 
Current: 

atomic, 256 
central, 292 
clear, 291-294 
generating mmf, 5, 287-290 
load, 338-341 
magnetic, 71 
pulse, interrupted, 319 

with short rise time, 312-313 

Current (Continued) 
test, 292-294 
true, 256 
(See also Magnetomotive force) 

Curve: 
€ vs, F, 309 
€ vs, r/J, 310 
G(A1» (see Flux-gain curve) 
IITs vs, Hap, 317 
peak qecaying r/J vs, F, 324 
peakM vs, Hap, 317 
peak ~ vs, F, 325-328 
1> vs, r/J, 325 
r/J vs, F, dynamic, 342 
range (see Range map) 

357 

static M(H) , 266, 282-283, 295-296 
static r/J(F) , 293, 298-300 

Curve f,tting: 
peakr/Jp (F) data, 327-328 

static r/J( F) data, 299 

Damping, viscous: 
domain-wall motion, 306 
rotation of magnetization, 275-277,304, 

314 
dc drive (see Implicit drive phases) 
Decaying ep(t): 

model for, 320-323 
relation to delta nOise, 323-324 
relative magnitude, 330 
verification, 336 

Decimal arithmetic unit, 234-239 
Decoupling (see Backward decoupling; For-

ward decoupling) 
Deformation of crystal, 270, 272 
Delta nOise, 323-324 
Demagnetizing field, 268, 270 
DeMorgan's theorem, 222 
Design (see Logic design; MAD-R circuit 

design; Multileg-core design) 
Dick and Doughty scheme, 202-204 
Dick and Farmer scheme, 204-205 
Differential equation: 

for capacitive loading, 13 
for inductive loading, 10 
MAD-R coupling loop, 117, 242 
modeling: elastic r/J(t), 303-308 

inelastic r/J(t) , 315, 325, 331-332 
numerical solutions of, 333-335, 339 

Digital flux transfer, 33-34 
Digital logic: 

AND, 226-228, 243 
combinational, 216, 221 
eXclUSive-OR, 228-230 
fan-out, 113, 230 
OR, 223-226, 237, 244 
similarity design, 241 
synthesizing two-input functions, 240-241 
truth table, 221, 232 

Dimensions: 
of leg of a core, 296-297 
shaping (see Shaping of a core leg) 
transformation for unity turns ratio, 73-

74 
variation, effect on one/zero ratiO, 144 
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Diode: 
loading a core. 338-342 
for logic synthesis. 223 
model. 338-339 
simulation by a core. 46-48 
(See also Backward decoupling; Core

diode-capacitor scheme; Core
diode schemes; Forward decoupling) 

Dissipation of flux (see Flux dissipation in 
resistance) 

Distribution. random: 
of domain-nucleation centers. 316-

317 
of domain-wall energy, 282 
of magnetic moments. 262 
of minor and major moving domain 

walls. 282-283, 320-321 
Domain patterns. 267. 272 

observation of. 273-274 
Domain-wall collision. 280. 316. 324 
Domain-wall displacements: 

elastic. 279 
force on. 278. 306 
inelastic. 280-284. 318-323 

major. 280-283. 318-320 
minor. 280-283, 318-323 

Domain-wall motion: 
area variation of. 280. 324 
collision. 280, 316. 324 
damping, 306, 311 
elastic: conditions for. 279-280 

experimental, 293-294 
types of, 279 

interaction with nonmagnetic inclusion, 
277-278 

susceptibility of, 306 
switching mechanism of, 267, 275 
Viscous damping of, 306. 311 

Domain walls, definition of, 271 
Bloch, 207, 271 

3600 ,292 
collision of, 280, 316. 324 
displacement of (see Domain-wall dis-

placements) 
energy of, 271-272 
energy gradient of. 279-281 
energy hill, 279-281 
force on, 278, 306 
motion of (see Domain-wall motion) 
Neel. 207, 272 
restoring forces of, 278-279 

Domains, magnetic: 
closure of, 272-273 
collision of, 280. 316, 324 
energies of. 267-272 
nucleation. centers of, 316-317 
pattern of, 273-274 
relation to static M(H). 266 
structure of, 267. 272 
subdivision of, 272-273 
theory of, 266-274 

Drive-current tolerance, 34-35 
MAD-N vs, MAD-R. 106 
range (see Range map) 
vs, speed, 104-106 
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Drive windings. placement of,125. 288. 289. 
291, 292 

Dynamic bias. 182-187 
applied to MAD-R. 187-190 
in combination with bipolar transfer. 197-

199 
Dynamic threshold field, 315. 317.320.321. 

323 

Easy directions of magnetization (see Mag
netization) 

Eddy currents. 286-287 
Elastic domain-wall motion (see Domain

wall motion. elastic) 
Elastic fast-switching experiments (see 

Fast-switching experiments. elastic) 
Elastic flux clipping. 35-36. 194 

(See also Flux gain and loss mechanisms) 
Elastic flux switching: 

coefficient. e. 308-311 
computation. 335 
experimental. 293-2~4. 311-314 
models (see Elastic ¢(t) models) 
from partially set state. 309-310 

history dependence, 310 
rotation of magnetization in. 310 
wall motion in. 310 

Shuttle, 312 
step F(t). 293. 303-308. 312-313. 318. 

335-336 
Elastic magnetization switching: 

conditions. 283-284 
experi~ental. 293-294 

Elastic ¢(e) models, 301-315 
components of, 301. 311-314 
domain-wall motion, 306-307 

approximations in. 307 
damping. 306 
equation, 306 
from partially set state. 310 
rise-time effects. 307 
stiffness, 306 
susceptibility. 306 
wall mass. 306 
waveform. 307-308 

parameters of. 305. 307-308, 311 
rotation of magnetization. 301-306 

approximations. 306 
damping, 275-277, 304. 311, 314 
equation, 303-306 
Gilbert equation. 302-303 
Landau-Lifshitz equation. 302-303 
with low damping. 304 
from partially set state, 310 
rise-time effect. 306 
spiral tranSient, 301-302 
susceptibility. 303. 305 
waveforms. 307-308 

saturation regions. 308-313 
total. 307-308 

Elastic rotation of magnetization. 276-277 
maximum angle in ferrites. 277 

Electron: 
angular momentum of. 257 
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Electron: 
equivalent, 260 
g factor: orbital, 257 

spin, 257 
magnetic moment, 257 

quantization, 258 
orbiting, 257-261 
spin, 257-261 

Energy, domain: 
ani sotropy, 267, 269 
dissipation, 280 
exchange, 263, 267. 268 
magnetoelastic, 267,270 
magnetostatic, 267, 268 
magneto stricti on, 270 
wall, 282 

from a dc source, 28 
Engelbart orthogonal-mode scheme, 181-

182 
in lattice form, 182 

Engelbart reduction: 
of Briggs-Lo scheme, 56 

all-toroid version, 158 
of MAD-N scheme, 87, 161 

conversion to negation, 169-170 
conversion to NRR, 209-210 
in set-state notation, 152 

Equalization of circumferential H, 288-289 
Equivalent electrons (see Electron) 
Equivalent magnetic behavior, 73-74 
Excess mmf, 7, 106, 183, 325, 344 

relation to flux gain, 58-59 
Exchange energy, 263, 268 
Exchange integral, 268 
Exchange interaction: 

direct, 262, 267 
indirect, 262, 265 

Exchange of node types in a network, 80-81 
Exclusion principle, 260 
Exclusive-OR functions, 222, 228-230, 244 
Experimental measurement (see Measure-

ment) 
Experimental verification of models: 

elastic <Nt}, 312-315, 336 
inelastic Nt}: decaying, 336 

main, 336-337, 340-341 
loaded core, 340-341 
peak ci> vs. F , 327 
static ¢(F), 299-300 
unloaded core, 312-313, 330, 336-337 

Factors: 
g, 257-259, 261 
Lande splitting, 261 

Fan-out, 113, 230-231, 235 
Faraday's law, 4 
Fast-switching experiments, elastiC, 311-

315 
core and windings in, 293-294, 311 
correlation with magnetic spectra, 314 
determination of anisotropy constant 

by, 314-315 
determination of viscous damping by, 

314 
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Fast-switching experiments, elastic (con
tinued) 

effects of transverse field on, 313 
elimination of wall-motion component 

in, 313 
rise time of F(t} in, 311:-313 
waveforms of F(t} and ¢(t) in, 312-313 

Ferrimagnetism, 262-264 
Ferrites, 262-265 

crystal structure of, 264 
interstices of, 264-265 
inverse, 265 
magnetic spectra of polycrystalline, 314 
normal, 265 
sites of, 265 
spinel structure of, 264-265 
sublattices of, 265 
superexchange in, 265 
unit cell, 264, 265 

Ferromagnetism, 262-264 
Field: 

anisotropy, 270-271, 276 
demagnetizing, 268, 270 
exchange, 267 
magnetic (see Magnetic field) 

Flip-flop: 
in design example, 237 
in sequential logic systems, 216-218 
in shift registers, 31 
transistor-core analogy, 218-219 

Flux, air (see Air flux) 
magnetic (see Magnetic flux) 

Flux clipping (see Flux gain and loss 
mechanisms) 

Flux creep, 81 
Flux dissipation in reSistance, 8, 27, 103 
Flux-doubler schemes, 92-98 

all-toroid, 92-93 
continuous-structure, 97-98 
in decimal arithmetic unit, 234-239 
demonstration of doubling effect in, 93-

95 
muitileg, 95-97, 234 

Flux gain and loss mechanisms, 35-37 
coherent rotation, 199-202 
flux clipping: bipolar, 194 

elastic, 35-36, 194 
inelastic, 36, 130, 144-145, 235 

flux doubling, 92-98 
flux pumping, 25-27 
flux transformation, 15,41 
soft-threshold effect, 59-61 
turns rati 0, 19 

Flux-gain curve, 33-35 
bipolar, 34, 192-194 
negation, 166-169 
ternary, 194 
unipolar, 34 

Flux-limited drive, 134 
Flux modes, orthogonal, 175-180 

applied in dynamic bias, 182-185 
Biax element, 176, 178 
Engelbart orthogonal-mode scheme of, 

181-182 
in exclUSive-OR functions, 228-230 
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Flux pumping, 25-27, 81 
(See also Flux gain and loss mechanisms) 

Flux reversal (see Flux switching) 
Flux sources: 

for dynamic bias, 185 
for MAD-R logic, 240-241 
for negation transfer, 172-175, 235 

Flux steering, 179, 201, 232-233 
Flux storage in inductance, 12 

effect on flux-gain curve, 23, 36, 120-
121 

Flux switching: 
computation of (see Computation of flux 

switching) 
elastic (see Elastic flux switching) 
experiments (see Flux-switching experi-

ments) 
inelastic (see Inelastic flux switching) 
loaded core, 338-342 
ramp F(t) , 329, 334, 336-337 
shuttle, 312 
step F(t) (see Step F(t) switching) 
switching resistance, average, 343-

346 
time, 317, 334, 343-345 
unloaded core, 333-337 

ramp F(t) , 329, 334, 336-337 
step F(t), 293, 303-308, 312-313, 318-

319,321-322,325,328-332,334-
336 

voltage drive, 342-343 
(See also Switching) 

Flux-switching experiments, 291-294 
coaxial transmission line, 292 
core arrangement in, 291-292 
drive currents, 291-294 
integrator decay, 294 
interrupted F(t) , 319. 
waveforms of F and <P, 292-294 

Fl ux tipping (see Flux steering) 
Flux transfer, nondestructive (see Nonde

structive flux transfer) 
Flux-transfer curve (see Flux-gain 

curve) 
Flux-transfer ratio, 17-25 

effect of: loop inductance, 23 
loop reSistance, 19-21 
receiver loading, 23-26, 37 
receiver threshOld, 21-23 
transmitter threshold, 21-23 
turns ratio, 19 

relation to excess mmf, 58-59, 231 
(See also Flux-gain curve) 

Flux transformation in capacitance, 15 
core-capacitor scheme, 41 
as a flux-gain mechanism, 41 

Force: 
coercive, 283, 293-294, 296 
between currents, 256 
on domain wall, 278, 306 
exchange interaction, 262, 267-268 
magnetomotive (see Magnetomotiveforce) 
superexchange-interaction, 265 

Forward decoupling, 32, 37 
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Forward decoupling (continued) 
use of a series diode in, 37-38 

Frequency of shifting (see Shifting rate) 

g factor: 
atomiC, 261 
electron: orbital, 257-259 

spin, 257-259 
Gain curve (see Flux-gain curve) 
Gain mechanisms (see Flux gain and loss 

mechanisms) 
Gilbert equation, 275-277 

elastic rotation of magnetization, 301-
304 

Ground-state, atomic, 261 
Gyromagnetic constant, 257 

Holding mmf, 39,42, 81, 103, 107 
analogy to diode forward bias, 46 
eliminating need for, 40, 55, 112 

Hund's rule, 261 
Hyperbolic model, static M(H) , 295-296 
Hysteresis loop, 6, 135 

(See also Static M(H); Static <P(F} measure
ment; Static <P(F) models) 

Implicit drive phases, 27 
for MAD-R priming, 103-104 

Implicit equations, numerical solution of, 
339,340 

InclUSion, nonmagnetic, 273 
Incremental time step, 333-334 
Inductance of coupling loop (see Elastic flux 

clipping; MAD-R circuit design, 
coupling-loop) 

Inductive core loading, 9-12 
(See also Core loading) 

Inelastic domain-wall displacements: 
conditions, 279-284 
major, 280-283, 293-294 
minor, 280-283, 293-2?4 
models (see Inelastic <P(t) models) 

Inelastic flux clipping, 36,130,144-145,194, 
235 

(See also Flux gain and loss mechanisms) 
Inelastic flux switching: 

components, 319-332 
computation, 333-337 
experimental,293-294 
major, 318-320 
mechanisms, 319-320 
minor, 318-324 . 
models (see Inelastic <p(t) models) 
step F(t) , 293,318-322,325,328-332,334, 

336 
time, 317, 334, 343-345 

Inelastic magnetization Switching, 280-284 
peakMvs. appliedH, 317 
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Inelastic q,(t) models: 
approximate, 331-332, 343-346 
componen~s, 319-332 
decaying q,(t) , 320-324 

parameters of, 311, 321 
general, 315 
main q,(t) , 324-332 

application, 329 
dependence on other q,(t) components, 

329-330 
equation, 325 
graphical representation, 328 
parameters, 311, 325-326, 337 
peak cj, vs. F, 325-328 

parameters of, 326-329 
verification of, 327 

ramp F(t) , 329 
switching time, 334 

review, 324 
step F(t) , 331-332 

peaking time, 332 
switching time, 334 

parabolic, 179, 325, 331-332 
physical, 315-316 
review, 315-317, 324 
rotational, 315-317 
semiempirical, 315-317 
switching time, 317, 334, 343-345 
threshold, dynamic, 315, 317, 320-323, 

325-329, 344 
(See also Switching resistance, average) 

Insertion of nodes in a network, 82-84 
Integration. trapezoidal, 333 
Interaction of adjacent bits. 87 

improved isolation in nonminimal 
schemes, 95-97, 158 

Interaction exchange: direct, 262, 267 
indirect, 262, 265 

Internal magnetic field, 276-277 
Interrupted-pulse experiment, 319 
Interstices in ferrite crystal, 264-265 
Iron: 

crystalline anisotropy, 269 
exchange field, 267 
in ferrites, 264-265 

Iron group: 
elements, 261 

Iron-group ionic salts, 262 
Irreversible magnetization switching, 280-

281 
Isolation (see Backward decoupling; For

ward decoupling; Interaction, of ad
jacent bits) 

Iteration method, Newton-Raphson, 339-340 

Jump in static q,(F) curve, 300 
Junction equations, multileg-core, 66, 290 

Landau-Lifshitz equation, 275-277 
elastic rotation of magnetization, 301-304 
limitation. 277 

Lande splitting factor, 261 
Larmor frequency, 258 
Lattice network, 75-80 

Dick and Doughty scheme, 202-204 
exclusive-OR functions, 228-230 
flux-dOubling scheme, 94 
orthogonal-mode scheme, 182 
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(See also Magnetic network representa-
tion) 

Leakage flux, 142 
Left-hand rule, 4 
Leg of a core: 

dimensions of, 296-297 
model of, 291, 296-299 
shaping (see Shaping of a core leg) 
(See also Multileg-core design; Multileg-

core properties) 
Lenz's law, 4 
Linear M vs. H, 266 
Loaded core (see Core loading) 
Logic design: 

combinational logic: bipolar, 231-234 
general, 221-223 
unipolar, 223-231 
(See also Digital logic) 

design example, 234-239 
MAD-R, 240-248 
sequential logic: general, 216-218 

magnetic, 218-221 
Loop, static: 

M(H) 
major, 281-283 
minor, 281 

q,(F), 6. 119, 135, 291-294, 298-300 
Loop core, 149 
Loss mechanisms (see Flux gain and loss 

mechanisms) 

MAD-N scheme, 57-58, 70, 167 
conversion to negation, 170-172 
current tolerances, 106 
in derivation of MAD-R, 101-102 
Engelbart reduction of, 87 
in ladder-network form, 75 
speed of, 104-106 
Stabler reduction of, 87 
tracing flux states in network representa

tion, 84-86 
MAD-R circuit deSign, 114-145 

advance circuit, 121-124 
advance pulse shape, 124 
charge and charge-turns, 122 
ratios of drive turns, 123 
winding placement, 125 

basic approach, 114-115 
coupling-loop. 116-121 

charge-turns, 119 
coupling-loop turns, 120-121 
loop inductance, 116-121 
receiver switching time, 120 
stop-switching threshold, 119 

design iteration, 124-125. 131-132 
design pOint, 115-116 



362 

MAD-R circuit design (continued) 
logic circuitry, 240-248 
measurement of design parameters,l25-

132 
similarity design, 241 
test circuit, 126 

MAD-R logic circuits, 240-248 
MAD-R scheme, 100-101 

all-toroid version, 109-110 
conversion to negation, 174-175 
derivations, 101-111 
drive-current tolerances, 106 
dynamically biased bipolar version, 197-

199 
dynamically biased unipolarversion,187-

190 
logic circuits, 240-248 
mode-flux representation, 180 
speed of, 104-106, 190, 199 
wiring configuration, 104 

MADs (see Multileg-core circuit applica
tion; Multileg-core design; Multileg
core properties) 

Magnetic behaVior, equivalent, 73-74 
Magnetic domains (see Domains, magnetic) 
Magnetic field, 256, 287-289 

applied (see Applied magnetic field) 
circumferential, equalization of, 288-289 
coercive, 283, 293-294, 296 
internal, 276-277 
solenOidal, 203-205, 288-289 
transverse, 313 

Magnetic flip-flop (see Flip-flop) 
Magnetic flux: 

definition of, 289 
density of, 3, 256-257, 289 

Magnetic material (see Material, magnetic) 
Magnetic moment: 

coupling (see Coupling of moments) 
orbital: atomiC, 260-261 

electron, 257. 259 
precession (see Precession of moment) 
quantization: atomic, 260-261 

electron, 258 
quenching, 261 
spin: atomiC, 260-261 

electron, 259 
vector addition, 260-261 

Magnetic network representation, 65-74 
balanced and unbalanced form, 66 
flux states, 67-70 
inserting nodes, 82-84 
ladder and lattice forms, 75-80 
loop and node constraints, 66 
mmf,68-72 
redundant branches, 89-90, 95-97 
reverse transformation, 80-84, 109 
reversing node types, 80-81 
synthetic nodes, 72 

Magnetic poles: 
definition, 268 
effect on H equalization, 289 
around a nonmagnetic inclUSion, 273 
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Magnetic poles (continued) 
in thin-film register scheme, 206 

Magnetic powder technique, 273-274 
Magnetic self-energy, 268 
Magnetic switching, reverSible, 280, 281 
Magnetic thin films: 

Bloch walls, 207 
continuous film strip: longitudinal easy 

axes, 205-207 
transverse easy axes, 207-208 

di~crete cylindrical elements, 202, 204 
Neel walls, 207 
planar film patches, 199-200 

Magnetism: 
types of, 261-266 

Magnetization: 
definition of, 256-257 
easy directions of, 200, 269, 272 
elastic rotation of, 276-277 
of linear materials, 262, 266 
of nonlinear materials, 262-266 
permanent, 261, 262, 265 
preferred directions of, 200,269, 272 
remanent, 266-267, 295-296 
rotation of (see Rotation of magnetiza

tion) 
saturation, 262-264 

source of, 262 
temperature effect of, 263, 264 

spontaneous, 261, 262,265 
stress effect on, 270, 272 
switching: elastic, 283-284, 293-294 

inelastic, 280-284, 317 
irreversible, 280-281 
reversible, 280-281 

temperature effect, 263-264 
Magnetoelastic energy, 270 
Magnetomotive force: 

advance, 121-124, 245 
Ampere's law, 5, 288 
bias (see Bias mmf) 
clear, 291-294 
coercive, 293-294 
dc (see Implicit drive phases) 
definition of, 288 
excess (see Excess mmf) 
holding (see Holding mmf) 
magnetic network representation, 68-72 
in multileg cores, 289-291 
priming (see Priming) 
restore, 48, 51, 55, 103 
test, 292-294 

Magneton, Bohr, 259 
Magnetostriction, 210 

coefficients of, 270 
Major aperture: 

major-aperture coupling, 90-91, 109 
(See also Multileg-core circuit applica

tion) 
Major inelastic wall displacement, 280-283, 

293-294 
Major static M(H) curve, 281-283 
Major static </J(F) curve, 291-294, 298-300 
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Majority-logic synthesis, 233 
Manual computation of flux switching, 343-

346 
Map (see Range map) 
Matched-case MAD-R design, 136, 137, 

139 
Material, magnetic: 

linear, 262, 266 
nonlinear, 262-266 

Maxwell's equations, 3-5, 66, 268, 290 
Measurement: 

arrangements for, 291-292 
of circuit-design parameters (see MAD-R 

circuit design) 
of magnetic properties: dynamic, 291-

294 
elastic, 312-313 
multileg core, 291, 299-300 
static, 291-294, 299-300 
toroidal core, 291-292 

of parameters: dynamic, 327-328 
static, 299 

Mechanism, switching: 
domain-wall: elastic, 274-275, 306-

308, 313 
inelastic, 267, 274-275, 277-283 

rotation of magnetization, 275-277, 301-
306, 313-314 

Melville drive circuit, 116 
Mina and Walters scheme, 210-212 
Minimal schemes, 158, 204 
Minor aperture, 112-113 

(See also Multileg-core circuit applica
tion) 

Minor domain-wall displacements, 280-283, 
318-323 

Minor static M(H) loop, 281 
MMF (see Magnetomotive force) 
MMF-limited drive, 133 
Models: 

average p, 343-346 
core-leg, 291, 296-299 
diode, 338-339 
elastic ~(t) (see Elastic ¢(t) models) 
hyperbolicM(H), 295-296 
inelastic Nt) (see Inelastic ~(t) models) 
parabolic $( q,), 325, 331-332 
parameters (see Parameters of core 

models) 
peak ¢ vs. F (see Peak ¢ vs. F model) 
static q,(F) (see Static q,(F) models) 

Modes of flux-switching, 175-180 
Moment, magnetic (see Magnetic moment) 
Momentum, angular (see Angular moment-

um) 
Multiaperture core (see Multileg-core cir

cuit application; Multileg-core de
sign; Multileg-core properties) 

Multileg-core circuit application, 52-54 
ac readout, 113, 239 
analog signal switching, 113 
Biax element, 176, 178 
clear state, 53 
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Multileg-core circuit application (continued) 
compound composition, 141 
design (see Multileg-core design) 
incorporating dynamic bias, 184 
input apertures, 112 
input-output isolation, 56 
negation element, 172 
nondestructive transfer, 58, 112-113 
output apertures, 113 
set state, 53 

Multileg-core design: 
for flux clipping, 144-145 
for high readout ratiO, 143-144 
limits on miniaturization, 141-142 
to minimize soft threshold, 142 
path-length ratiO, 106, 140-142 
shaping, 54, 143 

Multileg-core properties: 
flux junction rule, 66, 290 
leg dimensions, 296-297 
leg model, 291, 296-297 
loop equations, 290-291 
measurement of magnetic properties, 

291, 299-300 
mmf-path rule, 66, 289-290 

Multiple coupling loops, 245 

Neel spikes, 273 
N~el wall, 272 

in thin-film register scheme, 207 
Negation transfer, 166-175 

conversion from Simple transfer, 169-
175 

effect on range-map symmetry, 167-169 
flux-gain properties, 166-167 

Network, period of, 149 
Network representation (see Magnetic net

work representation) 
Networks: 

bridge, 228-230 
complex, 149 

Newhall bipolar scheme, 192-194 
modification for ternary, 194 
(See also Basic three-phase scheme) 

Newton-Raphson iteration method, 339-340 
modification of, 340 

Noise: 
Barkhausen, 280 
delta, 323-324 

Noncoherent rotation, 316 
Nondestructive flux tranSfer, 58, 112 

ac readout, 113, 239 
analog signal SWitching, 113 
for increased fan-out, 231 

Nonlinear flux-gain curve, 33-34 
Nonlinear M vs. H, 266, 295-296 
Nonmagnetic inclUSion, 273 
Nonresistance type core-wire schemes 

45 ' 
higher-speed capability, 52, 106 
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Non-return-to-reference (NRR) schemes, 
209-212 

converting to NRR operation, 209 
Nucleation centers of domains, 316-317 
Numerical solution: 

of differential equations, 333-335, 339 
of flux switching (see Computation of flux 

switching) 
of implicit equations, 339-340 

Octant in spinel structure, 264-265 
One-out-of-ten code, 239 
one/zero output ratio, 113, 143-144 
OR functions, 222, 223-226, 237, 244 
Order, spin, 263, 265 
Orthogonal flux modes, 175-180 

applied in dynamic bias, 182-185 
Biax element, 176, 178 
Enge1bart orthogonal-mode scheme, 

181-182 
in exclusive-OR functions, 228-230 

Output readout, 113, 239 
Oxygen: 

in ferrites, 264-265 
role in superexchange, 262, 265 

Parabolic switching model, 179, 325, 331-
332 

Paramagnetism, 262-264 
Parameters of core models: 

core dimensions, 296-299, 311 
elastic Cp(t) , 305, 307-308, 311 
inelastic ,p(t): main, 311, 325-326, 337,345 

minor, 311, 321 
static M(H), 295-296, 299, 311 

Path-length ratiO, 106, 140-142 
Pattern: 

binary, 31-32, 152 
magnetic domains, 273-274 
set-state, 150-153 

Pauli'~ exclusion principle, 260 
Peak rt> vs. F model, 325-327 

curve fitting, 327-328 
expressions, 325 
parameters, 325-326 

constraints, 326 
verification, 327-328 

Peaking time, inelastic 1>: 
major, 293, 318, 332 
minor, 321-323 

Period of a network, 149 
Permanent magnetization, 261, 262, 265 
Placement of drive windings, 125, 288-289, 

291-292 
Planck's constant, 258 
Poles, magnetic (see Magnetic poles) 
Polycrystalline ferrites, magnetic spectra 

of, 314 
Powder technique, 273-274 
PreceSSion of moment, 257-258, 260 

with damping, 277, 301-302 
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Predictor-corrector computation method, 
333-335 

Priming: 
dc, 103-104 
input-aperture, 112 
matched-case design, 136, 137 
pulsed, 110 
ramp, 136-140 
rectangular priming pulse, 133-136 
tolerances, 133, 140 

Pulse of mmf or H: 
amplitude of half-sine advance, 128-129 
duration: of clearing, 292 

of elastic switching, 279, 283-284 
to measure static rt>(F), 294 

fall time, 283 
rise time (see Rise of F(t)) 

Pumping clocks, 219-221 

Quantization of moments: 
atomiC, 260-261 
electron, 258 
spin, 259 

Quantum number: 
azimuthal, 258 
magnetic, 258 
principal, 258 
spin, 259 

Quenching of magnetic moment, 261 

Ramp F(t): 
priming, 136-140 
switching, 329, 334, 336-337 

Random distribution (see Distribution, ran
dom) 

Range map, 35, 116, 133 
for MAD-R logic circuits, 247 
in negation transfer, 167-169 

Rare earths, 262 
Readout, ac, 113, 239 
Receiver loading: 

effect on flux gain of, 23-25 
elimination with diodes, 37-38 

Receiver switching time, 120 
Redundant branches, 55, 86-90, 95-97 
Re-entrant curve: 

M(H), 281,300 
rt>(F) , 300 

Register: 
bit-length of, 152, 153 
(See also Binary shift register) 

Relaxation time: 
elastic: rotational, 276-277, 302-308, 

31l-314 
minimum, 277 

wall motion, 306-308, 311-314 
inelastic: minor, 319-321 

Remanent flux, 6, 293-294 
in core model, 298-300, 318, 325, 328-

331, 344-345 
Remanent magnetization, 266-267, 295-296 
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Reset (see Priming; Restore mmf) 
Resistance-type core-wire circuits, 45 

higher tolerance capability, 106 
Resistive load (see Core loading) 
Restore mmf, 48, 51, 55, 103 

(See also Priming) 
Reverse transformation from network form, 

80-84, 109 
Reversible magnetic switching, 280-281 
Right-hand rule,S, 288 
Rise of F(t): 

effect on distinction of ~(t) components, 
293-294 

effect on experimental arrangements of, 
291 

effect on prime range (see Priming) 
effect on switching: elastic, 306-308, 312-

313 
inelastic: minor, 321-323 

Rotation of magnetization: 
coherent, 199-202, 315-316 
damping, 275-277, 304, 311, 314 
effect on crystal deformation, 270, 272 
elastic, 276-277 
equations, 275-277 
mechanism, 275-277, 301-306 
models of, 315-317 
noncoherent, 316 
susceptibility of, 303, 305 
viscous damping, 275-277, 304, 311, 314 

Russell-Saunders coupling, 260 
Russell type-I scheme, 107, 161 
Russell type-II scheme, 50 

nonresistance version, 50-52, 90 

Saturable core, 290 
(See also Multileg-core design) 

Saturation magnetization: 
source of, 262 
temperature effect of, 263-264 

Scaling coupling-loop turns, 121 
Schemes: 

with no core-diode equivalent, 49-50, 111 
(See also Core-diode schemes; Core-wire 

schemes) 
Self-energy, magnetic, 268 
Sequencing between flux states, 69-70 
Set-state chart, 153, 159 

forming shift cycles, 155 
permitted transitions, 154 

Set-state of a multileg core, 53 
Set-state patterns, 150-153 
Shape anistropy, 270 
Shaping of a core leg: 

effect on flux clipping, 144-145 
effect on readout, one/zero ratio, 143-144 
effect on soft threshold, 142 

Shells, atomic, 260 
Shift register, 31 

complementary, 194-197 
Shifting, bidirectional, 41-43, 61 
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Shifting rate, 32, 140, 246 
higher MAD-R rate: with bipolar dy

namic bias, 197-199 
with dynamic bias, 187-189 

high-speed, thin-film scheme, 204-205 
(See also Speed of operation) 

Shuttle switching, 312 
Signal-mode flux, 185 
Signal switching, 113 
Similarity design method, 241 
Simulation of a diode by a core, 46-48 
Single-clock schemes, 43-44, 210-212 
Single-turn windings, 119, 235, 292 
Smith continuous-film scheme, 207-

208 
relation to Van De Riet double-speed 

scheme, 208 
Soft state, 310 
Soft threshold, 59-61 

in dynamically-biased MAD-R, 189 
in MAD-R design, 135, 142 
in NRR schemes, 210 
(See also Flux gain and loss mechan

isms) 
Solenoid drive fields, 203-205, 288-289 
Solution, numerical (see Numerical solu

tion) 
Speed of operation. 52 

vs. drive-current tolerance, 104-106 
excess mmf (see Excess mmf) 
MAD-N vs. MAD-R. 104-106 

Spikes: 
elastic~(t), 293, 308, 312-313, 318,319, 

330 
Neel,273 

Spin, electron, 257-261 
angular momentum, 259 
g factor, 257, 259 
magnetic moment, 259 
order, 263, 265 
quantization. 259 

Spinel structure, ferrite, 264-265 
octant in, 264, 265 

Splitting factor. Lande, 261 
Square-loop ¢(F) (see Static ¢(F) measure

ment; Static ¢(F) models) 
Square static M(H) loop, 266 

polycrystalline, 281-283 
Stabler reduction of MAD-N scheme, 87 
Standby power, 219 
StaticM(H): 

hyperbolic model for, 295-296 
linear, 266 
mechanism, 281-283 
model for, 295-296 
noniinear, 266, 295-296 
threshold, 279-284, 295-296 

StaticM(H) curve, 266, 282-283, 295-296 
major, 281-283 
re-entrant, 281, 300 

Static M(HJloop: 
extreme cases, 266 
minor, 281 
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StaticM(H) loop (continued) 
polycrystalline, 281-283 
square, 266 

Static <I>(F) measurement, 291-294, 299-300 
Static <I>(F) models: 

curve fitting, 299 
discontinuous, 300 
expressions, 298 
ideal,6 
jump, 300 
leg dimensions, 296-297 
parameters of, 295, 299, 311 

material, 295, 296 
re-entrant, 300 
thin core, 295 
threshold, 298-300 
verification, 299-300 
wing, 119, 128 

Step, incremental time, 333-334 
Step F(t) switching, 292-293 

experimental: elastic, 293,312-313,318, 
336 

inelastic, 293, 318-319 325, 336 
theoretical: elastic, 303-308, 330, 335-336 

inelastic, 321-322, 328-332, 334, 336 
Stop-switching threshold, 119 
Storage elements, 217 

(See also Flip-flop) 
Straight-through winding, 123, 125,235,292 
Strain anisotropy, 270 
Stress effect on magnetization, 270, 272 
Strip transmission lines, 199-200, 235-236 
Subclocks for fan-out, 231, 235 
Sublattices, ferrite, 265 
Subshells, atomic, 260-261 
Superexchange, 262 

in ferrites, 265 
Susceptibility, 262-264 

rotational, 303, 305 
temperature effect, 263-264 
wall-motion, 306 

SWitching: 
elastic (see Elastic flux switching; Elas

tic magnetization switching) 
inelastic (see Inelastic flux switching; In

elastic magnetization switching) 
magnetization (see Magnetization switch-

ing) . 
mod~s (see Elastic <I>(t) models; Inelastic 

<I>(t) models) 
shuttle, 312 
signal, analog, 113 

Switching coefficient, 120, 141, 317 
Switching mechanism (see Mechanism, 

switching) 
SWitching models: 

elastic <Wt) (see Elastic ¢(t) models) 
inelastic <i>(t) (see Inelastic <wt) models) 
parabolic, 179,325,331.332 
simplified (see Switching resistance, av

erage) 
Switching reSistance, average: 

constant-p model, 6, 47,114,176 
determination, 344-345 
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Switching reSistance, average (continued) 
in equivalent core circuits, 6-7, 9, 10, 

13,23 
to <1>/ <l>s ' 345 
relation: to final flux. 344-345 
to switching coefficient, 345 

Switching time, 317, 334, 343-345 
of receiver in MAD-R scheme, 120 

Synchronous logic systems, 216-218 
Synthetic nodes, 72 

(See also Magnetic network representa
tion) 

Tape-wound core model, 286-287 
Temperature: 

Curie, 263-264 
effect: onMs. 262-264 

on susceptibility, 263-264 
on threshold, 327-328 

tolerances of circuit operation, 132, 247 
Ternary transfer, 194 
Test circuit for design, 126 
Test current, 125-128, 292-294 
Thermal agitation, 262-264 
Thin ferrite core: 

experimental arrangements of, 291-292 
experimental results: elastic, 311-315, 

336 
inelastic: decaying, 319, 323, 336 

main, 325, 336 
overall, 330, 336 

parameter values, 311 
Thin films (see Magnetic thin films) 
Thin-film schemes, 199-208 
Thin-walled core (see Thin ferrite core) 
Three-phase schemes: 

core-capacitor scheme, 41-43 
Dick and Farmer scheme, 204-205 
Engelbart reduction, 56 
(See also Basic three-phase scheme) 

Threshold field: 
dynamic, 315, 317, 320-321, 323 
static, 279-284, 295-296 

Threshold logic: 
bipolar, 233 
flux-bias, 226 
mmf-bias, 226 

Threshold mmf: 
bias (see Bias mmf) 
burden, 178-179 
dynamic, 321-323, 325-329, 344 
soft (see Soft threshold) 
static, 6, 298-300 
stop-switching, 119 
temperature effect, 327 

Time: 
increment, 334 . 
peaking of inelastic <1>: major, 293, 318, 

332 
minor, 321-323 

pulse-duration effect: clearing, 292 
elastic SWitching, 279, 283-284 
static <I>(F) , 294 



SUBJECT INDEX 

Time (continued) 
relaxation (see Relaxation time) 
step, incremental, 333-334 
switching: inelastic, 317, 334, 343-345 

receiver, 120 
Timing clocks, 219-221 
Tolerances (see Dimensions, variation; 

Drive-current tolerance; Priming, 
tolerances; Range map; Tempera
ture, tolerances of circuit opera
tion) 

Toroid: 
equalization of H, 289 
ferrite, thin (see Thin ferrite core) 
single-leg core, 291 

Torque, magnetic, 257 
Transcendental equation, solution of,339-

340 
Transfer (see Flux-gain curve; Flux-trans

fer ratio; Nondestructive flux trans
fer) 

Transfluxor,52 
(See also Multileg-core circuit applica

tion; Multileg-core design; Multi
leg-core properties) 

Transistor: 
flip-flop, 218 
transistor-core analogy, 218-219 

Transmission lines, strip, 199, 200, 235, 
236 

Truth table, 221, 232 
Turns ratio, 19 

magnetic network representation, 72-74 
scaling, 121 
unity, 41-42, 74, 96 
(See also Flux gain and loss mechanisms; 

Flux-transfer ratio) 

Unbalanced networks, 66, 76 
(See also Magnetic network representa

tion) 
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Uniaxial anisotropy, 269-271 
Unipolar data representation, 34 
Unit cell, ferrite, 264-265 
Unity turns ratio, 41-42, 74, 96 
Unloaded-core switching, 6-7, 333-337 
Unsetting, 59 

Van De Riet double-speed scheme, 163 
relation to Smith scheme, 207-208 

Vector addition of moments, 260-261 
Viscous damping: 

rotational, 275-277,304, 311, 314 
wall-motion, 306, 311 

Voltage drive: 
of a core, 342-343 
of a register, 195 

Voltage source in drive circuitry, 28 

Wall: 
domain (see Domain walls) 

displacements (see Domain-wall dis
placements) 

motion (see Domain-wall motion) 
Winding: 

central-conductor, 288, 291-292 
noncentral, 288-289 
(See also Wiring) 

Wing of static <p(F) loop, 119, 128 
Wiring: 

central conductor, 288, 291-292 
MAD-R circuit, 104 
noncentral conductor, 288-289 
placement of windings, 125 
Single-turn windings, 235, 292 
straight-through wiring, 123, 125, 235, 

292 
strip transmission lines, 199-200, 235-

236 

Yochelson scheme, 161-163 




