
Interim Technical Report 2

MOL940:
PRELIMINARY SPECIFICATION FOR AN ALGOL-LIKE
MACHINE-ORIENTED LANGUAGE FOR THE SDS 940

By: R. E. HAY J. F. RULlF SON

Prepared for :

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER
MAIL STOP 126
LANGLEY STATION
LANGLEY, VIRGIt'-IIA 23365 CONTRACT NASl-5904

7) }~/'l~!'

March 7968

Interim Technical Report 2

MOL940:
PRELIMINARY SPECIFICATION FOR AN ALGOL-LIKE
MACHINE-ORIENTED LANGUAGE FOR THE SDS 940

By: R. E. HAY J. F. RULlFSON

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER
MAIL STOP 126
LANGLEY STATION
LANGLEY, VIRGII'UA 23365

SRI Project 5890

Study for the Development of Human

Intel! ect Augmentation T echn i ques

Approved: BONNAR COX, ACTING MANAGER
SYSTEMS ENGINEERING LABORATORY

T. H. MEISLlNG, EXECUTIVE DIRECTOR
INFORMATION SCIENCE AND ENGINEERING

CONTRACT NAS1~5904

Copy No. I.~.t ...

ABSTRACT

nlis . report is a reference manual for a programming language

developed at Stanford Research Institute for the Scientific Data Systems

940 computer. TIle compiler is now fully operational; it is written in

its own language, compiles itself, and is in daily use for development

of our CRT-display service system.

nle name ,.IOL940 (or simply MOL), is an acronym for

''Machine-Oriented Language." MOL is an AL~OL-like language with natural

extensions for bit manipulation. The added syntax strongly reflects the

internal design of the SDS 940, in accordance with the name ~10J...

The introduction to this report includes a brief summary of other

projects of the same nature which were known to the authors. There is

also a discussion of the design criteria that shaped the "'IOL. The major

topics are the comprehensibility of programs written in the language,

the needs of system programmers working within a ume-sharing system,

and the effects on coding that result from using an on-line CRT.

A complete definition of the language is given, using an extended

Backus Normal form; included are semantic explanations and examples, a

sample program, and some examples of code produced by the ~10J.. compiler.

ii

TABLE OF CONTENTS

ABSTRACT • • • • • • • • • • • • • • • .• • • . • • • . • • . • •• i i

FOREWORD • • • • • • • • . • • • • • . • • • • • • . • • • • • •• i v

~fOL 940:

SECTION I: INTRODUCTION. • • . • • • . . . • • • • • • • • •• 1

SECTION II: DEFINITIONS • • • • • • • • . • • . . . • • • •. 3

SECTION III: SYNTAX • . • • • • • • . • . • • . • • • • • •• 11

SECTION IV: OPERATIONS. • • • • • • • . • • . • • . • • • •• 23

SECTION V: SAMPLE PROGRAMS AND COt·1PILATIONS 27

SECTION VI: BIBLIOGRAPHY. • • • • • . • • . . • • • • • • .• 28

OTHER AHI REPORTS •• 29

DD Form 1473

iii

FOREWORD

Development of the ~10L (Machine-Oriented Language) began in October

1966 under joint sponsorship of the Advanced Research Projects ~gencYJ
Defense Department, and NASA, Langley Research Center. Although co~pletion

took approximately one year, only six man months have been invested in the

project. The Augmented Human Intellect (AHI) Program (ENGELBART1) is using

the ~10L as the base language for its software effort. The language and

compiler have been explicitly designed to facilitate concurrent modification

and development of AHI programming techniques.

This report has bean prepared with the On-Line Text ~lanipulation

System, and consequently it differes in a few respects from other technical

reports. All paragraphs are hierarchically numbered; certain paragraphs

bear "names," and references appear as an author's name, perhaps with a

sequence number, enclosed in parentheses.

iv

MOL 940 -- SECTION I: INTRODUCTION

1 Original computer language development was guided by the already
existing formalisms of the numerical analysts. The machine- independent
evolutionary direction of the problem-oriented languages has enhanced
their algorithmic and algebraic nature, but destroyed their usefulness
as system program languages.

1a TIle concerns of system programmers such as efficiency, tight
code, and bit manipulations require a different orientation. ~lachi~e
independence and algebraic const~lcts are not discarded but are
enhanced; additional features are included to permit succinct,
explicit references to hardware functions necessary in ·systems
programming on a display-oriented time-sharing computer.

2 Erwin Book (See BOOK1) of System Development Corporation supplied the
original impetus for our new language with his Q-32 machine-oriented
language H10L). Niklaus Wirth simultaneously undertook a similar
project whi Ie at Stanford Uni versi ty • His PL-300 (See '~I RTH1) was
designed as a precedence grammar (See WIRTH2) and used to implement a
version of ALGOL on the IB~1 300.

3 Our aim throughout the development of ~10L 940 was to design a
coordinate language-compiler pair that permits the expression of clear,
concise algorithms and the production of efficient, tight code. With
such a language, fewer bugs slip in during coding, programmers can say
what they want in fewer words, and (with a little luck) one can pick up
some of his year- old code and understand it.

3a Algorithmic clarity is mainly due to the structure implicit in
the syntax of the language.

3a1 It is significant in this regard that lahels have almost
disappeared in existing MOL code. Instead the CASE and WHILE
statements are the primary means of controlling program flow (See
WIRTI13). The program is not interleaved with many GOTO statements
transferring into and out of sections of code so that only the
original programmer can remember all the ways a certain statement
may be reached •. Just the way MOL code appears on a page makes the
algorithmic flow clear (See SCIIORRE1).

3a2 The succinctness of infix notation rather than assembly
language also adds clarity. It is often quite difficult to pick
up a random page of machine code and recognize that a set of five
lines doing very strange things are actually testing for a flag in
a word, but it is very easy to recognize a line of ~10L and "see" a
test being made.

3b Our concern for the production of tight code led us to believe

MOL 940 -- SECTION I: INTRODUCTION

that programmer and compiler must work together; the compiler alone
cannot 'do the job.

3bl While the programmer can do the job alone, it is usually too
time consuming. The idiosyncrasies of the SDS 940 are reflected
in the special constructs incorporated in the ~10L which allow the
programmer control of the code that is generated and the way in
which registers are used.

3c We have also included rather general expressions and assignment
statements in the ~10L. At times the programmer has no need for tight
code and should be able to use the MOL on a higher level, leaving all
the worrying about final constructs to the compiler.

3d A unique consideration wi thin the ~10L design criteria is the
accommodation of potential coordination between the structure of the
language and a display-oriented time- sharing text editor.

3dl With such a system, there may not exist hard copy and the
programmer would be able to see no more than some twenty lines of
his program at anyone time.

3d2 ~1uch can be done to ease the programmer's movements within
the code to facilitate manipulation of logical chunks of code and
to allow at least everything that can be done with cards and a
listing.

3d3 We would like to give the programmer even more for we feel
that our text structure conventions and the associated features of
NLTS can be used for algorithm analysis; these techniques, coupled
with the design of the language and of the compiler, provide
greater power and facility for dealing with program design than
more conventional methods such as flow charts. In ESUl we
presented some basic discussion in this direction (See
ENGELBART5).

4 The MOL 940 compiler uses a META compiler parser and a general
operator-operand stack for the code producing algorithm. Additions to
the syntax take only minutes to implement. As a result we do not try to
plan for all future constructs. Instead, our attitude of restraint
means that syntax is added when the need arises and the style of the
construct is well thought out.

2

MOL 940 -- SECTION II: DEFINITIONS

1 Tenninology

1 a The syntax for the ~10L language is written in the ~fETA I I
notation. This provides an easy means of expressing the syntax in a
form that is ,readable by both man and machine, yet allows great ease
and flexibility in modifying the constructs that describe the
language.

lal The notation used for the META II syntax, as well as for the
MOL language, is quite similar to the notation used in the ALGOL
()O report.

la2 Tenninal symbols are represented as strings of characters
bounded by quotes. Nontennina1 symbols take the form of an ALGOL
identifier (i.e., a letter followed by a sequence of letters or
digits).

1a2a Any terminal symbol cQnsisting of a single character may
be preceded by a single quote rather than enclosed in quotes to
indicate that it is terminal.

la3 Concatenation is designated by writing items consecutively.
The items are separated by slashes to indicate alternation. Each
syntax equation ends with a semicolon.

la4 A special syntactic entity represented as ".empty" has been
incorporated to indicate that a syntactic element is optional, and
is usually used in conjunction with alternation.

laS Also, it is possible to "factor" part of a syntax equation;
that is, parentheses can be used to group a sequence of items so
as to treat it as a single item.

1 a6 A special operator, m$n (where m and n are optional
integers), is also used to designate "any number between m and n
of occurrences of the following item." The defaul t values of m
and n·are zero and infinity. This makes it possible to reduce the
number of equations needed to obtain recursion on some item in the
syntax. For example, the standard definition of identifier now
becomes:

laba identifier = letter S(digit / letter);.

lb The design philosophy for the HOL compiler was to follow the ~,IETA
II design, i.e., that of recursive recognizers. The reasons for this
choice center around the following considerations:

lbl Host of the people using and designing the MOL language and
compiler have had direct experience writing recursive recognizer

3

MOL 940 -- SECTION II: DEFINITIONS·

compilers.

1b2 To design a precedence grammar and compiler means that the
relationship between each character and all other characters has
to be considered at each point, and an arbitrary construct cannot
be added at will without possibly affecting the rest of the
existing relations.

2 Basic Symbols and Syntactic Entities

2a General Vocabulary

2a1 Terminal Vocabulary

2a1a ABC D E F G H I J K L M N 0 P Q R STU V X Y Z 1 2 3 4
5 b 789 0 () + • $ * : = - + ; t • • / < > []

2al b AND BEGIN BtJ.1P BY CALL CASH DECLARE no DO-SINGLE HLSE END
ENDP. ENTRY EXECUTE EXTERNAL FINISH FOR FROZEN GO (;OTO IF INC
NOT NULL OF OR POP PREFIX PROCEDURE PROC RETIJRN SET STEP THEN
TO UNTIL VIRTUAL WHILE .A .E .V .LT .LE .EQ .NE .GE .GT .CB
• NCB • AR • BR • XR .liRS • LSH • LCY • LRSH • RCY .• RSH

2a2 Nonterminal Vocabulary

2a2a <abxreg> <actual> <act1> <act2> <act3> <act4> <address>
<arpas> <assign> <band> <bexp> <block> <bor> <bound> <builtin>
<bump> <call> <case> <constant> <cvar> <decl> <declaration>
<entry> <equ> <equl> <exp> <ext> <exu> <fa~tor> <for> <formal>
<forml> <form2> <form3> <form4> <frozen> <frz1> <goto> <icon>
<if> <immediate> <index> <indirect> <intersection> <item>
<iterative> <labeled> <negation> <null> <parid> <prefix>
<primary> <procedure> <product> <relation> <return> <simple>
<statement> <sum> <union> <value> <variable> <varfun> <virtual>
<while>

2b Primitives

2b1 Identifiers: An identifier
quantity (such as a procedure,
label or formal parameter.

is a symbol used to name a
a variable. or an array), as a

2bl a Syntax: id = letter $5 (letter / digit);.

2blb Semantics: An identifier (or more simply an id) is a
string of letters and digits, with a maximum length of 6. the
first of which must be a letter.

2blbl All identifiers that are local to a procedure must be

4

MOL 940 -- SECTION II: DEFINITIONS

declared at the beginning of the procedure. "lhose variables
. not declared or used as labels are assumed to be virtual,
i.e., defined in some other procedure. No distinction is
made among array, procedure, and label uses of identifiers.

2blc Examples of Identifiers:

2b1 cl I

2b1c2 CHAR

2b1c3 X21

2b 1 c4 12J BY1

2b2 Numbers

2b2a Syntax: number = 1$8 digit (lib" / .empty) ;.

2b2b Semantics: A number is a string of digits, with a
maximum length of eight characters, possibly terminated with a
letter b. If the terminating character is a b, then the number
is taken to be octal; otherwise it is taken to the base 10.

2b2c Examples of Numbers:

2b2c1 1

2b2c2 "024

2b2c3 77770UOUb

2b3 Strings

2b3a 8-bit character strings are the only strings recognized
by "the MOL compiler, and these can only occur ~n declarations.

3 Declarations: All declarations occur at the start of a procedure, as
declarations are not allowed within a block. All variables declared in
a procedure become local to that file (not just the procedure), and
external to that file, if so declared. Variables can be preset, arrays
declared, and virtual symbols specified.

3a Procedure: The procedure is the basic syntactic entity, in that
one writes procedures, which are compiled, assembled, and loaded.

3al Syntax: procedure = parid ("pop" "(" .nurn "," .num "," .num
tt)" / • empty) (''procedure'' /"proc") formal ";" $declar labeld $(";"
labeld) "endp.";

5

MOL 940 -- SECTION II: DEFINITIONS

3ala parid = "(tt id tI)" ;

3alb fonnal = "(tI (id I .empty) $2("," (id I .empty)) ")" ;.

3a2 Semantics: The procedure declaration begins with an
indentifier which serves as the name of the procedure.
Optionally, one can declare a procedure to be a "POP" procedure so
that it will be treated by the system as a user POP.

3a2a Following the word "procedure" one optionally indicates
the parameters to this procedure. A maximum of 3 is allowed,
to correspond to the A, B, and X registers, which are the only
arguments passed when a call to a procedure is made. These
parameters are indicated by placing them after the word
"procedure," and enclosing them in parentheses.

3a2b After the procedure declaration comes a declaration of all
the variables that are to be used in that procedure, their
dimensions (if any) and their values if they are being preset.

3a2c The sequence of statements that constitutes the
executable code of the procedure follows these declarations.
In this, note that one cannot declare variables within blocks,
and that variables can only be declared at the beginning of a
procedure.

3a2d Finally, all procedures must end with an "endp".

3a3 Example of Procedure:

3a3a (get) procedure(x,i); declare x,i; return([x(i+lj]t4)
endp.

3b Declaration

3bl Syntax: declaration = (decl I ext I equ I virtue I frozen I
prefix) "." . , , .

3c Decl

3cl Syntax: decl = "declare " ("external " I.empty) item $(","
item);

3cla item = .id (bound I.empty) (value I.empty)

3clb bound = "[" (.id I.nwn) "l"

3clc value = "="("(" icon $("," icon) ")" I icon);

b

MOL 940 -- SELiION II: UEFINITIONS

3cld icon = (.nurn /.id /.st8) ;.

3c2 Semantics: The basic declaration statement permits
declaration of those variables which are to be allocated in the
current procedure (and possibly made external to the current file,
to indicate their dimensions (if arrays), and to specify the
values to which they are to be preset (numbers, addresses of
identifiers, or strings).

3c3 Examples:

3c3a declare x,y,z(10);

3c3b declare external m=10,n=m,st='end of file';

3c3c declare sk[10]=(0,1,20,40);.

3d External

3dl Syntax: ext = "external It evar $("," evar);

3dla evar = .id ;.

3d2 Semantics: The external declaration generates "ext" records
for the assembler--that is to say, those variables following the
"external" are defined to be external to the current file, but
they are not allocated any storage. In this last respect they
differ from variables which are declared via the "declare
external" statement. "External" is sometimes used to declare
labels to be external.

3d3 Exarnp Ie

3d3a external m,n,z;.

3e Equate

3el Syntax: equ = "set" equl $("," equl)

3ela equl = .1" d "=" (1" d / nurn) • . . ,.

3e2 Semantics: nle equate declaration generates "equ" records
for the assembler--that is to say, those variables that are
indicated are equated to the value given at assembly time. This
is useful in generating conditional assemblies, and in setting the
array bounds via a "set " identifier.

3e3 Example:

7

MOL 940 -- SECTION II: DEFINITIONS

3e3a set m940=1,skmax=lUU;.

3f Virtual

3f1 Syntax: virtue = "virtual" cvar $(",",:var)

3fla cvar = .id (bound I.empty);.

3f2 Semantics: If a variable is not declared in a file, then it
is known as virtual. Via the "virtual" declaration, it is
possible to tell the compiler which variables are expected to be
virtuali appropriate checks can then be made, and when the
cross-reference listing is generated, these variables will be
marked "v" for virtual, instead of "u" for undefined.

3f3 Example:

3f3a virtual a,b,m[32b)i.

3g Frozen

3g1 Syntax: frozen = "frozen" frzl $("," frz1);

3g1a frzl = .id;.

3g2 Semantics: The frozen declaration is used to tell the
compiler that the following variables are local to this file, but
that no storage should be allocated for the variables. TIlis
distinction is needed because the codes for local and virtual
variables are different. Since the loader links undefined symbols
together through the address field, it is not possible to have a
complex address field (such as " Ida m+l") for a virtual symbol.
Thus for the compiler to generate the appropriate index register
loads and the correct address field, it needs to know whether a
variable is local or virtual. The frozen declaration is a way of
making the compiler think that a variable is local when it is
virtual. This is used in connection with the ARPAS "continue
assembling", and "frozen symbol table" features.

3g3 Example:

3g3a frozen a,b,xi.

3h Prefix

3h1 Syntax: prefix = "prefix ""for" ("generated" "labels:"
.st8 I"temporaries:" .st8) i.

3h2 Semantics: By using a higher-level language, it is possible

8

MOL 940 -- SECTION II: DEFINITIONS

to have the compiler generate labels and temporaries which, at the
machine-language level, would otherwise have to he done by the
user. However, the compiler is now generating labels and
temporaries, using identifiers that are the same for each
compilation. For debugging, and for generating reentrant code, it
is useful to he able to specify different names. The "prefix"
declaration permits the user to specify the names used for the
generated labels and temporaries.

3h3 Examples:

3h3a prefix for generated labels: 'fmt';

3h3b prefix for temporaries: 'libet' ;.

4 Expressions: An expression is an entity which represents a numerical
value (contained in one 24-bit word). This value is obtained by using
the values of the identifiers and functions within the expression, and
combining these values by means of the operators within the expression.
Note that the symbols .ar, .br, and .xr are associated with the internal
registers of the machine, and their values are the contents of the
respective registers.

4a Exp

4a1 Syntax: exp = "if" bexp "then" bexp "else" exp / bexp ;.

4a2 Semantics: A general expression can be either a conditional
expression, using the "if then else" type of construct, or it may
be an express10n resulting from the combination of arithmetic,
Boolean, or relational operators.

4a3 Examples:

4a3a if x .le y then 1 else 2

4a3b x+y*z/(x+1)

4b Bexp

4h1 Syntax: bexp = union;.

4c Union

4c1 Syntax: union = intersection $("or" union);.

4c2 Semantics: The union makes it possible to combine expressions
with the logical operator "or." The result of the "or" operator
is true (i.e. not equal to zero) iff at least one of the

9

HOL 940 -- SECTION II: DEFINITIONS

expressions is true.

4c3 Example:

4c3a x or y

4d Intersection

4d1 Syntax: intersection = negation $("and" intersection);.

4d2 Semantics: The intersection makes it possible to combine
expressions with the logical operator "and." If both expressions
are true, then the result will be true.

4d3 Example:

4d3a x and y

4e Negation

4e1 Syntax: negation = "not" negation I relation;.

4e2 Semantics: This construct makes it possible to take the
(logical) negation of the value of any expression.

4e3 Example:

4e3a not x

4f Relation

4f1 Syntax: relation = sum (".gt" sum Itt. ge" sum I".ne" sum
1".e'1" sum I".le" sum I".lt" sum I".cb" sum I".ncb" sum I.empty);

4f2 Semantics: TIle relational operators make it possihle to
construct logical statements which are true if the given arguments
stand in the specified relation to one another. The operators are
"greater than," "greater than or equal," "not equal," "less than
or equal," "less than," "common bits," or "no common hits." The
"cornmon hits" operator yields a value of true iff both of its
arguments have ones in any corresponding bit positions. The "no
common bits" operator yields a value of true iff its arguments do
not have ones in any corresponding bit positions.

4f3 Examples:

4f3a rn .gt n

4f3b z .ne y

10

MOL 940 -- SECTION II: DEFINITIONS

4f3c x .cb Y

4g Stun

4 gl Syntax: sum = product $ (It+" product I ,,_It product);.

4g2 Semantics: The sum permits one to combine expressions with
the arithmetic operatoTs + and -. Note that all values are taken
to be 24-bit integers.

4g3 Examples:

4g3a x

4g3b x + Y

4g3c x - Y + z

4h Product

4i

4h1 Syntax: product = factor $("*" factor I "I" factor I Itt"
factor); •

4h1a Syntax: factor = bor I "_,, factor;

4h2 Semantics: TIle product permits one to combine expressions
with the arithmetic operators * (times), I (division), and t
(mod). The result of these operators is a 24-bit integer, and in
the case of the division, the remainder is discarded. Mod
operates similarly to division except that the quotient is
discarded and the remainder is the result of the operation.

4h3 Examples:

4h3a x

4h3b x * Y

4h3c x I y

4h3d x t Y

Bor

4i1 Syntax: bor = band $(".v" band I ".x" band);.

4i2 Semantics: The "bor" (standing for ''bit or") makes it
possible to obtain the bitwise "or" of two expressions. Both
inclusive and exclusive Itor" are allowed and are designated by.v

11

~tOL 940 -- SECTION I I: DEFINITIONS

and .x respectively.

4i3 Examples:

4i3a x

4i3b x.v Y

4i3c x.x Y

4j Band

4jl Syntax: band = primary $(tt.a" primary);.

4j2 Semantics: '!he "band" (standing for ttbit and") makes it
possible to obtain the "bit and" of two expressions.

4j3 Examples:

4j3a x

4j3b x.a y

4k Primary

4k1 Syntax: primary = bltin / abxreg / varfun I const 1"(" exp
")" I immed I indir ;

4k1a bltin = ((tt.lrsh" H(It actual tt)It .num lit. Ish" It(It actual
tt)" .num I It.rsh" H(" actual ")" .nlDll I It. rcy" tt(tt actual H)"
.nm / ".rcy" ItCIt actual It)" .ntun) (",21t I.empty)) I".brs"
.num "Cit actual tt)" ;

4k1b abxreg = ".ar" I".brtt I".xr" ;

4k1c varfun = .id ("[It index ttjH 1"(" actual ")"'I.empty);

4kld const = .num;

4kle immed = "$" (var I const ("[" index tt]tt I.empty));

4k1f indir = tt[n (immed Ivar Iconst) "jtt

4klg var = .id ("[tI index ")" I.empty);

4klh index = "(tI exp ")" I .num /(.id I".xrtt) (tt+" .num/tt_tt
.nm/.empty);

4kl i actual = (.id I .empty) $2(

12

" " , (.id I .empty))

~10L 940 -- SECTION II: DEFINITIONS·

4k2Semantics: The primary consists of the basic entities that
can be used to construct an expression. It provides for direct
reference to the A, B, and X registers, use of the shift and cycle
instructions with optional tagging, use of the BRS inst~lction,
indexed variables, functions of up to three arguments, and both
indirect and immediate addressing. Note that by means of the
parenthesis, recursion is introduced, and thus complex
expressions may be constructed from simpler ones.

4k3 Examples:

4k3a

4k3b

4k3c

4k3d

4k3e

4k3f

4k3g

4k3h

5 Statements:
program. It
may be the
statements.

Sa Syntax:

x

x[i+l]

23

pac(x,y)

(x + y)

[x]

$x

.lsh(m,O,6)3 + • rsh (a, b , x) 5 ,2

A statement is the basic executable unit of an ~10L

denotes some action that is to be performed, which action
evaluation of expressions or the execution of other

labeld = (parid ft.ft I.empty) stat.,

Sal stat = if I simple ;

5a2 simple = block I goto I return I call I rcall I bump I arpas
I iterat / entry I case I null I exu I assign ;.

5b If

5bl Syntax: if = "if " hexp ("then "simple ("else" stat
I.empty) I"do-single " stat);.

5b2 Semantics: The "if" construct is the standard if statement
with the optional "else" part. The added construct "do-single"
indicates that the true part will consist of just one instruction
and thus the code at the end of the test for the "bexp" can he
compiled to minimize the branch and skip instructions.

13

~tOL 940 -- SECTION I I: DEFINITIONS·

Sb3 Examples:

Sb3a if x then goto 12 else x+l;

Sb3b if x .ne z do-single bump i;.

Sc Block

5cl Syntax: block = "begin" labeld $(";" labeld) "end";.

Sc2 Semantics: The "block" construct allows the user to delimit
a sequence of consecutive statements by "begin" and "end" to
indicate that it is to be treated as a single statement. Note
that declarations are not permitted within a block.

5c3 Examples:

Sc3a begin x+l; y+x*y+z; (here): return(y) end;

Sc3b begin call inchar(char); char+char .a 77b end;.

Sd Goto

5dl Syntax: goto = ("goto " /"go " "to If) addr

5dla addr = var I indir I immed I const ;.

5d2 Semantics: The tfgoto" generates an unconditional branch.
This branch can be indirect, indexed, direct, or immediate.

Sd3 Examples:

5d3a go to here;

5d3b goto [$tra[i+l]];

Sd3c goto $15b;.

5e Return

Sel Syntax: "return" (.(actual') I.empty) ;.

5e2 Semantics: It is possible, via the "actual" construct, to
indicate what the contents of the A, B and X registers should be
when returning from a procedure. This is optional, and if nothing
is specified the registers remain as affected by the procedure.

Se3 Examples:

14

MOL 940 -- SEL1ION II: DEFINITIONS

5e3a return;

5e3b return(result);

5e3c return(m[i-2)-y"m+l);.

Sf Call

5f1 Syntax: "call" var ('(actual ') / .empty) ;.

5f2 Semantics: The optional arguments following the "call "
indicate the contents of the A, 8 and X registers of the 940.
Thus it is possible to pass up to 3 arguments at call time to a
procedure. Also, it is possible to subscript the name of the
procedure being called, thus indicating an alternate to the
declared entry point.

5f3 Examples:

5f3a call sub;

5f3b call output(char .a 77b"filen);

5f3c call table[i](arg1,10*arg2);.

5h 8ump

5h1 Syntax: bump = "bump" addr $("," addr);.

5h2 Semantics: There is an instruction on the SOS 940 which adds
1 to memory, and leaves the contents of the central registers
unchanged. The "bump " construct indicates that this operation is
to be perfonned on the sequence of items that follow the "bump."

5h3 Examples:

5h3a btunp i;

5h3b bump m[i-3],$1,[$stackp];.

5i Arpas

5i1 Syntax: arpas = "(tI (copy across everything up to the next>
I'>"~ ;.

5i2 Semantics: This construct allows the user to insert machine
code into an ~10L program, if some special sequence of code that is
needed cannot be generated or even expressed by the language.

15

~10L 940 -- SECTION II: DEFINITIONS

5i3 Examples:

5i3a < sta temp>;

5i3b < cio fntmlo; tco cr; tco If; brs H»;.

5j Iterat

5j1 Syntax: iterat = for / while;.

5k For

5k1 Syntax: for = "for" .id "from" exp ("inc" /"dec It) exp
"to" exp "do" stat ;.

5k2 Semantics: The "for" statement provides a means of repeating
. a statement (or a block of statements) a specified number of
times. By requiring the user to specify "inc" and "dec" it is
possible to generate the appropriate code without complicated
runtime or compile time computations. The limits on the for loop
are not recomputed each time through the loop, but are computed
once at the start. Note, however, that if an identifier is used
as a limit, then the value of this identifier is used as the check
each time, so that changing the value of this identifier will
affect the "for" loop.

5k3 Examples:

5k3a for i from 1 inc 1 until n do l[i]+O;

5k3b for j from x+1 inc 1 to x*x do begin n[j)+m[j+l]; m[jj+O
end;.

51 lihile

511 Syntax: while = "while" exp "do tt stat ;.

512 Semantics: The "while" statement provides a means of
repeating a statement (which can be a block) as long as an
expression is true. This expression is reevaluated after each
repetition of the ''while'' statement.

513 Examples:

Sl3a while char .ne cr do char+incharO;

513b i+l; while i .le n do begin m[i)+O; bump i end;.

Sm Entry

16

MOL 940 -- SECTION II: DEFINITIONS

5m1 Syntax: entry = "entry" .id formal ;.

5m2 Semantics: The "entry" statement provides a means of
indicating secondary entry points in a procedure. Any calling
arguments that are indicated are stored, and a branch around the
code generated by the "entry" statement is provided by the
compiler, so that an "entry" statement can be inserted at any
point without causing an interruption in the existing code.

5m2a The return address is moved from the entry point to the
name of the procedure, so that all returns can return to the
procedure name. However, this' is not done in the case of a
reentrant procedure, as the return address is placed elsewhere.

5m3 Examples:

5m3a entry subset;

5m3b entry inset (argl ,inch1);.

5n Case

5n1 Syntax: case = "case " exp "of " "begin" stat ~('; stat)
"end"; •

5n2 Semantics: The "case" statement provides a means of
executing one statement out of many, depending on the value of the
expression controlling the case statement. The same thing has
usually been done by a series of nested "if" statements. If the
value of the expression specifics a statement that does not lie
within the range of the case statement, (i.e., from 1 to n=number
of statements in the "case") then the last statement of the case
is executed.

5n3 Examples:

5n3a case n of begin
call sub1(n);
return;
call error end;.

50 Null

501 Syntax: null = "null" ;.

502 Semantics: The "null" statement is included in the language
so that there may be statements within the case statement which do
nothing.

17

MOL 940 -- SECTION II: UEFINITIONS

Sp Execute

Spl Syntax: exu = "execute" addr . , .
Sp2 Semantics: This construct reflects the SDS 940 instruction
which can execute another instruction. It provides a means of
locating and executing this instruction with any appropriate
address (i.e., with indirect addressing, index modification,
etc.).

Sp3 Examples:

Sp3a execute m[i];

Sp3b execute [$0);

Sp3c execute 00220002b;.

Sq Assign

Sql Syntax: assign = (var /abxreg /indir / immcd) $("," (var /
abxreg / indi r / immed)) • + ("+" /. empty) exp ;.

5q2 Semantics: The "assign" statement provides a means of
assigning values to variables, registers, and actual memory
locations. Provision is made for multiple stores, in which case
the stores are done in sequence from right to left. Also, if the
item next to the + is a register, the value will be placed in that
register, and the remaining assignments done from that register;
otherwise the assignments are taken from the register that the
value happens to be left in by the expression analysis. Note too
that the construct ++ is used to indicate that an "add to memory"
is to be done rather than a store. This is a special meaning, and
thus precludes the use of a unary plus.

Sq3 Examples:

Sq3a x+1;

5q3b m[i),l+(x*b-c/d)+t;

Sq3c .ar,m,.b~i+l;

Sq3d m[i)++.ar;.

18

~10L 940 -- SECTION III: SYNTAX

1 The following is the syntax for the HOL. Note that backup is
required to compile, but the backup is only past an identifier after the
next character has been recognized. This gets over a lot of problems
concerning assignment statements and labels.

2 prog = (.id I.empty) $(arpas '; I proc) "finish" ;

3 proc = parid ("pop" .sp , (.nurn
.rr) ("procedure" I"proc") fonnal ';
labeld) "endp." ;

3a parid = '(• id t) ;

" " ,
(.tp

.ntDll "," .num t) I .empty .rp
$dec12 I$declar) labeld $(';

3b formal = t((.id ("," fonnl I fonn4) I","
fonn4 ;

form1 Iform4) ') I

3bl form 1 = .id ("," form2 I form3) I"," form2 Iform3

3b2 form2 = • id I form3;

3b3 form3 = .empty . ,
3b4 form4 = .empty

4 declar = (decl I decl2) ';

4a decl2 = ext I equ I virtue I frozen I prefix ;

4b decl = "declare" ("external" .rl I.empty .sl) item $("," item);

4b1 item = .id (bound I.empty) (value I.empty)

4b2 bound = "[II (.id l.nlUll) "]"

4b3 value = "=" ('(icon $("," icon) ') I icon)

4b4 icon = (.nlUll I.id l.st8) ;

4c ext = "external n evar $ (n," evar)

4c1 evar = .id

4d equ = "set" equ1 $("," equ1)

4d1 equl = .id "=" (.id I.num)

4e virtue = "virtual " cvar $ ("," cvar)

4el cvar = .id (bound I.empty) ;

19

MOL 940 -- SECTION III: SYNTAX

4f frozen = "frozen" frz1 $("," frz1)

4f1 frz1 = .id ;

4g prefix = "prefix
I"temporaries:" .st8) ;

" "for "

S labeld = (parid It." . I.empty) stat

o stat = if I simple ;

("generated " "labels:" .st8

7 if = "if" bexp ("then " simple ("else "stat I .empty) I"do-single
" stat);

8 simple = block I goto I return I call I rcall I bump I arpas I
iterat I entry I case I null I exu I assign ;

9 block = Itbegin " labeld $('; labeld) "end";

10 goto = ("goto " I"go " ftto ") addr

11 return = "return" ('(actual ') I.empty);

12 call = "call " var ('(actual ') I .empty)

13 bump = "bump" addr $ (ft," addr);

14 arpas = "<,, <copy across everything up to the next> ">,,

lS iterat = for I while;

16 for = "for" .id "froJ'll " exp ("inc" .si I"dec" .ri) exp "to" exp
"do " stat ;

17 while = "while" exp "do" stat

18 entry = "entry" .id fomal ;

19 case = "case " exp "of " "begin " stat $ ('; stat) "end"

20 null = "null" ;

21 exu = "execute " addr

22 assign = (var labxreg lindir I imrned) $("," (var I ahxreg I 'indir I
innned) 't ("+" .sa I.empty .ra) exp ;

23 exp = "if" bexp "then .. bexp "else " exp I bexp;

20

MOL 940 -- SECTION III: SYNTAX

24 bexp = union;

2S ooion = inter $("or " union) ;

26 inter = neg $("and " inter);

27 neg = "not " relat I rclat;

28 relat = StUll (".It "sum .re .rb I".le "StUll .re .sb I".eq " sum
.re .rb Itt.ne " SlUll .re .sb I".ge "Stml .re .sb I".gt "sum .re.rb
I".cb" stun .re .sb I".ncb " sum .re .rb I.empty);

29 StUll = prod $("+" prod I"-tt prod) ;

30 prod = factor $("*" factor 1"1" factor If,.. factor);

31 factor = bor 1"-" factor . ,
32 bor = band $ (". v " band I ". x " ban d);

33 band = prim $ (". a " prim);

34 prim = bltin I abxreg I varfun .se I const .se I '(exp ') I immed I
indir;

3S abxreg = ".ar" I ".br" I".xr"

3b bltin =((".lrsh" '(actual f) .ntml I".lsh" .(actual ') .num I".rsh"
.(actual ') .nwn)(",2" I.empty)) I".brs" .num',(actual .);

37 varfun = .id (tt[" index tI)" 1'(actual ') I.empty);

38 var = .id ("[" index "1" I .empty);

39 index = '(exp ') .te I.ntml I(.id I".xrtt) ("+" .ntun 1"-" .num
I.empty)

40 addr = var I indir I immed I const ;

41 immed = "$" (var I const ("[" index "]" I .empty))

42 indir = "[" (immed Ivar Iconst) "]"

43 const = .num .SC ;

44 actual = .empty (cxp (tt," act1 I act4) Itt," actl I.empty act4)

44a actl = exp ("," act2 I act3) Itt," act2 lact3

21

~1()L 940 -- SECTION III: SYNTAX

44b act2 = exp /act3 ;

44c act3. .empty

44d act4 = .empty

4S synerr = $ ("endp." /); .end

22

MOL 940 -- SECTION IV: OPERATION

1 The MOL Executive

1a User Interface

1a1 The MOL Executive is the interface between the user and the
MOL compiler. It uses the command-recognition structure of the
SDS 940 time sharing system itself, especially that of the QED
subsystem.

1a1a A special meaning is attached to certain control
characters; when one of them is typed by the user, the
remainder of the control word or phrase is echoed by the EXEC.
Some characters represent commands to be performed, others
represent flags requiring a yes/no type of answer, and others
require file names, such as Input:/prog/.

1a1b Each command requires a period for confirmation. If any
other character is typed, then a space and a question mark are
echoed and the command is aborted.

la2 The various characters recognized and their meanings are as
follows:

la2a (i) Input: "I" is typed to specify the input file for
the MOL compiler. After the I has been typed, a file name
should be given, followed by a period.

1a2al An input file must be specified with each new
compilation. This file will be closed when the compilation
is finished.

la2b (0) Output: "OS is typed to specify the output file for
the t-IOL compiler. After the "0" has been typed, a file name is
expected and should be acknowledged by a period.

la2bl Each time the compilation process is initiated, the
old output file is closed and the new one opened. If,
however, the new output file name is the same as the last
one used for output, or if none has been specified, then the
last file is not closed and the next set of output is
appended to the current output file.

la2b2 It is possible to specify different files for output,
should the wrong one be given. However, when execution of
the compiler begins, the last file specified for output will
be used.

la2c (b) Begin Compilation: "B" is typed to indicate that all
file names and flags have been specified for the current

23

MOL 940 -- SECTION IV: OPERATION

compilation, so that compilation may now actually be initiated.

la2cl If there is insufficient information (such as lack of
file names) to initiate the compilation process, the command
will be aborted.

la2c2 When a successful compilation has been performed, the
message "***end of compilation***" is typed. If control
returns to the user without this message, then the
compilation has not been completed because of an error
condi tion (such as running, out of room on the RAD, or an
illegal instruction trap from the compiler, etc.).

la2d (z) Zap: "Z" is typed to terminate the HOL Executive and
return control to the TSS Executive. \fuen "zap." is typed, any
remaining files that are open are closed.

la2e (1) Listing (interlinear): "L" is typed to set the flag
controlling the interlinear listing. The expected response is
either a "y" or "n" for "yes" and "no", respectively, although
a period alone will be taken as a "yes" response.

la2el When the interlinear listing is sent to any file
other than the controlling Teletype, all semicolons are
converted into $ so that ARPAS will not terminate a comment
in the middle of the line.

1 a2 f (t) Type Procedure Names: "T'" is typed to set the flag
which determines whether or not procedure names are typed on
the controlling Teletype as they are compiled. If the flag is
set, then as each procedure is encountered by the compiler, the
name of the procedure is typed. The response to this command
is in the usual "y" (yes) or "n" (no) manner.

la2g (c) Cross Reference: "c" is typed to request a
cross-reference listing of the identifiers used in the input
file. The response to this command is a file name that is to be
used for the cross-reference listing, such as "Teletype".

la2g1 This listing gives the names of the identifiers in
alphabetical order, along with their status (undefined, not
used, etc.) and an ordered list of the line numbers on which
they are used.

la2h (r) Reentrant: "R" is typed to set the flag that governs
whether or not the compilation produces reentrant code. A "y"
or "n" response for "yes" or "no" is expected and must be
acknowledged with a period.

24

MOL 940 -- SECTION IV: OPERATION

la2hl If the response if yes, then the flag for "generate
temporaries" (see below) is automatically set to "no".

la2i (g) Generate Temporaries: "G" is used to set the flag
which specifies whether or not the temporaries used in the last
input file are to be allocated at the end of the output file.

la2il If this flag is on, the the temporaries are allocated
(this is the usual case). If the flag is off (set by giving
a "no" response), then the temporaries are not allocated.
The latter is generally used when reentrant code is being
produced, and then in connection wi th the "prefix for
temporaries .. declaration.

la2j (k) Keep compiling: "K" is the same as "begin
compiling," except that some parts of the NOL compiler are not
reinitialized:

la2jl These are the symbol table and the temporary- and
generated-label COWltS. The purpose of this conunand is to
provide a means of compiling one input file, and then
another, as if they were all the same input file.

la2k (q) Quick: "Q" causes the supression of the string which
is normally echoed for each command character.

la21 (v) Verbose: "V" causes the printing of the string which
gives the meaning for each character typed as a command.

la2m Any other characters typed are illegal; the MOL Executive
will respond with a space followed by a question mark.

1 b Error Recovery and Error ~tes sages

lbl The only errors which should normally be expected arc syntax
errors in the user's input file.

lbla When such an error occurs, an appropriate error message
is typed, along with the line number and line which caused the
error. Also an uparrow is typed under the last character
interpreted by the compiler.

lblb To attempt an error recovery, a scan is made for the next
Hendp.", stacks are reset, and an attempt is made to restart
the compiler to look for a procedure. This type of procedure
has proven fairly useful, and is f~r better than just giving
up.

lb2 Another user error which may arise is the occurrence of

25

1-10L 940 -- SECTION IV: OPERATION

identifiers or ntunbers longer than the maximum length allowed (6
and 9 respectively). In this case a warning message is tfl)ed, the
remainder of the string is skipped, and compilation continues.

1b3 Next on the list of errors are stack and symbol-table
over/underflow.

1b3a All the stacks and symbol tables have been set to
adequate sizes for most programs, and the normal user will
never encounter the bounds. When and if they are exceeded, an
error message to this effect is typed and the compilation
process is terminated.

1b4 Yet another, even more obscure, error is one caused by an
illegal string passed to Ft-tT (a routine internal to the HOL
compiler).

lb4a Such a string originates in the syntax equations
error can only be the result of changes

file of the compiler; when this is
the error is detected. This is treated

and compilation ceases. But this error
the normal course of events.

themselves, and this
made in the syntax
cross-checked by Ft-1T,
as a fatal error,
should never occur in

1b5 Finally there are two types of errors from which there is no
recovery at present.

1b5a Internal conditions in the compiler,
memory references OT illegal instructions,
(hopefully none of these will ever occur).

such as
or program

illegal
loops

1b5b Conditions external to the compiler, such as running out
of room on the RAD, or a rubout by the user, or a system
crash.

26

MOL 940 -- SECTION V: SArvfPLE PROGR~·t

1 (inchar) The "inchar" procedure is an intermediate interface between
the input medium and the compiler.

la This routine buffers one line of text at a time, outputs it to
the output file (if the list option is set) and returns the next
character in the A register.

lb "inchar" also has an entry point to print error comments to the
controlling Teletype should any syntax error be detected.

(inchar) procedure;
declare nchar=80, mchar=80, maxch=80, line[80], i ;
declare external list=l, nline=O, If=153b, cr=155b, space=Ob;
declare star=' *',arrow=' t', peeked=O;
if peeked then

begin
peeked+-O;
return(line[nchar)) end;

if nchar .ge mchar
then .

begin
for i from 0 inc 1 to maxch do

begin
line[i] +- gench();
if .ar .eq If then goto ml end;

mchar +- maxch;
goto m2;
(ml): mchar +- i;
(m2): if list then

begin
call putch(star);
for i from 0 inc 1 to mchar do call putch(line[i]) end;

nchar +- 0;
blDllp nline end

else bump nchar;
return(line[nchar]);
entry (perr);

call putch(star);
for i from 0 inc 1 to mschar do putch(line[i));
for i from 0 inc 1 to nchar-l do putch(space);
call putch{arrow);
call putch(cr);
call putch(lf);
return

endp.

27

t-fOL 940 -- SECTION VI: BIBLIOGRAPHY

1 (Bookl) E. Book and D. V. Schorre, "A Higher-Level ~1achine-Oriented
Language as an Alternative to Assembly Langauge," Tech t-lemo
3086/001/00, System Development Corporation.

2 (Book2) E. Book and D. V. Schorre, "A User' s ~'fanual for HOL-360 ft ,

Tech lvlcmo 3086/003/00, System Development Corporation.

3 (Wirth1) N. Wirth, "PL360, a Programming Language for the 360
Computers," Journal AOI (.. January 1968).

4 (Wirth2) N. Wirth and H. Weber, "EULER: A Generalization of ALGOL,
and its Fornal Definition," Cornrn. AD,. (January-February 19(6).

5 Ovirth3) N. Wirth
Development of ALGOL,"

and C. A. R. Hoare,
Comm. AD'I (June 1966).

"A Contribution to the

() (Schorrel) D. V. Schorre, "Improved Organization for Procedural
Languages," Tech f\1emo 3086/002/00, System Development Corporation.

7 (Engelbart1) D. C. Engelhart, "Study for the Development of Htmlan
Intellect Augmentation Techniques," Final Report, Contract NAS 1-5904,
SRI Project 5890, Stanford Research Institute, ~ .. Ienlo Park, California
(in preparation).

28

OTHER AliI REPORTS

2

3

4

5

6

7

*

D. C. Engelhart, "Special Considerations of the Individual as A User,
Generator, and Retriever of Information," Paper presented at the Annual
Meeting of American Documentation Institute, Berkeley, California,
(23-27 October 19bO)

D. C. Engelbart, "Augmenting Human Intellect: A Conceptual Framework,"
Summary Report, Contract AF 49(638)-1024, SRI Project 3578, Stanford
Research Institute, Henlo Park, California (October 19(2) (AD2895b5)*

D. C. Engelbart, "A Conceptual Framework for the Augmentation of Han's
Intellect," in Vistas in Infonnation Handling, Voltlr.1e I, D. W. Howerton
and D. C. Weeks, eds., Spartan Books, '~ashington, D.C. (1963)

D. C. Engelhart, "Augmenting Htonan Intellect: Experiments, Concepts,
and Possibilities," Stunmary Report, Contract AF 49(038)-1024, SRI Project
3578, Stanford Research Institute, ~fenlo Park, California (f\farch 1965)
(AD640989)*

O. C. Engelbart and B. Huddart, "Research on Computer-Augmented
Information Hanagement," Technical Report No. ESD-TDR-65-168, Contract
AF 19(b28)-4088, Stanford Research Institute, Henlo Park, California
(Harch 1965) (AD022520)*

\v. K. English, D. C. Engelhart and B. lIuddart, "Computer-Aided Display
Control," Final Report, Contract NAS 1-3988, SRI Project 5001, Stanford
Research Ins ti tute, Henlo Park, Cali fornia (,July 1965) **

D. C. Engelhart, "Study for the Development of Human Intellect Augmentation
Techniques," Interim Progress Report, Contract NAS 1-5904, SRI Project 5890,
Stanford Research Institute, Menlo Park, California (Harch 1~()7)

Reports with AD ntmlbers are availahle from Defense Documentation Center,
Building 5, Cameron Station, Alexandria Virginia 22314.

** Reference No.6 may be obtained from CFSTI, Sills Building, 5825 Port
Royal Road, Springfield, Virginia 22151; cost $3.00 per copy or 75 cents
for microfilm.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(St'curity clalisification 01 title, body of abstract iillU i/ldexi/l~; anno/ariun nltJs/ be ell/eTt'<i wl"'T1 /lIe ()v('r,dl "'porr i., cl'l.,,,ifieri)

1 ORIGINATING ACTIVITY (Corporate author) 2<1. REf'OHT SECURITY CLASSIf-ICA1IOrJ

Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94025

Unclassified
2b. GROUP

N/A
3. REPORT TITLE

MOL940: PRELIMINARY SPECIFICATION FOR AN ALGOL-LIKE
MACHINE-ORIENTED LANGUAGE FOR THE SDS 940

4. DESCRIPTIVE NOTES (Type 01 report and inclusive dates)

Interim Technical Report 2
5· AU THOR(S) (First name, middle initial, last name)

R. E. Hay

J. F. Rulifson

6· REPORT DATE 7a. TOTAL NO. OF PAGES

March 1968 35
Sa. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)

NASl-5904 SRI Project 5890
b. PROJECTNO. Interim Technical Report 2

c.

d.

9b. OTHER REPORT NOIS) (Any other numbers that may be assigned
this report)

10. DISTRIBUTION STATEMENT

11. SUPPLEMENTARY NOTES

13. ABSTRACT

12. SPONSORING MILl T A"< 'y AC TI VI TY

NASA-Langley Research Center
Mail Stop 126, Langley Station
Langley, Virginia 23365

This report is a reference manual for a programming language developed at
Stanford Research Institute for the Scientific Data Systems 940 computer. The
compiler is now fully operational; it is written in its own language, compiles
itself, and is in daily use for development of our CRT-display service system.

The name MOL940 (or simply MOL) is an acronym for "Machine-Oriented
Language." MOL is an ALGOL-like language with natural extensions for bit
manipulation. The added syntax strongly reflects the internal design of the
SDS 940, in accordance with the name MOL.

The introduction to this report includes a brief summary of other projects
of the same nature which were known to the authors. There is also a discussion
of the design criteria that shaped the MOL. The major topics are the compre
hensibility of programs written in the language, the needs of system programmers
working within a time-sharing system, and the effects on coding that result from
using an on-line CRT.

A complete definition of the language is given, using an extended Backus
Normal form; included are semantic explanations and examples, a sample program,
and some examples of code produced by the MOL compiler.

(PAGE 1)
UNCLASSIFIED

SIN 0101.807.6801 Security Classification

UNCLASSIFIED
Security Classification

14
KEY WORDS

Programming

Compiler

High-Level Language

Machine-Oriented Language

DD ,FN~R:es1473 (BACK)

(PAGE 2)

LINK It. LIN K B LINK C

ROLE WT ROLE WT ROLE WT

UNCLASSIFIED
Security Classification

