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Donalc M. Kaplan

ABSTRACT: The syntax and .emantics is given for :lemental p:—yrams,
and the strong ecquivalence of these s.mple ALGOL~i.:e flowe
charts is znown to be undecidable, A formal theory is
introduced for deriving statements of strong equivalence,
anC the completeness of this theory is cbtainec 7or -aricus
sub-cases, Several applications of the theory a¢ c.iscussed,
Using & regular expression representation for elemental
programs and an unorthodox semantics for these expressions,
several strong equivalence detecting procedures are developed.
This work was completed in essentially its present form in
March, 1968,
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WOTATIONAL CONVENTIONS

The standard notational conventions of s=t theory as given ty
Halmos [14]  for example, are acsumed throughout the text. Aside from
the notations introduced below, all others are introduced when they are
used,

Sequences or n-tuples

A sequence of n items, i.e,, an n-tuple will be represented as

<Xy Kygeesy Xp 2 X n<1l, and as simply X, for n=1,

Any liev. set, 1equance or whatever, containing the items

Xos Xyseeey X 4 5 18 the null 1ist, set, sequence or whatever if n =0,

The Natural Numbers

The set of natural numbers {0, 1, 2, ...} , as defined set theo-
retically by Halmoe [14], is denoted by w . Since, according to this
definition, w 18 well ordered by the "€" or set membership relation,

the notation x < W will be used in lideu of x € W,

fhe set w - [L} , f.e., {1, 2, ...}, 1is denoted by w~

Then, x< W means 1< x< W

vii



CHAPTER 1

INTRODUCTION

The Need for a Theory

Computer programming is not yet a science, but rather still same-
what of an art, A great deal of ingenuity and heuristic methodology is
required when we attempt to debug a program; convince ourselves that a
camputation will terminate; show two programs are equivalent; or certify
that a compiler is correct. Although the "art" can never be fully
removed from many of these endeavors, if more "science” could be employed,
then at least ocur attack on these problems would ben‘etit from the resultant
organization and sophistication, and perhaps in same cases even be made
susceptible to mechanized implementation, One way of injecting “science"
into our approach would be to formulate a "theory of camputation®,
Ideally, what we want 1s a theory of computation rich enough to admit
interesting statements about programs, computations and campilers, and
powerful enough to admit proof of the correctness of these statements.

The theory we consider here falls short of this ideal in the sense that

we treat only one small area of concern, name.;, the equivalence of programs,

There is a parallel between computer programs and sentences in a formal
theory of mathematical logic, Programs take on meaning only when the
machine on which they are executed is specified; sentences in a formal
theory take on meaning only when the mathematical system in which they are
interpreted is specified, Thus, a formal theory of camputation would seem

to have intuitive appeal, and it is just such an approach that we take here,



A Th of Str ivalence

The sort of theory that cuncerrs us here is one whose well-formed
formulas (wffs) expre.s the strong equivalence (i,e., equivalence for all
interpretations) of two programs frowm a certa.r restricte. class of programs,
The notion of such a forwal thecry has been explured by Ianov [X¥], but his
results ar: abstract in nuture and mirror only the ccarser features of
programs as we know them. The theory developed here differs from Ianov's
in that the sort of programs we consider provide a far more detailed pre-
scription for computations and in fact arc ALGOL-like in structure ana
behav! r ‘i.e., consist of assignment statements and conditional branches).
A suggeat.ve analogy is that our theory is to Ianov's, a- . - first order
predicate calculus is to the prcww =it onal calculus. In fac, this
endeavor constitutes a new and we believe necessary step in the formal-

ization and detection of the strong equiva.ence of ALGO:-1like programs.

Elemental Programs and Computing Structures

The literature abonds in different formal ‘epre:citations of ALGOL-
lika programs in the context of theoretical analysc i, T[rese varv from the
complicated efforts of Ianov (16, Ershov (9] and Narasimhan [34] to the more
succinct approaches of Luckham and Park [14], Paterson (34, Cooper (5] and
Gluahkov (1. Nevertheless, each of these suffers scme difficulty if we
take as our objective a representation that is sufficiently ALGOL-like and

vet amenable to formal treatment,

For our formal theory, we consider the class of elemental programs.
These are multi-entrance, multi-exit flowcharts made up of (1) two-way

conditional branches on the truth-value of guantifier-free formulas (qffs)



of the first order predicate calulus with equality, and (7)) operators

called assignment schemata which assign the values of a set of terms to

a set of distinct variables. This representation as explicated fully in
Chapter 3 avoids the cumpersome complexity of definition given 'y Ershov
(9] and Narasimhan [34] for their s-hemes, and at the same time alleviates
the unnecessary deficiencies in exprecssion found in the other represen-
taticns mentioned above, In addition, by making usc of tae formal entities
of the predicate calculus, we gain access to the abundance of results

already known for this formalism,

Quite recently, and independently of this author, Engeler [8] and
Manna (33 have introduced representaticns of programs which are very
similar to the elemental programs considered here. However, both of
these authors study the teruination of program execution not the strong

equivalence of programs.

The semantics of an elemental program is defined with respect to e

mathematical system, called a computing structure, of the sort used to

provide interpretation for formulas of the predicate calculus. Im
Chapter 2, we define such structures precisely and indicate how various
bases of computation can be expressed as camputing structures. In
Chapter 3, we define just how camputing structures are utilized to give

the semantics of elemental programs.

Also introduced in Chapter 3 is the notion »f subscripted varisble.

There we define a new data structure called a hierarchial state and show

how such a structure can be accessed by a subscripted variable to produce

a value,



The Strong Equivalence Decision Problem

In Chapter 4, we introduce the wffs of our thecry and defire the
concepts of equivalence and strong ecuivalence in terms of the validity
and general validity of these wffs. Luckhax and Park [24], Kaluzhair 19],

and Paterson {36€] define these notions similarly.

In Crapter 5, we examine in some detail the question of effe :tive
decidability of strong egquivalence. Very recently, and independently of
tnie author, Luckhem, Park and Paterson [R5 36] have corsidered this probiexn
in some detail for a sub-class of the class of elemental programs. How-
ever, we obtair our basic undecidability result in Chapter 5 by utilizing
a related result for partial recursive functions, whereas Luckham, Park
and Paterson utilize certain results for Turing machines and two-headed
automata. This eppeal to recursive function theory makes our proof of

undecidability brief and easy tc follow.

As preface Lo these results, we prove the universality of elemental
programs, Ershov [9] shows in a roughly sketched form how to compute all
partial recursive functions in his formalism, but he fails to explicate
the details. We give a nuw scheme which generates an elemental program
for evaluating any partial recursive function at arbitrary arguments;
the generating scheme utilizes the variables to simulate a first-in-

last-out stack when the generated elemental program is executed.

In contrast to the pessimistic general undecidability results, certain
sub-cases of the decision problem are found in Chapter 5 to yield a favor-
able solution. We first show that strong equivalence is decidable for the
sub-class of elemental prcgrams in which nc function letters appear, The

same result it cbtained for the sub-class of elemental programs in which

i
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nu gffs appear. We alsc hicw that under condition: thu'. yirid lecidability
Jf the logical validity for Affz in che preogl.ate calculus, o obtain
decidabili%ty of strong equ:vzlence for three further subeclasses of
clemental programs: (i) the sub-claess whose algoritms have nc loops,
(1i) the sub-class whose elemental programs ~ontain no operators, and
(11i) the sub-class whose clemental programs always terminate, i,e,,
terminate in all computing structures. As mentioned above, Paterson (36
has considered similar guestions, but except for the case of always

terminating elementel programs, our results were obtained independently.

Syntactic and Semantic Propcrties

In Chapter € , we consider various syntactic and semantic preliminaries
to the introduction of an inferential system of axioms and rules of infer-

ence for the formal theory of strong equivalence,

First, we define the notion of forward substitution of assigmment

schemata into other assignment schemata and into qffs. These simple
syntactic operations, here examined in detail apparently for the first
time, reveal the basic semantic interaction bet:ean operators and between

operators and qffs,

To carry out derivations in the formal theory from hypotheses, we need
the notion of instantiation of wffs. Thus, fram a general statement of
equivalence given by some wff, we want to prodice when needed in a deri-
vation, any relevant instance of that equivaience as glven by some new
wff, We give a powerful theorem which prescribe: ¢ sullicient condition

for an instance of a wff to be valid when the wff itself is.



We then turn our attertion to the staidard matters of composition,
decomposition and replacement of elcmental programs. Here, we discuss
these operations with respect to the graph theoretic properties of

elemental progrems, as do Ershov [9,, Narasimnan (34 and Kaluzhnin [1g.

The Inferential Sysiem

The wffa of our formal theory having heen defined and studied, we
introduce in Chapter 7 the inferential system of the formal theory. We
discuss the usual notions of derivability, completeness and extended

completeness and ollow Feferman [10) and Mendelson [33 in these matters.

From the proof of undecidebility, we obtain the further result that
no axiomatic compleie theory o strong equivalence exists, However,
we proceed to specify an inferential system of fifteen axioms and five
rules of inference. The first seven axioms characterize the properties
of q*fs; the next four, the properties ¢f assignment schemata; and the
last four, some of the graph theoretic properties of elemental programs.
The first two rules characterize strong equivalence as an equivalence
relation in the ordinary sense; the third rule permits instantiation of
wffs; the fourth rule provides a oridge between strongly equivalent
assigmnment schemata and qff:c expressing the equality of terms; and the
fifth rule permits roformulation of an elemental progras ir "iterative"
form into "recursive" or "ciosed” form, but this rule s not effectively

applicable, s0 that the theory 1 :ot axiomatic,

This inferential system is apparently the fir:% such for deriving
statements of strong equivalence between programs as rich in structure as
the elemental progrems considered here. Earlier efforts include McCarthy's

axicmatizetion of the equivalence of conditional expressions [BO]; Ianov's



aiready discussed results (16); and this authcr‘s prcof of completeness [R)]
of an axiomatization of the "assign” and "contents” fu.ctions fir . gi ea
b. McCarthy [28; and to some extent, these efforts relate tc the current
endeavor. The inferential system is shown to be sound in the sense that
all derivadble wffs are g-meraily valid, i.e,, express the strong equivalence

of two elemental programs.

Ccapleteness Results and Applications

The cvsz2rall completeness properties of our non-axiomai.. «% cry o~
unknown. It is nevertheless camplete or even extended complete, as we
show .n Chapter 8, for those sets of wffs expressing the strong :quivaleuce
of {.) & two wey branch and the always true branch; (ii)} two sequences of
assignment schemata, or further, any two elemental programs witkout qffs;
(iii) two elemental programs without loops; and (iv) two elemental programs

which always halt, i.e., in all c:mputing structures.

We then conside. an axiometization of the properties of assigmma:nt
schemata consisting of a sing e assignment of a term to a variahle, and

conjecture that this axiomatization is complete.

To illustrate the considerable derivational power >f the formal theory,
we consider in Chapter 8 several applications: (i) the reorganization of
a simple loop from FORTRAN form, where the body of the loop is executed at
least once, to ALGOL form, where the body of the loor may poss.bly not be
executed at all; (ii) the detection of an elemental prosram that always
fails to halt; (iii) loop reorganization to point up and isolate posaible
non-halting executions; (iv) tbe removal from a loop of a loop-independent

operation; (v) the traasi:. of a loop-transparent operation from before the



loop to after it; (vi) the detection of strongly eq‘ivalent always halting
elemental programs; (vii) the decuction of the surcng equivalence of two
elemental progrems {rom certa.n hypctheses on the slgebraic properties

of functious appearing in them, e.g., commutativity or identity.

Inttia) (opditions and K-events

The essential motivaticn for this work is the study, detection and
derivation of the strorg equivalence of elemental programs. Because this
property is in general both undecidable and unaxiomatizable, we feel there
should be a basic cammitment to sharpening our analytic tools as much as
possible. The aim, then, is t. provide an or. .l d v aprehensive method
for the detection of strong equivalence, to whowiver .. .ent such is obtain-

able.

To this end, we turn in Chapter ? to the notions of regulcr expressiona
and regular events, as defined by lLieene [23, ansd as further studied by
Harrison (19, Salomaa {33, McNaughton and Yamada [31], and many others.

We show how to map any elemental progran into a finite automaton, and thence
into a characterizing regular expression, Indeprnden.ly of this author,

Engeler [ 8] and Ito (18] use a simiiar regular expression representation.

We then develop through a series of theorems the notion of initial
condition. Thus, given ary wcrd in the regular event associated with an
elemental program, we J:fine ar initial condition that holds with respect
to a given Interpretation (i.e., computing structure, if an cauly if the
elemental program, when executed in Unet camputing structure, gencrates
the given word, We then recact anew the definition of strong equivalence

in terms of a possibly infini-e propositional form involving the initial



conditior: - the words in the regular events associated with the clemental
programs involved. We give an interesting theorem which serves to verify

this recasting of the definition >f strong equivalence,

All of this leads to an operative tcol in the detection of strong
equivalence, W= show that if twc elemental programs have the same
regular event associated with chem, then they are strongly equivalent.
Since the eguality of regular event. is decidabl. fct. Salomsa [38), tkis

gives us an effective handle on strong equivalence,

To sharp.n this technique somewhat, we in-=rduce the notion of
s-gvent. This reformulatior of the semantics for the regular expression
associated with an el mental program {(now called a K-e)_(gress_lg) reflects
the pr:iiously ignored rropositioral structure of those letters ir the
alphabet for that elsmental program that are qffs, We firat prove that
17 “wo elemental programs have the same K-event associated with them, then
they are strongly equivalent. Equality of K-events, i.e., the K-equival “'ce
of K-expressions, 1s shown to be decidable concurrently with an examinatiosn
of a formal theory of K-equivaience and 2 proof that this theory is complete.
Since equality of regular events implies equality of K-eveuts but not vice-
versa, this result therefore gives us a stronger effective handle on strong

aquivalence.

This last result alsc gives us a ‘resh and pellucid reformulation of
the equivalence problem for abstract program schemata as studied by Ianov [If]
and Rutledge [37. This follows since if we restrict our elemental programs
by permitting but a single distinct variable, we have the abstract case.

In this situation, K-equivalence and strong equivalence are identical



notions. As well, Ito [18 considers the equivalence problem for a class
of nondeterministic abstract program schemsta and his positive solutiom,
obtained independently of %his author, implies a positive salution to the
deterministic case. However, he does not consider K-events and
K-squivalence, as defined fere, nor the relation of these to the strong

equivalence of elemental programs.

To sharpen cur strong equivalence detection tools even further, we
introduce the notion of shift cet. This concept was first introduced
by Tanov [1§ and subsequently extended by Rutledge [37]. For each operator
occurring in an elemental program, we can effectively apecify wnich atomic
Qffs occurring in the algorithm can be affected, i.e., with regard to their
truth-value, ty the execution of the given opera‘or. This allows us to
refine our notion of K-equivalence and so therefore strengthen our ability

to detect strcug nquivalence,

Conclud Remarks

The contest. between strong equivalence and the theoretician is not
yet rcosolved. The opponert has gotten in some strong blows, viz,, un-
dec’dability and unaxiomatizability. But, we have countered with a
powerful formal theory and potent analytic tools. There are still a great
many potentially productive attacks to be considered; this endeavor, it
seems, has merely scratched the surface of the strong equivalence problem.
In the concluding remarks at the end of this work, we consider what some

of these as yet untried attacks might be,

10
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CHAPTW

COMPUTING ST JCTUKED

At firs+w thought it may seem <<mewnat ~nd - v nicussinge a
prime element of the semantics ¥ & vrogrammin. tarpuc;e before that
language itself is definea. Bul not .-, iven a probl-m to solve,

one natirally comes ir contact first with the promitives of the
~itur.ion: domain of the protlem s,ace, transfermat:ions to aid in
:ffecting a solution, and measurss . fuize and ssu.uste progress,

Once h2se fundamental eniz.izu, wi.-n .~ ca ! 2 gemantic baigls, are

estapiished, some algorithmic procer. <an be undertaken tc generate
the required solution, ané orly then wiil s<aemes for specifying such
algorithms be relevant, To specify a semwantic basis, we will use a

computing structure.

A computing structure is a mathematical structure comprised of a
on-empty set, called the domain, and finitely many rela:...1is, functions,

and desigruted individuals in the domain. The relations and functions

are to be “otal, i.e., defined for all arguments.

We classify computing structures according to their structural
similarity. To specify this classification we use a signature which is
of the form

s =< <n°,...,nk_l>, <mo,...,mt_1>, o>
where n ..., n 1, B ,..., 0, € Wk, ] p€wand where if

k=) or l'eO, the respective members of the triple s are simply O .,

11



By a computing structure -f signature s we mean a sequance

E,.<D’ Ro,...,R F a >

K-1? T2ttt Fl-l’ n? "t ‘p-l

such that

(1) D is a non-empty possibly irnfinite set, the domain
n
(11, R, €D ! fer i<k, the relations

'

(111) F,: D" =D for i< ¢ , tne functions

s
(1iv) a, €D for 1< p, the designated individuals

Note that the first element of sequence D, l.e¢., 20 is the domain D.

In the sequel, when a computing structv e is not explicitly defined, we

will designate its domain in this iuchion., Assumed present in every

structure, regardless of signature, is the relaticn of equality over the

domain of that structu::.

Examples of Computing Structurcs

As examples of computing structures for whick there it some interest

in constructing programs, ~e can first mention some thet are algebraic
mathematical structures.

(i) The Boolean algebra {v, F}, A, v, ~ > with signature
<0, <2,2,1>, ® serves as the s:mantic “asis for the iogical constructs
of several programming languages,

(11) The commutative ring of comple: numbers < C, +, x, 1> with
eigneture <0, <2,2>, 1> might serve st tiuc Jemantic basis for a ~omplex

arithmetic programming language,

As further examples, we can cite the folicwing non-algebraic systems.

(1) The computing structure <2°°, TZE, TMI, ADD, AL® with
signature < <1,1>, <2,1>, O superficially mimics part of the order code
in the IBM 7090 computer, Here 220 cenctes the set of all 3¢ bit words

over {0,1}, and



t
8

= DAY H
™I {bobl...bjsg . ]
ADD : 236 X 2}6 -0256 according ‘o some convenient rule

of binary addition which igrores cveri!ow, and

Als : 20 5256 oo thar FLS(D by e e Bys) = b by bygO

Here, the mnemonics TZE, TMI, AD) and ALS serve only %c indicate the
contexts in which these relations und operations might be used. Thus,
the addition instruction on some ccomputer might use the ADD operation
together with various data transmissio~s, overflow tests and so on, tc
carry out 'ts action.

(i1) The computing structure <w, TZE, ADDL, SUBl, @ with
signature <1, <1l,1>, I> 15 used ‘our compu.ing with the natural numbers.
Here,

TZE = [0}

ADI': : w - w so that ADDl(n) = r + 1

SUBl : w - w 50 ther vUR1(n) =n -1 3f n>0

=0 if n=2¢
This system serves as semantic basis for several c¢f the machines studied
in recursive function theory, e.3., the URM of Shepherdson and Sturgis [40)
or the register machines defined by Gandy |- 2 ].

(1i1) The computing structure <W, 'Y° '~ TRANS> with signature
<2, 2, @™ is the basis for camputation ‘n l'ost teg systems (cf. Davis {7 ]).
Here, W = A* is the set of words over same finite alphabet A , and

TEST = {<x, > : X €A and y = xz for some z € W }

TRANS : W x W »W sc that TRANB(x, y) = y'x where y = uy’ for

same u € A .

13



Many Sorted Computing Structures

We should remark at this point that there are certain mathematical
systems which cannot be formulated in a ratural way as caomputing
structures in the sense used above {e.g., modules, of which vector
spaces are instances; cf. Feferman [10]). Since it would c.*-n be of
interest to construct programs for sucn systems, there is sume motivation
for extending the concept and definition of both signature and computing
structure to accomodate them, However, in the sequel, we concern ourselves
only with the sort of signatures and computing structures already intro-
duced, Therefore, the discussion cf how these concepts can be extended

to generalized signatures and many-sorted computing structures is relegated

to Appendix I.

Remarks:

(1) As we shall see, a computing ftructure constitutes the bare
bones of a class of partial functions computable via programs interpreted
in that structure. This viewpoint seems tc be in sympathy with Scott's
feeling [ ] that functions computed by various machines are "more basic"
than the sets accepted by them,

(11) The notion of semantic basis is also employed by McCarthy (30],
when he defin:s a class of functions [ [A} computable in terms of a
base set F of functions, relations and copstants.

(111) It is conceivable that we could specify & computing structure,
undcubtedly & many-sorted cne, to mirror the true cmblcxlty of the
operations and tests in, say, the IBM TO90 computer. However, our ability
to carry out theoretical analyses would then be hampered by cumbersome

14



notations and invclved formal procedures, The degree tc which the
formulation presentec here falls short of reality reflects the degree
of compromise required to achieve a tractable theoretical approach.

Of course, a possible alternative for the fut re is to design camputers
with elegant and eminently blemish free operational characteristics so
as to facilitate the theocretical analysis of their behavior. This is

obviously the theoretician, not the engineer, talking.
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CHAITER *

ELEMENT ..., PROGRAMB: SYNTAX A SEMANIICS

The motivation for formulating a set of rules for the prescription of
algorithms is that we want to have a convenient uniform method of specifying
calculations in some mathematical structure of interest. Usually, our attention
is focused on a specific structure, say S-expressions, real numbers, Turing
machine tapes, the natural numbers or whatever. Of course, oft:un we may be
forced to do our calculaticns in a structure different fram the one intended,
either knowingly (e.g., we decide tha. it is better to campute with pointer
linked machine words instead of symbolic S-expressions) or unkmowingly (e.g.,
we may think of doing real aritbmetic, but truncated floating point aritimetic
is substituted instesd).

As indicated in Chapter i, we will define algorithms in terms of flow-
charts labelled with assigmment schemata and quantifier free formules of a
first order predicate calculus with equality (qffs). There are several reasons
for pursuing a theoretical mnalysis of algorithms specified in this way.

(1) We can easily apply the flowchart method of prescribing algorithms
to specify calculations in virtually all mathematical structures of interest,
Thie is important if we are tc study the strong equivalence problem which renges
over alli structures,

(ii) Utilizing assignment schemata and qffs in a flowchart scheme in
same sense provides us with maximal computing power, Thus, as we show later,

in the structure <w, +1, @ we can compute all partial recursive functions.



(111) The flowchart method for prescribing camputational processes
has proved itself to be both natural and intuitive. The hope then is
that these properties will propogate into the fheoreticnl anslysis of
these processes as well,

(iv) If ths results cbtained here are to be useful, then tae programs
whose properties are analyzed shoculd be closely related in structure and
intent to actual computer programs, And in spite of their lincar string
representa’.ion, modern ALGOL~like programs are indeed basically flowcharts
of assigoments and branches. In fact, variations ina program caused by
squashing its flowchart into a linear string in different ways are not

really of interest.

We will define for ~ach aignature s , a formal languege, L' s of
elemental programs {cr E-programs as we shall usually term them) for
apecifying algorithms that utilize computing structures of that signature.
Strong equivalence, which we loosely said in Chapter 1 was "equivalence for
all interpretations”, will refer, for each signature s , to the equivalence

of E-programs in L‘ for all computing structures of that signature,

The Syntax of E-programs
For sach signature s , we daefine the formal language L‘ to be the

sst of all B-programs W = <X, I',X> where X 18 a finite non-empty set
of nodes; ' is a partial map over X such that for each x € X where
I' ie defined, I'x 1is either y or the ordered pair <y, £> for some

Y, s€X;and L:X-+ AUQUBUE is a consistent labelling of the

nodes in X with operatoras fram 4 , discriminators from &, initiators
from 8= {b,b,...}] and terminators fram & = {e , e,,...} . (Note: we
write [x] instead of L(x) for the label of node x € X ,) We define
X(4) = {x : x€X & [x) €A), t.e., X(#) 1is the sub-set of nodes labelled
with an operator. Similarly for Xx(@), X(8) and x(&) .
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™ labelling < of ar E-program ¥ = <X I, "> being consistent geans

(1) [x]€ £ wlxmy for some y € X .

(11) [x)e @ »I'x s <y, »» for some y, z ¢ X .

(111) [x) B> Ix ey for same y € X, and for all € X, X is not
reachable via ' from ¢z, 1i.e., i3 not in the transitive closure of T
(cf. Berge (1] for a discussion of reachability).

(iv) (x}eZ I is not defined at x .

(v) If X stipulates that = <J nodes are labelled with initiators and

n < & podes with tarminators, then these must be b ,b),..., and

b
»l
LI TITTTL SN respectivaly, In this case; & 15 called & type <a, >

algaritim,

Remarks:

(1) D the set B = {b,b,, ..}, b, , for exsmple, stands for itself,
i,e., for the letter "b" subscripted by a "2, Tms, B , ad £, { and
€ o well, are sets of formal constituents. However, we often make use of
the fact that subscripts are wall understood -designations for natural numbers;
80 we mAy often say “"tha i-th varieble" for vy or "h‘iun k<8 . ¥
confusion should result from this double usage.

(11) Here the terminclogy and methodology Are somewhat controversial,

Vhen we a5y L, is & formal language, by "formsl" we msan “purely symtactically
defined”, and this agrees with modern usage in most cases, One advantege of o
formal system 1i that manipulaticn of formulas and expressions of the system cen
be expressed in a precise finitistic vay involving only syntax; if the syntax 1is
arranged properly, the effectivensss of variocus notions concerning the systea
becomm self-evident. Carnap (3 ) gave formal metoocds, as such, a big boost



much to the consternation ¢ certair thor mathemati-~al lopician:, Zurry [6]
vigorously remonstrates against Carnep'. innovations and he chide.. the "syntax
addicts" and others to "sign & declaration of independence” from purely
syntactical methods. In fact, purely turmal methodology (see, e.g., Karp [22])
can easily lead to intractable situations. For this author, Curry's advice

is vell-taken, and we adopt a somewhat middle covrse, making formal those part:
of the endeavor that will profit from formalization (i.e., the sets -+, [,
and £) and P aving informal those parts that would suffer from it (i.e., the
organization of an E-program as a graph defined in a set theoretic menner).

In this light, our designation of L_ as a "formal" language is, in part, a

misnomer (ome, nevertheless, we shall continue to apply).

To define the sets A and [, we first introduce a first order predicate

calculus with equality, Pc' . Note the dependence of this calculus on the

signature s, To see the connection between the definitions which follow and
the computing structures for which the algorithms in Ls are defined, recall
that a representative computing structure of signature

sm< qo""’nk-l >, Qo"“"l—l > p>
is

E-Q, Ro‘-uo’ Pk-l' ro,no‘, l:l-l’ ‘o,ooo, ap-1> .

The countably-many symbols of PCs are: the variables VoV

l’coo’ the

constants ko, . "kp-l'

rn,.." rk-ll and the synbols u(n’ w)n’ ".", "j" "J' and n.n .

the function letters ro"“’fl-l’ the relation letters

We now define the terms of PC‘ .

(1) The varisbles VsVyse.. are terms,
(1) The comstants k ,..., k) ore terms.
(111) For any 1 < |, if Toavees ‘r.i_l arc terms then fi(To""’ "m‘-l)

is a term,
19



(iv) An expression is a term only if it can te shown to be so through a
finite number of applications of (1), (ii) and (i1i) above. (Note: hereafter,

this last provisc will be referred to only as the "extremal clause",)

Then the quantifier-free formulas (qffs) of PC_ are defined as follows,

Of course, the set Q of discriminators ias just the set of qffs of PCl.

(1) Forany i<k, if Toseees ¥ are terms then

ni-l
rit‘lo,..., 1“1'1) is a qff.
(1) If T and o are terms, then (1t = g) is = gff,
(111) If p and q are qffs, then (~p) and (p D q) are qffs,
(iv) Extremal clause.
We can define other propositionel cc-u.2ctvives as follcws.
(1) (p Aq) will stand for ~{p D~ q)
(1) (p Vv q) will stand ror ((~p) 2 q)
(111) (p =q) will stend far ((p>q) A (a2 p))
‘The conjunction (1o - ao) A (':l - "1) Ave A (1n-l - °n-l)' vhere T, and g, ,

1<n<w , are terms, will be abbreviated in the sequel as ('l'1 - °i)1 PR

As the operators in 4, we take assigument schemats of the form

u:-1° & n1:-1 &..6 U I 4

[ 1 n-1 n-l

where n <@, and vhere if n =1 we have simply u, : =T . Here

are terms of pc' and U ..., uw , ere distinct variables of

L I T
o?***? 'n-l 1

PC, . (The intent here is that the terms 7T ,..., 7 . , are computed before

any assigmments are done.) We will abbreviate expressions of Lhe above form

as (u, := 1i)i<n and refer to the u, , i<n, as the assigned variables,



In Pigure 1 iz an example of an E-program shcwn in flowchart form. We
will call this form of an E-program its disgrammatic representation (dr).
Becsuse the dr of an E-program is such a convenient representation, we will
in the sequel define E-progrers in terms of their dr's rather than give the
actual set-theoretic definition. We define the dr of an E-program
He<X, I'Z> as follows.

() T™e dr of x € X(B8) UX(E) 1s a circle enclosing [x]; of
x € X(#), & rectangle enclosing [x]; and of x € X(§), an oval enclosing [x].

fi1) Por all x € X such that I'x =y for some y € X, the dr of the
partial map T acting on x consists of an arrow from the dr of x to the
dar of y. Forall x € X such that I'x =<y, > for same y, z € X, the
dr of the partial map ' acting on x consists of two arrows fram the dr
of x, one to the ar of y 1labelled with the letter T and the other to the
d4r of : lasbelled with the letter F . When it is unembiguous, the T and F
labels will be drupped, and the convention adopted that the arrows fram the dr
of x will puint down and the leftmost cne will be the T arrow.

(141) Then the dr of ¥ = <X, I, 7> consists of the drs of the nodes
in X, Joinéd by the dr of the partial map ' acting on the nodes in X .

To give scme indication of the gnnerllity of L' , and to further
1llustrate the idea of a dlagrmmatic reyresentation for E-programs, we have
oonstructed the rather artificial example of Figure 2,

Ramarks:

(1) In spite of tis fact that we will not have occasion to define an
E-program in set-theoretic terms, but rather will alweys employ a dr of that
R-progrem, we nevertheless will retain the set-theoretic definition and will



Vo i= f(ve, V) B vy = L (vy, k)

€ @

Pigure 1

A type <2, 2> E-program in L, where s=<<, 2, 1>, <2, 2, 1>, >,
In this example f2, r, and kl s which are permissable, do not appear.




regard the A4ar merely as an aid t« understanding. We u: thir hocauce the
syntactic sanipulations required ic applying a formel theory arc much
easier to describe and effectively carry out in set-theoretic terms rather
than in terms of boxes, arrovs, ovals, etc,

(11) 1In Pigure 2, we see that the definition of E-program allows
totally isolated components and other components not reachable fram any
noas in X(8). As well, certain loops once entered can never be left.
Intuitively speaking, inclusion of theze constructs would usually be
classed as poor or improper programing. However, by admitting them here,
we are facing up to the fact that such constructs do appear with unfortu-
nate regularity in actual progrsms, and therefore should be subject to
analysis in any theory of camputation with pragmatic goals.

(ii1) The B-programs of L, can bave many entrances snd exits,
Thus, if we want to study or transform not a whole E-program, but only
some isolated fragment that may be entered and left in more than one way,
we can do 30 by extracting that fragment as an E-program with meany entrances
and exits,

The Semantics of E-
To effect & computation, we need & type <m, n> E-program,

§=<X rZ> in L , & natural number i < m, a computimg structure

D of signature s , and a state { : w-~ D . The E-program tells what
to do; the number 1 tells where to start (i.e., at which initiator); the
camputing structure supplies the primitives for doing it; and the state acts
first as input, then as "memcry” during execution, and finally as output.

Ve first give the semantics for PC. . It is assumed throughout this
section that the signature s iz s e < Dyeoes B 1>yWy.eey l‘_?,p
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FiEE o

A type <4, i E-program in Ls where s =<, 1, > .



and that ve are concerned with the fixed computing s' ructure of signature s

b= <, R0""' nt-]" rn""’ Eb-l' Boreees ‘p-‘.’ >
and the fixed atate § : WD .,

The value of a term 7 with respect to D and €, denoted
(D, t], 1s o element of the domain and is defined recursively as follows.

(1) It t is a varisble v, , then (D, t] = v,[D, t] = c(4, t),
where c(i, ¢), read "the contents of location i 1in ¢", is the notation for
¢, or t(1i) introduced by McCarthy [28).

(11) If t 1s a constant k,, then T[D,t] = k,(D, t]=u, .

(111) 1 v 18 £,(7 ..., "1'1)’ then (D, t] =

N TP '.1-1)[.’3: £] =7 (<D, ¢],..., 1_1_1(2, tl).

We will say that Qff p of rc. has a truth-value with respect to D
and ¢ denoted by p[g,i], such that plg’g] iff p 4is satisfied by ¢ in

2 in the usual sense of the predicate calcuius. A recursive definition of
9[2’ ¢t] follows,

(1) I p 1is :1(10,..., Tni-l)’ then p{D,¢] =
N CSPPPP -rni_l) (D, ¢] »R (7 [D,t),..., Tni-l {p,e].
(11) I p 1s (1=0), then pID,t] = (x = 0)(D,t]
o t[p,t)= oD, t], i.e.,, T (D] and ofD,E] are the seme element of
the domain D,
(111) 1 p 1s (a>r), then p[Dt] @ (3>r) [D,e])
enot qlp,t) or ript].
(iv) £ p 15 (~u), then p(D,t] »(~q) (D] wnot qD,t].
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An asgigmment schema < = ("i t - applied to tke state ¢

1 )i<n
produces a nev state f{D, t). Here, the values 7,[D, t), ix , are
all first camputed and then sabstituted in the state { at the piaces

corresponding to the azsigned variables u,, i<n, 30 that we have for each

p 84
variable Vi K¥w, of K,

"3[2) (D, ¢l] - "3[75 t)=c(4, ¢) if u, ¢ v, for all i<n,

- 1,00, t) if u

i-v for some i<n .,

J
Alternatively, we have

(vik: = W henlD 8] = a(y o, 7 (D, 8], ('L‘: = Tlrena (B t1)
if 1<n<ww
- a(1, (D, t), t)
if n=1,
vhere a(i, k, t), read "the assignment of quantity k to locatiom i 1in ¢",
is the notation introduced by McCarthy in [28 for the sequence cbtained frem ¢
by replacing its i-th element by k . We may also write this as
(vik: - 'x)xq[Pa t) = a1 ., 7, 4D, L], a4, o, 7, o[D, ¢], o(...
‘(11’ '1[?.) t]. .'(103 10[2’ t]’ ‘))0-0))) .

Now we explain the semantics of E-programs themselves, The type <,
E-program 8 & <X, I', x> applied to the state ¢ starting at initiator bi' i<m,
produces

u(p, <t, ©) = X%, D, ¢, x)
where [x] = b,, and where the partial execution function R 4is defined
as follows,

(1) 1 (x)e G, f.e., if [x] is an initiator, them

x(™, D, ¢, x) = B(W, D, ¢, Ix) .
(11) 1t [x)e A , 1.e.,, if [x] s an assigoment schema £ , then
E(W, p, ¢, x) = B(W, D, £(R, t], Ix).
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(111) 1f (x) € Q, i.e., if [x) is a qff p, and if ¥ = <y, 2>
for some y, z € X, then
EM, D, ¢, x) = E(M, D, &, y) if p[D, ¢]
< E(M, D, &, z) otherwise.

(iv) If {x) €&, i.e., if [x] is a terminator e then

30
E(M, D, &, x) =<§, D .

Clearly, for certain ¥, D, & and i where [x]=b, , E(¥, D, ¢, x)
does not terminate, and l[g, <¢, i>] 1is therefore indeterminate. If
termination is obtained, so that M[D, <, >l =<t', > for some E':w =D
and j < n , we say that when E-program ¥ ' is executed in computing structurc
D with initial state £ , starting at the i-th initiator, it halts at the

J-th terminator producing the final state ¢' ,

Remarks:

(1) The c(4, ¢) and a(i, k, ¢) notations, after first being
introduced by McCarthy, have subsequently been used by him along with
Painter [26, 35] and by this author, as well [20,21].

(11) The execution function E , on reaching a node labelled with a
qff p , will take the arrow in the dr labelled T (i.e., the left arrow)
if p turns out true and the arrow labelled F (i.e,, the right arrow) if
p turna cut false,

(111) As an alternative form of assignment schema, we could take
simple assignment schemata, i.e., those with only one assigned variable.
This forn would be samevhat more ALGOL-like, though not quite as general.
In Chapter 8, we will examine briefly some of the implicatioms of such &
choice,

(iv) A modification in the definitiom of E-prpgrm that would make

them more ALGOL-like would be a provision for subscripted varisbles, i.e.,

27



arrays. In Appendix II, we give the details of a scheme for introducing
subscripted variables. We redefine the syntax for terms, qffs and assign-
ment schemate, and introduce a new data structure, the hierarchial astate,

which is used to store the arrays that are accessed by subscripted variables.



BLANK PAGE



CHAPTER &

WELL-FORMED FORMULAS: SYNTAX AND SEMANTICS

Our principal interest is in the strong equivalence of E-programs, and
so the well-formed formulas of the formal theory we develop in this and
suce ding chepters will simply express for two E-programs of the same type

that they are strongly equivalent,

'The Syntax of Well-Formed Formulas

For each signature s, we defin: a formal theory T = G','..,Jf

where Fwy 1s the set of well-formed formulas (wffs), and J' , a8

explained in Chapter 7, is an inferential system of axioms and rules of

inference, The set 3;»5 is simply the set of all expressions of the form
M 8% where U mnd B are E-programs of the same ‘ype in L‘ « Recall
that by "of the same type", we mean with like numbers of initiators and like

numbers cof terminators,

The Semantics of Well-Formed Formulas

We say that a wff ¥ =8, where ¥ and ® are type <m, > E-programs
is yulid in & camputing structure D and write ‘.D A=W (i.e., ¥ is
equivalent to 8 in 2) iff for all i <m, for AlI ¢ :w_'-?o s We have
that M[D, <¢, 1>] = ®D, <¢, i>] . The notation x & y means that either

x and y are both indelcrminate, or both are determinate and x =y ,

Notice that if both ¥ and # halt, producing <t', i'> and
<&") i"> respectively, then for equivalence we require that <t', 1> =
&', i"> , i.e., &' =¢€" and {' = {" ., Thus, not only must two E-programs
produce the same output state but they also must halt at the same terminator.
‘this is a natural condition if we are to have substitution of equivalent sub-

programs,
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We say that a wff & T ® is generally valid anc write (=8 = 8@
(i.e., W 1s strongly eguivalent to B ) iff for a.l coamputing structures
D, =9 is valid in 2 .

For any set of wffs AC 35,‘ (called either proper axicms or
hypotheses), we write A& j= M 9 iff for all computing structures D,
if the wffs in & are all valid in g,then M-8 is valid in 2

In this case ve say that 8 = 8 is a semantic consequence of 4 .

Evidently, general validity is just a special case of this latter concept

since P =W =W e |l =B, vhere § is the empty set.

Remarks:

(1) We may use the notion of semantic consequence to aid in the study
of equivalence for E-programs in particular camputing structures. Thus,
if the proper axioms in 4 can be shrewdly specified so that they are all
valid only in the structure (or class of structures) of interest, then a
wff 8 =8B will be a semantic consequence of & Jjust in case ¥~ @ is
valid in that structure. When this is the case, we say ve have axicmatized
the properties of that structure.

(11) It is not clear precisely what properties of structures can be
axiomatized by a set of wffs of the form M = 8 . It may be that more
complicated statemsnts about strong equivalence should be permitted szo as to
give us the axiamatizing power required to characterize certain structures,
like the integers, for example. Thus, propositional statements, like
U8 AC-DDOU -, or quantificational statements, like (3x)(M(x) = ®)
may be desirable., We do not p;:rnue this matter any further here.



CHAPTER -

CONCERNING THE DECIDABILITY OF STRONG EQUIVALENCE

As one might expect, because of the complexity of the situation under
study here, undecidability is iurking in every corner. There are two
approaches both to the strong equivalence problem and to the axiomatiz-
ability problem which we discu:: in Chapter 8. On the one hand we can
examine these problems with respect tc the whole of 3'7.;3 for verious
signatures s ; or om the other hand we can consider various subsets of

Fm s for arbitrary fixed signatures s . One result obtains immediately.,

Theorem 1: Strong equivalence is decidable for E-programs in which no

function letters or constants occur.

Thus, ThM = 87 , where M S ® ¢ Fm_ , is decidable for any signature

S = <<n°,..., nk_1>, O, o .

Proof: In this case, since there are no functions, the assigmnment schemata
are relegated to merely transferring around the initial data fram location

to location. Thus, Ls is not toc interesting or powerful & language.

Consider the type <m, r algorithm § € Ls with K < «w nodes
labelled with assignment schemeta and qffs, and in which there occur
N < w distinct variasbles. Suppose we execute € in sume computing
structure with same initisl state ¢ . Since elements in the state for
variables that do not occur in § are unchanged during execution, and
since there can be at most N distinct values stored in the initial state
¢ for the N distinct variables occurring in § , then there are at

most NN distinct statec that can arise during the execution of € .
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Thus, the at most N distinct initial values for the N diztinc. variatice

)
in § are shuffled around by the assignmen® schemata into at most N"

coafigurations,

Bow, suppose that this execution of & we are considering fails to
balt. Then there exists a node x of @ such that execution passes
through x wmore than u‘“ times. Thic is so because an infinite number
of nodes are encountered during the non-halting execution, of & , but
since € itself has only a finite number of nodes, at least one node must
be encountered infinitely often, Thus, after at most n" +1 passes through
node x , the current state at that point must repeat itself, since there
are at most N' distinct states, Of course, after a state repeats it-
Self at a node, execution is thereafter periodic in nature with same fixed
loop, which includes that node, ei:ecuting repeatedly and generating a

periodic sequence of states,

Since there are K nodes in § labelled with assigmment achemata or
Qffs, an execution of € which has so far passed through at most K x llll
such nodes is guaranteed to have generated a repeated state at one of them,
80 that execution never halts. B8inc~ there are but a finite mumber of
distinct paths through € consisting of less than K x N' nodes, the
oumber of distinct paths associated with halting executions, 1.e., those

beginning with an initiator and ending with a terminator, is therefore finite.

The E-program of Figure 3(a), for example, has but four paths through
it that are associated with halting executions., Thus, we may execute the
loop sero, one, two or three times and then halt, but if r(u, w, y, x) 4s

still false after three executions of the loop, then the E-program never



4 r(u, w, y, x)

e 'L i=whkwisy&y:=ubx:=2g2

Here u, w, x, y, z are variables and r 1is a relation letter,

NMievEVisu

Here u, v, w are variables and r is a relation letter,

F

Here v and w are variables,

W
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halts. This is because after this point, the contents of u, w, y and x
vary only periodically, and so ~{u, w, y, x) will be testing a state
altready encountered,

In Chapter 9, we show how to associate with the set of all paths
through € , that begin with an initistor and end with a terminator, a
set 'rt of triples <b1, f, ed> s where b1 and e, arean initiator
and terminator respectively, and where f is an assignment schema, called
an operation in this context. We say two triples are similar iff they
bave the same initiators and terminators and their operations, f sad g,
say, are strongly equivalent (i.e., f[P) t]l = g[g, t] for all computing
structures D and states ¢ : w-ol)o) . No two triples in the set T

4
of triples for € are similar, and furthermore, with each triple

<®,, f, r .1> we associate @ qff p , called its joint initial condition,
such that if € is executed in D with initiel state { , starting at

b, , it will halt at e, and produce the final state £[D, ¢] iff

p(D, ¢] . Then, we show (Theorem 25) that the two E-programs # and 9
are strongly equivalent iff first, for each pair of siwilar triples, ome
from T' and one from 'l" , the corresponding joint initial conditioma

are logically equivalent; and second, for any triple in T‘(cr T') for
which there is no similar triple in Ty @ Ty) , its joint initial condition
sust be identically false, i.e., a logical contradictiom.

It iz easy to show that the E-progrsm of Figure 3(b) has but one path
through it associated with a halting execution. The triple corresponding
to this path is <b°, vV i= w, 2> =snd the joint initial condition for this

triple is r{(u) A~ r(v) . Thie joint initial condition is just the



necessary and sufficient condition on the initial state for the E-program

of Figure 3(b) to halt, having executed Vv := w . Notice that the

E-program of Figure 3(c) also has a single path associated with halting
execution. The triple here is also <b_, u := v, e> , but its joint initial
condition is ldentically true, Thus, since the joint initial conditions

for the triple <b°, v i= W, e°> are not logically equivalent, i.e,,

r(u) A ~r(w) 1is not identically true, the E-programs of Figures 3(a)

and 3(b) are not strongly equivalent,

We have already shown that there are only a finite number of paths
through ¥ associated with halting execution, each with less than K x "
nodes; similarly for 8 . Thus, it suffices to consider only the set of
triples and joint initial conditions for paths of length out to the re-
spective maximums necessary for W and ¥, Since the sets T. and
'J.“ of triples are then finite, we can decide the strong equivalcuce of
¥ and ® using the procedure outlined above, provided that we can decide
the logical validity of qffs in PC! and the strong equivalence of operatioms,
But, as indicated by Church (4], since no function letters occur in the qffs
of PCa » their logical validity is decidable, and as indicated in Chapter 8
(Theorems 14, 15 and 16), the strong equivalence of operations, i.e., assign-

ment schemata, is decidable. Thus, so 1s 7T|ll = ®? ., .

This decidability result can easily be extended to a far larger class
of E-programs, Thus, strong egquivalence is decidable whenever the number
of paths assoclated with halting exscutions is finite, and the logical
validity of qffs in PC. is decidable. In Chapter 9, we return to these
matters and indicate in detail the role of joint initial conditions in

decision procedures for theae caaes.
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There are twc obvi.us applications of this exlended decidability
result. Thus, w2 have thal strong equivalenc: 1 de :dable for E-programs
without lnops and .’?r S-pr wgrare tha% always helt (i.e., in )l computing
structures, with all in.tiel states. of Figure 4% for an example of this
case), provide., of course, the logical validity of qffs is decidable.

In Chapter v, we indicate now d-orozrans withort loone @ar ce put into
a canonical fcre using the axioms and rules of our forma: theory. The
result for eliways halting E-prograr: 18 merely quoted hers from the recent

work of Paterson [36].

A specializacion of the nu-luups vesult, which does rot depend on

the decidability of logical valicity for qffs, is the following

Theorem 2: Stromg equivalence for E-programs consisting solely of

assignment schemate, 1.e., without any branching, is decidable.

Ifws let T (4) =« Ky 0,X> 2 Ut X(Q) = #} , and define
I;.(l-) =8B 5»5 : ¥, 8€ L (4)], ther Theorem 2 states that
thll =@t , vhere 8 B € ]&su,‘ . is decidable for any arbitrary
signature 31 . (Incidentally, we define L_(Q) anc .7;-.3(&,‘ in a

similar fashion.,) PFigure 4 1llustrates an E-program € € LB“) .

Proof: In Chapter 8, we give a detailec proof that there is an effectively
generable canonicel form for E-progrems in Ls(4) (Tngorem 1, 15 ad 16),
and this solves the decision problem for this case, We pcstpone this dis-
cussion, however, 3c that we can describe the generation of the canonical

form in terms of the axioms and rules of our formel theory. '

The E-programs whose strong esquivalernce deciszsion problem ve have

considered s far have been somevhat restrictive in the sense that the sorts

36



[ A
f !
f2 f5
ba
roears

Ta. E-program § ¢ P (f) . ey, £, flo are assignment schemata,
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of computations they specify are not very complicated or interesting.
let us nov consider the asignature s« <1, 1, 1> . Ccmputing structures

a > where the relation

vith this signature are of the form <D, R Fo, o

lo and function F, are wonadic. If we further disr~gard the equality
Telation over the domain, then structures of this sort ipresent, in a
sense, the barest bones with vhich we might want to carry out interesting
meaningful computations, Now, let us consider the strong equivalence

decizion problema for B-programs in L . that do not use equality. Ome
immediate result is

Theorem 3: BStrong equivalence is decidable for E-programs cansisting solely
of qffs build up from s single monadic relaticn letter, s single momadic
function letter, s single constant, but without equality.

If we lot L.'-[lel.‘z Bo Qff of the form (T = @) occurs in W} ,
and define T.,"-{‘=l€ g
states that ?full S W7 , where W

¥, €L}, then Theorem 3.

L X3 ?;'..'(v , is decidable for the
signature 3 =<1, 1, > .

Proof: 8ince I-programs here do not heve any assignment schemata, we can
argus, precisely as in the proof for Theorem 1, that there are but a
finite number of paths through an E-program € associated with halting
axacutions of € . Furthermore, decidability of logical walidity for
Qffs odbtains here, so that the joint initial condition decision procedure
wsed in Theorem 1 will suffice here as well,

To see how the Joint initial conditicns are obtained here, consider
the R-progrsm ¥ of Pigure 5. Here in this exmmple, it is cbvious that



there are but five paths through 8 associaten with halting executions.
These give rise to the triples <b°, Vo PE Vo 5 s <bl, Vo 35 Vg ¥

and <b1’ vo =V, €7, where v, = Yo is just a dummy identity

X
operation, The joint initial conditions associated with these triples
can be easily verified to be respectively

(py A~py ARV (~p; ARy Ay ARy),

(B, Apy A~py Ang) V (~p APg ABg ARy)

Thus, for s =<1, 1, 1> , E-programs in L ~ have a solvable
strong equivalence decision problem when they consist solely of assign-

ment schemata (Theorem 2) or solely of qffs (Theorem 3). Nevertheless,

in general we still have the following unfortunate

Theorem 4: Strong equivalence is undecidable for E-programs built wp

from a single monadic function letter, a single monadic relation letter,

a single constant, but without equality.

Thus, T|=8 = ®7 , where ¥ @€ T  , is undecidatle for the
signature s = <1, 1, 1> , and therefore, for any signature s' such
that .?'m.s' € Fm, . 8o even without all the customary parsphernalia
available for expressing algorithms, we are still saddled with the fact
that in general the analysis of strong equivalence cannot be an effective

process,

To prove Theorem 4, we will take a somevhat roundabout path and
first show that in an appropriate computing structure we can compute
all partial recursive functions. This result will then lead us to the

proof we desire,
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(i) The prineipal point of concern here is that for schemes that are
of pragmatic interest, the strong -quivalence of E-programs is undecidable.

Of course, if a computing structure has a finite domain then equivalence

in that structure is decidable for the same reasons the wffs of Theorem 1
are decidable. 8o, we might be tempted to say that, for example, equivalence
of IBM T090 programs is decidable since the domain 236 is finite. There are
two reasons why this sort of reasoning is not productive. First, the sort
of exhaustive 1oop unwinding performed in the example of Figure 3(a) would
take years in & domain the size of 236, thus making impractical the obvious
decision procedure, Second, as suggested earlier, we may not even be aware
of what computing structure our program is being executed in, thus rendering
the concept of equivalence of programs scmewhat  mpotent. The sort of
l.tm“t we would be more interested in is: "No matter what computer these
progrems are exscuted on, they give the seme result”, i.e,, & statement of
strong equivalence. But Luckhsm, Park and Paterson (25 ] show that for a
certain sub-class of programs, even squivalence in all computing structures
with finite domains 1s undecidable,

(11) Theorems 1, 2 and 3 discuss various decidability results, but
sctually, all of these results derive from the same set of facts, If the
oumber of paths associsted with halting executicns is finite, and if we can
effectively determine a bound on the length of such paths, then decidability
is cbtained in cases where the general validity of qffs is decidable. This
is because in such situations, the sets of triples to be checked are finite
and determinable, the strong equivalence of operations is decidable (this is
alweys the case), and the logical equival.nce of joint initial conditions is
decidable,

(114) The tripies notation, used nere merely for expianatory purposes,
-4s not used in Chapter 9,

ko



(iv) Within the undecidability limitation: imposed by the structure of
the problem being studicd, we covelop irn iu.ceealng chapters certain viable

analytic tools for working on the strong equivalence problem for E-progrems,

Partial Recursive Functions

We shall show that given 8 suitable computing structure, we can construct
E-programs to compute all partial recursive functions. The reasons for this
demcnstration are twofold: first, to illustrate that E-programs as defined here
are adequate in the sense that thers i: no function computable in a structure
that we cannot specify with a suitable E-program; and second, to provide a

convenient method of proof for Theorem 4 above,

Consider the computing structure N = <&, F, a> with signature

s = <0, 1, 1>, where F_ 1is the successor function, a  is zero,and the

equality relation over « ic included in N, (Note: we will write x + 1

for Fo(x) ad 0 for & .) For the purposes of defining pertial recursive

functions, we also comsider the projection functions Uin(x ) =x

o s Xpoa 1
for alln< @™, alli<n and all <x,..., X ;> €& as initial or base

functions, The partial rccursive functions are obtained from zeru, the successor
and projection functions us‘ng three methods of combinin;” functions. (This is
all given by Mendelson in [33].)

(1) Composition: given the functions

g(xo, . xb-l)

ht)(xo’ B xn-l)

hl(xo, cees xu-l)

B 1 (Xpoeres % 4)

k1



whiee m< @, n< &, we say that the function aef.ned by
r(xo””’ xn-l) = 8(ho(‘o""’ xn-l)"“’ l’xm—l(xo"“’ (:\-1))
is obtained from the given functions by campositicn.

(i1) Primitive recursion: given the functions

g(xo,..., ’51-2)

h(!o’”" *n.2? *pa10 xn)

where l<n <&, we say the function defined by

t(xo,.-o’ ‘n.a. o) - g(xo,,,o, xn-z)

f(xo,..., Xn-20 xn-l*l) = h(xo""’ Yne2s *po1 f(xo""’ *n-2» ‘(n—~l))
i8 obtained from the given functions by primitive recursion.

(141) The unrestricted u-operator: given the function

B(xgseeey X 15 ¥)

where n <&, we say that the function defined by

t(xo,..o’ ‘n-l) - uz(s(xo'.oo, In-l’ z) = 0)
vhich we read as "the least z such that &(x,,..., X ,, z) = 0", is obtained
from the given fumction by the unrestricted u-cperator, Here, t(xo,..., x, l)

is Qefined for <xy..., X > € W' iff for some k< w, g(x_ ..., z) = C

n-1
and for all z<k, ¢(xo,...,

X,
n-L?

X 10 z) exists and is not zero; and when

such is the case, f(xo,..., xn_l) then has the value k .

We will now deacribe a scheme such that for any partial recursive function
and suitable arguments, we can construct an E-progrex in I.a which when executed
in § computes the value of that function at those arguments, Suppose that the
faniion f(x ..., x _,) 1s defined by & form ¥, as given by the initial

fanctions and (1), (11) ena (i11) sbove, and that d = <d,..., 4 >

L ¥



where d € w? is a set of arpuments at which f(xo,..., xn-l) is to be
evaluated, Then the E-program R( & £ 2) , produced by the generating
function R using the form Et’ and arguments d , when executed in X
with any initial state, camputes f(g). The z-program R( Et’ 2,) is
illustrated in Figure €, Here, " is another E-program generating function;
the composition of E-programs, indicated schematically in Figure 6, is

discussed in Chapter 6,

The E-program M(p, é'f) is generated in a recursive fashion according
to the structure of £r . The variables are utilized to simulate a stack
as Wp, ff) proceeds, the first argument of M acting as a stack pointer
during comstruction of the E-program, When constructing W(p, Cr), p< W,
we assume that variables vpﬂ,..., vp+n will contain the arguments at
which f is to be evaluated, and we arrange for the value of f at these

aryuments to be returned in vp .

Consider first ﬁp, é'f) for the initial functions. These definitions
are given in Figure 7. Figures 8, 9 and 10 show constructions for composi-
tion, primitive recursion and the unrestricted u-operator. Also in the illus-
trations are representations of the run-}:ine stack showing how the variables
are assigned during E-program constructicn by Mp, £f) . On the basis of

these constructions, we have the following

Theorem S: For all partial recursive functions f(xo,.... xn-ll with form ét

and arguments d = <d ,..., d ,> , and then for all initial states

V

E P W W, a(ff, g)[g) <t ) is determinate and has a value ' @ for

some &' :w— w iff f(do:"-: dn-l) exists, Furthermore, in case

£(d ,..., d ;) _exists, then f(d ,..., @ ) =c(3, 8.

4



Figure 6

Here the variables v ,..., v, ., are loaded with the arguments d ,..., d -1
The variable v, 1is taed to Pefurn the final value, The reason £8r not

i
using v Yie 3:- A\ will become apparent when we consider the proof of
Theorem 9’ .

op, "x +1") 4s v, i= £(v )

op, "0") 1s v e kg

p, ”Uih(xo,..., ‘n-l)“) is Yo * Youa
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On the right is the definition of W(p, "f(xo,..., x 1)") where f(x ,..., X ,) is defined by primitive
recursion using g(x,..., x _2) and u(xo,..., x n: x ., fix ,...,°x o n-= )) . On the left is the ru
time stack, Tne valle of f¥ic,..., x ,)° iz conBited "Phom thd inaide5Ht":® Pirs', the arguments for ¢
are loaded and g evaluated; ehen, using v, as s temporary counter, h is repeated y evaluated until the
required depth of recursion 1s achieved, Whea evaluating h , the 1lis" argument, .. V_.. , is loadel

with the value of f at the previous level, {i.e., vpm+l « Then v, Teceives tre  aal’result,
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On the right is the definition of "Np, "f(xo,..., )") where f(x g1t Vs defined by tue
thalleft is the run®iime btaci The valne of

unreatricted ieoperator using g{x ,..., x ).

£(xX ,uue, ) 1is computed by siﬂply ccnﬁutxng (X yuuuy y Y=k for y = ) 1, ... until
y Ss tound sﬁch that k=10 . Ifno such y is foulld, the “ag putaticz fails to .alt, and *he valuc
of f(xo,.. ) is therefore undefined, The restriction on the wirestrictei ,-speratrr assures
us that for aJ.l i, if g(xyeeey X _;, h) 40 for y=1,2, ..., z-1, then glx s X 2)

is defined.



Proof: An inductive proof on the structure of R(¥y 1) can be given in some
detail. We vill sssume that the definitionm of R(f,, d), <be attendant

comments, and the stack diagrams make the proof wholly obvious. .

Remarks:

() Ershov [ 9] indicates, for his scheme, how flowcharts can be given to
campute partial recursive functions, but no details are given. There is really
1ittle or no ingenuity required in the comstruction of S(E’, g) a8 we have
sestt above; this bespeaks of the naturalness of s flowchart representation of
algoritims which utilizes assignment schemata mnd Qffs.

Now let us return to Thearem 4. We are to show that Th= ¥ B 1, where
S$Z0€ Fu" for signature s =<1, 1, 1>, is wdecidable, Recall that W
@i 8§ contain no gff of the form (T = o) .

Jyooft Let us sketoh & rough outline of the proof first before giving the
details. Ve will show how to sffectively comstruct, for any partial recuraive
Mm t(‘o.oco’ 5.1) mwmt. 2- ao.-'o’ d‘.l>’ ‘w
Q, D Eprogrem W(E,, d) €L, , where s =<1, 1, 1> euch that If RELS
1s scme typs <, 2> E-progrem that never halts (i.¢., 2([p, &, @) 1a
indeterminate for all D with signature s =<1, 1, 1> andall § zu-o‘l‘)o)
e,

(1) There exists a computing structure X , with signature s , such that
12 %%, 4)° % lsvalidin X, the f£(d,..., 4 ;) does not exist;

(11) for ey computing structure D, with signabure s, if
(f, 8) 2 denct validin D, then f£(¢,..., & ) doss extst.



Then, existence of a decision procedure for ?j= % = ® 1 in general,
vhere ¥ S ®€ Fw , would imply a decision procedure for

= R%(F,, 4)  R? 1in particular, which, fram (1) and (ii) sbove, would imply
a decision procedure for the cxistence of f(do,..., dn-l) for an arbitrary

partial recursive function f and arguments 2 = <d°,..., > However,

Jn--l ¢
this last problem is trivially undecidable (cf, Mendelson (3, p. 255]), so that
therefore a decision procedure for j= M ®? , where M IBE Fi '~ , does

not exist,

From the foregoing discussion, we see that !*(Et, d) 1is going to have to
behave as if it were attempting to campute t(do,..., dn-l)' as it were, in all
computing structures with signature s =<1, 1, 1> . To accamplish this we in-
troduce the concept of an image of a natural number, (cf, Luckhsm and Park BRb]
where a method of "representations" 1s used in a similar context,) Consider
an arbitrary structure D = <D, R, F_
X €D is en image of n € @ iff Ro(rok(x)), k<n, andnoc Ro(ron(x)) .

’ o.°> with signature s , We say that

If we suppose R’:D - {0, 1} such that R‘(x) =1 if R(x) and R’(x) = O
othervise, then x is an image of n iff the infinite sequence of 1'zs and
o's [R'(!‘k(x))}Ko has an initial segment consisting of n 1's followed by
a O. Note that if R'(x) = O then x is an image of zero,

We will construct ®%(f,, d) €L~ , where s =<, 1, 1>, from
!(Er, d) € L, , vhere s = <0, 1, 1>, by replacing individual comstructs in
S(Ef, d) with open subroutines in ﬂ(ef, d) which have the required "in
all computing structures" flavor. From the definition of I(Ct, ), ve
see that we will have to simulate, via open subroutines, the following

constructs:

(1) loading of the arguments 4= <d°,..., dn-1>
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{(11) the test for equality of the values of two variabies or of the
value of a simgle vqri.cble and O ,

(111) the sucoessor function +1 applied to the value of & variable

(4v) initializing the value of a variable to O

(v) the assigoment of the value of a varisble to another performed by an
assigmment schema,
We will consider each of these in turn.

Loading of the argmments is accamplished with the aid of the macro
showa in Pigure 11(a)., Here, starting from s, , Wwe search the damain D
by repested spplications of ¥_ , at each step looking for an initial segment
which indicates thet the current value of the variable x is an image of n E®.

I 1t 50 happens that the computing structure <D,,R°,I &> 1s such that no

o o

image of 1 can be found, the routine will fail to halt, Figure 11(b) shows
in detail how the srgument loading section of ’Qt’s) is simulsted by a
saquence of these macros in (£, d) . If this section of (¥, d)
halts in scme computing structure D , then the values of the variables

Vigsroos Vs vill be images of the argmemts 4 ,,..., 4 ., .

Testing for equality of the valuas of two veriables is accamplished with
the aid of the macro shown in Figure 12(a). Here, the working variables
v, s v, are used to check that the values of the variables x and y are
images of the same natural mummber by searching ahead using repeated spplications
of ’o and checking for idenmtity of the initial segments gensrated at each stage.
By Mypothesis, the values of x and y are both imeges of scme natural mmsbers
ad 80 the couputation halts in any camputing structure, at terminator <, ir

the values 0f x and y are images of the same natural pumber and at % ir
not,
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The upper E-program replaces the lower in forming !'(Et, 4.



Figure 12(a

Here, x and y ar- variables, The E-program on the left repluaces the
one on the right in ® (X, d) .

C D T

@ O @ O

Here x 1is a variable, Thc E-program on the left replaces the one on
the right in ®(X., d) .
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Testing for cquality between thr valve of a variable r and 2 is
accomplished with the aid of the w:ur  shuwr . Fgure W&(b). In
S(Er, d) , the off (x = ka) is testing for O as the current velue of
variable x ; in WS, d) , the qff n-ro(x) is testing for an image of O

a8 the current value of variable x .

Applying the successor function is accomplished with the aid of the
macr> showr n Figure 13. Here, the value of the working variable Vo is
started at L snd stepped up by repeated applications of !o . At each atep,

a check is made using the working variables ve and A£]

value of Vo ic an image of & natural mmber greater by one than the number of

vhich the value of variabie x is an imege. If the computation halts, the nev

to see if the curremt

value of varisble x will be an image of n+l vhere the old value of x wvas
an image Oof n .

Initializing the valuc of a variable to O is accamplishad with the
macro uf Figure 11(a) with n set to O, Here the value of the variable x 1is
initiadized co ‘o and then ’o is apnlied repestedly until an imege of O
iz found, If the computation halts,the value of x 1s an image of O .

Assigning the value of one varisble to another is done with precisely the
ssme comstruct in a'(z,, 4) as in S(Er d) , i.e., = assignment schems.
~ »

This completes the definition of the process for constructing the E-program
”(lf.g) in L.-, vhere s =<, 1, 1>, frm the E-program S(Er,gin
L, were =<, 1, I>. Bvidently, an inductive proof on the construction
of l'(tf,g) gives us that if for eny comguting structure D , with sigasture
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x 3= £ (x)
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Here, x 1s a variable, The E-progrsm on the left replaces the one on the right in !*(Er, d) .
Y im 'o ]
Figure 14

An alvays indeterminate type <1, 1> E-prograa.




8 =<1, 1, 1> and input .tate - L w - T,

v have Wz, d) halts ir D,
then t(do,..., dn-l) must be ~r“ined, This 1s “ecau:: &etemxnccy umpliec
that the required images were found at every stage, enc this implies that tne
execution of 'R*(Er, E_) therefore faithfully fullovwed the execution of
R(Eyy 4) which therefore must have halted, thus implying the existence of

‘(‘o‘.aoo’ dn-:) .

On the hasis of this result, let us complete the proor of Theorem 4
by introducing the type <1, 1> E-program R€ L~ , where s =<1, 1, >,
in Pigure 14, PFor topological reasons, WD, <¢, @) 1is indeterminate
for all computing structures D and input states t : w- 20 let us counsider
the wff (g, 4) 5 % € Fm ", and note that if WM(E, d) T ®  is pot
valid in a certain computing styucture D , then the reason must be that
*%(k,, d) balts in D, i.e., in light of the discussiou sbove, f(d,..., 4 ,)
sxists., Thus, if we have a decision procedure for general validity, and we
spply it to the wff R, d) = 2 and it says "not generally valid”, then
there must exist a canputing structure D in which the wff in question is not
wvalid, vhich of course .mplies that f(do,..., dn-l) exists. In summary, there

exist. awff 6, , € J"u" vhich if not gemerally valid then implies that
? -~
f(do,.. . db-l) exists.

We u:wv demonstrate the other alternative, nammely, if & 1 a is
' 2
gewerally 7alid then f(d.,..., & ;) does pot exist. To do this, ve introduce
the computing structure X = <X, 8, G, b>  with sigoature <l, 1, > defined so

that the infinite sequance over {C, 1} given by [8'(0x(b))}k<w is just

0010010110010110121001011011103 1110 ...



which in a very obvious way cor<ains images for the fcllowing sequenoce of
natural nusbers:
0010120123012% ...

Since the arguments d are loaded by searching from b wusing

of*c*? dr.-l
applications of G, and since all searches for images therefore stav in the
sequence shown above, and since an image for every natural number occurs
infinitely often, then all cearches for images will succeed, This implies that

if ®(7, 4) ¥ ® is valid in X, and so R%(£, d) does not halt in X,

r
then it does 80 not because any image searches failed along the way, but because
%(€,y 4) does not halt in N, i.e,, because f(d,..., 4, ;) does not exist,
Thus, if we have a decision procedure for general validity, and we apply it to
the wff l*(er, 3) S M and it says "generally valid", then the wff in question
mst be valid in i in particular, which of course implies that f(do,..., ‘n-l)
does not exist. Thus, if ef’ g is gemerally valid then f(d ..., 4 ,)
does not exist.

In susmary, then, a decision procedure for general validity of wffs, @

f,4
in particular, would imply a decision procedure for the existence of
t(do,..., dn-l) for .rbitrary partial recursive functions snd arguments
4 =<d ,.ee, d 1>, vhich 1s impossible. Tnerefore T M =8 , wvimre
LIl XS J}..,!' for signature s =<1, 1, >, 4s undecidable, l

Remarks:

(i) This undecidability result is essentially that given by Paterson [36)
although our method of proof, ootained independantly, differs considerably.
The forerunncr of both these results is that given by Luckhsm and Park [24] for

schemes that compute with the natural numbers.
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CHAPTER €

In Chapter 4, we introduced the fcrmal theory T, = <7fms, L LI
vwhere 'f'ms is the set of wfts of .‘.7'S =na “:. is the inferential system of
:T's . In Chapt:r 5, we examincd the yencral validity decision problem for

wifs in ':Fm,s , and in the present ana succeeding chapters, we will complete
our study of ‘Ts by developing the inferential system JS . Before we get

to specifying the actual axioms anu rules of inference of "93 in Chspter 7,

we will lay the nececsary groundwork by «<an‘ning further syntactic and semantic
properties of E=-programs in this chapter, We will assume a fixed signature

8 =< <M yeny By 1 25Wyene, Wy (2P throughout,

Forward Substitution of Assignment Schemata

The first syntactic notions to be exnamined are illustrated in FPigure 15(a).
¥We want to know what assignment schers x andi qff r will make the wffs

pictured in Figure 15(a) generally valid,

To begin, let us consider the syntactic substitution of texms for varisbles.
If t 1is a term or qff, then we write (u1 sim oi)i<n t, vhere n<® , to
denote the term or qff obtained from t by the syntuctic substitution
of the terms g¢,, i <n, for all occurrences in t of the dittinct veriables
u, i <n. We can conveniently read (u:t= o)t as "t with o substituted
Yor u"; the "::=" notation is, of course, borrowed from Backus-Nsur Form
where it also denotes substitution of strings. We define substitution rigorously

as follows.



Bas

12

Figure 15(a

Here, f and g are known assignment schema and p a known Qff; x is
an unknown aszsignment schema and r an unknown qff,

Figure lz‘bz

Here, £ and g are assignment schemata, p & gff, fg the forvard
substitution of £ into g, and fp the forvard substitution of ¢
into p .

59



(1) If t 4is a variable vj , then

(u:L $i= °1)i<nt' (\.1i 1o oi)Kan =y if uifv, for all i< n

'°i if u, = v for some i <mn.

i J?

then (ui t:= cri) t

(1) If ¢t is a constant k <n

j H]
(u1 tim 1.11)1'@):.j = kJ .

(141) If ¢t is f,j(To""’ T -1)’ then (1.11 tim g

i)i<nt

T

(u, 2= 0.), 0 rJ(TO,..., m‘-l) = 1‘.1((\1i 23m 0,) 0 Topeeny(uy tim °1)1<n‘-J-1)

(iv) Ir ¢t is rd('ro,...:, T, .1)» then (u ::= ai)i<nt
(uy 2tm 03)y ey (Tgseees tnj'l) = ry((ugsim 0g)ynTopenes (U 2= °1)1<n’n3'1)

(v) It t 1is ('rl = 12) , then (ui im0, )y T

- (ui 1= ai)1<n(11 - 12) = ((ui 11= ai)1<n11 - (“1 tim ui)xnta) .
(vi) If t is (p>gq), then (ui 1im ai)i<nt'

(ui 2 0, i<n(p Oq) = ((ui::= 01)i<n p> (ui tim °i)i<nQ) .

(vit) I t 13 (~p), then ('.1:l ti= qi)1<nt

(uit= 0y), o~ p) = (u, ::= 0,), p) .

We will write (ui T ai) t 1if only scme of the occurrences of the

i<n

variables ui are substituted for in t .

Next, let us define the syntactic operation on two assignment schemata

denoted by their juxtaposition. Thus, if f = (u1 = 11) and

i<n
g= (uJ = oy )jqn , then their juxteposition defines the assignment schema

fg = (w‘1 1= (uy o= T, i<n°J)3<m & (uik =T

i.k)k( y)

called the forward substitution of f into g , where {u ]k< ¢ is the largest

oY

subset of {u Thus, we substitute forward all

1}1<n disjoint from {wJ]an .

terms of f wherever the assigned variasbles of f occur in the terms of g,
and in addition carry forward those assigmments of f whose assigned variebles

do not conflict with those of g .,



As well, let us define the syntactic cperation on an assigmeent schems
and a term or qff, dencted by their juxtapositiorn. Thus, if
f= (ui - 'I'_;)1<n and t is a term or qff, then their juxtaposition defines
the nev term or qff
ft = (v.;1 itm T, 1<h"
called the forward substitution of f into ¢t .

The first step in the analysis of the forward substitution of assignment
schemata iz the following

Theorem 6: For auy assigmment schema _1’_—(!11. 1= T,), ., » Computing structure
w -

2, of sppropriate signaturg state { : and either term or qff ¢ ,

L
~0

t[DE f(Df t]] = ft[D! L.
Thus, executing an assigmment schema f on the state { and then evaluating ¢

yields the same value or truth value as the forward substitution of £ intc ¢ »
evaluated using ¢ .

Proof: We use induction on the structure of ¢ . Mrst consider the case where

t iz a tem.

(1) If t dis the varisble 4 then

t(2, ('.\1 = "1)1<n (D, ¢1]

- 73[2, (ni = Ti’i@ [2, !]]

-VJ[D, t] 1t v, gu, foralli<a, or 7D, £} 1f vy =y
for scme 1 <n, by the definition of the semantics of assignment
schemata and terms

- (u1 11= Ti>1<n VJ[P’ t] by the definition of substitutiomn

= (u, 2= Ti)icn ¢[D, t] as required,
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(41) If t 1is the ccnstant k;j , then

t(D, (g 1= 7 )0 (D, ¢l]

kJ[‘lb (u, =7, 1<l €]
kJ[_lz, t] by the definition of the semantics for terms

(u1 ti= 11)1<n kJ[P) t] by the defirnit’on of substitution

t[D, t] as required.

(ug s2= 7 )5
(111) If ¢ is fj("o""’ Tm1-l)’ then

t(D, (u, =), [D, 8]

= g1, ij-l) (b, (uw := 1) . [D, ¢l

= FJ('!o[Q, (u1 tm ‘i)1<n [p, ¢1l,..., 1md-1[2, (1.1i 1= 'ri)i<n (L, ¢]]) by

the definition of semantics for teirms,

- FJ((ui 23m T ) Ty )y, (U zi= 1), o TnJ-l {D, ¢]) by induction
hypothesis
= fd((ui dm T ) Toreees (“i pie T ) o 'Inj-l)[Q, t] by the

definition of semantics for terms
= (u1 11m Ti)1<n fj(To"“’ " _1)[2, t] by the definition of substitution

n (u1 1= T t{D, ¢] as required.

Next, let us consider +he case where t 1is a qff,

p
(1) If t 1is rj(to,..., 1nJ-l) , then the proof parallels exactly
the proof whem t 1is ‘J(’o"“» Tp-1) *

(1) If ¢t 48 (p=q), then
(D, (w, :=7,), [D, £1]
» (p2q)D, (v :=7.), (D, ¢]!
«not p[p, (u :=7,), [D, €]] or qID, (u, zs 7)., . (D, t]]

by the definition of semantics for qffs



wnot (u ::= Ti)i<n plL, &) or (u, ::= ‘vi).;q,

qlD, :] by
induction hypothesis
® ((u, = T‘.)i<n =) (uj 227 T )ien Q)ID, ¢] by the definition
of semantics for gff:
™ (ui et lien (p> q)[E, t] by the definition of substitution
- (v.a1 ti= 'ri)1<x2 t(D, ¢) as required,
(133) If ¢ 1 (~p) , *nen the proof parallels exactly the proof
wvhen t 15 (pDq) .
{4+ If % 18 (T « o), then

tD, (v, -~ [p, ¢1]

"1/1¢cn
® (v = 0)ID, (ui =ty i<n[91 ¢l
w(D, (u :=7), . (D €])=olD, (u, :=17),[D, €]} by

the delinition of semantics for qfts

® (g 2w Ty )i

hypothes:s

(D, ¢] = (“1 tim fi)imo[‘p, t] by induction

T = 4 o
- ((“i is 1)i<n T={u :: 11)i<no)[2, ¢] by the
definition of the semantics of qffs
- (n1 sim ri)Kn(t = o)[D, ] by the definition of
substitution

- (lli sem Ti)i<n tiD, ¢} as required.

‘“he foregoing theorem immediately suggests the following.

17iM
&= ‘an o ",i)j-;nl computing suricture Bot appropriate signature,
and state ¢ : w0
—~p—
(D, £Ip, £1) = (D, £) .

Theorem 7: For any assigmment schemata f = (v-i:- T and
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Thus, executing two assignment schemata f and g in sequence on a state
§ produces the same state as the forwara substitution of £ into g executed

on § .

Proof: It is possible to give an inductive proof Hver the nuber of cssignments

in ejther f or g , but a drute force mcthod may, in fac?, prove mocre merciful.

ely, f1D, ¢1]

= (v, = oy) D, 1D, ¢1)

= (v, := oj)qug, nl, where n = £[D, &]

= &l s 0y 105 0l a(... a(n), o[D, n], alny, o,(D, ), 7))...)) by the
defirition of semantics fcr assignment schemata,

Now, for e11 3 < n

0,(B, !
= 9lL ("ni i= T, )yu(Dy 80! since q = £(D, &1
= (v- tim T £

b
- rad[g, t] by the definitio- of forward subatitulion of assignment

1)144 °J[2’ ] by emma ],
schemata.
Sc that, continuing
glp, flp, ¢}!?
= “('ﬁl-l’ fay ,[D, ¢], a(...a.(nl, fo, (D, t], a.(no, fo [D, tl, n))...))
= ‘(nN-l’ fON_l[Q, t), l(...a(nl, fal[g, t), l.(no, taol_l.), L],

a(my 1 Ty D 8, al...a(m, 7(D, ¢], a(m, 7 (D, t], £))...))))...))

The next step in the proof relies on certain axioms which characterize
expressions involving a , the "assign" function, and ¢ , the "contents”
function. As menticned above, these functions were introduced by McCarthy [28],
and there he also gives the axioms



(i} ali, k, a(j, £, €)= a(3, £, &z, . €)) if dip

- a(d, k, &) if 1=,

(11) a(4, c(1, 8), &) =t
(141) c(4, a(y, k, ¢)) = c(4i, &) if 1§00
= k if 1=

which, this author {21] bas shown <c be both >ound and adequste for aerivin,

equality of states.

The re_evance of there ~ompleteness results is that in the last expression

for 3[2) f‘l'?) t]) avove, if -, = Z for some J <N , 1 <M, then we can

prove .nat the assigmment ¢ m = can be amitied since the ome to n 4 will be

the only one to have effect. 1In fact the droof congists simply repeated
spplications of axiom (i) abcve., Let us suppose, without lack of senerality,

that {mo, n,..., nﬁ(-l} iz the largest subset of (m disjcint froam

1}144
[n:]}3<N » where K < M, Then, on the basis of the above discuss.om,
glp, i, ¢1]

e a(ny ., fo, ,(D, ¢], a(.. oln,, fo (D, £}, alm ,, t, ,[D, £). a(...

a(z,, 7, (D, &), a(m . <,iD, £], £))...))). )

- (vn1 ‘= faj)xl' & \v‘i
of the semantics for asiigurent schemats
-{v, = (-_i-'f
definition of forward substitution of assignment achemate

= 1‘__)1«[2) £] by the definitiom
’i<.‘4°j),1<!€ & (vni =T, i<:.((2) t] by the

- tg[E’ t] as required. .

Remaxks:
1) In {2, we =xplain in detail how the ex:oms for the a and
funct.:ions can d¢ used to :fTect the simplificetion required in the foregoing

tueorer. It is felt ihat restatement of all the results in [21] is not

warrancec nere,
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(i1) Theorems 6 and 7 lead to a certain parsimony in notation for the
diagrammatic representations of E-programs, and this will prove useful when
ve carry out deduction: using the drs of various E-programs,

(1ii) We ncw know through its forwarc substitution the eatire effect
of an operator, whether on another cperator or on a discriminator. It is
precisely the lack of this complete information that distinguishes the schemes

of Tanov {16] and Glushkov [13] from that developed here,

Thecrems 6 and 7 seem to tell us that in Figure 15(a) the assigmment
schema x should be fg and the qff r should be fp for the wffs pictured

there to be generally valid. This, in fact, is the content of the following

Theorem 8: The wffs of Figure 15(b)(%) and 15(b)(ii) are gemerally valid.

Proof: (i) Consider executing the left-hand E-progran § = <X, I, X> say,

in an artitrary computing structure b, of the appropriste signature, with an

artitrary input state ¢ :u-oEo . Then,

ulp, <t, )

= E(M, t, ¥) vhere weX and [w]=b

Lb

= E(.,
£,

¢, I'w) by the definition of the execution function E

LU

4

¢, x) where xe¢ X and [x] = ¢

{.U

= E(M, D, (D, ¢],x) by the definition of E

LU

EQM, D, £[Q, ¢], y) where yeX and (yl=g

LU

= E(W, D, g(D, f[D, ¢1], fy) by the definition of E

Ltj

= E(W, D, s(l)) £[D, 1], z) where zeX and [z] e e
= <g[2,f[£)) e]), 0> . the definition of E

= <fglD, &), 0> by Thecrer 7,



NBow, consider executing the right-hand E-program, ® = <X, I''&> say, in the
same Tashion. So
”ADp, <, >}

= X(8, ¢, x) shere x€X and [x] 'bc

Lt:!

= E(8, ¢, I'x) by the definition of E

®

= E(®,
- (8,
- K(8,
lep, tl, &> by the definitionof T .

As)

t, y) wvhere ye€X and (y]= fg
£g[D, t], fy) Dby the definition of E

&

L, tl, z) where z€X and [z) = e

c'.'

[}

Thus, for erbitrary [ and ¢, WD, <¢t, @] = ®(D, <t, @],
f.e., = K-8, as requireq,

{41} Concider executing t.e left-hand E-program, W - X, I, £> sy,
in an arbitrary -omputing structure 2 s O+ the appropriate signature, with an

arbitrary .npat state ¢ =w-&2° . Then,

ul(p, <¢, !

= E(W, D, &, v where VEX and (v]) = b,

= E(M, D, ¢, v} by the definition of E

= E(M, D, t, v) where wEX and (v]=Tf

= E(N, D, ﬂl’; ¢], Mw) by the definition of B

= 2(8, D, f[D, i, z) where x€X and [x] = p

= EMW, L, £ID, ¢), ¥) if p[D, £iD, t]], or E(NM, D, £(D, t],z)

othervise, where y, z€X and [yl e LI (2] = U by the definition of E
E(W, L, f[D, ¢l,y) if fp[D, t], or (W, D, (D, t], 2)

otherwise, by Theorem 6.
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= <f{p, t], @ if fp[D, ¢! or <fD, £}, 1> otrervise, definition of E.

Now, consider executing the right-hand E-progrem ® = <X, ,.<> say, in the

same fashion, Sc

oD, <t, @

= E(®, R, ¢, u) where u€EX and (u] = b
- E(8, D, ¢, Nu) by the definition of F
= E(8, D, &, v) where veEX and [v] = fp

= E(8, D, ¢, v) if fp[p, t] or E(8, D, £, x) otherwise,

‘d

where w, x€X ad [w] = £, [x] = £, by the definition of E

= E(®, D, £[p, t], Iv) 1r fp(p, ¢] or E(®, D, fID, L], I'x) -othervise,
by the definition of E

= E(8, D, r(p, t], y) ir fp(p, ¢], or E(®, D, fip, ], z) othervise,
where y,2€X and [y] =, [2] = e

= <2(D, ¢J, ® if fp(p, t1, or <f[D, ¢], 1> otherwise, by
the definition of E .,

Thus, for arbitrary D and ¢ , ¥(D, <, ] = ®[D, <¢, @]
i.e,, f= ¥ 0 as required.

Remarks:

(1) Though the proof of the faregoing theorem is samevhat tedicus, it
nevertheless points up the raie of the execution function in sementically
oriented proofs of general validity for wffs. This sort of verificatiomn
of general validit) will certainly be required of all the axioms in the

inferential system introduced in the next chapter.



(i1) Cf -ourse, the wfts of Figure 15(b) will be key axioms in *that

inferent:al sy:tom

Instantiation of Well-Formec Formulas

We vant to extend the ideas of the precedi-y section to alleow substitution
¢f terms for variables whenever they occur in the E-programs of a «ff.
The wff resulting from such e substitution will be called an instance of the
original one. We are alsc interested in specifying the conditions under which
an instance of a wif is also a semantic consequence of it, This sart of
ayntactic process must be available if we are to carry out derivations from
a set of proper axioms or hypotheses.

First, let us extenc the notiom of substitution to E-programs end write

(w, ::= 1), W, vhere n<w , to denote the E-program obtained from W

by the simultaneous syntactic substitution of the terms = i<n , for all

i
occurrences in ¥ of the distinct varisbles u, , i<n . HNote that if some
Y, , i<n, occurs as an assigned varisble in an assignment schema of ¥,

and T, is not a variable, them (“1 ttm '1)1<n % 1is not a permitted syntactic

i
operation since the result, if the substitutions were performed as indicated,

would not be an Z-progranm.

To give a mcre precise definition, suppose that ¥ = <X, [, X> . Then

(wy 2= 1) W= <X, I, Z> vhere L’ is defined as follows, (Note: we

write [x])’ for X’{x) here,)
(1) Ir (x)« Ty E, then [x]’ =[x},

(11} ¢ [x'v W, then {x)'-(ui::a 11)1<n[x].



(ii:) If [x] « y cay, a- e ) , then

[ Jn
’ [~ w .o .= ’ 3 - M

Ded® = (g sem my) g v om0y mim t 9 Joy
Of course, as mentione:c above, if wu, = v, for some  i<n , j<m and Ty is
not a variable, then (u ::= 11)L<n 1 is not a defined uperaticn.

Then, an instance (u, ::- )., USSR of tne off 828 is simply
(u ::= 1) o >(u :i=1,), ®

i 17i<n i i'icn

To discover when an incter:e of & wlf is alsc a semantic conaequence thereof,

we need the ccncepts of scope and freedam, Comsider the E-program ¥ = <X, [,ZL> .

If the variable u cccurs as an "scigred variable in an assignment schema [x] R
where x € X , then we define the scope of that occurrence of u to be the set

of varisbles which have occurrences in the assignment schemata and 3ffs labelling
nodes reecheble via I' from x . The example in Figure 16 indicates the acopes

of the assigned variables ir a simple E-program.

Then, if (1) = {w : v 1is a variable and w occurs in the term 1t} ,
ve say that the term T 1is free for the variable u in M iff (i) and (ii)
below both hold,

(1) For each occurrence of a variabie w € J(7) az an assigned varisble
in M, u is not in the scope of that occurrence.

(11) If u occurs anywhere in ¥ as an assigned variable, then T is
simply a varisble w , and for =ach such occurrence of u as an assigned

varieble, «w 15 not in the scope of that occurrence.

In Figure 16, notice that u 1is free for v , and that vy 4s free for

u, f(u) and g(u, v).

We bring together the notions of substitution, acope and fresdom in
the following
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v := g(u, v) {u, v, v}

r(v, w)

{v, w} w := f(u) u := f{u) {u)

4 u := g(w, u)

Here, u, v, v are iiatinct variables; f, g are functicn letters;
and p, r are relation letters. The set of variables associated with
each assignment schema '!s the scope of the assigned varisble.

11



Theorem 9: For any signature s, any wif 84 =B € -77115 , terms 1. and

4

in

distinct varisbles w,, i<n< W T

, if for all i<n , ¥, is free for u

¥ and ®, then

(1) for all computing structures D with signature s,

| B =>‘-R_(ui 3= 1) WEW,

or alternatively,

(11) (M <98} {= (ui 1= Ti)i<n‘l 8.

In this case, we say that (u1 = 'ri) =8 is a proper instantiation

i<n
of =8, Evidently, then, any proper instantiation of a wff is a semantic

consequence thereof,

Proof: The notion of freedom here is actuelly very simple, and the theorem
follows easily once the nature of an E-program ¥ in which a term T {is free
for a variable u 1is understood., We will employ an intuitive proof rather than
a highly technical one since the latter would only obscure the simplicity of the

situation. We will assume a fixed camputing structure Q_ .

Let us first consider the simple case of a term f(w) , 58y, vhere f is

s
a function letter and w is a variable, teing substituted for the variable

vg in the type <m, m> E-program 8 . In this case, only condition (1) for
freedom is relevant, and we require that L is not in the scope of any
occurrence of w as an assigned variable. That is, for any execution of §,
v will wot be evaluated once an assignment to w has been made, It follows,
then, that any evaluation of a substituted occurrence of f(w) during the
executior of (vx t:= £(w)M will simply utilize the value of w 4t had in the

input state, Thus, executing (vK ::= (W) with any input state 5 gives the

T2



same result o. -.ccuting 8 with input state a(K, f£(w)[D, nl], q) , :.e.,

(vx r2= (o MD, <n, D] & u(p, <a(k, f(w)[D, nl, n), i), for all i<m ,

Of conr: , the same sort of result holds for E-prcgram B, i.e.,

(v 3= £(02IMD, <, ©>] 5 (D, <a(k, £(v)[B, n), n), ], for all i<m,

.t f(w) i ‘ree for vy in ® . But, the hypotheses for Theorem 9 sive
us that =4 -8 i e, for all i<m, *or all & : w=-Ll , we have

i ~
wD, <¢, i <MD, €, i>] . But then the tramsitivity o7 & gives that

for all i<u ,

u[D, <a(k, £(w)ID, ql, 1), ] = ®D, <a(K, f(w)ID, 3], n), ]
since for ar; state n2 w"’f:(; , there is scme g:w—.g_o such that
¢ = a(K, £(v)D, 1], n) . Then, combining the results above, we have
(vx Iim f(w))ll[E, <, D= (1.'K
this is true for all m:w - , so that &-2 (v =2

1= £(w))®[D, <n, >}, for all i<m . But

f(w) = (vK 1im £(w))®

i.e., }-D(vK 1:= £(W))M = 8 , as required.

Extension of this result to terms with more than one distinct variable
occurring in it is straightforward. But, now consider the more complicated
case of a variuble Vg  being substituted for another variable vK ir the type

<@, n> E-program ¥ , where vg occurs in 8 as an assigued variable. Im this

case, both conditions (i) and (ii) for freedom are relevant, so that we require

that Yk is not in the scope of any occurrence of vp a3 an assigned variable

and vp isnot in the scope of any occurrence of vk

That is, for an; 2xecutiun of 8, v, will not be evaluated or be assigned a

as an assigned variable,

value once an an:ummest to vy, has been made, and vz  will nct be evaluated

or be assigned s new value cnce an assignment to K has been meac, For both

these conditions to be true simltaneously, either vy or vy mnever occurs in

3



M as an assigned variable, If it is v, that never occurs in ¥ as an

assigned variable, then we have precisely the case already analyzed above.

If we have the cas~ where vy does rot occur as an assigned variable in
% , then it foilows that any evaluaticn of a substituted occurrence of \72
during the execution of (\rK e Y M will simply utilize the value of \/ )
it had in the input state. Thus, except for the values of v, and vy
in the output state (if such 1s determined), executing (vx 1= \y_)l with
any input state 1n gives the same result us rxecuting M with input state
a(X, v[D, nl, 1), t.e.,

(vg 1= Y MID, <y, ] = %D, <a\X, (D, nl, 9), ©] for all i<m .

{qu v}

The notation whereby the =" symbol is subscripted :y & u2t of variables
was first used by McCarthy [26], and has also been used by this author [ 20].

Here, for (D, <¢, ] & { . ~}S[2, <¢, ] to hold, either voth sides
Uost+eatn-1

are indeterminste, or both are determinate, producing <t', J'> and <", ™
say, suck that J' = j" aud c(K, ¢') = c(K, ¢") for all
Ke {m:vefu,..., “n-ln . Thus, §' and ¢" may differ on in

locatione corresponcing to the variables Uggeoey Uy g o

In this instance, we can actiaily say what the relationship is between the
values of x and vy 1in the output state, if there is ome. Suppose that

(1) (vg ::= w (D, <9, ©) = <, §»>

(11) ¥[D, <a(K, vID, n), 7), £] = <a", §*> .
Then evidently, c(.£, a') = c(X, @'), c(k, a') = (X, n), e(l, ') = c(l w)

and <a', §™ = vy <af, 3> .

» V)



Of course, the smme sort of result holds for E-program 8, i.e.,
(vg ::= vp)OD, <1, ©] & (v vp) ®(D, <a(x, v (D, n}, n), D]
for all i<m. Let us suppose here that

(1) (vx 1:= v)O[D, <n, ] = <p', I™>

(11) ®p, <a(k, v (D, ], n), ©] =<8, §™>
Here too, we have c(f, ') = c(K, €"), (K, B') = c(K, n),

e(4,8") = c(4,n) ana <g', J> - <", I">.

(v, v}
Now from the hypotheses of Theorem 9, |= ¥ =8, s0 that in particular,

<', "> =<g", ">, i.e., 0" = p" and j' = :;" . Vhat we are

now is that <a', j§'> = <p', §"> ., Well, we have J' = jJ" , 80 all that

remains iz Q' = B*' . We proceed as follows:

<y, J™ - [vx’ u)«x”, > =<g", > = [vK’ Ye}<b', 3™ . Thus, we have only

to show that c(K, a') = c(K, B') and c(£, o') = c(¢, ') . But

(K, @) = c(K, q) = c(X, 8') and c(/, a') = c(K, @) = c(K, B") = c(4, B') .

Thus, taken all together, these results give <a', j"™> = <B', J™> . Bince this

ie true for all i<m and 8ll y: W=D , we have

|-D(vx tim v[)I s ("?; 1i= v, e, e, }-D(‘fl; 1i= vy 5 8, as required,
This covers all the cases. It is also easy to verify that the gubatitutions
(“i tim 11)1<n may‘be done simultanecusly without demaging the results so far

proven for the single substitution case, .

Figure 17 illustrates :everal examples of proper instantiation, and in the
next chapter, this syntactic operation will be incorporated into our inferential
system as a rule of infereace,
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o~
”»
u = g{u) u = g(u)
OINA
o
\.
(v se= 4,
K

Here, u
constant, The right-hand E-programs result from the left-hand E-rro-ram: through 1o nrop v n-
stantiction indicated, Continued next page,

, ¥y X e&rc variables; f, g, are functlon letters; r is ~ reaiation lett-r, =nd x 15 a



LL

G o W)
Yy i:= pA
x = £(g(y)) o xoi= e(ely) >

Here, x, y, 2, u are variables;

indicated,

I

y := £(g(h(2)))

R

y = g(£(k{z)))

Y

(u 3= g(x))
=3 (r(a(x)) A~ p(£(g(x))) ~

Q

Figure 17 (contd,)

©

r, p are relation letters; and f, g, h are function lecters.
The rightehand E-programs result from the left-hand E-programs through the proper instartiaticns




Remarks:

(1) The notions of " ccurrence" and of a variable or term “occurring”
in some formula has been left informal in this discussion. Thi:s 1s simply
because intuition alone is an excellent guide in these matters, not because the
formal definition is intractable. Feferman [10] treats a similar
matter for the predicate calculus.

(11) The roles of substitution, scope and freedom in this work seex
curiously similar to related matters in the vredicate calculus. For example,
see Mendelson (35, pp. 48 and 53], There is likely more in this thaa at first

meets the eye.

Camposition, Decomposition and Replacement of E-programs
Before consideriug transformations on E-programs which alter their

tcpoiogical structure, we must consider the syntactic operations of composition
and decomposition of E-programs, In Chapter 5 we iemned heavily oo an intuitive
understanding of how the graphs of E-programs could be combined to rorm the
graph of the camposition of these, but a few further details are in order to

make these ideas more formal,

Roughly spesking, a composition of two E-programs # end ® to form a
new E-program € 18 accampliished simply by pairing in a 1-1 fashion scme
terminators of ¥ with initiators of ¥ , and then joining W and ® together
at thes: points and simultaneously eliminating these terminator-initiator pairs,
To assur: that the result of this composition is in fact an E-program we require
there be m< w” initiators and n< w terminators remaining, and that these

be relab:lled b, by,...,b , and e, €,...,8 respectively, This rather

15



loose description can be made more precise in terms of the set theoretic
definiticn of E-prosrams, but no real benefit is .o be gained by such an
endeavor. Instead, we use the example of compositicn in Figure iB to

illustrate the details.

Roughly spesking, a decomposition of an E-program § into two
E-programs % and ® is accomplished simply by interposing a number of
nevw terminator-initiator pairs between nodes of § , and breaking @&
apart of these places. Of course, proper attention must be paid to the
labelling of the new initiators and terminator: to assure well-formedness
of M and ® . This rather loose description can also be made more
precise in terms of the set-theoretic definition of E-programs, but
rather than introducing such opacity, we will simply say that & can
be decamposed into M and W if there exists a composition of ¥ and

® toform € . Figure 19 illustrates a simple e¢xample of decamposition.

If § can be decomposed into two E-programs, one of which is &,
we muy say that ® is a sub-program of & and write €(¥) instead of
€ to indicate this, If ¥ ara: B are E-programs of the same type,
then we say that the E-program §(®) =arices from €(¥) through
replacement of sub-program % o0y 8, provided that the composition that
forms &(M) , and the composition that forms €(®) , are identical,

Pigure 20 illurtra‘cc « cimple examplz of replacament,
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Figure 18

A composition of E-programs 8 and 8 to form E-program & . Here, f, g, x, ¥, 2 are
assigmment schemata; and p, q, r are qffs,



Firure 14

Here, f, g, b, x, y are ascigmment schemu.., w¢ p is - aff. The
lower two B-programs result fram the indicated . cuamposilic.: of the
upperswst E-program,



L-proirws (W)

E-program ®

E-program &(8®)

Here, f, g, W, 2, ¥ are assigmment schemata, and p, q, r, s are
qffs, E-program €(B) arises from g(®) through replacement of sub-
progrem 8 by B,



We bring together the notions of camposition, decomposition and replacement

in the following

Theorem 10: For any sigraturc s , B-programs 8 , ®, §(¥) and G(®) in

L,_, where 8 and 8 are of the same type and §(B) arises from &(M) vy

replacement of sub-program ® by W ,

(1) for all computing structures D with signature s ,

'b.‘l. *8 =>J_-R G(M) = §(®) , or alternatively
(11) (M=} b= &(u) = g(e) .

Proof: Since (M) and G&(®) =ere formed using the same camposition,

1f during the execution of &(M), M is entered where b, was and left wher:
e.1 was, thereby producing a certain result, then since PD 8 = ¥ by hypothesis,
during the execution cf &(®) , B will be entered where b, was and left

i

vhere e 5 was, and will thereby produce the same result. Thus, (M) and

§(8) are equivalent in D whenever M and ® are.

Remarks:

(1) Theorem 10 will serve as the basis for a replacement rule of inference
in tne inferential system defined in the next chapter,

(ii) The substitutivity properties of equivalence and strong equivalence,
along with their obvious symmetry, characterize them as equivalence relatioas

in the ordinary sense,.
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CHAPTER 7

THE INFERENTIAL S/STHM

lz Chapter 1, we introduced several basic ideas regarding a formal
theory of strouZ equivalence and we will continue here tc develov along
those lines. In Chapter 4, we irtroduced the formal theory

T, =< Jﬁns,\)’sP , and in Chapters 4, 5 and 6 the set 7».-5 of wffs has
been stucied. In this chapter, the inferentisl system r:fs = < /x o>

is vresernved and its soundness demcnstratead.

The inferential system Js = <A i « > consists of an effectively
decidable set //'r.s C Fw ©of wifs called the axioms and a finite set R
of rules of inference. For any set LOC Fin  , Wwe write & |- M T8 iff

the wff U = ® is finite.y derivabie from & U 4y  using K. By this we

mean thal there exists a finite sequence of wffe 6, 6,,..., en_., such that
for all : <, either 6. €56 Ufx  or 9, can be inferred frem 6 ,..., 6,

by some rule i R, and 6 . is W= W,

The rules of inference in R will be prescribed independently of the
signature s . In the same spirit, we will define Ay g by first defining

a finite set ,{l, of axiom schemata, also independent of s , and then

»/‘s-{llzbefm.s:llfb is &' instance of some axiom schema in 4% } .

If § C Fm, 15 & set of wffs such that for any wff M Z®€ d
and any AC of wehave A {=N =B @A |- U I8, 6 then we say that the
inferential system o 8 is extended complete for J; if we have only
=¥ -8} W=V, then we say of , is complete far & . Notice that



extended completeness implies comp'.tcness. As to be ~xpected, whether or
not tfs is complete or «xtended complete for soame o = L depends

on the signature s , the set & and, of course, the sets .+ and /.
In sddition, we will say that the theory J =« ‘/""s’ tys> is complete

(or extended complete) if JS is complete {or extended compleie) for

Fin, .

Before we formulate nJ]s and study its properties, we should note that
there are definite limitations on the axiomatizability of strong equivelence,
i.e., on the existence of an inferential system complete for .7018 . We say
that the formal theory .Yé = <;-w%, t548> is axiomatic if its inferential
system d" = <,-‘/", R > iz effective, i.e., +#; s S '77"’3 is effectively
decidable and the rules in K are effectively applicable., This means that
we can always recognize when a wff is an instance of an axiom schema, and we

can always determinie if the proposed application >f a rule of inference is

legitmate,

In Chapter 5, we showed that the strong equivalence problem for wffs in
Fu T, where s =<1, 1, 1>, is unsolvable (Theorem k). But the minimal
language I.s' , Wwhere recall qffs of the form (1 = o) have been suppressed,
suffers from another unfortunate malaise which must serve as a basic
restriction in our attempts at formilating an axiomatic complete theory

of strong equivalence, Consider the following

Theorem 10: For the signature 8=<1, 1, 1> , there exists no effective

inferential system complete for Fi ~_.
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Thus, for any signature s = < <n°,..., n‘k-].)' W ey nl_1>, P,
if k>0, £> 0 and p> 0, any effective inferential system is of necessity
incomplete. This precludes, then, any sxiomatic complete formal theory of
strong equivalence for E-programs in systems with any appreciaile computing

pover.

Proof: In the proof of Theorem 4, we established an isomorphism between the
set AC ‘ﬁ." of generally valid wffs of the form  M*{(Z,, = a2,

where 2.@0,,,_, > and the set B of pairs <Ef,,i? such that

dn-l
f(do,..., dn-l) does not exist, Now, consider the set C of all pairs

<Ep & wnd the set D C Cof all pairs <[F, & such that £(4,..., 4 ;)
does exist. Now D is certainly effectively emmerable, for exemple, by
computing each f(do,... , dn-l) a little bit, infinitely often, and noting
when one produces a final value, But, recall that D 4a not effectively
decidable (i.s., the set mambership decision problem for D is unsolvable).
Then, certainly B= C - D 1is not effectively enumersble, since the effective
enumerability of both B and D vhere B UD = C, would imply an existance
decision procedure for any f(4,..., 4 ,), namely, perfarm the enumerations
of B and D until <, & comes up; if <F,, > €D, £(d,..., ¢ ,)
does not exist and if <¥, & €D then f(d,..., d ,) does exist. This
implies D 1is effectively decidable, s contradiction. BSo we have that B is
not effectively enumerable.

But then neither is A C 7&.- effectively emmerable, since A mnd
B are isomorphic. BSuppose that there exists an effective inferential systea
camplete for Fm.~ , 1.e., ve have |= ¥ S Bed|- U B for all
M>8€ Fn" . Then, since the inferential system is effective, we can



enumerate all thc theorems, which by completeness yields an enumeration
of all the generally valid wffs in A C }‘ms' c ‘7"'5 , & contradiction. Thus,

no effective inferential system ccomplete for T)us' exists. '

Remarks:

{1) 1In spite of the pessimisa that this incompleteness result is likely to
engender, we can nevertheless take heart in the several areas for which Js
is both effective and complete and even extended complete., We will take these
matters up in Chapter 8 after introducing the sets #xr anda K .

(11) or courgse, if we accept Church's thesis, we can replace "effective"
with "recursive" in the above discussion. Then, < Epr &> would be a "sequence
pumber" or "g3del number" generated in an appropriate manner fromw the form £ ¢

and sequence 3 = <Qy-e0 dn-1> .

The Axioms and Rules of Inference
There are fifteen axiom schemata: Ax = {AL, A2,..., A15] , and five
rules of inference: K = (Rl, R,..., RS},

First, we give the rules which characterize "=" as an equivalence relation

in the ordinary sense,

RL: UT8 >898
R:¥M -8 =€) =€(B) vhere €(B) arises from (M) through the
replacement of 8 by ® .,

Then, to permit derivaticons from hypotheses, we have

&:lzﬂ-o(ui::-'ri)Knl-O.

The axiom schemata Al, A2,..., A] characterize the properties of qffs,
and are illustrated in Figure 21. Also in Figure 21 is a rule R}’ which is
Just a particularization of R3, we mention it here because it reflects the
instantiation properties of qffs.



Axiom schamata that characterizes qffs. Here p, q are qffa. Continued next page,
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Figure 21 contd.

Axicom schemata and rule that characterize qffs,
and 1, , i<n, are terms.

Here, p is a qff; u

i

, i<n , are distinct variables;



The axiom schemata A_8, A9, Al10 and the rule & characterize the properties

of assignment schemata, and are illustrated in Figure 22.
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