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CHAFTER 1

INTRODUCTION

1. Aims of the Thesis

Our main goal in this thesis is a detailed study of the implementation

of finite element methods for solving linear elliptic partial differential
equations in two dimensions. Our study is restricted to problems which
can be formulated as finding the stabtionary values of a quadratic integral
over a given class of functions. Thus, we consider inhomogeneous second order
elliptic boundary value problems in the plane which are either formulated
as least squares problems or can be placed in variational form. In the
text we consider equations with variable coefficients and problems
involving boundary integrals, although the Fortran code we actually
present can handle a less general class of integrals. However; the
majority of the program would remain unchanged for more general problems.
Our viewpoint will not be that of a person who wishes to solve a
specific problem. Instead, we will adopt the attitude of one who must
provide a general progrem which is efficient, easy to use, and applicable
to a reasonably large subclass of two dimensional linear elliptic boundary
value problems. Thus; the capability of handling odd-shaped domains and
general (non-Dirichlet) boundary conditions in a uniform manner will be
important. Our study will include the problems of mesh generation and
the solution of the sparse systems of finite element equations, as well

as the actual generation of those equations.
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We will also be interested in the performance of finite element
methods (for our chosen class of problems). We will evaluate them by
comparing numerical solutions to selected problems obtained by different
numerical methods, including among others, finite difference methods. We
will also compare different finite element methods; that is, finite
element methods using different bases. Our results should offer some
evidence as 1o which numerical technique is best, although the question
of what we mean by "best" is indeed very complex. Obviously, if we choose
our problems carefully, almost any method can be made %o look best. IT
we have a specific problem that must be solved many times, then it may
very well be worthwhile to find the best method for that particular
problem {even though the method is applicable to a rather small class
of problems, and therefore unsuitable for the purposes we have set down
above). For our purposes, the following questions will be of more or

less equal importance in evaluating and comparing numerical methods:

(a) What accuracy is achieved for a given amount of computation?

(b) What storage is required?

(c) Does the method rely on domain shape? (For example, does it
only apply for square domains, or rectangular polygons?)

(d) Does the method utilize a special technique which requires some
information known only to an expert in the field? If so, can
the technique be integrated into the program so that the ama’sur

user can use the technique unassisted?
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(e) How general.y applicable is the method? For example, must the
coefficients of the differential operator be constants or be
restricted in some other way? Are normal derivative or mixed

boundary conditions easily handled?

Obviously, whether some or all of these consicerations are important
depends upon individusl needs and circumstances, but from our viewpoint
of designing & general purpose program, we would like to use a methed
which yields a satisfactory response to all of them. Our aim is to show
that finite element methods are very strong candidetes.

Many of the comparisons of numerical methods which appear in the
literature are made in the context of solving & specific problem, and
the comparisons are often made on the basis of (a) and perhaps (b), with
much less emphasis (perhaps only acknowledgement) of differences in (e),
(d), and (e). Given the high cost of program development and the
Qiminishing cost of computing power and hardware, we feel these latter
considerations deserve more attention than they normally receive. Our
emphasis in this thesis will be on a methods general utility rather than
on its ability to solve any particular problem "better" than it has
been solved before. Hence, many of our conclusions will be of a
qualitative rather than quantitative nature. Nevertheless s we feel
such results are important and useful. A 1eview of the thesis and s
summary of our results are found in Section 1.5.

Tnroughout the text "section n,.n " will mean section n

2 2
chapter n, . Equations, figures and tables in section n, will be numbered

of

(ne.l),(nz.e), «»+ , and references in chapter n, *> figure (ne.n5) also
in chepter ny will just be ne.ni; references to figure (ne.nB) appearing

in another chapter would be written (nl.ne.nj) .




2. The Variational Principle and a Brief Discussion of Ritz Methods

For many boundary value problems of even order it is possible to
conctruct an intezral I[v] which can be formed for all functions
lying in a certain class V and which takes on a minimum for precisely
the function uweV which satisfies the boundary value problem. This is

called the variational formulation of the problem, and usually corresponds

to minimizing the energy of a physical system. The differential equation
of the boundary value problem is the Euler-Lagrange equation obtained by
imposing the condition that the first variation of 1I[v] wvanish [C2].
For example, let R be a two dimensional region bounded Ly a

piecewise smocth curve OR . Consider the problem

(2.1) uxx+uyy =f in R,
{2.2) u=g on OF .

The solution of {2.1)-(2.2) minimizes the functional

(2.3) 1l = (v + ¢ ervaxay
R
where veV , the class of functions in C(R U OR) witn first derivatives
in LE(R) and satisfying (2.2) [C2].
The Ritz procedure for finding an epproximate solution to (2.1)-(2.2)
is as follows: Let VN C V be a finite dimensional subspace of V

spanned by the functions wi ; 1i=21,2,..., . Our aim is tc obtain
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an approximation & to u by minimizing I[v] for veVN . Writing

VN in the form

N
(2.h) VN = i—; a“k\'rk ’

where ak y k=1212,...,0 are real nurbers tc be determined, we use

(2.4) in (2.3) to obtain the quadratic function

(2.5) vl z -r\r( I,X J,x wl y‘yJ:y)dX dy} aia:j

i, j=1

+21§1{H f«lfidxdy} o
R

Lo+,

where aT = (al’aa’ .“’aN) )

(2.6) Ay ) dxdy

'”'(Wlxal't 1YJY

and

(2.1) b, = [ o¥, axdy

R
Using the important fact that A is symmetric, we obtain the system of
equations AX = -b which determines the coefficients « in (2.4)
yielding the minimizing v* € VN + Under appropriate hynotacses, v* -
as N - o [K3]. The importance of the finite element method is that
it allows us to construct wi's which satisfy these hypotheses and which
also have attractive computational properties. This is taken up in the

next section.
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Note that for our chosen class of problems, it will always be

passible to arrange thiat the coefficient matrix of the linear system !
¥ m l v ’
we must solve is symmetric, since otTAa = %‘- aTAa+-;— ot‘ATa =§otr(A+ AT)a =

aT A , where A is obviously symmetric.
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3. Essential Characteristics of Finite Flement Methods

The term "finite element" appears to have originated in the early
1950's with structural engineers who regaried conventional structures
as composed of a mumber of separate zlements interconnected at node points.
The concept was extended to continuous problems such as plate bending and
steady-state temperature distribution, where the elements are merely
subdivisions of the domain of the problem with adjacent elements having
a common vertex or common side. The iost common element shapes are
triangles and rectangles. Our attention will be devoted almost exclusively
to triangulsr elements in this thesis, primarily because odd shaped
domains can be more easily divided into triangles than rectangles.

Finite element methods are Ritz methods which use basis functions
haviug small support; that is, Ritz methods which make use of a so-called
"local basis'. In Chapter 3 we will discuss the actual procedure. At
this point we simply observe that finite element methods make use of

trial functions v (see Section 1.2) having the form

N
(3.1) VN = };I;‘_L ak\yk ’

where

(a) W oisa piecewise polynomial o R U OR .

(b) - is & polynomisl on each element.

(¢) each basis functicn V¥, is associated with a node point lying ocn a
k

vertex, side, or interior of an element, and is non-zero only on

elements containing th2 node. This property is depicted below:
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Figure 3.1-a Figure 35.1-b
Support of Wk associated Support of Wk associabed
with a corner (vertex) node. with a side node.

Figure 3.1-c

Support of Wk
associated with an

interior node.

More than ore basis function may be associated with a particular node,
and because of the way the basis functions are chosen, the nodal
paraneters ak associated with each Wk turn oul to be the value or

the value of a derivative of vN at the corresponding node point. The

choice of these nodal parameters is done on the basis of (1) the number

of degrees of freedom ' has on each element and (2) the continuity
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requirements of vN +» Indeed, a common practice is not to consider the

basis functions, but instead, to choose the parameters so as to uniquely
characterize the polynomial on each element and at the same time to

o attain a desired degree of continuity across interelement boundaries.

For example, consider piecewise linear polynomials, for which vN

i is a linear function on each triangle. The trial solution VN can be
uniquely characterized by its value at any three noncollinear points. By
choosing these three parameters at the vertices, we can guarantee continuity
along interelement boundaries. We would indicate this subspace by the

element stencil

[ e
4 —

s Or just
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It is fairly easy to see that this amounts to using a "pyremid

-

) *- function" at each vertex node, as depicted below:
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Pigure 3.2 Pyramid Function wk associated with node k .

Some obther common stencils associated respectively with quadratic and

cubic polynomiels are

Vy,V ,V
’x)y
*
VoV, V Vy,V_,V
’x)y )xiy
Quadratic Cubic

Note that in the last example, three basis functions will be associated
with each corner node, and the function associated with the interior node
will be non-zero only on the triangle containing the node. A (norn-exhaustive)

list of stencils can be found in Appendix A.
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Piecewise polynomials derived in this way are somebimes referred

to as interpolation polynomials, since they are characterized by the

values (and perhaps derivative values) that they assume at the node

values. Note, however, that in our application the piecewise polynomial

will not (usually) interpolate the solution of our boundary value problem.
We will not consider the importent matnematical question of when

(and how fast) vN -u a8 N ~»o . We will simply make some observations

and refer to relevant sources in the literature:

(i) Because each basis function vanishes over most of the domain, the
linear system that is genersted is sparse. Strang [35] emphasizes this
by stating that "by a suitable choice of the trial functions ... the

Galerkin equations... turn out to be difference equations". Whether we

call them finite element or finite difference equations is largely a matter

of taste; we prefer the former, and reserve the term "finite difference"
for those methods based on divided difference approximations. For
polynomial basis functions of low degree the two spproaches sometimes yield

the same equations. Our distinction is made on the method of derivation

rather than the end result.

(ii) The value of finite element methods will obviously depend upon
how well the trial functions can approximate the true solution of our
boundary valuc;. problem. This problem has been studied for general
elliptic operators and tensor product approximating spaces in [B8,86,S51]
and in references contained therein. We will briefly discuss tle
practical advantages and disadvantages of these spaces in Section 1.h.

Bremble and Zlfmal [B12], Z1%mal [2Y4,25], Yene¥ck [21], Godl [G2],
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and others have proved convergence of the method and presented bounds
for various elliptic operators and piecewise polynomials on triangles.
Qualitatively, their results say that if the approximating-subspace is
admissible, and the true solution u is "smooth enough", then an
increase in d (the degree of the piecewise polynomiai) induces an
equivalent decrease in the error bound. That is, the error bounds are

of the form

-y < en®™ )y,

where “u\\? = Z "Dluu22 > 1= (il’ 12) ’ ‘1‘ = il'{'ig > and
li] <2 L
L il
Du = -—E———%L . Here h is the maximum length of any triangle side in
)
ax Ty ©

the mesh, and ¢ 1is a constant which depends upon the sharpest angle in
the mesh and the polynomial basis (element) being employed. For specific

details, the reader is referred to the papers mentioned above.

(iii) The condition of the finite element linear system which we
obtain will obviously depend upon our choice of V¥'s . Indeed, one of
the problems of using the Ritz technique has been the numerical
instability of the discrete problem, caused by choosing almost linearly
dependent trial functions. Intuitively, we would anticipate that such
problems would be much less troublesome for the finite element method
because the majority of the V's will be orthogonal (by virtue of having

disjoint support). Strang and Fix [S6] study this problem in depth for

12
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uniform meshes by examining the condition number H(G) = HGh“ u(}h i

of the Gram mabrix, whose entries are the inner products ¢f the basis

| elements \l!i . They conclude that all the usual piecewise polynomial
trial functions yield a stable basis, where stability means that H(G)

| remains bounded as h - 0 . They show that the condition of the

coefficient mabtrix A obtained from the application of the finite

! elemert method (using a stable basis) to a uniformly elliptic operator

of order 2m is of the form ch-am » Where h is the mesh width and ¢

depends on the choice of the basis. This result is of practical

significance; for a given problem it says that as long as we use a stable

R
[

basis, the condition of the coefficient matrix does not deteriorate as

—

we increase the degree of our polynomisls. Note thet these results only

apply for uniform meshes, and it is not known how detrimental severe

t‘““‘"“»

grading of the mesh mey be to the condition of the matrix A .
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L.  Tensor Product Spaces

Suppose Dl = [0,1] is divided up into a uniform mesh with grid
points (ih, i = 0,1,2,...,n) ard assume we have a basis
(@i(x) , i=0,1,2,...,n) on [0,1] , where each E; is non-zero on
the interval [i-ph,i+ph} , with p small. Now consider the dcmain
D2 = [0,1) x [0,1] , covered by a square mesh with grid points
((ih,jh) , 1 = 0,1,2,..:5n, j = 0,2,2,...,0 ) . To construct a tensor
product basis on D, we form the functions Wij = $i(x)ﬁj(Y) ,
i,j = 0,1,2,...,n . The trial function & , where N = (n+l)2 , is

then given by

. N¢

(h.1) Vo= zoaij\'{ij .
i,Jj=
The main advantage to this approach is that it is possible to

obtain a relatively smooth approximation with only moderate N , since
if i}iecq[nl] , i=0,1,...,n , then ﬂfije@q[Dz] , i3 = 0y1yeee,m .
This is often done by taking a spline basis for the Wi's . For
example, we can have vN.eC?(De) by using the cubic spline basis [Sl]. For
a specific degree of smoothness, the number of parameters (unknowns)
in the problem increases @s nk for k dimensions. Of course, the
reason for these properties is the fact that the interelement boundaries
{which are h by h squares] are constrained to lie along coordinate
axes, and this brings s tc the major disadvantage cf this method of
basis construction.

Because our elemonts are squares [or perhaps rectangles -- it is

easy to scale the basis functions), our domain must be restricted to be

in
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the union of rectangles. Furthermore, it is virtually impossible to
grade (i.e., subdivide) the net "locally". If a fine mesh is desired
in a region of the damain, then it must be made fine in an interval in
each coordinate, even though we only desire the fine mesh in the
intersection of these intervals. It is fairly easy to conceive of
reglistic problems which would force the grid to be almost uniformly
fine.

However, there is sume reascn for optimism regarding this geometrical
problem; Bramble and Schatz [Bll] and Babuska [Bl] have analyzed some
methods thal do not require that the basis functions satisfy any boundary
conditions. The basic idea is to imbed the given domain R with
boundary R in a larger domain R' o R , with the basis functions
satisfying homogenesous boundary conditions on the boundary of R! .

A boundary integral on 3R scaled by h™/ , O <7 <o (where h is
the mesh width), is added to a least squares formulation of the problem.
The boundary integrel is designed so that its minimum occurs when the
approximate solution satisfies the boundary conditions on dR . As would
be expected, their error estimabtes depend upon the smoothness c¢f the
boundary data and the solution. They show that 7y =3 is optimal in
some situations.

We have not pursued this avenue of investigetion in this thesis
because the ap.proach we use to generate cur basis functions allows us

to feirly easily satisfy boundary cenditions.

15




5. Review of the Thesis and Summary of Conclusions

As our titie implies, the emphasis in this thesis is on implementation,

and such a study leads to interesting practical problens which are seldom
discussed in papers on finite element methods. Engineering articles con finite
element methods are often devoted to discussing the virtues of particular
elements for solving specific probiems. Mathematical papers, on the other
hand, are usually concerned primarily with rates of convergence of various
finite element spaces. We feel our work lies betwesun these two extremes;
we are concerned with the actual implementation of finite element methods and
how they compare in practice with other methods for solving elliptic boundary
value problems.
In Chapter 2 we examine the problem of generation and storage of
two-dimensional triangular meshes. We begin by reviewing previous work
on automatic mesh generation. We then present a semi-automatic procedure
for triangulation of a domaii.. The method reguires the user to provide a
gross triangulaticn of the domain, reflecting any desired grading. The
mesh is then refined by any specified faztor by the program. We feel
this compromise solvtion, although not particularly elegant, is important
for several reasons: (a) the required input for most domains is small.,
(b) the method can easily be adapted for use with graphical display

equipment), (¢} curved boundaries can be incorporated easily,

[r—

(d) the net can be graded under control of the user, and (e) inter-element
boundaries can be forced to lis in specific positions (along lines of ]
material discontinuity, Tfor example).

Chapter 2 also contains a description of a completely
automatic domain triangulator. Although the algorithm cannot be considered
a Tinished product, we have included it because we feel it represents a

promising apprcach to automatic triangulation. It is applicable to

16
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arbitrary simpiy connected domains and is designed to produce graded
nets where approp:siate. Some examples of meshes produced by the algorithm
are presented and some further areas of research are suggested.

The fingl section of Chapter 2 contains an efficient storage scheme
to represent arbitrary triangular meshes. Using this scheme along with
some results obtained in Chapter 4, we compare the storage required for
the mesh tc the number of non-zero elements in the coefficient matrix.

We show that except for piecewise linear polynomials, the storage
required for the mesh is small compared to that reguired for just the

non-zero elements in the coefficient matrix. We conclude that the

mesh storage will seldom be an important factor in overall

storage requirements in the application of finite element methods.
Chapter 3 deals in detail with the actual generation of the finite

element equations. The process consists of two phases. The first is the

computation of the stiffness matrices which express our integral over

each element in terms of the nodal parameters used to characterize it.

The second phase consists of assembling these matrices into a single
large system and eliminsting those parameters whose velues are already
srecified by boundary conditions. For the first phase we describe

one method for generating coefficients of the equations on each triangle.
We justify our use of the approach over others by demonstrating where
much of the camputation and manipulation of the basis functions can be
carried out symbolically, thus avoiding use of numerical (or hand)
integration and/or differentiation. Section 3.4 deals with the assembly
of the equations. Boundary conditions which involve derivative
parameters cause annoying implementation problems if the boundary is not

perallel to the x or y axis, since relations between several parameters

7




must sometimes be satisfied. We discuss two alternate methods of
randling these problems »nd compare the implementation of each.

A study of sparse matrix methods is the svbject of Chapter b,
with particular emphasis on the type of matrices arising from finite
element methods. We introduce the concept of the profile of a mabtrix,
and distinguish between grarh methods, profile methods and band methods.
We present arguments and experimental evidence supporting the use of
profile methods.

In Section L4.5 we compare several ordering algorithms applied to
matrices srising from different finite element bases. These experiments
show the following: (a) profile methods can be significantly better
than band methods, in terms of both storage requirements and operation
counts; (in Sections 4.1 and 4.2 we show that they will never be worse
than band methods.) (b) the "reverse Cuthill-McKee" ordering (our
terminology), which we have discovered compares very favorably with
other methods tested; (c¢) comparison of times required to produce the
reverse Cuthill-McKee ordering with some of the times required for the
entire finite element solution (reported in Chapter 5) suggests that the
use of the algorithm is reletively inexpensive. We feel that such
information is extremely important. It is often contended by experienced
users that automatic ordering is unnecessary because they can produce
an ordering empirically that is close to optimal. This may very well be
true, but not all users are experienced, and more important, one must
still devise a way of communicating the desired ordering to the computer.

We have shown that this largely clerical process can best be

13
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left to the computer. The code for doing the ordering appears as part

of phase. 1l in:Appendix B.

Also in Chapter 4, we derive formulas for the density of finite
element matrices for general elements and arbitrary triangular and
quadrilateral meshes with holes. Such results are impcstant in managing
storage, since we can allocate storage for the matrix as soon as the
mesh and element to be used are knowm.

Chapter 5 contains results of several numerical experiments.

The chapter contains numerical solutions to the L-shaped membrane

eigenvalue problem, rhombical membrane eigenvalue problems, and a

hollow sguare Dirichlet problem. Our comparisons are

between different finite element methods as well as between finite

element methods and their competitors. These experiments showed the

following:

(a) Efficiency in general increased with increasing degree of piecewise
polynonmial. This was true in all three examples, and because the
solutions ranged from very smooth ones to ones with singularities
in their first derivatives, we feel this informetion is significant.

(b) Finite difference methods compared rather unfavorably with our
finite element solutions. Even for the problem where special fast
direct methods for solviug the difference equations could be
utilized [B15,Gl], our finite element solutions appeared preferable.

(c¢) Seversl methods for finding eigenvelues yielded more accurate numbers
than finite element methods (involving roughly the same cost), and
also produced bounds. However, these methods use techniques which

utilize a special feature of the equation or of the domain, and are
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difficult to implement in a general code. Agein we emphasize that
we are not saying these methods are inferior; we are simply
saying that they are less suitable than finite element methods as

the core o a general boundary value problem solver.

Appendix A contains a list of some typical elements. Some of these
are referred to throughout the text.
Appendix B contains a listing of the Fortran code we have developed
for solving a class of linear elliptic boundary value problems. We have 3
segmented the code into modules, each one designed to carry out a specific
task or set of tasks. The modules execube in sequence, with information [
passing from one to the next via external storage media which can be disk,
drum or tape. Our reasons for segmenting our code and attempting to
keep each segment itself modular are (a) to ease maintenance and/or
modification of the code, (b) to allow “he program to be run on
smaller machines than the one we used, and (¢) to facilitate documentation
and understanding of the code by localizing specific functions. Specific

details of the functions of each segment are found in comments in the

code itself.
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CHATTER 2

GENERATION AND STORAGE OF TWO-DIMENSIONAL TRIANGULAR MESHES

1. Introduction

The first step in most numerical methods for solving partial
differential equation problems is that of discretizing the domain in
guestion. In our case, the problem consists of dividing our given
domain R into disjoint triangles whose union is R U 3R , with adjacent
tirangles having a common side. If R has curved boundaries, we will
admit "curvilinear" triangles having one curved side in the triangulation

near the boundary. Figure 1.1 is an example of such a triangulation.

oR

- Figure 1.1l

Manual genere.ion of a triangulation of R 1is an extremely tedious
job. A completely automatic triangulation procedure, on the éther hand,
while obviously desirable,” is complicated and difficult to implement with
any degree of flexibility. In Secfibn 2 we review the literature on
two-dimensionsal triaqgul&tion and in Sections 3 and 4 we present two
new metheds for triangulation of two dimensional domains. The method

described in Section 3 is a semi-automatic scheme, while the one in
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Section 4 is almost completely automatic. Section 5 contains a
description of an efficient scheme for storing a representation of an
arbitrary two-dimensional triangular mesh.

Once we have a suitable triangulation of the domain, we are faced
with the problem of numbering the nodes (more precisely, the parameters
associated with the nodes) in order to reduce the computation and/or
storage requirements for the solution of the algebraic system. Although
it is possible to defer any ordering (and then actually order the
parameters rather than the nodes), the problem will be considerably
larger if each node has more than one parameter associated with it.

Since all the parameters associated with a particular node are connected

in the same way to other parameters as well as all being connected to

each other, little is lost by ordering the nodes. Many good ordering
algorithms require work proportional to the number of nodes multiplied

by the square of the number of neighbours each node has, so substantial
savings can be achieved by ordering at this stage. We defer discussion

of these algorithms and the criteria used to reduce storage and computational
requirements until Chapter 4, although again we emphasize that they should

be applied at this stage.

22
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2. Review of Previous Work on Mesh Generation

4 Mesh generation is a difficult part of a boundary value
problem-solver to sutomate, and even the most generally applicable programs
require substantial human assistance, especially in describing the boundary oR .

In most boundary value problems the solution is not uniform in character over

TR T

the domain. Often it is fairly smooth over most of R , and varies rapidly

el ” Y

only over a small part of the domain, perhaps near a corner. For this reason

3!
=
¢

it should be convenient, if desired, to indicate areas of the domain R where

the grid can be coarse and areas where it should be fine. This grading

capebility could provide substantial saving: in storage requirements and

computer time.

-

For practical reasons finite difference programs have tended not to

0

provide for the grading of nets. This is due largely to the ease with which
one can store a regular rectangular net in a conventional two-dimensional
array and the severe storage management problems which immediately result
when one departs from such a scheme. In the regular case, actual coordinates

do not even have to be stored, which is a persuasive argument for using a

b regular net. Also, truncation error bounds for some difference operators

are much better for regulsr nets, and the determination of the coefficients

for the difference operastor is usually much easier (a prime consideration if

an iterative scheme is being used and the coefficients are being computed each
time they are needed). Thus, finite difference programs usually make use of
e uniform meshes, or meshes which are uniform in various parts of the region.
Boundary points that result when OR intersects the mesh at a point other

than & node point are treated by using well~known interpolation formulas.

X (These special boundary points may cavse storage problems even when the

simple two-dimensional array storage method is used; see Forsythe and Wasow

' s, pp. 361-63] for a discussion.) If the boundary is curved, it may be
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rather awkward to find the correct formula to preserve the order of
accuracy. In this context, the actual mesh generation is not a difficult
problem. The problems arise where the boundary (which can have more or
less arbitrary shape) intersects the regular mesh. Cryer [C3] treats this
entire problem in considerable detail, and we will not discuss it further
here.

The mesh generation question with regard to finite elements has a
somewhat different flavor. 1In this case, grading the mesh is essentially
without cost provided we are going to store the node coordinates anyway.

It is often stated that irregular nets are expensive to use because the
coordinates of each net point must be stored, and for finite difference
methods this objection is velid. {For example, suppose we are solving
Laplace's equation on the unit square. Using a uniform n by n grid, the
required storage is about n2 ; assuming we are going to solve the equations
using SOR. By comparison, if our mesh is irregular, we must remémber the
coordinates of each of the n2 nodes. Then we would need a total of 3n2
words of storage, and if we want to avoid recalculation of the coefficients
of the difference operator at each iteration (which will no longer all be
the same), we will need 8n2 words of storage.] However, for finite element
methods, the number of node points will ordinarily be considerably Tfewer than
the number of parameters since each node will usually have derivative as
well as function-value parameters associated with it. As the degree of

the basis functions increases, the storage required for the nodes quickly
becomes small compared with that required for the coefficient matrix. This

point is taken up in Section 5 of this chapter.
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We will now review some methods appearing in the literature which have
dealt with this triangulation problem.

Cheung and Pedro [Ch4] have written a program that generates a
triangunlation using the following general scheme. The domain is divided
by one family of straight lines (which do not intersect in the domain but
are not necessarily parallel) or arcs of circles (not necessarily concentric)
or both. Each line is further divided into a number of divisions to
yield node points. The node points on adjacent lines are then joined in a
zig-zag manner to form triangles. The number of divisions in adjacent
lines can only differ by one -- a hindrance if pronounced grading of the
net is desired. This restriction can glso lead to triangles with very
sharp angles.

No attempt appears to be made to auvtomatically achieve a nodal
numbering yielding a small bandwidth; instead manual "supervision" has to
be exercised at various stages. The only attempt to avoid or remove small
angles is done when forming two triangles from a quadrilateral; the lengths
of the diagonals are computed and the shorter is used to form the triangles.
(This can be disastrous; consider the quedrilateral (-1,0), (0,-2), (1,0),
(0,e¢) where ¢ is positive but very small.)

Frederick, Wong, and Edge [FT7] present a two-stage, semi-automatic
method for triangulating a two-dimensional domain. The first stage consists
of manually plétting the boundary of the domain and the node points (in the
order designed to minimize or at least reduce the bandwidth of the resulting

linear system) on an electromagnetic graph-tracing table. The coordinates

25




of the points are automatically punched on cards which then serve as

input to a computer program that generates the triangles. There are a
number of potenvial drawbacks to this approach. The first is thst for
odd-shaped domains it is surprisingly difficult to number the nodes
empirically so as to achieve a small bandwidth, especially if the net is
graded rather severely. As we saall see in Chapter 4, bandwidth is not
necessarily a very good criterion aayway, and to number the nodes empirically
to achieve other (more satisfactory) criteria can be even more difficult.
Secondly, without actually drawing in the triangles as you go along it is
hard to decide where the next node would be placed. If the triangles are
to be drawn, very little more manual effort would be necessary to tabulate
their respective nodes, thus eliminating the computer program completely.

As the authors point out, however, the computer-based part of the procedure
eliminates the clerical errors which would inevitably result from tabulation
by humans. Although it is unfortunate that special-purpose equipment is
required, the basic procedure is very appealing. It is easy to see how
the same basic idea could be implemented in an interactive way by using a
cathode ray display with e light pen. All the above objections could be
eliminated if an automatic ordering scheme (such as one of those discussed
in Chapter 4) were included in the implementation.

Barfield [BY4] proposes a methud based on a conformal mapping of the
boundary of a closed two-dimensional region onto the perimeter of a
rectangular polygon in which is inscribed an orthogonal rectilinear grid.
The method consists essentially of finding the function which conformally
maps the given domain R onto the polygon, and then using the inverse of

the mapping so determined to find the image of the orthogonal grid in the
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polygon. The method obviously generstes rectangles rather than triangles,
so that each rectangle would have to be subdivided to obtain a triangulation
of R . While the method is indeed very elegant, considerable care appears
to be necessary to avoid distortion, and "long, slender" squarss yield very
poor triangles. Alsg the work involved in computing the mgpping may be

substantial.

Winslow [w5] proposes a method of mesh generation which consists
essentially of solving an elliptic boundary-value problem using finite
difference methods. The mesh lines are regarded as two intersecting sets
of equipotentials, each set satisfying Laplacefs equation in the interior
of the given two~dimensional domain R . "Boundary conditions" are
determined by where the lines are required to intersect the boundary S .
Because of the well-known averaging feature of harmonic functions, the
generated mesh varies smoothly over the entire domain, its relative grading
being determined by the density of the points of intersection on § (i.e.,
the boundary conditions). Triangular and quadrilateral grids can be
generated using the method. Although the examples reported are very nice,
they are for an extremely simple domein, and Winslow does not discuss the
problem of how to concisely describe a general domain to the program
(assuming that the program has the facility for handling one), and how to
easily input the boundary conditions (the ends of the potential lines). As
with most partial differential equation problems, the above tasks and the
associated data management problems are difficult to implement in general;
once done, the generation of the equations and their solutions are relatively
straightforward, even though they may require considerable computer time.
He concedes that the method does not always work satisfactorily near re-
entrant corners, with node points outside the domain sometimes being

produced.
e7




Reid and Turaer [Rl] use the following scheme to generate nearly regular
meshes. A regular equilateral triangular mesh is placed over the domain R
so that OR is inside the mesh boundary. Points where triangle sides
intersect the boundary are called "boundary points"? and node points of the
mesh closer than h/2 to a boundary point are moved to the boundary point
in such a way as to guarantee the monotonicity of the resulting finite
element ceoefficient matrix. [A matrix is said to te monotone if it
is non-singular and all elements of its inverse are non-negative.] They
consider only piecewise-linear polynomials. The node points and their
incident edges which remain outside OR after the relocation process is
complete are then discarded, yielding a mesh on R which is regular
except near the boundary. The authors!' assumptior appears to be that OR
has no corrers, and this restriction on OR simpiifies the node relocation
considerably. Corners in OR must necessarily end up as vertices in the
triangulation, so the presence cf corners imposes further restrictions on
the relocation of nodes. It seems clear that we would want h +to be of
the same order of magnitude as (or smaller than) the shortest arc in JR
in order to avoid generating triangles with sharp angles. Such a
requirement could force the mesh to be finer than otherwise necessary. This
scheme obviously assumes that the user desires a regular mesh, and this
may not always be true.

Kamel and Eisenstein [K1l] present a mesh generation scheme that is also
based on a regular mesh. The user supplies the boundary OR as a sequence
of arcs subdivided by nodes. First the authors find the "best" regular
mesh having the same number of boundary nodes as the given boundary JdR.
Here "best" means "closest to circular shaped." Their program begins at

4 node of a regular mesh and successively annexes rings of triangles (the last
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ring mey only be partially annexed) until the number of boundary nodes
in the mesh equals the number of nodes on OR . This determines the
mumber and relative positions of the triangles for the mesh. The
correct number of nodes are then placed inside R and the mesh is then
smoothed by applying several passes on the interior nodes, using the
formula
(2.1) x, = (23 ¥/ Inx)] -

yen(x,)
The authors caution that their procedure does not work well if the input
boundary has nodes with abrupt changes in spacing, or if the domein shape
i1s too complex. They imply that interaction with the algorithm using a
graphics terminal is an advisable, if not necessary,part of using their

method.
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. A SGeri-Automatic Mesh Generation Scheme

Tdeally, a mesh generation procedure should have the capability of
grading the net (i.e., making the net finer in selected areas of the domain)
on the basis of information supplied by the user. This immediately raises
the question of now a desired grading can be easily transmitted to the
program. Also, sometimes the "material” in the domain varies abruptly
from one region to another, and it may ve desirable that triangle interfaces
cecincide with material interfaces to allow discontinuities in derivatives.
This requirement would obviously complicate a completely evtomatic
triangulation procedure by imposing constraints on some of the node
positions.

With these considerations in mind we have arrived at the following
compromise. The user must supply a very gross triangulacion of the domain,
reflecting the desired grading of the net, and with triangle boundaries lying
in any desired position. This removes beth of the problems raised above.
The large triangles can then be subdivided by the computer in the obvious
manner. If in addition the program has the capability of subdividing
triangles having one curved side, the amount of input for most demains can
be kept small.

The algorithm used to subdivide each input triangle is very simple.
or some integer k , depending on how fine a final mesh is required, each
triangle side is evenly divided into k segments by k-1 nodes.

Nodes of consacutive sides are joined by parallel lines yielding k2
triangles, each congruent to the original large one. This has the
advantage that no sharp angles are generated; the smallest angle in the

original triangulation is the same as the smallest in the final triangvlation.
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For "curvilinear" triungles (having one curved side) the algorithm is
similar. Suppose we have the following triangle (Fig. 3.1l-a) which we

must refine by a factor of eight (Fig. 3.1-b).

Fig. 3.1-a Fig. 3.1-b

Seven node points are generated on each of the straight lines AB , EC ,

and AC as described above. ‘The seven node points on the curve BC are
then obtained by finding (epproximately) the points of intersection of the
curve with lines perpendicular to the straight line BC and passing through
the node points on it. The node points on AB and AC are each joined to
the node points on the curve as in Fig. 5.1-b by straight lines, and their

points of intersection are then used to form the triangles.
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Below is at example of the procedure:

BT

igure 3.2-a. Input Domsin. Cross triangulation indicated by

dashed lines.

Figure 3.2-b. Domain subdivided by a factor of k.




This approach to mesh generation could very conveniently be adapted
0 use with an interactive display system. The fact that the user has
control of the mesh while not being obliged to provide large amounts of

input is particularly avtractive in this regard.
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L. An Automatic Two-Dimensional Domain ¥riangulator

In this sectior we present a scheme for automatically triangulating
a two-dimensional domain. Unlike the fully automatic schemes discussed
in Section 2.2, this method does not utilize a regular mesh; in fact, it
specifically is designed to allow for the construction of graded nets. It
can be used for general simply connected domains, as the examples appearing
later will demonstrate.

The basic strategy of the method is as follows. The user is required 1
to supply the initial boundary as a sequence of arcs, along with a simple
rule indicating how each arc is to be subdivided. The sequence of arcs
mast form a closed loop, so for now we assume R has no holes. We then "
have an "initial boundary" consisting of a sequence of nodes connected by
straight lines. We ‘then proceed to annihilate R by successively
removing triangles from R , as depicted in Figure 4.1. As each triangle
is removed, we obtain a new "current boundary". This boundary, along

with some associated information can be conveniently stored as a two-way

—

linked list. Our goal is to cover (or amnihilate) R with as few
triangles as possible consistent with the requirements that the mesh vary
smoothly and have no sharp angles or long sides. For example, for a unit
square domain with each side divided into segments of length 0.01 , we

would like the generated mesh to be composed largely of triangles which

are close to equilateral triangles having sides of length 0.01 . -
We will employ two methods of forming triangles. The first, which |

we will refer to as "trimming", is depicted by (i), (iii), (iv) and (vi)

in Figure 4.1. The second r.ethod of generating triangles requires the

seneration of & node in R , as shown by (ii) and (v) in Figure Lk.1l. We
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will refer to this method as "notching".
First we discuss the generation of nodes. Consider the diagram

below

- - °

g

.oy

= —

Figure 4.2

Let { be the average distance between consecutive nodes in the

initial boundary OR . Then P is the point on the bisector of angle

P,P;P), which approximately minimizes

2
.
1 - . -
(k.1) F(P) = lc‘bg‘ + ‘C'b5l + 7{Ial‘bl‘ + ‘ag'bll_l} + T+y {lal'l\ + la2'£|1} ;
where

L =

3o, Bl /%6,

and ’ -

)
b= b, /b .

=1

~2
1"

The first two terms are designed to make the (potential) triangles

close to equilateral. The third term has a smoothing influence on the
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lengths of the arcs of the current boundery, and the last term attempts to

make the lengths of the arcs of the current boundary converge to £ . If

)

either or both of the neighboring vertices have angles less than Sn/6 )

the same procedure is performed at these vertices, yielding two or three

nodes. Their centroid is chosen as the trial node.
g Now that we have a method for generating interior nodes, we can now

3 describe the algorithm. In words it is as follows:

Step 1.

For eech vertex on the current boundary having interior angle «

less than or equal to n/3 s, form & triangle by trimming and remove it

from R , as depicted below.

Pl Ph
 E— Pg
Figure 4.3
Step 2.
Find any consecutive vertices both having interior angles al and
o, less than 5n/6 . If none are found, proceed to step 3. Otherwise,
: ! choose the pair with the minimum value of \al - 2n/3| + |Qé - 2n/3\ ’
& and generste an interior node P as described above. We then have a
4 37
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situation such as one of these below:

{b)

Figure 4.kt

rd 3
LT 38

obvious what we should do in Figure (L.hk-a), but in Figure(k.lt-b),
it is debatable whether we should trim triangle PBPhPS » or notch

triangle PP,Pu (followed presumably by two trims of triangles PP2P3
4

and PRP; .) Let d; = |B,-p),| and a, = lP3-P5‘ , where IPi-le

is the distance between points Pi and Pj . Let

8, = {ol,dl,bh,bs} » 8y = {bl,bg,de,bs} and 35 = {bl,al,ae,bs} - Let

vy Yy and v5 be the average value of the members in 8y 82 and 85
respectively. WNow define Wy w2 and w3 by
38
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1 (\_bl-vl‘ + |dl-vl\ + !blfvll + !bs—vl'l) /hvl ’

oty
#orm ok

=
|

5 = (‘bl~ 2] + \bz-vp_l + |d2- 2\ + \bs-vg\) /1+v2 s

B (‘bl-VB‘ + lal_ 3| + \a.e- 5‘ + |bS-V5\> /1l—v5

N
|

Let w_ = mm{wl,wg} . Then if k = 1{2}, W, >Ws , and angle

i) : + . .
1’11?3171¥ {P3‘ hPS} is less than or equal to w/2 , then trim triangle

PoPzP), {P3P2+P5} . Otherwise, notch triangle PPESPA . 'J.hen‘go to

step 1.

Step 3.

e Find any vertex having interior angle « < /2 . If there are none,

go to step k. Otherwise compute an interior node corresponding to the

{cm.,,-m .
PRI

vertex as indicated below.
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Let ds = ‘PQ"Phl and 4 = lP—P3| . Define v, , Vs s W and W

5
by
v (o + a4 ) /5,
Vs = (g * al+a2+bh)/l; ,
W), = (‘bl'vh‘ + ‘dB'vh| + lbl','vhl) / v,
v = ﬂbrw5|+|arw5.+iag%5|+!bwvﬂ)/#%
If W, S then trim triangle P.P.F. and go to step l. Otherwise

5 27375

repeat step 3 until a successful trim is achieved or until all the vertices

have been tested. If no trim can be made, proceed to step k.

Step L.

Let Hq and o be the smallest and largest distances bebween

consecutive nodes in the current boundary. We then do the following

B
+ L

(ka) Set 7 = py + = (uyiy)

(bb) 0f those nodes on the current boundary having at least one of
its incident bouudary arcs less than or equal to ¥ , choose tine node

having tue smallest angle X

(he) If @ <w , generate a node, as in Figure 1.2, notch a triangle
(either PP2P5
Otherwise, go to (hd).

or PPSPh) and go tu step 1.

s I
&

M
(4a) If 7 = u. , stop (we have failed). Otherwise, set 7y = y + El (ug-ul)
2

and go to (Lb).
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Remarks:

(1) The parameter 7 in step 4 was found to be necessary to force the
program to consider first those areas of the domain to be covered by a
relatively fine mesh. The averaging effect built into the node generator
combined with this restriction on the lengths of the arcs considered first
tends to fill in the domain near the short boundary arcs first; the size of

the triangles increases with distance from the boundary.

(2) Steps 1, 2 and 3 are designed to remove any "protrusions" from the
current domein. Their overall effect is to make the current boundary

convex Or nesr convex.

(3) An interssting and potentially better method for generating nodes
might be to allow P (Figure 4.2) to lie anywhere in tne current domain,
rather than restrict it to lie on the bisector of the angle PéP3Pn .
Minimizing %(P) would be considerably more complicated, but might be

Jjustified if +triangulations with many fewer triangles resulted.

() 1In all cases where a node is generated, we check to see if it lies

in the current doma’r by using an algoritlun described in [N2], and before
forming any triangle we check to make sure no nodes lie inside the triangle.
Thus, our algoritlm is "fail safe"; if it terminates successfully, it

has genersbed a legal triangulation.

(5) At we mentioned abovs, the current boundary can best be stored as a
linked list, so that deletions and insertions can be carried out with
little data rearrangement. To reduce compuiation, the lengths of each

bourdary arc and the sine and cosine of each interior angle were also

L1
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reteined in conjunction with the linked list. These quentities were
computed once by the routines "trim" and "notch" which actvally mcdify
the current boundary, and were tucn available as needed by steps 1-k.

Other quantities might also have been retained.

(6) TFigure 5.10 demonstrates the use of the algorithm when the domain

has a hole in it. We simply provide a "boundary arc" cutting through the
domain, joinirg the outer boundary to the inner one. The fact that the
closed loop forming the boundary overlaps itself and in some parts does
not really correspond to a boundary at all does not effect the algorithm.
The smoothing program (discussed below) does not move node points lying on
these pseado boundary arcs; hence, this device can be used to force some
inter-element boundaries to lie in specified positions. TIn Section 2.3
wo explained why this might somebimes be desirable.

Below are several examples of domain triangulations. The output
of the algorithm descrived above has been smoothed by carrying out three
or four sweeps of the interior (non-boundary) nodes using formula (2.1).
The nodes on the curved portions of the boundary were obtained in the
same manner as described in Section 2.3.

As we implied in remark 4 above, more sophisticated methods of node
generation and trim/notch strategies might yield "better" triangulations,
and such investigations are potentially fruitful topics of further research.
It is even difficult to define precisely what we mean by a good graded mesh.
It depends on the relative importance of (a) sharp angles (b) +the total
number of triangles (c) +the smoothness of varistion of the mesh, and
perhaps other factors. It would be nice also to be able to a priori
guarantee certain desirable characteristics of the generated mesh in terms

of characteristics of the initial boundary.
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5. A Storage Scheme for Finite Element Meshes and Associated Boundary Data

As we have tried to emphasize in the preceding sectioﬁs, the finite
element mesh will probably not be regular; thus the storage scheme for
it must be general. 1In this section we present a scheme for storing
general finite element meshes, and show that for most elements, the
required storage is small compared to the storage required to store the
non-zero elements of the coefficient matrix.

We shall see in Chapter 3 that the procedure for generating the finite
element equations is carried out element-by-element; therefore, it is
beneficial to be able to retrieve the node coordinates for each triangle
easily. On the other hand, we do not want to siore ccpies of the node
coordinates.for each triangle,because many or all of the nodes belong to
more than one criangle. Another point is that we really only need to
remenber the vertices of the triengles in the mesh; node coordinates on
the sides and in the interior of the triangle can be gensrated as needed,
provided we have & formula for generating then.

For definiteness, suppose our mesh has V vertices, § ‘triangle

sides, NA triangles, and H holes in it. The number of interior sides

J

{vertices} and boundary sides {vertices} will be denoted by SI{Vi} and SB{V ]

respectively. In [El] *he following relations between these mesh paremeters

are proved.

(5.1) N, =

For a typical mesh having SI >> SB s VI >> VB , and small " H 5 the

the relations (5.1) yield

(5.2) vV = NA s

1O~

L6

P e
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To aid in describing the scheme we are about to present, consider
the figure below, where the domain has been covered by "3-10" elements
(see Appendix A for details). The nodes are numbered sequentially,
beginning with the vertex nodes, followed by the arc-midpoint nodes (see
below), followed by the nodes on the sides and interiors of the triangles.
A node with tag k is understood ©to have coordinates (xk,yk) . The

circled mmbers are boundary reference numbers which are associated with

the corresponding triangle sides. Iater, boundary conditions can be
assigned with respect to these numbers. The arc-midpoint nodes tagged
6 and 7 are generated ard sllowed for in the storage scheme so that some
form of interpolation along the boundary can be subsequently done. See

Zi&mal [26) for one such possibility, where quadratic interpolation is used.

Figure 5.1

The storage scheme is depicted schematically below. Note that the pointers

for each triangle are listed in a counterclockwise manner, in order of

b7




vertices, cides, and interior. Suppose the vertices are numbered
(xl,yl) s (xe,ye) and (x5,y5) . We adopt the convention that the i-th
side of the triangle is the one with endpoints (xi,yi) s (xk,yk) s
where k = (i+l) mod 3 .

M pointer will ordinarily reguire fewer bits than a node coordinate
or a coefficient of an equation. For example, on an IBM 360 computer,
pointers may conveniently be stored in two bytes (a half-word) whereas a
coordinate would require four or eight bybtes. In general, we will denote
this ratio by @ (@ < 1) . Ignoring the storage required for the

boundary table (since we assume S_ << SI) s then the amount of storage

B

reguired for the mesh is approximately

(5.4) VM=OcmNA+ 2V = (oan+1)1\rA ’

where m 1is the number of nodes associated with each element.

ny, » g and ng be the number of parameters associated,

respectively, with vertex nodes, the node(s) on each triangle side (not

et

including the endpoints), and “he interior of each triangle. For example,

element 5-10 would yield ny, = 1, ng = 2, and n. = 1 . We now want to
show that VM is usually small compared to the number Né of non-zero

elements in the coefficient matrix A . In Section 4.6 we show that

(5:5) Wy o(V-3) + gy(8e3-2)

. 9179

= 5 =) NA ,  (using (5.2) and (5.3))
where Iy and 0o depend on Dy, 5 g o, and nl .

18
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Pointer List

Node Coordinagtes

Triangle No. 1

Triangle No, 2

Triangle No. 3 ol
1%
18
7

12

triangle number -

boundary reference number

pointer to arc-midpoint
(if side is curved)

triangle side

Figure 5.2
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The following table serves to make our point.

+ am+1
+ O'l 0'2
Element o o
. 2 2 a=tla-2ja=21a=1
=3 = 3 =5 =
1-3 5 2 3.5 7/4 2 5/2 L
2-6 27 | 19| 23 5/2 3 4 7
3-b & | 37| 50.5 2 7/3 3 5
3-10 8 | 69| 76.5| /b |13/3 6 11
4-6 161 | 106 | 133.5 5/2 3 N 7
ko35 200 | 176 | 188 19/4 6 9/2 14
5-6 272 | 139 | 205.5 | 5/2 3 b 7
5-21 405 | 370 { 387.5 | 25/k4 8 23/2 22

TSee Appendix A for a description of the elements.

Table 5.1

Thus for ail but piecewise linear polynomials, VM <K:Né 5 even
when & =1 . If a direct method is being used to solve the genersted
systen, the storage required for the decomposition will be much more than
Né s so that VM becomes rather insignificant in comparison to overall
storage reguirements. Our conclusion is that the use of an irregular
rather than regular mesh for finite eleme methods does not in general
cause an important increase in storage requirements.

In future chapters we will often need the dimension of A , the

number of parameters (unknowns) in our problem. Using (5.2), (5.3), and

50
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the definition of V , S, ny , Ng and ng above, we have
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(5.6) N

nVV+ nSS + nINA

(n1+]§-nv+%ns) N,




CHAPTER >

GENERATION OF FINITE ELEMENT FQUATIONS

1. Introduction

In this chapter we discuss in detail the couputation invclved in the
generation of the finite element equations. The general procedure with
mincr veriations appears rather frequently in engineering articles
(usually with regard to a specific problem and element); Zlamal [25] has
also described the procedure, again for e specific situation. Felippa
and Clough [Fl] give an excellent summary of the generation process
although they give few details. Unfortunately, we feel that too little
emphasis is devoted to carefully identifying which of its severa’ sub-tasks
are independent of others, and which ones are dependent only on particular
components of the problem being solved. For example, is a specific
computation dependent only on the characteristics of the piecewise polynomial,
and independent of the differential operator and the boundary conditiors?
Ilow much of the computation can be salvaged if only part of the problem is
cnanged and how can that amount be maximized for a given change?  Answers
to questions such as these are important in the design and implementation
ol efficient programs. In this chapter we identify these various sub-tasks i

and indicate which parts of the generation procedure can be isolated as

separate modules. The equation generation phase is itself inherentiy

modular, even though in its entirety it is usually regarded as the second

Lo ohibor s

of three stazes in the application of the finite element method. The
first phese ic the mesh zeneration, and the third is the solution of the

senerated algetraic system.

. M{’{W 5y s

o
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As we stated in Chapter 1, the finite element method is a Ritz-
Galerkin method where the trial functions have small support. That is,
the approximate solution is represented in terms of a local basis.
Generation of such a basis for rectangular domains is fairly straight-
forward, as we described in Section 1.4. However, for domains of
arbitrary shape, where it is not convenient or possible to restrict the
gsupport of the basis functions to rectangles, a different approach is

necessary, and is provided by the use of soc-called interpolation polynomials

[F1, 21]. The construction of such polynomials and their relationship to

the local basis is the subject of Section 2.

~

Once we have the basis for our approximate solution v(x,y) , the

next step is to carry out ¢re integrations required to obtain the coefficients

of the linear system, as described in Chapter 1, Section 2. We emphasize
that the computational procedure is considerably different from the formal
description appearing in Chapter 1. Tne integrations required to determine

the coefficients are carried out element-by-element, and the actual basis

functions are not (explicitly) generated at all. This computation, where
the equations are actually generated, is the subject of Section 3.
The last part of the generation procedure is usually referred to as

assembly of the ecuations, or just "assembly", and is the subject of

Section 4. Suppose our (linear) elliptic boundary value problem is cast in
a variational form, with a functional I[v] that we wish to minimize with
respect to the parameters of v . The result of the element-by-element
process described in Section 3 is a set of small quadratic functions, each
one representing a contribution to I [v] of a particular subdomain (element)

of the domain R . These small functions have some parameters in common,
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and the process of combining these functions into a sirgle large one is
the task referred to as "assembly". The elimination of parameters whose

values are determined by boundary conditions is also done at this stage.
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2. Construction of Interpolating Polynomisals

In this section we describe the construction of interpolating polynomials
on triangles. However, the procedure and many of our remarks apply for a
general pclygon. Let R Dbe & simply or multiply connected domain in
the (x,y) plane with piecewise lineer boundary OR . 21limal [2Z6] has
described a method for reméving this restriction on OR . We assume R
has been iriangulated into NA triangles, with zdjacent triangles having
either a common vertex or a common side and with the union of the closed
triangles equal to RUOR . An example of & domain triengulated in this

way appears below.

Figure 2.1

Our aim is to construct a piecewise polynomial of degree 4 on
RUJR . To do this we assume that on each triangle TY R U R ,
7(x,y) 1is a polynomial pv(x,y) of degree d . We impose the conditions

that pv and py on neighboring triangles have common values and/or

55

——a

—

$

N At A RN Yo

s .



>
oy

'm,{:

FARDTE

Rk e

K
B
7
b
-
i
e

+33

N WY
s ’\v on

rets i smvp s itmnee o s

o [P
[ —— [ORO

o s
[

[

Re—
5 S

Lo

derivatives at node points lying on their common boundary. We begin by
studying the choice of parameters necessary to have v(x,y) of class
C(C) . This problsm has also been considered in [H2] for general
polygons, and we give a special case of their arguments below.

Consider the figure below, depicting two adjacent triangles TV  and
T7 having common boundary L . Directions tangent and normal to I will
be denoted respectively by s and n . Thus %% (Ql) is the derivative
of v normal to L evaluated at Ql . The notation v(s) will mean the

function v  evaluated at the point Qli-s(Qq-Ql) .

<L,

Q v
1
Figure 2.2
Suppose we require that

T R

(2.1)  pp¥ey) =D0'P'@) , i=32, |t|<p ,
T 8|T‘v

where T = (71,12) sl = Ty, and D'v = ———— . Then

Tf
3 k2 2y

M) ¥y
(2.2) . - -
ds ds
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which implies v(s) will be continucus along L if

(2.3) a+l = 2(p+l)

k v

If (2.3) is satisfied, 2~%€ is a polynomial of degree
on
d-k  in s, having d-k+l coefficients. Thus we require d-k+l
condit ions of agreement between ——%; end ——%? along L if ——%
on on on

is to be continuous along L . The conditions (2.2) imply

3p(a.) 97 (Q,)
(2.%) — = 2 , i=L2 , j< Bk,
d3nY dn?

imposing 2(B-k+l) conditions. Therefore, we need d-k+l -2(B-k+l) =

2(p+l)-k-2(B-k+1l) = k more conditions of agreement imposed on

3%V 3%p”
5 and %{ . Carrying out the same argmments for k = 1,2,...,0
on on

and summing implies we need g(g+l)/2 additional "normael derivative"

(o)

parameters situated at nodes along L if v 1is to be oi class C

along L . Using the fact that the number of coeificieats .n a general

d-th degree polynomial in two variables is n = (a+lj-a+2) /2 yields

the inequality

(2.5) Ld_*‘%&%l > B{L&Jrl)e(w) + c(g*l)} ,

+1) (B+2

where the temm 3 is *he number of derivatives D'v , <l < 8.

The factor 3 appears because a triangle has 3 sides and 3 vertices.

inequality (2.5) yields the conditions

(2.0) B(B+l) > 3g(ctl} and d = 2B+l

o7
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Surplus degrees of freedom in the polynomial can be associgted with nodes
in the interior of the triangle. For approximation properties of these
piecewise polynomials see [Z1,Z4,Z5].

The conditions (2.6) imply, in particular, that we require 4 to be
ot least 5 {9} for v to be in C(l) {C<2)} . Note that this applies
only to the polynomials described above. A commen technique used to reduce
the number of parameters in the problen is to restrict the polynomial of
degree 4 on each triangle to be of degree d-k , k >0 in parts of the
triangle. For example, Goel [G2] begins with the 3-4 element (Appendix A)
and by a suitable modification forces the normal derivative to each side
of the triangle to vary linearly along the boundary. Agreement in value
and first derivatives at the vertices Ql and Qe guarantees continuity
in the first derivatives along L . Zienkiewicz [z3] end Clough and Tocher
[C1] also present techniques for achieving the same goal. Irons [11]
describes a method for constructing a quartic element generating a
piecewise polynomial subspace V'EC(l) . Bell [B6] describes a method
for eliminating the side parameters on the 5-6 element by imposing the
condition that the derivative of the polynomial normal to each triangle
side be a cubic rather than a quartic. Zlfmal [Z6] uses a similar technique
to eliminate the centroid parameter irom element 3-4.

We will refer to elements of the type just described as deficient
elements, to distinguish them from eleme its which are polynomials of a
particular degree over the whole triangle. We have restricted our
studies in this thesis to non-deficient elements. (An explanation

appears at the end of this section.)

P S TN L I TSI »\.,:3?;

T A

bt

danad -

G TP

s ~Lnee o s vtz

oo

RN e

IR TIYn)

AT, Rt £ O e e 4% ] K0 0 N AR e PN At s T TR S8

D At A g i 5

o et

S AP Wt

Y aee ATt iR

]»;4 [ . 7]



LD et D

I T I AT,

R R N A 1 s R T

e e TR By

We now turn Lo the actual construction of interpolating polynomials.
Let the number of nodes associated with each triangle be m = 3(m8+l)+mI s
where Mg >0 1is the number of nodes on each triangle s de (not including

the endpoints), and let m >0 Dbe the number of nodes in the interior

I
of each triangle. We denote the total number of nodes in ?he domain by

M , end the coordinates of the nodes by Q; = (xi,yi) s 1=1,2,0..,M .
The indices of the nodes of triangle TV will be denoted by NUTACYRERTAN
with the vertex nodes coming first in counterclockqise order, followed by
the side nodes also in counterclockwise order, followed by the interior
nodes (in no specific order). When g > 0 we assume that the side nodes

evenly sub-divide the triangle sides. Triangle Y s depicted in

Figure 2.5 below.

Triangle 7V Vo

Figure 2.3
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To simplify the notacion in the sequel, we will assume that vy, =1 .

We begin by expressing p°(x,y) in the form

n

d Ny T
(2'7.) pv(x,y) = Z a}\: (p]f{d) = Of\) Q)(d) - :p(d‘) a\) ,
k=1

where m(d) is the nd-dimensional column vector whose elements are the
monomial terms of the general d-th degreze polynomial in two variables.

We assume that the terms appear in order of non-decreasing degree, and in
increasing powers of y for consecutive terms of the same degree. For

exanple,

T
2 2 2 2
(2.8) CP<5) = (L,%,7,%,%y,¥ ,XB:X Vs Xy :YB)

The superscript d will not usually be included explicitly. The vector
o’ contains the ccefficients of pv ,» and a; and @ﬁd) refer to the
k-th components of a¥ and Q(d) respectively.

Now our goal is to represent p° on TY in temms of its nodal
parameters. For example, if d =1 (nd =3) , p° can be uniquely
characterized by its values at the vertices of o, If pv is a cubic
polynomial (nd = 10) , one way to characterize it is by the parameters
DTp\’(Qi) » 1=123 || <1,ad p’Q,), vhere Q, is at the
centroid of T” . Note that both of these characterizations assure
continuity across incerelement boundaries, as predicted by the theory
presented in the first part of this section.

We denote the rumber of parameters associated with node i by Wy

and the vector of those parameters by q - Its j-th element will be

denoted by qi 5 The parameters associated with pv(x,y) , ordered ag
J

ok up e,

O s SdN S dA Lt T
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indicated by Figure 2.3, are then given by

(2.9) @ =(qg,a55 ---54

Now suppose £i is a column vector of length By whose elements are
linear functionals desigred to produce the parameters associated with
node 1 when it is applied to v . For example, the vertex nodes for
the cubic polynomial discussed above would have associated vector

fuanctionals of the form
£(e,)
- £
(2-10)  glf] = | £() .
()
Such an operator applied to a j-dimensional vector is understood to

operate term by term; & column vector would yield a pij ~-dimensional

column vector, a row vector would produce a by by Jj matrix. Defining

g by

: T T
(2.11) g’ =(£1:£2)£5 RN £m) ’
we have immediately the identity
(2.12) 2Viv] =q”

Using (2.7) along with the fact that v is pv on TV s We can

Vv

rewrite (2.12) as a matrix equation involving &° and qv :

Vo< Vi)

(2.13) q

e T
Ve a’)
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As we stated in Section 3.2, we are restricting our basis to be
polynomiels of a specific degree on each element ({ non-deficient elements)

80 we assume that ns = o ¢Y will be non-singular provided our

node points are distinct and our parameters associgted with each node
point ere linearly independent.
Using (2.13) in (2.7) yields

T T -7

(2.1 py) =a’e=q" ¢’ o )

giving the polynomial on ™V in terms of the parameters which we have
-T -1
chosen to characterize it. Here the notation C¥  means (¢¥ ) .

Consider again the cubic example discussed above on triangle i
having vertices Q, = (xi,yi) s i=1,23, andcertroid Q) = (xh’yh) .
Thus p. =3, i=1,23,ed p, =1. Then q¥ is

T

(2.15) ¢ )

= (vl, Uy, Ve, g Vor Vo, 52 Vo, 42 V3 Vg x2 Vs o vy)

where \ denotes the first partial derivative of v with respect to
J

t at the point Qi = (xi,yi) . The matrix CV is

2 2 5 2 2 ]
1% v % X%y ¥ %K Xy 4y yjl

2 2
0 1 0 ."_’xl Y1 0 3xl 2xlyl Y1 0
2 2
0 0 .l 0 Xy 2y1 0 X3 2xlyl 3yl
1 X x?‘ X @ x2 x"2 X 2 >
> Yo 2 Yo Yo 2 ¥V ACEERL
0o 0 1 0 x 2y 0 x2 2% 3y 2
3 3 3 3¥3 V3

2 3

1oox ¥ X Xy, N X Xy, XY Bi
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We can write (2.14) in the form

o
=
o

v g v 2% v-T g ARV
(2.16)  p(x%y) = 2 a Cro ®. = q, ¥
ko1 F\jo W3 g1 £ K
: 3
= Q. .Y (.Y) P)
L o LI
where V. . 1is associated with the j-th parameter of node k . The V's

k,J

are often referred to as coordinate functions in the engineering literature,

and are the members of the local basis in terms of which v(x,y) is being
represented. It is easy to verify that Wk,j vanishes on the boundary

of the union of the triangles to which node k belongs, provided the

nodel parameters have been chosen to guarantee continuity across interelement
boundaries. The function wk 5 is defined to be zero outside the region.

’
M
There will obviously be N = Z:‘hc parameters and corresponding
k=1
basis functions in the representation of v on R .
The procedure we have described for generating the basis functions is

V' can be

in & sense gquite general. ‘The generation of the matrix C
isolated in a subroutine, and the only required input is
(1) the degree d of the polynomial,

(ii)  the node coordinates (or a formula for generating them),

(iii) the nodal parameters.

Ttem (ii) is supplied by the mesh, while (i) and {iii) can be specified by

the user. Each row of C¥ is obtained by evaluating the components of @

at the corresponding node cocrdinate (perhaps after differentiating them,

if the corresponding parameter is a derivative parameter). Observe that
bt

the matrix terms are simple monomial terms of the form Xi v; zl,£2 >0 .




Differentiation of them can be easily done symbolically, with obvious

computational advaantages. Furthermore, ertries in each row will have

common factors of the form xé and yé 5 £ >0 . Thus, the generation

v

of C” can be implemented in an efficient as well as general way.

Provided we choose linearly independent parameters equal in number
to (a+l)(a+2)/2, the matrix € will be non-singular and we can obtain the basis
functions on T° in the factored form Wz = {CvnTQ}i . Having »°(x,y)
in the form (2.1%4) is perticularly convenient for our intended applications.
Anticipating the next section, observe that on triangle ™  the following

equation holds

-T
(2.17)  Dp(xy) = o%” Do ,

-
s

where the differential operator D operates term by term on @ . Thus,

e if the basis functions are derived in this factored form, derivatives of

;f the trial function v can be easily obtained symbolicelly. Furthermore,

for two differential operators D' and D° ; expressions of the form
;5 D pV(x,y)0% (x,y) become

JT v-l T T v~T v
(2.28) g’ ¢’ [Doe{d%} ¥ q° ,

and again the matrix in the square brackets can be obtained syn olically.

1. 22

Its terms ere moncmial terms of the ferm x ly sy B8, >0,

1’72 =

Note that the ease with which we can manipulate the basis functions
depends upon being able to express each basis (coordinate) function as a
linear combination of monomials. For some deficient elements this is

not possible, and differentiation and integration of the coordinate

functions must be done numerically [HLl] and/or carried out by hand and

an
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programmed explicitly. This would not be particularly disadvantageous

for a special program designed to solve a specific clags of Troblems.

Also, in a production setting, many of the computations involving the
functions can be done once and the results stored in a library. However,
from our point of view of designing a general parpose nrogran we have
favored the use of non-deficient elements, which guarantee the invertibility
of C¥ and the representation of the basis functions as linear combinations

of moncmial terms.
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3. Generation of the Equagtions

This section describes the actual calculabion of the tinite element
equations once we have an expression for our piec~wize polynomial as
discussed in the previous section. Suppose ocur problem is cast in a
variatiocnal form, and we wish to minimize a functional I[v] = I,R[v]+IaR[v]

with respect to the parameters of v , where

(3.1) Iplv) = ” (alvi+ BV Tyt a.3v§+ a.hv2 + asv)dx ay
1

(3.2) IBR[V] =£ (a6v2+ a7v)ds s
R

and v 1is restricted to satisly a linear bowdary condition of the form

(315) 8,8v+ a

v, ta =a on IR

9 10's T %11

Here 8 i=1,2...,11 are functions of x and y , and v, and Vg
are the (inward) normal derivative and (counter-clockwise) tangential
derivative of v on OR .

Our interest here is in the implementation; consequently, we will
not concern ourselves with the range of boundary value problems that can
be covered by the above form, or relstions and/or smoothness that the
functions aj s J=12,...,11 and v must possess in order for the
problem to be correctly formulated. Also, we do not mean to imply that
the procedure to be described applies only to the above functional. It
will be clear that the construction applies to <ther qualratic integrands
(involving derivatives of higher order, for example).

We begin by observing that Ilv] can be expressed as a sum of the

66




contributions from each triangle ™ cRUOR . Thus we can wribe

N N
A A
(3.4) I[v] = Vvl = ¥ (D0v) + 1Y [v)
v vZ_: v &y (Tplv akg)

where IE[V] has the form (3.1) with the domain of integration replaced

by T, and IY [v] has the form (3.2) with the contour of integration
oR

3R replaced by ORY , the part of TY 1lying on OR . For T’ with no
side on OR , I\B’R[v] is obviously zero and does not have to be
considered. The basic procedure is to obtain expressions for each term
of the summation (3.4) as functions of the parameters of v .
Consider first the teim Iv[v] corresponding to triangle ™ .
(3.5) I}\{[v} = J"J‘ (alviJr aevxvy+ a5‘¢§+ a.hv2 + asv)dx dy
oV

AY

Recall from Section 2 thai our expressisn for pv(x,y) on T could be

written in the form

P -7
(3.6) Y6y = ¢ ¢cY 9,

-T
and we observed in Section 5.2 that DTpv = q\’CV

D' operates on the column vector ¢ term by term. Substituting (3.6)
into (3.5}, we obtain the following expressio:. for the first four

(quadratic) terms of (3.5):

T -T

VoV -l

= T T T T

(3.0 a [[ 209 e 0,0 a0 +ey00 dxdy yC g .

oV

Deferring treatment of the last term in (3.5) until later, suppose

TV has cne or more sides lying on OR and denote that segment of R
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by ORY . Then we have

T

R i

S (3.8) TRVl = [ (egframis

|

z
: 3 - oRY
Pt
1 l \ and again using (3.6), we obtain the following quadratic runction frcm
S I
gj ’ the first term in the integrand of (3.8):
: T -T T -1 v
(3.9) q¥ ¢V [ agoias ¢¥ o).
» 3R
L

P We will denote the sum of the matrices in braces in (3.7) and (3.9)

¥

o by HY . The so-called stiffness mabrix is then given by

T -1
(3.30) AY=c¢Y %Y |,

Y R TR e TRy SO
TPy T
[ e

T
and the quadratic terms of Il\{[v] yield the function q\' A\’q\’ .

 —

Turning now to the linear terms in Il\{[v] and I\a)R[V] we obtain,
g
f U using exactly the same procedure, the expression
3 T
S0 A1 C apdxdy + [ a.pds
; 7V R
Ir
S
: Denoting the vector in braces by wY , the linear terms in
v v v .
Ilv] = Ih(v] + I, (v ield
' T T T
(3.12) ¢’ ¢¥ w=q" b ,
E where the vector bY is usually referred to as a load vector by engineers.

3

3

[ Repeating the above proced. ~e for each triangle i1 s v =1,2, ...,NA s
|

|

we obtain finally
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T
(3.13)  1I[v] = (a¥aV¢¥+q” oY) ,
L °

where we note that there will be parameters qg common to more than cne
of the terms of the summation.

If we assume a1l our boundary conditions are natural {(i.e., they are
satisfied automatically because of the design of the functional being
minimized), then (3.3) is null, and our approximate solution is obtained

by minimizing (3.15) with respect to the q°'s . That is, we satisfy

N T
(3.14) )} ((A\’+A\’ )q\’+b\’} = 0 .
v=l

If v must satisfy some boundary conditions of the form (3.3), then
some of the qv's are constrained to assume certain values or satisfy
certain relations. This entire assembly problem and incorporation of
boundary conditions is examined in the next section.

We now examine the details of implementation of the procedure outlined
in (3.6)-(3.12). To reduce the amount of computation ihat must be done
for each triangle, it is convenient to confine as much of the computation
as possible to a standard canonical triangle 7°  for which part of the
computation can be done once and for all. The savings that can be realized
depend rather heavily on whether the coefficients of the functional & o
i=1,2,...,7 are constants or variable. Tne following scheme hes been
described for particular problem-element combinations by Zl&mal [Z25],
Dupuis and Goél [ D3] and others.

Let T° have vertices (0,0), (1,0) and (0,1) . Ther the linear

transformation mapping 7° (-1 plane) onto TV (x-y plene) having
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vertices (xi,yi) i=12123 is

X X ax. -pax \[ & X 3
(3-15) < ) = 1 + 1 3 = 1 + Jv )
Y yl Ayl "Ay5 1 yl L]

where Axi = Xi1q7X wilh the subscripts interpreted modulo 3. The

inverse merying is then

1 [ s BN X\ g f Mgy - Wgky

(3.16)

-

1 |\ -y e S\ y 1771 \ axyyy - ayyx)

where \Jv\ is the determinant cf Jv . Note that

3.a1) [ w(xy)axay = [[ w(x(8),y(a)) ]3] atan .
o TO
Now define the quantities a s 5 , ael C on T° (in the &-n plane)

in exsctly the same way as their counterparts were defined in the x-y

plane. For example,

%)

(3-18) 5(3) = (l) E:?]) 52, §1|.§T]2: §5y§271y§n2,7‘|

Using (3.16) and (3.17), the integrals (3.5) and (3.8) can be

expressed in the form

v2 ., W v2, va, v v
(3.19) g (glwg+ g2w§Wq+ g3wfl+ ¥+ gsw) |o¥|atan ,

and

(3.20) J‘ (g\éw2+ g,?“w) |o¥as
37°

TO



where w(&,7n) = v(x(&,1),y(& 7)) 5 and the gz 's will depend not only

on their respective a; 's, but also upon the mapping and the other terms
in the functional. The contour integral (3.20) is understood to apply
only tc the part of 7° corresponding to oRY . Again it is convenient

to collect the linear and quadratic terms together. Carrying out the above

procedure for the quadratic terms in (3.19) and (3.20) we obtain

~7 ~-T v~ ~T v~ ~T vy ~T VITT LY
D
(3.2) @ CT ] (6199 * g3, @) + &30, & + g,00) |57 dtdn
(o]
T
~ ~T R ~al
+ [ (ggoe |dDas)c™q .

al\o
The expression in braces in (3.21) is the £-1 counterpart of the

metrix HY defined above, and we denote it by #¥ . Then the E-1

counterpart of AV s given by
(3.22) &Y =¢TgvEL

The linear terms of (3.19)-(3.20) yield

~T =T
(3.23)  a ¢/ [[egoli|aan+ [groldVlasy
7° o°
or
(3.28)  FcTv=bv .

Finally, since we wish Iv[v] to be expressed in terms of the
parameters in the x-y plane rather than the §&-n plane, we must apply

& transformation derived from (3.15) %o AY and b . Specifically, using

..
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§

Pt
Lpvse—

§ do -
:
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e

' E—

(3.15), we can easily construct & block diagonal matrix K satisfying
(3.25) a=kK4q  ,

from which we can get, by substitution of (3.25) into (3.22) and (3.2k),

the following
(3.26) AY =X

The following points are important in the implementation of the above.

(1) If the coefficients of the quadratic terms in the functional are
constants (or at least constant over each triangle), then the corresponding
gv 's will be constant over the triangles. Thus 2Y can be expressed as

. y .
the sum of matrices of the form 71G14-72G24-75G54-7hGh s where the Gi s

are independent of v , (and thus need to be computed once), and 7; = 7i(v) .

For example, the first term would be

v v o T ppg T a1
(3.21) g {37} ¢ [T 9, @ dtdn C
(o}
\ ¢ - T 7
B
71.(V) Gy

The generation of the Gi's can be duiie very efficiently as follows.

First we compate

(3.28) ‘913 = ” §1na at dqg = 113t/ (ivg+2)t

TO

for all i and j less than p , vhere & depends uwpon d and the terms

in the functional. The compouents of the integral are then Ir r where
12

-3
no



3 and r2

r are simple integer functions. When gz is nol constant over
each triangle, numerical integration will probsably be necessary to
evaluate the expressions in the braces in (3.21) and (5.23). Even in this
instance, having the basis functions in the form (2.14) is still very
convenient, since it allows us to ccmpute the integrand at the eveluation
peints very efficiently. For example, consider evaluating the i,j-th

component of the integrand of the first bracketed integral in (3.2%) at

the point (gu,q“) . The function to be evaluated will have the form

b2 i £.-1 £.-1 2, 1,-2 .2
1 2 v, 1 e v,.1 "2 v, 1l "2
.2 Y + + + -
ll, 22 >0

Assuming we have the basis functions in a convenient symbolic form,

the evaluation of the integrand can be optimized considerably by precomputing

11-2 12-2
the common factor §u‘

Ty
(ii)  The matrix C and its IU decomposition need only be computed once,

since ¢ 1is independent of vy .

(iii) The computation done so far has been independent of the boundary
conditions (3.13). Thus a change in them would not reguire re-computation

of the AY and bV s v = 14,2,...,N Also note that changes in a

s " p)

and a7 wculd not change AY y Vv = 1’2""’NA
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(iv) Consider the calculation represented by (3.22), and denote ng

by n . Normally, one would expect the congruence transformation to
require 2n54-0(n2) multiplicative operations, since we need to perform
2n  back-solves, each requiring n2+-0(n) operations. We will show how
to reduce the computation to n5+-0(n2) under the assumption that 7Y
is symmetric. [Equation (3.1L) above implies that we only need NI\ H
therefore, if HY is not symmetric, we can compute E—T(ﬁvi-ﬁvT)E-l] .
The following technique has also been used in [M2] in connection with
solving genéralized eigenvalue problems.

Suppose we have the IU decomposition of ET . Then the basic

procedure is

(a) Solve Ly W =HY,

(b) Solve 1y A® = W' .

Consider step (a). Suppose we compute only the lower triangle of W ;

\
0]
i.e., we do not complete the U-solve, so that W has the form G\W\) .
1A
1t is easy to show that now the calculation of W requires the following

number of multiplicative operations:

2 n ., 3 3
n i(i+1) n n’ 2 2 3 2
Ga =1 ° ? + igl —gg—_ = —2- + O(n ) = -5— n- + O(n ) .

Now consider step (b). We use the following notation to indicate partitions

of L, U and CT 5 wnere the upper left partition is k by k :

k| k k! k | k
- 1 |Ce\ I U1 1%
¢ =|==~=~t , L=f===l===] , U=|-=-d——=
k | .k k | .k i,k
Cs !Cu Ly | I LU
Th



We will denote the i-th column of A by a; s its first k elements

t
by a? , and its last n-k elements by a? . The first i elements of

the i -th row of W will be denoted by LA Then step (b) can be descrited

as follows: For k = n,n-1,...,1 compute

U, a

= =
[l -8
W=
1]
=
1
2

The first step yields the last row and column of A ; the next step yields

tne remaining unknown parts of the (n-1)-st row and column and so on. Note

?
that at each stage the vector ak has glready been computed by previous

k
steps. Here we use the fact that L? Ui = i

operations C% required for step (b) is given by

n

.2 2 . . & n5 2
G, = z i~ + 2 i(n-i) = n ‘zll = 5% o(n%) .
1=

i=1 i=1

Thus, the total computation required for the congruence transformation
> 2 7.5 2
has been reduced from 2n”+0(n~) to 0,%C, =gn +0(n%) .
When the coefficients of the quadratic terms are constants, this
technique will not be too important since the number of such congruence
transformetions will be small. The computation of the G matrices

discussed above is initialization, and for NA >>n, , the work reguired

d

for equation generation is essentielly proportional to NAni . However,

if one or more of the quadratic coefficients is variable, a congruence

trans_ormation must be done for each triangle, and using this technique

5.5

saves Z ng NA multiplicative operations.

The equation generation can be summarized as follows:

5

C, . The number of multiplicative

-
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Step 1 (Initialization)
(i) Compute C and its TV decompesition.
(ii) If all the quadratic terms nave constant coefficients then

compute the appropriate ¢ matrices and store them.

Step 2

For each triangle T 4o the following:
(iii) Compute the mapping from ° to TV ; and generate the quantities

[9°] and g} .
(iv) Generate A’ and b’ .

(v) Apply the transformation K to AY and b’ to obtain AY

and bY .
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L. Assembly of the Iquations

Having completed the procedure described in Section 3.3 for each

triangle, we have a system of the following form to solve:

N
Y N
(k.1) y ((A\‘+A\’ )q"+b\’} =0 ,
v=l.k .

N .

A

Z {Bqu'*'bv} = 0
v=l

Combining the terms in (k4.1), and renumbering the qz 's and b: 's from 1

to N , we obtain the system
(k.2) Ag =D

As we pointed out in the previcus section, if boundary ¢onditions of
the form (3.3) are imposed, then some of the elements of q will be
required to assume specific values or satisfy specific relations.

Suppose first that the boundary conditions only impose constraints on
single parameters, rather than specifying relations that must hold between
several pérameters. Partitioning q into 95 and Qb > equation (4.2)

can be written in the form:
Ay A 9 by
(4.3)
Aoy Ay 4% %

Now if q, must satisfy q, = q, » We can solve

b, - A

{ =
b.b) A49y = By - A0

\

11

o~ e P
— b

[
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As Pelippa and Clough [F1] poiat out, in order to avoid rearranging
eguetiops, we would actrally solve the followiny system in some permuted

form

(4.5) Ay O Qo 131"“‘12‘32
0 I q2 q2

We shall see in Chapter L4 that if we use "profile" methods, this practice

costs almost no storage or computation. We denote this system by

(k.6) A'qt = b’

Now suppose further that the boundary conditions impose some general

linear constraints on the solution of (4.6). As an example, we appeal to

—

our cubic element 3-4 and the diagram below:

Py
L

=
—>
Q\
s
9
>«

(]
(]
i..
> x
Figure 4.1
! v
Suppose the boundary condition Sh = g(x,y) is imposed along OR .
} Then at the point Q , we want to impose the condition (4.7) on the derivative
: parameters at the node Ql .
1
: 8
% 7
by
't




(1) v Q) sina+ v (@) csa = gy)

If our boundary conditions impose £ such constraints (where

£ << N 1in general), we can write them as an £ XN matrix equation

(’408) QQ' =C .
The solution of (4.6) can be viewed as the point which minimizes the

quadratic function

T T

(.9) 6@0=%Q'N¢-¢b'

Using the method of Lagrange multipliers to minimize (4.9) subject to the

constraints (4.8), we obtain the following system to solve

Oy (Q) (b>
(%.10) = ’
Q 0 A c

where )\ 1is a vector of £ ILagrange multipliers. The algorithm for

solving (4.10) is

a) Solve A'W QT and compute Y = QW (and its IU decomposition)

b) Solve A'y =b!

(4.11)
c) Solve Y\ = Qy-c

d) Solve A'q' = b'-QT)

At first sight this algorithm appears expensive, since [+2 solutions
of systems of the form (L4.6) are involved. However, if the coefficients
in (3.3) are constants, Y remains constant for different boundary

conditions. Thus, in such circumstences, our problem may be solved using

19
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steps (b), (c) and (d) once the LU decomposition of Y is available.
Another possibility for handling toundary conditions of the form
(4.7) is to modify the parameters of our problem. Applying the proper
crthogonal transformation toc the stiffiness matrices, we rotate the
derivative parameters to get vn and vs. The boundary coundition then
imposes & condition only on v and the variable can be eliminated in

the obvious way.

Which of the two approaches for handling derivative boundary
conditions is better? It is fairly clear that the latter approach will
generally require less computation, since the rotations which must be
epplied are relatively inexpensive and each one saves a solution of the
system (4.6). For very large systems, the difference between the two
computations will be great. Furthermore, the relative difference between
the work required to deccmpos= A' and that required for a back solution
is not as large for band systems as for dense systems, since the factor
is the bardwidth rather than N . Thus our remark above that A' need
only be decomposed once is not as important as you would expect.

In supoort of thé £first method of treating derivative boundarcy
conditions is its simple and uniform implementation. The computation ce=
be isolated in one subroutine -vhich generates the matrix § . In contrast,
the second approach is very complicated. Corners having interior angles
which are not multiples of n/2 mey force us to apply non-orthogonal
transformaticns to the derivative parameters in order to handle boundary
conditions imposed on both incident edges. The fact remains, however, that
such complexity pays off. For typical problems (and a one shot computation)

the first approach can require twice as much computation as the second.
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5. Inclusion of Singular Functions in the Basis

Por some elliptic boundary-value problems, particularly in domains
with re-entrant corners, the solutions may have unbounded derivatives at
some of the corners, so they are hard to approximate by polynomisls. A
successful approach dus to Fix [F2] is to enrich the dasis by adding
appropriate "singular" functions that represent the solution accurately
near the corners.

Fix employed tensor product spaces ratner than the interpolation method
for generating the finite-element equations (the distinction between the
two approaches was made in Chapter 3) . Thus, once he had designed the
appropriate singular functions having small support, the inclusion of
them in the basis was straightfcrward. The extra terms were simply added
to the expension tor vN .

The inclusion of such singuiar functions is still possible with the
interpolation approach, but the procedure is not quite so obvious. Suppose
we wish to include one sinzular function W* in the basis, and assume
that W* £ 0 on triengle ™ . We will ignore the complication of the
napping ot - TV onto the canonical triangle ™ . Using the notation we

developed in Section 1 of this chspter, we consider the computation

involving the following term on triangle ™ .

(5.1) ‘H' uidxdy .
oV

e first note that the basis functions on ™ under "normal" circumstances
. Vv . N
are given by Wi , i=1¢,%,...,m , where

-T
(5.2) v =Y el

1
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The approximation to u on TY is thus given by

m T
(5.3) (%) = '21 a; ¥, = a'c¥ o
1=

In this form it is clear how to add the singular function. Including the

*
singular function V¥  in the sum of (5.3) and going in reverse we have:

n
(5 vy = ) ¥ v

op !
7 v ?
@ ,a) mintls st B Rl
}

L Ly

J v
The expression for (5.1) is therefore

-T i r -1} _i r
I O e o I el (G R R S |

In this particular exauple, the stiffness matrix for T’ will be (nt+1)
by (ntl) rather than n by n . The extension to more than one singular

function is clear.
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CHAPTER 4
SOLUTION OF FINITE ELEMENT EQUATIONS

1. Tatroductiorn and Novetion

In this chzpber we will study the storage .id solution of finite element
oysteme of equations. As we pninted out in Chapter I, the NxN inite
element coefficient matrix A will in general be sparse; that is, many
(perhaps most) of its elements will be zero. To say that a matrix is sparse,
with no further qualification, is not of much practical significance. What
is impor’ant is whether we can make use of its sparseness to reduce storage
and/or computation requirements in its subsequent processing; that is, we are

interested in whether the matrix has axploitable structure rather than just

its sparseness. One of our aims in this chapter will be to study the structure
of finite element equations and to show how such structure can be utilized.
In this connection we present some experiments comparing several ordering
algoritims (i.e., algorithms which order or reorder the rows and columns
of A with the aim of reducing storage and computation requirements). We
also present two efficient methods for storing sparse matrices.

We have confined our attention to direct methods for solving finite

element equations for the following reasons:

(1) Storage is becoming increasingly abundant, and one of the prime reasons
for using iterative methods is that they generally require much less storage
than direct methods. Computer memories are steadily becoming larger, the
capacity and performance of peripheral storage devices such as disks and
drums is improving rapidly, and large bulk core storage [F8] (which can be
viewed as a very fast peripheral storage device) is becoming common. The

use of virtual memory [DL, M5] is another important Cevelopment. Under ideal

)
conditions, the user is allowed to address a very large memory (a;22* words
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on the IBM 360/67) which need not exist physically but vhere addresses

are automatically mapped onto actual physical addresses during execution.
We do not mean to imply that storage is not an imrortant consideration in
the choice of methods; our contention is simply that the characteristics of
today's computer systems allow the solution of large linear systems wi%h

direct methods.

(2) Finite element methods tend to yield denser systems of equations than
usual finite difference methods. Suppose the parameter qi,j is associated
with node i . Then there will usually be a non-zero entry in qi’j's equation
for every parameter assoclated with every triangle containing node i . It
is easy to see that higner degree polynomials must lead to denser systems,
because more parameters will be associated with each triangle. Ve discuss
this subject in detail in Section 6 of this chapter. Since the amount of
computation per iteration for most iterative schemes is pruportional to the
number of non-zero elements in the matrix, this increased density increases
the solution time for iterative methods. [However, for fixed N ,

higher degree polynomials yield systems which require more computation

for their direct solution also, so it is difficult to make precise

statements as tc which methods require the least computation.] Fix and
Larsen {F3] have compared Gsussian elimination and successive over-
relexation (SOR) for some special tensor-product spaces, and their analysis
and numerical experiments suggest that SOR is more efficient for some
problems, if N is large enough. Their conclusions are based on the
assumption that the equations have only one right side, and in many practical
situations, this is unlikely. Also, their analysis is based solely on
operation counts. TFor tensor-product bases such an anglysis is reasonable,

since the structure of the grid and the coefficient matrix can conveniently

8k
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be stored in two-uimensional arrays. The data management is no more complex
than that resulting from using a five point difference operator on a regular
mesh. However, for an arbitrary triangular mesh, A will not have such
regular structure, and the calculation of a single component of the

residual vector may be relatively expensive. In general, A will be
symmetric and only its uvpper or lower triangle will be stored; therefore,

in order to compute a single component of the residual, we must be able

to access lines of elements in both rcws and columns of the upper (or lower)

triangle of A . If the storage scheme is "row oriented", accessing elements
in a specific column may require scapning several rows, and visa versa for
column-criented schemes. By’contrast, elimination schemes can be conveniently
implemented so that they operate only on rows or only on columns. We discuss
this subject in detail later; our point is that data management can be

important in comparing methods.

(3) Finally, and perhaps most important, a rather large amount of practical
engineering experience indicabes that direct methods are preferable to

iterative ones. The reasons for this include:

(i) Finite element systems (designed to yield a prescribed accuracy)

tend tc have a consideratly lower order N than systems resulting fronm
usual finite difference methods. This is due in part to the ease with

which we can grade the net (thus making efficient use of each degree

of freedom). Also, as we shall see in Chapter 5, increasing the degree
d of our piecewise polynomial allows us to decrease N and still

obtain the prescribed accuracy.

(ii) Direct methods allow the use of iterative refinement [Fk, W21,
which provides an estimate of the ccndition of the discrete problem and

the accuracy of the discrete solution. Such information is hard to
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obtain using iterative methods. Since we do not know the true (discrete)
solution, the error at each step of the iteration must be estimated on
the basis of such measurable quantities as the size of the residuals or
the size of the last correction vector. Unfortunately, small residuals
or small changes in successive iterates do not guarantee smal. errors in
the computed sclution. By using direct methods, we also avoid the

problem of finding a '"good" over-relaxation parameter.

(1ii) Usually, more than one right side must be processed. The initial
cost of the decomposition, which represents the majority of the computation
for the first solution, does not have to be repeated for succeeding

right sides.

The study of sparse matrix problems is a rapidly expanding field.
(ﬁee Willoughby (W3], and the extensive references therein.) In the sequel,
we will assume A is a symmetric positive definite matrix. As we observed
in Chapter I, finite element methods for elliptic problems cast in a
variational form yield this type of matrix. Following Rose [R3] and Cuthill
end McKee [C5), A will be said to have bandwidth m if and only if
aij £0 =.‘i-j\ <m . Note that this differs from the usual definition of
bandwidth, which is defined in termsof m %o be 2mtl . TFor any matrix W,
we define the quantities f? = min{j‘wij £0}, i=1,2,...,N, and

SW = i-fi . Thus, m = max{sé} . The number NZ will denote the number

i
of non-zero elements in ; .

Rose [R3] has given a detailed graph theoretic analysis of the Cholesky
decomposition algorithm. With Rose we define the graph G = (X,E)
associated with A , where X and E are sets of ncdes and edges,

respectively. Vertices correspond to rows of the matrix, and edges

correspond to non-zero, off-diagonal elements of A . If i>]J and
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l, aij /£ 0 , then vertex i is joined to vertex j by an edge. (We

then say that vertices i and j are adjacent.) The
! degree of a vertex is the number of edges incident to it. An example
demonstrating this notation appears below. An "X" indicates a non-zero

element, and a "O" indicates & zero element.

s
>4

W O O
O < O

(1.1) A

© O XN N O
PA K O K K O
O XK O XX ¥
o O
MoPs O o O
KoK O

[
.

The ordering of the equations induces a corresponding ordering of the

PR

vertices of G . 1In general, we denote an ordering o on X

[0/
(§1,2,3,...,0} = X) by & . Denoting the set of vertices adjacent to

——

vertex i by 7, ("neighbours" of vertex i) , we can describe the
it Cholesky decomposition of A into i by a sequence of elimination
i
' graphs [R3] G = GO’Gl’Gz"“’GN-l , where Gy is obtained from
)
]i G. by deleting vertex 1 and its incident edges and adding edges so that

i-1

the vertices of ni are pairwise adjacent. Using our example above,

e

we have:

i The zero/non-zero structure of L is thus given by
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(1.2) L

>~
PP KX
LT ]

X
X X
/

The number of edges added during eliminevion is usually referred to as
the f£ill-in, and is simply the difference oetween Né' and the number of
non-zero elements in the lower triangle of A , including the diagonal.

Rose {R3] points out that the fill-in will be zero iff for all
N>i>ji>k>0, (aij#O/\&ik;/:O)=ajk/=O . He shows that I must
have this property (if we ignore the occurrence of accidental zeros), and

calls matrices having this property perfect elimination matrices.

An element aij » 1>J will be said to lie in the profile of A
; . C . i
(ai;j ePr(p)) if f?s j <i . Hence 85 £0= 85 ¢ Pr(A) , but
8 e Prip) # 8, 5 £ 0 . This is a simple but important generalization of the
o

concept of bandwidth. Observe that Pr(A) = Pr(L) . We will denote the
number of elements in Pr(A) by |Pr(A)| . Thus A is sparse if
[Pr(A)l is significantly less than N2 , even if m =N . Obviously,
N
P

IP"(A) i =)

8}.\+1) .
1

Now the decomposition of A into LLT is unique; however, the amount
of computation done to obtain I will depend on the structure of A, and
how carefully we take advantage of it. Suppose A is ¥ xN with bandwidth

Then treating A as a dense band matrix, it is easy to show that the number

m .
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of multiplicative cperations required to compute L 1is approximately

6. = -3 - We will refer to the algorithm as the “band

Cholesky (BC) decomposition algorithm".

Suppose now that 8‘.2 <m for at least one i , and we take advantage
of this fact. The following theorem gives the number QP of multiplicative
operations required to compute L , if we consider A and L as having

dense profiles.

Theorem 1.1
Let fA be as defined above. Then the number GP of multiplicative

operaticns required tc compute 1 1is given by

A, A
N 8.(5,+3)
1 1
(1.3) op = .il — .
i=2

In addition, N square root operations and QP-N additions are required.
Proof;

Let us denote the elements of 1L by zij and consider the computation

of the i-th column of L . The element zii is computed using the formula

i-1
_ 2 ,1/2
(Jﬂh} zii = {aii = Z Zij} 3
j=th

which requires .8? i- fi\ multiplications, 6‘2‘ additions and a square

root operation. The elements 2ik s k= f‘g‘,f?}l, «esyi-l, , are computed using

i~1

(1.5) ey ¥ layg - J.Z—E Bij tegd/ by s
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which requires Si(6i+l)/2 multiplicative operations and 61(51—1)/2
additions. Summing over i yields (1.3). This method will be
referred to as the "profile Cholesky (PC) decomposition algorithm!.

The following is obvious:

Proposition 1.1

For any ordering of A , we have 0, < QB .

P

Finally, suppose we are prepared to take advantage of every non-zero
element in A and L ; that is, we wiil operate only on those elements
which are actually changed by the elimination process. Iet di be the

degree of the i-th vertex in the elimination graph Gi- Then we have

l .

Theorem 1.2 (Rose [R3])

The number of multiplicative operations 6., reguired to compute L

G

is given by

N1 d,(a+3)
(1.6) o = L S -
N-1 di(di+l)
An additional N square root operations and - addition

i=1

overations are required.

The reader is referred to [R3] for the proof of (1.6). This
algorithm will be referred to as the "graph Cholesky (GC) decomposition
algorithm".

Now we must consider the tradeoff between the amount of computation

storage requirved by the different algorithms and their relative complexity.

o et
.
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Note that the graph theoretic analysis of elimination implicitly assumes that
we are prepared to take full advantage of the structure of A ; thus, for
these results to be relevant, we must employ a very sophisticated program,
such as that of Gustafson et al [G3]. [In our 6 by 6 example above, we
must detect and meke use of the fact that lhE =0 .] Hence, for the GC
algorithm to be worthwhile, L must have a significant number of zero
elements within its profile, end it has been our experience that the L's
derived from finite element coefricient matrices do not have sparse profiles.
(See ection 4.5 for some numerical experiments in support of this claim.)
Therefore., we have confined our studies to the BC and K algorithms. We
should emphasize that our decision is based only on empirical evidence;
just how dense Pr(L) must be over all orderings appears to be an open
question, zven for piecewise linear polynomisls on a square regular right
triangular mesh.

So, in summary, we have chosen for various reasons +to limit our
attention to direct methods for solving finite element systems, and to
look at no more of the structure of the matrix than its profile.

Within this framework, our goals are to reduce storage, reduce computation,

and to simplify data management. These goals compete with one another, and

the characteristics of the particular computer system (hardware and software)

will have considerable effect on which is most important.

Finally, in the sequel, the reader should keep in mind that f? 5 8? )

e and 6, are all functions of the ordering «a of A .

Thus comparisons between such quantities should be understood to mean

for the same & , unless specifically stated otherwise.

91



M NI T

A} T

TR

e

T - e

2. Compact Storage Schemes for Bparse Mabrices

As in the previous section, let us denote our sparse, symmetric,
positive definite coefficient matrix by A , with Cholesky factorization
LI? . When piecewise polynomials of degree > 1 are used, the matrix A
will be more dense than that resulting from usual finite differerce schemes,
Unfortunately, its profile is observed to become only slightly more dense
with increasing degree. Hence it is advantageous to store the metrix in a
compact manner to save storage. It is important to keep the organization
simple to allow rapid row and/or column operations on the matrix. The
prime consideration is not whether we can randomly access a particular
element of the matrix efficiently but whether we can efficiently multiply
the matrix by a vector or multiply one of its rows by a vector.

As Wwe have mentioned before, finite element coefficient matrices tend
to have a good deal less uniformity in structure than those arising from
traditional finite difference methods. Because of the likelihood of graded
nets and the possibility of associating more than one parameter with each
grid point, it is not convenient to design a storage scheme based on the
geometry of the mesh in question. This is in contrast with most storage
schemes fof difference equations.

Tdeally, the number of storage units required to store the NXN
symmetric coefficient matrix A should be equal to NO s the nuwber of
non-zerc elements in the lower triangle of A (including the diagonal).

While it is obviously possible to store A in N_ storage locavions, the

0
problem is to find an efficient mapping function that gllows us to easily
locate element &ij . In this section we describe two methods for efficienvly

storing a sparse symmetric matrix.
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Method 1. Let Vv be a vector defined by
’ i
(%.1) v, = {1|aij £0} , i=212,...,N.
J=1
N
Obviousliy, v, = NO . Let 6i be defined by
i=x ~

i
(3.2) B; = {1 vj s i=1,2,...,N .
-

The non~zero elemencs of the i-th row of the lower triangle of A are then

stored in contiguous locations of an array S of length NO beginning at

S and ending at SB . In an arrsy w , also of length No , the

B, ,*1
i- i
corresponding distances of the elements from the diagonal are placed. Hence,

contains element a, . . An example is

if 51_1 <p< Bi , then SP l’l-gp

nseful in understanding the scheme. Consider the following 15X 15 matrix.

o,

—

S ;
DI

.

[::‘A

——

=

—

o = O
\O

(2.3 | 8

10
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Here No = 38 and the vectors § and o are given by

8 0
6 1
L 0
8 1
9 0
1 2
L 1
6 0
(2.4) S=19 ’ w= 13
12 0
4 5
8 3
1 1
2 0

At first glance, the overhead for this method appears prohibitively high
since each word stored requires an extra word to store its "offset" from
the diagonal. However, note that the elements ¢f @ will all be bounded
by m , the bandwidth of A . On the IBM 360, Jor example, the array
can be declared as short integer (2 bytes = 16 bits), whereas the elements
of S may be It or 8 bytes long. If A 1is being stored in double precision,
the overhead is only about 25 percent, and the total storage required is
essentially proportional to NO . To access a particular element aij
of A will require scanning 61"61-1 elements of the array w . Since
the elements W for Bi-l <k < Bi are ordered, a binary search can be
used, so the amount of work required to access element aij would be
proportional to loge(si-ﬁi_l) . Even for rather dense bands (resulting
from use of polynomials of high degree), this is very satisfactory. For
example, using quintic polynomials on a typical mesh, we would need to
access sbout 4 elements of w before finding aij .

If storage is very scarce, a somewhat more efficient scheme is the
following:
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Method 2. Let A and £ be as described above, and define the
vector SA as in Section 4.1. Let A be stored in the array S as in

Method 1, but instead of defining the array w as in Method 1, let w

N
be a bit array of length Z: (8‘2‘+ 1) . Define the vector p by
i=1
L Il
(2.5) by = .2: (B, + 1) , i=12,...,N.
J:

Now define ¢ by

1 if & . , £0
(2.6) o = ’ s, 1<3®

p. -4 . _ >
i 0 if ai,i-l =0

E] i=:l,2,ooo’N .

We again use the example (2.3) to aid in understanding the scheme.

The arrays K and @ are given by

T

P (L, 3, 5, 8, 12, 18, 21; 26, 30, 36, ko, 46, 50, 56, 60)) and

1117 010111011001111 01 1 111011) .
(&% — &O_}l _ZL}{ s 00 01.10001110011000 llOOJJLOOO 0

row 123 4 5 6 7 8 9 10 1 12 13 14 15

T
W

Thus, the zero/non-zero structure of tte i-th row of the lower triangle

of A is stored in the segment of @ Dbeginning at wu +1 and ending
i-1
at “’p . The storage required to store A is thus
i
(2.7) (NO + 2N) words + by bits.

Note that the storage required for p and B becomes less significant
with increasing NO and fixed N . The use of a bit array may cause some
program overhead (unless the machine is bit addressable), and since o is

not ordered, up to pi -ui—l elements of ¢ will have to be examined to

95



retrieve element a5 - (Note that by -k may be > B; ~B5.1 .)
Although this method will undoubtedly require considerably nore program
overhead than method 1 to =se, it uses extremely little unnecessary storage.
For example, using this method on an IBM 360 computer to store a dense
5003, 500 symmetric matrix in short precision requires less than L4 percent
mo-e storage than the usual method of storing a triangular matrix in a
one-dimensional array. The percentage overhead would be halved if the array
were beingstored in double precision.

Thirdly, we present a method due to Jennings [J1] which is applicable
when IIT(W)l RﬁNg ; that is, when there are few zero elements within
Pr(W) . As we mentioned before, it has been our experience that the L's

derived from finite element coefficient matrices have this property.

Method 3 ("Profile Storage Scheme")

Let the lower triangle (including the diagonal) of A be stored
row by row in contiguous locations of a one-dimensional array S . Defining
the vector u as in method 2 above, then element aij s 1>j 1is given
by S, where p = Hyo- i+j . [Note that S now has the same zero/non-zero
configuration as  in method 2.]

This method obviously applies equally well to storing lower triangular
matrices, and it is primarily for this reason that we present it. The
overhead for this storage scheme is only the storage required for u . To
store L , we need \Pr(L)\ﬂ-N words. If A is stored in this manner,
the FC algorithm can be applied "in place" and no temporary storage is
necessary.

Finally, we mention the most commonly used method for storing bend
matrices [Ml], which we will refer to as the "diagonal storage scheme" or

simply as method 4. The diagram below describes the storage layout:
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N x (m+1)
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The required storage is (m+1)N , and in order for the method to be

efficient we should have m << N .

—

The following observation is of practical interest:

MBA A Y
T

i

Ul

Proposition 2.1

o
Jo—

r

let Vg = (m+1)N and Ve ; 1Pr(L)| + N. Then for any ordering

Semmromtine

of A, Vo<V + 0N, andif i};l(m-ai) >N, then V,< Vg .

Proof':
, N
| Vo= N+ {pr(L)] = w + % (5,+1)
i i=1
L ;
i =N + Z Si + N
i=1
f
I N
= (N¥l)m + N - Z (m-si)
.E i=1
g N
=V + N - ): (m-8,) .
i=1




Tnus, Proposition 2.1 says that for any ordering, the storage
required for method 3 cannot exceed that required for method 4 by more
than N words. In practical situations we have found that VP is
always considerably less than VB. See, for example, the experiments
in section 4.5 and the enalysis in section 4.7.

Note that there is only a very weak relationship betweer |Pr(A)|

and m. All we can show is

(2.9) N+an < |Pr(a)] < (w+l)N - m(msl) /2 .

Essentially, (2.9) says that for a fixed m, |Pr(A)| can vary by nearly

a factor of N.
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3. Node Ordering for a Small Bandwidth

The reasons most often presented for reducing the bandwidth of a
metrix are to reduce the storage and computation reguired to sclve the
associated linear system or eigenproblem. However, these rcasons are valid
only if we plan to store and process the mabtrix as a dense band matrix. In
view of Prop. 1.1, Prop. 2.1 and (2.9), the only justification for ordering
to achieve a small bandwidth is to simplify data management. In this
section we discuss the reascns for bandwidth reduction and present some
algorithms for obtaining small bandwidth orderings. Note that the question
here is not whether we should use the BC or C algorithms for a fixed
ordering « , bubt rather, when we should use m (instead of |Pr(A)\
or GE) as a criterion (objective function) to minimize over éll orderings
a of A.

To begin with, regardless of the ordering <« of A , if A is symmetric
and positive definite, there seems to be no reason to use the BC rather than

the KC algorithm. We say this because V; < Vg (usually), O < 8, and the

B
computational overhead of the FC over the BC algorithm is negligible.

However, the linear system we want to solve may not always be positive
definite; although elliptic problems will yield positive definite matrices,
meny methods for solving the associated eigenproblem involve shifts of

origin which destrcy the positive definiteness ol the system being solved [W2].
When A is indefinite, partial pivoting is required to maintain numerical
stability, and the profile storage scheme is no longer applicable since we

are now computing PA = IU for some (a-priori) unknown N by N permutation
matrix P . The only storage scheme which is well adapted to parhial

pivoting is method 4. For an 4lgol vrocedure for computing the LU

decomposition of indefinite band metrices, see [ML]. Thus, in this
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situation m = mA is important, since we can only guarentee that
mPA < ?.mA , and the combined storage requirement for 1L and U (using
the diagonal storage scheme of Section 4.2) is therefore (3mtl)N .
The work of Bunch [B13] on stable decompositions of symmetric indefinite
systems may be important in this regard since a shift of urigin does not

agestroy symmetry. We compute PAPT = LDI:'[l , where D is block diagonal

with 1 by 1 an2 2 by 2 blocks. Unfortunately, there does not appear

T
to be any way to bound mPAP a-priori. Thus, to be competitive (with

the band IJ algorithm) with respect to storage f{computation} we should

have m >N/6 {m >N/2/3} .

Another situation in which we might wish to have a small bandwidth is
when auxiliary storage must be used. Overlay versicns of band decompositicn
algorithms can De implemented most efficiently if km2 (1 <k <3) storage
units of main memory are available. Hence, i‘br is important to have m
small. Note that this does not preclude the possibility of using the IC
algorithm, if applicable. Having m small simply limits the number of
rows or columns we should have available at any given time.

If a matrix A can be stored in such a way that cnly its non-zero
elements need to be stored and considered in a residual calculation, it is
clear that bandwidth ordering makes no sense for iterative schemes that
require only a residual calculation.

Obviously, a useful bandwidth reducer must consume less time thnan it
saves the linear equation solver, or else significantly reduce the amount
of storage required. It will be relatively unimportant in practice whether
the minimum bandwidth is achieved, but we should get reasonably close to the
minimun bandwidth in an economical amount of time. Note that an easily

ascertained lower bound for the bandwidth (not necessarily attainable) can
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be obtained vy finding [-k/2_] , where k is the largest nmumber of
non-zero elements in any row.

Two basic approaches toc ordering for a small bandwidth are in current
use. They can be classed as direct (or one-pass) and iterative. The
direct schemes [R3, 35] usually work closely with the associated graph,
and proceed by successively removing (i.e., numbering) the nodes of the
graph according to some strategy based on the (usually local) structure
of the graph. The iterative schemes, on the other hand, assume a given
ordering and attempt to improve the ordering (again according to some
strategy) by finding appropriate row and/or column interchanges. Since
the direct methods only nced a singie sterting node to begin, while the
iterative schemes need an initial ordering, a reasorgble procedure is to
use a direct method to obtain an initial ordering and then use an iterative
scheme to improve it. The problem of finding an initial starting nodc

is discussed in Section 5.

We now describe two popular direct methods for bandwidth ordering.

A. Spanning Tree Method (Cuthill and McKe: [C5]).

1. Choose a starting node X and define Q = {xl} .

2. For esch noue in Q (in the order in which they are
numbered), number their unnumbered neighbors in order of
increasing degree.

3. Set Q = {nodes assigned numbers in the last execution of

Step 2}.

b, If |Q| = 0 , then stop; otherwise go to Step 2.
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The algorithm is equivalent to finding a spanning tree (rooted at the
initial node) of the graphk ¢ , hence the neme. [A tree is a connected
graph with N nodes and N-1 edges. A spanning tree of the graph G is
a subgraph of G which is a tree and contains all N nodes.]

The obvious advantage of this method is that it is very efficient.

The rejnired work is proportional to N times the average degree of the
vertices, and thus only increases linearly with N . Very good resulits are
obta‘*ned, provided a good starting node is selected.

The minimum degree algorithm [R3] is similar to method A above
and is as follows:

B. Minimum Degree Algorithm

1. Set i=1.

2. In the etimination graph Gi- choose xi to be any

1
vertex satisfying

(x| = min |n(y)|
vekia
where G, , = (Xi-l’Ei-l) .

3. Set 1 =i+l .,

L., If i >N, then stop; otherwise go to Step 2.

From & practical point of view this algorithm has little to offer
over Method A, and is obviously inferior with respect to the amount of
work that is required; N(W1)/2 vertices must be tested. A practical
modification that drastically reduces the amount of work required, and
actually improves the results obtained as well, is to restrict the
candidates considered in Step 2 to those having at least one numbered neighbor.

Nevertheless, experience has shown that the Cuthill-McKee algorithm seldom
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produces & larger bandwidth than the minimum degree algorithm, and even
with the above modifications the latter requires substantially more work
than the former.

We now turn to iterative methods for reducing the bandwidth of a
metrix [Rh, 73]. Here it is more convenient to speak in matrix, rather
than graph-theoretic, terms. The differences among these iterative schnemes
are largely matters of programming techniques rather than fundamental ideas.
The general idea follows: Assume we are given an initial ordering yielding
& bandwidth of m . Non-zero elements setisfying |i-j| =m will be
referred to as edge elements. Since we are assuming that the matrix is
zero/non-zero symmetric, we will preserve the symmetry by interchanging
corresponding cclumns whenever rows are interchanged.

1. Set max =m .

2. Try to interchange rows containing edge elements with rows not
containing edge elements so as to reduce the bandwidth, and
simultaneously interchange columns.

3. Re-compute m . If m <max , then set max =m and go to
Step 2.

ki, If max is greater than or equal to its value when Step Lt was
last executed, then stop. Otherwise compute a vector v of N
values as follows:

' I\ N
vi = L lilag A01 /S F (aley; £ 0]
J=1 j=1
Order the equations in increasing order of v , and order the
columns correspondingly. The first time this is done the bandwidth
may increase; after the first step repeat as long as the bandwidth

decreases. Re-compute m , set max =m , and go to Step 2.

103



SRR IR VT

Tt

e

CERY

R

TS B

S

¥

Wﬂ? S

Step b has the effect of reordering the rows so that as nearly as
possible each row has the same number of non-zero elements on each side of

the diagonal element. It could be called the balencisng scage. For matrices

that have ar innerent band structure (as ours hnave), Step 4 does not have
much effect, but for randomly sparse matrices Step 4 can improve the performance

of the reducer remarkably.
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h. Node Ordering to Reduce |Pr(A)!

In the light of Prop. 1.1 and Prop. 2.1, it should be clear that if
A is symmetric and positive definite, a potentially profitable strategy
for ordering is to look for orderings which reduce O, or |Pr(4)|
(= lex@)]) .

The term "near opvimal" as it appears in the literature [R3,T3]
usually means near-optimal with respect to fill-in. Under our assumption
that Pr(L) R’Nﬁ » & near optimal ordering should "nearly" minimize

|Pr(a)| . [Since o, is a more difficult function to work with, we

P

have not tried to look for orderings to reduce it. Tacitly, we have

assumed thut an Q yielding a small |Pr(A)\ will also yield an acceptable QP .1
As with bandwidth ordering algorithms, there are direct and iterative

schemes for near-optimal ordering. In order to explain the first (direct)

method we define the deficiency D(xi) [R3] of a vertex X in a

graph G by
(h"l) D(Xl) = ‘{(XJ’X-K)‘XJG‘”(X:}_) A xk€72(xi) A Xaff'/l(xk)}l *

Recall the construction of elimination graphs. It is easy to verify that if

_ B . . " _ .
D(xi) =0, G = (Xi’Ei) is obtained from G; 1 (Xi-l’Ei-l) by deletion

of X and its incident edges; no edges are added. This provides the

motivation for the

A. Minimum Deficiency Algorithm [R3,T3]: Iet Gy = (X,E) . Then

1. Set i=1.
2. In the elimination graph Gi-l » choose X, to be any
vertex such that
= in |
\D(xi)\ min {D(y) |

vekia
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where

G5 = (X i) -
3, get i = itl.

L., If i >N, stop; otherwise go to Step 2.

In this direct algorithm the next node to be numbered is the one that
will introduce the fewest non-zero elements when it is eliminated. It is
obviously fairly expensive to find this node, since a deficiency test of a
node y involves |n(y)|-|n(y)*1)|/2 edge tests. Since the graph
usually must be stored as a bit matrix, and few machines are bit-addressable,
these tests may involve considerable overhead. As with the minimum degree
algorithm (Section L4.3) we have found that restricting the candidates in
Step 2 to those nodes that have at least one numbered neighbor does not
hurt the ordering produced by the minimum deficiency method, and this
restriction drastically reduces the amount of computation involved.

The following iterative scheme has been found to significantly reduce
|Pr(a){ - Again we will revert to mebrix notation. The vector P is as

defined in Section 4.1.

B. Profile Reduction Algorithm.

. I
1. Compute o = YV (1-£%) .
E\ 1

2. Let the vector v be defined by
N

vy = L {l\f§=i}

51

3. TFor each row 1 having vy 30 , examine those rows
j = i*l,i+2,...,itk for some (small) k >0 , and determine

the number of words Sij of storage that can be saved by

106

% ey

- ——

e



g

T ST

T

AT T ™ TS TR

IE AR LR T

s v

AT

T G, T

e

-

L

L S—

—

Fos v——

[ — e

| g

!{-—....-e-

interchanging rows (and corresponding columns) i and j .
If the maximum sij is positive, interchange rows i and
(and corresponding columns), adjusting the vector f A accordingly.

N * *
4. Compute Q = E (i-f?_‘) . If Q<Q , thenset @ =Q and
i=1

g0 to Step 23 otherwise stop.

The actual search for the best interchange (Step 3) is by far the most
expensive part of the algorithm, and in a practical situation only those
rows with vy greater than some threshold should be tested since the
maximum possible gain in storage resulting from interchanging row i1 and
row j is S5 <X (3-1) . A reasonable threshold seems to be 3 or k4.

Good results have been obiained with the parameter k mentioned in Step 3

o
se

to 5.
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5. Some BExperiments with Ordering Algoritims

The coefficilent matrix A obtained from the finite element formulation
of a prot..zm tends to have considerably less uniformity in structure than
the matrix arising from a finite difference method applied tc the same
problem. First, the node points of the finite element mesh may not a2ll
pley the same role, and as a result have different connectivities. Whether
a parameter is associated with a vertex, side or interior node and whether
there is more than one parameter associated with the node will greatly
affect the number of non-zero elements in its equation. Second, the
finite element mesh will very likely be graded, which alsc causes disorder
in the structure of A .

Our aims in this section are
(a) to report on the performance of several ordering algorithms and

demonstrate the savings sttainable by using profile instead of bvand

method s for storage and computation;
(b} to report on an intriguing and agreeable property of the reverse

Cuthill-McKee ordering (our terminology) which we have discovered.

That is, if the Cuthill-McKee algorithm numbers the nodes 1,2,...,N,

+1-
Uik

~ the reverse Cuthill-McKee (RCM) ordering would be N,N-l,...,1 ;
(¢) to present some experimental evidence supporting our implicit assumption
that the profile of L 73 usually quite dense; i.e.,

|Pr(n) | ~ D; .

We will make use of the Tollowing lebels for the different algorithms

and quantities in this section. Some of them are repeated in other sections.
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CM -~ Cuthill-McKee

RCM -~ Reverse Cuthill-McKee :
s34 s thr :
MDG -- Mini Degree Initial Ordering Algorithms :
MDF -- Minimum Deficiency J ;
;
BR -- Bandwidth Reduction 3 ]
PR -- Drofile Reduction )? Improvement Algorithms ‘
BC -~ Band Cholesky
B¢  -- Profile Cholesky Decomposition Algorithms

o
{. B:}-— multiplicative operation count for the {gg} decomposition algorithm

v ~~ storage required tc store a symmetric or lJower triangular

matrix using the band oriented method 4 (Section 4.2)

- rage require o store a symmebtric or r tri ular
v storag q d to sto symmetric or lower triangul

matrix using the (profile) storage method 3 (Section L4.2)

Pr(A) -- profile of the matrix A .

B(Pr(A))

1

~ density of the profile of A .

4R AR T MBS B T2 TN I D TS NI e 40t an Rt b et BB pin « apenaten 355 2 BN2EA (HTTRATRG L 9T 3 e

LN

In order to keep the number and size of our tables at a level where the

information can be readily assimilated, we have eliminsted the MDG aigorithm

' 12 AR 09 AR TN

from considsration because we found it to be much inferior to the CM algorithm.

I e B R

As we mentioned before, it is natural to use a direct ordering algorithm to

obtsin an initial ordering for the iterative improvement schemes (BR or FR).

PR PP

We have limited our studies to the orderinge provided bty CM, CM-PR, RCM and

aw an

MDF. [The hyphen should be read as "followed by".] The application of the

R R T

BR algorithm to the CM and RCl orderings reduced m by only one or two, snd
so the results are not included. The application of the PR algorithm to the RCM §

and MDF ordering resulted in only & small reduction in Pr(A) , and was also
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For the experiments, the meshes were subdivided by various factors as
described in Section 2.3 in such a way that for a given domain each element
yielded the same N . The reported times are in seccnds for an IBM 360/91

computer. The values of © and V for each algorithm have been scaled by

the values for the CM ordering. The actual values for the CM ordering are
reported in parentheses. As before, we indicate the bandwidth by nm . }
We made use of the geometry of the domain to chocse an initial node

for the "initial ordering" algorithms. We arbitrarily picked a node from

one of the two most widely separated triangies jn the domain. For "long,

[

straight" domains this will obviously work well, but for U-shaped domains,

for example, it could lead %o a bad choice. One should have the capability
of forcing the algorithms to begin at a particular nvde in cases where the
above strategy could lead to an unfortunate choice. ¥From a practical point ) $
of view, designing and executing a sophisticated aigorithm in order to search

for a good starting node would probably be more expensive than i*s ultimate . .

value would warrant.
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The results of the experiments are contained in the following three

tables.
Matlrix and Elimination Statistics for Several
Ordering Algorithms for the Half-I, Domain
Element M CM-FR | RCM MDF
1-3
Tima .183 1.5 JA83 | 16.12k
m 20 20 20 85
o, 1.(50053) 1 13
N =241 %% 1(375L5) .56 .01
; Vg 1(5061) 1 6
i = 1585 | vp 1(4197) .97 .95
S(@Pr(a)) 231 231 | .236 2h3
HMPr(L)) 1.000 1.000 }1.000 | 1.000
Fill-in 3043 3043 | 2950 | 284k
2-6
Time .26 10.3 .26 {20.83
m 42 48 42 52
6y 1(196302) 1.27 1 1.47
N = 243, o 1(123342) .36 .36 .30
Vg 21(10%63) 1.15 1 1.25
Nﬁ = 2581 | v 1(7413) S .5k
H{rr(a)) .197 .328 V337 561
BH(Pr(L)} 979 979 -9%0 996
Fill-in 5608 2805 2734 248
3-10
Time .25 9.9 25 1 27.24
m 63 81 63 8k
6y 1(%06188) 1.55 1 1.k
N = 2bh1 o5 1(239873) .30 .21 .19
Vg 1(15k2k) 1.28 1 1.3
N*g = 3195 |1, 1(10172) 58 | ol
A(Pr(a)) .203 353 .h28 Lé7
B(pr(L)) 979 985] 990 .996
Fill-in 7707 3606 2655 2277

Table 5.1
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Matrix and Elimination Statistics for Several Ordering

Algorithms for the Hollow Square Domain

Element CM CM-FR | RCM ; MDF
1-3
Time .17 1.79 17 9.2
m 16 16 16 {20
o 1(34776) 1 i 1.5
N = 252 o5 1(26299) 1 .99 }.95
Vg 1(428k) 1 1.2
1{2 - 1620 | v, 1(3698) 1 99 |.97
HPr(a)) 272 .272 273 1.278
H{(Pr(L)) 1.000 1.000 }1.000 }1.000
Fill-in 2510 2505 | 2.89 | 2421
2-6
Time .23 10.4g .23 | 18.3
m 36 46 36 42
oy 1(155609) 1.56 1 1.32
N =252 o5 1(95520) .35 .36 33
Vg 1(932k) 1.27 1 1.16
N‘Z‘ =268 | v, 1(6837) .60 62 | .50
5(Pr(a)) .219 372 362 1.381
H(Pr(L)) .982 972 991 [.99%4
Fili-in 5029 2528 2k93  |2316
5-10
Time 32 10.6 32 §25.1
m 71 78 71 63
Sy 1{528768) ¥ 1.17 1 .81
N = 252 9 1(23%2516) .31 .22 .19
vy 1(1814) | 1.10 1 .89
N;‘ = 3852 | vy, wwses) | .57 | bo | .
5(Pr(A)) 204 367 426|465
5(Pr(L)) .988 .088 994 1.996
Fill-in 7898 3468 12738 |23k45
Table 5.2
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Matrix and Elimination Statistics fur Several

Ordering Algorithms for the Inverted T Domain

Element CM CM-PR | RCM | MOF
1-3
Time .22 2.52 22 19.32
m 20 20 20 35
6y 1(63283) 1 1 (2.8
N = 301 o5 1(31k96) 1 .88 JTh
Vg 1(6321) 1 1 2.52
W =109 | v 1(k258) 1 .95 | .88
S(Pr(4)) .280 .280 296 {.321
5(Pr(L)) 1.000 1.000 | 1.000 }1.000
Fill~-in 2852 2847 1 1886 (2334
2-6
Time .30 12.36 .30 118.38
m 4o 46 %0 4o
o5 1(230017) 1.3 1 1.1
N = 301 op 1(1033L8) 3h J3h .28
Vg 1(12341) 1.15 1 1.05
N'; = 2628 | v, 1(7h22) .60 59 | .56
5(Pr(A)) .238 .ho6 15 bbb
B5{Pr(L)) 981 983 985 }.99k
Fill-in 5292 2h1h [ 2368 2130
3-10
Time .30 11.5 30 Je2.2
m 57 72 57 65
oy 1(hha2kk) | 1.52 1 1.26
N = 3CL eP 1(188ke2) .30 .23 .19
Vg 1(17458) 1.26 1 1.14
i = hses | v, 1(9887) 57| s |
) Her{a)) .252 Ass | .s15 Llséo
B{Pr(L)) .981 972 821 }.995
Fill-in 6993 2737 1408 1881
Table 5.3
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The information in the above tables leads us to the following

conclusions:

(1) We appear to be fully just® “ied in aszuming that I is almost dense.
[We have computed the fill-in for some random crderings as well, and

although B{Pr(L)) was smaller for some other orderings, we observed

L. L.
vl 1 J . ; :
that ‘P‘\Ai)l < ]Pr(Aj)l = NZ < WY, where A, is the matrix A
T

with somne ordering a, and Ai = LiLi . In other words, reducing the

profile appears to reduce the fill-in.]

(2) The RCM algorithm seems to be easily the best algorithm. The ordering
not only supplies a near optimal bandwidth, but also yields a profile glmest
as good &s the MDF algorithm, which is prohibitively expensive. [There are
several reasons why methods based on elimination graphs are expensive to
use. First, even if we restrict the candidates to be ordered first to
those having at least one numbered neighbor, the mumber of candidates

tends to be quite large, particularly for elements with relatively many
nodes. Secondly, we not only must test edges of the graph, but we also

must usually add edges as new elimination graphs are formed. Thig addition
of edges requires computer time, and also increases the degree of the nodes
which are candidates or potential candidates for subsequent ordering. Since

the required work for each step of the MDF algorithm is proportional to the

sum of the squares of the degrees of the nodes being tested, these added edges

can lramaticelly increase the amount of work involved. ]
The reason that the RCM ordering is superior to the CM order (profile-
wise) can be explained as follows. The CM algorithm tends to order the

neighbors of each node consecutively, and the non-zero elements of A thus

tend to be arranged in sequences in successive rows (columns) of the lower

(upper) triangle of A . This is just the reverse of what we want for a
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small profile; hence the discovery of the RCM ordering.

(3) It is very beneficial to use profile methods rather than band
methods. The following table, which can be obtained from the tables

above, brings out this point dramatically.

Domain Fﬁ__
. Half-I Hollow Inverted
. R Square T
BElement
.72 .15 R
1-3
.82 .86 .6k
5.6 .21 .22 b
U3 45 .35
3-10 W13 .098 .097
.32 .28 .28

Table 5.h4: QP(RCM) /OB(RCM) and VP(RCM) /VB(RCM) for

Each Element-Domain Combination.

(¥) Although we make no claims about tue programming of the ordering
algorithms (they could be improved by programming some of the bit-pushing
in machine language), the reported times are an accurate reflection of
relative numbers of edge tests (zero/non-zero tests) required by each
algorithm. Hence, although the magnitudes or the times might be improved
by a more careful implementation, we would not expect their relative size

¢O change much.
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6. The Value of Né for Arbitrary Elements and Trisngular or

Quadrilateral Meshes

Suppose we have an arbitrary triangular mesh with NA triangles,
VB boundary vertices, and VI interior vertices. Let SB be the number
of triangle sides lying on the boundary and SI be the number of sides
lying in the interior of the mesh. Let H be the number of holes in the
nmesh (domain).

In order to characterize the stencil, let nV 5 nS and nI be the
nunber of paraemeters associated respectively with vertex nodes, the node(s)

on each side, and the interior of eavn triangle. For example, element 3-10

(Appendix A) would yiela n,=1, ng=2, and n.=1. Asin Chapter 3,
we let n=3@wmg+%.

Our aim in this section i to obtain Ng in terms of NA 3 VB 5 SB 5
nC 5 nS and nI . Our method of vproof is similar to that in [E1], where

the following relations between mesh parameters are proved.

—~
O\
E_l

"
=

"
Ny l o

—~
2
+
n
A

5 I) = Vg+ev +2H-2 .

Consider the following typical mesh:

Figure 6.1

16




Our strategy is to successively remove triangles fro+ the mesh in
stch a way as to leave all remgining triasngles with at least one side
: inside the mesh. (Thus, triangles 1 or 2 in Figure 6.1 can be removed,
but 3 cannot.) As we remove triangles, we will count the number of non-zero
elements removed from A . We ignore those cases where elements are
accidentally zero because of the regular properties of the mesh and/or

the coefficients of the differential operator. We neel the following

Lemma 6.1

Let a triangle of type 1 (havirg two external sides) be removed from

the mesh. Then N‘é is reduced by

(6.2) oy = n® - (nS+2nV)2 .

g o
[ JEN

Proof':

i
s = £

r=

The total number of elements in A due to the interaction of

SR S R e BT G et M ® Seve o o n S8 NG e o h e e A,

: . . . . 2
; parameters associated with a triangle is n~ . However, not all the

connections are removed by the deletion of triangle 1i; those corresponding

¢
&

to parameters lying on the remaining side of triangle 1 (including its end

\ 2

v such non-zero elements.

nodes) are not removed, and there are (ns+ 2n

This proves the lemma.

Lemma €.2

Iet a triangle of type 2 be removed from the mesh. Then Né is

iR ARSI R A e e e SO il

reduced by
: (6.3) o, = 2n{n_+n,) - (n +n)2+2(n +n)2
b : 2 1 S I S S Vv
H ) ;
117
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Proof:
As in Lemma 6.1, we first note that the total contribution to N‘g

from the connections of parameters in triangle 2 is n2 . However, two

of the triangle sides and their incident vertex remain in the mesh, so the

connechions of their parameters must not be counted unless they correspond

to different remaining sides. The trulh of (6.3) can be demonstrated by

assuming the equations in question are all grouped last in A and examining

Figure 6.2. The submatrices marked with an asterisk are the parts removed

from A (in the diagram below)

| ] | {
Matrix A | : : |
———t - A e
| | b« parameters associated with the
—— - I __*_ —f — internal vertex.
| : | ¥ j % }é arameters lying on an interior\
— — e N side and
T . | e\its outside vertex }
L el e d -J - d— -‘- w—— ~— L
] « s 1% | % } parameters lying on the external
| I { ' side and interior of triangle 2.
internal internal
vertex —————> ¢ sidc

o S~ =outside vertex
L

rd
_ 7 & external side
‘\h

Figure 6.2
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Summing the elements in the marked submatrices yields (6.3).
Now suppose the mesh has a hole in it. Eventually we will reach a
situation where the hole 1s bounded at one place= by a single side such as

depicted below.

side to be removed

Figure 6.3

Such a side will be referred to as a connecting side. We present the

following

Lemma 6.3

Let nV » g and nI be as above. Then the removal of a connecting

side from the mesh reduces Ng by

\ _ .2 2
(6.%) o ng + hnsn ten, .

3" v

The proof is similar to that employed in Lemma 6.2 and we omit it.

We can now prove the following
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Theorem 6.4
Let V, S 2rnéd H be the number of vertices, sides and holes
respectively in a two dimensional triangular mesh. Let n , 0y » Oy

and 03 be defined as above. Then Né is given by

(6.5 - n°+ (V-3)oy + (S+3-H-2V)o, + Hoz .

Suppose we reduce our mesh to a single triangle by successively
removing triangles cf type 1 and type 2, (and connecting sides if any),
leaving A with n2 non-zero elements. In order to reduce the mesh
to one triangle we must remove V-3 triangles of type 1, since removal
of a type 2 triangle or a connecting side removes no vertex. Thus the
removal of type 1 triangles results in the reduction of Né by cl(V—B) .
Now each hole will result in the occurrence of one connecting side being
removed during the reduction of the mesh, and this will reduce Né by 63H .
These two forms of demolition account for the removal of 2(V-3)+H triangle
sides, and three sides remain in our final triangle. Hence, we must have
removed S-3-2(V-3)-H triangles of type 1, accounting for 52(S+5-2V-H)
non-zero elements. Summing the above expressions yields (6.5).

Using (6.1), Ng can be expressed in terms of other (perhaps more
commonly available or easily obtainable) mesh parameters.

4 similar analysis can be carried out for quadrileteral elements. If

the mesh has no holes, there are three cases:

PSS
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Case 1 Case 2 Case 3

If 1\1:| is the number of quedrilaterals in the mesh, we can ovtain the
5 following expressions using the same techniques as we did for the

| 3
& J triangular mesh:

B

{ j (6.6) N‘g‘ 017y * OpYp ¥ Gxys + 0 ,

4 J vhere

i,
2

2" - (2n,+n )2

5
Q

=
]

S

2 2
n(nI *n,+2ng) - (nI +n 2ns) +2(nv+ ng)~

238
Q
i}

= n(nI+nS) - (nI+nS)2 + 6(nS + n.v)e,

W
1

=
[

= l+(nv+ nS) + g,
i and 710 7o and 75 are non-negative integers satisfying

|
1 &yt 7, = V-

!
Le;
1

{ (6.7) 57y * 2rp * 75 = 8-

7.'. + 72 + 73 = I\b-l

121




The numbers UERL and 75 are, respectively, the number of
instances of case 1, case 2 and case 3 encountered during the reduction
of the mesh. The coefficient matrix of (6.7) is singular, roflecting
the fact that there are alternate weys to demolish the mesh, resulting in
different values of 7, , 7, and 73 - We can resolve the problem as
follows. First we observe that ~03 = o) -20, . Using (6.7) in (6.6), we

have

(6.8) Ny = oy +oy(V-k-27) + o3(H_-8+2+7)) + 2

z = %7

7100y - 20+ 03) + o, (V-h) + 05(2ND-S+ 2) + o°

0, (V-1 + 03(2ND-S+2) + 0.

If our mesh has H hnoles in it, and we rename the 03 of Lemma 6.3

as 0, , equation (6.8) becomes

(6:9) 1My = ay(v-b) + ag

2N -S+2+H) + o +o°,
O

This information is important because it allows us to allocate the
exact amount of storage for the non-zero elements of A as soon as we
know the mesh and the characterization of the polynomial on each element.
It is also useful in checking that our mesh is consistent and our program
is working correctly.

The expressions we have derived allow us to obtain an estimate for

the density B8(A) = Ng/’N2 for finite element coefficient matrices. Using

(6.4) and (2.5.6), along with (2.5.2) and (2.5.3), we have
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| . (= 2 2)NA
i (6“].0) ﬁ(A) = 2
b [(n; + 5 o, + 2 n )N, J?
i S T - Ty T/N
{ _ Dlay,ng,n;)
{ I\IA :
; ! where
; o, + C,
: W/ - l 2
L (6'11) I'\nv,ns)n‘l) = 2( + l + -3- n )2 M
o T - R
: The average number of non-zero clements per row of the coefficient matrix
] . . . 1 i 3
| is obviously given by -2—(0'1 + 0'2)/(1:1I +5 o, + 3 ns).
) Some typical values of [' and average number of non-zero elements per row
§ are tabulated below.
l Element I(n_,n ,nI) Aversge number of
V’"s
non-zero elements
l per row
- 1-3 14.00 7.00
P 2-6 5.75 11.50
! 3-4 8.08 20.20
3-10 3.78 17.00
4-6 6.59 29.67
h-15 2.9h4 23.5
j 5-6 10.15 45.67
L
5-21 2.48 31.00

Table 6.1

moeyeata

r—=
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T. Analysis of Storage and Computational Requirements for a

Model Problem [,

In this section we obtain estimates of GB ) GP 3 VB and VP for |
& particular mesh, in oxder to demonstrate the savings attainable by using
profile methods ruther than band methods. The mesh we consider is obbtained
by subdividing & unit square into p2 small squares of side 1/p , and then
subdividing each small square into two right triangles. An exampie with

p = 6 is given below.

[

\ :

T{; L.

Vs
S

 —

N

Figure 7.1. Six by Six Regular Right Triangular Mesh

As in Section L.6, let nV » Mg and nI denote the number of
parameters associated respectively with vertex nodes, the node(s) on each i«

side, and the interior of each triangle. We number tke nodes diagonal by i‘
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diagonal, beginning at the lower left hand corner, and considering nodes
lying between consecutive diagonals as & row. For example, stencil 3-19

(Appendix A) would yield the numbering shown below:

LY

Figure 7.2
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As usval, we denote our symmetric positive definite coefficient matrix
by A , with Cholesky factorization LL° . Making use of (6.1), and

recalling the mezning of N and H , we can write

A VB ’ SB

N +V oN +8
(7.1) N =n A2-§-H+1 +n A_B

3 oo,

where N is the dimension of A . For a p by p mesh such as

Figure 7.1, N 2p2 and SB = VB = bp , yielding

A

(7.2) N = (n +3ng+ z‘nI)p2 + 0(p)

For this ordering, the bandwidth of A 1is given approximately by
{ = - =
\7‘3) m = (p+2)nv + Bpns + (2P l)nI (r\r+5ns+2pnI)P
>
Pg

. . .23
Thus, GB = ho) and VB = ﬁBp .

We now wish to obtain estimates for 6. and VP « To simplify the

P

algebra, we assune ny = 1, nS =

We can then prove the following

oy

Theorem 7.1
For a pxp regular rectangular griG, the coefficient matrix A

obtained using piecewise linear poiynomials satisfies

(7%) pr(a)] = T+ 1%+ 20

126

= 0 (piecewis: iinear polynomials).
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Proof:
Considering the first node point as diagonal 1, and recalling the
definition of 6? (Section %.1), we see that
A
51 =0
' A—
| 82 =1
A A
83 =2, B =2
A A A
85=5; 66=3) 87=3
| (7.5) sl oyr, EEL o oy XD L, 0 1crcp .
B i 2 - - 2 -7 =
[ Now for the main diagonal, 8? = ptl , and for the diagonals above the

- main diagonal we can show that

- (7.6) sh.=p , DB o o ox(ed)

3<r<ptl .

N-i "7 2 = = 2 ’
) N,
i Using the formula |Pr(4)| = 2;-(614-1) along with (7.5) and (7.6), we
. i=
have
: 2
|Pr(a)| = f i(it+2) + p{pt2) + 1+ 1(i+1)
i=1 i=1

2 2
X 2i"+3i+p(pte) + 1
i=1

~

5
=B£R+—l)—(ai1;l+p2+2p+l= +:(2_p2+_32+1.

Thus, using the profile storage scheme rather than the band storage

scheme, we can save avbout one third of the storage for A or L . It is
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straighitforward (but tedious) to show that for a general stencil,
i 2,253
(7-7) ler{a)| < 38"

with BP < BB .

Recall that in Section 4.1 we showed that

N 8‘5%%3)
= i1

(7.8) o, =
P i);l

Again assuming n, = 1 and Ny =05 = 0 , we can prove the

following

Theorem 7.2

Let the FC algorithm be applied to A . Then the number ol

multiplicative operations required to compute 1L is given by

Proof':

Using (7.8) along with (7.5) and (7.6), we have
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o, = il i(i+1;(i+l+) p(p’rag(ws) . ZP_Z iﬁl_é)eﬂ_‘il
i= =

P 5, .2
ICRL RS e
i=

2

%ph+3p3+%p2+1“22p .

Again, with some tedious algebra, we can show that

(7.10) 8 < %515, ph .

It is, therefore, possible to halve the computation required to compute
L by using profile instead of band methods. Note that we did rot prejudice
our comparison by ordering diagonelly, since the bandwidth would be the

same if we numbered our nodes in the usual row by row fasghion.
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8. Miscellaneous Topics and Concluding Remarks

In this section we discuss several modifications of elimiration methods
which are useful in various circumstances.

We begin by discussing a technique often referred to by engineers as
"static condensation" (SC), which can be employed to eliminate some of the
unknowns in (3.4.4) at the element level [Fl]. As we described in Chapter 1,
a basis function corresponding to an internal node of TV is non-zero canly

v . R
on T . Heuce, the corresponding parameter is connected only to parameters

. . v cas v . v v
associgted with T . Suppose we partition ¢  into Q and d >
V » 0 7 4
where a5 corresponds to interior node parameters. We can write (3.k.1)

in the form

v v v \ v
Byy By 9 by
(8 1) = s
VooV v v
By; By 9% by

where q; is independent of P > ¥ #V . Then (8.1) can be replaced by
(8.2) by eliminating qg :

-1
VooV oV, Y VooV VT LY
- B.,B B2l]ql = b, -B,, B b .

v
(8.2) LB, 1 12 722 "2

11 12 722

In this way, the dimension of A (see Section 3.4) can be reduced by

11
NAnI . We can carry out a somewhat superficial analysis of the model
problem discussed in Section k.7 to show the savings possible by using this
technique. To simplify the analysis we will consider the use of the band
Cholesky algorithm, and consider elemen®t 3-k. It is easy to show that

using the ordering of Section L.7, the band width m is sbout S5p and

the number of equations N is about sz , yielding
(8.3) 8] = 125p
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Now consider the corresponding quantities if we apply static condensation

and elirinate 21;2 variables befors assembly. The bandwidth m is now

Y

only ebout 3p , and N = 5p2 . Thus

- . L
(8.4) g = 27p -

It is fairly easy to show that the number of multiplicative operations

required to eliminate the variables is

(8.5) o * 3

which means the technique pays (in terms of multiplicative operations)
for this particular element, problem, and solution method for all p . Of
course, its use might be justified for storage reasons alone, even if it
did not reduce the computation.

in general,; QSC is given by

ni 2

(8.6) [ =+ 5nI(nI+ 1) (ns+nv) + 9nI(nV+ nS) ] L

Another technique somebimes used in connection with solving finite

element equatiors is the so-called irontal-solution method {12, K2]. The

basic strategy is to combine the assembly and decomposition of A by
alternating between the accumulation of coefficients of the equations (most
of the coefficients depend on more than one element) sand the elimination.
A square submatrix of A (in some stage of reduction) is the only main
storage required. The matrix corresponds to "active" variables; that is,
variables which have not been eliminated and for which there are non-zero
coefficients in the equstions so far encountered. The subset of active
variables continuously changes as new elements are processed. The main

point that is usually made in favor of these schemes is that variables are
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eliminated as soon as possible, rather than in a predetermined order.
However, this flexibility is obtained at a rather high cost in programming
complexity, and the question of ordering has really only been moved a

level higher. The problem of optimal equetion ordering has been replaced
by the problem of optimal order of element assembly. Our general impression
is that these methods will be most valuable when main storage is at a

high premium.

132




"
[

-

I

CHAPTER 5

EINITE ELEMENT SOLUTIONS TO SOME SELECTED PROBLEMS

1. Introduction

In this chgpter we will present finite-element solutions to some
much-studied problems for which numerical solutions have been presented
in the literature. Our purpose is not necessarily to present more
accurate solutions than have been presented before, but rather to
demonstrate that the finite element method enables us to obtain

comparatively good results efficiently and without resorting to special

methods. We will provide evidence suggesting that the finite-element
method is not only desirable because of its flexibility regarding
irregular domains but is competitive or supericr to common alternate
methods with respect to efficiency.

The term efficiency is somewhat difficult to define quantitatively
since storage requirements, computer time, and manpower have different
relative costs in different situations. Loosely, efficiency will mean
"number of correct digits per dollar".

We would like to emphasize that the finite-element solutions presented
in this chapter have been produced by a general program. No ..e was msde
of any st «ial characteristics of the problems other than those an engineer
would reasonably expect. For exauple, we graded the net small near the
re-entrant corner of the L-shaped membrane eigenvalue problems (Section 2,
this chapter), but we did not attempt to incorporate "singular functions"
into the basis [F2,F6].

Since we are using a Ritz procedure, our computed eigenvalues for

the problems below are upper bounds for the true eigenvalues.
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2. The L-Shaped Membrane Eigenvalue Problem

The L-shaped membrane eigenvalue problem has been studied by many
authors. For background materiel, see Forsythe and Wasow [F5] and Moier
[M3];, and for various special computational methods, see Reid and Walsh
[rRe], Fix [F2], Schwartz [g7], and Fox, Henrici, and Moler [F6]. The
domain R consists of the union of three unit squares, and we wish to

find the stationary values ki (0 <A <A, <A

1 o < «..) of the

3
functional:

(2.1) Ifu} = [f [ui + us]dxdy / [f w?axdy
R R
wiere u =0 on the boundary S .

The interesting aspect of this problem is provided by the re-entrant
corner, which leads to unbounded derivatives of the fundamental eigen-
function in the neighborhood of the corner. Thus, the eigenfunction is
difficult to approximate by functions which do not e£xhibit a similar
behavior. The value xl = 9.63972 reported in [F6] is accurate to the
last digit, and we will use it for comparison.

Our first experiments make use of the following trianguler mesh:
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We are obviously making use of the symmebry of the ijrst eigenfunction
here, and have graded the net appropriately near the corner. In the
tables below k is the fector by which the mesh of Figure 5.1 was
sub~-divided. The eigenvalues we found using inverse iteretiv» [#W2] with
an initial guess of 9.6 . The computed xi is believed t0 be correct
to the last digit. Set-up time includes the time required to generate
‘the mesh and order the nodes as well as the time required to generate

and assemble the egquations. The missing times in the table were so small

that they were meaningless. All times are in seconds on an IBM 360/91.

y
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*
x,-xl for piecewise linear functions

Number of . Set-up Solution *

Equat ions Bandw2dth Time Time MM
1 5 -3 .33 - 3.4003
2 22 6 .57 .05 1.0089
3 51 12 .62 .10 1605
4 12 .93 .17 2650
5 145 15 1.33 .30 .1718
6 210 18 2.3h .55 .1210
7 287 21 2.73 .90 .0901
8 376 24 3.53 1.28 .0699

Table 2.1
*
The rate or convergence of the .computed hl to hl as k - o 1is

obviously exceedingly slow.

The systems of linear equations inveolved in the inverse iteration
routine we solved using a band Gaussian elimination routine. The code
appears in Anpendix B. It is interesting to note that the set-up time
dominutes the solution time in all cases. This is due in part to the
characteristics of the 1IBM 360/91, which has a very fast floating-point
arithmetic unit and a look-ahead instruction stack. Both features tend
to make "number crunching" tesks, such as Gaussian elimination, proceed
rapidly and efficienuly. The set-up nocedure, on the other hand, requires
considerable boé%keepikg and hranching. Programs of this type do not
make effective use of the powerful machine feztures mentiomed above.
Another reason for the relatively large set-up time is that we are using
low degree polynomials. The number of triangles to be processed (and
the associated overhead) is larger with respect to N than it would be

for quadratics, for example. Note, however, that the ratio
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(Set-up time)/(Solution time) is steadily (if slowly) decreasing.

Our second experiment again makes use of the mesh of Figure 5.1,
but we now use polynomials of higher degree to demonstrate how efficient
they can be. Table 2.2 contains results for polynomials of degrees 1

through 6 ; in all cases the original mesh was used. Our inverse

iteration routine for these experiments used a symmetric indefinite
equation solver using the pivoting algorithm of J. R. Bunch [B13. The

code for this computation appears in Appendix B.

*
xl-xl for Piecewise Polynomials of Degrees 1 to 6
Number of . Set-up Solution *
Degree  pouations ~ Dondwidth o o Time MM
1 5 3 .33 - 3.4003
2 22 11 43 .1 .3720
3 51 2h .70 .25 .0160
4 92 k2 .87 .95 .0063
5 1h45 65 1.7 3.02 003k
6 210 101 2.68 6.02 .0021
Table 2..2

It is obviops that for this problem the use of polynomials of
desyea > 1 are considerably more effective than linear ones.

It is interesting to note that the 7:
polynomials (Table 5.2) yielding 145 equations is comparable to the xi

~btained using quintic

obtained by Moler [M3] using finite .ifference methods on a uniform mesh

with h = 1/100 (yielding 5,000 equations). Our storage requirements
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were virtually the same; we required 15385 words (including the storage
of A and B of the generalized eigenvalue problem Ax = ABx }.
Moler's Fortran program, written specifically for this problem, took
about 12 minutes to execute on an IBM 7090. Thus there is a factor of
roughly 150 in execution times. The ratio of speeds of the arithmetic
units is about 100, while the effeciive memory speed ratvio is about 10.
The ratio of times for other operations lie somewhere between these two
extremes. We feel we can safely say that the finite element method is
at least fully competitive with finite difference methods for this
problenm. "

It was, of course, not necessary to use inverse iteration. We could
have used a method due to Peters and Wilkinson [Pi] which essentially finds the
zeros of det(A-AB) . Although the running times would be considerably
larger than for inverse iteration, the required storage for our quintic
problem would be a total of 10,536 words (storage for A and B and an
additional ((m+l) x (@m+1l)) words for the determinant evaluation). Both
this method and inverse iteration can be used to find subdominant
eigenvalues, whereas the 1etnod ased in Moler [M3] is aprlicable only
for an end eigenvalue. To find subdominant eigenvalues using Lis technique
would require some form of deflution to render the dominant eigenvalues
equal to zero. To avoid makinz the coefficient matrix dense, the
deflation would have to be done implicitly which implies that the eigen-
vectors corresponding to dominant eigenvalues would have to be available.
We feel that the ability of the high order finite element methods to
obtain respectable 14sults using only moderate numbers of parameters is

particularly important for eigenvalue problems because it enablesg us to
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apply well known, dependable methods for finding the eigenvalues of the
discrete problem.

We again emphasize that we are not implying that finite element
methods are the best ones to use for solving this particular problem.
Indeed, the method proposed by Fox, Henrici and Moler [F6] is probably
the best known method for finding the eigenvalues of the L-shaped
membrane. However, the use of such techniques requires information
which may only be known to an expert in the field, and the utilization

of them in a general code is complicated.
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3. Eigenvalues of Rhombical Domains

Bounds for the eigenvalues of rhombical domains have been obtained
by Moler {M4i], Birkhoff and Fix [B7), and Stadter [shk]. Moler obtains
his bounds using a methoa of particular solutions, and Stadter obtains
bounds using the method of intermediate problems [Sh]. 1In this section
we will show that with finite element formulations having relatively few
parameters we can get close to or within the bounds produced by the methods
described in the above references.

The problem we considered is the equation (2.1) of Section 2 with

a rhombical domain of side = and skew angle © as indicated below:

N
\
\
\
o \
\
®> x
(O’O) (7‘:0)
Figure 5.2
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Our first experiment takes no account of symmetry, and the results
are ccmpared with some of the bounds presented by Moler [Mhi]. These
results are summarized in the table below. As before, k indicates the
factor by which the input mesh (indicated by the dashed line in Figure 5.2)
has been subdivided. N is the nuumber of equations, m is the bandwidth
end 4 is the degree of the piecewise polynomials.

The methed employed by Molcr utilizes particular solutions to the
Laplacisn gperator, and the 20 particular solutions used were carefully
chosen to aéree with symmetries of the eigenfunction being approximated.
Each bound calculation required about 20 seconds on an IBM 360/67. Our
calculations were done on an IBM 360/91. OQur set-up times (for each
example) and solution times (for each eigenvalue) have been included in
Table 3.1 for comparison purposes. The 360/67 and 360/91 have radically
different design features and a comparison between the two machines is
difficult. The largest ratio of execution times this author has
encountered between identical prcgrams run on the two machines is 15, and
that was for a very special program. Usually the ratio is from three to

six and is almostv always less than ten.
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Case 1: Rhombicel Membrane Eigenvalues: © = 30 .
* * * * Set-up and
M M2 M ™y Solution times
Moler's 2.51921 |’ 5.33333 7.24150 8.47510 ~ 2C sec per
Bounds 2.52606 5.33334 7.29028 8.50997 %%eg\éoa}g; on an
k=2,
-9 2.52302 | 5.33341 7.26042 |  8.5047 A1
m =22, i
d=h .
k=3, .
N=121 .69
nohs’ | o2.seeBh | 533339 | 7.26655 | 8.lghok g
a="4
k=4 .
N =225 - . p i
m=65, 2.52279 5.3335k 7.26611 8.4937h 3.7
a=b
k= g,
N=>1 b ' 1.2
m =35, 2.52284 5.333L0 7.26651 | 8.hgh20 L
d=5
Table 3.1
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Case 2:

=

= %

Mcler's

Bounds

2.01218

2.01248

5.15659
215750

7.99206
T.9959k

N =49,
m=22,
d=h’
k=2

2.01232

4.90567

5.16407

8.00979

N=121,
An=h3,
d.=)+, -

2.01226

4. 90k05

5.15735

7.99516

2.01226

5.15720

7.99851

2.01225

%.90389

5.15705

7.99308

Tabie 3.2
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Our first observation is that again the higher degree polynomials
appear to be more efficient. For example, in Case 1, using quintice
with N =81 and m = 35 yields results as good as the quartic
example having N = 121 and m = 43 . For Case 2, the singulerities
in the derivatives of the eigenfunctions near the corners are less
troublesome, and the value of the higher degree polynomiels is less
pronounced, aithough still apparent. We point out that our numbers are
upper bounds to the true eigenvalues.

Moler's method is clearly superior if accurate upper and lower
bounds are required, or if approximations to many eigenvalues are desired.
However, his method may be expensive and/or difficult to apply to problems
whose operators do not have simple or easily generated families of
particular solutions.

Moler's results are for moderate values of © , and only for the
fixed membrane problem. We now wish to make some comparisons with the
results of Stadter [gk] and Birkhoff and Fix [B7]. They report bounds
for € = 300 (150) 750 for the rhombus fixed at all edges, end Stadter
reports bounds for tine rhombus fixed at two opposite edges and free on
the remaining two edges.

We begin with the fixed membrane problem. The bounds reported are
for eigenvalues corresponding to eigenfunctions which are symmetric with
respect to both diagonals. For purposes of comparison, we restricted
our first experiment correspondingly. Our domain is the hatched area

shown below:

1Ll

R
!




vy A

R

0

Figure 3.1

The boundary coudition w, = 0 1is imposed along the boundary of
the hatched region interior to the rhombus. This is easy to do since

it is a natural boundary condition.

In the discussion below Kﬁ and Ki are computed eigenvalues

reported by Birkhoff and Fin [p7]. The values %ﬁ' were obtained using
the Rayleigh-Ritz method with the approximating space spanned by the
affine vransforms of the first 30 eigenfunctions of the square membrane.
The values hﬁ were obtained using a second space of dimension 30 which
included special singular functions having the appropriate behaviour at
the corners. 1In both cases, only the even-even symmetry class was sought.
The eigenvalues Xg’k and kﬁ’k below are upper and lower bounds
supplied by the method of intermediate problems as applied to the
rhombical membrane nroblem by Stadter [Sh]. The superscript k indicates
the number of intermediate problems used, and is the size of the two (dense)
matrix eigenvalue problems which must be solved to obtain the bounds.

[o]
In [sk] Stadter reports bounds for k =15 and © = 30 (l§>) 75° , and

in {W1l] he reports bounds for kX =30 and 6 = h§>
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The eigenvalues Ki’k below are our finite element results for
piecewise polynomials of degree ¢ yielding k by k (band) eigenvalue
problems.

In Table 6 we compare kﬁ s kg’ss 5 xi’so and Rg’so . For the

following reesons, we feel it is fair to compare hﬁ with kZ’ss

even
though the space which produced Kﬁ is only of dimension 30. First,
Birkhoff and Fix report th&tf&% times as much computer time was needed to
fird the Kﬁ's as the kﬁ's for a given angle 9 . (We assume this increase
was caused by complications introduced by fthe incorporation of the singular
functions.) Second, our eigensystems have band structure, whereas theirs
are dense. A tnird somewhat qualitative reason might be termed the
"nuisance factor". All our finite element computations were done with a
general purpose program; no special modifications with regard to special
basis functions or geometry were necessary.

The time required to generate the finite element eigenproblem for
each angle on the IBM 360/91 was about 0.6 seconds. About 0.2 seconds
were required to find each eigenvalue using inverse iteration. By comparisorn,
2 minutes were required on an IBM 709k to produce the hﬁ's for a given 9 .
[Since it appesrs that the major portion of the time used was for the
generation of the eigenproblem rather than its solution, the fact that
Birkhoff and Fix used a method yielding all the eigenvalues of the discrete
problem is relatively unimportant.] Roughly 4 seconds of IBM 360/91 time
was required to produce the upper and lower bounds (XU’SO and kﬁ’So)

for each angle using the method of intermediate problems. The results are

tabulated below for n = 1,2,...,6 and © =30 , 45 , 600 and 75 .
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' { Symmetric Eigenvalues for the Fixed Rhombical Domain

1 5

% } Case 11 0 = 30°

T

1 2.5228 2.5238 2.522k 2.5241

i “ 2 §.1939 8.5060 8.4916 8.5008

“ - 3 14,233 14.256 1h.22k 1h.261

4 4 17.156 17.183 17.139 17.167

5 27.173 27.110 26.983 27.096

: } 6 29.606 29.620 29.14%3 29.537

Bl |

é Case 2. O = 45

JI 1 5.5210 5.5210 3.5201 3.5263

1. 2 10.158 19.190 10.15k4 10.17%

& | 3 18.785 18,86} 16.737 18.802

5 n 22,115 22.135 22.095 22,21k

> 30.153 %0.289 29.785 29.942

B 6 %9.663 39.582 39.493 39.771
- Case 3: © = 60°

1 6.3238 6.3598 6.3217 6.3485
2 14.968 15.088 14.958 15.005
} 3 25,333 25,571 25.202 25.338
I 38.064 38.981 37.436 3T.7TH
5 43,581 43,717 43 480 hh,013
6 54 .267 56.379 51..883 52.575

! 1 20.19% 20.283 20.185 20.%07
2 36.373 36.452 36.301 36.617
4 3 53.595  53.562 52. 79k 53.499
A b 76.746  80.125  70.951  72.660
5 110.20 111.52 90.96k4 9k.982

A 6 154.89 144,38 112.87 121.75

L

Table 3.3
1
3! b7




We offer the following observations:

(1) The remarks of Birkhoff and Fix suggesting that their Rayleigh-Ritz
methods yield much more accurate upper bounds than the method of
intermediate problems seems to be barely justifiable. In [B7] their
comparisons of Kﬁ and kﬁ are sgainst Ap515 for 6 = 3OF ) 60°
and 75° . For O = hé’ the comparison is against Kg’ao , and for
this case kﬁ was a sharper upper bound in only half of the ceses,

and although Kﬁ was better in all cases, it was only marginelly

better in most of them.

(2) The upper bounds produced by the finite element method appear to be
fully competitive with the Kﬁ's , and are appreciably better for the

lower eigenvalues.

(3) Experiments with polynomials of various degrees again indicate that

efficiency increases with increasing polynomial degree.

(4) Our finite elemeat solutions made no use of
(a) information about the behavior of the solution near the corners
of the domain
(b) the fact that the domain is affineiy equivalent to one in which

the eigenproblem can be sclved exactly.

We feel that these pcints are important because the utilization of
(a) appears to be awkward in ¢ general implementation, ané (b) places a
rather severe restricticu on the application of the method of intermediate
problems.

We now turn briefly to the fixed-free rhombical membrane eigenvalue
problem. Otadter [Sh] restricted his attention to eigenvalues corresponding

to eigenfunctions symmetric with respect to the center of the rhombus. It
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was not convenient for us to restrict our problem correspondingly, so

1 1 1 LI') 15 )4’ ls
we solved the "full" problem. We report recults for )x.l and %3 .
)\.i’ 15 and Kg’ 15 for the Fixed-Free Rhombical Membrane
k,15 L,15 U,15 4,15 L,15 U, 15
a] )s.l %'l )\.l >\3 %.5 %.5
30 1.2343 1.1820 2.8550 4.9105 4.6585 5.1547
€0 2.8550 2.5046 3.6533 7.6453 6.9881 9.5382
75 8.3400 6.8038 13.043 19.177 14.233 27.438
Again, with a moderate number of parameters we can easily improve
on the upper bounds produced by the method of intermediate problems.

ARTe)




4. A Dirichlet Problem

We now consider finite element solutions to the following problem:

2 2

v, % _ o g,
)..2 )_.2

OX Oy

(4.1)

u = ex cosy on SUT.

The boundary S is a 1.28x1.28 square and T is & .25X .25
square with lower left corners at (0,0) and (.5,.5) respectively.
The input mesh is indicefied by the dashed lines in the diagram above.

Experiments were run on an IBM 360/91.

Details of the various polyncmials can be found in Appendix A. As
before, N indicates the number of finite element equations and k is
the factor by which the input mesh was subdivided. The profile Cholesky
algorithm and the RCM ordering (see Chapter 4) were employed in all
cases.

We begin by comparing different element/mesh combinationg which

yielded roughly the same accuracy.
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Operations

Set-up Solution for Storage

Time Time Solution  Error a8

Element N %k (Seconds) (Seconds) « (10+5) x(ho-s) L A
2-6 sk 5 3.18 .53 154 1.86 10,544k 3000
3-4 216 3 1.56 .22 37 1.28 3,099 1620
310 180 2 1.13 .13 28 1.63 2,425 1188
4-15 72 1 .65 .0h T 1.1k 684 468

Table 4.1

Table 4.1 demonstrates dramatically the value of using high degree

polynomials for solving this problem.

Set-up times, solution times and

storage requirements decrease us the degree 4 of the polynomial

increases.

Observe the striking decrease in the operations reguired to

solve the generated linear system.

We now present some experiments usging the initial mesh and varying

the degree.

Operations
for

Set-up Solution Solut;on Storage

Element N Time Time (x 107) Error L A
3-10 36 . .h82 -- 2 2.35(-k) 209 14k
415 72 .65 No) 6 1.1h(-5) 634 468
5-21 120 1.10 .13 21 4,06(-7) 1692 11ko
6-28 180 1.86 .20 53 1.16(-8) 3465 23h0

Table 4.2
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Again the case for higher degree polynomials is apparent. Compare, for
example, the third eatries in Tables 4.1 and 4.2. Their demands on

system resources are about the same, but the error for the quintic

is more than an order of ‘magnitude less.

e

To compare the above results with what could be expected using
finite diffccrence methods we solved the problem using the standard
five~point difference operator on a uniform squere mesh with mesh width
of 1/100 . The solution was obtained using an imbedding approach [G1,B15]
which makes use of very fast Jirect methods for solving the discrete
Laplacian equations on & rectangular domain. The set-up time for this L

procedure is large {~ 25 seconds for our problem on the IEM 360/91) and

consists of computing a qxq "cepacitance matrix". In our problem

g = 100 and the computation of the cegpacitance matrix involves solving
qg 127x 127 zrectangular problems. However, once this initialization is
done, we can obtain a solution to our given problem by solving 2 rectangular l
problems and a dense q by q system of linear equations. Assuming that

we have computed and decomposed the capacitance matrix beforehand, we can

solve our problem in about .7 seconds. This latter "solution time"
has been found to be superior to SOR or ADI solution times (by factors
of 5 to 8) for a number of typical problems [Bl%].

Thus, & (conservative) entry in Table 4.2 for finite @ifferences

would be

N Solution Time Operations Error Storage

15, 50k 7 106 7.20°% | 22000
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Each solution of the 127 x 127 rectangular problem reguires about
.> seconds on the IBM 360/91. Thus, even using the iterative scheme
(based on fast direct methods) proposed vy George [Gl] which avoids “ne
calculation of the capacitance matrix is unlikely Lo compare favorably
in overall time (solution and set-up time) with the last entry in
Teble 4.2. Anyway, an equally important coasideration is storage
requirements, and bthe last entry in Table h.2 regquires only 5805 words.
The observed error for the sixth degree polynomial was 1.16><10-8
compared to 7)(10-6 for the difference eguations.

Again we should point out that there are still better ways to solve
this problem if we are prepared to take advantage nf its particular zharacter-
istics. Moler (private communication) solved the problem bty using a linear
combination of particular solutions as a trial solution and determining the
coefficients of the expansion by minimizing the two-norm of the crror at a
discret: set of points on the boundary SUT. The least squares solation of
a 26 x 15 problem was all that was required and the program was only a few

pages long; the error, however, was around 10710,
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App~udix A:  Euine Representitive Triangular Elements

The labels on the stencils below indicate the parameters associated
witih eazni nude. When no label appears, the function value v 1is to be
u3L,umed.  Tne wwo-part hyphenated name refers respectively to the degree

of tre polynemial and the number of nodes associated with the element.

Element Name Stencil

A\
N

N
2-6
v,vx,vy
3-k oV
P v,V ,V.
v,vx,vy 7UxY
3-10 .
V,V_,V
X"y
bt VXZZL//'///A\\\\\:i;jy
< ¥ V,V ,V
v,vx,vy O xy
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I Element Name Stencil
i
L
h-15
i
-
‘z
| v’vx’vy’vxx’vxy’vyy
5-6 Vn Y
[} V,V L,V ,V
sV oV xx’vxy’vyy Va V,Vx,Vy,VXX,VXy,Vyy

5-21

{——"ﬁ’ zw'

PP,

! 6-28

 sdnonay ota
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Appendix B: 0/S 360 Fortran Code for Finite Element Methods

The codes in this appendix are all written in O/S 360 Fortran. There

are five separate programs whose relation is depicted in the following chart:

Phrage 1 Mesh generation and node ordering

Phase 2 Generation of stiffness matrices and
mass matrices or load vectors

Assembly of equations and, if it is a
bourndary value problem, its solutioa.
Otherwise, output generalized eigenvalue
problens.

Phase 3

Solve Ax = ABx using
invecrse iteration with
band linear equation
solver.

3o0lve AX = ABx using
inverse iteration with (user !
symmetric indefinite option)

linear equation solver
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The transmission of data from one program to the next is done via Fortran
units 1, 2 (and 3 if an eigenvalue problem must be solved). All data sets read
and written are sedquential, so the program would work without alteration whether
the storage devices are disks, drums, or tape units. Only changes in the job
control languasge would be necessary.

The program is set up to find the stationary values of Il[v] + Ie[v] ana
Il[v]/J[v], where

2 2 2
Il[v] = If eV, + covy * c3v dxdy,
R

I2[v] jf e,V ax dy,

R

m
13
=%

Jiv] = ff v2dxdy
R

Here )5 S5 and ¢, are constants, and c) is a function supplied by the

3
user in the subroutine FUNC. For further details and sample input see the
comments in the code of PHASE 2 and in Appendix C.

With minor changes in the mainline of PHASE 2, other terms can be included
in I1 and 12,
quadratic terms could be handled. MNote that phases 1 and 3 would not need to be

and with somewhat more substantial changes variable coefficient

altered.

Piecewise polynomials of degree d (1< d4<9) utilizing (dgg) value
and first-derivative parameters can be selected by the user and are automatically
generated by the program.

The choice of method for solving the generalized eigenvalue problem depends
on the relative size of the number of equations and the bandwidth, as discussed
in section 4.3. Both programs assume that the initial shift (SHIFT) supplied
by the user is a good one; the decomposition of A-SHIFT*B is done only once
at the beginning of the iteration.
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Fhase 1
Generation of the Mesh and Ordering
of the Nodes
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Phase 3
Assembly of the Equations and
Solution of Dirichlet Problems
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Inverse Iteration Using a
Band Linear Equation Solver
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Inverse Iteration Using a

Symmetric Indefinite Linear Equation

L

Solver Based on the Work of J. R. Bunch
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Appendix C: Sample Deck Set-ups and Runs.

The following pages contain deck set-ups and the output of the resulting
runs for a sample problem. The runs were made on an IBM 360/91 at the Stanford
Linear Accelerator Center. All the cards with "//" or "/¥" in columns 1-2 are
0S/360 job control language cards, and do not change from problem to problem.
Thus the actual required input is rather swall. PFor information about the in-
put parameters, see the comments at the beginning of each of the program modules.
Extensive use is made of the namelist feature of the IBM Fortran language to
avoid the rigidity of formatted input.

Cbject modules for Phase 1, Phase 2, and Phase 3 are contained in the data
sets PUB.JAG.POL, FUB.JAG.PO2, and PUB.JAG.TMP, respectively.

The sample problem i3 the following:

Y Uy = 4 in (0,1) x (0,1)

u = x2 + y2 on x = 0,1, 0<y<1,

y = 0,1, 0<x<1.
The solution to this problem is u = x2 + y2.

The first run solves the problem using piecewise quadratics (element 2-6},

and the second run uses piecewise cubics (element 3-4). In both cases the

error in the parameters is at rounding error level, as is to be expected.

The final two pages of this Appendix contain a deck set-ﬁp for an eigen-

value problem. The deck listed is the one used to produce the quiatic entry

in Table 5.2.2.




Deck Set-up for Sample Problaem,

// JAGXXTST JOB 'JAGS$CG®, 54, CLASS=E,REGION=3Nn0K
//STP1 EXEC LOADPGO,PAR! ,GO='S1ZE=288n19"
//GO.SYSLIN2 DD DSNANME=PUB.JAG,P0O1,DISP=0LD,UNIT=2314,

/1 VOLUME=SER=PUBOO1
//GO.FTO1F001 DD DSNAME=JAGCG.OUT1,UNIT=SYSDA, DISP=(MNE",PASS),
/1 SPACE=(CYL,(1,1),RLSE)

//GO.SYSIN DD *

&PARNS NDIVS=2,NPS=1,NCEN=0, LAST=1, I BUG=0, &END

&POINTS PT(1)=(0,0),PT(2)=(1,0),PT(3)=(1,1),PT(4)=(0,1) &END
&TR HODES=1,2,3, BND(1)=1, BND(2)=2 &END
/&m NODES=1,3,4, BND(2)=3, BND(3)=4, ENDTR=T &END

*
//STP2 EXEC LOADGO, PARNM.GO="'SIZE=288000"
//GO.SYSLIN2 DR DSNAME=PUB, JAG.P02,DISP=0LD,
!/ UNIT=2314, VOLUMNE=SER=PUBO0O3
//GO.FTO1F001 DD DSNAME=JAGCG.OUT1,D1SP=(0LD,PASS),UNIT=SYSPA
//GO.FT02F001 DD DSNANE=JAGCG.OUT2,DISP=(NEl, PASS),UNIT=SYSDA,
// SPACE=(CYL,(2,1),RLSE)
//GO.SYSIN DD =

%PARMS 1BUG=0, IDEG=2, NCP=1, ICP(1)=1, NSP(1)=1, 1SP(1,1)=1,

IRHS=2,UX2=1,UY2=1,U2=0, IEIG=0 &END

/*

//STP3 EXEC FORTHLG
//LKED.JAGP0O3 DD DSNAME=PUB,JAG.TMP,DISP=0LD,UNIT=2314L,

// VOLUME=SER=PUB001

//LKED.SYSIN DD =*

INCLUDE JAGPO3

/*

i

//GO.FTO1F001 DD DSNAME=JAGCG.OUT1,UNIT=SYSDA,DISP=(0LD,DELETE)

//GO.FT02F001 DD DSNAME=JAGCG.OUT2,UNIT=SYSDA,DISP=(0OLD, PELETE)
//GO.ETO3F001 DN DSNAME=JAGCG.OUT3,UNIT=SYSDA,DISP=(NEM,6 PASSY,

Ny SPACE=(CYL,(1,1),RLSE)
//GO.SYSIN DD *
&PARMS NBNDS=4, I PRINT=1,1S0L(1)=10, &END
110
2 10
310
4 10
/*
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These cards and input solve the sample problem
using piece-wise cubics (element 3-4). The output
from this run appears on the following pages.

7/ JAGXXTST JOB 'JAGSCG*®,54,CLASS=E,REGION=3C0K
//STP1 EXEC LOADGO,PARM.GO='S1ZE=283000"
//GO.SYSLIN2 DO DSNAME=PUB. AG.P01,DISP=0LD,UNIT=2314,

// VOLUME=SER=PUR001
//GO.FTO1F001 DD DSNAME=JAGCG.OUT1,UNIT=SYSDA, DISP=(NE\!,PASS),
/7 SPACE=(CYL, (1,1) ,RLSE)

//GO.SYSIN DD *
&PARMS NDIVS=3,NPS=0,NCEN=1,LAST=1, 1BUG=0, &END
&POINTS PT(1)=(0,0),PT(2)=(1,9),PT(3)=(1,1),PT(L)=(0,1) EEND
&TR NODES=1,2.3, BND(1)=1, BND(2)=2 QEND
&TR NODES=1,3,u4, BND(2)=3, BND(3)=4, ENDTR=T &END
/*
//STP2 EXEC LOADGC, PARM.GO='S1ZE=288000"
//GO.SYSLIN2 DO DSNAME=PUB. JAG.POZ,CISP=0LD,
// UNIT=2314, VOLUKE=SER=PUBO03
//GC.FTO1F001 DD DNSNAME=JAGCG.QUT1,DISP=(OLDP,PASS),UNIT=SYSDA
//GO.FT02F0G01 DD DSMNAME=JAGCG.OUT2,DISP=(NEV,PASS),UNIT=SYSDA,
// SPACE=(CYL,(2,1) ,RLSE)
//GO.SYSIN DD =*
&P ARMS 1BUG=0, IDEG=3,NCP=3,1CP=1, 2,3,
IRHS=2,1:X2=1,UY2=1,U2=0, 1E1G=0 &END
/*
//STP3 EXEC FORTHLG
//LKED. JAGPC3 DD DSMAME=PUB. JAG.TMP,DISP=0LD,LNIT=2514,
// VOLUME=SER=PUROO1
//LKED.SYSIN DD =
INCLUDE JAGPO3
/=
//GC.ETO1F001 DD DSNAIE=JAGCG.CUT1,UNIT=SYSDA,CISP=(0LD, PELETE)
//GC.FTU2F001 CD DSNAME=JAGCG.OUT2,UNIT=SYSCA,DISP=(CLD,DELETE)
//GO.FT03F001 DD DSNAME=J AGCG.CQUT3,UNIT=SYSDA, DISP=(HNE\!, PASS),
// SPACE=(CYL, (1,1),RLSE)
//GO.SYSIN DD =*
&PARNS NBNDS=4, IPRINT=1, 150L(1)=10, !SCI.(2)=11,1S0L(3)=11,&END
116 11 11
2 10 11 11
310 11 11
L 10 11 11

/*
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These cards and !nput produced the quintic entry in
table 5.2.2, Note that the object decks for the
inverse iteration code using Bunch's symmetric solver
are stered In the data set PUB.JAG.INV,

' // JAGXXHLS JOB 'JAG$CG',54,CLASS=E,REGION=300K
- //STP1 EXEC LOADGO,PAR!M,GO='S1ZE=288000"
//GO.SYSLiN2 DD DSNAME=PUB. JAG,P01,DISP=0LD,UNIT=2314,
// VOLUME=SER=PUB001
//GO.FTO1F001 DD DSNAME=JAGCG.OUT1,UNIT=SYSDA, DISP=(NEV, PASS),
// SPACE=(CYL,{1,1),RLSE)
//GO.SYSIN DD *
L &PARMS ND1VS=1, NPS=4, NCEN=6, LAST=1, 1BUG=0, &END
&POINTS PT(1)=(0,0), PT(2)=(1,0), PT(3)=(2,0), PT(k)=(2,1),
PT(5)=(1.3,.7), PT(6)=(1,.7}, PT(7)=(.6,.6), PT(8)=(.9,.9),
PT(9)=(1.1,.9), PT(10)=(1,2,1), PT(11)=(1,1) &END
&TR NODES=1,2,7, BND(1)=1 &END
&TR NODES=7,2,6 &END
&TR NODES=6,2,5, &END
&TR NODES=2,3,5, BND(1)=1 &END
&TR NODES=3,4,5, BND(1)=1 &END
&TR NODES=7,6,8 &END
&TR NODES=6,9,8 &END
&TR NODES=6,5,9 &END
&TR NODES=§,9,11 &END
&TR MODES=9,10,11, BND(2)=1 &END
&TR NODES=9,5,10 &END
&TR NODES=5,4,10, BND(2)=1, ENDTR=T &END
, /*
—~ //STP2 EXEC LOADGO, PARM.GO='S|ZE=288000"
//GO.SYSLIN2 DD DSNAME=PUB.JAG.P02,DISP=0LD,
// UNIT=2314, VOLUME=SER=PUB0)3
//GO.FTO1F001 DD DSNAME=JAGCG.OUT1,DISP=(0LD, PASS), UNIT=SYSDA
//GO.FTO2F001 DD DSNAME=JAGCG.OUT2,DISP=(NEV,PASS),UNIT=SYSDA,
SPACE=(CYL,(1,1),RLSE)

| I

o e

L‘_‘-‘-..‘i

//

‘ //GC.SYSIN DD =
- &PARMS 1BUG=0, IDEG=5, NCP=1, ICP(1)=1, NSP(1)=1, MSP(2)=1,
; nsp(3)=1, NSP(4)=1, ISP(1,1)=1, tSP(2,1)=1, 1sP(3,1)=1,

) isp(4,1)=1, IRHS=0, UX2=1, UY2=1, U2=0, IEIG=1 &END

L /*
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//STP3 EXEC FORTHLG
//LKED.JAGPO3 DD DSNAME=PUB.JAG.TMP,DISP=0LR, UNIT=231L,
// VOLUME=SER=PUB0OO1 Y
//LKED.SYSIN DD =

INCLUDE JAGPO3
/*
//GO.FT01F001 DD DSNAME=JAGCG.OUT1,UNIT=SYSDA,DISP=(0OLL,DELETE)
//GG.FT02F001 DD DSNAME=JAGCG.OUT2,UNIT=SYSDA,DISP=(0OLD,DELETE)
//GO.FT03F001 DD DSNAME=JAGCG.OUT3,UNIT=SYSPA, DISP=(NE}, PASS),

[

§

// SPACE=(CYL,(1,1),RLSE)
//GO.SYSIN DD * ,
&PARMS NBMDS=1, IBUG=0 &END

1 5 ,
/* ‘

//STPS EXEC FORTHLG
//LKED, JAGP4 DD DSNAME=PUB. JAG.INV,CISP=0LD,UNIT=231%, -
/] VOLUME=SER=PUB001
//LKED.SYSIN DD »

INCLUDE JAGPHL

E

X

//GO.FT02F901 DD DSNAME=JAGCG.OUT3,UNIT=SYSDA,DISP=(OLD,DELETE)
//GO.SYSIN DD =

&PARMS SHIFT=9.6 &END

&PARMS SHIFT=-1 &END
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