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Abstract

In 1968, N. Wirth (Jan. JACM) published a formal description of PL360,
a programming language designed specifically for the IBM 360. PL360 has
an appearance similar to that of Algol, but it provides the facilities of
a symbolic machine language. Since 1968, numerous extensions and
modifications have been made to the PL360 compiler which was originally
designed and implemented by N. Wirth and J. Wells. Interface and input-
output subroutines have been written which allow the use of PL360 under
0S, DOS, MIS and Orvyl.

A formal description of PL360 as it is presently implemented is

given. The description of the language is followed by sections on the

'use of PL360 under various operating systems, namely 0S, DOS and MTS.

Instructions on how to use the PL360 compiler and PL360 programs in an

interactive mode under the Orvyl time-sharing monitor are also included.

Keywords: Compilers
Computer Languages
IBM 360 Language Processors

Interactive Language Processors



PL360 CHANGES AND EXTENSIONS
June, 1972

The ORVYL versions of the PL360 compiler and the PL360 runtime routines
have been moved. Page 78 in Section 12 of the PL360 manual contains
references to the old compiler file, which was T123,PL360 on SYS21, The
compiler has been moved to T000,PL360 on SYS10. Page 81 refers to two
old files, T123.PL360.10 and T123,PL360.RUNLIB on SYS21. These two files
have been replaced by a single runtime library which includes the READ
and WRITE subroutines. This library is in T000.PL360,RUNLIB on SYS10.

Please note these changes in your manual, A corrected version
of Section 12, including other minor changes, is given below.

Extensions to the language should also be noted in sections 2.,2.7,
2.3.1 and 6.3, as follows: TTcae Clicactea 1o ove oo
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1. Introduction

PL360 is a programming language designed specifically for the IBM
System/360 computers. It provides the facilities of a symbolic machine
language but displays a structure similar to that of Algol. A formal
description of an earlier version of the language has been published by
Niklaus Wirth [1] who directed the development of the PL360 language and
its compiler at the Computer Science Department of Stanford University.
Although PL360 was originally designéd for writing logically self-contained
programs, subsequent extensions permit communication with separately
compiled programs.

An efficient one pass "in core" compiler, written by Niklaus Wirth,
.Joseph W. Wells, Jr. and Edwin Satterthwaite, Jr., which incorporates these
extensions is available through the-IBM Contributed Program Library [2].
This compiler runs under the OS operating system and translates PL360
source code into object modules in the format required by several 360
operating systems (0S and MTS for example). The documentation issued
with the compiler includes several amendments to the original language
definition. Further extensions have recently been carried out at the
University of Newcastle by James Eve. These changes [3,11] were aimed
primarily at relaking the linkage constraints on separately compiled
programs, enabling for example direct communication with programs using
08/360 type linkages. The present author has made several modifications
to the version of the compiler produced by James Eve. These extensions
have made it possible to run the compiler and compiled programs under DOS
operating systems. Assembly language subroutines have been written for
both OS and DOS to facilitate input-output with sequential tape and disk
files. With the aid of Dick Guertin of Stanford, the author has extended
the syntax of PL360, primarily to increase programming convenience. We
have recently written assembly language interfaces to allow interactive
use of both the PL360 compiler and PL360 programs under the Orvyl time-
sharing monitor at Stanford. These recent extensions made at Stanford
have been documented in personal letters, memos or not at all.

The dispersed nature and inconvenient form of the PL360 documentation
is an undoubted hindrance to more extensive use of this powerful and

elegant tool. To remedy this, the ianguage definition and compiler



description incorporating all changes are given in this manual. For a full
discussion of the background underlying the development of PL360 and a
description of the organization and development of the compiler together
with some perceptive comments on the 360 Architecture, reference must still

be made to [1], where the aims of the language are summarized:

", .. it was decided to develop a tool which would:

1. allow full use of the facilities provided by the 360 hardware,
2. provide convenience in writing and correcting programs, and
3. encourage the user to write in a clear and comprehensible

style.

As a consequence of 3, it was felt that programs should not be able to
.modify themselves. The language should have the facilities necessary to
express compiler and supervisor programs, and the programmer should be

able to determine every detailed machine operation.”

Knowledge of the 360 architecture [4, 5 or 6] is a prerequisite
for understanding the language definition and some familiarity with the
360 Assembly Language [7] and Linkage Editor [8] is assumed in the des-
cription of the object code produced by the compiler.

In writing this manual, the author has drawn heavily upon the
(anonymous) PL360 Programming Manual published by the University of

Newcastle upon Tyne, Computing Laboratory [11].



2. Definition of the Language

2.1 Terminology, Notation, and Basic Definitions

The language is defined in terms of a computer which comprises a

number of processing units and a finite set of storage elements. Each of

the storage elements holds a content, also called value. At any given

time, certain significant relationships may hold between storage elements

and values. These relationships may be recognized and altered, and new
values may be created by the processing units. The actions taken by the
processors are determined by a program. The set of possible programs form
the language. A program is composed of, and can therefore be decomposed

into elementary constructions according to the rules of a syntax, or grammar.

' To each elementary construction corresponds an elementary action specified

as a semantic rule of the languagegr The action denoted by a program is
defined as the sequence of elementary actions corresponding to the elementary
constructions which are obtained when the program is decomposed (parsed)

by reading from left to right.

2.1.1 The Processor

At any time, the state of the processor is described by a sequence of
bits called the program status word (PSW). The status word contains, among
other information, a pointer to the next instruction to be executed, and a

quantity which is called the conditiion code.

Storage elements are classified into registers and core memory cells,
simply called cells. Registers are divided into three types according to
their size andjthe operations which can be performed on their values. The
types of registers are:

a. integer or logical (a sequence of 32 bits),

b. real (a sequence of 32 bits),

c. long real (a sequence of 64 bits).
Cells are classified into five types according to their size and the type
of value which they may contain. A cell may be structured or simple. The
types of simple values and simple cells are:

a. byte (a sequence of 8 bits = 1 byte),

b. short integer (a sequence of 16 bits = 2 bytes, interpreted as

an integer in two's complement binary notation),

3



c. integer or logical (a sequence of 32 bits = L bytes,

interpreted as an integer in two's complement binary notation),

d. real (a sequence of 32 bits = 4 bytes, to be interpreted as a
base-16 floating-point number),

e. long real (a sequence of 64 bits = 8 bytes, to be interpreted as a

base-16 floating-point number).

The types integer and logical are treated as equivalent in the language,

and consequently only one of them, namely integer, will be mentioned

throughout the report.

2.1.2 Relationships

The most fundamental relationship is that which holds between a cell
and its value. It is known as containmentg the cell is said to contain
the value.

Another relationship holds between the cells which are the components -
of a structured cell, called an array, and the structured cell itself. It

is known as subordination. Structured cells are regarded as containing

the ordered set of the values of the component cells.

A set of relationships between values is defined by monadic and dyadic

functions or operations, which the processor is able to evaluate or perform.
The relationships are defined by mappings between values (or pairs of values)
known as the operands and values known as the results of the evaluation.

These mappings are not precisely defined in this report; instead, see [6].

2.1.%2 The Program

A program contains declarations and statements. Declarations serve
to list the cells, registers, procedures, and other quantities which are
involved ih the algorithm descfibed by the program, and to associate names,
so-called identifiers, with them. Statements specify the operations to be

performed on these quantities, to which they refer through the use of

‘identifiers.

A program is a sequence of tokens, which are basic symbols, strings
or comments. Every token is itself a sequence of characters. The following

conventions are used:



ra

a. Basic symbols constitute the basic vocabulary of the language
(ef. 2.1.6). They are either single characters,'or underlined
letter sequences.

b. Strings are sequences of characters enclosed in quote marks (").

c. Comments are sequences of characters (not containing a semicolon)
preceded by the basic symbol comment and followed by a semicolon (;).
It is understood that comments have no effect on the execution

of a program.

In order that a sequence of tokens be an executable program, it must be

constructed according to the rules of the syntax.

2.1.4 Syntax

A sequence of tokens constitutes an instance of a syntactic entity
(or construct), if that entity can be derived from the sequence by one or
more applications of syntactic substitution rules. In each such application,-
the sequence equal to the right side of the rule is replaced by the symbol
which is its left side. ’

Syntactic entities (cf. 2.1.5) are denoted by English words enclosed in

the brackets ( and ) . These words describe approximately the nature of
the syntactic entity, and where these words are used elsewhere in the text,
they refer to that syntactic entity. For reasons of notational convenience
and brevity, the script letters &7, ¥, and T are also used in the
denotation of syntactic entities. They stand as abbreviations for aﬁy of

the following words (or pairs):

a X T
long real long real long real
real ) real real
integer integer integer
short integer short integer
byte

Syntactic rules are of the form (A) ::=t where <(A) is a syntactic

entity (called the left side) and ¢ is a finite sequence of tokens and
syntactic entities (called the right side of the rule). The notation

TSR TP TS



is used as an abbreviation for the n syntactic rules

a) ::= £ s (a) ::= Es s wees (a) ::= e -

If in the denotations of constituents of the rule the script letters @,
% , or T occur more than once, they must be replaced consistently, or
possibly according to further rules given in the accompanying text. As an
example, the syntactic rule
0{ register) i= G( register jidentifier)
is an abbreviation for the set of rules
(long real register) ti= (long real register jdentifier)
(integer register) ti= (integer register identifier)

(real register) ::= (real register identifier)

2.1.5 Syntactic Entities

Syntactic Entity . Section Syntactic Entity Section
(@ cell assignment) 2.2.7 {for statement) 2.3.4
{7 number) 2.2.2 {format code) 2.2.8
(alternative condition) 2.3.1 (fractional number) 2.2.2
{arithmetic operator) 2.2.6 {function declaration) 2.2.8
(block body) 2.3.5 (function definition) 2.2.8
{block head) 2.3.5  (function identifier) 2.2.1
(block) 2.3.5 {function designator) 2.2.9
{case clause) 2.3.2 (goto statement) 2.3.6
{case sequence) 2.3.2 (hexadecimal digit) 2.2.2
{case statement) 2.3.2 (hexadecimal value) 2.2.2
(character sequence) ) 2.2.2 (identifier) 2.2.1
{combined condition) 2.3.1 (if clause) 2.3.1
{compound condition) 2.3.1 (if statement) 2.3.1
{condition) 2.3.1 (increment ) 2.3.4
{digit) 2.2.2 (index) 2.2.5
{declaration) 2.3.5 (instruction code) 2.2.8
(fill value) 2.2.4 (integer value identifier) 2.2.1
{for clause) 2.3.4 (integer value synonym
declaration) 2.2.10
6



Syntactic Entity

{item)
(¢ primary)
(¢ register assignment)

() register synonym declaration)

G{ register)

{label definition)
{(letter)

(limit)

(logical operator)
{monadic operator)-

. (parameter)

(parameter list)
(procedure declaration)
{procedure heading)
(procedure identifier)
(procedure statement)
(program)

(relation)

(repetition list)

(scale factor)

(segment base declaration)

(segment base heading)

(segment close declaration)

2.1.6 Basic Symbols

Section

Syntactic Entity -

2.2.4
2.2.6
2.2.6
2.2.10
2.2.1
2.3.5
2.2.1
2.3.4
2.2.6
2.2.6
2.2.9
2.2.9
2.3.7
2.3.7
2.2.1
2.3.8
2.3.5
2.3.1
2.2.4
2.2.2
2.2.11
2.2.11
2.2.11

(separate procedure heading)

(shift operator)

(simple ¥ register assignment)

(simple procedure heading)
(simple statement)

(simple T type)
(statement)

(string)

(synonymous cell)
{synonymous integer value)
(syn cell value)

(T cell declaration)

(T cell designator)

(T cell identifier)

(T cell synonym declaration)

(T primary)

(T type)

(T value)

(true part)
(unsigned ¢ number)
(while clause)
(while statement)

alslc|p|E|F|c]u|z]7|x|L|M|x|olelelrls|T|u|v|W|x|¥|2]
alblc|d|e|f]gln|i]i|x|1|m|n|o|plalz|s|t|u|v]w|x|y|z]

o|1|2|3|u|5]6]|7|8|9]

=A<l == 1 L LD el L

and | or | xor |abs |neg | shill|shrl|shla |shra |

if|then|else|case|of |while|do|for |step|until|

begin|end |goto|comment |null|

I

integer |real|logical |byte|character|long|short |array|

7

Section

2.3.7
2.2.6
2.2.6
2.3.7
2.3.5
2.2.4
2.3.5
2.2.2
2.2.10
2.2.10
2.2.10
2.2.4
2.2.5
2.2.1°
2.2.10
2.2.6
2.2.4
2.2.6
2.3.1
2.2.2
2.3.3
2.3.3



function|procedure |register|syn|overflow|

segment | base|data|global |external | common |dummy | close \
equate

2.2 Data Manipulation Facilities

2.2.1 Tdentifiers

(letter) ::= A|B|C|D|E|F|c|u|T|s|K|L|M|N|o|P|Q|R|S|T|U|V|W|X]|Y]|Z]
a|v|c|d|e|f]gln|i]5|x|1m|nfo|p|alx|s]|t]u| v]w|x|y]=]

{identifier) ::= (letter)|(identifier)(letter)|(identifier){digit)

(¢ register) ::= (identifier)

(T cell identifier) ::= (identifier)

(procedure identifier) ::= (identifier)

(function identifier) ::= (identifier)

{integer value jdentifier) ::= (identifier)

An identifier is a X register, T cell-, procedure-, function-,
or integer value identifier, if it has respectively been associated with
a ¥ register, T cell, procedure, function, or integer value (called
a quantity) in one of the blocks surrounding its occurrence. This
association is achieved by an appropriate declaration. The identifier
is said to designate the associated quantity. If the same identifier
is associated with more than one qﬁantity, then the considered occurrence
designates the quantity to which it was associated in the innermost block
embracing the considered occurrence. In any one block, an identifier
must be associated with exactly one quantity. In the parse of a program,
that association determines which of the rules given above applies.

Any processing computer and operating system can be considered to
provide an enviromment in which the program is embedded, and in which some
identifiers are permanently declared. Some identifiers are assumed to be

-known in every enviromment; they are called standard identifiers, and are

listed in the respective paragraphs on declarations.



2.2.2 Values

{aigit) ::= o|1]2|3|4|5|6]7|8]9
(unsigned integer number) ::= (digit)]
{unsigned integer number)({digit)
{unsigned short integer number) ::= (unsigned integer number) S
{fractional number) ::= (integer number) .[
(fractional number){digit)
{scale factor) ti= (integer number)
(unsigned real number) ::= (fractional number)|
(unsigned integer number)R\(fractional number)'(scale factor)\
(unsigned integer number)!{scale factor)
(unsigned long real number) ::= (fractional number)LI
(unsigned integer number)L|(fractional number)'{scale factor)L|
(unsigned integer number)'{scale factor)L

{7 number) ::= {unsigned ¢ number)|_ (unsigned ¢ number)

Integer, real, and long real numbers are represented in decimal notation.
The latter two can be followed by a scale factor denoting an integral power
of 10 . Short integers are distinguished from integers by the letter S
following the number. In order to denote a negative number, an unsigned

*
number is preceded by the symbol " " .—/
(hexadecimal digit) ::= {aigit)|A|B|C|D|E|F
(hexadecimal value) ::= #{hexadecimal digit)}|

{hexadecimal value)({hexadecimal digit)

A hexadecimal value denotes a sequence of bits. Each hexadecimal digit

stands for a sequence of four bits defined as follows:

0 = 0000 4 = 0100 8 = 1000 C = 1100
1 = 0001 5 = 0101 9 = 1001 D = 1101
2 = 0010 6 = 0110 A = 1010 E = 1110
3 = 0011 7 = 0111 B = 1011 F = 1111

(string) ::= "{character sequence)"

{character sequence) ::= {character)|(character sequence){character)

*
—/Note that the underline is used here. The minus sign (-) is used
only as a dyadic operator — never as part of a number.

9



A string is a sequence of characters enclosed in quote marks. The set of
characters depends on the implementation (ef. 6.1.1). If a quote mark (")
is to be an element of the sequence, it is represented by a pair of

consecutive quote marks.

Examples: "ABC" denotes the sequence ABC
B SAA denotes the sequence A"Z
g denctes the sequence "A"
{byte value) ::= "{character)"|(hexadecimal value) X
{short integer value) ::= (short integer number)‘(hexadecimal value) S

(integer value) ::= (integer number)](hexadecimal value)[
(integer value identifier)

(real value) ::= (real number)\(hexadecimal value) R

(long real value) = (long real number)‘(hexadecimal value) L

Examples:
byte values "g" o #1FX
short integer values: 108 #FFOOS
integer values: 0 #106C 1 size
real values: 1.0 _3.1k46 2.7'8 #46000001R
long real values: 3.14159265359L FUHE00000000000001L,

Note: If hexadecimal values are used in conjunction with arithmetic

' operators in a program, they must be considered as the sequence of bits which
constitutes the computer's representation of the number on which the operator
is applied. Hexadecimal values followed by the letter R or L may be used

to denote numbers in unnormalized floating-point representation [4,5,6].

2.2.3 Register Declarations

The System/560 processor has 16 registers which contain integer
numbers and are said to be of type integer (or logical). They are designated
by the following standard register identifiers (cf. 2.2.1):

RO, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R1l, R12, R13, R1k4, R15

The processor also has four registers which contain real numbers or long
real numbers. If those registers are used in conjunction with real numbers,

they are said to be of type real, and are designated by the standard register

10



identifiers
FO, F2, FL4, F6 .

If they are used in conjunction with long real numbers, they are said to be

of type long real, and are designated by the standard register identifiers
FOl, F23, F45, F67 .

The above register identifiers are assumed to be predeclared, and no further
register declarations can be made in a program; however other identifiers

can be associated with these registers (cf. 2.2.10).

2.2.4 Cell Declarations

(simple byte type) ::= byte|character

(simple short integer type) ::= short integer

(simple integer type) ::= integer|logical

(simple real type) ::= real
(simple long real type) ::= long real
(T type) ::= (simple T type)|array (integer value){simple T type)
(T cell declaration) ::= (T type){item)|(T cell declaration), {item)
(item) ::= (identifier)|{identifier) = (fill value)
(£ill value) ::= (T value)|(string)|
@(procedure identifier)|@@{procedure identifier)|
@(T cell designator)|@@(T cell identifier}|
(repetition list){fill value))
(repetition list) ::= (|(integer value)(|(repetition list){fill value),

A cell declaration introduces identifiers and associates them with cells of
a specified type. The scope of validity of these cell identifiers is the
block in whose heading the declaration occurs (ef. 2.3.5).  Moreover, a
declaration may specify the assigmment of an initial value to the introduced
cell. This assignment is understood to have occurred before execution of
the program.

Cells may be initialized to numerical values, strings, relative or
absolute addresses. The number of bytes appropriate for the type of the
declared cell is taken for each (numerical) T value. Strings are never

expanded or truncated, each character of the string occupies one byte,

11



initialization starting with the leftmost byte. A short integer or integer
type cell can be initialized to the relative address (i.e., base register
and displacement) corresponding to a T cell identifier or to the relative
(entry point) address corresponding to a procedure identifier by means of the
® operator. The @ operator also permits the initialization of an integer
type cell with the relative address (i.e., index register, base register
and displacement) of a T cell designator. The @@ operator enables
integer type cells to be initialized with absolute addresses corresponding
to T cell identifiers or the entry point of procedure identifiers.

If a simple type is preceded by the symbol array and an integer
value, say n , then the declared cell is an array (ordered set) of n cells
of the specified simple type. An initial value list with m <n entries
specifies the initial values of the first m elements of the array. A list
may be specified as a list of sublists. Repetition of a sequence of elements
may be specified by making the sequence into a list and preceding it by an
integer value, say k , specifying the number of times the list is to be used.
If no integer value precedes a list, it is used once. Absolute addresses
may not occur in lists where k > 1 . Integer values n and k must be
positive.

Note. Boundary alignment is performed for a cell declaration (according
to the simple type) and not for each initializing value; because strings are
never expanded or truncated, care is needed in initializing with combinations

of strings and other values.

Examples:

byte flag
short integer i,j,k = 10S,m = (5),baddr = @base

long real x,y,z =-27'3L

I

array 3 integer size = (36,23,37),paramlist = (@®a,@8b,@@errproc)
array 132 byte blank = 132(" "),buff = 33(" ",2("*")," ")
array fbsize logical area = fbsize(O)

2.2.5 Cell Designators

(T cell designator) ::= (T cell identifier)|
(T cell identifier)(({index))

12



;:

(index) 1= (integer value)‘(integer register)l
(integer register Y+ (integer value)l
(integer register) - (integer value)|
(integer register) + (integer register)|
(integer register) + (integer register) + (integer value)|

(integer register) + (integer register) - (integer value)

Cells are denoted by cell designators. The designator for a particular
cell consists of the identifier associated with that cell, optionally
followed by an index. When an index is used, the address of the

designated cell is taken as the address associated with the cell identifier

plus the value of the index.

Notes: Register RO must not be specified as an index constituent.
Depending upon the function with which the cell designator is used and the
declaration of the cell identifier, the index may have O , 1 or 2
integer register constituents. If the cell identifier has no base
register associated with it, then the first integer register (if any) in
the index is understood to be the base register. If the cell identifier
has a base register associated with it, and the context permits an index
register, then an integer register in the index is taken as an index
register. If the identifier has no associated base register and the context
permits indexing, then two integer registers may appear in the index and

they are understood to be the base register and index register, respectively.

Examples:
age B1(1)
size (8) B14(R2)
price (R1) : MEM(R3 + R7 + 8)
line (R2 + 15) buff(R1 + Rk - 2)

2.2.6 Register Assigmnments

(T primary) ::= (T value)|(T cell designator)
(?( prima.ry) 1i= (9( register)

A primary is either a value or the content of a designated cell or register.
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{simple ¥ register assigmment) ::=
(¢ register) := {7 primary)|
(¢ register) := {monadic operator){z primary)|
(integer register) := (string)}|
(integer register) := @ (T cell designator)|

(integer register) := @ {procedure identifier)

A simple register assignment is said to specify the register appearing
to the left of the assignment operator (:=) . To this register is assigned
the value designated by the construct to the right of the assigmment symbol.
That designated value may be obtained through execution of a monadic

operation specified by a monadic operator.

{monadic operator) HEES abslneglneg abs

The monadic operations are those of taking the absolute value, of sign
inversion, and of sign inversion after taking the absolute value.

If a string is assigned to a register, that string must consist of
not more than four characters. If it consists of fewer than four characters,
null charactersf/ are appended at the left of the string. The bit
representation of characters is defined in [4,5,6] (EBCDIC).

The construction with the symbol @ is used to assign to the specified
register the address of the designated cell or the entry point address of
the procedure.

The legal combinations of types to be substituted respectively for
the letters % and ¢ in preceding and subsequent rules of this paragraph

are given in Table 1.

X a
integer ' integer
integer short integer
real real
long real real
long real ’ long real
Table 1

%/ ) )
Null characters have the bit representation #00X .
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Examples of simple register assignments:

RO = 1

R2 := RI10

R6 := age

FO := quant(R1)
R2 = "xyz"
F45 := neg FO1

R13 := abs height

0{ register assignment) 1= (simple ¥ register assignment)l
0{ register assignment)(arithmetic 0perator)€7’primary)|
(integer register assignment)(logical operator)(integer prﬁmxmy)\
(integer register assignment){shift operator)({integer value}|

(integer register assignmént)(shift operator)(integer register)

(arithmetic operator) ::= +|-|*|/|++|--|
{logical operator) ::= and|or|xor
(shift operator) ::= shll|shla|shrl|shra

A register assignment is said to specify the same register which is specified
by the simple register assignment or the register assigmment from which it

is derived. To this register is assigned the value obtained by applying a
dyadic operator to the current value of that specified register and the value
of the primary following the operator. The operations are the arithmetic
operations of addition (+) , subtraction (-) , multiplication (*) , and
division (/) , the logical operations of conjunction (and), exclusive and
inclusive disjunction (xor, or), and those of shifting to the left and right,
as implemented in the System/560. The operators ++ and -- denote logical
or unnormalized addition and subtraction when applied to integer or

real/long real registers respectively. When an integer value is specified

following a shift operator, it must be nonnegative and less than 31 .

15



Examples of register assignments:

RO := R3

R1 = 10

R10 := i+ age - R3 + size(8)
R9 := R8 and R7 shll 8 or R6
F2 := 3.1416

FO := quant(R1l) * price(Rl)
FL5 := Fh5 + FOL

Note: 1. The syntax implies that sequences of operators, including
assignment, are executed strictly in sequence from left to
right. Thus

Rl := R2 + R1

is not equivalent to

Rl := Rl + R2
but rather to the two statements
Rl := R2; R1 := R1+ Rl.

This single aspect of PL360 provides many pitfalls for beginners.

2. Multiplication and division with integer operands can only be
specified with a multiplicand or dividend register Rn , where
n 1is odd. The register Rm with m = n-1 is then used to
hold the extension to the left of the product and dividend
respectively. In the case of division, register Rm will be

assigned the resulting remainder.

Examples: R := x*y+ z
R2 1is affected by the multiplication.
R5 := B1/15

R4 -is affected by the division and contains the

remainder.




2.2.7 Cell Assjgnments

{A cell assignment)> :: = <K register>
<A cell designator>
<{J value>

{string>

= <A cell designator>
| <A cell designator>
|
|

{A cell designator>
(A cell designator>

oe so oe e
[}

In the first assignment, the value in the K register is assigned to
the designated A cell. The allowable combinations of cell and register
types are indicated in Table 1.

In the remaining assignments, the A cell, J value or string is
assigned to the designated A cell, Cell designations must not include an
index register (cf.2.2.5). For cell to cell, the cell types must be
identical., For string to cell, the string must be compatible in length
to the assignment cell (cf.2.1.1), For value to cell, the allowable
combinations of cell and. value are indicated in the following table:

A cell J_value
long real long real -
real real, integer
integer integer, real .
short integer integerx, short integer
byte integer*, short integer#*, byte

* unused portions of the J value must be sign extention,




2.2.8 TFunction Declarations

(format code) ::= (integer value)
(instruction code) ::= (integer value)
{function definition) ::=
(identifier)({format code) , {instruction code))
{function declaration) ::= function (function definition)|
(function declaration) B (function definition)

There exist various data manipulation facilities in the 360 computer
which cannot be expressed by an assignment. To make these facilities
available in the language, the function statement is introduced (ecf. 2.2.9),
which uses an identifier to designate an individual computer instruction.
The function declaration serves to associéte this identifier, which thereby
becomes a function identifier, with the desired computer instruction code,
and to define the instruction fields which correspond from left to right to
the parameters given in function statements. The format code defines the
format of the instruction according to Table 2. The last two bytes of
the instruction code define the first two bytes of the instruction. The
following example defines the standard function identifiers, which apart
from TEST, SET and RESET, were chosen to be the symbolic machine codes used
in [6].

function BAIR(1,#0500), MVI (4, #9200), SRDL(9, #8C00),
C1C(13,#D500) , MVN(5, #D100), STC (12, #4200),
CLI(k,49500), MVZ(5,#D300) , STH (12, #4000) ,
CVB(12, #4¥00), NC (5, 4#D400), STM(3, #9000) ,
cvD (12, #4£00), NI (L4, 490400), svc(7,#0A00),
ED(5,#DE0O), 0C (5, #D600) , TEST(8,#95FF) ,
EDMK( 5, #DF00), 0I(k4, #9600), T™( k4, #9100),
EX(2,#:400), PACK(10, #F200), TR( 5, #DC00),
IC(2,#4300), RESET (8, #9200), TRT( 5, #DD00) ,
LA(2,#4100), SET(8,#92FF), TS(8, #9300) ,
IH(12, #4800), SLDA(9, #8F00), UNPK( 10, #F300),
LM(3, #9800) , SIDL(9, #3D00) , XC(5,4#D700),
LTR(1, #1200), SPM( 6, #0400) , XI(k4,#9700),
MVC (5, #D200) 5 SRDA(9, #8EQ0Q) .
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Table 2

Format Number of Instruction Fields

Code Parameter

Fields 0 8 16 32 18

0 0 [ 1 |
1 2 ___Ir[®R]

2 2 l [r] |

3 3 | [R{r] ¢ |

4 2 L f[recs ¢ |

5 3 | [Ics 1 ¢ [ ¢ 1
6 1 [ IRT 1

7 1 N ECEN

8 1 I [ [ C J

9 2 L [RIT I ]

10 L I [T]I] ¢C | ¢ |
11 2 | [R | 1ICS J

12 2 [ Ir] c |

13 3 i [os] 1 [ 1w 1
1k 2 L 1 ¢ | I 7 I
15 1 L | IC J

C

Field Definition Codes:

R = ¥ register

C = 7 cell identifier (or designator in the 20 bit field) address
I = Integer value (The value is used directly

S = String in the instruction field)

L

T value or string or function designator. (The address of
the value is used in the instruction field)

18
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2.2.9 Function Statements

{parameter) ::= (T value)|{string}|{X register)|(T cell designator>|
(function designator)
(parameter list) ::= (parameter)| (pa.rameter list) 3 (pa.rameter)
{function designator) ::= (function identifier)|
(function identifier)({parsmeter list))

If a function designator is used as a parameter, the first function
identifier must correspond to an execute instruction. That is, the first
byte of the instruction code must have the value #U44X . An example is

the predeclared identifier EX (cf. 2.2.8).

Examples:
SET(flag) STM(RO, R15, save)
RESET (flag) MVI("*", line)
LA(R1, line) IC (RO, flags(R1))
MVC(1, line, "hi") EX(R1l, MVC(0, line, buffer))

2.2.10 Synonym Declarations

(T cell synonym declaration) ::=

(T type){identifier){synonymous cell)|

(T cell synonym declaration), {identifier){synonymous ce]J.)
(synonymous cell) ::= syn (T cell designator)|syn{integer value)
(¥ register synonym declaration) ::=

(simple X type) register (identifier) syn (X register)|

(¢ register synonym declaration), (identifier) syn (X register)

Cell and register synonym declarations serve to associate synonymous
identifiers with previously (i.e., preceding in the text) declared cells
or registers. The types associated with the synonymous cell identifiers

need not necessarily agree.

If a synonymous cell is specified by an integer value, then that
integer value represents the displacement (and possibly the base register
and index register) part of the cell's machine address.

19



Examples: integer al6 syn a(16)

array 32768 short integer memory syn O
integer timer syn #50

The following example defines the standard'integer identifiers:

integer MEM syn O, B5 syn MEM(RS), B10 syn MEM(R10),
Bl syn MEM(R1), B6 syn MEM(R6), B1ll syn MEM(R11),
B2 syn MEM(R2), BT syn MEM(RT), B12 syn MEM(R12),
B3 syn MEM(R3), B8 syn MEM(RS), B13 syn MEM(R13),
Bk syn MEM(RY), B9 syn MEM(R9),  Blk syn MEM(R1H4),
B15 syn MEM(R15)

.Note: The synonym declaration can be used to associate several different

types with a single cell. Each type is connected with a distinct identifier.

Example: long real x = #4E00000000000000L
integer xlow syn x(k4)

A conversion operation from a number of type integer contained in register
RO to a number of type long real contained in register FOl can now be
denoted by -

xlow := RO; FOl :=x
and a conversion vice-versa by
FOL := FO1 ++ #4E00000000000000L; X := FOl; RO := xlow
No initialization can be achieved by a synonym declaration.

(integer value synonym declaration) ::=
equate (identifier){synonymous integer value}|
(integer value synonym declaration),(identifier)(synonymous integer value)
(synonymous integer value) ::= syn {integer value)|
syn {syn cell value)|syn (monadic operator){integer value)|
{synonymous integer value)({arithmetic operator)(integer value)|
(synonymous integer value)(logical operator)(integer value)l
{synonymous integer value)(shift operator){integer value) ’
(syn cell value) ::= (T cell designator) - (T cell designator)

20



Integer value synonym declarations serve to associate identifiers with
integer values. These integer values are computed at the time the declaration
is parsed and the identifiers thus associated can subsequently be used as
integer values (cf. 2.2.1). When the difference of two cell designators
is specified, the cell identifiers must both have the same base register
(ef. 2.2.11); the difference between their relative locations within the
segment is taken as the associated integer value. The cell designators
must not use index registers. The scope of validity of these integer

synonyms is the block in whose heading the-declaration occurs (cf. 2.3.5).

Examples: equate a syn 200, b syn a+8, c syn 4

equate d syn a/c and L

array b byte x,y

equate e syn y-x, f syn e-c shll 2

Note: a =200, b =208, ¢ =4, d = 48, e = 208, f = 816.

2.2.11 Segment Base Declarations

{segment base heading) ::= segment|global data (identifier)|

external data (identifier)|common data (identifier)|

common | dummy

(segment base declaration) ::=
(segment base heading) base {integer register)

{segment close declaration) ::= close base

A segment base declaration causes the compiler to use the specified
register as the base address for the cells subsequently declared in the block
in which the base declaration occurs. Such use is terminated either by
exit from the block or by the sﬁbsequent appearance of a segment close
declaration. Upon entrance to this block, the appropriate base address
is assigned to the specified base register unless the symbol dummy appears
in the declaration (cf. 5.2).

- If the symbol data is preceded by any of the symbols global, external

or common, the corresponding identifier is associated with the data segment
to enable linking of segments in different PL360 programs [8,9,12].

Appearance of the symbol sequence common base causes a blank identification
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to be associated with the segment (cf. 6.6).

Note: Dummy base declarations permit the description of data areas which
are created during the execution of the PL360 program. The specified

base register must be some register other than RO [6], except in the case
of a dummy base declaration. When RO is specified in a dummy base
declaration, the subsequent identifiers are understood to have displacements

and no base register (or index register).

2.3 Control Facilities

2,3.1 If Statements

<{relation> :

s="'='<|<ﬂ,|>=l>
{condition> ::

::= <A cell designator> <relation> <A cell designator>
| <A cell designator> <relation> <J value>

| <A cell designator> <relation> <{string>

| <byte cell designator>

| = <byte cell designator>

| <K register> <relation> <A primary>

| <integer register> <relation> <{string>

] <relation>

|

overflow

A condition is sald to be met or not met. In the first three forms of
condition, the A cell preceding the relation is compared to the A cell,
J value, or string specified after the relation. The comparison is
logical (unsigned). The condition is met if the specified relation
holds between the values of the compared quantities. The same
restrictions apply regarding allowable combinations as for A cell
assignment (cf.2.2.7). A condition specified as a byte cell (or a byte
cell preceded by ™ ) is met if the value of the byte cell is #FF (or
not #FF). The condition consisting of a relation enclosed by a register
and a primary is met iIf the specified relation holds between the current
values of the register and the primary. When an integer register is
compared to a string, the comparison is logical (unsigned), and the
string must not consist of more than four characters. [If it consists of
fewer than four characters, the string is right justified and null
characters */ are appended at the left to form a four character
string. The condition is met if the specified relation holds between
the register and the string. A condition consisting of only a relation
or the symbol gverflow is met if the condition code of
the processor (cf.2.1.1) is in a state specified by Table 3,

*/ Null characters have the bit representation #00X,
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symbol state
= 0

—_ = lor 2
< 1

<= Oor 1

> = O or 2
> 2

overflow 5

Table 3

{combined condition) ::= (condition)|
{combined condition) and {condition)

(alternative condition) ::= {condition}|
{alternative condifion) or (condition)

{compound condition) ::= {combined condition)\

(alternative condition)
A compound condition is either of the form
cl and ¢c2 and ¢3 ... and cn

which is said to be met, if and only’if all constituent conditions are
met, or

cl or ¢2 or ¢3 ... or cn

which is said to be met, if and only if at least one of the constituent

conditions is met.

(if clause) ::= if (compound condition) then

{true part) ::= (simple statement) else

{(if statement) ::= (if clause)(statement )|
(if clause)(true part ){statement)

The if statement specifies the conditional execution of statements:
1. (if clause)(statement)

The statement is executed, if and only if the compound condition of the

clause is met.
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2. (if clause){true part)(statement)

The simple statement of the true part is executed and the statement is
skipped, if and only if the compound condition of the if clause is met.
Otherwise the true part is skipped and the statement is executed.

Examples: if RO < 10 then Rl :=1
if F2 > _3.75 and F2 < 3.75 then FO := F2 else FO := OR
if < then SET(flags(l)) else SET(flags(2))

Note: If the condition consists of a relational operator without operands,

then the decision is made on the basis of the condition code as determined

. by a previous instruction.

Example: CIC(15,a,b); if = then ...

2.3.2 Case Statements

{case clause) ::= case {integer register) of
{(case sequence) ::= {case clause) begin|
(case sequence)(statement);

(case statement) ::= (case sequence) end

Case statements permit the selection of one of a sequence of statements
according to the current value of the integer register (other than register
RO) specified in the case clause. The statement whose ordinal number
(starting with 1) is equal to the register value is selected for execution,
and the other statements in the sequence are ignored. The value of that

register is thereby modified.
Example: case R1 of
begin comment interpretation of instruction code R1;
FOl := FOl1 + F23;

FOL := FO1 - F23;
FO1l := FOl * F23;
FOl := FO1 / F23;
FO1 := neg FO1;
FOl := abs FOl;
end
2k



2.3.3 While Statements

(while clause) ::= while (compound condition) do
(while statement) ::= (while clause){statement)

The while statement denotes the repeated execution of a statement as

long as the compound condition in the while clause is met.

Examples:

while FO < prize(R1l) do R1 := Rl + L
while RO < 10 do
begin RO := RO + 1; FO1l := FOl ¥ FOl; F23 := F23 ¥ FOLl;

end

2.3.4 For Statements

{increment) ::= (integer value)

(limit) ::= (integer primary)|{short integer primary)

{for clause) ::= for (integer register assigmment) step {increment )

until {limit) do

(for statement) ::= (for clause){statement)

The for statement specifies the repeated execution of a statement, while

the content of the integer register specified by the assignment in the for

clause takes on the values of an arithmetic progression. That register is

called the control register. The execution of a for statement occurs in

the following steps:

Examples:

the register assignment in the for clause is executed;

if the increment is not negative (negative), then if the value
of the control register is not greater (not less) than the limit,
the process cohtinues with step 3; otherwise the execution of
the for statement is terminated;

the statement following the for clause is executed;

the increment is added to the control register, and the process

resumes with step 2.

for Rl := O step 1 until n do STC(".", line (R1))
for R2 := R step 4 until RO do
begin F23 := quant(R2) * price (R2);
FOL := FOL + F23;

end
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2.5.5 Blocks

{declaration) ::= (T cell declaration)|

(function declaration>|(procedure declaration)\

(T cell synonym declaration)|{¥ register synonym declaration)|
{integer value synonym declaration)‘

(segment base declaration)l(segment close declaration)

(simple statement) ::= () register assignment)|{@ cell assignment }|

{function designator)|{procedure statement)|{case statement)|(block)}|
(goto statement)| null

(statement) ::= (simple statement )|(if statement )|

(mﬂeﬂﬂmmﬂﬂmr%%mmﬂ

(label definition) ::= (identifier) :
(block head) ::= begin|(block head){declaration);
{block body) ::= {block head)|{block body)(statement);|

(block body){label definition)

(block) HPES (block body) end
(program) 1= (statement) . |

global (simple procedure heading);(statement) . |
global (simple procedure heading) base (integer register);{statement) .

A block has the form

begin Dj D3 «...3 D3 S3 83 «..3 S; end

where the D's stand for declarations and the S's for statements

optionally preceded by label definitions. The two main purposes of a

block are:

1.

To embrace a sequence of stdtements into a structural unit which

as a whole is classified as a simple statement. The constituent

statements are executed in sequence from left to right.

To introduce new quantities and associate identifiers with them.

These identifiers may be used to refer to these quantities in any
of the declarations and statements within the block, but are not

known outside the block.

Label definitions serve to label points in a block. The identifier

of the label definition is said to designate the point in the block where

the label definition occurs. Go to statements may refer to such points.
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The identifier can be chosen freely, with the restriction that no two
points in the same block may be designated by the same idenfifier.

The symbol null denotes a simple statement which implies no action
at all.

Example of a block:
begin integer bucket;
if flag then
begin bucket := RO; RO := R1l; Rl := R2;
R2 := bucket;

end else

begin bucket := R2; R2 := R1; Rl := RO;
RO := bucket;

end;

RESET (flag) ;

end

2.3.6 Go To Statements

{go to statement) ::= goto {identifier)

The interpretation of a goto statement proceeds in the following

steps:

1. Consider the innermost block containing the goto statement.

2. If the identifier designafes a program point within the considered
block, then program execution resumes at that point. Otherwise,
execution of the block is regarded as terminated and the innermost
block surrounding it is considered. If this block is in the same
program segment as the previous blocks, then step 2 is repeated;

otherwise, the identifier is undefined (cf. 5.1).

2.3.7 Procedure Declarations

{simple procedure heading) ::=
procedure (identifier)({integer register))
(separate procedure heading) ::=

segment (simple procedure heading>|

global {simple procedure heading)‘
external {simple procedure heading)

27



c

c

(procedure heading) 1:= (simple procedure heading)\
(separate procedure heading)|
(separate procedure heading) base (integer register)

{procedure declaration) ::= (procedure heading);(statement)

A procedure declaration serves to associate an identifier, which
thereby becomes a procedure identifier, with a statement (cf. 2.3.5) which
is called a procedure body. This identifier can then be used as an
abbreviation for the procedure body anywhere within the scope of the
declaration. When the procedure is invoked, the register specified in
parentheses in the procedure heading is assigned the return address of
the invoking procedure statement. This register must not be RO .

If the symbol procedure is preceded by the symbol segment, global, or

external, the procedure body is compiled as a separate program segment.
If the symbol is global or external, the corresponding identifier is

associated with the procedure segment to enable linking of segments in
possibly different PL360 programs [8,9,12]. These symbols have no other
influence on the meaning of the program with the exception of restricting
the scope of goto statements (cf. 2.3.6, 5.1 and 6.6). If a base register
is specified in the procedure heading, the procedure body is compiled
using the specified register for the program segment base register

(cf. 5.1); otherwise the current program base register is used (usually
this is R15, however cf. 6.3). This register must not be RO. When

the procedure is invoked, the specified (or assumed) base register is

assigned the entry point address.

Examples: procedure nextchar (R3);
begin if R5 < 71 then RS := RS + 1 else
pggig RO := @ card; read; R5 := 0 ;
end;
IC(RO, card(R5));

end
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procedure slowsort (RL);

for R1 := O step 4 until n do

begin RO := a(R1);
for R2 := Rl + U4 step 4 until n do
if RO < a(R2) then begin RO := a(R2); R> := R2; end;
R2 := a(RL); a(Rl) := RO; a(R3) := R2;

end

external procedure searchdisk (R1l4) base R12; null;

Note: The code corresponding to a procedure bbdy is terminated by a

branch-on-register instruction specifying the register designated in the

- procedure heading. A procedure statement places a return address in this

register when invoking the procedure. In order to return properly, the
programmer must either not change the contents of that register, or
explicitly save and restore its contents during the execution of the

procedure.

2.3.8 Procedure Statements

{procedure statement) ::= {procedure identifier)|

(procedure identifier)(({integer register))

The procedure statement invokes the execution of the procedure’body
designated by the procedure identifier. A return address is assigned to
the register specified in the heading of the designated procedure
declaration. If an integer register is specified in the procedure
statement, on return from the procedure the contents of R15 is transferred
to the specified integer register and the condition code is set by the
transfer. This facilitates the convention of passing return codes in

register R15.
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3. Examples

procedure Magicsquare (R6);
comment This procedure establishes a magic square of order n, if n is

odd and 1 <n < 16. X is the matrix in linearized form. Registers
RO ... R6 are used, and register RO initially contains the
parameter n. Algorithm 118 (Comm. ACM, Aug. 1962);
begin short integer nsqr;
integer register n syn RO, i syn R1, j syn R2, x syn R3, ij syn RY4,

k syn R5;
nsqr := nj; Rl :=n ¥ nsqr; nsqr := R1;
i :=n+ 1shrl 1l; j :=n;

for k := 1 step 1 until nsqr gé

begin x := i shll 65 ij := j shll 2 + x; X := X(id);
if x — O then
begin i =1 - 1; J :=J - 2;
if i <1 then i :=1+ n;
if j <1 then j :=J + nj;
x :=1 shll 6; ij := J shll 2 + x;

end;

X(13) == k;

i:=1i+1; if i >n then i :=1 - nj
je=3+ 1y if j >n then j :=J - n;

end;

end
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procedure Inreal(RlL);

comment This procedure reads characters forming a real nuﬁber according to
the PL360 syntax. A procedure 'nextchar(R3)!' is used to obtain the
next character in sequence in register RO. The answer appears in
the long real register FOl. Registers RO ... R}t and all real
registers are used;

begin external procedure nextchar(R3); null;

integer register char syn RO, accum syn R1l, scale syn R2; ext syn R3;

long real register answer syn FOLj
byte sign, exposign;
long real converted = #4EO0000000000000L: 3

integer convert syn converted (L);

‘nextchar; RESET(sign);

while char < "O" do

begin if char = " " then SET(sign) else RESET(sign); nextchar;
end;

comment Accumulate the integral part in accum;

accum := char and #F; nextchar;

while char >= "O" do

begin char := char and #F; accum := accum ¥ 108 + char; nextchar;
end;

scale := O;

convert := accum; answer := converted + OL;

if char = "." then

begin comment Process fraction. Accumulate number in answer;
nextchar;

while char >= "QO" do

begin char := char -and #F; convert := char;
answer := answer ¥ 10L + converted; scale := scale - 1;
nextchar;
end;
end;
if char = "'" then

begin comment Read the scale factor and add it to scale;

nextchar; if char = "-" then
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begin SET(exposign); nextchar;

end else

e

if char = "+" then

begin RESET (exposign); nextchar;

end else RESET(exposign);

accum := char and #F; nextchar;

while char >= "0" do

begin char := char and #F; accum := accum * 10§ + char; nextchar;

end;

if exposign then scale := scale - accum else scale := scale + accum;
end;

if scale —= O then

begin comment Compute Fi5 := 10 t scale;

if scale < O then

begin scale := abs scale; SET(exposign);

end else RESET(exposign);
F23 := 10L; FL45 := 1L;

while scale — = O do
begin SRDL(scale, 1);

F67 := Fh5;

comment divide scale by 2, shift remasinder into scale

extension, making ext < O if remainder is 1;
F23 := F23 * F67; FOT := F23;
if ext < O then F45 := FL5 * F23;

end ;

if exposign then answer := answer / Fu45

else answer := answer * Fi5;

end;

if sign then answer := neg answer;

end

procedure Outreal (RL);

begin comment This procedure converts the (long) real number in register FOL

into a string of 1k characters which constitute one of its possible

decimal denotations. The character pattern is bsd.dddddd'sdd, where b

is a blank, s a sign, and d a digit. Registers RO, R2, R3, R4, and

all real registers are used.

address of the output area.
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integer register exp syn RO, scale syn R2, ext syn R3;

long real register x syn FO1;

long real convert;
integer converted syn convert (4), expo syn convert (0);
byte sign;
array 4 logical pattern =
(#402120L4B, #20202020, #20207D21, #20200000) ;

if x = OL then MWC(13,Bl," O ") else
begin if x < OL then SET(sign) else RESET(sign);
X := abs x; convert := X;

comment Obtain an estimated decimal scale factor from the exponent
part of the floating point representation;
exp := expo shrl 24 - 6k ¥ 3078; if < then exp := exp + 255;
exp := exp shra 8 - 1; scale := abs exp;
comment compute F45 := 10 t scale;
F2% := 10L; FU45 := 1L; F67 := Fh5;
while scale —= O do ‘
begin SRDL(scale,l); F23 := F23 * F67; FO7 := F23;
if ext < O then FL5 := FL5 ¥ F23;
end;
comment normalize to 1 < x < 10;
if exp < O then
begin x := x ¥ Fi5;
while x < 1L do
begin x := x ¥ 10L; exp := exp - 1;
end;
end else
begin x i=x / Fh5;
while x > 10L do
begin x := x ¥0.1L; exp := exp + 1;

end;
end;
X := X ¥ 1'7L ++ #4EO0000000000005L;
convert := x; ext := converted;

comment ext is used here to hold the integer resulting from the

conversion;
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if ext >= 100000000 then

begin ext := ext / 10; exp := exp + 1;
comment adjustment needed when conversion results in
rounding up to 10.0. Note that R2 = 0;

end;

MVC (13, Bl, pattern); CVB(ext, convert); ED(9, Bl, convert(3));

if sign then MVI("-", B1(1));

CVD(exp, convert); ED(3, BL(10), convert(6));

if exp <O then MVI("-", BL(11)) else MVI("+", B1(11));

end;

end

procedure BinarySearch (R3);

comment A binary search is performed for an identifier in a table via an
alphabetically ordered directory containing for each entry the
length (no. of charaéters) of the identifier, the address of the
actual identifier, and a code number. The global declarations

array N integer directory

array N short integer code syn directory (0)

array N short integer length syn directory (2)

array N integer address syn directory (4)

integer n
are assumed. n equals 8 times the number N of entries in the
table, which appear as directory(8), directory(16), ...,
directory(n). This assumption can easily be changed by changing
the value of size in the equate declaration. It is assumed that
code(0) = 0. Upon entry, Rl contains the length of the given
identifier. R2 contains its address. Upon exit, R3 contains the
code number, if a match>is found in the table, O otherwise.
Registers R1-R8 are used;
begin integer register L syn Rl, low syn R3, i syn R4, high syn RS,

m syn R7; equate size syn 8, mask syn neg size;

high := n; low := size; comment index step in directory is size;

while low <= high do

begin i := low + high shrl 1 and mask; R6 := address(i);
if L = length(i) then
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begin EX(L, CIC(O, B2, B6)); if = then goto foundy
if < then high := i - size else low := size + i3
end else
if L < length(i) then
begin EX(L, CIC(O, B2, B6));
if <= then high :=1 - size else low := size + i;

end else
begin m := length(i); EX(m, CIC(0, B2, B6));
if < then high :=1 - size else low := size + 1i;

end;
end;
i :=0;

found: R3 := code(i); .

end
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4. The Object Code

Three principal postulates were used as guidelines in the design of

the language:

1.

Statements which express operations on data must correspond to
machine instructions in an obvious way. Their structure must be
such that they decompose into structural elements, each corresponding
directly to a single instruction.

No storage element of the computer should be hidden from the
programmer. In particular, the usage of registers should be

explicitly expressed by each program.

The control of sequencing should be expressible implicitly by
the structure of certain statements (e.g., through prefixing
them with clauses indicating their conditional or iterative

execution) . : ,

The following paragraphs serve to exhibit the machine code into which

the various constructs of the language are translated. The mnemonics of
the 360 Assembly Language [7] are used to denote the individual instructions.
The notation {A} serves to denote the code sequence corresponding to the

construct (A) . It is assumed that R15 is the program base register
(ef. 5.1, 6.3).

1.

(¢ register) := {7 primary)

The code consists of a single load instruction depending on the types

of register and primary (cf. Table 4, column 1).

2.

(x register assignment ){operator){7 primary)

The code consists of a single instruction depending on the operator and

the types of register and primary. It is determined according to Table L,

columns 2-7.
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3. {@ cell) := {x register)

The code consists of a single store instruction depending on the types

of cell and register as indicated by Table L4, column 8.

L, if {condition-1) and ... and {condition-n-1) and
{condition-n) then {simple statement) else (statement)
{condition-1}
BC cl,Ll
{condition-n-1}
BC cn_l,Ll
{condition-n}
BC cn,Ll
{simple statement]}
B L2
L1 {statement}
L2
¢y is determined by the i-th condition, which itself either translates

into a compare instruction depending on the types of compared register and

primary (cf. Table 4, col. 9), or has no corresponding instruction, if it

merely designates condition code states.

Example: if RL < R2 then RO := R5 else RO := Rk
CR 1,2
BC 10, L1
IR 0,3
B L2
L1 IR O,k
L2
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- r r C s r C c c C C r C C C
(
Operands Operators
¥ register d primary 1 2 Ly 5 6 7 8 9
(type) (type) = + - * / ++ - .=

integer integer register IR AR SR MR DR AIR | SLR CR
integer integer cell L A S M D AL | SL |ST |cC
integer short integer cell IH Al SH MH STH | CH
real real register LER | AER | SER | MER| DER | AUR | SUR CER
real real cell IE |AE [SE |ME | DE | AU | SU | STE | CE
long real real register LER | AER | SER | MER|{ DER | AUR | SUR CER
long real long real register IDR | ADR | SDR | MDR| DDR | AWR | SWR CDR
long real real cell LE AR, SE ME DE AU SU STE | CE
long real long real cell ID AD SD MD DD AW SW STD | CD

Table 4



5. if {condition-1) or ... or {condition-n-1) or {condition-n) then
{simple statement) else {statement)
{condition-1}
BC cl,Ll

{condition-n-1}

BC cn_l,Ll
{condition-n}
BC cn,L2

11 {simple statement}
B L3

12 {statement}

L3

6. case {integer register-m) of

begin (statement-1);
{statement-2);

(statement-n );

end
AR m,m
IH m,SW(m)
B 0(m, 15)

L1 EQU *-ORIGIN
{statement-1}
B 1X(15,0)
L2 EQU *-ORIGIN
{statement-2}
B 1X(15,0)

In EQU *-ORIGIN
{statement-n}
B IX(15,0)

29



SW EQU *-2
D¢ yY(Ll)
DC  Y(L2)
DC  Y(In)

IX EQU *-ORIGIN

ORIGIN is the address of the beginning of the program segment and
register 15 is assumed to contain this address (ef. 5.1).

7. v_rﬁii_e_ {condition) do (statement)
L1  {condition}
B c,L2 -
{statement}
B Ll
L2

If the condition is compound, then code sequences similar to those

given under 4 and 5 are used.

8. for (integer register assignment)
step (increment) until (limit) do (statement )

{integer register assignment}

B L2
L1 {statement}
A m, INC
12 C m, LIM
" BC  c,Ll

Rm 1is the register specified by the assigmment, INC the location
where the increment is stored, and LIM the location where the limit is
stored. The compare instruction at L2 may be either a C , CH , or CR
instruction depending on the 'tyjpé of limit. Moreover, c¢ depends on the

sign of the increment.
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9. procedure (identifier) ((integer register));{statement)
P {statement}
BR m
It is assumed that the integer register enclosed in parentheses
is Rm.

10. {(procedure identifier)
BRAL m,P
or L 15 ,newbase
BALR m,15
L 15,0ldbase
or L 15 ,newbase
BAL m,P

L 15,0ldbase

It is here assumed that P designates the procedure to be called,
and Rm is the return address register specified in its declaration.
The first version of code is obtained whenever the segment in which the
procedure is declared is also the one in which it is invoked. If the
procedure call is of the form
{procedure identifier) (Rn)

then the instruction sequences become

BAL m,P

LTR n,l15

BALR 15,0

L 15,0ldbase
or L 15 ,newbase

BALR m,15

LTR n,15

BALR 15,0

L 15,0ldbase
or L 15 ,newbase

BAL m,P

LTR n,l5

BALR 15,0

L 15,0ldbase
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5. Addressing and Segmentation

The addressing mechanism of the 360 computers is such that
instructions can indicate addresses only relative to a base address

contained in a register. The programmer must insure that

l. every address in his program specifies a "base" register;”.

2. the specified registér is loaded with the appropriate base
address whenever an instruction whose address refers to it is
executed,

3. the difference d between the desired absolute address and
the available base address satisfies

0 <d<hogt .

This scheme not only increases the amount of 'clerical! work in
programming, but also constitutes a rich source of pitfalls. PL360 is
designed to ease the tedious task of base address assignment, and to provide
checking facilities against errors.

The solution adopted here is that of program segmentation. The program
is subdivided into individual parts, called segments. Every quantity
defined within the program is known by the number of the segment in which
it occurs and by its displacement relative to the origin of that segment.
The problem then consists of subdividing the program and choosing base

registers in such a way that

a. the compiler knows which register is used as base for each
compiled address,

b. the compiler can assure that each base register contains the
desired base address during execution, and

Ce the number of»times base addresses are reloaded into registers

is reasonably small.

It was decided [1] that the programmer should express explicitly
which parts of his program were to constitute segments. He has then the
possibility of organizing the program in a way which minimizes the number

of cross-references between segments.
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It should be noted that the programmer's ‘knowledge about segment sizes
and occurrences of cross-references is quite different in the cases of
program and data. In the latter case he is exactly aware of the amount of
storage needed for the declared quantities, and he knows precisely in what
places of the program references to a specific data segment occur. In the
former case, his knowledge about the eventual size of a compiled program
section is only vague, and he is sometimes unaware of the occurrence of
branch instructions implicit in certain constructs of the language. It
was therefore decided [1] to treat programs and data differently, and this
decision also conformed with the desirability of keeping program and data

apart as separate entities.

5.1 Program Segmentation

Since control lies by its very nature in exactly one segment at any
instant, one fixed register is designated to hold the base address of the
program segment currently undér execution. Register R15 is usually used
for this purpose, (however, cf. 2.3.7, 6.3).

Branching to another segment is accomplished with a procedure
statement which causes R15 to be reloaded with the base address of fhe
destination segment before branching to that segment.

The natural unit for a program segment is the procedure. The only
way to enter a procedure is via a procedure statement, and the only way
to leave it is at its end or by an explicit go to statement. An
explicit go to statement cannot be used for branching to another segment.
The fact that no implicitly generated instruction can ever lead control
outside of a procedure minimizes the number of cross-references in a natural
way. Only relatively large procedure bodies should constitute segments.
A facility is provided to designate such procedures explicitly: A procedure
to be compiled as a program seg;ﬁent must contain the symbol segment or
global in its heading. It is relatively easy for a programmer to guess
which procedure exceeds the prescribed size, or otherwise to insert the
symbol segment after the compiler has provided an appropriate comment in
the first compilation attempt. Obviously, the outermost block is always

compiled as a segment.
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5.2 Data Segmentation

In the case obf data, the programmer is precisely aware of the amount
of allocated memory as well as of the instances where reference is made to
these quantities. A base declaration was therefore introduced which implies
that all quantities declared thereafter, but still within the same block
and preceding another base declaration, refer to the specified register as
their base. These quantities form a data segment. At the place of the
base declaration, an instruction is compiled which loads the register with

the appropriate segment address. However, its previous contents are neither

saved nor restored upon exit from the block.
A PL360 program which is a statement is considered to be embedded in

a block containing the implicit declarations

global data SEGNOOO base R13;

array 18 integer savearea;

However, the identifier "savearea'" is not considered predeclared. The
18-word "savearea" is merely reserved to conform with procedure calling
conventions (cf. 6.1.4). If the PL360 program is a global procedure,

there is no implicit base declaration.
Obviously, data segments declared in parallel (i.e., not nested)

blocks, can safely refer to the same base register. Data segments declared
within the same block usually refer to different base registers. Data,
segments declared within nested blocks should normally refer to different
base registers. If they do not, it is the programmer's responsibility to
ensure that the register is appropriately loaded when a segment is
addressed.

There is no limit .to the size of data segments. All cell identifiers
must, however, refer to cells whose addresses differ from the segment base

address by less than 4096. If they do not, the compiler provides an

appropriate indication.
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6. The PL360 Compiler

The PL360 compiler is itself written in PL360. The current version
of the compiler is neither re-entrant nor serially reusable. This in no

way inhibits the writing of PL360 prograxns with these attributes.

6.1 The Language

The PL360 programming language is described in Section 2 of this
document. Details pertinent to the present implementation (e.g., symbol
representations, standard identifiers, and specific limitations) are

contained in subsequent paragraphs of this section.

6.1.1 Symbol Representation

Only capital letters are available. Basic symbols which consist of
underlined letter sequences in Section 2 are denoted by the same letter
sequences without further distinction. As a consequence, they cannot be

used as identifiers. Such letter sequenées are called reserved words.

Embedded blanks are not allowed in reserved words, identifiers, and numbers.

Adjacent reserved words, identifiers, and numbers must be separated by at
least one blank. Otherwise, blanks may be used freely. The basic symbols

are:

DO IF OF OR

ABS AND END FOR NEG SYN XOR

BASE BYTE CASE DATA ELSE GOTO ILONG NULL
REAT, SHLA SHIL SHRA OSHRL STEP THEN
ARRAY BEGIN CLOSE DUMMY SHORT UNTIL WHILE
COMMON EQUATE GLOBAL

COMMENT INTEGER LOGICAL SEGMENT

EXTERNAL FUNCTION OVERFLOW REGISTER
CHARACTER PROCEDURE
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6.1.2 Standard Identifiers

The following identifiers are predeclared in the language but may
be redeclared due to block structure. Their predefined meaning is specified

in Section 2 or in Section 6.1.k.

MEM
BL B2 B3 B4+ B5 B6 B7 B8 B9 B1O Bll Bl2 B13 Bl4 B15

RO Rl R2 R3> R+ R5 R6 R7 R8 R9 RI1O RI11 R12 R13 R14 R15
FO F2 F4 F6

FO1 F23 FL5 F67

BAIR CIC CLI CVB CVD ED EDMK EX IC

IA IH IM LTR MVC MVI MVN MVZ NC NI OC OI PACK

RESET SET SIDA SIDL SPM SRDA SRDL STC STH STM SWC

TEST TM TR TRT TS UNPK XC XI

CANCEL GET KLOSE OPEN PAGE PRINT PUNCH PUT READ WRITE

6.1.3 Restriction

The implementation imposes the restriction that only the first 10
characters of identifiers are recognized as significant.

6.1.4 Standard Procedures

A set of standard procedures is defined for elementary unit record
input and ouput operations. The implicit procedure declarations are as

follows: '

external procedure READ (R14); null;
external procedure WRITE (R14); null;
external procedure PAGE (R14); null;
external procedure PUNCH (R14); null;
external procedure PRINT (R14); null;
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Suitable externally compiled or assembled routines must be provided in the

link/loading process; the specifications of these routines are:

READ

WRITE

PAGE

PUNCH

PRINT

Read an 80 character record from the system input data set

and assign that record to the memory area designated by the
address in register RO. Set the condition code to 2 if no
record could be returned due to an end of file condition;
otherwise, to O.

Write a 133 character record to the system listing data set.

A 132 character record is taken from the memory area designated
by the address in register RO and prefixed by an appropriate
carriage control character. A control character indicating a
new page is used after 60 lines have been written on a page,
otherwise a control character indicating the next line is used.
The first line is writfen on a new page.

Cause the next output record transmitted by a WRITE to the system
listing data set to have a control character indicating a new
page.

Write the 80 character record designated by the address in
register RO to the system punch data set.

Write the 133 character record designated by the address in
register RO to the system listing data set. The calling
program provides a USASI control character as the first

character.

A1l of these procedures assume thet register R135 contains the address

of an 18 word save area and all registers are restored before return. Each

of the data sets is opened upon initial reference and is closed by the

operating system at the end of a job step.

A set of standard procedures is defined for elementary disk and tape

input and output operations using sequential files. The implicit procedure

declarations are as follows:

external procedure OPEN(RLY); null;

external procedure GET(R1l4); null;

external procedure PUT(R14); null;

external procedure KLOSE(R14); null;
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Suitable externally compiled or assembled routines must be provided in the

link/loading process; the specifications of these routines are:

OPEN At entry, register RO must be O if the file is to be an
output file or 1 if the file is to be an input file.

Register R2 must contain the address of an 8-byte area
containing a unique file name. (This is taken as the ddname
in an OS environment and as the symbolic file name in a DOS
environment.) In an OS environment, register Rl must contain
the address of a 100-byte full word-aligned area which,
following the open, will contain the data control block.

In a DOS enviromment, register R1 must contain the address of
a separately assembled DTF table which describes the file.
The file is made ready for input/output operations. All
registers are restored.

GET At entry, register Rl must contain the address of a table
which describes the file. (In an OS environment this table -
is called the data control block and in a DOS enviromment it
is called the DTF table.)’ Upon return, register Rl contains

the address of the next logical record in the file. (The
first call of GET returns with the address of the first

logical record.) When an end-of-file is reached, the
condition code is set to 2; normally it is set to 0. All
registers, except Rl, are restored.

PUT At entry, register R1 must contain the address of a table
which describes the file. Upon return, register Rl contains
the address of an area in which the next logical record to
be output is to be built. All other registers are restored.

KLOSE At entry, register R1 must contain the address of a table
which describes the file. The corresponding file is closed
and no further input-output operations can be performed with
it unless it is opened again. In an OS environment, the
contents of register RO denoted by (RO) is also an input
parameter to this subroutine: If (RO) = O , the DISP
option of the DD statement is used to determine final volume
positioning; if (RO) < O , the volume is positioned at the
end of the data set. If (RO) >0 , the volume is positioned
at the beginning of the data set. All registers are restored.
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One additional standard procedure is defined for ease in communicating

with the operating system. The implicit procedure declaration is as follows:

external procedure CANCEL(R14); null;

A suitable externally compiled or assembled routine must be provided in the

link/loading process; the specification of this routine is:

CANCEL The job, including all future job steps, is cancelled.

All of these procedures assume that register R13 contains the address

of an 18 word save area (cf. 5.2).

6.2 Input Format

Compiler input records consist of 80 characters. The first T2
characters of each record are processed as part of a PL360 program; characters
73 through 80 are listed but not otherwise processed. Character T2 of one

record is considered to be immediately followed by character 1 of the next
record. Strings and comments should be arranged so that the character

'$' does not appear in character position 1.

6.3 Instructions to the Compiler

The compiler accepts instructions inserted anywhere in the sequence of
input records. These instructions affect subsequent records. A compiler
instruction record is marked by the character '$' in column 1 and an

instruction in columns 2-9.

$NOGO Compile, but mark the output non-executable.

$LIST List source records (initial option)

$NOLIST Do not list source records.

$PAGE Start a new page with the next listing record.

$TITLE Start a new page with the next listing record, and use the
contents of columns 10 through 62 as the title for that and
subsequent pages.
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$XYY#

$0s

$D0S

$NOXREF

$0

$1

$2

$

If this directive precedes the first source récord then
compiler generated segment names will commence with XYY rather
than SEG, otherwise the directive is ignored. X signifies
any alphabetic and Y any alphanumeric character: (cf. 6.6).
Subsequent PL360 programs which are statements are compiled
with entry and exit instruction sequences which conform with
the program calling conventions of an 0S enviromment. This

is a default option when the compiler is used with the 0S
interface.

Subsequent PL360 programs which are statements are compiled -
with entry and exit instruction sequences which conform with
the program calling conventions of a DOS enviromment. This is
a default option when the compiler is used with the DOS
interface.

A1l subsequent instances of identifiers are listed in an
alphabetical cross-reference listing together with the line
numbers at which they are referenced in the source program.
The cross-reference listing follows the program listing. If

there is not enough free storage to allocate to the

cross-reference tables, the cross-reference listing is not
made and the $XREF instruction is ignored.

This causes the previous option to be turned off (initial
option) . '

Print a summary line at the close of each segment (initial
option).

Print a summary line and list of external symbol dictionary
entries at the close of each segment.

List the address of each variable and procedure as it is
declared, as well as the information specified in $1.

List the object text in hexadecimal notation at the close of

each segment, as well as the information specified in $2.
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$BASE=xx New Program segments following this instruction are compiled
with xx taken as the program segment base register. This
includes main programs, global procedures, segment procedures,
and external procedures. Procedure calls to such segments
automatically set the specified base register to the entry
point address. The decimal number xx must be between Ol
and 15 . Programs which are statements must not be
compiled with base registers 15 or 14. The initial option
is xx=15 . It is recommended that this compiler instruction
only be used for programs which make use of SVC instructions

which do not preserve the contents of register R15.

6.3 Jlnstructions to the Compiler

$GEN If thi

s directive precedes the first error detected

(if any), then object decks are still produced if B
any have been requested. Otherwise object decks B
are suppressed after encountering an error.

CONDITIONAL COMPILE DIRECTIVES

At the st
an array of
directives u
individual c
may be used,
are consider
case in colu
control card

$SET a

where 'a'

a
This dire

$IFT a b
$IFF a b
where 'a'

and_'b' i
These dir
normally.
If the 'a' f
source cards

matching the
from that po

art of compilation of each <program> (cf. 2,3.5),
flags is reset by the compiler., The following
se this array. The array flags are specified by
haracters in the directives, and any characters
including blank. Upper and lower case characters
ed equivalent., The directives must be in upper
mns 1 through 4 on the control card. Unused columns of these
s may contain anything.

is any character in column 6,

ctive sets the 'a flag.

is any character in column 6,
s any character in column 8.

ectives examine the ‘'a' flag. 1f the 'a' flag is set for $IFT,
or reset for $I1FF, this directive takes no action and compilation continues

lag is reset for $I1FT, or set for $1FF, the compiler skip-reads

until a $END directive is encountered with its 'b' character

1

'b' character of the $IFT or $!FF, Compilation then continues .

int,
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2)

3)

Note: '"$IFF a b' is an unconditional skip to '"$END b’
if '$SET a' has occurred. '$IFT a b' is an unconditional
skip to "$END b' if '$SET a' has not occurred.

$END b
where 'b' is any character in column 6.

This directive terminates $IFT or $IFF directives.
Examples of Conditional Compile:

1) $SET Z

SIFT 2
COMMENT Compile this if 'Z' is $SET;

$ END
$1FF Z
COMMENT Compile, this if 'Z' -is not $SET;

$ END

$SET 1

$IFF
$|FF
$IFT
$ END

COMMENT Compile this if either '0' or "1' or '2' is $SET;

X
X
Q

KN O

$END Q

$SET -
$SET +

$IF% +
SIFT -
COMMENT Compile this if both '+' and '-' are $SET;

$EN6




Error No. Message
00 SYNTAX
0l VAR ASS TYPES
02 FOR PARAMETER
03 REG ASS TYPES
ok BIN OP TYPES
05 SHIFT OP
06 COMPARE TYPES
o7 REG TYPE OR #
08 UNDEFINED ID
09 MULT LAB DEF
10 EXC INI VAIUE
11 NOT INDEXABLS
12 DATA OVERFLOW
13 NO OF ARGS
1k ILLEGAL CHAR

Meaning

The source program violates the PL360 syntax.
Analysis continues with the next statement.

The types of operands in a variable assignment
are incompatible.

In a for clause, the register is not an integer
register, the step is not an integer or short
integer number, or the limit is not a register,
cell, or number of the integer types.

The types of operands in a register assignment
are incompatible.

The types of operands of an arithmetic or logical
operator are incompatible.

A real instead of an integer register or number
is specified in a shift operation.

The types of operands in a comparison are
incompatible.

Either the type or the number of the register
used is incorrect.

An undeclared identifier is encountered. The
identifier is treated as if it were 'R1'. This
may generate other errors.

The same identifier is defined as a label more
than once in the same block.

The number of initializing values exceeds the
number of elements in the array.

An index register is not allowed for the cell
designator in this context.

The address of the declared variable in the
data segment exceeds L4095.

An incorrect number of arguments is used for a
function.

An illegal character was encountered; it is

skipped.
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15

16

17

18

19

20

21

22

23

2L

25

26

27

28

MULTIPLE ID

PROGRAM OFLOW

INITTAL OFLOW

ADDRESS OFLOW

NUMBER OFLOW
MISSING -
STRING LENGTH
AND/OR MIX
FUNC DEF NO.
ILLEGAL PARAM
NUMBER

SYN MIX

SEG NO OFLOW

ILLEGAL CLOSE

The same identifier is declared more than once
in the same block. This occurrence of the
identifier is ignored.

The current program segment is too large. It
must be resegmented.

The area of initializing data in the compiler
is full. This can usually be circumvented by
suitable data segmentation or by re-ordering
injtialized data within the segment.

The number used as index is such that the
resulting relative address is less than O or
greater than 4095.

The integer number is too large in magnitude.
An end-of-file is encountered before a ‘.’
terminating the program. The problem may be
a missing string quote.

The length of a string is either O or greater
than 256.

A compound condition must not contain both
ANDs and ORs.

The format number in a function declaration
is illegal.

A parameter is incompatible with the specifi-
cations of the function.

A number has been used that has an illegal

type or value.

Synonym declarations cannot mix cell and register

declarations, or J cell designators have
different base registers.

The maximum allowed segment number has been
exceeded. The limit is generally set at 75.
A segment close declaration is encountered when
no data segment is open in the corresponding
block head.
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29 NO DATA SEG A variable is declared with no open data

segment. A dummy data segmenf is opened.
30 ILLEGAL INIT Initialization is specified in a common data

segment or replicates an absolute address.

At the end of each program segment, all occurrences of undefined labels

are listed with an indication of where they occurred.

6.6 Compiler Object Program Output

The PL360 compiler is designed to be used in conjunction with

1ink/loader programs which resolve symbolic cross-references between the

- segments of one or more programs. Examples of programs capable of such

resolution are the MTS loader [9], the IBM 0OS linkage editor or loader [8],
and the IBM DOS linkage editor [12]. The remainder of this section uses
the terminology of these programs.

The output of the PL360 compiler is a sequence of object modules.
Each object module contains a single control section corresponding to a
PL360 segment. It consists of 80 character records in the standard format
of external symbol dictionary (ESD), text (TXT), relocation dictionary (RLD)
and an end (END) (cf. [10] Appendix B).

Every PL360 segment (except a dummy data segment) is associated with

an object module in the following fashion:

1. If the symbol segment appéars in the segment declaration, an
object module is produced for this segment; the control section
name is generated by the compiler as described below.

2. If the symbol global appears in the segment declaration, an
object module is produced for this segment; the control section
name is the first 8 bytes of the identifier appearing in the
declaration.

3. If the symbol external occurs in the segment declaration, no
object module is produced; instead the first 8 bytes of the
identifier in the declaration is assumed to be the name of a
control section independently generated and is used to indicate
this in the object module created for the segment containing the

external declaration.
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. If the symbol common appears in the segment declaration then
an object module is created in the form of a labelled or blank
common control section according to whether the common

declaration contains an identifier or not.

In all cases a control section has a single entry point; the entry
point name and the control section name are identical. In the case of a
PL360 program which is a statement, a transfer address to the entry point
is provided in the END card of the object module for the implicit segment
corresponding to this statement. This transfer address is used by a loader
to determine where to begin execution.

The task of the linkage editor/loader includes matching global and
external declarations, inserting absolute address constants and completing
‘tables of segment base addresses, contained within each control section for
a program segment, in accordance with the external symbol dictionary and
relocation dictionary generated by the compiler for that control section.

For PL360 programs which are statements, control section names
generated by the compiler are of the form  SEGNnnn where nmn is the decimal
internal segment number. If the PL360 program is a global procedure, the
first three characters of the procedure identifier (extended on the right
by NN if necessary) are used in place of the characters 'SEG'. These
naming conventions may be overruled by use of the compiler directive
$xXyy4 (cf. 6.3).

Each END card of the object module output of the campiler has the name
"PL360" followed by the date and time of compilation.

6.7 Performance

In an OS environment on a 360/67 with spooled input and output files,
the compiler will recompile itself in about 25 seconds. The compiler is
approximately 2700 card images. Thus, when the OS scheduler time is
subtracted from the execution time given above, it is seen that the
compiler runs at a speed in excess of 100 cards per second (for dense code).

In a DOS environment on a 560/50, the compiler is limited only by the
speed of the card reader. The compiler has successfully recompiled itself
on a 64K 360/30 at a rate of 1200 cards per minute (the speed of the card

25



reader). This is impressive when compared to the time required for the
DOS Assembler to assemble the interface module which consists of under

250 cards. When the macro instructions are expanded, the DOS interface
has 972 card images and the Assembler takes 15 minutes for the assembly.
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Te Linkage Conventions

Although PL360 was designed for writing logically self-contained
programs, it is possible to communicate with separately compiled programs
if appropriate linkage and coding conventions are observed. These

conventions are summarized below.

7.1 Calling External Routines from PL360

Addresses which correspond to external symbolic names and which are

to be supplied by linkage editing can be specified by the external or

common declarations of PL360. Entry to the block containing a data segment
declaration causes the specified base register to be loaded with the
corresponding address. External némes appearing in procedure declarstions
are assumed to designate entry points to subroutines. In such declarstions,
the procedure body is normally the statement null. The call of the external
procedure P2 from the procedure Pl is equivalent to the following 360

Assembler coding:

USING P1,15

L £,=V(P2)
DROP 15

BAIR n,t
USING *,n

L 15,=A(PL)
USING P1,15
DROP n

This linkage implies the following restrictions upon the called routine:

1. At entry, the base register specified (or assumed) in the
external procedure declaration (£) contains the address
of the entry point, wunless £ =n .

2. At entry, the registér specified in the external procedure
declaration (n) contains the return address.

. Before return, the return address must be restored to that

designated register.
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Any additional, non-conflicting conventions may be established by the
programmer.

If the called procedure (P2) uses R15 to return information to the
calling routine (Pl), the procedure statement in Pl is usually of the form
P2(Rm) , indicating that the return linkage must move the contents of R15
to Rm , thus sebtting the condition code before re-establishing the base
address of Pl in R15. The equivalent 360 Assembler coding for this type of
call differs from that already given only in the last four lines which
become

LTR m,15
BALR 15,0
USING *,15
L 15, =A(P1)
USING Pl1,15

0S type linkages are facilitated by the fact that if the calling PL360
program is a statement, the first 18 words of the implicit data segment
(base register R13) are available for use as a save area (cf. 5.2), and by
the @8 operator which facilitates the construction of OS-type parameter

lists at compile time.

7.2 Requesting Supervisor Services

SVC instructions are available in PL360 programs through the function
statement. It should be noted, however, that in many operating systems
the contents of R15 are destroyed by execution of some SW instructions.
In such cases, it is essential that saving and immediately restoring R15
be explicitly programmed. This tedious job of preserving the contents of
the program base register can be avoided by using the $BASE compiler
instruction (ef. 6.3), or by explicitly specifying a base register in
-the procedure heading (cf. 2.3.7).
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7.3 Calling PL360 Procedures from External Routines

Symbolic names and corresponding addresses to be made known to
routines external to the PL360 program are specified by the global and
common declarations of PL360. Global names specified in procedure
declarations are associated with the corresponding procedure entry point.
The external invocation of PL360 procedures must satisfy the following

restrictions:

1. At entry to a PL360 procedure, the procedure base register
(usually R15, but cf. 2.3.7, 6.3) must contain the procedure entry
address and the register specified in the procedure declaration
must contain the return address.

2. At exit from a correct PL360 procedure, the register specified
in the procedure declaration will contain the return address.

In addition, the following points should be noted:

1. If the PL360 program was compiled from a statement and not a
global procedure declaration,

a. the symbolic name of the entry point will normally be
SEGNOO1l, the symbolic name of the implicit data segment
(with base register R13) will normally be SEGNOOO (cf. 6.3);

b. the return register will be R1lk;
at entry, R13 must contain the address of an 18 word save
area, if the $0S option is in effect (cf. 6.3);

d. at exit, all registers are restored from this save area.

2. Immediately prior to exit from a PL360 procedure, R15 may be
loaded with a return code.

3. Global and external names violate the rules of scope established
by the PL360 block structure (cf. 2.2.4). By pairing global and
external declarations, a name can be given arbitrary scope.
Recursive procedures and coroutines can be programmed using this

feature; however, this ability should be used carefully and
sparingly.
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Consider the following example.

global procedure PL (R1);

begin global data D1 base R10;

integer A;
global procedure P2 (R2);

begin RO := Aj

The procedure P2 can be entered
with the base register for data
segment D1 incorrectly loaded,
since it is possible to bypass
the entry code of the block

end ; containing the base declaration.

global procedure P35 (R2);
begin external data D1 base R10; external declaration causes register

In procedure P5, however, the

integer Aj; loa.d.irig, but all declarations must
RO := A; be repeated. In general, procedures
end; which are to be entered independently
RO := Atl; ) should be declared as separate
end. programs whenever possible.

It should be noted that the registers specified in corresponding global
and external procedure declarations must be identical, while the registers
specified in corresponding global, external, and common data segment

declarations may be different.



8. Operating System Interface and Configuration Requirements

The PL360 compiler contains no direct calls to an operating system,
nor does it contain any code dependent upon any specific operating system
environment. Instead, subroutines which interface with a particular
operating system must be separately assembled and merged with the compiler
object modules by suitable linkage editing. Consequently, any operating
system using 360 standard object modules (e.g. MTS, 0S, BOS, TOS, DOS)
can accommodate the compiler. The PL360 compiler uses the following

external names for entry points to such routines:

READ SYSINIT
WRITE SYSTERM
PUNCH

The following information is intended to facilitate the writing of —-

appropriate subroutines.

8.1 Register Conventions

The following conventions apply to all the above entry points:

1. R13 contains the address of a standard 18 word save area.
2. R1lh contains the return address.
3. R15 contains the address of the entry point.

In addition, other registers and the condition code are used for input or
output parameters in those cases specified below. Before return to the
PL360 compiler, all registers (except R15 and any output parameter

registers) must be restored.
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8.2 Subroutine Specifications

1.

SYSINIT

Function:

Input:

Output :

SYSTERM
Function:

Input:
Output:

system initialization, including

a. any required parameter list decoding,

b. opening required data sets,

c. obtaining free storage (at least 12,000 bytes),
d. supplying system or job identification.

none supplied by PL360.

(Registers R1-R5 will be unchanged from the point of
entry to the compiler.) |

Rl -- address of a 16 byte character string to be

used as identification in compilation listing

headings.

R -- éddress of first byte of free storage available
for use by the compiler.

R4t -- address of first byte past the end of the free

storage area supplied.

R15 -- set to #FF if the $0S option is to be used,
set to O of the $DOS option is to be used
(ef. 6.3).

system termination, including

a. release of free storage,

b. closing required data sets.

none
R15 is set to O if the object module output from the
compiler was discarded by the PUNCH routine. R15
should be set to some nonzero value if this is not the
case. The compiler uses this information in setting

a return code when it terminates.
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Function:

Input:

Output :

WRITE
Function:

Input:
Output:
PUNCH
Function:

Input:
Output:

transmission of a card image record to the compiler

(source program input).

RO -- address of 80 byte buffer into which the record
is to be moved.

Condition code set to

2 if no record was transmitted (input file exhausted),

0 'otherwise.

transmission of a line image record from the compiler
(listing output).

Records are 133 bytes in length; the first byte is a
USASI control character ("™ ", "O", or "1"), and the
last 12 bytes may be ignored without substantial
information loss.

RO -- address of 153Aby‘te output record.

none

transmission of a card image from the compiler
(object module output).
RO -- address of 80 byte output record.

none

8.3 Linkage to the Compiler

The PL360 compiler assumes the calling conventions outlined in 8.1.
That is, the compiler is always compiled with the $0S option (cf. 6.3).
Parameters to be interpreted by SYSINIT can be supplied in Rl through R5.

Upon exit from the compiler,

1.

R15 is set to 16 if any compilation errors were detected, to 8
if the return code from SYSTERM is O, and to 24 if both conditions

exit;

otherwise R15 is set to O.

all other registers are restored.
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8.4 Configuration Requirements

The compiler requires:

1. A System/360 processor with at least the scientific instruction
set.

2. At least 52,000 bytes of main storage (for the compiler and free
storage used for table space) plus whatever is required for the
interface module and input-output buffer space.

3. A reader and either a punch or a device accommodating 80
character records with EBCDIC encoding.

L. A printer or device accommodating 133 character records with

EBCDIC encoding of the PL/1 60-character print set.
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9. Use as an 0SS Language Processor

This section describes the use of the PL360 compiler, with the
standard interface routines, in the environment of Operating System/ 360
(0S). An effort has been made to keep the Job Control Language statements
and processor options similar to those for the IBM 0OS Assembler (E, F).

9.1 Data Set Requirements

The PL360 compiler uses the data sets described below, identified
by the DDNAMEs required. All data sets are sequential with fixed blocked
format. Unless supplied by the system or by data set labels, DCB parameters
for physical block size (BLKSIZE) and number of buffers (BUFNO) must be
specified in the DD statement, exceépt for SYSPRINT and SYSPUNCH. These
two data sets will use a default block size equal to the logical record
size if no value is specified elsewhere. Through selection of campilation
options (cf. 9.2), reference to any or all of the output data sets can be

prevented. In such cases, no corresponding DD statement is required.

1. SYSIN

This data set, consisting of compiler instructions (e.g. $NOLIST)
and one or more PL360 source programs, constitutes the input to the
compiler. The logical record length is 80 bytes. Concatenation of
data sets with unlike attributes is supported; however, space for
buffers and access method routines must never exceed that required
for the first of the concatenated data sets.

2. SYSPRINT
This data set contains the compiler output listing, including
all diagnostic messages. The logical record length is 133 bytes;

the first byte of each record is a control character.
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5.  SYSPUNCH

This data set contains compiler output in the form of a sequence
of object modules. Some or all of the object modules corresponding
to programs in which errors were detected will be missing. The
logical record length is 80 bytes. The data set is closed with a
disposition of LEAVE.

L.  SYSGO

This data set contains object module output identical to that
described for SYSPUNCH. It is closed with a disposition of REREAD
for further processing, such as linkage editing.

9.2 Processing Options

The production of listing and object module output by the compiler is
controlled explicitly by compiler instructions (ef. 6.3) or implicitly
(through error detection) by the input stream. Independent control of the
transfer of this output to 0S data sets is provided by the following
compiler options, which can be specified in the PARM field of the job
step EXEC statement. In each case, the unqualified parameter causes
transfer to the indicated data set; the prefix "NO" inhibits such transfer.

Options Data Set
LIST, NOLIST SYSPRINT
LOAD, NOLOAD SYSGO
DECK, NODECK SYSPUNCH

LOAD and DECK options are not mutually exclusive. Options may be specified
in any order; in the case of conflict, the rightmost specification is used.

Default options are equivalent to

PARM="LIST, LOAD, NODECK!
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9.3 Return Code

The return code supplied by the compiler is > 0 if any errors are
detected, or if the $NOGO directive (cf. 6.3) is detected, or if the NOLOAD
option is in effect, O otherwise (cf. 8.3).

9.4 JCL Statements

The catalogued procedure used at Stanford is listed in this section
as an illustration of typical job control language. At Stanford, the
compiler is available as a load module in the partitioned data set
T123.PLLIB on SYS21l. The input-output routines and other run-time object
.modules which may be used by PL360 programs (cf. 13) are available in the
SYSLIB partitioned data set T123.PLSYSLIB on SYS2l. The linking-loader
automatically accesses +this library to resolve external references. To
compile, link and execute a PL360 program using the catalogued procedure,

the following JCL is sufficient:

//TESTPROG JOB ...
EXEC PL360CG
//PL360.SYSIN DD *
[PL360 source programs]

/* ‘

//GO.SYSIN DD *
[data]

/*

The text of the catalogued procedure follows:

//PL360 EXEC PGM=PL360

//STEPLIB DD DSN=T123.PLLIB,UNIT=231k, VOL=SER=SYS21, DISP=0LD
//SYSGO DD DSN=SYS1.UT2,UNIT=231k4,DISP=(OLD,PASS),

// DCB=(KEYLEN=0, BLKSIZE=1600)

//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD SYSOUT=B

/GO EXEC PGM=LOADER, PARM='MAP',COND=(0,NE, PL360)

/SYSLOUT DD SYSOUT=A

/SYSLIN DD DSN=*.PL360.SYSGO, DISP=(OLD, KEEP)

/SYSLIB DD DSN=T123.PLSYSLIB, DISP=0LD,UNIT=231k4, VOL=SER=SYS21
/SYSPRINT DD SYSOUT=A

/SYSPUNCH DD SYSOUT=B

/SYSUDUMP DD SYSOUT=A

NN
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9.5 Library

The standard procedures described in Sections 6.1.4 and 13 are included
in the SYSLIB library. The input-output subroutines all use the queued
sequential access method (QSAM). The unit record input-output routines
assume fixed blocked records. A default value equal to the logical record
size is used for the block size unless one is supplied by data set label
or by the DCB parameter BLKSIZE of the corresponding DD statement. The

ddname correspondences for these procedures are:

Procedure ddname
READ SYSIN
WRITE SYSPRINT
PAGE SYSPRINT
PRINT SYSPRINT
PUNCH SYSPUNCH

The other input-output routines assume nothing about the DCB
information. This information must be supplied either by data set labels
or by the DCB parameters in the DD statements. Corresponding ddnames are
chosen by the programmer.

Abnormal termination of a job (ABEND) may occur with these subroutines
in the following situations:

ABEND UO095 A unit record file could not be opened upon the first
occurrence of a READ, WRITE, PRINT or PUNCH.

ABEND UO096 A READ was attempted after reaching an end-of-file.

ABEND UOO97 An attempted OPEN was unsuccessful.

ABEND UO0098 A GET, PUT or KLOSE was attempted with an unopened DCB.

ABEND UO099 A GET was attempted after reaching an end-of-file.

If a SYSUDUMP DD statement is included for the job step, a dump will
follow the above ABENDs.
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10. Use as a DOS Language Processor

This section describes the use of the PL360 compiler with the standard
interface routines, in the enviromment of the Disk Operating System/360

(DOS) .

10.1 System Configuration Requirements

The Disk Operating System is usually used on small 360 machines. The
PL360 is an "in core" compiler and cannot be run on many of the smaller 360
computers due to the core memory requirements. The PL360 compiler together
with the DOS interface and buffer space require approximately 55,000 bytes
"of core memory. Since DOS requires about 10K of memory, this dictates a
minimum memory capacity of 64K for running PL360.

Following is a list of the logical files used by the DOS-PL360 interface.
These files are usually assigned to the proper devices; however, default o

assignments can easily be overridden with job control statements.

1. SYSIPT
This file contains the primary input to the compiler; namely
compiler instructions (e.g. $NOLIST) and one or more PL360 source

programs .

2. SYSPCH ,
This file is used for compiler output in the form of a sequence
of object modules. Some or all of the object modules corresponding

to source programs in which errors were detected will be missing.

3.  SYSLST
This file is used for the compiler output listing, including all
diagnostic messages. The record length is 133 bytes and the first

byte of every record is a control character.

k.  SYSINK

This file receives object module output identical to that
described for SYSPCH except that it is written in the special variable
record length format required by the DOS linkage editor. It is assumed
by the interface that this file resides on a 231k disk; however, this
assumption can easily be changed (to a 2311, for example) in the source

code of the interface. - -
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10.2 Processing Options

The production of listing and object module output by ‘the compiler is
controlled explicitly by compiler instructions (c¢f. 6.3) or implicitly
(through error detection) by the input stream. Independent control of the
transfer of this output to DOS files is provided by the following compiler
options, which can be altered through the first three bits of the UPSI
byte. In each case, the unqualified option cuases the transfer to take
place; the prefix "no" inhibits the transfer.

Options File Name
list, nolist SYSLST
load, noload SYSLNK
deck, nodeck SYSFCH

The default options are (list,load,nodeck) . These default options can
be changed with the job control statement

// UPSI ijk
where 1i,j,k may be either O or 1 :

0 - take the default option,
1 - reverse the default option.

If no UPSI statement is included in the job control input stream, then
// TUPSI 000

is assumed. The load and deck options are not mutually exclusive.

10.3 JCL Statements

The following sample of job control statements which can be used for
invoking the PL360 compiler, link editing the output and executing the

_resulting program assume that the compiler is available in the Core-Image
Library under the name PLDOS (digits cannot be used in the name, unfortunately),

the elementary unit record input-output subroutines (READ, WRITE, PRINT,
PAGE, PUNCH) and CANCEL are available in the Relocatable Library under the
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name PL360I0, the tape and disk input-output subroutines (OPEN, GET,
PUT, KLOSE) are available in the Relocatable Library under the name
PLTAPEIO, and the run-time library (cf. 13) is available in the
Relocatable Library under the name RUNLIB.

// J0B [jobname] [ comments ]
// UPSI ijk
if any, (cf. 10.2)

// OPTION | LINK
CATAL

If the linkage editor is to be used, this statement must be
included. The option LINK is for compile-and-go jobs, while

the CATAL option also retains the core-image module and catalogues
it in the Core-Image Libz:a.ry.

// PHASE [program name],S+m .

This statement is necessary only if option LINK or CATAL are in
affect. The integer m is set equal to 802 where £ 1is the
number of standard data set labels to be processed during the

EXEC step.
// EXEC PLDOS

This statement invokes the PL360 campiler.

[source program]

/-x-
The following statements are necessary only if option LINK or
CATAL are in affect. '

INCIUDE PL360I0
Includes the READ, WRITE, PAGE, PUNCH, PRINT and CANCEL subroutines.

INCIUDE PLTAPEIO .
- Includes the OPEN, GET, PUT and KLOSE subroutines.

INCIUDE RUNLIB
Tncludes the run time library of subroutines (ef. 13).

ENTRY
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// EXEC LNKEDT
This invokes the linkage editor.
[JCL for particular input-output requirements of the job; for

example, label processing, etc.]

/] EXEC
This executes the core-image module produced by the lihkage
editor.
[card input for the program, if any]
/*
/&

A typical job with lineprinter output and no input would have a deck setup
as follows: B

// JOB  TESTJOB
// OPTION LINK
// PHASE T,S

// EXEC PLDOS

{source program}
/*
INCIUDE PL360I0

ENTRY
// EXEC LNKEDT
// EXEC

/&

10.4 DIF Tables

This section describes the conventions which must be followed when
coding DTF macro instructions for the tape and disk input-output subroutines.
(Refer to [;1l+] for a complete déscription of the necessary macro instructions.)
Generally, the only macro instructions needed are: DIFMT (_lgefine The
File for Magnetic Tape), MIMOD (Magnetic Tape input/output control section
M_(_)___Dule) , and DTFSD and SDMODxx for sequential disk files. The DOS routines
for GET and PUT require the following conventions in declaring the DIF
table:
EOFADDR = ENDRDR,
IOREG = (2) .
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Since the DTF macro instruction is assembled by the IBM assémbler as a

separate module, an
EXTRN ENDRDR

statement must be included in the assembly. ENDRDR is actually a subroutine
in the PLTAPEIO module.

The name of the DTF table must be accessible to your PL360 program.
Thus, it must be specified as an ENTRY point. The easiest way to access it
in the PL360 program is with an external procedure declaration. For example,
if the DTF table is called INFILE, one might code

external procedure INFILE (R14); null;
integer DTFADDR = @@ INFILE;

in the declarations of the PL360 main program. An external data declaration
may be used instead.

If variable-length records are to be written, the RECSIZE parameter
must be used with its value being the maximum possible length of a record.
Also,

VARBLD = (3)

must be specified. The PUT subroutine uses these parameters as follows:

If the remaining length in a buffer becomes less than RECSIZE, a TRUNC macro
instruction is automatically issued to write the physical block and the
subsequent record is started at the beginning of the next buffer area

(IOAREA).

The example on the following page is for variable-length input from
magnetic tape with blocks of at most LOOO bytes. The subroutine that actually
does the input is called a "logic module" and is generated by the MIMOD
macro instruction. When expanded, this assembly produces 314 card images.
-Assembly time on a model 30 is about 5-10 min. The necessary job control
language has been included in the example. Notice that buffer areas must
be explicitly declared.

_ If you are not familiar with the hazards of writing these macro
instructions, be very careful and read every word of the instructions

contained in the Supervisor and IO Macro Manual [1k].
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// ~JOB TOASM

// ~OPTION LOG,DECK,LIST,XREF
// EXEC  ASSEMBLY

INFILE DTFMT

EXTRN
ENTRY
PACKIN DS
PACKIN2 DS
TJFVZZZY MTMOD
/ END
*
/&

BLKSIZE=koOL,
DEVADDR=SYS010,
EOFADDR=ENDRDR,
FILABL=STD,
ERROPT=IGNORE,
HDRINFO=YES,
TOAREA1=PACKIN,
TOAREA2=PACKIN2,
TOREG=(2),
MODNAME=IJFVZZZY,
RDONLY=YES,
RECFORM=VARBLK
ENDRDR

INFILE

LookC

Looke
ERROPT=YES,
RDONLY=YES,
READ=FORWARD,
RECFORM=VARBLK

Th

o R o alalalaRalalala
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10.5 Library

The standard procedures described in Sections 6.1.4 and 13 are
available for the DOS operating system. The input-output subroutines all
use the sequential access method (SAM).

Abnormal termination of a job may result from any of the following

conditions:

1. A READ or GET was attempted after reaching an end-of-file.
2. An attempted OPEN was unsuccessful.
3. A GET, PUT or KLOSE was attempted with an unopened file.

Any of these conditions will result in a core dump.
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11. Use as an MI'S Language Processor

This section describes the use of the PL360 compiler, with the
standard interface routines in the enviromment of the MI'S Operating

System.

11.1 Data Set Requirements

The PL360 compiler uses the logical files SCARDS, SPRINT and SPUNCH
and the device PUNCHI1.

1. SCARDS
This input file consists of compiler instructions (e.g. $NOLIST)

and one or more PL360 source programs.

2. SPRINT
This file contains the compiler output listing, including all

diagnostic messages.

3.  SPUNCH
This file contains the object modules output by the compiler.
Some or all of the object modules corresponding to programs in

which errors are detected will be missing.

4,  PUNCH1L
Provides the object modules on cards (batch runs only).

11.2 Procéssing @tioné

The production of listing and object module output by the compiler
is controlled explicitly by compiler instructions (cf. 6.3) or implicitly
(through error detection) by the input stream. Independent control of these
data transfers is provided by the following compiler options, which can be
specified in the PAR field of the $RUN command. In each case the
unqualified parameter causes the transfer to take place; the prefix 'NO!

inhibits the transfer.
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Options File or Device

LIST,NOLIST SPRINT
LOAD, NOLOAD SPUNCH
DECK, NODECK PUNCH1

The DECK option is available only in batch runs; LOAD and DECK are
not mutually exclusive. Options may be used in any order, in case of

conflict the rightmost specification is used. The default options are

PAR=LIST, LOAD, NODECK

11.3 MIS Library

The procedures READ, WRITE, PAGE and PUNCH described in Section 6.1.h4
are included in the file *PL360SLIB. An alternative version of the procedure
WRITE is available in MT'S, its specifications correspond to those for the T
procedure WRITE used by the compiler. This version of WRITE together with
READ, WRITE and PAGE are available in the file *PL360LIB.

11.4 MT'S Commands

1. To compile in the batch (source on cards, listing to the
printer and the object program to a temporary file -T ):
$RUN *PL360 SPUNCH= -T

2. To compile from a terminal, (source on a file MYSOURCE,
listing to a file MYLISTING and object program to a file
MYOBJECT) :
$RUN *PL360 SCARDS=MYSOURCE SPRINT=MYLISTING SPUNCH=MYOBJECT

5. To execute the program created in Example 2, using the standard
library taking data from *¥SOURCE* and sending printed output to
a file RESUITS:
$RUN MYOBJECT+*PL360SLIB SPRINT=RESULTS

When working from a terminal the compiler directives $0 and $NOLIST can be
used. Only error messages (and their program context of one line) and one

line summaries of the coding for each segment are produced.
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12, Use as an Orvyl Language Processor

This Section contains a brief narrative description of how one uses
the interactive version of PL360 which runs under the Orvyl time-sharing
monitor <13>. This version is made possible through a special Orvyl-PL360

interface module written in Assembly Language using the Orvyl macro
instructions <13>,

12.1 Using the PL360 Compiler with Orvyl
This Section assumes that the Orvyl system is being used at Stanford
where the Orvyl-PL360 compiler is saved in object module form in the
Wylbur data set T000,PL360 on SYS10. To use it, just type:
USE &TO000.PL360 ON SYS10 LOAD

You will then receive the message:

-WELCOME TO PL360
DECK? —-

If your account has been activated for Orvyl files, then you can type
"YES" and PL360 will respond with:

FILE NAME?
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You should then type the name of an Orvyl file in which PL360 will place
the object modules from the subsequent compilation, This file can be
either new or old. Appending " SCR" to the file name will cause an old
file to be scratched for reuse; otherwise, you will be prompted:

SCRATCH?
A "NO" response will cause the file naming process to be repeated.
The next thing PL360 asks is:

LISTING?

If you respond "YES", then you will again be asked to supply an
Orvyl file to receive the PL360 Compiler list output.

The final question asked by PL360 is:
WYLBUR?
If you respond "NO", you will get the message:

BEGIN TYPING PL360 PROGRAM
-?

You can now type in a PL360 program and each line will be compiled

as you go., Unfortunately, if you make a mistake, you must start over
since the old lines are not saved. For this reason, it is usually best
to compile from a Wylbur working data set, To do this, respond "YES"
to the Wylbur prompt and PL360 will prompt:

-?

You can now type Wylbur commands which will be passed to and executed by
Wylbur. You can continue to pass commands to Wylbur (for example,
collect lines, edit lines, use files, copy files, etc.) until your
Wylbur working data set contains the PL360 program(s). You then type
"COMPILE" immediately after a -? prompt and PL360 will begin compiling
the program(s) contained in your Wylbur working data set.

Any error messages and the line on which they occur are typed at
the terminal as the compilation proceeds. Each time a segment is closed
a message is typed at the terminal,

When compiling from a Wylbur working data set, the compiler
terminates at the end of the data set and types:

-LEAVING PL360

When typing the program in directly, you can leave PL360 at any time

by typing "/*" or by simply hitting the ATTN button at the terminal.

As you are leaving PL360, the Orvyl core memory and your Wylbur working
data set are automatically cleared.
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If the program you are compiling has numerous errors and you wish
to suppress the typing of error messages at the terminal, then simply
hit the ATTN button at the terminal (except in response to a prompt).
Orvyl will respond (as usual) with:

DO YOU WANT YOUR PROGRAM?
Respond with "YES". PL360 will then ask:
DO YOU WANT FURTHER ERROR MESSAGES TYPED?

A "NO" will cause the compilation to continue with'no further

error messages typed at the terminal. A "YES" will cause compilation
to continue as before. In either case, the listing produced in the
Orvyl file (if any) will be unaffected.

After leaving PL360, you can retrieve the object deck by typing:
GET (file name> CARD CLEAR
You can retrieve the listing by typing:
GET <file name> PRINT CLEAR

The listing has 133-byte records, the first byte of which is a carriage
control character. Thus, when the listing is printed offline, the
following Wylbur command should be used:

LIST OFF BIN xxx UNN (0)

The (0.) part of the LIST command causes the first byte to be treated as

a carriage control character. The resulting lineprinter listing looks like

a batch PL360 compilation listing. The Orvyl version of PL360 has

several advantages: Waiting for the batch queue is completely eliminated.
Errors are printed at the terminal, and thus can usually be fixed immediately
and another compilation can be made in a minute or two. Paper is saved since
listings with errors are seldom listed offline. Finally, the Orvyl version
of the runtime library can be used to run and test the program immediately

at the terminal. In this way, Orvyl's debugging tools can be used and
debugging takes far less time, :

Most short compilations can be done in about a second or two of
Orvyl compute time (less than 50¢)., This is a significant savings over
batch compilations. The PL360 compiler, which is about 3000 card long,
compiles in 37 seconds of Orvyl compute time at a cost of about $6.,20,

12,2 Input-Output Subroutines for Interactive PL360 Programs

The standard input-output subroutines using the same linkage conventions
as the READ and WRITE subroutines described in Section 6.4 are available
for input-output operations directly at the terminal when running a PL360
program under the Orvyl monitor., A description of the parameter passing
conventions of these subroutines follows:
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READ The address of a 132 byte input area should be provided in RO
prior to calling READ. Upon return, all registers are
preserved except R15 which contains the number of non-blank
characters typed by the user (counting imbedded blanks).

A1l details such as error messages for illegal use of tabs
or waiting too long to respond are taken care of by the READ

subroutine, If a "/+*" has been typed as the first two characters,

the condition code is set to 2, otherwise it is set to 0.

WRITE This subroutine works exactly like the subroutine described in

Section 6.4, |,e., the address of a 132 byte output area is
passed through register RO and all registers are preserved
upon return., The output area is typed at the terminal.

The following discussion assumes that the Orvyl system is being
used at Stanford where the Orvyl READ and WRITE subroutines and the
library subroutines listed in Section 13 are stored in object module
form in the Wylbur file T000,PL360,RUNLIB on SYS10, To run a PL360
program in Orvyl, just follow this simple process:

First, compile the program., This may be achieved either in batch or
with the Orvyl version of the PL360 compiler. The program must be
a statement with segment name SEGNOO1l (cf.2.3.5, 5.1, 5.2) .

Place the object module output of the PL360 compiler in the

Wylbur working data set and type:

COPY ALL TO END FROM &T000.PL360.RUNLIB ON SYS10
LOAD TEXT

Your program will then execute,

Note that file 1/0 is not provided for in the Orvyl runtime routines.
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13. The Run-Time Library

This section describes a set of global procedures written in PL360
which perform commonly needed tasks. These subroutines are not predeclared
as external procedures in the PL360 compiler; thus they must be explicitly
declared in the calling program. In all cases, the procedure linkage is
done with register R1l4, and R15 should contain the address of the entry
point upon entry. At Stanford, the linkage editor automatically adds
the required subroutines if you are using the catalogued procedure

PL360CG (cf. 9.4).

13.1 Number Conversion Procedures

The two subroutines described below are used to convert the EBCDIC
representation of a number into an internal representation of that number,
or vice-versa. A slightly more conventional number representation is used
by these routines than that of the PL360 language (cf. 2.2.2). The
numbers must satisfy the following syntax:

{long complex number) ::= {long real number)+ (imaginary number)L

{complex number) ::= (real number)+ (imaginary number)

(imaginary number) ::= (real number)II {(integer number)I

(long real number) ::= (real number)L| {integer number)L

(real number) ::= (unscaled real) | (unscaled real)(scale factor)l
(integer number)(scale factor)|(scale factor)

(unscaled real) ::= (integer number). (integer number)l
. {integer number)|(integer number).

(scale factor) ::= '(integer number)|!(sign)(integer number)

(integer number) ::= (digit)|(integer number)(digit)
(sign) ::=+ |

Numbers are interpreted according to the conventional decimal notation.
A scale féctor denotes an integral power of 10 which is multiplied by the
‘unscaled real or integer number preceding it. A number can have no
imbedded blanks and must be delimited by a blank.

The parameter passing conventions for the two conversion subroutines

are as follows:
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VALTOBCD

BCDTOVAL

This procedure converts an internally stored value to an EBCDIC
representation. At entry,

Rl contains the address of an area to receive the EBCDIC
representation
R2 indicates the type:

1 = integer

2 = real

3 = long real

L = complex

5 = long complex

R3 contains the field length (> 1)

The value to be converted 1is in either RO, FO, FOl, FO and F2,
or FO1 and F23, depending upon the type.

A return code is lef‘t in R15:

0 => successful conversion.

1l => field size too small

2 => invalid fieldsize
When the field size is too small to receive the value, the
field is filled with stars (%) .

All registers, except R15, are preserved.

This procedure converts an EBCDIC representation of a number

to an internal number. At entry,

Ri contains the address of the EBCDIC representation (possibly
preceded by blanks)
R2 indicates type (see above)

The resulting value is left in either RO, FO, FOl, FO and F2,
or FOl1l and F23, depending upon the type.

83

A%



A return code is left in R15:
0 => successful scan
=> invalid character in input string
=> missing "I" on imaginary part
=> nonblank delimiter
=> number scanned is not assignment compatible
(e.g., a decimal point is found when R2 = 1)

5 => integer too large

EN R

Upon exit, Rl contains the address of the delimiter.
Registers R2-Rlk are restored.

15.2 Data Manipulation Procedures

The first procedure described in this section does an in-core indirect
sort using logical comparisons. The second procedure is a companion routine

which searches a sorted list for a specified element.

SHELSORT This procedure sorts character data. The Shell sort technique
is used. At entry, registers RO-R> must be set as follows:

RO = the number of items to sort

Rl = the address of the index array

R2 = the number of the first byte of the key in each record on
which the sort is to be done. (R2 >= 1)

R3 = the number of bytes in the key on which the sort is to be

done.

The index array is a list of L-byte integers containing the
addresses of the items to be sorted. The actual sort is done on
the elements of the index array and not the records themgelveg,
That is, only the order of the elements of the index array is

modified by the procedure. All registers are restored.
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BISEARCH This procedure locates an element in a sorted list. At entry,

registers RO-R4 must be set as follows:

RO = the number of entries in the sorted table

Rl = the address of the index array (see above)

R2 = the number of the first byte of the key field in the records
R3 = the number of bytes in each key field

RL = the address of the key for which you are looking

At exit, Rl contains the address of an element in the index
array that points to a record that contains the desired key.

If no match is found, R1L =0 .

All registers, except R1l, -are preserved.
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1kh. Format of PL360 Programs

The following rules (except for some minor modifications) were proposed
by Wirth [15] during the development of the Algol W compiler (which is
written in PL360) as guidelines for producing uniformly readable PL360
programs. They have proved helpful and effective in both programming and
debugging. However, they must not be regarded as strict rules to be
followed under any circumstances, but rather as guidelines to be followed

when no stronger reasons dictate a choice.

1k.1  Indentation

(a) Indent lines contained between begin and end by 3 spaces:

begin cee
Rl :=R2; ...
begin ...

page; RO := @line; ...
end; R6 := R5; «..

end;

(b) Do not indent after if, for, while clauses, but reserve a
separate line for the clause, if it is followed by a lengthy statement:

for R1 := 1 step 1 until 100 do

begin ...

end;
However:

if RO=1 then Rl := Rl+1;
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(c) In the case of if then else , the two statements should be

shown to be of equal "importance", that is:

if RO=0 then Rl := 1 else R2 := Rl;
or
if RO=0 then

begin ...

end else

begin ...

end;

(d) A program sometimes consists of a few very large blocks, each
being one or more pages long. In this case, indentation does not make

sense because the reader cammot see that the page he is reading uses

indentation at all. It is preferable to accompany the begin and the end
of such a major block with a short comment linking them together with a

common name Or number.

1k.2 Spacing

(a) Spacing is a powerful tool in grouping things together which
should be read together, and to display the structure of a statement. If
spaces are used in the same amount everywhere, they are useless and may
as well be omitted with the benefit of saving paper. An example may

illustrate the idea:

Rl := TEMP / 4 + SIAB9 * C ; TEMP := R1 ;
is equally as bad as

R1:=TEMP/4+SIABY*C ; TEMP: =Rl§
Instead write

R1 :;TEMP/M+ SIAB9 *C; TEMP := Rl;

The following rule may seem a bit absurd, but nevertheless it has
proven useful: Use no space between single letter identifiers and operators,

otherwise use one space.

(b)  Always use one space before and after the assignment operator.
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14.3 Choice of Identifiers

(a) In general, use descriptive words for identifiers (in particular
labels). This serves as an implicit comment. However, if the identifier
occurs very often, it may be advantageous to use a short (possibly one~

letter) identifier.

(b) In this case, the declaration must be accompanied by a comment

explaining the nature of the quantity.

(c¢) Another exception from (3a) is the case where the identified
. gquantity or program location has only extremely local significance, such
as temporary storage cells or loop labels. In this case, the one-letter
identifier may be used to underscore the auxiliary and local role of the

quantity or label.

14.4  Comments

(a) Comments should always be given at key points such as along

with declarations, at block entry, in the procedure heading.

(b) If they occur elsewhere, they may represent "snapshots"; they
should explain relationships between variables which hold unconditionally
when control passes the point of the comment. Such snapshots are sometimes

extremely useful in explaining the functioning of a program.

(e) In PL360, comments will sometimes be necessary to explain the

role of a sequence of "obscure" function statements.
(d) In block- and procedure headings, it is useful to add a comment

-indicating which registers are used, or vice versa: which ones are not.

Often it is useful to indicate what the registers are used for.
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14.5 Miscellaneous

(a) Declare quantities which have local significance only in the
block where they belong. Avoid sharing of local variables, in particular

avoid sharing "temporary storage cells" among several procedures.

(b)  Avoid labels where you can. This is not as easy in PL360 as
it is in Algol. Nevertheless, use if, for, and while statements instead
of goto statements where appropriate. When a label must be used, always
put it in the left margin where it can be easily located. When a goto
statement is used in a large program, it is sometimes useful to accompany
it with a comment telling the reader a.pproxima.tely where the label is
‘defined.

(c) Use the appropriate type symbols when declaring variables.
For example, do not write

integer flag

when that variable is never used as a number, but only as a logical

quantity.

(d) Avoid bit manipulation where possible. For flags, use byte
variables and the functions SET, RESET and TEST.

(e) Minimize the use of functions.

(£) Avoid the use of subscripted synonyms, such as

integer x syn y(R2)

It is hard to realize that the statement
Rl :=x
uses R2 as an index register! Of course

integer x syn y(2)

is o.k.
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INDEX OF SYNTACTIC ENTITIES

This index lists in alphabetical order by left part all the productions
found in the text. Page numbers under the left parts refer to the loca-
tion where the left part occurs in the text. Where no page number exists
under the left part, check the productions defining the right parts.

The following abbreviations are used in this index:

assmt = assignment
decl = declaration
hex = hexadecimal
ident = identifier
reg = register
stmt = statement

The symhol A Is understood to stand for &
The symbol T is understood to stand for T
Strings of capital letters are used in place of underlining.

<A cell assmt> ::= <A cell designator> := <K reg>
p 16
<A cell designator> ::= T cell designator>

<A number> ::= <unsigned A number>
n 9 | _ <unsigned A number>

<A primary> ::= LT primary>

{condition>

<alternative condition> :: ,
<alternative condition> OR <condition>

p 23
{arithmetic operator> ::= +
p 15 | =
‘ *
I/
| ++
l - -

<{hlock> ::= <block hody> END
p 26

<MHhlock bodyd> ::= <hlock head>
p 256 | <hlock hody> <stmt> ;
| <hlock body> <lahel definition>



{Mhlock head> ::= BEGIN
p 26 | <block head> <decl> ;

<hyte cell designator> ::= KT cell designator>

{hyte valued> ::= "<character>"
p 10 | <hex value> X

{case clause> ::= CASE <integer reg> OF
P 24

{case sequence> ::= <case clause> BEGIN
P 24 | {case sequence> <{stmt> ;

{case stmt> ::= <{case sequence> END

P 24
(character) installation dependent
p 10
{character sequence> ::= <{character>
p 9 | <charater sequence> <character>

{combined condition> ::= <{condition>
p 23 | <combined condition> AND <condition>

{compound condition> ::= {combined condition>
p 23 | <alternative condition>

<K reg> <relation> <A primary>
{integer reg> <relation> <string>

{condition> ::=
|
| <hyte cell>
|
|
|

p 22

~ <bhyte cell>
{relation>
OVERFLOW

{T cell decl>

{function decl>

{procedure decl>

{T cell synonym decl>

<K reg synonym decl>
{integer value synonym decl>
{segment base decl>

{segment close decl>

{decl>
p 26

e
(X3
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<Aigit> ::= 0

p9 |1

] 2

| 3

| 4

| 5

| 6

| 7

| 8

| 9
<Fill value> T value>
p 11 {string>

@ <procedure ident>

@@ <procedure ident>

@ <T cell designator>

Q@ <T cell ident>

{repetition list> <fill value> )

FOR <integer reg assmt> STEP <increment> UNTIL <1imit> DO

]

{for clause>
p 25

{for stmt> {for clause> <{stmt>

p 25 :

{format code)> ::= (integer value>
p 17

<fractional number> ::= <integer number> , <digit>

P9 | <fractional number> <digit>

{function decl1> ::= FUNCTION <function definition>
p 17 | <function decl> , <function definition>

{function definition) ::= <ident> ( <format code> , <instruction code> )
p 17

{function designator> ::= <function ident>
p 19 | <function ident> ( <{parameter list> )

{function ident> ::= <ident>
p 8

{goto stmt> ::= GOTO <ident>
p 27
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<hex digit> e
p 9
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<hex value> #<hex digit>

p 9 <hex value> <hex digit>
<ident> ::= (letter>
p 8 | Kident> <letter>
|

Cident> <digit>

<if clause> ::= I|F <compound condition> THEN

p 23
<if stmt> ::= <if clause> <{stmt>

p 23 | <if clause> <true part> <stmt>
{increment> ::= <{intger value>

p 25
<index> ::= <integer value>

p 13 {integer reg>

{integer value>

{integer value>

{integer reg>

{integer reg> + <integer value>
{integer reg> - <integer value>

{integer reg>
{integer reg>
{integer reg>
{integer reg>
{integer reg>

+ + + 1 +

{instruction code> ::= <integer value>
p 17

{integer number> ::= <A number>

D

{integer primary> ::= <T primary>
{integer reg> ::= <K reg>

{integer reg assmt) ::= <K reg assmt>
intezer value> ::= {integer number>

p 10 | <hex value>
| <integer value ident>
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{integer value ident> ::= <ident>
p 8

{integer value synonym decl> ::= EQUATFE <ident> {synonymous integer value>
p 20 | <integer value synonym decl> , <ident>
{synonymous integervalue>

item> :t:= <{ident>
p 11| <ident> = <fill value>

<K primary> ::= <K reg>
p 13

<K reg> ::= Lident>

{simple K reg assmt>

(K reg assmt> <arithmetic operator> <A primary>

{integer reg assmt> <logical operator> <integer primary>
{integer reg assmt> <{shift operator> <integer value>
{integer reg assmt> <shift operator> <integer reg>

<K reg assmt> ::
9

(K reg synonym decl> ::= <simple K type> REGISTER <ident> SYN <K reg>
p 13 | <K reg synonym decl> , <ident> SYN <K reg>

{laheal definition> ::= <ident> :

p 25
{letter> ::= A-1 a-z
p 8
<1imit> ::= <integer primary>
p 25 | <short integer primary>

{logical operator> ::= AND
p 15 | OR
| XOR

{long real numher> ::= <A number>

{longz real value> ::= <long real number>
p 10 | <hex value)> L

{rmonadic operator> ::= ABS
p 14 | NEG
| NEG ABS
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<T value>
{string>

{parameter> ::=
|
| <K reg>
|
|

n 19

<A cell>
{function designator>

{narameter list> ::

= {(parameter>
n 19 | <

parameter list> , <parameter>

{procedure decl> ::= <{procedure heading> ; <stmt>
p 28

{procedure heading)> ::= <{simple procedure heading>
n 28 | <separate procedure heading>
!

{separate procedure heading> BASE <integer reg>

{procedure identd> ::= <ident>

p 8
{procedure stmt> ::= <{procedure ident>

p 29 | <procedure ident> ( <integer reg> )
<PROGRAM> : {stmt>

<real number> ::= <A number>

{real value)> ::= <real number>
p 10 | <hex value> R

{relation> ::
n 22

I
I
I
I
|

{repetition list> ::
p 11 | nteger value> (
| epetition list> <fill value>,

AN\
< e~

{scale factor> ::= <integer number>
p 9

{segment base decl)> ::= <{segment base heading> BASE <integer reg>

p 21

p 26 | GLOBAL <simple procedure heading> ; <stmt> .
| GLOBAL <simple procedure heading> BASE <intger reg> ;

{stmt>



SEGMENT
GLOBAL DATA <ident>

{segment bhase heading> ::=
|
| EXTERNAL DATA <ident>
I
|
|

p 21

COMMON DATA <ident>
COMMON
DUMMY

{segment close decl> ::= CLOSE BASE
p 21

{separate procedure heading> ::= SEGMENT <simple procedure heading>
p 27 | GLOBAL <simple procedure heading>
| EXTERNAL <simple procedure heading>

{shift operator> ::= SHLL
p 15 | SHLA

| SHRL

| SHRA

{short integer number> ::= <A numher>
{short integer primary> ::= <T primary>

{short integer value> ::= <short integer number>

p 10 | <hex value> S
{simple hyte type> ::= BYTE
p 11 | CHARACTER
{simple integer type> ::= INTEGER
p 11 | LOGICAL

<A primary>

<{monadlc operator> <A primary>
{string>

@ <T cell designator>

@ <procedure ident>

{stimplae K reg assmto

<K res> :
p 1h :

| <K reg>

| <integer reg> :
I

|

{integer reg>
{integer reg>

= {simple integer type>
| <simple long real type>
| <simple real type>

(simple K type) ::

{simple 1onz real type> ::= LONG REAL
p 11

{simple procedure heading> ::= PROCEDURE <ident> ( <integer reg> )
p 27
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{(simple real type> ::= REAL
p 11

<sinnle short intecer type> ::= SHORT IINTEGER
n 11

(K reg assmnt>

<A cell assmt>
{function designator>
{procedure stmt>

{simple stt> ::=
|
|
|
| <case stmt>
|
|
|

n 20

<hlock>
{goto stmt>
NULL

(simple T type) ::= <simple bhyte type>

| <simple integer type>

| <simple long real type>
| <simple real type>

I

{simple short integer type>

= (simple stmt>
n 25| <if stmt>
| <vhile statd
|

{for stmt>
(strin~> ::= "<character sequence>"
n 9
(svin cell value) ::= <T cell Adesignator> - <T cell designator>
p 20

{synonyrous cell> ::= SYYU KT cell designator>
p 19 | SYM <(integer value>

{synonvrionts integer value> ::= SYN <Kinteger value>
n 20 | SYN <syn cell value>
' | SYN <monadic operator> <integer value>
| <synonymous integer value> <arithmetic
operator> <integer value>
| <synonymous integer value> <logical
operator> <integer value>
| <synonymous integer value> <shift
operator> <integer value>

T cr11 Adecl> ::= LT tyne> <ijiterw
n 11 | <T cell decl> , <Kitem>
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<T

<T

<T

<T

<T

<T

cell designator)> ::= <T cell ident>
p 17 | <T cell ident> ( <index> )

cell ident> ::= <ident>
p 3

cell synonym decl> ::= KT type> <ident> <{synonymous cell>
p 19 | <T cell synonym decl> , <ident> <synonymous cell>

primary> ::

= T value>
p 13 | <

T cell designator>

tvpe> ::= <{simple T type>
p 11 | ARRAY <integer value)> <simple T type>

value> = <hyte value>

‘ | <integer value>

| <long real value>
| <real value>

|

{short integer value>

{true part> ::= <sinple stmt> ELSE

<ansigsned A number>

P 23

= <unsigned integer number>

| <unsigned long real number>

| <unsigned real number>

| <unsigned short integer numbher>

<unsiasned integer number> ::= <{digit>

<unsigned long real number>

<unsigned real number> ::

p 9 | <unsigned integer number> <digit>

= {fractional number> L

p 9 | <unsigned integer numbher> L
| <fractional number> ' <scale factor> L
| <unsigned integer number> ' <scale factor>

= (fractional number>

| <unsigned integer numbher> R

| <fractional number> ' <scale factor>

| <unsigned integer number> ' <scale factor>

p 9

<iinsiened short integer numbher> ::= <unsigned integer number> S

p 9

<vhile clauseY ::= WHILE <compound condition> DO

n 25

<while stintY> ::= <while clause> <{stmt>

p 25
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SUBJECT INDEX

Explanation of notation: "57f" means separate references

on pp.
57, 58, and 59;

57 and 58; "57ff" means separate references on pp.
"57-58" means a continuous discussion

spanning pp. 57 and 58; "57-60 passim' means scattered

references from p.

be any reference on p. 58,

57 through p.

60--there might not

for example.

N.b.,: entries for pp. 69=-77 are not included.

12
12

@ operator,
@@ operator,
$, 49
$BASE, 51,
$D0S, 50,
$LIST, 49
$NOGO, 49,
$NOLIST, 49
$NOXREF, 50
$0S, 50, 62f
$PAGE, 49
$TITLE, 49
$XREF, 50
$XYY#, 50
$0, 50

$1, 50

$2, 50

$3, 50

a, 5f,
Abs, 14
Absolute addresses,
Absolute value, 14
Addressing, 42-43
And, 15
Array, 12
Assignment: of cells, 11, 16-17,
37; operator, 1lh; of registers,

58
62

67

14

12, 42, 55

13-16, 36
Base address, 21, 42f, 58
Base declaration, 21, u4, 60
Base register, 13, 19-22 passim,
28, 42, u4, 51, 57-60 passim
Basic symbols, 5, 7-8, 45
BCDTOVAL, 83-84
Blanks, 45, 82
Block, 8, 11, 26-27, u43-46 Eaﬁﬁ_i_"b
57-60 passim
BOS, 61

Boundary alignment, 12

101

Calling conventions: 44, 50, 63;
for external routines, 57-58;
for PL360 procedures, 59-60

CANCEL, 49

Case statements:
39

Catalogued procedure, 67, 82

Cells, 3-4, 11-12, 16-17, 22

Characters: set of, 10

Comments, 5, 49, 88

Common base, 21

Compilter: attributes, 45-56,

61-64 passim; input records,

49; instructions, 49-51, 65f;

listing, 51, 63-66 passim, 78,

80; object program output,

54-55; options, 66; performance,

55-56., See alsg Source code
Condition, 22-25 pgssim, 37, 40

24, example of,

Condition code, 22, 24, 29, 37,
58, 61, 81

Conjunction, 15

Control facilities, 22-29

Control section, 54f

Conversion, 20

Coroutines, 59

Cross-reference listing, 50

Data: common, 21, 60; external,
21, 60; global, 21, 60;
manipulation procedures,
segment, 44, 54, 57-60

Declarations: 4, 8, 10-13, 19-22,
27-29, 44-47 passim, 54-60
passim, 82, 88; base, 21, i4,
60; cell, 11-13; common, 55-59
passim; dummy base, 22;
external, 54-60 ;
function, 17-18; global, 55,

8L;



59; implicit, Lu4-47 passim:
procedure, 27-29, 57, 59;
register, 10-11; segment,
21-22, 5u4f; synonym, 19-21

Designators: cell, 12-13, 21;
function, 19

Displacement, 19, 22, 42

Division, 16

DOS, 61

Dummy, 21f

EBCDIC, 82f

Entry point, 12, 14, 28, 51~
62 passim, 82

Error messages, 51-54, 65

Exclusive disjunction, 15
Execute instruction, 19
External names, 61

External symbol dictionary, 5uf

For statement, 25, L0
Format code, 17f
Free storage, 62, 64

Function statements, 17, 19}
58 ‘

GET, u47f

Go to statements, 26ff, 43

Inclusive disjunction, 15

ldentifiers: 8-12 passim, u46,
88; cell, 11f, uu4; function,
17; procedure, 28f, 55;
register, 10-11; synonymous,
19, See also Standard
identifiers

If statements, 22-24, 37,

Index array, 8uf

Index register, 13, 19-22

i

Initialization, 11-12,

Instruction code, 17 -

Instruction fields, 17f

39
20, 62

Job control language, 65-67
passim

X, 5f, 14

KLOSE, u47f

Label definitions, 26
Library (0S), 68, 82-85
Linkage, 57-60, 63, 82
LIST, 49

Load module, 67
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S54f
comparison, 22,
operations, 15

Loader,
Logical
Logical

84

MEM, 20
MTS, 61
multiplication, 16
Neg, 1k
Neg abs,
NOGO, 49
NOLIST,
numbers: integer, 9; long real,

9ff; negative, 9; real,

9f; conversion procedures,

82-84
Null, 27,

14
L9

57

Object code, 36-41, 54-55

Object module, 54-55, 61-66
bassim, 78

OPEN, 47f

Operating system interface,
61-6U4

Operators: arithmetic, 10, 15;
@, 12; @@, 12; dyadic, 15;
logical, 15; shift, 15;

monadic, 16; precedence of, 16

Or, 15 :
ORIGIN, 40
Orvyl, 78-81

0S, 61-68 passim
OVERFLOW, 22

PAGE, u46f, 68

Parameter, 61ff, 80ff

PL360 compiler. See Compiler

Precedence. See Operators

Primary, 13, 22

PRINT, 46f, 68

Procedure: body, 28f, 43, 57;
global, 28, 43f, 51, 55, 60,
82; external, 28, u46=-51

bassim, 57, 60; segement, 28,
51; statement, 29, 41f; call,
41; calling conventions, u4b4;
recursive, 59; catalogued,
67f, 82; number conversion,
82-84; data manipulation, 84

Program segment, 27f, 40-43
bassim, 51-55 passim

PUNCH, u46f, 61ff, 68

PUT, W47f

QSAM, 68



Quote marks: use of, 10
READ, u6f, 61, 63, 68, 80f
Register conventions, 61
Registers, 3, 10

Relation, 22

Relative address, 12
Relocation dictionary, 5uf
Representation: unnormalized

floating point, 10, 15;
internal, 82f

Reserved words, u45

Return address, 28f, 41,
57-61 passim

Return code, 29, 59, 62f, 67,
83f

Run-time library, 82-85

Scale factor, 9

Segment: base declarations,
21-22, 44, 60; program,
27f, 40-43 pgssim, 51-55
bPassim; procedure, 28;
data, u43f, 54, 57-60,
passim; dummy data, 54;
base address, 55

Segmentation, 42-44

Sign inversion, 14

Source code, 49, 86-89,
See also Compiler

Standard identifiers:
8, 9-10, 17, u46;
register, 10-11;
function, 17; in-
teger, 20

Standard procedures,
68

46-49,

103

Statements, 4, 26
Storage elements, 3
Strings, 5, 10-~14 passim,
22, 49
Subroutines, 61, 62-63,
68
Supervisor services, 58
Symbol representation, u5
Synonym declarations, 19-21
Syntactic entities, 5, 6-7
SYSGO, 66
SYSIN, 65, 68
SYSINIT, 61ff
SYSLIB, 67f
SYSPRINT, 65, 68
SYSPUNCH, 66, 68
System initialization, 62
System termination, 62
SYSTERM, 61ff

TITLE, 49
TO0S, 61
Truncation, 11f

Unnormalized, 10, 15
VALTOBCD, 83
Values, 3-4, 9-10

While statement, 25, 40

WRITE, u46f, 61, 63, 68, 80f

Xor, 15



