
| oo PL360 |
oo (REVISED)

A PROGRAMMING LANGUAGE FOR THE 1BM 360

BY |

| MICHAEL A. MALCOLM

FORMERLY
STAN-CS-71-215

| MAY, 1971

REVISED (again) oo

| MAY, 1972 |

COMPUTER SCIENCE DEPARTMENT

| School of Humanities and Sciences
STANFORD UNIVERSITY |

“ —

PL360 N
(REVISED) |

C A PROGRAMMING LANGUAGE FOR THE IBM 360 |

Michael A. Malcolm

« : _

- }

- .

L This work has been supported in part by the National Science Foundation
(Grant GJ L408), the Atomic Energy Commission AT(0L4-3) 326, PA # 30, |

| the Office of Naval Research NOOOlk-67-A-0112-0029 (NR OL4-211), the
Committee to Elect Stuart McLean to Congress, Lissner Computer Services
(San Jose), and the Santa Clara Valley Democratic Coalition.

“

C

Abstract

CT In 1968, N. Wirth (Jan. JACM) published a formal description of PL360,
a programming language designed specificallyfor the IBM 360. PL360 has

an appearance similar to that of Algol, but it provides the facilities of |

a symbolic machine language. Since 1968, numerous extensions and

« modifications have been made to the PL360 compiler which was originally

designed and implemented by N. Wirth and J. Wells. Interface and input-

output subroutines have been written which allow the use of PL360 under

0S, DOS, MIS and Orvyl.

o A formal description of PL360 as it is presently implemented is

given. The description of the language is followed by sections on the

use of PL360 under various operating systems, namely 0S, DOS and MTS.

Instructions on how to use the PL360 compilerand PL360 programs in an

interactive mode under the Orvyl time-sharing monitor are also included. -

‘

| Keywords: Compilers

C | Computer Languages |
IBM 360 Language Processors

Interactive Language Processors

<

C |

«

BY

| | | -

PL360 CHANGES AND EXTENSIONS |

oo June, 1972 oo oo

The ORVYL versions of the PL360 compiler and the PL360 runtime routines

| have been moved. Page 78 in Section 12 of the PL360 manual contains
| references to the old compiler file, which was T123,PL360 on SYS21l, The

compiler has been moved to T000.PL360 on SYS10, Page 81 refers to two
old files, T123.PL360.10 and T123,PL360.RUNLIB on SYS21, These two files
have been replaced by a single runtime library which includes the READ
and WRITE subroutines. This library is in T000,PL360.RUNLIB on SYS10.

Please note these changes in your manual. A corrected version
of Section 12, including other minor changes, is given below.

Extensions to the language should also be noted in sections 2.2.7,

2.3.1 and 6.53, as follows: V7 cae Cliarigea Move eo |
dviaerndedd daw Abe peclidiias isledd aroma

-] |

Table of Contents :

“ 1. Introduction, Historical Background and Aims . « « + ¢ o so o oo = 1
2. Definition of the Language « « « « « o o o o ¢ o ¢ so os o os so o 5

1. Terminology, Notation, and Basic Definitions . «. « . « « 5

“ 1. The Processor * LJ] J LJ [J L [J L [] LJ LJ LJ . e ® ® ® LJ LJ ® 3
OD, Relationships « « « + « + o o o os o 0 o 0 oo + 4 0. Hk

3 L The Program J ® | * J] | J L J [[J L J LJ | J J [J » L J L 2 LJ ® L 2 Li

) LJ Syntax L 2 [J & L 2 [J] LJ - LJ LJ] J] a . eo . LJ [J [J ® -* [J] [J] LJ [J LJ 5

« 5. Syntactic Entities . «+ « « « « vo ot 0 ee 0 ee. 6
6 LJ Rasic Symbols L LJ | a » LJ] J] | 2 LJ] L - » - LJ LJ J L] LJ J LJ 7

2. Data Manipulation Facilities «+ « « « « « « «+ « « « « « « 0

C T. TAentifiers « o « o o o o o « o 0 o os « so os « o oo 8
2 » Values LJ LJ ® [J LJ LJ] J [J] J] L J | LJ [J LJ LJ LJ] J J a L J L 2 » LJ 9

Ih. Cell Declarations + + « « « « « o « « o o oo + + oo 11

. 5 Cell Designators «+ « « oo o oo o ¢ o « o oo 0 o « o oo 12
— | 6. Register Assignments . . « « « ¢ « ¢ « oo oe oo + oo 15 -

| 7. Cell ASSignments « « « « « « « 0 5s 0 co 0 0 oe 0 0 oo. 16
8. Function Declarations .« « ¢ « « o« « o o o so « o « o « 17 |

C 9. Function Statements . « « ¢ «+ + « o o « « « o oo oo « 19
| 10. Synonym Declarations. « « « « « « o o « « «+ oo + + 19

11. Segment Base Declarations . « « « ¢ «¢ « « ¢ o o oo « 21

3. Control FacilitieS + « « +o o o so so o os so o so oo + os os + 22

“ 1LJ Tf Statement S - kJ * LJ] J LJ | -. LJ] LJ &® - [J LJ ® [J [J] J [P23
OD. (Case SLatementsS « « o o « o o o o o 0 0 so o oo oo «24

3 L J While Statements L J [J LJ J LJ] [J LJ |] J e [J [J] LJ] J L J] LJ - LJ] 25

Lh, For Statements . « « « « o ¢ o + 4 «oe oe + os ee. 25

‘ 5 LJ Blocks L 2 ® LJ LJ L J J L LJ] [J - LJ - L J LJ [J LJ L J ® [J LJ J LJ . J 26
6. Coto Statements .« « « « +o ¢ oe o eo 0 + 0 2 oo ee oo 27 |

Te Procedure Declarations « « « « o o « o o o 0 +o 0 0 oo 27 |
8. Procedure Statements « + « « « « « «+ ¢ + oe a oa oe «so 29

«

3 . Examples) . . . ° . *) .)) . * . . . 0)] .] » . . | * . . .) 30

|.

C |

hy LJ] The Obj ect C ode LJ] [J L [J LJ L J L J LJ LJ L J LJ J [J LJ [J LJ] * LJ] [J [LJ L J J 36

C= | 5. Addressing and Segmentation « ¢ ¢ ¢ ¢ ¢ ¢ ¢ «co +o so + + « o « bP |

1. Program Segmentation + oo ooo 000. b3
OD. Data Segmentation « + « o o o 0 o ot 0 0 0 0 0 0 0 0 eo . uh

6. The PL360 COmMPiler « « « + + o o o o & o « o os o « « oo « & + + 145
& |

1. The Language «+ + « + + o o « os os a o o so « o os so « o oo « 45

1. Symbol Representation « . « « « « o o eo « « « « « « « 45

2. Standard Identifiers « « « « « « o o o « o o « « o « « U6

$C 4 LJ Restriction * LJ L J LJ - [J] LJ [J ® LJ L J LJ | L J | LJ LJ] * [J [J J L6

| L., Standard Procedures . « « « « « os o o os o o o « o o « U6

2 LJ Input Format [J - J LJ he LJ) » [J LJ . [| J L J [J * LJ L J [J LJ ® L J ® 19

C 5. Instructions to the Compiler «+. +... + «.... ko
| | Lh, Compiler Listing Output « « « « o o « « « o a « o « « « « « 51

5e Error Messages of the Compiler « « « ¢« « « « + « + « 51

6. Compiler Object Program Output « « « « « « « « « «+ « « « « 54

C Te PerfOrManCE « « « « o o o « a a o o o o so o os o o o oo o o « 55
hs 7. Linkage CONVENTIONS « « « « « o o o « o o o o « o o o o « « oo 57

1. Calling External Routines fram PI360 «+ « « o « o » « + « « 57 |

2. Requesting Supervisor Services « « «+ « o + + o ¢ os + « + o 58

¢ 3. Calling PL360 Procedures from External Routines 59

8. Operating System Interface and Configuration Requirements . . . 61

1. Register Conventions . « « + ¢ ¢ « s+ « o « o o« os os « « « + 61

Lh. Configuration Requirements . ¢ « « « « « o o « « «+ « « « « Oh

9. Use as an OS Language ProceSSOT + + « « o so o os o « oaso so « « oo 65
¢

; 1. Data Set Requirements . « « « « « o so « « « o os « os s « so « 65 |

2. Processing Options « « « « « o o « a « o = os o « os o oo « 66

3 [J Return C ode LJ [J] L J L J ® J L J J [J] * [J [J] ® L J LJ ® [J L J [4 [] [J [J LJ] [J 67

"s Lh, JCL Statements . « « « « o « o « « os os « o os « o oo oo « OT
. 5 L Library |] | J] [J LJ [J L J [J |] J LJ [J] ® [J [J [J [J L LJ [J ® * LJ | J L J LJ LJ 68

C |

| 10. Use as a DOS Language ProCESSOT «+ « o os o o o so o o os oo » + « oo 69
| 1. System Configuration Requirements . + « « « « « o « « « o « 69

Co 2. Processing Options « ¢ « « o ¢ ¢ ¢ o o o o o 0 o so os os + « (0
pp, - JCL, Statements °] [] . » . .] . .) . . ° 70

ly L DTH Tables o® [J - L J LJ L J [J LJ [J] L | LJ L J [] a LJ LJ [J [J [J * L J LJ [J a 72

5 - Library LJ LJ] L J L J L J -* J] LJ ® [[J LJ J LJ LJ] * L 4 * [J] J] [J LJ LJ LJ J] L] 75 |

“ 11. Use as an MPS Language ProCessOT « « « o « + o o o « o so o o oo 6

1. Data Set Requirements « « « « « « « o o « « oo oo oo « o + 76

2. Processing Options « ¢ o o o o o oe ¢ « o « o o 0 so os oo « [7

5. MIS LiDTBIY + « + o = + «oo to os ov ovo on oo woo TT
‘“ Ly - MTS Commands L 3 LJ LJ » - L 2 LJ * J LJ L LJ) LJ L 1 LJ » LJ L J L - J] [77

"12. Use as an ORVYL Language ProCeSSOT « + + os os os o « o » « o « « « 78

1. Using the PL360 Compiler with ORVYL « « « « « « + « « « « + 78

- 2. Input-Output Subroutines for Interactive PL360 Programs . . 80 :

15 J The Run-Time Library o . . . LJ . * ®] »> ® . . . ° 82

1. Number Conversion ProCedUreS «+ e « « o o o os o o o o so s o 82 |

C 2 Data Manipulation Procedures . . ce ee eee ee eee. Bh
| 14. Tormat of PL360 Programs « « « « o o so o o o so o o so o o oo o « B86

1. Tndentationl « « o« « oo « o « o o os s o os o o oo so oo + + 86

a ® spacing » L J LJ * ® LJ L [J L J * [J LJ a [J] ® [J LJ * L J LJ [J] [J] LJ] LJ - LJ 87

‘ 2 Choice Of TAENLiTieTrS « o« o o o o o o o o o a os « so « oo oo 08
Le COMMENES o « o o o o os o os o a so sa so o so 6eo so o« oo ooo 88

5, MiSCEllaneousS « « « + o « o « = + oo oo oo a eo eo oo oo 89

| | 15 LJ Acknowledgments LJ LJ L J | J] » LJ L [J [J LJ LJ J [J [J LJ LJ | * J LJ * [J] [J [J 0
16. REFETeNCES « o « o o o o o o o a o so a os oa os o o ao o o oo « « « 91

‘ | |

«

BE iv

« | |

1. Introduction

- PL360 is a programming language designed specifically for the IBM

C System/360 computers. It provides the facilities of a symbolic machine

language but displays a structure similar to that of Algol. A formal

description of an earlier version of the language has been published by |

| Niklaus Wirth [1] who directed the development of the PL360 language and |
“ its compiler at the Computer Science Department of Stanford University.

Although PL360 was originally designed for writing logically self-contained
| programs, subsequent extensions permit communicationwith separately

compiled programs. |

“ An efficient one pass "in core" compiler, written by Niklaus Wirth,

.Joseph W. Wells, Jr. and Edwin Satterthwaite, Jr., which incorporates these

extensions is available through the-IBM Contributed Program Library [2].

| This compiler runs under the OS operating system and translates PL360
“ source code into object modules in the format required by several 360 |

operating systems (0S and MTS for example) . The documentation issued
with the compiler includes several amendments to the original language |

definition. Further extensions have recently been carried out at the |

‘ B | University of Newcastle by James Eve. These changes [3,11] were aimed i,
primarily at relaxing the linkage constraints on separately compiled |
programs, enabling for example direct communicationwith programs using

| 0S/360 type linkages. The present author has made several modifications

‘ to the version of the compiler produced by James Eve. These extensions

have made it possible to run the compiler and compiled programs under DOS
operating systems. Assembly language subroutines have been writtenfor

both OS and DOS to facilitate input-output with sequential tape and disk

- files. With the aid of Dick Guertin of Stanford, the author has extended :

the syntax of PL360, primarily to increase programming convenience. We

have recently written assembly language interfaces to allow interactive |

use of both the PL360 compiler and PL360 programs under the Orvyl time-

sharing monitor at Stanford. These recent extensions made at Stanford |

have been documented in personal letters, memos or not at all.

The dispersed nature and inconvenient form of the PL360 documentation

1s an undoubted hindrance to more extensive use of this powerful and

he elegant tool. To remedy this, the language definition and compiler

1 |

. | | | |

| |

* |

description incorporating all changes are given in this manual. For a full

discussion of the background underlying the development of PL360 and a

C description of the organization and development of the compiler together
with some perceptive comments on the 360 Architecture, reference must still

| be made to [1], where the aims of the language are summarized:

"... it was decided to develop a tool which would:

“ 1. allow full use of the facilities provided by the 360 hardware,

2. provide convenience in writing and correcting programs, and

5. encourage the user to write in a clear and comprehensible

style.

‘ As a consequence of 3, it was felt that programs should not be able to

modify themselves. The language should have the facilities necessary to

| express compiler and supervisor programs, and the programmer should be

able to determine every detailed machine operation."

Knowledge of the 360 architecture [4, 5 or 6] is a prerequisite

for understanding the language definitionand some familiarity with the

360 Assembly Language [7] and Linkage Editor [8] is assumed in the des-

cription of the object code produced by the compiler.

| In writing this manual, the author has drawn heavily upon the -

(anonymous) PL360 Programming Manual published by the Universityof

Newcastle upon Tyne, Computing Laboratory [11].

. |

o |

. | |

- .

2

< |

2. Definition of the Language :

Co 2.1 Terminology, Notation, and Basic Definitions

~ The language is defined in terms of a computer which comprises a
number ofprocessing units and a finite set of storage elements. Each of

the storage elements holds a content, also called value. At any given |

“ time, certain significant relationships may hold between storage elements
and values. These relationships may be recognized and altered, and new

values may be created by the processing units. The actions taken by the |
processors are determined by a program. The set of possible programs form

© the language. A program is composed of, and can therefore be decomposed

into elementary constructions according to the rules of a syntax, or grammar.

To each elementary construction corresponds an elementary action specified
as a semantic rule of the language. The action denoted bya program is

“ defined as the sequence of elementary actions corresponding to the elementary
constructions which are obtained when the programis decomposed (parsed)

by reading from left to right. |

“ 2.1.1 The Processor

NB | At any time, the state of the processor is described by a sequence of
| bits called the program status word (PSW). The status word contains, among

other information, a pointer to the next instruction to be executed, and a

\ quantity which is called the condition code.

Storage elements are classified into registers and core memory cells,

simply called cells. Registers are divided into three types according to
their size and the operations which can be performed on their values. The

“ types of registers are: |
a. integer or logical (asequence of 32 bits),

b. real (a sequence of 32 bits),

c. long real (a sequence of 6h bits). | |

“ Cells are classified into five types according to their size and the type

of value which they may contain. A cell may be structured or simple. The

types of simple values and simple cells are:

a. byte(a sequence of 8 bits = 1 byte), |

“ b. short integer (a sequence of 16 bits = 2 bytes, interpreted as |
] | an integer in two's complement binary notation),

3 :

C |

“

C. integer or logical (a sequence of 32 bits = 4 bytes,

interpreted as an integer in two's complement binary notation),
oo d. real (a sequence of 32 bits = 4 bytes, to be interpreted as a

Sa base-16 floating-point number),
e. long real (a sequence of 64 bits = 8 bytes, to be interpreted as a

base-16 floating-point number). |

n The types integer and logical are treated as equivalent in the language,
and consequently only one of them, namely integer, will be mentioned

| throughout the report.

" 2.1.2 Relationships

| | The most fundamental relationship is that which holds between a cell

and its value. It is known as containment the cell is said to contain

| the value. |

“ Another relationship holds between the cells which are the components -

of a structured cell, called an array, and the structured cell itself. It

is known as subordination. Structured cells are regarded as containing

the ordered set of the values of the component cells. |

“ A set of relationships between values is defined bymonadic and dyadic

- functions or operations, which the processor is able to evaluate or perform.)

The relationships are defined bymappings between values (or pairs of values)

known as the operands and values known as the results of the evaluation.

-“ | These mappings are not precisely defined in this report; instead, see [6].

2.1.5 The Program |

| A program contains declarations and statements. Declarations serve

~ to list the cells, registers, procedures, and other quantities which are
involved in the algorithm described by the program, and to associate names,
so-called identifiers, with them. Statements specify the operations to be

performed on these quantities,to which they refer through the use of

~ identifiers.
| A program is a sequence of tokens, which are basic symbols, strings

or comments. Every token is itself a sequence of characters. The following

. conventions are used: |

: |

| a. Basic symbols constitute the basic vocabulary of the language

(ef. 2.1.6). They are either single characters, or underlined

Cy letter sequences.

‘ b. Strings are sequences of characters enclosed in quote marks ("),.
c. Comments are sequences of characters (not containing a semicolon)

preceded by the basic symbol comment and followed by a semicolon (3).

| It is understood that comments have no effect on the execution

he of a program.

In order that a sequence of tokens be an executable program, it must be

constructed according to the rules of the syntax.

| 2.1.4 Syntax

A sequence of tokens constitutes an instance of a syntactic entity

(or construct), if that entity can be derived from the sequence by one or

“ more applications of syntactic substitution rules. In each such application,-

the sequence equalto the right side of the rule is replacedby the symbol

which is its left side. | |

Syntactic entities (cf. 2.1.5) are denotedby English words enclosed in

No the brackets (and) . These words describe approximately the nature of
the syntactic entity, and where these words are used elsewhere in the text,

they refer to that syntactic entity. For reasons of notational convenience

and brevity, the script letters 7 , ¥ , and JT are also used in the

. denotation of syntactic entities. They stand as abbreviations for any of

the following words (or pairs):

a % 7 |

(| long real long real long real
real real real

integer integer integer

short integer short integer |

“ byte |

Syntactic rules are of the form (A) ::=t where (A) is a syntactic

entity (called the left side) and t¢ is a finite sequence oftokens and

syntactic entities (called the right side of the rule). The notation
«

(a) ::= Ele] le

no Co

C | |

is used as an abbreviation for the n syntactic rules

. (A) t= E41 , (a) se= € 3 see) (A) ti= En . |
“ —

If in the denotations ofconstituents of the rule the script letters ¢ , |

| % 5 or JT occur more than once, they must be replaced consistently, or

possibly according to further rules given in the accompanying text. As an

example, the syntactic rule
.

1 e register) ::= ((register identifier)

is an abbreviation for the set of rules

(long real register) ::= (long real register identifier)

“ (integer register) se= (integer register identifier) |
: (real register) ::= (real register identifier)

2.1.5 Syntactic Entities
C - _

Syntactic Entity Section Syntactic Entity Section

(dcell assignment) 2.2.7 (for statement) 2.3.4

« (@ number) 2.2.2 {format code) 2.2.8
(alternative condition) 2¢9.1 (fractional number) 2.2.2 }

(arithmetic operator) 2.2.6 (function declaration) 2.2.8

(block body) 2.3.5 (function definition) 2.2.8

“ (block head) 2.5.5 (function identifier) 2.2.1
(block) 2.3.5 {function designator) 2.2.9

(case clause) 20.2 (goto statement) 2.3.6

{case sequence) 2.3.2 (hexadecimal digit) 2e242

o {case statement) 2.5.2 (hexadecimal value) 2.2.2

(character sequence) 2.2.2 (identifier) 2e2.1

| (combined condition) 2.3.1 (if clause) 2.3.1

(compound condition) 2.3.1 (if statement) 2.3.1

« (condition) 2.3.1 (increment) 2.3.4

(digit) 2.2.2 (index) 2.2.5
| {declaration} 2.5.5 (instruction code) 2.2.8

(fill value) 2.2.4 (integer value identifier) 2.2.1

« {for clause) 2.3.4 (integer value synonym
declaration) 2.2.10

C |

C |

Syntactic Entity Section Syntactic Entity Section

oo (item) 2.2.4 (separate procedure heading) 2.3.7
« ()¢ primary) 2.2.6 (shift operator) 2.2.6

(x register assignment) 2.2.6 (simple % register assignment) 2.2.0

((¢ register synonym declaration) 2.2.10 (simple procedure heading) 2.3.7

()¢ register) 2.2.1 (simple statement) 2.3.5
- (label definition) 2.3.5 (simple T type) 2.2.1

(letter) | 2.2.1 (statement) 2.3.5

(1imit) 0.3.h (string) 0.2.2

(logical operator) 2.2.6 (synonymous cell) 2.2.10
- {monadic operator) 2.2.6 (synonymous integer value) 2.2.10

. (parameter) 2.2.9 (syn cell value) 2.2.10

(parameter list) 2.2.9 (T cell declaration) 2.2.4

(procedure declaration) 2.5.7 (T cell designator) 2.2.5

“ (procedure heading) 2.3.7 {T cell identifier) 2.2.1

(procedure identifier) 2.2.1 (T cell synonym declaration) 2.2.10

{procedure statement) 2.3.8 AT primary) 2.2.6
(program) 2.3.5 (T type) | 2.2.4

- | (relation) 2.3.1 (J value) 2.2.6
(repetition list) 2.2.4 (true part) 2.3.1

(scale factor) 2.2.2 (unsigned ¢ number) 2.2.2

(segment base declaration) 2.2.11 (while clause) | 2.5.53
- (segment base heading) 2.2.11 {while statement) 2.3.3

(segment close declaration) 2.2.11

= 2.1.6 Basic Symbols

alBlc|p|e|F|clu| 1] s|x|z|M|x|olelalrls|T|u|v|W|x|¥|2]
alblc|d|e|f|g|nlililx|1|m|n|o|p|alr|s|t|u|v|w]|x|y]|z]

R ol1j213]4l516l718l|
HE ==HCD le]

and | or |xor|abs |neg|shll|shrl|shia|shra| |
if | then| else |case of |while|do| for |step|until|

« begin| end |goto| comment | mull | | |

.

function |procedure |register|syn|overfiow| |
segment | base |data|global | external | common | dummy | close |

2.2 Data Manipulation Facilities |

- | 2.2.1 Identifiers

(letter) ::= AlB|c|D|E|F|c|u|z|o|k|L|M|N|o|P|Q|R]|S|T|U|VIW|X]|Y|Z]

alblc|ale|f|g|n|i]jlk|Lln|nlo|p|a|x|s|t|u|v|w|x|y]|z]

C (identifier) ::= (letter)|(identifier){letter)| (identifier){digit)
(4 register) ::= (identifier)

(T cell identifier) ::= (identifier)

(procedure identifier) T= (identifier) |

o (function identifier) ::= (identifier)]
{integer value identifier) ::= (identifier)

An identifier is a Xregister, T cell-, procedure-, function-,

C or integer value identifier, if it has respectively been associated with
a ¥Xregister, IT cell, procedure, function, or integer value (called -

a quantity) in one of the blocks surrounding its occurrence. This

| association is achieved by an appropriate declaration. The identifier

C is said to designate the associated quantity. If the same identifier
is associated with more than one quantity, then the considered occurrence

designates the quantity to which it was associated in the innermost block

embracing the considered occurrence. In any one block, an identifier

must be associated with exactly one quantity. In the parse of a program,

| that association determines which of the rules given above applies. |

Any processing computer and operating system can be considered to

provide an environment inwhich the programis embedded, and in which some

« identifiers are permanently declared. Some identifiers are assumed to be
- known in every environment; they are called standard identifiers, and are

listed in the respective paragraphs on declarations.

- .

oo 8

“

2.242 Values

(digit) ::= o|1}2|3|4|5]|6|7|8]|9
C (unsigned integer number) ::= {digit)]

{unsigned integer number){digit)

{unsigned short integer number) ::= (unsigned integer number) S

(fractional number) ::= (integer number) |
“ (fractional number){digit)

(scale factor) : := (integer number)
(unsigned real number) ::= (fractional number)]

{unsigned integer number)R|{fractional number)’ {scale factor)|
« {unsigned integer number)!{scale factor)

{unsigned long real number) ::= {fractional number)L|

(unsigned integer number)L| (fractional number)'{scale factor)L|
(unsigned integer number)! {scale factor)L

- {gq number) ::= {unsigned ¢ number)| (unsigned ¢ number) |

Integer, real, and long real numbers are represented in decimal notation.

The latter two can be followed by a scale factor denotingan integral power

“ of 10 . Short integers are distinguished from integers by the letter S

= following the number. In order to denote a negative number, an unsigned i
| *

number is preceded by the symbol " " x

(hexadecimal digit) ::= (digit)|A|B|c|D|E|F | |

“ (hexadecimal value) ::= #{hexadecimal digit)|
{hexadecimal value)(hexadecimal digit)

A hexadecimal value denotes a sequence of bits. Each hexadecimal digit

re stands for a sequence of four bits defined as follows:
0 = 0000 4 = 0100 8 = 1000 C = 1100

1 = 0001 5 = 0101 9 =1001L D = 1101

| 2 = 0010 6 = 0110 A = 1010 BE = 1110

u 3 = 0011 7 = 0111 B = 1011 F = 1111 |
|] (string) ::= "{character sequence)"

(character sequence) ::= {character) | {character sequence) {character

“ AENote that the underline is used here. The minus sign (-) is used
. only as a dyadic operator — never as part of a number. |

9

“ |

A string is a sequence of characters enclosed in quote marks. The set of

characters depends on the implementation (cf. 6.1.1). If a quote mark (")

CO is to be an element of the sequence, it is represented by apair of
consecutive quote marks.

Examples: "ABC" denotes the sequence ABC

i AY denotes the sequence A"Z |

- frp denotes the sequence "A"

{byte value) ::= "(character)"|({hexadecimal value) X

{short integer value) ::= (short integer number } | (hexadecimal value) S
{integer value) ::= (integer number } | (hexadecimal value) |

- (integer value identifier) N
| (real value) ::= (real number) | (hexadecimal value) R

(long real value) ::= (long real number) | (hexadecimal value) L

“ | Examples: } i

byte values "Bp" ner #1FX

short integer values: 10S #FFFOOS |

integer values: 0 #106C 1 size

- real values: 1.0 3.146 2.718 #16000001R _
long real values: 3.14159265359L #FUHEO00000000000011,

Note: If hexadecimal values are used in conjunctionwith arithmetic

« operators in a program, they must be considered as the sequence of bits which
constitutes the computer's representation of the number on which the operator

is applied. Hexadecimal values followed by the letter R or IL may be used |

to denote numbers in unnormalized floating-point representation [4,5,6].

o |

2.2.5 Register Declarations

The System/360 processor has 16 registers which contain integer

numbers and are said to be of type integer (or logical). They are designated
“ by the following standard register identifiers (cf. 2.2.1):

RO, R1l, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, R1lh, R15

The processor also has four registers which contain real numbers or long

. real numbers. If those registers are used in conjunctionwith real numbers,

they are said to be of type real, and are designated by the standard register

10 | |

| | oe

identifiers oo

| | FO, F2, Fi, F6 .

C If they are used in conjunctionwith long real numbers, they are said to be

of type long real, and are designated by the standard register identifiers

FOl, F23, F45, F67 . |

« The above register identifiers are assumed to be predeclared, and no further

register declarations can be made in a program; however other identifiers

can be associated with these registers (cf. 2.2.10).

© 2.2.4 CellDeclarations |

(simple byte type) 1i= byte |character

{simple short integer type) ::= short integer

C {simple integer type) ::= integer |logical
(simple real type) ::= real |

(simple long real type) ::= long real

(T type) ::= (simple T type)|array {integer value)({simple T type)

 {T cell declaration) ::= (T typel){item}|(T cell declaration), (item)

- | (item) ::= (identifier)|{identifier) = (fill value) -

(fill value) ::= (JT value)| (string) |

@{procedure identifier)|@@{procedure identifier)]

9 @(T cell designator)|@e(T cell identifier)]
(repetition list){fill value))

(repetition list) ::= (| (integer value)(|{repetition list){fill value),

A cell declaration introduces identifiers and associates them with cells of

GC a specified type. The scope of validity of these cell identifiers is the

block in whose heading the declaration occurs (cf. 2.3.5). Moreover, a |

declaration may specify the assignment of an initial value to the introduced

cell. This assignment is understood to have occurred before execution of

C the program. |

) Cells may be initialized to numerical values, strings, relative or

absolute addresses. The number of bytes appropriate for the type of the

declared cell is taken for each (numerical) T value. Strings are never

CC expanded or truncated, each character of the string occupies one byte,

. - 11 |

C |

4 or

C

initialization starting with the leftmost byte. A short integer or integer

type cell can be initialized to the relative address (i.e., base register

C= and displacement) corresponding to a JT cell identifier or to the relative
(entry point) address corresponding to a procedure identifier by means of the

@ operator. The @ operator also permits the initialization of an integer

type cell with the relative address (i.e., index register, base register

« and displacement) of a T cell designator. The @®@ operator enables
integer type cells to be initialized with absolute addresses corresponding

to T cell identifiers or the entry point of procedure identifiers.

If a simple type is preceded by the symbol array and an integer

“ value, say n , then the declared cell is an array (ordered set) of n cells
of the specified simple type. An initial value list with m <n entries

| specifies the initial values of the first m elements of the array. A list

may be specified as a list of sublists. Repetition of a sequence of elements

© may be specifiedby making the sequence into a list andpreceding it by an
integer value, say k , specifiying the number of times the list is to be used.

If no integer value precedes a list, it is used once. Absolute addresses

may not occur in lists where k > 1 . Integer values n and k must be

< positive.

- Note. Boundary alignment is performed for a cell declaration (according |

to the simple type) and not for each initializing value; because strings are

| never expanded or truncated, care is needed in initializingwith combinations

. of strings and other values. | |
| |

Examples: |

byte flag

| short integer i,j,k = 10S,m = (5),baddr = @base

~ long real x,y,z =-27'5L | |
array5 integer size = (36,23,37),paramlist = (@3a,@8b,@@errproc)

array 132 byte blank = 132(" "),buff = 33(" ",2("*")," ")

o array fbsize logical area = fbsize(0)

2.2.5 Cell Designators oo |

(T cell designator) ::= (JT cell identifier)|
“ (7 cell identifier)(({index))

) } 12

“ | |

-

C

(index) ::= (integer value) | {integer register) |
| {integer register) + (integer value) |

C (integer register) - {integer value) |
(integer register) + (integer register)]

(integer register) + {integer register) + (integer value) | |
(integer register) + (integer register) - {integer value) |

«

Cells are denoted by cell designators. The designator for a particular

| cell consists of the identifier associated with that cell, optionally
followed by an index. When an index is used, the address of the

“ designated cell is taken as the address associated with the cell identifier

plus the value of the index.

| Notes: Register RO must not be specified as an index constituent.
Depending upon the function with which the cell designator is used and the

« declaration of the cell identifier, the index may have O , 1 or 2 -

integer register constituents. If The cell identifier has no base

register associated with it, then the first integer register (if any) in

the index is understood to be the base register. If the cell identifier

“ has a base register associated with it, and the context permits an index |

N | register, then an integer register in the index is taken as an index)

register. If the identifier has no associated base register and the context

permits indexing, then two integer registers may appear in the index and

. they are understood to be the base register and index register, respectively.

Examples: | |
age B1(1)

C size (8) B14 (R2)
price (R1) MEM(R3 + R7 + 8) |

line (R2 + 15) buff(R1 + RY - 2) |

C | |

] 2.2.6 Register Assignments |

(7 primary) i= (T value) | (7 cell designator)
O¢ primary) ::= {} register) |

- A primary is either a value or the content of a designated cell or register.

oo 13

|

C |

(simple ¥ register assignment) ::= | |

| (¢ register) := {7 primary)|

LL {¢ register) := {monadic operator){7 primary]
|

(integer register) := {string)]

{integer register) :=@ (T cell designator) |
(integer register) := @ {procedure identifier) |

¢ A simple register assignment is said to specify the register appearing

to the left of the assignment operator (:=) . To this register is assigned

the value designated by the construct to the right of the assignment symbol.

That designated value may be obtained through execution of a monadic

‘ operation specified by a monadic operator.

| (monadic operator) ::= abs|neg|neg abs |

The monadic operations are those of taking the absolute value, of sign

w inversion, and of sign inversion after taking the absolute value. :

If a string is assigned to a register, that string must consist of

not more than four characters. If it consists of fewer than four characters,
* |

null characters are appended at the left of the string. The bit
“ representation of characters is defined in [4,5,6] (EBCDIC).

- The construction with the symbol @ is used to assign to the specified

register the address of the designated cell or the entry point address of

the procedure.

. The legal combinations of types to be substituted respectively for

the letters ¥ and ¢ in preceding and subsequent rules of this paragraph

are given in Table 1. |

integer integer

| integer short integer

| real real | |

~ long real real
long real | long real

Table 1 oo

| Null characters have the bit representation #00X .

oo 1h |

C

Examples of simple register assignments:

RO = 1 |

oC R2 := RIO
R6 := age

FO := quant(R1)

R2 s "xyz"

F45 := neg FOL

R1% := abs height

K register assignment) t= (simple ¥ register assignment)

. '(e register assignment) {arithmetic operator) {7 primary} |
(integer register assignment){logical operator){integer primary)|

(integer register assignment) {shift operator) {integer value |
(integer register assigmment } {shift operator) {integer register)

L (arithmetic operator) ::= +|-|*|/|++|--|)
{logical operator) ::= and|or|xor -

(shift operator) ::= shll|shla|shrl|shra oo

“ A register assignment is said to specify the same register which is specified

| by the simple register assignment or the register assignment from which it)

is derived. To this register is assigned the value obtained by applying a

dyadic operator to the current value of that specified register and the value

“ of the primary following the operator. The operations are the arithmetic

operations of addition (+) , subtraction (-) , multiplication (¥*) , and

division (/) , the logical operations of conjunction (and), exclusive and

inclusive disjunction (xor, or), and those of shifting to the left and right,

“ as implemented in the System/360. The operators ++ and -- denote logical

or unnormalized addition and subtraction when applied to integer or

real/long real registers respectively. When an integer value is specified

following a shift operator, it must be nonnegative and less than 31 .

|.

“ .

« | Examples of register assignments: | |
RO := R>3

Rl := 10 |

LL R10 := i+ age - R3 + size(8)

“ R9 := R8 and R7 shll 8 or R6
F2 = 3.1416

FO := quant(R1l) * price(R1l) |

F45 := FL5 + FOL |

Note: 1. The syntax implies that sequences of operators, including

| assignment, are executed strictly in sequence from left to

right. Thus |
‘ Rl := R2 + Rl

1s not equivalent to

| Rl := Rl + R2)
| but rather to the two statements

“ Rl := RZ; R1 := R1+ Rl .
This single aspect of PL360 provides many pitfalls for beginners.

| 2. Multiplication and division with integer operands can only be

i“ specified with a multiplicand or dividend register Rn , where
- | n is odd. The register Rm with m = n-1 is then used to i

hold the extension to the left of the product and dividend

respectively. In the case of division, register Rm will be

oC assigned the resulting remainder. |

Examples: RY := x¥y+ z |

| R2 1s affected by the multiplication.

« R5 := B1/15
RY is affected by the division and contains the

| remainder.

wo EEAA A iA a SA a RS aT REA a RE

| cndieatedin Table]

a 16

+ |p= EE a a
; ent, ::=

:e= <A

Cn ell desix ed tor> =<ces ignator> NL
n | < esi - IK

A

th : A sig = osce nator> ooe desi st assi or -2on a tor? iz value> ator> |gratedA gament, e value in oocell alleo Th owab] nati oren th - -ass i e remaini) on oeAT Inn } -i nd ed to th Eo I. .index regi e desi Bod Ae |identi ster gnated ent tical itn For | §o the . For st cel 11 to 1 Ee- ass a I 3 iinatio ent cel eo rine on ions of cel | (cf.2.1. the stri st be Theecel ell1 and. v 1.1). F ue to Ht Hi.A cell alue a ror valu cell, g 5) ylon re indi e to “the. >g rea - : :re 1 J val oo & i5 cell e allo Ben
i yy ollowing esin real, 1 ore in ser + |shor teger integer cal[4inte , realger, short

a ieee , ort in) i intea , short int cers of th —e J val oo

} ust be si
gn extentio n. |

¥ =i:7ioSi Ta Tuiteialoy ng teSe RR ffi Td pe FI SETA EEaDI Sri SR SO Ai: :Ey : | &% I: = iiGdi"=: i iATi 3I : ES ree./. on oeHe ’ Ce : : E " ~) } : : i ’ J RE - we . B RK a ’ ~ Pe - B -aT- a os = SR 4 oa ~ 5
a PeBer& galsoh Se] a or,Fle SRN NRCS iE LmAENa Pe ERELA FORT FEAL EA EE a Coaway Aw PRET EE2 ota boF Lot wt hoe SE wa, HEY weveiFON DOr pea i oA Pac Semen Lok daw Cees PEE PUENTE PEs: SR FELT Coat oo : Le et oe - ERE Co: : :3:Ea:* SaarEre0nhaLE. Ke ER , 5 PR aida= or “a : Rat SE dia oh Sad B PEAS RERR cL . . - CL -: ii:2:LorIESiSeay SLE Fai- ARIE Ces a Eo SRAEC RECo % Cele RENEE SR EEEn LT eT ER. :5B- ; Sid#= ge ILepe 2%oRigita La "Py. Nits pk k Her PRoh EPEEN pr B ETO a CatEARFa peaRITE Eoe BS oy o I <n Co : } :ReeFg Fb AE A he hls a, :a 54praSELaLeLySryibai iFal AG TE asAn Ayt aN hE NeFw ae :oC iih SE, en aofCeGENOi ERE) Ci AL i a oR :TERY Pach 2d.AEaAEhTRAEv 4 FETEoRTL ypdA SE nasANL hoe SEASE£ Pech1 =heenREN |E.Eo5A2 }rRshBgl as <naleEe A INE r-es ad Sos he eeTE aD ET ca, nel an he SECa a.oo2bikaL -SmSta Fe waANE or adSeer .ANBETCiSaSHASE I¢-ieEixen2eralTh Rae ard woesFT£5CE RW Ea BEEN SE ooaypa LEE TEVA Feu SET “gt Eo Ih retels 4Rug etCEE erg Oe,Seg a a CoK RAL BA ER: CER a g SIE SEs IY inpd LiMETARen BI iedSEAR we oraa Rea8 SE+] ; i0 IE }CE La EE gE SRE FOTN nh etal Er Ha? JAE Jere ritRA ory jit)RA >i, otHETEAaor | erE4 Ls : ; ;?aE2%pe!gat :AE:A2FilCa “=308SEE ViNTHaliE fi Ser EEELemaEO i . :RET SI REE ERR sar [EE ar SaSee CS AE Er Fr pl rea “ Past By Pre EN Cosfos, ity BR rhpL A3.Aa syTERTBt"A oN _—ITi N; 4 ii; 3ii;ie.aiTEFEEYER Pr ot nihvaTa iLEA Ry.> he CresI. Se C- !

¢ |

foe (RI) |

2.2.8 Function Declarations |

C | (format code) ::= (integer value)
(instruction code) i= (integer value) |

{function definition) ::=

(identifier)({format code) , (instruction code))

« (function declaration) ::= function (function definition)|
(function declaration) , (function definition)

There exist various data manipulation facilitiesin the 360 computer

which cannot be expressed by an assignment. To make these facilities

~ available in the language, the function statement is introduced (ef. 2.2.9),

which uses an identifier to designate an individual computer instruction.

The function declaration serves to associate this identifier, which thereby

becomes a function identifier, with the desired computer instruction code,

~ and to define the instruction fields which correspond from left to right to

the parameters given in function statements. The format code defines the

| format of the instruction according to Table 2. The last two bytes of

the instruction code define the first two bytes of the instruction. The

~ following example defines the standard function identifiers, which apart |

from TEST, SET and RESET, were chosen to be the symbolic machine codes used

in [0].

- function BAIR(1,#0500), MVI(k,#9200), SRDL(9, #8C00)
| CIC (13,#D500) , MVN(5, #D100), STC (12, #4200),

CLI(L,49500), ~~ MVZ(5,#D300), STH (12, #4000),
CVB(12, #4F00), NC (5, #D400), STM(3, #9000),
CVD(12, #4E00), NI(L,#9k400), SVC (7, #0400),

| ED(5, 4#DEO0O), OC (5, #D600) , TEST(8,#95%FF) ,
he EDMK(5, #DF00), OI (k4, #9600), TM(L, #9100),- EX(2,#4400), PACK(10, #F200) , TR(5, #DC00), |

1C(2,4#4300), RESET (8, #9200), TRT(5, #DDOO) , |
LA(2, $4100), SET (8, #92FF) 7S(8, $9300),
IH(12, 44800), SLDA(9, 48F00) , UNPK(10, #F300),
LM(3, #9800) , SLDL(9, $3D00) , XC (5,4D700) ,

~ LTR (1, #1200), SPM(6, 40400), XI(k, $9700),
MVC (5, #D200) 5 SRDA{9, #38EQQ) |

17

Table 2 |

| Format Number of Instruction Fields
Code Parameter

| Fields 0 8 16 30 L8

0 0 [
¢ 1 2

a : [CELw=

5 5 [rir] ¢ | |

“ by 2 _dxes| ¢ |

5 3 _ lzesl ¢ | IC |

6 1 [IRI 1] |

« 7 . ws |

8 1 HE

9 2 [Rj | IC |

“ 10 4 | ITjIy ¢ | ec

1 2 IRI168

12 2 RR}oc |

. 13 3 |

1h ISS NcR oR

15 1 CT 1 1]
-

Field Definition Codes: |

R = ¥ register

“ C = T cell identifier (or designator in the 20 bit field) address

- I = Integer value (The value is used directly

S = String in the instruction field) |

L = 7 value or string or function designator. (The address of |

w the value is used in the instruction field)

. |

2.2.9 Function Statements -

CL (parameter) ::= (T value)|{string)|{X register)|{T cell designator)|
‘ (function designator)

(parameter list) ::= (parameter)|(parameter list), (parameter)

{function designator) ::= (function identifier)| |

(function identifier)({parameter list))
(

If a function designator is used as a parameter, the first function

identifier must correspond to an execute instruction. That 1s, the first

| byte of the instruction code must have the value #4UX . An example is
.

the predeclared identifier EX (cf. 2.2.8).

Examples: ” |

SET (flag) STM(RO, R15, save)

- RESET (flag) MVI("*", line)
LA(R1, line) IC(RO, flags(R1))

MVC (1, line, "hi") EX(R1l, MVC(0, line, buffer)) |

“

) 2.2.10 Synonym Declarations -

(T cell synonym declaration) ::=

(T type){identifier){synonymous cell)| | |
> (T cell synonym declaration), {identifier){synonymous cell)

(synonymous cell) ::= syn {(T cell designator) |syn{integer value)
(x register synonym declaration) ::=

(simple ¥ type) register (identifier) syn (X register)|
- (¢ register synonym declaration), (identifier) syn (¥X register)

Cell and register synonym declarations serve to associate synonymous

identifiers with previously (i.e., preceding in the text) declared cells

. or registers. The types associated with the synonymous cell identifiers |

| need not necessarily agree. |

If a synonymous cell is specified by an integer value, then that

integer value represents the displacement (and possibly the base register

- and index register) part of the cell's machine address. | |

_ 15 |

“

w | |

Examples: integer al6 syn a(16) |

array 32768 short integer memorysyn O

C integer timer syn #50

The following example defines the standard integer identifiers:

integer MEM syn O, B5 syn MEM(R5), B10 syn MEM(R1O),

C Bl syn MEM(R1), B6 syn MEM(R6), Bll syn MEM(R1l),
B2 syn MEM(R2), BT syn MEM(RT), B12 syn MEM(R12),

B> syn MEM(R3), B8 syn MEM(RS), B13 syn MEM(R13),

BY syn MEM(RLY), BO syn MEM(R9), Blk syn MEM(R1L),

N | B15 syn MEM(R15)

‘Note: The synonym declaration can be used to associate several different

types with a single cell. Each type is connected with a distinct identifier.

o Example: long real x = #4E00000000000000L | -

integer xlowsyn x(k) |

A conversion operation from a number of type integer contained in register

« RO to a number of type long real contained in register FOl can now be
~ denoted by | - |

xlow := RO; FOl := x

| and a conversion vice-versa by oo
|. |

FOl := FO1 ++ #4EO0000000000000L; x := FOl; RO := xlow .

No initialization can be achieved by a synonym declaration.

(integer value synonym declaration) ::=

~ | equate (identifier)({synonymous integer value)|
(integer value synonym declaration), (identifier){synonymous integer value)

(synonymous integer value) ::= syn {integer value)
- syn {syn cell value) |syn (monadic operator)(integer value) |
~ | (synonymous integer value){arithmetic operator){integer value) |}

| (synonymous integer value){logical operator)(integer value} |
(synonymous integer value)(shift operator){integer value)

(syn cell value) ::= (T cell designator) - (T cell designator)
«

. _ 20 | |

“ | |

| : Nh

Integer value synonym declarations serve to associate identifiers with |
| integer values. These integer values are computedat the time the declaration

- is parsed and the identifiers thus associated can subsequently be used as

C integer values (cf. 2.2.1). When the difference of two cell designators
is specified, the cell identifiers must both have the same base register

(ef. 2.2.11); the difference between their relative locations within the
| segment 1s taken as the associated integer value. The cell designators | |

“ must not use index registers. The scope of validity of these integer

synonyms is the block in whose heading the-declaration occurs (cf. 2.3.5).

Examples: equate a syn 200, b syn a+8, c syn4
“ equate d syn a/c and_L

array b byte X,y

| equate e syn y-X, f syn e-c shll 2

« Note: a = 200, b = 208, ¢c = 4, 4d = 48, e = 208, f = 816. |

2.2.11 Segment Base Declarations | |

C (segment base heading) ::= segment |global data (identifier)|
— external data (identifier)|common data (identifier) | -

| common | dummy |
: | (segment base declaration) ::= |

« (segment base heading) base (integer register) |
{segment close declaration) ::= close base

A segment base declaration causes the compiler to use the specified

register as the base address for the cells subsequently declared in the block

L in which the base declaration occurs. Such use is terminated either by
exit from the block or by the subsequent appearance of a segment close

declaration. Upon entrance to this block, the appropriate base address

is assigned to the specified base register unless the symbol dummy appears

- in the declaration (cf. 5.2).
If the symbol data is preceded by any of the symbols global, external

or common, the corresponding identifier is associated with the data segment

to enable linking of segments in different PL360 programs [8,9,12].

“ Appearance of the symbol sequence common base causes a blank identification

oo - 21

X |

C |

| to be associatedwith the segment (cf. 6.6). |

_ Note: Dummy base declarations permit the description of data areas which
eC are created during the execution of the PL360 program. The specified |

base register must be some register other than RO [6], except in the case

of a dummy base declaration. When RO is specified in a dummy base

oo declaration, the subsequent identifiers are understood to have displacements

“ and no base register (or index register).

2.5 Control Facilities :

2,353.1 1fStatements = |

(relation) ::= =| T= | < | (=| >= | >
{condition> ::= <A cell designator> <relation> <A cell designator>

| <A cell designator) <relation> <J value>
| | <A cell designator) <relation> <{string>

| <byte cell designator>
| = <byte cell designator>

| | <K register) <{relation> <A primary> |
| <integer register) <relation> <string>

| | <relation> |

| A condition is said to be met or not met. In thefirst three forms of
condition, the A cell preceding the relation is compared to the A cell,
J value, or string specified after the relation. The comparison is
logical (unsigned). The condition is met if the specified relation
holds between the values of the compared quantities. The same

restrictions apply regarding allowable combinations as for A cell
assignment (cf.2.2.7). A condition specified as a byte cell (or a byte
cell preceded by ™) is met if the value of the byte cell is #FF (or

| not #FF). The condition consisting of a relation enclosed by a register
and a primary is met If the specified relation holds between the current
values of the register and the primary. When an integer register is
compared to a string, the comparison is logical (unsigned), and the
string must not consist of more than four characters. If it consists of
fewer than four characters, the string is right justified and null
characters */ are appended at the left to form a four character |
string. The condition is met if the specified relation holds between
the register and the string. A condition consisting of only a relation
or the symbol overflowis met if the condition code of
the processor (cf.2.1.1) is in a state specified by Table 3. | |

*/ Null characters have the bit representation #00X,

“

. _ | 22

. |

« |

|

«

—_ = l or 2

< 1 |

< = O or 1 | |

| > = O or 2
|

> 2 |

overflow 3

Table 3
L- .

| {combined condition) ::= {condition)]
| {combined condition) and (condition)

(alternative condition) ::= (condition) |
~ (alternative condition) or (condition)

| {compound condition} ::= (combined condition) |
(alternative condition) |

. A compound condition is either of the form

- cl and ¢c2 and ¢3 ... and cn

which is said to be met, if and only if all constituent conditions are
met, or |

cl or ¢c2 or ¢3 ... or cn

which is said to be met, if and only if at least one of the constituent

conditions is met.

~ (if clause) ::= if (compound condition) then
(true part) ::= (simple statement) else |

{if statement) ::= (if clause) (statement) |
(if clause)(true part) {statement) |

The if statement specifies the conditional execution of statements:

1. (if clause) {statement)

The statement is executed, if and only if the compound condition of the

“ clause is met. |

0. (if clause){true part)(statement) a oo

The simple statement of the true part is executed and the statement is

C ~~ skipped, if and only if the compound condition of the if clause is met.

Otherwise the true part is skipped and the statement is executed.

Examples: if RO < 10 then R1 :=1

« if F2 > 5.75 and F2 < 3.75 then FO := F2 else FO := OR
if < then SET(flags(l)) else SET(flags(2))

Note: If the condition consists of a relational operator without operands,

‘ then the decision is made on the basis of the condition code as determined

. by a previous instruction.

~~ Example: C1C(15,a,b); if = then ...

2.5.2 Case Statements | |

{case clause) ::= case (integer register) of |

C (case sequence) ::= {case clause) begin]
— | {case sequence)(statement); | |

(case statement) ::= (case sequence) end

Case statements permit the selection of one of a sequence of statements

‘ according to the current value of the integer register (other than register
RO) specified in the case clause. The statement whose ordinal number

(starting with 1) is equal to the register value is selected for execution,

C and the other statements in the sequence are ignored. The value of that
register is thereby modified.

Example: case Rl of

| begin comment interpretation of instruction code Rl;

« FO1 := FOl + F23; oo
. FO1l := FO1 - F235;

FO1 := FO1 * F235;

~ FOl1 := FO1 / F23; |

FO1l := neg FOl;

FOLl := abs FOL; |

. - end

2

.

. . .

| | 2.3.3 While Statements

| (while clause) ::= while (compound condition) do |
oC | (while statement) ::= (while clause) {statement)

The while statement denotes the repeated execution of a statement as |

| long as the compound condition in the while clause is met. |

< Examples: while FO <prize(R1l)do Rl := R1+ 4

while RO < 10 do

begin RO := RO + 1; FOl := FO1l *¥ FOl; F235 := F23 ¥ FOl;

end

.

| 2.3.4 For Statements |

{increment) ::= (integer value) |

“ (limit) ::= {integer primary) | {short integer primary) -
{for clause) ::= for (integer register assignment) step (increment)

until (limit) do |
(for statement) ::= (for clause){statement) |

.

~~ The for statement specifies the repeated executionof a statement, while

the content of the integer register specified by the assignment in the for

clause takes on the values of an arithmetic progression. That register is

e called the control register. The execution of a for statement occursin
the following steps:

1. the register assignment in the for clause is executed;

2. if the increment is not negative (negative), then if the value

“ of the control register is not greater (not less) than the limit,

the process continues with step J; otherwise the execution of

the for statement is terminated; .

5. the statement following the for clause is executed;

C L. the increment is added to the control register, and the process
) resumes with step 2.

Examples: for Rl := 0 step 1 until n do STC(".", line (R1))
. for R2 := R1 step 4 until RO do

begin F23 := quant(R2) * price (R2);

FOL := FOl + F23;
end .

L | 25 |

2.5.5 Blocks |

(declaration) ::= (T cell declaration)|

N — {function declaration)| {procedure declaration) |
{(T cell synonym declaration) | {x register synonym declaration)|

- | (integer value synonym declaration)|

| (segment base declaration) | (segment close declaration) |

« {simple statement) ::= (% register assignment }|<a cell assignment)|
{function designator)| {procedure statement)| {case statement }|(block)|

. (goto statement)| null

(statement) ::= (simple statement }|(if statement)|

(while statement)|{for statement)
(label definition) ::= (identifier) :

- | {block head) ::= begin| {block head){declaration);

{block body) ::= (block head) | {block body) {statement); |
« (block body){label definition)

| (block) ::= {block body) end
“ (program) ::= (statement) . | | |

| global (simple procedure heading); (statement) |
- global (simple procedure heading) base (integer register);{statement) .

- | A block has the form | |

- beginD3; Dj ...3 D3 S85 S; «...35; end

where the D's stand for declarations and the S's for statements

« optionally preceded by label definitions. The two main purposes of a
block are:

+ 1. To embrace a sequence of statements into a structural unit which
| as a whole is classified as a simple statement. The constituent

“- statements are executed in sequence from left to right.

| 2. To introduce new quantities and associate identifiers with them.
- These identifiers may be used to refer to these quantities in any

of the declarations and statements within the block, but are not |
- known outside the block.

- Label definitions serve to label points in a block. The identifier |

of the label definition is said to designate the point in the block where |
. the label definition occurs. Go to statements may refer to such points.

= a 26

B

} The identifier can be chosen freely, with the restriction that no two |

“ points in the same block may be designated by the same identifier.
Co The symbol null denotes a simple statement which implies no action

‘ at all. |

“ Example of a block: |

| begin integer bucket;

if flag then

begin bucket := RO; RO := Rl; Rl := R2;

“ 'R2 := bucket;

o begin bucket := R2; R2 := Rl; Rl := RO;
RO := bucket; |

.“ | | end;
RESET (flag); | |

2.3.6 Go To Statements

" (go to statement) ::= goto (identifier)

. The interpretation of a goto Statement proceeds in the following
steps:

« 1. Consider the innermost block containing the goto statement.
| 2. If the identifier designates a program point within the considered

“ block, then program execution resumes at that point. Otherwise, |

execution of the block is regarded as terminated and the innermost

“ block surrounding it is considered. If this block is in the same

program segment as the previous blocks, then step 2 is repeated;

‘ otherwise, the identifier is undefined (ef. 5.1).

“ 2.2.7 Procedure Declarations | |
.“ | {simple procedure heading) ::=

procedure (identifier)({integer register))

O (separate procedure heading) ::=

segment (simple procedure heading)]

« global {simple procedure heading) |
external {simple procedure heading) |

- 27

C (procedure heading) ::= {simple procedure heading}|

oo (separate procedure heading)]
oC (separate procedure heading) base (integer register)

(procedure declaration) ::= (procedure heading); (statement)

. |
A procedure declaration serves to associate an identifier, which |

N | thereby becomes a procedure identifier,with a statement (cf. 2.3.5) which
is called a procedure body. This identifier can then be used as an

« abbreviation for the procedure body anywhere within the scope of the
| declaration. When the procedure is invoked, the register specified in

5 parentheses in the procedure heading is assigned the return address of
~ the invoking procedure statement. This register must not be RO .
« | If the symbol procedure is preceded by the symbol segment, global, or

external, the procedure body is compiled as a separate program segment.

o If the symbol is global or external, the corresponding identifier is]
associated with the procedure segment to enable linking of segments in

. possibly different PL360 programs [8,9,12]. These symbols have no other
| influence on the meaning of the program with the exception of restricting

- the scope of goto statements (ef. 2.3.6, 5.1 and 6.6). If a base register
too is specified in the procedure heading, the procedure body is compiled
« using the specified register for the program segment base register

(ef. 5.1); otherwise the current program base register is used (usually |

nN this is R15, however cf. 6.3). This register must not be RO. When
| the procedure is invoked, the specified (or assumed) base register is

" assignedthe entry point address. |

| Examples: procedure nextchar (R3);

pe begin if R5 < 71 then R5 := R5 + 1 else

- | begin RO :=@ card; read; R5 := 0 ;

IC (RO, card(RS)); |

] |

~

|

28

)

EC procedure slowsort (RM);
2 for R1 := O step 4 until n do
LT begin RO := a(R1); |
: for R2 := R1+ 4 step 4 until n do

1. ifRO < a(R2) then begin RO := a(R2); R3 := R2; end;
; | R2 := a(R1l); a(R1l) := RO; a(R3) := R2;

1 end

external procedure searchdisk (R14) base R12; null;

8 Note: The code corresponding to a procedure body is terminated by a |
mn |

branch-on-register instruction specifying the register designated in the

- procedure heading. A procedure statement places a return address in this

register when invoking the procedure. In order to return properly, the

N programmer must either not change the contents of that register, or
explicitlysave and restore its contents during the execution of the)

16 procedure. |

N {procedure statement) ::= {procedure identifier) |

| (procedure identifier)({integer register))
Ae The procedure statement invokes the execution of the procedure body

designated by the procedure identifier. A return address is assigned to

| the register specified in the heading of the designated procedure
| declaration. If an integer register is specified in the procedure :
ny statement, on return from the procedure the contents of R15 is transferred

to the specified integer register and the condition code is set by the
~

| transfer. This facilitates the convention of passing return codes in
| register R15. |
~

C |
5. Examples

| - L}
procedure Magicsquare (RO);

“ comment This procedure establishes a magic square of order n, if n is

| odd and 1 <n < 16. X is the matrix in linearized form. Registers

wo RO ... R6 are used, and register RO initially contains the
parameter n. Algorithm 118 (Comm. ACM, Aug. 1962);

- begin short integer nsqr;
| integer register n syn RO, i syn Rl, j syn R2, x syn RS, 1j syn Rh,

“ k syn R5; |

| nsqr := nj; Rl := n ¥ nsqr; nsqr := Rl;

Ls | i :=n+ 1 shrl 1; j := n;
for k := 1 step 1 until nsqr do |

re begin x := i shll 6; ij := j shll 2 + x; x := X(1J);Dre Bl So _

| if XxX ——= 0 then |

- begin i :=1 - 1; J :=3 ~- 2; |

if i <1 then i :=1i + nj | |

« if j <1 then j := J + nj;

- x :=1 shll 6; ij := J shll 2 + x;

~ end;

| X(ij) := k; |

“ i=1+ 1; if i >n then i :=1 - nj; |

j:=3+ 1; if J >n then j :=J = nj

~ end ;

end |

. |

“

C |

- |

50

. |

C procedure Inreal(Rh); |
comment This procedure reads characters forming a real number according to

a the PL360 syntax. A procedure ‘'nextchar(R3)' is used to obtain the

- next character in sequence in register RO. The answer appears in

. the long real register FOl. Registers RO ... R4 and all real
registers are used; |

| begin external procedure nextchar(R3); null;

- integer register char syn RO, accum syn Rl, scale syn R2; ext syn RJ;
o long real register answer syn FOl;

byte sign, exposign;

| long real converted = #LEO0000000000000L; oo |
~ integer convert syn converted (4);

« ‘nextchar; RESET (sign);
while char < "O" do ” |

| begin if char = " " then SET(sign) else RESET (sign); nextchar; |

“ end; - | :
C comment Accumulate the integral part in accum; |

accum := char and #F; nextchar; |

~ ~ | begin char := char and #F; accum := accum * 10S + char; nextchar;
- end;

scale := 0;

C convert := accum; answer := converted + OL;
if char = "." then

o begin comment Process fraction. Accumulate number in answer;
nextchar; |

| while char >= "0" do

~ begin char := char .and #F; convert := char;
“ answer := answer ¥ 10L + converted; scale := scale - 1;

nextchar;

C end; |
end;

‘“ if char = "'" then

begin comment Read the scale factor and add it to scale; |

nextchar; if char = "-" then |

« . } ~ | |
51 N

C begin SET(exposign); nextchar; |

LL if char= "+" then |

- begin RESET (exposign); nextchar;
o end else RESET (exposign) ;

accum := char and #F; nextchar; |

| while char >= "0" do
~ begin char := char and #F; accum := accum * 10S + char; nextchar;

if exposign then scale := scale - accum else scale := scale + accum;

~ if scale —= O then
o begin comment Compute F45 := 10 t scale;

| if scale < O then ” |

begin scale := abs scale; SET (exposign);

~ end else RESET (exposign) ; |
. F23 := 10L; FU5 := 1L; F67 := Fu5; oo

while scale —- = O do

| begin SRDL(scale, 1); | |
So | comment divide scale by 2, shift remainder into scale

~ extension, making ext < 0 if remainder is 1;
F23 := F23 * F673; F6] := F23; |

. if ext < 0 then F45 := FU5 * F23; Lo

- if exposign then answer := answer / Fki5 |

else answer := answer * FL5; |

~ end;
if sign then answer := neg answer;

N end

procedure Outreal (RY);

~ begin comment This procedure converts the (long) real number in register FOl
| into a string of 1&4 characters which constitute one of its possible
= decimal denotations. The character pattern is bsd.dddddd’sdd, where b

is a blank, s a sign, and d a digit. Registers RO, R2, R3, RL, and

~ all real registers are used. Upon entry, register R1 must contain the

) address of the output area. Its value remains unchanged;

52 |

“ | |

E integer register exp syn RO, scale syn R2, ext syn R3; : |
| long real register x syn FOIL;

C long real convert;

integer converted syn convert (4), expo syn convert (0);

- byte sign;
array 4 logical pattern = | |

C (#4021204B, #20202020, #20207D21, #20200000); |

if x = OL then MVC(13,Bl," O ") else

‘ begin if x < OL then SET (sign) else RESET (sign);
X := abs xj; convert := XxX; | |

|. comment Obtain an estimated decimal scale factor from the exponent

| part of the floating point representation; |
“ exp := expo shrl 2h - 64 * 3078; if < then exp := exp + 255;

exp := exp shra 3 ~ 1; scale := abs exp;
C comment compute F45 := 10 t scale; .

| F23 := 10L; FU5 := 1L; FET := Fh5;

- while scale —= 0 do | | | |
begin SRDL(scale,l); F235 := F23 * F67; F67 := F23; -

. if ext < O then F45 := FL5 * F23;

— | al
~ comment normalize to 1 <x < 10; |

if exp <0 then . |

« begin x := x * Fi5; |
while x < 1L do

- beginx := x ¥ 10L; exp := exp = 1; |

~ end else

begin x := x / Fli5;
‘ while x >= 10L do

begin Xx := xX *¥0.1L; exp := exp + 1; |

“ end; | |
end; |

~ x i= x %* 1'7L ++ $4E00000000000005L; |
convert := xj; ext := converted; |

“ comment ext is used here to hold the integer resulting from the |

- conversion; |
w Co

33 |

. |

C if ext >= 100000000 then | | |

begin ext := ext/ 10; exp := exp+ 1;

C — comment adjustment needed when conversion results in
| rounding up to 10.0. Note that R2 = 0;

L end;

| MVC (13, Bl, pattern); CVB(ext, convert); ED(9, Bl, convert(3));

« if sign then MVI("-", B1(1));
CVD(exp, convert); ED(3, B1(10), convert(6));

¢ if exp < O then MVI("-", B1(1l)) else MVI("+", BL(11)); |

C gnd |

" procedure BinarySearch (R3); | |
comment A binary search is performed for an identifier in a table via an

alphabetically ordered directory containing for each entry the

¢ length (no. of characters) of the identifier, the address of the
S actual identifier, and a code number. The global declarations

array N integer directory

array N short integer code syn directory (0) |
‘ — | array N short integer length syn directory (2)
Ce array N integer address syn directory (4)

“integer n |

are assumed. n equals 8 times the number N of entries in the

¢ table, which appear as directory(8), directory(16), ...,
'e directory(n). This assumption can easily be changed by changing |

the value of size in the equate declaration. It is assumed that

C code(0) = O. Upon entry, Rl contains the length of the given
identifier. R2 contains its address. Upon exit, RS contains the

C code number, if a match is found in the table, 0 otherwise.
Registers R1-R8 are used; |

C begin integer register L syn Rl, low syn R3, i syn R4, high syn R5,
m syn R7; equate size syn 8, mask syn neg size; |

C high := nj; low := size; comment index step in directory is size;

while low <= high do

. begin i := low + high shrl 1 and mask; R6 := address(i);
if IL = length(i) then

« 5h |

. |

| begin EX(L, CIC(0, B2, B6)); if = then goto found;

if < then high := 1 - size else low := size + 1;
L end else |

C if L < length(i) then
begin EX(L, CIC(0, B2, B6));

: if <= then high := 1 - size else low := size + 1; |
he end else

C begin m := length(i); EX(m, CIC(0, B2, B6));
if < then high := i - size else low := size + 1;

| end; |

L end;

C i := 03 |
found: R3 := code(i); i

end

C |

- |

a

“ |

. |

C

LC - —_—
55 | |

C |

C ki. The Object Code

C ~~ Three principal postulates were used as guidelines in the design of
| the language: | |

~ 1. Statements which express operations on data must correspond to
machine instructions in an obvious way. Their structure must be

be such that they decompose into structural elements, each corresponding
directly to a single instruction.

C
2. No storage element of the computer should be hidden from the

programmer. In particular, the usage of registers should be |

he explicitly expressed by each program.
3. The control of sequencing should be expressible implicitly by

e
the structure of certain statements (e.g., through prefixing

them with clauses indicating their conditional or iterative

« execution). : _

“ The following paragraphs serve to exhibit the machine code into which
the various constructs of the language are translated. The mnemonics of |

N the 360 Assembly Language [7] are used to denote the individual instructions.
— The notation {A} serves to denote the code sequence corresponding to the

e construct (A) . It is assumed that R15 is the program base register

1. (¢ register) := {g primary)

a | The code consists of a single load instruction depending on the types
of register and primary (cf. Table 4, column 1).

\

2. (x register assignment) {operator {7 primary)

(NS The code consists of a single instruction depending on the operator and

the types of register and primary. It is determined according to Table L,
C

columns 2-7.

w .

36

|

3. {@ cell) := {x register) | |
-

The code consists of a single store instruction depending on the types

« of cell and register as indicated by Table L, column 8.

L, if {condition-1) and ... and {condition-n-1) and |
\- {condition-n) then {simple statement) else (statement)

_ {condition-1} |
BC cp Ll

- {condition-n-1} | |

BC c .pLd
{condition-n} |

BC c_,L1
. n
~ {simple statement]]

B L2 |

Ll {statement} |

L2 |

-

oo Cs is determined by the i-th condition, which itself either translates
~ into a compare instruction depending on the types of compared register and

primary (cf. Table 4, col. 9), or has no corresponding instruction, if it

« merely designates condition code states. | |
Example: if R1 < R2 then RO := R3 else RO := RL |

~ CR 1,2

BC 10, L1

= IR 0,3
BL2

\

L1 IR O,k

| L2

a"

\. |

21

or rc ro coor ror ror rc cc rr Cc ccc

| (type) (type) += + - * / ++

integer integer register IR AR SR MR DR ALR | SLR CR

integer integer cell L A S M D | AL | SL {ST |c¢

integer short integer cell IH AH SH MH STH | CH

Wl real real register LER | AER | SER | MER | DER | AUR | SUR CER
real real cell IE |AE |SE |ME | DE | AU | SU | STE | CE

~~ long real real register LER | AER | SER | MER| DER | AUR | SUR CER

long real long real register | IDR | ADR | SDR { MDR| DDR | AWR | SWR CDR |

long real real cell LE AE SE ME | DE AU SU STE | CE

oo long real long real cell | ID AD SD MD DD AW SW STD | CD

oo | Table k |

he 5. if {condition-1) Or «.. OT {condition-n-1) or {condition-n) then
B {simple statement) else (statement)
C {condition-1}

| BC co Ld

| {condition-n-1} |

he BC c, _15L1
{condition-n}

- BC ce,L2
Ll {simple statement} | |

L | B L3

oo 12 {statement}
v L3]

C :

6. case {integer register-m) of -
- begin (statement-1); |

(statement-2); | |

- | (statement-n); |

AR mym

‘ IH m,SW(m)

B 0(m, 15)

“ IL1 BEQU *-ORIGIN | | |

{statement-1}

“ B 1X(15,0)

: I2 EQU *-ORIGIN |

~ {statement-2}

B LX (15,0)

\ . . |

. In BQU *-ORIGIN
{statement-n}

B 1x(15,0)
-

. 39

C | |

.
OW U *=2

DC Y(Ll)

DC Y(L2) |
|. . .

« DC Y(In) |

IX EQU *-ORIGIN |

. .
ORIGIN is the address of the beginning of the program segment and

C register 15 is assumed to contain this address (cf. 5.1).

Te while {condition) do (statement)

« Ll {condition} |
BC c,L2 |

{statement} | |
B Ll |

C Le | | |

If the condition is compound, then code sequences similar to those

O given under 4 and 5 are used. }

. 8. for {integer register assignment)

| | step (increment) until (limit) do (statement)
« {integer register assignment} |

B 2

L L1 {statement} |

A m, INC

- IL2 C m, LIM

: BC c,Ll

C

Rm is the register specified by the assignment, INC the location

i. where the increment is stored, and LIM the location where the limit is
stored. The compare instruction at L2 may be either a C , CH , or CR

[. instruction depending on the type of limit. Moreover, c¢ depends on the |
sign of the increment.

Co | ”

¢ |

9. procedure (identifier) ((integer register));{statement) |

C P {statement}
BR mn

Lv It is assumed that the integer register enclosed in parentheses

is Rm.

« 10. (procedure identifier) |
BAL m,P | |

“ or L 15 ,newbase

~ BALR m,15

~ L 15,0ldbase |

C or L 15 ,newbase
BAL m,P

w L 15,0ldbase

| It is here assumed that P designates the procedure to be called, |

-“ and Rm is the return address register specified in its declaration. -

| The first version of code is obtained whenever the segment in which the

« procedure is declared is also the one in which it is invoked. If the |

procedure call is of the form |

“ (procedure identifier)(Rn)

| then the instruction sequences become
-

BAL m,P | oo
| LTR n,l5 |

~ © BALR 15,0 | |

: L 15,0l1ldbase | |

~ or L 15 ,newbase
| | BALR m,15
~ . LTR n,15 |

. BALR 15,0
L 15,0ldbase

or L 15 ,newbase -

- BAL m,P
" LTR n,l5

BALR 15,0 |

L 15,0ldbase
|

. }

C | |

« 5. Addressing and Segmentation |

- The addressing mechanism of the 360 computers is such that

L instructions can indicate addresses only relative to a base address
contained in a register. The programmer must insure that

“

1. every address in his program specifies a "base" register,

2. the specified register is loaded with the appropriate base
\-

address whenever an instruction whose address refers to it is

w executed, |

5. the difference d between the desired absolute address and

n | the available base address satisfies|

0 <d < hog.

| This scheme not only increases the amount of clerical! work in

programming, but also constitutes a rich source of pitfalls. PL360 is]~~

designed to ease the tedious task of base address assignment, and to provide
re checking facilities against errors. |

The solution adopted here is that of program segmentation. The program

~ 1s subdivided into individual parts, called segments. Every quantity

- defined within the program1s known by the number of the segment in which
~ it occurs and by its displacement relative to the origin of that segment.

The problem then consists of subdividing the program and choosing base

o registers in such a way that | | |

a. the compiler knows which register is used as base for each

~ compiled address,
b. the compiler can assure that each base register contains the

~ desired base address during execution, and
c. the number of times base addresses are reloaded into registers

~ 1s reasonably small.

It was decided [1] that the programmer should express explicitly
“

which parts of his program were to constitute segments. He has then the

- possibility of organizing the programin a way which minimizes the number

of cross-references between segments.

. |

~ ho

‘

«

| It should be noted that the programmer's knowledge about segment sizes |
“ and occurrences of cross-references is quite different in the cases of

oo program and data. In the latter case he is exactly aware of the amount of
Co storage needed for the declared quantities, and he knows precisely in what

| places of the program references to a specific data segment occur. In the
~ former case, his knowledge about the eventual size of a compiled program

section is only vague, and he is sometimes unaware of the occurrence of

L branch instructions implicit in certain constructs of the language. It

was therefore decided [1] to treat programs and data differently, and this

- decision also conformed with the desirability of keeping program and data

apart as separate entities. |
g

C 5.1 Program Segmentation
Since control lies by its very nature inexactly one segment at any

C instant, one fixed register is designated to hold the base address of the
program segment currently under execution. Register R15 is usually used

“ for this purpose, (however, cf. 2.3.7, 6.3). | oo |
| Branching to another segment is accomplishedwith a procedure |

« statement which causes R15 to be reloaded with the base address of the | |
: | destination segment before branching to that segment.

“ | The natural unit for a program segment is the procedure. The only
way to enter a procedure is via a procedure statement, and the only way |

. to leave it is at its end or by an explicit go to statement. An |
explicit go to statement cannot be used for branching to another segment.

g The fact that no implicitly generated instruction can ever lead control
| outside of a procedure minimizes the number of cross-references in a natural

« way. Only relatively large procedure bodies should constitute segments.
A facilityis provided to designate such procedures explicitly: A procedure

o to be compiled as a program segment must contain the symbol segment or
global in its heading. It is relatively easy for a programmer to guess

w which procedure exceeds the prescribed size, or otherwise to insert The
symbol segment after the compiler has provided an appropriate comment in

the first compilation attempt. Obviously, the outermost block is always

| compiled as a segment.

w

. } |

| 43
C

«.

C | | Co

: | 5.2 Data Segmentation

~ In the case of data, the programmer is precisely aware of the amount

“ of allocated memory as well as of the instances where reference is made to
these quantities. Abase declarationwas therefore introduced which implies

C | that all quantities declared thereafter, but still within the same block
and preceding another base declaration, refer to the specified register as

w their base. These quantities form a data segment. At the place of the
base declaration, an instruction is compiled which loads the register with

C the appropriate segment address. However, its previous contents are neither :
saved nor restored upon exit from the block. |

. | A PL360 program which is a statement is considered to be embedded in
a block containing the implicit declarations

. global data SEGNOOO base R13; | |
array 18 integer savearea; | |

~ However, the identifier "savearea' is not considered predeclared. The
18-word "savearea" is merely reserved to conform with procedure calling

- oo | conventions (cf. 6.1.4). If the PL360 programis a global procedure,
o there is no implicit base declaration. |

Obviously, data segments declared in parallel (i.e., not nested)

blocks, can safely refer to the same base register. Data segments declared

~ within the same block usually refer to different base registers. Data

segments declared within nested blocks should normally refer to different

~ base registers. If they do not, it is the programmer's responsibilityto |
ensure that the register is appropriately loaded when a segment is

~ addressed.

N | Thereis no limit to the size of data segments. All cell identifiers
must, however, refer to cells whose addresses differ from the segment base

address by less than 4096. If they do not, the compiler provides an

- appropriate indication. |

. |

«
Lh

\

C 6. The PL360 Compiler

C The PL360 compiler is itself written in PL360. The current version
of the compiler is neither re-entrant nor serially reusable. This in no

Y way inhibits the writing of PL360 programs with these attributes.

C | 6.1 The Language
| The PL360 programming language is described in Section 2 of this

- document. Details pertinent to the present implementation (e.g., symbol
representations, standard identifiers, and specific limitations) are

o contained in subsequent paragraphs of this section.

LS | 6.1.1 Symbol Representation

Only capital letters are available. Basic symbols which consist of

~ underlined letter sequences in Section 2 are denoted by the same letter -

" sequences without further distinction. As a consequence, they cannot be
used as identifiers. Such letter sequences are called reserved words.

Embedded blanks are not allowed in reserved words, identifiers, and numbers.

~ Adjacent reserved words, identifiers, and numbers must be separated by at

. least one blank. Otherwise, blanks may be used freely. The basic symbols
are: oo

. + =x [/ () = <> | |
5 3 0. @ # _ 0"

“ | «= |

DO IF OF OR

“ ABS AND END FOR NEG SYN XOR |

BASE BYTE CASE DATA ELSE GOTO IONG NULL

\ REAT, SHLA SHLL SHRA OSHRL STEP THEN

ARRAY BEGIN CLOSE DUMMY SHORT UNTIL WHILE |

A COMMON EQUATE GLOBAL |

- COMMENT INTEGER LOGICAL SEGMENT

“ EXTERNAL FUNCTION OVERFLOW REGISTER

CHARACTER PROCEDURE

Co 5
~) _

C | |

6.1.2 Standard Identifiers

C . The following identifiers are predeclared in the language but may
be redeclared due to block structure. Their predefined meaning is specified

C in Section 2 or in Section 6.1.L.

g BL B2 B35 B4+ B5 B6 BY B8 B9 B10 Bll Bl2 B13 Blk B15

RO Rl R2 R3 R4 RS R6 R7 R8 R9 R10 R11 R12 R13 R1k¥ R15

L FO F2 F4 F6 | |

| FO1 F253 Fh5 F67 | |

CL BAIR CIC CLI CvVB CVD ED EDMK EX IC

IA IH IM LTR MW MVI MVN MVZ NC NI OC OI PACK

C | | RESET SET SIDA SIDL SPM SRDA SRDL STC STH STM SWC

TEST ™ TR TRT TS UNPK XC XI

C CANCEL GET KLOSE OPEN PAGE PRINT PUNCH PUT READ WRITE

6.1.3 Restriction

“ i The implementation imposes the restriction that only the first 10

« characters of identifiers are recognized as significant.

« 6.1.4 Standard Procedures |

« A set of standard procedures is defined for elementary unit record
input and ouput operations. The implicit procedure declarations are as |

follows:

| external procedure READ (R1k4); null; |

C external procedure WRITE (R14); null; |

external procedure PAGE (R14); null;

C external procedure PUNCH (R14); null; |
] external procedure PRINT (R14); null;

C |

C |

\
- 46

C Suitable externally compiled or assembled routines must be provided in the
| link/loading process; the specifications of these routines are:

= READ Read an 80 character record from the system input data set
and assign that record to the memory area designated by the

« address in register RO. Set the condition code to 2 if no

record could be returned due to an end of file condition;

(otherwise, to O. |

WRITE Write a 133 character record to the system listing data set.

wv A 132 character record is taken from the memory area designated

by the address in register RO and prefixed by an appropriate

" carriage control character. Acontrol character indicating a

new page is used after 60 lines have been written on a page,

= | otherwise a control character indicating the next line is used.

| The first line is written on a new page.

« PAGE Cause the next output record transmitted by a WRITE to the system

listing data set to have a control character indicating a new

C page. | |

PUNCH Write the 80 character record designated by the address in

|. register RO to the system punch data set. oo

- PRINT Write the 133 character record designated by the address in

- register RO to the system listing data set. The calling

program provides a USASI control character as the first

\ character. | |

o All of these procedures assume thet register R15 contains the address

of an 18 word save area and all registers are restored before return. Each

“ of the data sets is opened upon initial reference and is closed by the
operating system at the end ofa job step.

" | A set of standard procedures is defined for elementary disk and tape

input and output operations using sequential files. The implicit procedure

“ declarations are as follows:

external procedure OPEN(R14); null;
- external procedure GET (R14); null;

external procedure PUT(R1k4); null;

“ external procedure KLOSE(R1k4); null; |

. } |

7 |
.

N Suitable externally compiled or assembled routines must be provided in the
C link/loading process; the specifications of these routines are:

OPEN At entry, register RO must be O if the file is to be an

C output file or 1 if the file is to be an input file.

Register R2 must contain the address of an 8-byte area

~ containing a unique file name. (This is taken as the ddname

in an OS environment and as the symbolic file name in a DOS

- environment.) In an OS environment, register Rl must contain

| the address of a 100-byte full word-aligned area which,
- following the open, will contain the data control block.

In a DOS environment, register Rl must contain the address of

| ~ a separately assembled DTF table which describes the file.

| | The file is made ready for input/output operations. All
| ~ registers are restored. |

GET At entry, register R1 must contain the address of a table
- which describes the file. (In an OS environment this table -

| is called the data control block and in a DOS environment it |

is called the DTF table.) | Upon return, register R1 contains

BN the address of the next logical record in the file. (The
Ke first call of GET returns with the address of the first

| logical record.) When an end-of-file is reached, the

| - | condition code is set to 2; normally it is set to 0. All

| registers, except Rl, are restored.
~ POT At entry, register Rl must contain the address of s table

| which describes the file. Upon return, register Rl contains

| the address of an area in which the next logical record to

be output is to be built. All other registers are restored.

| ~— KLOSE At entry, register R1 must contain the address of a table

| } which describes the file. The corresponding file is closed

| ~ and no further input-output operations can be performed with
| it unless it is opened again. In an 0S enviromment, the
~ contents of register RO denoted by (RO) is also an input

3] parameter to this subroutine: If (RO) = 0 , the DISP
= option of the DD statement is used to determine final volume

positioning; if (RO) < O , the volume is positioned at the

a end of the data set. If (RO) > 0 , the volume is positioned
} at the beginning of the data set. All registers are restored.

ae

“

One additional standard procedure is defined for ease in communicating

- with the operating system. The implicit procedure declaration is as follows:

oo external procedure CANCEL(R14); null;
. By —

A suitable externally compiled or assembled routine must be provided in the

“ link/loading process; the specification of this routine is:

: CANCEL ‘The job, including all future job steps, is cancelled. |

“ | |

All of these procedures assume that register R15 contains the address

“ of an 18 word save area (cf. 5.2).

.

6.2 Input Format

. Compiler input records consistof 80 characters. The first 72
characters of each record are processed as part of a PL360 program; characters

-“ 73 through 80 are listed but not otherwise processed. Character 72 of one

record is considered to be immediately followed by character 1 of the next

“ record. Strings and comments should be arranged so that the character |

'$' does not appear in character position 1.

|.

~ 6.3 Instructions to the Compiler

The compiler accepts instructions inserted anywhere in the sequence of

~ input records. These instructions affect subsequent records. A compiler
instruction record is marked by the character '$' in column 1 and an

“

instruction in columns 2-9.

« ¢NOGO Compile, but mark the output non-executable.
$LIST List source records (initial option)

“ $NOLIST Do not list source records.

$PAGE Start a new page with the next listing record.

o $TITLE Start a new page with the next listing record, and use the
i contents of columns 10 through 62 as the title for that and

- subsequent pages. oo

|

| | ite) -
R | | |

B

$XYY# If this directive precedes the first source record then

Lo compiler generated segment names will commence with XYY rather

¢ | than SEG, otherwise the directive is ignored. X signifies
any alphabetic and Y any alphanumeric character: (cf. 6.6).

$0S Subsequent PL360 programs which are statements are compiled

| with entry and exit instruction sequences which conform with

‘ the program calling conventions of an OS environment. This
is a default option when the compiler is used with the OS
interface.

$DOS Subsequent PL360 programs which are statements are compiled

“ with entry and exit instruction sequences which conform with
C : the program calling conventions of a DOS environment. This is

a default option when the compiler is used with the DOS

C | interface. }
| $XREF All subsequent instances of identifiers are listed in an

4 alphabetical cross-reference listing together with the line

numbers at which they are referenced in the source program. |

C The cross-reference listing follows the program listing. If
i. there is not enough free storage to allocate to the |

“ cross-reference tables, the cross-reference listing is not
made and the $XREF instruction is ignored.

C $NOXREF This causes the previous option to be turned off (initial
option). |

C $0 Print a summary line at the close of each segment (initial
option).

iN $1 Print a summary line and list of external symbol dictionary
entries at the close of each segment.

C $2 List the address of each variable and procedure as it is

declared, as well as the information specified in $1.

C $3 List the object text in hexadecimal notation at the close of
each segment, as well as the information specified in $2.

“

¢

50

@ $BASE=xx New program segments following this instruction are compiled
|
| with xx taken as the program segment base register. This

° includes main programs, global procedures, segment procedures,
~ and external procedures. Procedure calls to such segments
@ automatically set the specified base register to the entry

point address. The decimal number xx must be between O01
® and 15 . Programs which are statements must not be |

compiled with base registers 13 or 1k. The initial option |

® 1s xx=15 . It is recommended that this compiler instruction
only be used for programs which make use of SW instructions

® which do not preserve the contents of register R15.

6.3 Instructions to the Compiler

$GEN If this directive precedes the first error detected |
(if any), then object decks are still produced if }
any have been requested. Otherwise object decks B
are suppressed after encountering an error.

CONDITIONAL COMPILE DIRECTIVES

~ " At the start of compilation of each <{program> (cf. 2.3.5),
an array of flags is reset by the compiler. The following
directives use this array. The array flags are specified by
individual characters in the directives, and any characters

may be used, including blank. Upper and lower case characters
are considered equivalent, The directives must be in upper
case in columns 1 through 4 on the control card. Unused columns of these
control cards may contain anything.

$SET a
where 'a' is any character in column 6,

This directive sets the 'a' flag.

$IFT a b

$IFF a b |
where 'a' is any character in column 6, |
and 'b' is any character in column 8,

i i i ta! If the 'a' flag is set for $IFT,These directives examine the "a flag. the g ,
or reset for $1FF, this directive takes no action and compilation continues
normally. |

If the 'a' flag is reset for $I1FT, or set for $I1FF, the compiler skip-reads
U source cards until a $END directive is encountered with its 'b" character

matching the 'b' character of the $I1FT or $1FF, Compilation then continues.
~~ from that point. |

Co

51 I
| BER

Note: '$IFF a b' is an unconditional skip to '$END b' | |
if "$SET a' has occurred. '$IFT a b' is an unconditional |

skip to "$END b' if '$SET a' has not occurred. |

S $END b |
where 'b' is any character in column 6. |

This directive terminates $I!FT or $IFF directives. |

~~ Examples of Conditional Compile: | | | |

1) $SET Z |

|) | |
| SIFT Z

COMMENT Compile this if 'Z' is $SET; | |

. |

$1FF Z |
COMMENT Compile this if 'Z' -is not $SET; | |

SEND) | |

"] |
2) $SET 1

 $I1FF 0 X |
SIFF 1 X

$I1FT 2 Q |
$ END X |

COMMENT Compile this if either '0' or "1' or '2' is $SET; |

$END Q | |

3) $SET - |

$SET + |

$IFT + |
| SIFT -

COMMENT Compile this if both '+' and '~-' are $SET; |

$ END |

ca

oo

C Error No. Message Meaning

| 00 SYNTAX The source program violates the PL360 syntax.

C Analysis continues with the next statement.

Ol VAR ASS TYPES The types of operands in a variable assignment

“ are incompatible.

: 02 FOR PARAMETER In a for clause, the register is not an integer

- register, the step is not an integer or short

integer number, or the limit is not a register,

L | cell, or number of the integer types. |

05 REG ASS TYPES The types of operands in a register assignment

& are incompatible.

OL BIN OP TYPES The types of operands of an arithmetic or logical

- | operator are incompatible.
05 SHIFT OP A real instead of an integer register or number

C is specified in a shift operation.]
06 COMPARE TYPES The types of operands in a comparison are

“ incompatible.
o7 REG TYPE OR # Either the type or the number of the register

LC used is incorrect.
| 08 UNDEFINED ID An undeclared identifier is encountered. The

“ identifier is treated as if it were 'R1l'. This

may generate other errors. |

8 09 MULT LAB DEF The same identifier is defined as a label more
than once in the same block.

- 10 EXC INI VALUE The number of initializing values exceeds the
number of elements in the array.

« 11 NOT INDEXABLE An index register is not allowed for the cell

] | designator in this context.

‘ 12 DATA OVERFLOW The address of the declared variable in the
data segment exceeds 4095.

C 15 NO OF ARGS An incorrect number of arguments is used for a

) | function. |

- 1 ILLEGAL CHAR An illegal character was encountered; it is |
skipped.

« } 52

C 15 MULTIPLE ID The same identifier is declared more than once
in the same block. This occurrence of the

identifier is ignored.

| 16 PROGRAM OFLOW The current program segment is too large. It

g must be resegmented.

17 INTTIAL OFLOW The area of initializing data in the compiler

C | | is full. This can usually be circumvented by
suitable data segmentation or by re-ordering

« | initialized data within the segment. |
18 ADDRESS OFLOW The number used as index is such that the

. | resulting relative address is less than O or |

~ greater than L095. |
w 19 NUMBER OFLOW The integer number is too large in magnitude.

| 20 MISSING - An end-of-file is encountered before a '.' |

« ‘terminating the program. The problem may be
a missing string quote.

“ 21 STRING LENGTH The length of a string is either O or greater

than 256. |

N 22 AND/OR MIX A compound condition must not contain both
~— | ANDs and ORs.

w 25 FUNC DEF NO. The format number in a function declaration

| © is illegal.

C 24 ILLEGAL PARAM A parameter is incompatible with the specifi-
cations of the function.

“ 25 NUMBER A number has been used that has an illegal

type or value.

« 26 SYN MIX Synonym declarations cannot mix cell and register
| oo declarations, or T cell designators have

‘ different base registers.

27 SEG NO OFLOW The maximum allowed segment number has been

| exceeded. The limit is generally set at 75.

] 28 ILLEGAL CLOSE A segment close declaration is encountered when

“ no data segment is open in the corresponding

block head.

~ : - | 55

< | E

C 29 NO DATA SEG A variable is declared with no open data |
| segment. A dummy data segment is opened.

Co 50 ILLEGAL INIT Initialization is specified in a common data

- segment or replicates an absolute address.

“ At the end of each program segment, all occurrences of undefined labels

are listed with an indication of where they occurred. |

- 6.6 Compiler Object Program Output

| The PL360 compiler is designed to be used in conjunction with
- link/loader programs which resolve symbolic cross-references between the

« - segments of one or more programs. Examples of programs capable of such
resolution are the MTS loader [9], the IBM 0S linkage editor or loader [8],

and the IBM DOS linkage editor [12]. The remainder of this section uses

- | the terminology of these programs. | i

« The output of the PL360 compiler is a sequence of object modules. |
Each object module contains a single control section corresponding to a

PL360 segment. It consists of 80 character records in the standard format

~ — of external symbol dictionary (ESD), text (TXT), relocation dictionary (RID)

. and an end (END) (cf. [10] Appendix B).
Every PL360 segment (except a dummy data segment) is associated with

. an object module in the following fashion: |
1. If the symbol segment appears in the segment declaration, an

~ | object module is produced for this segment; the control section

name is generated by the compiler as described below.

~ 2. If the symbol global appears in the segment declaration, an

object module is produced for this segment; the control section

- name is the first 8 bytes of the identifier appearing in the

declaration. |

. 5. If the symbol external occurs in the segment declaration, no

: object module is produced; instead the first 8 bytes of the

- identifier in the declaration is assumed to be the name of a |

control section independently generated and is used to indicate

“ this in the object module created for the segment containing the
external declaration.

(\ } ~
| | 5h |

h, If the symbol common appears in the segment declaration then |

C an object module is created in the form of a labelled or blank

- common control section according to whether the common

« declaration contains an identifier or not.

“ In all cases a control section has a single entry point; the entry

| point name and the control section name are identical. In the case of a

« | PL360 program which is a statement, a transfer address to the entry point
is provided in the END card of the object module for the implicit segment

“ corresponding to this statement. This transfer address is used by a loader

to determine where to begin execution. |

. The task of the linkage editor/loader includes matching global and
external declarations, inserting absolute address constants and completing

“ tables of segment base addresses, contained within each control section for

a program segment, in accordance with the external symbol dictionary and

“ relocation dictionary generated by the compiler for that control section. .
For PL360 programs which are statements, control section names

« generated by the compiler are of the form SEGNnnn where nnn is the decimal

internal segment number. If the PL360 program is a global procedure, the

« first three characters of the procedure identifier (extended on the right
~~ : by NN if necessary) are used in place of the characters 'SEG'. These

“ naming conventions may be overruled by use of the compiler directive

$XYY4 (cf. 6.3). | |

Each END card of the object module output of the campiler has the name

"PLA60" followed by the date and time of compilation.

6.7 Performance |

| In an OS environment on a 360/67 with spooled input and output files,
~ the compiler will recompile itself in about 25 seconds. The compiler is

approximately 2700 card images. Thus, when the OS scheduler time is

“ subtracted from the execution time given above, it is seen that the

compiler runs at a speed in excess of 100 cards per second (for dense code). |

~ In a DOS environment on a 360/50, the compiler is limited only by the |
speed of the card reader. The compiler has successfully recompiled itself

- on a 64K 360/30 at a rate of 1200 cards per minute (the speed of the card

“ . —
| 22

‘ oo

&

C reader). This is impressive when compared to the time required for the
DOS Assembler to assemble the interface module which consists of under

ER 250 cards. When the macro instructions are expanded, the DOS interface«

has 972 card images and the Assembler takes 15 minutes for the assembly.
“

C

C |

“

“ | .

n) .

“

“ |

|

|

.

“

- So - 56

To Linkage Conventions

. Although PL360 was designed for writing logically self-contained

“ programs, it is possible to communicate with separately compiled programs
if appropriate linkage and coding conventions are observed. These

conventions are summarized below. |

C

7.1 Calling External Routines from PL360

Addresses which correspond to external symbolic names and which are

oC to be supplied by linkage editing can be specifiedby the external or

common declarations of PL360. Entry to the block containing a data segment

| declaration causes the specified base register to be loaded with the

corresponding address. External names appearing in procedure declarations

“ are assumed to designate entry points to subroutines. In such declarations,

the procedure body is normally the statement null. The call of the external

procedure P2 from the procedure Pl is equivalentto the following 360

Assembler coding: |

“ USING P1,15 |

DROP 15 | |

BALR n,£

USING *,n

| L 15, =A(P1) |

USING P1,15

“

This linkage implies the following restrictions upon the called routine:

1. At entry, the base register specified (or assumed) in the

nN external procedure declaration (2) contains the address
of the entry point, unless £ =n .

2. At entry, the register specified in the external procedure

declaration (n) contains the return address. |

nN Se Before return, the return address must be restored to that
oo designated register. | .

of |

. | |

C

Any additional, non-conflicting conventions may be established by the

C programmer .
If the called procedure (P2) uses R15 to return information to the

calling routine (Pl), the procedure statement in Pl is usually of the form

| P2(Rm) , indicating that the return linkage must move the contents of R15

'e | to Rm , thus setting the condition code before re-establishing the base
address of Pl in R15. The equivalent 360 Assembler coding for this type of

call differs from that already given only in the last four lines which |

become | |

4 LTR m,l15
BALR 15,0

| USING *,15 |
L 15, =A(P1) | |

C | USING P1,15 }

0S type linkages are facilitated by the fact that if the calling PL360
| program is a statement, the first 18 words of the implicit data segment

(base register R13) are available for use as a save area (cf. 5.2), and by |
¢ | the @@ operator which facilitates the construction of OS-type parameter

| lists at compile time. |

~~ 7.2 Requesting Supervisor Services | |

SVC instructions are available in PL360 programs through the function

statement. It should be noted, however, that in many operating systems

C the contents of R15 are destroyed by execution of some SVC instructions.

In such cases, it is essential that saving and immediately restoring R15

be explicitly programmed. This tedious job of preserving the contents of

the program base register can be avoided by using the $BASE compiler

¢ instruction (cf. 6.3), or by explicitly specifying a base register in

- the procedure heading (cf. 2.3.7).

. 8 |

7.3 Calling PL360 Procedures from External Routines |

- Symbolic names and corresponding addresses to be made known to
« | routines external to the PL360 program are specified by the global and

common declarations of PL360. Global names specified in procedure

declarations are associated with the corresponding procedure entry point.

| The external invocation of PL360 procedures must satisfy the following |

‘ restrictions:

1. At entry to a PL360 procedure, the procedure base register

(usually R15, but cf. 2.5.7, 6.3) must contain the procedure entry

| address and the register specified in the procedure declaration
‘ must contain the return address.

>, At exit from a correct PL360 procedure, the register specified

in the procedure declaration will contain the return address.

« In addition, the following points should be noted: |

1. If the PL360 program was compiled from a statement and not a

global procedure declaration, |

C a. the symbolic name of the entry point will normally be
— | SEGNOOL, the symbolic neme of the implicit data segment

(with base register R13) will normally be SEGNOOO (cf. 6.3);

b. the return register will be R14; |

C c. at entry, R13 must contain the address of an 18 word save |
area, if the $0S option is in effect (cf. 6.3); |

d. at exit, all registers are restored from this save area.

2. Immediately prior to exit from a PL360 procedure, R15 may be

C | loaded with a return code. |
3. Global and external names violate the rules of scope established |

by the PL360 block structure (cf. 2.2.4). By pairing global and

external declarations, a name can be given arbitrary scope.

w Recursive procedures and coroutines can be programmed using this

- feature; however, this ability should be used carefully and |

sparingly.

«

59

C | |

Consider the following example. :

i. global procedure PL (R1); The procedure P2 can be entered

begin global data D1 base RIO; with the base register for data

integer A; | segment D1 incorrectly loaded,

global procedure P2 (R2); since it is possible to bypass

C begin RO := Aj; the entry code of the block
end ; containing the base declaration.

global procedure P35 (R2); In procedure P3, however, the |

begin external data D1 base R10; external declaration causes register

integer A; loading, but all declarations must
o EA =

RO := A; be repeated. In general, procedures |

end; which are to be entered independently

RO := Atl;] should be declared as separate

« | end. programs whenever possible.

Tt should be noted that the registers specified in corresponding global

and external procedure declarations must be identical, while the registers

« specified in corresponding global, external, and common data segment
oT declarations may be different.

“

~ |

C

60 Co

Lo 8. Operating System Interface and Configuration Requirements

The PL360 compiler contains no direct calls to an operating system,

nor does it contain any code dependent upon any specific operating system

environment. Instead, subroutines which interface with a particular |

o operating system must be separately assembled and merged with the compiler
object modules by suitable linkage editing. Consequently, any operating

system using 360 standard object modules (e.g. MIS, 0S, BOS, TOS, DOS)
can accommodate the compiler. The PL360 compiler uses the following

O external names for entry points to such routines:
READ SYSINIT

WRITE SYSTERM |

“ The following information is intended to facilitate the writing of —-
appropriate subroutines.

‘ 8.1 Register Conventions | |

The following conventions apply to all the above entry points:

1. R13 contains the address of a standard 18 word save area.

« 2. R1h contains the return address.
5. R15 contains the address of the entry point. | |

In addition, other registers and the condition code are used for input or

output parameters in those cases specified below. Before return to the

“ PL360 compiler, all registers (except R15 and any output parameter

registers) must be restored.

~

(|

61

| Pp8.2 Subroutine Specifications

« 1. SYSINIT |

Function: system initialization, including

a. any required parameter list decoding, |

| b. opening required data sets, |
.

| c. obtaining free storage (at least 12,000 bytes),

d." supplying system or job identification.

Input: none supplied by PL360.

C | (Registers R1-R5 will be unchanged from the point of
| entry to the compiler.) |

Output: Rl ~- address of a 16 byte character string to be

| used as identification in compilation listing

C headings.
R5> -- address of first byte of free storage available

for use by the compiler. oo

| Rt -- address of first byte past the end of the free

storage area supplied.

—_ R15 -- set to #FF if the $0S option is to be used,

set to O of the $DOS option is to be used |

(cf. 6.3).

¢ |
2e SYSTERM

Function: system termination, including

a. release of free storage,

L b. closing required data sets.

Input: none :

Output: R15 is set to 0 if the object module output from the

| compiler was discarded by the PUNCH routine. R15
« .

should be set to some nonzero value if this is not the

case. The campiler uses this information in setting

a return code when it terminates.

.

62

C

N — Function: transmission of a card image record to the compiler
(source program input).

Input: RO -- address of 80 byte buffer into which the record

| is to be moved. |

“ Output : Condition code set to
2 if no record was transmitted (input file exhausted),

0 otherwise.

- Function: transmission of a line image record from the compiler

| (listing output).

Records are 155 bytes in length; the first byte is a

USASI control character ("™ ", "O", or "1"), and the

. last 12 bytes may be ignored without substantial To

information loss. | |

Input: RO -- address of 13% byte output record. |
Output: none | |

> | 5. PUNCH
Function: transmission of a card image from the compiler

(object module output).

| Input : RO -- address of 80 byte output record.

~ | Output: none |

~ 8.3 Linkage to the Compiler
The PL360 compiler assumes the calling conventions outlined in 8.1.

That is, the compiler is always compiled with the $0S option (ef. 6.3). |

~ Parameters to be interpreted by SYSINIT can be supplied in R1 through R5.

| Upon exit from the compiler, |

1. R15 is set to 16 if any compilation errors were detected, to 8

if the return code from SYSTERM is 0, and to 24 if both conditions

- exit; otherwise R15 is set to O. |

2. all other registers are restored. |

63 |

8.4 Configuration Requirements

LL The compiler requires:
.

1. A System/360 processor with at least the scientific instruction
set.

p. At least 52,000 bytes of main storage (for the compiler and free

" storage used for table space) plus whatever is required for the |
interface module and input-output buffer space.

3. A reader and either a punch or a device accommodating 80
character records with EBCDIC encoding.

C Lk. A printer or device accommodating 133 character records with
EBCDIC encoding of the PL/1 60-character print set.

|

“© | | _

|

|

.~

C

_ 0 |

C | .

N

9. Use as an OS Language Processor |

| | This section describes the use of the PL360 compiler, with the

.C — | standard interface routines, in the environment of Operating System/360

(08). An effort has been made to keep the Job Control Language statements

and processor options similar to those for the IBM 0S Assembler (E, F).

9.1 Data Set Requirements

The PL360 compiler uses the data sets described below, identified

by the DDNAMEs required. All data sets are sequential with fixed blocked

he format. Unless suppliedby the system or by data set labels, DCB parameters
- for physical block size (BLKSIZE) and number of buffers (BUFNO) must be

specified in the DD statement, except for SYSPRINT and SYSPUNCH. These

two data sets will use a default block size equal to the logical record

~ | size if no value is specified elsewhere. Through selectionof compilation
options (cf. 9.2), reference to any or all of the output data sets can be

prevented. In such cases, no corresponding DD statementis required.

Gg |

~ | 1. SYSIN

This data set, consisting of compiler instructions (e.g. $NOLIST)

and one or more PL360 source programs, constitutes the input to the

o compiler. The logical record length is 80 bytes. Concatenation of

data sets with unlike attributes is supported; however, space for

buffers and access method routines must never exceed that required

for the first of the concatenated data sets.

~ 2. SYSPRINT

This data set contains the compiler output listing, including
all diagnostic messages. The logical record length is 133 bytes;

the first byte of each record is a control character.
~

« |

65

5. SYSPUNCH |

This data set contains compiler output in the form of a sequence

« of object modules. Some or all of the object modules corresponding
to programs in which errors were detected will be missing. The

logical record length is 80 bytes. The data set is closed with a

disposition of LEAVE. |

This data set contains object module output identical to that

described for SYSPUNCH. It is closed with a disposition of REREAD

for further processing, such as linkage editing.

© 9.2 Processing Options |

The production of listing and object module output by the compiler is |

~ controlled explicitly by compiler instructions (cf. 6.3) or implicitly

(through error detection) by the input stream. Independent control of the |
transfer of this output to OS data sets is provided by the following |

compiler options, which can be specified in the PARM field of the job

“ step EXEC statement. In each case, the unqualified parameter causes

) | transfer to the indicated data set; the prefix "NO" inhibits such transfer.

Options Data Set |

« LIST, NOLIST SYSPRINT -
| LOAD, NOLOAD SYSGO

DECK, NODECK SYSPUNCH |

LOAD and DECK options are not mutually exclusive. Options may be specified

- in any order; in the case of conflict, the rightmost specification is used. |
Default options are equivalent to |

PARM="'TLIST, LOAD, NODECK"'

.

«

- | 66

9.5 Return Code | |

| The return code supplied by the compiler is > 0 if any errors are |
« detected, or if the $NOGO directive (cf. 6.3) is detected, or if the NOLOAD

option is in effect, O otherwise (cf. 8.3).

. 9.4 JCI Statements |

The catalogued procedure used at Stanford is listed in this section

as an illustration of typical job control language. At Stanford, the

compiler is available as a load module in the partitioned data set

~ T123.PLLIB on SYS21l. The input-output routines and other run-time object

. modules which may be used by PL360 programs (cf. 13) are available in the |

SYSLIB partitioned data set T125.PLSYSLIB on SYS2l1. The linking-loader

automatically accesses this library to resolve external references. To

- compile, link and execute a PL360 program using the catalogued procedure, i

the following JCL is sufficient: | |

//TESTPROG JOB ... | |
“ // EXEC PL360CG

. //PL360.SYSIN DD *

) [PL360 source programs] |
//GO.SYSIN DD * |

| [data] |

The text of the catalogued procedure follows: |

//PL360 EXEC PGM=PL360
[8 //STEPLIB DD DSN=T123.PLLIB,UNIT=231k, VOL=SER=SYS21, DISP=0LD

//SYSGO DD DSN=SYS1.UT2,UNIT=231k,DISP=(OLD, PASS),
// DCB=(KEYLEN=0, BLKSIZE=1600)
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD SYSOUT=B

| //GO EXEC PGM=LOADER, PARM='MAP',COND=(0, NE, PL360) |
- //SYSLOUT DD SYSOUT=A

//SYSLIN DD DSN=*.PL360.SYSGO,DISP=(0LD, KEEP)
//SYSLIB DD DSN=T123.PLSYSLIB, DISP=0ID,UNIT=231k4, VOL=SER=SYS21
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD SYSOUT=B

_ //SYSUDUMP DD SYSOUT=A

oT .

9.5 Library

The standard procedures described in Sections 6.1.4 and 13 are included

oo in the SYSLIB library. The input-output subroutines all use the queued

“ sequential access method (QSAM). The unit record input-output routines |

| assume fixed blocked records. A default value equal to the logical record

size is used for the block size unless one is supplied by data set label

or by the DCB parameter BLKSIZE of the corresponding DD statement. The |

< ddname correspondences for these procedures are: |

Procedure | ddname

READ SYSIN |

o WRITE 'SYSPRINT -

PAGE SYSPRINT .

| PRINT SYSPRINT
oo PUNCH SYSPUNCH | | |

. : | _

The other input-output routines assume nothing about the DCB
information. This information must be supplied either by data set labels

or by the DCB parameters in the DD statements. Corresponding ddnames are

“ Bg chosen by the programmer.
Abnormal termination of a job (ABEND) may occur with these subroutines

in the following situations: | |

N ABEND UO095 A unit record file could not be opened upon the first
occurrence of a READ, WRITE, PRINT or PUNCH.

ABEND UO096 A READ was attempted after reaching an end-of-file.

ABEND UOO97 An attempted OPEN was unsuccessful.

C ABEND UOO98 A GET, PUT or KLOSE was attempted with an unopened DCB.
ABEND U0099 A GET was attempted after reaching an end-of-file.

If a SYSUDUMP DD statement is included for the job step, a dump will
follow the above ABENDs.

|

“ :

C | 68

10. Use as a DOS Language Processor :

This section describes the use of the PL360 compiler with the standard

‘ interface routines, in the environment of the Disk Operating System/360

(DOS) . |

\ 10.1 System Configuration Requirements

| The Disk Operating System is usually used on small 360 machines. The

PL360 is an "in core" compiler and cannot be run on many of the smaller 360

% computers due to the core memory requirements. The PL360 compiler together
with the DOS interface and buffer space require approximately 55,000 bytes

| ‘of core memory. Since DOS requires about 10K of memory, this dictates a

minimum memory capacity of 64K for running PL360.

. Following is a list of the logical files used by the DOS-PL360 interface.

. _

| These files are usually assigned to the proper devices; however, default

assignments can easily be overridden with job control statements.

. This file contains the primary input to the compiler; namely |

| compiler instructions (e.g. $NOLIST) and one or more PL360 source

programs. |

2 SYSPCH
« |

This file is used for compiler output in the form of a sequence

of object modules. Some or all of the object modules corresponding
to source programs in which errors were detected will be missing.

This file is used for the compiler output listing, including all

| diagnostic messages. The record length is 133 bytes and the first

byte of every record is a control character. |

L | 4. SYSINK |

) This file receives object module output identical to that

described for SYSPCH except that it is written in the special variable

record length format required by the DOS linkage editor. It is assumed

« by the interface that this file resides on a 231k disk; however, this

assumption can easily be changed (to a 2311, for example) in the source

: - | code of the interface. | | | I —

C | 69 |

10.2 Processing Options :

The production of listing and object module output by the compiler is

| controlled explicitly by compiler instructions (cf. 6.3) or implicitly
| ~ (through error detection) by the input stream. Independent control of the

transfer of this output to DOS files is provided by the following compiler

options, which can be altered through the first three bits of the UPSI |

byte. In each case, the unqualified option cuases the transfer to take

~ place; the prefix "no" inhibits the transfer.

Options File Name

list, nolist SYSLST |

| ~ load, noload SYSLNK

deck, nodeck SYSPCH

| The default options are (list,load,nodeck) . These default options can

2 be changed with the job control statement

| // UPSI ijk

where i,j,k may be either 0 or 1: | |

| o 0 - take the default option,
- oo 1 - reverse the default option. |

| If no UPSI statement is included in the job control input stream, then

| // UPSI 000 |

is assumed. The load and deck options are not mutually exclusive.

|

| 10.3 JCL Statements |
| The following sample of job control statements which can be used for
N invoking the PL360 compiler, link editing the output and executing the
| resulting program assume that the compiler is available in the Core-Image

Library under the name PLDOS (digits cannot be used in the name, unfortunately),

i the elementary unit record input-output subroutines (READ, WRITE, FRINT, |
PAGE, PUNCH) and CANCEL are available in the Relocatable Library under the

name PL360I0, the tape and disk input-output subroutines (OPEN, GET,

PUT, KLOSE) are available in the Relocatable Library under the name

N — PLTAPEIO, and the run-time library (cf. 13) is available in the
Relocatable Library under the name RUNLIB.

| // JOB [jobname] [comments] | |

C // UPSI ijk
if any, (ef. 10.2)

| // OPTION | LINK
CATAL

N If the linkage editor is to be used, this statement must be
included. The option LINK is for compile-and-go jobs, while |

| the CATAL option also retains the core-image module and catalogues

it in the Core-Image Library. | |

 ~ // PHASE [program name], S+m _

| This statement is necessary only if option LINK or CATAL are in

| affect. The integer m is set equal to 80f where £ is the oo
number of standard data set labels to be processed during the

| ~ EXEC step.

| // EXEC PLDOS |

| | This statement invokes the PL360 campiler. |

: [source program] | |

| The following statements are necessary only if option LINK or

: CATAL are in affect. |
; INCLUDE PL360I0

| Includes the READ, WRITE, PAGE, PUNCH, PRINT and CANCEL subroutines.

| INCIUDE PLTAPEIO |

| Includes the OPEN, GET, PUT and KLOSE subroutines. |

| INCLUDE RUNLIB

Includes the run time library of subroutines (cf. 13).

| ENTRY |

// EXEC INKEDT

This invokes the linkage editor.

C [JCL for particular input-output requirements of the job; for
example, label processing, etc.] |

/] EXEC oo
This executes the core-image module produced by the linkage

“
editor.

[card input for the program, if any]

/* |

| /& |
.

A typical job with lineprinter output and no input would have a deck setup

as follows:]

// JOB TESTJOB |
“ // OPTION LINK) BN

// PHASE T,S
// EXEC PLDOS

{source program} |

INCLUDE PL360I0
- | ENTRY |

// EXEC LNKEDT |

// EXEC |

10.4 DIF Tables |

C This section describes the conventions which must be followed when
coding DTF macro instructions for the tape and disk input-output subroutines.

(Refer to [14] for a complete description of the necessary macro instructions.)

Generally, the only macro instructions needed are: DITFMI (Define The

| File for Magnetic Tape), MIMOD (Magnetic Tape input/output control section
. = ae = = =

MODule), and DTFSD and SDMODxx for sequential disk files. The DOS routines

for GET and PUT require the following conventions in declaring the DIF

| table: |

« EOFADDR = ENDRDR, |
IOREG = (2) . |

| 72 |
A

| |

Since the DTF macro instruction is assembled by the IBM assémbler as a

oo separate module, an

~ EXTRN ENDRDR

statement must be included in the assembly. ENDRDR is actually a subroutine

: in the PLTAPEIO module. |

“ The name of the DIF table must be accessible to your PL360 program.

Thus, it must be specified as an ENTRY point. The easiest way to access it
in the PL360 program is with an external procedure declaration. For example,
if the DTF table is called INFILE, one might code |

- external procedure INFILE (R14); null; |
integer DTFADDR = @@ INFILE; |

in the declarations of the PL360 main program. An external data declaration

“ may be used instead. | |
If variable-length records are to be written, the RECSIZE parameter

must be used with its value being the maximum possible length of a record.

| Also, | |
" VARBLD = (3)

- rust be specified. The PUT subroutine uses these parameters as follows:
If the remaining length in a buffer becomes less than RECSIZE, a TRUNC macro

instruction is automatically issued to write the physical block and the

. subsequent record is started at the beginning of the next buffer area

(IOAREA) . |

The example on the following page is for variable-length input from
magnetic tape with blocks of at most 4000 bytes. The subroutine that actually

- does the input is called a "logic module" and is generated by the MTMOD
macro instruction. When expanded, this assembly produces 314 card images.

Assembly time on a model 30 is about 5-10 min. The necessary job control

language has been included in the example. Notice that buffer areas must

- be explicitly declared.

If you are not familiar with the hazards of writing these macro |

instructions, be very careful and read every word of the instructions

contained in the Supervisor and IO Macro Mamual [1k].

- 3

“ —

// JOB TIOASM
// OPTION LOG,DECK,LIST,XREF

| // EXEC ASSEMBLY
INFILE DTFMT BLKSIZE=4OOL, X |

EOFADDR=ENDRDR, X
FILABL=STD, X
ERROPT=IGNORE, X
HDRINFO=YES, X
TOAREA1=PACKIN, X

« IOAREA2=PACKIN2, XTOREG=(2), X
| | MODNAME=IJFVZZZY, X

RDONLY=YES, X

| RECFORM=VARBLK -
| EXTRN ENDRDR
© ENTRY INFILE |]

PACKIN DS LOOLC |
| PACKIN2 DS Loo

IJFVZZZY MITMOD ERROPT=YES, . X |

READ=FORWARD, | X
RECFORM=VARBLK

[¥
/& | |

“

|

“

a

.

10.5 Library | |

“a The standard procedures described in Sections 6.1.4 and 13 are

available for the DOS operating system. The input-output subroutines all

use the sequential access method (SAM).

| Abnormal termination of a job may result from any of the following
conditions: |

|

1. A READ or GET was attempted after reaching an end-of-file.

2. An attempted OPEN was unsuccessful.

3. A GET, PUT or KLOSE was attempted with an unopened file.

- Any of these conditions will result in a core dump.

- : }

“

| 5 |

|

| 11. Use as an MIS Language Processor

« This section describes the use of the PL360 compiler, with the
standard interface routines in the environment of the MIS Operating

System. |

« |

11.1 Data Set Requirements |

The PL360 compiler uses the logical files SCARDS, SPRINT and SPUNCH

and the device PUNCHI.

| 1. SCARDS |

This input file consists of compiler instructions (e.g. $NOLIST) |

« and one or more PL360 source programs.

| 2. SPRINT

This file contains the compiler output listing, including all |

diagnostic messages.

-
— | 3. SPUNCH

This file contains the object modules output by the compiler. |

Some or all of the object modules corresponding to programs in .

C which errors are detected will be missing. oo
© 4. PUNCH |

Provides the object modules on cards (batch runs only).

11.2 Processing Options : | |

The production of listing and object module output by the compiler

is controlled explicitly by compiler instructions (cf. 6.3) or implicitly

| (through error detection) by the input stream. Independent control of these

data transfers is provided by the following compiler options, which can be

specified in the PAR field of the $RUN command. In each case the |

unqualified parameter causes the transfer to take place; the prefix 'NO!

inhibits the transfer. |

a

C |

| Options File or Device |

LIST,NOLIST SPRINT

N — LOAD, NOLOAD SPUNCH |
DECK, NODECK PUNCH1

The DECK option is available only in batch runs; LOAD and DECK are

: not mutually exclusive. Options may be used in any order, in case of

“ conflict the rightmost specification is used. The default options are

PAR=LIST, LOAD, NODECK |

o |

11.5 MIS Library

The procedures READ, WRITE, PAGE and PUNCH described in Section 6.1.4

are included in the file *PL360SLIB. An alternative version of the procedure

“ WRITE is avallable in MIS, its specifications correspond to those for the To

procedure WRITE used by the compiler. This version of WRITE together with

READ, WRITE and PAGE are available in the file *PL360LIB. |

“

©. 11.4 MTS Commands |

l. To compile in the batch (source on cards, listing to the

printer and the object programto a temporary file -T):
“ |

$RUN *PL360 SPUNCH= ~T

2. To compile from a terminal, (source on a file MYSOURCE,

listing to a file MYLISTING and object program to a file

MYOBJECT):
“

$RUN *PL360 SCARDS=MYSOURCE SPRINT=MYLISTING SPUNCH=MYOBJECT
| 5. To execute the program created in Example 2, using the standard

| library taking data from *SOURCE* and sending printed output to

| a file RESULTS:
“

$RUN MYOBJECT+*PL360SLIB SPRINT=RESULTS |

When working from a terminal the compiler directives $0 and $NOLIST can be

used. Only error messages (and their program context of one line) and one

~ line summaries of the coding for each segment are produced.

7 | |

| |

Bh

B ee |

12, Use as an Orvyl Language Processor | |

This Section contains a brief narrative description of how one uses
A the interactive version of PL360 which runs under the Orvyl time-sharing

monitor <13>. This version is made possible through a special Orvyl=-PL360
interface module written in Assembly Language using the Orvyl macro oo
instructions <13>, |

| © 12.1 Using the PL360 Compiler with Orvyl

This Section assumes that the Orvyl system is being used at Stanford
where the Orvyl-PL360 compiler is saved in object module form in the
Wylbur data set T000.PL360 on SYS10. To use it, just type: |

USE &T000.PL360 ON SYS10 LOAD |

You will then receive the message: |
-WELCOME TO PL360

DECK? -

|f your account has been activated for Orvyl files, then you can type |
"YES" and PL360 will respond with: | | |

FILE NAME? | |

— :

o | | - | |
i - ' i

| N

You should then type the name of an Orvyl file in which PL360 will place
the object modules from the subsequent compilation, This file can be

CL ei ther new or old. Appending " SCR" to the file name will cause an old
file to be scratched for reuse; otherwise, you will be prompted:

SCRATCH?

"A "NO" response will cause the file naming process to be repeated.

The next thing PL360 asks is:

LISTING? | | |

If you respond "YES", then you will again be asked to supply an
Orvyl file to receive the PL360 Compiler list output.

The final question asked by PL360 is: |

WY LBUR? : : |

If you respond "NO", you will get the message: .

| BEGIN TYPING PL360 PROGRAM

You can now type in a PL360 program and each line will be compiled |
as you go. Unfortunately, if you make a mistake, you must start over
since the old lines are not saved. For this reason, it is usually best |

- tocompile from a Wylbur working data set. To do this, respond “YES |
to the Wylbur prompt and PL360 will prompt:

| -7 oo

You can now type Wylbur commands which will be passed to and executed by

Wylbur. You can continue to pass commands to Wylbur (for example, |
collect lines, edit lines, use files, copy files, etc.) until your
Wylbur working data set contains the PL360 program(s). You then type
"COMPILE" immediately after a =? prompt and PL360 will begin compiling
the program(s) contained in your Wylbur working data set.

Any error messages and the line on which they occur are typed at
the terminal as the compilation proceeds. Each time a segment is closed
a message is typed at the terminal,

When compiling from a Wylbur working data set, the compiler
terminates at the end of the data set and types:

-LEAVING PL360

When typing the program in directly, you can leave PL360 at any time |
by typing "/+*" or by simply hitting the ATTN button at the terminal.
As you are leaving PL360, the Orvyl core memory and your Wylbur working
data set are automatically cleared.

79

Co

If the program you are compiling has numerous errors and you wish
~ ._ to suppress the typing of error messages at the terminal, then simply

hit the ATTN button at the terminal (except in response to a prompt).
Orvyl will respond (as usual) with:

| DO YOU WANT YOUR PROGRAM? | |

Respond with "YES". PL360 will then ask:

| DO YOU WANT FURTHER ERROR MESSAGES TYPED? |

A "NO" will cause the compilation to continue with'no further
error messages typed at the terminal. A "YES" will cause compilation
to continue as before. In either case, the listing produced in the
Orvyl file (if any) will be unaffected. |

Af ter leaving PL360, you can retrieve the object deck by typing:

~~ GET <file name> CARD CLEAR | | |

You can retrieve the listing by typing: To

GET <file name> PRINT CLEAR | oo

The listing has 133-byte records, the first byte of whichis a carriage
control character. Thus, when the listing is printed offline, the

_ following Wylbur command should be used:

LIST OFF BIN xxx UNN (0) |

The (0.) part of the LIST command causes the first byte to be treated as |
a carriage control character. The resulting lineprinter listing looks like
a batch PL360 compilation listing, The Orvyl version of PL360 has
several advantages: Waiting for the batch queue is completely eliminated.
Errors are printed at the terminal, and thus can usually be fixed immediately
and another compilation can be made in a minute or two. Paper is saved since
listings with errors are seldom listed offline, Finally, the Orvyl version
of the runtime library can be used to run and test the program immediately
at the terminal. In this way, Orvyl's debugging tools can be used and
debugging takes far less time. | | |

Most short compilations can be done in about a second or two of |
| Orvyl compute time (less than 50¢), This is a significant savings over

batch compilations, The PL360 compiler, which is about 3000 card long,
compiles in 37 seconds of Orvyl compute time at a cost of about $6.20,

12.2 Input-Output Subroutines for Interactive PL360 Programs . |
The standard input-output subroutines using the same linkage conventions

as the READ and WRITE subroutines described in Section 6.4 are available

for input-output operations directly at the terminal when running a PL360
program under the Orvyl monitor, A description of the parameter passing
conventions of these subroutines follows: |

oo 80

READ The address of a 132 byte input area should be provided in RO

EE. prior to calling READ, Upon return, all registers are
preserved except R15 which contains the number of non-blank

characters typed by the user (counting imbedded blanks).
All details such as error messages for illegal use of tabs
or waiting too long to respond are taken care of by the READ

| subroutine. If a "/+" has been typed as the first two characters,
the condition code is set to 2, otherwise it is set to 0.

WRITE This subroutine works exactly like the subroutine described in

Section 6.4. |.,e., the address of a 132 byte output area is
passed through register RO and all registers are preserved
upon return. The output area is typed at the terminal.

The following discussion assumes that the Orvyl system is being
used at Stanford where the Orvyl READ and WRITE subroutines and the

library subroutines listed in Section 13 are stored in object module
form in the Wylbur file T000,PL360.RUNLIB on SYS10, To run a PL360
program in Orvyl, just follow this simple process:
First, compile the program. This may be achieved either in batch or
with the Orvyl version of the PL360 compiler. The program must be]
a statement with segment name SEGNO0O1 (cf.2.3.5, 5.1, 5.2) .
Place the object module output of the PL360 compiler in the
Wylbur working data set and type: |

| COPY ALL TO END FROM &T000,.PL360.RUNLIB ON SYS10

LOAD TEXT |

Your program will then execute, |

Note that file 1/0 is not provided for in the Orvyl runtime routines.

| 31 |

C

15. The Run-Time Library |

LL This section describes a set of global procedures written in PL360

C which perform commonly needed tasks. These subroutines are not predeclared
as external procedures in the PL360 compiler; thus they must be explicitly

declared in the calling program. In all cases, the procedure linkage is

done with register R14, and R15 should contain the address of the entry |
- point upon entry. At Stanford, the linkage editor automatically adds

the required subroutinesif you are using the catalogued procedure

PL360CG (cf. 9.4).

“ 13.1 Number Conversion Procedures | |
| The two subroutines described below are used to convert the EBCDIC

representation of a number into an internal representation of that number,

. or vice-versa. A slightly more conventional number representation is used
by these routines than that of the PL360 language (cf. 2.2.2). The)

numbers must satisfy the following syntax: |

(long complex number) ::= (long real number)+ (imaginary number)L

“ : (complex number) ::= (real number)+ (imaginary number)

- (imaginary number) ::= (real number)I| (integer number)I

(long real number) ::= (real number)L | {integer number)L

(real number) ::= (unscaled real)| (unscaled real){scale factor) |
« (integer number) (scale factor)| (scale factor) |

| (unscaled real) ::= (integer number). (integer number) | |
. {integer number)| (integer number).

(scale factor) ::= '(integer number)|'(sign)(integer number) |

~ (integer number) ::= (digit)|(integer number)(digit)
(sign) ::= + -

Numbers are interpreted according to the conventional decimal notation.

. A scale factor denotes an integral power of 10 which is multiplied by the
unscaled real or integer number preceding it. A number can have no

imbedded blanks and must be delimited bya blank.

The parameter passing conventions for the two conversion subroutines

- are as follows:

82

{

C

VALTOBCD This procedure converts an internally stored value to an EBCDIC |
representation. At entry,

« Rl contains the address of an area to receive the EBCDIC

representation

R2 indicates the type: | | |

BE 1 = integer

1% 2 = real

3 = long real

i = complex

5 = long complex |

. R> contains the field length (> 1)

| The value to be converted is in either RO, FO, FOl, FO and F2,
or FOl1 and F23, depending upon the type. |

.) oo
Areturn code is left in R15:

0 =>successful conversion. |

1 => field size too small | |
| | 2 => invalid fieldsize

> When the field size is too small to receive the value, the
field is filled with stars (*) .

| All registers, except R15, are preserved. | |

BCDTOVAL This procedure converts an EBCDIC representation of a number

LP to an internal number. At entry,

R1 contains the address of the EBCDIC representation (possibly

| preceded by blanks)
| R2 indicates type (see above) |

“

) The resulting value is left in either RO, FO, FOl, FO and F2,

or FOL and F23, depending upon the type. |

:

| 83

u | | Lo

A return code is left in R15:

0 => successful scan |

C - 1 => invalid character in input string
2 => missing "I" on imaginary part

3 => nonblank delimiter

| i => number scanned is not assignment compatible | |

C | | (e.g., a decimal point is found when R2 = 1)
5 => integer too large

Upon exit, R1 contains the address of the delimiter.

C Registers R2-R1lk are restored. |

C 15.2 Data Manipulation Procedures
The first procedure described in this section does an in-core indirect

sort using logical comparisons. The second procedure is a companion routine

| which searches a sorted list for a specified element. |

-

- SHELSORT This procedure sorts character data. The Shell sort technique

is used. At entry, registers RO-R5 must be set as follows:

| RO = the number of items to sort

‘ R1 = the address of the index array

R2 = the number of the first byte of the key in each record on |

| which the sort is to be done. (R2 >= 1)

R3 = the number of bytes in the key on which the sort is to be

L done. |

The index array is a list of L-byte integers containing the

addresses of the items to be sorted. The actual sort is done on

re | the elements of the index array and not the records themgelvesg,
- That is, only the order of the elements of the index array is

modified by the procedure. All registers are restored.

| | 8h
|

BISEARCH This procedure locates an element in a sorted list. At entry,

oo registers RO-R4 must be set as follows:
-

RO = the number of entries in the sorted table

Rl = the address of the index array (see above)

: R2 = the number of the first byte of the key field in the records

- R3 = the number of bytes in each key field

RY = the address of the key for which you are looking

At exit, Rl contains the address of an element in the index

C array that points to a record that contains the desired key.
If no match is found, Rl = O .

All registers, except Rl, -are preserved.

- _

—-

‘ |

\. |

| 85 |
|

1k. Format of PL360 Programs

Cc
The following rules (except for some minor modifications)were proposed

by Wirth [15] during the development of the AlgolW compiler (which is

written in PL360) as guidelines for producing uniformly readable PL360

programs. They have proved helpful and effective in both programming and
 —-

debugging. However, they must not be regarded as strict rules to be

followed under any circumstances, but rather as guidelines to be followed

when no stronger reasons dictate a choice.

a.

14.1 Indentation

(a) Indent lines contained between begin and end by 5 spaces:

begin ... | |
Rl :=R2; ...

o begin ... |
— page; RO := @line; ...

end;

(b) Do not indent after if, for, while clauses, but reserve a

separate line for the clause, if it is followed by a lengthy statement: |

for Rl := 1 step 1 until 100 do |

end;

However:

] if RO=1 thenRl := Rl+1;

[.

| 86 | | |
“

(¢) In the case of if then else , the two statements should be |

shown to be of equal "importance", that is:

C if RO=0 then R1 := 1 else R2 := RI; |

if RO=0 then

| end else

begin ... |

L end;

(d) A program sometimes consists of a few very large blocks, each

being one or more pages long. In this case, indentation does not make

“ . sense because the reader cannot see that the page he is reading uses _

| indentation at all. It is preferable to accompany the begin and the end

of such a major block with a short comment linking them together with a |
common name Or number. | |

.) .

14.2 Spacing | | |

. (a) Spacing is a powerful tool in grouping things together which |
should be read together, and to display the structure of a statement. If |

| spaces are used in the same amount everywhere, they are useless and may

as well be omitted with the benefit of saving paper. An example may

illustrate the idea:

~ Rl :=TEMP / 4 + SIAB9 *¥ C 3; TEMP := Rl ; |

is equally as bad as

« R1:=TEMP/U+SIABO*C ; TEMP: =R1; |
Instead write |

Rl := TEMP /U4+ SIAB9 *C; TEMP := RI; |

. The following rule may seem a bit absurd, but nevertheless it has
| proven useful: Use no space between single letter identifiers and operators,

~~ ___ otherwise use one space. oo |

| | (b) Always use one space before and after the assignment operator.

| 87 oo

14.35 Choice of Identifiers

Ae (a) In general, use descriptive words for identifiers (in particular
labels). This serves as an implicit comment. However, if the identifier

occurs very often, it may be advantageous to use a short (possibly one-

| letter) identifier.

| ~ |

| (b) In this case, the declaration must be accompanied by a comment

| explaining the nature of the quantity.

~ (c) Another exception from (3a) is the case where the identified
| . quantity or program location has only extremely local significance, such

as temporary storage cells or loop labels. In this case, the one-letter

| identifier may be used to underscore the auxiliary and local role of the
~ quantity or label. To

| 14.4 Comments |

N — |
| - (a) Comments should always be given at key points such as along

i with declarations, at block entry, in the procedure heading.

N (b) If they occur elsewhere, they may represent "snapshots"; they
j should explain relationships between variables which hold unconditionally

| when control passes the point of the comment. Such snapshots are sometimes

| extremely useful in explaining the functioning of a program.

(c) In PL360, comments will sometimes be necessary to explain the

role of a sequence of "obscure" function statements.

N (da) In block- and procedure headings, it is useful to add a comment
-indicating which registers are used, or vice versa: which ones are not.

Often it is useful to indicate what the registers are used for.

nN
88

| —

14.5 Miscellaneous

C= (a) Declare quantities which have local significance only in the
block where they belong. Avoid sharing of local variables, in particular

avoid sharing "temporary storage cells" among several procedures. |

_ (b) Avoid labels where you can. This is not as easy in PL360 as
it 1s in Algol. Nevertheless, use if, for, and while statements instead

of goto statements where appropriate. When a label must be used, always

put it in the left margin where it can be easily located. When a goto

» statement is used in a large program, it is sometimes useful to accompany oo

it with a comment telling the reader approximately where the label is

‘defined.

. (c) Use the appropriate type symbols when declaring variables.]

For example, do not write

integer flag |

when that variable is never used as a number, but only as a logical
A

— quantity. |

(d) Avoid bit manipulation where possible. For flags, use byte

| variables and the functions SET, RESET and TEST.
\ | |

(e) Minimize the use of functions. |

(f) Avoid the use of subscripted synonyms, such as

: integer x syn y(R2)

It is hard to realize that the statement

| Rl :=x |
g |

uses R2 as an index register! Of course

integer x syn y(2)

is o.k. |

~ .

— 89 | |

OC |

15. Acknowledgments

i After the U. S. invasion of Cambodia in the Spring of 1970, a handful
of graduate students in the Computer Science Department at Stanford decided

| to apply their programming skills to the data processing problems of

L "working within the System". We decided to do a computer analysis of pre-
cinct data to aid a candidate in the local Congressional race. At the

outset, we had to decide what language to use. For various reasons we

chose PL360. This decision necessitated the design and coding of input-

. output subroutines for tape and disk units (OPEN, GET, PUT and KLOSE).
Many of our jobs were limited in speed by the input-output devices; thus,

the DOS interface was implemented to permit "production" runs to be made

on a small 360. Through the many nights and weekends of programming and

C running jobs, we became aware of shortcomings in the compiler, the input- i
output subroutines and the PL360 language. Many times we were in the

position of developing and debugging the compiler, the input-output sub-
routines and problem programs, simultaneously. As a result, I believe

“ that the PL360 system has evolved into a tool that is not only elegant,
: but useful!

Thanks are due to Edwin Satterthwaite for many discussions and ex-

| planations about PL360 and the 0S interface.

" Special thanks are due to Richard Guertin of the Spires/Ballots
project at Stanford who recently took an interest in PL360 and made

several improvements. His careful scrutiny of the manuscript kept many
of my errors out of print.

Ng Wayne Davison, also of the Spires/Ballots project, prepared the indices
for this manual while ledrning PL360 from an earlier version of the manual,

The other students who programmed for the congressional race helped

in many ways, especially in the design of new features and debugging.

“ They are: Robert Russell, Henry Bauer and Richard Underwood. |
_ Out enthusiasm about PL360 was not dampened by the fact that our

candidate lost. | |

(

90 |

| |

16. References

Se [1] N. Wirth: PL360. "A Programming Language for the 360 Computers",

| JACM 15 (1968) 37.
[2] "0S/360 PL360 Compiler", IBM Contributed Library (Type IV) Program

| Number 360D-03.2.011.

h- | [3] J. Eve: "PL360 Language Extensions", Internal Note, Computing
Laboratory. University of Newcastle upon Tyne.

[4] G. M. Amdahl, G. A. Blaauw, F. P. Brooks, Jr.: "Architecture

| of the IBM System/360", IBM J. of Res. and Dev. 8 (1964) 87.
~ [5] G. A. Blaauw et al. "The Structure of System/360", IBM Sys. J. 3

| | (1964) 119. BN
[6] "IBM System/360 Principles of Operation", IBM Sys. Ref. Lib. A22-6821.
[7] "IBM System/360 OS Assembler Language", IBM Sys..Ref. Lib. Form

~ c28-6538. | |)

[9] MDS Vol. I 290-0 et. seq., University of Michigan Computation Center,

Ann Arbor. |
| [10] "IBM System/360 OS Assembler F Programmers Guide", IRM Sys. Ref. Lib.
~ _ | Form C26-3756.

| [11] "PL360 Programming Manual", University Computing Laboratory, |

University of Newcastle upon Tyne, Claremont Tower, Newcastle upon

| Tyne, NEL TRU, England, 1970. |

~ [12] "IBM System/360 DOS System Control and System Service Programs",
IBM Sys. Ref. Lib. Form C24-5036. |

[13] R. Fajman and J. Borgelt, "Orvyl User's Guide", Stanford University
Computation Center, 1971.

~ [14] "IBM System/360 Disk Operating System Supervisor and Input/Output
Macros", IBM Sys. Ref. Lib. Form C24-5037.

| [15] N. Wirth: "Format of PL360 Programs", Algol W - Project Memo, |

Stanford University, Sept. 9, 1966. | |

| | 9 | |
~

C — INDEX OF SYNTACTIC ENTITIES

This index lists in alphabetical order by left part all the productions |
found in the text. Page numbers under the left parts refer to the loca-
tion where the left part occurs in the text. Where no page number exists |

B under the left part, check the productions defining the right parts.

| The following abbreviations are used in this index:

assmt = assignment |

| dec] = declaration
hex = hexadecimal

ident = identifier
reg = register
stmt = statement -

 « The symhol A is understood to stand for « |
The symbol T is understood to stand for T
Strings of capital letters are used in place of underlining.

{A cell assmt> ::= <A cell designator> := <K reg>

 « nD 16

| KA cell designator) ::= <T cell designator>

<A number> ::= unsigned A number> oo
] 5 9 | _ unsigned A number>

|

| KA primary> ::= <£T primary> |

| {alternative condition> ::= <condition> |
| Dp 23 | <alternative condition> OR <condition>

ge. {arithmetic operator> ::= + |
p 15 a

| | >»
| /

| ++ |
-

{block> ::= <block hody> END
| pn 206

| hlock body> ::= <block head> |
p 25 | <hlock hody> <{stmt> ;

_ | <block body> <lahel definition>

| 92 : |
F—

oo (block head> ::= BEGIN
LC p 26 | <block head> <decl> ;

{hyte cell designator? ::= £T cell designator>

(byte valued ::= '"<character>" |
 p 10 | <hex value> X |

. |

{case clause) ::= CASE integer reg> OF

PD 24 |

{case sequence> ::= {case clause> BEGIN |
np 24 | {case sequence> <{stmt> ;

C

~~ <Lcase stmt> ::= {case sequence> END

p 24 |

(character) installation dependent | |
p 10

C . _
{character sequence) ::= {character>

Pp 9 | <charater sequence> <character> |

C |
- {combined condition> ::= <condition>

p 23 | <combined condition> AND <condition>

{compound condition> ::= {combined condition»
p 23 | | <alternative condition>

. |
Ccondition> ::= <K reg> <relation> <A primary> |

p 22 | <integer reg> <relation> <string>
| <hyte cell>
| = <bhyte cell> |
| <relation>

~ | OVERFLOW

{decl> ::= KT cell decl)>

np 26 | {function decl>
| {procedure decl>
| KT cell synonym decl>

. | <K reg synonym decl> |
] | <integer value synonym decl>

|] <segment base decl>

| <segment close decl>

. |

93 |
“

¢Aigitd 1:= 0 | |
oo pn 9 | 1

C | 2

| 3
| 4

| 5 |

| | 6
| 7

“ | 8
| 9 | |

| (Fill valued ::= <T valued
p 11 | <string> |

| @ <{procedure ident> |
“ | @@ {procedure ident> |

| | @ <T cell designator>
| Q@ <T cell ident>

| {repetition list> (Fill value>)

{for clause) ::= FOR (integer reg assmt> STEP (increment) UNTIL <1imit> DO
- pn 25 | : |

{for stmt> ::= {for clause) <{stmt>

p 25 | |

{format code> ::= integer value>
“ P 17

{fractional number) ::= <integer number) . {digit
\ Pp 9 | {fractional number> <digit>

{function decl> ::= FUNCTION <function definition>

p 17 | <function decl> , {function definition>

(function definition> ::= <ident> ({format code> , instruction code>)
— p 17

(function designator) ::= (function ident)
Pp 19 | {function ident> (<parameter list>)

| {function ident> ::= <ident> |
~ Pp 8 | | |

~~ <Lgoto stmt> ::= GOTO <ident>
p 27 |

| o

“ |

|

| Chex digit) t= Ldigit> |
— Pp 9 | A

§ | B
| C

| | D

| E
_ | F

- <hex valued> ::= #<hex digit) |
p 9 | <hex value> <hex digit>

Cident)> ::= {letter> | |

n 8 | <Kident> <letter> | |

C | <ident> <digit>
{if clause> ::= |F <compound condition> THEN

p 23 |

Cif stmt> :t:= if clause> <{stmt> SE |

C Pp 23 | <if clause) {true part> <{stmt>
(increment? ::= (intger value» |

p 25 | |

{index> ::= integer value> | |

“ Pp 13 | integer reg»
| <integer reg> + {Integer value>

’ | <integer reg> = {integer value>
| integer reg> + {integer reg> |
| integer reg> + {integer reg> + (integer value> |
| <integer reg> + {integer reg> - {integer value> |

C | |

{instruction code> ::= integer value> | |
p 17

a {integer number) ::= <A number>

Cinteger primary> ::= <T primary> N

{integer reg> ::= KK reg>

“ {integer reg assmt) ::= <K reg assmt> | |

<intecer value> ::= {integer number>
p 10 | <hex value>

| (integer value ident> |

|

| 95 | |
¢

{integer value ident> ::= <{ident>

(integer value synonym decl> ::= EQUATE <ident> <synonymous integer value’
p 20 | <integer value synonym decl> , <ident>

{synonymous Iintegervalue>

“ (item> ::= (ident>
p 11} <ident> = <fill value>

(<K primary> ::= <K reg> |
Pp 13

-~

KK reg> ::= Kident>
np 8

(K reg assmt) ::= {simple K reg assmt> |
p 15 | <K reg assmt> <arithmetic operator> <A primary>

w | <integer reg assmt> {logical operator> {integer primary>
| <integer reg assmt> <shift operator> <integer value’
| <integer reg assmt> <shift operator> (integer reg>

¢K res synonym decld> ::= <simple K type> REGISTER <ident> SYN <K reg)
Pp 19 | <K reg synonym decl> , <ident> SYN <K reg>

«

- {lahel definition> ::= Lident> :

p 25 |

{letter> ::= A-1 a-z |
Pp 8

{1imit> ::= integer primary> |

Pp 25 | <{short integer primary> |

g

{logical operator> ::= AND
p 15 | OR |

| | XOR

{long real number> ::= <A number>
“ .

(lonz real value> ::= <long real number>
Pp 10 | <hex value> L

{monadic operator> ::= ABS
Pp 14 | NEG

« | NEG ABS

« | 96

{parameter> ::= LT value>

OC n 19 | <string>
| | <K reg>

| <A cell?
| {function designator>

: {narameter list> ::= <{parameter> |

w n 19 | <parameter list> , <parameter>

{procedure decl)> ::= {procedure heading> ; <stmt>
Pp 28

{procedure heading) ::= {simple procedure heading>
n 238 | {separate procedure heading>

| {separate procedure heading> BASE <integer reg>

{procedure ident> ::= (ident> |
p 8 - | |

C {procedure stmt> ::= {procedure ident> |
Pp 29 | <procedure ident> ({integer reg>) }

CPROGRAMY := <(stmt> | |

p 26 | GLOBAL <simple procedure heading> ; <stmt> .
| GLOBAL <simple procedure heading> BASE <intger reg> ; <{stmt>

~ _ <real number> ::= <A number>

{real value) ::= {real number> -

p 10 | <hex value? R

N N

{relation> ::= =

n 22 | T=
| | < |

“ | <=
| > oo

1 >= |

{repetition list> ::= (|
| p 11 |] {integer value) (

« | <repetition list> fill value>,

{scale factor> ::= {integer number>
Pp 9

{segment base decl> ::= {segment base heading> BASE (integer reg>
“ p 21

55 |

{segment hase heading> ::= SEGMENT

C pn 21 | GLOBAL DATA <ident>
| EXTERNAL DATA <ident>
| COMMON DATA <ident>
| COMMON
| DUMMY |

“ {sesment close decl> ::= CLOSE BASE
npn 21

{separate procedure heading) ::= SEGMENT <(simple procedure heading>
| p 27 | GLOBAL <simple procedure heading>
| | EXTERNAL <simple procedure heading>

“ |
{shift operator> ::= SHLL

| | p 15 | SHLA
| SHRL

| | SHRA - | |

wo {short integer number> ::= <A number> _

{short integer primary>::= <T primary> |

{short integer value) ::= {short integer number> |
p 10 | <hex value? $S |

“-~

— {simple hyte type> ::= BYTE |
p11 | CHARACTER

{simple integer type> ::= INTEGER | |
p 11 | LOGICAL

| |

{stiple K reg assmt> ::= <K reg> := <A primary>
np 1h | <K reg> := <{monadlc operator> <A primary>

“ | <integer reg> := <string>
. | integer reg> := @ <T cell designator> |

| <integer reg)> := @ {procedure ident>

(simple K type) ::= {simple integer type>
| <simple long real type>

w | {simple real type> |

(simpla long real typed ::= LONG REAL
p 11

(simple procedure heading) ::= PROCEDURE <ident> (integer reg))

ju pn 27

| 98 |
L

|

{simple real type> ::= REAL
Co Pp 11

- {<sirnle short inteser type> ::= SHORT | HITEGFR |
n 11 |

{siimle stt> ::= <K reg assnt> |
no 20 | <A cell assmt>

| {function designator>
| procedure stmt>

| {case stmt»
| <hlock> |

| <goto stmt>

| | NULL | |

~ (simple T type) ::= {simple hyte type>
| | <simple integer type>

| <simple long real type>
| <simple real type> |
| <simple short integer type>

“ . : -
{stmt> ::= {simple stmt> |

n 25] if stmt>

| <vthile stmt) | |

| {for stmt> |

“ {(strin~> ::= "<{character sequence)"
Hn 9

{svn cell valued ::= KT cell Adesignator> ~ KT cell designator>
n 20 | |

Y (synonymous cell> ::= SYY KT cell designator) |
Nn 19 | SYN (integer value?

. {synonvriotls integer value> ::= SYN <integer value>
n 20 | SYN {syn cell value>

] | SYN <monadic operator> integer value>

| {synonymous integer value) <arithmetic
operator> integer value»

| {synonymous integer value> <logical

“ operator> (integer value>
| {synonymous integer value)> <shift

| operator? integer value>

KT cell decld> ::= LT type> (iter

n 11 | <T cell decl> , item>

“

| 99
“

< |

KT cell designator> ::= <T cell ident>

CT Pp 1? | <T cell ident> (<index>)
<T cell tdent> ::= <ident>

Pp 3

KT cell synonym decl> ::= KT type> (ident> {synonymous cell> |

C Pp 19 | <T cell synonym decl> , <ident> <synonymous cell>
KT primary> ::= LT value>

Pp 13 | <T cell designator>

CT typed ::= {simple T type> SE

C p 11 | ARRAY (integer value) {simple T type>
KT value> ::= <hyte value> |

| integer value>

|] <long real value> - |
| | <real value>

C | {short integer value>]

{true part> ::= <simple stmt> ELSE

p 23 | |

| <uansisrsned A number? ::= <unsigned integer number? | |
| <unsigned long real number> |

_ | <unsigned real number>
| <unsigned short integer number> |

<unsiecned integer number) ::= {digit> |
Pp 9 | <unsigned integer number> <digit>

unsigned long real number? ::= <fractional number> L
p 9 | <unsigned integer number> L

. | {fractional number> ' <scale factor> L
| <unsigned integer number> ' (scale factor>

<unsiczned real number> ::= {fractional number>

np 9 | <unsigned integer numbher> R
| {fractional number> !' (scale factor>

- | <unsigned integer number) ' (scale factor)

{unsiened short integer number> ::= unsigned integer number> S
p 9 |

vhile clause) ::= WHILE <compound condition) DO a
n 25 |

“ | |

while stint> t:= while clause> <{stmt>

} p 25 | |

| | 100 |
~ .

C

SUBJECT INDEX

L Explanation of notation: "57f" means separate references
on pp. 57 and 58; "57ff" means separate references on pp.
57, 58, and 59; "57-58" means a continuous discussion
spanning pp. 57 and 58; "57-60 passim" means scattered
references from p. 57 through p. 60-~there might not)

« be any reference on p., 58, for example.
N.b,: entries for pp. 69-77 are not included.

@ operator, 12 Calling conventions: 44, 50, 63;
@@ operator, 12 for external routines, 57-58;

- $, U9 for PL360 procedures, 59-60 |
$BASE, 51, 58 CANCEL, 49
$D0S, 50, 62 Case statements: 24, example of,
$LIST, 49 - 39

$NOGO, 49, 67 Catalogued procedure, 67, 82

$NOLIST, 49 Cells, 3-4, 11-12, 16-17, 22]
“ $NOXREF, 50 Characters: set of, 10

$0S, 50, b62f Comments, 5, 49, 88
$PAGE, 49 Common base, 21 |
$TITLE, 49 Compiler: attributes, 45-56,
$XREF, 50 61-64 passim; Input records,
$XYY#, 50 49; instructions, 49-51, 65¢f;

.“ $0, 50 listing, 51, 63-66 passim, 78.
$1, 50 | 80; object program output,
$2, S50 54-55; options, 66; performance, |

| $3, 50 | 55-56. See also Source code
Condition, 22-25 passim, 37, 40

a, 5f, 1h Condition code, 22, 24, 29, 37,
L Abs, 1u 58, 61, 81

Absolute addresses, 12, 42, 55 Conjunction, 15
Absolute value, 1b Control facilities, 22-29
Addressing, 2-43 Control section, 54f
And, 15 Conversion, 20
Array, 12 Coroutines, 59 |

- Assignment: of cells, 11, 16-17, Cross-reference listing, 50
37; operator, li; of registers,

13-16, 36 Data: common, 21, 60; external,
21, 60; global, 21, 60;

Base address, 21, u42f, 58 manipulation procedures, 84;
Base declaration, 21, 44, 60 segment, 4u4, 54, 57-60 passim
Base register, 13, 19-22 passim, Declarations: 4, 8, 10-13, 19-22,

28, 42, uh4, 51, 57-60 passim 27-29, 44-47 passim, 54-60
Basic symbols, 5, 7-8, 45 passim, 82, 88; base, 21, uk,
BCDTOVAL, 83-84 60; cell, 11-13; common, 55-59
Blanks, 45, 82 passim; dummy base, 22;

C Block, 8, 11, 26-27, 43-46 passim, external, 54-60 passim;
57-60 passim function, 17-18; global, 55,

BOS, 61 |
Boundary alignment, 12

- 101

59; implicit, Lu-47 passim’ Loader, 5uf
procedure, 27-29, 57, 59; Logical comparison, 22, 84
register, 10-11; segment, Logical operations, 15

oo 21-22, S54f; synonym, 19-21
C Designators: cell, 12-13, 21; MEM, 20

function, 19 MTS, 61
Displacement, 19, 22, 42 multiplication, 16
Division, 16
DOS, 61 Neg, 1k |
Dummy, 21f Neg abs, 14

© | NOGO, 49 | |
| EBCDIC, 82f NOLIST, 49

Entry point, 12, 14, 28, 51- numbers: integer, 9; long real,
| 62 passim, 82 9ff; negative, 9; real,

Error messages, 51-54, 65 9f; conversion procedures,
Exclusive disjunction, 15 82-84

« Execute instruction, 19 Null, 27, 57
External names, 61
External symbol dictionary, 5u4f Object code, 36-41, 54-55

Object module, 54-55, 61-66
For statement, 25, 40] passim, 78
Format code, 17f OPEN, 47f |

. Free storage, 62, 64] Operating system interface, -
Function statements, 17, 19, 61-64

58 | Operators: arithmetic, 10, 15;
@, 12; @@, 12; dyadic, 15;

GET, u7f - logical, 15; shift, 15;
Go to statements, 26ff, 45 monadic, 16; precedence of, 16

“ Or, 15
-- Inclusive disjunction, 15 ORIGIN, 40

Identifiers: 8-12 passim, 46, Orvyl, 78-81
88; cell, 11f, 44; function, 0S, 61-68 passim
17; procedure, 28f, 55; OVERFLOW, 22
register, 10-11; synonymous, |

« 19. See also Standard ~~ PAGE, 46f, 68 |
identifiers Parameter, 61ff, 80ff

If statements, 22-24, 37, 39 PL360 compiler. See Compiler
Index array, 8uf Precedence. See Operators
Index register, 13, 19-22 Primary, 13, 22

| passin PRINT, u46f, 68
“ Initialization, 11-12, 20, 62 Procedure: body, 28f, 43, 57;

Instruction code, 17 ~~ global, 28, 43f, 51, 55, 60,
Instruction fields, 17f) 82; external, 28, 46-51

passim, 57, 60; segement, 28,
Job control language, 65-67 51; statement, 29, 41f; call,
passim 41; calling conventions, Lb;

“ recursive, 59; catalogued,
X, 5f, 1.4 67f, 82; number conversion,
KLOSE, u47f 82-84; data manipulation, 8h

Program segment, 27f, 40-43
Label definitions, 26 passim, 51-55 passim
Library (0S), 68, 82-85 PUNCH, u6f, 61ff, 68

“ Linkage, 57-60, 63, 82 PUT, u47f
LIST, 49
Load module, 67 QSAM, 68 |

“ 102

:

oo :

Quote marks: use of, 10 Statements, 4, 26 |
Storage elements,3

READ, ue6f, 61, 63, 68, 80f Strings, 5, 10-14 passim,
Co Register conventions, 61 22, 49
C Registers, 3, 10 Subroutines, 61, 62-63,

Relation, 22 68
Relative address, 12 Supervisor services, 58
Relocation dictionary, 5uf Symbol representation, 45
Representation: unnormalized Synonym declarations, 19-21
floating point, 10, 15; Syntactic entities, 5, 6-7

« | internal, 82f SYSGO, 66
Reserved words, 45 SYSIN, 65, 68
Return address, 28f, ul, SYSINIT, 61ff

57-61 passim SYSLIB, 67f
Return code, 29, 59, 62f, 67, SYSPRINT, 65, 68

83f SYSPUNCH, 66, 68 |
“ Run-time library, 82-85 System initialization, 62

System termination, 62
Scale factor, 9 SYSTERM, 61ff

Segment: base declarations,]
21-22, 44, 60; program, I, 5f | |
27f, 40-43 pgssim, 51-55 TITLE, 49 |

“ passim; procedure, 28; - TOS, 61 _
data, 43f, 54, 57-60, Truncation, 11f
passim; dummy data, 54; |
base address, 55 Unnormalized, 10, 15

Segmentation, 42-44 | | |
Sign inversion, 14 VALTOBCD, 83

“ Source code, 49, 86-89, Values, 3-4, 9-10 |
- See also Compiler

Standard identifiers: While statement, 25, 40 |8, 9-10, 17, u6; WRITE, u46f, 61, 63, 68, 80f
| | register, 10-11;

function, 17; in- Xor, 15 |
« teger, 20 oo | |

Standard procedures, 46-49,
68 |

“-

S |

~

10%

N | |

