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"A Contribution to the Development of ALGOL" by Niklaus Wirth and

~~ C. A. R. HoareTfwas the basis for a compiler developed for the IBM 360 at

¢ Stanford University. This report is a description of the implemented

language, ALGOLW. Historical background and the goals of the language

may be found in the Wirth and Hoare paper.
.

HISTORICAL NOTE

This document 1s a major revision of and supersedes CS 110. The revisions

“ were made in order to document a significantly improved version of the ALGOLW

compiler. This version was known as X ALGOL W during the spring and summer

of 1971. In addition to new debugging facilities documented under Compiler

v Options, the new version of the canpiler has slightly more meaningful error

messages documented in the completely re-written Error Messages section.

Various minor corrections and changes have been made throughout the book,

‘ - and some examples have been added. There is now an index, and a complete
list of all words the compiler treats in any special way. 'Below 1s a quick

summary of the changes in the ALGOL W language:

|
1. Reserved words:

There are three new reserved words: algol, assert, and fortran.

2. New statements and functions:

‘ There is now an ASSERT statement (cf. Section T7.5a).
Procedures can be declared with empty bodies that instead specify that

a linkage to an externally-compiled algol or fortran procedure is needed

“ (cf. Section 5.3). A new standard function, TRACE, is added as part
of the debugging facility (cf. Section 7.8.6).

of ALGOL", Comm. ACM 9,6 (June 1966), pp. 413-L31.
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3. Conversions:

Conversions from integer to real now go to long real.

4. String comparisons:

In comparing strings of different lengths, the shorter 1s extended

with blanks before the comparison 1s done.

De String assignments:

String assignments are done 1n a single action, instead of character-

by-character left-to-right. This prevents erroneous answers when

assigning a string to a substring of itself.

6. Deleted facility:

The standard functions COMPLEXSQRT and LONGCOMPLEXSQRT are no

longer in the ALGOL W library. (cf. Deck Setup and Compiler

Options, Section 3, for use of the Fortran library.)

The present author wishes to thank all those who have gone before him,

especially Ed Satterthwaite for his extraordinary care in building the

debugging facilities.
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C 1. TERMINOLOGY

-

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

- The Reference Language 1s a phrase structure language, defined by

| a formal metalanguage. This metalanguage makes use of the notation and

definitions explained below. The structure of the language ALGOL W

“ 1s determined by:

(1) ¥, the set of basic constituents of the language,

(2) UW, the set of syntactic entities, and

. (3) P, the set of syntactic rules, or productions.

1.1. Notation

A syntactic entity 1s denoted by 1ts name(a sequence of letters)

-- enclosed in the brackets < and >. A syntactic rule has the form

<A> i= X

s where <A> is a member of U, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a “sequence”.

- The form

. <A> i=x ly) ooo] oz

‘is used as an abbreviation for the set of syntactic rules

<A =X
.

<A> i= Yy

<O i= 2

. 1.2. Definitions

I. A seguencexis said to directly produce a sequencey if and

« 8
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1. TERMINOLOGY

only 1f there exist (possibly empty) sequences u and w, so that

either (i) for some <A> in U, x = KDW, v = uvw, and <& ::=

v 1s a rule in P; or (ii) x = uw, y = uvww and v is a "comment"

(see below).

2. A sequence xX 1s said to produce a sequence y 1f and only if

there exists an ordered set of sequences s[0], s{1], . . . , s[n],

so that x = s[0], s[n] = y, and s[i-1] directly produces s[i] for

all 1 =1, .. . , n.

3. A sequence x 1s sald to be an ALGOL W program if and only 1f
its constituents are members of the set V, and x can be produced

from the syntactic entity <program>.

The sets V and U are defined through enumeration of their members

in Section? of this Report (cf. also 4.4.). The syntactic rules are

given throughout the sequel of the Report. To provide explanations

for the meaning of ALGOL W programs, the letter sequences denoting

syntactic entities have been chosen to be English words describing

approximately the nature of that syntactic entity or construct. Where

words .which have appeared in this manner are used elsewhere 1n the

text, they ref'er to the corresponding syntactic definition. Along

with these letter sequences the symbol T may occur. It 1s understood

that this symbol must be replaced by any one of a finite set of English

words (or word pairs). Unless otherwise specified in the particular

section, all occurrences of the symbol J within one syntactic rule

must be replaced consistently, and the replacing words are

9



C 1. TERMINOLOGY .

integer logical
¢ real bit

long real string

complex reference

long complex
Cc

For example, the production

<J term> ::= J factor> (cf. 6.3.1.)

C
corresponds to

<integer term> : := <integer factor>

<real term> ::= <real factor>

| Jong réal term> ::= ong real factor>

<complex term> : := <complex factor>

Jong complex term> ::= <long complex factor>

« The production
= <T, primary>= long <7J, primary> (cf. 6.3.1. and

table for long
6.3.2.7.)

corresponds to

L |
<long real primary> ::= long<real primary>

Jong real primary> : :=_ long <integer primary>

long complex primary> ::= long <complex primary>

L It 1s recognized that typographical entities exist of lower order

than basic symbols, called characters. The accepted characters are

those of the IBM System 360 EBCDIC code.

L The symbol comment followed by any sequence of characters not

-containing semicolons, followed by a semicolon, is called a comment.

A comment has no effect on the meaning of a program, and 1s ignored

during execution of the program. An ldentifier (cf. 3.1) immediately

10



2. SYMBOLS

following the basic symbol end is also regarded as a comment.

The execution of a program can be considered as a sequence of

units of action. The sequence of these units of action is defined as

the evaluation of expressions and the execution of statements as

denoted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs 1s either (1) defined

by System360 operations, e.g., real arithmetic, or (2) left undefined,

e.g., the order of evaluation of arithmetic primaries 1n expressions,

or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

alBlcloplEelFrlelualzlolklrlmln]olep]
elrlslrelulv]iwlxly]|z]

olarlelslulslelrlslol]

true | false | " | null | # |v

] integer | real | complex | logical | bits | string |
reference | long real | long complex | array |

procedure | record |

> 1 31:1 .1 (C1 )]| begin | end | if | then | else |

"case | of | + a. * T / | ** | div | rem | shr | shl | is |
abs | long | short | and | or | ald l=]a="x]
< = | > | > = | a

| r= | got0 | go ta | foi | step | until | do | while |

| comment| value | result | assert| algol | fortran
All underlined words, which we call "reserved words", are represented

by the same words in capital letters in an actual program, with no

intervening blanks.

11



2. SYMBOLS -

— Adjacent reserved words, identifiers (cf. 3.1.) and numbers must include |

~ no blanks and must be separated by at least one blank space. (rperwise
blanks have no meaning and can be used freely to improve the read-

| ability of the program.
|.

2.2. Syntactic Entities

(with corresponding section numbers)

\ <actual parameter list> 7.3 <formal type> 5.3

<actual parameter> 7.3 <go to statement> 7 4

<bit factor> 6.5 | <hex digit> 4.3

<bit primary> 6.5 | <identifier 1list> 31

“ <bit secondary> 6.5 | <identifier> 3.1
<bit sequence> 4.3 f <if clause> 6

<bit term> 6.5 <if statement> 7.5

<block body> T.1 | <ilmaginary number> 4 1
L NS <block head> T.1 | <increment> TT

<block> 7.1 | <initial value> 7.7

<bound pair list> 5.2 § <iterative statement> TT

| <bound pair> 5.2 <label definition> 7.1

L <case clause> 6 <label identifiers 3.1
<case statement> 7.6 | <letter> 3.1

<control 1dentifier> 3.1  <limit> TT

<declaration> 0 <logical element> 6.4

L <digit> 5.1 § <logical factor> 6.4
<dimension specification> 53 <logical primary> 6.4

<empty> 7 | <logical term> 6.4

C <equality operator> 6.4 <logical wvalue> 4.2
<expression list> 6.7 § <lower bound> 5.2

<field 1list> 54 8 <null reference> 4.5

<for clause> TT | <procedure declaration> 5.3
<for list> 7.7 § <procedure headlng> 513

L <formal array parameter> 53 <procedure 1identifier> 31
<formal parameter list> >.3 § <procedure statement> 7 3

<formal parameter segment> 5.3 8 <program> 7

L 12



3. IDENTIFIERS

<proper procedure body> 5. <subscript 1list> A.1
< i > .<proper procedure substring designator 6.6

declaration> 5. <J array declaration> 5.2
| | <3 array designator> 6 1
~ <record class decleration> SLL Co

g <I array ident if ier> 3.1
<record class 1dentifier> z.] _

oo <J assignment statement> 7.2

<record class identifier . |
1List> 5.1 <J expression list> 6

<record designator> 5.7 <J expressior> 6
<relation> 5 4 <J factor> 6.3

<relational operator> 6.4 <J field designator> 6.1

<scale faclor> iq <JT field identifier> 3.1

<5i | L1 <J function designator> 6.2

<simple L.% expressio> 6.5 | <7 function identifier> 5.1
| <simple lorical expressiom> 6.4 <I function procedure body> 5. 3

 <simple reference <J function procedure
CHPYe3D Jor 6.7 declaration> 2:3

Co oo Pra

<simplo statements 7 <J ieft parts 7.2
or

<simple siuring expressiomn> 5.6 < number> 4.1
E <simple 7 expressior> 6.3 <J primary> 6.3

ap '

<simple 7 variable> 6.1 <J subarray designator> 7.3
| <T term> 6.3

| SSImp-e types 5.1 | << variable> 6.1
<siuple variable <J variable identif ier> 5.1

declaration >.1 | <unscaled real> L.1

<statenmeni> | 7 <while clause> 7.7
<strlacrrimary> | 6.6

<string> | 4 4

<subarray desirnator list> 7.3
<subscript> | 5.1

3. IDENTIFIERS

5.1. Syntax

| <identifier> ::= <letter> | <identifier> <letter3 | <identifier? <digit> |
<identifier> _

<T variable i1dentifier> ::= <identifier>

13



C

<J array identifier+ ::= <identifier>

<procedure identifier> ::= <identifier>

<J function identifier> ;:: <identifier>

C <record class identifier> ::= <identifier>
<I field identifier> ::;= <identifier>

<label identifier> ::= <identifier>

<control identifier}, ::= <identifier>

e <letter> T= A | B C D E F G H I J | K L | M
Njolr|lelRrR|s|Tlulv|w]|x]|y]az

<digit> ::= OJ 1] 2 |3|u]s5]|6]|7|8]09
<identifier 1list> :a= <identifier> | <identifier list;> , <identifier>

3.2. Semantics

Variables, arrays, procedures, record classes and record fields

. are sald to be quantities. Identifiers serve to identify quantities,
~ or they stand as labels, formal parameters or control identifiers.

Identifiers have no inherent meaning, and can be chosen freely in the

C reference language. In an actual program a reserved word cannot be
used as an identifier.

Every identifier used in a program must be defined. This 1s

achieved through

(a) a declaration (cf. Section 5),if the identifier identifies a

quantity. It 1s then said to denote that quantity and to be a

T variable identifier, J array identifier, T procedure identifier,

J function identifier, record class identifier or J field iden-

ti tier, where the symbol J stands for the appropriate word re-

L flecting the type of the declared quantity;
\b) a label def’inition (cf. 7.l1.), if the identifier stands as a

14
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5+ IDENTIFIERS -

label. It 1s then said to be a label identifier;

(¢) its occurrence in a formal parameter list (cf. 5.3.).Itis then

said to be a formal parameter;

(d) 1ts occurrence following the symbol for in a for clause (cf. 7.7.).

It 1s then said to be a control identifier;

(e) its implicit declaration in the language. Standard procedures,

standard functions, and predefined variables (cf. 7.8 and 8)may be

considered to be declared in a block containing the program.

The recognition of the definition of a given identifier 1is

determined by the following rules:

Step 1. If the identifier is defined by a declaration of a

quantity or by its standing as a label within the smallest block

(cf. 7.1.) embracing a given occurrence of that identifier, then

it denotes that quantity or label. A statement following a

procedure heading (cf. 5.3.) or a for clause (cf. 7.7.) is considered

to be a block.

Step 2. Otherwise, 1f that block 1s a procedure body and if 4ie

given identifier 1s identical with a formal parameter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, 1f that block 1s preceded by a for clause

and the 1dentifier 1s identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered.

15



C 4 . VAIUES and TYPES

If either step 1 or step 2 could lead to more than one definition,

B then the identification 1s undefined.

- The scope of a quantity, a label, a formal parameter, or a

control identifier is the set of statements in which occurrences of an

identifier may refer by the above rules to the definition of that

~ quantity, label, formal parameter or control identifier.

5.5. Examples

I

PERSON

ELDERSIBLING

x15, x20, x25

-

4, VALUES AND TYPES

“ Constants and variables (cf. 6.1.) are saidto possess a value.

i The value of a constant 1s determined by the denotation of the constant.

In the language, all constants (except references) have a

- reference denotation (cf. 4.1. -4.4.). The value of a variable is the

one most recently assigned to that variable. A value 1s (recursively)

"defined as either a simple value or a structured value (an ordered set

& of one or more values). Every value 1s said to be of a certain type.

The following types of simple values are distinguished:

integer: the value is a32 bit integer,

| real: the value is a 32 bit floating point number,

long real: the value is a 64bit floating point number,

complex: the value is a complex number composed of two
numbers of type real,

“

16
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4. VAIUES and TYPES

Ld

long complex: the value 1s a complex number composed of two
long real numbers,

logical: the value 1s a logical value,

bits: the value is a linear sequence of 232 bits,

string: the value is a linear sequence of at most 256
characters,

reference: the value 1s a reference to a record.

The following types of structured values are distinguished:

array: the value 1s an ordered set of values, all of
identical simple type,

record: the value 1s an ordered set of simple values.

! procedure may yield a value, in which case 1t 1s sald to be a

function procedure, or 1t may not yield a value, in which case it 1s

called a proper procedure. The value of a function procedure is

defined as the value which results from the execution of the procedure

body (cf. 6.2.2).

Subsequently, the reference denotation of constants is defined.

The reference denotation of any constant consists of a sequence of

characters. This, however, does not imply that the value of the

denoted constant 1s a sequence of characters, nor that it has the

- properties of a sequence of characters, except, of course, in the case

of strings,

- 4.1. Numbers

4.1.1. syntax

<long complex number> ::= <complex number>L

<complex number> ::= <imaginary number>

<imaginary number> ::= <recal number>I | <integer number>1

17



<dong real number> ::= <real number>L | <integer number>L

<real number> ::= <unscaled real> | <unscaled real> <scale factor> |
ht <integer number> <scale factor> <scale factor>

<unscaled real> ::= <integer number> .<integer number> |

*<integer number> <integer number>.

<scale factor> ::= '<integer number> | '<sign> <integer number>

& <integer number> ::= <digit> | <integer number> <digit>
<sign> ::= + | ~

(NOte: a long complex constant may have the I and L in either order

Le in a program, but they must be in the order IL on data cards.)

4.1.2. Semantics

. Numbers. are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which 1s

multiplied by the unscaled real or integer number preceding it. Each

« number has a uniquely defined type. (Note that all <T number>s are

unsigned.)

4.1.3. Examples

A;
1 . 11

0100 1'3 0.671

3.1416 6.024861+23 111

. 2.718281828459045235360287L 2.31-6

4.2, Logical Values

4.2.1. Syntax
 -

<logical value> ::= true | false

4.3. Bit Sequences

= 4.3.1. syntax

<bit sequence> ::= # <hex digit> | <bit sequence> <hex digit>

18
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L. VAIUES and TYPES .

<hex digit> ::=0 | 1 |2 |3|s|s5]|é6]7|8|9|Aa]l|B]

C|D|E|F

Note that 2 | Coe | F corresponds to 210 NP 1544 .

h.%.2. Semantics )

The number of bits in a bit sequence is 72 or 8 hex digits. The

bit sequence 1s always represented by a 32 bit word with the specified

bit sequence right justified in the word and zeros filled 1n on the left.

4.3.3. Examples

#47 = 0000 0000 0000 0000 0000 0000 0100 1111

#9 = 0000 0000 0000 0000 0000 OOOO 0000 1001

b'T. Strings

{.4.1, syntax

<string> ::= "<sequence of characters>"

4.4.2. Semantics

Strings consist of any sequence of (at most 256) characters

accepted by the System 360 enclosed by", the string quote. If the

. string quote appears 1n the sequence of characters it must be immediately

followed by a second string quote which 1s then ignored. The number of

characters in a string is said to bc the lengthof the string.

4.4.3. Examples

"JOHN"

""™™®™ is the string of length 1 consisting of the string quote.

19



C 5. DECLARATIONS .

.

4.5. References

43.1. Syntax

b

<null reference> ::- 1iu..

4.5.2. Semantics

L The reference value null failsto designate a record; 1f a refer-

ence expression occurring in a field designator (=f. 6.1.) has this

value, then the field designator 1s undefined.

5. DECLARATIONS

Declarations serve to assoclate identifiers with the quantities

used in the program, to attribute certain permanent properties to

— these quantities (e.r. type, structure), and to determine their scope.

The quantities declared by declarations are simple variables, arrays,

procedures and record classes.

b

Upon exit from a block, all quantities declared or defined within

that block lose their value and significance (cf. 7.1.2. and T7.k.2.).

syntax:

<declaration> ::= <simple variable declaration> <J array

declaration>| <procedure declaration> |
<record class deciaration>

5.1. Simple Variable Declarations

§.1.1. Syntax

<simple variable declaratviorn>: := <simple type> iidentifier 1list>

<simple type> ::= integer. | real | long real | complex | long

complex | logical | bits | bits (32) |

20



5. DECLARATIONS ol

string | string (<integer number>) | reference
(<record class identifier 1list>)

<record class identifier list> ii= <record class identifer> |
} <record class identifier list> ,

<record class identifier>

5.1.2. Semantics

Each identifier of the identifier list 1s associated with a

variable which is declared to be of the indicated type. A variable is

called a simple variable, if its value is simple (cf. Section 4). If

a variable 1s declared to be of a certain type, then this implies that

only values which are assignment compatible with this type (cf. 7.2.2.)

can be assigned to it. It 1s understood that the value of a variable

1s equal to the value of the expression most recently assigned to it.

A variable of type bits 1s always of length 32 whether or not

the declaration specification 1s included.

A variable of type string has a length equal to the unsigned

integer in the declaration specification. If the simple type is

given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to records of the

record classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

5.1.3. Examples

integer I, J, K, M, N

real X, Y, Z

long complex C

logical L

bits G, H
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C

string (10) S, T

o reference (PERSON) JACK, JILL

5.2. Array Declarations

w 5.2.1. Syntax

<J array declaration> ::= <simple type> array <identifier list>

(<bound pair list>)

<bound pair list> ::= <bound pair> | <bound pair list>, <bound pair>

\ <bound pair> ::= <lower bound> :: <upper bound>

<lower bound> ::= <integer expression>

<upper bound> ::= <integer expression>

“ 5.2.2. -Semantics

Each identifier of the identifier list of an array declaration 1is

| associated with a variable which is declared to be of type &xray.

“ variable of type array 1s an ordered set of variables whose type 1s the

= simple type preceding the symbol array. The dimension of the array 1s

the number of entries in the bound pair list.

“ Every element of an array 1s identified by a list of indices. The

indices are the integers between and including the values of the lower

. bound and the upper bound. Every expression in the bound pair list is

“ evaluated exactly once upon entry to the block 1n which the declaration

occurs. The bound pair expressions can depend only on variables and

procedures globalto the block in which the declaration occurs. In order

“ to be valid, for every bound pair, the value of the upper bound must not

be less than the value of the lower bound.

5.2.5. Examples

C integer array H(1::100)
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real array A, B(1::M, 1::N)

string (12) array STREET, TOWN, CITY (J::K + 1) |

5.5. Procedure Declarations |

5.3.1. Syntax

<procedure declaration> ::= <proper procedure declaration> |

<T function procedure declaration> |

<proper procedure declaration> ::= procedure <procedure heading>; |

<proper procedure body>

<T function procedure declaration> ::= <simple type> procedure

<procedure heading>;

<7 function procedure body>

<proper procedure body> ::= <statement> <external procedure> |

<T junction procedure body> ::= <7 expression> | <block body> |

<T expression> end | <external procedure> :

<procedure heading> ::= <identifier> <identifier> (<formal |
parameter list>) |

<formal parameter list> ::= <formal parameter segment> |

<formal parameter list> ; <formal |
parameter segment>

<formal parameter segment> ::= <formal type> <identifier list> |
<formal array parameter>

<formal type> ::= <simple type> | <simple type> value | <simple |
_ type> result | <simple type> value result |

<simple type> procedure | procedure

<formal array parameter> ::= <simple type> array <identifier |
list> (<dimension specification>)

: <dimension specification> ::= * | <dimension specification>, *

| <external procedure> ::= fortran <string> algol <string>
5.3.2. Semantics

A procedure declaration associates the procedure body with the :

identifier immediately following the symbol procedure. The principal |
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‘ part of the procedure declaration 1s the procedure body. Other parts

of the block in whose heading the procedure 1s declared can then cause

this procedure body to be executed or evaluated. A proper procedure

“ 1s activated by a procedure statement (cf. 7.3.),a function procedure

by a function designator (cf. 6.2.). Associated with the procedure

body 1s a heading containing the procedure identifier and possibly a

-

list of formal parameters.

5.3.2.1. Type specification of formal parameters. All formal para-

“ meters of a formal parameter segment are of the same indicated type.
The type must be such that the replacement of the formal parameter by

the actual parameter of this specified type leads to correct ALGOLW

- expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the symbols value and result appearing in a

formal type 1s explained by the following rule, which 1s applied to

& the procedure body before the procedure is invoked:

(1) The procedure body 1s enclosed by the symbols begin and end

1f it 1s not already enclosed by these symbols;

“ (2) For every formal parameter whose formal type contains the

symbol value or result (or both),

(a) a declaration followed by a semicolon is inserted after

~~ the first begin of the procedure body, with a simple

type as 1ndicated in the formal type, and with an iden-

tifier different from any identifier valid at the place

‘ of the declaration.

(b) throughout the procedure body, every occurrence of the

2
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formal parameter identifier 1s replaced by the identifier

defined in step 2a;

(3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by a semicolon 1s inserted

after the declarations of the procedure body. Its left part

contains the identifier defined in step 2a, and its expression

consists of the formal parameter identifier. The symbol

value 1s then deleted;

(4) If the formal type contains the symbol result, an assignment

statement preceded by a semicolon 1s inserted before the symbol

end which terminates a proper procedure body. In the case

of a function procedure, an assignment statement preceded

by a semicolon is inserted after the final expression

of the function procedure body. Its left part contains the

formal parameter identifier, and its expression consists of

the identifier defined in step 2a. The symbol result is

then deleted.

5.3.2.3. Specification of array dimensions. The number of "¥"'s

appearing in the formal array specification 1s the dimension of the

array parameter.

5.3.2.4. External procedures. The body of a procedure can be just the construct

fortran <string>

or the construct

algol <string> .
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<

_ , In these cases, the actual body of the procedure is specified in a program
«

that 1s compiled separately (externally). The <string> is a one-to-eight

character external name that is used in the separate compilation. Thyg, the

example on page 27 could be used to refer to a FORTRAN program that begins:
.

SUBROUTINE PLOTSB(N) ...

(cf. Deck Setup and Compiler Options, Section 5 for details).

. 5.5.5. Examples

procedure INCREMENT; X := X+1l

real procedure MAX (real value X, Y);

L 1fX < Y then Y else X
procedure COPY (real array U, V (¥*,%); integer value A, B);

for IT :=1 until A do

for J := 1 until Bdo U(I,J) := V(I,J)

L real procedure HORNER (real array A (*); integer value N;
~ real value X);

begin real S; S := 0;

for IT := 0 until N do S :=S *¥ X + A(l);

S

end

long real procedure SUM (integer K, N; long real X);

begin long real Y; Y := 0; K := N;

while K > = 1 do

begin Y (= Y + X; K :=K-1

end;

Y

end

L

26
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reference (PERSON) procedure YOQUNGESTUNCLE (reference (PERSON) R);

begin reference (PERSON) P, M;

P := YOUNGESTOFFSPRING (rateer (FATHER (R)));

while (P= = null) and (= MALE (P)) or

(Pp = FATHER (R)) do

P := EIDERSIBLING (P);

M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));

while (M— = null) and (= MALE (M)) do
M := ELDERSIBLING (M);

if P= pull then M else

if M = null then P else

if AGE (P) <AGE (M) then P else M

end

| procedure PLOTSUBROUTINE (integer value I); fortran "PLOTSB"
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. _
5.4. Record Class Declarations

5.4.1. Syntax

<record class declaration> ::= record <identifier> (<field 1list>)

- <field 1list> ::= <simple variable declaration> | <field list> ;
<simple variable declaration>

L 5.4.2. Semantics

A record class declaration serves to define the structural pro-

perties of records belonging to the class. The principal constituent

L of a record class declaration 1s a sequence of simple variable declar-

ations which define the fields and their simple types for the records

of this class and associate identifiers with the individual fields.

L A record class identifier can be used in a record designator (cf. 6.7.)

= to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) LEFT, RIGHT)

record PERSON (string NAME; integer AGE; logical MALE;

reference (PERSON) FATHER, MOTHER, YOUNGESTOFEFSPRING,

ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed

from existing ones. These new values are obtained by performing the

operations indicated by the operators on the values of the operands.

The operands are either constants, variables or function designators,

he or other expressions, enclosed by parentheses if necessary. The evalu-

ation of operands other than constants may involve smaller units of
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action such as the evaluation of other expressions or the execution of

statements. The value of an expression between parentheses is obtained

by evaluating that expression. If an operator has two operands, then

these operands may be evaluated in any order with the exception of the

logical operators discussed in 6.4.2.2. Several simple types of

expressions are distinguished. Their structure 1s defined by the following

rules, 1n which the symbol T has to be replaced consistently as described

in Section 1, and where the triplets To» 1 Ts have to be either all

three replaced by the same one of the words

logical

bit

string

reference

or by any combination of words as indicated by the following table,

which yields Ts given T1 and J, :

1,
I integer real complex

integer integer real complex

real real real complex

complex complex complex complex

Ty has the quality "long" if either both 71 and Ts have that

quality, or 1f one has that quality and the other is "integer".

Syntax:

<T expression> ::= <simple T expression> | <case clause>
(<T expression list>)

<7, expression> ::= <if clause> <7 expression> else

<I expression>
<J expression list> ::= <7JTexpression>

<To expression list> ::= <7, expression list> , <7, expression>
<if clause> ::= if <logical expression> then

<case clause> ::= case <integer expression>of
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The construction

<if clause> <7 expression> else <7, expression>

‘ causes the selection and evaluation of an expression on the basis of

the current value of the logical expression contained in the if clause.

If this value 1s true, the expression following the 1f clause 1s selected;

‘ 1f the value 1s false, the expression following else 1s selected. If

Ty and Ts are simple type string, the shorter expression will be padded

on the right with blanks to make it the length of the longer one. The

¢ construction

<case clause> (<7 expression list>)

causes the selection of the expression whose ordinal number in the

‘ expression list 1s equal to the current value of the integer expression

contained in the case clause. In order that the case expression be

defined, the current value of this expression must be the ordinal number

hg —_ of some expression in the expression list. If J 1s simple type string,

the string expressions will be padded on the right with blanks to make

all alternatives the length of the longest one.

&
Examples of expressions

X -1 A*B COLUMN rem 5 (X¥+Y)**¥3 long abs BALANCE

1f X=3 then Y+37 else Z¥2.l

“ case 1 of (3.14, 2.78, 448.9)
case DECODE(C) -128 of ("A", "RB", no, "D', "REY, np)

6.1. Variables

“ 6.1.1. syntax

<simple T variable> ::= <T variable identifier> | <7 field designator> |

<T array designator>

<T variable> ::= <simple T variable>

. <string variable> ::= <substring designator>

<T field designator> ::= <T field identifier> (<reference expression>)

<Tarray designator> ::= <Tarray identifier> (<subscript 1list>)

<subscript list> ::= <subscript> <subscript list>, <subscript>

<subscript> ::= <integer expression>
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6.1.2. Semantics

An array designator denotes the variable whose indices are the

current values of the expressions in-the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field in the record referred to

by its reference expression. The simple type of the field designator

1s defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

(cf. 54.). ~

6.1.3. Examples

X A(T) M(I+J, I-J)

FATHER (JACK) MOTHER (FATHER (JILL) )

6.2. Function Designators

6.2.1. Syntax

<7 function designator> ::= <7 function identifier> | <T function
identifier> (<actual parameter 1list>)

6.2.2. Semantics

A function designator defines a value which can be obtained by a

process performed in the following steps:

Step 1. A copy 1s made of the body of the function procedure

whose procedure identifier 1s given by the function designator

and of the actual parameters of the latter.

Steps 2, 3,4. As specified in 7.3.2.
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Step 5. The copy of the function procedure body, modified as indicated
Ng

in steps 2-4, is executed. Execution of the expression which constitutes

or 1s part of the modified procedure body consists of evaluation of that

expression, and the resulting value is the value of the function desig-
.

nator. The simple type of the function designator is the simple type

in the corresponding function procedure declaration.

a 6.2.3. Examples

MAX (x ** 2, Y ** 2)

SUM (I, 100, H(1))

SUM (I, M, SUM (J, N, A(I,J)))

C YOUNGESTUNCLE (JILL)

SUM (I, 10, X(1) * Y(1))

HORNER (X, 10, 2.7)

Co 6.3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol T

LC must be systematically replaced by one of the following words (or

word palrs):

} integer

C real

long real

complex

long complex

« The rules governing the replacement of the symbols Tor 7, and T, are
given in 6.3.2.

<simple J expression> ::= <Tterm> | + <JTterm> | - <T term>

|

C
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<simple To expression> ::= <simple 31 expression>+ <7, term>
<simple 74 expression> - <7, term>

<Tterm> ::= <7 factor>

<7, term> 11 = <7, term> * <7, factor>
<T term> ::= <7; term> / <7, factor>
<integer term> ::= tinteger term> div tinteger factor> |

<integer term> rem <integer factor>

<J, factor> ::= <J,primary> | <T, factor> ** Jinteger primary>
<J,primary> ::= abs <7, primary>
<JT, primary> ::= long <7, primary>
<J,primary> ::= short <7, primary>
<Tprimary> ::= <Tvariable> | <T function designator> |

(<7 expression>) | <7 number>

<integer primary> ::= <control identifier>

6.3.2. Semantics

An arithmetic expression 1s a rule for computing a number.

According to its simple type it 1s called an integer expression,

real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +, -, ¥, and / have the conventional meanings

of addition, subtraction, multiplication and division. In the relevant

syntactic rules of 6.3.1. the symbols To? A) and Ts have to be replaced

by any combination of words according to the following table which

indicates % for any combination of 75 and Toe (Also see page 134.)

6.3.2.2. The operator "-" standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type of

the result is the type of the operand. The operator "+" standing as the

first symbol of a simple expression denotes the monadic operation of

identity.
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6.3.2.3. The operator div is mathematically defined (for B # 0) as

C A div B = SGN (A x B) x D(absA, abs B) (cf. 6.3.2.6.)

A and B both must be integer expressions.

For the purpose of the definition above, SGN and D mean

- integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer valueA, B);

ifA < B then 0 else D(A-B, B)+1

6.3.2.4. The operator rem (remainder) is mathematically defined as

A rem B=A- (AdivB) xB

¢ A andB both must be integer eqressions.

6.3.2.5. The operator *¥ denotes exponentiation of the first operand

« to the power of the second operand. In the relevant syntactic rule of
= 6.3.1. the symbols To Ty and ip are to be replaced by same combination

of words from the table below. If the value of the exponent, N, is

« positive, then the first operand 1s multiplied by itself N times; 1f N
1s negative, the expression is evaluated as 1/ (first operand**(-N));

. if N is zero, the result is always 1. If the first operand 1s zero and

« the second operand is negative, then division by zero will result. Note
that -1**N is parsed as -(1¥*N); use (-1)**N instead. To force something

like I**J (where I > 0 and J > 0) to be an integer, use TRUNCATE(I**J).

- 6.3.2.6. The monadic operator abs yields the absolute value or modulus

of the operand. In the relevant syntactic rule of 6.3.1. the symbols To

and 71 have to be replaced by the same types.
.

6.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation 1s of simple type real, complex, long real, or long complex

a
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then 1t 1s the mathematically understood result of the operation

performed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1. the symbols Tor Tq and Ts
must be replaced by any of the combinations of words (or word pairs)

in the tables below.

Operators + | -

To
Ty integer real long real complex long complex

integer integer real long real complex long complex

real real real real complex complex

long real —-. long real real long real complex long complex

complex canplex canplex complex complex complex

long complex long complex complex long complex complex long complex

Operator *

To
I integer real complex

integer integer long real long complex

real long real long real long complex

complex long complex long complex long complex

71 or Tn having the quality "long" does not affect the type of the result.

- Operator /

To
Ty integer real long real complex long complex

integer long real real long real complex long complex

real real real real complex complex

long real long real real long real complex long complex

complex complex complex complex complex complex

long complex | long complex complex long complex complex long complex
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Table of values for div and rem operators

I J I div J I rem J

C 10 |2 5 0
11 2 5 1
10 -2 -5 0

11 -2 -5 1
-10 2 -5 0

-11 2 -5 -1

LC -10 ~2 5 0
-11 -2 5 -1

Operator ¥**

Ts
L Ty integer

integer long real

real long real

L long real long real
complex long complex

long complex long complex

Operator long

bh _
T T
0 I 1

long real integer

long real real

b long real long real

long complex complex

long complex long complex

b

Operator short

real integer

L real real

real long real

complex complex

complex long complex

L

6.3.3. Examples.

C + A(1) * B(1)

EXP (-x/(2 * SIGMA)) / SQRT (2 * SIGMA)
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6.4. Logical Expressions

6.4.1. Syntax

In the following rules for <relstion> the symbols Ts and Ty must

elther be 1dentically replaced by any one of the following words:

bit )

string

reference

or by any of the words from:

complex

long complex

real

long real )

integer

and the symbols 3, or Ts must be identically replaced by string or

must be replaced by any of real, long real. integer.

<simple logical expression> ::= <logical. element> <relatiord>

<logical element> ::= <logical term> | <logical element> or

<logical term>

<logical term> ::= <logical factor> | <logical term> and

<logical factor>

<logical factor> ::= <logical primary3 | = <logical primary>

<logical. primary> ::= <logical value> | <logical variable> |
<logical function designator3 |

(<logical expressior>)

<relatior> ::= <simple To expression> <equality operator>
| <simple Ty expressior> | <logical element>

<equality operator-2 <logical element> |

<simple reference expression> is

<record class identifier> |

<simple J, expression> <relational operator>

<simple Ts expression”
<relational operator>::=< |< =]|>=]>

<equality operator> :i:= = |=

6.4.2. Semantics

A logical expression is a rule for computing a logical value.

zr



C 6. EXPRESSIONS

6.4.2.1. The relational operators represent algebraic ordering for

—_ arithmetic arguments and EBCDIC ordering for string arguments. If two
CC

strings of unequal length are compared, the shorter string is first

extended to the right with blanks. The relational operators yield the

logical value true 1f the relation 1s satisfied for the values of the
|

two operands; false otherwise. Two references are equal if and only if

they are both null or both refer to the same record. The operator 1s

yields the logical value true 1f the reference expression designates a
6

record of the indicated record class; false otherwise. The reference

value null fails to designate d record of any record class.

¢ -.

6.4.2.2. The operators = (not), and, and or, operating on logical

values, are defined by the following equivalences:

C — X 1f X_ then false else true

ha X and Y 1f X then Y else false
X orY if X then true else Y

| 6.4.3. Examples
-

P or Q

(X < Y) and (Y < Z)

YOUNGESTOFFSPRING (JACK) = = null

GL FATHER (JILL) 1s PERSON

6.9. Bit Expressions

6.5.1. Syntax

‘ <simple bit expression> ::= <bit term> | <simple bit expression>
or <bit term>

<bit term> : := <bit factor> | <bit term> and <bit factor>

<bit factor> ::= <bit secondary> | - <bit secondary>

L <bit secondary> ::= <bit primary> | <bit secondary> shl
<integer primary> | <bit secondary> shr

<integer primary>

<bit primary>::= <bit sequence> | <bit variable>| <bit
function designator> (<bit expression>)
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6.5.2. Semantics

A bit expression is a rule for computing a bit sequence.

The operators and, or, and = produce. a result of type bits, every

bit being dependent on the corresponding bit (s) in the operand(s) as

follows:

X Y — X X and Y X or¥

0 0 1 0 0

0 1 1 0 1

1 0 0 0 1

1 1 0 1 1

The operators shl and shr denote the shifting operation to the

left and to the right respectively by the number of bit positions

indicated by the absolute value of the integer primary. vacated bit

positions to the right or left respectively are assigned the bit

value 0.

6.5.3. Examples

G and H or #38

] G and = (H or G) shr 3

6.6. String Expressions

+ 6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary>::= <string> | <string variable>| <string

function designator> | (<string expression>)

<substring designator> i= <simple string variable>

(<integer expression f <integer number>)

(The § stands for the vertical bar character | )
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¢

C _
6.6.2. Semantics

A string expression 1s a rule for. computing a string (sequence of

C characters).

6.6.2.1. A substring designator denotes a sequence of characters of

the string designated by the string variable. The integer expression

¢ preceding the § selects the starting character of the sequence. The

value of the expression indicates the position in the string variable.

The value must be greater than or equal to 0 and less than the declared

¢ length of the string variable. The first character of the string has

position 0. The integer number following the § indicates the length

of the selected sequence and 1s the length of the string expression.

¢ The sum of the integer. expression and the integer number must be less

than or equal to the declared length of the string variable.

C 6.6.3. Example
string (10) S;

s (413)

s (1+JW1)

¢ string (10) array T (l::m,2::n);
| T (4,6) (3% 5)

..'f. Reference Expressions

‘ 6.7.1. Syntax

—-<simple reference expression» ::= <null reference> | <reference

variable> | <reference function

¢ designator> | <reccrd designator> |

(<reference expression>)
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<record designator> ::= <record class identifier> | <record
class identifier> (<expression list>)

<expression list> ::= <J expression> | <expression list>,

<& expression>

6.7.2. Semantics

A reference expression is a rule for computinga reference to a

record.

The value of a record designator 1s the reference to a newly

created record belonging to the designated record class. If the

record designator contains an expression list, then the values of the

expressions are assigned to the fields of the new record. The entries

in the expression list are taken in the same order as the fields in

the record class declaration, and the simple types of the expressions must

be assignment compatible with the simple types of the record fields

(cf. 7.2.2.). .

6.7.3. Example .

PERSON ("CAROL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING

(JACK))

6.8. Precedence of Operators

The syntax of 6.3.1.,6.4.1., and 6.5.1. implies the following

hierarchyof operator precedences:

long, short, abs

shl, shr, **

BL

*, /, div, rem, and

+t, = Or

<, <=, =, m=, >=, >, is
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Example

A=BandC 1s equivalent to A = (B and C)

(.

T. STATEMENTS

C A statement denotes a unit of action. By the execution of a

statement 1s meant the performance of this unit of action, which may

consist of smaller units of action such as the evaluation of expressions

N or the execution of other statements.

Syntax:

<program> ::= <statement>. |

C _ <proper procedure declaration>. |
<7 function procedure declaration>.

<statement> ::= <simple statement> | <iterative statement> |

tif statement> | <case statement>

<simple statement> ::= <block> | <T assignment statement> |

<empty> | <procedure statement> |
<goto statement>

(NOte: the terminating period is optional.)
C

. 7.1. Blocks

C 7.1.1. syntax

&lock> ::= glock body> <statement> end

<block body> ::= <block head> | <block body> <statement>; |

% <block body> <label definition>
<block head> ::= leglrlock head> <declaration> ;
<label definition> ::= <identifier> :

7.1.2. Semantics

C
livery block introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:
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Step 1. If an identifier, say A, defined in the block head or

in a label definition of the block body 1s already defined at

the place from which the block 1s entered, then every occurrence

of that identifier, A, within the block except for occurrence in

array bound expressions 1s systematically replaced by another

identifier, say APRIME, which is defined neither within the

block nor at the place from which the block 1s entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

Step 5. Execution of the statements contained in the block body

: begins with the execution of the first statement following the

block head.

After execution of the last statement of the block body (unless

1t 1s a goto statement) a block exit occurs, and the statement follow-

ing the entire block 1s executed.

7.1.5. 'Example

begin real U;

U:=x%x; Xx :=Y; Y :=z; z =u

end

7.2. Assignment Statements

7.2.1. syntax

In the following rules the symbols Ts and 7 must be replaced by

words as indicated in Section 1, subject to the restriction that the

type 7, 1s assignment compatible with the type 7s as defined in 7.2.2,
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<J, assignment statement> ::= J, left part> <J, expression> |
J, left part> J, assignment
statement>

<J left part> ::= <J variable>:=

L 7.2.2. Semantics

The execution ofa simple assignment statement

J, assignment statement>::= <5 left part> J, expression>

C causes the assignment of the value of the expression to the variable.

If a shorter string 1s to be assigned to a longer one, the shorter

string 1s first extended to the right with blanks until the lengths are

C equal. In a multiple assignment statement

| (<7, assignment statement> ::= <J, left part> <J, assignment
statement>)

C the assignments are performed from right to left. For each left part
variable, the simple type of the expression or assignment variable immediately

to the right must be assignment compatible with the simple type of that

variable.

A simple type 7, 1s said to be assignment compatible with a simple

. type Tg if either

. (1) the two types are identical (except that if To and 7 are
string, the length of the To variable must be greater than

| or equal to the length of the 7 expression or assignment), or

(2) To 1s real or long real, and 7 1s integer, real or long

real or

(3) T, is complex or long complex, and J; is integer, real,

C long real, complex or long complex.
In the case of a reference, the reference to be assigned must refer

to a record of one of the classes specified by the record class identifiers

. assoclated with the reference variable in 1ts declaration.
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T.2.5. Examples

Z := AGE(JACK) := 28

X :=Y + abs 2

C :=I+X+C

P i= X=—=Y

T+.35. Procedure Statements

7.3.1. Syntax

<procedure statement> ::= <procedure 1dentifier> | <procedure
identifier> (actual parameter 1list>)

<actual parameter list> ::= <actual parameter> | <actual
parameter list> , <actual parameter>

<actual parameter> i= <J expression> | <statement> | < subarray

designator> | <procedure 1identifier> |
<J function identifier>

<I subarray designator> ::= <I array identifier> | <I array
identifier> (<subarray designator

list>)

<subarray designator 1list> ::= <subscript> | * | <subarray

designator list>,<subscript> |

<subarray designator list>,*

7.3.2. Semantics

The execution of a procedure statement 1s equivalent to a process

performed in the following steps:

Step 1. A copy 1s made of the body of the proper procedure whose

procedure identifier 1s given by the procedure statement, and of

the actual parameters of the latter. The procedure statement 1is

replaced by the copy'of the procedure body.

Step 2. If the procedure body 1s a block, then a systematic

change of identifiers in its copy 1s performed as specified by
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step 1 of 7.1.2.

.

Step 3. The copies of the actual parameters are treated in an

undefined order as follows: If the Copy 1S an expression

. different from a variable, then it 1s enclosed by a pair of
parentheses, or 1f 1t 1s a statement it 1s enclosed by the symbols

begin and end.

“ Step 4. In the copy of the procedure body every occurrence of an

identifier identifying a formal parameter 1s replaced by the copy

of the corresponding actual parameter (cf. 7.3.2.1.) In order

for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

‘ steps 2-4, 1s'executed.

7.3.2.1. Actual-formal correspondence. Ihe correspondence between

the actual parameters and the formal parameters 1s established as

¢ follows: The actual parameter list of the procedure statement (or
of the function designator) must have the same number of entries as

| the formal parameter list of the procedure declaration heading. The

y correspondence 1s obtained by taking the entries of these two lists
in the same order.

7.5.2.2, Formal specifications. If a formal parameter is specified by

value, then the simple type of the actual parameter must be assignment

compatible with the formal type. If it is specified as result, then the

formal type must be assignment compatible with the simple type of the

actual parameter. If 1t is specified by value result, both the above
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conditions must be satisfied. In all other cases, the types must be

identical. If an actual parameter is a statement, then the specification

of its corresponding formal parameter must be procedure.

7.3.2.3. OSubarray designators. A complete array may be passed to a

procedure by specifying the name of the array if the number of subscripts

of the actual parameter equals the number of subscripts of the

corresponding formal parameter. If the actual array parameter has

more subscripts than the corresponding formal parameter, enough subscripts

must be specified by integer expressions so that the number of *¥'s appearing

in the subarray designator equals the number of subscripts of the

corresponding formal parameter. The subscript positions of the formal

array designator are matched with the positions with *'s in the subarray

designator in the order they appear.

T5335. Examples

INCREMENT

COPY (A, B, M, N)

INNERPRODUCT (IP, N, A(I,*), B(*,J))

7 . @ot( Statments

7.4.1. Syntax

<goto statement> ::= goto <label identifier> | go to <label
identifier>

7.4.2. Semantics

An identifier 1s called a label identifier 1f 1t stands as a

label.
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A goto statement determines that execution of the text be continued

¢ after the label definition of the label identifier. The identification

of that label definition is accomplished in the following steps:

Step 1. If some label definition within the most recently activated
«

but not yet terminated block contains the label identifier, then

this 1s the designated label definition. Otherwise,

C Step 2. The execution of that block 1s considered as terminated

and Step 1 is taken as specified above.

7.5. If Statements

oC —-.

7.5.1. syntax

<if statement> ::= <i1f clause> <statement> | <if clause>

<simple statement> else <statement>

« <if clause> ::= if<logical expression>then

7.5.2. Semantics

The execution of 1f statements causes certain statements to be

¢ executed or skipped depending on the values of specified logical

expressions. An 1f statement of the form

<if clause> <statement> |
‘

1s executed in the following steps:

Step 1. The logical expression in the 1f clause 1s evaluated.

“ Step 2. If the result of Step 1 1s true, then the statement

following the if clause 1s executed. Otherwise step 2 causes

no action to be taken at all.

CC

«
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An 1f statement of the form

df clause> <simple statement> else <statement>

1s executed in the following steps:

Step 1. The logical expressionin the if clause 1s evaluated.

Step 2. If the result of step 1 1s true, then the simple statement

following the 1f clause 1s executed. Otherwise the statement

following else 1s executed.

7.5.35. Examples

if X = Y then goto L

if X <Y thenU := X else 1f Y < Zthen U :=Y else V := 7

7.5a Assert Statements

7.5a.1 Syntax

<assert statement> ::= assert <logical expression>

T.5a.2 Semantics

The assert statement 1s equivalent to the if statement:

y if —(<logical expression>) then endexecution

where "endexecution" signifies a procedure which terminates the execution

-of an ALGOL W program. The assert statement can be used both as a

debugging aid (asserting conditions which should be true, but may not

be if a big exists), and as a program documentation aid.
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C 7.6. Case Statements

7.6.1. Syntax

<case statement> ::= <case clause> begin <statement list> end
w <statement 1list> ::= <statement> | <statement 1list> ; <statement>

<case clause> ::= case <integer- expression> of

i 7.6.2. Semantics

-
The execution of a case statement proceeds in the following steps:

Step 1. The expression of the case clause is evaluated.

« Step 2... The statement whose ordinal number in the statement list

1s equal to the value obtained in Step 1 is executed. In order

that the case statement be defined, the current value of the

C expression 1n the case clause must be the ordinal number of some

statement of the statement list.

7.6.3. Examples

C case I of

begin X := x + Y;

Y :=Y + z;

ZL = 7 + X

¢ end

case J of

begin H(1) := -H(I);

| begin H(I-1) := H(I-1) + H(1); I := I-1 end;

‘ begin H(I-1) := H(I-1) *H(I); I := I-1 end;
begin H(H(I-1)) := H(1); I := I-2 end

end
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(.[. Iterative Statements

7.7.1. syntax

<iterative statement> ::= <for clause> <statement> | <while

clause> <statement>

<for clause> ::= for <ildentifier> := <initial wvalue>

step <increment> until <limit>do | for
<identifier> := tinitial value> until <limit>

do | for <identifier> := <for list> do
<for list> ::= <integer expression> | <for list> , <integer

expression>

<initial value> ::= <integer expression>

<increment> ::= <integer expression>

<limit> ::= <integer expression>

<while clause> ::= while <logical expression> do

7.7.2. Semantics

The iterative statement serves to express that a statement be

Example FOR statement Values I takes on

for I:=1 step 2 until 10 do 1, 2, 5,7, 9

for T:=1 step 2 until1 da 1

for I:=1 step 2 until -10 do none

for I:=1 step -2 until 10 do none

for I:=1 step -2 until 1 do 1

for I:=1 step -2 until -10 do 1, -1, =3, -5, -T7, -9

for I:=1 step 0 until 10 do 1, 1, 1, 1, 1, 1, ...

for I:=1 step 0 until 1 do :, 1, 1,1, 1, 1, ...

for I:=1 step 0 until -10 do none

Table of results for various FOR statements.
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executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause

or the while clause always acts as a block, whether it has t form of

C a Jolock or not. The value of the control identifier (the id fier

folgowing for) cannot be changed by assignment within the cottrolled
statement.

C (a) An 1lterative statement of the form

for <identifier> := El step E2 until BE? do <statement>

1s exactly equivalent to the block

C ~.

begin <statement-0>; <statement-1> . . . ; <statement-I>;

. . .} <statement-N> end

C in the Ih statement every occurrence of the control identifier
- is replaced by the value of the expression (El + I x E2).

The index N of the last statement 1s determined by

. N < (E3-El1) / E2 < M1. If N< 0, then it is understood that
the sequence 1s empty. The expressions El, E2, andE3 are

) evaluated exactly once, namely before execution of <statement-0>.

. | Therefore they can not depend on the control identifier.
j (b) An iterative statement of the form

for <identifier> := El until E3 do <statement>

L is exactly equivalent to the iterative statement

for <identifier> := El step 1 until EJ do <statement>

(c) An iterative statement of the form |

b for <identifier> := El, E2, . . . , EN do <statement>
1s exactly equivalent to the block

>
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begin <statement-D; <statement-2> . . . <statement-I> ; . . .

<statement-N> end

when in the pth statement every occurrence of the control identifier

1s replaced by the value of the expression EI.

(d) An iterative statement of the form

while E do <statement>

1s exactly equivalent to

L: if E then

begin <statement> ; gotoL end

end

where 1t 1s understood that L represents an identifier which 1s not

defined at the place from which the while statement 1s entered.

7.7.5. Examples

for V := 1 step 1 until N-1do § := 5 + A(U,V)

while (J > 0)_and (CITY (J) — = 8) doJ:=[I

for I := x, x + 1, x + 3, x + 7 do P(I)

7.8. Standard Procedures

Standard procedures are provided in ALGOL W for the purpose of

communication with the input/output system. These standard procedures

differ from explicitly declared procedures 1n that the number and type

of actual parameters need not be identical 1n every procedure statement

in which the standard procedure identifier appears. In the following

descriptions, each Ts 1s to be replaced by any one of
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- integer string (<integer number>)
real logical

long real bits

complex

| longnp 1 ex

7.8.1. The Input/Output System

C AIGOL W provides a single legible input stream and a single legible
output stream. These streams are conceived as sequences of records, each

record consisting of a character sequence of fixed length. The input

« stream has the logical properties of a sequence of cards in a card reader;
records consist of 80 characters. The output stream has the logical

properties of a sequence of lines on a line printer; records consist

C of 132 characters, and the records are grouped into logical pages.

= Fach page consists of not less than one nor more than 60 lines.

Input records may be transmitted as strings without analysis.

« Alternatively, it is possible to invoke a procedure which will scan the

sequence of records for data items to be interpreted as numbers, bit

- sequences, strings, or logical values. If such analysis is specified,

« data 1tems may be reference denotations of the corresponding constants

(cf. Section 4). In addition, the following forms of arithmetic expressions

are acceptable data items, and the corresponding simple types are those

% determined by the rules for expressions (cf. 6.3.):

(1) <sign> <I number>

where : J is one of integer, real, long real, complex, long

S complex;
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(2) <T, number> <sign> <, number>

<sign> Jy number> <sign> J; number>

where To 1s one of integer, real, long real, and

Ty is one of complex, long complex.

Data 1tems are separated by one or more blanks. Scanning for data items

| initially begins with the first character of the input stream; after

| the initial scan, 1t normally begins with the character following the

one which terminated the most recent previous scan. Leading blanks are

ignored. The scan 1s terminated by the first blank following the data

item. In the process, new records are fetched as necessary; character

position 80 of one record is considered to be immediately followed by

character position 1 of the next record. There exist procedures to

cause the scanning process to begin with the first character of a record;

1f scanning would not otherwise start there, a new record is fetched.

Output items are assembled into records by an editing procedure.

Items are automatically converted to character sequences and placed

in fields according to the simple type of each item, as described below:

. Simple Type Field Description

integer right justified in a field containing

the number of characters specified by

the current value of INTFIELDSIZE

(initialized to 14, cf. 8.5.) and followed

by 2 blanks

real right justified in a field of lb characters

and followed by 2 blanks
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“ long real right justified in a field of 22 characters
and followed by 2 blanks

complex two adjacent real fields

long complex two adjacent long real fields

- logical right justified in a field of 6 characters
followed by 2 blanks

string placed in a field exactly the length of

the string

L bits same as real

The first field transmitted begins the output stream; thereafter, each

C field is normally placed immediately following the most recent previously

transmitted field. If, however, the field corresponding to an item

cannot be placed entirely within a non-empty record, that item 1s made the

C first field of the next record. 1p addition, there exist procedures to

cause the field corresponding to an item to begin a new record. Fach

page group 1s automatically terminated after 60 records; procedures

C are provided for causing earlier termination.

7.8.2. Read Statements

Implicit declaration headings:

& .

procedure READ(TJ, result X , ..  . T result X ):= — — 1] ———— 1 ! n n’?

procedure READON (7, result x; Co. 7 result XJ,E— — n

(where n > = 1)

Both READ and READON designate free field input procedures. Input

records are scanned as described in 7.8.1. Values on input records are

read, matched with the variables of the actual parameter list in order
-

of appearance, and assigned to the corresponding variables. The simple
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type of each data item must be assignment compatible with the simple

type of the corresponding variable. For each READ statement, scanning

for the first data item 1s caused to begin with the first character of

a record; for a READON statement, scanning continues from the previous

point of termination as determined by prior use of READ, READON, or

IOCONTROL (cf. 7.8.1.).

Implicit declaration heading:

procedure READCARD (string(80) resultX;, . . . . X );
(where n > = 1)

READCARD designates a procedure transmitting 80 character input

records without analysis. For each variable of the actual parameter list,

the scanning process 1s set to begin at the first character of a record

(oy fetching a new record if necessary), all 80 characters of that record

are assigned to the corresponding string variable, and subsequent input

scanning 1s set to begin at the first character of the next sequential

record.

7.8.3. Write Statements

- Implicit declaration headings:

procedure WRITE (7, value X;5 . . . ; Jvalue x);

procedure WRITEON (7, valueX;; . . . ; J value X );
(where n > = 1)

WRITE and WRITEON designate output procedures with automatic format

conversion. Values of expressions of the actual parameter list are converted

to character fields which are assembled into output records in order of

appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding

to the first value is caused to begin an output record; for a WRITEON

statement, assembly continues from the previous point of termination.
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7.8.4. Control Statements.

Implicit declaration heading:

procedure IOCONTROL (integer value XpseoesX );3
.

(where n > = 1)

IOCONTROL designates a procedure which affects the state of the

input/output system. Argument values with defined effect are listed

- below; other values currently have no effect but are explicitly made

avallable for local use or future expansion.

| Value Action (cf. 7.8.1.)
L 1 Subsequent input scanning 1s set to begin with the first

character of a record. Does nothing 1f already

positioned at the first character of a record.

2 Subsequent output assembly 1s set to begin with the

“ h first character of a record. Does nothing 1f already
positioned at the first character of a record.

3 Like IOCONTROL(2), except that the new record is also

| caused to begin a new output page. Does nothing 1f already

iN positioned at the first character at the top of a page.
4 Subsequent automatic page ejects on the printed output

are suppressed, thus allowing more than 60 records on

a page. This suppresses only the automatic page eject

‘ after 60 records; IOCONTROL(3) still works. (Note that
some operating systems also have a feature to force

page ejects after 60 records.

. 5 Subsequent automatic page ejects on the printed output
are allowed; undoes IOCONTROL(L4). While the automatic

page eject is suppressed, page and line counts are still

maintained based on 60 records per page, so a program may

C still be cut off for exceeding the page estimate. Also,
after an IOCONTROL(5), the first automatic page eject may

occur after 1 to60 more records, unless the counters are

re-synchronized at that point via IOCONTROL(3).

. 72 Subsequent use of READ and READON are to use only the first
72 characters of a record; the last eight are ignored.

READCARD still reads all 80 characters.

30 Subsequent use of READand READON are to use all 80

characters of a record.

Y/ At Stanford, a [* PRINT EJECT=NO card must be included next to they , p=
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7.8.5. Examples

READ ( X, A(1) )

READCARD ( S, LINE(10|80))

WRITE ( "AVERAGE =", SUM/N )

WRITEON ( X(1,J))

IOCONTROL (2)

7.8.6. TRACE standard procedure

The number of times each source statement 1s traced by the

debugging facilities (see $DEBUG in the Deck Setup section) can be

modified by the standard procedure TRACE.

Implicit declaration heading:

procedure TRACE (integer value N);

comment changes the upper bound for statement tracing:

if N > 0 then N becomes the bound,

if N = 0 then tracing 1s suspended,

if N < 0 then the $DEBUG card value (m) becomes the bound;

TRACE has no effect unless the $DEBUG option digit n is 3 or 4.

: X TRUNCATE (X) ENTIER(X) ROUND (X)

2.3 2 2 2

2.5 2 2 3

2.7 2 2 3

-2.3 2 -3 =2

-2.5 -2 -3 -3

2.7 —2 -3 -3

Table of values for TRUNCATE, ENTIER, and ROUND
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8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

-_ The ALGOL W environment includes declarations and initialization of

|

certain procedures and variables which supplement the language facilities

previously described. Such declarations and initialization are considered

to be included in a block which encloses each ALGOL W program (with

terminating period eliminated). The corresponding identifiers are said

to be predeclared.

. 8.1.. Standard Transfer F'unctions
Certain functions for conversion of values from one simple type

to another are provided. These functions are predeclared; the

corresponding implicit declaration headings are listed below:

integer procedure TRUNCATE (real value. X);

comment the integer 1 such that

rif< = |x| < li] + land i*x > = 0

‘¢ integer procedure ENTIER (real value X);

comment the integer 1 such that

i1<=X<1+ 13

integer procedure ROUND (real value X);

L comment the value of the integer expression

if X < O then TRUNCATE(X-0.5) else TRUNCATE(X+0.5) ;

integer procedure EXPONENT (real value X);

comment0 if X = 0, otherwise the largest integer i such that

“ <=

This function obtains the exponent used in the S/360

representation of the real number;

real procedure ROUNDTOREAL (long real value X);

2 comment the properly rounded value of X ;

real procedure REALPART (complex value 2);

comment the real component of Z ;

long real procedure LONGRFALPART (long complex value Zz);

« real procedure IMAGPART (complex value Z);

: comment the imaginary component of 7 ;

long real procedure LONGIMAGPART (long complex value Z);

|
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complex procedure IMAG (real value X);

comment the complex number 0 + Xi ;

long complex procedure LONGIMAG (long real value X);

logical procedure ODD (integer value N);

comment the logical value

N rem 2 = 1 ; oo

bits procedure BITSTRING (integer value N);

comment two's complement representation of N ;

integer procedure NUMBER (bits value X);

comment integer with two's complement representation X ;

integer procedure DECODE (string(l) value 8S);

comment numeric code for the character S (cf. Appendix 1) ;

string(1l) procedure CODE (integer value N);

comment character with numeric code (cf. Appendix 1) given by

abs (N rem 256);

In the following comments, the significance of characters in the prototype

formats 1s as follows:

D decimal digit in a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit 1n an exponent

+ sign (blank for positive mantissa or integer)

u blank

. Each exponent 1s unbiased. Decimal exponents represent powers of 10;

hexadecimal exponents represent powers of 16.Each mantissa (except 0)

represents a normalized fraction less than one. Leading zeroes are not

suppressed.
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string(12) procedure BASE10 (real value X);
C

comment string encoding of X with format

HEE+DDDDDDD ;

string (12) procedure BASEl6 (real value X);

comment string encoding of X with format

LC |
wu PBBTAAAAAA

string (20) procedure ILONGBASELO (long real value X);

comment string encoding of X with format

C i+EE+DDDDDDDDDDDDDDD  ;
string (20) procedure ILONGBASEl6 (long real value X);

comment string encoding of X with format

LoTBB+HAAAAAAAAAAAAAA ;

string (12) procedure INTBASE1O (integer value N);
i - -—. -

comment string encoding of N with format

,;-DDDDDDDDDD

string (12) procedure INTBASEl16 (integer value N);

C comment unsigned, two's complement string encoding of N with format
way DAAAAAAA 5

8.2. Standard Functions of Analysis

C The following functions of analysis are provided 1n the system

environment. In some cases, they are partial functions; action for

arguments outside of the allowed domain is described in 8.5. These

« functions are predeclared; the corresponding implicit declaration headings |

are listed below: |

real procedure SQRT (real value X);

L comment the positive square root of X,

domain : X > = 0 ;

long real procedure IONGSQRT (long real value X);

comment the positive square root of X,

C domain: X > = 0 ;
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real procedure EXP (real value X);

comment e ** X .

domain : X < 174.67 ;

low real procedure LONGEXP (long real value X);

comment e ¥¥ X ,

domain : X < 17k.67 ;

real procedure IN (real value X);

comment logarithm of X to the base eg,

domain : X > 0 ;

long real procedure IONGIN {long real value X);
comment logarithm of X to the base e,

domain : X > 0 ;

real procedure LOG (real value X);

comment logarithm of X to the base 10,

domain : X>O ;

long realProcedure ILONGLOG (long real value X);

comment logarithm of X to the base 10,

domain : X>O0 ;

real procedure SIN (real value X);

comment sine of X (radians),

domain : -823550 < x < 823550 ;

long real Procedure LONGSIN (long real value X);

comment sine of X (radians),

domain : -3.537'+15 < X <3.537'+15 ;

real procedure COS (real value X);

comment cosine of X (radians)

domain : -823550 < x < 823550 ;

long real procedure IONGCOS (long real value X);

comment cosine of X (radians),

domain : =3.537'+15< x < 3.537'+15 ;
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real procedure ARCTAN (real value X);

comment arc-tangent (radians) of X,

o range : -m/2 < ARCTAN(X) < m/2 ;
long real procedure LONGARCTAN (long real value X);

comment arctangent (radians) of X,

range : -m/2 < LONGARCTAN(X)} <n/2 ;

«

8.3. Fimewnction

The AIGOL W environment includes a clock which measures elapsed

C time since the beginning of program execution. The resolution of that
clock is 1/60 second. A predeclared function is provided for reading

the clock.

C integer procedure TIME (integer value N);
comment=' Argument Result Units

- time of day
-1 seconds/60

- elapsed execution time -
0 minutes/100

LS 1 seconds/60
2 seconds/38L00

The result for any other argument 1s not defined;

“ 8.4. Predeclared Variables

The following variables are to be considered declared and initialized

. by assignment in the conceptual block enclosing the entire ALGOL W program.

'g The values indicated for real and long real quantities are to be understood

as decimal approximations to the actual machine-format values provided.

integer INTFIELDSIZE;

' comment initialized to 1k ,
controls output field size for integers (cf. 7.8.1);

integer MAXINTEGER;

comment initialized to 2147483647 ,

“ the maximum positive integer allowed by the implementation;

“
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real EPSILON;

comment initialized to 9.536743'-07 ,

the largest positive real number € provided by the

implementation such that

l1+¢=1 5

long real LONGEPSILON;

comment initialized to 2.2204460L925031!'~16L ,

the largest positive long real number € provided by

the implementation such that

l+e€=1;

long real MAXREAL;

comment initialized to 7.23700557733226'+75L ,

the largest positive long real number provided by the

implementation;

long real PI;

comment initialized to 3.14159265358979L ;

8.5. Exceptional Conditions

The facilities described below are provided in ALGOL W to allow

detection and control of certain exceptional conditions arising 1n

the evaluation of arithmetic expressions and standard functions.

) Implicit declarations:

record EXCEPTION (logical XCPNOTED; integer XCPLIMIT, XCPACTION;

logical XCPMARK; string(o4) XCPMSG);

reference (EXCEPTION)

OVFL, UNFL, DIVZERO,

INTOVFL, INTDIVZERO,

SQRTERR, EXPERR, INLOGERR, SINCOSERR ;
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_ Associated with each exceptional condition which can be processed

“

1s a predeclared reference variable to which references to records of

the class EXCEPTION can be assigned. Fields of such records control the

processing of exceptions. The association between conditions and

|.

reference variables 1s as follows:

Reference Variable Conditions

| OVFL real, long real, complex, long

L complex (exponent) overflow
UNF L real, long real, complex, long

complex (exponent) underflow

DIVZERO real, long real, complex, long

‘ h complex division by zero
INTOVFL integer overflow

INTDIVZERO integer division by zero

SOQRTERR negative argument for SQRT, LONGSQRT
&
~ EXPERR argument of EXP, LONGEXP out of

domain (cf. 8.2.)

LNLOGERR argument of LN, LOG, LONGIN,

LONGLOG out of domain (cf. 8.2.)
&

SINCOSERR argument of SIN, COS, LONGSIN,

LONGCOS out of domain (cf. 8.2.)

" When one of the conditions listed above 1s detected, the corresponding
reference variable is interrogated, and one of the alternatives described

below is chosen.

C If' the valueof the reference variable interrogated is null, the
condition1s ignored and execution of the AIGOLW program continues.

| In such situations, a value of 0 1s returned as the value of a standard

«
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function. For other conditions the result 1s that provided by the

2 CL

underlying IBM System/360 hardware? . In determining such a result, it

1s to be noted that in those cases iii which the detection of exceptional

conditions can be inhibited at the hardware level, namely integer overflow

and exponent underflow, detection 1s so inhibited when the corresponding

reference 1s NULL.

If the value of the reference variable interrogated 1s not NULL,

the fields of the record designated by that reference are interrogated,

and processing action 1s that described by the algorithm given below in

the form of an'extended ALGOL W procedure. Identifiers in lower case

represent quantities which transcend the ALGOL W language; they are

explained subsequently.

procedure PROCESSEXCEPTION (reference(EXCEPTION) value CONDITION) ;

beain

XCPNOTED (CONDITION) := true;

XCPLIMIT (CONDITION) := XCPLIMIT (CONDITION) - 1;

if (XCPLIMIT(CONDITION) < 0) or XCPMARK(CONDITION) then
WRITE ("***%% ERROR NEAR COORDINATE nnnn -");

. if XCPLIMIT(CONDITION) < 0 then endexecution else

1f 1integercondition then

resultant := default else

resultant := if XCPACTION (CONDITION) = 1 then adjustment else

if XCPACTION (CONDITION) = 2 then OL else
default

end PROCESSEXCEPTION

This procedure 1s 1nvoked with the value of the reference variable

appropriate to the condition as actual parameter. The significance of

the special identifiers used 1s as follows:

2/ 1py System/360 Principles of Operation, IBM Systems Library, Form A22-6821
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nnnn approximate coordinate of the source code

. which was being executed when the exceptional
condition was detected

endexecution procedure to terminate execution of the ALGOL W

program i

L integercondition logical value which is true if, and only if,

the condition being processed is integer overflow

or 1nteger division by zero

default result of the operation or function provided

. by the AIGOL W system prior to invocation of

the exception processing procedure; this 1is

defined by the hardware?! for arithmetic
operations and 1s the value 0 for standard

L ~. functions

resultant value to be returned as the result of the

arithmetic evaluation or standard function

invocation

u adjustment adjusted result of the operation according to

the following table

Condition Adjustment

“ exponent overflow, 1f default < 0 then

division by zero -MAXREAL else MAXREAL

exponent underflow OL

C

argument X out of domain for :

SORT, LONGSQRT SQRT (abs X), LONGSQRT (abs X)

EXP, LONGEXP MAXREAL

« LN, IONGIN -MAXREATL

LOG, LONGLOG -MAXREAL

SIN, LONGSIN OL

COS, LONGCOS OL

w -

2/ IBM Sys! em/300 Principles of Operation, IBM Systems Library, Form A22-6321
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The reference variable UNFL is initialized by the system to NULL.

All other reference variables listed above are initialized to references

to a special record which 1s accessible only by the system. Interrogation

of this record by the procedure described above has the effect of causing

the ALGOL W program to be terminated with a message indicating the type

of exception. Any other attempt to access any field of this record will

result 1n a reference error.

condition XCPACTIONAL or 2 XCPACTION=1 XCPACTION=2 Reference=NULL

OVFL "exponent 128 + MAXREAL 0 exponent 128
too small too small

UNFL exponent 128 0 0 0
too large

DIVZERO dividend + MAXREAT, 0 dividend

INTOVFL true result true result true result true result

+ 2%¥32 + 2%%32 + 2%%*32 + 2%%352

INTDIVZERO dividend dividend dividend dividend

SQRTERR 0 sqrt(abs x) 0 0

EXPERR 0 MAXREAL 0 O

LNIOGERR 0 -MAXREAL 0 0

SINCOSERR 0 0 0 0

Table of Results for Exceptional Conditions
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C 8. STANDARD FUNCTIONS

Example:
C

It 1s desired to allow up to ten overflows, but to each time replace

the result with MAXREAL and to print a warning message.

The values needed for this are:

C

XCPNOTED FALSE this will be changed to TRUE 1f an overflow occurs.

XCPLIMIT 10 allow up to ten overflows before being cut off.

C XCPACTION 1 replace the result with+ MAXREAL.

XCPMARK TRUE print a message each time an overflow occurs.

XCPMSG "ou" message to be printed.

The following assignment statement will establish the proper

environment:

OVFL := EXCEPTION (FALSE, 10, 1, TRUE, "OVERFLOW FIXED UP");
.

|.

.

«

«
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CHARACTER CODES

APPENDIX 1 - CHARACTER ENCODINGS

The following table presents the correspondence between printable

string characters and their (EBCDIC) integer encodings. This encoding

establishes the ordering relation on characters and thus on strings.

Those characters in parentheses are not available on the line printer.

Integer codes not listed below do not correspond to any established

| character. (Also see CODE, DECODE on page 159.)
64 space 129 (a) 195 A 240 0

74 (£) 130  (b) 194 B 241 1

75 131 (c) 195 ¢C 242 2

76 < ~ 132 (d) 196 D 243 3

77 ( 133 (e) 197 E 244 4

78 + 13h (fF) 198 F 245 5

79 | 135  (g) 199 6 246 6
80 & 136 (h) 200 H 247 |

90 (!) 137 (i) 201 I 248 8

91  $ 145 (J) 209 J 249 9

92 * 146 (k) 210  K

93 ) 147 (1) 211 L

9k ; 148 (m) 212 M

: 95 149 (n) 213 WN

96 150 (o) 214 0

97 / 151 (p) 215 P

107 , 152 (a) 216 Q

108% 153  (r) 217 R

109 162 (s) 226 S
110 > 163 (t) 227 T

111. ? 164 (u) 228 U

122 165  (v) 229 V

ELI 166 (Ww) 230 TW

124 @ 167 (x) 231.  X

125 ! 168 (vy) 232 ¥

126 = 169 (z) 233 Z

127 n

TL
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© ERROR MESSAGES

C ALGOL W ERROR MESSAGES

The compiler is divided into three passes: pass 1 reads the program,

lists 1t, and saves 1t 1n memory-in a compressed (tokenized) form;

- pass 2 parses the program, examining each statement to see if it 1s written

properly; pass 3 generates the 360 machine code for the program. Each

pass 1s capable of detecting a different set of errors. (There 1s also

- a fourth, loader, pass that on rare occasions may generate messages.)

Errors may also occur while a compiled program 1s executing; these are

called Run-Time errors.

. -

Pass One Error Messages

All pass 1 error messages are of the form:

. ERROR 1xxx NEAR COORDINATE Yyy¥y¥ - message

yyyy corresponds to one of the coordinate numbers in the first column on

the program listing. If you have many statements on a card, only the

C coordinate of the first one is on the program listing. Some messages are

only warnings, in which case the fixup action taken is indicated below.

The messages are:

- 1001 INCORRECTLY FORMED DECLARATION

a) STRING (x) or BITS (x), where x 1s not a number.

b) STRING(O) or STRING(> 256). FIXUP: treated as STRING(1).

c) BITS (not 32).

C

1002 WARNING: INCORRECT CONSTANT

a) More than 256 digits. FIXUP: treated as 0.

b) A bad exponent. FIXUP: exponent treated as 0.

¢ 1003 MISSING "END"

Final " ." or /* card or $ card encountered before an END matching

each BEGIN. The coordinate indicated may be two or three more than

the last coordinate on your listing. (Check the block numbers in

‘ the second column of your program listing.)
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1004 UNMATCHED "END" (DELETED)

An END encountered after what appeared to be the final END. When

possible, the innermost END 1s deleted. (Check the block numbers

in the second column of your program listing.)

1005 WARNING: MISSING ")"

STRING(x or BITS(x with no closing ")". FIXUP: supplied.

1006 WARNING: ILLEGAL CHARACTER

A strange character accidently keypunched (or overpunched). It 1s

likely that the character will print as a blank, so look at your card.

The characters on a standard keypunch that are illegal except in

comments and strings are: ¢ & ! $ 4 2 ® . FIXUP: treated
as a blank.

1007 WARNING: MISSING FINAL "."

May occur 1f the program ends with an un-terminated string constant

or an un-terminated comment.

1008 WARNING: INVALID STRING LENGTH

a) A string constant of length > 256. FIXJP: truncated to 256

characters. (You may have left out a quote.)

b) An empty string constant (""). FIXUP: replaced with "2".

1009 WARNING: INVALID BITS LENGTH

a) "#" not followed by hex digits. FIXUP: replaced with #0.

b) "#4" followed by more than 8 hex digits. FIXUP: replaced

with #0.

1010 MISSING " ("

REFERENCE not followed by "(".

1011 ERRORTABLE OVERFLOW

More than 50 error messages from pass 1. The rest are lost.

1012 COMPILER TABLE OVERFLOW

The program 1s too big to fit in memory during compilation. The

following is a list of tables which could be full at this point.

If you re-compile with more memory, the starred tables will be

bigger.
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* BCD POINTERS -- if all of your names are short (3, 4 letters)
Ne

this table may fill up before the id table.

BLOCK LIST -- 511 entries, one for each BEGIN, PROCEDURE (except

for formal parameter specification), and FOR.

~ BLOCKSTACK —-- this has a fixed size of thirty entries. It will

overflow if you have 31 BEGINS nested within each other. (The

| block numbers 1n the second column of your program listing show

how full this stack is.)

.

* ID TABLE -- place for the characters in your identifiers.

*¥ NAME TABLE —- table of attributes of all declared identifiers.

*¥ PROGRAM TOKEN SPACE -- the internal text for the program. This

“ 1s the most likely table to be full.

¥ REFERENCE LIST -- information about each variable declared of

type REFERENCE.

“ 1013 WARNING: ID LENGTH > 256

One of the names in your program 1s much too long. FIXUP: truncated

to 256 characters.

1014 WARNING: UNEXPECTED "."

An apparently final "." not followed by % card or /¥ card, such as

in a constant with an inadvertant space: . 123 . FIXUP: treated

as a blank.

1015 TOO MANY RECORD CLASSES

Only 15 are allowed.

1016 WARNING: SEQ FIELD OUT OF ORDER

a) The numeric part of columns 73-80 was not greater than the

numeric part of the previous card.

b) The alphabetic part of columns 73-80 was not the same as the

alphabetic part on the previous card.

In either case, the offending card(s) is marked with #H## on the

= listing. This message appears only once in any single compilation.

The coordinate specified 1s the coordinate on the first erroneous

card.
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1017 WARNING: SEQ FIELD CONTAINS TRASH

a) The first card of the deck did not contain a sequence number,

but columns 73-80 on this card are not all blank. (A statement

may have accidently run past column 72).

b) The first card of the deck has a non-blank sequence field

(columns 73-80), but there are no digits in it.

In either case, the offending card(s) 1s marked with ¥*¥*¥¥ on the

listing. Like 1016, this message appears at most once, and the

coordinate refers to the first instance.

1018 WARNING: ";" DELETED BEFORE "ELSE"

This 1s a common mistake that the compiler fixes up.

Pass Two Error Messages

AU pass 2 error messages have the format:

ERROR 2xxx NEAR COORDINATE Yyyy - message

(FOUND NEAR "...")

yyyy corresponds to one of the coordinate numbers in the first column

on the program listing. If you have many statements on a card, only the

I

coordinate of the first one is on the program listing. "..." is the

) program text being scanned at the time the error 1s detected (which may

be somewhat after the actual point of error). If any pass one or pass

| two error messages occur (other than warnings), then compilation stops

at the end of pass two. Often many error messages are generated for

what 1s essentially a single mistake.
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2001MORE THAN ONE DECLARATION OF "XXX" IN THIS BLOCK

The variable XXXX has been declared more than once in the same block.

2002 "XXXX" IS UNDEFINED

The variable or label XXXX has not been declared in the current block

or in one containing it. |

‘ 2003 SYNTAX ERROR

This 1s a "catch-all" message that 1s produced when the compiler cannot

find anything more meaningful to say. The current context will point

to the part of the program being analyzed when the error was DETECTED,

‘ but 1n general the real error may be much earlier in the program. If

the current context 1s at or near a semi-colon and you cannot find

any errors there, try looking at the beginning of the statement which

ends at that semi-colon. If the current context 1s at or near an

“ END, try-looking at the corresponding BEGIN. For example, 1f

ELSE BEGIN . . . END; occurs, but not after an IF, the compiler will

not detect the error until it reaches END; .

« 2004 IDENTIFIER MUST BE RECORD CLASS ID
In a declaration REFERENCE(xyz) , xyz is not the name of a record

class.

2005 MISMATCHED PARAMETER

' A procedure call 1s passing an actual parameter which 1s not of the

same type as the formal parameter in the procedure declaration.

) 2006 INCORRECT NUMBER OF ACTUAL PARAMETERS

The number of actual parameters 1n a procedure call does not equal

¢ the number of formal parameters in the procedure declaration.

~ 2007 INCORRECT DIMENSION

a) The number of dimensions of an actual parameter does not equal the

« number of dimensions declared for the corresponding formal parameter.
b) The wrong number of subscripts have been used 1n an array element

reference.

2008 paTA AREa EXCEEDED

g The data for each PROCEDURE or BEGIN block with declarations 1s limited

to 4096 bytes. Read the suggestions for 3001.
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2009 INCORRECT NUMBER OF FIELDS

In creating a record, too many or too few initial values have been

specified.

2010 INCOMPATIBLE STRING LENGTHS

a) In STRING1 := STRINGZ , STRINGZ2 1s longer than STRINGI.

b) In STRING3 (x |y) , y 1s larger than the declared size of STRINGS.
c) A long string has been passed to a shorter formal string parameter.

2011 INCOMPATIBLE REFERENCES

A reference variable refers to a wrong record class.

2012 BLOCKS NESTED TOO DEEPLY

Non-trivial blocks (i.e., BEGIN blocks with declarations, or the

blocks associated with a PROCEDURE) are nested more than eight deep

(lncluding the BEGIN at the start of the program). The error 1is

detected early in the ninth block. Also, procedure calls nested too |
deeply.

|
2013 WARNING: ";" SHOULD NOT FOLLOW EXPRESSION

In BEGIN . . . expression; END the semi-colon 1s 1ncorrect but ignored.
!

201% REFERENCE MUST REFER TO RECORD CLASS

In REFERENCE(xyz)... , Xyz is not a record class.

2015 EXPRESSION MiSSINc IN PROCEDURE BODY
i

A function PROCEDURE must have 1ts final value specified by an

expression standing alone immediately before the END. |

2016 IMPROPER COMBINATION OF TYPES

Mixing incompatible types as alternatives of a conditional or case

expression. |
2017 RESULT PARAMETER MUST BE A VARIABLE

In a procedure declaration, a formal parameter 1s declared

... RESULT Xyz , but a call to that procedure has passed an expression

which 1s not a variable.

2018 PROPER PROCEDURE ENDS WITH AN EXPRESSION

A procedure which returns no value nonetheless ends with an expression. |

(This sometimes happens when a final assignment statement has been

mis-punched A = B , instead of A := B .)

TT



ERROR MESSAGES

2019 "XXX" CANNOT FOLLOW "YYYY" HERE

. There are no legal programs in which XXXX and YYYY can be written

¢ together. This 1s much like 2003. (You may have left out a

semi-colon, a comma, or an operator.)

2020 ARRAY USED INCORRECTLY

" A simple variable must be used here.
2021 TOO MANY CONSTANTS IN PROCEDURE

No more than 256 different constants are allowed.

2022 INCORRECT STRING LENGTH

¢ In S(x|y) , y is negative, zero, or greater than 256.

2023 COMPILER TABLE OVERFLOW

The program 1s too big to fit into memory during compilation —-- there

< 1s no more room for the parse trees that represent the program at
this point. If you re-compile with more memory, there will be more

room avallable for the program.

2024 TOO MANY PROCEDURES

L Only 255 different procedures or BEGIN blocks with declarations are
N—

allowed by the compiler.

2025 CONSTANT OUT OF RANGE

a) The absolute value of an integer is greater than (2%¥31)-1

- (9+ digits).

b) The absolute value of the adjusted exponent in a real number 1s

. greater than 7/5. The exponent written is first adjusted to

include the number of digits written in front of the decimal point.

b
2026 INDEX OF ARRAY OR STRING MUST BE INTEGER

a) In s(x|y) , X 1s not an integer expression.
b) In Arrayname(...X...) , x 1s not an integer expression.

(You may have accidently used a REAL variable.)

4

—
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2027 INCORRECT OPERAND TYPE(S) FOR XXXX

XXXX 1s a unary operator.

a) LONG 1s applied to something which is LOGICAL, STRING, BITS,

or REFERENCE.

b) SHORT is applied to something which is LOGICAL, STRING, BITS,

or REFERENCE.

c) — (not) 1s applied to something which 1s neither LOGICAL nor BITS.

d) Prefix + or =~ 1s applied to something which is LOGICAL,

STRING, BITS, or REFERENCE.

e) ABS 1s applied to something which is LOGICAL, STRING, BITS, or

REFERENCE.

f) In Recordvariable , x 1s not a REFERENCE.

g) In FOR l:=x... , xX 1s not an integer expression.

h) In various other contexts, an INTEGER or LOGICAL operand 1s

required.

2028 INCORRECT OPERAND TYPE(S) FOR XXXX

XXX is a binary operator. Even when the error 1s in the first

operand, the error is detected after both operands are inspected.

a) AND or OR 1s applied to expressions which are not both BITS or

both LOGICAL. This case often happens in an IF statement when

necessary parentheses are left out;

IF X < YOR Z =) THEN . . .

As written, vy 1s to be ORed with =z before anything else 1s

calculated. Try instead:

IF (X <Y) OR (Z = 3) THEN . . .

b) A relational operator (like > ) 1s applied to something which

1s COMPLEX, LOGICAL, or REFERENCE.

¢) SHL or SHR is applied to something which is not BITS, or the

shift amount 1s not INTEGER.

d) In x IS Recordclass , Xx 1s not a REFERENCE.

e) In x*¥¥y , x 1s LOGICAL, STRING, BITS, or REFERENCE, or y is

not INTEGER.

f) In a FOR statement, the UNTIL expression 1s not INTEGER.

g) In various other contexts, an INTEGER operand 1s required.
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2029 INCORRECT PARENTHESIZATION OF EXPRESSION

This often occurs in conjunction with 2027 or 2028. Usually,
S—

“ additional parentheses are required 1n the expression.

2030 ASSIGNMENT INCOMPATIBILITY

An attempt to assign an expression of one type to a variable of a

different type (or pass an actual parameter to a formal parameter

& of a different type). The only automatic conversions allowed are

INTEGER to REAL, INTEGER to LONGREAL, REAL to/from LONGREAL,

INTEGFR/REAL/LONGREAL to COMPLEX/LONGCOMPLEX, COMPLEX to/from

LONGCOMPLEX. (You cannot assign REAL to INTEGER without using

= TRUNCATE, ENTIER, or ROUND.)

2051 WARNING: NAME PARAMETER SPECIFIED

In a PROCEDURE declaration, 1t 1s usually intended that each formal

n parameter have VALUE specified.
20%2 SIMPLE VARIABLE USED INCORRECTLY

In " x(", x is a simple variable and not STRING.

203% 75 ERRORS. COMPILATION TERMINATED

“ Something 1s drastically wrong with your program. To save time

and paper, the rest of the program is ignored.

2099 DEBUG TABLE OVERFLOW

“ If $DEBUG,x is specified with x equal to 2, 3, or4, then a table
is created with a fixed maximum of 448 entries, where one entry 1s used for

each GROUP of statements that all occur together with no labels,

branches or conditional expressions. All the statements in such a

group are guaranteed to be executed the same number of times. Also,

this message occurs 1f the compressed form of the program occupies

more than 65536 bytes of memory (the compressed form is used to

generate the pseudo-listing with the statement counts).

Pass Three Error Messages

Pass J error messages are of the form:

“ ERROR 3xxx NEAR COORDINATE yyyy - message

Vyyy corresponds to-one of the coordinate numbers in the first column on

the program listing. If you have many statements on a card, only the

¢ coordinate of the first one 1s on the program listing.
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All of the pass 3 errors are disastrous, so compilation terminates

immediately. After any pass 3 error, a table 1s

listed of (coordinate number, byte offset, byte length) triples, indicating

how much code was generated for each statement in the current program

segment. The last entry of this table and the last two byte lengths are

usually garbage.

3001 PROGRAM SEGMENT OVERFLOW

This error message occurs because of a design constraint of the

compiler: the total amount of machine code and constants for any

PROCEDURE or other BEGIN block with declarations must be less than

8192 bytes. All of the constants for a block are allocated in front

of the first statement. Therefore, 1f the byte offset of the first

statement is very large, constants are taking up too much space.

This sometimes happens in programs with'too many string constants

| (ten 80-character string constants take up 800 bytes). The coordinate

indicated may or may not be very accurate. The only solutions are

to make your program smaller, or to add some artificial PROCEDUREs

or BEGIN blocks with at least one declaration, such that part of the

block that was too big 1s forced into another segment.

5002 COMPILER STACK OVERFLOW

While generating code for a statement, the compiler uses a push-down

stack to keep track of where it is in the statement tree. If you

are about to get a PROGRAM SEGMENT OVERFLOW (3001), you may get this

message 1nstead.

. 3003 COMPILER LOGIC ERROR |

Internal consistency checks performed by the compiler have failed.

Take your card deck, exactly as it 1s, to a consultant.

3004 PROGRAM AREA OVERFLOW

Although the words are similar to 3001, this 1s entirely different.

This message means that there 1s no more room in memory to put the

machine code for your program (like 2025 and 1012). If you

re-compile with more memory, there will be more room available for

the machine code.
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3005 DATA SEGMENT OVERFLOW

The data for each PROCEDURE or BEGIN block with declarations is

limited to 4096 bytes. Read the suggestions for 3001.

4006 COORDINATE TABLE OVERFLOW

In order to supply the coordinate number in run-time error messages,

C a table 1s built of (coordinate number, address in machine code)
pairs. If you re-compile with more memory, this table will be larger.

'3007 TOO MANY PROCEDURE CALLS

References to only 3lprocedures are allowed within any single

C | procedure.

Loader Error Messages

“ Loader error messages are all of the form:

**%¥ LOADING ERROR - message

Like pass 3 messages, these are disastrous and terminate processing.

C

DUPLICATE GLOBAL NAME - XXX Two procedures with the same name were

loaded.

INSUFFICIENT STORAGE Not enough room to run the program.

C Re-run with more memory.

INVALID OBJECT RECORDS A bad object card was presented, often

an extra blank card.

C NO EXECUTABLE STATEMENTS No main program was loaded, only external

procedures.

TOO MAN-Y PROCEDURES Only 96 program segments are allowed by

the loader.

UNDEFINED GLOBAL NAME - XXX An external procedure was declared, but

not loaded.
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Run Time Error Messages

All run error messages are of the form:

RUN ERROR NEAR COORDINATE yyyy IN procedure name - message

After a run error, a post-mortem dump of all of the program's variables 1is

given, unless it is explicitly turned off with a $DEBUG,0 card. To keep

the dump reasonably small, at most eight values are dumped from an array.

If the same identifier 1s declared 1n many blocks (note that the index

variable in a FOR loop 1s considered to be declared in a block around just

the FOR statement), then that identifier will be listed many times.

Variables which have never been assigned any meaningful value are printed

ag "oro or

ACTUAL-FORMAL MISMATCH IN PROCEDURE CALL, PARAMETER #xx

The actual parameter passed 1s not assignment compatible with the

formal parameter.

ARRAY SUBSCRIPTING

An array subscript was not within the declared bounds.

ARRAY TOO LARGE

The first n-1 dimensions of an array declaration define too many

elements. The product of the size of a single element times the

first n-1 dimension lengths (upper bound-lower bound+ 1) must

be strictly less than 32768. The element sizes are:

logical 1

integer, real, bits,

reference 4

long real, complex 8

long complex 16

string length of a single string
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ASSERTION xxxxxxx FAILED

C An assertion was not true. XxXxXXXXX 1s a running count of how

many assertions were true, to give a feel for how long the program

had run.

C ASSIGNMENT TO NAME PARAMETER
Attempt to assign to a name parameter whose actual argument 1s not a

variable, but 1s instead an expression, a constant, or a control

: identifier.

4 CASE SELECTION INDEXING

Index 1n a case statement or case expression 1s less than 1 or

greater than the number of cases.

DATA AREA OVERFLOW

C No more storage 1s left for variables. This will happen if a program

gets 1n a loop calling itself recursively, or 1f there really 1s not

enough memory.

C DIVISION BY ZERO
May also be caused by 0¥¥(-n) .

EXPERROR

The argument to EXP must be less than 174.67 .

INCOMPATIBLE FIELD DESIGNATOR

An attempt has been made to access a field of a record, but the

reference does not designate a record of the corresponding class

(1t might be NULL or undefined).

INCORRECT NUMBER OF PARAMETERS

| The number of actual parameters in a procedure call 1s different

from the number of formal parameters declared in the called procedure.

INTEGER DIVISION BY ZERO

An 1nteger operation attempted to divide by zero.

INTEGER OVERFLOW

An integer operation produced a number whose absolute value 1s

‘ bigger than (2%%¥31)-1 . The standard functions ROUND, TRUNCATE,
and ENTIER will produce an integer overflow if presented with

arguments whose absolute value is bigger than (2¥¥31)-1 .
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LENGTH OF STRING INPUT

The string read was longer than the string variable has room for.

This sometimes happens if a string ends in exactly column 80 of a

card, and another string begins in column 1 of the next card, since

the two quote marks (col 80 and col1) are part of the same string.

Put at least one blank in between (or a whole blank card). Also,

check for a missing quote.

IN/LOG ERROR

An attempt to take the logarithm of a negative or zero number.

LOGICAL INPUT

The quantity read was not TRUE or FALSE.

NULL ORUNDEFINED REFERENCE

An attempt has been made to access a record field using a null or

never initialized reference.

NUMERICAL INPUT

The number read was not assignment compatible with the variable in

the READON or READ statement. This sometimes happens when running

from a terminal if the line numbers on the data cards are accidently

read.

OVERFLOW

A real operation produced a number whose absolute value 1s bigger

then T7.2'+75 . This may occur when dividing by a very small number,

such as in 1'+50/1'-50 .

PAGE ESTIMATE EXCEEDED

The page estimate on the $ALGOL card is exceeded. Note that any

tracing ($DEBUG,3 or U4) output is included in this page limit.

(cf. Deck Setup and Compiler Options, page 103.)

PROGRAM CHECK #M

The compiler or the code 1t generated was wrong. If this happens,

take your card deck, exactly as it1s, to a consultant.
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C

S READER EOF
No more data cards. A % card or a /¥* card was read instead. This

1s a normal way to terminate in many programs.

RECORD STORAGE AREA OVERFLOW

C No more storage exists for records.

REFERENCE INPUT

References cannot be read.

O SIN/COS ERROR
See the domain restrictions in Section 8.2.

SQRT ERROR

Attempt to take the square root of a negative number.

C -
STRING INPUT

A null string or a string greater than 256 characters was read. See

LENGTH OF STRING INPUT above.

C SUBSTRING INDEXING

Substring selected extends off one end of the string

TIME ESTIMATE EXCEEDED |

The time estimate on the $AIGOL card is exceeded.

UNDERF LOW

A real operation produced a number whose absolute value 1s less than

5.47-79 , but not exactly zero. This may occur when dividing by a

. very large number, such as in 1'-50/1'+50 .

C
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ABEND Messages

You may occasionally get terse messages on the first page of your

output of the form:

¥¥%% ABNORMAL JOB END a SYSTEM CODE X XXX

or

COMPLETION CODE = SYSTEM = xxx

where xxx might be:

222 You ran out of time or lines as specified on your

322 JOB card (not the limits on the $%ALGOL card).

722 (cf. page 103.)

The compiler probably made a mistake. After
OCL Co

verifying that the deck or catalogued procedure
L

oc includes both a //SYSPRINT and //SYSIN DD card,
C6 CL

take your deck, exactly as 1t 1s, to a consultant.
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w NUMBER REPRESENTATION

o

C=

C The following notes are intended to give the

student of Computer Science 105 or 106 some orientation |
_ into how numbers are represented in the IBM System/360

C } computers. Because we are using Algol W, some refer-
— ences are made to that language. However, very little

of what 1s said here depends on the peculiarities of

C Algol W, and this exposition 1s mostly applicable to

_ Fortran or Algol 60 with slight changes in wording.

It will also do for the floating-point numbers and

« full-word integers of PL/l. Users of shorter or
longer integers or decimal arithmetic in PL/1 will

. need more orientation.

—

C

C
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NUMBER REPRESENTATION

On IBM's system 360, the following units of information storage
C

are used:

a) the bit, a single 0 or 1

b) the byte, a group of eight consecutive bits

C c) the (short) word, a group of four consecutive bytes --
i.e., 32 consecutive bits

d) the long word, a group of two consecutive short words --

i.e., eight bytes or 6h bits.

C For number representation in Algol W the words and long words are

the main units of interest.

INTEGERS

LC -

Integers are stored in (short) words. Of the 32 bits of a short

word, one is reserved for the sign (0 for + and 1 for -), leaving

51 bits to represent the magnitude. A positive or zero integer 1s

stored 1n a binary (base 2) representation. Thus 21.4 (the subscript
means base 10) is stored as

0000 0000 0000 0000 0000 OOOO 0001 o0101 .

t

sign bit

To confirm this, note that

0

. 21 = 0 X 0” +... +0x25 + 1x ot + 0 NE + 1 J 0° + 0 «oF + 1 y 20 .

L The largest integer that can be stored 1n a word 1s
20 A ot 4 oY = ot -1= (21h7h836LT) :

Any attempt to create or store an integer larger than p21 -1 will
produce erroneous results, and (unfortunately) the user will not always

L be warned of the error. (See below.)

To save space 1n writing words on paper, each group of four bits

in a word 1s frequently converted to a single base-16 (hexadecimal)

digit, according to the following code:
C

.
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base 2 base 16 base 2 base 16

0000 0 1000 8

0001 - 1001 9
0010 2 1010 A

0011 5 1011 B

0100 4 1100 C

0101 5 1101 D
0110 6 1110 E

0111 ] 1111 F

Thus A, B, C, D, E, F are used as base-16 representations of the decimal

numbers 10, 11, 12, 13, 14, 15 respectively. Nevertheless, integers are
stored as base-2 numbers.

Using hexadecimal notation, the decimal number 21 1s represented by

00000015, ¢ .

Note that 15:6 —-1s the base-16 representation of 215 . |

Negative integers are stored in what is called the "two's complement |

form". For example, -1 is stored as

1111 1111 13111 11313 1111 131311 1111 1111 ,

= FFFFFFFY,
Also, -21 is stored as

1111 21111 1111 1111 1111 1111 1110 1011

= FFFFFFEB, .

The representation for -21 is obtained from that for +21 by changing

every 0 to 1 and every 1 to 0, and then adding +1 in base-2 arithmetic

© to the result. Similarly for any negative integers. Every negative

integer has 1 as its sign bit. The smallest integer. storable in

System/360 is 21 = -21474836048 , and is represented by 80000000, :
Another way to think of the representation of negative numbers 1s

to consider a J2-place binary accumulating register (the base-2 equivalent)

of the decimal accumulating register in a desk calculating machine).

If one starts with all zeros in this register, one gets the representation

for -1 by subtracting 1. The process requires a "borrow" to propagate

to the left all the way across the register, leaving all ones, just as

on a decimal accumulator this would leave all nines. Continued

subtraction will give the representations for -2, -3, . . . .
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C

From the point of view of an accumulator we can also see what

happens when we create a positive number larger than pd -1. For

L example, 1f we add 1 to 22 the resulting carry will go all the
way into the sign bit, leaving a sign bit of 1 with all other digits

zero. But this 1s the representation of ot Thus the attempt to
produce positive numbers in the range from 1 to approximately 208

LC will yield a negative sign bit. Consequently, positive integers that

"overflow" into this range are sensed as negative by System/360. The

mechanisms of AIGOL W for detecting integer overflow (not described in

| this document) can be used to detect additions, subtractions, or

L multiplications that produce integers outside the range from pol to

a (so-called integer overflow). Attempts to divide an integer by 0
will yield an error message and an irrelevant quotient and remainder.

The behavior of System/j60 on integer overflow is quite different

L from theBurroughs B5500. In the latter machine, any 1nteger that
overflows 1s replaced by a rounded floating-point number. There are

advantages to either approach to integer overflow, depending on the

application.

“ If the user suspects that integers in his program are getting
anywhere near 107, he should convert them to double-precision floating-
point numbers by use of the AlgolW operator LONG. Conversion to single-

precision floating-point numbers may lose some precision.

L The most important thing for a scientific user to remember 1s that
| integers 1n the range pot to oly are stored without any approximation.
Moreover, operations on integers (adding, subtracting, multiplying) are

done without any error, so long as all intermediate and final results

“ are 1ntegers between oo] and Lg, It 1s perhaps easier to remember
as safe the interval from -2 X 107 to 2 X 107 , Obtained from the
useful approximation p10 2100 .

C

C
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The operations of division without remainder (called DIV 1n Algol W)

and taking the remainder on division (called REM in Algol W) always give

integer answers. If the divisor is 0, an error message 1s given.

In Algol W two operations on integers give results that are not

stored as integers —— namely / and ** .

FLOATING-POINT NUMBERS

Numbers 1n many scientific computations will grow in magnitude

well beyond the range of integers described above. To provide for

this, System@ and most scientific computers have a second way to

represent numbers -- the so-called floating-point representation.

The significance of the name "floating-point" 1s that the radix point
—— for example, the decimal point in base-10 numbers —-- 1s permitted to

float to the right or left, thus permitting scaling of numbers by

various powers of the radix. Although a decimal point that has floated

off to the left will produce a number written like (0.001345 , the

numbers are actually represented in a form closer to what 1s often

called scientific notation, here 1.345% 10 3

In System/360, floating-point numbers are always represented in

base-16 notation; 1.e., the radix or number base 1s 16. This permits

us to write numbers in abbreviated form (as we did with integers earlier).

More important, the use of base-16 conformswith the hardware arithmetic

processes 1n which shifting 1s done four bits at a time to speed up the

operations. The speed-up 1s achieved at a slight cost in precision,

as 1s learned from detailed error analyses which we cannot go into here.

We first consider the floating-point representation of numbers by

a single word of 32 bits. This is the so-called single-precision

or short real number, the number of type REAL in Algol W. The 32 bits

of a word are numbered from 0 to 321, from left to right, just to identify

them. In floating-point representation the left-hand eight bits (bits 0

to 7, equivalent to two hexadecimal digits) are devoted to the sign of

the number and the exponent of 16 associated with the number. The right-

hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)
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represent six significant hexadecimal digits (the significand) of the

‘ number.

As with integers, the sign of the number is denoted by bit 0,

with 0 representing + and 1 representing - .

Bits 1 to 7 give the binary (base-2) representation of a non-

- negative integer in the range U30 to 12715 , 1lnclusive. This 1in-
teger 1s called the biased exponent, for reasons now to be explained.

If this integer were taken directly as the exponent, we would have no

negative exponents, and our range of floating-point numbers could not

L include such numbers as 1622 It 1s desirable to have an exponent
range that 1s approximately symmetric about zero. In System/360 one

obtains the true exponent of the floating-point number by subtracting

64 from the biased exponent represented by bits 1 to 7. As a result,

L the actual exponents range from -64 to 63.
The 24 bits 8 to 31 of a number are regarded as six hexadecimal

digits with a hexadecimal point at the left-hand end. If the floating-

point number zero 1s being represented, all the hexadecimal digits are

“ zero, as are all the other bits. Otherwise, at least one of the hexa-
decimal digits must be nonzero. A floating-point number 1s said to be

normalized 1f the left-hand hexadecimal digit (the most significant

digit) of the significand is nonzero. In System/360 the floating-point

‘ numbers are ordinarily normalized, and we will not consider any other
forms.

- We now give the floating-point representations of some sample

numbers. As we said before, the number zero is represented by 32 zero

“ bits, 1.e., by eight 0 hexadecimal digits. Thus zero is represented
. by the same words in floating-point or integer form. No other number

has this property.

The number 1.0 1s represented by the word

¢ sign bit
L_s0,100 0001 0001 0000 0000 0000 0000 0000,

biased significand

exponent

¢

oh
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To check this, note that the sign is 0 (representing +). The biased

exponent 1s 1000001, or 6515 . Subtracting 64 yields 1 as the
true exponent. The hexadecimal significand 1s 100000, ¢ . fitting a
hexadecimal point at the left end gives the hexadecimal fraction

, which equals 1/16. Thus the above word represents

1/16es 16, or 1.0 .
To save writing, the above word 1s ordinarily written 1n the

hexadecimal form 41100000 . While one gradually learns to recognize

some floating-point numbers in this form, the author knows no easy way

to convert such a hexadecimal word into a real number. One just has

to take the right-hand six hexadecimal digits, and prefix a hexadecimal

point. Then one examines the left-hand two-hexadecimal-digit number

(here 41). If this 1s less than 80 ¢ , the floating-point number 1s
positive and one gets the true exponent by subtracting 401 ¢ = 04, .
If the left-hand two-hexadecimal-digit number 1s 80, ¢ or larger, the
floating-point number is negative, and one gets the true exponent by

subtracting CO. ¢ = 80, ¢ + 40, = 192, and affixing a minus sign.
Some facility with hexadecimal arithmetic 1s required, 1f one has to

deal with such numbers.

In this presentation, we have considered the radical point to be

at the left of the six significant hexadecimal digits, and regarded

the exponent as biased high by 64, . As an alternative, the reader

may prefer to place the radix point just to the right of the most

: significant digit of the significand, and regard the exponent as biased

high by 65, . This brings the significand closer to usual scientific
notation but, of course, requires a trickler conversion to get the

true exponent. The fact that either interpretation (and many others)

are possible shows that really the radical point 1s just in the eye of

the beholder, and not in the computer!

Several examples of floating-point numbers are now given 1n hexa-

decimal notation, with the confirmation left to the reader.
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decimal floating-point

C 0.0 = 00000000
1.0 = 41100000

0.0625 = 40100000

16.0 = 42100000

256.0 = . 43100000
-1.0 = C1100000

-16.0 = C2100000

5.5 = 41380000

The largest floating-point number 1s TFFFFFFF , representing

.FFFFFF x 167 or (1 - 16-6) X 1602 = 7.23 x 1077 . (Here 10 and 16
“ denote decimal numbers.)

The smallest positive normalized floating-point number 1s 00100000,

representing

116: oso x 10779
“ - |

Negatives of these two numbers can also be represented, and are

the extremes in magnitude of representable negative numbers.

Very few numbers can be exactly represented with six significant

“ _ decimal digits. (Exercise: Which ones can?) For example, 1/5 = 335333

only approximately. In the same way, very few numbers can be exactly

represented with six significant hexadecimal digits. (Exercise:

Which ones can?) For example, 1/3 = .555555,¢ only approximately.
‘ Moreover, some numbers that are exactly representable in decimal are

only approximately representable in hexadecimal; for example,

) 1/10 = .100000,, exactly; but

1/10 = .19999A,¢ only approximately.

Thus round-off error enters into the representation of most

Lloal i ng=po i nt numbers on Sys tem/ 300, and the round off differs from

Lhat w ith decimal numbers . This can easily give rise to unexpected

“ results . For example, 1f the above number 199994, ( = 0.1.5) 1s
multiplied by the integer 100., = 6h ¢ » one gets not A.00000,, =
10.044 , but instead A.00002,, , as a cumulative effect of the slightly

high approximationto 0.1, . And A.00003, ¢ rounds to 10.00002
“ on conversion to decimal.

| The precision of a single-precision hexadecimal number 1s roughly

10" . One can think of this as being crudely equivalent to seven

.
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significant decimal digits.

Not only do errors appear in the representation of numbers inside

System/360 (or any computer), but they arise from arithmetic operations

performed on numbers. For example, the product of two floating-point

numbers may have up to 12 significant hexadecimal digits. When the

product 1s stored as a single-precision floating-point number, it must

be rounded to six hexadecimal digits. This introduces an error, even

though the factors might have been exact.

The story of round off and its effect on arithmetic 1s a complex

and interesting one. Only within the current decade have there begun

to appear even partly satisfactory methods to analyze round off, and

we cannot go into the matter now. Some 1dea.of this 1s obtained in

Computer Science 137.

When an AlgolW program assigns decimal numbers or integer values

to variables of type REAL, these are immediately converted to hexadecimal

floating-point numbers, with (usually) a round-off error. When one

outputs numbers from the computer in Algol W, they are converted to

decimal. Both conversions are done as well as possible, but introduce

changes 1n the numbers that the programmer must be aware of. And, of

course, all intermediate operations introduce further round offs and

possible errors. It 1s unthinkable to do the analysis necessary to

counteract these errors and get the true answer to the problem. If the

user wishes answers uncontaminated by round off, he should use integers

and integer arithmetic, and be prepared to guard against overflow. |

Fortunately most users can accept an indeterminate amount of

round off in their numbers, provided they have some assurance that

round off 1s not growing out of control. It is the business of numerical

analysts to provide algorithms whose round-off properties are reasonably

under control. This has been well accomplished in some areas, and hardly

at all 1n others.

DOUBLE PRECISION

The precision of single-precision floating-point numbers seems
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very adequate for most scientific and engineering purposes, being at the

level of seven decimals. However, a considerable number of computations

~ require still more precision 1n the middle somewhere, just in order to
come out with ordinary accuracy at the end. As a result, System/360

has provided an easy mechanism for getting a great deal more precision

in the computations. For this purpose a double word of 64 bits is used

- to store a floating-point number of so-called double precision or long
precision. In this representation, the sign and blased exponent are

found in the first word of the double-word, with precisely the same

interpretation as with single-precision floating-point numbers. The

~ second word of the double-word consists of eight hexadecimal digits
immediately following the six found in the first word. There 1s no

sign or exponent in the second word. Thus a double-word represents

a signed floating hexadecimal number with 1} significant hexadecimal

~ digits. As before, nonzero numbers are normalized so that the most
significant digit of the 14 is nonzero.

Examples:

long significand

1.0L = 41'100000 00000000"

0.1L = 40 199999 9999999-11

There 1s a full set of arithmetic operations for both single

and double-precision operations. Very crudely, for an example, single-

precision multiplication of single-precision factors takes around 4 micro-

seconds, while that for double-precision factors takes around 7 micro-

seconds. For modest problems the extra time 1s completely lost in the

o several seconds of time lost to systems and compilers, and the use of

double-precision 1s strongly recommended for all scientific computation.

Normally the only possible disadvantage of using long precision 1s the

doubling in the amount of storage needed. If one has arrays with tens

“ of thousands of elements, the extra storage may be very costly. Other- |

wise, 1t should not matter.

Since 1671 = 10717, the double-precision numbers are crudely
equivalent in precision to 17 significant decimal digits.

“ for a machine with the speed of fhe 360/67, a number precision of

C
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six hexadecimal digits (roughly seven decimals) 1s considered very low,

while a precision of 1% hexadecimal digits (roughly 17 decimals) is

very adequate. The floating-point arithmetic hardware of System/360

provides the possibility of detecting when numbers have gone outside

the exponent range stated above. The reader may think that a range

from roughly 10°19 to 107° should cover all reasonable computations.

While exponent overflow and exponent underflow are not very common, they

can be the cause of very elusive errors. The evaluation of a determinant

is a common computation, and for a matrix of order 40 is quite rapidly

done (if you know how). If the matrix elements are of the quite

reasonable magnitude 1073 , the magnitude of the determinant will be
no larger than roughly 19” (and probably much smaller), well below
t-he range of representable floating-point numbers. Such problems are

a frequent source of exponent underflow.

We shall not discuss here the mechanisms of Algol W for detecting

exponent overflow and underflow, for these should be written up in

another place. Even without these, we see that floating-point numbers

behave well for numbers that are at least 10°0 times as large as the
largest integer in the system! Hence use of floating-point numbers

meets almost all the problems raised by integer overflow. And, of

course, 1t permits the use of a large set of rational numbers, which

do not even enter the integer system.

AIGOL W REALS AND LONG REALS

The Algol W manual tells how to represent real variables and

numbers to take advantage of both single-and double-precision. The

‘purpose of this section 1s to bring this 'information into rapport with
thehardwarerepresentation of numbers. If a variable X 1s declared

REAL, one word 1s set aside for its values, and it will be stored in

single-precision floating-point form. If a variable 1s declared to be

LONG REAL, a double-word 1s set aside to hold its values, and 1t will

be stored in double-precision form.
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If a number 1s written in one of the decimal forms without an L

| at the end, it will be chopped to single-precision, no matter how many

‘ digits are set down. Thus 3.1415926535897932 will be immediately
chopped to single-precision 1n the program, and all the superfluous

digits are lost at once. Thus-the assignment statement

C XX := 3.1415926535897932
will result in the double-word XX receiving an approximation to m

in the more significant half, and all zeros in the less significant

: half! Thus one gets a precision of only approximately seven decimals

for the pain of writing 17, and this may well contaminate all the rest

‘ of the computation.
If one wants XX to be precise to approximately full double precision,

one must write the statement 1n the form

] xx = 3.1415926535897932L .
¢ With the declaration REAL X, the statement

X := 3.1415926535897932~

will result in X having a single-precision approximation to , as

C the long representation of m 1s chopped upon assignment to X.
The reader should now go back and examine the specifications

of the types of various arithmetic expressions, as stated on pages 9, 10,

11 of the Algol W Notes, and in Section 6.3 of the Language Definition.

« Some of the less expected effects are the following: Suppose we have
declarations

REAL X, Y, 7;

LONG REAL XX, YY, ZZ;

C INTEGER I, J, K;
Then X¥Y, I**J, and I*X are all long real.

The assignment statement

XX = X :1= Y¥Z

C will result in XX having a single-precision chopped version of Y*Z in
the more significant half, and zeros in the less significant word.

Moreover, I*I is INTEGER, but I**2 is LONG REAL.

C

C
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If the reader understands the language A101 W and the preceding

pages on number representation, he should have a good basis for

understanding the effects of mathematical algorithms. But he should

always remain wary of what a computer is actually doing to his numbers?
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|
1, DECK SETUP

| ALGOL W Deck Setup and Compiler Options
C

1. Simple Deck Setup

QUICK partition ~ BATCH partition

C (Job and Keyword cards). (Job and Keyword cards)

/* SERVICE CLASS=Q

// EXEC ALGOLW // EXEC ALGOLW

//SYSIN DD * //SYSIN DD *

C §{ FALGOL §{ FALGOL

56 (program) 56 (program)

: ( 4DATA ; 4DATA(data) (data)

§ Optional.

§¢ May be repeated -- second and following %ALGOL cards are

¢ required.

For simple cases, the above control cards are sufficient. More

complicated cases are discussed later under 3. Linkage to Separately-

L Compiled Procedures.

1.1 Time and Page Limits

To avoid using too much computer time or paper when a program has

mistakes in it, both the operating system and the ALGOL W system monitor

the amount of time and pages used. The operating system keeps track of

L the total time ysed for compiling one or more programs, executing them,

printing any post-mortem dumps, loading the compiler into core, interpreting

the operating system control cards, etc. The operating system also keeps

track of the total amount of printed output from a run -- control card

listing, compiler listing, actual execution output, error messages,

103



|

1. DECKSETUP .

post-mortem dump, etc. The limits for these totals are specified on

the JOB card in tenths of minutes and thousands of lines; exceeding these

JOB card limits results in an ABEND 322 message from the operating

system and no other information.

The ALGOL W system monitors the amount of time and pages used by

each program just during its execution, not during its compilation or

during any post-processing. If these executlon limits are exceeded,

ALGOL W will print a run-time error message (TIME ESTIMATE EXCEEDED or

PAGE ESTIMATE EXCEEDED) with the coordinate of the program statement

executing at the time. The subsequent post-mortem dump and optional

program listing can be very helpful in determining what went wrong.

To make sure that the ALGOL W system 1s able to get out this information,

the JOB card limits always should be sufficiently bigger than the ALGOL W

limits.

The normal ALGOL W execution limits are 10 seconds and 9 pages

(60 lines/page). These may be changed by specifying different limits on

the #ALGOL card in columns 8-29:

JALGOL TIME=sss, PAGES=ppp

where sss is the maximum execution time in seconds; Ppp 1s the maximum

number of pages of execution and tracing output. TIME may be abbreviated Tj

PAGES, P . Time and Pages may be given in either order.

Example: for 2 minutes and 20 pages, use:

FALGOL T=120,P=20

(Previous versions of the compile» had slightly different control cards:

ILOF instead of 4DATA, and min:sec,pages 1nstead of TIME= and PAGES= .

These older conventions are also accepted by the present compiler.)
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1.2 Other #ALGOL Card Parameters

- Two other execution environment options may appear on the $ALGOL

card. MARGIN=72 specifies that READ and READON should only scan the

first 72 columns of data cards. MARGIN=80 specifies that READ and READON
C

should scan all 80 columns of data cards. The default value is MARGIN=80,

unless the program source cards are sequence numbered; 1n that case, it

1s assumed that the data cards are also sequence numbered and MARGIN=72

'

is the default. MARGIN may be abbreviated MARG. (cf. Section 7.8.k.

for dynamic control of this margin.) SIZE=xxxK specilfles that the

maximum amount of dynamic space requested by elther the compiler or the

( —_—
execution library is xxx*1024 bytes. This directive is only used in

rare cases to prevent the compiler from using all of the core available

to 1t.

‘ S—r 1 1 1
TIME, PAGES, MARGIN, and SIZE may be specified 1n any order.

|.

“

.
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2. Compiler Options RE

Any of the following cards can appear in a deck between a PALGOL So

and the next card:

$NOLIST Do not list subsequent source cards. The compiler normally.,

lists all input cards. x

$LIST List subsequent source cards: this undoes a previous $NOLIST. ° i

$TITLE,"..." Start the program listing on the next page, and place

"LJ" (up to 50 characters) as a title in the middle of ’

the heading line.

SYNTAX Analyze the program for syntax errors, but do not execute.

$STACK Dump the current parsing stack if a pass 2 syntax error should

occur, with the most recent syntactic element listed last.

$DUMP*ab, cc Dump certain internal tables during a compilation. This

option 1n general 1s used only by those maintaining the

compiler, but 1s documented here for the sake of completeness.

Since 1ts use significantly increases the amount of printed,

output for even small compilations, random experimenting 1s

discouraged. See the table at the end of this section.

$NOCHECK Omit checking subscript ranges and reference compatibility

and omit initialization of variables to

"undefined".

$DEBUG, n (m) Activate the tracing, statement counting, and post-mortem

: dump facilities of the ALGOL W system.

: The single digit n specifies:

0 nothing fancy (use this to minimize the space used by

the system).

1 a post-mortem dump of all the program's variables if

execution terminates abnormally, else nothing.

2 the above plus counts of how often each statement was

executed.

104



| 2. COMPILER OPTIONS

3 the above plus a statement-by-statement trace of each

- value stored.
«

4 the above plus a trace of each value fetched.

If tracing is specified ($DEBUG,3 or $DEBUG,4) and the standard

procedure TRACE (cf. Section 7.8.6.) is not used, then

< each ALGOL statement will be traced 1n symbolic form the

first m times it 1s executed. Each time a statement 1is

traced, 1t produces at least two lines of output (included

in the run-time limit), so a 100 statement program with

¢ $DEBUG,3(2) will produce at least 400 lines of output

(unless 1t dies an early death).

THE perAuLT IS $DEBUG,1 —- post-mortem dump, but no counts

« _ or traces. ]

The following abbreviated control cards are acceptable:

¢ l~ $DEBUG for $DEBUG,4(2)

$DEBUG, x for $DEBUG,x(2)

(no DEBUG card) for $DEBUG,1

C All variables are initialized to a bit pattern considered
to represent an undefined value (printed in the traces and

post-mortem dump as "?"). For some data types, all bit

i patterns can be valid, so valid data can appear to be

'S undefined.

$ See Section 4, page 111, for a detailed explanation of the debugging

facilities.

C

~—

¢
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$DUMP* options

The $DUMP* card specifies two things: what tables to be dumped, and

which segments in the program the dumping applies to. 'For example, the

360 machine code for only one of many procedures can be dumped.

General format:

$DUMP*ab, cc

a 1s a single digit and 1s ignored.

b 1s a single digit and asks for some combination of 5 tables to be

dumped.

cc 1s exactly two digits -- a number in the range 0 to 63, or two blanks.

If cc 1s blank, then tables for all segments will be dumped.

If cc 1s a number, then the machine code for only that segment will

be dumped. Many $DUMP¥ cards may be used to specify more than one

segment. If the b digits are different, the last one 1s used.

tables dumped:

pass? pass? pass? pass? pass’
b digit | parse tree nametable editcode 360 code w/ some 360 code w/ most

(hex) addresses missing addresses inserted

X

X X

X

X X

p X X X

6 X X

f X X X X

8 X X X X X

9 X X X X (sane as 7)
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5. Linkage to Separately-Compiled Procedures

‘ ALGOL W provides a facility for pre-canpiling procedures and linking
them back together again. For small programs, 1t 1s not worthwhile to

use this facility, since recompiling a procedure may be faster than
¢ punching an object deck and reading it back in. A facility 1s provided

for generating standard IBM linkages for calling FORTRAN programs.

¢ 3.1 Compiler Organization

As shown in the diagram below, there are actually two versions of the

ALGOL W compiler; both versions use exactly the same code for the various

¢ phases of-the compiler and for the run-time library, but the monitor

phase is slightly different. The compile, load, and go incore version

1s called ALGOIN; 1t can handle object decks only in a crude way, but

¢« its 1in-core loader handles the debugging feature information. The

compile only version is called ALGOLY; it produces standard 08/360 object

decks, but cannot pass any debugging information (so $DEBUG,0 is forced).

¢ The output from ALGOLY can be link-edited with other object decks or load

modules, including those produced by Fortren G or H. In order to be

executable, the object decks from ALGOLY must be link-edited or loaded

¢ with the AIGOL library and with the ALGOL run-time monitor (ALGOIX). To

facilitate this, all object decks for ALGOL main programs include

external references to the monitor and to the library.

‘“ The restricted object deck facility for the compile, load and go

version only handles:

1) object decks

¢ 2) of procedures (not main programs)

3) from ALGOL w

4) run with no debugging features ($DEBUG,0) |.
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5. SEPARATE COMPILATIONS gy

If a procedure declaration is compiled and a //SYSPUNCH DD card is

supplied, then an 08/360 object deck for that procedure is produced. This

deck can then be used with the link-editor or 08/360 loader as above, or

1t can be read back into the compile, load, and go system when the main

program 1s compiled. For this purpose, the deck setup 1s extended to:

§{ PALGOL

$DEBUG,0 (must be specified)

(main program)

38 : ( FOBJECT(procedure object deck(s))

; ¢DATA
h (data)

/*

§ Optional.

§§ May be repeated -- second and following %ALGOL cards

are required.
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C COMPILE, LOAD, and GO INCORE COMPILE and use 08/360
LOADER or LINKEDITOR

|

¢

COMPILER COMPILER

(ALGOLW) (ALGOLY)

C
OBJECT DECK |

INCORE OBJECT CODE 0S/360 ;

C AND DEBUG INFO OBJECT DECK

ALGOLW OTHER ALGOLW FORTRAN |
OBJECT DECKS OBJECT DECKS OBJECT DECKS /

¢ \

| \

A ATGOLW | :

ALGOLW LIBRARY ~ [ FORTRAN
\_ LIBRARY and MONITOR LIBRARY

¢ |

| EXECUTION | 08/360 LOADER

C or LINKEDITOR

EXECUTION

6

LC
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5.2 Control Cards for Using 0S/360 Loader

Three catalogued procedures are provided: ALGOICG, ALGOLC, and

AIGOLG, for compile and load, compile only, and load only respectively.

In all of them, the object decks are passed 1n the same way that

Fortran object decks are passed, so (for instance) ALGOIC and FORTHC can

| be intermixed and followed by ALGOLG. The stepnames are COMP and GO.

Parameters given on a $ALGOL card are not passed to the GO step; instead,

the EXEC card parameter field 1s decoded the same way.

Example:

//STERAEXEC ALGOICG, PARM.GO="MAP, EP=ALGOLX/TIME=5, PAGES=15 '

3.3 Calling External Procedures

In a program which calls an external procedure, a dummy procedure

declaration and body are used to establish the proper correspondence

(cf. Section 5.3.2.4). The symbolsalgol and fortran in that dummy body

indicate the use of ALGOL W and standard IBM linkages respectively; the

associated string 1s extended (with blanks) or truncated to eight characters

and 1s used as the entry point name of the external procedure. For a

FORTRAN external procedure, the entry point name 1s just the name of the

FORTRAN subroutine or function. For an independently compiled ALGOLW

procedure, the entry point name 1s the procedure identifier extended

(with " # "s) or truncated to five characters and followed by"001".

110



¢ 5. SEPARATE COMPILATIONS

C Example:
” INTEGER PROCEDURE MYFUNCTION(REAL VAIUE X) ;

| BEGIN INTEGER I;
first . :
compilation :

. I

_ END.

| BEGIN
[

INTEGER K,L,M;

REAL A,B;

INTEGER PROCEDURE YOURFUNCTION(REAL VALUE Y);

second ALGOL "MYFUNOO1";
« compilation .

K := YOURFUNCTION(A);

Em. .
“

A FORTRAN subroutine or subprogram can be used as an ALGOL W procedure.
6

The type correspondence between ALGOL W and FORTRAN 1s given by the

following table:

“ ALGOL W IBM FORTRAN IV

integer INTEGER*4
real REATL*L

org a 1 REAL*8

“ complex COMPLEX*8

long complex COMPLEX*16
logical LOGICAL*1

§tring ) (LOGICAL*n)

“ bits LOGICAL*k

_ reference ---
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String functions are not implemented. The following formal parameter

types are allowed and are interpreted as indicated:

(1) (simple T type)

The corresponding actual parameter 1s examined. If that parameter

1s a variable, the address of that variable 1s computed (once only)

: and transmitted. Otherwise, the expression which 1s the actual

| parameter 1s evaluated, the value 1s assigned to an anonymous local

variable, and the address of that variable 1s transmitted.

: (2) (simple T type) value , (simple T type) result ,

(simple T type) value result

As in AIGOL W procedures, a local variable unique to the call 1is

created, and the address of that variable 1s transmitted.

(3) (simple T type) array |

The address of the actual array element with unit indices 1n each

subscript position 1s computed and transmitted, even 1f that element

lies outside the declared bounds of the ALGOL W array. Arrays with

only one dimension and arrays with unit lower subscript bounds will |

have elements with indices which are identical in ALGOL W and

FORTRAN routines. Array cross-sections should not normally be

used as actual parameters of FORTRAN subprograms.

If FORTRAN input/output or FORTRAN error handling facilities are to be

used, the subroutine package IBCOM, or a suitable substitute, 1s required.
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. Example;

BEGIN | | |

COMPLEX Z; | | .

. COMPLEX PROCEDURE COMPLEXSQRT(COMPLEX VALUE A);

Algol w FORTRAN "FAKEIT";
compilation

| Z := COMPLEXSQRT(Z);
¢ :

& - FUNCTION FAKEIT(X)

COMPLEX FAKEIT,X

Fortran _
compilation FAKEIT = CSORT(X)

RETURN

¢ END

b

@

b
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4, Compiler Output

11.1. Introduction

The printed output of the compiler consists of five general

categories :

1) Source card listing

2) Error messages

3) Run-time and tracing output

4) Statement counts

5) Post-mortem dump

The amount of output in some of these categories can be controlled

by various compiler options (cf. Compiler Options, page 104).

1) $NOLIST, $LIST, $TITLE.

2) No control.

3) $DEBUG,3 or $DEBUG,4 activates the tracing. The standard

procedure TRACE (cf. Section 7.8.6.) dynamically controls the

tracing output.

4) $DEBUG,2 , 3 orl activates the statement counts.

5) If a program terminates with a run error and $DEBUG,0 was not

used, a post-mortem dump 1s produced.

) (In the explanation which follows, circled numbers are keyed to the

circled numbers on the sample output.)

4.1.1. Source Card Listing

The source listing consists of four columns of output:

a) Coordinate number (J
This statement count 1s incremented once for each semi-colon

(except end-of-comment), BEGIN, or ELSE in the program. If there

are many statements on a card 0 Fl the coordinate listed refers
to the first statement on that card. All error messages and

tracing information are keyed to the coordinate numbers.
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C

b) Block nesting level,2

§ The nesting level counter is incremented by one for each BEGIN

C in the program and decremented by one for each END. The counter

1s printed only when it changes; then the first character in

this column refers to the nesting level of the first BEGIN on

the card, and the second character refers to the nesting level

of the last END on the card. If you have the proper number of

BEGINs and ENDs, the nesting level for the last card should

be 1 .

c) Card image, 3
‘ Columns 1-72 of each card are printed exactly as they were

read. S option cards are not printed.

d) Sequence field, 4

« Columns 73-80 of each card are printed here, with eight spaces
between column 72 (card image) and column 75 (sequence field) (6).

The source card listing 1s followed by a line giving the options

' which will be in effect during the execution of the program £ . These
—

include the debugging option (specified by a $DEBUG card), the time limit

in seconds, the page limit, the word NOCHECK if that option has been

¢ specified (cf. Section 2, Compiler Options), and the words MARGIN=72 1if

the initial right margin for READ and READONis set at column 72 instead

of 80. This last option is set if the source deck is sequence numbered,

“ on the assumption that the data cards are also (cf. Section 7.8.4. for more

details on margins).

4.1.2. Error Messages 6)
&

These are printed immediately after the source card listing and are

further explained in the Error Messages section of this manual.

‘ 4.1.3. Compile Time and Amount of Code (6)
The last line of the compilation gives the amount of time spent in

the compiler and either the phrase NO CODE GENERATED if fatal error

6“ messages occurred, or the phrase (xxxxx, Yyyyyy) BYTES OF CODE GENERATED if

112



4. COMPILER OUTPUT

compilation was successful. Xxxxxx is the number of bytes of /360

machine language generated. yyyyy 1s the number of bytes of

information generated for the debugging facilities:

$DEBUG, n "
and above information included

0 (i.e., always) Table relating coordinate numbers to program

addresses, for creating RUN ERROR messages.

1 Table of names and types of each variable used, for

post-mortem dump and tracing.

2 A compressed version of the source code, for the

pseudo-listing.

5,4 Additional editing markers in the compressed source

- code, for breaking the tracing at the proper points,

and for more closely correlating the machine code

with the source code.

4.1.4. Run-time and Tracing Output

This category includes an optional statement-by-statement trace of

the program as it executes 0 (explained in more detail below), any

output that the program itself produces in WRITE and WRITEON statements ©

. and perhaps a run error message saying why the program terminated (9 .
If the tracing were turned off, the output would look like that on page

118.

4.1.5. Statement Counts

This optional print-out consists of a pseudo-listing of the

program }2 with coordinate numbers olt0 and counts of how many times

each statement was executed ¢1 . To determine how many times a particular

statement was executed, follow the vertical bars straight up and to the
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4. COMPILER OUTHUT |

left until a number 1s encountered. For example, the statement count

. for the IF at coordinate 0012 is found by following the bars up to

coordinate 0005 , then up and left to the 6. on the preceding line;

1f this path goes through the statement where the program terminated

. prematurely 3 , then subtract one from the count. Thus, the IF

statement at coordinate 0012 was executed 5 times (true 1 time, false |

4 times). The pseudo-listing has all the comments removed and 1s

fn formatted to show the block structure of the program. You are encouraged

to make use of the statement counting facility in order to better under-

stand just where your program 1s spending its time.

4.1.0. Post-Mortem Dump

This error analysis aid ot shows the names and values of all

“ variables which were active at the time the program stopped. By looking

at the values of the variables used 1n the last statement executed gl 3 ,

it is easier to determine what (if anything) went wrong. The exact

- format of the dump 1s discussed below.

-

“

“

113.1
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4.2. Details of the Tracing Output

- The tracing features of ALGOL W allow the programmer to watch the

statement-by-statement execution of his program. The tracing output

consists of four kinds of information for each statement:

‘ a) The coordinate of the statement. (J
b) The number of times that statement has been executed. C

c) The source statement itseit.()

‘- d) A description of the values used in the statement. €
There are special notations for procedure calls, for iterations and for

showing data cards.

& -.

4.2.1. Basic Notations

For each value fetched during the execution of a statement, the

“« fetch and store trace ($DEBUG,4) prints VARIABLE NAME = VALUE (6).
The store trace only ($DEBUG,3) suppresses all of these fetch values.

For each value stored (assigned), the tracing prints

‘ VARIABLENAME := VALUE 0 . For each logical expression in an IF or

WHILE statement the value of the expression is printed as * = TRUE 0)
) or *¥ = FALSE 0 . If tracing 1s suspended because the next statement

‘ has already been executed m times (cf. Compiler Options for details of

SDEBUG,n(m) ) or because the TRACE function 1s used, then three dots are

printed (1) (29). The second and subsequent times through a WHILE or
- FOR loop are indicated by the WHILE or FOR statement 1n parentheses (9).

Whenever a new card 1s needed by READ or READON, the complete card image

is printed as INPUT RECORD: " 80 characters " G2 . Note that in general

‘ string values are printed with quotes on each end, but any quotes within
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4. COMPILER OUTPUT )

the string are not doubled. Reference values are printed as

Recordclass . # , where # 1s a unique number (in order of allocation).

4.2.2. Procedure Call Notations

- XYZ; Indicates a call to procedure X¥z 13 .
= TRACING XYZ; Indicates that a new procedure 1s being

traced, 1.
(PARAMETER ASSIGNMENT) A dummy statement indicating whatever

calculations must be performed in binding

the actual parameters to the formal

parameters gl5 .

( (PARAMETER IN xxx AT yyyy: trace))

If the actual parameter 1s an expression, then

this notation gives the name of the calling

routine, the coordinate of the call, and a

trace of the expression evaluation 16 ().
Note that in the first example given, the

expression MAKELONG(I) is actually another

procedure call, whose tracing terminates about

25 lines later. There is a second example E:
on the next page.

FPARM :- APARM Indicates the correspondence between the formal

parameter and the actual parameter 17 .
- FPARM' := value In the case of VALUE and VALUE RESULT

parameters, this indicates the value assigned

to the local copy of the formal parameter 40 .
'"The local copy 1s then used inside the

procedure 32 .
# Used as the name of an expression which

otherwise has no name £2 .
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AN XYZ (..) = value Indicates the value returned from a function

-“ procedure a (29) This notation 1s
preceded by a blank line to indicate a

return to tracing the calling procedure.

6

.

6

IN

Lb

-

Lb

b
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) 4.3. Details of the Post-mortem Dump

« The post-mortem dump begins with = TRACE OF ACTIVE SEGMENTS © 3
then the complete call chain 1s printed starting with the procedure which

. was active at the point of termination and working back to 1ts caller,

¢ etc. For each procedure, the following information is printed:

a) The name of the procedure(l). The outermost procedure 1s
: called " (MAIN) " and a simple BEGIN block is named "(BLOCK)" .

& b) The names and values of the local variables in the procedure €
Uninitialized values print as "9" § . Local copies of
parameters are named with primes(6). Strings are printed with
a single quote added on each end, but quotes within the string

& are--not doubled. At most eight values are printed from an array,

usually the first seven and last one (9)- Reference values
are printed as Recordclass .# , where # is a unique number

| (In order of allocation). The control variables in FOR statements

C are all distinct even 1f they are spelled the same way. so if

I 1s used in many FOR statements, 1t will be dumped many timed JL .
c) The name of the calling routine and the coordinate of the call 0 : Co

For NAME parameters, a procedure may be re-entered (environment

‘ re-established) to evaluate the corresponding argument @ (3).

6
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PS GRAMMATICAL, DESCRIPTION

In the grammatical description of ALGOL W on the following pages,

\ Roman capital letters, such as A B C D, stand for themselves. A script

. letter, possibly accented, stands for a defined infinite class of symbol

strings; f'or example, &¢ , as defined, stands for the class which includes

the symbols A, B, C, . . . . 7, BA, AB, ...,A9, BA,...,B9,...29, ABA, « ..,

‘ 299, AAAA, . . . . A Greek letter, such as A , stands for a given finite

set of characters.

The symbol | means "or"; if @ is defined as B|c , this means that

¢ a particular inscription is an @ if it is a 8 or if it is a C .

The notation a” , Or equivalently ra)” , means any number (including

zero) of inscriptions, one after another, each of which is an @ . For

¢ example, (a|B} “means A or B or AA or AB or BA or BB or AAA

or . . . . or A, where A means no inscription at all.

The notation a’ means any number (but at least one) of inscriptions,
¢C CL *

one after another, each of which is an @ . It abbreviates M@ . For

example, fal)” means A or B or AA or . . . or BB or AAA , etc.

The notation [Q) means an optional occurrence of @ ; it abbreviates
|

fala)

The notation OB means @ or OF or WA , etc; it abbreviates

arm)”
& |

The notation @ LB means @ and/or 8 ; it abbreviates clelas .

The curly brackets {1 are used simply as parentheses to show the

scope of the above operators.

All other characters, such as / - () / < etc., stand for themselves,

including * and + when they are not raised.
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