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CHAPTER 1

INTRODUCTION

A, Background

The research described here took place at the Stanford Artificial
Intelligence Project during the period 1967-1971. At the instigation
of Principal Investigator, Dr. John McCarthy, the author began a study
of the computer control of automobiles. The study was initially guided
by three major premises:

1. No road modification would be required.

24 Each automobile would be individually automated and would

directly perceive all information needed to operate.

3. Each automobile would be capable of completely unmanned

operation,

These premises were chosen to guarantee that the study would
consider the application of artificial intelligence concepts to vehicle
control. Such a control system, if feasible, would have practical advan-
tages, since it would allow computer controlled automobiles to operate
in conjunction with conventional automobiles without extensive modifi-
cations to the highway systems and without the need for large fixed
control networks. The "sutomatic chauffeur" capability would also allow
various traffic control and automobile storage stratagies of great in-
terest to urban designers,

As the study proceeded, it became apparent that existing research

was not sufficient to allow the definition of such a system. The research



in this dissertation was therefore undertaken to gain more understanding
in three critical and related areas of control: guidance, navigation,
and incident avoidance. These three areas are defined in more detail

in Section B below. Due to limitations of time and money, the level

of investigation varied from area to area. Major emphasis was placed
on problems of guidance and navigation.

The work necessarily involved the design and construction of an
experimental system including a prototype vehicle. The research was there-
fore somewhat constrained by the type of equipment available. However,
the experimental system allowed the author to validate algorithmic assump-
tions, ensure that critical problems were not overlooked, quantify hard-
ware and software requirements, and reduce the amount of conjecture which

is necessarily a part of an effort such as this.

B. Organization of this Study

Chapters II, II1I, and IV cover the three major problem areas in-
volved in driving. The division is made by considering the type of
information which must be extracted from the environment and the nature
of the process required to make use of the information. These areas
are:

1) Guidance - the control of the vehicle's motion along a path

2) Navigation - the selection of paths to reach a goal

3) Accident and incident avoidance.



These functions are required in any system which controls vehicles. In

commercial aircraft, guidance is provided in large part by hardware, while
the remaining two functions are the pilot's responsibility. In automobiles,
all three are provided by the driver. They are explained as follows:

1) Guidance involves the control of the vehicle so that it moves
along a specified path. The path is defined by the environment, although
artificial aids may be provided to make the guidance easier (1 use "art-
ificial aids" to mean things added for no other purpose than to facilitate
guidance, such as painted lines). In aerial guidance, artificial aids
are almost unavoidable; although the path between New York and San Francisco
is defined by the location of the two cities, determining one's position
with respect to that path by direct perception of the cities is out of
the question. In the guidance of surface vehicles the situation is not
so clearcut, and this paper will explore the issue in some depth. The
basic similarity between the cases remains this: guidance involves the
continuous adjustment of the vehicle's controls to eliminate error in the
vehicle's position with respect to the desired path. Except for the
problem of error recovery, it is an essentially algorithmic process,
involving very little information from the environment.

2) Navigation involves the selection of paths, the recognition of
decision points, and the switching of the guidance function from one path
to another at discrete times. Here, as before, there are three choices
of method: dead reckoning, environmental clues, and artificial aids. Dead
reckoning requires very accurate knowledge of path lengths, velocity, time
and direction. In general, it cannot be used alone, but must be combined
with either of the other methods. 1Its attractiveness arises fram its

independence of external sensory input at the time of decision making.
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Decision from environmental clues is the natural way to navigate a
surface vehicle, since it is the presence in the environment of inter-
sections, driveways and the like which require navigational decisions.
Although artificial aids could be provided, existence of the intersections
is sufficient, if we can process the information. The attractiveness of
using artificial aids versus envirommental clues will be discussed in
more detail later.

The distinguishing characteristics of navigation are that discrete
decisions are required, and that a larger amount of envirommental infor-
mation is required to specify an intersection than to specify a path.

3) Incident avoidance suﬁéumes such things as fixed obstacle
detection, trajectory calculation for other moving objects, potential
hazard detection and vehicle malfunction detection. Its distinguishing
characteristic is that conceptual awareness is required in order to
recognize problems and make decisions. This can be seen from the following
argument: The thing that "incidents" have in common is that they are
unplanned, unexpected situati;ns which require the categorization of an
unlimited number of concrete océurrences into action classes based on
the nature of the concrete object and the context of the situation. One
cannot simply provide a list of all possible concrete situations and
instructions for each one. Nor can one provide an abbreviated list and
default instructions for situations not covered. First, the percentage
of cases which are covered is small, and second, general appropriateness
of the default instruction is unlikely.

Not all of these three areas have been explored to the same depth.

The work in Chapter II on guidance deals with a conceptual framework



in which to cast all guidance problems involving complex cues.
Conceptually it bears a close family resemblance to feedback control
theory, but mathematically the two are virtually incommensurable. Each
of the elements of the conceptual framework is analyzed in this chapter
and for the most important elements a few examples of earlier systems are
shown as they would be portrayed in the new framework. An actual working
program is then discussed which carries out the functions described by
the framework and operates the experimental vehicle at the A.I. Project.

The work in Chapter III1 represents an approach to the rough
description of complex scenes for tuse in navigation, allowing for scene
motion, perspective, and edge masking effects. The problems of picture
processing are sufficiently complex that no conceptual framework is
presented here. Rather a particular, although fairly general, method of
picture representation and comparison is presented. The chapter discusses
the major problems to be overcome in a driving-oriented analyzer, and
outlines a particular solution to them. This solution is also represented
by a working program, but as yet the program has only dealt with interior
scenes. The ideas embodied in the program work, but may prove not to
work sufficiently well to drive with the necessary reliability.

The material in Chapter 1V differs from the rest in that it does
not represent the result of experimentation. With the exception of some
work by J. Buchanan at the A.I. Project on obstacie detection by relative
motion, no research in incident avoidance has been undertaken. This
chapter is of a conjectural nature, detailing philosophliical and practical
objections to computer based incident avoidance systéms. It reflects in

part the author's bias against explaining human functions in terms of



aggregates of neurons in the same way that computer functions can be

explained in terms of aggregates of flip-flops.

C. Contributions of this Study and its Relevance to Other Applications

There are several advances contained in this research which stand
by themselves and which have applicability beyond automobile control.
First is the demonstration that picture processing of relatively
complex scenes can take place in real-time. Prior to this study,
picture analysis techniques were not used for applications requiring
rapid results. As a result of this study, new areas of computer
automation can be undertaken with the knowledge that computer processing
is a viable method of real-time control.

Secondly, the framework for complex guidance systems presented in
Chapter II draws more closely together the techniques of feedback
system analysis and programs for computer automation. Formerly, computer
control programs were either trivially simple (conceptually), or
completely ad-hoc. With no formalism behind their structure, the more
complex control programs did not lend themselve to extension, modification
or even comprehension. My control system schema will allow control
systems to be designed and discussed with the same flexibility now
enjoyed by compiler writers as a result of the formalization of compiler
structure and computer languageé.

Thirdly, the development of region analysis and approximate description

of pictures given in Chapter III shows the potential usefulness of picture



analysis in cases where complex visual data must be processed. This
work shows that region analysis permits the rapid extraction of major
picture features without requiring foreknowledge of geometric properties
of the input scene. This chapter also shows that the time required for
region-oriented analysis is approximately equivalent to the time for
edge-oriented analysis, making them equally feasible for real-time
applications.

The last area of contribution is the relevance of the study as a
whole to areas other than computer-driven automobiles. There are at
least two other applications in which reliance on external control aids
is undesirable, and complex decision problems need not be automated. These
are the fields of remote exploration and industrial control.

In the field of remote exploration, the complete control system
must obviously be contained within the mission package. The communications
propagation delay invclved in a Mars mission (up to eight minutes) makes
direct Earth control impractical. How:ver, excessive caution on the part
of the computer control system creates no hazard, and high level decisions
about hazards can be relayed from Earth. The infrequent occurrence of
such high level problems prevents the time delay from significantly
degrading performance. The work of this study could be readily extended
to the automatic selection of a path toward a visible goal, and the
maintenance of a course with respect to a visible object.

In the field of industrial control, this study shows that one could
consider such applications as automatic warehousing or mail delivery without
the necessity of modifying the permanent structure of the building to

incorporate guidance aids. Since the enviromment is restricted and the



employees aware of the nature of the vehicle, hazards can be minimized in

ways not possible in the automatic automobile's enviromment.

D. Experimental Framework

Due to the prior experience of the A.I. Project with computer visual
perception via TV, and Dr. McCarthy's and my be’ief that an imaging
system of perception would be essential to thr task, an experimental
vehicle was equipped with a TV camera from whi~l: most, and if possible
all, of the computer's input data would be obtained. The vehicle itself
was obtained from the Stanford Department of Mechanical Engineering. It
had beecn previously used for a study of remote control problems produced
by the transmission time delay encountered by a vehicle on the Moon
controlled by an Earth operator. My thesis advisor, Dr. James Adams,
of the Stanford Mechanical Engineering Department, was one of the partici-
pants in that study, and was interested in the car study (hereafter called
the CART project) because of its obvious applications to remote
explorations of the planets, where the time delays, varying from a few
minutes to hours, make direct Earth control impossible. My own interest
was engendered by the possible applications of this work to industrial
processes, where up until now automation has been confined to more-or-less
repetitive or mathematically simple operations.

After modification for computer control, the speed of the CART was
about 5 mph or 7 ft/sec., thus establishing a maximum processing time
of a few seconds for any real-time operation. Since the processing was
to be done on the time-shared PDP 10/6 system at the A.i. Project, the
control program would get an unspecified fraction of the available

processor cycles. Thus the programs had to be carefully structured to
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Plate 1. Experimental vehicle
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make important decisions first, to keep the CART from being damaged

in the event of difficulty, while at the same time avoiding unnecessary
stops due to overcautiousness. The maximum program size is 76,000 36-bit
words and the instruction time about 3 microseconds. Use of the maximum
program size results in unacceptable service from the time-sharing system,
so minimization of program size was another goal. Because of the need
for rapid execution, the control programs were hand-coded in FAIL, the

assembly language for the PDP-10.

E. Related Research

The research reported here is to the author's knowledge unique,
in that it deals with a process (driving) which must be carried on
continucusly for long periods with a very low error rate. It involves
a method (picture analysis) which is ordinarily associated with processes
(such as block-stacking) in which the analysis can take place prior to
the initiation of action, with no particular constraint on the time
available for analysis.

The work is set in the context of a great deal of research in
picture processing and computer graphics, work in automatic vehicle
control (primarily of a non-computer variety) and a few studies in computer
"robotics” centered primarily at MIT's Project MAC, SRI, and at the
Stanford A.I. Project. The CART project did not draw upon the sources
to be cited here, since in most cases the application constraints were
quite different, but an occasional thread of a common idea can be seen.

In the realm of picture analysis and description, a éase in point
is the work of Zahn [1]. Zahn covers the problem of reducing a picture

to a structured description without loss of information. He correctly
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recognizes that objects may be described by invariant parameters -
he calls them "signatures" - and notes the problems caused by aberrations
in the input data which change the basic structure of the picture. However,
his description does not consist of signatures; rather he calculates
signatures from the description. The description itself contains all the
information in the original picture. Further, he only considers 2-valued
pictures, and does not propose solutions to the problem of structural
aberrations.

In a natural picture, not only are there more than 2 gray levels
in the input data, but object boundaries are irregular, containing
large amounts of "information" which is worthless, because it is non-
repeatable. The picture description used in the CART project explicitly
throws away a great deal of "information" about the fine structure of
objects. This has the dual benefit of making it possible to store a
great many pictures in a reasonable amount of space (about 200 words for
a 200 x 200 picture), and also attacking the problem of structural
aberrations by selection "signatures" less susceptible to change and
comparing structures of signatures in a way that allows for many such
changes.

Another commonly-quoted work in the field is that of Shaw [2].
This work deals with descriptions of graphs which may be interpreted as
pictures. Basically it is a discussion of an application of conceptual
representation (as modelled by BNF grammar) to graph representation. It
is not applicable to natural pictures, and is also an "after-the-fact"
description more suited to the generation of a picture from a description
than the other way around. By this I mean that the choice of non-terminal

symbols depends on a prior knowledge of the scene - a situation which does
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not obtain in driving.

Both of the preceding works concentrate on orthogonal projections
of 2-D scenes. In the CART work, I treat a scene as a perspectively
transformed 2-D scene - a close approximation for the near field of a
road scene. Under these conditions, a graphical description of a scene
is of no use, since objects change size with distance, and so while the
thinking behind the work of Shaw and Zahn is relevant, the actual
techniques are not. Although some work in 3-D pattern recognition in
ongoing at MIT and Stanford, I do not discuss it here, because I have
no practical way to get depth information, and not enough time to process
it if I did.

In the field of "robotics", or more properly, computer-controlled
manipulators and vehicles, work at MIT, SRI and the A.I. Project should
be cited.

Both MIT and Stanford have computer-controlled arms capable of
simple manipulative tasks. The original work at Stanford was done in
1967 by W.M. Wichman [3]. Various elaborations have occurred since then,
but the basic scheme is the same. Using the known geometric properties
of cubical blocks, and the known relationship of the TV camera to the
scene, Wichman is able to calculate from an input TV picture the motions
of an electric arm required to stack one block on top of another. The
computation takes place in advance of the actual stacking, with the
arm out of the picture. No attempt is made to use the camera to gain
information about inaccuracies in the arm, although repeated tries to
improve the stack are made if required. It should be noted here that

the "feedback" referred to in the title of Wichman's thesis does not
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refer to the motion of the arm, but to the determination of the desired
arm position. The arm is fitted with potentiometers on the joints, and
is servoed conventionally. The major assumptions of this work are
simple geometric scenes, and plenty of time to compute very precise
solutions - none of which apply to a driving situation.

The work at MIT is similar, with the exception of a/program which
moves a bucket in one dimension to catch a thrown ball. Here the problem
is solved in real time, but the input scene is trivially simple. Reports
on this, available to me only by personal conversations in the A.I.
"grapevine' indicate a somewhat intimate relationship between the prob-
ability of a successful catch and the ratio of bucket diameter to the total
length to be guarded.

Besides the work at the Stanford A.I. Project, the only other
significant work in computer driven vehicles is conducted at SRI. Their
vehicle, equipped with a TV camera and an electronic rangefinder, is
described by Nilsson [L4] in a paper submitted to the International Joint
Conference on Artificial Intelligence. At SRI, information is gathered
sparingly from the TV camera and rangefinder (as well as "feelers"
connected to microswitches) and used to build an internal model of the
restricted experimental space. Once this occurs, TV data is only
infrequently required, with most problems being solved by reference to
stored data. Objects in the work space are again simple geometric
shapes, with the research emphasis placed on problem-solving rather than
perception. The work bears a closer resemblance to block-stacking than
to CART research, since there is no real time constraint, and geometric

objects are used.
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One last piece of work in robotics should be mentioned, primarily
because of its wide circulation - it was reprinted in ANALOG SCIENCE
FICTION Magazine. This is the work of Sutro and Kilmer [5] relating to
the reproduction of human neurological capabilities with computers. This
work, among others, is sometimes used to argue that really computers can
be organized just like people and thus it is both economical and practical
to attempt to mimic any human function with a computer. Except for its
emotional appeal to researchers this viewpoint contributes very little to
the methods of solution of control problems by computer.

The third research domain relevant to CART research is the automated
highway studies conducted over the past several years by many groups.
Only a representative study is cited here. Fenton, et al, [6] at Ohio
State implemented a system of lane guidance and speed control using a
buried cable for lateral guidance and a cord stretched between cars for
speed control (to be replaced by a rangefinder in a real system). Fenton's
own assumptions make his approach unequal to the task Dr. McCarthy set -
Fenton proposes automating only limited access highways, and using human
drivers on other roads. As an industrjal acquaintance of mine said "If
you gotta pay a guy to sit there, he might as well do something useful.”
This economic objection to such a partial system is a devastating one,
to which ro satisfactory reply seems possible.

The Ohio State report also suggests that the computers for the
complex decision functions be attached to the highway system rather than
to the vehicle. This negates their own point about the need for gradual
introduction and changeover. If an enormous investment in roads is

required before an automated vehicle becomes usable, the economic incentive



for proceeding is much reduced. The practical problems involved in
surveillance of an entire road for dropped objects and intruders, as well
as the detection of erratic drivers of uncontrolled vehicles also weigh
heavily against this sort of arrangement. At best, the Ohio solution
increases the permissible traffic density on superhighways without
affecting urban traffic congestion, and at worst it encourages drivers
to spend even less time thinking about their driving, with potentially
harmful effects on the accident rate. The functions described in this
study are not sufficient to constitute a total system, and if a
computerized total system is developed, the implementation used at Ohio
State is unnecessarily complex. The CART study shows that a digital
computer system performing the same f.nctions in the framework of a
complete system would require no special road preparation and only a

small fraction of total computer capability.
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CHAPTER 1I

GUIDANCE SYSTEM

A. Introduction
Guidance is the process of making small corrections in a vehicle's
controls in order to keep the vehicle moving along a desired path. 1In
the case of an automobile, the path is specified in some way external
to the guidance system, and this chapter deals only with this type system.
The feedback control system diagram of Fig. 2.1 represents such a system.
Unfortunately, the level of detail of Fig. 2.1 is inadequate to
characterize guidance systems of the type described in this chapter.
In order for the diagram of Fig. 2.1 to be useful in explaining a
system, the processes represented by each of the blocks in the diagram
must be simple algorithmic transformations. In the case of recognition
of road edges in high noise level enviromments, the transformations
from the actual road edge location to an internal representation used
by the control system may be quite complex. The transformation may
invclve alternate strategies based upon adaptive parameters, sequences
of heuristic approximations, or selective use of input data based upon
prior experience. The formalism of Fig. 2.1 is not sufficient to discuss
such areas.
Fig. 2.2 is an alternate scheme of describing control systems
which allows for complexities in the sensor and control transformations
and provides a convenient framework from which to discuss them. Section
B of this chapter is a discussion of the elements of this framework as
they peréain to general vehicle control, while Section C focusses upon

the particular vehicle used in this study. Fig. 2.2 tacitly assumes

16



Sensed

position
Sensor L
Control and Vehicle
+ B— actuators o4 dynamics P
Actual
Desired
position l position

control system e@—ro | — = physical device

Fig. 2.1 - Feedback Control System

17



desired position

Fig. 2.2

18

current
commands
control
equarions control
q - future B 4 future
gererator control g
actual !‘ comminds
feature
location ‘
guiding feature \.]
description . future
control loca-
search coefficients tions
method #
picture = model corrector command
analvzer :]"—‘ queuve
> l confidence ‘
t level
VAN [';"‘ commands
i
expecred vehicle motion
feature equations coeffi-
location cients
. motion future & .
_.E_. predictor motion o
H 1
picture
vehicle physical
position vehicle device
camera dynamics




that guidance is a continuously maintained process. Since all
processes must start, and many must restart after errors, Section D
discusses error recovery procedures and ways to buy extra time for
€rror recovery processing to take place. Section E is - collection of
simulated vehicle runs illustrating various features of the actual CART
vehicle control program, which evolved from the considerations of
Sections A, B, C, and D.
A.1 System Theory and Guidance with Complex Sensors

By applying the mathematics of system functions to the diagram
of Fig. 2.1 one can calculate the dynamic response of the system it
represents. If the sensor is simple enough, its output is some
mathematically reasonable function of its input, and the system function
can be easily calculated. If the input is complex, as it is when using
a TV camera to guide a road vehicle, the mathematics of the sensor and
accompanying analysis program is no longer reasonable. For the purpose
of determining ideal system response, the sensor complexities can be
assumed away, but the resulting theoretical vehicle motions bear little
resemblance to those actually observed. In a complex problem such as
computer vehicle control, the approach of Fig. 2.1 is of little
value, since most of the common assumptions underlying feedback system
design are invalid. Typically, the forward path system function is
assumed to be only approximately known but nonlinear. Normally,
the forward path is not considered to be time-varying, thus allowing
any serious offsets to be compensated for once and for all. The
feedback path is almost always some simple passive system with low
noise and excellent linearity. The whole point of the feedback approach

is to gain for the entire system the noise reduction and improved
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linearity made possible by the dominance of the feedback element in the
overall system function.

In the present study, none of these assumptions are valid. In the
forward path, the system function is affected by many factors outside
the control of the system designer. Changes in vehicle loading, wind,
rcad surface composition, road tilt, and aging of the vehicle and its
actuators will all introduce variations in the forward path transmission
function. An unwary designer might try to swamp out these factors by the
use of large loop gain. However, the random error in the sensor and
associated algorithms is appreciable, and large loop gains would couple
this error into the system with large magnitude. For this reason, the
loop gain must be kept low, and the errors in the forward path compensated
for by adaptation of control parameters. The approach of Fig. 2.2 makes
this process explicit.

In Section C, along with the system developed for the Stanford
experimental vehicle, a hypothetical system using photocells is discussed.
This is done purely for the purpose of illustrating the scheme of Fig. 2.2.
My schema is not intended to deal with systems for which the methods of
Fig. 2.1 are adequate. My schema applies to control problems in which

1) the characteristics of the dynamic elements of the

system are not measureable or are time-varying, or

2) the sensor reliability is not good, or

3) a requirement for continuity of operation does not

permit "retuning' of the system to cope with varying
conditions.

Fig. 2.2 does not imply a necessary commitment to computer control,
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although this study deals only with computer control. As a Practical
matter though, I would expect that most systems complicated enough to
benefit from this approach would be computer systems.

With the purpose of the scheme of Fig. 2.2 outlined, let us proceed
to a discussion of the roles of the various elements of that figure.
In the next section I will treat the elements in a way appropriate to
generalized vehicle control systems. This treatment could be generalized
still further to deal with other types of control problems, but in the
interests of explanatory clarity I have not done so. 1 leave for Section

C the application of Fig. 2.2 to the Stanford experimental vehicle.

B. Design Criteria for Guidance Using Complex Sensors
Bl. The Picture Analyzer
The purpose of the picture analyzer in Fig. 2.2 is to find the

guiding feature in the input picture. Four pieces of information
completely describe the picture analysis system.*

1) the nature of the feature to be found

2) the search algorithm used

3) the expected location of the feature

4) the confidence level of the expected location.
One must choose which portions of this information to "build in" to the
system, which to let the operator select, and which té make program-

modifiable. Clearly, making these items program-modifihble results

*0f course, one could replace 3) and 4) with a probability map of the
entire picture showing the probability p(x,y) that the guiding feature
was at location (x,y), but it would take as long to search the map as
to search thepicture so there wouldn't be much point. Fortunately,

p(x,y) 1is single humped, so 3) and 4) really contain all the. important
information.
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in the most flexible system. However, the high level processing

required to make appropriate modifications is time-consuming and may

in fact be impossible. At the other extreme, a simple photocell

tracking system, such as the one described in Section C, has all this
information built in at construction time. However, the resulting system
is so inflexible and lacking in error recovery that it is almost useless,
except in trivial applications. A more reasonable method is to "build
in" a selection of algorithms which identify the types of feature; required
by the particular problem and have the operator choose the correct
algorithm for each particular application. Alternatively, the operator
can "point out" the guiding feature and have the computer cycle through
the algorithms to find the one which works best on that feature. Either
of these methods are equivalent to selecting items 1) and 2) in advance,
since the algorithms are written in advance and only work for specific
types of guiding features. If during operation something new comes up,
the system will not be able to use it for guidance. These methods are
attractive when the desired guiding features have gome nice mathematical
description which results in fast algorithms.

If the features have no nice properties (for example, suppose the
feature is an irregular hole in the ground, and one wishes to circle it
at constant radius) then an alternate technique is to "build in" some
general search algorithm (such as 2-D correlation) and feed it a mask
corresponding to the feature involved. The masks can either be provided
by the operator, or a higher level program can generate them by examining
the guidance feature selected by the operator. It should be pointed out
that the use of correlation techniques in a real-time control makes a

heavy demand on the prediction portion of the system, since the time
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involved in a large computer correlation is unreasonable. Thus the
predictor's confidence level must be high enough to restrict the search
space to a relatively small portion of the picture.

In all cases, items 3) and i) are calculated by the system, since
they change dramatically during operation, and it would make no sense

to try and fix them beforehand.

B2. The Motion Predictor
The function of the motion predictor is to use information about
the real system dynamics to predict where the guiding feature will be
in the input picture when the picture analyzer is next activated. This
enables the use of a wide-field sensor without complications introduced
by spurious objects resembling the guiding feature. It also permits
more exhaustive picture analysis by restricting the area over which the
analysis must be applied. It should be mentioned here that a wide-field
imaging sensor such as a TV camera with a wide-angle lens is virtually
indispensible for higher-level processing such as error-recovery, and is
certainly desirable even for tracking (since it permits the guiding
feature to move large distances in the field of view without requiring
mechanical tracking).
The prediction is determined by four items:
1) the structure of the vehicle's motion equations
2) the coefficients of the motion equations
%) the current position of the vehicle
L) the control inputs to the vehicle.
The structure of the equations is a function of the geometry of the

vehicle and cannot in general be deduced from an analysis of the actual
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motion. Since the system is designed for a particular vehicle, the most
reasonable approach is to "build in'" the structure of the equations.

The current position and control inputs are of course calculated
by the program, since they are the primary input and output of the whole
guidance system.

A further use of the motion predictor is to improve system
performance by predicting into the extended future where the guiding
feature will be. Then if the picture analyzer fails to find the guiding
feature, the predictions can be used to keep the vehicle in motion
while higher level processes attempt to relocate the guiding feature.
This kind of low-level error recovery is essential to provide reliable
driving performance. A delicate balance must be struck here to prevent
the actual disappearance of the guiding feature from being ignored too
long, while at the same time avoiding frequent halts due to temporary
interruptions in the guiding feature (for example, breaks in a line on

a road).

B3. The Control Generator

The control generator corresponds most closely to the conventional
feedback control system. It constructs an "error signal" which is fed
to a set of control equations of the form

C=aE+ a(aﬁ/ét).
Where C 1is the steering wheel angle, E 1is the lateral displacement
from the desired position, and o and B are the displacement and
displacement rate control coefficients. 1In the actual control,

3E/dt 1is replaced by the angle between the guiding feature and the



longitudinal axis of the vehicle. This is an equivalent, but much less
noisy, rate measure than differences of successive values of £ . The
four relevant pieces of information are, of course:

1) the control equations

2) the control coefficients

3) a description of the desired spatial relationship of

the guiding feature and the vehicle
4) the actual relationship of the guiding feature to
the vehicle.

In most controllers, all of these except the actual relationship are
built in, with possibly the desired relationship adjustable by the operator
over a small linear range. In a general-purpose programmed controller,
not only the value of the desired relationship (the linear spacing from
a line, for example), but the nature of the relationship would be
variable (i.e. changing from circling a point at constant radius to
remaining equidistant from two markers). At the very least, the
coefficients of the control equations must be program-variable if the
vehicle is to function in spite of variations of a factor of IOQ in
speed, a factor of 10 in traction, and a factor of 10 or more in man-
euvering room available.* The kinds of tracking refponse needed under

these widely varying conditions would be difficult to obtain with a fixed

system.

* Freeway speed: 70 mph

Parking speed: 0.7 mph
Coefficient of friction

of dry road 1.0 (approx.)

of icy road 0.1 (approx.)
Maneuvering room available

on 10 ft. freeway lane 2 ft

in parking space 3 inches

25



In conjunction with the motion predictor, the control generator
can be used to generate lists of hypothetical commands to be used in

the event of difficulties or delays in picture analysis.

Bi. The Model Corrector

The function of the model corrector is to change the internal
parameters of the program so that the computer’s control and predictions
correspond more closely to the behavior of the physical system, and
compensate for any errors in the hardware. This is at best an inexact
process, since the number of imprecisely known physical constants is larger
than the number of reasonably noise-free measurements that can be made.
For example, in our robot vehicle, there were originally seven imprecisely
known variables (the offset and proportionaiity constant for each of
three controls plus the vehicle speed) and only four measureable variables
(the value and first derivative of the slope and intercept of the line
being followed). Two sorts of approximations can be made to improve the
situation. The first is to use one's knowledge of the physical system
to select the parameters most subject to change and adapt only those.
With this method, the other parameters must be carefully calculated before-
hand. The other method is to divide the responsibility for measured error
among thke possible sources according to some fixed scheme, and adapt
all the parameters. If the parameters are recursively low-pass filtered
(as they must anyway to reduce the effect of random errors in measurement ),
the immediate effect of adaptation errors will be small and the system
may eventually converge.

On the other hand, the system may become trapped in various local

optima with relatively gross errors in certain parameters. An example
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of this might be the following of a left-curving line. If the prediction
is made assuming that the line is straight, the control equations will
adapt to allow for a right offset in the wheels. Then when a sharp

right turn is called for, the left offset in the model will prevent a
sufficiently sharp turn and disaster will result.

For this reason, certain key parameters may have to be left
unadapted, even if they are wrong. At the very least, stiff bounds
must be placed on the amount of adaptation allowed. Additional
reliability can be obtained by designing the physical system with fewer
sources of error. For example, the A.I. Project CART was redesigned
with only three imprecisely known constants, which improwved performance
greatly.

I have discussed the main elements of the system shown in Fig. 2.2
from the point of view of overall design, flexibility and purpose. Let
me now re-examine these same elements as they were specifically applied
in the CART project. In this connection, certain hardware systems will
be discussed in terms of the equivalent programmed systems in order to
bring out their fundamental nature.

C. Guidance Algorithm Details
Cl. Picture Analyzer

A simple 2-photocell tracker, such as shown in Fig. 2.3 has the
voltage-displacement relation shown in Fig. 2.4 when illuminated by a
point source of light (a light “impulse.function"). The output function
when tracking a line appears as shown in Fig. 2.5.

The distance "L" is the line width, 'W" is the photocell width,
and x is the distance from the center of the line to the center of the

photocell pair. Such a sensor would ordinarily be used to keep the line
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centered at x = O. Looking at the same tracker in a slightly different
way, Fig. 2.4 can be considered to be the mask in a correlation

function, and Fig. 2.5 would then be the output of the correlation

process. The displacement error can be obtained by inverting Fig. 2.5

and determining x directly from the value of V. Unfortunately, the
function is only single-valued for l X l < L. Further, correct functioning
of the tracker requires that the line remain of constant width, that the
line never move farther than W away from the center location, that no
other objects be closer to the line than 2W, and that the brightness of

the line never change (due either to a change in illumination or a change

in the reflectivity of the line). Some of these requirements merely ensure
that the gain of the system will remain constant, thus preserving stability.
The requirements about spurious objects and aboutthe motion of the line

in the field represents a fundamentally damaging tradeoff, however.
Basically, one is forced to choose between requiring a large clear area
around the line so that the photocells see no other objects, or requiring
very accurate small-deviation tracking to get by with small values of 'W".

Let us now consider a better mechanism for doing the same job, and
then extend the mechanism to draw some conclusions about recognition of
simple features,

A straightforward way to find a line (which in one-dimensional cross-
section appears as a box function) is to convolve it with a box mask
function and take the maximum as the location of the line. Although the
value of the maximum changes with level shifts and with scale, its
location does not, and the location, not the value, is what a controller

needs. Also, if the box mask is of width W, objects farther away from
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the line than W will not affect the maximum. Thus the width of the
clear space around the line and the total width of the sensor field need
no longer be traded off against each other. It should be noted that the

maximum referred to must be a local maximum otherwise a 1-D cut such as

B Intensity (V)

A T
& X

would be analyzed to detect B as a cut through a line, but would never
find A. Searching for local maxima is equivalent to using a mask

function of the form

instead of
N I I

but the two approaches are otherwise equivalent.

Since both the slope and intercept (equivalent to the displacement
rate and displacement) of the line are required to ensure stable control,
two 1-D cuts across a 2-D picture are required. This introduces the
additional complication of ensuring that the maxima found on the two

different cuts are both part of the same line. After all, the picture
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may contain all sorts of additional objects besides the line we are
looking for. Fig. 2.6 is an example of such a picture. Here, the
blobs marked A, F, and G do not belong to any line, whereas BC and
DE are lines, with points B, C, D, and E being the intersections
of those lines with the 1-D cuts used for correlation. If the prediction
portion of the complete control system were operative, part of the
picture would be excluded from correlation because of the impossibility
of the guiding feature's occurring there, based on its previous position.
If the guiding feature were the line BC, the vertical dotted lines in
Fig. 2.6 indicate the area that might be excluded from consideration.
Thus the correlation process does not even consider line DE or the points
F and G. The point A on the top cut is within the predicted limits,
however, and from the 1-D information there is no way of telling whether
the guiding feature actually passes through A and C or through B and
C. In order to quickly resolve the ambiguity, a number of points between
A and C, and between B and C are checked. 1In order for a line to
exist between A and C, the points marked ® would have to be bright,
while the points marked "." would have to be dark. Since the "." points
are bright, AC can be rejected. When the same test is applied to BC,
it passes. This test of a representative sampling of points does not firmly
guarantee the connection of B and C, but it is an extremely efficient
way of rejecting AC, since only a few points need be considered. If
the number of points checked is sufficient, the heuristic is enormously
successful, and the computing time saved is well worth the small risk.

But suppose the feature we wish to find is not spatially limited.

If we wish to find an edge, we cannot convolve with another edge, because
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the integral is unbounded, nor can we convolve with a section of an edge,

such as

since if the picture is actually

the edge will be improperly identified.

An interesting solution comes from Laplace transform theory.
Recalling that multiplication in the s-domain is equivalent to convolution
in the t-domain, and that taking a t-derivative is equivalent to multiplying
by s, we arrive at the following theorem, which is well known but slightly
restated for the present application:

Theorem: If _/(f(x)g(x-t)dx is maximized at the desired

feature point of f(x) and F(x) = Jff(x)dx, then Jf'F(x)G(x-t)dt

will be maximized or minimized at the same point if G(x) = g'(x).

Thus if F is I then f is L

(approximately). The appropriate function for g is 1

thus G is r_]__J*7 or -L_j-1 to maximize

rather than minimize the correlation. Since the integral in the above
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theorem is over infinite bounds, the general scheme for finding the
convolution function to use to isolate any particular guiding feature
F(x) is as follows: Compute the n-th derivative of F, such that n
is the smallest number resulting in a derivative which is zero except

in the region of interest. Convolving this function with itself will
obviously result in a maximum at the guiding feature. 1If this function
is differentiated n more times, to produce the function G(x), the
integral ’er(x)G(x-t)dt will be maximized at the desired location. Of
course, as n becomes large, the effect of noise on F and the effect
of approximating G will make the scheme less effective. Even so, it
suggests an algorithmic method for computing the convolution mask for an
arbitrary guiding feature.

In two dimensions the problem is much the same, except that the
mask is two-dimensional and the values may be calculated using gradient
techniques rather than derivatives. For computational simplicity, one
may as well calculate the mask using the derivatives (differences) taken
along the path used by the innermost loop of the 2D convolution
algorithm.

In our actual robot vehicle, the generality discussed here was not
implemented. To save time, the convolution masks derived here were hand-

coded and the appropriate algorithm was selected by the operator.

C2. The Motion Predictor

The motion predictor is used in conjunction with a wide-field sensor
in order to reduce the amount of data which must be analyzed. It uses
the equations of motion of the vehicle and the known control inputs to
Predict the future location of the guiding feature.

The actual equations for the vehicle's motion (only slightly idealized)
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are a system of 12 non-linear equations in 12 unknowns, some of which
cannot be controlled or measured by the computer. Various unknown
constants also occur, such as the wind velocity, and the road coefficient
of friction. 1In order to simplify this system, the assumption has been
made that the vehicle is in effect a slow-speed bicycle. Thus it moves
in circular paths such that the front and rear wheels are tangent to the

circle. The resulting equations are:

<

Vi = V(sin 8) Y

Vy = v(cos @) G‘

3 a/at = v/w 6 Ay

Fig. 2.7 Rk

For this particular vehicle it is possible to ignore the effects of
centripetal force and linear acceleration, as well as the actuation lags
in the controls. For a higher-speed vehicle, the equations would
necessarily be more complicated.

To predict the motion in the camera image coordinates, one must also
have equations transforming from ground to image coordinates, as well as a
function describing the angle § in terms of the binary output of the
computer. The first is straight forward perspective'geametry, and the second
is a function of the particular hardware control transmission scheme, so
neither will be discussed here. See Appendix I for a description of the
hardware portion of the control scheme.

The primary errors in the motion predictor, aside from those
introduced by the simplification of the equations, are errors in § ’

€ and V. Differences between the actual and expected values of § show

UP as variations in the rotation rate of the vehicle during turns.
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Variations in the camera azimuth produce erroneous measurements of o |
which show up as mistaken pPredictions of X, Y, and 6. Errors in v show
up in both places, but fortunately errors in v are of small percentage
value, typically no more than 10 percent, since V is an approximately
constant positive number. Both § and 6 can be of either sign, so
errors of small magnitude can have quite a large percentage effect.

A record of the past successfulness of prediction is kept in the
model corrector, and is used to set the confidence level of the
predictions made by the motion predictor. The confidence level is used
in the picture analyzer to decide how wide an area around the prediction
to analyze. The scheme currently used is to analyze an area as wide as
four times the error last time through.

The motion predictor, when used on lines, is able to predict the
position of the line to within 10 percent of the full image width, even
with large motion of the line in the scene. If used in the same way in
two dimensions (circling a point for example), it would thus permit a
factor of 100 saving in computation time. Since the entire guiding process
takes about 100 milliseconds per iteration, and is repeated once per second,

this is the difference between success and failure.

C3. The Control Generator

It should be clear from the motion equations given previously that
the vehicle is a 1/é2 plant with respect to position control. Thus
the control algorithm must include error rate as well as error information.
In the photocell tracker described earlier the rate information is obtained
by displacing the sensor forward from the center of rotation, thus

cambining rotation as well as displacement information in the single sensor
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input. The relative signs and magnitudes of the two terms are fixed
by the geometry; in particular, such a vehicle cannot back up using the
same sensor, because the rate information will have the wrong sign. 1In
the A.1I. Project system, the angle (rate) and the displacement of the
vehicle from the desired path are separate outputs of the picture analyzer,
and I am therefore able to combine them as I wish.

The actual control used is 6 = a8 + g(x - x,), where both «
and B are functions of the distance moved between picture analyses
(%o is the desired lateral position with respect to the guiding feature).
Since 3x = 3s(sin e), and 3@ = asa/w, both the error and the error
rate increase with both vehicle speed and the time between analyses., Both
o and B must be reduced to maintain control. At higher speeds, one
must correct position errors with smaller convergence &ngles to avoid
overshoot, implying lower values of B . Due to the discrete nature of
the system, it will inevitably oscillate around its path while converging
to the desired path, so o must be kept small to avoid large amplitude
limit-cycle type oscillations during this process. Further, each term must s 4
be bounded in order for convergence to take place with large initial errors.
For example, if & = 1 degree/degree and B = 5 degrees/foot, then an
initial error of 10 degrees divergence plus 10 feet displacement would
produce a 60 degree correction, which would only succeed in driving the
vehicle in a small circle. Runs 14 and 15 in Section E of this chapter
illustrate both effects in exaggerated form on a simulator.

The other possible benefit of variable parameters is that they

allow a tradeoff between steering precision and computing time, lateral
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acceleration and rapid response.*

Ci. The Model Corrector

In the current system, the model corrector is the most ad-hoc
element. This arises from the previously mentioned excess of errors
over error measurements. To illustrate, a steering angle of 8y may
be expected to produce a rotation rate of a = vl*al/w, but instead
produces a rotation rate of fo. Is this because the actual angle was
65, or because the speed was Vo? Similarly, an error in expected
position may be due to speed error, initial 6 error (due to camera
rotation) or an error in either the front or back wheels. Thus one
cannot accurately determine the source of error. The original approach
was to calculate a new estimate of each error based on the old estimates
of all the other errors, and incorporate the estimate into the model with
recursive filtering of the form P =WE + (1-W)P with W in the neighbor-
hood of .1. This allows the er.ors to change slowly, and provided that
the initial estimate is not too bad, the system will eventually converge.
Unfortunately, there is no way to make a good initial estimate, since
the errors are unknown. To improve this situation, the original vehicle
was redesigned to have only one pair of steerable wheels, and the wheel
steering mechanism was arranged to eliminate drags during turns, which

was a prime source of speed variations. This left the camera pointing

*Choosing o and R for sluggish response gives poor tracking per-
formance, but since X and ¢ change only slowly the control need
not be updated as often, resulting in a savings of computer time. On
the other hand, very accurate tracking will result in higher lateral
accelerations of the vehicle to maintain close displacement tolerances.
This might be of importance when changing between highway and urban
driving, or when computing time is needed for higher level processes.
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mechanism, the steering and the vehicle speed as the three prime
sources of errors. The two most significant of these, the camera
azimuth and the steering wheel angle were chosen for correction. Speed
€rrors were not corrected, for reasons explained in Section C2. 1If we
assume corrected values for everything but § and W (camera azimuth),
we can calculate § and W from the measured motion of the vehicle as

follows, by inverting the motion formulas.

If d6/dt = v§/w

e
then O - 8 =]t vé/W dt = (va/w)(cf-ci)
but if § =

i
6 + 8¢ j{bhere 6 1is the expected value and ée is the

and g = p + 8o steering error, and similarly for & and 8

then
O = 83 = (V(8 + 6¢)/W)(tget;)
or
be = [(W/V)((8g - 05)/(tg-t;))] - 6
and

n

6 (WA )((eg - 65)/(tg-t;))
now using the formula for x coordinate motion given in Fig. 2.7 (assuming

that the guiding feature is along the y coordinate , we obtain

dX/dt = v sin 8(t)

t
£
Xg-Xy = v/ sin[6; + (vbt/W)] dt
t
i

(-W/6) cos (8 + (vst/w)]

]
"y

(-W/6) [cos(8g) - cos(e,)]

now using a trigonometric substitution
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Xg-Xj = (2W/6)sin((6g + 04)/2) sin((6f - 04)/2)
if we recall that § is already known, and using 6 = € + 6,, we get
Xg-X; = (2W/8)sin((6¢ + 05 + 26¢)/2) sin((0f - 4)/2)
For our vehicle (8f - 65)/2 = v6t/(2W) has a maximum magnitude
of (0.8) (0.5) (1.0)/2(3.0) = 0.067 radian, so the substitution
sin(x) = x can be made without significant error, yielding
Xg-Xj = (W/6)(6g - e;)sin((0g + 6; + 28,)/2)
Solving for 6. we get
9 = sin [ (8/W)((Xg - X;)/(8¢ - 0;))] - (05 + 8 )/2)
where all the terms on the right hand side are known.
At this point the two error terms are fed back into the motion predictor
by weighting the new error values with the old ones and thus calculating

updated values of the errors, as described earlier.

D. Guidance Error Recovery

Dl. Sources of recoverable error

We have discussed all of the pseudo-linear aspects of the guidance
problem, but there is one eventuality that we have not considered. What
happens if the picture analyzer is unable to identify the guiding feature?
The absence of the guiding feature will obviously be noticed, but what will
the controller do about it? The most obvious response is to stop the‘vehicle,
but it would be desirable to avoid this if possible, and in any event the
system must be able to get started up again samchow. There are several
possible reasons for the disappearance of the guiding feature from the input
picture (besides the obvious one - namely that there isn't any guiding
feature anymore). The illumination level of the scene could have changed,

so that the guiding feature brightness is no longer within the range accepted
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by the input hardware. Or perhaps the portion of the guiding feature
that the analyzer is considering is obscured. Lastly, the predicted
location of the guiding feature might have been in error, a particularly
likely situation if the guiding feature has sharp turns in it, which the
predictor cannot know about.

Two methods of handling the problem are possible. One is to try
all the possible combinations of intensity and screen location in parallel.
This way, if the guiding feature is in the field of view at all, one of
the combinations will result in a successful analysis, and the controller
can use this one for guidance. The trouble is that the computer is a
serial device, so we really have to try the combinations one after the
other. On the PDP-10, it takes about 10 seconds to do this, which is
somewhat too long even for a slow vehicle such as the CART.

The second approach is to try only one combination - (the one¢ that
worked last time) and change it only if it fails this time. With this
approach, the controller can operate smoothly in areas where the p:cture
intensity does not change and the guiding feature is sharply outlired and
smoothly curved. Even in the event of failure, there is time to try a few
different combinations of brightness and screen location (about 5 ¢r 6
combinations), before it is time for the next iteration cycle to begin.
1f the order of trying the other combinations is correct for the perticular
experimental setup, the right one will often be hit before the time is
up, and the vehicle can proceed without interruption. With the CART
vehicle, the most common problem is that a shadow has changed the cverall
intensity of the picture, so the CART control program tries this correction

first. The next most common problem is that the shadow is so deep, or the
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light so bright that the TV camera simply cannot resolve that area of
the screen at all. 1In this case, the expected location of the guiding
feature is extrapolated up and down the picture, and the picture
analyzer looks for a section of the guiding feature above and below the
area it had checked first. Only if all this fails does the control program
throw out the prediction and analyze the picture as if it had ne prior
knowledge of the location of the guiding feature.

By now, however, the vehicle will have halted, even if the guiding
feature was in exactly the right place. 1In order to provide fewer
interruptions, more time must be provided for analysis before the vehicle

halts. This leads us to the last box in Fig. 2.2

D2. Command Enqueuing

Obviously, if one has sufficient confidence in the predictions of
the future position of the guiding feature, one need not look to make sure
that it is actually there. One can use the predicted location as the
basis for control. Even with a samewhat inaccurate prediction the
resultant control is better than continuing with the old settings of the
actuators. However, there are organizational problems involved in
getting part way through the combinational process described in Section D1
and then dropping it and using the prediction instead. For this reason,
in the CART system each actual measured value of the guiding feature
location is used first to derive control settings, followed by a prediction
of the future guiding feature location based on its current location and
the new control settings. Then the predicted value is used to compute

future control settings, which are in turn used to compute future locations,
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and so on. The depth of the process depends on the current accuracy of
the predictions. All of the control settings thus obtained are enqueued
one after another, and are extracted at regular intervals to actually
steer the vehicle. Only when the queue is completely used up does the
vehicle halt. In the normal course of events, when analysis is proceeding
successfully, only the first element in the queue (the one derived fram
actual measured guiding feature location) is used. By the time that the
second element would be taken from the queue, the entire queue has been
replaced by a new queue based on the next measured feature location, so
the remaining elements are discarded without being used. Only if the
picture analysis takes longer than the iteration interval does the vehicle
actually use the predicted values of control settings. These can be good
for several seconds of motion, and take very little time to calculate,
compared with the time involved in picture analysis. Their effect is to
improve system performance dramatically when the guiding feature is fairly
straight, but difficult to see. On curves, the predictions are poor, so
the queue is short, which is just as well, since the predicted control
settings are also poor, being based on a straight line extension of the
guiding feature. Section E contains some runs illustrating the effect of

the command enqueueing mechanism.

E. Experimental Performance of the CART Guidance System

The guidance system for the CART successfully drives the vehicle at
a speed of about 1.2 ft/sec. (0.8 mph) along a path laid out to approximate
a white line painted on a road. It also can follow the same path while
guided b& the parallel edge of the adjacent building. The program acquires

the line at the beginning of the run without manual intervention, compensates
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Plate 2. Taved line used for guidance experiment




for variations in illumination (shading) during the run, and stops when
the end of the line is detected. Due to the difficulty of collecting
statistics about the actual vehicle, the data given here comes from a
simulation, written in ALGOL, which includes most of the control aspects
of the actual system. What is omitted is the actual picture analysis, the
algorithms for visual accommodation and the failsafe portions of the
control, since the picture analysis cannot be conveniently simulated

and the fail-safe features do not show up in normal operation. For a
discussion of accommodation see Tenenbaum [7].

The experimental conditions simulated are as follows: The vehicle,
with a wheelbase of 3 feet and a turning circle of about 12 feet, is moving
along a marked path at 1.2 ft/sec. Pictures of the path are taken every
second (simulated by a table look-up) - if the vehicle is speeded up,
they must be taken more frequently. For simplicity's sake, the simulated
runs are drawn with the desired position on top of the marked guiding
feature, although the actual program is capable of maintaining any desired
offset with respect to the guiding feature. The curve radius and path
length are given for each run as an aid to grasping the scale of the
presentation - the length of each run is 4O or 50 seconds (if the actual
vehicle were to do it - the simulator takes only 1 or 2 seconds).

The picture analyzer returns both the (simulated) perpendicular
spacing of the vehicle from the guiding feature and the (simulated)
rotation of the vehicle with respect to paralleling the desired course.
These two kinds of errors are weighted and caombined to determine the angle
of the steering wheels during the next iteration interval. The formula

is: <steering wheel angle> = <steering displacement sensitivity> *
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“perpendicular displacement error> + <steering angular sensitivity> =
<rotation error>, Obviously this formula cannot be applied literally,
since the potential displacement error is unbounded. In the guidance
system, an upper bound is placed on the size of the steering angle which
may be generated by displacement error. This is the "displacement
correction limit" given in the simulated Presentations. The hardware
places a limit on how sharply the wheels may be cut - this is the "maximum
correction". The effect of the maximum correction is only felt on corners
sharper than the turning radius of the vehicle, but the displacement
correction limit has a much stronger effect. For large displacement
errors, the displacement error correction term is held fixed by this limit,
and the vehicle rotates toward the guiding feature until the rotation error
is large enough to counteract this fixed amount. Thus from large distances,
the vehicle approaches the guiding feature from a fixed angle determined

by the size of the displacement correction limit and the steering angular
sensitivity. This is shown in Run 1.

Steering error and camera error are offsets in the pointing of the
wheels and the camera. The controller initially assumes that 0 degrees
for the wheels and the camera is straight ahead, but errors in the hardware
make this assumption often invalid. Several of the runs show the effect
of these errors, and what can be done about them.

"Maximum displacement error" and "Average magnitude of error" are
performance statistics gathered for each run on the simulator, and should
be self-explanatory. "Average width of field of camera" is somewhat more
complex. Basically, if the guiding feature has been located in the camera

image field, and a certain course correction is ordered, it is possible
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to predict where the guiding feature will be next time the program looks,
based on an internal model of the vehicle behavior. Since the model is
imperfect, and the guiding feature has a shape unknown to the program,
the prediction is not perfectly accurate, but it indicates a general area
on the image which should be analyzed next time, while ruling out other

areas. Since the processing of the visual data is the Prime computational
task involved in guidance, in terms of elapsed time, even a small
reduction here shows up directly in the computational efficiency of the
system. The statistic shown in the runs is the average percentage of

the visual field which was actually searched during the run - a score of
20 percent indicates a 5 to 1 reduction in computing time for the actual
system. In the simulation, the minimum field width that was allowed to

be analyzed was 10 percent, in order to avoid narrowing the analyzed field
so much that the first curve would put the guiding feature outside the
limits of analysis.

In the simulation, on the runs where the internal model was not
corrected during the run, predictions were not used either, so they got
100 percent visual field scores. This was unnecessary - predictions fram
an uncorrected model can be used, and the results are no more than 50
Percent worse than for corrected models, depending on the amount of
difference between the model and the actual vehicle.

Let me now proceed to a discussion of the actual runs and what they
point out about various aspects of the control scheme.

RUN 1 -

This run represents the ideal behavior of the system in correcting

a large initial error. The vehicle was started up parallel to the desired

track, and 5 feet to the right. The vehicle turned toward the line until
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a reasonable aporoach angle was obtained (0.25 radians, to be exact), and
then drove toward the aesired track in a straight line. When the error
became less than 1.67 feet, the vehicle gradually turned to parallel the
desi red track.

RUN 2 -

With the same initial conditions as RUN 1, but with a 0.1 radian
offset to the right in the steering wheels, and a 0.1 radian offset to
the left in the camera azimuth, the performance is considerably degraded.
These errors, about 5 degrees, are just barely noticeable when looking at
the actual vehicle, and maintaining the long term pointing accuracy of
the controls to a closer tolerance than this is unusual .,

Same as RUN 2, but with the corrective and predictive portions of
the control system in operation. The error is compensated for the first
10-15 feet of the run, and thereafter convergence occurs nommally. The
averaging time for error correction has arbitrarily been set at 10 seconds.
Less time makes the correction terms too noisy, and more time hurts the
ability of the corrector to improve performance on curves (see later runs).
RUN 4 -

Here a curve of constant radius, with zero initial error and
perfectly aligned controls. The steady state error is 0.6 feet.

The same conditions as RUN i, except with the corrective and
predictive system active. Although there are no actual errors in the
controls, the corrective system finds some, based on the expectation that
the guiding feature is straight, when in fact it is curved. Thus some

corrections are made internally, and the effect is better curve-tracking,
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but for all the wrong reasons. Here the steady state error would go to
zero if the curve was long enough.
RUN 6 -

Here is a run with some actual camera and steering errors, and no
correction. The performance is quite bad, and for a 6 foot wide car in
an 8 foot lane this would result in inability to stay in the correct lane.
RN 7 -

Same as RUN 6, but with predictive and corrective systems working.
Again, steady state error tends to zero.
RN 8 -

Here we see a complete turn with straight sections at both ends.
Performance is not so good, even with perfectly aligned controls.
RUN 9 -

Same as RUN 8, but with predictive and corrective systems running.
Here we see the effect of the corrector's misperception of the source of
the displacement error. During the turn, the corrector was busily adapting
the system to contain a right-turning bias, and when the turn straightened
out, the vehicle tracked to the right of the desired path until this bias
was adapted back ouf. Even so, the performance was better than without
correction (RUN 8).
RUN 10 -

The same course as RUNS & and 9, but with some actual control errors.
No correction on this run. The performance is the worst ever, with a
maximum error of over 2-1/2 feet.
RUN 11 - '

Same conditions as RUN 10, but with prediction and correction. The
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maximum error is reduced by over 2:1 and the average error by almost
3:1. It should be noted that the curve in RUNS 8-11 is fairly close
to the sharpest that the vehicle can negotiate.

RUN 12 -

This run, taken without correction, shows the effect of control
errors uncontaminated by initial errors or curve-following. With the
same 5 degree errors as before, the steady-state error is about 1 foot.
RUN 13 -

Here RUN 12 is repeated with the pPredictive and corrective systems
going. The maximum error is about half its uncorrected value, and
reasonable convergence is obtained about 20 feet into the run.

RUN 1 -

Here is a run with (effectively) no bound on the displacement
correction term. The resulting problem is obvious.
RUN 15 -

This run has a larger than normal angular sensitivity. Although
it just barely shows on the displacement plot, the steering is limit-
cycling between -0.5 and 0.5 radians every iteration cycle. This creates
certain obvious problems.

One of the most interesting items of empirical information which came
from the experimental guidance Program concerns the magnitude of the
canputing task. A program of the type used in the CART tests could be
implemented on a mini-computer {f the application warranted it. The
kernel of the control program is only about hOOQB words long, and might
well be implemented on a machine such as the HP2116. Unlike the functions

described in later chapters, the amount of TV buffer space required for
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input data is quite modest - about 30 3%6-bit words per line of TV data,
with only 10 lines of data actually required in core at once. On a 16-bit
machine such as the 2116, buffer words would be generated every 600 ns.
or so, based on L-bit samples and a sample rate of 155 ns. Memories of
this speed are available, but some sort of shift register arrangement in
the input hardware would make it possible to use standard core storage.

On the PDP-10, the basic cycle of steering control takes about
320 ms if no line is present in the input data, and about 180 ms to find
one if it is present and prominent. Once the predictor is operating,
these figures are reduced by a factor of ten or so. At this point to
most significant factor in limiting performance is the delay required to
obtain a TV picture from the camera. This delay, which is composed of the
hardware delay plus the time-sharing monitor overhead, amounts to between
50 and 250 ms. The actual average delay of the TV is one frame time,
or 16.7 ms, so a system operating on a mini-computer would have a signifi-
cant advantage over the present system, possibly enought to compensate for
the lack of such hardware features as floating point and byte manipulation
hardware. Byte manipulation is required because of the packed format of
the input data from the camera.

Thus this study shows that for some applications it is reasonable
to consider implementing the kind of control system discussed in this
chapter on a small computer. I am not thinking of automobiles or vehicles
exclusively here, but rather more general control problems involving
imper fectly known control hardware and moderately complex sensing devices
such as TV's. Although this study does not consider the economics of such

systems, technically they are perfectly feasible.
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This concludes the discussion of guidance. 1 have presented here
the theoretical framework which I believe must be used in pursuing
computer vehicle guidance. The hardware and software discussed here are
not intended to ge finished products, or in any way optimized. They
possess sufficient feliability and versatility for our laboratory system
to be used to investigate problems in navigation using visual perception.

This work, still in its infancy, will be discussed in the next chapter.
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RUN ' 1

SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS .00 FEET

PATH LENGTH 49.20 FEET

STEERING DISPLACEMENT SENSITIVITY -.30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD
MAXIMUM CORRECTION .50 RAD

STEERING ERROR .00 RAD, CAMERA ERROR .00 RAD
MAXIMUM DISPLACEMENT ERROR 5.00 FEET

AVERAGE MAGNITUDE OF ERROR 1.27 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 100.00%

RUN 1




RUN ©

SPEED 1.20 FT/SEC. ITERATION INTERVAL 1.00 SEC
CURVE RADIUS .00 FEET

PATH LENGTH 49.20 FEET

STEERING DISPLACEMENT SENSITIVITY -.30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD
MAXIMUM CORRECTION .50 RAD

STEERING ERROR .10 RAD, CAMERA ERROR -.10 RAD
MAXIMUM DISPLACEMENT ERROR 5.00 FEET

AVERAGE MAGNITUDE OF ERROR ?2.76 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 100.00%

RUN 2
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RUN 3, WITH CORRECTION

SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS .00 FEET

PATH LENGTH 49.20 FEET

STEERING DISPLACEMENT SENSITIVITY

STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD

MAXIMUM CORRECTION .50 RAD

STEERING ERROR .10 RAD, CAMERA ERROR -.10 RAD
MAXIMUM DISPLACEMENT ERROR 5.00 FEET

AVERAGE MAGNITUDE OF ERROR 1.79 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 16.754

RUN 3
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RUN &

SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS 31.34 FEET

PATH LENGTH 49,20 FEET

STEERING DISPLACEMENT SENSITIVITY -. 30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD
MAXIMUM CORRECTION .50 RAD

STEERING ERROR .00 RAD, CAMERA ERROR .00 RAD
MAXIMUM DISPLACEMENT ERROR .60 FEET

AVERAGE MAGNITUDE OF ERROR .46 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 100.00%

RUN 4
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RUN 5, WITH CORRECTION
SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS 31.34 FEET

PATH LENGTH L49.20 FEET

STEERING DISPLACEMENT SENSITIVITY -.30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD
MAXIMUM CORRECTION .50 RAD

STEERING ERROR .00 RAD, CAMERA ERROR .00 RAD
MAXIMUM DISPLACEMENT ERROR .37 FEET

AVERAGE MAGNITUDE OF ERROR .23 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 14 .74%

RUN &
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RUN 6

SPEED 12.0 FT/SEC., ITERATION INVERVAL 1.00 SEC
CURVE RADIUS 31.34 FEET

PATH LENGTH  49.20 FEET

STEERING DISPLACEMENT SENSITIVITY =.30 RAD/FT
STEERING ANGULAR SENSITIVITY =-2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD

MAXIMUM CORRECTION .50 RAD

STEERING ERROR =-.10 RAD, CAMERA ERROR .10 RAD
MAXIMUM DISPLACEMENT ERROR 1.59 FEET

AVERAGE MAGNITUDE OF ERROR 1.28 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 100.00%

RUN 6
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RUN 7, WITH CORRECTION

SPEED 1.70 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS 51.34 FEET

PATH LENGTH L49.20 FEET

STEERING DISPLACEMENT SENSITIVITY -.30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD

MAXIMUM CORRECTION .50 RAD

STEERING ERROR -.10 RAD, CAMERA ERROR .10 RAD
MAXIMUM DISPLACEMENT ERROR .93 FEET

AVERAGE MAGNITUDE OF ERROR .47 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 20.19%
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RUN 8

SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS 12.99 FEET

PATH LENGTH 58.80 FEET

STEERING DISPLACEMENT SENSITIVITY -.30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD
MAXIMUM CORRECTION .50 RAD

STEERING ERROR .00 RAD, CAMERA ERROR .00 RAD
MAXIMUM DISPLACEMENT ERROR 1.36 FEET

AVERAGE MAGNITUDE OF ERROR .50 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 100.00%

o RUN 8
/
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RUN 9, WITH CORRECTION

SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS 12.95 FEET

PATH LENGTH 58.80 FEET

STEERING DISPLACEMENT SENSITIVITY -.30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD
MAXIMUM CORRECTION .50 RAD

STEERING ERROR .00 RAD, CAMERA ERROR .00 RAD
MAXIMUM DISPLACEMENT ERROR .99 FEET

AVERAGE MAGNITUDE OF ERROR .i1 FEET

AVERAGE WIDTH OF FIELD GF CAMERA 18.90%

e
, / RLN G
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RUN 10
SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS 12.99 FEET

PATH LENGTH 58.80 FEET

STEERING DISPLACEMENT SENSITIVITY -.30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD

MAXIMUM CORRECTION .50 RAD

STEERING ERROR =-.10 RAD, CAMERA ERROR .10 RAD
MAXIMUM DISPLACEMENT ERROR 2.61 FEET

AVERAGE MAGNITUDE OF ERROR 1.54 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 100.00%

//i/// RUN 12
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RUN 11, WITH CORRECTION

SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS 12.99 FEET

PATH LENGTH 58.80 FEET

STEERING DISPLACEMENT SENSITIVITY -.30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD

MAXIMUM CORRECTION .50 RAD

STEERING ERROR =-.10 RAD, CAMERA ERROR .10 RAD
MAXIMUM DISPLACEMENT ERROR 1.15 FEET

AVERAGE MAGNITUDE OF ERROR .59 FEET

AVERAGE WIDTH OF FIELD OF ERROR 21.59%

RUN 11




RUN 12

SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS .00 FEET

PATH LENGTH 49.20 FEET

STEERING DISPLACEMENT SENSITIVITY =-.30 RAD/FT
STEERING ANGULAR SENSITIVITY =2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD

MAXIMUM CORRECTION .50 RAD

STEERING ERROR -.10 RAD, CAMERA ERROR .10 RAD
MAXIMUM DISPLACEMENT ERROR 1.00 FEET

AVERAGE MAGNITUDE OF ERROR .81 FEET

AVERAGE WTDTH OF FIELD OF CAMERA 100.00%

. ——— v —

RUN 12
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RUN 13, WITH CORRECTION
SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS .00 FEET

PATH LENGTH 49.20 FEET

STEERING DISPLACEMENT SENSITIVITY -.30 RAD/FT
STEERING ANGULAR SENSITIVITY =-2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT .50 RAD
MAXIMUM CORRECTION .50 RAD

STEERING ERROR ~-.10 RAD, CAMERA ERROR .10 RAD
MAXIMUM DISPLACEMENT ERROR .57 FEET

AVERAGE MACNITUDE OF ERROR .23 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 16.77%

f RUN 13




RUN 14, WITH CORRECTION

SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS .00 FEET

PATH LENGTH 49.20 FEET

STEERING DISPLACEMENT SENSITIVITY =.30 RAD/FT
STEERING ANGULAR SENSITIVITY -2.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT 100.00 RAD
MAXIMUM CORRECTION .50 RAD

STEERING ERROR .00 RAD, CAMERA ERROR .00 RAD
MAXIMUM DISPLACEMENT ERROR 20.00 FEET
AVERAGE MAGNITUDE OF ERROR 5.69 FEET
AVERAGE WIDTH OF FIELD OF CAMERA 12 844

RUN 14
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RUN 15, WITH CORRECTION
SPEED 1.20 FT/SEC., ITERATION INTERVAL 1.00 SEC
CURVE RADIUS .00 FEET

PATH LENGTH 49.20 FEET

STEERING DISPLACEMENT SENSITIVITY =-.30 RAD
STEERING ANGULAR SENSITIVITY -10.00 RAD/RAD
DISPLACEMENT CORRECTION LIMIT 2.00 RAD
MAXIMUM CORRECTION .50 RAD

STEERING ERROR .00 RAD, CAMERA ERROR .00 RAD
MAXIMUM DISPLACEMENT ERROR 20.00 FEET

AVERAGE MAGNITUDE OF ERROR 14 .42 FEET

AVERAGE WIDTH OF FIELD OF CAMERA 14.7L44

RUN 15
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CHAPTER III

NAVIGATION

A. Introduction

In the previous chapter, I discussed the design of the CART
guidance system. A guidance capability by itself is not sufficient to
constitute an automization of the driving process. In order to complete
a journey, a navigation capability must be provided for making decisions
as to the sequence of paths which must be followed to reach the destina-
tion, determining the points (intersections) at which these paths join,
and making the appropriate decisions and maneuvers to change paths. The
Process of choosing the sequence of paths (the "route') is not considered
here, since it can be done in advance of a journey.

If one wished to treat the navigation problem as a question-and-
answer game, the sequence would go something like this:

Ql: what should I do?

Q2: vVell, where are you?

A2: I am at location "X",

Al: Then you should do "Y".

This chapter concentrates on answering question 2 by the recogni-

tion and processing of visual images. The capability of using visual images

to provide information as to location is critical to the type of vehicle

guidance of interest here. The navigational problem is computationally

different from the guidance problem, in that it involves discrete decisions

(guidance is fundamentally a continuous process) and requires the manipulation

69



of larger quantities of information. A method of recognizing and pro-
cessing scenes is developed here which takes cognizance of the fact that
two images of the same physical scene may "lock" quite different. The
problem is dealt with so that the equivalence of scenes can be recog-
nized, and not merely the identicality of images.

Let me begin the discussion with an overview of navigation
techniques and of visual image description. Section B of this chapter will
then discuss the problems of analyzing and describing scenes, with emphasis
upon the problems introduced by allowing the possibility of different
images of the same scene. Section C deals with a mechanism for testing
the equivalency of structurally and parametrically different descriptions
which potentially refer to the same scene. Section D shows some experi-
mental results from a program which actually carries out these functions,
and Section E outlines a scheme whereby the results of the scene

identification process might be used to make navigational decisions,

Al, Navigation Techniques

Navigation, in some form, is an inescapable part of any journey, if
for no other purpose than determining when the destination has been reached.
The actual implementation of navigation can be done in any of three ways
(or combinations of them):

1) To have surveyed the journey space very carefully, thus obtaining
the relationship of the intersections to each other, and to then calculate
one's motion (and hence position) from the control commands issued or

from measurement of vehicle acceleration (otherwise known as dead reckoning).
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2) To establish an artificial reference frame, perceivable by
special instruments, and then note the position of the intersections with
respect to the reference frame. This is the method used by such systems
as omnirange, DECCA, and LORAN.

3) To determine the intersection by perceiving directly the meeting
of paths at that point, and/or whatever else naturally occurs there. The
major advantage of this method, called pilotage, is that it requires
neither prior measurement nor external equipment. The corresponding draw-
back is that the recognition of naturally occurring intersection character-
istics is usually much more difficult than detection of specially installed
devices.

Of these three methods, pilotage is the most desirable for surface
vehicle navigation. Accuracy is a problem with dead reckoning, as well
as a reliance upon unchanging positions. External systems are necessarily
large in scale, and therefore expensive. Hardware used in such systems
is usually specialized, and contributes little to the solution of problems
of incident avoidance. 1In addition, the man-machine interface becomes
additionally complex in such systems, since the machine recognizes land-
marks from cues neither apparent nor epistemologically significant to a

human operator.

A2, Navigation by Pilotage

If one is going to navigate by pilotage (the recognition of naturally
occurring characteristics), one must "remember" information sufficient to
identify these characteristics, Since the characteristics are generally

complex, the information will be non-trivial. The "remembered" information
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is called a "description" of the characteristics, and may be stored or
Processed in several different ways. I concentrate on the description
of visual images of things because they seem the most valuable, but the
epistemological considerations are similar for other sensory images.

Basically, one can choose to describe reality on any of three
levels, corresponding to the three levels of human consciousness. On
the sensory level, a human's view of reality is a matrix of color and
intensity information derived fram the cells in his retina. The digitized
image from a TV camera is a similar image, although of lower resolution,
dynamic range, and deficient in color information. A characteristic of
this image is a high ratio of data to information. 1In addition, the
information is unorganized, and is so loosely distributed through the
data that extracting any particular item from it is very time-consuming.
For this reason, computer programs functioning at this sensory level almost
never store the sense data, and work well only in cases when the data is
very predictable. The line follower of the last chaptar was such a
program.

The human brain almost never functions on this level. Instead, man's
perceptual facility automatically combines the data and Presents it to
one's conscious awareness as shapes pPossessing homogeneous pProperties.

The exact form of the Presentation is influenced by the purpose of the

viewer (which accounts for many "optical illusions"). The same process is
carried on by computer pPrograms which attempt to extract information from
the sense data by locating either regions of constant parameters or areas
of rapid parameter change ("edges™), and then Preserving only the outline

of these features. (If you think this Process is easy, since you do it all
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the time, try looking at a room through a pinhole, scanning the pinhole
over the scene. This forces you to Perform consciously the perceptual
integration that your brain normally does automatically, and you will find
it almost impossible to figure out what you are looking at.)

The third level at which description is possible is the conceptual
level, where items are characterized by what they are and what properties
they possess. At this level, the image of the object is no longer the
only information used, and the description may no longer have a unique
image associated with it, i.e., knowing that an object is a "house" does
not enable one to draw a picture of it. In a human, this level of descript-
ion is reached by combining the perceptual image with prior perceptual and
coneeptual knowledge to make a correct identification. The prior knowledge
may well come from some other source than visual images. Computer programs
which attempt to duplicate this level of description have not fared very
well due to the lack of multi-sensory data and the tremendous amount of
Processing involved in even the simplest sensory inteQ;;;ion.

The work described here is an attempt to combine some of the best
features of the perceptual and conceptual descriptions. The necessity for
this compromise approach arises from the horns of the following dilemma:

1) In a perceptual description, small changes in the visual
properties of the viewed object (call it the “target") or small changes
in the view angle or illumination, can cause large changes in the descript-
ion. Especially annoying is the case where the target is a complex scene,
and the boundaries are shifted enough to move objects or parts of them out
of view.

2) A conceptual description requires information not present in
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the image currently viewed, and a mechanism for integrating this information
in a fairly general way with the perceived data. Doing this kind of
processing in real time, although necessary for incident avoidance, is
completely beyond the range of current processing techniques.

The compromise I adopted was to describe images in terms of semi-
invariant properties of the perceived shapes in the image. This information
is stored in such a way that the various subelements are independent, thus
curing the boundary-shift problem. 1In addition, the properties stored
are simple linear geometric functions of the shapes, so that small shape
changes produce small changes in the properties; and the properties are
simply computable, so that the processing time is much smaller than for a
direct comparison of outlines.

I will proceed now to the detailed description of the method I
developed for the experimental vehicle, and a discussion of picture
properties that make this method a computationally efficient, but

imprecise, way of perceptually describing scenes.

B. Picture Description Techniques and Algorithms

A "picture" is a two-dimensional array of points, potentially
separated by discontinuities in those characteristics. The characteristics
themselves may be any measureable property of the scene, such as intensity,
color, or texture. In the work described here, the intensity of a local
reginn about each point was used as the characteristic. This choice was
made primarily because of the high computational speed required. To sense
color, three pictures must be taken through appropriate colored filters,
and the color information extracted. This is a relatively slow process

since it must process three times the data as a B and W picture, and must
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normalize out intensity variations. Further, the vehicle is in motion
during the sequence of pictures, and the campensation fur this is non-
trivial. Texture information was not used because algzorithms for texture
extraction are just now being developed and no information about the general
usefulness of this technique is yet available. Intensity information is
available at low computational cost, and appears adequate for the time
being. There is no doubt, however, that if the processing difficulties
could be resolved, color information would make an extremely significant
improvement in perceptual ability.

The structure of the recognition program is considerably different
from the structure of the guidance program, so the format of this chapter
is different from that of Chapter I. Most of the detail of the recognition
system is internal bookkeeping, so the discussion in this chapter will
focus on design concepts and tradeoffs. A block diagram of the recognition
system is given in Fig. 3.l. In this figure, processes are in rectangular
boxes, while data descriptions are in circle<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>