

r

r— I r—

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JULY 1973
MEMO AIM-204

COMPUTER SCIENCE DEPARTMENT
REPORT STAN-CS-73-373

SAIL USER MANUAL

edited by

Kurt A. VanLehn

ABSTRACT

SAIL is a high-level programming language for the PDP-10 computer. It includes an
extended ALGOL 60 compiler and a companion set of execution-time routines. In
addition to ALGOL, the language features: (1) flexible linking to hand-coded machine
language algorithms, (2) complete access to the PDP-10 1/O facilities, (3) a complete
system of compile-time arithmetic and logic as well as a flexible macro system, (4) user
modifiable error handling, (5) backtracking, and (6) interrupt facilities. Furthermore, a
subset of the SAIL language, called LEAP, provides facilities for (1) sets and lists, (2) an
associative data structure, (3) independent processes, and (4) procedure variables.
The LEAP subset of SAIL is an extension of the LEAP language, which was designed by
J. Feldman and P. Rovner, and implemented on Lincoln Laboratory’s TX-2 (see [Feldman
& Rovner]). The extensions to LEAP are partially described in “Recent Developments
in SAIL” (see [Feldman]).

This manual describes the SAIL language and the execution-time routines for the
typical SAIL user: a non-novice programmer with some knowledge of ALGOL. It lies
somewhere between being a tutorial and a reference manual.

This manual was supported by the Advanced Research Projects Agency of the Office of the Secretary of Defense
under Contract No. SD183 (order number 457), National Institute of Mental Health Contract No. PHS MH 06645-
12, and National Science Foundation Contract No. GJ-776.

The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of any of the funding agencies.

We would like to thank Bernard A. Goldhirsh and the Institute For the Advancement of Sailing for their kind
permission t0 use the cover design of the June 1973 issue of SAIL magazine.

Reproduced in the USA. Available from the National Technical Information Service, Springfield, Virginia 22151.

SAIL USER MANUAL

PREFACE

HISTORY OF THE LANGUAGE

The GOGOL Ill compiler, developed principally by Dan
Swinehart at the Stanford Artificial Intelligence Project,
was the basis for the non-LEAP portions of SAIL.
Robert Sproull joined Swinehart in incorporating the
features of the LEAP language, developed by J.
Feldman and P. Rovner on the Lincoln Laboratory’s TX-
2, into SAIL. The first version of the language was
released in November, 1969. Since then, the
language has been maintained, expanded, and improved
by many people. Foremost amoung these are Russell
Taylor, Jim Low, and Hanan Samet. They were
responsible for the introduction into the language of
processes, procedure variables, interrupts, contexts,
matching procedures, the new macro system, and many
other features.

USING THIS MANUAL

For the first reading, a light skim of sections 1
through 4 followed by a careful perusal of subsection
19.1 should be adequate to familiarize the new user
with the differences between ALGOL and SAIL and
allow him to start writing programs in SAIL. The other
sections of this manual are relatively self contained,
and can be read when one wants to know about the
features they describe. The exceptions to this rule
are sections 10, 11, and 12. These describe the
basics of the LEAP and are essential for understanding
of the following sections. Much of the implementation
information contained in older versions of this manual
has been moved to the appendices and a forthcoming
implementation manual.

An attempt has been made to keep forward references
to a minimum. In other words, if the manual is freely
using concepts unfamiliar to you, they are probably
defined in an earlier section. However, the definitions
of some common concepts such as “variable” and
“identifier” have been left until section 19.

CHANGES IN THE LANGUAGE
One of the design goals for the current

. Implementation of SAIL was to retain, as far as

possible, compatibility with previous versions. We
have been fairly successful in retaining source
language compatibility, but not completely
successful, since other design considerat ions
frequently proved to be overriding. Most of these
except ions occur with constructs that, while
never explicitly illegal, were never quite “legal”
either. Essent ially, this means that programs which
contain “hacks” may or may not be able to run
unchanged For Instance, assignment of an integer to
the datum of a set item will cause horrible things to
happen when the item is deleted. One should consult
the appropriate sections of this manual, for detailed
information. Other notable incompatibilities include:

PREFACE

1. The procedure implementation was somewhat
changed. This change should not adversely
affect any programs that do not use
START-CODE or link to assembly language
routines. However, for efficiency the user may
want to consider declaring some of his smaller

- procedures SIMPLE. The new implementation
required that another register (12 b e
dedicated to SAIL’s exclusive use. Programs
that modify this register do so at their utmost
peril.

2. Non-own sets are deallocated when the block
in which they are declared is exited.

3. The storage management system for arrays
has been modified. Again, this change can
only affect programs that allocate arrays using
START-CODE.

WARNING: This list is primarily intended as a general
guide to the most outstanding incompatibilities, and
should not be construed as being complete. Users
are strongly urged to read over the manual, since
doing so will introduce them to the new features
of the language, some of which are quite useful, as
well as informing them of any subtle changes in
the old semantics. In any event the experience at
Stanford was that conversion of programs proved
to be surprisingly easy. The only real holdouts were
a couple of giants that made heavy and subtle use of
START-CODE blocks and assembly language routines.

UNIMPLEMENTED CONSTRUCTS

The following items are described in the manual as if
they existed. As the manual goes to press, they are
not implemented. The are listed in the probable order
of their implementation.

1. NEW (<context-variable>). Creates a new item
which has a datum that is a context.

2. Using a <context-variable> instead of a list of
variables in any of the REMEMBER, FORGET or
RESTORE statements.

3. Using o in the expression n of REMOVE n FROM
list.

4. ANYeANY=ANY searches in Leap. That is, any
search where no constraints at all are made on
the triple returned.

5. CHECKED itemvars. The dynamic comparison of
the datum type of an item to the datum type of
the CHECKED itemvar that the item is being
assigned to. Currently, for example, if you assign
an item with an integer datum to an itemvar that
was declared a string itemvar, no check is
performed. It is the user’s responsibility to see

PREFACE

that the datum 1s not subsequently not accessed,
for if it is, it will be treated as a string,

SAIL USER MANUAL

[

— = r— o r

-

r— r— [

r-

SAIL USER MANUAL

TABLE OF CONTENTS

SECTION

1 PROGRAMS AND BLOCKS

1 SYNTAX
2 SEMANTICS

2 ALGOL DECLARATIONS

1 SYNTAX

2 RESTRICTIONS
3 EXAMPLES

4 SEMANTICS

5 SEPARATELY COMPILED PROCEDURES

3 ALGOL STATEMENTS

1 SYNTAX
2 SEMANTICS

4 ALGOL EXPRESSIONS

1 SYNTAX
2 TYPE CONVERSION
3 SEMANTICS

5 ASSEMBLY LANGUAGE STATEMENTS

1 SYNTAX
2 SEMANTICS

6 BACKTRACKING

1 INTRODUCTION
2 SYNTAX
3 SEMANTICS

7 INPUT/OUTPUT ROUTINES

1 EXECUTION TIME ROUTINES IN GENERAL

2 1/0 CHANNELS AND FILES

3 BREAK CHARACTERS

4 1/0 ROUTINES

5 TELETYPE AND PSEUDO-TELETYPE

ROUTINES

PAGE

[SINS1) I¥ N ¢H]

13
14

20
21
22

26
26

29
29
29

31
31
33
35

38

TABLE OF CONTENTS

8 EXECUTION TIME ROUTINES

11

12

14

1 TYPE CONVERSION ROUTINES

2 STRING MANIPULATION ROUTINES
3 LIBERATION-FROM-SAIL ROUTINES
4 BYTE MANIPULATION ROUTINES
5 OTHER USEFUL ROUTINES

MACROS AND CONDITIONAL COMPILATION

1 SYNTAX

2 DELIMITERS

3 MACROS

4 MACROS WITH PARAMETERS
5 CONDITIONAL COMPILATION

6 TYPE DETERMINATION AT COMPILE TIME

7 MISCELANEQUS FEATURES

LEAP DATA TYPES
1 INTRODUCTION
2 SYNTAX

3 SEMANTICS
LEAP STATEMENTS
1 SYNTAX

2 RESTRICTIONS
3 SEMANTICS

4 SEARCHING THE ASSOCIATIVE STORE
LEAP EXPRESSIONS
1 SYNTAX

2 SEMANTICS
PROCESSES

1 INTRODUCTION
2 SYNTAX

3 SEMANTICS

EVENTS

1 SYNTAX
2 INTRODUCTION

3 SAIL DEFINED CAUSE AND INTERROGATE

4 USER DEFINED CAUSE AND INTERROGATE

40
41
41
42
43

45
46
46
48
49

49
50

51
51
52

55
56
56
57

63
64

67
67
67

72
72

72

73

TABLE OF CONTENTS

15 PROCEDURE VARIABLES

1 SYNTAX
2 SEMANTICS

16 INTERRUPTS

1 INTRODUCTION

2 IMMEDIATE INTERRUPTS

3 DEFERRED INTERRUPTS

4 MORE COMPLICATED DEFERRED
INTERRUPTS

17 LEAP AND PROCESS RUNTIMES

1 TYPES AND TYPE CONVERSION

2 MAKE AND ERASE BREAKPOINTS

3 PNAME RUNTIMES

4 OTHER USEFUL RUNTIMES

5 GENERAL PROCESS RUNTIMES

6 RUNTIMES FOR USER CAUSE AND
INTERROGATE PROCEDURES

18 BASIC CONSTRUCTS

1 SYNTAX
2 SEMANTICS

19 USING SAIL

1 FOR BEGINNERS

2 THE COMPLETE USE OF SAIL
3 COMPILING SAIL PROGRAMS
4 LOADING SAIL PROGRAMS

5 STARTING SAIL PROGRAMS

6 STORAGE REALLOCATION WITH THE

REENTER COMMAND

20 DEBUGGING SAIL PROGRAMS

1 ERROR MESSAGES
2 DEBUGGING

76
76

78
78
80

80

83
83
84
84
85

86

88
88

90
90
90
93
93

94

95
96

SAIL USER MANUAL

A APPENDICES

1 TYPE CONVERSION 98
2 SAIL RESERVED WORDS 99
3 SAIL PRE-DECLARED IDENTIFIERS 99
4 CHARACTER-IDENTIFIER EQUIVALENCES
99
5 PARAMETERS TO THE OPEN FUNCTION
99
6 BREAKSET MODES 100
7 MTAPE COMMANDS 100
8 COMPILE SWITCHES 100
9 VALID RESPONSES TO ERROR MESSAGES
100
10 ERROR CODES ig1
11 INDICES FOR INTERRUPTS 102
12 BIT NAMES FOR PROCESS CONSTRUCTS
103
13 STATEMENT COUNTER SYSTEM 104
14 ARRAY IMPLEMENTATION 106
15 STRING IMPLEMENTATION 107
16 PROCEDURE IMPLEMENTATION 107
R REFERENCES 110
I INDEX 110

SAIL USER MANUAL

SECTION 1

PROGRAMS AND BLOCKS

1.1 - SYNTAX

<program>
= <block>

<block>
::= <block-head> ; <compound-tail>

<block-head>

= BEGIN <declaration>
BEGIN <block-name> <declaration>
<block-head> ; <declaration>

<compound-tail>
"= <statement> END
©= <statement> END <block-name>
= <statement> ; <compound-tail>

<compound-statement>
= BEGIN <compound-tail>
= BEGIN <block-name> <compound-tail>

<statement>
= <block>
1= <compound-statement>
== <require_specif icat ion>
1= <assignment>
1= <swap-statement>
= <conditional_statement>
= <lIf-statement>
= <go-to-statement>
= <for-statement>
= <while-statement>
1= <do-statement>
i= <case-statement>
= <return-statement>
= <done-statement>
©= <next-statement>
== <continue_statement>
= <procedure-statement>
= <safety-statement>

PROGRAMS AND BLOCKS

"= <backtracking-statement>

1= <code-block>

= <leap-statement>

i= <process-statement>

1= <event-statement>

:= <string-constant> <statement>
= <label-identifier> : <statement>
= <empty>

1.2 - SEMANTICS

DECLARATIONS
SAIL programs are organized in the traditional block
structure of ALGOL-60.

Declarations serve to define the data types and
dimensions of simple and subscripted (array) variables
(arithmetic variables, strings, sets, and items). They
are also used to describe procedures (subroutines) and
name program labels.

Any identifier referred to in a program must be
described in some declaration. An identifier may only
be referenced by statements within the scope (see
page D) of its declaration.

STATEMENTS

As in ALGOL, the statement is the fundamental unit of
operation in the SAIL language. Since a statement
within a block or compound statement may itself be a
block or compound statement, the concept of
statement must be understood recursively.

The block representing the program is known as the
“outer block”. All blocks internal to this one will be
referred to as “inner blocks”.

BLOCK NAMES

The block name construct is used to describe the
block structure of a SAIL program to a symbolic
debugging routine (see page 96). The name of the
outer block becomes the title of the binary output file
(not necesarily the file name). In addition, if a block
name is used following an END, the compiler compares
it with the block name which followed the
corresponding BEGIN. A mismatch is reported to the
user as evidence of a missing (extra) BEGIN or END
somewhere.

The <string-constant> <statement> construct is
equivalent in action to the <statement> alone; that is,

the string constant serves only as a comment.

EXAMPLES

PROGRAMS AND BLOCKS

Given:
S is a statement,

Scis a Compound Statement,
D is a Declaration,

B is a Block.
Then:
(Sc) BEGINS;S;S;..,;S END
(S¢) BEGIN “SORT” §;S;...;S END "SORT"
(B) BEGIN D;D;D;...;S;S;S;...;8 END
B) BEGIN “ENTER NEW INFO" B;0;. . .
si. .+ ;S END

are syntactically valid SAIL constructs.

SAIL USER MANUAL

r——

rr rm— r— r

r

SAIL USER MANUAL

SECTION 2

ALGOL DECLARATIONS

2.1 - SYNTAX
<id_list>
z=<ident if ier>

= <identifier> , <id-list>

<declaration>

= <type-declaration>

"= <array-declaration>

== <preload_specification>
1= <label-declaration>

= <procedure-declaration>
u= <synonym-declaration>
1= <require-specification>
1= <context-declaration>
= <leap-declaration>

1= <protect-acs declaration>
= <cleanup-declaration>

<simple-type>
w= REAL
:= INTEGER
:= BOOLEAN
== STRING

<type-qualifier>
= EXTERNAL
= INTERNAL
= SAFE
= FORWARD
= RECURSIVE
©= FORTRAN
w= SIMPLE
= OWN
= SHORT

<type-declaration>

ALGOL DECLARATIONS

u= <simple-type> <id_list>
1= <type-qualifier> <type-declaration>

<array-declaration>
= <simple-type> ARRAY <array-list>
1= <type-qualifier> <array declaration>

<array-list>
i= <array-segment>
1= <array-list> , <array-segment>

<array-segment>
2= <id_list> [<bound_pair_list> 1

<bound-pair-list>
= <bound-pair>
2= <bound-pair-list> , <bound_pair>

<bound-pair>
1= <lower-bound> <upper-bound>

<lower-bound>
1= <algebraic-expression>

<upper-bound>
= <algebraic-expression>

<preload_specification>
= PRELOAD_WITH <preload_list>

<preload_fist>
.= <preload_element>
:= <preload_list> , <preload element>

<preload_element>
1= <expression>
= [expression] <expression>

<label-declaration>
:= LABEL <id_list>

ALGOL DECLARATIONS

<procedure_declaration>

::= PROCEDURE <ident if ier> <procedure-head>

<procedure-body>

=<simple_type> PROCEDURE <identifier>
<procedure_head> <procedure-body>
--7vpe_qualifier> <procedure-declaration>

<procedure-head>
= <empty>
= (<fermal_param_decl>)

<procedure-body>
o= <empty>
=, <statement>

<formal_param_decl>
.= <formal_parameter_list>
u= <formal-parameter-list> ;
<formal_param_decl>

<formal_parameter_list>
= <formal-type> <id_list>

<formal-type>

= <simple_formal_type>

:= REFERENCE <simple-formal-type>
VALUE <simple_formal_type>

<simple-formal-type>
.= <simple_type>
z=<simple_type> ARRAY
u= <simple_type> PROCEDURE

<synonym-declaration>
u= LET <synonym-list>

<synonym_list>
'= <synonym>
1= <synonym-list> , <synonym>

<synonyms
= <identifier> = <reserved-word>

<cleanup-declaration>
= CLEANUP <procedure_ident if ier_list>

SAIL USER MANUAL

<require_specification>
.= REQUIRE <require-list>

<require-list>
= <require-element>
= <require-list> , <require-element>

<require-element>
<constant> <require_spec>
<procedure-name> INITIALIZATION

<require_spec>
::= STRING-SPACE
SY STEM-PDL
STRING-PDL
ARRAY-PDL
NEW-ITEMS
PNAMES
LOAD-MODULE
LIBRARY
SOURCE-FILE
SEGMENT-FILE
SEGMENT-NAME
POLLING-POINTS
VERSION
ERROR-MODES
DELIMITERS
BUCKETS
MESSAGE

2.2 - RESTRICTIONS

For simplicity, the type-qualifiers are listed in only one
syntactic class. Although their uses are always valid
when placed according to the above syntax, most of
them only have meaning when applied to particular
subsets of these productions:

SAFE is only meaningful in array
declarations.

INTERNAL/EXTERNAL have no meaning in
formal parameter declarations.

SIMPLE, FORWARD, RECURSIVE, and
FORTRAN have meaning only in procedure

type specifications.

SHORT has meaning only when applied tG
INTEGER or REAL entities.

For array declarations in the outer block substitute

r— I

—-

-

r

SAIL USER MANUAL

<constant-expression> for <algebraic-expression> in
the productions for <lower-bound> and <upper-bounds.

A label must be declared in the Innermost block in
which the statement being labeled appears (more
information, page 15). The syntax for procedure
declarations requires semantic embellishment (see page
7) in order to make total sense. In particular, a
procedure body may be empty only in a restricted
class of declarations.

2.3 - EXAMPLES

Let LJKLXY, and P be identifiers, S a statement:

(<type_declaration>)
INTEGER ,J,K
EXTERNAL REAL X,Y
INTERNAL STRING K

(<array_declaration>) -
INTEGER ARRAY X[0:10,8:18]
REAL ARRAY Y[X:P(L)]; Comment illegal
in outer block
STRING ARRAY I[8:F BIG THEN 30 ELSE 3]

(<label-declaration>)
LABEL L,X,Y

(<procedure declaration>)
PROCEDURE P; S
PROCEDURE P(INTEGERI,J;
REFERENCE REAL X; REAL Y); S
INTEGER PROCEDURE P (REAL PROCEDURE L;
STRING |,J; INTEGER ARRAY K); S
EXTERNAL PROCEDURE P(REAL X)
FORWARD INTEGER PROCEDURE X(INTEGER|)
FORTRAN REAL PROCEDURE SIN

Note that these sample declarations are all given
without the semicolons which would normally separate
them from the surrounding declarations and statements.
Here is a sample block to bring it all together (again,
let S be any statement, D any declaration, and other
identf iers as above):

BEGIN “SAMPLE BLOCK"
INTEGER [,J,K;
REAL X,Y;
STRING A;
INTEGER PROCEDURE P(REFERENCE REAL X);
BEGIN "P"
D;D;D;...55...:8
END "P";

REAL ARRAY DIPHTHONGS[9:19,1:1087;

S;S8;8;8
END “SAMPLE BLOCK"

ALGOL DECLARATIONS

2.4 - SEMANTICS

SCOPE OF DECLARATIONS

Every block automatically introduces a new level of
nomenclature. Any identifier declared in a block’s head
is said to be LOCAL to that block. This means that:

a. The entity represented by this identifier
inside the block has no existence outside the
block.

b. Any entity represented by the same
identifier outside the block is completely
inaccessible (unless it has been passed as a
parameter) inside the block.

An identifier occurring within an inner block and not
declared within that block will be nonlocal (global) to it;
that is, the identifier will represent the same entity
inside the block and in the block or blocks within which
it is nested, up to and including the level in which the
ident if ier is declared.

The Scope of an entity is the set of blocks in which
the entity is represented, using the above rules, by its
identifier. An entity may not be referenced by any
statement outside its scope.

TYPE QUALIFIERS

An array, variable, or procedure declared OWN will
behave as if it were declared globally to the current
procedure: the OWN type qualifier on a variable, etc.
declared in a block not nested inside a procedure
declaration will have no effect. This means that in a
second call of a procedure with OWN locals (or a
recursive call) the OWN variables will not be
reinitialized they will have the values that they had
when the first call of the procedure finished.
Furthermore, OWN arrays, etc. will not be deallocated
upon exiting the procedure they are declared in.

INTERNAL and EXTERNAL procedures, variables, etc.
let one link programs that are loaded together, but
were compiled separately. See page 1@ for more
information.

RECURSIVE, SHORT, FORTRAN, FORWARD, SIMPLE,
and SAFE will be explained when the data types they
modify are discussed.

NUMERIC DECLARATIONS

Identifiers which appear in type declarations with
types REAL or INTEGER can subsequently be used to
refer to numeric variables. An Integer variable may
take on values from -2T35 to 2135-1(-2126 to
2126-1 for SHORT INTEGERS). A Real variable may
take on positive and negative values from about 18-
38 to 10138 with a precision of 27 bits (same range
for SHORT REALsas for SHORT INTEGERs. REAL and

ALGOL DECLARATIONS

INTEGER variables (and constants) may be used in the
same arithmetic expressrons. type conversions are
carried out automatically (see page 21 below) when
necessary.

The advantage of SHORT reals and Integers is that the
conversion from integer to real is sped by a factor of
8 if either the integer or the real is SHORT. See page
2 1 for more information.

The BOOLEAN type is identical to INTEGER. As you
will see, BOOLEAN and algebraic expressions are really
equivalent syntactically. The syntactic context in which
they appear determines their meaning. Non-zero
Integers correspond to TRUE and 0 corresponds to
FALSE The declarator BOOLEAN is included for
progratn clarity.

STRING DECLARATIONS

A variable defined in a String declaration is a two-word
descriptor containing the information necessary to
represent a SAIL character string.

A String may be thought of as a variable-length, one-
dimensional array of 7-bit ASCII characters. Its
descriptor contains a character count and a byte
pointer to the first character (see page 197). Strings
originate as constants at compile time (page 89), as
the result of a String INPUT operation from some
device (see page 3D), or from the concatenation or
decomposition of already existing strings (see page
24 and page 24)

When strings appear in arithmetic operations or vice-
versa, a somewhat arbitrary conversion is performed to
cbtain the proper type (by arbitrary we do not mean
toimply random -- see page 21). For this reason
arithmetic and String variables are referred to as
‘algebraic variables” and their corresponding
expressions are called “algebraic expressions” (to
differentiate them them from the variables and
expressions of LEAP -- see page B1l)

ARRAY DECLARATIONS

in general, any data type which is applicable to a
simpie variable may be applied in an Array declaration
to an array of variables. The entily represented by
the name of an Array, qualified with subscript
expressions to locate a particular eiement (e.g. AllJ)
behaves in every way like a simple variable. Therefore,
in the future we shall refer to both simple variables
and single elements of Arrays (subscripted variables)
aS “variables” The formal syntax for <variable> can be
found on page 88.

For an Array whichis not qualified by the SAFE
attribule, nor had a NOW-SAFE statement done on it
{llovi_Safe - see page 19), each subscript will be
checked to ensure that it falls within the lower and
Jpper bounds given for the dimension it specifies.

SAIL USER MANUPL

Subscripts outside the bounds trigger an error
message and job abortion. The SAFE declaration
inhibits this checking, resulting in faster, smaller, and
bolder code.

There i1sno limit to the number of dimensions allowed
for an Array. However, the efficiency of Array
references tends to decrease for large dimensions
Avoid large dimensionality if it is not necessary.

OWN Arrays are available in part. They must be
declared with constant bounds, since fixed storage is
allocated for these Arrays. They are NOT initialized
when the program is started or restarted (except in
preloaded Arrays, see page D). A certain degree
of extra efficiency is possbiein accessing these
Arrays, since they may be assigned absolute core
locations by the compiler, eliminating some of the
address arithmetic. Constant bounds always add a little
efficiency, even in inner blocks. Arrays declared in
the outer block must have constant bounds, since no
variable may yet have been assigned a value. They
are thus automatically made OWN. For more details
concerning the internal structure of Arrays see page
96 and page 106.

PRELOAD SPECIFICATIONS

Any OWN arithmetic or String Array may be "pre-
loaded” at compiletime with constant information by
preceding its declaration with a
<preload_specification>. This specification gives the
values which are to be placed in consecutive core
iocations of the Arrays declared immediately following
the <preload_specification>. “Immediately”, in this case,
means all identifiers up to and including one which 1s
followed by bound-pair-list brackets (e.g. in REAL
ARRAY XY.ZI@:1BIW[1:5), - preloads X.Y, and Z, not
W). It 1s the user’s responsibility to guarantee that the
proper values will be obtained under the subscript
mapping, namely: arrays are stored by rows; if AllJlis
stored Inlocation 10000, then AllJ+1] is stored in
location 10001.

The current values of pre-loaded Arrays will not be
lost by restarting the program: they will not be re-
initialized or re-preioaded. For preioaded String Arrays,
this means you may have invalid string descriptors
after a restart: the contents of the array will not
change over the restart, but string space will change,
leaving the elements of the array pointing off into the
boondocks

Algebraic type conversions will be performed at
compile-time to provide values of the proper types to
pre-loaded Arrays All expressions in these
specifications tnust be constant expressions -- that s,
they must contain only constants and algebraic
operators. The compiler will not allow you to fill an
Array beyond Its capacity. You may, however, provide
a number of elements less than the total size of the

— —

r;*

SAIL USER MANUAL

Array: remaining elements will be set to zero or to the
null string.

Example,

PRELOAD_WITH[S] 0, 3, 4, [4] 6. 2;
INTEGER ARRAY TABL[1:4,1:3];

The first five elements of TABL will be initialized to 0
(bracketed number is used as a repeat argument). The
next two elements will be 3 and 4, followed by four
6's and a 2. The array will look like this.

PROCEDURE DECLARATIONS

If a Procedure is typed, it may return a value (see
page 17) of the specified type. If formal parameters
are specified, they -must be supplied with actual
parameters in a one to one correspondence when they
are called (see page 24 and page 18).

FORMAL PARAMETERS

Formal parameters, when specified, provide information
to the body (executable portion) of the Procedure
about the kinds of values which will be provided as
actual parameters in the call. The type and complexity
(simple or Array) are specified here. In addition, the
formal parameter indicates whether the value (VALUE)
or address (REFERENCE) of the actual parameter will
be supplied. If the address is supplied, the variable
whose identifer is given as an actual parameter may
be changed by the Procedure. This is not the case if
the value 1s given.

To pass a PROCEDURE by value has no readily
determined meaning. ARRAYs passed by value
(requiring a complete copy operation) are not
implemented Therefore these cases are noted as
errors by the compiler,

The proper use of actual parameters s further
discussed on page 18 and page 24.

FORWARD PROCEDURE DECLARATIONS

A Procedure’s type and parameters must be described
before the Procedure may be called. Normally this Is
accomplished by specifying the procedure declaration
in the head of some block containing the call. If,
however, it is necessary to have two Procedures,
declared In some block head, which are both accessible
to statements In the compound tail of that block and to
each other, the FORWARD construct permits the
definition of the parameter information for one of these

ALGOL DECLARATIONS

Procedures in advance of ils declaration. The
Procedure body must be empty in a forward
procedure declaration When the body of the
Procedure described in the forward declaration is
actually declared, the types of the Procedure and of
its parameters must be identical in both declarations.

- The declarations must appear at the same level (within

the same block head).

Example:

BEGIN “NEED FORWARD"

FORWARD INTEGER PROCEDURE TL(INTEGERI);
COMMENT PARAMS DESCRIBED;

INTEGER PROCEDURE T2(INTEGER J);

RETURN (TL1(J)+3)
COMMENT CALL Tl;

INTEGER PROCEDURE TI (INTEGER I);
COMMENT ACTUALLY DEFINE T1;
RETURN (IF 1=15 THEN |

ELSE T2(I-1))
COMMFNT CALLS T2;

KeTL(L); .. s L=T2K); . . .
END “NEED FORWARD";

Notice that the forward declaration is required only
because BOTH Procedures are called in the body of
the block. These procedures should also be declared
RECURSIVE if recursive entrance is likely. If only T1
were called from statements within the block, this
example could be implemented as:

BEGIN “NO FORWARD’
RECURSIVE INTEGER PROCEDURE T1 (INTEGER I);
BEGIN

INTEGER PROCEDURE T2(J);
RETURN (T1(J)+3);
RETURN(IF I=15 THEN |
ELSE T2(I-1));
END “TL"

KeTL(L);

END “NO FORWARD";

RECURSIVE PROCEDURES

If a Procedure is to be entered recursively, the
compiler must be instructed to provide code for
allocating new local variables when the Procedure is
called and deallocating them when it returns. Use the
type-qualifier RECURSIVE in the declaration of any
recursive Procedure.

The cotnpiler can produce much more efficient code
for non-recursive Procedures than for recursive ones.
We feel that this gain in efficiency merits the
necessity for declaring Procedures to be recursive.

If a Procedure which has not been declared recursive
is called recursively, all its local variables (and

ALGOL DECLARATIONS

temporary storage locations assrgned by the compiler)
will behave as if they were global to the Procedure --
they will not be reinitialized, and when the recursive
call 1s complete, the locals of the calling procedure will
reflect the changes made to them during the recursive
call. Otherwise, no ill effects should be observed.

SIMPLE PROCEDURES

Standard procedures contain a short prologue that sets
up some links on the stack and a descriptor that is
used by the storage allocation system, the go to
solver, and some other routines. For most procedures,
this overhead is insignificant. However, for small
procedures that just do a few simple statements and
exit, this overhead is excessive and unneeded. To skip
the prologue, just include SIMPLE in the attribute list
for the procedure. RESTRICTIONS,

1. Simple procedures may not be Recursive.
2. ARRAY locals must be OWN

3. Set and List locals must be OWN (Sets
and list are pért of Leap, page 5 1).

4. Procedures declared local to a simpie
procedure must also be of of type
SIMPLE, and may not reference any of the
parameters of the outer simple procedure.

5. One may not GO TO a statement outside
the body of the simple procedure.

EXTERNAL PROCEDURES

A file compiled by SAIL represents either a “main”
program or a collection of independent procedures to
be called by the main program. The method for
preparing such a collection of Procedures is described
inpage 10 The EXTERNAL and FORTRAN type-
qualifiers allow description of the types of these
Procedures and their parameters. An EXTERNAL or
FORTRAN procedure declaration, like the FORWARD
acclaration, does not include a procedure body. Both
declarations Instead result In requests to the loader to
provide the addresses of these Procedures to ail
statements which call them. This means that an
EXTERNAL Procedure declaration (or the declaration of
any External Identifier) may be placed within any block
head, thereby controlling the scope of this External
identifier within this program.

Any SAIL Procedure which is referenced via these
external declarations must be an INTERNAL Procedure.
That is, the type-qualifier INTERNAL must appear in
the actual declaration of the Procedure. Again, see
page 10.

The type-qualifier FORTRAN Is used to describe the
type and name of an external Procedure which is to be
called using a DEC Fortrancalling. sequence. All

SAIL USER MANUAL

parameters to Fortran Procedures are by reference In
fact, the procedure head part of the declaration need
not be Included unless the types expected by the
Procedure differ from those provided by the actual
parameters--the number of parameters supplied, and
their types, are presumed correct. Fortran Procedures
are automatically External Procedures. See page
9, page 18, page 24 for more information about
Fortran Procedures.

Example:

FORTRAN PROCEDURE MAX;
Y-MAX(X,Z)%;

PARAMETRIC PROCEDURES

The calling convent ions for Procedures with
Procedures as arguments, and for the execution of
these parametric Procedures, are described on page
18 and page 24. Any Procedure PP which is to be
used as a parameter to another Procedure CP must
not have any Procedure or array parameters, or any
paremeters called by value. In other words, PP may
only have simple reference parameters. The number
of pat cmeters supplied in a call on PP within CP, and
their types, will be presumed correct, and should not
be specified In the procedure head.

Example:

PROCEDURE CP (INTEGER PROCEDURE FP);
BEGIN INTEGER A,l; REAL X;

A-FP(1,X); COMMENT | AND X PASSED BY
REFERENCE, NO TYPE CONVERSION;
END "CP";
INTEGER PROCEDURE FP (REFERENCE INTEGER J;
REFERENCE REAL Y
BEGIN

END "PP"

CP(PP);

DEFAULTS IN PROCEDURE DECLARATIONS
If no VALUE or REFERENCE qualification appears in
t h e description, the following qualifications are

assumed,
VALUE Simple Integer, String, or Real Variables.
REFERENCE Arrays, Contexts and Procedures.

RESTRICTIONS ON PROCEDURE DECLARATIONS

SAIL USER MANUAL

Fortran Procedures can not handle String
parameters. Nor can a Fortran Procedure
return a string as a result.

2) Labels may never be passed as arguments
to Procedures.

3) Procedures may not have the type
“CONTEXT".

4) Context parameters must always be passed
by reference.

ALLOCATION AND DEALLOCATION

All simple variables (integer, real, string, boolean) are
allocated at compile time. Non-own simple variables
that are local to a recursive procedure are an
exception to this and are allocated (on the stack) upon
instantiation of the procedure; they are deallocated
when the instantiation is terminated.

All outer block arrays are allocated at compile time.
All Own arrays are allocated at compile time. All other
arrays are allocated when the block of their definition
1s entered, and deallocated when it is exited.

INITIALIZATION AND REINITIALIZATION

Upon allocation, everything is initialized to 0 or the
NULL string (except preloaded arrays, which are
initialized to their the values of their PRELOAD).
Nothing s reinitialized unless the program is restarted
by typing TC and REEnter. This lack of reinitiaiization
is notrceable when one enters a block for the second
time, and that block is not the body of a recursive
procedure. For example,

STRING PROCEDURE READIN;

BEGIN
INTEGER CHANNEL, BRTAB;
IF BRTAB=8 THEN BRTAB « INIT(CHANNEL);
RETURN(INPUT(CHANNEL, BRTAB));

END;

will return a string from an input operation with every
call. However, on the first call, it will do some

. initialization of the I/O channel because BRTAB is 0

then, whereas it is not for any of the other calls. If
READIN were a recursive procedure, CHANNEL and
BRTAB would be allocated and hence initialized with
every call.

When one REEenters a program, some things are
reinitilized and some are not. Namely, S{rings and non-
preloaded arrays will be reinitialized, but simple
vat-tables will not. Preloaded arrays will not be re-
preloaded.

SYNONYMS
The Sail Synonym permits one to declare any identifier

ALGOL DECLARATIONS

to act as a reserved word. The effect of the reserved
word is not changed: it may be used as well as the
new identifier. Synonyms follow the same scope rules
that identifiers used for variables, arrays, etc. do.

. Since Sail permits one to declare almost any reserved

word to be an identifier for variables, procedures, etc.
(see about restrictions on identifiers, page 89),
synonyms are used to keep the effect of the reserved
word available. For example,

LET BEG = BEGIN;
PROCEDURE BEGIN;
BEG

IF OK THEN BEGIN;

CLEANUP DECLARATIONS

The CLEANUP declaration requires a list of procedure
names following the “CLEANUP” token. Each
procedure specified must be SIMPLE and have no
formal parameters. The specified procedures will be
called at the exit of the block that the CLEANUP
declaration occurs in. They will be called in the order
of their appearance on the list, and before any of the
variables of the block are deallocated. NOTE: If the
block is part of a process (see about processes, page
67) that is being terminated, the cleanup procedures
will be called before the terminate is completed.

Cleanup procedures are normally used in connection
with processes to “cleanup” a block by terminating the
processes dependent on that block (it is an error to
leave processes active that depended on an exited
block).

REQUIREMENTS

The user may, using the REQUIRE construct, specify to
the compiler conditions which are required to be true
of the execution-time environment of his programs. All
requirements are legal at either declaration or
statement level. The requirements fall into three
classifications, described as follows:

Group 1 -- Space requirements -- STRING-SPACE,
SYSTEM-PDL, etc.

The inclusion of the specification “REQUIRE 1000
STRING-SPACE” will ensure that at least 1000 words
of storage will be available for storing Strings when
the program is run. Similar provisions are made for
various push-down stacks used by the execution-time
routines and the compiled code. If a parameter is
specified twice, or if separately compiled procedures
are loaded (see page 1@), the sum of all such

ALGOL DECLARATIONS

specifications will be used. These parameters could
@S0 b e typed to the loaded program just before
execution (see page 94) but it is often more
convenient to specify differences from the standard
sizes in the source program. Use these specifications
only if messages from the running program indicate
that the standard allocations are not sufficient.

Group 2 -- Other files -- LOAD-MODULE, LIBRARY,
SOURCE-FILE, etc.

The inclusion of the specification REQUIRE "PROCS!1"
LOAD-MODULE, "HELIBI1,3]" LIBRARY; would inform the
Loader that the file PROCS1.REL must be loaded and
the library HELIBREL[1,3] searched whenever the
program containing the specification is loaded. The
parameter for both features should be a string
constant of one of the above forms. The device DSK,
and file extension .REL are the only values permitted
for these entries, and are therefore assumed.

LOAD-MODULES (REL files to be loaded) may
themselves contain requests for other LOAD-MODULES
and LIBRARYs.LIBRARYs may only contain requests
for other LIBRARYSs. Duplicate specifications are in
generai merged into single requests (if a file is
requested twice, it will be loaded only once).

SAIL automatically places a request for the library
"SYS.LIBSAR" in each main program, where n is the
version number of the current Sail library of runtime
routines.

The inclusion of REQUIRE 'SYS:PREAMBSAI"
SOURCE-FILE will cause the compiler to save the
state of the current input file, then begin scanning
from PREAMB. When PREAMB is exhausted, SAIL will
resume scanning the original file on the line directly
following the REQUIRE. SOURCE-FILEs may be nested
to a depth of about 10 levels.

Restrictions: A SOURCE-FILE request must be followed
by a semicolon (only one per REQUIREment), and must
be the last text on the line in which it appears
SOURCE-FILE switching must not be specified from
within a DEFINE body (see page 46).

The SEGMENT-NAME, SEGMENT-FILE specifications
are currently applicable only to the Stanford “global
model” users of SAIL. They allow specification of the
name of a special non-sharable “HISEG”, and the name
of the file used to create this HISEG. These
specifications may, like the space REQUIREments, be
overridden by using the system REENTER command
(see page 94).

Group 3 -- other - INITIALIZATION, VERSION
Before the execution of a program, Sail runs through

an initialization routine. The user can specify things

10

SAIL USER MANUAL

that he wants done at initialization time by declaring a
Procedure without arguments, then saying

REQUIRE procedure-name INITIALIZATION.

The narmcd procedure will be run called as the first
executable statement in the outer block of the
program (even if the REQUIRE appeared in a Source or
REL file). Require-initialization procedures will be run
in the order in which they were Required. WARNING:
you should not Require initialization of a procedure
which is declared inside another procedure.

REQUIRE n VERSION in a non-zero integer) will flag
the resultant RELfile as version n. When a program
loaded from several such RELfiles is started, the Sail
allocatin code will verify that all specified versions are
equal. A non-fatal error message is generated if any
disagree. As much as will fit of the version number is
also stored in INNJOBVER), where JOBVER is location
137.

Other requirements: PNAMES - see page 84;
POLLING POINTS - see page 70; DELIMITERS - see
page 46; BUCKETS - see page 58; NEW-ITEMS -
see page 64; MESSAGE - see page 50;
ERROR-MODE - see page 95.

COMMENT: You have probably noticed that a great
deal of prior knowledge is required for proper
understanding of this section. For more information
about storage allocation, see page 94 below. The
form and Use of REL files and libraries are described
in “The Stanford A-l Project Monitor Manual” [Moorer]
and [Weiher].

2.5 - SEPARATELY COMPILED PROCEDURES

When a program becomes extremely large it becomes
useful to break the program up into several files which
can be compiled separately. This can be done in SAIL
by preparing one file as a main program, and one or
more other files as programs each of which contains
one or more procedures to be called by the main
program The main program must contain EXTERNAL
declarations for each of the procedures declared in the
other files (EXTERNAL declarations have no procedure
body). The non-main program files must have the
following characteristics:

r— r

- r— - - r—r— - o

r—

r

SAIL USER MANUAL

1) All procedures to be called from the main
program (or procedures in other files) must
be qualified with the INTERNAL attribute
when they are declared. External procedure
declarations with headings identical to those
of the actual declarations must appear in all
those programs which call these procedures.

2) These internal procedures must be uniquely
identifisble by the first six characters of
their Identifiers. In general, any two internal
procedure names (or any other Internal
variables in the same core image) with the
same first six characters will cause incorrect
linkages when the programs are loaded.

3) The reserved word ENTRY, followed by a
semi-colon must be the first item in the
program (preceding even the BEGIN for its
outer block). No starting address will be
issued for a program containing an Entry
Specification. Since no starting address is
present for this file, entry to code within it
may only be to the procedures it contains.
The statements in the outer block, if any,
can never be executed.

4) Should you desire your separatedly compiled
procedures to be collected into a user
library, include a list of their identifiers
between the ENTRY and the semi-colon of
the Entry Specification of the program
containing those procedure declarations. The
format of libraries is described in [Weiher].
The identifier(s) appearing in the entry list
may be any valid identifiers, but usually they
will be the names of the procedures
contained in the file. No checking is done to
see if entry identifiers are ever really
declared in the body of the program.

B) Any variables (simple or array) which appear
In the outer block of a Separately Compiled
Procedure program will be global to the
procedures in this program, but not available
to the main program (unless they are
themselves connected connected to the main
program by Internal/External declarations --
see below). Arithmetic arrays in these outer
blocks will always be zero when the program
is first loaded, but will never be cleared as
others are by restarting your program (see
reinitialization, page 9).

Any variable, procedure or label may contain the
attribute INTERNAL or EXTERNAL in its declaration
(ITEMS may not -- items are part of leap, page 5 1).
The INTERNAL attribute does not affect the storage
assignment of the entity it represents, nor does it
have any effect on the behavior of the entity (or the

ALGOL DECLARATIONS

scope of its Identifier) In the file wherein it appears.
However, its address and (the first six characters of)
its name are made available to the loader for
satisfying External requests.

No space is ever allocated for an External declaration.
Instead, a list of references to each External identifier
IS made by the compiler. This list is passed to the
loader along with the first six characters of the
identifier name. When an Internal name matching it is
found during loading, its associated address is placed
in each of the instructions mentioned on the list. No
program inefficiency at all results from
External/Internal linkages (belay that -- references to
External arrays are sometimes more inefficient).

The entity finally represented by an External identifier
is only accessible within the scope of the External
declaration.

FORTRAN PROCEDURES

For a program written in DEC FORTRAN IV to run in
the SAIL environment, the following restrictions must
be observed:

1) It must be a SUBROUTINE or FUNCTION, not
a main program.

2) It must not execute any FORTRAN 1/O calls.
The UUO structures of the two languages
are not compatable.

3) It must be declared as a Fortran Procedure
(see page 19) in the SAIL program which
calls it.

The type bits required in the argument addresses for
Fortran arguments are passed correctly to these
routines.

The SAIL compiler will not produce a procedure to be
called from FORTRAN.

ASSEMBLY LANGUAGE PROCEDURES
The following rules should be observed:

1) The ENTRY, INTERNAL, and EXTERNAL
pseudo-ops should be used to obtain linkages
for procedure names and “global” identifiers
(remember that only six characters are used
for these linkage names.

2) Accumulators F (currently '12), P (currently
*17) and SP ('16) should be preserved over
function calls. P may be used as a push-
down pointer for arithmetic values and return
addresses. SP is the string stack pointer.
String results are returned on this stack.
Arithmetic results are returned in AC 1.

ALGOL DECLARATIONS

3) Those who wish to provide their own UUO
handlers or to increase their core size
should read the relevant sections of the
Implementation manual.

There are no other known processors which will
produce SAlL-compatible programs. In particular, the
LISP 1 6 system, by its very nature, contains storage
allocation conflicts which are difficult to resolve. If a
great need for thrs kind of compatibility develops it
can be provided.

12

SAIL USER MANUAL

A

— r

r

— r— r

SAIL USER MANUAL

SECTION 3

ALGOL STATEMENTS

3.1 - SYNTAX

<assignment-statement>
1= <algebraic-variable> «
<algebraic_expression>

<swap-statement>
©= <variable> e <variable>

<conditional-statement>
= <lIf-statement>
= <If_statement> ELSE <statement>

<If-statement>

= IF <boolean-expression> THEN <statement>

<go-to-statement>

= GO TO <label-identifier>
GOTO <label-identifier>
= GO <label-identifier>

<label-identifier>
=<ident if ler>

<for-statement>
= FOR <algebraic-variable> « <for-list> DO
<statement>

== NEEDNEXT <for-statement>

<for-list>
= <for-list-element>
u= <for-list> , <for-list-element>

<for-list-element>
= <algebraic-expression>

ALGOL STATEMENTS

:= <algebraic-expression> STEP
<algebraic-expression> UNTIL
<algebraic-expression>

= <algebraic-expression> STEP
<algebraic-expression> WHILE
<boolean-expression>

<while-statement>
»= WHILE <boolean-expression> DO
<statement>

:=NEEDNEXT <while-statement>

<do-statement>
= DO <statement> UNTIL
<boolean-expression>

:=NEEDNEXT <do-statement>

<case-statement>
u= <case-statement-head> <statement-list>
<case-statement-tail>
1= <case-statement-head>
<numbered-state-list>
<case-statement-tail>

<case-statement-head>
»= CASE <algebraic-expression> OF BEGIN
= CASE <algebraic-expression> OF BEGIN
<block-name>

<case-statement-tail>
= END
= END <block-name>

<statement-list>
»= <statement>
1= <statement-list> ; <statement>

<numbered-state-list>
:= [<integer_constant> 1 <statements>
= <numbered-state-list> ;
[<integer-constant> | <statement>

<return-statement>
»= RETURN
:= RETURN (<expression>)

<done-statement>
= DONE

ALGOL STATEMENTS

.= DONE <block-name>

<next_statement>
"= NEXT
: = NEXT <block-name>

<continue-statement>
= CONTINUE
::= CONTINUE <block-name>

<procedure-statement>
©= <procedure-call>

<procedure-call>
= <procedure-ident if ier>
= <procedure_ident if ier> (
<actual-parameter-list>)

<actual-parameter-list>
u= <actual-parameter>
= <actual-parameter-list> ,
<actual-parameter>

<actual-parameter>
<expression>
<array-identifier>
<procedure_ident if ier>

<safety-statement>
:= NOW-SAFE <id_list>
2= NOW-UNSAFE <id-list>

3.2 - SEMANTICS

. ASSIGNMENT STATEMENTS

The assignment statement causes the value
represented by an expression to be assigned to the
variable appearing to the left of the assignment
symbol You will see later (see page 22) that one
value may be assigned to two or more variables
through the use of two or more assignment symbols.
The operation of the assignment statement proceeds in
the following order

SAIL USER MANUAL

a) The subscript expressions of the left part
variable (if any - Sail defines “variable” to
include both array elements and simple
variables) are evaluated from left to right
(see Expression Evaluation Rules, page 23).

b) The expression is evaluated.

c) The value of the expression is assigned to
the left part variable, with subscript
expressions, if any, having values as
determined in step a.

This ordering of operations may wusually be
disregarded. However it becomes important when
expression assignments (page 22) or function calls
with reference parameters appear anywhere in the
statement. For example, in the statements:

1-3;
Alll-3+(<1);

Al3] will receive the value 4 using the above
algorithm. AlL1] will not change.

Any algebraic expression (REAL, INTEGER (BOOLEAN),
or STRING) may be assigned to any variable of
algebraic type. The resultant type will be that of the
left part variable. The conversion rules for
assignments involving mixed types are mildly amusing.
They are identical to the conversion rules for
combining mixed types in algebraic expresions (see
page 2 1 below).

SWAP ASSIGNMENT

The e operator causes the value of the variable on
the left hand side to be exchanged with the value of
the variable on the right hand side. Arithmetic
(REAL&INTEGER) type conversions are made, if
necessary: any other type conversions are invalid.
Note that the e operator may not be used in
assignment expressions.

CONDITIONAL STATEMENTS

These statements provide a means whereby the
execution of a statement, or a series of statements, is
dependent on the logical value produced by a Boolean
expression.

A Boolean expression is an algebraic expression whose
use implies that it is to be tested as a logical (truth)
value. If the value of the expression is D or NULL, the
expression IS a FALSE boolean expression, otherwise it
is TRUE. See about type conversion, page 21.

IF STATEMENT - The statement following the operator
THEN (the “THEN part”) is executed if the logical value
of the Boolean expression is TRUE: otherwise, that
statement is Ignored.

r-;'__ R

-

C

r—

r— r— r

SAIL USER MANUAL

IF ELSE STATEMENT - If the Boolean expression is
true. the “THEN part” is executed and the statement
following the operator ELSE (the “ELSE part”) is
Ignored. If the Boolean expression is FALSE, the “ELSE
part” is executed and the “THEN part” is ignored.

AMBIGUITY IN CONDITIONAL STATEMENTS

The syntax given here for conditional statements does
not fully explain the correspondences between THEN-
ELSE pairs when conditional statements are nested. An
ELSE will be understood to match the immediately
preceding unmatched THEN. Example:

COMMENT DECIDE WHETHER TO GO TO WORK;

IF -WEEKEND THEN

IF GIANTS-ON-TV THEN BEGIN
PHONE _EXCUSE("GRANDMOTHER DIED");
ENJOY(GAME);
SUFFER(CONSCIENCE _PANGS)

END

ELSE IF REALLY-SICK THEN BEGIN
PHONE _EXCUSE("REALLY sicK”);
ENJQY(8);
SUFFER(AGONY)

END

ELSE GO TO WORK;

GO TO STATEMENTS

Each of the three forms of the Go To statement means
the same thing -- an unconditional transfer is to be
made to the “target” statement labeled by the label
Identifier. The following rules pertain to labels:

1) All label identifiers used in a program must be
declared.

2) The declaration of a label must be local to the
block immediately surrounding the statement it
Identifies (see exception below). Note that
compound statements (BEGIN-END pairs containing
no declarations) are not blocks. Therefore the
block

BEGIN "BL"
INTEGER |,J; LABEL L1;

I'F' éEB THEN BEGIN “Cl "
L ...

END ‘el

GO TOLL

END "Bl"

IS legal.

3) Rule 2 can be violated if the inner block(s) have
no array declarations. E.g.:

ALGOL STATEMENTS

Legal lllegal
BEGIN "BL" BEGIN "B1"
INTEGER |,J; INTEGER },J;
LAEEL L1; LABEL LI;
BEGIN "B2" N éEGlN "B2"
REAL X; REAL ARRAY X [1:18};
Ll:. .. Ll ..
END "B2"; END "B2";
Go TO LL; GO TO L1;
END "B1" END "B1"

4) No Go To statement may specify a transfer into a
FOREACH statement (FOREACH statements are
part of LEAP -- page 51), or into complicated
For loops (those with For Lists or which contain a
NEXT statement).

Labels will seldom be needed for debugging purposes.
The block name feature (see page 96) and the listing
feature which associates with each source line the
octal address of its corresponding object code (see
page 92) should provide enough information to find
things easily.

Many program loops coded with labels can be
alternatively expressed as For or While loops,
augmented by DONE, NEXT, and CONTINUE statements.
This often results in a source program whose
organization is somewhat more transparent, and an
object program which is more efficient.

FOR STATEMENTS

For, Do and While statements provide methods for
forming loops in a program. They allow the repetitive
execution of a statement zero or more times. These
statements will be described by means of SAIL
programs which are functionally equivalent but which
demonstrate better the actual order of processing.
Refer to these equations for any questions you might
have about what gets evaluated when, and how many
times each part is evaluated.

Let VBL be any algebraic variable, AEL, ..., AE8 any
algebraic expressions, BE a Boolean expression, TEMP
a temporary location, S a statement. Then the following
SAIL statements are equivalent:

Using For Statements --

FOR VBL ~AEl, AE2, AE3 STEP
AE4 UNTIL AE5, AE6 STEP AE7 WHILE
BE, AE8 DO S;

Equivalent formulation without For Statements --

ALGOL STATEMENTS

VBL-AEL;
S;
VBL~AE2;
S

VBL-AE3; Comment STEP-UNTIL loop;
LOOPL: IF (VBL-AED) % SIGN(AE4)< 0 THEN
BEGIN
S;
VBL-VBLtAE4;
GO TO LOOP1
END;

VBL-AEB; Comment STEP-WHILE loop;
LOOP2: IF BE THEN BEGIN

VBL-VBL+AE7;
GO TO LOOP2
END;

VBL-AES;
S;

If AE4 (AE7) is an unsubscripted variable, changing its
value within the loop will cause the new value to be
used for the next iteration. If AE4 (AE7) is a
constant or an expression requiring evaluation of some
operator, the value used for the step element will
remain constant throughout the execution of the For
Statement. If AE5 is an expression, it will be re-
evaluated before each iteration, so watch this possible
source of ineff iciency.

Now consider the For Statement:
FOR VBL~AEl STEP CONST UNTIL AE2 DO §;

where constis a positive constant. The compiler will
simplify this case to:

VBL-AEL;
LOOP3: IF VBL £ AE2 THEN BEGIN
S
VBL-VBL+CONST;
GO TO LOOP3
END;

If CONST is negative, the line at LOOP3 would be:

LOOP3: IF VBL 2 AE2 THEN BEGIN

The value of VBL when execution of the loop is
terminated, whether it be by exhaustion of the For list
or by execution of a DONE, NEXT or GO TO statement
(see page 17, page 17, page 15), is the value last
assigned to it using the algorithm above. This value is
therefore always well-defined.

The statement S may contain assignment statements or

procedure calls which change the value of VBL. Such a
statement behaves the same way it would if inserted

16

SAIL USER MANUAL

at the corresponding point in the equivalent loop
described above.

WHILE STATEMENT
The statement:

WHILE BE DO S;

is equivalent to the statements:

LOOP: IF BE THEN BEGIN
S;
GO TO LOOP
END;

DO STATEMENT
The statement:

DO S UNTIL BE;

is equivalent to the sequence:

LOOP: s;
IF -BE THEN GO TO LOOP;

CASE STATEMENTS
The statement:

CASE AE OF BEGIN SO; Sl;S2 ... sn END

is functionally equivalent to the statements:

TEMP-AE;
IF TEMP<@ THEN ERROR
ELSE IF TEMP = 0 THEN SO
ELSE IF TEMP = 1 THEN Sl
ELSE IF TEMP = 2 THEN S2

e

ELSE IF TEMP = n THEN Sn
ELSE ERROR;

For applications of this type the CASE statement form
will give significantly more efficient code than the
equivalent If statements. Notice that dummy
statements may be inserted for those cases which will
not occur or for which no entries are necessary. For
example,

CASE AE OF BEGIN SO; ; ; S3;;; S6; END

provides for no actions when AE is 1,245, or 7.
When AE is 0, 3, or 6 the corresponding statement
will be executed. However, slightly more efficient code
may be generated with a second type of Case
statement that numbers each of its statement with [n]
where n is an integer constant. The above example
using this type of Case statement is then:

CASE AE OF BEGIN [3] s3; [8]58;[6]S6 END;

L

— r— "~ c— [~ r

r- r

r-

SAIL USER MANUAL

All the statements must be numbered, and that the
numbers must all be non-negative integers constant
expressions, although them may be in any order.

Block names (ie. any string constant) may be used
after the BEGIN and END of a Case statement with the
same effect as block names on blocks or compound
statements. (see about block names on page 1).

RETURN STATEMENT

This statement is invalid if it appears outside a
procedure declaration. It provides for an early return
from a Procedure execution to the statement calling
the Procedure. If no return statement is executed, the
Procedure will return after the last statement
representing the procedure body is executed (see
page 7).

An untyped Procedure (see page 18) may not return
a value. The return statement for this kind of
Procedure consists merely of the word RETURN. If an
argument is given, it will cause the compiler to issue
an error message.

A typed Procedure (see page 24) must return a
value as it executes a return statement. If no
argument is present an error message will be given. If
the Procedure has an algebraic type, any algebraic
expression may be returned as its value; type
conversion will be performed in a manner described on
page 21.

If no RETURN statement is executed in a typed
Procedure, the value returned is undefined (it could be
anything -- try it, it's fun).

DONE STATEMENT

The statement containing only the word DONE may be
used to terminate the execution of a FOR, WHILE, or
DO (also FOREACH- see page 58) loop explicitly. Its
operation can most easily be seen by means of an
example. The statement

FOR I-1 STEP 1 UNTIL n DO BEGIN

IF BE THEN DONE;

END

IS equivalent to the statement

FOR I-1 STEP 1 UNTIL n DO BEGIN
5
IF BE THEN GO TO EXIT;
END;
EXIT:

In either case the value of | is well-defined after the
statement has been executed (see page 16).

ALGOL STATEMENTS

The DONE statement will only cause an escape from
the innermost loop in which it appears, unless a block
name follows “DONE”. The block name must be the
name of a block or compound statement (a “Loop
Block”) which is the object statement of some FOR,
WHILE, or DO statement in which the current one is
nested. The effect is to terminate all loops out to (and
including) the Loop Block, continuing with the statement
following this outermost loop. For example:

WHILE TRUE DO BEGIN "BL"

IF OK THEN DO BEGIN "B2"

FOR I-1 STEP 1 UNTIL K DO
IF A[I}=FLAGWORD THEN DONE "B1";

ENb "B2" UNTIL COWS-COME-HOME;
END "81%
Here the block named 'Bl" is the “loop block”.

NEXT STATEMENT

A Next statement is valid only in a For Statement,
While Statement, or Do Statement (or Foreach- see
page 58). Processing of the loop statement is
temporarily suspended. When the NEXT statement
appears in a For loop, the next value is obtained
from the For List and assigned to the controlled
variable. The termination test is then made. If the
termination condition is satisfied, control is passed to
the statement following the For Statement. If not,
control is returned to the inner statement following the
NEXT statement. In While and Do loops, the
termination condition is tested. If it is satisfied,
execution of the loop terminates. Otherwise it resumes
at the statement within the loop following the NEXT
statement.

Unless a block name follows NEXT, the innermost loop
containing the NEXT statement is used as the “Loop
Block” (see page 17). The terminating condition for
the loop block is checked. If the condition is met, all
inner loops are terminated (in DONE fashion) as well. If
continuation is indicated, no inner-loop FOR-variable or
WHILE-condition will have been affected by the NEXT
code.

The reserved word NEEDNEXT must precede FOR,
WHILE, or DO in the “Loop Block”, and must not appear
between this block and the NEXT statement. Example:

NEEDNEXT WHILE ~EQOF DO BEGIN
S=INPUT(1,1);
NEXT;
Comment check EOF and terminate if TRUE;
T«INPUT(1,3);
PROCESS_INPUT(S,T);
END;

ALGOL STATEMENTS

CONTINUE STATEMENT

The Continue statement s valid In only those contexts
valid for the DONE statement (see page 17); the “Loop
Block” Is determined in the same way (i.e. implicitly or
by specifying a block name). All loops out to the Loop
Block are terminated as if DONE had been requested.
Control Is transferred to a point inside the loop
containing the Loop Block, but after all statements in
the loop. Example:

FOR I STEP 1 UNTIL N DO BEGIN
CONTINUE;

END

is semantically equivalent to:

FOR I-1 STEP 1 UNTIL N DO BEGIN
LABEL CONT;

GO TO CONT;

CONT:
END

PEOCEDURE STATEMENTS

A Procedure statement is used to invoke the execution
of a Procedure (see page 7). After execution of the
Procedure, control returns to the statement
immediately following the Procedure statement. SAIL
does allow you to use typed Procedures as procedure
statements. The value returned from the Procedure is
simply discarded.

The actual parameters supplied to a Procedure must in
match the formal parameters described in the
procedure declaration, modulo Sail type conversion.
Thus one may supply an integer expression to a real
formal, and type conversion will be performed as on
page 21

If an actual parameter is passed by VALUE, only the
value of the expression is given to the Procedure. This
value may be changed or examined by the Procedure,
but thiswill in no way affect any of the variables usel
to evaluate the actual parameters. Any algebraic
expression may be passed by value. Neither Arrays
nor Procedures may be passed by value (use ARRBLT,
page 43, to copy arrays). See the default
declarations for parameters in page 8.

If an actual parameter is passed by REFERENCE, its
address IS passed to the Procedure. All accesses to
the value of the parameter made by the Procedure are
made indirectly through this address. Therefore any
change the Procedure makes in a reference parameter
will change the value of the variable which was used
as an actual parameter. This is sometimes useful.
However ifitis not Intended, use of this feature can

18

SAIL USER MANUAL

also be sotnewhat confusing as well as moderately
inefficient. Reference parameters should be used only
where needed.

Variables, constants, Procedures, Arrays, and most
expresslons may be passed by reference.No String
expressions (or String constants) may be reference
parameters.

If an expression is passed by reference, its value is
first placed in a temporary location; a constant passed
by reference is stored in a unique location. The
address of this location is passed to the Procedure.
Therefore, any values changed by the Procedure via
reference parameters of this form will be inaccesible
to the user after the Procedure call. If the called
program is an assembly language routine which saves
the parameter address, it is dangerous to pass
expressions to it, since this address will be used by
the compiler for other temporary purposes. A warning
message will be printed when expressions are called
by reference.

The type of each actual parameter passed by
reference must match that of its corresponding formal
parameter, modulo Sail type conversion. The exception
is reference string formals, which must have string
variables (of string array elements) actual passed to
them. If an algebraic type mismatch occurs the
compiler will create a temporary variable containing
the converted value and pass the address of this
temporary as the parameter. A warning message will
be printed. An exception is made for Fortran calls
(see page 19).

PROCEDURES AS ACTUAL PARAMENTERS

If an actual parameter to a Procedure PC is the name
of a Procedure PR with no arguments, one of three
things might happen:

1) If the corresponding formal parameter
requires a value of a type matching that
of PR (in the loose sense given above in
page 18), the Procedure is evaluated and
its value is sent to the Procedure PC.

2) If the formal parameter of PC requires a
reference Procedure of identical type, the
address of PR is passed to PC as the
actual parameter.

3) If the formal parameter requires a
reference variable, the Procedure is
evaluated, lts result stored, and its address
passed (as with expressions in the previous
paragraph) as the parameter.

If a Procedure name followed by actual parameters
appears as an actual parameter it is evaluated (see
functions, page 24). Then if the corresponding formal

—

 r—— [

r— r— 1

-

SAIL USER MANUAL

parameter requires a value, the result of this
evaluationis passed as the actual parameter. If the
formal parameter requires a reference to a value, it is
called as a reference expression.

FORTRAN PROCEDURES

If the Procedure being called is a Fortran Procedure,
all actual parameters must be of type INTEGER
(BOOLEAN) or REAL. All such parameters are passed
by reference, since Fortran will only accept that kind
of call For convenience, any constant or expression
used as an actual parameter to a Fortran Procedure is
stored In a temporary cell whose address is given as
the reference actual parameter.

It was explained in page 7 that formal parameters
need not be described for Fortran Procedures. This
allows a program to call a Fortran Procedure with
varying nutnbers of arguments, a feature which exists
in DEC Fortran. No type conversion will be performed
for such parameters, of course. If type conversion is
desired, the formal parameter declarations should be
Included in the Fortran procedure declaration: SAIL will
use them if they are present.

To pass an Array to Fortran, mention the address of

itsfirst element (e.g. Al@], or B[1,1].

NOW-SAFE and NOW-UNSAFE

The NOW-SAFE and NOW-UNSAFE statements both
take a list of Array names (names only - no indicies)
foliowing them. From a NOW-SAFE until the end of
the program or the next NOW-UNSAFE, the specified
arrays will not have bounds checking code emitted for
them. If an array has had a NOW-SAFE done on it, or
has been declared SAFE, NOW-UNSAFE will cause
bounds checking code to be emitted until the array is
made safe again (if ever). Note that NOW-SAFE and
NOW-UNSAFE are compile time statements. “IF BE
THEN NOW-SAFE . ." will not work.

ALGOL STATEMENTS

ALGOL EXPRESSIONS SAIL USER MANUAL

SECTION 4 <disjunctive_expression>
= <negated_expression>
ALGOL EXPRESSIONS z= <disjunctive_expression> A

<negated-expression>

<negated-expression>
i=- <relational-expression>
= <relational-expression>

41- SYNTAX <relational-expression>
= <algebraic-relational>
= <leap-relational>

<expression>
1= <simple-expression> <algebraic-relational>
:= <conditional_expression> = <bounded-expression>
= <assignment_expression> 1= <relational-expression>
= <case-expressions <relational_operator>
<bounded-expression>
) <relational_operator>
<conditional-expression> [
::= IF <boolean_expression> THEN >

<expression> E-SE <expression> =

W
WiV AN

<assignment-expression>
:=<variable> « <expression>
<bounded-expression>
u= <adding-expression>
= <bounded-expression> MAX

<case-expression> <adding-expression>
1= CASE <algebraic-expression> OF (:= <bounded-expression> MIN
<expression-list>) <adding_expression>
<expression_list> <adding-expression>
= <expression> n= <term>
u=<expression_list> , <expression> = <adding-expression> <add-operator>
<term>

<simple_expression>

'= <algebraic-expression> <adding-operator>
= <leap_expression:: n=t
a -
= LAND
:=LOR
<boolean-expression> "= EQV
= <expression> = XOR
<algebraic_expression> <term>
2= ~<disjunctive_expression> = <factor>

= <algebraic_expression> v <term> <mult_operator> <factor>

<disjunctive_expression> ,

20

}
-

r

- = r o -

r— r—

=

—

SAIL USER MANUAL

<mult_operator>

n=%

v/

oA

= LSH

= ROT

= MOD

u= DIV

=&

<factor>
= <primary>
u= <primary> T <primary>

<primary>
1= <algebraic-variable>
u= - <primary>
z= LNOT <primary>
1= ABS <primary>
= <string-expression> [<substring_spec> 1
L=
= <constant>
:= <function-designator>
:= LOCATION (<loc_specifier>)
== (<algebraic-expression>)

<string-expression>
u= <algebraic-expression>

<substring_spec>
= <algebraic-expression> TO
<algebraic-expression>
1= <algebraic-expression> FOR
<algebraic-expression>

<function-designator>
1= <procedure-call>

<loc_specifier>

s= <variable>

= <array_ident if ier>
<procedure-identifier>
<label-identifier>

<algebraic_variable>
= <variable>

ALGOL EXPRESSIONS

4.2 - TYPE CONVERSION

Sail automatically converts between the data types
Integer, Real, String and Boolean. The following table
illustrates by description and example these
conversions. The data type boolean is identical to
integer under the mapping TRUE#@ and FALSE=@.

F |To
rl
o| INTEGER REAL STRING
m_|
1] | Left Justify | The right 7 bits
N | | and raise to | are converted to
T | | appropriate | to a 1 character
E | | power. | string with that
G | }1345-1.345@3| ASCI | code.
E | | -678+-6.7822 | 4 8 -» "B"
o i i
R| Drop decimal | i Convert to inte-
E | fractions. | | ger then convert
A | 1.345e2-134 | to string.
L | -6.79991--67 | | 4.8l » “0”

| 2.3e~24 0 I | 4.89%1 - "@"
I | [

| The ASCII code| Convert to in-
S| for the first | teger then
T | character of | to real
R| string. |
| }"@SUM"~> 4 8 | "@SUM"+ 4.8~1 |
N | NULL =0 I NULL = 0 |

NOTES: The NULL string is converted to 0, but 0 is
converted to the one character string with the ASCII
code of 0. If the absolute value of an integer is
greater than 134217728, then some low order
significance will be lost in the conversion to real;
otherwise, conversion to real and then back to integer
will result in the same integer value. If a real number
has magnitude greater than 134217728, then
conversion to integer will produce an invalid result.

Conversion from real to integer can be sped by a
factor of 8 if SHORT reals and integers are used. It
1Is only necessary that one of the data types be
SHORT: both the number to be converted and the
variable need not be SHORT. SHORTness is a
dominate quality in algebraic binary operations, That
is, the sum of a SHORT real and a regular real will be
treated as a SHORT real. SHORT integers and reals
must have an absolute magnitude of less than
134217728.

The binary arithmetic, logical, and String operations
which follow will accept combinations of arguments of
any algebraic types. The type of the result of such an
operation is sometimes dependent on the type of its
arguments and sometimes fixed. An argument may be
converted to a different algebraic type before the
operation is performed. The following table describes
the results of the arithmetic and logical operations
given various combinations of Real and Integer inputs.
ARG1 and ARG2 represent the types of the actual
arguments, ARG1' and ARG2’ represent the types of
the arguments after any necessary conversions have
been made.

21

ALGOL EXPRESSIONS

OPERATION ARGl ARG2 ARGl ARG2' RESULT
+ - INT INT INT INT INTx
* T % REAL INT REAL REAL REAL
MAX MIN INT REAL REAL REAL REAL
REAL REAL REAL REAL REAL
LAND LOR INT INT INT INT INT
EQV XOR REAL INT REAL INT REAL
INT REAL INT REAL INT
REAL REAL REAL REAL REAL
LSH ROT INT INT INT INT INT
REAL INT REAL INT REAL
INT REAL INT INT INT
REAL REAL REAL INT REAL
/ INT INT REAL REAL REAL
REAL INT REAL REAL REAL
INT REAL REAL REAL REAL
REAL REAL REAL REAL REAL
MOD DIV INT INT INT INT INT

REAL INT INT INT INT
INT REAL INT INT INT
REAL REAL INT INT INT

If ARG2 1s negative for the operatore ‘1", then the
result is real.

4.3 - SEMANTICS

CONDITIONAL EXPRESSIONS

A conditional expression returns one of two possible
values depending on the logical truth value of the
Boolean expression If the Boolean expression (BE) is
true, the value of the conditional expression is the
value of the expression following the delimiter THEN. If
BE s false, the other value is used. If both expressions
are of an algebraic type, the precise type of the
entire conditional expression is that of the “THEN part*.

Unlike the nested If statement problem, there can be
no ambiguity for conditional expressions, since there is
an ELSE part In every such expression. Example:

FOURTHDOWN(YARDSTOGO,YARDLINE,
IF YARDLINE < 70 THEN PUNT ELSE
IF YARDLINE < 90 THEN FIELDGOAL ELSE
RUNFORIT)

ASSIGNMENT EXPESSIONS

The somewhat weird syntax for an assignment
expression (it Is equivalent to that for an assignment
statement) i1s nonetheless accurate: the two function
Identically as far as the new value of the left part
variable 1s concerned. The difference is that the value
of this left part variable is also retained as the value
of the entire expression. Assuming that the
assignment itself is legal (following the rules given in

22

SAIL USER MANUAL

page 14 above), the type of the expression is that of
the left part variatle. This variable may now
participate in any surrounding expressions as if it had
been given its new value in a separate statement on
the previous line. Only the « operator is valid in
assignment expressions. The e operator is valid only
at statement level. Example:

IF (I=1+1)< 30 THEN |- ELSE l~l+1;

CASE EXPRESSIONS
The expressron

CASE AE OF (EB, EI, E2,. .., En

is equivalent to:

IF AE=8 THEN EO
ELSE IF AE=1 THEN EI
ELSE IF AE=2 THEN E2

ELSE IF AE-n THEN En
ELSE ERROR

The type of the entire expression is therefore that of
EO If any of the expressions E | En cannot be fit
into this mold an error message is issued by the
compiler. Case expressions differ from Case
statements in that one may not use the [n] construct
to number the €Xpressions. Example:

QUT(TTY,CASE ERRNO OF("BAD DIRECTORY”,
“IMPROPER DATA MODE”,
“UNKNOWN /0 ERROR’,

“COMPUTER IN BAD MOOD"));

SIMPLE EXPRESSIONS

Simple expressions are simple only in that they are not
conditional, case, or assignment expressions. There are
In fact some exciting complexities to be discussed with
respect to simple expressions.

PRECEDENCE OF ALGEBRAIC OPERATORS

The binary operators In SAIL generally follow “normal”
precedence rules. That is, exponentiations are
performed before multiplications or divisions, which in
turn are performed before additions and subtractions,
etc. The bounding operators MAX and MIN are
performed after these operations. The logical
connectives Aand v, when they occur, are performed
last (aAbefore v). The order of operation can be
changed by including parentheses at appropriate
points.

In an expression where several operators of the same
precedence occur at the same level, the operations
are performed from left to right. See page 23 for
special evaluation rules for logical connectives.

—

—_

r.,L._,

r-r r— 1 r— 71—

r—-

SAIL USER MANUAL

TABLE OF PRECEDENCE

T
X/%& MOD DIV LSH ROT
+-®= LAND LOR

MAX MIN
=g <<>>
AV

EXPRESSION EVALUATION RULES

SAIL does not evaluate expressions in a strictly left-
to-right fashion. If we are not constrained to a left-to-
right evaluation, (as is ALGOL 6@), we can in some
cases produce considerably better code than a strict
left-to-right scheme could achieve. Intuitively, The
essential features (and pitfalls) of this evaluation rule
can be illustrated by a simple example:

b~2.6;
c=b+(be bp);

The second statement is executed as follows: divide b
by 2 and assign this value (1.3) to b. Add this value
to b and assign the sum to c. Thus c gets 2.6. If the
expressions were evaluated in a strictly left-to-right
manner, ¢ would get 2.6 t 1.3.

The evaluation scheme can be stated quite simply:
code is generated for the operation represented by a
BNF production when the reduction of that BNF
production takes place. That is, b t (b«b/2) isn’t
reduced until after (b+<b/2) is reduced, so the smaller
expression gets done first.

v" (OR)

If an algebraic expression has as its major connective
the logical connective V', the expression has the
logical value TRUE (arithmetic value some non-zero
integer) if either of its conjuncts (the expressions
surrounding the "v") is true: FALSE otherwise. AvB
does NOT produce the bit-wise Or of A and B if they
are algebraic expressions. Truth values combined by
numeric operators will in general be meaningless (use
the operators LOR and LAND for bit operations),

The user should be warned that in an expression
containing logical connectives, only enough of the

. expression is evaluated (from left to right) to uniquely

determine its truth value. Thus in the expression
(J<3 v (K~K+1) >),
K will not be incremented if J is less than 3 since the

entire expression is already known to be true.
Conversely in the expression

(X 28 A SQRT(X)>2)

ALGOL EXPRESSIONS

there is never any danger of attempting to extract the
square root of a negative X, since the failure of the
first test testifies to the falsity of the entire
expression -- the SQRT routine is not even called in
this case.

A" (AND)

If a disjunctive expression has as its major connective
the logical connective "A", the expression has the
logical value TRUE if both of its disjuncts are TRUE;
FALSE otherwise. Again, if the first disjunct is FALSE
a logical value of FALSE is obtained for the entire
expression without further evaluation.

"2" (NOT)

The unary Boolean operator ~ applied to an argument
BE(a relational expression, see Syntax) has the value
TRUE if BE is false, and FALSE if BE is true. Notice
that =Ais not the bitwise complement of A, if A is an
algebraic value. If used as an algebraic value, -A is
simply 0 if A+0 and some non-zero Integer otherwise.

"<><2=#" (RELATIONS)

If any of the binary relational operators s
encountered, code is produced to convert any String
arguments to Integer numbers. Then type conversion
is done as it is for the t operations (see page 21. The
values thus obtained are compared for the indicated
condition. A Boolean value TRUE or FALSE is returned
as the value of the expression.. Of course, if this
expression is used in subsequent arithmetic operations,
a conversion to integer is performed to obtain an
integer value.

MAX MIN
A MAX B (where A and B are appropriate
expressions -- see the Syntax) has the value of the

larger of A and B (in the algebraic sense). Type
conversions are performed as if the operator were ‘+.
‘0 MAX X MIN 10’ is X if @<X< 10, 0 if X<f@, 10 if
X>10.

"+-" (ADDITION AND SUBTRACTION)

The t and - operators will do integer addition
(subtraction) if both arguments are integers (or
converted to integers from strings); otherwise, rounded
Real addition or subtraction, after necessary
conversions, is done.

LAND LOR XOR EQV LNOT

LAND, LOR, XOR, and EQV carry out bit-wise And, Or,
Exclusive Or, and Equivalence operations on their
arguments. No type conversions are done for these
functions. The logical connectives A and v do not have
this effect -- they simply cause tests and jumps to be
compiled. The type of the result is that of the first
operand. This allows expressions of the form X LAND
‘777777777, where X is Real, if they are really
desired.

23

ALGOL EXPRESSIONS

The unary operator LNOT produces the bitwise
complement of its (algebraic) argument. No type
conversions (except strings to integers) are performed
on the argument. The type of the result (meaningful or
not) is the type of the argument.

"+/7" (MULTIPLICATION AND DIVISION)

The operatron = (multiplication), like t and -, represents
Integer multiplication only if both arguments are
Integers; Real otherwise. Integer multiplication uses the
IMUL tnachine Instruction -- no double-length result is
available.

The / operator (division) always does rounded Real
division, after converting any Integer arguments to
Real.

The 7% operator has the same type table as t, -, and .
It performs whatever division is appropriate.

DIV MOD

DIV and MOD force both arguments to be integers
before dividing. X MOD Y is the remainder after X DIV
Y is performed:

X MOD Y = X =(X DIV Y)Y .

LSH ROT

LSH and ROT provide logical shift operations on their
first arguments. If the value of the second argument
1s positive, a shift or rotation of that many bits to the
left 1s performed. If it is negative, a right-shift or
rotate is done. To obtain an arithmetic shift (ASH)
operation, multiply or divide by the appropriate power
of 2. the compiler will change this operation to a shift
operation

"&" (CONCATENATION)

This operator produces a result of type String. It is
the String with length the sum of the lengths of its
arguments, containing all the characters of the second
string concatenated to the end of all the characters of
the first. The operands will first be converted to
strings if necessary as described in page 21 above.
Numbers can be converted to strings representing
their external forms (and vice-versa) through explicit
calls on execution time routines like CVS and CVD
(see page 3i below). NOTE: Concatenation of
constant strings will be done at compile time where
possible. For example, if SS is a string variable,
SS&'12&' 15 will resuit in two runtime concatenations,
while SS&('12&'15) will result in one compile time
concatenation and one runtime concatenation,

1" (EXPONENTIATION)

A factor is either a primary or a primary raised to a
power represented by another primary. As usual,
evaluation s from left to right, so that ATBTC is
evaluated as (AIB)IC. In the factor XTY, a suitable

24

SAIL USER MANUAL

number of multiplications and additions is performed to
produce an “exact” answer if Y is a positive integer.
Otherwise a routine is called to approximate
ANTILOG(Y LOG X). The result has the type of X in
the fortner case. It is always of type Real in the latter.

SUBSTRINGS

A String primary which Is qualified by a substring
specification represents a part of the specified string.
STIX FOR Y] represents the Xth through the (XtY -
1)th characters of the String ST. STIX TO YI
represents the Xth through Yth characters of ST.

Consider the ST[X TO VI case. If Y >LENGTH(ST),
(LENGTH is a runtime which returns the number of
characters in the string -- see page 41)
Y « LENGTH(ST): if Y<@,Y<@; in either case the right
half of the global Integer _SKIP_ is set to TRUE. If X <
1itisset to 1. If X > (the modified) Y, it is set to
Y+1(nullstring guaranteed). In either case the left
half of _SKIP_ is made TRUE. The STIX FOR YI
operation is converted to the STIX TO Y1 case before
the substring operation is performed.

To examine the above conditions, declare EXTERNAL
INTEGER _SKIP_ clear it, and look at it after any
interesting substring operation.

"®" (SPECIAL LENGTH OPERATOR)

This special primary construct is valid only within
substring brackets. It is an algebraic value
representing the length of the most immediate string
under consideration. Example:

throws out the first 3 characters
of A.

A[4 to]

A[3 for Bleo- 1 for 111 uses the next to
the last character of string B as
the number of characters for the
A substring operation.

FUNCTION DESIGNATORS

A function designator defines a single value. This value
is produced by the execution of a typed user
Procedure or of a typed execution-time routine (See
chapters 7 and 9 for execution-time routines). For a
function designator to be an algebraic primary, its
Procedure must be declared to have an algebraic
type Untyped Procedures may only be called from
Procedure statements (see page 18). The value
obtained from a user-defined Procedure is that
provided by a Return Statement within that Procedure.
If the Procedure does not execute a Return Statement,
the value might be anything at all. A Return Statement
IN a typed Procedure must mention a value (see page

17)

The rules for supplying actual parameters in a function
designator are identical to those for supplying
parameters in a procedure statement (see page 18).

r—-

r

r—— r— r— I

-

SAIL USER MANUAL

UNARY OPERATORS

The unary operator ABS is valid only for algebraic
quantities It returns the absolute value of its
argument

-X 1s equivalent to (0-X). No type conversions are
performed.

MEMORY AND LOCATION

One’s core image can be considered a giant one
dimensional array, which may be accessed with the
MEMORY construct.

MEMORY [<integer expression> |

One can store and retrieve from the elements of
MEMORY just as with any other array. However, when
retrieving from MEMORY, one can specify the type of
the accessed element by including type declarator
reserved words after the <integer expression>. For
example:

.+~ MEMORYI[X, INTEGER]
.+~ MEMORYI[X, REAL]
.. = MEMORYI[X, ITEMVAR)

COMMENT items and sets are part of Leap;
..« MEMORYI[X, SET]
.. =MEMORY[X, INTEGER ITEMVAR]

Note that one can not specify the contents of memory
to be an array or a string.

LOCATION is a predeclared Sail routine that returns
the index in MEMORY (ie. the address in core relative
to the starting address of one’s program) of the Sail
construct furnished it. The following is a list of
constructs it can handle and what LOCATION will
return.

CONSTRUCTx LOCATION(x) RETURNS

variables address of the variable

array name address of a word containing
the the address of the first
word of the array header

array element address of that element

procedure name address of the procedures
entry code

labels address of the label

ALGOL EXPRESSIONS

25

ASSEMBLY LANGUAGE STATEMENTS

SECTION 5

ASSEMBLY LANGUAGE STATEMENTS

51 - SYNTAX

<code-block>
= <code-head> <code_tail>

<code-head>
= <code-begin>
»= <code-begin> <block-name>
1= <code-head> <declarat ion> ;

<code_begin>
»= START-CODE
»= QUICK-CODE

<code-tail>
= <instruction> END
=<instruction> END <block-name>
= <Instruction> ; <code_tail>

<Instruction>
= <addresses>
::= <opcode>
= <opcode> <addresses>

<addresses>
= <address>
= <ac_field>,
w=<ac_field> , <address>

<ac_f ield>
= <constant-expression>

<address>
= <inuexed_address>
“=@ <Indexed-address>

<indexed_address>
= <simple_address>
= <simple_address> (<index-field>)

26

SAIL USER MANUAL

<simple_address>
w= <identifier>
»= <constant-expression>
n= <literal>

<literal>
:=| <constant-expression> |

<index-field>
©= <constant-expression>

<opcode>
= <constant-expression>

z= PDP-_opcode

5.2 - SEMANTICS

Within a START-CODE (QUICK-CODE) block,
statements are processed by a small and weak, but
hopefully adequate, assembly language translator.
Each “instruction” places one instruction word into the
output file. An instruction consists of

<label>:<opcode> <ac_ field>, @<simple_addr> (<index>)

or some subset thereof (see syntax). Each instruction
must be followed by a semi-colon.

DECLARATIONS IN CODE BLOCKS

A code-block behaves like any other block with
respect to block structure. Therefore, all declarations
are valid, and the names given in these declarations
will be available only to the instructions in the
code-block. All labels must be declared as usual.
Labels in code-blocks may refer to instructions which
will be executed, or to those which are not really
instructions, but data to be manipulated by these
instructions (these latter words must be bypassed in
the code by jump instructions). The user may find it
easier to declare variables or SAFE arrays as data
areas rather than using labels and null statements. As
noted below, identifiers of simple variables are
addresses of core locations. Identif iers of arrays are
addresses of the first word of the array header (see
the appendix on array implementation).

PROTECT ACS DECLARATION
PROTECT-ACS <ac#>, ..., <ac#>
where <ac#> is an integer constant between 0 and

' 17, is a declaration. Its effect is to cause Sail not to
use the named accumulators in the code it emits for

—

r — — ~— —

-

-

SAIL USER MANUAL

the block in which the declaration occurred (only
AFTER the declaration). The most common use is with
the ACCESS construct (see below); if one is using
accumulators 2, 3, and 4 is a code block, then one
should declare PROTECT-ACS 2,3,4 if one is going to
use ACCESS This way, the code emitted by Sail for
domg the ACCESS will not use accumulators 2, 3, or
4. WARNING: this does not prevent you from
clobbering such ACs with procedure calls (your own
procedures or Sail’s). However, most Sail runtimes
save their ACs and restore them after the call.

RESTRICTION: Accumulators P ('17), 8P ('16),F (12)
and 1 are used for, respectively, the system PDL push
down pointer, the string PDL push down pointer, the
display pointer, and returning results from typed
procedures and runtimes. More about these acs on
page 27. The protect mechanism will not override
these usages, so attempts to protect 1,'12'16, or ‘17
will be futile.

OPCODES

The Opcode may be a constant provided by the user,
or one of the standard (non I/0) PDP-10 operation
codes, expressed symbolically. If a constant, it should
take the form of a complete PDP-10 instruction,
expressed In octal radix (e.g. DEFINE TTYUUO =
“5 100000000007;). Any bits appearing in fields
other than the opcode field (first 9 bits) will be OR'ed
with the bits supplied by other fields of instructions in
which this opcode appears.

The Indirect, index, and AC fields have the same
syntax and perform the same functions as they do in
the FAIL or MACRO languages.

THE <simple addr> FIELD

1. If the <address> in an instruction is a constant
(constant expression), it is assumed to be an
Immediate or data operand, and is not relocated.

2. If the <address> is an identifier, the machine
address (relative to the start of the compilation)
is used, and will be relocated to the proper
value by the Loader.

3. If the <address> is an identifier which has been
declared as a formal parameter to a procedure,
addressing arithmetic will be done automatically
to get at the VALUE of the parameter. Hence
if the <address> is a formal reference
parameter, the instruction will be of the form
OP AC@-x("17) where x depends on exactly
where the parameter is in the stack. If the
formal was from a simple procedure, then ‘12
will be used as the index register rather than
“17.

4. If a literal 1s used, the address of the compiled
constant will be placed in the instruction.

ASSEMBLY LANGUAGE STATEMENTS

5. Any reference to Strings will result in the
address of the second descriptor word (byte
pointer) to be placed in the instruction (see the
appendix on string implementation for an
explanation of string descriptors).

6. Accessing parameter of procedures global to
the current procedure is difficult. ACCESS (
<expr>) may be used to return the address of
such parameters. ACCESS will in fact do all of
the computing necessary to obtain the value of
the expression <e€Xpr>, then return the address
of that value (which might be a temporary).
Thus, MOVE Ac, ACCESS(GP) will put the value
of the variable GP in AC, while MOVI AC,
ACCESS(GP) will put the address of the
variable GP in AC. If the expression is an item
expression (see Leap), then the item’s number
will be stored in a temp, and that temp’s
address will be returned. The code emitted for
an Access uses any acs that Sail believes are
available, so one must include a PROTECT-ACS
declaration in a Code block that uses ACCESS
if you want to protect certain acs from being
munged by the Access. WARNING: skipping
over an Access won't do the right thing. For
example,

SKIPE FLAG;
MOVE ' 10, ACCESS (' 777 LAND INTIN(CHAN));
MOVI ' 16, 0;

will cause the program to skip into the middle
of the code generated by the access if FLAG
is 0.

START-CODE VERSUS QUICK-CODE

Before your instructions are parsed in a block starting
with START-CODE, instructions are executed to leave
all accumulators from 0 through ‘15 available for your
use In this case, you may use a JRST to transfer
control out of the code-block, as long as you do not
leave (1) a procedure, (2) a block with array
declarations, (3)a Foreach loop, (4) a loop with a For
list, or () a loop which uses the NEXT construct. In a
QUICK-CODE block, no accumulator-saving instructions
are issued. Ac’s ' 13 through ‘15 only are free. In
addition, some recently used variables may be given
the wrong values if used as address identifiers (their
current values may be contained in Ac’s @-'12); and
control should not leave the code-block except by
“falling through”.

WARNING Concerning Default Radix: All integer
constants will be expressed in decimal radix unless the
octal representation is explicitly used.

ACCUMULATOR USAGE IN CODE BLOCKS

Although we have said that accumulators are “freed”
for your use, this does not imply a complete carte

27

ASSEMBLY LANGUAGE STATEMENTS

blanche Usually this means the compiler saves off
values currently stored in the ACs which it wants to
remember (the values of variables mostly), and notes
that when the code block is finished, these ACs will
have values In them that it doesn’t care about.
However, this is not the case with the following
accumulators, which are not touched at all by the
entrance and exit of code blocks:

NAME NUMBER USAGE

P n7 The system push down list pointer.
All procedures are called with a
PUSHJ P, PROC and exited
(usually) with a POPJ P. Use this
as your PDL pointer in the code
block, but be sure that its back to
where it was on entrance to the
block by the time you exit.
SP 16 The string push down stack pointer.
Used in all string operations. For
how to do your own string mangling,
see the implementation manual.

F 12 This is used to maintain the
"display” structure of procedures.
DO NOT HARM AC F!! Disaster will
result. A more exact description of
its usage may be found in the
appendix on procedures and the
implemention manual.

CALLING PROCEDURES FROM INSIDE CODE BLOCKS
To call a procedure from inside a code block, say
procedure PROT, say PUSHJ P, PROT. If the
procedure requires parameters, PUSH P them in order
before you PUSHJ P (ie. the first one first, the second
next, and the last right before the PUSHJ). If the formal
1s a reference, push the address of the actual onto the
P stack If the formal is a value string, push onto the
SP stack the two words of the string descriptor (see
the appendix on string implementation for an
explanation of string descriptors). If the formal is a
reference string, Simply PUSH P the address of the
second word of the string descriptor (e.g. PUSH P, [S]).
If the procedure is typed, it will return is value in
AC 1 (apointer to the second word if the procedure is
a string procedure). More information can be found in
the implementation manual and the appendix on
procedure implementation.

NOTE: procedures will change your accumulators
unless the procedure takes special pains to save and

restore them

EXAMPLE:

28

SAIL USER MANUAL

INTEGER FROCEDURE PROT(REAL T: REFERENCE
INTEGER TT; STRING TTT; REFERENCE
STRING TT7T):
BEGIN COMMENT BOOY: ENO:

DEFINE P = '17, SP = '16;

START-CODE

PUSH P . [3.141531;

PUSH P, (1] COMMENT s an integer variable;

MOVEI 1. S: COMMENT Sisastringvariable;

PUSH SP, -1 (1) COMMENT if SAIL allowed address
arithmetic in Start-code, you
could have said PUSH SP, S-1:

PUSH SP. S;

PUSH P,[55]; COMMENT SSie a string variable:

PUSHJ P,PROT;

END;

gives the same effect as

PROT(3.14159/,5,8S);

L

r—

—

r_

SAIL USER MANUAL

SECTION 6

BACKTRACKING

Oi- INTRODUCTION

Backup or backtracking is the ability to “back up”
execution to a previous point. gA|L facilitiates
backtracking by allowing one to REMEMBER, FORGET,
or RESTORE variables in the new data type,
CONTEXT.

6.2 - SYNTAX

<context-declaration>

CONTEXT <id-list>

CONTEXT ARRAY <array-list>
CONTEXT ITEM <id-list>

= CONTEXT ITEMVAR <id-list>

<backtracking-statement>
= <rem-keyword> <variable_list>
<rem_preposition> <context-variable>

<rem-keyword>
= REMEMBER
= FORGET
= RESTORE

<rem-preposition>
== IN
= FROM

<variable_list>

= <vari_list>
o= (<vari_list>)
o= ALL

©= <context-variable>

<vari_list>
= <vary
u= <vari_list> , <vari>

BACKTRACKING

<vari>
= <variable>
== <array_ident if ier>

<context-variable>
1= <variable>

<array_identifier>
= <identifier>

<context-element>
= <context_variable> : <variable>

6.3 - SEMANTICS

THE CONTEXT DATA TYPE

A context Is essentially a storage place of undefined
capacity When we REMEMBER a variable in a context,
we remember the name of the variable along with its
current value (if an array, values). If we remember a
value which we have already remembered in the
named context, we destroy the old value we had
remembered and replace it with the current value of
the variable. Values can be given back to variables
with the RESTORE statement.

Context variables are just like any other variables with
respect to scope. Also, at execution time, context
variables are destroyed when the block in which they
were declared is exited in order to reclaim their space.
Context arrays, items, and itemvars are legal (items
and itemvars are part of Leap). NEW(<context
variable>) is legal (NEW is also part of Leap).

RESTRICTIONS:

1. Context procedures do not exist. Use
context itemvar procedures instead.

2. Context variables may only be passed by
reference to procedures (i.e. contexts
are not copied).

3 Contexts may not be declared “GLOBAL”
(shared between jobs - Stanford only).

4. +/, and all other arithmetic operators
have no meaning when applied to Context
variables. Therefore, context variable
expressions always consist only of a
context variable.

29

BACKTRACKING

The empty context s NULL-CONTEXT. Context
variables are Initialized to NULL-CONTEXT at program
entry

REMEMBER

To save the current values of variables, list them,
with ot without surrounding parentheses, in the
remember statement. All of an array wil be
remembered if subscripts of an array are not used,
otherwise, only the value indicated will be remembered.
If a variable has already been remembered in context,
its value is replaced by the current value If one wants
to update all the variables so far remembered in this
context, one may say

REMEMBER ALL IN <context>.

If you have several contexts active,

REMEMBER CNTXTI IN CNTXT2

will note the variables Remembered in CNTXTI, and
automatically Remember their CURRENT values in
CNTXT2.

RESTORE

To restore the values of variables that were saved in
a context, list them (with or without surrounding
parentheses) in a restore statement. Restoring an
array without using subscripts causes as much of the
array that was remembered to be restored magically
to the right locations In the array. You can remember
a whole array, then restore all or selected parts (e.g.
RESTORE A[1,2] FROM IX;). If you remembered only
Al1,2], then restoring A will only update A[1,2]
RESTORE ALL IN IX will of course restore all the
variables from IX. RESTORE CNTXT! FROM CNTXT2
will act like a list of the variables in CNTXTI was
presented to the Restore instead of the identifier
CNTXT 1.

Astute Leap user will have noted that the syntax for
varrables includes Datum(typeditemvar) and similar
things. If one executes REMEMBER DATUM
(typed-item-expression-I) IN CNTXT, then RESTORE
DATUM (<item_expression_2>) FROM CNTXT will give
an error message unless the
<typed_item_expression_2> returns the same item as
<typed-item-expression-|>.

WARNING!!! Restoring variables that have been
destroyed by block exits will give you garbage. For
example, the following will blow up:

SAIL USER MANUAL

BEGIN “BLOWS UP”
CONTEXT J1;
INTEGER J;
BEGIN INTEGER ARRAY L[1:J];
REMEMBER J,L IN J1;
END;
RESTORE ALL FROM J1;
END “BLOWS UP”;

FORGET

The forget statement just deletes the variable from
the context without touching the current variable’s
value. Variables remembered in a context should be
forgotten before the block in which the variables were
declared is exited. FORGET ALL FROM Xl and
FORGET CNTXTI FROM CNTXT2 work just as the
similar Restore statements work, only the variables are
Forgotten instead of Restored.

IN-CONTEXT

The runtime boolean IN-CONTEXT returns true if the
specified variable 1sin the specified context. For
details, see page 43.

CONTEXT ELEMENTS

Context elements provide a convenient method of
accessing a variable that is being remembered in a
context. Examples of context elements:

CNTXT-VARI : SOME-VARI
DATUM(CNTXT_ITEM) : SOME-VARI
CNTXT_AR[2,3] : ARRY[4]
DATUM(CNTXT_VARI : ITMVR)
CNTXT-VARI :DATUM(TMVR)

A context element is syntactically and semantically
equivalent to a variable of the same type as the
variable foliowing the colon. For the complete syntax
of variables, see page 88. Assignments to context
elements change the Remembered value (ie. X<5;
REMEMBER X IN C;C:X«<6; RESTORE X FROM C; will
leave X with the value 0).

As w ith the Restore statement, one may not use
Context Elements of variables destroyed by block
exits.

RESTRICTIONS: (1) One may not Remember Context
Elements. (2)Passing Context Elements by reference
to procedures that change contexts is dangerous.
Namely, if the procedure Forgets the element that was
passed to it by reference, then the user is left with a
dangling pointer. A more subtle variation of this
disaster occurs when the Context element passed is an
array element. If the procedure Remembers the array
that that array element was a part of, the formal that
had the array element Context Element passed to it is
left with a dangling pointer.

SAIL USER MANUAL

SECTION 7

INPUT/OUTPUT ROUTINES

7 1- EXECUTION TIME ROUTINES IN GENERAL

SCOPE

A large set of pre-declared, built-in procedures and
functions have been compiled into a library
permanently resident on the system disk area
(SYSLIBSANn REL - n is the current version number),
and optionally into a special sharable write-protected
high segment. The library also contains programs for
managing storage allocation and initialization, and for
certain String functions. If a user calls one of these
procedures, a request is automatically made to the
loader to include the procedure, and any other routines
itmight need, in the core image (or to link to the high
segment). These routines provide input/output (I/Q)
facilities, Arithmetic-String conversion facilities, array-
handling procedures and miscellaneous other
Interesting functions.

The remainder of this section and the next describes
the calling sequences and functions of these routines.

NOTATIONAL CONVENTIONS

A short-hand is used in these descriptions for
specifying the types (if any) of the execution-time
routines and of their parameters. Before the
description of each routine there is a sample call of
the form

VALUE ~ FUNCTION (ARGL, ARG2, . . . ARGn)

if VALUE is omitted, the procedure is an untyped one,
and may only be called at statement level (page 18).

The types of VALUE and the arguments may be
determined using the following scheme:

1) If" characters surround the sample identifier
(which is usually mnemonic in nature) a
String argument is expected. Otherwise the
argument is Integer or Real. If it is important
which of the types Integer or Real must be
presented, it will be made clear in the
description of the function. Otherwise the
compller assumes Integer arguments (for
those functions which are predeclared). The
user may pass Real arguments to these
routines by re-declaring them in the blocks
iInwhich the Real arguments are desired.

INPUT/OUTPUT ROUTINES

2) If the @ character precedes the sample
identifier, the argument will be called by
reference. Otherwise it is a value parameter.

Example:

“RESULT" « SCAN (®"SOURCE", BREAK-TABLE, @BRCHAR)

IS a predeclared procedure with the implicit

declaration:

EXTERNAL STRING PROCEDURE SCAN
(REFERENCE STRING SOURCE;
INTEGER BREAK-TABLE;
REFERENCE INTEGER BRCHAR);

7.2 -1/0 CHANNELS AND FILES

¢ OPEN

OPEN(CHANNEL, “DEVICE”, MODE,
NUMBER-OF-INPUT-BUFFERS,

NUMBER-OF-OUTPUT-BUFFERS,
@COUNT, @BRCHAR, eEOF);

SAIL input/output operates at a very low level in the
following sense: the operations necessary to obtain
devices, open and close files, etc. , are almost directly
analogous to the system calls used in assembly
language. OPEN is used to associate a channel number
(@ to ‘17) with a device, to determine the data mode
of the I/O to occur on this channel (character mode,
binary mode, dump mode, etc.), to specify storage
requirements for the data buffers used in the
operations, and to provide the system with information
to be used for input operations.

CHANNEL is a user-provided channel number which
will be used in subsequent I/O operations to
identify the device. CHANNEL may range from 0
to 15 ('17). If some file is already open on this
channel,” a RELEASE will be performed for that
channel before the OPEN is executed.

DEVICE must be a String (i.e. “TTY”, "DSK") which is
recognizable by the system as a physical or
logical device name.

MODE s the data mode for the I/O operation. MODE
0 will always work for characters (see page
39 and page 36). Modes 8 ('1@) and 15
("17) are applicable for binary and dump-mode
operations using the functions WORDIN,
WORDOUT, ARRYIN, or ARRYOUT (see page
36 and following). For other data modes, see

31

INPUT/OUTPUT ROUTINES

[Moorer]. If any of bits 18-21 are on in the
MODE word, the 1-O routines will not print error
messages when data errors occur which present
the corresponding bits as a response to the
GETSTS UUO. Instead, the GETSTS bits will be
reported to the user as described under EOF
below. If bit 23 is on, no error message will be
printed if an invalid file name specification is
presented to LOOKUP, ENTER, or RENAME, a
code identifying the problem will be returned
(see page 33 and following, page 33 for
details). If you don’t understand any of this,
leave all non-mode bits off in the MODE word.

NUMBER-OF-1 INPUT/QUTPUT}_BUFFERS specifies the

number of buffers to be reserved for the 1/0
operations (see [Moorer] for details). At least
one buffer must be specified for input if any
input is to be done in modes other than ! 17;
similarly for output. If data is only going one
direction, the other buffer specification should
be 0. Two buffers give reasonable performance
for most devices-i 1 is sufficient for a TTY, more
are required for DSK if rapid operation is
desired). The left half of the BUFFER
parameter, if non-zero, specifies the buffer size
for the 1I/O buffers. Use this only if you desire
non-standard sizes.

SAIL USER MANUAL

1) If EOF IS 0 when OPEN is called, a SAIL error
message willba invoked if the device is not
available. The user will be given the options
of retrying or terminating the operation. If
EOF is non-zero when OPEN is called, it will
be set to 0 if the OPEN is successful.
Otherwise it will not be changed. In this case
(EOF non-zero on entry) control will be
returned to the user. This flag may then be
tested.

2) EOF will be made non-zero (TRUE! if an end
of file condition, or any error condition among
those enabled (see MODE, above) is detected
during any SAIL input/output operation. It will
be 0 (FALSE) on return to the user otherwise.
Subsequent inputs after an EOF return will
return non-zero values in EOF and a null
String result for INPUT. For ARRYIN a0is
returned as the value of the call after end of
file is detected. If EOF is TRUE after such
an operation, it will contain the entire set (18
bits) of GETSTS information in the left half.
The EOF bit is ‘20000, and is the only one
you’ll ever see if you haven’t specially
enabled for others. A summary of the enable
bits, the EOF and error bits, and their
meanings is contained in the Appendix on
page 99.

The remaining arguments are applicable only for INPUT
(String input). They will be ignored for any other
operations (although their values may be changed by

Assembly Language Approximation to OPEN:

the Open function).

COUNT designates a variable which will contain the

maximum number of characters to be read from
“DEVICE” in a given INPUT call (see page 35,
page 33). Fewer characters may be read if a
break character is encountered or if an end of
file is detected. The count should be a variable
or constant (rot an expression), since its address
is stored, and the temporary storage for an
expression may be re-used.

BRCHAR designates a variable into which the break

character (see INPUT and BREAKSET again) will
be stored. This variable can be tested to
determine which of many possible characters
terminated the read operation.

EOF designates a variable to be used for two

32

purposes:

INIT CHANNEL,MODE

SIXBIT /DEVICE/

XWD OHED,IHED

JRST <handle error condition>

JUMPE <NUMBER_OF _OUTPUT_BUFFERS>,GETIN

<allocat buffer space>

OUTBUF CHANNEL,NUMBER_OF_QUTPUT_BUFFERS
GETIN: JuMPE <NUMBER_OF _INPUT_BUFFERS>,DONE

<allocate buffer space>

INBUF CHANNEL, NUMBER-OF-INPUT-BUFFERS
DONE: <mark channel open -- internal bookkeeping>

<return>

OHED: BLOCK 3
IHED: BLOCK 3

CLOSE, CLOSIN, CLOSO

CLOSE (CHANNEL)
CLOSIN (CHANNEL)
CLOSO (CHANNEL)

The input (CLOSIN} or output(CLOSO) side of the
specified channel sclosed: all output is forced out
(CLOSO): the current fire name is forgotten. However
the device is still active; no OPEN need be done again
before the next input/output operation. Always CLOSE
output files: SAIL exit code will deassign the device,

L

r—

r— r— [r— [¢

=

SAIL USER MANUAL

but does not force out any remaining output; you must
do a CLOSE when writing on a disk file to have the
new file (or a newly edited old file) entered on your
User File Directory. No INPUT, OUT, etc. may be given
to a directory device until an ENTER, LOOKUP, or
RENAME has been issued for the channel.

CLOSE 1s equivalent to the execution of both CLOSIN
and CLOSO for the channel.

GETCHAN
VALUE < GETCHAN

The number of some channel not currently open is
returned. -1 is returned if all channels are busy.

RELEASE
RELEASE (CHANNEL)

If an OPEN has been executed for this channel, a
CLOSE is now executed for it. The device is
dissociated from the channel and returned to the
resource pool (unless it has been assigned by the
monitor ASSIGN command). No /O operation may refer
to this channel until another OPEN denoting it has been
executed.

Release is always valid. If the channel mentioned is not
currently open, the command is simply ignored.

——+t©OKUP, ENTER

LOOKUP (CHANNEL , “FILE” , @FLAG);
ENTER (CHANNEL , “FILE" , @FLAG);

Before input or output operations may be performed
for a directory device (DECtape or DSK) a file name
must be associated with the channel on which the

. device has been opened (see page 31). LOOKUP

names a file which is to be read. ENTER names a file
which is to be created or extended (see [Moorer]). Both
operations are valid even if no filename is really
necessary. It is recommended that an ENTER be
performed after every OPEN of an output device so
that output not normally directed to the DSK can be
directed there for later processing if desired. The
format for a file name string is

"NAME", or
“NAME. EXT"| or
"NAME[P,PN]", or
“NAME. EXT[P,PN]"

INPUT/OUTPUT ROUTINES

See [Moorer] for the meaning of these things if you do
not immediately understand.

SAIL is not as choosy about the characters it allows as
PIP and other processors are. Any character which is
not """, T, or"l" will be passed on. Up to 6
characters from NAME, 3 from EXT, P, or PN will be
used -- the rest are ignored.

If the LOOKUP or ENTER operation fails (see [Moorer])
then variable FLAG may be examined to determine the
cause. The left half of FLAG will be set to ‘777 777
(Flag has the logical value TRUE). The right half will
contain the code returned by the system giving the
cause of the failure. An invalid file specification will
return a code of ' 10. In this case, if the appropriate
bit (bit 23, see OPEN) was OFF in the MODE
parameter of the OPEN, an error message will be
printed; otherwise, the routine just returns without
performing the UUO.

If the LOOKUP or ENTER succeeds, FLAG will be set
to zero (FALSE).

RENAME

RENAME (CHANNEL , “FILE-SPEC” ,
PROTECTION , @FLAG);

The file open on CHANNEL is renamed to FILE-SPEC (a
NULL file-name will delete the file) with read/write
protection as specified in PROTECTION (nine bits,
described in [Moorer]). FLAG is set as in LOOKUP and
ENTER.

7.3 - BREAK CHARACTERS

BREAKSET

BREAKSET(TABLE, “BREAK-CHARS” , MODE);

Character input/output is done using the String
features of SAIL. In fact, /O is the chief justification
for the existence of strings in the language.

String input presents a problem not present in String
output. The length of an output String can be used to
determine the number of characters written. However
it is often awkward to require an absolute count for
input. Quite often one would like to terminate input, or
“break”, when one of a specified set of characters is
encountered in the input stream. In SAIL, this
capability is implemented by means of the BREAKSET,

33

INPUT/OUTPUT ROUTINES

INPUT, TTYIN, and SCAN functions. The value of
TABLE may range from 1 to 18. Thus up to 18
different sets of break specifications may exist at
once. Which set will be used is determined by the
TABLE parameter in an INPUT or SCAN function call.
The function of a givenBREAKSET command depends
on the MODE, an integer which is interpreted as a
right-justified ASCII character whose value is intended
to be vaguely mnemonic. BREAKSET commands can be
partitioned into 3 groups according to mode:

GROUP 1 -- Break character specifications
MODE FUNCTION

(by Inclusion) The characters in the
BREAK-CHARS String comprise the set of
characters which will terminate an INPUT (or
SCAN).

X" (by eXclusion) Only those characters (of the
possible 128 ASCIl characters) which are
NOT contained in the String BREAK-CHARS
will terminate an input when using this table.

‘0" (Omit) The characters in “BREAK-CHARS”
will be omitted (deleted) from the input
string.

Any "I"or "X" command completely specifies the break
character set for ifs table (i.e., the table is reset
before these characters are stored in it). Neither will
destroy the omitted character set currently specified
for this table. Any "0" command completely specifies
the set of omitted characters, without altering the
break characters for the table in question. If a
character is a break-character, any role it might play
as an omitted character is sacrificed.

The second group of MODEs determines the disposition
of break characters in the input stream. The
“BREAK-CHARS” argument is ignored in these
commands, and may in fact be NULL:

GROUP 2 -- Break character disposition

* MODE FUNCTION

S (Skip -- default mode) After execution of an
"S" command the break character will not
appear either in the resultant String or in
subsequent INPUTs o r SCANs--th e
character 1s “skipped”. Its value may be
determined after the INPUT by examination
of the break character variable (see page

31).
“A” (Append) The break character (if there is

one -- see page 3 1 and page 3D) is
appended, or concatenated to the end of the

34

SAIL USER MANUAL

Input string It will not appear again in
subsequent inputs.

R (Retain) The break character does not
appear in the resultant INPUT or SCAN
String, but will be the first character
processed in the next operation referring to
this input source (file or SCAN String).

For disk and tape fiies Using the standard editor
format, line numbers present a special problem. A line
number is a word containing 5 ASCil characters
representing the number in bits 0-34, with a “1” in bit
35 No other words in the file contain I's in bit 35.
Since String manipulations provide no way for
distinguishing line numbers from other characters,
there must be a way to warn the user that line
numbers are present, or to allow him to ignore them
entirely.

The third group of MODEs determines the disposition
of these line numbers. Again, the “BREAK-CHARS”
argument is ignored:

Group 3 -- Line number disposition
MODE FUNCTION

P (Pass -- default) Line numbers are treated as
any other characters. Their identity is lost;
they simply appear in the result string.

"N (No numbers) No line number (or the TAB
which always follows it in standard files) will
appear in the result string. They are simply
discarded.

L" (Line no. break) The result String will be
terminated early if a line number is
encountered. The characters comprising the
line number and the associated TAB will
appear as the next 6 characters read or
scanned from this character source. The
user’s break character variable (see page
3 1 and page 35) will be set to -1 to
indicate a line number break.

B (lee Erman’s very own mode) The result
String is terminated on a line number as with
“L”, but neither the line number nor the TAB
following it will appear in subsequent inputs.
The line number word, negated, is returned
in the user’s (integer) BRCHAR variable.

D’ (Display) If the TTY is a DPY, each line
number from any input file will be displayed
(along with a page number) on the rrght-hand
side of the screen. This mode really applies
to all inpul operations after the ‘D" operand
appears In any Breakset call. There is no
way to turn it off.

L

—

—

r;

—

r—

r

—

SAIL USER MANUAL

Once a break table is set up, it may be referenced in
an INPUT, TTYIN or SCAN call to control the scanning
operation.

Example:

To delitnit a “word”, a program might wish to input
characters until a blank, a TAB, a line feed, a comma,
or a semicolon is encountered, ignoring line numbers.
Assume also that carriage returns are to be ignored,
and that the break character is to be retained in the
character source for the next scanning operation:

BREAKSET(DELIMS," ;"8 TABSLF,"I");
Comment break on any of these;

BREAKSET(DELIMS,’ 15,"0");
Comment ignore carriage return;

BREAKSET(DELIMS,NULL,"N");

Comment ignore line numbers;

BREAKSET(DELIMS,NULL,"R");
Comment save break char for next time;

SETBREAK

SETBREAK(TABLE , “BREAK-CHARS" ,
“OMIT-CHARS” , “MODES")

SETBREAK is logically equivalent to the SAIL
statement:

BEGIN “SETBREAK"
INTEGER I;

IF LENGTH(OMIT_CHARS) > 0 THEN
BREAKSET(TABLE,OMIT_CHARS,"0");

FOR I-1 STEP 1 UNTIL LENGTH(MODES) DO
BREAKSET(TABLE,BREAK_CHARS,MODES[| FOR 1))

END “SETBREAK”

STDBRK

. STDBRK (CHANNEL);

Eighteen breakset tables have been selected as
representative of the more common input scanning
operations. The function STDBRK initializes the
breakset tables by opening the file SYS:BKTBL.BKT
on CHANNEL and reading in these tables. The user
may then reset those tables which he does not like to
something he does like.

The eighteen tables are described here by giving the

INPUT/OUTPUT ROUTINES

SETBREAKs which would be required for the user to
initialize them:

DELIMS - ‘15 & “12 & ‘40 & 11 & “14;
Comment carriage return, line feed, space,
tab, form feed;

LETTS <« “ABC . .. Zabc . .. Z
DIGS «~ “0123456789";
SAILID ~ LETTS&DIGS;

— 3

SETBREAK (1" 12. 15518)
SETBREAK (2; "12, NULL, "INA")
SETBREAK(3, DELIMS, NULL, “XNR”)
SETBREAK { 4, SAILID, NULL, “INS”);
SETBREAK (5, SAILID, NULL, "INR");
SETBREAK(6, LETTS, NULL, “XNR”);
SETBREAK(7, DIGS, NULL, “XNR”)
SETBREAK(8, DIGS, NULL, “INS”);
SETBREAK(9, DIGS, NULL, "INR")
SETBREAK (19, DIGS&“+@. ", NULL, “XNR”)
SETBREAK (11, DIGS&"+-@.", NULL, “INS”);
SETBREAK (12, DIGS&"+-@.", NULL, "INR");
SETBREAK (13-18, NULL, NULL, NULL)

7.4 -1/0 ROUTINES

INPUT
“RESULT” «INPUT(CHANNEL, BREAK-TABLE);

A string of characters is obtained for the file open on
CHANNEL, and is returned as the result. The INPUT
operation is controlled by BREAK-TABLE (see page
33) and the reference variables BRCHAR, EOF, and
COUNT which are provided by the user in the OPEN
function for this channel (see page 31). Input may be
terminated in several ways. The exact reason for
termination can be obtained by examining BRCHAR and
EOF:

EOF BRCHAR

#0 0 End of file or an error (if enabled, see
page 31) occurred while reading. The
result is a String containing all non-
omitted characters which remained in
the file when INPUT was called.

0 0 No break characters were encountered.
The result is a String of length equal
to the current COUNT specifications
for the CHANNEL (see page 31).

0 <@ A line number was encountered and the
break table specified that someone
wanted to know. The result String
contains all characters up to the iine
number. If mode "L" was specified in

35

INPUT/OUTPUT ROUTINES

the Breakset setting up this table, bit
35 1s turned off in the line number
word so that it will be input next time.
-1 1s placed in BRCHAR. If mode 'E"
was specified, the line number will not
appear In the next input String, but its
negated ASCII value, complete with
low-order line number bit, will be found
in BRCHAR.

A break character was encountered.
The break character is stored in
BRCHAR (an INTEGER reference
variable, see page 31) as a right-
justified 7-bit ASCII value. It may also
be tacked on to the end of the result
String or saved for next time,
depending on the BREAKSET mode (see
page 33).

If break table 0 is specified, the only criteria for
termination are end of file or COUNT exhaustion. The
routine is somewhat faster operating in this mode.

SCAN

“RESULT” « SCAN (@“SOURCE” ,
BREAK-TABLE , @BRCHAR)

SCAN functions identically to INPUT with the following
except ions:

1. The source is not a data file but the String
SOURCE, called by reference. The String
SOURCE is truncated from the left to
produce the same effect as one would
obtain if SOURCE were a data file. The
disposition of the break character is the
same as it is for INPUT.

2. BRCHAR is directly specified as a
parameter. INPUT gets its break character
variable from a table set up by page 31,

3 Line number considerations are irrelevant.

ouT
OUT(CHANNEL,"STRING")

STRING is output to the file open on CHANNEL. If the
device is a TTY, the String will be typed immediately.
Buffered mode text output is employed for this
operation. The data mode specified in the OPEN for
this channel must be 0 or 1. The EOF variable will be
set non-zero as described In page 31 if an error is

36

SAIL USER MANUAL

detected and the program is enabled for it; 0
otherwise

LINOUT
LINOUT { CHANNEL , NUMBER)

ABS(NUMBER) mod 100,000 is converted to a 5
character ASCIl string. These characters are placed
N a single word in the output file designated by
CHANNEL with the low-order bit (line-number bit)
turned on. A tab is inserted after the line number.
Mode 0 or 1 must have been specified in the OPEN
(page 3 1) for the results to be anywhere near
satisfactory. EOF is set as in OUT.

WORDIN

VALUE «~WORDIN(CHANNEL)

The next word from the file open on CHANNEL is
returned. A 0 is returned, and EOF (see page 31,page
35) set, when end of file or error is encountered. This
operation is performed in buffered mode or dump
mode, depending on the mode specification in the
OPEN. See the warning about Dump Mode !0, page
37.

ARRYIN

ARRYIN (CHANNEL , eLOC , HOW-MANY);

HOW-MANY words are read from the device and file
open on CHANNEL, and deposited in memory starting
at location LOC. Buffered-mode input is done if
MODE (see page 3 1)is'10 or ' 14. Dump-mode input
is done if MODE is ' 16 or ' 17. Other modes are
ilegal See the warning about Dump Mode 1O, page
37. If an end of file or enabled error condition
occurs before HOW-MANY words are read, the EOF
variable (see page 31) is set to the enabled bits in its
left half, as usual. lts right half contains the number of
words actually read. EOF will be 0 if the full request
is satisfied.

WORDOUT

WORDOQUT (CHANNEL , VALUE)

VALUE is placed In the output buffer for CHANNEL. An
OUTPUT s done when the buffer is full or when a
CLOSE or RELEASE is executed for this channel. Dump

SAIL USER MANUAL

mode output will be done if dump mode is specified in
the OPEN (see page 3 1). EOF is set as in OUT. See
the warning about Dump Mode 10, page 37.

ARRYOUT

ARRYOUT (CHANNEL , @LOC , HOW-MANY);

HOW-MANY words are written from memory, starting
at location LOC, onto the device and file open on
channel CHANNEL. The valid modes are again ‘10, ' 14,
' 16, and ' 17. The EOF variable is set as In ARRYIN,
except that the EOF bit itself will never occur,

WARNING ABOUT DUMP MODE IO

Any Dutnp Mode (modes ‘15 thorough '17) input which
does not specify an n+128-word count will have the
effect of losing the words up to the next 128-word
boundry -- you'll get the next word(s) of the next 128-
word record on the next input. Similarly:, any Dump
Mode output fills out the file with O‘s until a 128-word
boundry is reached. Therefore, Dump Mode 10O is not
practical for sizes other than 128-word transfer
multiples, in general.

MTAPE
MTAPE (CHANNEL , MODE);

MTAPE is Ignored unless the device associated with
CHANNEL is a magnetic tape drive. It performs tape

actions as follows:

MODE FUNCTION

“A” Advance past one tape mark (or file)
"B" Backspace past one tape mark
"g" Write tape mark
"E Advance one record
"R" Backspace one record
"g" Write 3 inches of blank tape
T Advance to logical end of tape
"y Rewind and unload
"W Rewind tape
USETI, USETO

USETI { CHANNEL , VALUE);
USETO (CHANNEL , VALUE);

The corresponding system function is carried out (see
[Moorer 1).

INPUT/OUTPUT ROUTINES

REALIN, INTIN

VALUE «REALIN(CHANNEL
VALUE «INTIN(CHANNEL);

Number input may be obtained using the functions
REALIN or INTIN, depending on whether a Real number
or an Integer is required. Both functions use the same
free field scanner, and take as argument a channel
number.

Free field scanning works as follows: characters are
scanned one at a time from the input channel. Nulls,
line numbers,and carriage returns are ignored. When
a digit is scanned it is assumed that this is a number
and the following syntax is used.

<number>
u= <sign> <real number>

<real number>
n= <decimal number>
n= <decimal number>
u= <exponent>

<exponent>

<decimal number>
u= <integer>
= <integer> .
u= <integer> .
= . <integer>

<integer>

<integer>
= <digit>
= <integer> <digit>

<exponent>
1= @ <Sign> <integer>

<sign>
o=t

= <empty>

If the digit is not part of a number an error message
will be printed and the program will halt. Typing a
carriage return will cause the input function to return
zero.

On input, leading zeros are ignored. The ten most

significant digits are used to form the number. A
check for overflow and underflow is made and an error

37

INPUT/OUTPUT ROUTINES

message printed if this occurs. When using INTIN any
exponent is removed by scaling the Integer number.
Rounding is used in this process. All numbers are
accurate to one half of the least significant bit.

After scanning the number the last delimiter is
replaced on the input string and is returned as the
break character for the channel. If no number is found,
a zero is returned, and the break variable is set to - 1;
If an end of file or enabled error is sensed this is also
returned in the appropriate channel variable. The
maximum character count appearing in the OPEN call is
ignored.

REALSCAN, INTSCAN

VALUE « REALSCAN (@'NUMBER_STRING" ,
@BRCHAR) :

VALUE « INTSCAN (@'NUMBER_STRING",
@BRCHAR);

These functions are identical in function to REALIN and
INTIM Their inputs, however, are obtained from their
NUMBER_STRING arguments. These routines replace
NUMBER-STRING by a string containing all characters
left over after the number has been removed from the
front

7.5- TELETYPE AND PSEUDO-TELETYPE ROUTINES

TELETYPE I/O ROUTINES

CHAR « INCHRW:
CHAR « INCHRS:

"STR" « INCHWL.

"STR" « INCHSL (aFLAG)
“STR” « INSTR (BRCHAR);
"STR" « INSTRL ({ BRCHAR);

- "STR" « INSTRS (@FLAG , BRCHAR);

“STR” « TTYIN(TABLE , @BRCHAR);

“SIR” « TTYINL (TABLE , @BRCHAR)
“STR” « TTYINS (TABLE , @BRCHAR);
OUTCHR (CHAR);

OUTSTR (“STR”);

CLRBUF;

BACKUP;

LODED (“STR");

Each of the I/O functions uses the TTCALL UUQO's to
do direct TTY I/O.

38

SAIL USER MANUAL

INCHRW waits for a character to be typed and
returns that character.

INCHRS returns a negative value if no characters
have been typed: otherwise it is INCHRW.

INCHWL waits for a line, terminated by a carriage-
return and line feed (CR-LF) to be typed. It
returns as a siring all characters up to (not
including) the CR. The LF is lost, The line
may also be terminated by any control (or
meta at Stanford) character: the character
will be included in the string result.

INCHSL returns NULL with FLAG # 0 if no lines
have been typed. Otherwise it sets FLAG
to 0 and performs INCHWL.

INSTR returns as a string all characters up to, but
not Including, the first instance of BRCHAR
The BRCHAR instance is lost.

INSTRL waits for a line to be typed, then performs
INSTR.

INSTRS is INCHSL if no lines are waiting: INSTRL
otherwise.

TTY IN uses the break table features described in
page 33 and page 35 to return a string
and break character. Mode ‘R" is illegal: line
number modes are irrelevant. The input
count (see page 31) is set at 100.

TTYINL waits for a line to be typed, then does
TTYIN.

TTYINS sets ERCHAR to 20 and returns NULL if no
lines are waiting. Otherwise it is TTYINL.

OUTCHR types its character argument (right-justified
in an integer variable).

OUTSTR types its string argument until the end of
the string or a null character is reached.

CLRBUF flushes the input buffer.

BACKUP backs up the scan (when started by a
system command).

LODED loads the line editor with the string
argument.

PSEUDO-TELETYPE FUNCTIONS

LINE < PTYGET ,
PTYREL (LINE)
CHARACTERISTICS « PTYGTL (LINE);

L
L

r r— r r— r— r -

r

SAIL USER MANUAL

PTYSTL { LINE , CHARACTERISTICS
NUMBER « PTIFRE (LINE);
NUMBER « PTOCNT (LINE);

CHAR « PTCHRW (LINE),

CHAR « PTCHRS (LINE);

PTOCHS (LINE , CHAR);

PTOCHW (LINE , CHAR);

PTOSTR (LINR , “sTR”):

"STR" « PTYALL (LINE);

"STR" « PTYSTR (LINE , BRCHAR),
"STR" « PTYIN(LINE, BKTBL , @BRCHAR);

Pseudo-teletype functions are available at Stanford
only.

PTYGET gets a new pseudo-teletype line number
and returns it. The global variable _SKIP_
is -1 if the attempt to get a PTY was
successful, and 0 otherwise.

PTYREL releases PTY identified by “line”.
PTYGTL returns line characteristics for the PTY.

PTYSTL sets line characteristics for the PTY
specified by “line”.

PTIFRE returns the number of free characters in
the PTY input buffer.

PTOCNT returns the number of free characters in
the PTY output buffer.

PTCHRW waits for a character from the PTY and
returns it.

PTCHRS reads a character from the PTY if there is
one, returns -1 if none.

PTOCHS tries to send a character to a PTY. If the
attempt was successful, the global variable
SKIP is -1, otherwise 0.

PTOCHW sends a character to a PTY, waiting if
necessary.

- PTOSTR sends the string to the PTY, waiting if

necessary.

PTYALL returns whatever is in the PTY's output
buffer. No warting is done.

PTYSTR reads characters from the PTY, waiting if
necessary, until a character equal to “char”
is seen. All but the break character is
returned as the string. If the break
character was ‘15 (carriage return), the
following line-feed is snarfed.

PTY IN reads from the PTY (waiting -if necessary)

INPUT/OUTPUT ROUTINES

according to break table convent ions.
break character is stored in “brchar”.

The

39

EXECUTION TIME ROUTINES

SECTION 8

EXECUTION TIME ROUTINES

Please read Execution Time Routines in General, page
31, if you are unfamiliar with the format we use to
describe runtime routines.

8.1 - TYPE CONVERSION ROUTINES

SETFORMAT
SETFORMAT (WIDTH , DIGITS);

This function allows specification of a minimum width
for strings created by the functions CVS, CVOS, CVE,
CVF, an d CVG (see page 40 and following). If this
number (WIDTH) is positive, enough blanks will be
inserted in front of the resultant string to make the
entire results at least WIDTH characters long. The
sign, if any, will appear after the blanks. If WIDTH is
negative, leading zeroes will be used in place of
blanks, The sign, of course, will appear before the
zeroes This parameter is initialized by the system to
0

In addition, the DIGITS parameter allows one to specify
the number of digits to appear following the decimal
point in strings created by CVE, CVF, and CVG. This
number is initially 7. See the writeups on these
functions for details.

NOTE: All type conversion routines, including those that
SETFORMAT applies to, are performed at compile time
iftheir arguments are constants. However, Setformat
does not have its effect until execution time.
Therefore, CVS, CVOS, CVE, CVF, and CVG of
- constants will have the no leading zeros and 7 digits
(if any) following the decimal point.

GETFORMAT
GETFORMAT (aWIDTH , @DIGITS);
The WIDTH and DIGIT settings specified in the last

SETFORMAT call are returned in the appropriate
reference parameters.

40

SAIL USER MANUAL

cvs
“ASCII-STRING” « CVS (VALUE):

The decimal Integer representation of VALUE is
produced as an ASCIl String with leading zeroes
omitted (unless WIDTH has been set by
SETFORMAT,page 40, to some negative value). - will
be concatenated to the String representing the
decimal absolute value of VALUE if VALUE is negative.

CV0s

“ASCII-STRING” + cvOs (VALUE);

The octal Integer representation of VALUE is produced
as an ASCIli String with leading zeroes omitted (unless
WIDTH has been set to some negative value by
SETFORMAT page 4%). No "' will be used to indicate
negative numbers. For instance, -5 will be represented
as ‘777777777773,

CVE, CVF, CVG ——

“STRING” « CVE (VALUE J;
“STRING” « CVF { VALUE);
“STRING” « CVG (VALUE);

Real number output is facilitated by means of one of
three functions CVECVG, or CVF, corresponding to
the EG, and F formats of FORTRAN IV. Each of these
functions takes as argument a real number and returns
a string. The format of the string is controlled by
another function SETFORMAT (WIDTHDIGITS) (see
page 4€) which is used to change WIDTH from zero
and DIGITS from 7, their initial values. WIDTH
specifies the minimum string length. If WIDTH is
positive leading blanks will be inserted and if negative
leading zeros will be inserted.

The following table indicates the strings returned for
some typical numbers. _ indicates a space and it is
assumed that WIDTH-1@ and DIGITS-3.

CVF CVE CVG
.00, 18@e-3_ _+188e-3_
081 __.108e-2_ . 188e-2_
818 __.100e-1_ __.188e-1_
. .les __.188___ _.188____

_ loooo _.1@8Bel__ _l.80

___1B.000 __.100e2__ 8.2
T100.000 . 189e3_ 188,
-1000. 000 __.108e4__ __.180e4__
-10000. 000 . 108e5__ __.180e5__
-100000.000 __.18@eB__ __.180e6__
-1000000. 000 __.188e7__ __.108e7__

-1000000. 000

The first character ahead of the number is either a
blank or a minus sign. With WIDTH--1@ plus and
minus 1 would print as:

L

- r— r-

SAIL USER MANUAL

CVF CVE CvG
_80061.0886 _0.108el__ _81.08
-90001.800 -8.180el__ -01.88

All numbers are accurate to one unit in the eighth
digit. If DIGITS is greater than 8, trailing zeros are
included; if less than eight, the number is rounded.

CVSTR
“STRING" « CVSTR (VALUE);
VALUE is treated as a D-character left-justified word
full of ASCII. the result is a D-character long String

containing these characters. The low order bit of
VALUE is ignored.

CVXSTR

“STRING” « CVXSTR (VALUE);
VALUE is treated as a B-character left-justified word

full of SIXBIT. The result is a 6-character long String
containing these characters, converted to ASCII.

CVD

VALUE « CVD (“ASCII-STRING”);

ASCII-STRING should be a String of decimal ASCII
characters perhaps preceded by plus and/or minus
signs. Characters with ASCIl values £ SPACE ('48) are
ignored preceding the number. Any character not a
digit will terminate the conversion (with no error
indication). The result is a (signed) integer.

Cvo
VALUE « CVO (“ASCII-STRING”);
This function is the same as CVD except that the

input characters are deemed to represent Octal
values.

CVASC
VALUE ~ CVASC (“STRING”);

This is the inverse function for CVSTR. Up to five
ASCIl characters

EXECUTION TIME ROUTINES

CVSIX

VALUE « CVSIX (“STRING”);

The inverse for CVXSTR, this function works the same
as CVASC except that up to six SIXBIT characters are
placed in VALUE. The characters from STRING are
converted from ASCII to SIXBIT before depositing
them in VALUE.

8.2 - STRING MANIPULATION ROUTINES

FQU
VALUE « EQU (“STR 1","STR2");

The value of this function is TRUE if STR1 and STR2
are equal in length and have identically the same
characters in them (in the same order). The value of
EQU is FALSE otherwise.

LENGTH

VALUE «LENGTH(“STRING”)

LENGTH is always an integer-valued function. If the
argument is a String, its length is the number of
characters in the string. The length of an algebraic
expression is always 1 (see page 21). LENGTH is
usually compiled in line.

~LOP-
VALUE « LOP (STRINGVAR)
The LOP operator applied to a String variable removes
the first character from the String and returns it in the
form given in page 21 above. The String no longer

contains this character. LOP applied to a null String
has a zero value. LOP is usually compiled in line.

8.3 - LIBERATION-FROM-SAIL ROUTINES

41

EXECUTION TIME ROUTINES

——CODE
RESULT « CODE (INSTR , @ADDR)

This function is equivalent to the FAIL statements:

EXTERNAL .SKIP. ;DECLARE AS _skIP_ IN SAIL

SETON .SKIP, 3 ASSUME SKIP
MOVE 8, INSTR

ADDI 8,@ADDR

XCT 8

SETZM JSKIP. 3DION'TSKIP
RETURN 1)

In other words, it executes the instruction formed by
adding the address of the ADDR variable (passed by
reference) to the number INSTR. Before the operation
1s carried out, AC1 is loaded from a special cell
(initially @). AC1 is returned as the result, and also
stored back into the special cell after the instruction is
executed. The global variable _SKIP_ (SKIP. in DDT or
FAIL) is FALSE () after the call if the executed
Instruction did not skip; TRUE (currently -1) if it did.
Declare this variable as EXTERNAL INTEGER _SKIP_ if
you want to use it.

CALL
RESULT « CALL (VALUE , “FUNCTION”);

This function is equivalent to the FAIL statements:

EXTERNAL .SKIP.

SETOM JSKIP,

MOVE 1, VALUE

CALL 1, (SIXBIT /FUNCTION/I

SETZN .8 1010 NOT SKIP

KIP. :
RETURN (REGISTER 1)

The SKIP. variable (_SKIP_in SAIL) is set as described
in the previous paragraph (CODE)

USERCON

USERCON(eINDEX , @VALUE , FLAG)

This function allows inspection and alteration of the
“User Table”. The user table is always loaded with
your program and contains many interesting variables.
Declare an index you are interested in as an External
Integer (e.g, EXTERNAL INTEGER REMCHR). This will,
when loaded, glve an address which is secretly a small
Integer Index Into the User Table. When passed by
reference, this index 1s available to USERCON. The
names and meanings of the various User Table indices
can be found in the file HEAD, wherever SAIL compiler
program text files are sold.

USERCON always returns the current value of the

42

SAIL USER MANUAL

appropriate User Table entry (the Global Upper
Segment Table is used if FLAG is negative and your
system knows about such things). If FLAG is odd, the
contents of VALUE before the call replaces the old
value in the selected entry of the selected table.

By now the incredible danger of this feature must be
apparent to you. Be sure you understand the
ramifications of any changes you make to any User
Table value.

USERERR

USERERR(VALUE , CODE , “MSG” , “RESPONSE”);
USERERR (VALUE , CODE , “MSG”);

USERERR generates an error message. See page
95 for a description of the error message format.
MSG is the error message that is printed on the
teletype or sent to the log file. If CODE = 2, VALUE is
printed in decimal on the same line. Then on the next
line the “LAST SAIL CALL” message may be typed
which indicates where in the user program the error
occurred. If CODE is 1 or 2, a »" will be typed and
execution will be allowed to continue. If it is 0, a "7 is
typed, and no continuation will be permitted. The
string RESPONSE, if included in the USERERR call, will
be scanned before the input buffer is scanned. In fact,
if the string RESPONSE satisfies the error handler, the
Input buffer will not be scanned at all. Examples:

USERERR(D,1,"LINE TOO LONG"); Gives
error message and allows continuation.

USERERR(8,1 NULL,"QLA"); Resets mode

of error handler to Quiet, Logging, and
Automatic continuation. Then continues.

8.4 - BYTE MANIPULATION ROUTINES

LDB, DPB, etc.

VALUE «LDB(BYTE-POINTER });
VALUE «ILDB(@ BYTE-POINTER)
DPB (BYTE, BYTE-POINTER);
IDPB(BYTE, @ BYTE-POINTER);
IBP (@ BYTE-POINTER J;

LDB, ILDB, DPB, IDBP, and IBP are SAIL constructs
used to invoke the PDP-10 byte loading instructions.
The arguments to these functions are expressions
which are interpreted as byte pointers and bytes. In
the case of ILDB, IDPB, and IBP, you are required to
use an algebraic variable as argument as the

r—

r— r— r——

SAIL USER MANUAL

byte-pointer, so that the byte pointer (i.e. that
algebraic Vvariable) may be incremented.

POINT

VALUE ~ POINT (BYTE SIZE ,
@EFFECTIVE ADDRESS , LAST BIT NUMBER

POINT returns a byte pointer (hence it is of type
Integer). The three arguments are enough to specify
the three fields of a POP-10

If the LAST BIT NUMBER is -1, POINT creates a byte
pointer which, when used with an ILDB, will pick up the
first byte from the word at EFFECTIVE ADDRESS,
Otherwise, the three arguments to POINT are exactly
analogous to the three arguments to POINT in FAIL.

8.5 - OTHER USEFUL ROUTINES

CVFIL
VALUE + CVFIL (“FILE-SPEC” , @EXTEN, @PPN);

FILE-SPEC has the same form as a file name
specification for LOOKUP or ENTER. The SIXBIT for
the file name is returned in VALUE. SIXBIT values for
the extension and project-programmer numbers are
returned in the respective reference parameters. Any
unspecified portions of the FILE-SPEC will result in
zero values. The global variable _SKIP_ (accessed by
declaring it as EXTERNAL INTEGER _SKIP_) will be 0
if no errors occurred, #& if an invalid file name
specification is presented.

FILEINFO
FILEINFO (@INFOARRAY);

FILEINFO fills the 6 word array designated by the
array name that is itS argument with the following six
words from the most recent LOOKUP, ENTER, or
RENAME:

Project,programer name (in SIXBIT)
filename (in SIXBIT)

extension (in SIXBIT)

date last written

date last dumped

protection

size

EXECUTION TIME ROUTINES

ARRINFO
VALUE « ARRINFO (ARRAY, PARAMETER)

ARRINFO(ARRAY,-1) returns the number of
dimensions for the array. This
number is negative for String
arrays.

ARRINFO(ARRAY @) returns the total size of the

array in words.

ARRINFO(ARRAY,1) returns the lower bound for

the first dimension.

ARRINFO(ARRAY,2) returns the upper bound for

the first dimension.

ARRINFO(ARRAY,3) returns the lower bound for

the second dimension.

ARRINFO(... etc.

ARRBLT
ARRBLT (eLOC1,eLOC2 , NuUM);

NUM words are transferred from consecutive locations
starting at LOC2 to consecutive locations starting at
LOC1. No bounds checking is performed. This function
does not work well for String Arrays (nor set nor list
arrays).

ARRTRAN

ARRTRAN (ARRAY 1, ARRAY2 J;

This function copies information from ARRAY2 to
ARRAY 1. The transfer starts at the first data word of
each array. The minimum of the sizes of ARRAY 1 and
ARRAY2 is the number of words transferred.

IN-CONTEXT
VALUE « IN-CONTEXT (VARI | CONTXT);

IN-CONTEXT is a boolean which tells one if the
specified variable is in the specified context. VARI
may be any variable, array element, array name, or
Leap variable. If that variable, element or array was
REMEMBERed in that context, IN-CONTEXT will return
True. IN-CONTEXT will also return true if VARl is an
array element and the whole array was Remembered in
that context (by using REMEMBER <array_name>). On

43

EXECUTION TIME ROUTINES

the other hand, if VARl is an array name, then
IN-CONTEXT will return true only if one has
Remembered that array with a REMEMBER
<array-names.

44

SAIL USER MANUAL

ra___

SAIL USER MANUAL

SECTION 9

MACROS AND CONDITIONAL COMPILATION

9.1 - SYNTAX

<define>
== DEFINE <def_list>;
== REDEFINE <def_list>;
== EVALDEFINE <def_list> ;

<def_list>
= <def>
= <def_list> | <def>

def>
z=<identifier> = <macro-body>
== <Identifier> (<id-list>)=
<macro-body>
z= <ident if ier> <string_constant> «
<macro-body>
= <identifier> (<id-list>)

<string-constant> = <macro.body>

<macro-body>

<delimited_string>

= <constant-expression>

= <macro-body> & <macro-body>

<macro_call>
= <macro_identifier>
= <macro_identifier> (
<macro_param_list>)
= <macro-identifier> <string-constant>
(<macro_param_list>)

<macro_ident it ier>
== <identifier>

<macro_param_list>
= <macro_param>
z= <macro_param_list> , <macro_param>

MACROS AND CONDITIONAL COMPILATION

<cond_comp_statement>
.~ <conditional_c.cs>
u= <While_C,C.S.>
-= <for_c.cs>
- <for_list_c.cs>
- . case_ccs>

<conditional_c.cs.>
== IFC <constant-expression> THENC
<anything> ENDC
IFC <constant-expression> THENC
<anything> ELSEC <anything> ENDC
IFCR <constant-expression> THENC
<anything> ENDC
:= [FCR <constant-expression> THENC
<anything> ELSEC <anything> ENDC

<whilc_ccs>
«= WHILEC <delimited_expr> DOC
<delimited-anything> ENDC

<for_ccs>
»= FORC <constant-expression> ¢
<constant-expression> STEPC
<constant-expression> UNTILC
<constant-expression> DOC
<delimited-anything> ENDC

<for_list_c.cs>
== FORLC <identifier> <
(<macro_param_list>) DO C
<delimited_anything> ENDC

<case_c.cs>
-=CASEC <constant-expression> OFC
<delimited-anything-list> ENDC

<delimited-anything-list>
= <delimited-anything>
== <delimited_anything_list> |
<delimited_anything>

<assigne>
-= ASSIGNC <identifier> = <macro-body> :

<delimited_string>, <macro_param>, <delimited_expr>,
<ar1ything> and <de|imited_anything> are explained in
the following text.

45

MACROS AND CONDITIONAL COMPILATION

9.2 - DELIMITERS

There are two types of delimiters used by the Sail
macro scanner: macro body delimiters and macro
parameter delimiters. Their usage will be precisely
defined in the sections on Macro Bodies and
Parameters to Macros, Here we will discuss their
declaration and scope, which is very important when
using source files with different delimiters (see page
10 to find out about source files).

Sail initializes both left and right delimiters of both
body and parameter delimiters to the double quote (7).
One may change delimiters by saying

REQUIRE "c><>" DELIMITERS.

In this example, the left and right body delimiters
become 'c" and "S", while the left and right parameter
delimiters become ‘<" and ">". Require Delimiters may
appear wherever a statement or declaration is legal,
One should Require Delimiters whenever all but the
most simple macros are going to be used. The first
Require Delimiters will initialize the macro facility; if
this is not done, some of the following conveniences
will not exist and only very simple macros like defining
CRLF ="("12&"15)" may be done.

Delimiters do not follow block structure. They persist
until changed. Furthermore, each time new delimiters
are Required, they are stacked on a special “delimiters
stack”. The old delimiters may be revived by saying

REQUIRE UNSTACK_DELIMITERS

Thus, each source file with macros should begin with a
Require delimiters, and end with an Unstack-delimiters.
It is impossible to Unstack off the bottom of the stack.
The bottom element of the stack is the double quote
delimiters that Sail initialized the program to. If you
Unstack from these, the Unstack will become a no-op,
and the double quote delimiters remain the delimiters
of your program.

One may circumvent the delimiter stacking feature by
saying

REQUIRE "c><>"REPLACE_DELIMITERS

instead of REQUIRE ‘ea<>" DELIMITERS. This doesn't
deactivate the stacking feature, it merely changes the
active delimiters without stacking them.

To revert to the primitive, initial delimiter mode where
double quotes are the active delimiters, one may say

46

SAIL USER MANUAL

REQUIRE NULL DELIMITERS

Null delimiters are stacked in the delimiter stack in the
ordinary REQUIRE "e3<>" DELIMITERS way. In null
delimiters mode, the double quote character may be
included in the macro body or macro parameter by
“using two double quotes:

DEFINE SOR = "OUTSTR(""SORRY"")";

The Null Delimiters mode is essentially the macro
facility of older versions of Sail where " was the only
delimiter. Programs written in older Sail versions will
run in Null Delimiters mode. Null delimiters mode has
all the rules and quirks of the old Sail macro system
(the old Sail macro facility is described in [Swinehart 8
Sproulll, Section 13). Compatibility with the old Sail is
the only reason for Null Delimiters.

9.3 - MACROS

We will delay the discussion of macros with
parameters until the next section. A macro without
parameters is declared by saying:

DEFINE <macro-name> = <macro_body>;

where <macro-name> is some legal identifier name
(see page 89 for a definition of a legal identifier
name). <macro_body>$ can be simply a sequence of
Ascii characters delimited by macro body delimiters, or
they can be quite complex. Once the macro has been
defined, the macro body is substituted for every
subsequent appearance of the macro name. Macros
may be called in this way at any point in a Sail
program, except inside a Comment or a string constant.

Macro declarations may also appear virtually anywhere
in a Sail program. When the word DEFINE is scanned
by Sail, the scanner traps to a special production. The
Define is parsed, and the scanner returns to its regular
mode as if there had been no define there at all. Thus
things like

|« J + 5+ DEFINE CON =C'7772K12. . ..

are perfectly acceptable. However, don’t put a Define
in a string constant or a Comment.

SCOPE
Macros obey block structure. Each DEFINE serves
both as a declaration and an assignment of a macro

r

r— r— -

r B

—

— r—

[

SAIL USER MANUAL

body to the newly declared symbol. Two DEFINEs of
the same symbol in the at the same lexical level will
be flagged as an error. However, it is possible to
change the macro body assigned to a macro name
without redeclaring the name by using saying
REDEFINE instead of DEFINE. For example,

BEGIN
BEGIN
DEFINE SQUAK = COUTSTR("OUTER BLOCK");>;
BEGIN
REDEFINE SQUAK = COUTSTR("INNER BLOCK");>;
END;
SQUAK COMMENT Here the program types
“INNER BLOCK™;
END; COMMENT Here SQUAK is undefined.
If SQUAK were included here, you'd
get the error message

“UNDEFINED IDENTIFIER:SQUAK";
END

REDEFINE of 3 name that has not been declared in a
DEFINE will act as a DEFINE That is, it will also
declared the macro name as well as assigning a body
to it.

MACRO BODIES
A Macro Body may be

1. A sequence of Ascii characters preceded
by a left macro body delimiter and followed
by a right macro body delimiter.

2. An integer expression that may be
evaluated at compile time.

3. A string expression that may be evaluated
at compile time.

4. Concatenations of the above.

WARNING: Source file switching inside macros will not
work.

DELIMITED STRINGS

Any sequence of Ascii characters, including " may be
used as a macro body if they are properly delimited.
The macro body scanner keeps a count of the number
of left and right delimiters seen and will terminate its
scan only when it has seen the same number of each.
This lets the macro body delimiters “nest” so that one
may include DEFINEs inside a macro body. For example,

DEFINE DEF =
CDEFINE SYM = <SYMBOLD; SYM>;

MACROS AND CONDITIONAL COMPILATION

One may temporarily override the active delimiters by
including a two character string before the ™" of the
Define statement. For example:

DEFINE LES "8%" = & B<X<BIGGEST A Y>X %;

The first character of the two character string
becomes the left delimiter, and the second becomes
the right delimiter.

INTEGER COMPILE TIME EXPRESSIONS

Sail tries to do as much arithmetic as it can at compile
time. In particular, if you have an arithmetic
expression of constants, such as

91.504 t (3.1415%81.9-7))

% “Sail can convert strings”

then the whole expression will be evaluated at compile
time and the resultant constant, in this case
93.9263610, will be used in your code instead of the
constant expression. Runt ime functions of constants
will be done at compile time too, if possible. EQU and
the conversion routines (CVS, CVO, etc.) will work.

When an integer compile time expression is scanned as
part of a macro body, it is immediately evaluated. The
integer constant which results is converted to a
character string, and that character string used for the
place in the macro body of the integer expression.
Thus,

DEFINE TTYUUO = '51LSH30;

will cause ‘51 LSH 30 to be evaluated, and the
resulting constant, -2469606 152, will be converted
to the character string -2469606152, and that
character string assigned to the macro name TTYUUO.

STRING COMPILE TIME EXPRESSIONS

If a compile time expression has the type string
(constant), the macro scanner will evaluate the
expression immediately. However, the string constant
that results will not be converted to the character
string that represents that constant, but to the
character string with the same characters that the
string constant had. Thus, the way to use a macro
for string constants is to delimit the string constant
like this:

DEFINE STRINCON = c"Very long
complex string that is hard
to type more than once™;

However, the automatic conversion of string constants
to character strings is helpful and indeed essential for
automatic generat ion of ident if iers:

47

MACROS AND CONDITIONAL COMPILATION

DEFINEN = 1;
COMMENT we will use this like a variable;

DEFINE GENSYM = ¢
DEFINE SYM = cTEMP_> & CVS(N);
COMMENT SYM is defined to be the character
string TEMP_# where # is an number;

DEFINE N = N+1;
COMMENT This increments N;

SYM 2;
COMMENT At the call of SYM, the character
string is read like program text. E. g. . . ;

INTEGER GENSYM, GENSYM, GENSYM, GENSYM;

REAL GENSYM, GENSYM;
COMMENT We have generated 6 identifiers with
unique names, and declared 4 as integers,
2 as reals;

To convert a macro body to a string constant, one may
call the runtime CVMS:

<string constant> «CVMS(<macro name>)

A string that has the exact same characters as the
macro body will be returned. For example:

DEFINE A = cB&C>;
DEFINE ABC = CVMS(A)& ¢ &Do;
COMMENT ABC now stands for the text B & C & D;

HYBRID MACRO BODIES

When two delimited strings are concatenated, the
result 1s a longer delimited string. ‘&" in compile time
expressron behaves the same way it behaves in any
expression. When a compile time expression is
concatenated to a delimited character string in a
macro body, the result is exactly the result one would
get if the delimited character string were a string
constant, except that the result is a delimited
character string. For exampie:

DEFINE N = |;

DEFINE M = 2;

DEFINE SYM -CVS(NxM t NT2) & c-SQRT(NxM+1)>;
DEFINE SYMI = c3-SQRT(NxM+1)>;

Here SYM Is exactly the same as SYMI.

9.4 - MACROS WITH PARAMETERS

One defines a macro with parameters by specifing the
formal parameters in a list following the macro name:

DEFINE MAC (AB)=cIF A THEN B ELSE ERR«1;3;

One calls a macro with parameters by including a list

48

SAIL USER MANUAL

of delimited character strings that will be substituted
for each occurance of the corresponding formal in the
macro body. For example,

COMMENT we assume that "<" and ">" are the
parameter delimiters at this point;
MAC (BYTES LAND (BITMASK +'2688)> <
BEGIN
WWDAT «FETCH(BYTES, ENVIRON):
COLOR[WWDAT] «" 2000;
END >)

expands to

IF BYTES LAND (BITMASK +' 2000) THEN
BEGIN
WWDAT «FETCH(BYTES,ENVIRON);
COLOR[WWDAT] «’ 2000;
END
ELSE ERR<1;

Parameter delimiters nest. Furthermore, if no delimiters
are used about a parameter, nesting counts are kept
of ()", 1", and "{}" character pairs. The parameter scan
will not terminate until the nesting counts of each of
the three pairs is zero. One may temporarily override
the active parameter deiimiters by including a two
character string ahead of the parameter list in the

macro cali:

MAC "¢3"(¢BYTES>' 20003, eMATCHBYTES)3)

Formal parameters may not appear in compile time
expressions that are used to specify macro bodies.
This is quite natural: compile time expressions must be
evaluated as they are scanned, but the value of a
formal parameter isn't known until later. However, if the
macro body is a hybrid of expressions and delimited
character strings, then formal parameters may appear
in the delimited string parts.

When doing a CVMS on a macro with parameters, use
only the macro name in the call; the parameters are
unnecessary. The string returned will have the two
character strings ‘«l’, '«2", etc. (here « stands for
the Ascii character ‘177) where the formal parameters
were in the macro body. A ‘el will appear wherever
the first formal parameter of the formal parameter list
appear in the macro body, a "«2" will appear wherever
the second parameter appeared, etc. The unfortunate
appearance of the Ascri character ‘177 in CVMS
generated strings is a product of the representation of
macro bodies as strings (ending in ‘177, ‘0 which
CVMS removes) having '177(n+'61) for each
appearances of the nth formal parameter in the body.

—

r— r— [

—

—

SAIL USER MANUAL

9.5 - CONDITIONAL COMPILATION

The compile time equivalents of the Sail IF, WHILE,
FOR and CASE statements are

IFC <CT expr> THENC <anything> ENDC

IFC <CT expr> THENC <anything> ELSEC
<anything> ENDC

WHILEC c<CT expr>> DOC c<anything>> ENDC

FORG <CT variable> « <CT expr> STEPC <CT expr>
UNTILC <CT expr> DOC c<anything>> ENDC

FORLG <CT variable> « (<macro param>,. ..,
<macro param>) DOC c<anything>> ENDC

CASEC <CTexpr> OFC c<anything>>, c<anything>>,
, c<anything>> ENDC

where <CT expr> is any compile time expression. <CT
expr> could itself include IFCs,FORCs or whatever.
<CT variable> is a macro name such as N from a
define such as DEFINE N = MUMBLE: <macro param> is
anything that is delimited like a macro parameter.
<anything> can be anything one could want in his
program at that point, including Defines and other
conditional compilation statements. The usual care
must be taken with nested IFCs so that the ELSECs
match the desired THENCs. The "< and ">" characters
above are to stand for the current MACRO BODY
DELIMITER pair.

The semantics are exactly those of the corresponding
runtime statements, with one exception When the list
to a FORLC is null (ie. it looks like "()*), then the
<anything> is inserted in the compilation once, with the
<CT variable> assigned to the null macro body.

Situations frequently occur where the false part of an
IFC must have the macros in it expanded in order to
delimit the false part correctly. For example,

DEFINE DEBUG-SELECT =
cIFC DEBNUM = 2 THENC 3;

DEFINE DEBUG-END =
CELSEC OUTSTRYDEBUG POINT”) ENDC>;

Debug-select
OUTSTR("DEBUG POINT #" & CVS(DBN));
Debug-end

If DEBNUM is not 2, then the program must expand the
macro Debug-end in order to pick up the ELSEC that
terminates the false part of the conditional. The
expansion is only to pick up such tokens -- the text of
the false part is not sent to the scanner as the true
part is. In order to avoid such expansion, one may use
IFCR (the R stands for “recursive” instead of IFC.

MACROS AND CONDITIONAL COMPILATION

As an added feature, when delimiters are required
about an <anything> in the above (such constructs are
named <delimited-anything> in the BNF), one may
substitute a concatenation of constant expressions and
delimited strings. This is just like a macro body, except
the concatenation MUST contain at least one delimited
string, thereby forcing the result of the concatenation
to be a delimted string, rather than a naked
expression.

As a further added feature,

IFC <CT expr> THENC c<anything>> ELSEC
c<anything>> ENDC

may be substituted in FORCs, FORLCs, and WHILECs
for the <anything> following DOC.

NOTE: In a WHILEC, the expression must be delimited
with the appropriate macro body delimiters (hence the
construct <delimited_expr> in the BNF).

9.6 - TYPE DETERMINATION AT COMPILE TIME

To ascertain the type of an identifier at compile time,
one may use the integer function DECLARATION
<identifier>). This returns an integer with bits turned
on to represent the type of identifier. Exactly what the
bits represent is a dark secret and changes
periodically anyway. The best way to decode the
integer returned by Declaration is to compare it to the
integer returned by CHECK_TYPE(<a string of Sail
declarators>). A Sail declarator is any of the
reserved words used an a declaration. Furthermore,
the declarators must be listed in a legal order,
namely, an order that is legal in declarations (i.e.
ARRAY INTEGER won’t work). One may include as
arguments to CHECK-TYPE the following special
tokens:

TOKEN EFFECT

BUILT-IN The bit that is on when an identifier is
predeclared by Sail, such as CVS, NULL,
etc. is returned.

LPARRAY The bit that is on when an identifier is
an item or itemvar with a declared
array datum is returned (the discussion
of Leap starts on page 51).

RESERVEDThe bit that indicates the identifier word
is returned.

DEFINE The bit that indicates the identifier is a

49

MACROS AND CONDITIONAL COMPILATION

macro name is returned (note: a macro
name as the argument DECLARATION
will not be expanded).

Examples:

DECLARATION(FOO) = CHECK_TYPE(INTEGER)
This is an exact compare. Only if Foo is
an integer variable will equality hold.

DECLARATION(A) LAND CHECK_TYPE(ARRAY)
This is not an exact compare. If A is any
kind of an array, the LAND will be non-zero.

DECLARATION(cvs) = CHECK_TYPE(BUILT..IN
STRING PROCEDURE)
The equality holds.

DECLARATION(BEG) LAND CHECK_TYPE(RESERVED)
This is non-zero only if one has said
LET BEG = BEGIN. DEFINE BEG = BEGIN
will only turn the Define bit of BEG on.

NOTE: if the <identifier> of DECLARATION has not yet
been declared or was declared in an inner block, then
0 is returned -- it is undeclared so it has no type.

9.7 -MISCELANEQUS FEATURES

COMPILE TIME I/0

Compile time input is handled by the REQUIRE
“<file-name>" SOURCE-FILE construct. <file-name>
can be any legal file, including TTY: and MTAO: and of
course disk files. The file will be read until the its end
of file delimiter is scanned (<cntr>Z for TTYS or
<meta><entr><if> at Stanford), and its text will replace
the REQUIRE statement in the main file.

Compile time output is limited to typing a message on

the users teletype. To do this say REQUIRE

<string-constant> MESSAGE, and the <string-constant>

will appear on your teletype when the compilation hits

that point in your file.

)

EVALDEFINE

The reserved word EVALDEFINE may be used in place
_ of the word DEFINE if one would like the identifier that
. follows to be expanded. When one follows a DEFINE
with a macro name, the macro is not expanded, but

rather the macro name is declared at the current

lexical level and assigned the specified macro body.

EVALDEFINE gets you around that. Helps with

automatic generation of macro names.

ASSIGNC
The following compile time contruct makes recursive
macros easier.

ASSIGNC <namel> = <macro- body>;

50

SAIL USER MANUAL

macto. bed
aemnlt

<name 1> must be a formal to a macro, and <
may be any macro body. Thereafter, whenever

<rl§mi’1'» IS instantiated, the body corresponding to

Aay .
< >Tis used in the expansion rather than the text

passed to the formal at the macro call.

RESTRICTION. ASSIGNC may only appear in the body
of the macro that <namel> is a formal of. If it
appears anywhere else, the <namel> will be expanded
like any good formal, and that text used in the
ASSIGNC as <namel>. Unless you're being very
clever, this i1s probably not what you want.

NOMAC

Preceding anything by the token NOMAC will inhibit
the expansion of that thing should that thing turn out
to be a macro.

r—

r—

SAIL USER MANUAL

SECTION 10

LEAP DATA TYPES

10.1 - INTRODUCTION

In addition to the standard algal-like statements and
expressions, SAIL contains an associative data store
and auxiliary facilities called LEAP. SAIL’s version of
LEAP 1s based on the associative components of the
LEAP language implemented by J. Feldman and P.
Rovner as described in [Feldman].

An associative store allows the retrieval of data based
on the partial specification of that data. LEAP stores
associative data in the form of ASSOCIATIONS, which
are ordered three-tuples of ITEMS. Associations are
frequently called TRIPLES. Associations are placed in
the associative store by MAKE statements and
removed from the store by ERASE statements. The
associative searches allow us to specify items and
their position in the triple and then have the LEAP
interpreter search for triples in the associative store
which have the same items in the same positions. The
interpreter will extract the items from such triples,
which correspond to the positions left unspecified in
the original search request. For example say we had
triples representing the binary relation Father-of, and
we had “made” associations of the form

Father-of @ John = Tom
Father-of ® Tom & Harry,
Father-of @ Jerry & Tom,

where Father-of, John, Tom, Harry, and Jerry are
names of items. We could then perform searches to
find the sons of Tom by specifying to the leap search
routines that we wanted to find triples whose first
component was Father-of and whose third component

. was Tom. Associative searches Inherently produce

multiple values (i.e. both Jerry and John are sons of
Tom). To deal with multiple values, Leap has SETs and
LISTs of items.

Iltems are constants. They may be created by
declaration or by the function NEW. ltems may have a
smgle algebraic variable, set, list or array associated
with them which is accessible by use of the DATUM
construct Declared items have names which may be
used to identify them in expressions, etc. The simple
variable whose value is an item Is called an ITEMVAR.

LEAP DATA TYPES

10.2 - SYNTAX

The following syntax is meant to REPLACE not
supplement the syntax of algebraic declarations, except
where noted.

<declaration>

w= <type-declaration>
<array-declaration>
<procedure-declaration>
<label-declaration>
u= <synonym-declaration>
<preload_specif ication>
<require-specification>
<context-declaration>
<type-qualifier> <declaration>

<simple-type>
u= REAL
m» INTEGER
== STRING
»= BOOLEAN
= SET
w= LIST

<itemvar_type>
== ITEMVAR
:=<simple_type> ITEMVAR
w=<array_type> ARRAY ITEMVAR
== CHECKED <itemvar_type>

<item_type>
v= [TEM
= <simple-type> ITEM

<array_type>
»= <simple-type>
== <itemvar_type>
= <item-type>

<type-declaration>
u= <simple-type> <identifier-list>
:= <itemvar_type> <identifier-list>
u= <item-type> <identifier-list>
©= <array-type> ARRAY <array-list>
u= <array-type> ARRAY ITEM <array-list>
«= <type-qualifier> <type-declaration>

<array_list> -- as on page 3

51

LEAP DATA TYPES

<procedure_declaration>
= PROCEDURE <ldentifier> <procedure-head>
<procedure-body>
1= <procedure-type> PROCEDURE <identifier>
<procedure_head> <procedure-body>
= <type-qualifier> <procedure-declaration>

<procedure-type>
i= <simple-type>
:= <itemvar_type>
u= MATCHING <procedure-type>

<procedure-head> and <procedure-body> -- as on
page 4 except:

<simple-formal-type> -.
2= <simple_type>
<itemvar_type>
= ? <itemvar_type>
©= <simple-type> ARRAY
= <itemvar_type> ARRAY
= <simple-type> PROCEDURE
= <itemvar_type> PROCEDURE

<preload_specification>, <synonym-declaration>,
<label-declaration>,

and <require_specification> as on page 3

<context-declaration> as on page 29

103- SEMANTICS

ITEM GENESIS

Although items are constants, they must be created
before they can be used. Items may be created in
three ways:

1) A Declared item may created by
declaration of an identifier to be of type
ITEM.

2) An item may be created with the NEW
construct (see page 64).

3) A bracketed triple item is created by the

MAKEing of a bracketed triple (see MAKE,
page 57).

52

SAIL USER MANUAL

ltems of type 1 and 2 are the same except those of
type 1 may be referred to by the identifier that is
associated with them. For example one may say
. ITEM DAD; X<DAD;.... NOTE: DAD is only the
name of an item, not a variable! Saying DAD+-X is
just as illegal as saying 15-X.

Items of type 3 are different from those of type 1
and 2. Discussion of them will be left until the creation
of associations with the MAKE statement is discussed

(page B7).

SCOPE OF ITEMS

Items do not obey the traditional Algol scope rules. Al
declared items are allocated in the outer block All
other items are allocated dynamically. All items exist
until a DELETE(<item expression>) is done on them (see
page 56 for the details of DELETE), or until the
outer block is exited at the end of the program.
HOWEVER, the identifiers of declared items (type 1
above) DO obey scope rules. After exiting the
block in which item X was declared, it will be
Impossible to refer to X by its declared name.
However, X may have been stored in an itemvar,
associations, etc. and thus still be retrieved and used.

Warning: items in recursive procedures behave
differently from variables in recursive procedures. At
each recursive call of a procedure, the local variables
are reinstantiated (unless they were declared OWN).
Items are constants. There is never more than one
instantiation of an item around at a time.

DATUMS OF ITEMS

An item of type 1 or 2 may have an associated
variable, called its DATUM. The Datum of an item is
like any variable; it may be declared to have any type
that a variable may have, except the type Itemvar.
Because an item may have only one datum from its
creation until its death, we frequently will say the
“type of an ltem” referring to the type of the datum.
RESTRICTIONS: It is currently impossible to make
either items or their datums either Internal or External.
However, the effect of External items can be
duplicated by manipulating the order in which items
are declared (see page 54). OWN is not applicable
as items are constants, not variables, Items of type
ARRAY must be declared with constant bounds since
they are allocated upon entering the outer block.

Example declarations of items with datums:

—

r— r— r_ —

- r— r— r— r— r—

r—

SAIL USER MANUAL

INTEGER ITEM FATHER-OF;

STRING ITEM FOO;

INTEGER ARRAY ITEM NAMES [1:4,1:8]; COMMENT note
the specification of the array’s dimensions;

SHORT REAL ITEM POINT;

EXTERNAL ITEM BLAT; COMMENT illegal;

ITEMVAR ITEM BLAT; COMMENT illegal;

STRING ITEMVAR ITEM BLAT; COMMENT illegal;

REAL PROCEDURE ITEM BLAT; COMMENT illegal;

PROCEDURE ITEM BLAT; COMMENT illegal,

use ASSIGN;

The syntax for variable includes the Datum construct.
That is, if AGE sa declared an Integer Item, then
DATUMAGE) behaves exactly like an Integer variable.
If ARR Is declared as

STRING ARRAY ITEM ARR [2:4,1:9+2]

then DATUM(ARR)Is a string array with two dimensions
of the declared size. A new array may not be
assigned to the Datum of ARR, though of course the
individual elements of the array may be changed.
Datums obey the -same type checking and type
conversion rules that the algebraic variables of Sail do.
For example, when a string is assigned to an integer
datum, the integer stored in the integer datum is the
ASCII of the first character of the string.

ITEMVARS

An ltemvar is a variable whose value is an ltem. Just
as the statements X«3; Y-X" and "Y«3 are
equivalent with respect to Y, the statements
“X-DAD; Y-X" and "Y<DAD" are equivalent with
respect to Y, if X and Y are itemvars, DAD an item.
The distinction between ltemvars and items is identical
to the distinction between integer variables and
integers. An integer variable may only contain an
integer and a variable declared ITEMVAR may only
contain an item. This may be confusing since
historically, integer variables have always been called
INTEGER rather than INTEGERVAR.

Properly speaking, one should have INTEGERVAR
ARRAYs Instead of INTEGER ARRAYs. Originally, Sail
only allowed ITEMVAR ARRAYs. However, so many
people found this confusing that now one may say
ITEM ARRAY, and it will be interpreted to mean
ITEMVAR ARRAY. Similarly, an Item procedure is
exactly the same as an ltemvar procedure.

An ttemvar may contain items of any type. However,
when one says DATUM(ITMVR) where ITMVR is an
itemvar, the compiler must know the type of the datum
of the item (i.e. the type of the item) contained in the
ltemvar so that the the correct conversions, etc. may
be done. Thus, one may declare itemvars to have the

LEAP DATA TYPES

same types that are legal for items. If one has
declared STRING ITEMVAR ITMVR, then the compiler
assumes that you have stored an string item in ITMVR,
and and will treat DATUM(ITMVR) as a string
variable.

An Itemvar may be declared CHECKED if the user
desires the type of itemvar checked against the type
of the datum of the item expressions assigned to it.
That is, only a string item could be stored in a
Checked String Itemvar. If the itemvar is not declared
Checked, it may have an item of any type assigned to
it and their types need not match at all. This can be
very dangerous. For example, an integer array item
might be assigned to a string itemvar. When the datum
of this itemvar is later assigned to an integer variable,
say, Sail will try to treat the array header as a string
pointer and get very confused. The runtime routine
TYPEIT, page 83, returns a code for the type of its
argument, and can be useful for avoiding type
matching errors with un-checked itemvars.

EXTERNAL, OWN and INTERNAL ltemvars are legal.
SAFE applies to either the array of an array itemvar,
the array of an itemvar array, or both arrays of an
array itemvar array.

ltemvars obey traditional Algol block structure. Upon
exiting the block of their declaration, their names are
unavailable and their storage is reallocated. However,
the item stored in an itemvar is not affected -- it
continues to exist untii DELETEd or until the end of the
program.

ltemvars are initialized to the special item ANY at the
beginning of one’s program.

SETS AND LISTS

Sets and Lists are collections of items. There are
two distinctions between Sets and Lists: a list may
contain multiple occurrences of any item while a set
contains at most a single instance of an item. Second,
the order in which items appear within a list is
completely within the control of the user program,
while with a set, the order is fixed by the internal
representation of the items. Lists and Sets do not
care what type if any the datums of their members
are.

List and Set Arrays, Itemvars, Items, and Procedures
are all legal, as well as External, Own and Internal Sets
and Lists. Like itemvars, the scope of Set and List
variables is the block they were declared in. Exiting
that block does not destroy the items stored in the
departed sets or lists.

ASSOCIATIONS

Perhaps the most important form of storage of items is
the Association, or TRIPLE. Triples of items may be
written into or retrieved from a special store, the

53

LEAP DATA TYPES

associative store. The method of storage of these
triples is designed to facilitate fast and flexible
retrieval. Sail uses approximately two words of storage
for each triple in the associative store. There is at
most one copy of a friple in the store at any time.
Once a triple has been stored in the associative store,
its component items can not be changed, although an
approximation to this can be obtained by erasing the
association then making a new association with the
altered components. You will note there is no syntax
for declaring a triple. Triples can only be created with
the MAKE statement. In the examples which follow, a
triple is represented by :

AeO=V

where A, 0, and V represent the items stored in the
association. The associative store is accessed by the
FOREACH statement, derived sets, and binding triples
(see Searching the Associative Store, page 57).

PROCEDURES

Itemvar, ltem, List, and Set procedures all exist.
ltemvar procedures may be CHECKED if one desires
the "MRETURNed to have the same type as the
type of the ltemvar procedure. Otherwise, the compiler
only checks to see that the value returned to an
itemvar procedure is an item.

Every type except Iltem may be used in formal
parameter declarations; items are constants yet
parameters always have something assigned to them in
the procedure call. Since you can’t assign something to
a constant, you can’'t have item parameters.

WARNING: when using Checked Reference Itemvar
formals, no type checking is performed as the actual is
assigned to the formal at the procedure call. However,
type checking will only be done during the procedure,
and when the formal is assigned to the actual upon the
(normal) exit of the procedure.

IMPLEMENTATION

Each Item is represented by a unique integer in the
complier. The numbers are assigned in the order the
- items are declared, e.g. the first declared item get 1,
" the second gets 2, etc. (actually, Sail has already
declared 8 items that it needs, so user item numbers
start with 9). Lexical nesting is not observed; it is
only the sequence in which the declarations are
scanned that determines their numbers. The NEW
function does not affect this assignment of numbers.
ltems created by the New function are assigned the
next available number at the time of the execution of
the New.

Those who use separately compiled procedures (see
page 10) may wish to have declared items common to
both programs. However, Internal and External items
do not exist. The same effect may be-achieved by

54

SAIL USER MANUAL

carefully declaring the desired items in the sarne order
in both programs so thal their numbers match. The
message “Warning -- two programs with items in them.”
will be issued at the begining of execution, and may be
ignored if you are certain the items are declared in
the same relative positions. No checking of names,
types, arrays bounds, etc. is done, so be very careful.

Items occupy no space (neither does the constant
integer 15). The numbers ascribed to items are
stored in Itemvars and Associations. Itemvars are
simply a word of storage An association is two
words of storage, one with three 12 bit bytes, each
containing the number of one of the items of the
association, and a second word containing two pointers
reiating the association to the associative search
structure. Since the number of an item must fit in 12
bits, the number of items is limited to about 4090.

The number of an item may be retrieved from the item
as a integer with the predeclared function CVN (
<item-expression>). The item represented by a
certain integer may be retrieved by the predeclared
function CVI (<algebraic-expression>). CVN and CVI
should only be used by those who know what they’re
doing and have kept themselves up to date on changes
in Leap.

SAIL USER MANUAL

SECTION 11

LEAP STATEMENTS

11.1 - SYNTAX

<leap-statement>
= <leap-assignment-statement>
1= <leap-swap-statement>
1= <set-statement>
u= <list-statement>
= <associative-statement>
.= <foreach_statement>
= <suc_fail_statement>

<leap-assignment-statement>
z=<itemvar_variable> « <item-expression>
u= <set-variable> + <set-expression>
1= <list-variable> + <list-expression>

<leap-swap-statement>
= <itemvar_variable> o <itemvar_variable>
1= <set-variable> e <set-variable>
u= <list-variable> e <list-variable>

<set-statement>
»= PUT <item-expression> IN <set-variable>
= REMOVE <item-expression> FROM
<set-variable>

<list-statement>
= PUT <item-expression> IN <list-variable>
<location_specification>
= REMOVE «<item-expression> FROM
<list-variable>
= REMOVE ALL <item_expression> FROM
<list-variable>

<location_specificat ion>
= BEFORE <element-location>
AFTER <element-location>

<element_location>
1= <item-expression>
:= <algebraic_expression>

LEAP STATEMENTS

<associative_statement>
= DELETE (<item-expression>)
= MAKE <triple>
= ERASE <friple>

<triple>
i= <item-expression> © <item-expression> =
<item-expression>

<foreach_statement>
= FOREACH <binding-list> SUCH THAT
<element-list> DO <statement>

= NEEDNEXT <foreach_statement>

<binding-list>
::= <itemvar_variable>
== <binding-list> , <itemvar_variable>

<element_list>
1= <element>
:= <element-list> AND <element>

<element>
u= <item-expression> IN
<list-expression>
»=(<boolean-expression>)
u= <retrieval-triple>
::= <matching_procedure_call>

<retrieval-triple>
u= <ret-trip-element> & <ret-trip-element>
= <ret-trip-element>

<ret-trip-element>
= <item-expression>
u= <derived-set>

<matching-procedure-call>
u= <procedure-call>

<suc_fail_statement>
:= SUCCEED
= FAIL

LEAP STATEMENTS

11.2 - RESTRICTIONS

SUCCEED and FAIL statements must be lexically
nested inside a matching procedure to be legal.

11.3 - SEMANTICS

ASSIGNMENT STATEMENTS

Assignment statements in Leap are similar to those in
Algol. ltemvars, Set variables, and List variables may
be assigned item, set and list expressions,
respectively. Only one automatic coercion is done: a
set expression may be assigned to a list variable.
NOTE: lists may not be assigned to set variables (use

CVSET).

The type of an itemvar is checked against the type of
the item expression assigned to it if and only if the
itemvar is declared Checked. If a typed item is
assigned to an un-Checked itemvar of different or no
typ. the datum is not affected. Assign an integer item
to a string itemvar and the string itemvar will now
contain an item with an integer datum. Sail will not
know that you have in effect switched the type of the
datum and will get very confused if you later try to
use the datum of the itemvar; it will treat the integer
as a pointer to a two word string descriptor in this
case.

DATUM (X) is legal only when X is a typed item
expression, namely an item expression that the
compiler can discover the type of (not COP(<set>) for
example). See page 88 for the BNF of typed item
expressions. DATUM (X) is syntactically a variable.
It has the type of the typed item expression, X. If X
has an array type, then DATUM(X) should be followed
by [<subscript_list>]. Appropriate coercions will be
done (i.e. string to integer, integer to real, etc.) just as
with regular variables in expressions. NOTE: the user
is responsible for seeing that the datum of an item
expression really is the type that Datum thinks it is
(i.e. Datum of a Real Itemvar that has had a string item
stored in it will give you garbage).

PROPS (X), where X is an item expression, is legal
regardless of the type of X. X may even evaluate to
a bracketed triple item, procedure item, or event item.
PROPS (X) is syntactically an integer variable. It is
limited to integers n where 0 <n <4@95. If negative
(i.e. two’s complement) Integers or integers larger than
4095 are assigned to a PROPS, only the right 12 bits
are stored. The rest of the Integer is lost.

PUT

Sets and lists are initially empty. One may put items
in them with the PUT statement. “PUT <item

56

SAIL USER MANUAL

expression> IN <set variable>" does exactly what it
says.

“PUT <item expression> IN <list variable> BEFORE
<algebraic expression>" evaluates the item expression,
evaluates the algebraic expression and coerces it into
an integer, say n, then puts the item into the list at
the nth positron, bumping the old nth item to the n+1lth
position, and so on down the list. This increases the
length of the list by one. “PUT item IN list AFTER n’
places the item in the ntlth position and bumps the
old nt Ith item down to the n+2th position, and so on.
fn<O0orn> (1 t length-oflist), then an error
message is given. The special token ‘" may be used
in the expression for n to stand for the length of the
list.

“PUT <item expression 1> IN «list variable> BEFORE
<item expression 2>" cause a search to be made of
the list for the item of <item expression 2>. If it is
found, the item of <item expression 1> is placed in
the list immediately ahead of the item found by the
search. “PUT item IN list AFTER item” proceeds the
same way, but puts the first item in the Ilist
immediately following the second item. If the second
item is not an element of the list, a BEFORE will put
the first item at the begining of the list, while an
AFTER will put it at the end of the list.

REMOVE

To remove an item from a set or list, one may use
REMOVE. “REMOVE item FROM set” does just what it
says. If the item to be removed from the set does not
occur in the set, this statement is a no-op.

“REMOVE n FROM list” removes the nth item from the
list. The old ntlth item becomes the nth, and so forth.
An error is indicated if n £ 0 or n > length-of-list. As
before, ® should stand for the length of the list.
However,

“REMOVE item FROM list” removes the first occurence
of the item from the list, If the item is net found, this
statement is a no-op.

“REMOVE ALL item FROM list” removes all occurences
of the item from the list.

DELETE

ltems are represented by unique integer numbers in
Sail. Due to the overwhelming desire to store an
association in one word of storage, these unique
numbers are limited to 12 bits. Thus the total number
of items is limited to 4090. The DELETE statement
allows one to free numbers for reuse. It is also the
only way to get rid of an item short of exiting the
program. WARNING: The Delete statement in no way
alters the instances of the Deleted items which are
present in sets, lists, associations, or itemvars. The
user should be sure that there are no instances of the

N

SAIL USER MANUAL

Deleted itemoccurring in itemvars, sets, lists or
associations. Even saying DELETE(ITMVR) where
ITMVR is an itemvar with an item to be deleted in it
will not remove the item from ITMVR; one must be
careful to change the contents of ITMVR before using
it again

MAKE

The MAKE statement is the only way to create
Associations (Triples) and add them to the associative
store. If the association already exists in the store, no
alterations are made. The argument to the Make
statement 1s a triple of item expressions:

MAKE iteml @ item2 = item3
MAKE item1 ® itemvarl = NEW
MAKE itemvar_array[23]®iteml = itemvar2

The component item expressions are evaluated left to
right. The three items that the three expressions
evaluate to are then formed into an association, and
the association is hashed into the associative store.
The item expressions must be constructive, that is, one
may use the NEW function but not the ANY or BINDIT
items (see NEW, page 64, ANY, page 64, and
BINDIT, page 65).

BRACKETED TRIPLES ITEMS

Items may be created by declaration, by the NEW
function, or by using BRACKETED TRIPLES in Make
statements. A Bracketed Triple item may not have a
datum, but may have a prop or a pname (see page
84 for pnames, page 56 for props). Instead, a
Bracketed Triple items has an Association connected
to it. One creates a Bracketed Triple item by
executing a Make statement:

MAKE item1 @ [item2&item3=item4]= item5

where the itemN are item expressions.
"litem2eitem3zitem4]" is the Bracketed Triple item, and
of course need not always be the second component of
the association. The association connected to the
Bracketed Triple item is “item2 & item3 =zitem4". The
above Make statement actually creates two triples and
one item. Namely, the associations

iteml® itemXX = item5
item2 & item3 =zitem4

and the item"itemXX" which is a Bracketed Triple
item and has the second association connected to it.
One can access a Bracket Triple item, with the an
associative search called the Bracketed Triple Item
Retrieval:

itmvar « [itm2 « itm3 = itm4};
COMMENT itmvar now contains itmXX;

The Bracket Triple construct may be used in any
expression See page 58.

LEAP STATEMENTS

Having "itmXX", one may access the items of the
association connected to with the predeclared
functions FIRST, SECOND, and THIRD (see page 84,
for more information on these runtime functions):

FIRST (itemXX) is item2
SECOND { itemXX) is item3
THIRD (itemXX) is item4

ERASE
The way to remove an association from the
associative store and destroy it is to ERASE it:

ERASE item1 € item2 = item3

where the itemN are item expressions. The item
expressions must be retrieval item expressions that is,
one may use the ANY item but not the NEW function
or the BINDIT item (see ANY, page 64, and NEW,
page 64, and BINDIT page 65). Using ANY as one,
two, or three of the item expressions allows many
associations to be erased in one statement. If the
association to be erased does not exist, Erase is a no-
op.

Whenever one Erases an association, none of the items
of the association are deleted. In particular, when one
Erases an association that has a Bracketed Triple
item as one of its components, the Bracketed Triple
item is not deleted. Furthermore, the association
connected to the Bracketed Triple item is not
automatically erased by erasing an association
containing a Bracketed Triple item. The following
Erase erases only one association:

ERASE item1 @ [item2&item3sitem4] = item5

However, erasing the association connected to a
Bracketed Triple deletes the item. Deleting the
Bracketed Triple item DOES NOT erase the association
connected to it.

11.4 - SEARCHING THE ASSOCIATIVE STORE

Flexible searching and retrieval are the main
motivations for using an associative store. It follows
that this is the most important section of the Leap part
of this manual. It is a rare Leap program that does not
use at least one of the searches described below.

Four methods of searching the associative exist in Sail:
Binding Booleans,
Derived Sets,

Bracketed Triple item retrieval, and
Foreach Statements

57

LEAP STATEMENTS

The first three are properly part of the discussion of
Leap Expressions in the next chapter, but are included
here for completeness.

Throughout this section we will use the following
notat ion for an association:

AeQ=V

where A, O and V stand for the “attribute”, “object” and
“value” items of an association.

The terms “bound” and “unbound” will find heavy use in
this section. Bound describes an itemvar that has an
item assigned to it. Unbound describes an itemvar
that, at this time in the execution of the program, has
no item bound to it. The object of searching the
associative store is usually to bind unbound itemvars
to specific, but unknown, items. If the itemvar to be
bound was declared Checked, then type checking will
be done, and the appropriate error message will be
issue if the binding item does not have the same type
as the itemvar.

Threughout this section, references to item expressions
will always mean retrieval item expressions. Don’t use
NEW in such expressions.

A hashing algorithm is used in storing and retrieving
associations in Leap. The user can increase the speed
of associative searching or decrease his core image by
using the REQUIRE n BUCKETS construct to control
the size of his associative search hash table to reflect
the number of assciations he will be using. A hash
table will be allocated with (2Im) hash codes where m
is the smallest integer such that (2Im)2 n. Sail
initializes the hash size to ‘1000.

BINDING BOOLEANS

A Binding Boolean searches the associative store for a
specified triple, returning true if one can be found, and
false otherwise. A Binding Boolean is a triple:

itml ¢ itm2 = itm3

where "itmN" is one of three things: an item expression,
or the reserved word “BIND” followed by an itemvar, or
the token "?" followed by an itemvar. An item
expression as a component of the Binding Boolean
means that component of the triple that the boolean
finds must be the item specified by the item
expressron (unless the item expression evaluates to the
item ANY, which specifies that any item is okay). If a
“BIND” itemvar is the A, 0 or V of the triple, then the
Binding Boolean will attempt to find an association
which meets the constraints imposed by the item
expression A, 0 or V components, and then binds to
the “BIND” itemvar the items OCCUring in the
corresponding positions of the association that the

58

SAIL USER MANUAL

Binding Boolean found. If no such association can be
found, then the Binding Boolean returns FALSE and
leaves the “BIND” itemvars with their previous values.
If "?" precedes an itemvar, then the itemvar will
behave like a “BIND” itemvar if it is currently contains
BINDIT, but will behave like an item expression if it is
bound to some other item than BINDIT. Example:

IF Fathr & ?Son = ANY THEN PUT Son IN Sonset;
IF -Father ¢ BIND Son = Bob THEN CHILDLESS(Bob);
ERCHEK = Fathr ® COP{(Sonset)= ANY;

DERIVED SETS

Derived Sets are quite simple: “Foo © Garp" where
Foo and Garp are item expressions, is the set of all
items X such that Foo e Garp = X exists.
“Garp = Sister” is the set of all items X such that
X @ Garp = Sister exists. “Foo ' Sister” is the set of
all items X such that Foo e X = Sister exists.
Examples:

Dadset « Fathr & ANY;
Danson < Fathr * Dan;
News « (Son = Dad) Nattset;

ANY specifies 'l don't care” to the search. BINDIT has
no special meaning to the search, and behaves like any
other items. Since BINDIT can never appear in an
association, this means the set returned will always be
the empty set PHI.

BRACKETED TRIPLE ITEM RETRIEVAL

A Bracketed Triple item can be referenced by
specifing the association it is connected to. For
example,

tmvar « [itml & itm2 = ANY]

PUT [ANY & ANY = ANY] IN Bracset

IF Foo & Garp = [itml ® itm2 = ANY] THEN . . .
itmvar « [itml &[itm2 & itm3 =itm4] =itm5]

where itmN is any item expression not containing NEW
or BINDIT. ANY means you don’t care what item
occupies that component. If the designated Bracketed
Tripie is not found, an error message is given.

THE FOREACH STATEMENT

This statement 1s the heart of Leap. It is similar to
the FOR statement of Algol in that a statement is
executed once for each binding of a variable. In this
semi-schematic example,

FOREACH X SUCH THAT <eiement> AND . . . AND
<element> DO <statement>;

the <statement> is executed once for each binding of
the itemvar X. The <element>s in the element list (i.e.
<element> AND.AND <element>) determine the
bindings of the itemvar, and hence how many times the
<statement> is executed. If the <element>s are such
that there is no binding possible for X, then the

SAIL USER MANUAL

<statement> is never executed. Like a Sail FOR
statement, one may use DONE, NEXT, and CONTINUE
within the <statement>. As before, when one uses a
N E X T inside the loop, the word NEEDNEXT must
precede the FOREACH of the Foreach that one wants
checked and possibly terminated. See pages 17, 17,
and 18 for more information about Done, Next, and
Continue.

Restriction: Jumping (i.e. with a GO TO) into a Foreach
is illegal However, it is legal to jump out of a
Foreach, or to jump around within the same Foreach.

Foreach statements differ from For statements in that
more than one itemvar may be included to be given
bindtngs:

FOREACH X, Y, Z SUCH THAT <element. . . .

X, Y, and Z are called Foreach itemvars. Just as one
must declare the integer | before using it in the Sail
For statement

FOR | = 1 STEP 2 UNTIL 21 DO.. .

so must one declare Foreach itemvars before using
them in Foreaches. Foreach itemvars are no more than
normal itemvars receiving special assignments; they
may have any type. If a Foreach itemvar that has
been declared Checked is assigned an item by the
search that has a different type than the Checked
itemvar, an error message will result.

Foreach itemvars differ from For variables in a more
radical way It 1s possible to specify to the Foreach
that a certain Foreach itemvar be a variable to the
search only on the condition that that the itemvar
contains the special item BINDIT at the time the
Foreachis called. One precedes such itemvars with
the "?" token. For example:

FOREACH?X, ? Y, Z SUCH THAT <element. , , .

If X contains BINDIT but Y does not when this Foreach
starts execution, then the search will be conducted
exactly as if the statement

FOREACHX,Z SUCH THAT <element>. . ..

were the Foreach specified. The itemvar X will then
act just like an ordinary, non-foreach itemvar that was
bound previous to the Foreach. All Foreach itemvars
may be "?" itemvars if this is desired.

There are four different types of <element> that may
be used Inforeach element lists:

LEAP STATEMENTS

Set Membership,

Boolean Expressions,
Retrieval Triples, and
Matching Procedures.

The order of the <element>s in the element list is
very important, as we shall see.

Terminology: we say that a certain binding of the the
Foreach itemvars “satisfies” an <element>. If that
binding satisfies each <element> of the element list,
then we say it “satisfies the associative context”. A
fancy way of refering to the element list is
“associative context”. We also refer to the collection
of bindings that satisfy the associative context as the
“satisfier group” of the Foreach.

The execution of a Foreach proceeds as follows. After
initialization, the Foreach proceeds with a search
specified by the first <element> of the element list. If
a binding can be found that satisfies the first
<element>, the Foreach proceeds forward to the new
<element> of the list and trys to satisfy it, and so on.
When the Foreach can not satisfy an <elements, it
“backs up” to the previous element and trys to get a
different binding. If it can’t find satisfaction there, it
backs up again and trys again to get a different
binding. When a Foreach proceeds forward off the end
of the element list (i.e. the associative context is
satisfied) then the <statement> is executed, and the
Foreach backs up to the last <element> of the element
list. When the Foreach backs up off the left end of the
element list, the Foreach is exited.

When a Foreach is exited by backing up off the left,
the Foreach itemvars are restored to the last satisfier
group bound to them, regardless of what the
<statement> may have done. If the associative
context was never satisfied, then the Fareach itemvars
have the values that they had before the Foreach.
When a Foreach is exited with a GO TO, DONE, or
RETURN, the Foreach leave the itemvars with the
bindings they had at the GO TO, or whatever,
including any modifications that the <statement> may
have made to them.

THE LIST MEMBERSHIP <ELEMENT>

[In the following, one may also read “set” for “list”; Sail
automatically coerces set expressions into list
expressions1 This <element> does not search the
associative store to bind an itemvar, but merely binds
it with an item of a specified list. In the Foreach,

FOREACH X[X IN L DO <statements;

(here we have used the Sail synonym "' for “SUCH
THAT"), the Foreach itemvar X is bound successively

59

- wil

LEAP STATEMENTS

to each element of the set L, starting at the beginning
of the list. If an item occurs n times in L, then X will
be bound to that item n times in the course of the
For-each. Thus, the number of satisfiers to the above
Foreachis LENGTH(L).

In the current implementation of Leap, there is a
difficulty that should be pointed out. If inside the
<statement>, one changes L by list assignment,
Removes, etc. in such a way as to remove the next
item of the list that the Foreach itemvar would have
been bound to, Leap may go crazy. Foreach
searches look one ahead and save a pointer to the
next items to be bound to the Foreach itemvars. This
allows one to remove the items of the current bindings
of the Foreach itemvars from lists or whatever, but
makes other removals hazardous. For example,

FOREACH X | X IN L DO REMOVE X FROM L;

will work, but

PUT V IN L BEFORE FO5;
FORYACHX| X IN L DO REMOVE V FROM L;

will obably fail. No error checking is done.

Whenever the Foreach itemvar of a list <element> has
been bound previously, the list element behaves like a
boolean. It does not rebind the itemvar but only checks
to see that it is in the list. For example,

FOREACH X| X IN L AND X IN LL DO <statements;

X is bound by the <element> "X INL" <element> "X
IN LL” is satisfied if the item contained in the itemvar
X is in the list LL.

If two different Foreach itemvars are used with two
different lists, i.e.

FOREACHX,Y| X IN L AND Y IN LL
DO <statement>;

then after execution of the <statements, the Foreach
| go back the last <element> that searches for
bindings, in this case "Y IN LL” and gets a new binding
for Y. It is only on failure of this search that the
Foreach goes back to the first <element>, "X IN S', and
gets a new binding for X. Thus the <statement> will
be executed once for each possible XY pair. In the
Foreach.

FOREACHX,Y | XINLANDYINL...;

X and Y will be bound to all possible pairs of
elements in L. This includes pairs with duplicate

60

SAIL USER MANUAL

elements, like(aa). Different orderings of the same
elements wili NOT be Ignored. Thus, pairs like (ab) and
(ba) will each be a satisfier group sometime during the
Foreach. Furthermore, if the list L contains duplications
of the same item, identical parrs will occur in
proportion to the number of duplications. That is,
regardless of the duplications within the list, the
number of satisfier groups to the Foreach above is

LENGTHL 2.

THE BOOLEAN EXPRESSION <ELEMENT>

Any Sail boolean expression may be used as an
<element> in the Associative Context of a Foreach if it
is inclosed by parentheses. A Boolean Expression
<element> is satisfied if it is TRUE. Note that the
boolean expression must have parentheses around it.

WARNING: Foreach itemvars can not be bound by a
Boolean Expression <element>. Therefore, all itemvars
used in a Boolean Expression <element> must be
bound by previous <element>s in the element list. A
Boolean Expression <element> with unbound Foreach
itemvars in it causes an error message.

THE RETRIEVAL TRIPLE <ELEMENT>

To search the associative store with a Foreach, one
uses the Retrieval Triple <glement>. A Retrieval
Triple is satisfied if a binding of the Foreachitemvars
can be found such that the triple is an extant
association, If all of the itemvars of the Retrieval
Triple <element> were bound previous to the execution
of the Retrieval Triple <element>, then the Triple does
no further binding; it is satisfied if the specified triple
is in the associative store. For example,

FOREACH X | FATHER ® TOM £ X AND
X IN PTA-SET DO <statement>;

FOREACH X | X IN PTA-SET AND
FATHER ® TOM # X DO <statements;

The two Foreaches have the same effect. However, in
the first case, X is bound by a search of the
associative store for any triple that has FATHER as its
attribute component, and TOM as its object component,
When such a triple is found, X is bound to the item
that is the value component. Then, if X is in the
PTA-SET, the Foreach lets the statement execute. If
X is not in PTA-SET, then the Foreach backs up and
trys to find another triple with FATHER as its
attribute and TOM as its value. In the second Foreach,
X is bound with an item from PTA-SET, then the
associative store is checked to see that the triple
FATHEReTOMsX, where x is the binding of X, is in the
store. If it is, the <statement> is executed, otherwise
the Foreach backs up and gets a different item from
PTA-SET and binds that to X. Assuming that Tom has
only one father, the first search is much faster.

r—

—

—

—

r— r—

.

r—

SAIL USER MANUAL

Using ANY in a Retrieval Triple indicated that you
don’t cat-e what item occupies that position. For
Instance, In

FOREACH X | FATHER & ANY = X DO <statement>;

X 1s bound successivly to all fathers. However, if the
associative store included the following three
assoctat ions,

FATHER % KAREN = PAUL
FATHER % LYNN = PAUL
FATHER ® TERRY = PAUL

then X would be bound to PAUL only once, not thrice.
BINDIT has no special meaning to the search. Since
BINDIT can never appear in an association, a Retrieval
Triple containing it will cause the search to always fail.

Different kinds of associative searches proceed with
different efficiencies. Listed below in order of
decreasing efficiency are the various forms of
Retrieval Triple <element>s that are legal. A, 0, and
V represent either--bound Foreach itemvars or items
from explicit item expressions in the triple. x, y, and 2
represent unbound Foreach itemvars or the item ANY.
(note that x @ x=s V is really x ® 0% V, and so on).
The two forms of the List Membership <element> are
included for comparison.

x IN L All items x in the list L.
AeQ=x Only the value is free.
xey=V Attribute and object are free.
A IN L Verification that item A is in list L.
AeQ=V Verification that the triple

is in the store.
Aex=V Only the object is free.
xeQ0=V Only the attribute is free.
Aox=y Object and value are free.
x®0=y Attribute and value are free.
Xey=z Attribute, value and object are free.

Note that MAKEIng an association inside a Foreach
may or may not affect subsequent bindings. For
example, in

FOREACH X,Y | Link ® X = Y DO
MAKE Link @ X =Newlink;

it is uncertain whether Y will ever receive Newlink as
its binding or not.

The A, 0, and V used in a Retrieval Triple of a
Foreach may be a derived set expressions as well as
item expressions. For example,

FOREACH X, Y | Link ®(Father#Y)= X DO . . .;

ERASE In the <statement> of a Foreach that binds any
of itsitemvars with Retrieval Triples may cause

LEAP STATEMENTS

problems. This is similar to REMOVE used in
Foreaches with List Membership <element>s controling
some bindings. ERASE can only be guaranteed to to
work safely if the association erased is the one we
just got a binding from, e.g.

FOREACH X |A® 0= X DO ERASE A ® 0= X;

or if the association erased could not possible be used
for a binding of a Foreach itemvar, such as,

FOREACH X | Link ® X = Node DO
ERASE Node ® X = ANY;

Foreaches look one ahead to the next binding of its
itemvars, and leaves a pointer to those associations. If
you Erase any of those associations, the Foreach gets
lost in the boondocks. No error checking is done.

However, as long as the associative store is not
changed during the execution of the Foreach, a
Retrieval Triple will not itself repeat a particular set
of bindings that it bound before.

THE MATCHING PROCEDURE <ELEMENT>

Matching Procedures are the most general search
mechanism in Leap. They also provide a convenient
method of writing coroutines.

A MATCHING Procedure is very similar to a boolean
procedure (in fact outside of Foreach associative
contexts, it behaves like a boolean procedure and may
be called within expressions, etc.). They must be
declared of type MATCHING. They may not be
declared SIMPLE. The formal parameters of a
Matching Procedure may include zero or more 7"
itemvars (pronounced “question itemvars”) which may
have any datum type but may not be VALUE or
REFERENCE. These parameters correspond roughly to
either call by value or call by reference, depending on
the actual parameter when the procedure is called.
When the actual parameter is an item expression or a
bound itemvar the parameter is equivalent to a value
parameter. However, if the actual parameter is an
unbound Foreach itemvar, then the parameter is
treated as a reference parameter, and on entry is is
initialized to the special item BINDIT.

Matching Procedures are exited by SUCCEED and FAIL
statements instead of RETURN statements. When used
outside of an associative context, SUCCEED
corresponds to RETURN(TRUE) and FAIL corresponds
to RETURN(FALSE) [this is not strictly true when the
matching procedure is sprouted as a process -- see
page 691. Inside an associative context, Succeed and
Fail determine whether the Foreach is to proceed to
the next <element> of the element list or to backup
to the previous <element> of the element list. When

61

LEAP STATEMENTS

the Foreach backs up into a Matching Procedure, the
procedure is not recalled. but resumed at the
‘statement following the last Succeed executed. On
the other hand, when a Foreachprocedes forward into
a Matching Procedure, the procedure is called, not
resumed. Therefore, a Matching Procedure <element>
will never be resumed following a FAIL statement.

When a Matching Procedure is the last <element> of
the associative context, Succeeding will cause the
<statement> to be executed; the Foreach then
backs up into the Matching Procedure, and the
Matching Procedure is resumed at the statement
following the Succeed. When a Matching Procedure is
the first <element> of an associative context, Failing
will exit the Foreach.

WARNING: Matching procedures are actually
implemented as processes and therefore two calls of
the same matching procedure may share the same
memory (see Memory Accessible to a Process, page
68). For example, two calls of the same matching
procedure inside the same Foreach (one may even be
in the <statement> of the Foreach) will normally share
the “3me memory locations for their locals. To give
separate matching procedure calls separate memory
locations for their locals, declare the matching
procedure RECURSIVE.

When a Matching Procedure is used exterior to the
associative context of a Foreach, one may use “BIND”
in the call preceding those actuals which one wishes
bound regardless of their current binding. Preceding
the actual with "?" wiil have the save effect as “BIND”
if the current value of the itemvar is BINDIT, and will
have no effect otherwise (the procedure will not
attempt to find it a binding)

That is all there is to Matching Procedures. Their
power lies in the using them cleverly. The following
program illustrates techniques one may use with
matching procedures by simulating the List
Membership and Retrieval Triple <element>s with
matching procedures.

RECURSIVE MATCHING PROCEDURE INLIST{? ITEMVAR X; LIST L)
. BEGIN "INLIST"
COMMENT THIS PROCEDURE SIMULATES THE CONSTRUCT

X ¢ L FOR ALL CASES EXCEPT THE SIMPLE

PREDICATE BINDITcL;

IF X #BINDIT THEN
BEGIN WHILE LENGTH(L) DO
IF X = LOP(L) THEN
BEGIN SUCCEED; DONE; END;
FAIL;
END;
WHILE LENGTH(L) DO
BEGIN X<LOP(LJ;
SUCCEED;
END;
END “INLIST";

MATCHING PROCEDURE TRIPLE(? ITEMVAR A,Q,V);
BEGIN “TRIPLE”

62

SAIL USER MANUAL

DEFINE BINDING(A)="(A=BINDIT)
SET SETL; INTEGER INDX;
RECURSIVE procepurE SUCC_SET(REFERENCE
ITEMVAR &SET Sl);
WHILE LENGTH(S]) DO
BEGIN X«LOP(S1);
SUCCEED;
END;

INDX « o
IF BINDING(A) THEN INDX « 1;
IF BINDING(O) THEN INDX «INDX t 2;
IF BINDING(V) THEN INDX «INDX t4;
CASE INDX OF
BEGIN [8]"AeQ=V" IF AeQ=V THEN SUCCEED;
[1] "?e0=V" SUCC_SET(A,0=V);
[2] "Ae?=V" SUCC_SET(0,AV);
[3] "?e?=V"
BEGIN SET1 € ANY 2 V;
WHILE (LENGTH(SETL1)) DO
BEGIN A «LOP(SETL);
SUCC_SET(0,A'V)
END;

END;
[4] "A&0=?" SUCC_SET(V,AeV);
[5] "260=7"
BEGIN SET!l«0= ANY;
WHILE (LENGTH(SET1)) DO
BEGIN A «LOP(SETL);
SUCC_SET(V,A®Q);
END;
END;
[6] "Ae?7=7"
BEGIN SETl« A" ANY;
WHILE (LENGTH(SETL)) bo
BEGIN 0 «LOP(SET1);
SUCC_SET(V,AeQ);
END;
END;
[7]"?e?=2"
USERERR(8,1,"ANY®ANY=ANY IS IN BAD TASTE’)
END;
END “TRIPLE";

-

r

~ —

r—

—

SAIL USER MANUAL

SECTION 12

LEAP EXPRESSIONS

12.1 - SYNTAX

<leap-expression>
i= <item-expression>
= <set-expression>
u= &t-expression>

<item-expression>
2= <item_primary>
z= [<item_primary> e <item_primary> =
<item_primary> |

<item_primary>

= NEW

= NEW (<algebraic-expression>)

z= NEW (<set-expression>)

z= NEW (<list-expression>)

2= NEW (<array-name>)

= ANY

== BINDIT

== <item_identifier>

:= <itemvar_variable>

:= <list-expression> [
<algebraic-expression> |

2= <itemvar_procedure_call>

= <resume-constructs

u= <interrogate-construct>

<itemvar_procedure_call>
1= <procedure-call>

<list-expression>
u= <list-primary>
= <list-expression> & <list-expression>

<list_primary>
u=NIL
= <list-variable>
{{ <item_expr_list> 1}
= (<list-expressions)
= <list-primary> [<substring_spet> |
== <set_primary>

LEAP EXPRESSIONS

<item_expr_list>
:= <item-expression>
z=<item_expr_list> , <item-expression>

<set-expression>
= <set_term>
= <set-expression> u <set_term>

<set_term>
u= <set-factor>
u= <set-term> n<set_factor>

<set-factor>
z= <set_primary>
= <set-factor> - <set_primary>

<set_primary>
= PHI
'= <set-variable>
z= {item_expr_list}
:= (<set_expression>)
1= <derived-set>

<derived-set>
= <item-expression> <associative-operator>
<item-expression>

<associative-operator>
2 e
=

<itemvar_variable>
= <variable>

<set-variable>
1= <variable>

<list-variable>
= <variable>

<leap-relational>
i= <item-expression> IN
<set-expression>

63

LEAP EXPRESSIONS

<item-expression> IN
<list-expression>

<item-expression>
<item_relational_operator>
<item-expression>

1= <set-expression>
<set-relational-operator>
<set-expression>

<list-expression>
<list_relational_operator>
<list-expression>

<triple>

<item_relational_operator>

W "

<set-relational-operator>

n
INV A Hon

N

<list_relational_operatior>

W n

12.2 - SEMANTICS

ITEM EXPRESSIONS

ltemvars and itemvar arrays may be used in item
expressions just as algebraic variables and algebraic
arrays are used in algebraic expressions. ltemvars and
itemvar arrays are initialized to the special Sail item
ANY.

- Items may be retrieved from sets and lists with the
* Sail functions COP and LOP. COP(<set expression or

iist expression>) yields the item which is the first
element of the set or list that the set or list
expression evaluated to. LOP also yields the first item
of the set or list, but removes that item from the set
or list. Because LOP changes the contents of the set
or list that is its argument, it can only accept set or
list variables, not expressions. See page 41.

List element designators may be used as itemvars in

expressions. For example, if RECORD is a list, and
ITMVR an itemvar,

64

SAIL USER MANUAL

RECORD[5]~ ITMVR;
ITMVR —RECQRD[w0-1]};
RECORD[m] « RECORD[1J;

are ali legal. The special token ‘" means the length of
the list when used in this context. The contents of the
square brackets may be any algebraic expression as
long as it evaluates to an integer n where

1 < n < LENGTH(ist).

<list_expression> [<algebraic_expression>] returns a
particular element of a list, but may not appear on
the left of an assignment expression, because
assignment must be to variables.

NEW

The function NEW creates an item at execution time.
Since space must be allocated at loading for various
tables, one must indicate approximately how may NEW
items he will create (the compiler counts the declared
items for you). Therefore, one should say “REQUIRE n
NEW-ITEMS” where n is some integer less than 4090
(the maximum number of items allowed in Sail). n may
be larger than the actual number of New items
created, but the excess will be wasted space. If
0 <n< 50, you get tables for 50 New items anyhow.

NEW may take an argument. In this case, the datum
of the created item is preloaded with the value passed
as argument. If this argument is algebraic, set or list,
then the datum will be of the same type. No type
conversions are done when passing the algebraic
argument. NEW will also accept an array name as
argument. In this case, the created item will be of the
type array. In fact, the array cited as argument will be
copied into the newly created array. The new array
will have the same bounds and number of dimensions
as the array cited as argument. This array will not
disappear even if the block that the original array
was declared in is exited. It will only be deallocated if
the item is deleted.

NEW in an item expression makes that item expression
a “constructive item expression”. Constructive item
expressions are illegal in some places, namely
anywhere that attempts to gets an item from an
existing structure (i.e. ERASE, REMOVE, and
Associative searches). It is usually clear whether or
not a constructive item expression is illegal.

ANY

Some associative searches may need only partial
specification. The ANY item is used to specify exactly
which parts of the specification are “don’t cares"s.
Examples:

FOREACH X SUCH THAT Father ® X £ ANY DO . . .
IF Father ®BIND X = ANY THEN . . .

SAIL USER MANUAL

ANY in an item expression makes that item expression
a 'retrieval item expression”. This is the opposite of a
constructive item expression, and is illegal anywhere
the statement Is creating new structure, namely, a
MAKE statement. Thus, ANY is legal everywhere
items are, except a MAKE statement.

BINDIT

Like ANY, BINDIT specifies no constraints on the
associative search. However, BINDIT has a special
meaning to some searches, namely the Binding Boolean
and Matching Procedures (depending on how they’re
written). An itemvar containing BINDIT will be bound
by the search to an item of the association that the
search found. For example:

X ~BINDIT;
IF Father % ? X = Bob THEN PUT X IN Bobfatherset;

Like ANY, BINDIT is illegal in MAKE statements. In
certain associative searches, namely the ERASE
statement, the Bracketed Triple Item retrieval
expression, and the Retrieval Triple <element> of a
Foreach, inclusion of BINDIT will cause the search to
always fail, because BINDIT can appear in no
association.

TYPES AGAIN

The compiler can determine the type of items when
the item expression is a typed itemvar, a typed
itemvar procedure, a declared item with a type, a
typed itemvar array, or a NEW with an argument.
When the compiler can determine the type of the item
expression, then and only then is it legal to use the
Datum construct on the item expression or to assign
the item expression to a Checked itemvar. For
example, the following are ILLEGAL:

DATUM(COP(<set>))
DATUM(RECORD[«]} COMMENT RECORD is a list;
CHEC « NEW; COMMENT CHEC is a Checked itemvar;

SET AND LIST EXPRESSIONS

Three rather standard operations are implemented for
use with sets. These are union (U}, intersection (), and
subtraction (-). These operators have the standard
mathematical interpretations. The only possible
confusion pertains to subtractions: if we perform the
set operation

setl - set2

and if there is an instance of an item x in set2 but not
In set 1, the subtraction proceeds and no error
message is given.

If one considers a list to be a string of items, then
concatenation and taking sublists suggest themselves
as likely list operations. The syntax and semantics for
sublisting and list concatenation are identical with

LEAP EXPRESSIONS

those of strings, with the natural exception that the
results are lists, and not strings. There is also a
difference in that if the indices to the substringer do
not make sense, an error message is generated rather
than setting of the _SKIP_ variable. Examples:

LISTVAR «LISTVAR[2 TO -1}
LISTVAR «LISTVAR[9 FOR 2%NJ;
LISTVAR «LISTVAR[1 FoRr 2] & LISTVAR[3 TO };

One may generate sets with

{iteml item2,item3}

and may generate lists with
{{iteml iteml jitem2,item3}}.

Sets are initialized to the empty set, PHI. Lists are
initialized to the null list, NIL. Initialization occurs at the
beginning of the execution of the program. Sets and
list are reinitialized on entering the blocks of their
declaration only when such blocks are in recursive
procedures.

DERIVED SETS

Derived sets are really sets of answers to questions
which search the associative memory. The conventions
are:

a® b -- the set of all x such that a ® b = x
a=b - the set of all x such that x ® aSb
a’'b - the set of all x such that a ®xEb

BOOLEANS

Several boolean primaries are implemented for
comparing sets, lists, and items. In the following
discussion, “ix” means item expression, “se” means set
expressions, and 'le" means list expression. These are:

1) Set and List Membership. The boolean “ix IN
se” evaluates the set or list expression, and
returns TRUE if the item value specified by
the item expression is a member of the set
or list.

2) Association Existence. The binding boolean
‘“ix @ ix = ix", where the ix are item
expressions or itemvars preceded by ? or
BIND, returns TRUE if a binding of the BIND
itemvars (and ? itemvars that contained
BINDIT) can be found such that the
association exists in the associative store.
See page 58 for more information on binding

booleans.

3) Relations:

65

LEAP EXPRESSIONS

ix =1X -- obvious interpretation
ix # ix -- obvious interpretation
sel < se2 - true if sel is a proper
subset of se2
sel< se2 - true if sel is identical to
se2 or is a proper subset of se2
sel = se2 -- obvious interpretation
sel # se2 -- obvious interpretation
sel > se2 -- equivalent to se2 <sel
sel > se2 -- equivalent to se2 <sel
lel = le2 -- obvious interpretation
lel #1e2 - - obvious interpretation

PNAMES

For those desire them, each item may have a string,
called its PNAME, linked with it. This is completely
independent of the Datum construct. New items and
Bracketed Triple items are created with NULL strings
as their Pnames. One may delete an item’s Pname
with the DEL-PNAME function which takes an item
expression as its argument. One may give a
Pnameless item a Pname with the NEW-PNAME
procedure, which takes an item expression and a
string as its arguments. CVS! will give you the Pname
of an item, and CVIS with give you the item with the
specified Pname. No two items may have the same
Pna va. Pnames do not follow Algol scope rules. See
pag: 84 to find out how to use the above four
functions.

If you wouid like your declared items to have Pnames
that are the same as the identifier used in their
declaration, say “REQUIRE PNAMES” or “REQUIRE n
PNAMES” before their declaration at the beginning of
the program. The n is an estimate of the number of
dynamically created items with pnames you will use --
this causes tables for n pnames to be allocated at
compile time rather than runtime, thus making your
program more efficient.

PROPS

Any item may have a PROPS. This is an extra 12 bits
of storage (frequently used for bits). PROPS (x)
where X is an item expression is exactly an integer
variable in its syntax. See page 56 for futher
Information on props

66

SAIL USER MANUAL

r—-

SAIL USER MANUAL

SECTION 13

PROCESSES

13.1 - INTRODUCTION

A PROCESS is a procedure call that may be run
independently of the main program. Several processes
may “run” concurrently. When dealing with a multi-
process system, it is not quite correct to speak of “the
main program”. The main program is actually a process
itself, the main process.

This section will deal with the creation, control, and
destruction of processes, as well as define the memory
accessible to a process. The following section will
describe communication between processes

13.2 - SYNTAX

<process-statement>
= <sprout-statement>
= <terminate-statement>
1= <suspend-statement>
i= <join-statement>

<sprout-statement>
::= SPROUT (<item-expression> ,
<procedure-call>
<algebraic-expression>)
= SPROUT (<item-expression> ,
<procedure-call>)

<terminate-statement>
= TERMINATE (<item-expression>)

<suspend-statement>
= SUSPEND (<item-expression>)

<join_statement>
= JOIN (<set-expression>)

PROCESSES

<resume-construct>
= RESUME (<item-expression> ,
<item-expression>
<algebraic-expression>)
z= RESUME (<item-expression> ,
<item-expression>)

13.3 - SEMANTICS

STATUS OF A PROCESS

A process can be in one of four states: terminated,
suspended, ready, or running. A terminated process
can never be run again. A suspended process can be
run again, but it must be explicitly told to run by some
process that is running. Since SAIL is currently
implemented on a single processor machine, one
cannot really execute two procedures simultaneously.
SAIL uses a scheduler to swap processes from ready
to running status. A running process is actually
executing, while a ready process is one which may be
picked by the scheduler to become the running
process. The user may retrieve the status of a
process with the execution time routine PSTATUS,
page 86.

SPROUTING A PROCESS
One creates a process with the SPROUT statement:

SPROUT(<item>,<procedure call><options>)
SPROUT(<it em>,<procedure call>)

<item> is a construction item expression (i.e. do not
use ANY or BINDIT). Such an item will be called a
process item. The item may be of any type; however,
its current datum will be writen over by the SPROUT
statement, and its type will be changed to “process
item” (see TYPEIT, page 83). RESTRICTION: A user
must never modify the datum of a process item.

<procedure call> is any procedure call on a regular or
recursive procedure, but not a simple procedure. This
procedure will be called the process procedure for the
new process.

<options> is an integer that may be used to specify
special options to the SPROUTer. If <options> is left
out, 0 will be used. The different fields of the word
are as follows:

67

PROCESSES

BITS NAME DESCRIPTION

14- 17 QUANTUM(X) Q « IF X=0 THEN 4 ELSE
21X; The process will be given
a quantum of Q clock ticks,
indicating that if the user is
using CLKMOD to handle clock
interrupts, the process should
be run for at most Q clock
ticks, before calling the
scheduler. (see about CLKMOD,
page 79 for details on making
processes “time share”).

18-2 1 STRINGSTACK(X) S « IF X=0 THEN 16
ELSE X#32; The process Will be
given S words of string stack.

2 2-27 PSTACK(X)P—IF X< THEN 32 ELSE Xx32;
The process will be given P
words of arithmetic stack.

28-31 PRIORITY(X) P« IF X=0 THEN 7 ELSE X;

The process will be given a
priority of P. 0 is the highest
priority, and reserved for the
SAIL system. 15 is the lowest
priority. Priorities determine
which ready process the
scheduler will next pick to make
running.

32 SUSPHIM If set, suspend the newly
sprouted process.

33 Not used at present.
34 SUSPME If set, suspend the process in

which this sprout statement
occurs.

35 RUNME If set, continue to run the
process in which this sprout
statement occurs,

The names are defined in the file SYS:PROCES.DEF,
. which one may require as a source file. Options words

may be assembled by simple addition, e.g. RUNME +
PRIORITY(3) t PSTACK(2).

DEFAULT STATUSIf none of bits 32, 34, or 35 are
set, then the process in which the sprout statement
occurs will revert to ready status, and the newly
sprouted process will become the running process.

The default values of QUANTUM, STRINGSTACK,
PSTACK, and PRIORITY are stored in the system
variables DEFQNT, DEFSSS, DEFPSS, and DEFPRI
respectively. These values may be changed. The
variables are declared EXTERNAL INTEGERs in
SYS:PROCESDEF.

68

SAIL USER MANUAL

MEMORY ACCESSIBLE TO A PROCESS

A process has access to the same global variables as
would a “normal” call of the process procedure at the
point of the SPROUT statement. For example,
a1 nose you Sprouted a process in the first
itwantiation of a recursive procedure and immediately
suspended it. Then in another instantiation of the
procedure, you resumed the process. Since each
recursive instantiation of a procedure creates and
initializes new instances of its local variables, the
process uses the Instances of the recursive
procedure’s locals that were current at the time of the
SPROUT, namely those of the first instantiation.

Sail will give you an error message whenever the
global variables of a process are deallocated but the
process still exists. Usually, this means that when the
block in which the process procedure was declared is
exited, the corresponding process must be terminated
(one can insure this by wusing a small Cleanup
procedure that will TERMINATE the fated process or
JOIN it to the current one -- see about Cleanup, page
9, Terminate, page 69, and Join statements, page
7). When the process procedure has been declared
inside a recursive procedure, things become a bit more
complex. As mentioned above, the process takes its
globals from the context of the Sprout statement.
Therefore, it is only in the instantiation of the
recursive procedure that executed the Sprout that
trouble can occur. For example,

RECURSIVE PROCEDURE TENLEVEL(INTEGER 1)
BEGIN “TROUBLE”

PROCEDURE FOO;

; COMMENT does nothing;

IF 1=5 THEN SPROUT(NEW, FQO, SUSPHIM);

COMMENT sprouts FOO on the 5th
instantiation of TENLEVEL, then
immediately suspends it;

IF [<18 THEN TENLEVEL(+1)
RETURN;

COMMENT assuming TENLEVEL is called
with 1=8, it will do 10 instantiations,
then come back up;

END “TROUBLE";

TENLEVEL will nest 10 deep, then start returning.
This means “TROUBLE” will be exited five times will no
ill effects, However, when Sail attempts to exit
“TROUBLE” a sixth time, it will be exiting a block in
which a process was sprouted and declared. It will
generate the error message, “Unterminated process
dependent on block exited”.

The construct DEPENDENT% <block-names), where
<block-name> is a string constant, produces a set of
process items. The process items are those of all the

r—

SAIL USER MANUAL

processes which depend on the current instance of the
named block -- i.e. all processes whose process
procedures obtain their global variables from that block
(via the position of the process procedure’s declaration,
or occasionaly via the location of the Sprout in a nest
of recursive procedure instantiations). This construct
may be used together with a CLEANUP procedure (see
page 9) to avoid having a block exit before all
procedures dependent on it have been terminated.

If one Sprouts the same non-recursive procedure more
than once (with different process items, of course), the
local variables of the procedure are not copied. In
other words, "X<5" in process A will store 5 in the
same location that "X«1@" in process B would store
10. If such sharing of memory is undesirable, declare
the process procedure RECURSIVE, and then new
instances of the local variables of the procedure will
be created with each Sprout involving that procedure.
Then "X" in process A will refer to a different memory
location than "X" in process B.

SPROUTING MATCHING PROCEDURES

When a matching procedure is the object of a Sprout
statement, the FAIL and SUCCEED statements are
Interpreted differently than they would be were the
matching procedure called in a Foreach or as a regular
procedure. FAIL is equivalent to RESUME (
CALLER(MYPRQC), CVI(@)). SUCCEED is equivalent to
RESUME (CALLER (MYPROC),CVI(-1)). RESUME is
described on page 69, CALLER on page 85, and
MY PROC on page 85.

THE TERMINATE STATEMENT
TERMINATE (<process item>)

<process item> may be an item expression, but must
yield a process item. It is legal to terminate a
terminated process.

Termination of a process causes all blocks of the
process to be exited.

A terminated process is truly dead. The item may be
used over for anything you want, but after you have
used it for something else, you may not do a terminate
on it.

SUSPENDING A PROCESS

One can suspend a process with a SUSPEND
statement, a RESUME Construct, or a JOIN statement.
The suspend statement is simply:

SUSPEND (<process items)

All this does is suspend the process named by the
process item. As with the terminate statement,
<process item> may be an item expression, but must
yield a process item. One may suspend a suspended

PROCESSES

process. Suspending a terminated process will cause
an error message. |If the process being suspended is
the currently running process (i.e. the process
suspends itself), then the scheduler will be called to
find another process to run.

THE RESUME CONSTRUCT
General coroutine style interactions are facilitated by
the RESUME construct.

RESUME ({ <process items, <return items, <options>)
RESUME (<process item>, <return item>)

<process item> may be any item expression which
evaluates to a process item of a suspended process.
<return item> is any item expression. <options> is an
integer expression.

Resume provides a means for one process to restore a
suspended process to ready/running status while at
the same time communicating an item to the awakened
process. It may also specify what its own status
should be. It may be used anywhere that an itemvar
procedure is syntactically correct. When a process
which has suspended itself by means of a resume is
subsequently awakened by another resume, the <return
item> of the awakening resume is used as the value of
the resume that caused the suspension. For example,
suppose that process A has suspended itself with the
Resume construct:

STARTINFO «RESUME(zZ , NEED-TOOL);

If later a process B executes the statement,

INFOFLAG « RESUME(A , HAMMER)

then B will suspend itself and A will become the
running process. A’s process information will be
updated to remember that it was Awakened by B (so
than the runtime routine CALLER can work). Finally, A’s
resume will return the value HAMMER, which will be
assigned to STARTINFO. If A had been suspended by
a Suspend statement or a Join statement, then the
<return item> of B’'s Resume is ignored.

Note that a process that has been suspended in any
manner will run from the point of suspension onward
when it is resumed.

<options> is an integer, used to change the effect of
the resume on the current process (Me) and the newly
resumed process. If <0ptions> is left out, 0 will be
used.

69

PROCESSES

BITS NAME DESCRIPTION
3332 READYME If 3332 is 1, then the
current process will not be
suspended, but be made ready.
KILLME If 33-32 is 2, then the current
process will be terminated.

IRLN If 33-32 is 3, then the current
process will not be suspended,
but be made running. The newly
resumed process will be made
ready.

34 This should always be zero.
35 NOTNOW If set, this bit makes the newly
resumed process ready instead
of running. If 33-32 are not 3,

then this bit causes a
rescheduling.

DEFAULT: If none of bits 35 to 32 are set, then the
current process wili be suspended and the newly
resumed process will be made running. Include a
REQUIRE "SYS:PROCESDEF" SOURCE-FILE in your
program to get the above bit names defined. Options
may then be specified by simple addition, e.g. KILLME
+ NOTNOW.

THE JOIN STATEMENT
If you have a number of processes running together,
you may wish them all to finish. Say:

JOIN(<set expression>)

where <set expression> evaluates to a set containing
only process items. The current process (the one with
the join statement in it) is suspended until all of the
processes in the set are terminated. WARNING: Be
very careful with this statement, you can get into
infinite wait situations.

1. Do not join to the current process;
since the current process is now
suspended, it will never terminate of
its own accord.

2. Do not suspend any of the joined
processes unless you are assured
they will be resumed.

3. Do not do an interrogate-wait in any
of the processes unless you are sure
that the event it is waiting for will be
caused (events are explained in
sect ion 12).

70

SAIL USER MANUAL

SCHEDULING

One may change the status of a process between
terminated, suspended and ready/running with the
TERMINATE, SUSPEND, RESUME, and JOIN constructs
discussed above, and the CAUSE and INTERROGATE
constructs discussed in the next chapter. This section
will describe how the the status of processes may
change between ready and running.

Whenever the currently running process performs
some action that causes its status to change (to ready,
terminated, or suspended) without specifying which
process is to be run next, the Saii process scheduler
will be invoked. It chooses a process from the pool of
ready processes. The process it chooses will be made
the next running process. The scheduling algorithm is
essentially round robin within priority class. In other
words, the scheduler finds the highest priority class
that has at least one ready process in it. Each class
has a list of processes associated with it, and the
scheduler choses the first ready process on the list.
This process then becomes the running process and is
put on the end of the list. If no processes have ready
status, the scheduler looks to see if the program is
enabled for any interrupts (see Interrupts, page 78).
If the program is enabled for some kind of interrupt
that mlght still happen (not arithmetic overflow, for
instance), then the scheduler puts the program in
interrupt wait. After the interrupt is dismissed, the
scheduler tries again to find a ready process. If no
interrupts that may still happen are enabled, and there
are no ready processes, the error message “No one to
run.” is issued.

The rescheduling operation may be explicitly invoked
by calling the runtime routine URSCHD, which has no
parameters.

POLLING POINTS

Polling points are located at “clean” or “safe” points in
the program; points where a process may change from
running to ready and back with no bad effects. Polling
points cause conditional rescheduling. A polling point is
an efficient version of the statement:

IF INTRPT Aa-NOPOLL THEN
BEGININTRPT«8; URSCHD END;

INTRPT is an external integer that is used to request
rescheduling at the next polling point. It is commonly
set by the deferred interrupt routine DFRINT (for all
about deferred interrupts, see page 89) and by the
clock interrupt routine CLKMOD (for how to make
processes time share, see page 79). The user may
use INTRPT for his own purposes (carefully, so as not
to interfere with DFRINT or CLKMOD) by including the
declaration “EXTERNAL INTEGER INTRPT”, then
assigning INTRPT a non-zero value any time he desires
the next polling point to cause rescheduling. NOPOLL

r——

=

r——

—

\

— r—

SAIL USER MANUAL

is another external integer that is provided to give the
user a means of dynamically inhibiting polling points,
For example, suppose one Istime sharing using
CLKMOD. In one of the processes, a point is reached
where it becomes important that the processes not be
swapped out until a certain tight loop is finished up. By
assigning NOPOLL (which was declared an EXTERNAL
INTEGER) a non-zero value, the polling points in the
loop are efficiently ignored. Zeroing NGPOLL restores
normal time sharing.

A single polling point can be inserted with the
statement POLL The construct

REQUIRE n POLLING-INTERVAL

where n is a positive integer, causes polling points to
be Inserted at safe points in the code, namely: at the
start of every statement provided that at least n
instructions have been emitted since the last polling
point, after every label, and at the end of every loop.
If n £ 0 then no further polling points will be put out
until another Require 1 (n>@) Polling-Interval is seen.

PROCESSES

71

EVENTS

SECTION 14

EVENTS

141 - SYNTAX

<event-statement>
= <cause-statement>
i= <interrupt-statement>

<cause-statement>
= CAUSE (<item-expression> ,
<item_expression> ,
<algebraic-expression>)
z= CAUSE (<item-expression> ,
<item-expression>)

<interrogate-construct>
= INTERROGATE (<item-expression> ,
<algebraic-expression>)
= INTERROGATE (<item-expression>)
= INTERROGATE (<list_expression>
<algebraic-expression>)
INTERROGATE (-&t-expression>)

14.2 - INTRODUCTION

The Sail event mechanism is really a general message
processing system which provides a means by which
an occurrence in one process can influence the flow of
control in other processes. The mechanism allows the
user to classify the messages, or “event notices”, into
distinct types (“event types”) and specify how each
type Is to be handled.

Any leap item may be used as an event notice. An
event type is an item which has been given a special
runtime data type and datum by means of the runtime

rout Ine:

MKEVTT (et)

72

SAIL USER MANUAL

where et is any item expression (except ANY or
BINDIT). With each such event type Sail associates:

1. a “notice queue” of items which have
beeen “caused” for this event type.

2. a “wait queue” of processes which are
waiting for an event of this type.

3. procedures for manipulating the

queues.

The principle actions associated with the event system
are the CAUSE statement and the INTERROGATE
construct. Ordinarily these statements cause standard
Sail runtime routines to be invoked. However, the user
may substitute his own procedures for any event
type (see User Defined Cause and Interrogate
procedures, page 73). The Cause and Interrogate
statements are here described in terms of the SAil
system supplied procedures.

14.3 - SAIL DEFINED CAUSE AND INTERROGATE

THE CAUSE STATEMENT

CAUSE (<event type>, <event nhotice>, <options>)
CAUSE (<event type>, <event notice>)

<event type> is an item expression, which must yield
an event type item. <event notice> is an item
expression, and can yield any legal item. <options> is
an integer expression. If <options> is left out, 0 is
used.

The Cause statement causes the wait queue of <event
type> to be examined. If it is non-empty, then the
system will give the <event notice> to the first
process waiting on the queue (see about the WAIT bit
in Interrogate, below). Otherwise, <event notice> will
be placed at the end of the notice queue for <event

type>.

The effect of Cause may be modified by the
appropriate bits being set in the options word:

BITS NAME DESCRIPTION

Never put the <event item> on
the notice queue. If there is no
process on the wait queue, this
makes the cause statement a
no-op.

35 DONTSAVE

34 TELLALL

Wake all processes waiting for
this event. Give them all this

=

SAIL USER MANUAL

item. The highest priority
process will be made running,
others will be made ready.

33 RESCHEDULE Reschedule as soon as possible
(i.e. immediately after the cause

procedure has completed .

executed).

DEFAULT: If bits 35 to 33 are 0, then the either a
single process is awakened from the wait queue, or the
event is placed on the notice queue. The process
doing the Cause continues to run. REQUIRE
"SYS:PROCESDEF" SOURCE-FILE to get the above bit
names defined. Options can then be constructed with
simple addition, e.g. DONTSAVE t TELLALL.

THE INTERROGATE CONSTRUCT - SIMPLE FORM

<itemvar>+« INTERROGATE (<event type>, <options>)
<itemvar>« INTERROGATE (<event type>)

<event type> is an item expression, which must yield
an event type item. <options> is an integer
expression. If <options> is left out, 0 is used.

The notice queue of <event type> is examined. If it
is non-empty, then the first element is removed and
returned as the value of the Interrogate. Otherwise,
the special item BINDIT is returned.

<options> modifies the effect of the interrogate
statement as follows:

BITS NAME DESCRIPTION

35 RETAIN Leave the event notice on the
notice queue, but still return
the notice as the value of the
interrogate. If the process goes
into a wait state as a result of
this interrogate, and is
subsequently awakened by a
Cause, then the DONTSAVE bit
in the Cause statement will
override the RETAIN bit in the
Interrogate if both are on.

34 WAIT If the notice queue is empty,
then suspend the process
executing the interrogate and
put its process item on the wait
queue.

33 RESCHEDULE Reschedule as soon as possible
(i.e. immediately after execution
of the interrogate procedure).

32 SAY-WHICH Creates the association
EVENT-TYPE ® <event notice>

EVENTS

= <event type> where <event
type> is the type of the event
returned. Useful with the set
form of the Interrogate
construct, below.

DEFAULT: If bits 35 to 32 are 0, then the interrogate
removes an event from the event queue, and returns
it. If the event queue is empty, BINDIT is returned
and no waiting is done; the process continues to run.
Use a REQUIRE "SYS:PROCESDEF" SOURCE-FILE to
get the names defined; use simple addition to form
options,e.g. RETAIN t WAIT.

THE INTERROGATE CONSTRUCT - SET FORM

<itemvar> < INTERROGATE ({ <event type set>)
<itemvar> « INTERROGATE (<event type set>,
<options>)

<event type set> is a set of event type items.
<options> is an integer expression. If it is left out, 0
will be used.

The set form of interrogate allows the user to examine
a whole set of possible event types. This form of
interrogate will first look at the notice queues, in turn,
of each event type in <event type set>. If one of
these notice queues is non-empty, then the first notice
in that queue will be remved and that notice will be
returned as the value of the Interrogate. If all the
notice queues are empty, and WAITIng is not specified
in the options word, then BINDIT will be returned. When
the WAIT bit I1s set, the process doing the interrogate
gets put at the end of the wait queues of each event
type in <event type set>. Then, when a notice is
finally available, the process is removed from all of the
wait queues before returning the notice. Note that the
option SAY-WHICH provides a means for determing
which event type produced the returned notice.

14.4 - USER DEFINED CAUSE AND INTERROGATE

By executing the appropriate runtime routine, the user
can specify that some non-standard action is to be
associated with CAUSE or INTERROGATE for a
particular event type. Such user specified cause or
interrogate procedures may then manipulate the event
data structure directly or by themselves invoking the
primitives used by the Sail Cause and Interrogate
constructs. User defined Cause and Interrogate are
not for novice programers (this is an understatement).

EVENT TYPE DATA STRUCTURE
The datum of an event type item points to a six word

73

EVENTS

block of memory.
information:

This block contains the following

WORD NAME TYPE DESCRIPTION

0 NOTCQ LIST The list of all notices
pending for this event
type.

1 WAITQ LIsT The list of all processes
currently waiting for a
notice of this type.

Procedure specifier for
the user specified cause
procedure (zero if system
procedure is to be used).

Procedure specifier for
the user specified
interrogate procedure
(zero if system procedure
- is to be used).
4 USER 1 INTEGER Reserved for the user’s
pleasure.

5 USER2 INTEGER Reserved for the user’s
pleasure.

The appropriate macro definitions for these names (e.g.
WAITQlet) = “MEMORY! DATUM(et)+1, LIST I') are
included in the file SYS:PROCES.DEF.

USER CAUSE PROCEDURES

A procedure to be used as a Cause procedure must
have three formal value parameters corresponding to
the event type, event notice, and options of the Cause.
Such a procedure is associated with an event type by
means of the runtime SETCP:

SETCP (<event type>, <procedure specifiers);

where <event type> must yield an event type item
and <procedure specifier> is either a procedure name

o r DATUM(<procedure item>).

For example:

PROCEDURE CX (ITEMVAR ET, EN; INTEGER OPT);
BEGIN INTEGER FLAG;
OUTSTR (“Causing " & CVIS(EN,FLAG) &
" as an event of type " & CVIS (ETX))
CAUSE1 (ET,EN,OPT);
END;

SETCP(FOO,CX);

Now,
CAUSE (FOQ, BAZ);

74

SAIL USER MANUAL

would cause CX(FOO,BAZ) to be called. This
procedure would print out “Causing BAZ as an event
of type FOO” and then call CAUSEL.

The runtime CAUSE H{ITEMVAR etype, enot; INTEGER
opt) is the SAilruntime routine that does all the actual
work of causing a particular notice, enot, as an
instance of event type etype. It is essentially this
procedure which is replaced by a user specified cause
procedure.

CAUSE1 uses an important subroutine which is also
available to the wuser. The integer runtime
ANSWER(TEMVAR ev-type, ev-not, process-item) is
used to wake up a process that has suspended itself
with an interrogate. If the process named by
process-item is suspended, it will be set to ready
status and be removed from any wait queues it may
be on. ANSWER will return as its value the options
bits from the interrogate that caused the process to
suspend itself. If the named process was not
suspended, then ANSWER returns an integer word
with bit 18 (the ‘400000 bit in the right half =
NOJOY in SYS:PROCESDEF) set to 1. The evfype
and ev-not must be included in case the SAY-WHICH
bit was on in the interrogate which caused the
suspension. ANSWER has no effect on the notice
queue of ev-type.

Frequently one may wish to use a cause procedure to
re-direct some notices to other event types. For
instance:

PROCEDURE CXX (ITEMVAR ET, EN; INTEGER OPT);
BEGIN ITEMVAR OTH; LABEL C;
IF redirecttest(ET, EN) THEN
FOREACH OTH |OTHER_CAUSE®ET=0TH Do
c: CAUSEL(ET, EN, OPT)
ELSE CAUSE1 (ET, EN, OPT);
END;

In order to avoid some interesting race conditions, the
implementaion will not execute the causes at C
immediately. Rather, it will save ET, EN and OPT, then,
when the procedure CXX is finally exited, any such
deferred causes will be executed in the order in which
they were requested.

USER INTERROGATE PROCEDURES

A user specified interrogate procedure must have two
value formal parameters corresponding to the two
arguments to INTERROGATE and should return an item
as the value. The statement

SETIP (<event types, <procedure specifiers);

where <event type> is an event type item, and
<procedure specifier> is either a procedure name or
DATUM (<procedure item>), will make the specified
procedure become the new interrogate procedure for
<event type>. For instance:

N

—

il el 2 S e

r—

r——

SAIL USER MANUAL

ITEMVAR PROCEDURE IX (ITEMVAR ET; INTEGER OPT);
BEGIN INTEGER FLAG; ITEMVAR NOT};
NOTI~ ASKNTC(ET, OPT);
QUTSTR("Notice " & CVISINOTI,FLAG) &" returned
from interrogation of " & CVIS(ET,FLAG));
RETURN (NOT(
END;

SETIP (FOO, 1x);

Now,
... « INTERROGATE(FOO);

would cause NOTI to be set to the value of
ASKNTC(FOO,@) Then the message “Notice BAZ
returned from interrogate of FOO” would be printed
and IX would return NOTI as its value.

The runtime ASKNTCITEMVAR etype; INTEGER opt) is
the Sail system routine for handling the interrogation
of a single event type. Essentially it is the
procedure being replaced by the user interrogate
procedure. -

In the case of multiple interrogations, Sail sets a
special bit (bit 19 = ‘200000 in the right half =
MULTIN in syYs: PROCESDEF) in the options word
before doing any of the interrogates specified by the
event type items in the event type set. The effect of
this bit, which will also be set in the options word
passed to a user interrogate procedure, is to cause
ASKNTC always to return BINDIT instead of ever
waiting for an event notice. Then, if ASKNTC returns
BINDIT for all event types, Sail will cause the
interrogating process to Wait until its request is
satisfied. If multin is not set, then ASKNTC will do the
WAIT if it is told to.

EVENTS

75

PROCEDURE VARIABLES

SECTION 15

PROCEDURE VARIABLES

15.1 - SYNTAX

<assign-statement>
= ASSIGN (<item_expr>,
<procedure-name>)
== ASSIGN (<item_expr>,
DATUM (<item_expr>))

<ref_item_construct>
«=REF_ITEM(<expression>)
z= REFJTEM (VALUE <itemvar>)
:= REFJTEM (BIND <itemvar>)
= REFJTEM (? <itemvar>)

<apply-construct>
= APPLY (<procedure-name>)
:= APPLY (<procedure-name> ,
<arg_list_specifier>)
z= APPLY (DATUM (<item>))
= APPLY (DATUM (<item> },
<arg_list_specifier>)

<arg_list_specifier>
= <list-expression>

15.2 - SEMANTICS

ASSIGN

One may give an item a procedure “datum” using the
ASSIGN statement. ASSIGN accepts as its first
argument an item expression (do not use ANY or
BINDIT). To this is bound the procedure
identified by its name or to the “datum” of another
procedure item. The procedure may be any type.
However, the value it returns will only be accessible if
the procedure is an itemvar or item procedure. Apply
assumes that whatever the procedure left in AC 1,

76

SAIL USER MANUAL

(the register used by all non-string procedures to
return a value) on exiting is an item number.
Warning: a procedure is no ordinary datum. Using
datum on a procedure item except in the above
context will not work. Use APPLY instead.

REF_ITEM

Reference items are created at run time by the
REF_ITEM construct and are used principly in
argument lists for the APPLY construct. The datum of
a reference item contains a pointer to a data object,
together with type information about that object. To
create a reference item one executes

itm « REF,ITEM (<expression>)

A NEW item is created. If the expression is () a
simple variable or an array element, then the address
will be saved in the item’s datum. If the expression is
(b) a constant or “calculated” expression, then Sail will
dynamically allocate a cell into which the value of the
expression will be saved, and the address of that ceil
will be saved in the datum of the item. The item is
then noted as having the datum type “reference” and
returned as the value of the REFJTEM construct.
One can slightly modify this procedure by using one of
the following variations.

itm « REF,ITEM (VALUE <expression>)

In this case, a temp cell will always be allocated. Thus
Xe3; XI-REF_ITEM(VALUE X); X4-4; would cause the

datum of XlI to point at a cell containing 3.

itm « REFJTEM (2 itmvr)
itm « REF,ITEM (BIND itmvr)

where itmvr must be an itemvar or an element of an
itemvar array, will cause the reference item’s datum to
contain information that Apply can use to obtain the
effect of using "? itmvr or “BIND itmvr" as an actual
parameter in a procedure call.

APPLY

APPLY uses the items in the <arg_list_specifier>,
together with the environment information from the
procedure item (or from the current environment, if the
procedure is named explicitly) to make the appropriate
procedure call. <arg_list_specifier> is an ordinary list
expression, except that each element of the list must
be a reference item. The elements of the list will be
used as the actuals in the procedure call. There must
be at least as many list elements as there are formals
in the procedure The reference items must refer to
an object of the same type as the corresponding
formal parameter in the procedure being called.
(EXCEPTION: if the formal parameter is an untyped
itemvar or untyped itemvar array, then the reference

|
-

r

— [

r r— r r

—

e

SAIL USER MANUAL

item may refer to a typed itemvar or itemvar array,
respectively). At present, type checking, but not type
coercion, is done. If the formal parameter is a
reference parameter, then a reference to the object
pointed to by the reference item is passed. If the
formal parameter is a value parameter, then the value
of the object pointed to by the reference item is used.
Similarly, "?" formals are handled appropriately when
the reference item contains a"?" or “BIND” reference.
If the procedure to be called has no parameters, the
<arg_list_specifier> may be left out.

Apply may be used wherever an itemvar procedure
call is permitted. The value returned will be whatever
value would normally be returned by the the applied
procedure, but Apply will treat it as an item number.
Care should therefore be taken when using the result
of Apply when the procedure being invoked is not
itself an itemvar procedure, since this may cause an
invalid item number to be used as a valid item (for
instance, in a MAKE). Recall that when a typed
procedure (or an Apply) is called at statement level,
the value it returns is ignored.

Here is an example of the use of APPLY.

BEGIN

LIST LANTEGER XX;

INTEGER ITEMVAR YY;ITEMVARZZ;

REAL ARRAY AA[1:2];

PROCEDURE FOO(INTEGER X;
ITEMVAR Y,Z; REAL ARRAY A);

BEGIN
Y-NEW(X);
Z~NEW(A);
AlX]-3;
END;

XX«8;

Le{{REF _ITEM(XX),REF _ITEM(YY),
REF_ITEM(Z2),REF _ITEM(AA)}}

XX=2;AA[1]-AA[2]«1;

APPLY(FOO,L)

COMMENT Y now contains an item whose
datum is 2, Z contains an item whose
datum is the array (1.8,1.0),
All}=1. 0, and A[2]=3.8.;

END;

The variables accessed by a procedure called with
APPLY may not always be what you would think they
were. Temporary terminology: the “environment” of a
procedure is the collection of variables, arrays and
procedures accessible to it. “Environment” is not
meant to include the state of the associative store or
the universe of items. The environment of a
procedure item is the environment of the ASSIGN, and
that environment will be used regardless of the
position of the APPLY. Since procedure items are
untouched by block exits, yet environments are, it is
possible to Apply a procedure item when its
environment is gone; Sail catches most of these
situations and gIVeS an error message.

Consider the following example:

PROCEDURE VARIABLES

BEGIN
ITEM P; LABEL L;
RECURSIVE PROCEDURE FOO (INTEGER J);
BEGIN “FOO”
INTEGER I;
PROCEDURE BAZ;
OUTSTR("J="8CVS(J)8" I="8CVS(D)
IF J=I THEN
BEGIN
le2;
ASSIGN(P, BAZ);
FOO(-1)

END
ELSE APPLY(DATUM(P));
END “FOO”;
FOO(1);
L: APPLY(DATUM(P)); COMMENT will cause a
runtime error -- see discussion below;
END

The effect of the program is to Assign Baz to P
on the first instantiation of Foo, then Apply P on
the second (recursive) instantiation. However, the
environment at the time of the Assign includes {l=2,
J=1} but the environment at the time of the Apply
includes {l=@, J=-1} instead. At the time of the
Apply, Baz is executed with the environment from
the time of the Assign, and will print out

J=1 I=2

The Apply at L wil cause a runtime error
message because the environment of the Assign has
been destroyed by the exiting of Foo.

77

INTERRUPTS

SECTION 16

INTERRUPTS

16.1 - INTRODUCTION

The interrupt facilities of SAIL were built around the
user interrupt system provided by the Stnford time
sharing system. They will work, in some imited way,
for SAILs running on DEC 10-50 systems. In this
case, the DEC APRENB trap system is used. This
system has a somewhat limited utility vhen one is
dealing with “asynchronous” interrupts (sich as the
real-time clock), since nothing protects YOUr “interrupt”
routine from being itself interrupted. “he stanford
SAIL interrupts have been implementer in such a
manner that they may be used in prograns that have
also enabled themselves for APRENB iiterrupts (as
may happen when one uses various exterral “packages”
of procedures). In this case, conditions :nabled using
the runtime routines described here are docessed by
the SAIL interrupt handler, and those enabled for
APRENB processing are handled by whaever handler
the user has provided (an attempt to enade the same
condition on both systems causes an error). In export
SAIL, the SAIL interrupt handler is directly tied to the
APRENB Interrupt system, and thus may rot be used
with programs that also attempt to enable themselves
directly for interrupts.

Essentially, there are two types of interrupt available:
immediate and deferred. An immediate irterrupt is
executed at the time the condition causing it arises,
(usually right after the current instruction ‘inishes --
see [Moorer], IID.16 for exceptions). A deferred
interrupt will we executed at the next “polling point” in
the user's program. (See about polling points on page

70).

- This chapter will describe both immediate and deferred
interrupts and will describe those areas in whicy the
Stanford system differs from the export system
(principally: immediate interrupts and the index numbers
used to specify interrupt conditions).

78

SAIL USER MANUAL

16.2 - IMMEDIATE INTERRUPTS

To set up an immediate interrupt, simply say

INTMAP(<index>,<simple procedure name>,d);
ENABLE(<index>)

where <index> is a code for the interrupt condition
(e.g clock, arithmetic overflow, etc.). (The codes,
together with the names given them in
SYS:PROCES.DEF, may be found in the appendix on
Interrupt Codes) The INTMAP statement will inform the
SAIL interrupt handler that it is to call the specified
procedure (which must be SIMPLE) when it (the
interrupt handler) gets invoked for the specified
condition. Also, it causes the system user interrupt
interface to be set up so that user interrupts are to
be sent to the SAIL interrupt handler. The ENABLE
statement informs that it is to execute the user
interrupt procedure (which was set by INTMAP to be
the SAIL interrupt dispatcher) whenever the named
condition occurs, An interrupt may be disabled by
the statement

DISABLE(<index>)

The system will not provide user interrupts for the
specified condition until another ENABLE statement is
executed.

IN STANFORD SAIL

A procedure specified by an INTMAP statement will be
executed at a special “user interrupt level”. A
program operating in this mode will not be interrupted,
but must finish whatever it is doing within 1/ 10 th of
a second. It may not do any UUOs that can cause it
to be rescheduled. Also, the accumulators will not be
the same ones as those that were in use by the
regular program (ie their values will be different).
Certain locations are set up as follows:

Set up by the system as in [Moorer]
ID. 16-2

ACs -6

AC ‘15 (USER) Address of the Sail user table,

AC ‘16 (SP) A temporary string push down
stack pointer. NOTE: extreme care
should be used when using strings
inside interrupt procedures, since if
a string garbage collection should
take place or if one was interrupted,
then the program will die a terrible
death. This means that strings
should not be wused in any
asynchronous interrupt, and that one
should avoid doing string
concatenations, CVS'S. etc.

~— r— *

—

SAIL USER MANUAL

AC ' 17 (P} A temporary push down stack
pointer.

XJBCNI (declared in SYSPPROCESDEF as an
external integer). Bit mask with a
bit on corresponding to the current
condition.

XJBTPC (declared in SYS:PROCES.DEF as an
external integer) Full PC word of
regular user level program.

The interrupt will be “dismissed”, and the user program
resumed, when the interrupt procedure is exited. For
more information on interrupt level programming,
consult the Stanford System documentation.

IN EXPORT SAIL

The interrupt handler again will decode the interrupt
condition and call the appropriate procedure. Since
there is no “interrupt level”, the interrupt procedure
must not itself generate any interrupt conditions, since
this will cause SAIL_fo lose track of where in the user
program it was interrupted (trapped).

Also, the SAIL interrupt module sets up some
temporary accumulators and JOBTPC:

AC ‘10 index of the interrupt condition.
AC ' 15 (USER) Address of the SAIL user table

AC ‘16 (SP)A temporary string push down list.
Same warning about the use of
strings in Stanford interrunt
procedures applies here.

AC '17 (P) A temporary push down pointer

JOBTPC (an external integer) Full PC word of
regular user program.

The “real” acs -- ie the values of all accumulators at
the time the trap occurred -- are stored in locations
APRACS to APRACSt17. Thus you can get at the
value of accumulator x by declaring APRACS as an
external integer and referring to
MEMORY[LOCATION(APRACS)+x]. When the interrupt
procedure 1s exited, the acs are restored from
APRACS to APRACS+17, and the SAIL interrupt
handler jumps to the location stored in JOBTPC (which
was set by the operating system to the location at
which the trap occurred). Thus, if you want to transfer
control to some location in your user program, a good
way to do it 1Isto have an interrupt routine like:

INTERRUPTS

SIMPLE PROCEDURE IROUT;
BEGIN
EXTERNAL INTEGER JOBTPC;

JOBTPC~LOCATION(GTFOO);

COMMENT GTFQQ is a non-simple procedure
that contains a GO TO FOOQ, where FOO
is the location to which control
is to be passed. This allows the
"go to solver” to be called and clean
up any unwanted procedure activations. ;

END;

WARNING: this approach is rather dangerous if the
interrupt occurred in certain runtime routines. In
particular if you were inside a string garbage
collection, or allocating an array, you will lose
miserably.

THE PROCEDURE CLKMOD

(CLKMOD is currently available only in Stanford Sail)
The most common usage of immediate interrupts is to
approximate time sharing among processes. Every time
the scheduler decides to run a process, it copies its
time quantum (see all about quantums of processes,
PAGE 68) into the Sail user table location TIMER.
Consider the following procedure, which is roughly
equivalent to the one predeclared in Sail:

SIMPLE PROCEDURE CLKMOD;
IF (TIMER-TIMER-1) < @ THEN INTRPT«-1;

To time share several ready processes, one should
include polling points in the relevant process
procedures and should execute the following
statements:

INTMAP (INTCLK_INX, CLKMOD, @)
ENABLE (INTCLK_INX);

The macro SCHEDULE-ON-CLOCK-INTERRUPTS
defined in SYS:PROCESDEF is equivalent to these two
statements. Now, when the time quantum of a process
is exceeded by the number of clock ticks since it
began to run, the integer INTRPT is set, and this
causes the next polling point in the process to cause a
rescheduling (see about rescheduling and INTRPT on
PAGE 7). The current running process will be made
ready, and the scheduling algorithm chooses a ready
process to run.

79

INTERRUPTS

16.3 - DEFERRED INTERRUPTS

Deferred Interrupts are processed at the next polling
pointin your program after the interrupt occurs.
Essentially, they are implemented by the provision of a
special Immediate interrupt routine that writes some
informatton into a special buffer, sets the flag INTRPT,
and dismisses itself. (For more details, see the
following subsection). Then, when the next polling point
Is reached, the current process is made ready while a
special process (whose procedure is called INTPRO) is
run INTPRO will execute any procedures which have
been deferred to this point, and then will call the
scheduler to decide what process is to run next.

One very common use of deferred interrupts is to
cause an event soon after some asynchronous
condition (say, TTY activation) occurs. This effect may
be obtained by the following sequence:

INTSET(IPRO~NEW,8); COMMENT this will cause
the interrupt process to be sprouted and
assigned to IPRO. This process will execute
procedure INTPRO and will have priority zero
(the highest possible). ;

INTMAP(<index>,DFRINT,
DFCPKT(9,<event type> <event notice> <cause options>));

ENABLE(<index>);

In SYS:PROCES.DEF is the useful macro

DEFERRED_CAUSE_ON_INTERRUPT(<index>,
<event type> , <notice> , <options>)

which may be used to replace the INTMAP statement.

16.4 - MORE COMPLICATED DEFERRED INTERRUPTS

This section explains the Runtimes INTSET, INTMAP,
and DFRINT In detail and explains how to make more
_than a simple cause happen at the next polling point
following the interrupt.

INTSET

Before any kind of deferred interrupt may be done, an
INTSET must be done. It should be done only once per
program The statement

INTSET(<item_expression>, <options>);

sprouts the INTPRO process with the specified
<options>. The item of the <item-expression> will
become the process item of the INTPRO process. The

80

SAIL USER MANUAL

<options> are the same as those for the SPROUT
statement, page 67. However, the default priority for
INTPRO 1s 0, which 1s the highest possible priority, and
IS reserved for INTPRO alone. Thus, when
rescheduling is done at the first polling point after
the Interrupt, INTPRO's high priority will automatically
cause it to become the running process.

INTMAP

An INTMAP must be done for each type of interrupt
one wants handled (clock, TTY, <esc>l, etc.). To
change the way an interrupt is handled, simply do
another INTMAP for that type of Interrupt. INTMAP
always takes three arguments:

INTMAP (<index> , <simple proc> ,
<integer expression>)

<index>1s the code for the type of interrupt (see
Interrupt Codes, page 182). <simple proc> is a simple
parameterless procedure that will be run at interrupt
level whenever an interrupt of type <index> arrives.
For deferred interrupts, this will always be the
predeclared procedure DFRINT. Users who write their
own <simple proc>s should observe the restrictions
mentioned on page 78. <integer expression> acts as
a parameter to DFRINT -- more about it later.

INTMAP maintains two tables, both indexed by the
interrupt code, <index>. One table is for the <simple
proos and the other is for the <integer expression>s.
When any enabled interrupt occurs, the Sail interrupt
handler sets up some accumulators, then indexes into
the table of <simple proc>s, and PUSHJs to the
procedure. When the procedure exits, or if no <simple
proc> was found, the interrupt handler dismisses itself.

DFRINT

DFRINT sets up a buffer with information that INTPRO
will use to call the procedure that the user wants run
at the next polling point. Such procedures must be
specified in a special way.

The user must construct a block of core, called a
‘calling block”, probably by using the MEMORY and
LOCATION features of Sail, PAGE 25, or Start Code. It
must look like:

<number of words in the block>

<Lst parameter to the procedure>

< second parameter to the procedure>
<last parameter to the procedure>

-1 ,<address of the procedure>

For example, one might call FOO(LJK) by saying:

|
L

e

—

—r c— r—

r—

SAIL USER MANUAL

PROCEDURE FOO { INTEGER i,jk); « -
SAFE INTEGER ARRAY FOOBLK [1:5}

FOOBLK [1] - 5
FOOBLK [2] « I
FOOBLK [3] ~ J;
FOOBLK [4] - K;
FOOBLK [5] ~ (-1 LSH 18)+LOCATION(FOO);

NOTE: The procedure specified to INTPRO must not be
declared inside any process except the main program.
Otherwise, its environment will not be available when
INTPRO runs, However, there is a rather complex way
to get around this by using <environment>,PDA as the
last word of the calling block. See a Sail hacker if you
must do this and don’t know what <environment> or
PDA mean.

The next step towards specifying FOO to INTPRO is to
call INTMAP like so:

INTMAP(<index>, DFRINT,
<AOBJN pointer to calling block>);

where <index> is the code for the interrupt that you
desire. An AOBJN pointer for a block of core is
defined as

-<number of words>,<starting address>

Thus to call FOO on a deferred interrupt of, say
<esc>l, include the statement

INTMAP(INTTTI_INX, DFRINT,
-5 LSH 18 + LOCATION(FOOBLK[1]

Now, whenever an interrupt of the type specified in
INTMAP occurs, DFRINT runs, and uses the table of
<integer expression>s to retrieve the AOBJN pointer
appropriate for this type of interrupt. Using the AOBJN
pointer, DFRINT writes the calling block and some
other useful information into a special circular buffer
called the Deferred Interrupt buffer. The length of the
buffer determines how many interrupts can be queued
up waiting to be processed. INTMAP usually initializes
the DI buffer to 128 words, which is quite enough
unless the program is very slow about processing
deferred interrupts (i.e. it doesn’t poll very often). A
larger DI buffer can be obtained at any time that one
IS sure the current buffer is empty (i.e. no deferred
Interrupts pending) by executing the runtime

INTTBL(<size of new DI buffer in words>)

DFRINT uses two pointers into the DI buffer: readpt

INTERRUPTS

and writept. Whenever it writes a new calling block
and efc. into the DI, it begins the writing at the writept
and then advances the writept when it's done. When
INTPRO reads the DI buffer, it starts at the readpt and
continues calling procedures until the writept is
reached, updating readpt as it goes. The effect of this
is to queue deferred interrupts. Interrupts OCCUring
while INTPRO is active merely add another calling
block to the DI which will be processed before the
main program is resumed.

When DFRINT is finished writing into the DI buffer, it
changes the status of INTPRO from suspended to
ready. It sets the INTRPT integer so that the next
polling point will cause a rescheduling. The special
high priority of INTPRO causes it to be chosen by the
scheduler, and it begins to run.

THE DEFERRED INTERRUPT PROCESS - INTPRO
INTPRO first restores the following information which

was stored by DFRINT at the time of the interrupt.

LOCATION CONTENTS

USER The base of the user table (GOGTAB).
AC 1 Status of spacewar buttons.
AC 2 Your job status word (JBTSTS). See

[Moorer-I section 11.D.13.

IJBCNIUSER) ~ XUBCNKieJOBCN) at time of

interrupt.

[JBTPC(USER) XJBTPC(ieJOBTPC) at time of

interrupt.

IRUNNR(USER) Item number of running process at
time of interrupt.

Then INTPRO calles the procedure described by the
calling block. When the procedure is finished, INTPRO
looks to see if the DI buffer has any more entries left.
If it does, INTPRO handles them in the same manner.
Otherwise INTPRO suspends itself and the highest
priority ready process takes over.

DFRIIN

For those who want more than one procedure to be
called as a deferred interrupt for a given interrupt
type, the runtime function DFRIIN is provided.

DFRLIN (<AQBJN pointer>);

will put another calling block after writept in the DI
buffer. This procedure may then be called by an
immediate interrupt simple ‘procedure. For instance,
suppose we want to call FOO and BAZ as defferred
Interrupts for <esc>l. This may be done by:

81

INTERRUPTS

SIMPLE PROCEDURE ZORCH;
BEGIN
DFRLIN(<AQBUN pointer tor FCO cali>);
DFRLINC < AOBJN pointer for BAZ call>);
END;

INTMAP (INTTTY_INX, ZORCH, 8);
ENABLE (INTTTY_INX)

82

SAIL USER MANUAL

i

-

—

SAIL USER MANUAL

SECTION 17

LEAP AND PROCESS RUNTIMES

We will follow the same conventions for describing
Leap execution time routines as were used in
describing the runtimes of the Algol section of Sail
(see page 3 1).

17.1 - TYPES AND TYPE CONVERSION

TYPEIT

CODE « TYPEIT .(1T™)

The type of the datum linked to an item is called the
type of an item. An item without a datum is called
untyped. TYPEIT is an integer function which returns
an integer CODE for the type of the item expression
ITM that is its argument. The codes are:

B - item deleted or never allocated

untyped
2 - Bracketed Triple item
3 - string
4 - real
5 - integer
6 - set
7 - list

8 - procedure item
9 - process item
18 - event item

11 - context item
12 - reference item
16 - string array
17 - real array

18 - integer array
19 - set array

20 - list array

24 - context array
25 - error (the runtime screwed up)

The user is encouraged to use TYPEIT. 1t requires
the execution of only a few machine instructions and
can save considerable debugging time.

CVSET
SET « CVSET (LIST)

CVSET returns a set given a list expression by
removing duplicate occurences of items in the list, and
reordering the items into the order of their internal
Integer representations.

LEAP AND PROCESS RUNTIMES

CVLIST
LIST « CVLIST (SET)
CVLIST returns a list given a set expression. It

executes no machine instructions, but merely lets you
get around Sail type checking at compile time.

CVN and CVI

INTEGR « CVN (ITM)
ITM « CVI(INTEGR)

CVN returns the integer that is the internal
representation of the item that is the the value of the
item expression ITM. CVI returns the item that is
represented by the integer expression INTEGR that
is its argument. Legal item numbers are between
(inclusively) 1 and 4095, but you’ll get in trouble if
you CVI when no item has been created with that
integer as its representation. Absolutely no error
checking is done. CVI is for daring men. See about
item implementation, page 54, for more information
about the internal representations of items.

17.2 - MAKE AND ERASE BREAKPOINTS

BRKERS, BRKMAK, BRKOFF --

BRKMAK (BREAKPT-PROC)
BRKERS (BREAKPT-PROC)
BRKOFF

In order to give the programmer some idea of what is
going on in the associative store, there is a provision
to interrupt each MAKE and ERASE operation, and
enter a breakpoint procedure. The user can then do
whatever he wants with the three items of the
association being created or destroyed. ERASE Foo @
ANY = ANY will cause the breakpoint procedure to be
activated once for each association that matches the
pattern. MAKE itle it2 =[it3e it4 = it51 will cause
the breakpoint procedure to be activated twice.

The user’s breakpoint procedures must have the form:
PROCEDURE Breakpt_proc (ITEMVAR a, o, v)

If the association being made or erased is AeOsV, then

directly before doing the Make or Erase, Breakptgroc

is called with the items A, 0, and V for the formals a,
0, and v.

83

LEAP AND PROCESS RUNTIMES

To make the procedure Breakpt_proc into a breakpoint
procedure for MAKE, call BRKMAK with Breakptgroc
as a parameter. To make the procedure Breakpt_proc
rnto a breakpoint procedure for ERASE, call BRKERS
with Breakpt_proc as its parameter. To turn off both
breakpoint procedures, call BRKOFF with no
parameters

NOTE: BRKMAK, BRKERS and BRKOFF are not
predeclared. The user must include the declarations:

EXTERNAL PROCEDURE BRKERS (PROCEDURE BP);
EXTERNAL PROCEDURE BRKMAK (PROCEDURE BP)
EXTERNAL PROCEDURE BRKOFF;

17 3 - PNAME RUNTIMES

VIS

“PNAME" = CVIS (17em, @FLAG)

The print name of ITEM is returned as a string. Items
have print names only if one includes a REQUIRE n
PNAMES statement in his program, where n is an
estimate of the number of pnames the program will
use An Item’s print name is the identifier used to
declare i, or that pname explicitly given it by the
NEW-PNAME function (see below). FLAG is set to
False (@)if the appropriate string is found. Otherwise
it 1s set to TRUE’ (-1), and one-should not put great
faithin the string result.

Cvsl

ITEM «CVSI{ “PNAME’, @FLAG);

The ltem whose pname is the same as the string
argument PNAME is returned and FLAG is set to
FALSE If such an ITEM exists. Otherwise, something
very random s returned, and FLAG 1s set to TRUE.

DEL-PNAME
DEL-PNAME (ITEM)

This function deletes any string PNAME associates with
this ITEM.

84

SAIL USER MANUAL

— —————— NEW-PNAME
NEW-PNAME (ITEM , “STRING”);

This function assigns to the Item the name “STRING”.
Don’t perform this twice for the same ltem without first
déleting the previous one. The corresponding name or
Item may be retrieved using CVIS or CVSI (see
above). The NULL string is prohibited as the second
argument.

17 4 - OTHER USEFUL RUNTIMES

LISTX

VALUE « LISTX (LIST, ITEM , N)

The value of this integer function is 0 if the ITEM (an
item expression) does not occur in the list at least N
(an integer expression) different times in the LIST (a
list expression). Otherwise LISTX is the index of the
Nth occurrence of ITEM in LIST. For example,

LISTX ({{Foo, Baz, Garp, Baz}}, Baz, 2) is 4.

FIRST, SECOND, THIRD

ITEM « FIRST (BRAC-TRIP-ITEM)
ITEM « SECOND (BRAC-TRIP-ITEM)
ITEM « THIRD { BRAC-TRIP-ITEM)

The Item which is the FIRST, SECOND, or THIRD
element of the association connected to a bracketed
triple item (BRAC-TRIP-ITEM) is returned. If the item
expresslon BRAC_TRIP_ITEM does not evaluate to a
bracketed triple, an error messages issues forth.

LOP

ITEM « LOP (SETVARIABLE),
ITEM « LOP (LISTVARIABLE);

LOP will remove the firstitem of a set or list from the
set or list, and return that item as its value. Note that
the argument must be a variable because the contents
of the set or list is changed. If one LOPs an empty
set or a null list, an error message will be issued.

r

— —

SAIL USER MANUAL

COoP

ITEM « COP (SETEXPR);
ITEM « COP (LISTEXPR)

COP will return the first item of the set or list just as
LOP (above) will. However, it will NOT remove that
item from the set or list. Since the set or list will be
unchanged, COP’s argument may be a set or list
expression. As with LOP, an error message will be
returned if one COPs an empty set or a null list.

LENGTH

VALUE « LENGTH (SETEXPR);
VALUE ~ LENGTH (LISTEXPR);

LENGTH will return the number of items in that set or
list that is its argument, LENGTH(S) = 0 is a much
faster test for the null set or list that S = PHI or
S = NIL.

SAMEIV
VALUE « SAMEIV (ITMVARL , ITMVAR2);

SAMEIV is useful in Matching Procedures to solve a
particular problem that arises when a Matching
Procedure has at least two ? itemvar arguments. An
example will demonstrate the problem:

FOREACH X | Matchingproc{ X, X) DO . .+ +;
FOREACH X, Y | Matchingproc(X, Y) DO . . . ;

Clearly, the matching procedure with both arguments
the same may want to do something different from the
matching procedure with two different Foreach
itemvars as its arguments. However, there is no way
inside the body of the matching procedure to
differentiate the two cases since in both cases both
itemvar formals have the value BINDIT. SAMEIV will
return True only in the first case, namely 1) both of
its arguments are ? itemvar formals to a matching
procedure, 2) both had the same Foreach itemvar
passed by reference to them. It will return False
under all other conditions, including the case where the
Foreach itemvar is bound at the time of the call (SO it
is not passed by reference, but its item value is
passed by value to both formals).

LEAP AND PROCESS RUNTIMES

17.5 - GENERAL PROCESS RUNTIMES

MY PROC

PROCITEM « MYPROC

MYPROC returns the process item of the process that
it is executed in. If it is executed not inside a
process, then MAINPI (the item for the main process) is
returned.

CALLER:

PROCITEM « CALLER (PROCITEM2)

CALLER returns the process item of the process that
most recently resumed the process referred to
PROCITEM2. PROCITEM2 must be the process item
of an unterminated process, otherwise an error
message will be issued. If PROCITEM2's process has
never been called, then the process item of the
process that sprouted PROCITEM2 is returned.

MKEVTT-
MKEVTT (ITEM)

MKEVTT will convert its item argument to an event
type item. The old datum will be overwritten. The
type of the item will now be “event type”. Any item
except an event type item may be converted to an
event type item by MKEVTT.

PRISET
PRISET (PROCITM , PRIORITY)

PRISET sets the priority of the process specified by
PROCITM (an item expression that must evaluate to
the process item of a non-terminated process) to the
priority specified by the integer expression PRIORITY.
Meaningful priorities are the integer between 1, the
highest priority, to 15, the lowest priority. Whenever
a rescheduling is called for, the scheduler finds the
highest priority class that has at least one ready
process in it, and makes the first process on that list
the running process. See about the scheduler, page
70.

85

LEAP AND PROCESS RUNTIMES

PSTATUS --

PRIORITY « PSTATUS (PROCITM)

PSTATUS returns an integer indicating the status of
t tie process specified by the ilem expression

PROCIT™
-1 running
4] suspended
1 ready
2 terminated
URSCHD
URSCHD

URSCHD is essentially the Sail Scheduler ~ When one
calls URSCHD, the scheduler finds the highest priority
class that has at leas+ On® Ready process in it. Each
class has a list of processes associated with it, and the
scheduler choses the firs? ready process on the list.
This process then becomes the running process and is
put on the end of the list. If no processes have ready
status, the scheduler looks to see if the program is
enabled for any interrupts. If the program is enabled
for some kind of interrupt that may still happen (not
arithmetic overflow, for Instance), then the scheduler
puts the program inlo interrupt wait. After the
intrrupt s dismissed, the scheduler tries again to find
a ready process. If no Interrupts that may still happen
are enabled, and there are no ready processes, the
error message “No one to run” is issued.

176 -RUNTIMES FOR CAUSE AND

INTERROGATE PROCEDURES

USER

SETCP AND SETIP

SETCP(ETYPE , PROC-NAME)
SETCP (ETYPE , DATUM (PROC-ITEM))
SETIP (ETYPE , PROC-NAME)
SETIP (ETYPE , DATUM (PROC_ITEM))

SETCP and SETIP associate with the event type
specified by the item expression ETYPE a procedure
specified by its name or the datum of a procedure
item expression.

After the SETCP, whenever a Cause statement of the

specified event type 1s executed, the procedure
specified by PROC-NAME or PROC-ITEM is called.

86

SAIL USER MANUAL

The procedure must have three formal parameters
corresponding to the event type, event notice, and
options words of the CAUSE statement. For example,

PROCEDURE CAUSEIT (ITEMVAR ETYP, ENOT;
INTEGER OP);

After SETIP, whenever an Interrogate statement of the
specified event type is executed, the procedure
specified by PROC-NAME or PROC-ITEM is called.
The procedure must have two formal parameters
corresponding to the event type and options words of
the Interrogate statement and return an item. For
example,

ITEM PROCEDURE ASK_IT (ITEMVAR ETYP;
INTEGER OP);

Itis an error if a Cause or Interrogate statement tries
to call a procedure whose environment (static - as
determined by position of its declaration, and dynamic -
as detet mined by the execution of the SETCP or
SETIP) has been exited.

See page 74 and page 74 for more information on
the use of SETCP and SETIP, respectively.

CAUSE 1

ITMVAR « CAUSE1 (ETYPE , ENOT , OPTIONS)
ITMVAR « CAUSE1 (ETYPE , ENOT)
ITMVAR « CAUSE 1 (ETYPE)

CAUSE1 is essentially the procedure executed for
CAUSE statements if no SETCP has been done for the
event type ETYPE. See the description of the Sail
defined Cause statement, page 74, for further
elucidation.

ASKNTC

ITMVR « ASKNTC (ETYPE , OPTIONS)
ITMVR « ASKNTC (ETYPE)

ASKNTC is the procedure executed for INTERROGATE
statements if no SETIP has been done for the event
type ETYPE. See the description of the Sail defined
Interrogate statement, page 75, for further elucidation.

ANSWER

BITS ~ ANSWER (ETYPE , ENOT , PROC-ITEM)

r— r—— r

SAIL USER MANUAL

ANSWER will attempt to wake up from an interrogate
wait the process specified by the item expression
PROC_ITEM. If the process is not in a suspended
state, Answer will return an integer with the bit
‘400000 in the right half (NOJOY in
SYS:PROCESDEF) turned on. If the process is
suspended, it will be made ready, and removed from
any wait queues it may be on. The bits corresponding
to the options word of the interrogate statement that
put it in a wait state will be returned. Furthermore, if
the SAY-WHICH bit was on, the appropriate
association, namely EVENT-TYPE © ENOT & ETYPE, will
be made. See page 74 for more information on the
use of ANSWER.

LEAP AND PROCESS RUNTIMES

87

BASIC CONSTRUCTS

SECTION 18

BASIC CONSTRUCTS

18.1 - SYNTAX

<variable>

<identifier>

<Identifier> [<subscript-list> |

DATUM (<typed-item-expression>)

= DATUM (<typed-item-expression>)|
<subscript-list> 1

= PROPS (<item-expression>)

= <context-element>

[T]

<typed_item_expression>

== <typed_itemvar>
<typed-item>
<typed_itemvar_procedure>
<typed_item_procedure>
<typed_itemvar_array>
[<subscript-list>]
<typed_item_array>
[<subscript-list> |
<itemvar> « <typed-item-expression>
IF <boolean-expression> THEN
<typed-item-expression> ELSE
<typed-item-expression>
CASE <algebraic_expression> OF (
<typed-item-expression-list>)

oW w W

W

W

<typed-item-expression-list>
= <typed-item-expression>
<typed_item_expresssion_list> |
<type_item_expression>

- subscript_list>

<algebraic_expression>

<subscript_list> |
<algebraic-expression>

[

88

SAIL USER MANUAL

18 2 - SEMANTICS

VARIABLES
If a variable is simply an identifier, it represents a
single value of the type givenin lts declaration.

If it is an identifier qualified by a subscript list it
represents an element from the array bearing the
name of the Identifier However, an identifier qualified
by a subscript list containing only a single subscript
may be either an element from a one dimensional
array, or an element of a list. Note that the token "oo"
may be used In the subscript expression of a list to
stand for the length of the list, e.g. LISTVAR[co-

2]-LISTVARIw-1]

The array should contain as many dimensions as there
are elements In the subscript list. All] represents tne
{+1th element of the vector A (if the vector has a
lower bound of @).BllJ} is the element from the Itith
row and Jt 1 th column of the two-dimensional array B.
To explain the indexing scheme precisely, all arrays
behave as if each dimension had Its origin at 0, with
(integral) indices extending infinitely far in either
direction However, only the part of an array between
(and Including) the lower and upper bounds given in the
declaration are available for use (and in fact, these are
the only parts allocated). If the array is not declared
SAFE, each subscript is tested against the bounds for
Its dimension If it is outside its range, a fatal message
1s printed identifying the array and subscript position
at fault SAFE arrays are not bounds-checked. Users
must take the consequences of the journeys of errant
subscripts for SAFE arrays. The bounds checking
causes at least three extra machine instructions (two
of which are always executed for valid subscripts) to
be added for each subscript in each array reference.
The algebraic expressions for lower and upper bounds
inerray declarations, and for subscripts ihsubscripted
varrablcs, are always converted to Integer values (see
page 2 1) before use.

For more information about the implementation of SAIL
arrays, see page 106.

DATUMS

DATUM(X)} where X is a typed item expression, will
act exactly like a variable with the type of the item
expression. The programer is responsible for seeing
that the type of the item is that which the DATUM
corstruct thinks it 1s For example, the Datum of a
Real Itemvar will always Interpret the contents ot the
Datum location as a floating point number even if the
program has assigned a string item to the Real
| temvar.

PROPS
The PROPS of an itemwill always act as an integer
variable Any algebraic value assigned to a props will

—

SAIL USER MANUAL

be coerced to an integer (see about type conversions,
page 2 1) then the low order 12 bits will be stored in
the props of the item. Thus, the value returned from a
props will always be a non-negative integer less than
‘7777 (4095 in decimal).

IDENTIFIERS

You will notice that no syntax was included for the
non-terminal symbols <identifier> or <constant>. It is
far easier to explain these constructs in an informal
manner.

A SAIL letter is any of the upper or lower case letters
A through Z, or the underline character (_ or!), they
are treated equivalently). Lower case letters are
mapped into the corresponding upper case letters for
purposes of symbol table comparisons (SCHLUFF is the
same symbol as Schluff). A digit is any of the
characters 0 through 9.

An identifier is a string of characters consisting of a
letter followed by virtually any number of ietters and
digits There must be a character which is neither a
letter nor a digit (nor either of the characters "" or "§")
both before and after every identifier. In other words,
if YOU can't determine where one identifier ends and
another begins in a program you have never seen
before, well, neither can SAIL.

There is a set of identifiers which are used as SAIL
delimiters (in the Algol sense -- that is, BEGIN is
treated by Algol as if it were a single character. Such
an approach 1s not practical, so a reserved identifier is
used). These identifiers are called Reserved Words and
may not be used for any purpose other than those
given explicitly in the syntax, or in declarations
(DEFINES) which mask their reserved-word status over
the scope of the declarations. E.g., “INTEGER BEGIN” is
allowed, but a Synonym (see page 9) should have been
provided for BEGIN if any new blocks are desired
within this one, because BEGIN is ONLY an Integer in
this block. Another set of identifiers have preset
declarations -- these are the execution time functions.
These latter Identifiers may also be redefined by the
user: they behave as if they were declared in a block
surrounding the outer block. A list of reserved words
may be found in Appendix 2. A list of predeclared
identifiers may be found in the Appendix 3. It should
be noted that due to the stupidity of the parser, it is
impossible to declare certain reserved words to be
identifiers. For example, INTEGER REAL; will give one
the syntax error “Bogus token in declaration”.

Some of the reserved words are equivalent to certain
special characters (e.g. I" for “SUCH THAT"). A table
of these equivalences may be found in Appendix 4.

BASIC CONSTRUCTS

ARITHMETIC CONSTANTS

12369 Integer with decimal value 123689
'12357 Integer with octal value 12357
123. Real with floating point value 123.0
0123.0 Real with floating point value 123.8
.524 Real with floating point value 8. 524
5.3@2 Real with floating point value 530. 8

5.342@-3 Real with floating point vaiue 8.085342

The character ' (right quote) precedes a string of
digits to be converted into an OCTAL number.

If a.ora@ appears in a numeric constant, the type of
the constant is returned as Real (even if it has an
integral value). Otherwise it is an integer. Type
conversions are made at compile time to make the
type of a constant commensurate with that required by
aglven operation. Expressions involving only constants
are evaluated by the compiler and the resultant values
are substituted for the expressions.

The reserved word TRUE is equivalent to the Integer
(Boolean) constant -1; FALSE is equivalent to the
constant 0.

STRING CONSTANTS

A String constant is a string of ASCII characters (any
which you can get into a text file) delimited at each
end by the character ‘. If the " character is desired in
the string, insert two ' characters (after the initial
delimiting " character, of course).

A String constant behaves like any other (algebraic)
primary. It is originally of type String, but may be
converted to Integer by extracting the first character
if necessary (see page 21).

The reserved word NULL represents a String constant
containing no characters (length=2).

Examples: The left hand column in the table that
follows gives the required input

INPUT RESULT LENGTH

“A STRI NG A STRING 8

“WHAT' S "“DOK"" MEAN?" WHAT'S "DOK" MEAN? 18

“““A QUOTED STRING'*” “A QUOTED STRING’ 17

5 2

NULL 8
COMMENTS

If the scanner detects the identifier COMMENT, all
characters up to and Including the next semicolon ()
will be ignored. A comment may appear anywhere as
long as the word COMMENT is properly delimited (not
in a String constant, of course);

A string constant appearing just before a statement
also has the effect of a comment.

89

USING SAIL

SECTION 19

USING SAIL

19.1 - FOR BEGINNERS

If you simply want your Sail program compiled, loaded,
and executed, do the following:

1. Create a file with your program on it
named XXXXXX SAI where
“XXXXXX” may be any name you wish.

2. Get your job to monitor level, and type
“EXECUTE XXXXXX”.

3. The RPG system will type back at you
“SAIL: XXXXXX”, and start Sail. When
Sail hits a page boundry in your file, it
will type "1" or whatever the number
of the page that it is starting to read.

4. When the compilation is complete, Sail
will type “LOADING”.

5. When the loading is complete, the
loader will type “LOADER nK CORE”
where n is your core size. Sail will then
type “EXECUTION".

6 When execution is complete, Sail will
type “END OF SAIL EXECUTION” and
exit.

At any timeduring 3 through 6 above, you could get
an error message from the system such as “ILL MEM
REF”, “ILLEGAL UUOQO” etc. followed by some core
locations. These are Sail bugs. You will have to see a
Sail hacker about them, or attempt to avoid them by
rewriting the offense part of your program, or try
again tomorrow.

If you misspell your file, RPG will complain “UNKNOWN
FILE: YYYYYY” where “YYYYYY” is your misspelling.
Otherwise, the error messages you receive during 3
above will be compilation errors (bad syntax, type
mismatch, begin-end mismatch, unknown identifiers,
etc). See Section 19 about these.

If you get through compilation (step 3) with no error
messages, the loading of your program will rarely fail.
If it somehow does, itwill tell you. See a Sail hacker
about these

90

SAIL USER MANUAL

If you also get through loading (step 4)with no errors,
you aren’t yet safe Sailwlill give you error messages
dur Ing the execution of your program if you exceed
the bounds of an array, exceed Siring space, etc. See
Section 19 about these too.

If you never get an error message, and yet you don’t
get the results you thought you’d get, then you've
probably made some mistakes in your programing. Use
RAID or DDT and Section 19 to follow your program
as it executes, and see where it goes wrong (or else
guess at it) It is quite rare for Sail to have compiled
runable but incorrect code from a correct program.
The only way to ascertain whether this is the case 1s
to Isolate the section of your program that is causing
Sail to generate the bad code, and then patiently step
through itinstruction by instruction using RAID or DDT,
and check to see that everything it does makes sense.

19.2 - THE COMPLETE USE OF SAIL

The general sequence of events in using Sail is:
1. Start Sail

2. Compile one or more files into one or
more binary files, with possibly a
listing file generated.

3. Load the binary file(s) with the
appropriate upper segment or with the
Sail runtime library, and possibly with
RAID or DDT.

4. Start the program, possibly under the
control of RAID or DDT.

5. Let the program finish, or stop it to
examine the core with RAID or DDT,
or to reallocate storage with the
REENTER command.

Starting Sail 1s automatic with the RPG commands
described below. Otherwise, "R SAIL" will do.

19.3 - COMPILING SAIL PROGRAMS

If one started Sail with "R SAIL", then Sail will type
back an "+ at you and wait for you to type in a
<command line> It will do the compilation specified by
that command ling, then ask for another, and so on until
you type “LOADER!” Instead of a command line. At this

pointitwill call the Loader.

= r— r— c— — r—

SAIL USER MANUAL

If you use RPG, follow the RPG command with a list of
<command line>s separated by commas. The
compilation of each <command line> will be done before
the next <command line> is read and processed. The
RPG commands are:

EXecute compile, load, start

TRY compile, load with RAID or DDT, start

DEBug compile, load with RAID or DDT,
start RAID or DDT

LOAd compile, load

PREPare compile, load with RAID or DOT

COMpile compile

See [Moorer] for more information about the use of
RPG and the switches available to it.

COMMAND LINE SYNTAX

<command-line>
u= <binary-name> <listing-name> ¢
<source-list>
= <file_spec>-@
= <file_spec> EXC

<binary-name>
== <f ile_spec>
i <empty>

<listing_name>
=, <file_spec>
1= <empty>

<source-list>
=<file_spec>
== <source-list> , <file_spec>

<file_spec>
= <file-name> <file_ext> <proj_prog>
z= <device-name> <file_spec> <switches>
u= <device-name> <switches>

<file-name>

z= <legal_sixbit_id>

<file_ext>
= <legal_sixbit_id>
= <empty>

<proj_prog>
== [<legal_sixbit_id> |
<legal_sixbit_id> 1
= <empty>

USING SAIL

<device_name>
== <legal_sixbit_id>

<switches>
== (<uUnslashed_switch_list>)
1= <slashed-switch-list>
= <empty>

<unslashed_switch_list>
== <switch_spec>
<unslashed_switch_list> <switch_spec>

<slashed-switch-list>
== [<switch_spec>
= <slashed-switch-list> / <switch_spec>

<switch_spec>
z= <valid_switch_name>
u= <signed-integer> <valid-switch-name>

<valid-switch-name>

w= D

d WO
RTTowom oOoOUu=z r

COMMAND LINE SEMANTICS

All this is by way of saying that SAIL accepts
commands in essentially the same format accepted by
DEC processors such as MACRO and FORTRAN. The
binary file name is the name of the output device and
file on which the ready to load object program will be
written. The listing file, if included, will contain a copy
of the source files with a header at the top of each
page and an octal program counter entry at the head
of each line (see page 92). The listing file name is
often omitted (no listing created). The source file list
specifies a set of user-prepared files which, when
concatenated, form a valid SAIL program (one outer
block).

legal-sixbit-identifier is a name which is acceptable to
the time sharing system as a valid file name, device
name, extension, etc. when its first six (device, file) or
three (extension, project-programmer number) are
converted from ASCII to SIXBIT. For more information
about file and device names, see [Moorer].

91

USING SAIL

If file_ext s omitted from the binary-name, the
extension for the output file will be REL. The default
extension for the listing file s LST SAIL will first try
to find source files under the names given. If this fails,
and the extension is omitted, the same file with a .SAl
extension will be tried.

If device-name is omitted, DSK. is assumed. If
proj_prog is omitted, the project-programmer number
for the job is assumed.

Switches are parameters which affect the operation of
the compiler A list of switches may appear after any
file name The parameters specified are changed
immediately after the file name associated with them is
processed. The meanings of the switches are given
below.

The binary, listing and (first) source file names are
processed before compilation -- subsequent source
names (and their switches) are processed whenever an
end-of-file condition is detected in the current source
file. Source files which appear after the one
containing the outer block’s END delimiter are not
Ignored, but should contain only comments.

Each new line in the command file (or entered from the
teletype) specifies a separate program compilation.
Any number of programs can be compiled by the same
SAIL core image.

The f ile_spec@ command causes the compiler to Open
the specified file as the command file. Subsequent
commands will come from this file. If any of these
commands is file_speca, another switch will occur.

The file-spec EXC command will cause the specified
file to be run as the next processor. This program will
be started in “RPG mode”. That Is,itwill look on the
disk for its commmandsif its standard command file is
there -- otherwise, command control will revert to the
TTY. The default option for this file name is DMP.
The default device is SYS.

SWITCHES

The following table describes the SAIL parameter
switches. If the switch letter is preceded in the table
by the D character, a decimal number is expected as
an argument. 0 is the default value. The character 0
indicates that an octal number Is expected for this
switch. Otherwise the argument is ignored.

92

SAIL USER MANUAL

ARG SWITCH FUNCTION

c This switch turns on CREFfing. The listing
file (which must exist) will be in a format
suitable for processing by CREF, the
program which will generate a cross-
reference listing of your SAIL program from
your listing files.

D For every occurrence of this switch in the
command line, the amount of space for the
push down stack used in expanding macros
(see page 46) is doubled. Use this switch if
the compiler indicates to you that this stack
has overflowed. This shouldn’t happen uniess
you nest DEFINE calls extremely deeply.

0 is an octal number which specifies
exactly what kind of listing format is
generated. 0 contains information about 5
separate listing features, each of which is
assigned a bit in 0.

1 List the program counter
(see [L switch below).

2 List with line numbers from
the source text.

4 List the macro names before
expansion.

18 Expand macro texts in the
listing file.

20 Surround each listed macro
expansion with c and o .

The compiler is initialized with /6f (i.e. list
line numbers and macro names).

H This switch is used to make your program
sharable. When loaded, the code and
constants will be aced in the second (write-
protected) segment, while data areas will be
allocated in the lower, non-shared segment.
Load such programs like this: Run the
loader directly, then respond: *{ddt
switches} progname {other prognames}
/LSYSHLBSAn/G<crif> The sharable library
HLBSAnis identical to LIBSAn, except that
it expects to run mostly in the upper
(shared) segment. Recall that n is the
current version number. When you have
finished loading, in order to write-protect
the sharable portion, you’ll have to deposit
{(by hand) the following instructions:

LOCATION INSTRUCTION ~ EXPLANATION
134 211008 1 (MOVNI 8,1)
135 47600 36 (CALLI 36)

136 254200 @ (HALT)
137 47000 12 (CALLI12)

Then type: START 134, and SSAVE it when
itexits (worry if it HALTS). This feature

T

r

r

r— r— r— r— r— r

—"

e

r—

SAIL USER MANUAL

should be used only if you have a program
which is likely to be used by a lot of
people at once.

0 L In compiling a SAIL program, an internal

variable called PCNT (for program counter)
is incremented (by one) for each word of--
code generated. This value, initially 0,

represents the address of a word of code in
the running program, relative to the load
point for this program. The current octal

value of PCNT plus the value of another
internal variable called LSTOFFSET, is

printed at the beginning of each output line
in a listing file. For the first program

compiled by a given SAIL core image,

LSTOFFSET is initially 0. If the L switch

occurs in the command and the value O is

non-negative, O replaces the current value
of LSTOFFSET. If 0 is -1, the current size

of DDT is put into LSTOFFSET. If 0 is -2,

the current size of RAID is used. In “RPG

mode” the final value of PCNT is added to

LSTOFFSET after each compilation. Thus by
deleting all .REL files produced by SAIL, and

by compiling all SAIL programs which are to

be loaded together with one RPG command

which includes the L switch, you can obtain

listing files such that each of these octal

numbers represents the actual starting core

address of the code produced by the line it

precedes. At the time of this writing, RPG

would not accept minus signs in switches to

be sent to processors. Keep trying.

P Each occurrence of this switch doubles the
size of the system push down list. It has
never been known to overflow.

Q Each occurrence doubles the size of the
String push down list. No trouble has been
encountered here, either.

R Each occurrence doubles the size of the
compiler’'s parsing and semantic stacks. A
long conditional statement of the form (IF
THEN . ELSEIF . THEN ...ELSEIF
) has been known to cause these stacks to
overflow their normally allocated sizes.

D S The size of String space is Set to D words.

String space usage is a function of the
number of identifiers, especially macros,
declared by the user. In the rare case of
String space exhaustion, 5000 is a good
first number to try.

K The counter mechanism of Sail is activated,
enabling one to determine the frequency of
execution of each statement in your Sail

USING SAIL

program. See appendix 12, the Statement
Counter System. This switch is ignored
unless a listing is specified with a/LIST.

Here is an example of a compile string which a user
who just has to try every bell and whistle available
to him might type to compile a file named NULL:

COMPILE /LIST /SAIL NULL(RR-2L5088S)

The switch information contained in parentheses
will be sent unchanged to SAIL. Note the
convention which allows one set of parentheses
enclosing a myriad of switches to replace a "/
character inserted before each one. This string tells
the compiler to compile NULL using parse and
semantic stacks four times larger than usual (RR).
A listing file is to be made which assumes that RAID
will be loaded and NULL will be loaded right after
RAID (-2L). His program is big enough to need
5000 words of String space (500@S).

19.4 - LOADING SAIL PROGRAMS

Load the main program, any separately compiled
procedure files (see page 1), any assembly language
(see page 11)or Fortran procedures, and DDT or RAID
if desired. This is all automatic if you use the LOAD or
DEBUG or EXECUTE system commands (see [Moorer]).
Any of the SAIL execution time routines requested by
your program will be searched out and loaded
automatically from SYSLIBSAnREL. If the shared
segment (SYS:SSAISEG, etc.) is available and desired,
type SYS:SAILOW as as your very first LOADER
command (before /Deven. Stanford people can
abbreviate SYS:SAILOW as /Y. All this is done
automatically by RPG at Stanford.

19.5 - STARTING SAIL PROGRAMS

For most applications, SAIL programs can by started
using the START, RUN, EXECUTE, or TRY system
commands, or by using the $G command of DDT (RAID).
The SAIL storage areas will be initialized. This means
that all knowledge of 1/O activity, associative data
structures, strings, etc. from any previous activation of
the program will be lost. All strings (except constants)
will be cleared to NULL. All compiled-in arrays will
not be reinitialized (PRELOADed arrays are preloaded
at compile time - OWN arrays are never initialized).
Then execution will begin with the first statement in
the outer block of your main program. As each block
is entered, its arrays will be cleared as they are
allocated. Variables are not cleared. The program will
exit when it leaves this outer block.

93

JSING SAIL

STARTING THE PROGRAM IN “RPG” MODE

SAIL programs may be started at one of
consecutive locations: at the address contained in thic
el JOBSA in the job data area, or at the address just
rollowing that one. The global variable RPGSW is set
to 0 In the former case, -1 In the latter. Aside from
this, there is no difference between the two methods,
This cell may be examined by declaring RPGSW as an
L XTERNAL INTEGER.

t

e

19.6 - STORAGE REALLOCATION WITH THE REENTER
COMMAND

The compiler dynamically allocates working storage for
its push down lists, symbol tables string spaces. etc. It
normally runs with a standard allocatior adequate for
most programs. Switch settingsgiven above may be
used to change these allocations If desired, these
allocations may also bechanged by typing TC, followed
by REE (reenter). The compiler will ask you if you want
to allocate. Type Y to allocate, N to use the standard
allocation, and any other character to use the standard
allocations and print out what they are. All entries will
e prompted. Numbers should be decimal. Typing alt-
riode instead of CR will cause standard allocation to
be used for the remaining values. The compiler will
then start, awaiting command input from the teletype.

-or Stanford “Global Model” users, the REE command
will also delete any REQUIREd or previously typed
cgment name information. The initialization sequence
~minen ask for new names.

94

SAIL USER MANUAL

— T

—

— r—

SAIL USER MANUAL

SECTION 20

DEBUGGING SAIL PROGRAMS

20.1 - ERROR MESSAGES

If the compiler detects a syntax or semantic error
while compiling a program it will provide the user with
the following information:

1) The error message. These are English
phrases or sentences which attempt to
diagnose the problem. If a message is vague
it is because no specific test for the error
has been made and a catchall routine
detected it If the message begins with the
word "'DRYROT" it means that there is a bug
in the compiler which some strangeness in
your program was able to tickle. See a
system programmer about this.

2) The current input line. Page and line number,
along with the text of the line being scanned,
are typed. If the console device is aTtY, a
line feed will occur at the point in the line
just following the last program element
scanned. If the device is a DPY, the line will
be displayed with a vertical arrow below the
scan position. The absence of a position
indicator means that a macro (DEFINE) body
is being expanded.

3) A question mark or arrow (= or).
Respond to the prompt in any of the following ways:

<cr>Try to continue compilation. A message will
be printed and the sequence reentered if
recovery is impossible (if a "?" was typed
instead of an arrow).

C same as <Cr>

<If> Try to continue the compilation, but don't
stop for user response after future errors.
le. automatic continuation. Messages will fly
by (at an unreadable rate on DPYS) until the
compilation is complete or an error occurs
from which no recovery is possible. In the
latter case the question sequence is
reentered.

A same as <If> -

DEBUGGING SAIL PROGRAMS

S Restart. Sometimes wuseful if you are
debugging the compiler (or if you were
compiling the wrong file). The program is
restarted, accepting compilation commands
from the TTY.

X Exit. All files are closed in their current
state. The program exits to the system.

E Edit. This command must be followed by a
carriage return, or a space, a filename (in
standard format, assumes DSK) and a
carriage return, If the filename is missing,
the SOS editor (see [Savitzky)) is started,
given instructions to edit the current source
file and to move the editing pointer to the
current page and line number. If a file name
is present, that file is edited starting at the
beginning. This feature is available outside
Stanford only if the SOS editor is available,
and is modified to read a standard CCL file
for its input.

T TV edit, Same as E only the TV editor is
used (Stanford only).

D Enter DDT or RAID if one is loaded.
Otherwise, type “NO DDT LOADED” and re-
quest ion.

Any other character will cause the error routines to
spew forth a summary of this table and re-enter the
quest ion sequence.

ERROR MODES

The above procedure can be modified slightly by
setting various modes. One sets a mode by including
the appropriate letter before the response. Any of the
four modes may be reset by including a minus sign (-)
before them. E.g. "-Q" Error modes can also be set
with the construct REQUIRE <string_const>
ERROR-MODES. When the compiler sees this in any
of the source files one is compiling, it reads through
the string constant and sets the modes as it sees their
letters. These modes remain in effect until the end of
the compilation or until reset with a response to an
error message, or another require error-modes.

The available modes are:

K KEEP type-ahead. Normally, the error
handler will flush the input buffer before
looking for response characters. This mode
allows one to type ahead.

Q QUIET. If the error is continuable, none of
the above will be typed. However, you will

always be notified of a non-continuable error.

L LOGGING. The first and second items of the

95

DEBUGGING SAIL PROGRAMS

error message Wwill be sent to a file named
<prognam>LOG w h e r e <prognam>isth e
name of the tile of the main program. If you
would rather have another name, use F<file
specification>, where <file specification>
must be a legal file name and PPN. The
default extension is LOG and the default
PPN 1s that of the job. The LOG file (or
whatever it's called) is closed when one’s
program finishes compilation, or the
compilation is terrninated with the S, X, E, or
T responses.

N NUMBERS. This mode causes the message
‘CALLED FROM xxxx LAST SAIL CALL AT
yyyy” to be typed before tne question mark
or arrow. Useful to compiler debuggers and
hand coders.

Note that setting a mode does nothing by set a mode;
it does not cause continuation.

STOPPING RUNAWAY CQMPILATIONS

Typing <esc>! will immediately cause the Q and A
modes to be reset so that the next error will (8) be
typed, and (b) wait for a response rather than
cont inuing automatically.

EXECUTION TIME ERROR MESSAGES
Error messages have nearly the same format as those
from the compiler (page 95). They indicate that

1) an array subscript has overflowed;
2) a case index is out of range;

3) a stack has overflowed while allocating
space for a recursive procedure; or

4) one of the execution time routines has
detected an error.

In Numbers mode, the “CALLED FROM” address
identifies, in the first 3 cases, the location in the user
program where the error occurred ; the “LAST SAIL
CALL AT” address gives the location of the faulty call
. on the SAIL routine for type 4 messages.

All the replies to error messages described in page
95 are valid. If no file name is typed with the "E" or
"T" option, the editor re-opens the last file mentioned
in the EDIT system command.

The function USERERR may be used to activate the

SAIL error message mechanism. Facilities are provided
for changing the mode. See page 42 for details.

96

CAIL'SER MANUAL
24 2 - DEBUGGING

The codeoutput for SAIL program; 1 gesigned to be
farly easy to understand when examined using the
DDT debugging language or Stanford’s display oriented
RAID program. A knowledge of the debugger you have
chosenisrequired before this section will be
compr ehensiile

SYMBOLS

Only those symbols which have been declared
INTERNAL (see age 1) and those usciareuin the
currently open‘program” are &vallalle at a grven Hime
Tne name of a SAIL program as far as DDT or RAID
(nenceforth DDRAID) is concerned Is the name of the
outer block of that program. If no name is given for
this block, tha name Mwillhathe default

Only the first six non-blank characters of a block name
or Identifier will be used in forming a DDRAID symbol.
If two identifiersin the same block have e same first
six characters the program using (hemwill not get
confused, but the user might when trymg to locate
these identif iers.

To obtain symbols for the execution time routines, load
RUNTIM.REL (available from your friendly local SAIL
maintainer) with your other files. The routines wilt be
loaded from this file, which includes symbols, instead of
from the LIBSAI library or shared segment, which do
not. Your program will be several thousand words
longer when this file is used.

BLOCKS

All block names and identifiers used as variables,
procedures or labels in a given (main or separate
procedure) program are available for typeout when
that program is “open” (NAME§: has been typed). To
refer to a symbol, type BLOCK-NAME&SYMBOL/
(substitute ; for / in RAID). The block name may be
omitted if you have ‘“opened” the block with
BLOCK-NAMES$&. The symbol table is block-structured
only to the extent that block names have appeared in
the source program. For instance, in the program

BEGIN "NAMEL"
INTEGER 1,J;

BEGIN
INTEGER 1K;
El\b‘,

END "NAMEL"

the symbols J. K, and both symbols | are considered by
DDRAID to belong in the same block. Therefore
confusion can result with respect to |. This approach
was taken to avoid the necessity of generating
meaningless block names for DDRAID when none were
given In the source program. A compound statement

r

—

C

—

r—

=

SAIL USER MANUAL

w ill be considered by DDRAID to be a block if it has a

name.

SAIL GENERATED SYMBOLS

Some extra symbols are generated by SAIL and will

show up when you are using DDRAID. They are:

ACS

The accumulators P (system push down
list pointer), SP(string push down pointer),
and TEMP (commonly used temporary)
are given symbolic names. Currently,

Pa' 17, SP=' 16, TEMP=' 14.

OPS The op codes for the UUOs ERR,

ERROR., FIX, FLOAT, PDLOV, and ARERR
(subscript overflow UUO) are included to
make these easy to detect in the code.

ARRAYS For each array declared in the outer

block (built-in arrays), the fixed address
of its first element is given a symbolic
name. This name is constructed from the
characters of the array name (Up to the
first B) followed by a period. For
instance, the first element of array CHT
is CHT.; the first element of PDQARR is
PDQAR.; The last semicolon was really a
period. This dotted symbol points to the
second word of the first descriptor for
String Arrays (see page 107, page
106).

STRINGS For each string declared in the outer

block (built-in strings), the second word
of the two word string descriptor is
given the name of the string variable,
truncated to six letters. The first word
of the string descriptor is given a name
consisting of the first five letters of the
string’s name followed by a period. For
exmple, if you declare a string INSTRING,
then the two word descriptor:

INSTR. : <first word>
INSTRI : <second word>

More about string descriptors on page
107.

BLOCKS The first word of the first executable

statement of every block or compound
statement which has been given a name
is given a label created in the same way
as those for arrays above. This label
cannot be gone to in the source program.
It causes no program inefficiency. This
label points at the first word of the
compound tail -- not the first word of
code generated for the block (skips any
procedure or array declaration code).

DEBUGGING SAIL PROGRAMS

START The first word of code generated for any
given program is given the name "S.".

WARNINGS

Since only the first 6 characters of an identifier are
available, it is wise to declare symbols which will be
examined by DDRAID in such a way that these six
characters will uniquely identify them.

97

APPENDICES SAIL USER MANUAL

APPENDIX 1 OPERATION ARGl ARG2 ARGL' ARG2' RESULT
.- INT INT INT INT INTx

TYPE CONVERSION x 17 REAL INT REAL REAL REAL
MAXMN INT REAL REAL REAL REAL

REAL REAL REAL REAL REAL

is identi LAND LOR INT INT INT INT INT
The data type BOOLEAN is identical to the data type EQV XOR REAL INT REAL INT REAL

INTEGER with the following conventions: FALSE =0 INT REAL INT REAL INT
and TRUE #0. REAL REAL REAL REAL REAL
F |To LSH ROT INT INT INT INT INT
r REAL INT REAL INT REAL
o | INTEGER REAL STRING INT REAL INT INT INT
m
1 Left justify [The right 7 bits REAL REAL REAL INT REAL
N and rarse to | are converted to
T appropr tate | to a 1 character / INT INT REAL REAL REAL
E i’ozgf‘i 14563 | | string uwith that REAL INT REAL REAL REAL
& Zasaldsces | Al code. INT REAL REAL REAL REAL
g 67867802 | 45 - "0 REAL REAL REAL REAL REAL
- I
R | Drop deciml i Lonvert to inte- MOD DIV INT INT INT INT INT
E fract tons. yer then convert REAL INT INT INT INT
e e | fo atring. INT REAL INT INT INT

2.3e-24 0 | 4.89%1 » «0” REAL REAL INT INT INT

l

[The ASCIT code| Convert to in-|
s | for the first | teger then | . . wan .
T | character of to real. | # If ARG2 is negative for the operator 'T", the result is
R | string. . |
1| "esuM™ 48 "@SUM"- 4.8al | real.
N | NULL =0 NULL » 0 {
G_

NOTES: The NULL string is converted to 0, but 0 is
converted to the one character string with the ASCII
code of 0. If the absolute value of an Integer is
greater than 1342 17728, then some low order
significance will be lost In the conversion to real;
otherwise, conversion to real and then back to integer
will result in the same integer value. If a real number
has magnitude greater than 134217728, then
conversion to integer will produce an invalid result.

Conversion from real to integer can be sped by a
factor of 8 if SHORT reals and integers are used. It
is only necessary that one of the data types be
SHORT: both the number to be converted and the
variable need not be SHORT. SHORTness is a
dominate quality In algebraic ktinary operations. That
1s, the sum of a SHORT real and a regular real will be
treated as a SHORT real. SHORT integers and reals
must have an absolute magnitude of less than
-134217728

The binary arithmetic, logical, and String operations
which follow will accept combinations of arguments of
any algebraic types. The type of the result of such an
operation is sometimes dependent on the type of its
arguments and sometimes fixed. An argument may be
converted to a different algebraic type before the
operation is performed. The following table describes
the results of the arithmetic and logical operations
glven various combinations of Real and Integer inputs.
ARG1 and ARG2 represent the types of the actual
arguments (strings go to integers first). ARG1' and
ARG2' represent the types of the arguments after any
necessary conversions have been made.

98

r— r— r— r——

—

SAIL USER MANUAL

APPENDIX 2

SAIL RESERVED WORDS

ABS ALL AND APPLY ARRAY ARRAY-PDL ASSIGN
ASSOC BBPP BEGIN BOOLEAN CASE CASEC CAUSE
COMMENT CONTEXT CONTINUE COP CVI CVLIST
CVN CVSET DATUM DEFINE DELETE DELIMITERS DIV
DO DOC DONE DPB ELSE ELSEC END ENDC ENTRY
EQV ERASE EXTERNAL FAIL FALSE FIRST FOR FORC
FORLC FOREACH FORGET FORTRAN FORWARD
FROM GEQ GLOBAL GO GOTo 1BP IDPB IF IFC ILDB
IN INF INITIALIZATION INTEGER INTER INTERNAL
INTERROGATE ISTRIPLE ITEM ITEMVAR LABEL LAND
LDB LENGTH LEQ LET LIBRARY LOAD-MODULE
LOCATION LNOT LOP LOR LSH MAKE MATCHING MAX
MEMORY MESSAGE MIN MOD NEEDNEXT NEQ NEXT
NEW NEW-ITEMS NOT NOW-SAFE NOW-UNSAFE
NULL NULL-CONTEXT NULL-DELIMITERS OF OFC OR
OWN PHI PNAMES PRELOAD_WITH PROCEDURE
PROTECT-ACS PUT QUICK-CODE REAL RECURSIVE
REFERENCE REMEMBER REMOVE
REPLACE-DELIMITERS REQUIRE RESTORE RETURN
ROT SAFE SECOND SEGMENT-NAME SEGMENT-FILE
SET SETC SETO SHORT SIMPLE SPROUT
START-CODE STEP STEPC STRING STRING-PDL
STRING-SPACE SOURCE-FILE SUCCEED SUCH SWAP
SYSTEM-PDL THAT THEN THENC THIRD TO TRUE
UNSTACK-DELIMITERS UNTIL UNTILC VALUE VERSION
WHILE WHILEC xoR

APPENDIX 3

SAIL PRE-DECLARED IDENTIFIERS

ARRBLT ARRINFO ARRTRAN ARRYIN ARRYOUT
BACKUP BINDITBREAKSET cALL cLOSE CLOSIN
CLOSO CLRBUF CODE CVASC CVD CVE CVF CVFIL
cvG CVIS cvo cvos cvs CVSICVSIX cvsTR
CVXSTR ENTER EQU EVENT-TYPE FILEINFO
GETCHAN GETFORMAT INCHRW INCHRS INCHSL
INCHWL INSTR INSTRL INSTRS I N P U T INTIN INTSCAN
LINOUT LODED LOOKUP MAINPI MTAPE OPEN OUT
OUTCHR OUTSTR PTCHRS PTCHRW PTIFRE PTOCNT
PTOCHS PTOCHW PTOSTR PTYALL PTYGET PTYIN
PTYREL PTYSTR REALINREALSCAN RELEASE
RENAME SCAN SETBREAK SETFORMAT STRBRK
TTYIN TTYINL TTYINS WORDIN WORDOUT USERCON
USERERR USETI USETO

APPENDICES

APPENDIX 4

CHARACTER-IDENTIFIER EQUIVALENCES

CHARACTER RESERVED WORD

AND
. EQV
NOT
OR
® XOR
0 INF
IN
SUCH THAT
NEQ
LEQ
GEQ
SETO
SETC
UNION
INTER
ASSOC

o SWAP
!

>

SN IVOIA R

APPENDIX 5

PARAMETERS TO THE OPEN FUNCTION

OPEN (CHANNEL, “DEVICE’, MODE,
INBUFS, OUTBUFS, @COUNT,
@BRCHAR, eEOQF),

CHANNEL System Data Channel, @-'17
DEVICE string giving device name
MODE data mode, bits 18-21, 23
enable error returns
INBUFS number of input buffers,
Ih buffer size if #@
OUTBUFS number of output buffers

COUNT text input count (reference)
BRCHAR break char variable (reference)
EOF end-of-file and 10 error

flag (reference)

99

APPENDICES

APPENDIX 6

BREAKSET MODES

I (Inclusion) string is set of break chars

X (eXclusion) string of all non-break chars

0 (Omit) string of characters to be omitted
from result

S (skip) break char appears only in BRCHAR
variable

A (Append) break char is last char of result
string

R (Retain) break char is first char of next
string

P (Pass) line numbers appear in input without
warning

N (No numbers) line numbers and the tabs that
follow them are removed.

L (Line no break) line numbers cause input
break.
BRCHAR is negative. Next input gets line no
characters.

E (Erman) line numbers cause input break.

Negated line no returned in BRCHAR. Line
no removed from input.

D (Display) after this appears, each line no
is listed on the display (if TTY is a DPY) as
it is dealt with.

APPENDIX 7

MTAPE COMMANDS

MODE FUNCTION

“A” Advance past one tape mark (or file)
‘B" Backspace past one tape mark

"F" Advance one record

‘R" Backspace one record

"W" Rewind tape

‘E" Write tape mark

‘U Rewind and unload

100

SAIL USER MANUAL

APPENDIX 8

COMPILE SWITCHES

D double size of define pushdown stack
numl listing control -- nUm>@ becomes listing
starting addr. num=-1 starts listing after
current DDT size. num=-2 starts listing
after current RAID size.

double s1Ze of system pushdown list
double size of string pushdown list

for making programs sharable (high segment).
for insertion of programs counters.
double size of parse pushdown list
numS set size of string space to num

C create CREF (cross-reference) input file.
numF enable various listing formats.

T X TOTU

APPENDIX 9

VALID RESPONSES TO ERROR MESSAGES

ACTION RESPONSES

cr (carriage return) try to continue

C same as cr

If (line feed) continue automatically -- don’t
stop for user go-ahead after each message

A same as If

S restart

X exit -- close all files, return to monitor

E edit. Follow by CR to get file the compiler

is working on (or last thing edited, for
Runtime routines). Follow with
<name> CR to edit <name>.

T Ditto E only with the TV editor.

go to DDT or RAID

B go to compiler or runtime debugger.

lw)

MODES (reset using - eg. -Q or -L)

keep type-ahead (i.e. don’t flush)

quiet - turns off display of errors
logging - send errors to .LOG file

file - ditto L but send to a file

specified by <file name> after F

N Numbers - display “CALLED FROM XXXX"

- oR

S

r— r——

—

r—

SAIL USER MANUAL

APPENDIX 10

ERROR CODES

ROUTINE LOCATION CONDITIONS, CODE VALUES

CALL _SKIP_ set TRUE if the UUO skips, FALSE
otherwise

CODE _SKIP_ set TRUE if the constructed
instruction skips, FALSE otherwise

CVFIL _SKIP_ set TRUE if the file input is

invalidly specified (wrong
punctuation, order, etc.), FALSE
otherwise.

CVIS FLAG param Set TRUE if no PNAME exists
for this Item, FALSE if CVIS
succeeds.

CVSl FLAG param Set TRUE if no Item exists with
this String as PNAME, FALSE if
CVSI succeeds.

ENTER FLAG param Set FALSE if the ENTER
succeeds. Otherwise, the left half
is made - 1. Then if the file name
was invalid, the right half is made
' 10. Otherwise it is set to some
code from 0 to 7, depending on the
type of ENTER failure. These
codes are the same as the ENTER
UUO codes in [Moorer]. If error ' 10
(invalid spec.) is returned, an error
message (non-fatal) will also be
printed, unless you are enabled for
user handling of this error (see 1/O
below).

GETCHAN result < if no channel is available.
INCHRS result <@ if no characters are waiting.
INCHSL FLAG param#@ if no characters are waiting.
INSTRS FLAG param #@ if no characters are waiting.

110 EOF vbl. 0 if no exceptional conditions
occurred in an /O operation.
Otherwise, the left half has certain
bits turned on, indicating the error:
400000 is a catchall -- improper
mode. 200000 means parity error
occurred. 100000 means a data
error occurred. 40000 means
“Record number out of bounds”.
20000 means End of File (input

APPENDICES

only), You are always enabled for
bit 20000 (EOF). However, to be
allowed to handle any of the others,
you must turn on the corresponding
bit in the right half of the MODE
word in the OPEN for this channel.
In addition, the 10000 bit is used
to enable user handling of invalid
file specifications to ENTER,
LOOKUP, and RENAME (see above).
‘7500017 in the MODE parameter
would enable a dump mode file for
user handling of ALL /O errors on
this channel. If you are not
enabled for a given error, an error
message (which may or may not be
fatal) will be printed, and the error
code word set as indicated. In
addition, the number of words
actually transferred is stored in the
right half of this variable for
ARRY IN, ARRYOUT.

LOOKUP FLAG param Same as ENTER.

OPEN EOF vbl If 0 on entry, prints fatal error
message if OPEN fails. If #& on
entry, always returns to user -- still
if OPEN failed, 0 if it
succeeded.

RENAME FLAG param Same as ENTER.
TTYINS FLAG param Same as INSTRS.

Substrings _SKIP_ Consider STIX TO Y. If
Y>LENGTHST) it is set to
LENGTH(ST) and rh(_SKIP_) is made
A.0f X<l it is set to 1. If X>Y it
is set to Y+l (guaranteeing a null
String result). In either case,
Ih(_SKIP_) is set to -1. The STIX
FOR Y] case is first converted to
the other case, then executed.

You should also refer to the table for Input ,p8ge 35,

describing the various combinations of the BRCHAR
and EOF variables and their meanings.

101

APEENDICES

APPENDIX 11

INDICES| OR INTERRUPTS

STANFORD INTERRUPT SYSTEM
NAME NUMBER DFSCRIPTION
INTSWWL_INX 0 You will receive an Interrupt
when your job is abcut to be
swapped out.
INTSWD_INX 1 You will receive an irterrupt when
your job is swapped back into
core If you are activated for
Interrupts for swap out also, you
will receive these two interrupts
as a pair in the expected order
every time your jobis swapped.

INTSHW_INX 2 You will receive an interrupt when
your—job is about to be shuffled.
INTSHD_INX 3 You willreceive an Interrupt when

your job has been shuffled.

INTTTY_INX 4 Y o u willreceive an Interrupt
every time your program would be
activated due to the teletype if it
were waiting for the teletype. As
long as you do not ask for more
than there is in the teletype
buffer, you may read from the
teletype at interrupt level.

INTPTO_INX 5 You will be interrupted every time

the PTY job goes into a wait state

walling tor you to sent it
characters

IN TMAIL_INX 6 Interrupts whenever someone

SENDs you mail (see [Moorer],

section 110.17) You may read the

letter at Interrupt level.

ANTPTI_INX 8 You will be interrupted everytime

any icb on a FTY you own send

you 3 characler (or line).

INTPAR_INX 9 interruptsyou on parity errors in

yUdr Core image

INTCLK_INX 10 You will be interrupted at every
clock tick (1/63th of a second).

INTINR_INX 11 IMP Interrupt by receiver
INTINS_INX 1 2 IMP interrupt by sender.
INTIMS_INX 13

IMP status change interrupt.

102

SAIL USER MANUAL

INTINP_INX 1 4 1 M P input waiting

INTTTILINX 15 You will be interrupted whenever
<esc> | 1s typed on your teletype.

INTPOV_INX 19 Interrupts you on push-down
overflow.

INTILM_INX 22 Interrupts you on illegal memory
references, that is, references to
memory outside of your core
image

INTNXM_INX 23 You will receive an interrupt
whenever your program
refet €nC€S non-existant memory.

INTFOV_INX

29 Interrupts you on floating overflow.

INTOV_INX

32 Interrupts you on arithmetic
overflow.

Bits 33 through 36 are left to the user. REQUIRE
"SYS:PROCESDEF" SOURCE-FILE to define the above
names, NOTE: to program yourself for more than one
Interrupt, you must execute two separate INTMAP
statements.

EXPORT SAIL INTERRUPT SYSTEM

NAME NUMBER DESCRIPTION

INTPOV_APR 19 Interrupts you on push-down
stack overflow

INTILM_APR 2 2 Interrupts youon illegal memory

references that is, references to

memory oulside of your core

Image.

INTNXM_APR 23 You will receive an interrupt
whenever your program
references non-existant memory.

INTFOV_APR 29 Interrupts You on floating
overflow

INTOV_APR 3 2 Interrupts you on arithmetic
overflow

—

SAIL USER MANUAL

APPENDIX 12 IRUN

BIT NAMES FOR PROCESS CONSTRUCTS

SPROUT OPTIONS 34
BITS NAME DESCRIPTION 35 NOTNOW

14-17 QUANTUM(X) Q « IF X=0 THEN 4 ELSE
2TX; The process will be given
a quantum of Q clock ticks,
indicating that if the user is

using CLKMOD to handle chock CAUSE OPTIONS
interrupts, the process should

be run for at most Q clock 35 DONTSAVE
ticks, before calling the

scheduler. (see about CLKMOD,
page 79 for details on making
processes "time share”).

18-2 1 STRINGSTACK(X) S « IF X-0 THEN 16 34 TELLALL
ELSE X#32; The process will be
given S words of string stack.

22-27 PSTACK(X)P<IF X=0 THEN 3 2 ELSE X*32;

The process will be given P

APPENDICES

If 33-32 is 3, then the current
process will not be suspended,
but be made running. The newly
resumed process will be made
ready.

This should always be zero.

If set, this bit makes the newly
resumed process ready instead
of running. If 33-32 are not 3,
then this bit causes a
rescheduling.

Never put the <event item> on
the notice queue. If there is no
process on the wait queue, this
makes the cause statement a
no-op.

Wake all processes waiting for
this event. Give them all this
item. The highest priority
process will be made running,
others will be made ready.

words of arithmetic stack. 33 RESCHEDULE Reschedule as soon as

28-31 PRIORITY(X) P « IF X=0 THEN 7 ELSE X;
The process will be given a
priority of P. 0 is the highest

possible (i.e. immediately after
the cause procedure has
completed executed).

priority, and reserved for the INTERROGATE OPTIONS

SAIL system. 15 is the lowest

priority. Priorities determine 35 RETAIN
which ready process the

scheduler will next pick to make

running.

32 SUSPHIM If set, suspend the newly
sprouted process.

Leave the event notice on the
notice queue, but still return
the notice as the value of the
interrogate. If the process
goes into a wait state as a
result of this Interrogate, and is
subsequently awakened by a
Cause statement, then the

33 Not used at present. DONTSAVE bit in the Cause
statement will over ride the
34 SUSPME If set, suspend the process in RETAIN bit in the Interrogate if
which this sprout statement both are on.
occurs.
34 WAIT If the notice queue is empty,
35 RUNME If set, contihue to run the then suspend the process
process in which this sprout executing the interrogate and
statement occurs. put its process item on the wait
queue.
RESUME OPTIONS
33 RESCHEDULE Reschedule as soon as
33-32READYME 1 3332 is 1, then the possible (i.e. immediately after
current process will not be execution of the interrogate
suspended, but be made ready. procedure).
KILLME If 33-32 1s 2; then the current 32 SAY-WHICH Creates the association

process will be terminated.

103

APPENDICES

104

EVENT-TYPE & <event notice>s
<event type> where <event
type> is the type of the event
returned. Useful with the set
form of the Interrogate
construct.

SAIL USER MANUAL

APPENDIX 13

STATEMENT COUNTER SYSTEM

GENERAL DISCUSSION

The new SAIL compiler contains a feature which allows
you to determine conveniently the frequency of
execution of each statement in your SAIL program.

This is accomplished by inserting an array of
counters and placing AOS instructions at various
points in the object program (such as in loops and
conditional statemerts). A routine is called to zero the
counter array before your program is entered and
another routine is called to write out the array before
calling EXIT.

Since not all programs exit In the normal fashion
(i.e. falling out the bottom), it is possible to call
either the zero routine or the output routine as an
EXTERNAL PROCEDURE.

Another program, called PROFIL, is used to merge the
listing file produced by the SAIL compiler with the file
of counters produced by the execution run of your
program. The output of the PROFIL program is
an indented listing of your SAIL program with
execution counts in the right hand margin. The output
format of PROFIL is reasonably flexible, with several
“switches” to control it.

Since the AOS instructions access fixed locations,
and they are placed only where needed to determine
program flow, they should not add much overhead
to the execution time. Although no large study has
been made, the counters seem to contribute about
2% to the execution time of the profile program,
which has a fairly deeply nested structure.

SAIL EXTENSION

The mechanism for inserting counters is controlled
by a compiler switch. To tell the compiler to insert
counters, you give it a /K switch. {/C was already used
for something else.) It is also necessary to produce
alisting file, since the PROFIL program needs it. In
fact, the /K switch is ignored unless a listing is
called for. Specifying /K has several effects on the
listing. First, macros are expanded and macro
names not listed. This is necessary so that PROFIL
will know about block structure, etc. Also, the listing of
PC and line numbers is suppressed. The current
version of PROFIL is confused by all those numbers
and anyway, the lines of the PROFIL listing can differ
somewhat from the lines of the original source. The
final change In the listing is the inclusion of markers
telling where counters have been inserted. Most of
these are Ignored by the present PROFIL since it is
smart enough to know where they are from the

—

r—

— r— [

— 1

{

SAIL USER MANUAL

program context. The ones that it does use are the
markers for counters inserted into conditional and
case expressions.

At the end of each program (i.e. each separate
compilation) is the block of counters, preceeded by a
small data block used by the zero and output
routines. This block contains such information as the
number of counters, the name of the list file, and a
link to other such blocks of counters. The first
counter location is given omaname KOUNT, which is
accessible from RAID, but cannot be referenced
by the SAIL program itself.

The routine K.ZERO is called to zero the counters.
If for some reason you wish to zero them yourself,
(like if you're only interested in steady state
execution counts) you can reference this routine by
including the declaration:

EXTERNAL PROCEDURE K-ZERO;

The outputting Qf‘ the counters is done by the routine
K.OUT. It uses the SAIL routine GETCHAN to find a
spare channel, does a single dump mode output
which writes out all the counters for all the programs
loaded having counters, and then releases the channel.
The file which it writes is XXXKNT, where xxx is the
name of the list file of the first program loaded having
counters (usually the name of the SAIL source file).
If there are no counters, K.OUT simply returns,
This routine can also be referenced by including the
declaration:

EXTERNAL PROCEDURE K-OUT;

PROFILE PROGRAM

The program PROFIL is used to produce the program
profile, i.e. the listing complete with statement
counts. It operates in the following manner. First it
reads in the file XXxKNT created by the execution of
the user program. This file contains the values of the
counters and the names of the list files of the
programs loaded which had counters. It then reads
the the list files and produces the profile.

The format of the listing is such that only
statements executed the same number of times are

listed on a single line. In the case of conditional
statements, the statement is continued on a new line
after the word THEN. Conditional expressions and

case expression, on the other hand, are still listed on a
single line. In order that you might know the execution
counts, they are inserted into the text surrounded
by two 'brokets" (e.g. <<15>>).

PROFIL expects a command string of the standard
form for CUSP’s, i.e.

<output>—<input> {switches}.

APPENDICES

where the <Input> is the name of the .KNT is
assumed. If the output device is the DSK, the output
file will have a default extension of .PFL. Although
the line spacing will probably be different from the
source, PROFIL makes an effort to keep any page
spacing that was in the source. here are several
possibilities for switches, for which the pertinent
ones are:

/nB Indent n spaces for blocks (default 4)

/nC Indent n spaces for continuations (default 2)
/F Fill out every 4th line with ".. . " (default ON)
/I Ignore comments, strip them from the listing
/nK Make counter array of size n (default 268)
/nL Maximum line lengthof n (default 128)

/N Suppress [F feature

/S Stop after this profile

/T TTY mode = /1C/2B/F/80L

SAMPLE RUN

Suppose that you have a SAIL program named FOO.SAI
for which you desire a profile. The following
statements will give you one.

. EX /LIST FOO(K) (or TRY or DEBor what have you)
. » > any input to FOO . . .

EXIT
C

. R PROFIL
*FO0-FOO/T/$
EXIT

C

Atthis point, the file FOO. PFL contains the profile,
suitable for typing on the TTY or editing.

105

APPENDICES

APPENDIX 14

ARRAY iIMPLEMENTATION

Let STRINGAR be 1 (TRUE) if the array in question is
a String array, 0 (FALSE) otherwise. Then a SAIL array
of n dimensions has the following format:

HEAD: ~DATAWD ;= MEANS "POINTS AT"
HEAD-END-1

ARRHED: BASE_WORD
LOWER_BD(n)
UPPER_BD(n)
MULT(n)

;SEE BELOW

LOWER_BD(1)

UPPER_BD(1)

MULT(1)

NUM_DIMS, TOTAL_SIZE
DATAWD: BLOCK TOTAL_SIZE

<sometimes a few extra words>
END: 480000,~HEAD

HEAD The first two words of each array, and the
last, are cohtrol words for the dynamic
storage allocator. These words are always
present for an array. The array access
code does not refer to them.

ARRHED Each array is preceded by a block of
3#n+2 control words. The BASE-WORD
entry is explained later.

NUM_DIMS This is the dimensionality of the array. If
STRINGAR, this value is negated before
storage in the left half.

DATAWD This is stored in the core location bearing
the name of the array (see symbols, page
97). If it is a string array, DATAWD+1 is
stored instead.

TOTAL-SIZE The total number of accessible elements
(double if STRINGAR) in the array.

The lower bound and upper bound for each
dimension are stored in this table, the left-
hand index values occupying the higher
addresses (closest to the array data). If
they are constants, the compiler will
remember them too and try for better code
(i.e. immediate operands).

BOUNDS

MULT This number, for dimension m, is the product
of the total number of elements of
dimensions m+1 through n. MULT for the

last dimension is always 1.

BASE-WORD This is DATAWD minus the sum of
(STRINGAR+1) » LOWER_BD(m) * MULT(m)

for all m from 1 to n.

106

SAIL USER MANUAL

The formula for calculating the address of A[lLJK] is:

address(A[lLJK]) =
address(DATAWD) +
(I-LOWER_BD(1 HxMULT(1) +
(J-LOWER_BD(2))%MULT(2) +
(K-LOWER_BD(3))

This expands to

address(A[LJK] =
address(DATAWD) +
I*MULT(L) + JXMULT(2) + K
-(LOWER_BD(1)xMULT(L) +
LOWER_BD(2)xMULT(2) +
LOWER_BD(3)

which is
BASE_WORD + IXMULT(1) + JXMULT(2) + K.

By pre-calculating the effects of the lower bounds,
several instructions are saved for each array
reference.

—

—

SAIL USER MANUAL

APPENDIX 15

STRING IMPLEMENTATION

STRING DESCRIPTORS

A SAIL String has two distinct parts: the descriptor
and the text. The descriptor is unique and has the
following format:

WORD 1: CONST,LENGTH
WORD2: BYTP

1) CONST. This entry is 0 if the String is a
constant (the descriptor will not be altered,
and the String text is not in String space, is
therefore not subject to garbage collection),
and non-zero otherwise.

2) LENGTH. This number is zero for any null
String; otherwise it is the number of text
characters.

3) BYTP. If LENGTH is 0, this byte pointer is
never checked (it need not even be a valid
byte pointer. Otherwise, an ILDB machine
instruction pointed at the BYTP word will
retrieve the first text character of the String.
The text for a String may begin at any point
in a word. The characters are stored as
LENGTH cont iguous characters.

A SAIL String variable contains the two word
descriptor for that variable. The identifier naming it
points to WORD1 of that descriptor. If a String is
declared INTERNAL, a symbol is formed to reference
WORD2 by taking all characters from the original
name (up to B) and concatenating a "' (OUTSTRING's
second word would be labeled OUTST.).

When a String is passed by reference to a procedure,
the address of WORD2 is placed in the P-stack (see
page 107). For VALUE Strings both descriptor words
are pushed onto the SP stack.

A String array is a block of 2-word String descriptors.
The array descriptor (see page 1¥6) points at the
second word of the first descriptor in the array.

Information is generated by the compiler to allow the
locations of all non-constant strings to be found for
purposes of garbage-collection and initialization , All
String variables and arrays are cleared to NULL
whenever a SAIL program is started or restarted.

APPENDICES

APPENDIX 16

PROCEDURE IMPLEMENTATION

A VERY IMPORTANT NOTE

When a procedure is entered, it places three words
of control Information on the run time (P) stack.
This “mark stack control packet” (MSCP) contains,
among other things, pointers to the control packets
for the procedure’s dynamic and static parents.
Also, register tF (register '12) is set to point at
this area. This pointer is then used to access
procedure parameters and other “in stack” objects,
such as the local variables of a recursive procedure.
Also, many of the run-time routines (including the
string garbage collector) use rF to find various bits
and pieces of vital information. Therefore, THE USER
MUST NOT HARM REGISTER ‘12. In particular, one
should not call any runtime routines, ask the compiler
to access any stacked variables, or exit any blocks
with this register changed from the value given it by
SAIL. If you wish to refer in assembly language to a
procedure parameter, or the like, the safest way is
name it, and let SAIL do the address arithmetic.
(Similarly one may use the Access construct).

Most of the remainder of this section may probably be
ignored by the occasional user of assembly language
who follows the advice we have just given. It is being
included for the benefit of those users whose use of
“hand coded” routines is sufficiently frequent (or
sufficiently hairy) that they need to know more about
the way procedures work.

STACK FRAME
Shown here is the stack frame of a recursive
procedure

rF s . : dynamic link 24343235 to MCP of
Peasrneniaieanan drrseerarrrerees of calling proc
: proc desc add: static link $4449999 to MSCP of
R R Peresand of static parent
: old value of rSP

: NOTE: local vat-i's for
P R R R R IREREE] recursive procs
rP 5 : end of local variables RS here

© szt wt of working storage : *

«c« NOTE: After entry

. to a recursive

proc rP will
point here.

If a formal parameter is a value parameter, then the
actual parameter value is kept on the stack. If a
formal parameter is a reference parameter, then the

APPENDICES

address of the actual parameter is put on the stack.
Non-own string locals (to recursive procedures) and
string value parameters are kept on the string (SP=
'16) stack. The stack frame for a non-recursive
procedure is the same except that there are no local
variables on the stack. The stack frame for a SIMPLE
procedure consists only of the parameters and the
return address.

ACCESSING THINGS ON THE STACK

SIMPLE procedures access their parameters relative to
the top-of-stack pointers SP(for strings) and P (for
everything else). Thus the the k'th (of n) string value
parameter would be accessed by

oP AC, 2xk~2%n (SP) ; (SP="16)

and the j'th (of m) “arithmetic” -- ie not value string --
parameter would be accessed by

oP AC j-mlI(P) L (P="17)

Non-SIMPLE procedures use IF (register '12) as a
base for addressing parameters and recursive locals.
Thus the jth parameter-would be accessed by

oP AC, j-m=2 (rF)

or, in the case of a string, by

MVE ACX,2(rF) ipoints at top of

sstring stack uhen
sproc was entered

oP ACY, 2xk-2%m (ACX)

Similarly, recursive locals are addressed using positive
displacements from rF.

An up-level reference to a procedure’s parent is made
by executing the instruction

HRRZ AC,1(rF) snoW AC points at

sstack frame of parent
and then using AC in the place of rF in the access
sequences above, iterating the process if need be to
get at one’s grandparent, or some more distant lexical
ancestor.

NOTE: When SAIL compiled code needs to make such
. an up-level reference it keeps track of any
Intermediate registers (called “display” registers) that
may have been loaded. Thus, if you use several up-
level references together, you only pay once for
setting up the “display”, unless some intervening
procedure call or the like should cause SAIL to forget
whatever was in its accumulators. Note here that if a
display register I1s thrown away, there is no attempt to
save its value. At some future date this may be done.
It was felt, however, that the minimal (usually zero)
gain in speed was just not worth the extra hair that
this would entail

108

SAIL USER MANUAL

ACTIONS IN THE PROLOGUE FOR NON-SIMPLE
PROCEDURES

The algorithm given here is that for a recursive
procedure being declared inside another procedure.
The examples show how it is simplified when possible.

1. Pick up proc descriptor address.
2. Push old rF onto the stack.

3. Calculate static link. (a). Must loop back
through the static links to grab it. (b). once
calculated put together with the PDA and
put it on the stack.

4. Push current rSP onto the stack.

5. Increment stack past locals & check for
overflow.

6. Zero out whatever you have to.
7. Set rF to point at the MSCP.
EXAMPLES:

1. A non-recursive entry (note: in this section only
case! where F is needed are considered.

PUSH P,rF ;SAVE DYNAM C LINK
SKIPA AC,rF
MOVE AC, 1 (AC)
HLRZ TEMP, 1 (AC)

CAIE TEMP, PPDA

:G0 UP STATIC LINK
;LOOK AT POA IN STACK
31S IT THE SAME AS PARENTS

JRST =3 H

HRL1 AC,PDA sPICK UP PROC OESC
PUSH P,AC 1SAVE STATIC LINK
PUSH P,SP

HRRZI rf,-2(P) sNEW RF

In the case that the procedure is declared in the outer
block we don't need to worry about the static link and
the prologue can look like

PUSH P, rF 3 SAVE DYNAMIC LINK
PUSH P, [XWD PDA, @) $STATIC LINK WORD
PUSH P.SP :SAVE STRING STACK

HRRZ1 rF,-2(P) sNEW F REGI STER

2. Recursive entry -- i.e one with locals in the stack.

PUSH P,rF ;SAVE OYNAM C LINK

SKIPA AC,rF

MOVE AC,1(AC)

HLRZ TEMP, (AC)

CAIE TEMP, PPDA
2

;G0 UP STATIC LINK

sLOOK AT POA IN STACK

+1S IT THE SAME AS PARENTS
:NO

JRST =2 :

HRLI AC,PDA sPICK UP PROC OESC
PUSH P.AC :SAVE STATIC LINK
PLSH P,SP

HRLZ1 TEMP,1(P)
HRR1 TEMP,2(P)
ADD P. [XWD locals, localsl :icreate space for
CAIL P.8 carith locals
<trigger pdl ov error>
SETZM -1 (TEMP)

HLT TEMP, (P}

HRLZI TEMP, 1 (SP)
HRR] TEMP. 2(SP)

ADD SP, [XWD 2% string locals,2% string locals3
CAIL SP,8 scheck for pdl ov

<cause pdl cv error>
SETZM -1 (TEMP)

BLT TEMW, (SP)

;zero out locals

izero out string locals

r— r

[—

SAIL USER MANUAL

HRRZ1 rF,- locals-3(P}

The BLT of zeros is replaced by repeated pushes of
zero if there are only a few locals. Again, the loop is
replaced by a simple push if the procedure is declared
in the outer block.

ACTIONS AT THE EPILOGUE FOR NON-SIMPLE
PROCEDURES

1. If returning a value, set it into 1 or onto
right spot in the string stack.

2. Do any deallocataions that need to be made.
4. Restore rF.
5. Roll back stack.

6. Return either via POPJ P, or by JRST
@mumble(P)

EXAMPLES:

1. No parameters.

<step 1>

<step 2>

MDVE rF, (rF)

SUB p, [XWD M+3,M+3] sM= # LOCAL VARS
POPJ P,

2. n string parameters, m other parameters, k string
locals on stack, j other locals on stack.

<step 1>

<step 2>

MVE rF, (rfF)

SUB SP, [XWD 2xk+2%n,2xk+2%n)

SUB P, [XWD jtnt3, j+m+3] 3POPS THE STACK

IRST @M+l (P)

SIMPLE procedures are similar, except that rF is never
changed.

PROCEDURE DESCRIPTORS

Procedure descriptors are used by the storage
allocation system, the interpretive caller, a planned
debugger, and various other parts of SAIL. They are

. not put out for SIMPLE procedures. The entries are
- shown as they are at the present time. No promise is

made that they will not be different tomorrow. If you
do not understand this page, do not worry too much
about it

APPENDICES

link for pd list
8: entry address
string pointer for
procedure id
type info for procedure,8
string paramsx2,, arith params+1
+ss displ,,+ as displ
lexic lev,~=local var info
display level,»=proc param stuff
18: pda,@
11: pentatend of mksemt,parent’s pda
12: pent at prdec,loc for jrst exit
13: type info for first argument,8

NS Lo e

type info for last argument,8
Ivi: byte (&)type(9)iexical-level(23)location

The type codes in the Ivi (local variable infor) block
are as follows:

type = 8 end of procedure area

type = 1 arith array

type = 2 string array

type = 3 set or list

type = 4 set array

type =5 foreach search control block

type = 6 list of all processes dependent on
this block.

type =7 context

type = 10 a cleanup to be executed

type =17 block boundary. Location gives base

Jocation of parents block’ s information.
local variable info for each block is organized as

info for var

info for var
17,lev,loc of parent block bbw

109

REFERENCES

Feldman

Frost

Moorer

Petit

Savitzky

Swinehart & Sproull

Weiher

110

REFERENCES

Feldman, J.A. and Rovner, PD. An
Algal-Based Associative Language,
Comm. ACM 12, 8 (Aug. 1969),
439-449.

J.A. Feldman, J.R. Low, DC.
Swinehart, and R.H. Taylor. Recent
Developments in SAIL. AFIPS Fall
Joint Conference, 1972, 1193-
1202

Frost, M. UUO Manual Stanford A-I
Laboratory Operating Note 55.3
(June 1973) supersedes Moorer
(below)

Moorer, J.A. Stanford A-l Project
Monitor Manual, Sailons 54 and 55

(Sep. 1969).

Petit, P. RAID Manual, Sailon 58.1,
(Feb. 197 1)

Savitzky, S.R. Son of Stopgap,
Sailon 501, (Sep. 1969) a
revision of Stopgap, Sailon 50, by
W.F. Weiher.

Swinehart, DC. and Sproull, R.F.
SAIL, SAILON 57.2 (Jan. 1971),
second of three versions of the
Sail manual.

Weiher, W.F. Loader Input Format,
Sailon 46 (Oct. 1968).

SAIL USER MANUAL

INDEX

A (AND) 23

~ (NOT) 23

o in substrings 24

o, in list REMOVEs 56

n (INTERSECTION) 65

u (UNION) 65

v (OR) 2 3

% (integer or real division) 24
& (CONCATENATION), of strings 24
&, of lists 65

-, of sets 65

/ (real divison) 2 4

<><2=# (RELATIONS) 23

?, Foreach itemvars 5 9

?, in Binding Booleans 58

?, Matching procedure formals 61
<algebraic-expression> 20
<apply-construct> 76
<arg_list_specifier> 7 6
<array_declaration> 3
<array-list> 3
<array_type> 5 1
<assign-statement> 76
<assigne> 4 5
<assignment-expression> 20
<assignment-statement> 13
<associative-statement> 55
<backtracking-statement> 29
<binding-list> 55

<block> 1
<boolean-expression> 20
<case-expression> 20
<case-statement> 13
<cause-statement> 7 2
<cleanup-declaration> 4
<code-block> 26
<command-line> 9 1
<compound-statement> 1
<cond_comp_statement> 4 5
<conditional-expression> 20
<conditional-statement> 13
<context-declaration> 29
<context-element> 29
<declaration> 3, 51
<define> 45

<derived-set> 63
<do-statement> 13
<element-list> 55

po

r——

. r— r— 1

— - r— r r— "

r-

r

SAIL USER MANUAL

<element> 55
<element>, Foreach 59
<event-statement> 7 2
<expression> 20
<for-statement> 13
<foreach_statement> 55
<go-to-statement> 13
<id-list> 3
<if_statement> 1 3
<interrogate-construct> 72
<item-expression> 63
<item_primary> 6 3
<item_type> 5 1
<itemvar_type> 5 1
<join-statement> 67
<label-declaration> 3
<leap-expression> 63
<leap-relational> 63
<leap-statement> 55
<list-expression> 63
<list-statement> 55
<macro-body> 45
<macro-call> 45
<preload_specification> 3
<procedure-call> 14
<procedure-declaration> 4, 52
<procedure-head> 4
<procedure-type> 5 2
<process-statement> 67
<ref_item_construct> 7 6
<require-specification> 4
<resume-construct> 67
<safety-statement> 14
<set-expression> 63
<set-statement> 55
<simple_formal_type> 5 2
<simple_type> 5 1
<sprout-statement> 67
<statement> 1
<substring_spec> 2 1
<suc_fail_statement> 5 5
<suspend-statement> 67
<swap-statement> 13
<synonym-declaration> 4
<terminate-statement> 67
<triple> 55
<type-qualifier> 3
<typed-item-expression> 88
<variable> 88
<while-statement> 13
ABS 25

ACCESS 27

algebraic variables 6

allocation of variables and arrays 9

ANSWER 74, 86

ANY 64

ANY, in Binding Boolean 58
ANY, in Derived Sets 58
ANY, in Erase statement 57
ANY, in Foreach 6 1

AOBJN pointer 81

APPLY 76

ARRAY-PDL 9

Array element designation 88
Arrays, allocation 9

Arrays, as parameters 7
Arrays, declaration 6

Arrays, initialization and reinitialization 9

Arrays, outer block 4, 6
Arrays, OWN 6

Arrays, PRELOADed 6
Arrays, SAFE declaration 6
Arrays, storage convention 6
ARRBLT 43

ARRINFO 4 3

ARRTRAN 43

ARRYIN 3 6

ARRYOUT 37

ASH 24

ASKNTC 75, 86

ASSIGN 76

ASSIGNC 5 o

assignment expressions 2 2

Assignment statement, semantics 14

ASSOCIATIONS 53
Associations, ERASE 5 7
Associations, implementation 54
Associations, introduction 5 1
Associations, MAKE 5 7
Associations, searching for 57
associative booleans 65
associative context 59
Associative search 57

Associative search, controling hash 58
associative search, relative speeds 61
associative searches, introduction 5 1

associative store 51, 53
Associative store, searching 57
attribute 58

Backtracking, introduction 29
BACKUP 38

BIND 58

Binding Boolean 58, 65

Binding Booleans, general considerations 58

BINDIT 6 5
BINDIT, in Binding Boolean 58

INDEX

111

INDEX

BINDIT, in Derived Sets 58

BINDIT, in Foreach 6 1

BINDIT, in Foreaches 59

BINDIT, in Matching Procedures 61

Block names 1, 96

Boolean Expression <element> 60

Boolean, declaration 6

bound 58

Bracketed Triple item 57

Bracketed Triple Item Retrieval 57

Bracketed Triple Item retrieval 58

Bracketed Triple item retrieval, general
considerat ions 5 8

Bracketed Triple Items, ERASE 57

BREAKSET 3 3

BRKERS 83

BRKMAK 83

BRKOFF 83

BUCKETS 58

BUILT-IN 49

Byte pointers, creation 43

CALL 42

CALLER 85 -

calling block 80

CASE expressions 22

CASE statement 16

CASEC 49

CAUSE 72

CAUSE, <options> 72, 103

CAUSE, user defined procedures for 74

CAUSE1 74, 86

Causing events, introduction 72

CHECK-TYPE 49

CHECKED 583, 56

Checked, formal parameters 54

CHECKED, in associative searches 58

Checked, itemvar procedures 54

Checked, type checking 65

CLEANUP 9

CLKMOD 79

CLOSE 32

CLOSN 3 2

CLOSO 32

CLRBUF 38

CODE 42

command line 91

. Comment 1

COMMENTS 8 9

compile time expressions 47
concatenation of lists 65

conditional compilation 49
Conditional Statements, ambiguity 15
Constants, arithmetic 89

112

SAIL USER MANUAL

Constants, octal 89
Constants, real 89
Constants, string 89
constructive item expressions 64
CONTEXT 29

Context elements 30
CONTINUE statement 18
Conversions, algebraic 2 1
COP 64, 85

coroutining with RESUMEs 69
CVASC 41

CVD 41

CVE 40

CVF 40

CVFIL 4 3

CVG 40

CVI 54, 83

CVISes, 84

CVLIST 8 3

CVMS 48

CVN 54, 83

cvo 41

CVOS 40

CVS 40

CVSET 83

CVSl 66, 84

CVSIX 4 1

CVSTR 41

CVXSTR 41

DATUM 52, 56, 88
DATUM, type checking 65
DDT 96

deallocation of variables and arrays 9
DECLARATION (a function) 49
DEFINE 45, 46, 48, 49
DEFPRI 6 8

DEFPSS 68

DEFQNT 68

DEFSSS 68

DEL-PNAME 66, 84
DELETE 55, 56
delimited-anything 49
delimited-expr 49
delimited strings 47
Delimiters 46
DELIMITERS 46
DELIMITERS, NULL 46
Delimiters, null 46
DEPENDENTS 68
Derived sets 65

Derived Sets, general considerations 58
DFR1IN 8 1

DFRINT 8 o

r

— — r— r—

—

—

—

SAIL USER MANUAL

Dl buffer 8 1

DIV 24

DO statement 16

DONE statement 17

DONTSAVE 72, 103

DPB 42

DRYROT 9 5

ENTER 33

ENTRY specification 11

EQU 41

EQV 23

ERASE 57

ERASE, in a Foreach 61
ERROR-MODES 95

error messages 95

EVALDEFINE 5 0

EVENT-TYPE 73, 104

event notices 72

Event type items, datums of 73

event types 72

Events, introduction 7 2

EXTERNAL declaration 4, 11
EXTERNAL procedures 8, 10

FAIL 55, 56, 61, 69

FALSE, definition 8 9

FILEINFO 4 3

FIRST 57, 84

FOR statement 15

FORC 49

FOREACH 5 5

Foreach <elements, Boolean Expression 60
Foreach <element>, List membership 59
Foreach <element>, Retrieval Triple 60
Foreach <element>, Set membership 59
Foreach <element>s 5 9

Foreach itemvars 59

Foreach searches, relative speeds 61
FOREACH, execution of 59

FOREACH, general considerations 58
FOREACH, increase speed of 58
FOREACH, main discussion of 58
Foreach, Matching Procedure <element> 6 1
Foreach, satisfiers 59

FORGET 29, 30

FORLC 49

formal parameters, Leap 54

formals 7

FORTRAN procedures 8, 11, 19
FORTRAN, actual parameters 9
FORWARD declaration 4

FORWARD procedures 7

generatton of symbols using macros 47
Gensym 47

GETCHAN 33
GETFORMAT 40

Go To Statements, restrictions 15
GO TO, into a Foreach 59

IBP 42
identifiers 89
IDPB 4 2

IF expressions 22
IF statement 14
IFC 49

IFCR 4 9

ILDB 4 2

ILL MEM REF 90
ILLEGAL UUO 90
IN-CONTEXT 43
INCHRS 3 8
INCHRW 3 8
INCHSL 3 8
INCHWL 3 8
initialization 9
INITIALIZATION 10
inner block 1
INPUT 35

INSTR 3 8
INSTRL 3 8
INSTRS 3 8
INT._APR 102
INT.._INX 102
integer constants 89
Integers, range 5

INTERNAL declaration 4, 11

INTERNAL procedures 8
INTERROGATE 73

INTERROGATE, <Opt jons> 73, 103
INTERROGATE, set form of 73
INTERROGATE, user defined procedures for 74

Interrupt codes 102

Interrupts, complicated deferred 80

INTIN 3 7
INTMAP 8 0
INTPRO 8 1
INTRPT 70, 79
INTSCAN 3 8
INTSET 8 o
INTTBL 8 1

IRUN 70, 103
ITEM 52

item booleans 65

Iltem, <typed-item-expression> 88
ltems & ltemvars, distinction between 53

Items, ANY 64
Iltems, BINDIT 65

ltems, Bracketed Triple 57

INDEX

113

INDEX

items, creation of 52

ltems, Datums of 52

Items, declared 52

ltems, DELETE 56

ltems, implementation 54
Items, internal & external 52
ltems, internal &external 54
Items, introduct ion 5 1
Items, NEW 64

ltems, Pnames 66

Items, props of 66

Items, scope 52

Items, type checking 65
Items, type of 52

ltems, with array datums 52
ITEMVAR 5 3

ltemvars & ltems, distinction between 53
ltemvars, CHECKED 53
ltemvars, implementation 54
ltemvars, initialization 53
Itemvars, scope 53
itemvars, type checking 53, 56
Itemvars, types of 53

JOIN 70

KILLME 70, 103

Label use 5

Labels, as actual parameters 9
Labels, restrictions 15
LAND 23

LDB 42

leap booleans 65

Leap, introduct ion 5 1
LENGTH 41, 85

LET 9

letters, legal Sail letters 89
LIBRARY 10

Library, runtime 31

LINOUT 3 6

LIST 53

list booleans 6 5

list element designator 88
List element designators 64
list expressions 65

List membership <element> 59
list, sublists 65

Lists, automatic conversion 56
. lists, concatenation 65

* lists, initialization 65

Lists, PUT 56

Lists, REMOVE 56

LISTX 8 4

LOAD-MODULE 10
LOCATION 25

SAIL USER MANUAL

LODED 38

Logical expressions 23
LOOKUP 33

loop block 17

LOP 41, 64, 84

LOR 23

LPARRAY 49

LSH 24

Macro bodies 47

Macro bodies, concatenation in 48
macro body delimiters 46
macro declarations 46
Macro declarations, scope 46
macro parameter delimiters 46
Macros with parameters 48
Macros without parameters 46
MAKE 55, 57

MAKE, in a Foreach 61
Matching Procedures 6 1
Matching procedures, as processes 69
Matching Procedures, sharing memory 62
MAX 23

MEMORY 25

MESSAGE 50

MIN 23

MKEVTT 72, 85

MOD 24

MTAPE 37

MULTIN 7 5

MYPROC 85

NEEDNEXT 1 7

NEW 63, 64

NEW-ITEMS 64
NEW-PNAME 66, 84

NEXT statement 17

NIL 65

No one to run. 70

NOJOY 7 4

NOMAC 50

NOPOLL 7 o

NOTCQ 74

notice queue 72

NOTNOW 70, 103
NOW-SAFE 19
NOW-UNSAFE 19
NULL-CONTEXT 30

NULL DELIMITERS 46

null delimiters mode 46
NULL, definition 89

object 58

OPEN 31

operator precedence 22
OUT 36

-

r —

r~—

SAIL USER MANUAL

OUTCHR 38

outer block 1

OUTSTR 38

OWN 5

parametric procedures 8

PHI 65

Pnames 66

PNAMES 66

POINT 43

POLL 71

POLLING-INTERVAL 7 1

Polling points 70

PRELOADed arrays 6

Printnames of items 66
PRIORITY(X) 68, 103

PRISET 8 5

Procedure body, emptiness 5
Procedure Calls, actual parameters 18
Procedure Calls, semant ics 18
Procedures, as actual parameters 18
Procedures, assembly language 11
Procedures, declaration 7
Procedures, defaults in_ declarations 8
procedures, Leap 54

Procedures, parametric 8
Procedures, restrictions 9
Procedures, restrictions on formal parameters 7
Procedures, separately compiled 10
process item 67

process procedure 6 7

Process procedures, Matching 69
Process procedures, recursive 69
Processes, control of scheduling 70
processes, creation of 6 7
Processes, dependency of 68
Processes, inside recursive procedures 68
PROCESSES, introduct ion 67
Processes, resumption of 69
Processes, sharable memory 69
Processes, status of 67

Processes, suspension of 69
Processes, termination of 69
Program name, for DDT 1

PROPS 56, 66, 88
PROTECT-ACS 26
Pseudo-teletype functions 38
PSTACK(X) 68, 103

PSTATUS 86

PTY... 38

PUT 55, 56

QUANTUM(X) 68, 103

question itemvars 6 1
QUICK-CODE 26

INDEX

RAID 96

ready 67

READYME 70, 103

real constants 89

REALIN 3 7

Reals, range 5

REALSCAN 3 8

RECURSIVE declaration 4

RECURSIVE procedures 7

REDEFINE 47

Reentering programs 94

REF_ITEM 7 6

REFERENCE 7, 8, 18

Reference items 76

RELEASE 33

REMEMBER 29, 30

REMOVE 55, 56

REMOVE, in Foreach 60

RENAME 33

REPLACE-DELIMITERS 46

REQUIRE 9

REQUIRE - indexed by last word of the require
statement

REQUIREs, list of 4

RESCHEDULE 73, 103

rescheduling of processes 70

RESERVED 49

Restarting programs 94

RESTORE 29, 30

RESUME 69

RESUME, <options> 69, 103

RESUME, <return item> 69

RETAIN 73, 103

retrieval item expression 65

Retrieval Triple <element> 55, 60

RETURN 24

RETURN statement 17

ROT 24

RPG commands 9 1

RUNME 68, 103

running 67

SAFE declaration 4

SAMEIV 8 5

satisfier group 59

SAY-WHICH 73, 103

SCAN 36

SCHEDULE-ON-CLOCK-INTERRUPTS 79

scheduling of processes 70

scope, of variables 5

SECOND 57, 84

SEGMENT-FILE 10

SEGMENT-NAME 10

SET 53

115

INDEX

set booleans 6 5

Set expressions 65

Set membership <element> 59
SETBREAK 3 5

SETCP 74, 86

SETFORMAT 40

SETIP 74, 86

Sets, automatic coercion 56
Sets, Derived Sets 65

Sets, initialization 65

Sets, PUT 56

Sets, REMOVE 56

SHORT 21, 98

SIMPLE declaration 4

simple expressions 22
SIMPLE procedures 8
SOURCE-FILE 10, 50
SPROUT 67

SPROUT, <options> 68, 103
START-CODE 26
START-CODE, calling procedures from 28
STDBRK 35

storage reallocation 94
STRING-PDL 9 -
STRING-SPACE 9

String constant, as comment. 1
string constants 89

String descriptors 107
String, declaration 6
STRINGSTACK(X) 68, 103
Substrings 2 4

SUCCEED 55, 56, 61, 69
SUSPEND 69

suspended 6 7

SUSPHM 68, 103

SUSPME 68, 103

Swap statement 14

switches, in command lines 92
symbols, automatic generation of 47
SY STEM-PDL 9

TELLALL 72, 103
TERMINATE 69

terminated 6 7

THIRD 57, 84

time sharing with processes 79
Triple, Binding Booiean 58
TRIPLES 53

" Triples, introduction 51

TRUE, definition 89
TTYIN 3 8
TTYINL 3 8

TTYINS 3 8
type checking, itemvars 53

116

type conversions, algebraic 2 1

typed-item-expression 88
TYPEIT 8 3

unbound 58
UNSTACK-DELIMITERS 46
URSCHD 70

USER1 74

USER2 74

USERCON 4 2
USERERR 4 2

USETI3 7

USETO 3 7

VALUE 7, 8, 18

value 58

variables 88

Variables, allocation 9
variables, initialization 9
variables, scope 5
VERSION 10

WAIT 73, 103

wait queue 72

WAITQ 7 4

WHILE statement 16
WHILEC 4 9

WORDIN 3 6
WORDOUT 3 6

XOR 23

SAIL USER MANUAL

