
Vy / y)
. : ’ 1 4 GARE SAW IN. . Fa i$ had oh Ga § * Ca Ii TE D: i TEra OR SATE A HL :

jl . Cle Nl FRERTUIE E SERN
1 Ih SrSh Set I OIE SEEN ERE

: \ TRA CBA

* ’ CTR Ny BEER ES se’ ; Tye PeiLo : ; \ Ten BL Mahar, i ES

. ; J ne 3 Sr Eg: : i p Lo BEEESIER Saali BEE 4 4 Caer ‘ Sv y Siehe

: - ; SCARE IE SVS
So Tee Cpr me y ! oe a a wf wa Tend

oo y BArs TARE L ’ . . a ES J } LEE Tes
: La Ez yn i Far ; LR SI A) ’ % N &, . \ 8 en yer

Nt SOT : . ! 2 DI J DEETEE Sip hy re ad 4 N t 3 ; PER ANRt Co Sai PRET SEI |Ena4 29 CL A EE pa ARAN : IL EVROY A : Ce } 6. 3 NETL PRLSECAE avis oi pe J } B 3 : 2 way TREY £laaSe a 3CRE ge, : " v 3 3 TY OAT JERRFe ein . T . : i Ag CRT TE Ahe Ain F pS CLL x . ; 3 a. RENEE Sa Sty Li
En Eaabn EA ‘ aE Sia : - - RESET AN ORCA Bo sp ERI E 3) E : § k ho: TNE 5 Ng RETGNLal Ll PR ET } : Ee Cd t ; BREE. hen Wel vv
bul eg a on - NnNE a | oe " vo : ; 1 Roee okSRT IN aSR eGos i H _ L NK) NEE UE.MeeraicGe RE 0s SP ! 3 USI ee
NGS Fh SEE a ? PE eeE cE HE Gilg ot i I nie Rae fl Le . FRE TH

TRA Ty E ae. Fhr h . esVi - EE * |) ’ * B Lo : EE PBHa #0£
AY TsGi Le vpby 3 fr . et NaSpay ptr : re he pe I asoe Mr aa } Be mat

ST Ry ta, Se BE Er 3 ‘ : 3 . Vio
Wren hn Hg : : - . LIEEEE ’ 5 . . 5. TEeee SI : Deng . . : : SL Fp Cen Be

SN . on . Eo atRE . Pe a TREShed RR I ' «or : ’ 9 SON CA
Ae NSCo A SN » we hig
pray CREA = $0

ot Rot } i ETA PRE 3 t : F " a EB ut iY

SE : - TE

SR 4 4 agi . 4 RY ns. - FR SR eS : SR ey
™ra }] ar di oR R < FN 0SI 1
wy BE ¥ ; , # Pra : RIE CE
. fe. oa : Rai RL E: RR I -4 17 - - Le ‘ : sone wet CR gt feFESEEL + Siig oF 3 ew i apis ST i . Re ORREI J EEELAL R g Fale oo 3 |p ERY [iE . nS: er Tw iw
= Stesis wg pAbr (Fh, Taha ee ET oy a CB . PEAE SI EY§ enTRIS BRaR wd 0 WR PRGIG5 = ME : : ail . \ fat NE . 1}RI Koy 47 RAY Eb EE Cnn NY Re EE ’ : aio toe i : | oRSREA STBk wn Ma Ea 3 g reLA i : a A .

A SON FrYoo fic pat sa!Cab Nnhs TF . -_ . liSani Ki wo . § ; ¥ . .REE Cy 6 Zain Ese nr ah he 3 FN . pon eR IE LI ¥ L Cot
SEE E. i: A A VS, a WH EA ir x 5 CY BSE Sk ST ma SEPERATE TO TRE aN Lid - y x SSE - EY <JON EC a ant BOEEL ee TY 5 Fos gLGr EAE ANE EESPRR Cn Ee EE - be 3 hl ’ Cle NRT A
so , i a eI Rh BS Lr il to o BdeI CAR * BERL :REiBee F TAl Ho hghk ® oR ESS boy Sgi4 TE ASTN SUARLCTE el Ag a Ca WR i - »
REE hE ay e E Hak # Ror Re - pr Roy ESNLETS WE Agnes Pig < Ric RR egFOR It EO Ca i BE Soop REL Rl CARR Wy ER ~ a EAR SAE A SL SO ¥ . i. RT WE -- FTRe Bo AFSL RRR pe RTE i: ahi, Sy ii] BARTER FOREST aHR «SH 8 Lae ed. £-
s Arik 2 oF SY ge TL . ge Pe BA 5 & °F TakPES RE Te BET PRE 3 - &. EERE ~ hg = Whe olof AE gov. * Et hi X a wo “ 3 Fa Chee ae i ~ or . yb LE . LL > . woSE Me 54 go ~ a * Tf EY SA a Satie BRET ERE C3 ond BARES AL. ao iE AERCLE Pie28d i a & It - ’ Ge Siok ;] “ay » “a hay ENE : %ea Aa,i Ps Ee ed 3 TU $y - oof ’ y
WEN PLcE Lo SN: : I By ee. al TN . Rsfo yes%, RCSee Se OC ap PVE gE § 5 . ;
8%.” § aT a cit Spat gL ail . SO. a adi ie CREO ge Hri 3 AD geNe, Sag Rees © Teak Si Ad J TEES Se I . *)

. 3 i ae 3 % aI A A Sa oh ESC SLANE Ly Lk XT a} Chara ge 8 BR PRET + Eo : . LL heCEE AW AEE TA EE SC ET RELLe Te et SE MEsere RE RCE EE >
eT Fre 3 I om Gen mg i EE GA eh ve PEs Hay Fy AENky LE RYME LTH. eh 2H i LE = - 3 wir PE FWo frais ad gE Yo : . Le ERE 0 Rui I © ania NET™ 5 sw ir ae | gw Aa :- : Fr TASBEE ANERNG PR \Sa a |
LC PAIR 5 eg N g C8 = - eS SERA 3 PUEVEl i 3hn * PTR gh RE li =e BN by HE : we Rg Ww

fl i ans El Cad

| STANFORD ARTIFICIAL INTELLIGENCE LABORATORY JULY 1973MEMO AIM-204

COMPUTER SCIENCE DEPARTMENT

REPORT STAN-CS-73-373

i SAIL USER MANUAL
/ edited by

—

Kurt A. VanLehn

. ABSTRACT

SAIL is a high-level programming language for the PDP-10 computer. It includes an

~~ extended ALGOL 60 compiler and a companion set of execution-time routines. In
addition to ALGOL, the language features: (1) flexible linking to hand-coded machine

language algorithms, (2) complete access to the PDP-10 I/O facilities, (3) a complete
- system of compile-time arithmetic and logic as well as a flexible macro system, (4) user

modifiable error handling, (5) backtracking, and (6) interrupt facilities. Furthermore, a

subset of the SAIL language, called LEAP, provides facilities for (1) sets and lists, (2) an

| associative data structure, (3) independent processes, and (4) procedure variables.
The LEAP subset of SAIL is an extension of the LEAP language, which was designed by
J. Feldman and P. Rovner, and implemented on Lincoln Laboratory’s TX-2 (see [Feldman
& Rovner]). The extensions to LEAP are partially described in “Recent Developments

Lo in SAIL” (see [Feldman]).

This manual describes the SAIL language and the execution-time routines for the
typical SAIL user: a non-novice programmer with some knowledge of ALGOL. It lies

— somewhere between being a tutorial and a reference manual.

This manual was supported by the Advanced Research Projects Agency of the Office of the Secretary of Defense

under Contract No. SD183 (order number 457), National Institute of Mental Health Contract No. PHS MH 06645-

g 12, and National Science Foundation Contract No. GJ-776.
The views and conclusions contained in this document are those of the authors and should not be interpreted as

necessarily representing the official policies, either expressed or implied, of any of the funding agencies.

i We would like to thank Bernard A. Goldhirsh and the Institute For the Advancement of Sailing for their kind
permission t0 use the cover design of the June 1973 issue of SAIL magazine.

| Reproduced in the USA. Available from the National Technical Information Service, Springfield, Virginia 22151.

—.

I

——A

mr

| SAIL USER MANUAL PREFACE
—

PREFACE 1. The procedure implementation was somewhat
changed. This change should not adversely

[affect any programs that do not useSTART-CODE or link to assembly language

HISTORY OF THE LANGUAGE routines. However, for efficiency the user may

The GOGOL Ill compiler, developed principally by Dan want to consider declaring some of his smaller

[Swinehart at the Stanford Artificial Intelligence Project, ~ procedures SIMPLE. The new implementationwas the basis for the non-LEAP portions of SAIL. required that another register (12) b e
Robert Sproull joined Swinehart in incorporating the dedicated to SAIL’s exclusive use. Programs

features of the LEAP language, developed by J. that modify this register do so at their utmost

| Feldman and P. Rovner on the Lincoln Laboratory’s TX- peril.
2, into SAIL. The first version of the language was

released in November, 1969. Since then, the 2. Non-own sets are deallocated when the block

. language has been maintained, expanded, and improved in which they are declared is exited.
: [by many people. Foremost amoung these are Russell

Taylor, Jim Low, and Hanan Samet. They were 3. The storage management system for arrays
responsible for the introduction into the language of has been modified. Again, this change can

processes, procedure variables, interrupts, contexts, only affect programs that allocate arrays using

[matching procedures, the new macro system, and many START-CODE.
other features.

WARNING: This list is primarily intended as a general

USING THIS MANUAL guide to the most outstanding incompatibilities, and

For the first reading, a light skim of sections 1 should not be construed as being complete. Users
through 4 followed by a careful perusal of subsection are strongly urged to read over the manual, since

19.1 should be adequate to familiarize the new user doing so will introduce them to the new features

g with the differences between ALGOL and SAIL and of the language, some of which are quite useful, asallow him to start writing programs in SAIL. The other well as informing them of any subtle changes in

sections of this manual are relatively self contained, the old semantics. In any event the experience at
and can be read when one wants to know about the Stanford was that conversion of programs proved

features they describe. The exceptions to this rule to be surprisingly easy. The only real holdouts were
L are sections 10, 11, and 12. These describe the a couple of giants that made heavy and subtle use of

basics of the LEAP and are essential for understanding START-CODE blocks and assembly language routines.
of the following sections. Much of the implementation

i information contained in older versions of this manual UNIMPLEMENTED CONSTRUCTShas been moved to the appendices and a forthcoming The following items are described in the manual as if

implementation manual. they existed. As the manual goes to press, they are

{ not implemented. The are listed in the probable order

L An attempt has been made to keep forward references of their implementation.to a minimum. In other words, if the manual is freely

using concepts unfamiliar to you, they are probably 1. NEW (<context-variable>). Creates a new item
‘ defined in an earlier section. However, the definitions which has a datum that is a context.

8 i of some common concepts such as “variable” and
“identifier” have been left until section 19. 2. Using a <context-variable> instead of a list of

variables in any of the REMEMBER, FORGET or

CHANGES IN THE LANGUAGE RESTORE statements.

. One of the design goals for the current
. Implementation of SAIL was to retain, as far as 3. Using o in the expression n of REMOVE n FROM

possible, compatibility with previous versions. We list.

\ have been fairly successful in retaining source

language compatibility, but not completely 4. ANYeANY=ANY searches in Leap. That is, any
— successful, since other design considerations search where no constraints at all are made on

frequently proved to be overriding. Most of these the triple returned.

except ions occur with constructs that, while

L never explicitly illegal, were never quite “legal” 5. CHECKED itemvars. The dynamic comparison of
either. Essent ially, this means that programs which the datum type of an item to the datum type of
contain “hacks” may or may not be able to run the CHECKED itemvar that the item is being

| unchanged For Instance, assignment of an integer to assigned to. Currently, for example, if you assign
L the datum of a set item will cause horrible things to an item with an integer datum to an itemvar that

happen when the item is deleted. One should consult was declared a string itemvar, no check is

the appropriate sections of this manual, for detailed performed. It is the user's responsibility to see
information. Other notable incompatibilities include:

i

PREFACE SAIL USER MANUAL

that the datum is not subsequently not accessed,

for if it is, it will be treated as a string,

[|S—

SAIL USER MANUAL TABLE OF CONTENTS

L
TABLE OF CONTENTS 8 EXECUTION TIME ROUTINES

| 1 TYPE CONVERSION ROUTINES 402 STRING MANIPULATION ROUTINES 41

SECTION PAGE 3 LIBERATION-FROM-SAIL ROUTINES 41

4 BYTE MANIPULATION ROUTINES 42

| 5 OTHER USEFUL ROUTINES 43
1 PROGRAMS AND BLOCKS

9 MACROS AND CONDITIONAL COMPILATION

| 1 SYNTAX 1
— 2 SEMANTICS 1 1 SYNTAX 45

2 DELIMITERS 46

. 3 MACROS 46

i. 2 ALGOL DECLARATIONS 4 MACROS WITH PARAMETERS 48
5 CONDITIONAL COMPILATION 49

1 SYNTAX 3 6 TYPE DETERMINATION AT COMPILE TIME

2 RESTRICTIONS 4 49

L 3 EXAMPLES 5 7 MISCELANEQUS FEATURES 50
4 SEMANTICS oe

5 SEPARATELY COMPILED PROCEDURES 10

a l. 0 LEAP DATA TYPES
3 ALGOL STATEMENTS 1 INTRODUCTION 51

2 SYNTAX 51

| 1 SYNTAX 13 3 SEMANTICS 52
i. 2 SEMANTICS 14

11 LEAP STATEMENTS

i 4 ALGOL EXPRESSIONS 1 SYNTAX 55

1 SYNTAX 20 2 RESTRICTIONS 56

2 TYPE CONVERSION 21 3 SEMANTICS 56

L 3 SEMANTICS 22 4 SEARCHING THE ASSOCIATIVE STORE 57

5 ASSEMBLY LANGUAGE STATEMENTS 12 LEAP EXPRESSIONS

|

- 1 SYNTAX 26 1 SYNTAX 63
2 SEMANTICS 26 2 SEMANTICS 64

L 6 BACKTRACKING 13 PROCESSES
| 1 INTRODUCTION 29 1 INTRODUCTION 67

1 2 SYNTAX 29 2 SYNTAX 67
3 SEMANTICS 29 3 SEMANTICS 67

{

| 7 INPUT/OUTPUT ROUTINES 14 EVENTS
{ EXECUTION TIME ROUTINES IN GENERAL 1 SYNTAX 72

| 31 2 INTRODUCTION 72i. 2 1/0 CHANNELS AND FILES 31 3 SAIL DEFINED CAUSE AND INTERROGATE
3 BREAK CHARACTERS 33 72

4 1/0 ROUTINES 35 4 USER DEFINED CAUSE AND INTERROGATE

5 TELETYPE AND PSEUDO-TELETYPE 73

— ROUTINES 38

TABLE OF CONTENTS SAIL USER MANUAL

15 PROCEDURE VARIABLES A APPENDICES

1 SYNTAX 76 TYPE CONVERSION 98

2 SEMANTICS 76 2 SAIL RESERVED WORDS 99

3 SAIL PRE-DECLARED IDENTIFIERS 99

4 CHARACTER-IDENTIFIER EQUIVALENCES

16 INTERRUPTS 99

5 PARAMETERS TO THE OPEN FUNCTION

1 INTRODUCTION 78 99

2 IMMEDIATE INTERRUPTS 78 6 BREAKSET MODES 100

3 DEFERRED INTERRUPTS 80 / MTAPE COMMANDS 100

4 MORE COMPLICATED DEFERRED 3 COMPILE SWITCHES 100

INTERRUPTS 80 9 VALID RESPONSES TO ERROR MESSAGES
100

10 ERROR CODES 101

17 LEAP AND PROCESS RUNTIMES 11 INDICES FOR INTERRUPTS 102

12 BIT NAMES FOR PROCESS CONSTRUCTS

{ TYPES AND TYPE CONVERSION 83 103

2 MAKE AND ERASE BREAKPOINTS 83 13 STATEMENT COUNTER SYSTEM 104

3 PNAME RUNTIMES 8 4 14 ARRAY IMPLEMENTATION 106

4 OTHER USEFUL RUNTIMES 8 4 15 STRING IMPLEMENTATION 107

5 GENERAL PROCESS RUNTIMES 85 16 PROCEDURE IMPLEMENTATION 107

6 RUNTIMES FOR USER CAUSE AND

INTERROGATE PROCEDURES 86 R REFERENCES 110

18 BASIC CONSTRUCTS | INDEX 110

1 SYNTAX 88

2 SEMANTICS 88

19 USING SAIL

1 FOR BEGINNERS 90

2 THE COMPLETE USE OF SAIL 90

3 COMPILING SAIL PROGRAMS 90

4 LOADING SAIL PROGRAMS 93

5 STARTING SAIL PROGRAMS 93

6 STORAGE REALLOCATION WITH THE

REENTER COMMAND 94

20 DEBUGGING SAIL PROGRAMS

1 ERROR MESSAGES 95

2 DEBUGGING 96

[SAIL USER MANUAL PROGRAMS AND BLOCKS
SECTION 1 = <backtracking-statement>

::= <code-block>

L PROGRAMS AND BLOCKS n= <leap-statement>= <process-statement>

= <event-statement>

n= <string-constant> <statement>

L w= <label-identifier> : <statement>
m= <empty>

| 1.1 - SYNTAX
1.2 - SEMANTICS

i <program>

[i= <block> DECLARATIONS
SAIL programs are organized in the traditional block

structure of ALGOL-60.

| <block> Declarations serve to define the data types and
i= <block-head> ; <compound-tail> dimensions of simple and subscripted (array) variables

(arithmetic variables, strings, sets, and items). They

are also used to describe procedures (subroutines) and

| <block-head> name program labels.
= BEGIN <declaration>

= BEGIN <block-name> <declaration> Any identifier referred to in a program must be

L += <block-head> ; <declaration> described in some declaration. An identifier may onlybe referenced by statements within the scope (see

page D) of its declaration.
<compound-tail>

["= <Statement> END STATEMENTSw= <statement> END <block-name> As in ALGOL, the statement is the fundamental unit of

"= <statement> ; <compound-tail> operation in the SAIL language. Since a statement
within a block or compound statement may itself be a

| block or compound statement, the concept of
statement must be understood recursively.

<compound-statement>

= BEGIN <compound-tail> The block representing the program is known as the

| i= BEGIN <block-name> <compound-tail> “outer block”. All blocks internal to this one will be
referred to as “inner blocks”.

. BLOCK NAMES

| The block name construct is used to describe the
<statement> block structure of a SAIL program to a symbolic

i= <block> debugging routine (see page 96). The name of the
i= <compound-statement> outer block becomes the title of the binary output file

| = <require_specificat ion> (not necesarily the file name). In addition, if a block
. l= <assignment> name is used following an END, the compiler compares

= <swap-statement> it with the block name which followed the

= <conditional_statement> corresponding BEGIN. A mismatch is reported to the

[i= <If-statement> user as evidence of a missing (extra) BEGIN or END
= <go-to-statement> somewhere.

= <for-statement>

= <while-statement> The <string-constant> <statement> construct is
i= <do-statement> equivalent in action to the <statement> alone; that is,
“= <case-statement> the string constant serves only as a comment.
= <return-statement>

; i= <done-statement> EXAMPLES
z= <next-statement>

== <continue_statement>

= <procedure-statement>

| = <safety-statement>

PROGRAMS AND BLOCKS SAIL USER MANUAL

Given:

S is a statement,

Scis a Compound Statement,

0 is a Declaration,
B is a Block.

Then:

(Sc) BEGINS; S;S;..,;S END

(Sc) BEGIN “SORT” §;S;...;S END "SORT"

(B) BEGIN O;D;D;...;S;S;S;...;S END

(B) BEGIN “ENTER NEW INFO” B;D;. . .;

s;..+ ;SEND

are syntactically valid SAIL constructs.

| SAIL USER MANUAL ALGOL DECLARATIONS
oe.

SECTION 2 n= <simple-type> <id_list>
:= <type-qualifier> <type-declaration>

ALGOL DECLARATIONS

_ <array-declaration>
= <simple-type> ARRAY <array-list>

= <type-qualifier> <array declaration>

: 2.1 - SYNTAX
—

<array-list>

oo l= <array-segment>

~— <id_list> n= <array-list> , <array-segment>
= <ident if ler>

i= <identifier> , <id-list>

<array-segment>

— == <id_list>[<bound_pair_list> 1

i <bound-pair-list><declaration> = <bound-pair>
i= <type-declaration> = <bound-pair-list> , <bound_pair>
= <array-declaration>

L = <preload_specification>.:= <label-declaration> <bound-pair> |
“= <procedure-declaration> = <lower-bound> <upper-bound>
m= <synonym-declaration>

; i= <require-specification>
— = <context-declaration> <lower-bounds

== <leap-declaration> ::= <algebraic-expression>
.:.= <protect-acs declaration>

i= <cleanup-declaration>
—

<upper-bound>

= <algebraic-expression>

— <simple-type>
== REAL

; += INTEGER <preload_specification>
+= BOOLEAN = PRELOAD_WITH <preload_list>
== STRING

<preload_list>
L = <preload_element>

. <type-qualifier> = <preload_list> , <preload element>
= EXTERNAL

i= INTERNAL

— i= SAFE <preload_element>
= FORWARD = <expression>
= RECURSIVE = [expression] <expression>
== FORTRAN

- n= SIMPLE

= OWN

= SHORT

— <label-declaration>

w= LABEL <id_list>

<type-declaration>
he

ALGOL DECLARATIONS SAIL USER MANUAL

<procedure_declaration> <require_specification>
::= PROCEDURE «ident if ler> <procedure-head> = REQUIRE <require-list>

<procedure-body>

=<simple_type> PROCEDURE <identifier>

<procedure_head> <procedure-body> <require-list>
--7vpe_qualifier> <procedure-declaration> n= <require-element>

= <require-list> , <require-element>

<procedure-head> <require-element>

= <empty> = <constant> <require_spec>
= (<formal_param_decl>) = <procedure-name> INITIALIZATION

<procedure-body>

= <empty> <reguire_spec>
=, <Statement> — STRING-SPACE

= SY STEM-PDL

= STRING-PDL

<formal_param_decl> = ARRAY-PDL
== <formal_parameter_list> = NEW-ITEMS
= <formal-parameter-list> ; = PNAMES

<formal_param_dech> = LOAD-MODULE
::= LIBRARY

= SOURCE-FILE

<formal_parameter_list> — SEGMENT-FILE
= <formal-type> <id_list> += SEGMENT-NAME

::= POLLING-POINTS

v= VERSION

<formal-type> :== ERROR-MODES

= <simple_formal_type> ~ DELIMITERS
w= REFERENCE <simple-formal-type> -— BUCKETS

z= VALUE <simple_formal_type> = MESSAGE

<simple-formal-type>

= <simple_type>

:=<simple_type> ARRAY 2.2- RESTRICTIONS
i= <simple_type> PROCEDURE

For simplicity, the type-qualifiers are listed in Only one

syntactic class. Although their uses are always valid

<synonym-declaration> when placed according to the above syntax, most of
i= LET <synonym-list> them only have meaning when applied to particular

subsets of these productions:

<synonym_list> SAFE is only meaningful in array
= <synonym> declarations.

== <synonym-list> , <synonym>

INTERNAL/EXTERNAL have no meaning in

formal parameter declarations.
<synonym>

= <identifler> = <reserved-word> SIMPLE, FORWARD, RECURSIVE, and
FORTRAN have meaning only in procedure

type specifications.

<cleanup-declaration> | SHORT has meaning only when applied 1c
= CLEANUP <procedure_ident if ier_list> INTEGER or REAL entities.

For array declarations in the outer block substitute

SAIL USER MANUAL ALGOL DECLARATIONS

<constant-expression> for <algebraic-expression> in 2.4 - SEMANTICS

the productions for <lower-bound> and <upper-bounds>.

A label must be declared in the Innermost block in SCOPE OF DECLARATIONS

which the statement being labeled appears (more Every block automatically introduces a new level of

information, page 15). The syntax for procedure nomenclature. Any identifier declared in a block’s head
declarations requires semantic embellishment (see page is said to be LOCAL to that block. This means that:

7) in order to make total sense. In particular, a

procedure body may be empty only in a restricted a. The entity represented by this identifier

class of declarations. inside the block has no existence outside the

i block.

b. Any entity represented by the same

2.3- EXAMPLES identifier outside the block is completely

— inaccessible (unless it has been passed as a

parameter) Inside the block.
Let LLKLXY, and P be identifiers, S a statement:

L An identifier occurring within an inner block and not(<type_declaration>) declared within that block will be nonlocal (global) to it;
INTEGER I,J, that is, the identifier will represent the same entity
EXTERNAL REAL X,Y CL _ :

‘ INTERNAL STRING K inside the block and in the block or blocks within which

i it is nested, up to and including the level in which the(<array_declaration>} ident if ier is declared.
INTEGER ARRAY X[8:19,0:18]
REAL ARRAY Y[X:P(L}]; Comment illegal

' in outer block The Scope of an entity is the set of blocks in which

| STRING ARRAY I[@:F BIG THEN 30 ELSE 3] the entity is represented, using the above rules, by its
identifier. An entity may not be referenced by any

(<label-declaration>)

LABEL LXY statement outside its scope.

L (proceduredeclaration) TYPE QUALIFIERS
PROCEDURE PUNTEGERI, J; An array, variable, or procedure declared OWN will

REFERENCE REAL X:; REAL Y);S behave as if it were declared globally to the current

INTEGER PROCEDUREP (REAL PROCEDURE L; procedure: the OWN type qualifier on a variable, etc.

STRING |,J; INTEGER ARRAY K);§ declared in a block not nested inside a procedure
EXTERNAL PROCEDURE P(REAL X) : :
FORWARD INTEGER PROCEDURE X(INTEGERD declaration will have no effect. This means that in a
FORTRAN REAL PROCEDURE SIN second call of a procedure with OWN locals (or a

| recursive call) the OWN variables will not be
Note that these sample declarations are all given reinitialized they will have the values that they had
without the semicolons which would normally separate when the first call of the procedure finished.
them from the surrounding declarations and statements. Furthermore, OWN arrays, etc. will not be deallocated

| | . Here is a sample block to bring it all together (again, upon exiting the procedure they are declared in.
let S be any statement, D any declaration, and other

identf ers as above): INTERNAL and EXTERNAL procedures, variables, etc.
let one link programs that are loaded together, but

BEGIN "SAMPLE BLOCK were compiled separately. See page 1@ for more
INTEGER 1,J,K; b b y- bag

Lo REAL X,Y; information.
STRING A;

pa OCEDURE P(REFERENCE REAL X); RECURSIVE, SHORT, FORTRAN, FORWARD, SIMPLE,
D:D: D:.. 3S... :S and SAFE will be explained when the data types they

L END "P"; modify are discussed.

REAL ARRAY DIPHTHONGS[0:19,1:1087; NUMERIC DECLARATIONS

S:S;S!S Identifiers which appear in type declarations with
— END “SAMPLE BLOCK” types REAL or INTEGER can subsequently be used to

refer to numeric variables. An Integer variable may

take on values from -2T35 to 2135-1(-2126to

2126-1 for SHORT INTEGERS). A Real variable may

— take on positive and negative values from about 1@]-
38 to 1138 with a precision of 27 bits (same range
for SHORT REALs as for SHORT INTEGERs. REAL and

-

5

—_

ALGOL DECLARATIONS SAIL USER MANUPL

INTEGER variables (and constants) may be used in the Subscripts outside the bounds trigger an error

same arithmetic expressrons. type conversions are message and job abortion. The SAFE declaration
carried out automatically (see page 21 below) when inhibits this checking, resulting in faster, smaller, and
necessary. bolder code.

The advantage of SHORT reals and Integers is that the There 1s no limit to the number of dimensions allowed

conversion from integer to real is sped by a factor of for an Array. However, the efficiency of Array

8 if either the integer or the real is SHORT. See page references tends to decrease for large dimensions
2 1 for more information. Avoid large dimensionality if it is not necessary.

The BOOLEAN type is identical to INTEGER. As you OWN Arrays are available in part. They must be

wiil see, BOOLEAN and algebraic expressions are really declared with constant bounds, since fixed storage is
equivalent syntactically. The syntactic context in which allocated for these Arrays. They are NOT initialized

they appear determines thelr meaning. Non-zero when the program is started or restarted (except in
integers correspond to TRUE and 0 corresponds to preloaded Arrays, see page D). A certain degree
FALSE The declarator BOOLEAN is included for of extra efficiency is Possibiein accessing these
progratn clarity. Arrays, since they may be assigned absolute core

locations by the compiler, eliminating some of the

STRING DECLARATIONS address arithmetic. Constant bounds always add a little

A variable defined in a String declaration is a two-word efficiency, even in inner blocks. Arrays declared in
descriptor containing the information necessary to the outer block must have constant bounds, since no

represent a SAIL character string. variable may yet have been assigned a value. They
are thus automatically made OWN. For more details —

A String may be thought of as a variable-length, one- concerning the internal structure of Arrays see page

dimensional array of /-bit ASCII characters. Its 96 and page 106.
descriptor contains a character count and a byte

pointer to the first character (see page 127). Strings PRELOAD SPECIFICATIONS

originate as constants at compile time (page 89), as Any OWN arithmetic or String Array may be ‘pre-
the result of a String INPUT operation from some loaded” at compile time with constant information by
device (see page 3D), or from the concatenation or preceding its declaration with a
decomposition of already existing strings (see page <preload_specification>. This specification gives the —.
24 and page 24) values which are to be placed in consecutive core

iocations of the Arrays declared immediately following

When strings appear in arithmetic operations or vice- the <preload_specification>. “Immediately”, in this case,
versa, a somewhat arbitrary conversion is performed to means all identifiers up to and including one which 1s

cbtain the proper type (by arbitrary we do not mean followed by bound-pair-list brackets (e.g. in REAL
(oimply random -- see page 21). For this reason ARRAY XY ZIZ:1@IWI[1:5] -- preloads X.Y, and Z, not
arithmetic and String variables are referred to as W). It 1s the user's responsibility to guarantee that the
‘algebraic variables’ and their corresponding proper values will be obtained under the subscript
expressions are called “algebraic expressions” (to mapping, namely: arrays are stored by rows; if AllJlis

_ differentiate them them from the variables and stored Inlocation 10000, then AllJ+l] is stored in
expressions of LEAP -- see page 91) location 10001.

ARRAY DECLARATIONS The current values of pre-loaded Arrays will not be

in general, any data type which is applicable to a lost by restarting the program: they will not be re-
. simpievariable may be applied in an Array declaration initialized or re-preioaded. For preioaded String Arrays,
. to an array of variables. The entity represented by this means you may have invalid string descriptors

the naine of an Array, qualified with subscript after a restart: the contents of the array will not

expressions to locate a particular eiement (e.g. All,J]) change over the restart, but string space will change,
behaves in every way like a simple variable. Therefore, leaving the elements of the array pointing off into the
IN the future we shall refer to both simple variables boondocks

and single elements of Arrays (subscripted variables)

as “variables” The formal syntax for <variable> can be Algebraic type conversions will be performed at

found on page 88. compile-time to provide values of the proper types to
pre-loaded Arrays All expressions in these

For an Array whichis not qualified by the SAFE specifications tnust be constant expressions -- that Is,
attribule, nor had a NOW-SAFE statement done on it they must contain only constants and algebraic
low _Sefe - see page 19), each subscript will be operators. The compiler will not allow you to fill an
checked to ensure that it falls within the lower and Array beyond Its capacity. You may, however, provide
Jpper bounds given for the dimension it specifies. a number of elements less than the total size of the

[e-

SAIL USER MANUAL ALGOL DECLARATIONS

—

Array: remaining elements will be set to zero or to the Procedures in advance of IIS declaration. The

null’ string. Procedure body must be empty in a forward

procedure declaration When the body of the

— Example, Procedure described in the forward declaration is
actually declared, the types of the Procedure and of

PRELOAD_WITH[5] 0, 3, 4, [4] 6, 2; its parameters must be identical in both declarations.
INTEGER ARRAY TABL[1:4,1:3]; _

.- The declarations must appear at the same level (within

the same block head).

The first five elements of TABL will be initialized to 0

(bracketed number is used as a repeat argument). The Example:

next two elements will be 3 and 4, followed by four

6's and a 2. The array will look like this. BEGIN "NEED FORWARD”
FORWARD INTEGER PROCEDURE T1{INTEGERI);

COMMENT PARAMS DESCRIBED;

3 123 INTEGER PROCEDURE T2{INTEGERJ);
Hd Sot RETURN (TL1{J)+3)

— L18 oo COMMENT CALL Ti;
218 0 3 INTEGER PROCEDURE TI (INTEGER |);
3/4 6 6 COMMENT ACTUALLY DEFINE Tl;
416 6 2 RETURN (IF [=15 THEN |

ELSE T2(I-1))

COMMENT CALLS T2;
PROCEDURE DECLARATIONS

If a Procedure is typed, it may return a value (see coe

age 1/7) of the specified type. If formal parameters[bage = 7 « i YP mal Pp RTL) i L=T2K)
are specified, they -must be supplied with actual

parameters in a one to one correspondence when they END “NEED FORWARD’:

are called (see page 24 and page 18).

[Notice that the forward declaration is required onlyFORMAL PARAMETERS because BOTH Procedures are called in the body of

Formal parameters, when specified, provide information the block. These procedures should also be declared

about the kinds of values which will be provided as were called from statements within the block, this
actual parameters in the call. The type and complexity example could be implemented as:
(simple or Array) are specified here. In addition, the

formal parameter indicates whether the value (VALUE) BEGIN *NO FORWARD"
RECURSIVE INTEGER PROCEDURE Tl (INTEGER I);

or address (REFERENCE) of the actual parameter will BEGIN
be supplied. If the address is supplied, the variable INTEGER PROCEDURE T2(J);

whose identifer is given as an actual parameter may RETURN (TL(J)+3);
be changed by the Procedure. This is not the case if RETURNCIF 1=15 THEN |ELSE T2(I-1));

the value Is given. END "T1"%

To pass a PROCEDURE by value has no readily KeTLL);
| - determined meaning. ARRAYs passed by value LL

(requiring a complete copy operation) are not

implemented Therefore these cases are noted as END "NO FORWARD?

errors by the compiler,y b RECURSIVE PROCEDURES

| If a Procedure is to be entered recursively, theThe proper use of actual parameters is further : :
: compiler must be instructed to provide code for

discussed on page 18 and page 24. : :
allocating new local variables when the Procedure is

[FORWARD PROCEDURE DECLARATIONS caliee eee Te rer . um oe theA Procedure’s type and parameters must be described ANS J nthe declaration of any
before the Procedure may be called. Normally this Is recursive Frocedure.
accomplished by specifying the procedure declaration Co

LL The cotnpiler can produce much more efficient code
i IN the head of some block containing the call. If,
- Ta for non-recursive Procedures than for recursive ones.

however, It is necessary to have two Procedures, We Teal thal thi ic ts Lh
declared in some block head, which are both accessible © ee 2 'S gain in etticiency merits ©

: necessity for declaring Procedures to be recursive.
to statements IN the compound tail of that block and to

each other, the FORWARD construct permits the
— _ : If a Procedure which has not been declared recursive

definition of the parameter information for one of these
is called recursively, all its local variables (and

) 1

ALGOL DECLARATIONS SAIL USER MANUAL

temporary storage locations assrgned by the compiler) parameters to Fortran Procedures are by reference In
will behave as If they were global to the Procedure -- fact, the procedure head part of the declaration need
they will not be reinitialized, and when the recursive not be Included unless the types expected by the
call Is complete, the locals of the calling procedure will Procedure differ from nose provided by the actual
reflect the changes made to them during the recursive parameters--the number of parameters supplied, and

call. Otherwise, no ill effects should be observed. their types, are presumed correct. Fortran Procedures
. are automatically External Procedures. See page

SIMPLE PROCEDURES 9, page 18, page 24 for more information about
Standard procedures contain a short prologue that sets Fortran Procedures.

up some links on the stack and a descriptor that is

used by the storage allocation system, the go to Example:
solver, and some other routines. For most procedures,

this overhead is Insignificant. However, for small FORTRAN PROCEDURE MAX;
procedures that just do a few simple statements and Y=MAX{X,Z);

exit, this overhead is excessive and ‘unneeded. To Skip PARAMETRIC PROCEDURES NB
the prologue, just include SIMPLE in the attribute list The calling convent ions for Procedures with
for the procedure. RESTRICTIONS,

Procedures as arguments, and for the execution of

1. Simple procedures may not be Recursive. these parametric Procedures, are described on page
13 and page 24. Any Procedure PP which is to be

5 ARRAY locals must be OWN used as a parameter to another Procedure CP must
not have any Procedure or array parameters, or any

3. Set and List locals must be OWN (Sets pararelers called by value. In other words, PP may
and list are Sart of Leap, page 5 1). only have simple reference parameters. The number

of pat amelers supplied in a call on PP within CP, and

4. Procedures declared local to a simpie their types, will be presumed correct, and should not
be specified In the procedure head.

procedure must also be of of type

SIMPLE, and may not reference any of the
Example:

parameters of the outer Simpie procedure.

PROCEDURE CP (INTEGER PROCEDURE FP);

5. One may not GO TO a statement outside BEGIN INTEGER A,l; REAL X;
the body of the simple procedure. cu

A—=FP{1,X); COMMENT | AND X PASSED BY

EXTERNAL PROCEDURES oo pny TENCE NO TYPE CONVERSION;
A file compiled by SAIL represents either a “main”

program or a collection of independent procedures to INTEGER PROCEDURE FP (REFERENCE INTEGER J;

be called by the main program. The method for BEGIN REFERENCE REAL Y)
preparing such a collection of Procedures is described oo
Nn page 10 The EXTERNAL and FORTRAN type- END "PP"
qualifiers allow description of the types of these
Prccadures and ther parameters. An EXTERNAL or

) FORTRAN procedure declaration, like the FORWARD CP(PP);
ceclaration, does not include a procedure body. Both

declarations Instead result In requests to the loader to

provide the addresses of these Procedures to ail DEFAULTS IN PROCEDURE DECLARATIONS
statements which call them. This means that an i no VALLE or REFERENCE qualification appears in

EXTERNAL Procedure declaration (or the declaration of t he description, the following qualifications are
any External Identifier) may be placed within any block assumed,
head, thereby controlling the scope of this External

Cp Cp,] VALUE Simple Integer, String, or Real Variables.

identifier within this program. REFERENCE Arrays, Contexts and Procedures.

Any SAIL Procedure which is referenced via these RESTRICTIONS ON PROCEDURE DECLARATIONS
external declarations must be an INTERNAL Procedure.

That is, the type-qualifier INTERNAL must appear in

the actual declaration of the Procedure. Again, see
page 10.

The type-qualifier FORTRAN 1s used to describe the

type and name of an external Procedure which is to be

called using a DEC Fortrancalling. sequence. All

8

SAIL USER MANUAL ALGOL DECLARATIONS

—

Fortran Procedures can not handle String to act as a reserved word. The effect of the reserved
parameters. Nor can a Fortran Procedure word is not changed: it may be used as well as the

— return a string as a result. new identifier. Synonyms follow the same scope rules

2) that identifiers used for variables, arrays, etc. do.Labels may never be passed as arguments

to Procedures. . Since Sail permits one to declare almost any reserved
— word to be an identifier for variables, procedures, etc.

3) Procedures may not have the type (see about restrictions on identifiers, page 89),
"CONTEXT". synonyms are used to keep the effect of the reserved

word available. For example,

— 4) Context parameters must always be passed
by reference. LET BEG = BEGIN;

PROCEDURE BEGIN;

BEG

—

ALLOCATION AND DEALLOCATION END;

All simple variables (integer, real, string, boolean) are

L allocated at compile time. Non-own simple variables E OK THEN BEGIN:
that are local to a recursive procedure are an Cl

exception to this and are allocated (on the stack) upon

instantiation of the procedure; they are deallocated

j when the instantiation is terminated. CLEANUP DECLARATIONS
- The CLEANUP declaration requires a list of procedure

All outer block arrays are allocated at compile time. names following the "CLEANUP" token. Each
All Own arrays are allocated at compile time. All other procedure specified must be SIMPLE and have no

[arrays are allocated when the block of their definition formal parameters. The specified procedures will be
s entered, and deallocated when it is exited. called at the exit of the block that the CLEANUP

declaration occurs in. They will be called in the order

| INITIALIZATION AND REINITIALIZATION of their appearance on the list, and before any of the
Lo Upon allocation, everything is initialized to 0 or the variables of the block are deallocated. NOTE: If the

NULL string (except preloaded arrays, which are block is part of a process (see about processes, page
initialized to their the values of their PRELOAD) 67) that is being terminated, the cleanup procedures

| Nothing Is reinitialized unless the program is restarted will be called before the terminate is completed.
_ by typing 1C and REEnter. This lack of reinitiaiization

is notrceable when one enters a block for the second Cleanup procedures are normally used in connection

time, and that block is not the body of a recursive with processes to “cleanup” a block by terminating the
procedure. For example, processes dependent on that block (it is an error to

- leave processes active that depended on an exited
STRING PROCEDURE READIN; block).
BEGIN

[. INTEGER CHANNEL, BRTAB; REQUIREMENTSIF BRTAB=8 THEN BRTAB « INIT(CHANNEL);
RETURN(INPUT(CHANNEL, BRTAB)); The user may, using the REQUIRE construct, specify to

END: the compiler conditions which are required to be true
of the execution-time environment of his programs. All

will return a string from an input operation with every requirements are legal at either declaration or
- cal. However, on the first call, it will do some statement level. The requirements fall into three

. initialization of the I/O channel because BRTAB is 0 classifications, described follows:
then, whereas it is not for any of the other calls. If

| READIN were a recursive procedure, CHANNEL and Group 1 -- Space requirements -- STRING-SPACE,
—_ BRTAB would be allocated and hence initialized with SYSTEM-PDL, etc.

every call.

REEert The inclusion of the specification “REQUIRE 1000When one enters a program, some things are STRING-SPACE” will ensure that at least 1000 words

bo reinitilized and some are not. Namely, S{rings and hon- of storage will be available for storing Strings when
preloaded arrays will be reinitialized, but simple the program is run. Similar provisions are made for
vat-tables will not. Preloaded arrays will not be re- various push-down stacks used by the execution-time
preloaded. routines and the compiled code. If a parameter is

— specified twice, or if separately compiled procedures

SYNONYMS are loaded (see page 1@), the sum of all such
The Sail Synonym permits one to declare any identifier Pe

9

L

ALGOL DECLARATIONS SAIL USER MANUAL

specifications will be used. These parameters could that he wants done at initialization time by declaring a
8iS0 b e typed to the loaded program just before Procedure without arguments, then saying
execution (see page 94), but it is often more
convenient to specify differences from the standard REQUIRE procedure-name INITIALIZATION.

sizes in the source program. Use these specifications

only if messages from the running program indicate The narmcd procedure will be run called as the first
that the standard allocations are not sufficient. executable statement in the outer block of the

program (even if the REQUIRE appeared in a Source or

Group 2 -- Other files -- LOAD-MODULE, LIBRARY, REL file). Require-initialization procedures will be run
SOURCE-FILE, etc. in the order in which they were Required. WARNING:

you should not Require initialization of a procedure

The inclusion of the specification REQUIRE "PROCS" which is declared inside another procedure.
LOAD-MODULE, "HELIB[1,3]" LIBRARY; would inform the

Loader that the file PROCS1 REL must be loaded and REQUIRE n VERSION in a non-zero integer) will flag
the library HELIBREL[1,3] searched whenever the the resultant RELfile as version n. When a program
program containing the specification is loaded. The loaded from several such RELfiles is started, the Sail
parameter for both features should be a string allocatin code will verify that all specified versions are
constant of one of the above forms. The device DSK, equal. A non-fatal error message is generated if any
and file extension .REL are the only values permitted disagree. As much as will fit of the version number is
for these entries, and are therefore assumed. also stored in INNJOBVER), where JOBVER is location

137.

LOAD-MODULES (REL files to be loaded) may

themselves contain requests for other LOAD-MODULES Other requirements: PNAMES - see page 84:
and LIBRARYs.LIBRARYs may only contain requests POLLING POINTS - see page 70: DELIMITERS - see
for other LIBRARYs. Duplicate specifications are in page 46: BUCKETS - see page 58: NEW-ITEMS -
general merged into single requests (if a file is see page 64: MESSAGE - see page 50:
requested twice, it will be loaded only once). ERROR-MODE - see page 95.

SAIL automatically places a request for the library COMMENT: You have probably noticed that a great
SYSLIBSAR" in each main program, where n is the deal of prior knowledge is required for proper
version number of the current Sail library of runtime understanding of this section. For mere information
routines. about storage allocation, see page 94 below. The

\) form and use of REL files and libraries are described
The inclusion of REQUIRE "SYSPREAMBSAI in “The Stanford A-l Project Monitor Manual” [Moorer]
SOURCE-FILE will cause the compiler to save the and [Weiher].
state of the current input file, then begin scanning

from PREAMB. When PREAMB is exhausted, SAIL will

resume scanning the original file on the line directly

following the REQUIRE. SOURCE-FILEs may be nested 5 5 _ SEPARATELY COMPILED PROCEDURES
to a depth of about 10 levels.

i Restrictions: A SOURCE-FILE request must be followed When a program becomes extremely large it becomes
by a semicolon (only one per REQUIREment), and must useful to break the program up into several files which
be the last xi on he line In which it appears can be compiled separately. This can be done in SAIL
SOURCE-FILE switching must not be specified from by preparing one file as a main program, and one or
within a DEFINE body (see page 46). more other files as programs each of which contains

one or more procedures to be called by the main

The SEGMENT-NAME, SEGMENT-FILE specifications orogram The main program must contain EXTERNAL
are currently applicable only to the Stanford "global declarations for each of the procedures declared in the
model” users of SAIL. They allow specification of the other files (EXTERNAL declarations have no procedure
name of a special non-sharable “HISEG”, and the name body). The non-main program files must have the
of the file used to create this HISEG. These following characteristics:
specifications may, like the space REQUIREments, be
overridden by using the system REENTER command

(see page 94).

Group 3 -- other - INITIALIZATION, VERSION

Before the execution of a program, Sail runs through

an initialization routine. The user can specify things

10

SAIL USER MANUAL ALGOL DECLARATIONS

—

1) All procedures to be called from the main scope of its Identifier) In the file wherein it appears.
program (or procedures in other files) must However, its address and (the first six characters of)

| | be qualified with the INTERNAL attribute its name are made available to the loader for
when they are declared. External procedure satisfying External requests.

declarations with headings identical to those

of the actual declarations must appear in all No space is ever allocated for an External declaration.

| those programs which call these procedures. Instead, a list of references to each External identifier
IS made by the compiler. This list is passed to the

2) These internal procedures must be uniquely loader along with the first six characters of the

| identifiable by the first six characters of identifier name. When an Internal name matching it is
- their Identifiers. In general, any two internal found during loading, its associated address is placed

procedure names (or any other Internal in each of the instructions mentioned on the list. No

variables in the same core image) with the program inefficiency at all results from

al same first six characters will cause incorrect External/Internal linkages (belay that -- references to: linkages when the programs are loaded. External arrays are sometimes more inefficient).

3) The reserved word ENTRY, followed by a The entity finally represented by an External identifier

i semi-colon must be the first item in the is only accessible within the scope of the Externalprogram (preceding even the BEGIN for its declaration.

outer block). No starting address will be

issued for a program containing an Entry FORTRAN PROCEDURES

| Specification. Since no starting address is For a program written in DEC FORTRAN IV to run in
- present for this file, entry to code within it the SAIL environment, the following restrictions must

may only be to the procedures it contains. be observed:

The statements in the outer block, if any,

i can never be executed. 1) It must be a SUBROUTINE or FUNCTION, not
a main program.

4) Should you desire your separatedly compiled

f procedures to be collected into a user 2) It must not execute any FORTRAN I/O calls.

| library, include a list of their identifiers The UUO structures of the two languages
between the ENTRY and the semi-colon of are not compatable.

the Entry Specification of the program

containing those procedure declarations. The 3) It must be declared as a Fortran Procedure

i format of libraries is described in [Weiher]. (see page 19) in the SAIL program which
The identifier(s) appearing in the entry list calls it.

may be any valid identifiers, but usually they

{ will be the names of the procedures The type bits required in the argument addresses for

i contained in the file. No checking is done to Fortran arguments are passed correctly to these
see if entry identifiers are ever really routines.

declared in the body of the program.

| - The SAIL compiler will not produce a procedure to be
LL BD) Any variables (simple or array) which appear called from FORTRAN.

In the outer block of a Separately Compiled

Procedure program will be global to the ASSEMBLY LANGUAGE PROCEDURES

| procedures in this program, but not available The following rules should be observed:
to the main program (unless they are

themselves connected connected to the main 1) The ENTRY, INTERNAL, and EXTERNAL

program by Internal/External declarations -- pseudo-ops should be used to obtain linkages

see below). Arithmetic arrays in these outer for procedure names and “global” identifiers

— blocks will always be zero when the program (remember that only six characters are used
is first loaded, but will never be cleared as for these linkage names.
others are by restarting your program (see

reinitialization, page 9. 2) Accumulators F (currently '12), P (currently
17) and SP ('16) should be preserved over

Any variable, procedure or label may contain the function calls. P may be used as a push-
attribute INTERNAL or EXTERNAL in its declaration down pointer for arithmetic values and return

(ITEMS may not -- items are part of leap, page 5 1). addresses. SP is the string stack pointer.
a The INTERNAL attribute does not affect the storage String results are returned on this stack.

assignment of the entity it represents, nor does it Arithmetic results are returned in AC 1.

have any effect on the behavior of the entity (or the

11

ALGOL DECLARATIONS SAIL USER MANUAL

3) Those who wish to provide their own UUO
handlers or to increase their core size

should read the relevant sections of the

Implementation manual.

There are no other known processors which will

produce SAIL-compatible programs. In particular, the

LISP 1 6 system, by its very nature, contains storage

allocation conflicts which are difficult to resolve. If a

great need for thrs kind of compatibility develops it

can be provided.

12

a

| SAIL USER MANUAL ALGOL STATEMENTS
SECTION 3 m= <algebraic-expression> STEP

<algebraic-expression> UNTIL

ALGOL STATEMENTS <algebraic-expression>

::= <algebraic-expression> STEP

<algebraic-expression> WHILE

<boolean-expression>

|

<while-statement>

3.1 - SYNTAX = WHILE <boolean-expression> DO
<statement>

~=NEEDNEXT <while-statement>

i <assignment-statement>
m= <algebraic-variable> «

<algebraic_expression> <do-statement>

[:= DO <statement> UNTIL<boolean-expression>

= NEEDNEXT <do-statement>

<swap-statement>

| n= <variable> e& <variable>
<case-statement>

n= <case-statement-head> <statement-list>

[<conditional-statement> <case-statement-tail>= <|f-statement> = <case-statement-head>

= <If_statement> ELSE <statement> <numbered-state-list>

[<case-statement-tail>
<lf-statement> <case-statement-head>

= IF <boolean-expression> THEN <statement> »= CASE <algebraic-expression> OF BEGIN

::= CASE <algebraic-expression> OF BEGIN

<block-name>

<go-to-statement>

i= GO TO <label-identifier> <case-statement-tail>

i= GOTO <label-identifier> = END

= GO <label-identifier> w= END <block-name>

<label-identifier> <statement-list>

= <ident if ler> »= <statement>

| = <statement-list> ; <statement>
<for-statement> <numbered-state-list>

1 := FOR <algebraic-variable> « <for-list> DO — [<integer_constant> 1 <statement><statement> '= <numbered-state-list> ;

= NEEDNEXT <for-statement> [<integer-constant> | <statement>

L <for-list>
= <for-list-element> <return-statement>

n= <for-list> , <for-list-element> += RETURN

:= RETURN (<expression>)

<for-list-element>

= <algebraic-expression> <done-statement>

.— DONE

13

ALGOL STATEMENTS SAIL USER MANUAL

.= DONE <block-name> a) The subscript expressions of the left part

variable(if any - Sail defines “variable” to

include both array elements and simple

<next_statement> variables) are evaluated from left to right
= NEXT (see Expression Evaluation Rules, page 23).
: = NEXT <block-name>

b) The expression is evaluated.

<continue-statement> c) The value of the expression is assigned to
= CONTINUE the left part variable, with subscript

i= CONTINUE <block-name> expressions, if any, having values as
determined in step a.

<procedure-statement> This ordering of operations may usually be

i= <procedure-call> disregarded. However it becomes important when

expression assignments (page 22) or function calls
with reference parameters appear anywhere in the

statement. For example, in the statements:

<procedure-call>

= <procedure-ident if ier> 1-3:
-= <procedure_ident if ier> (Alll-3+(l- 1);

<actual-parameter-list>)

AlI3] will receive the value 4 using the above

algorithm. All! will not change.
<actual-parameter-list>

= <actual-parameter> Any algebraic expression (REAL, INTEGER (BOOLEAN),
»= <actual-parameter-list> , or STRING) may be assigned to any variable of

<actual-parameter> algebraic type. The resultant type will be that of the

left part variable. The conversion rules for

assignments involving mixed types are mildly amusing.

<actual-parameter> They are identical to the conversion rules for
n= <EXpression> combining mixed types in algebraic expresions (see

n= <array-identifier> page 2 1 below).
= <procedure_ident if ier>

SWAP ASSIGNMENT

The e operator causes the value of the variable on

the left hand side to be exchanged with the value of

<safety-statement> the variable on the right hand side. Arithmetic
z= NOW-SAFE <id_list> (REAL&INTEGER) type conversions are made, if
= NOW-UNSAFE <id-list> necessary: any other type conversions are invalid.

Note that the e operator may not be used in

assignment expressions.

3.2 - SEMANTICS CONDITIONAL STATEMENTS

These statements provide a means whereby the

execution of a statement, or a series of statements, is

. ASSIGNMENT STATEMENTS dependent on the logical value produced by a Boolean
The assignment statement causes the value expression.
represented by an expression to be assigned to the

variable appearing to the left of the assignment A Boolean expression is an algebraic expression whose
symbol You will see later (see page 22) that one use implies that it is to be tested as a logical (truth)
value may be assigned to two or more variables value. If the value of the expression is © or NULL, the

through the use of two or more assignment symbols. expression 1S a FALSE boolean expression, otherwise it
The operation of the assignment statement proceeds In is TRUE. See about type conversion, page 21.
the following order

IF STATEMENT - The statement following the operator

THEN (the “THEN part”) is executed if the logical value

of the Boolean expression is TRUE: otherwise, that

statement is Ignored.

14

[SAIL USER MANUAL ALGOL STATEMENTS
IF ELSE STATEMENT - If the Boolean expression is Legal legal
true. the “THEN part” is executed and the statement

[following the operator ELSE (the “ELSE part’) is BEGIN "BL" SEGNELIgnored. If the Boolean expression is FALSE, the “ELSE EOE CABELL
part” is executed and the “THEN part” is ignored. Ca CL

BEGIN "B2" BEGIN "B2"

[AMBIGUITY IN CONDITIONAL STATEMENTS REAL X; REAL ARRAY X [1:18
The syntax given here for conditional statements does 1. ls

not fully explain the correspondences between THEN- a. ee

ELSE pairs when conditional statements are nested. An END Bz coro B82[ELSE will be understood to match the immediately ay END gL"
preceding unmatched THEN. Example:

4) No Go To statement may specify a transfer into a

| COMMENT DECIDE WHETHER TO GO TO WORK; FOREACH statement (FOREACH statements are
F WEEKEND THEN part of LEAP -- page D1), or into complicated

IF GIANTS-ON-TV THEN BEGIN For loops (those with For Lists or which contain a

PHONE_EXCUSE("GRANDMOTHER DIED"); NEXT statement).

[ENJOY(GAME); |SUFFER(CONSCIENCE _PANGS) :
END Labels will seldom be needed for debugging purposes.

ELSE IF REALLY-SICK THEN BEGIN The block name feature (see page 96) and the listing
PHONE_EXCUSE{"REALLY sick"); feature which associates with each source line the

' ENJOY(D); :

| SUFFER(AGONY) octal address of its corresponding object code (seeEND page 92) should provide enough information to find

ELSE GO TO WORK; things easily.

[GO TO STATEMENTS Many program loops coded with labels can beEach of the three forms of the Go To statement means alternatively expressed as For or While loops,
the same thing -- an unconditional transfer is to be augmented by DONE, NEXT, and CONTINUE statements.
made to the “target” statement labeled by the label This often results in a source program whose

[Identifier. The following rules pertain to labels: organization is somewhat more transparent, and an
object program which is more efficient.

1) All label identifiers used in a program must be

declared. FOR STATEMENTS

[For, Do and While statements provide methods for2) The declaration of a label must be local to the forming loops in a program. They allow the repetitive
block immediately surrounding the statement it execution of a statement zero or more times. These
Identifies (see exception below). Note that statements will be described by means of SAIL

[compound statements (BEGIN-END pairs containing : : : :programs which are functionally equivalent but which

no declarations) are not blocks. Therefore the demonstrate better the actual order of processing.
block Refer to these equations for any questions you might

[- BEGIN "BL" have about what gets evaluated when, and how manyINTEGER |,J; LABEL L1; times each part is evaluated.

IF BE3 THEN BEGIN “Cl Let VBL be any algebraic variable, AE1, ..., AE8 any

[1: I algebraic expressions, BE a Boolean expression, TEMPVe a temporary location, S a statement. Then the following

END “Cl SAIL statements are equivalent:

. 0 Using For Statements --
FOR VBL ~-AEl, AE2, AE3 STEP

IS legal. AE4 UNTIL AE5, AES STEP AE7 WHILE
{ BE, AES DO S;

L 3) Rule 2 can be violated if the inner block(s) have
no array declarations. E.g.: Equivalent formulation without For Statements --

L 15

ALGOL STATEMENTS SAIL USER MANUAL

VBL-AEL: at the corresponding point in the equivalent loop
S; described above.

VBL~AEZ;

S
WHILE STATEMENT

VBL-AE3; Comment STEP-UNTIL loop; The statement:
LOOPL: IF (VBL-AES)x SIGN(AE4) £ 0 THEN

a WHILE BE DO S;
VBL-VBLtAE4;

os TO LOOP is equivalent to the statements:

VBL-AEB; Comment STEP-WHILE loop; LOOP: IF BE THEN BEGIN
LOOP2: IF BE THEN BEGIN 5;

S; GO TO LOOP

VBL-VBL+AL7; END;
GO TO LOOP2

END; DO STATEMENT

The statement:

VBL-AES;

5
DO S UNTIL BE;

If AE4 (AE7) is an unsubscripted variable, changing its
or is equivalent to the sequence:

value within the loop will cause the new value to be

used for the next iteration. If AE4 (AE7) is a LOOP:
constant or an expression requiring evaluation of some IF -BE THEN GO TO LOOP;

operator, the value used for the step element will

remain constant throughout the execution of the For

Statement. If AE5 is an expression, it will be re- CASE STATEMENTS
evaluated before each iteration, so watch this possible The statement:
source of ineff iciency.

CASE AE OF BEGIN SO; Sl; S2... Sn END

Now consider the For Statement:

is functionally equivalent to the statements:
FOR VBL~AE] STEP CONST UNTIL AE2 DO §;

TEMP-AE;

where constisa positive constant. The compiler will IF TEMP<B THEN ERROR

simplify this case to: ELSE IF TEMP = 0 THEN SO
ELSE IF TEMP = 1 THEN Si

ELSE IF TEMP = 2 THEN S2

VBL-AEL; ces
LOOP3: IF VBL £ AE2 THEN BEGIN ELSE IE TEMP = n THEN Sn

S oo

VBL-VBL+CONST; FLOE ERROR;
GO TO LOOP3 CA :

END. For applications of this type the CASE statement form
will give significantly more efficient code than the

equivalent If statements. Notice that dummy

If CONST is negative, the line at LOOP3 would be: statements may be inserted for those cases which will
not occur or for which no entries are necessary. For

LOOP3: IF VBL > AE2 THEN BEGIN
example,

The value of VBL when execution of the loop is CASE AE OF BEGIN SO; i; S3;5iS6; END
terminated, whether it be by exhaustion of the For list

or by execution of a DONE, NEXT or GO TO statement provides for no actions when AE is 1,240, or 7.

(see page 17, page 17, page 19), is the value last When AE is 0, 3, or 6 the corresponding statement
assigned to it using the algorithm above. This value is will be executed. However, slightly more efficient code
therefore always well-defined. may be generated with a second type of Case

statement that numbers each of its statement with [n]

The statement S may contain assignment statements or where n is an integer constant. The above example
procedure calls which change the value of VBL. Such a using this type of Case statement is then:
statement behaves the same way it would if inserted

CASE AE OF BEGIN [3] s3;[8]58;[6]S6 END:

16

. SAIL USER MANUAL ALGOL STATEMENTS :

All the statements must be numbered, and that the The DONE statement will only cause an escape from

[numbers must all be non-negative integers constant the innermost loop in which it appears, unless a block

expressions, although them may be in any order. name follows “DONE”. The block name must be the

— name of a block or compound statement (a “Loop
Block names (ie. any string constant) may be used Block”) which is the object statement of some FOR,
after the BEGIN and END of a Case statement with the WHILE, or DO statement in which the current one is

i same effect as block names on blocks or compound nested. The effect is to terminate all loops out to (and
statements. (see about block names on page 1). including) the Loop Block, continuing with the statement

following this outermost loop. For example:
RETURN STATEMENT

This statement is invalid if it appears outside a WHILE TRUE DO BEGIN "Bl"

procedure declaration. It provides for an early return _ OK THEN DO BEGIN "B2"
from a Procedure execution to the statement calling

i} the Procedure. If no return statement is executed, the FOR I=1 STEP 1 UNTIL K DO
w Procedure will return after the last statement IF A[I]J=FLAGWORDTHEN DONE "BL";

representing the procedure body is executed (see END "B2" UNTIL COWS-COME-HOME:
page /). CL

END "BL"

| An untyped Procedure (see page 18) may not return oy
a value. The return statement for this kind of Here the block named Bl" is the “loop block”
Procedure consists merely of the word RETURN. If an

: argument is given, it will cause the compiler to issue NEXT STATEMENT
L an error message A Next statement is valid only in a For Statement,

While Statement, or Do Statement (or Foreach- see

A typed Procedure (see page 24) must return a page D8). Processing of the loop statement is

[value as it executes a return statement. If no temporarily suspended. When the NEXT statementargument is present an error message will be given. If appears in a For loop, the next value is obtained
the Procedure has an algebraic type, any algebraic from the For List and assigned to the controlled
expression may be returned as its value: type variable. The termination test is then made. If the
conversion will be performed in a manner described on termination condition is satisfied, control is passed to

L page 21 the statement following the For Statement. If not,
control is returned to the inner statement following the

If no RETURN statement is executed in a typed NEXT statement. In While and Do loops, the
Procedure, the value returned is undefined (it could be termination condition is tested. If it is satisfied,

(- anything - try it, its fun) execution of the loop terminates. Otherwise it resumes
at the statement within the loop following the NEXT

{ DONE STATEMENT statement.

| The statement containing only the word DONE may be
ee used to terminate the execution of a FOR. WHILE. or Unless a block name follows NEXT, the innermost loop

DO (also FOREACH- see page 58) loop explicitly. Its containing the NEXT statement is used as the “Loop
] operation can most easily be seen by means of an Block” (see page 17). The terminating condition for

example. The statement the loop block is checked. If the condition is met, all
— inner loops are terminated (in DONE fashion) as well. If

FOR I-1 STEP 1 UNTIL n DO BEGIN continuation is indicated, no inner-loop FOR-variable or
5; WHILE-condition will have been affected by the NEXT

code.

(_-— IF BE THEN DONE;

END The reserved word NEEDNEXT must precede FOR,
WHILE, or DO in the “Loop Block”, and must not appear

between this block and the NEXT statement. Example:
— IS equivalent to the statement

NEEDNEXT WHILE -EQF DO BEGIN

FOR I-1 STEP 1 UNTIL n DO BEGIN S~INPUT(1,1);
5; NEXT;

- cee Comment check EOF and terminate if TRUE;
IF BE THEN GO TO EXIT; T=INPUT(L,3);
A PROCESS_INPUT(S,T);

END; END;
EXIT:

| — .
In either case the value of | is well-defined after the

statement has been executed (see page 10).

17

-

ALGOL STATEMENTS SAIL USER MANUAL

CONTINUE STATEMENT also be sotnewhat confusing as well as moderately

The Continue statement is valid In only those contexts inefficient. Reference parameters should be used only
valid for the DONE statement (see page 17); the “Loop where needed.
Block” Is determined in the same way (i.e. implicitly or :

by specifying a block name). All loops out to the Loop Variables, constants, Procedures, Arrays, and most

Block are terminated as If DONE had been requested. expressions may be passed by reference.No String
Control is transferred to a point inside the loop expressions (or String constants) may be reference
containing the Loop Block, but after all statements in parameters. :
the loop. Example:

If an expression is passed by reference, its value is

FOR I STEP1 UNTIL N DO BEGIN first placed in a temporary location; a constant passed

CONTINUE: by reference is stored in a unique location. The
. address of this location is passed to the Procedure.

END Therefore, any values changed by the Procedure via

reference parameters of this form will be inaccesibie

is semantically equivalent to: to the user after the Procedure call. If the called
program is an assembly language routine which saves

FOR I-1 STEP1 UNTIL N DO BEGIN the parameter address, it is dangerous to pass
LABEL CONT; expressions to it, since this address will be used by

see the compiler for other temporary purposes. A warning

GO TO CONT; message will be printed when expressions are called
CONT: by reference.

END _

The type of each actual parameter passed by

f h th fi ing f

PEOCEDURE STATEMENTS re erence must me he of its comesponding ore
A Procedure statement is used to invoke the execution parame er, mo Hilo al type conversion. © exception

: is reference string formals, which must have string
of a Procedure (see page 7). After execution of the

variables (of string array elements) actual passed to
Procedure, control returns to the statement :

them. If an algebraic type mismatch occurs the
immediately following the Procedure statement. SAIL n

compiler will create a temporary variable containing
does allow you to use typed Procedures as procedure

: the converted value and pass the address of this
statements. The value returned from the Procedure is

: temporary as the parameter. A warning message will
simply discarded. Co

be printed. An exception is made for Fortran calls

The actual parameters supplied to a Procedure must in (see page 19)
match the formal parameters described in the

: P PROCEDURES AS ACTUAL PARAMENTERS
procedure declaration, modulo Sail type conversion.

: : If an actual parameter to a Procedure PC is the name
Thus one may supply an integer expression to a real

: : of a Procedure PR with no arguments, one of three

formal, and type conversion will be performed as on o ht h
page 1 things might happen:

If an actual parameter is passed by VALUE, only the if the corresponding formal parameter
CL : requires a value of a type matching that

value of the expression is given to the Procedure. This
: of PR (in the loose sense given above in

value may be changed or examined by the Procedure,
Co ; page 18), the Procedure is evaluated and

but thiswill in no way affect any of the variables used
its value is sent to the Procedure PC.

to evaluate the actual parameters. Any algebraic

expression may be passed by value. Neither Arrays
b y b y y 2) If the formal parameter of PC requires a

nor Procedures may be passed by value (use ARRBLT,
reference Procedure of identical type, the

page 43, to copy arrays). See the default
: address of PR is passed to PC as the

declarations for parameters in page 8.
actual parameter.

If an actual parameter is passed by REFERENCE, its 3 I th ; |
address IS passed to the Procedure. All accesses to © ormal parameter requires a

reference variable, the Procedure is

the value of the parameter made by the Procedure are uated. It t stored d its add
made indirectly through this address. Therefore any evaluated, S resu store an sa ress

: passed (as with expressions in the previous

change the Procedure makes in a reference parameter aragraph) as the parameterwill change the value of the variable which was used paragrap P
as an actual parameter. This is sometimes useful.

ey If a Procedure name followed by actual parameters
However Ifitis not Intended, use of this feature can oo

appears as an actual parameter it is evaluated (see

functions, page 24). Then if the corresponding formal

18

SAIL USER MANUAL ALGOL STATEMENTS

{

-

parameter requires a value, the result of this

evaluations passed as the actual parameter. If the

| formal parameter requires a reference to a value, it is
called as a reference expression.

FORTRAN PROCEDURES

If the Procedure being called is a Fortran Procedure,
— all actual parameters must be of type INTEGER

(BOOLEAN) or REAL. All such parameters are passed

| by reference, since Fortran will only accept that kind

| of call For convenience, any constant or expression
used as an actual parameter to a Fortran Procedure is
stored In a temporary cell whose address is given as

a the reference actual parameter.
— |

It was explained in page 7 that formal parameters
need not be described for Fortran Procedures. This

8 allows a program to call a Fortran Procedure withvarying nutnbers of arguments, a feature which exists

in DEC Fortran. No type conversion will be performed

for such parameters, of course. If type conversion is

desired, the formal parameter declarations should be

L Included in the Fortran procedure declaration: SAIL will
use them If they are present.

I To pass an Array to Fortran, mention the address ofits first element (e.g. Ald], or B[1,1)).

NOW-SAFE and NOW-UNSAFE

| The NOW-SAFE and NOW-UNSAFE statements bothtake a list of Array names (names only - no indicies)
foliowing them. From a NOW-SAFE until the end of

{ the program or the next NOW-UNSAFE, the specified

L arrays will not have bounds checking code emitted for
them. If an array has had a NOW-SAFE done on it, or

has been declared SAFE, NOW-UNSAFE will cause

bounds checking code to be emitted until the array is

L made safe again (if ever). Note that NOW-SAFE and
NOW-UNSAFE are compile time statements. “IF BE

THEN NOW-SAFE . ." will not work.

u .

}

L

|

|

!
he

:
—

19

ALGOL EXPRESSIONS SAIL USER MANUAL

SECTION 4 <disjunctive_cxpression>
= <negated_expression>

ALGOL EXPRESSIONS := <disjunctive_expression> a
<negated-expression>

<negated-expression>

»== <relational-expression>

= <relational-expression>

41 - SYNTAX <relational-expression>
== <algebraic-relational>

= <leap-relational>

<expression>

= <simple-expression> <algebraic-relational>
== <conditional_expression> = <bounded-expression>
= <assignment_expression> = <relational-expression>
"= <case-expression> <relational_operator>

<bounded-expression>

” <relational_operator>
<conditional-expression> v= <

= IF <boolean_expression> THEN = >
<expression> E-SE <expression> a.

w= <

n= 2

wel

<assignment-expression>

= <variable> « <expression>

<bounded-expression>

= <adding-expression>

== <bounded-expression> MAX

<case-expression> <adding-expression>

= CASE <algebraic-expression> OF (== <bounded-expression> MIN
<expression-list>) <adding_expression>

<expression_list> <adding-expression>
= <expression> = <terms

w= <expression_list> , <expressions = <adding-expression> <add-operator>
<term>

<simple_expression>

= <algebraic-expression> <adding-operator>
= <leap_expression: n= t

a= -

::= LAND

= LOR

<boolean-expression> “= EQV
= <expression> “= XOR

<glgebraic_expression> <term>
= <disjunctive_expression> += <factors

= <algebraic_expression> v = <term> <mult_operator> <factor>
<disjunctive_expression> :

20

SAIL USER MANUAL ALGOL EXPRESSIONS

-

<mult_operator> 4.2 - TYPE CONVERSION
=

=f

— i= 7 Sail automatically converts between the data types
= LSH Integer, Real, String and Boolean. The following table

| = ROT illustrates by description and example these| ::= MOD conversions. The data type boolean is identical to
— = DIV integer under the mapping TRUE#@ and FALSE=@.

= &

F |To
rl

| a} INTEGER REAL STRING
<factor> | | Left Justify | The right 7 bits

i= <primary> N | | and raise to | are converted to
. . T | | appropriate | to a 1 character

: i= <primary> T <primary> E | | power. | string with that
: G | 11345-1.345@3| ASCI | code.

: - E | | -678+-6.78@2 | 4 8 -» "0"
Di ! !

<primary> | R|{ Drop decimal | | Convert to inte-
= <algebraic-variable> E | fractions. | | ger then convert
— _ . A | 1.345e2-134 | to string.
m= - <primary> L | -8.7999%1--67 | | 4.8el » “0”

w= LNOT <primary> | 2.3e~2- 0 | 4.8991 +» "B". rr
i= ABS <primary> | The ASCII code| Convert to in-
i= <string-expression> [<substring_spec>1 S| for the first | teger then
oe T| character of | to real.
Ray R| string.
. | | "@suM"> 4 8 | "@SUM"+ 4.8~1 |
: <constant> N | NULL = 0 | NULL = 0 |
m= <function-designator> Cfo | I

| = LOCATION (<loc_specifier>) Co
NOTES: The NULL string is converted to 0, but 0 is

=(<algebraic-expression>)
converted to the one character string with the ASCII

code of 0. If the absolute value of an integer is

greater than 134217728, then some low order
<string-expression> CL : : :

significance will be lost in the conversion to real;
n= <algebraic-expression> : : :

otherwise, conversion to real and then back to integer

will result in the same integer value. If a real number

has magnitude greater than 134217728, then

L <substring_spec> conversion to integer will produce an invalid result.
w= <algebraic-expression> TO

Conversion from real to integer can be sped by a
<algebraic-expression> : :

i factor of 8 if SHORT reals and integers are used. It
i ::= <algebraic-expression> FOR

- Alaebraic-exbressions IS only necessary that one of the data types be< _

9 P SHORT: both the number to be converted and the
variable need not be SHORT. SHORTness is a

| - : : dominate ality in al rai inar rations, Th
| <function-designator> quality In algebraic binary operatio S al
— — <procedure-calls is, the sum of a SHORT real and a regular real will be

= <P treated as a SHORT real. SHORT integers and reals
must have an absolute magnitude of less than

‘ ” 134217728.
<loc_specifier>

— :

= <varlable> The bi thmetic. logical 4 Str ’
= <array identifiers e inary art metic, ogical, an ring operations

; : i. which follow will accept combinations of arguments of
.= <procedure-identifier>

: . any algebraic types. The type of the result of such an
== <label-identifier> : :

—— operation is sometimes dependent on the type of its
arguments and sometimes fixed. An argument may be

<algebraic_variable> converted to a different algebraic type before the
operation is performed. The following table describes

- = <variable> : : : :
the results of the arithmetic and logical operations

given various combinations of Real and Integer inputs.

ARG1 and ARG2 represent the types of the actual

| arguments, ARG1' and ARG2’ represent the types of
the arguments after any necessary conversions have

been made.

{

_
21

ALGOL EXPRESSIONS SAIL USER MANUAL

OPERATION ~~ ARGL ARG2 ARGl' ARG2’ RESULT page 14 above), the type of the expression is that of

or the left part variatle This variable may now+ - INT INT INT INT% LL : : : oo

«T° REAL INT REAL REAL REAL participate in any surrounding expressions as if it had

REAL REAL REAL REAL REAL the previous line. Only the « operator is valid in

assignment expressions. The ee operator is valid only

LAND LOR INT INT INT INT INT { staf t level. E lo:EQV XOR REAL INT REAL INT REAL at statement level. Example.
INT REAL INT REAL INT

REAL REAL REAL REAL REAL IF (I=1+1)< 30 THEN |«8 ELSE l~+1;

LSH ROT INT INT INT INT INT

REAL INT REAL INT REAL CASE EXPRESSIONS

INT REAL INT INT INT The expressron
REAL REAL REAL INT REAL

/ INT INT REAL REAL REAL CASE AE OF (EB. El E2, . .., En)
REAL INT REAL REAL REAL

INT REAL REAL REAL REAL ee

REAL REAL REAL REAL REAL is equivalent to:

MOD DIV INT INT INT INT INT IF AE=0 THEN EO
REAL INT INT INT INT ELSE IF AE=1 THEN EI

INT REAL INT INT INT ELSE IF AE=2 THEN E2
REAL REAL INT INT INT

ELSE IF AE-n THEN En

» ELSE ERROR
+ If ARG2 1s negative for the operatore I", then the

result is real. The type of the entire expression is therefore that of

EO If any of the expressions E | En cannot be fit

into this mold an error message is issued by the

compiler. Case expressions differ from Case

4.3 - SEMANTICS statements in that one may not use the [nl construct
to number the e€XPressions. Example:

CONDITIONAL EXPRESSIONS QUT(TTY,CASE ERRNO OF("BAD DIRECTORY”,

A conditional expression returns one of two possible "IMPROPER DATA MODE,
“UNKNOWN 1/0 ERROR’,

values depending on the logical truth value of the Co
Boolean expression If the Boolean expression (BE) is “COMPUTER IN BAD MOOD"):

true, the value of the conditional expression is the

value of the expression following the delimiter THEN. If SIMPLE EXPRESSIONS
BE is false, the other value is used. If both expressions Simple expressions are simple only in that they are not
are of an algebraic type, the precise type of the conditional, case, or assignment expressions. There are
entire conditional expression is that of the “THEN part". IN fact some exciting complexities to be discussed with

respect to simple expressions.

Unlike the nested If statement problem, there can be

no ambiguity for conditional expressions, since there is PRECEDENCE OF ALGEBRAIC OPERATORS
an ELSE part In every such expression. Example: The binary operators In SAIL generally follow “normal”

precedence rules. That is, exponentiations are

FOURTHDOWN(YARDSTOGO,YARDLINE, performed before multiplications or divisions, which in
IF YARDLINE< 70 THEN PUNT ELSE turn are performed before additions and subtractions,

roam 90 THEN FIELDGOAL ELSE etc. The bounding operators MAX and MIN are
performed after these operations. The logical

connectives A and v, when they occur, are performed

ASSIGNMENT EXPESSIONS last (Abefore Vv). The order of operation can be
The somewhat weird syntax for an assignment changed by including parentheses at appropriate
expression (it 1s equivalent to that for an assignment points.

statement) 1s nonetheless accurate: the two function

Identically as far as the new value of the left part In an expression where several operators of the same

variable Is concerned. The difference is that the value precedence occur at the same level, the operations

of this left part variable is also retained as the value are performed from left to right. See page 23 for

of the entire expression. Assuming that the special evaluation rules for logical connectives.

assignment itself is legal (following the rules given in

22

L
SAIL USER MANUAL ALGOL EXPRESSIONS

-

TABLE OF PRECEDENCE there is never any danger of attempting to extract the

N square root of a negative X, since the failure of the
. first test testifies to the falsity of the entire

1 “re nD LOR HoT expression -- the SQRT routine is not even called in
MAX MIN this case.

=f <<>>

mY ’A" (AND)

ha EXPRESSION EVALUATION RULES If a disjunctive expression has as its major connective
SAIL does not evaluate expressions in a strictly left- the logical connective "A", the expression has the
to-right fashion. If we are not constrained to a left-to- logical value TRUE if both of its disjuncts are TRUE;
right evaluation, (as is ALGOL 6), we can in some FALSE otherwise. Again, if the first disjunct is FALSE
cases produce considerably better code than a strict a logical value of FALSE is obtained for the entire
left-to-right scheme could achieve. Intuitively, The expression without further evaluation.

| essential features (and pitfalls) of this evaluation rule .
LL can be illustrated by a simple example: ~ (NOT)

The unary Boolean operator = applied to an argument

BE(a relational expression, see Syntax) has the value

be~2.6: TRUE if BE is false, and FALSE if BE is true. Notice

| c=b+ (be bo); that ~A 1s not the bitwise complement of A, if A is an
algebraic value. If used as an algebraic value, -A is

The second statement is executed as follows: divide b simply 0 if A+0 and some non-zero Integer otherwise.

[by 2 and assign this value (1.3) to b. Add this value) }to b and assign the sum to c. Thus c gets 2.6. If the <><2=# (RELATIONS)
expressions were evaluated in a strictly left-to-right it any of the binary relational operators is
manner, ¢ would get 2.6 t 1.3. encountered, code is produced to convert any String

§ arguments to Integer numbers. Then type conversion
The evaluation scheme can be stated quite simply: Is done as it is for the t operations (see page 21. The
code is generated for the operation represented by a values thus obtained are compared for the indicated
BNF production when the reduction of that BNF condition. A Boolean value TRUE or FALSE is returned

| oroduction takes place. That is, b t (be«b/2) isnt as the value of the expression.. Of course, if this
reduced until after (b<b/2) is reduced, so the smaller expression is used in subsequent arithmetic operations,
expression gets done first. a conversion to integer is performed to obtain an

(integer value.

L v" (OR)
If an algebraic expression has as its major connective MAX MIN

| the logical connective "V', the expression has the A MAX B (where A and B are appropriate
logical value TRUE (arithmetic value some non-zero expressions -- see the Syntax) has the value of the

i integer) if either of its conjuncts (the expressions larger of A and B (in the algebraic sense). Type
surrounding the "v*) is true: FALSE otherwise. AvB conversions are performed as if the operator were +.
does NOT produce the bit-wise Or of A and B if they 0 MAX X MIN 10" is X if £<X< 10, 0 if X<B, 10 if

i - are algebraic expressions. Truth values combined by x>18.numeric operators will in general be meaningless (use A.

the operators LOR and LAND for bit operations), += (ADDITION AND SUBTRACTION)
The t and - operators will do integer addition

8 The user should be warned that in an expression (subtraction) IT both arguments are Integers (orcontaining logical connectives, only enough of the converted to integers from strings); otherwise, rounded
. expression is evaluated (from left to right) to uniquely Real addition or subtraction, afier necessary

i determine its truth value. Thus in the expression conversions, is done.

- (J<3 v (KeK+1) > 8), LAND LOR XOR EQV LNOT
LAND, LOR, XOR, and EQV carry out bit-wise And, Or,

Exclusive Or, and Equivalence operations on their

K will not be incremented if J is less than 3 since the arguments. No type conversions are done for these
Ce entire expression is already known to be true. functions. The logical connectives A and v do not have

Conversely in the expression this effect -- they simply cause tests and jumps to be

(X 30 A SQRT(X)>2) compiled. The type of the result is that of the first| operand. This allows expressions of the form X LAND
777777777, where X is Real, if they are really

desired.

23

ALGOL EXPRESSIONS SAIL USER MANUAL

The unary operator LNOT produces the bitwise number of multiplications and additions is performed to
complement of its (algebraic) argument. No type produce an “exact” answer if Y is a positive integer.

conversions (except strings to integers) are performed Otherwise a routine is called to approximate

on the argument. The type of the result (meaningful or ANTILOGY LOG X). The result has the type of X in
not) is the type of the argument. the fortner case. It is always of type Real in the latter.

"+/7." (MULTIPLICATION AND DIVISION) SUBSTRINGS

The operatron (multiplication), like t and -, represents A String primary which Is qualified by a substring
Integer multiplication only if both arguments are specification represents a part of the specified string.
Integers; Real otherwise. Integer multiplication uses the STIX FOR Y] represents the Xth through the (XtY-
IMUL tnachine Instruction -- no double-length result is 1)th characters of the String ST. STIX TO YI
available. represents the Xth through Yth characters of ST.

The/ operator (division) always does rounded Real Consider the STIX TO YI case. If Y >LENGTH(ST),

division, after converting any Integer arguments to (LENGTH is a runtime which returns the number of
Real. characters in the string - see page 41)

Y « LENGTH(ST); if Y<@,Y<@; in either case the right
The 7 operator has the same type table as t, -, and *. half of the global Integer _SKIP_ is set to TRUE. If X <
It performs whatever division is appropriate. 1 itisset to 1. If X > (the modified) Y, it is set to

Y+1 (null string guaranteed). In either case the left
DIV MOD half of _SKIP_ is made TRUE. The STIX FOR VY!

DIV and MOD force both arguments to be integers operation is converted to the STIX TO Y! case before
before dividing. X MOD Y is the remainder after X DIV the substring operation is performed.
Y is performed: ~

To examine the above conditions, declare EXTERNAL

X MOD Y = X =(X DIV Y)¥Y INTEGER _SKIP_, clear it, and look at it after any
interesting substring operation.

LSH ROT

LSH and ROT provide logical shift operations on their oo’ (SPECIAL LENGTH OPERATOR)
first arguments. If the value of the second argument This special primary construct is valid only within
Is positive, a Shift or rotation of that many bits to the substring brackets. It is an algebraic value
left 1s performed. If it is negative, a right-shift or representing the length of the most immediate string
rotate is done. To obtain an arithmetic shift (ASH) under consideration. Example:
operation, multiply or divide by the appropriate power

of 2. the compiler will change this operation to a shift A[4 to co] throws out the first 3 characters
operation of A.

"&" (CONCATENATION) A[3 for Bleo- 1 for 111 uses the next to
This operator produces a result of type String. It is the last character of string B as
the String with length the sum of the lengths of its the number of characters for the
arguments, containing all the characters of the second A substring operation.

) string concatenated to the end of all the characters of
the first. The operands will first be converted to FUNCTION DESIGNATORS

strings if necessary as described in page 21 above. A function designator defines a single value. This value

Numbers can be converted to strings representing is produced by the execution of a typed user

their external forms (and vice-versa) through explicit Procedure or of a typed execution-time routine (See
calls on execution time routines like CVS and CVD chapters 7 and 9 for execution-time routines). For a

(see page 3i below). NOTE: Concatenation of function designator to be an algebraic primary, its
constant strings will be done at compile time where Procedure must be declared to have an algebraic
possible. For example, if SS is a string variable, type Untyped Procedures may only be called from
SS&'12&15 will resuit in two runtime concatenations, Procedure statements (see page 18). The value

while SS&('12&'15) will result in one compile time obtained from a user-defined Procedure is that
concatenation and one runtime concatenation, provided by a Return Statement within that Procedure.

If the Procedure does not execute a Return Statement,

"T" (EXPONENTIATION) the value might be anything at all. A Return Statement

A factor is either a primary or a primary raised to a Nn a typed Procedure must mention a value (See page
power represented by another primary. As usual, 17)
evaluation 1s from left to right, so that ATBTC is
evaluated as (AIBC. In the factor XTY, a suitable The rules for supplying actual parameters in a function

designator are identical to those for supplying

parameters in a procedure statement (see page 18).
24

SAIL USER MANUAL ALGOL EXPRESSIONS

UNARY OPERATORS

The unary operator ABS is valid only for algebraic

guantities It returns the absolute value of its

argument

-X IS equivalent to (0-X). No type conversions are

; | performed.
 _.

MEMORY AND LOCATION

One's core image can be considered a giant one

dimensional array, which may be accessed with the
MEMORY construct.

MEMORY [<integer expression>]

L One can store and retrieve from the elements of
MEMORY just as with any other array. However, when

: retrieving from MEMORY, one can specify the type of

the accessed element by including type declarator
reserved words after the <integer expressions. For
example:

| . . += MEMORYI[X, INTEGER]
| . . += MEMORYI[X, REAL]

... = MEMORY[X, ITEMVAR]
COMMENT items and sets are part of Leap;

...= MEMORYIX, SET]

... =MEMORY[X, INTEGER ITEMVAR]
-

Note that one can not specify the contents of memory

{ to be an array or a string.

L LOCATION is a predeclared Sail routine that returns
the index in MEMORY (i.e. the address in core relative

to the starting address of one’s program) of the Sail

construct furnished it. The following is a list of

constructs it can handle and what LOCATION will

return.

f

8 CONSTRUCTx LOCATION(x) RETURNS
variables address of the variable

i array name address of a word containing
the the address of the first

| word of the array header
f

| array element address of that element

procedure name address of the procedures

i entry code
labels address of the label

i

|
—

- 25

ASSEMBLY LANGUAGE STATEMENTS SAIL USER MANUAL

SECTION 5 <simple_address>
= <identifier>

= <literal>

<literal>

=| <constant-expression> |

51- SYNTAX <index-field>

n= <constant-expression>

<opcode>

<code-block> | = <constant-expression>
:= <code-head> <code_tail> «= PDP-_opcode

<code-head>

= <code-begin> 5.2 - SEMANTICS
w= <code-begin> <block-name>

= <code-head> <declarat ion> ;

Within a START-CODE (QUICK-CODE) block,
statements are processed by a small and weak, but

<code_begin> hopefully adequate, assembly language translator.
= START-CODE Each “instruction” places one instruction word into the
+= QUICK-CODE output file. An instruction consists of

<label>:<opcode> <ac_field>, @<simple_addr> (<index>)
<code-tail>

::= <instruction> END

<<instruction> END <block-names or some subset thereof (see syntax). Each instruction
= <Instruction> : <code tails must be followed by a semi-colon.

DECLARATIONS IN CODE BLOCKS

Instruction A code-block behaves like any other block with
._ <addressess respect to block structure. Therefore, all declarations
= <opcode> are valid, and the names given in these declarations
— <opcode>—— will be available only to the instructions in the
: code-block. All labels must be declared as usual.

Labels in code-blocks may refer to instructions which

- <addressess will be executed, or to those which are not really
- addresses instructions, but data to be manipulated by these
— <ac fields instructions (these latter words must be bypassed in
= <AC fields <addresss the code by jump instructions). The user may find it

B easier to declare variables or SAFE arrays as data

areas rather than using labels and null statements. As

<ac fields noted below, identifiers of simple variables are
CL <constant-expression> addresses of core locations. Identif iers of arrays are

addresses of the first word of the array header (see

the appendix on array implementation).

<address>

= <incexed address> PROTECT ACS DECLARATION

'=@ <Indexed-address> PROTECT-ACS <ac#>,..., <acH#>;

<indexed_address> where <ac#> is an integer constant between 0 and

= <simple_address> ' 17, is a declaration. lts effect is to cause Sail not to
= <simple_address>(<index-field>) use the named accumulators in the code it emits for

26

SAIL USER MANUAL ASSEMBLY LANGUAGE STATEMENTS

bo

the block in which the declaration occurred (only 5. Any reference to Strings will result in the

AFTER the declaration). The most common use is with address of the second descriptor word (byte

the ACCESS construct (see below); if one is using pointer) to be placed in the instruction (see the

— accumulators 2, 3, and 4 is a code block, then one appendix on string implementation for an

should declare PROTECT-ACS 2,34 if one is going to explanation of string descriptors).
use ACCESS This way, the code emitted by Sail for

doing the ACCESS will not use accumulators 2, 3, or 6. Accessing parameter of procedures global to

— 4. WARNING: this does not prevent you from the current procedure is difficult. ACCESS
clobbering such ACs with procedure calls (your own <expr>) may be used to return the address of
procedures or Sail’s). However, most Sail runtimes such parameters. ACCESS will in fact do all of

i save their ACs and restore them after the call. the computing necessary to obtain the value of
the expression <eXPr>, then return the address

RESTRICTION: Accumulators P ('17), SP ('16),F (12) of that value (which might be a temporary).
| and 1 are used for, respectively, the system PDL push Thus, MOVE AC, ACCESS(GP) will put the value

L down pointer, the string PDL push down pointer, the of the variable GP in AC, while MOVI AC,
display pointer, and returning results from typed ACCESS(GP) will put the address of the
procedures and runtimes. More about these acs on variable GP in AC. If the expression is an item

page 27. The protect mechanism will not override expression (see Leap), then the item’s number

| these usages, so attempts to protect 1,'12,'16, or 17 will be stored in a temp, and that temp’s
will be futile. address will be returned. The code emitted for

an Access uses any acs that Sail believes are

OPCODES available, so one must include a PROTECT-ACS

i The Opcode may be a constant provided by the user, declaration in a Code block that uses ACCESS
or one of the standard (non I/O) PDP-10 operation if you want to protect certain acs from being
codes, expressed symbolically. If a constant, it should munged by the Access. WARNING: skipping

[take the form of a complete PDP-10 instruction, over an Access won't do the right thing. Forexpressed In octal radix (e.g. DEFINE TTYUUOQO = example,

“5 100000000007;). Any bits appearing in fields

other than the opcode field (first 9 bits) will be OR'ed SKIPE FLAG;

| with the bits supplied by other fields of instructions in Mov Jo. Access 777 LAND INTIN(CHAN));which this opcode appears.

will cause the program to skip into the middle

The Indirect, index, and AC fields have the same of the code generated by the access if FLAG
syntax and perform the same functions as they do in is 0.

- the FAIL or MACRO languages.
START-CODE VERSUS QUICK-CODE

THE <simple addr> FIELD Before your instructions are parsed in a block starting
| with START-CODE, instructions are executed to leave

— 1. If the <address> in an instruction is a constant all accumulators from 0 through ‘15 available for your
(constant expression), it is assumed to be an use In this case, you may use a JRST to transfer

) Immediate or data operand, and is not relocated. control out of the code-block, as long as you do not
leave (1) a procedure, (2) a block with array

~~ 2. If the <address> is an identifier, the machine declarations, (3) a Foreach loop, (4) a loop with a For
address (relative to the start of the compilation) list, or {D) a loop which uses the NEXT construct. In a
is used, and will be relocated to the proper QUICK-CODE block, no accumulator-saving instructions

| value by the Loader. are issued. Ac’s' 13 through ‘15 only are free. In
addition, some recently used variables may be given

3. If the <address> is an identifier which has been the wrong values if used as address identifiers (their
declared as a formal parameter to a procedure, current values may be contained in Ac’s @-'12); and

- addressing arithmetic will be done automatically control should not leave the code-block except by
to get at the VALUE of the parameter. Hence “falling through”.
If the <address> is a formal reference

parameter, the instruction will be of the form WARNING Concerning Default Radix: All integer
-. OP AC@-x('17) where x depends on exactly constants will be expressed in decimal radix unless the

where the parameter is in the stack. If the octal representation is explicitly used.
formal was from a simple procedure, then ‘12

will be used as the index register rather than ACCUMULATOR USAGE IN CODE BLOCKS

- 17. Although we have said that accumulators are “freed”
for your use, this does not imply a complete carte

4. If a literal 1s used, the address of the compiled

constant will be placed in the instruction.

27

{

ASSEMBLY LANGUAGE STATEMENTS SAIL USER MANUAL

blanche Usually this means the compiler saves off INTEGERre.I RETERENCE
values currently stored in the ACs which it wants to STRING TTTT):

remember (the values of variables mostly), and notes BEGIN COMMENT BOOY: ENO
that when the code block is finished, these ACs wil! DEFINE P = '17, SP = '16;

have values In them that it doesn’t care about. START-CODE

However, this is not the case with the following AAT Sa CONTENTIs an integer variable;
accumulators, which are not touched at all by the MOVED 1. S: COMMENT Sisastring variable;

entrance and exit of code blocks: PUSH SP, -1 (1); COMMENT pA Seared as
could have said PUSH SP, S-1:

NAME NUMBER USAGE DP a, COMMENT SSie a string variable:
PUSHJ P, PROT;

P m7 The system push down list pointer. =O
All procedures are called with a

PUSHJ P, PROC and exited gives the same effect as

(usually) with a POPJ P. Use this PROT(3. 141591555);
as your PDL pointer in the code

block, but be sure that its back to

where it was on entrance to the

block by the time you exit.

SP '16 The string push down stack pointer.
Used in all string operations. For

how to do your own string mangling,

see the implementation manual.

F “12 This is used to maintain the

‘display’ structure of procedures.
DO NOT HARM AC F!l Disaster will

result. A more exact description of

its usage may be found in the

appendix on procedures and the

implemention manual.

CALLING PROCEDURES FROM INSIDE CODE BLOCKS

To call a procedure from inside a code block, say

procedure PROT, say PUSHJ P, PROT. If the

procedure requires parameters, PUSH P them in order

before you PUSHJ P (le. the first one first, the second

next, and the last right before the PUSHJ). If the formal
ISa reference, push the address of the actual onto the

P stack If the formal is a value string, push onto the

SP stack the two words of the string descriptor (see

the appendix on string implementation for an

explanation of string descriptors). If the formal is a
reference string, simply PUSH P the address of the

second word of the string descriptor (e.g. PUSH P, [S]).

If the procedure is typed, it will return is value in

AC1 (apointer to the second word if the procedure is
a string procedure). More information can be found in
the implementation manual and the appendix on
procedure implementation.

NOTE: procedures will change your accumulators

unless the procedure takes special pains to save and

restore them

EXAMPLE:

28

SAIL USER MANUAL BACKTRACKING

L SECTION 6 var i>
= <variable>

[BACKTRACKING += <array_ident ifier>
| <context-variable>

i = <variable>
<array_identifier>

5i- INTRODUCTION -= <identifier>
|

Backup or backtracking is the ability to “back up’
execution to a previous point. sA|L facilitiates <context-element>

— backtracking by allowing one to REMEMBER, FORGET, -= <context_variable> : <variable>
or RESTORE variables in the new data type,

i CONTEXT.

| 6.2 - SYNTAX 6.3 - SEMANTICS
|—_—

THE CONTEXT DATA TYPE

| <context-declaration> A context Is essentially a storage place of undefined
Lo n= CONTEXT <id-list> capacity When we REMEMBER a variable in a context,

= CONTEXT ARRAY <array-list> we remember the name of the variable along with its
= CONTEXT ITEM <id-list> current value (if an array, values). If we remember a
= CONTEXT ITEMVAR <id-list> value which we have already remembered in the

named context, we destroy the old value we had

remembered and replace it with the current value of

the variable. Values can be given back to variables

<backtracking-statement> with the RESTORE statement.

w= <rem-keyword> <variable_list>

<rem_preposition> <context-variable> Context variables are just like any other variables with
respect to scope. Also, at execution time, context

variables are destroyed when the block in which they

— <rem-keyword> were declared is exited in order to reclaim their space.

= REMEMBER Context arrays, items, and itemvars are legal (items
= FORGET and itemvars are part of Leap). NEW(<context

- = RESTORE variable>) is legal (NEW is also part of Leap).
|S—

RESTRICTIONS:

<rem-preposition>

w= IN 1. Context procedures do not exist. Use

— = FROM context itemvar procedures instead.

2. Context variables may only be passed by

<variable_list> reference to procedures (i.e. contexts
— “= <vari_list> are not copied).

n= (<vari_list>)

= ALL 3 Contexts may not be declared “GLOBAL”

LL = <context-variable> (shared between jobs - Stanford only).

4. +,t/, and all other arithmetic operators

<vari_list> have no meaning when applied to Context
n= svar» variables. Therefore, context variable

i= <varl_list>, <vari> expressions always consist only of a
context variable.

29

-

EACKTRACKING SAIL USER MANUAL

The empty context IS NULL-CONTEXT. Context BEGIN ‘BLOWS UP’
variables are Initialized to NULL-CONTEXT at program CONTEXT Jl;

entry INTEGER J;
BEGIN INTEGER ARRAY L[1:J};

REMEMBER J,L IN J1;
REMEMBER END:
To save the current values of variables, list them, RESTORE ALL FROM Jl;

with ot without surrounding parentheses, in the END “BLOWS UP”;

remember statement. All of an array will be FORGET
remembered if subscripts of an array are not used, : :

Co : The forget statement just deletes the variable from
otherwise, only the value indicated will be remembered.

the context without touching the current variable’s
If a variable has already been remembered in context, : :

value. Variables remembered in a context should be

its value is replaced by the current value If one wants : ; :

to uodate all the variables so far remembered in this forgotten before the block in which the variables were
Ne one mav sa declared is exited. FORGET ALL FROM XI and

y say FORGET CNTXTI FROM CNTXT2 work just as the
REMEMBER ALL IN <contexts similar Restore statements work, only the variables are

Forgotten instead of Restored.

If you have several contexts active, IN-CONTEXT

The runtime boolean IN-CONTEXT returns true if the

REMEMBER CNTXTI IN CNTXTZ specified variable 1s in the specified context. For
details, see page 43.

will note the variables Remembered in CNTXTI, and

automatically Remember their CURRENT values in CONTEXT ELEMENTS =
CNTXT2. Context elements provide a convenient method of

accessing a variable that is being remembered in a

RESTORE context. Examples of context elements:

To restore the values of variables that were saved in CNTXTVARI © SOME.VARI
a context, list them (with or without surrounding DATUM(CNTXT ITEM) . SOME-VARI
parentheses) in a restore statement. Restoring an CNTXT_AR[2,3]: ARRY[4]
array without using subscripts causes as much of the DATUM(CNTXT _VARI : TMVR)
array that was remembered to be restored magically CNTXT-VARI : DATUM(TMVR) -
to the right locations In the array. You can remember

a whole array, then restore all or selected parts (e.g A context element is syntactically and semantically
RESTORE All 2] FROM IX). If you remembered only equivalent to a variable of the same type as the
ALL 2] then restoring A will only update All 2] variable foliowing the colon. For the complete syntax
RESTORE ALL IN IX will of course restore all the Of Variables, see page 88. Assignments to context
variables from IX. RESTORE CNTXT! FROM CNTXT2 elements change the Remembered value (i.e. XD;

| REMEMBER X IN C;C:X<6; RESTORE X FROM C; will
will act like a list of the variables in ONTXTI was ~~" = °° © 7 7c)Vv wi Vv
presented to the Restore instead of the identifier

CNTXT 1.
As w ith the Restore statement, one may not use

- Context Elements of variables destroyed by block

Astute Leap user will have noted that the syntax for exits X var y y
varrables includes Datum(typeditemvar) and similar
things. If one executes REMEMBER DATUM

(1(typed-item-expression) IN CNTXT, then RESTORE RESTRICTIONS) One may not Remember Context
DATUM (<item expression 25) FROM CNTXT will give Elements. (2)Passing Context Elements by reference
an error message unless the to procedures that change contexts is dangerous.
<typed_item expression_2> returns the same item as Namely, if the procedure Forgets the element that was
“t od-item-ex ression-|s passed to it by reference, then the user is left with a
yp P dangling pointer. A more subtle variation of this

WARNING! Restoring variables that have been disaster occurs when the Context element passed is an
destroyed by block exits will give you garbage. For array element. If the procedure Remembers the array
example, the following will blow up: that that array element was a part of, the formal that

had the array element Context Element passed to it is

left with a dangling pointer.

3d

SAIL USER MANUAL INPUT/OUTPUT ROUTINES

SECTION 7 2) If the @ character precedes the sample
identifier, the argument will be called by

| INPUT/OUTPUT ROUTINES reference. Otherwise it is a value parameter.
-

Example:

“RESULT” « SCAN (@"SOURCE", BREAK-TABLE, ®BRCHAR)

IS a predeclared procedure with the implicit

| declaration:7 1 - EXECUTION TIME ROUTINES IN GENERAL

L EXTERNAL STRING PROCEDURE SCAN
(REFERENCE STRING SOURCE;

SCOPE INTEGER BREAK-TABLE;
- _— BRCHAR);

: _ A large set of pre-declared, built-in procedures and REFERENGE INTEGER
functions have been compiled into a library

permanently resident on the system disk area
(SYS.LIBSAn REL - n is the current version number), 7.2 -//O CHANNELS AND FILES
and optionally into a special sharable write-protected

high segment. The library also contains programs for

managing storage allocation and initialization, and for

certain String functions. If a user calls one of these

procedures, a request is automatically made to the OPEN
loader to include the procedure, and any other routines

| itmight need, in the core image (or to link to the high OPEN(CHANNEL, “DEVICE”, MODE,
segment). These routines provide input/output (I/O) NUMBER-OF-INPUT-BUFFERS,

facilities, Arithmetic-String conversion facilities, array- NUMBER-OF-OUTPUT-BUFFERS,

handling procedures and miscellaneous other @COUNT, @BRCHAR, eEOF);
, Interesting functions.

SAIL input/output operates at a very low level in the

The remainder of this section and the next describes following sense: the operations necessary to obtain

the calling sequences and functions of these routines. devices, open and close files, etc. , are almost directly
analogous to the system calls used in assembly

NOTATIONAL CONVENTIONS language. OPEN is used to associate a channel number

A short-hand is used in these descriptions for (@ to 17) with a device, to determine the data mode
specifying the types (if any) of the execution-time of the I/O to occur on this channel (character mode,

routines and of their parameters. Before the binary mode, dump mode, etc.), to specify storage

i description of each routine there is a sample call of requirements for the data buffers used in thethe form operations, and to provide the system with information

to be used for input operations.

VALUE « FUNCTION (ARGI, ARG2, . . . ARGn)

| CHANNEL is a user-provided channel number which
- + VALUE | ted. th q tvoed will be used in subsequent I/O operations to

! q ° oe ’ o Do ure o o unTe identify the device. CHANNEL may range from 0
: and may only be called at statement level (page 1S). to 15 ('17). If some file is already open on this
: channel, a RELEASE will be performed for that

The t f VALUE d th nts may be
— © ypes ©! an © argume y channel before the OPEN is executed.

determined using the following scheme:

| . DEVICE must be a String (i.e. “TTY”, 'DSK") which is1)If" characters surround the sample identifier 9 (
: : Co recognizable by the system as a physical or
— (which is usually mnemonic in nature) a : :

: logical device name.
String argument is expected. Otherwise the
argument is Integer or Real. If it is important

9 9 P MODE 1s the data mode for the I/O operation. MODE
which of the types Integer or Real must be

: : 0 will always work for characters (see page
— presented, it will be made clear in the : .

a. 35 and page 36). Modes 8 (18) and 15
description of the function. Otherwise the ,

("17) are applicable for binary and dump-mode
, compiler assumes Integer arguments (for

those functions which are predeclared). The operations using the functions WORDIN.Pb WORDOUT, ARRYIN, or ARRYOUT (see page
— user may pass Real arguments to these :

: : 36 and following). For other data modes, see
routines by re-declaring them in the blocks

inwhich the Real arguments are desired.

- 31

INPUT/OUTPUT ROUTINES SAIL USER MANUAL

[Moorer]. If any of bits 18-21 are on in the 1) If EOF 1S 0 when OPEN is called, a SAIL error

MODE word, the I-O routines will not print error message willbe invoked if the device is not
messages when data errors occur which present avallable. The user will be given the options

the corresponding bits as a response to the of retrying or terminating the operation. If
GETSTS UUO. Instead, the GETSTS bits will be EOF is non-zero when OPEN is called, it will

reported to the user as described under EOF be set to 0 if the OPEN is successful.

below. If bit 23 is on, no error message will be Otherwise it will not be changed. In this case

printed if an invalid file name specification is (EOF non-zero on entry) control will be
presented to LOOKUP, ENTER, or RENAME, a returned to the user. This flag may then be

code identifying the problem will be returned tested.

(see page 33 and following, page 33 for

details). If you don’t understand any of this, 2) EOF will be made non-zero (TRUE! if an end

leave all non-mode bits off in the MODE word. of file condition, or any error condition among

those enabled (see MODE, above) is detected

NUMBER-OF-1 INPUT/CUTPUT}_BUFFERS specifies the during any SAIL input/output operation. It will
number of buffers to be reserved for the 1/0 be 0 (FALSE) on return to the user otherwise.

operations (see [Moorer] for details). At least Subsequent inputs after an EOF return will
one buffer must be specified for input if any return non-zero values in EOF and a null

input is to be done in modes other than ' 17; String result for INPUT. For ARRYIN a 0 is
similarly for output. If data is only going one returned as the value of the call after end of I
direction, the other buffer specification should file is detected. If EOF is TRUE after such

be 0. Two buffers give reasonable performance an operation, it will contain the entire set (18
for most devices-i 1 is sufficient for a TTY, more bits) of GETSTS information in the left half.

are required for DSK if rapid operation is The EOF bit is ‘20000, and is the only one

desired). The left half of the BUFFER you’ll ever see if you haven't specially

parameter, if non-zero, specifies the buffer size enabled for others. A summary of the enable

for the I/O buffers. Use this only if you desire bits, the EOF and error bits, and their

non-standard sizes. meanings is contained in the Appendix on

page 99.

The remaining arguments are applicable only for INPUT

(String input). They will be ignored for any other Assembly Language Approximation to OPEN:

operations (although their values may be changed by
the Open function). INIT CHANNEL,MODE

SIXBIT /DEVICE/

: : : : : XWD OHED,IHED
COUNT designates a variable which will contain the JRST <handle error conditions

maximum number of characters to be read from JUMPE <NUMBER_OF_OUTPUT_BUFFERS>GETIN

"DEVICE" in a given INPUT call (see page 3. SUTEUr CHANNEL NUMBER _OF _OUTPUT_BUFFERS
page 33). Fewer characters may be read If a gery. ype <NUMBER.OFINPUT BUFFERS”,DONE
break character is encountered or if an end of «allocate buffer spaces
file is detected. The count should be a variable INEUF ~~ CHANNEL, NUMBER-OF-INPUT-BUFFERS

or constant (riot an expression), since its address DONE: <mark channel open -- internal bookkeeping>
is stored, and the temporary storage for an <return>
expression may be re-used. OHED: BLOCK 3

IHED: BLOCK 3

BRCHAR designates a variable into which the break
character (see INPUT and BREAKSET again) will
be stored. This variable can be tested to

determine which of many possible characters ——CLOSE, CLOSIN, CLOSOQ—

terminated the read operation.

CLOSE (CHANNEL)

EOF designates a variable to be used for two CLOSIN (CHANNEL)
purposes: CLOSO (CHANNEL)

The input (CLOSIN} or output{CLOSO) side of the
specified channel closed: all output is forced out

(CLOSO): the current fire name is forgotten. However
the device is still active; no OPEN need be done again

before the next input/output operation. Always CLOSE

output files: SAIL exit code will deassign the device,

32

r SAIL USER MANUAL INPUT/OUTPUT ROUTINES

but does not force out any remaining output; you must See (Moorer] for the meaning of these things if you do

do a CLOSE when writing on a disk file to have the not immediately understand.
| new file (or a newly edited old file) entered on your
— User File Directory. No INPUT, OUT, etc. may be given SAIL is not as choosy about the characters it allows as

to a directory device until an ENTER, LOOKUP, or PIP and other processors are. Any character which is

RENAME has been issued for the channel. not "°° I, orl" wil be passed on. Up to 6

| characters from NAME, 3 from EXT, P, or PN will be
CLOSE is equivalent to the execution of both CLOSIN used -- the rest are ignored.
and CLOSO for the channel.

If the LOOKUP or ENTER operation fails (see [Moorer])

then variable FLAG may be examined to determine the

cause. The left half of FLAG will be set to ‘777 777

—-— GETCHAN —////™™/™/™/™/™8™8™8™ (Flag has the logical value TRUE). The right half will

A contain the code returned by the system giving the

_ VALUE « GETCHAN cause of the failure. An invalid file specification will
return a code of ' 10. In this case, if the appropriate

The number of some channel not currently open is bit (bit 23, see OPEN) was OFF in the MODE

returned. -1 is returned if all channels are busy. parameter of the OPEN, an error message will be

i printed; otherwise, the routine just returns without
performing the UUO.

[—RELEASE ————MMM8M8Mm8m8m8™ If the LOOKUP or ENTER succeeds, FLAG will be setto zero (FALSE).
RELEASE (CHANNEL)

[If an OPEN has been executed for this channel, aCLOSE is now executed for it. The device is —————— RENAME—————————————

dissociated from the channel and returned to the

resource pool (unless it has been assigned by the RENAME(CHANNEL , “FILE-SPEC”,

| monitor ASSIGN command). No I/O operation may refer PROTECTION , @FLAG),to this channel until another OPEN denoting it has been

executed. The file open on CHANNEL is renamed to FILE-SPEC (a

NULL file-name will delete the file) with read/write

i Release is always valid. If the channel mentioned is not protection as specified in PROTECTION (nine bits,
currently open, the command is simply ignored. described in [Moorer]). FLAG is set as in LOOKUP and

ENTER.

L ————t©6©KUP, ENTER —m—————//™/™
7.3- BREAK CHARACTERS

|] LOOKUP (CHANNEL, “FILE” , @FLAG);

3 ENTER (CHANNEL , “FILE” , @FLAG);
Before inpul or output operations may be performed

: for a directory device (DECtape or DSK) a file name ————BREAKSET ———————————
- must be associated with the channel on which the

. device has been opened (see page 31). LOOKUP BREAKSET(TABLE, “BREAK-CHARS” , MODE);
names a filewhich is to be read. ENTER names a file

which is to be created or extended (see [Moorer]). Both Character input/output is done using the String

[operations are valid even if no filename is really features of SAIL. In fact, I/O is the chief justification
necessary. It is recommended that an ENTER be for the existence of strings in the language.

performed after every OPEN of an output device so

[that output not normally directed to the DSK can be String input presents a problem not present in Stringdirected there for later processing if desired. The output. The length of an output String can be used to
format for a file name string is determine the number of characters written. However

it is often awkward to require an absolute count for

i "NAME", or } input. Quite often one would like to terminate input, or"NAMELP PNT" o “break”, when one of a specified set of characters is
“NAME. EXT[P,PN]" encountered in the input stream. In SAIL, this

i capability is implemented by means of the BREAKSET,
33

INPUT/OUTPUT ROUTINES SAIL USER MANUAL

INPUT, TTYIN, and SCAN functions. The value of Input string It will not appear again in

TABLE may range from 1 to 18. Thus up to 18 subsequent inputs.

different sets of break specifications may exist at

once. Which set will be used is determined by the "R" (Retain) The break character does not
TABLE parameter in an INPUT or SCAN function call. appear in the resultant INPUT or SCAN

The function of a given BREAKSET command depends String, but will be the first character
on the MODE, an integer which is interpreted as a processed in the next operation referring to
right-justified ASCII character whose value is intended this input source (file or SCAN String).

to be vaguely mnemonic. BREAKSET commands can be

partitioned into 3 groups according to mode: For disk and tape fiies Using the standard editor
format, line numbers present a special problem. A line

GROUP 1 -- Break character specifications number is a word containing 5 ASCil characters
representing the number in bits 0-34, with a “1” in bit

MODE FUNCTION 35 No other words in the file contain I's in bit 35.

Since String manipulations provide no way for

"I" (by Inclusion) The characters in the distinguishing line numbers from other characters,
BREAK-CHARS String comprise the set of there must be a way to warn the user that line

characters which will terminate an INPUT (or numbers are present, or to allow him to ignore them

SCAN). entirely.

x (by eXclusion) Only those characters (of the The third group of MODEs determines the disposition
possible 128 ASCII characters) which are of these line numbers. Again, the “BREAK-CHARS”
NOT contained in the String BREAK-CHARS argument is ignored:
will terminate an input when using this table.

Group 3 -- Line number disposition
"0" (Omit) The characters in “BREAK-CHARS”

will be omitted (deleted) from the input MODE FUNCTION

string.

P" (Pass -- default) Line numbers are treated as
Any I" or "X" command completely specifies the break any other characters. Their identity is lost;
character set for its table (i.e., the table is reset they simply appear in the result string.
before these characters are stored in it). Neither will

destroy the omitted character set currently specified "N (No numbers) No line number (or the TAB

for this table. Any ‘0 command completely specifies which always follows it in standard files) will

the set of omitted characters, without altering the appear in the result string. They are simply
break characters for the table in question. If a discarded.

character is a break-character, any role it might play

as an omitted character is sacrificed. LT (Line no. break) The result String will be

terminated early if a line number is

The second group of MODEs determines the disposition encountered. The characters comprising the

- of break characters in the input stream. The line number and the associated TAB will

"“BREAK-CHARS” argument is ignored in these appear as the next 6 characters read or
commands, and may in fact be NULL: scanned from this character source. The

user's break character variable (see page

GROUP 2 -- Break character disposition 3 1 and page 35) will be set to -1 to
indicate a Ine number break.

" MODE FUNCTION

E" (lee Erman’s very own mode) The result

"s’ (Skip -- default mode) After execution of an String is terminated on a line number as with
'S" command the break character will not “L”, but neither the line number nor the TAB
appear either in the resultant String or in following it will appear in subsequent inputs.

subsequent INPUTs o r SCANs-- t h e The line number word, negated, is returned
character Is “skipped”. Its value may be in the user's (integer) BRCHAR variable.
determined after the INPUT by examination

of the break character variable (see page "0" (Display) If the TTY is a DPY, each line

31) number from any input file will be displayed
(along with a page number) on the rrght-hand

“A” (Append) The break character (if there is side of the screen. This mode really applies

one -- see page 3 1 and page 3D) is to all input operations after the 'D" operand
appended, or concatenated to the end of the appears In any Breakset call. There is no

way to turn it off.

34

| SAIL USER MANUAL INPUT/OUTPUT ROUTINES
Once a break table is set up, it may be referenced in SETBREAKs which would be required for the user to

: an INPUT, TTYIN or SCAN call to control the scanning initialize them:

| operation.
DELIMS = ‘15 & ‘12 & ‘40 & ‘11 & “14;

Example: Comment carriage return, line feed, space,
tab, form feed;

| LETTS <= “ABC . .. Zabc . . . 2_";
| To delitnit a “word”, a program might wish to input DIGS« “0123456789”;

characters until a blank, a TAB, a line feed, a comma, SAILID ~ LETTSEDIGS;

or a semicolon is encountered, ignoring line numbers. SETBREAK(17 12. 15 _siper
Assume also that carriage returns are to be ignored, SETBREAK{ 2: "12, NULL, "INA");
and that the break character is to be retained in the SETBREAK(3, DELIMS, NULL, “XNR");

character source for the next scanning operation: STRAY AL or Eh
SETBREAK(6, LETTS, NULL, “XNR” J

| BREAKSET(DELIMS," ;"&TABSLF,""); SETBREAK(7, DIGS, NULL, “XNR”)
Comment break on any of these; SETBREAK(8, DIGS, NULL, “INS”)

— a SETBREAK(9, DIGS, NULL, "INR"
BREAKSET(DELIMS,’ 15,"0"); SETBREAK (10, DIGS&+-@. ", NULL, “XNR®);

Comment ignore carriage return; SETBREAK (11, DIGS&"+-@.", NULL, “INS”)

_— SETBREAK (12, DIGS&"+-@.", NULL, "INR")
BREAKSET(DELIMS,NULL,"N"); SETBREAK (13-18, NULL, NULL, NULL)

Comment ignore line numbers;

BREAKSET(DELIMS,NULL,"R");

i Comment save break char for next time; 7.4 -1/0 ROUTINES

{

| ————SEBREK —4m8¥——"F———
ee

SETBREAK(TABLE , “BREAK-CHARS” , ———————————INPUT

“OMIT-CHARS” , “MODES”)

i “RESULT” «INPUT(CHANNEL, BREAK-TABLE);SETBREAK is logically equivalent to the SAIL

statement: A string of characters is obtained for the file open on
CHANNEL, and is returned as the result. The INPUT

| a, Loo OER operation is controlled by BREAK-TABLE (see pageGER 33) and the reference variables BRCHAR, EOF, and
IF LENGTH(OMIT__CHARS)> 0 THEN COUNT which are provided by the user in the OPEN

BREAKSET(TABLE,OMIT_CHARS,"0"); function for this channel (see page 31). Input may be

L FOR 1-1 STEP 1 UNTIL LENGTH(MODES) DO terminated in several ways. The exact reason for
BREAKSET(TABLE,BREAK_CHARS,MODES[I FOR 1) termination can be obtained by examining BRCHAR and

EOF:

END “SETBREAK”

| EOF BRCHAR
—

#{ 0 End of file or an error (if enabled, see

| —SITDBRK —@@@8@™— page 31) occurred while reading. The
- result is a String containing all non-

. STDBRK (CHANNEL J; omitted characters which remained in

the file when INPUT was called.

| Eighteen breakset tables have been selected as
- representative of the more common input scanning 0 0 No break characters were encountered.

operations. The function STDBRK initializes the The result is a String of length equal

| breaksel tables by opening the file SYS:BKTBL.BKT to the current COUNT specifications
| on CHANNEL and reading in these tables. The user for the CHANNEL (see page 31).
- may then reset those tables which he does not like to

something he does like. 0 <@ A line number was encountered and the

; | break table specified that someone
The eighteen tables are described here by giving the wanted to know. The result String

— contains all characters up to the iine
number. If mode "L" was specified in

35

INPUT/OUTPUT ROUTINES SAIL USER MANUAL

the Breakset setting up this table, bit detected and the program is enabled for it; 0
35 Is turned off in the line number otherwise

word so that it will be input next time.

-1 1s placed in BRCHAR. If mode E’
was specified, the line number will not

appear In the next input String, but its — LINO—————————
negated ASCII value, complete with

low-order line number bit, will be found LINOUT{ CHANNEL , NUMBER
in BRCHAR.

ABS(NUMBER) mod 100,000 is converted to a 5

0 > A break character was encountered. character ASCII string. These characters are placed
The break character is stored in IN a single word in the output file designated by

BRCHAR (an INTEGER reference CHANNEL with the low-order bit (line-number bit)

variable, see page 31) as a right- turned on. A tab is inserted after the line number.

justified 7-bit ASCII value. It may also Mode 0 or 1 must have been specified in the OPEN

be tacked on to the end of the result (page 3 1) for the results to be anywhere near

String or saved for next time, satisfactory. EOF is set as in OUT.
depending on the BREAKSET mode (see
page 33).

If break table 0 is specified, the only criteria for —WORDIN—/—mm™m™—
termination are end of file or COUNT exhaustion. The

routine is somewhat faster operating in this mode. VALUE « WORDIN(CHANNEL)

The next word from the file open on CHANNEL is

returned. A 0 is returned, and EOF (see page 31l,page
— SCAN —mM8M8M8M—— 3D) set, when end of file or error is encountered. This

operation is performed in buffered mode or dump

“RESULT” « SCAN (@“SOURCE” , mode, depending on the mode specification in the
BREAK-TABLE , @BRCHAR) OPEN. See the warning about Dump Mode 10, page

37.

SCAN functions identically to INPUT with the following

except ions:

1. The source is not a data file but the String ————ARRYINo—m7¥X——8@MMM

SOURCE, called by reference. The String

SOURCE is truncated from the left to ARRYIN (CHANNEL , eLOC | HOW-MANY);
produce the same effect as one would

obtain if SOURCE were a data file. The HOW-MANY words are read from the device and file

disposition of the break character is the open on CHANNEL, and deposited in memory starting
same as it is for INPUT. at location LOC. Buffered-mode input is done if

MODE (see page 3 1l)is'10 or' 14. Dump-mode input
2. BRCHAR is directly specified as a is done if MODE is '16 or' 17. Other modes are

parameter. INPUT gets its break character illegal See the warning about Dump Mode 10, page

variable from a table set up by page 31, 37. If an end of file or enabled error condition

occurs before HOW-MANY words are read, the EOF

3 Line number considerations are irrelevant. variable (see page 31) is set to the enabled bits in its
left half, as usual. Its right half contains the number of

words actually read. EOF will be 0 if the full request

is satisfied.

OUT

OUT(CHANNEL,"STRING"}

— WORDOUT—m————

STRING is output to the file open on CHANNEL. If the

device is a TTY, the String will be typed immediately. WORDOQUT(CHANNEL , VALUE);
Buffered mode text output is employed for this

operation. The data mode specified in the OPEN for VALUE is placed In the output buffer for CHANNEL. An
this channel must be 0 or 1. The EOF variable will be OUTPUT 1s done when the buffer is full or when a

set non-zero as described In page 31° if an error is CLOSE or RELEASE is executed for this channel. Dump

36

4

SAIL USER MANUAL INPUT/OUTPUT ROUTINES

I.

mode output will be done if dump mode is specified in ————————— REALIN, INTIN—4¥—
the OPEN (see page 3 1). EOF is set as in OUT. See

i the warning about Dump Mode 10, page 37. VALUE «REALIN(CHANNELVALUE «INTIN(CHANNEL);

{ Number input may be obtained using the functions

| —— ARRYOUT—m8¥ REALIN or INTIN, depending on whether a Real number
or an Integer is required. Both functions use the same

ARRYOUT (CHANNEL , LOC , HOW-MANY); free field scanner, and take as argument a channel
number.

Lo HOW-MANY words are written from memory, starting
at location LOC, onto the device and file open on Free field scanning works as follows: characters are

channel CHANNEL. The valid modes are again ‘10, ' 14, scanned one at a time from the input channel. Nulls,
i "16, and ' 17. The EOF variable is set as In ARRYIN, line numbers,and carriage returns are ignored. When

except that the EOF bit itself will never occur, a digit is scanned it is assumed that this is a number

and the following syntax is used.

| WARNING ABOUT DUMP MODE 10

| Any Dutnp Mode (modes ‘15 thorough 'l7) input whichdoes not specify an n#l128-word count will have the <number>
effect of losing the words up to the next 128-word w= <sign> <real number>

boundry -- you'll get the next word(s) of the next 128-

i word record on the next input. Similarly:, any DumpMode output fills out the file with 0's until a 128-word <real number>

boundry is reached. Therefore, Dump Mode 10 is not n= <decimal number>

practical for sizes other than 128-word transfer m= <decimal number> <exponent>

i multiples, in general. n= <exponent>

i 1 LY AY oa =— <decimal number>
w= <integer>

MTAPE (CHANNEL , MODE); n= <integers> .
== <integer> . <integer>

| MTAPE is Ignored unless the device associated with w= . <integer>
CHANNEL is a magnetic tape drive. It performs tape

actions as follows:

1 <integer>MODE FUNCTION n= <digit>

| w= <integer> <digit>
“A” Advance past one tape mark (or file)

"B" Backspace past one tape mark
"E" Write tape mark

i "EY Advance one record"R" Backspace one record

"gr Write 3 inches of blank tape <exponent>
TT Advance to logical end of tape w= @ <SIgN> <integer>

| "U" Rewind and unload"WwW" Rewind tape
— .

<sign>

: n= 1

| —USETI,USETQ——— =.

- = <empty>
USETI { CHANNEL , VALUE);

USETO (CHANNEL , VALUE).

If the digit is not part of a number an error message

— The corresponding system function is carried out (see will be printed and the program will halt. Typing a
[Moorer 1). carriage return will cause the input function to return

zero.

— On input, leading zeros are ignored. The ten most
significant digits are used to form the number. A

check for overflow and underflow is made and an error

—

37

-

INPUT/OUTPUT ROUTINES SAIL USER MANUAL

message printed if this occurs. When using INTIN any ~~ INCHRW waits for a character to be typed and
exponent is removed by scaling the Integer number. returns that character.

Rounding is used in this process. All numbers are

accurate to one half of the least significant bit. INCHRS returns a negative value if no characters
have been typed: otherwise it is INCHRW.

After scanning the number the last delimiter is

replaced on the input string and is returned as the INCHWL waits for a line, terminated by a carriage-
break character for the channel. If no number is found, return and line feed (CR-LF) to be typed. It
a zero is returned, and the break variable is set to - 1; returns as a siring all characters up to (not

If an end of file or enabled error is sensed this is also including) the CR. The LF is lost, The line
returned in the appropriate channel variable. The may also be terminated by any control (or

maximum character count appearing in the OPEN call is meta at Stanford) character: the character
ignored. will be included in the string result.

INCHSL returns NULL with FLAG # 0 if no lines

have been typed. Otherwise it sets FLAG =

REALSCAN, INTSCAN to 0 and performs INCHWL.

VALUE « REALSCAN (@'NUMBER_STRING" INSTR returns as a string all characters up to, but
@BRCHAR) ; not Including, the first instance of BRCHAR

VALUE « INTSCAN (@NUMBER_STRING", The BRCHAR instance is lost.
@BRCHAR);

INSTRL waits for a line to be typed, then performs
These functions are identical in function to REALIN and INSTR. or
INTIN' Their inputs, however, are obtained from their

NUMBER_STRING arguments. These routines replace INSTRS is INCHSL if no lines are waiting: INSTRL
NUMBER-STRING by a string containing all characters otherwise.

left over after the number has been removed from the

front TTY IN uses the break table features described in

page 33 and page 35 to return a string

and break character. Mode 'R' is illegal: line
number modes are irrelevant. The input

7.5- TELETYPE AND PSEUDO-TELETYPE ROUTINES count (see page 31) is set at 100.

TTYINL wails for a line to be typed, then does
TTY IN.

—TELETYPE I/O ROUTINES—— TTYINS sets ERCHAR to 20 and returns NULL if no

lines are waiting. Otherwise it is TTYINL.
CHAR « INCHRW:

- CHAR« INCHRS: OUTCHR types its character argument (right-justified

"STR" « INCHWL. in an integer variable).
"STR" « INCHSL (afLAG);

“STR” « INSTR (BRCHAR); OUTSTR types its string argument until the end of
"STR" « INSTRL (BRCHAR ; the string or a null character is reached.

. "STR" « INSTRS (@FLAG , BRCHAR);

+ “STR” « TTYIN(TABLE , @BRCHAR); CLRBUF flushes the input buffer.
“SIR” « TTYINL (TABLE , @BRCHAR);

“STR” « TTYINS (TABLE , @BRCHAR); BACKUP backs up the scan (when started by a
OUTCHR (CHAR); system command).
OUTSTR (“STR”);

CLRBUF; LODED loads the line editor with the string
BACKUP; argument.
LODED (“STR”);

Each of the I/O functions uses the TTCALL UUQ's to

do direct TTY I/O. ———PSEUDO-TELETYPE FUNCTIONS————

LINE« PTYGET ,

PTYREL (LINE),

CHARACTERISTICS « PTYGTL (LINE);

38

| SAIL USER MANUAL INPUT/OUTPUT ROUTINES
oe

PTYSTL (LINE , CHARACTERISTICS according to break table convent ions. The
NUMBER « PTIFRE (LINE); break character is stored in “brchar”.

i NUMBER « PTOCNT (LINE J;
CHAR « PTCHRW (LINE);

CHAR « PTCHRS (LINE);

PTOCHS (LINE , CHAR);

PTOCHW (LINE , CHAR);

PTOSTR (LINR | “STR” };
"STR" « PTYALL (LINE);

: "STR" « PTYSTR (LINE , BRCHAR });

L "STR" « PTYIN(LINE, BKTBL , @BRCHAR);

Pseudo-teletype functions are available at Stanford

. only.

—

PTYGET gets a new pseudo-teletype line number

and returns it. The global variable _SKIP_

is -1 if the attempt to get a PTY was

— successful, and 0 otherwise.

PTYREL releases PTY identified by “line”.

L PTYGTL returns line characteristics for the PTY.

PTYSTL sets line characteristics for the PTY

i specified by “line”.
PTIFRE returns the number of free characters in

| the PTY input buffer.

— PTOCNT returns the number of free characters in
the PTY output buffer.

{

q PTCHRW waits for a character from the PTY and
returns it.

PTCHRS reads a character from the PTY if there is

! one, returns -1 if none.
L , retu i

PTOCHS tries to send a character to a PTY. If the

| . attempt was successful, the global variable
[| _SKIP_ is -1, otherwise 0.

PTOCHW sends a character to a PTY, waiting if
§

| necessary.
—

- PTOSTR sends the string to the PTY, waiting if

necessary.

— PTYALL returns whatever is in the PTY's output
buffer. No warting is done.

i PTYSTR reads characters from the PTY, waiting if
- necessary, until a character equal to “char”

is seen. All but the break character is

| returned as the string. If the break

| character was ‘15 (carriage return), the

ee following line-feed is snarfed.

PTY IN reads from the PTY (waiting -if necessary)

39

EXECUTION TIME ROUTINES SAIL USER MANUAL

SECTION 8 EEA —

EXECUTION TIME ROUTINES “ASCII-STRING” « CVS (VALUE J;

The decimal Integer representation of VALUE is

produced as an ASCII String with leading zeroes

omitted (unless WIDTH has been set by

SETFORMAT,page 40, to some negative value). "will
Please read Execution Time Routines in General, page be concatenated to the String representing the

31, if you are unfamiliar with the format we use to decimal absolute value of VALUE if VALUE is negative.

describe runtime routines.

———VS———

8.1 - TYPE CONVERSION ROUTINES

“ASCII-STRING” « cvOs (VALUE),

The octal Integer representation of VALUE is produced

as an ASCli String with leading zeroes omitted (unless

— SETFORMAT——————————— WIDTH has been set to some negative value by
SETFORMAT,page 4%). No “-" will be used to indicate

SETFORMAT (WIDTH , DIGITS }; negative numbers. For instance, -5 will be represented
as “777777777773”.

This function allows specification of a minimum width

for strings created by the functions CVS, CVOS, CVE,

CVF, and CVG (see page 40 and following). If this
number (WIDTH) is positive, enough blanks will be ————————————————CVE, CVFbLCOVG—————

inserted in front of the resultant string to make the

entire results at least WIDTH characters long. The “STRING” « CVE (VALUE };
sign, if any, will appear after the blanks. If WIDTH is “STRING” « CVF { VALUE);
negative, leading zeroes will be used in place of “STRING” « CVG (VALUE);
blanks, The sign, of course, will appear before the

zeroes This parameter is initialized by the system to Real number output is facilitated by means of one of

0 three functions CVE,CVG, or CVF, corresponding to
the E,GG, and F formats of FORTRAN IV. Each of these

In addition, the DIGITS parameter allows one to specify functions takes as argument a real number and returns

the number of digits to appear following the decimal a string. The format of the string is controlled by

point in strings created by CVE, CVF, and CVG. This another function SETFORMAT (WIDTHDIGITS) (see
number is initially 7. See the writeups on these page 42) which is used to change WIDTH from zero
functions for details. and DIGITS from 7, their initial values. WIDTH

- specifies the minimum string length. If WIDTH is

NOTE: All type conversion routines, including those that positive leading blanks will be inserted and if negative

SETFORMAT applies to, are performed at compile time leading zeros will be inserted.

if thelr arguments are constants. However, Setformat

does not have its effect until execution time. The following table indicates the strings returned for

Therefore, CVS, CVOS, CVE, CVF, and CVG of some typical numbers. _ indicates a space and it is
- constants will have the no leading zeros and 7 digits assumed that WIDTH«1@ and DIGITS-3.

(if any) following the decimal point.

CVF CVE CVG
W000 __.198e-3_ + 18Be-3_
___ .bel __.108e-2_ + 188e-2_
Bg __.18Qe-1_ __.188e-1_
_ .les __.188___ —.188___

— GETFORMAT ———— __l.oo0 __.108el__ _l.88__
_18.000 __.100ed___ _l8.e__
-100.000 __.100e3__ _188.__

GETFORMAT (@WIDTH , @DIGITS); -1000.000 _.1088e4__ 1894__
10000. 000 __. 108e5__ _.180e5__
100000.000 ~~ __.188eb__ _.18@eb__

The WIDTH and DIGIT settings specified in the last + 1000000. 000 ~ lob ~ Loar
SETFORMAT call are returned in the appropriate

reference parameters. The first character ahead of the number is either a
blank or a minus sign. With WIDTH--1@ plug and
minus 1 would print as:

40

SAIL USER MANUAL EXECUTION TIME ROUTINES

}

-

CVF CVE CVG

_00001.068 _6.100el__ 61.88_ CVSIX

i -p0Yp8l. 088 -8.180el__ -81.88____All numbers are accurate to one unit in the eighth VALUE « CVSIX(“STRING”)
digit. If DIGITS is greater than 8, trailing zeros are

included: if less than eight, the number is rounded The inverse for CVXSTR, this function works the same
| as CVASC except that up to six SIXBIT characters are
- placed in VALUE. The characters from STRING are

converted from ASCII to SIXBIT before depositing

-_ ¢oVy§SR —mM them in VALUE.

| “STRING” « CVSTR { VALUE);
| VALUE is treated as a D-characler left-justified word 8.2- STRING MANIPULATION ROUTINES

full of ASCII. the result is a B-character long String
— containing these characters. The low order bit of

VALUE is ignored.

_—fl
re

CUXSTR VALUE « EQU { “STR 1","STR2");

| “STRING” « CVXSTR (VALUE) - The value of this function is TRUE if STR1 and STR2— are equal in length and have identically the same

VALUE is treated as a D-character left-justified word coasters eT (in the same order). The value offull of SIXBIT. The result is a 6-character long String EQU is otherwise.
containing these characters, converted to ASCII.

— | ENGTHmmm

EA0) 20Ee
— VALUE «LENGTH(“STRING”)

VALUE « CVD(“ASCII-STRING”
LENGTH is always an integer-valued function. If the

— ASCII-STRING should be a String of decimal ASCII ~~ argument is a String, its length is the number of
characters perhaps preceded by plus and/or minus characters in the string. The length of an algebraic
signs. Characters with ASCII values £ SPACE ('4d) are expression is always 1 (see page 21). LENGTH is
ignored preceding the number. Any character not a usually compiled in line.

he digit will terminate the conversion (with no error

indication). The result is a (signed) integer.

| EYI 0
CVO VALUE « LOP (STRINGVAR)

VALUE « CVO(“ASCII-STRING”): The LOP operator applied to a String variable removes
the first character from the String and returns it in the

This function is the same as CVD except that the form given in page 21 above. The String no longer
input characters are deemed to represent Octal contains this character. LOP applied to a null String

L values has a zero value. LOP is usually compiled in line.

8.3- LIBERATION-FROM-SAIL ROUTINES

— CVASC ———mmmmmmm8m8m8m8m88@88™

VALUE « CVASC (“STRING”);

LL This is the inverse function for CVSTR. Up to five
ASCII characters

—

41

EXECUTION TIME ROUTINES SAIL USER MANUAL

———————————————— CODE ——m™™™™™™™™X™ appropriate User Table entry (the Global Upper
Segment Table is used if FLAG is negative and your

RESULT « CODE (INSTR , @ADDR) system knows about such things). If FLAG is odd, the

contents of VALUE before the call replaces the old

This function is equivalent to the FAIL statements: value in the selected entry of the selected table.

EXTERNAL Hs ELAR A SKIP. IN SAIL By now the incredible danger of this feature must be
MOVE 8, INSTR apparent to you. Be sure you understand the

ig 0+ eALDR ramifications of any changes you make to any User
SETZM SKIP. ;DION'TSKIP Table value.
RETURN (1)

In other words, it executes the instruction formed by

adding the address of the ADDR variable (passed by UUSEFRERR——M
reference) to the number INSTR. Before the operation

1s carried out, AC1 is loaded from a special cell USERERR(VALUE , CODE , “MSG” , “RESPONSE”);
(initially @). AC1 is returned as the result, and also USERERR(VALUE , CODE , “MSG”);
stored back into the special cell after the instruction is

executed. The global variable _SKIP_ (SKIP. in DDT or USERERR generates an error message. See page
FAIL) is FALSE (£0) after the call if the executed 95 for a description of the error message format.
Instruction did not skip; TRUE (currently -1) if it did. MSG is the error message that is printed on the
Declare this variable as EXTERNAL INTEGER _SKIP_ if teletype or sent to the log file. If CODE = 2, VALUE is
you want io use it printed in decimal on the same line. Then on the next

line the “LAST SAIL CALL” message may be typed

which indicates where in the user program the error

occurred. If CODE is 1 or 2, a = will be typed and
CALL————————— execution will be allowed to continue. If it is 0, a ¢ is

typed, and no continuation will be permitted. The

RESULT « CALL{ VALUE , "FUNCTION") string RESPONSE, if included in the USERERR call, wil
be scanned before the input buffer is scanned. In fact,

This function is equivalent to the FAIL statements: if the string RESPONSE satisfies the error handler, the

EXTERNAL Kp. Input buffer will not be scanned at all. Examples:

ove VALUE USERERR(B,1,"LINE TOO LONG"); Gives
AL | hal FUNCTION 7 SKIP error message and allows continuation.
RETURN (REGISTER 1)

USERERR(8,1 NULL,"QLA"); Resets mode

of error handler to Quiet, Logging, and

The SKIP. variable (_SKIP_ in SAIL) is set as described Automatic continuation. Then continues.

in the previous paragraph (CODE)

8.4- BYTE MANIPULATION ROUTINES

————— USERCON———

USERCON(@INDEX , @VALUE , FLAG)

—{DB DPB, etc. ——————————————
This function allows inspection and alteration of the

“User Table”. The user table is always loaded with VALUE «LDB(BYTE-POINTER):
your program and contains many interesting variables. VALUE «ILDB(@ BYTE-POINTER):
Declare an index you are interested in as an External DPB(BYTE. BYTE-POINTER):
Integer (e.g, EXTERNAL INTEGER REMCHR). This will, IDPB(BYTE. ® BYTE-POINTER)
when loaded, give an address which is secretly a small BP (@ BYTE-POINTER):
Integer Index Into the User Table. When passed by

reference, this index 1s available to USERCON. The DB. ILDB. DPB. IDBP. and IBP are SAIL constructs
names and meanings of the various User Table indices used to invoke the PDP-10 byte loading instructions.
can be found in the file HEAD, wherever SAIL compiler The arguments to these functions are expressions
program text files are sold. which are interpreted as byte pointers and bytes. In

the case of ILDB, IDPB, and IBP, you are required to
USERCON always returns the current value of the use an algebraic variable 2s argument as the

42

SAIL USER MANUAL EXECUTION TIME ROUTINES

byte-pointer, so that the byte pointer (i.e. that “~~ ARRINFO ——mm@@8@™@8™M8

algebraic variable) may be incremented.

| VALUE « ARRINFO (ARRAY, PARAMETER J;
he.

ARRINFO(ARRAY,-1) returns the number of

——————————————— PON —/—/——————— dimensions for the array. This

number is negative for String

ee VALUE « POINT (BYTE SIZE , arrays.
@EFFECTIVE ADDRESS , LAST BIT NUMBER

ARRINFO(ARRAY@) returns the total size of the

POINT returns a byte pointer (hence it is of type array in words.

an Integer). The three arguments are enough to specify
the three fields of a POP-10 ARRINFO(ARRAY,1) returns the lower bound for

I. the first dimension.

_ If the LAST BIT NUMBER is -1, POINT creates a byte
pointer which, when used with an ILDB, will pick up the ARRINFO(ARRAY,2) returns the upper bound for
first byte from the word at EFFECTIVE ADDRESS, the first dimension.

| Otherwise, the three arguments to POINT are exactly

. analogous to the three arguments to POINT in FAIL. ARRINFO(ARRAY,3) returns the lower bound for
the second dimension.

ARRINF OL. etc.i 8.5 ~ OTHER USEFUL ROUTINES

i —————————— ARRBLT —mmmMmMmMmM8m8m™ Mmm
———CVFIL——— — ARRBLT (eLOC1,elL0C2 , Num);

VALUE « CVFIL (“FILE-SPEC” , eEXTEN, @PPN); NUM words are transferred from consecutive locations

— starting at LOC2 to consecutive locations starting at
FILE-SPEC has the same form as a file name LOC1. No bounds checking is performed. This function
specification for LOOKUP or ENTER. The SIXBIT for does not work well for String Arrays (nor set nor list

| the file name is returned in VALUE. SIXBIT values for arrays).the extension and project-programmer numbers are

returned in the respective reference parameters. Any

i unspecified portions of the FILE-SPEC will result in

L zero values. The global variable _SKIP_ (accessed by ————— AMRRTRAN—M8
declaring it as EXTERNAL INTEGER _SKIP_) will be 0

if no errors occurred, #4 if an invalid file name ARRTRAN (ARRAY 1, ARRAY2):
. specification is presented.

L This function copies information from ARRAY2 to
ARRAY 1. The transfer starts at the first data word of

each array. The minimum of the sizes of ARRAY 1 and

-—— FILEINFO——— ARRAY2 is the number of words transferred.

. FILEINFO (aiNFOARRAY),

FILEINFO fills the 6 word array designated by the — IN-CONTEXT—/—/MmMmMmMm™™™

array name that is its argument with the following six
words from the most recent LOOKUP, ENTER, or VALUE « IN-CONTEXT (VARI | CONTXT);
RENAME:

IN-CONTEXT is a boolean which tells one if the

Project, programer name (in SIXBIT) specified variable is in the specified context. VARI
filename (in SIXBIT)

extension (in SIXBIT) may be any variable, array element, array name, or
date last written Leap variable. If that variable, element or array was

date last dumped REMEMBERed in that context, IN-CONTEXT will return

protection True. IN-CONTEXT will also return true if VARI is an
wee array element and the whole array was Remembered in

that context (by using REMEMBER <array_name>). On

43

EXECUTION TIME ROUTINES SAIL USER MANUAL

the other hand, if VAR| is an array name, then
IN-CONTEXT will return true only if one has

Remembered that array with a REMEMBER

<array-names.

44

“.

SAIL USER MANUAL MACROS AND CONDITIONAL COMPILATION

= SECTION 9 <cond_comp_statement>
.- <conditional_c.cs>

| MACROS AND CONDITIONAL COMPILATION = <while_ccs>
— -= <for_c.cs>

- <for_list_ccs>

_ <Ccase_c.cs>

—

<conditional_c.c.s>

j 9.1 - SYNTAX = IFC <constant-expression> THENG
- <anything> ENDC

w= IFC <constant-expression> THENC

<define> <anything> ELSEC <anything> ENDC
’ = DEFINE <def list>; = |[FCR <constant-expression> THENC
— = REDEFINE <def_list>; <anything> ENDC

+= EVALDEFINE <def_list> ; == |[FCR <constant-expression> THENC
<anything> ELSEC <anything> ENDC

— <def_list>
= <def>

== <def_list> | <def> <while_c.cs>
-= WHILEC <delimited_expr> DOC

<delimited-anything> ENDC

def>

=<ident if ier> = <macro-body>
== <ldentifier> (<id-list>)= <for_c.cs>

— <macro-body> == FORC <constant-expression> ¢«
== <ident if ler> <string_constant> = <constant-expression> STEPC

<macro-body> <constant-expression> UNTILC
= <identifier> (<id-list>) <constant-expression> DOC

| <delimited-anything> ENDC
<string-constant> = <macrao.body>

—
<macro-body> <for_list_c.cs>

| = <delimited_string> = FORLC <identifier>«
= <constant-expression> (<macro_param_list>) DOC

- n= <macro-body> & <macro-body> <delimited_anything> ENDC

| . .

Ce <Ccase_c.cs>

<macro_cali> -=CASEC <constant-expression> OFC

= <macro_identifier> <delimited-anything-list= ENDC

-= <macro_identifier> (

— <macro_param_list>)
’= <macro-identifier> <string-constant> <delimited-anything-list>

(<macro_param_list>) += <delimited-anything>
-= <delimited_anything_list> |

— <delimited_anything>

<macro_ident if ier>
== <identifier>

<assigne>

-= ASSIGNC <identifier> = <macro-body>

<macro_param_list>

w= <macro_param>

w= <macro_param_list> , <macro_param>
- <delimited_string>, <macro_param>, <delimited_expr>,

<anything> and <delimited_anything> are explained in

: the following text.
-

45

|
|
-

MACROS AND CONDITIONAL COMPILATION SAIL USER MANUAL

92- DELIMITERS REQUIRE NULL DELIMITERS

There are two types of delimiters used by the Sail Null delimiters are stacked in the delimiter stack in the
macro scanner: macro body delimiters and macro ordinary REQUIRE 'e2<>" DELIMITERS way. In null
parameter delimiters. Their usage will be precisely delimiters mode, the double quote character may be
defined in the sections on Macro Bodies and included in the macro body or macro parameter by

Parameters to Macros, Here we will discuss their ‘using two double quotes:

declaration and scope, which is very important when
using source files with different delimiters (see page DEFINE SOR = "OUTSTR(™SORRY"™");";
10 to find out about source files).

The Null Delimiters mode is essentially the macro

Sail initializes both left and right delimiters of both facility of older versions of Sail where " was the only
body and parameter delimiters to the double quote (7). delimiter. Programs written in older Sail versions will
One may change delimiters by saying run in Null Delimiters mode. Null delimiters mode has

\ . all the rules and quirks of the old Sail macro system
REQUIRE "c5<>" DELIMITERS. (the old Sail macro facility is described in [Swinehart 8

Sproull], Section 13). Compatibility with the old Sail is

In this example, the left and right body delimiters the only reason for Null Delimiters.

become 'c and ©’, while the left and right parameter
delimiters become '<" and ">". Require Delimiters may
appear wherever a statement or declaration is legal,

One should Require Delimiters whenever all but the 9.3 - MACROS

most simple macros are going to be used. The first

Require Delimiters will initialize the macro facility; if

this is not done, some of the following conveniences We will delay the discussion of macros with

will not exist and only very simple macros like defining parameters until the next section. A macro without

CRLF ="("12&"' 15)" may be done. parameters is declared by saying:

Delimiters do not follow block structure. They persist DEFINE <macro-name> = <macro_body>;
until changed. Furthermore, each time new delimiters

are Required, they are stacked on a special “delimiters where <macro-names> is some legal identifier name
stack’. The old delimiters may be revived by saying (see page 89 for a definition of a legal identifier

name). <macro_body>s can be simply a sequence of
REQUIRE UNSTACK_DELIMITERS Ascii characters delimited by macro body delimiters, or

they can be quite complex. Once the macro has been

Thus, each source file with macros should begin with a defined, the macro body is substituted for every
Require delimiters, and end with an Unstack-delimiters. subsequent appearance of the macro name. Macros

lt is impossible to Unstack off the bottom of the stack. may be called in this way at any point in a Salil
The bottom element of the stack is the double quote program, except inside a Comment or a string constant.

- delimiters that Sail initialized the program to. If you

Unstack from these, the Unstack will become a no-op, Macro declarations may also appear virtually anywhere

and the double quote delimiters remain the delimiters in a Sail program. When the word DEFINE is scanned

of your program. by Sail, the scanner traps to a special production. The
Define is parsed, and the scanner returns to its regular

"One may circumvent the delimiter stacking feature by mode as if there had been no define there at all. Thus

saying things like

REQUIRE "co<>"REPLACE_DELIMITERS | «J + 5 + DEFINE CON =¢'7773;K12;. . ..

instead of REQUIRE ‘ea<>" DELIMITERS. This doesn't are perfectly acceptable. However, don’t put a Define

deactivate the stacking feature, it merely changes the in a string constant or a Comment.

active delimiters without stacking them.
SCOPE

To revert to the primitive, initial delimiter mode where Macros obey block structure. Each DEFINE serves

double quotes are the active delimiters, one may say both as a declaration and an assignment of a macro

46

! SAIL USER MANUAL MACROS AND CONDITIONAL COMPILATION

body to the newly declared symbol. Two DEFINEs of One may temporarily override the active delimiters by

\ the same symbol in the at the same lexical level will including a two character string before the "=" of the

L be flagged as an error. However, it is possible to Define statement. For example:
change the macro body assigned to a macro name

without redeclaring the name by using saying DEFINE LES "8%" = 8 B<X<BIGGESTA Y>X %;

t REDEFINE instead of DEFINE. For example,

C BEGIN The first character of the two character string
Co becomes the left delimiter, and the second becomes

i BEGIN the right delimiter.
i Se

- DEFINE SQUAK = cQUTSTR("OUTER BLOCK?);>; INTEGER COMPILE TIME EXPRESSIONS
"BEGIN Sail tries to do as much arithmetic as it can at compile

a es time. In particular, if you have an arithmetic
to REDEFINE SQUAK = cOUTSTR("INNER BLOCK");>; expression of constants, such as
a «ne

END;
oo 91.504 t (3.1415%819-7))

| SQUAK COMMENT Here the program types % “Sail can convert strings’

L “INNER BLOCK”;END; COMMENT Here SQUAK is undefined.

If SQUAK were included here, you'd then the whole expression will be evaluated at compile

get the error message . time and the resultant constant, in this case

I. UNDEFINED [DENTIFIER:SQUAK®; 93.9263610, will be used in your code instead of the
constant expression. Runt ime functions of constants

will be done at compile time too, if possible. EQU and

REDEFINE of 3 name that has not been declared in a the conversion routines (CVS, CVO, etc.) will work.

| DEFINE will act as a DEFINE That is, it will alsodeclared the macro name as well as assigning a body When an integer compile time expression is scanned as
to it. part of a macro body, it is immediately evaluated. The

i integer constant which results is converted to a

| MACRO BODIES character string, and that character string used for theA Macro Body may be place in the macro body of the integer expression.
Thus,

1. A sequence of Ascii characters preceded

E by a left macro body delimiter and followed DEFINE TTYUUO = '51LSH 30;by a right macro body delimiter.

2 A i that 0 will cause ‘51 LSH 30 to be evaluated, and thef : n in r r n m

ate Nand 2 ay © resulting constant, -2469606 152, will be converted
b to the character string -2469606152, and that

character string assigned to the macro name TTYUUO.
3. A string expression that may be evaluated

| at compile time STRING COMPILE TIME EXPRESSIONS
If a compile time expression has the type strin

~— 4. Concatenations of the above. bl ! XP ! yp ng
(constant), the macro scanner will evaluate the

WARNING: Source file switching inside macros will not expression immediately. However, the string constant
work that results will not be converted to the character

- string that represents that constant, but to the
character strin ith the same characters that the

DELIMITED STRINGS ng wi
/ . " string constant had. Thus, the way to use a macro
i Any sequence of Ascii characters, including may be

CC for string constants is to delimit the string constant
used as a macro body if they are properly delimited.

fn like this:
The macro body scanner keeps a count of the number

| of left and right delimiters seen and will terminate its DEFINE STRINCON= "Very long
! scan only when it has seen the same number of each. complex string that is hard
b "

This lets the macro body delimiters “nest” so that one to type more than once 2;

may include DEFINEs inside a macro body. For example,

However, the automatic conversion of string constants
DEFINE DEF =

cDEFINE sYM = ¢SYMBOLo; SYMD; to character strings is helpful and indeed essential for
automatic generat ion of ident if iers:

47

MACROS AND CONDITIONAL COMPILATION SAIL USER MANUAL

DEFINE N = 1; of delimited character strings that will be substituted

COMMENT we will use this like a variable; for each occurance of the corresponding formal in the

macro body. For example,
DEFINE GENSYM = ¢

DEFINE SYM = cTEMP_> &CVS(N); wow wn
COMMENT SYM is defined to be the character COMMENT we assume that "<" and ">" are the

string TEMP_# where # is an number: parameter delimiters at this point;
MAC { BYTES LAND (BITMASK +'2888)> <

DEFINE N = N+1; BEGIN
COMMENT This increments N; WWDAT «FETCH(BYTES, ENVIRON):

COLOR[WWDAT] «' 2000;

SYM >; END >)
COMMENT At the call of SYM, the character

string is read like program text. E. g. . . ; expands to

INTEGER GENSYM, GENSYM, GENSYM, GENSYM; IF BYTES LAND (BITMASK+’ 2000) THEN
REAL GENSYM, GENSYM; BEGIN

COMMENT We have generated 6 identifiers with WWDAT «FETCH(BYTES,ENVIRON);
unique names, and declared 4 as integers, COLORIWWDAT]«’ 2000;
2 as reals; END

ELSE ERR«1;

To convert a macro body to a string constant, one may

call the runtime CVMS:

Parameter delimiters nest. Furthermore, if no delimiters

<string constants « CVMS(<macro name>) are used about a parameter, nesting counts are kept

of “()', “I”, and "{}" character pairs. The parameter scan
will not terminate until the nesting counts of each of

A string that has the exact same characters as the Lo : :
the three pairs is zero. One may temporarily override

macro body will be returned. For example: : _ : :
the active parameter deiimiters by including a two

DEFINE A = cB& Co; character string ahead of the parameter list in the
DEFINE ABC = CVMS(A}&c 4D; macro cali
COMMENT ABC now stands for the text B & C & b;

MAC "¢3"(«BYTES>’ 20003, eMATCH(BYTES)d)

HYBRID MACRO BODIES

When two delimited strings are concatenated, the Formal parameters may not appear in compile time

result 1s a longer delimited string. '&" in compile time expressions that are used to specify macro bodies.

expressron behaves the same way it behaves in any This is quite natural: compile time expressions must be

expression. When a compile time expression is evaluated as they are scanned, but the value of a
concatenated to a delimited character string in a formal parameter isn't known until later. However, if the
macro body, the result is exactly the result one would macro body is a hybrid of expressions and delimited

get if the delimited character string were a string character strings, then formal parameters may appear

constant, except that the result is a delimited in the delimited string parts.

character string. For exampie:
When doing a CVMS on a macro with parameters, use

. DEFINE N = 1; only the macro name in the call; the parameters are

DEFINE M = 2; unnecessary. The string returned will have the two
DEFINE SYM -CVS(N%Mt NT2) & c-SQRT(NxM+1)>; h ri "1" "2" etc. (h tands f

the Ascii character ‘177) where the formal parameters

Here SYM is exactly the same as SYMI. were in the macro body. A '«1” will appear wherever
the first formal parameter of the formal parameter list

appear in the macro body, a «2 will appear wherever

the second parameter appeared, etc. The unfortunate

9.4-MACROS WITH PARAMETERS appearance of the Ascri character ‘177 in CVMS

generated strings is a product of the representation of

macro bodies as strings (ending in ‘177, ‘0 which

One defines a macro with parameters by specifing the CVMS removes) having '177n+'61) for each
formal parameters in a list following the macro name: appearances of the nth formal parameter in the body.

DEFINE MAC (A,B)=cIF A THEN B ELSE ERR«1;>;

One calls a macro with parameters by including a list

48

SAIL USER MANUAL MACROS AND CONDITIONAL COMPILATION

9.5- CONDITIONAL COMPILATION As an added feature, when delimiters are required
about an <anything> in the above (such constructs are

named <delimited-anything> in the BNF), one may
The compile time equivalents of the Sail IF, WHILE, gypstitute a concatenation of constant expressions and
FOR and CASE statements are delimited strings. This is just like a macro body, except

the concatenation MUST contain at least one delimited

. IFC <CT expr> THENC <anything> ENDC string, thereby forcing the result of the concatenation
FG <CT expr> THENG <anything> ELSEG to be a delimited string, rather than a naked

<anything> ENDC expression.

WHILEC¢<CT expr>> DOC c<anything>> ENDC As a further added feature,
FORC <CT variable> « <CT expr> STEPC <CT expr>

UNTILC <CT expr> DOC c<anything>> ENDC IFC <CT expr> THENC c<anything>> ELSEC
c<anything>> ENDC

| FORLC <CT variable> « (<macro param>,.. .,
— <macro param>) DOC c<anything>> ENDC

may be substituted in FORCs, FORLCs, and WHILECs
CASEC <CT expr> OFC c<anything>>, c<anything>>, for the <anything> following DOC.

i ..., c<anything>> ENDC

L NOTE: In a WHILEC, the expression must be delimited
where <CT expr> is any compile time expression. <CT with the appropriate macro body delimiters (hence the
expr> could itself include IFCs,FORCs or whatever. construct <delimited_expr> in the BNF).

i <CT variable> is a macro name such as N from a: define such as DEFINE N = MUMBLE: <macro param> is

anything that is delimited like a macro parameter.

<anything> can be anything one could want in his 96 - TYPE DETERMINATION AT COMPILE TIME

i program at that point, including Defines and other
conditional compilation statements. The usual care

must be taken with nested [FCs so that the ELSECs

match the desired THENCs. The "c" and "=" characters To ascertain the type of an identifier at compile time,

L above are to stand for the current MACRO BODY one may use the integer function DECLARATION
DELIMITER pair. <identifier>). This returns an integer with bits turned

on to represent the type of identifier. Exactly what the

] The semantics are exactly those of the corresponding bits represent is a dark secret and changes

L runtime statements, with one exception When the list periodically anyway. The best way to decode the
to a FORLC is null (ie. it looks like "()"), then the integer returned by Declaration is to compare it to the

<anything> is inserted in the compilation once, with the integer returned by CHECK_TYPE(<a string of Sail
<CT variable> assigned to the null macro body. declarators>). A Sail declaralor is any of the

o reserved words used an a declaration. Furthermore,
Situations frequently occur where the false part of an the declarators must be listed in a legal order,
IFC must have the macros in it expanded in order to namely, an order that is legal in declarations (i.e.

delimit the false part correctly. For example, ARRAY INTEGER won’t work). One may include as

— arguments to CHECK-TYPE the following special
DEFINE DEBUG-SELECT = tokens:

CIFC DEBNUM = 2 THENC 3;

4 PF ELSEC QUTSTRYDESUG POINT”) ENDC>; TOKEN EFFECT
Debug-select BUILT-IN The bit that is on when an identifier is

OUTSTR("DEBUG POINT 4" & CVS(DBN)); predeclared by Sail, such as CVS, NULL,
Debug-end

| etc. is returned.
—

If DEBNUM is not 2, then the program must expand the LPARRAY The bit that is on when an identifier is

macro Debug-end in order to pick up the ELSEC that an item or itemvar with a declared

terminates the false part of the conditional. The array datum is returned (the discussion

- expansion is only to pick up such tokens -- the text of of Leap starts on page D1).
the false part is not sent to the scanner as the true

part is. In order to avoid such expansion, one may use RESERVEDThe bit that indicates the identifier word

4 IFCR (the R stands for “recursive”) instead of IFC. is returned.
DEFINE The bit that indicates the identifier is a

49

MACROS AND CONDITIONAL COMPILATION SAIL USER MANUAL

macro. bed

macro name is returned (note: a macro <namel> must be a formal to a macro, and omit
name as the argument DECLARATION may be any macro body. Thereafter, whenever

will not be expanded). Shame, 1s instantiated, the body corresponding toASS IS used in the expansion rather than the text
Examples: passed to the formal at the macro call.

DECLARATION(FOO) = CHECK_TYPE(INTEGER) RESTRICTION. ASSIGNC may only appear in the body
This is an exact compare. Only if Foo is of the macro that <namel> is a formal of. If it
an integer variable will equality hold.]

appears anywhere else, the <namel> will be expanded
DECLARATION(A) LAND CHECK_TYPE(ARRAY) like any good formal, and that text used in the

This is not an exact compare. If A is any ASSIGNC as <namel>. Unless you're being very
kind of an array, the LAND wil be non-zero. .

clever, this 1s probably not what you want.

DECLARATION(cvs } = CHECK_TYPE(BUILT_IN

STRING PROCEDURE) NOMAC

The equality holds. Preceding anything by the token NOMAC will inhibit

DECLARATION(BEG) LAND CHECK_TYPE(RESERVED) the expansion of that thing should that thing turn out
This is non-zero only if one has said to be a macro.
LET BEG = BEGIN. DEFINE BEG = BEGIN

will only turn the Define bit of BEG on.

NOTE: if the <identifier> of DECLARATION has not yet

been declared or was declared in an inner block, then

0 is returned -- it is undeclared so it has no type.

9.7 -MISCELANEQUS FEATURES

COMPILE TIME I/O

Compile time input is handled by the REQUIRE

“<file-name>" SOURCE-FILE construct. <file-name>

can be any legal file, including TTY: and MTAQ: and of

course disk files. The file will be read until the its end

of file delimiter is scanned (<cntr>Z for TTYs or

<meta><centr><If> at Stanford), and its text will replace
the REQUIRE statement in the main file.

Compile time output is limited to typing a message on

the users teletype. To do this say REQUIRE

<string-constant> MESSAGE, and the <string-constant>

} will appear on your teletype when the compilation hits
that point in your file.

)

EVALDEFINE

The reserved word EVALDEFINE may be used in place

_ of the word DEFINE if one would like the identifier that

. follows to be expanded. When one follows a DEFINE

with a macro name, the macro is not expanded, but

rather the macro name is declared at the current

lexical level and assigned the specified macro body.

EVALDEFINE gets you around that. Helps with

automatic generation of macro names.

ASSIGNC

The following compile time coniruct makes recursive
macros easier.

ASSIGNC <namel> = <macro- bodys;

50

SAIL USER MANUAL LEAP DATA TYPES

 _-

SECTION 10 10.2 - SYNTAX

LEAP DATA TYPES

~ The following syntax is meant to REPLACE not

supplement the syntax of algebraic declarations, except

where noted.

ha <declaration>
n= <type-declaration>

== <array-declaration>

o 10.1 - INTRODUCTION w= <procedure-declaration>
«= <label-declaration>

n= <synonym-declaration>

In addition to the standard algal-like statements and == <preload_specification>
expressions, SAIL contains an associative data store w= <require-specification>

= and auxiliary facilities called LEAP. SAIL’s version of “= <context-declaration>
LEAP 1s based on the associative components of the w= <type-qualifier> <declaration>
LEAP language implemented by J. Feldman and P.

Rovner as described in [Feldman].

<simple-type>

An associative store allows the retrieval of data based «= REAL

on the partial specification of that data. LEAP stores += INTEGER

| associative data in the form of ASSOCIATIONS, which += STRING
are ordered three-tuples of ITEMS. Associations are = BOOLEAN

frequently called TRIPLES. Associations are placed in w= SET

the associative store by MAKE statements and v= LIST
L removed from the store by ERASE statements. The

associative searches allow us to specify items and

their position in the triple and then have the LEAP

i interpreter search for triples in the associative store <itemvar_type>which have the same items in the same positions. The «= |[TEMVAR

interpreter will extract the items from such triples, n= <simple_type> ITEMVAR
which correspond to the positions left unspecified in i= <array_type> ARRAY ITEMVAR

| the original search request. For example say we had «= CHECKED <itemvar_type>
triples representing the binary relation Father-of, and

we had “made” associations of the form

Father-of ® John 2 Tom <item_type>
Father-of ® Tom & Harry, «= [TEM

Father-of @ Jerry = Tom, n= <simple-type> ITEM

| where Father-of, John, Tom, Harry, and Jerry are
names of items. We could then perform searches to

find the sons of Tom by specifying to the leap search <array_type>

| routines that we wanted to find triples whose first w= <simple-type>
{ component was Father-of and whose third component == <itemvar_type>

. was Tom. Associative searches Inherently produce n= <item-type>
multiple values (i.e. both Jerry and John are sons of

Tom). To deal with multiple values, Leap has SETS and

- LISTs of items. <type-declaration>
w= <simple-type> <identifier-list>

; Items are constants. They may be created by == <itemvar_type> <identifier-list>
declaration or by the function NEW. Items may have a w= <item-type> <identifier-list>

- single algebraic variable, set, list or array associated w= <array-type> ARRAY <array-list>
with them which is accessible by use of the DATUM = <array-type> ARRAY ITEM <array-list>
construct Declared items have names which may be w= <type-qualifier> <type-declaration>

; used to identify them in expressions, etc. The simple

- variable whose value is an item is called an ITEMVAR.

<array_list> -- as on page 3

L.
51

L

LEAP DATA TYPES SAIL USER MANUAL

<procedure_declaration> Items of type 1 and 2 are the same except those of
m= PROCEDURE <ldentifier> <procedure-head> type 1 may be referred to by the identifier that is

<procedure-body> associated with them. For example one may say

::= <procedure-type> PROCEDURE <identifier> . ITEM DAD; X<DAD;.... NOTE: DAD is only the
<procedure_head> <procedure-body> name of an item, not a variable! Saying DAD+-X is

:= <type-qualifier> <procedure-declaration> just as illegal as saying 15-X.

Items of type 3 are different from those of type 1
and 2. Discussion of them will be left until the creation

of associations with the MAKE statement is discussed

<procedure-type> (page D7).
= <simple-type>

n= <itemvar_type> SCOPE OF ITEMS
w= MATCHING <procedure-type> ltems do not obey the traditional Algol scope rules. All

declared items are allocated in the outer block All

other items are allocated dynamically. All items exist

until a DELETE(<item expression>) is done on them (see
<procedure-head> and <procedure-body> -- as on page 56 for the details of DELETE), or until the

page 4 except: outer block is exited at the end of the program.

HOWEVER, the identifiers of declared items (type 1

above) DO obey scope rules. After exiting the

block in which item X was declared, it will be

<simple-formal-type> -. Impossible to refer to X by its declared name.

z= <simple_type> However, X may have been stored in an itemvar,
<itemvar_type> associations, etc. and thus still be retrieved and used.
= 7? <itemvar_type>

i= <simple-type> ARRAY Warning: items in recursive procedures behave

n= <itemvar_type> ARRAY differently from variables in recursive procedures. At
i= <simple-type> PROCEDURE each recursive call of a procedure, the local variables

»=<Itemvar_type> PROCEDURE are reinstantiated (unless they were declared OWN).
Items are constants. There is never more than one

instantiation of an item around at a time.

<preload_specification>, <synonym-declarations,
<label-declaration>, DATUMS OF ITEMS

An item of type 1 or 2 may have an associated

and <require_specification> as on page 3 variable, called its DATUM. The Datum of an item is
like any variable; it may be declared to have any type

that a variable may have, except the type ltemvar.

<context-declaration> as on page 29 Because an Item may have only one datum from its
creation until its death, we frequently will say the

“type of an litem” referring to the type of the datum.

RESTRICTIONS: It is currently impossible to make
10 3- SEMANTICS either items or their datums either Internal or External.

However, the effect of External items can be

duplicated by manipulating the order in which items

ITEM GENESIS are declared (see page 54). OWN is not applicable

Although items are constants, they must be created as items are constants, not variables, Items of type
before they can be used. Items may be created in ARRAY must be declared with constant bounds since

three ways: they are allocated upon entering the outer block.

1) A Declared item may created by Example declarations of items with datums:
declaration of an identifier to be of type

ITEM.

2) An item may be created with the NEW
construct (see page 64).

3) A bracketed triple item is created by the

MAKEing of a bracketed triple (see MAKE,
page 57).

52

SAIL USER MANUAL LEAP DATA TYPES

—

INTEGER ITEM FATHER-OF; same types that are legal for items. If one has

| STRING ITEM FOO; declared STRING ITEMVAR ITMVR, then the compiler

| plan AL Ris [1:4] 8]; COMMENT note assumes that you have stored an string item in ITMVR,
SHORT REAL [TEM POINT: y and and will treat DATUM ITMVR) as a string
EXTERNAL ITEM BLAT; COMMENT illegal; variable.

ITEMVAR ITEM BLAT; COMMENT illegal;

L THING WSMVER (VE BLT; GOMES og An Itemvar may be declared CHECKED if the user
PROCEDURE ITEM BLAT: COMMENT illegal, desires the type of itemvar checked against the type

use ASSIGN; of the datum of the item expressions assigned to it.

That is, only a string item could be stored in a

- The syntax for variable includes the Datum construct. Checked String ltemvar. It the itemvar is not declared
That is, if AGE isa declared an Integer ltem, then Checked, : may have an item of any type assigned to
DATUM(AGE) behaves exactly like an Integer variable. 't and their types need not match at all. This can be

: ig If ARR IS declared as very dangerous. For example, an integer array itemmight be assigned to a string itemvar. When the datum

STRING ARRAY ITEM ARR [2:4,1:9+2] of this itemvar is later assigned to an integer variable,
: say, Sail will try to treat the array header as a string

i pointer and get very confused. The runtime routinethen DATUM(ARR) Is a string array with two dimensions TYPEIT, page 83, returns a code for the type of its
of the declared size. A new array may not be argument, and can be useful for avoiding type

, assigned to the Datum of ARR, though of course the matching errors with un-checked itemvars.
| individual elements of the array may be changed.
— Datums obey the -same type checking and type EXTERNAL, OWN and INTERNAL ltemvars are legal.

conversion rules that the algebraic variables of Sail do. SAFE applies to either the array of an array itemvar,
For example, when a string is assigned to an integer the array of an itemvar array, or both arrays of an

i datum, the integer stored in the integer datum is the array itemvar array.
ASCII of the first character of the string.

ltemvars obey traditional Algol block structure. Upon
ITEMVARS exiting the block of their declaration, their names are

L An ltemvar is a variable whose value is an ltem. Just unavailable and their storage is reallocated. However,
as the statements 'X«3; Y-X” and "Y«3 are the item stored in an itemvar is not affected -- it
equivalent with respect to Y, the statements continues to exist until DELETEd or until the end of the

“X-DAD; Y-X” and "Y<DAD" are equivalent with orogram.
| respect to Y, if X and Y are itemvars, DAD an item.

The distinction between Itemvars and items is identical ltemvars are initialized to the special item ANY at the
to the distinction between integer variables and beginning of one’s program.
integers. An integer variable may only contain an

g integer and a variable declared ITEMVAR may only SETS AND LISTS
contain an item. This may be confusing since Sets and Lists are collections of items. There are

historically, integer variables have always been called two distinctions between Sets and Lists: a list may
- INTEGER rather than INTEGERVAR. contain multiple occurrences of any item while a set

a contains at most a single instance of an item. Second,
Properly speaking, one should have INTEGERVAR the order in which items appear within a list is

] ARRAYs Instead of INTEGER ARRAYs. Originally, Sail completely within the control of the user program,
only allowed ITEMVAR ARRAYs. However, so many while with a set, the order is fixed by the internal
people found this confusing that now one may say representation of the items. Lists and Sets do not
ITEM ARRAY, and it will be interpreted to mean care what type if any the datums of their members
ITEMVAR ARRAY. Similarly, an Item procedure is are.

i exactly the same as an Iltemvar procedure.

- List and Set Arrays, ltemvars, Items, and Procedures
An ttemvar may contain items of any type. However, are all legal, as well as External, Own and Internal Sets

when one says DATUM ITMVR) where ITMVR is an and Lists. Like itemvars, the scope of Set and List
temvar, the compiler must know the type of the datum variables is the block they were declared in. Exiting

— of the item (i.e. the type of the item) contained in the that block does not destroy the items stored in the
ltemvar so that the the correct conversions, etc. may departed sets or lists.
be done. Thus, one may declare itemvars to have the

ASSOCIATIONS

= Perhaps the most important form of storage of items is
the Association, or TRIPLE. Triples of items may be

written into or retrieved from a special store, the

53

L

LEAP DATA TYPES SAIL USER MANUAL

associative store. The method of storage of these carefully declaring the desired items in the sarne order

triples is designed to facilitate fast and flexible in both programs so that their numbers match. The
retrieval. Sail uses approximately two words of storage message “Warning -- two programs with items in them.”

for each triple in the associative store. There is at will be issued at the begining of execution, and may be
most one copy of a triple in the store at any time. ignored if you are certain the items are declared in
Once a triple has been stored in the associative store, the same relative positions. No checking of names,
its component items can not be changed, although an types, arrays bounds, etc. is done, so be very careful.

approximation to this can be obtained by erasing the

association then making a new association with the Items occupy no space (neither does the constant

altered components. You will note there is no syntax integer 15). The numbers ascribed to items are

for declaring a triple. Triples can only be created with stored in Iltemvars and Associations. Itemvars are
the MAKE statement. In the examples which follow, a simply a word of storage An association is two

triple is represented by : words of storage, one with three 12 bit bytes, each

containing the number of one of the items of the

AeO=V associalion, and a second word containing two pointers
reiating the association to the associative search

where A, 0, and V represent the items stored in the structure. Since the number of an item must fit in 12
association. The associative store is accessed by the bits, the number of items is limited to about 4090.

FOREACH statement, derived sets, and binding triples
(see Searching the Associative Store, page h7). The number of an item may be retrieved from the item

as a integer with the predeclared function CVN (
PROCEDURES <item-expression>). The item represented by a
Itemvar, Item, List, and Set procedures all exist. certain integer may be retrieved by the predeclared

ltemvar procedures may be CHECKED if one desires function CVI (<algebraic-expression>). CVN and CVI
the "MRETURNed to have the same type as the should only be used by those who know what they're
type of the ltemvar procedure. Otherwise, the compiler doing and have kept themselves up to date on changes

only checks to see that the value returned to an in Leap.

itemvar procedure is an item.

Every type except Item may be used in formal

parameter declarations; items are constants yet

parameters always have something assigned to them in

the procedure call. Since you can’t assign something to

a constant, you can’t have item parameters.

WARNING: when using Checked Reference ltemvar

formals, no type checking is performed as the actual is

assigned to the formal at the procedure call. However,

type checking will only be done during the procedure,

and when the formal is assigned to the actual upon the

- (normal) exit of the procedure.

IMPLEMENTATION

Each ltem is represented by a unique integer in the

complier. The numbers are assigned in the order the

- items are declared, e.g. the first declared item get 1,

" the second gets 2, etc. (actually, Sail has already

declared 8 items that it needs, so user item numbers

start with 9). Lexical nesting is not observed; it is
only the sequence in which the declarations are

scanned that determines their numbers. The NEW

function does not affect this assignment of numbers.

Items created by the New function are assigned the

next available number at the time of the execution of

the New.

Those who use separately compiled procedures (see

page 1@) may wish to have declared items common to

both programs. However, Internal and External items

do not exist. The same effect may be-achieved by

54

i SAIL USER MANUAL LEAP STATEMENTS
SECTION 11 <associative_statement>

8 = DELETE(<item-expression>)LEAP STATEMENTS = MAKE <triple>
= ERASE <triple>

<triple>

i= <item-expression> & <item-expression> =

<item-expression>
- 11.1 - SYNTAX

f i <foreach_statement>: <leap-statement> = FOREACH <binding-list>= SUCH THAT
= <leap-assignment-statement> <element-list> DO <statement>

= <leap-swap-statement> - NEEDNEXT <foreach_statement>

[= <set-statement>i= <list-statement>

= <associative-statement>

Po = <foreach_statement> <binding-list>
L w= <suc_fail_statement> .- <itemvar_variable>

= <binding-list> , <itemvar_variable>

<leap-assignment-statement>

| = <i{temvar_variable>« <item-expression>
= w= <set-variable> + <set-expression> <element list>

w= <list-variable> + <list-expression> - elements
w= <element-list> AND <element>

<leap-swap-statement>

= <itemvar_variable> e <itemvar_variable>

= <set-variable> e <set-variable> <element>

- w= <list-variable> e <list-variable> n= <item-expression> IN
<list-expression>

-=(<boolean-expression>)

»= <retrieval-triple>

<set-statement> := <matching_procedure_call>
= PUT <item-expression> IN <set-variable>

m= REMOVE <item-expression> FROM

- <set-variable>

<retrieval-triple>

w= <ret-trip-element> @ <ret-trip-element>

= <ret-trip-element>

| <list-statement>
- = PUT <item-expression> IN <list-variable>

<location_specification> <ret-trip-elements
= REMOVE <item-expression> FROM w= <item-expressions

: <list-variable> «= <derived-set>
— := REMOVE ALL <item_expression> FROM

<list-variable>

<matching-procedure-call>

n= re-call>

a <location_specif icat ion> <procedure-ca
::= BEFORE <element-location>

== AFTER <element-location>

- <suc_fail_statement>
:= SUCCEED

<element _location> — FAIL
= <item-expression>

_ w= <algebraic_expression>

55

LEAP STATEMENTS SAIL USER MANUAL

11.2- RESTRICTIONS expression> IN <set variable>” does exactly what it

says.

SUCCEED and FAIL statements must be lexically “PUT <item expressions IN «list variables BEFORE
nested inside a matching procedure to be legal. <algebraic expression>" evaluates the item expression,

evaluates the algebraic expression and coerces it into

an integer, say n, then puts the item into the list at

the nth positron, bumping the old nth item to the n+1th
11.3 - SEMANTICS position, and so on down the list. This increases the

length of the list by one. “PUT item IN list AFTER n'
places the item in the ntlth position and bumps the

ASSIGNMENT STATEMENTS old nt lth item down to the n+Zth position, and so on.

Assignment statements in Leap are similar to those in If n<0orn> (1 t Ilength-of-list), then an error
Algol. ltemvars, Set variables, and List variables may message is given. The special token ‘© may be used
be assigned item, set and list expressions, in the expression for n to stand for the length of the

respectively. Only one automatic coercion is done: a list.

set expression may be assigned to a list variable.

NOTE: lists may not be assigned to set variables (use ‘PUT <item expression 1> IN «list variable> BEFORE
CVSET). <item expression 2>" cause a search to be made of

the list for the item of <item expression 2>. If it is

The type of an itemvar is checked against the type of found, the item of <item expression 1> is placed in
the item expression assigned to it if and only if the the list immediately ahead of the item found by the

itemvar is declared Checked. If a typed item is search. “PUT item IN list AFTER item” proceeds the

assigned to an un-Checked itemvar of different or no same way, but puts the first item in the list

typ. the datum is not affected. Assign an integer item immediately following the second item. If the second

to a string itemvar and the string itemvar will now item is not an element of the list, a BEFORE will put

contain an item with an integer datum. Sail will not the first item at the begining of the list, while an

know that you have in effect switched the type of the AFTER will put it at the end of the list.

datum and will get very confused if you later try to

use the datum of the itemvar; it will treat the integer REMOVE

as a pointer to a two word string descriptor in this To remove an item from a set or list, one may use

case. REMOVE. “REMOVE item FROM set” does just what it
says. If the item to be removed from the set does not

DATUM (X) is legal only when X is a typed item occur in the set, this statement is a no-op.
expression, namely an item expression that the

compiler can discover the type of (not COP(<set>) for “REMOVE n FROM list” removes the nth item from the
example). See page 88 for the BNF of typed item list. The old ntlth item becomes the nth, and so forth.

expressions. DATUM (X) is syntactically a variable. An error is indicated if n £0 or n > length-of-list. As
It has the type of the typed item expression, X. If X before, © should stand for the length of the list.

has an array type, then DATUMX) should be followed However,
- by [<subscript_list>] Appropriate coercions will be

done (i.e. string to integer, integer to real, etc.) just as “REMOVE item FROM list” removes the first occurence

with regular variables in expressions. NOTE: the user of the item from the list, If the item is net found, this

is responsible for seeing that the datum of an item statement is a no-op.

expression really is the type that Datum thinks it is

(i.e. Datum of a Real ltemvar that has had a string item “REMOVE ALL item FROM list” removes all occurences

: stored in it will give you garbage). of the item from the list.

PROPS { X), where X is an item expression, is legal DELETE

regardless of the type of X. X may even evaluate to Items are represented by unique integer numbers in

a bracketed triple item, procedure item, or event item. Sail. Due to the overwhelming desire to store an

PROPS (X) is syntactically an integer variable. It is association in one word of storage, these unique

limited to integers n where 0 <n <4@095. If negative numbers are limited to 12 bits. Thus the total number
(i.e. two's complement) Integers or integers larger than of items is limited to 4090. The DELETE statement

4095 are assigned to a PROPS, only the right 12 bits allows one to free numbers for reuse. It is also the

are stored. The rest of the Integer is lost. only way to get rid of an item short of exiting the

program. WARNING: The Delete statement in no way

PUT alters the instances of the Deleted items which are

Sets and lists are initially empty. One may put items present in sets, lists, associations, or itemvars. The

in them with the PUT statement. “PUT <item user should be sure that there are no instances of the

56

i

[SAIL USER MANUAL LEAP STATEMENTS
Deleted itemoccurring in itemvars, sets, lists or Having 'ItmXX", one may access the items of the
associations. Even saying DELETE(ITMVR) where association connected to with the predeclared

[ITMVR is an itemvar with an item to be deleted in it functions FIRST, SECOND, and THIRD (see page 84,will not remove the item from ITMVR; one must be for more information on these runtime functions):
careful to change the contents of ITMVR before using

It again FIRST (itemXX) is item2

| SECOND (itemXX) is item3THIRD (itemXX } is item4
MAKE

The MAKE statement is the only way to create ERASE

| Associations (Triples) and add them to the associative The way to remove an association from thestore. If the association already exists in the store, no associative store and destroy it is to ERASE it:
alterations are made. The argument to the Make

statement 1sa triple of item expressions: ERASE item1 € item2 = item3

{ MAKE iteml® item2 # item3MAKE item1 ® itemvarl = NEW where the itemN are item expressions. The item
MAKE itemvar_array[23]&iteml = itemvar2 expressions must be retrieval item expressions that is,

| The component item expressions are evaluated left to one may use the ANY item but not the NEW functionor the BINDIT item (see ANY, page 64, and NEW,
right. The three items that the three expressions oage 64, and BINDIT page 65). Using ANY as one,
evaluate to are then formed nto an association, and two, or three of the item expressions allows many
the association is hashed into the associative store. CL. :

associations to be erased in one statement. If the

The item expressions must be constructive, that is, one _ : :[association to be erased does not exist, Erase is a no-may use the NEW function but not the ANY or BINDIT op.
items (see NEW, page 64, ANY, page 64, and

BINDIT, page 65). Whenever one Erases an association, none of the items
[of the association are deleted. In particular, when one

BRACKETED TRIPLES ITEMS Erases an association that has a Bracketed Triple
Items may be created by declaration, by the NEW item as one of its components, the Bracketed Triple
function, or by using BRACKETED TRIPLES in Make item is not deleted. Furthermore, the association

[statements. A Bracketed Triple item may not have a connected to the Bracketed Triple item is not
datum, but may have a prop or a pname (see page automatically erased by erasing an association
84 for pnames, page 56 for props). Instead, a containing a Bracketed Triple item. The following

[Bracketed Triple items has an Association connected Erase erases only one association:to it. One creates a Bracketed Triple item by

executing a Make statement: ERASE item1 ® [item2&item3sitemd]= items

MAKE item1 @[item2&item3=item4]= item5

| However, erasing the association connected to a
Bracketed Triple deletes the item. Deleting the

where the tern are tem EeXpressions. Bracketed Triple item DOES NOT erase the association
[item2eitem3=item4]" is the Bracketed Triple item, and connected to it.
of course need not always be the second component ofL the association. The association connected to the
Bracketed Triple item is “item2 & item3 =zitem4". The

above Make statement actually creates two triples and 11.4- SEARCHING THE ASSOCIATIVE STORE
[one item. Namely, the associations

iteml® itemXX = item5

item2 item3 zitem4 Flexible searching and retrieval are the main

| motivations for using an associative store. It followsand the item "itemXX" which is a Bracketed Triple that this is the most important section of the Leap part
item and has the second association connected to it. of this manual. It is a rare Leap program that does not
One can access a Bracket Triple item, with the an use at least one of the searches described below.

| associative search called the Bracketed Triple ltemRetrieval: Four methods of searching the associative exist in Sail:

| itmvar « [itm2 « itm3 = itmd}; | Binding Booleans,

| COMMENT itmvar now contains itmXX; Derived Sets,The Bracket Triple construct may be used in any Bracketed Triple item retrieval, and
expression See page 58. Foreach Statements

L .

LEAP STATEMENTS SAIL USER MANUAL

The first three are properly part of the discussion of Binding Boolean found. If no such association can be

Leap Expressions in the next chapter, but are included found, then the Binding Boolean returns FALSE and

here for completeness. leaves the “BIND” itemvars with their previous values.

If "?" precedes an itemvar, then the itemvar will

Throughout this section we will use the following behave like a “BIND” itemvar if it is currently contains

notat ion for an association: BINDIT, but will behave like an item expression if it is
bound to some other item than BINDIT. Example:

AeQ=V

IF Fathr & ?Son = ANY THEN PUT Son IN Sonset;

where A, O and V stand for the “attribute”, “object” and viiiSO op THEN, SHILDLESS(Bob
“value” items of an association.

DERIVED SETS

The terms “bound” and “unbound” will find heavy use in Derived Sets are quite simple: “Foo ® Garp’ where
this section. Bound describes an itemvar that has an Foo and Garp are item expressions, is the set of all

item assigned to it. Unbound describes an itemvar items X such that Foo © Garp = X exists.

that, at this time in the execution of the program, has “Garp = Sister” is the set of all items X such that

no item bound to it. The object of searching the X ® Garp = Sister exists. “Foo ' Sister” is the set of
associative store is usually to bind unbound itemvars all items X such that Foo © X = Sister exists.

to specific, but unknown, items. If the itemvar to be Examples:
bound was declared Checked, then type checking will

be done, and the appropriate error message will be Dadset « Fathr# ANY;

issue if the binding item does not have the same type Danson“ Fathr* Dan;
News « (Son = Dad) Nattset;

as the itemvar. -

ANY specifies "| don't care” to the search. BINDIT has
Throughout this section, references to item expressions no special meaning to the search, and behaves like any
will always mean retrieval item expressions. Don’t use other items. Since BINDIT can never appear in an
NEW in such expressions. association, this means the set returned will always be

the empty set PHI.
A hashing algorithm is used in storing and retrieving

associations in Leap. The user can increase the speed BRACKETED TRIPLE ITEM RETRIEVAL
of associative searching or decrease his core image by A Bracketed Triple item can be referenced by
using the REQUIRE n BUCKETS construct to control specifing the association it is connected to. For
the size of his associative search hash table to reflect example,
the number of assclations he will be using. A hash

table will be allocated with (2m) hash codes where m tmvar« [iml & itm2 = ANY]

is the smallest integer such that (2Im)2 n. Sail PUT [ANY > ANY 2 ANY] IN BracsetETTRNT ‘ IF Foo & Garp = [itml ® itm2 ANY] THEN . . .

initializes the hash size to ‘1000. rmvar « ald tmz o ey ima] = its]

BINDING BOOLEANS where itmN is any item expression not containing NEW
A Binding Boolean searches the associative store for a or BINDIT. ANY means you don’t care what item

- specified triple, returning true if one can be found, and occupies that component. If the designated Bracketed

false otherwise. A Binding Boolean is a triple: Tripie is not found, an error message is given.

tml itm2 = itm3 THE FOREACH STATEMENT

This statement 1s the heart of Leap. It is similar to

where “itmN" is one of three things: an item expression, the FOR statement of Algol in that a statement is
or the reserved word “BIND” followed by an itemvar, or executed once for each binding of a variable. In this
the token "7?" followed by an itemvar. An item semi-schematic example,
expression as a component of the Binding Boolean

means that component of the triple that the boolean FOREACH X SUCH THAT <eiement> AND . .. AND
]]] <element> DO «statements;
finds must be the item specified by the item

expressron (unless the item expression evaluates to the

Hem ANY, which specifies that any item is okay). If a the <statement> is executed once for each binding of

“BIND” itemvar 1s the A, 0 or V of the triple, then the the itemvar X. The <element>$ in the element list (i.e.
Binding Boolean will attempt to find an association <element> AND.AND <element>) determine the
which meets the constraints imposed by the item bindings of the itemvar, and hence how many times the

expression A, 0 or V components, and then binds to <statement> is executed. If the <element>s are such
the “BIND” itemvar the items occuring in the that there is no binding possible for X, then the
corresponding positions of the association that the

58

SAIL USER MANUAL LEAP STATEMENTS

<statement> is never executed. Like a Sail FOR

statement, one may use DONE, NEXT, and CONTINUE Set Membership,

within the <statement>. As before, when one uses a Boolean Expressions,

— NE XT inside the loop, the word NEEDNEXT must Retrieval Triples, and
precede the FOREACH of the Foreach that one wants Matching Procedures.
checked and possibly terminated. See pages 17, 17,

and 18 for more information about Done, Next, and

Continue. The order of the <element>s in the element list is
very important, as we shall see.

Restriction: Jumping (i.e. with a GO TO) into a Foreach

_ is illegal However, it is legal to jump out of a Terminology: we say that a certain binding of the the
Foreach, or to jump around within the same Foreach. Foreach itemvars “satisfies” an <elements>. If that

binding satisfies each <element> of the element list,
Foreach statements differ from For statements in that then we say it “satisfies the associative context”. A
more than one itemvar may be included to be given fancy way of refering to the element list is

bindings: “associative context”. We also refer to the collection

of bindings that satisfy the associative context as the

FOREACH X, VY, Z SUCH THAT <elements. . . . “satisfier group” of the Foreach.

X, Y, and Z are called Foreach itemvars. Just as one The execution of a Foreach proceeds as follows. After
must declare the integer | before using it in the Sail initialization, the Foreach proceeds with a search
For statement specified by the first <element> of the element list. If

— a binding can be found that satisfies the first

FOR | = 1 STEP 2 UNTIL 21 DO.. . <element>, the Foreach proceeds forward to the new
<element> of the list and trys to satisfy it, and so on.

When the Foreach can not satisfy an <elements, it
— so must one declare Foreach itemvars before using “backs up” to the previous element and trys to get a

them in Foreaches. Foreach itemvars are no more than different binding. If it can’t find satisfaction there, it
normal itemvars receiving special assignments; they backs up again and trys again to get a different
may have any type. If a Foreach itemvar that has binding. When a Foreach proceeds forward off the end

— been declared Checked is assigned an item by the of the element list (i.e. the associative context is
search that has a different type than the Checked satisfied) then the <statement> is executed, and the
itemvar, an error message will resuit Foreach backs up to the last <element> of the element

list. When the Foreach backs up off the left end of the
— Foreach itemvars differ from For variables in a more element list, the Foreach is exited.

radical way It 1s possible to specify to the Foreach

that a certain Foreach itemvar be a variable to the When a Foreach is exited by backing up off the left,
| search only on the condition that that the itemvar the Foreach itemvars are restored to the last satisfier
— contains the special item BINDIT at the time the group bound to them, regardless of what the

Foreach Is called. One precedes such itemvars with <statement> may have done. If the associative
the "7" token. For example: context was never satisfied, then the Foreach itemvars

_ FOREACH2X. 2 Y. 7 SUCH THAT <clomente. have the values that they had before the Foreach.
SR i When a Foreach is exited with a GO TO, DONE, or

RETURN, the Foreach leave the itemvars with the

If X contains BINDIT but Y does not when this Foreach bindings they had at the GO TO, or whatever,
— starts execution, then the search will be conducted including any modifications that the <statement> may

exactly as If the statement have made to them.

FOREACH X,Z SUCH THAT <element>.. .. THE LIST MEMBERSHIP <ELEMENT>

- [In the following, one may also read “set” for “list”; Sail

were the Foreach specified. The itemvar X will then automatically coerces set expressions into list
act just like an ordinary, non-foreach itemvar that was expressions This <element> does not search the
bound previous to the Foreach. All Foreach itemvars associative store to bind an temvar, but merely binds

— may be '?" itemvars if this is desired. it with an item of a specified list. In the Foreach,
FOREACH X| X IN L DO <statements;

There are four different types of <element> that may

Lo be used Inforeach element lists:
(here we have used the Sail synonym I for “SUCH
THAT”), the Foreach itemvar X is bound successively

59

L

LEAP STATEMENTS SAIL USER MANUAL

to each element of the set L, starting at the beginning elements, like (a.a). Different orderings of the same
of the list. If an item occurs n times in L, then X will elements wili NOT be Ignored. Thus, pairs like (8) and
be bound to that item n times in the course of the (ba) will each be a satisfier group sometime during the

For-each. Thus, the number of satisfiers to the above Foreach. Furthermore, if the list L contains duplications
ForeachisLENGTH(L). of the same item, identical pars will occur in

proportion to the number of duplications. That is,

In the current implementation of Leap, there is a regardless of the duplications within the list, the

difficulty that should be pointed out. If inside the number of satisfier groups to the Foreach above is
<statement>, one changes L by list assignment, LENGTH 2.
Removes, etc. in such a way as to remove the next

item of the list that the Foreach itemvar would have THE BOOLEAN EXPRESSION <ELEMENT>

been bound to, Leap may go crazy. Foreach Any Sail boolean expression may be used as an
searches look one ahead and save a pointer to the <element> in the Associative Context of a Foreach if it
next items to be bound to the Foreach itemvars. This is inclosed by parentheses. A Boolean Expression

allows one to remove the items of the current bindings <element> is satisfied if it is TRUE. Note that the
of the Foreach itemvars from lists or whatever, but boolean expression must have parentheses around it.

makes other removals hazardous. For example,

WARNING: Foreach itemvars can not be bound by a
FOREACHX | X IN L DO REMOVE X FROM L; Boolean Expression <element>. Therefore, all itemvars .

used in a Boolean Expression <element> must be

will work. but bound by previous <element>S in the element list. A
Boolean Expression <element> with unbound Foreach

SUT V IN L BEFORE FOO; itemvars in it causes an error message.
FOR-ACHX| X IN L DO REMOVE V FROM L;

THE RETRIEVAL TRIPLE <ELEMENT>

will -obably fail. No error checking is done. To search the associative store with a Foreach, one
uses the Retrieval Triple <element>. A Retrieval

Whenever the Foreach itemvar of a list <element> has Triple is satisfied if a binding of the Foreachitemvars
been bound previously, the list element behaves like a can be found such that the triple is an extant
boolean. It does not rebind the itemvar but only checks association, If all of the itemvars of the Retrieval
to see that it is in the list. For example, Triple <element> were bound previous to the execution

of the Retrieval Triple <element>, then the Triple does

FOREACHX| X IN L AND X IN LL DO <statement>; no further binding: it is satisfied if the specified triple
is in the associative store. For example,

X is bound by the <element> X INL" <element> 'X
IN LL” is satisfied if the item contained in the itemvar FOREACHX| FATHER ® TOM = X AND
Co , X IN PTA-SET DO «statements;

X is in the list LL.

FOREACH X | X IN PTA-SET AND
If two different Foreach itemvars are used with two FATHER ® TOM# X DO <statement>;

different lists, i.e.

FOREACH X.Y| X IN L AND Y IN LL The two Foreaches have the same effect. However, in
DO <statements: the first case, X is bound by a search of the

associative store for any triple that has FATHER as its

attribute component, and TOM as its object component,

then after execution of the <statement>, the Foreach When such a triple is found, X is bound to the item
“will go back the last <element> that searches for that is the value component. Then, if X is in the
© bindings, in this case Y IN LL” and gets a new binding PTA-SET, the Foreach lets the statement execute. If

for Y. It is only on failure of this search that the X is not in PTA-SET, then the Foreach backs up and
Foreach goes back to the first <element>, X INS", and trys to find another triple with FATHER as its
gets a new binding for X. Thus the <statement> will attribute and TOM as its value. In the second Foreach,

be executed once for each possible X,Y pair. In the X is bound with an item from PTA-SET, then the
Foreach. associative store is checked to see that the triple

FATHEReTOM=x, where x is the binding of X, is in the
FOREACHX,Y |XINLANDYINL...; store. If it is, the <statement> is executed, otherwise

the Foreach backs up and gets a different item from

elements in L. This includes pairs with duplicate only one father, the first search is much faster.

60

| SAIL USER MANUAL LEAP STATEMENTS
—

Using ANY in a Retrieval Triple indicated that you problems. This is similar to REMOVE used in
don’t cat-e what item occupies that position. For Foreaches with List Membership <element>s controling

| Instance, In some bindings. ERASE can only be guaranteed to to
— work safely if the association erased is the one we

FOREACHX | FATHER ® ANY = X DO «statements; just got a binding from, e.g.

X 1s bound successivly to all fathers. However, if the FOREACHX | A® 0% X DO ERASE A 0% X;
oT associative store included the following three

assoctat ions, or if the association erased could not possible be used
for a binding of a Foreach itemvar, such as,

FATHER « KAREN = PAUL

en tieiL FOREACH X | Link ® X = Node DO
ERASE Node ® X = ANY;

then X would be bound to PAUL only once, not thrice.

— BINDIT has no special meaning to the search. Since Foreaches look one ahead to the next binding of its
BINDIT can never appear in an association, a Retrieval itemvars, and leaves a pointer to those associations. If
Triple containing it will cause the search to always fail. you Erase any of those associations, the Foreach gets

i lost in the boondocks. No error checking is done.Different kinds of associative searches proceed with

different efficiencies. Listed below in order of However, as long as the associative store is not
decreasing efficiency are the various forms of changed during the execution of the Foreach, a
Retrieval Triple <element>s that are legal. A, 0, and Retrieval Triple will not itself repeat a particular set

ht V represent either--bound Foreach itemvars or items of bindings that it bound before.
from explicit item expressions in the triple. x, y, and 2

\ represent unbound Foreach itemvars or the item ANY. THE MATCHING PROCEDURE <ELEMENT>

L (note that x © x= V is really x ® 0 ® V, and so on). Matching Procedures are the most general search
The two forms of the List Membership <element> are mechanism in Leap. They also provide a convenient
included for comparison. method of writing coroutines.

L re - y A! ore xn ne on A MATCHING Procedure is very similar to a boolean
XxeyzV bute and object are free. procedure (in fact outside of Foreach associative

} A IN L Verification that item A is in list L. contexts, it behaves like a boolean procedure and may

| AeQ=V Verification that the triple be called within expressions, etc.). They must beoo 's in the store. declared of type MATCHING. They may not be
Aex=zV Only the object is free.

x&0zV Only the attribute is free. declared SIMPLE. The formal parameters of a
Aoxs=y Object and value are free. Matching Procedure may include zero or more '¢.

| Xoozy rou and value are free. itemvars (pronounced “question itemvars”) which mayLo yz ttribute, value and object are free. have any datum type but may not be VALUE or
REFERENCE. These parameters correspond roughly to

, . Note that MAKEIng an association inside a Foreach either call by value or call by reference, depending on
| may or may not affect subsequent bindings. For the actual parameter when the procedure is called.
} example, in When the actual parameter is an item expression or a

bound itemvar the parameter is equivalent to a value

FOREACH X.Y | Link ® X # Y DO parameter. However, if the actual parameter is an
! MAKE Link ® X =Newlink; unbound Foreach itemvar, then the parameter is
— treated as a reference parameter, and on entry is is

it is uncertain whether Y will ever receive Newlink as initialized to the special item BINDIT.

| its binding or not. Matching Procedures are exited by SUCCEED and FAIL

— The A, 0, and V used in a Retrieval Triple of a statements instead of RETURN statements. When used
Foreach may be a derived set expressions as well as outside of an associative context, SUCCEED
item expressions. For example, corresponds to RETURN(TRUE) and FAIL corresponds

) to RETURN(FALSE) [this is not strictly true when the
— FOREACH X, Y | Link ®(FatheréY)=X DO . . .; matching procedure is sprouted as a process -- see

page 691. Inside an associative context, Succeed and

Fail determine whether the Foreach is to proceed to
ERASE In the <statement> of a Foreach that binds any
Lo the next <element> of the element list or to backup

— of its itemvars with Retrieval Triples may cause
to the previous <element> of the element list. When

i

I. 61

—

LEAP STATEMENTS SAIL USER MANUAL

DEFINE BINDING(A)="(A=BINDIT)"

the Foreach backs up into a Matching Procedure, the SET SET1: INTEGER INDX;
procedure is not recalled. but resumed at the RECURSIVE procepburE SUCC_SET(REFERENCE

‘statement following the last Succeed executed. On ILE ENGTHSL oo &SET Sl);
the other hand, when a Foreachprocedes forward into BEGIN X<LOP(SL):
a Matching Procedure, the procedure is called, not SUCCEED:

resumed. Therefore, a Matching Procedure <element> END;

will never be resumed following a FAIL statement. INDX« o-
IF BINDING(A) THEN INDX« 1;

When a Matching Procedure is the last <element> of IF BINDING(O) THEN INDX «INDX t 2;

the associative context, Succeeding will cause the IF 2 NRBX THEN INDX« INDX t4;
<statement> to be executed; the Foreach then Soon 1] "A0=V" IF AeO=V THEN SUCCEED:
backs up into the Matching Procedure, and the [1] "?«0=V" SUCC_SET(A,0=V);
Matching Procedure is resumed at the statement [2] "Ae?=V" SUCC_SET(Q,A'V);

following the Succeed. When a Matching Procedure is [3] "7e?=V }
: CL iN BEGIN SET1 « ANY ZV;

the first <element> of an associative context, Failing WHILE (LENGTH(SETL)) DO
will exit the Foreach. BEGIN A «LOP(SETL);

SUCC_SET(Q,AV)

WARNING: Matching procedures are actually END: END:
implemented as processes and therefore two calls of [4] "AsQ=?" SUCC_SET(V,A&V);
the same matching procedure may share the same [6] "7&0=7"

memory (see Memory Accessible to a Process, page BEGIN SET1e0= ANY;y y Pag WHILE (LENGTH(SET1)) DO
68). For example, two calls of the same matching BEGIN A «LOP(SETL);
procedure inside the same Foreach (one may even be SUCC_SET(V,A®Q);
in the <statement> of the Foreach) will normally share END;

the “ame memory locations for their locals. To give [6] geo”
separate matching procedure calls separate memory BEGIN SETLeA ANY:
locations for their locals, declare the matching WHILE (LENGTH(SETL)) DO

procedure RECURSIVE. BEGIN 0 «LOP(SET1);
SUCC_SET(V,A2Q);

: END;
When a Matching Procedure is used exterior to the END:
associative context of a Foreach, one may use “BIND” [7]"7e7?=?"

in the call preceding those actuals which one wishes USERERR(®,1,"ANYSANY=ANY IS IN BAD TASTE)
: _. END;

bound regardless of their current binding. Preceding END “TRIPLE™
the actual with "7" wiil have the save effect as “BIND”

if the current value of the itemvar is BINDIT, and will

have no effect otherwise (the procedure will not

attempt to find it a binding)

That is all there is to Matching Procedures. Their

power lies in the using them cleverly. The following

- program illustrates techniques one may use with

matching procedures by simulating the List

Membership and Retrieval Triple <element>s with

matching procedures.

RECURSIVE MATCHING PROCEDURE INLIST{? ITEMVAR X; LIST L)
. BEGIN "INLIST"

COMMENT THIS PROCEDURE SIMULATES THE CONSTRUCT

X¢ L FOR ALL CASES EXCEPT THE SIMPLE

PREDICATE BINDITe L;

IF X #BINDIT THEN

BEGIN WHILE LENGTH(L) DO

IF X = LOP(L) THEN

BEGIN SUCCEED; DONE; END;

FAIL;

END;

WHILE LENGTH(L) DO

BEGIN X~LOP(L}
SUCCEED;

END;

END “INLIST";

MATCHING PROCEDURE TRIPLE{? ITEMVAR A,Q,V);
BEGIN “TRIPLE”

62

| SAIL USER MANUAL LEAP EXPRESSIONS
SECTION 12 <item_expr_list>

n= <item-expression>

I. LEAP EXPRESSIONS n=<item_expr_list> , <item-expression>

—

<set-expression>

= <sel_term>
= <set-expression> u <set_term>

" 12.1 - SYNTAX

y <set_term>
tl w= <set-factor>

— <leap-expression> | i= <set-term> n<set_factor>
«= <item-expression>

«= <set-expression>

[w= &t-expression> <set-factor>
== <sel_primary>
= <set-factor> -<sel_primary>

| <item-expression>
= <item_primary> <set_primary>
z= [<item_primary> e <item_primary> = w= PHI

| <item_primary> | t= <set-variable>== {item_expr_list}
| | z= (<set_expression>)

<item_primary> i= <derived-set>
= NEW

OC = NEW(<algebraic-expression>)
= NEW (<set-expression>)

z= NEW(<list-expressions>) <derived-set>

| = NEW(<array-names) n= <item-expression> <associative-operator>
- = ANY <item-expression>

== BINDIT

== <item_identifier>

== <itemvar_variable> <associative-operator>
— i= <list-expression> [n= @

<algebraic-expression> | vz ©

= <itemvar_procedure_call> eg

[- i= <resume-construct>n= <interrogate-construct>

| <itemvar_procedure_call> <itemvar variable>
L ::= <procedure-call> aE <variables

| <set-variable>
| <list-expression> = <variable>

v= <list-primary>

= <list-expression> & <list-expression>

“ <list-variable>
= <variable>

<list_primary>
= NIL

3 = <list-variable>
= {{ <item_expr_list> }}

=(<list-expression>) <leap-relational>
w= <list-primary> [<substring_spet>| = <item-expression> IN
= <set_primary> <set-expression>

63

L

LEAP EXPRESSIONS SAIL USER MANUAL

w= <item-expression> IN RECORD[5]~ ITMVR:
<list-expression> ITMVR —RECORD[w-1}

:= <item-expression> RECORD[]« RECORD[1]
<item_relational_operator> | . a
tom-exOression are ali legal. The special token «© means the length of< - >

pres the list when used in this context. The contents of the
i= <set-expression> : :

square brackets may be any algebraic expression as
<set-relational-operator> : :

Sol-eXOresSions long as it evaluates to an integer n where< - .

Serexpres 1 <n <LENGTHist)
w= <list-expression>

<list_relational_operator>
St al.op <list_expression> [<algebraic_expression>] returns a

<list-expression> : :

triole particular element of a list, but may not appear on=< > . .

P the left of an assignment expression, because
assignment must be to variables.

<item_relational_operator>

rv. o =F NEW
4 The function NEW creates an item at execution time.

Since space must be allocated at loading for various

tables, one must indicate approximately how may NEW

set-relational ator items he will create (the compiler counts the declared
< al-operator> items for you). Therefore, one should say “REQUIRE n

a NEW-ITEMS” where n is some integer less than 4090
- (the maximum number of items allowed in Sail). n may
L=<

I. be larger than the actual number of New items
i < created, but the excess will be wasted space. If

a; 0 <n< 50, you get tables for 50 New items anyhow.

NEW may take an argument. In this case, the datum

: : X of the created item is preloaded with the value passed
<list_relational_operatior> sp | pass

Lo as argument. If this argument is algebraic, set or list,

2 then the datum will be of the same type. No type
} conversions are done when passing the algebraic

argument. NEW will also accept an array name as

argument. In this case, the created item will be of the

type array. In fact, the array cited as argument will be

copied into the newly created array. The new arra
12.2 - SEMANTICS oP y y ow anay

will have the same bounds and number of dimensions

as the array cited as argument. This array will not

disappear even if the block that the original arra
ITEM EXPRESSIONS PP Co : : J y

: . was declared in is exited. It will only be deallocated if
ltemvars and itemvar arrays may be used in item

: : : the item is deleted.
- expressions just as algebraic variables and algebraic

arrays are used in algebraic expressions. Iltemvars and
: Cn : Lo NEW in an item expression makes that item expression
itemvar arrays are initialized to the special Sail item . : Co, : :
ANY a “constructive item expression”. Constructive item

expressions are illegal in some places, namely

anywhere that attempts to gets an item from an

- Items may be retrieved from sets and lists with the yh P J
. existing structure (i.e. ERASE, REMOVE, and

Sail functions COP and LOP. COP(<set expression or co
. Associative searches). It is usually clear whether or
iist expressions) yields the item which is the first Co

not a constructive item expression is illegal.
element of the set or list that the set or list

expression evaluated to. LOP also yields the first item ANY
of the set or list, but removes that item from the set — :

Some associative searches may need only partial
or list. Because LOP changes the contents of the set : : :

Co specification. The ANY item is used to specify exactly
or list that is its argument, it can only accept set or : ee . "

which parts of the specification are “don’t Cares S.
list variables, not expressions. See page 41.

Examples:

List element designators may be used as itemvars in FOREACH X SUCH THAT Father ® X = ANY DO . . .
expressions. For example, if RECORD is a list, and IF Father ® BINDX = ANY THEN . . .

ITMVR an itemvar,

64

i SAIL USER MANUAL LEAP EXPRESSIONS
ANY in an fem expression makes that item expression those of strings, with the natural exception that the
a retrieval item expression”. This is the opposite of a results are lists, and not strings. There is also a

[constructive item expression, and is illegal anywhere difference in that if the indices to the substringer dothe statement Is creating new structure, namely, a not make sense, an error message is generated rather

MAKE statement. Thus, ANY is legal everywhere than setting of the _SKIP_ variable. Examples:
items are, except a MAKE statement.

LISTVAR « LISTVAR[2 TO 0-1};| BINDIT LISTVAR «LISTVAR[9 FOR 2%N];
Like ANY, BINDIT specifies no constraints on the LISTVAR «LISTVAR[1 FoR 2] 8 LISTVAR[S TO e}
associative search. However, BINDIT has a special One may generate sets with

| meaning to some searches, namely the Binding Booleanand Matching Procedures (depending on how they're {iteml item2,item3}

written). An itemvar containing BINDIT will be bound

by the search to an item of the association that the

1 search found. For example: and may generale lisis with
x ~BINDIT: {{item] item] item2,item3}}.
IF Father & 7 X= Bob THEN PUT XIN Bobfatherset Sets are initialized to the empty set, PHI. Lists are

[Like ANY, BINDIT is illegal in MAKE statements. In initialized to the null list, NIL. Initialization occurs at the
certain associative searches, namely the ERASE beginning of the execution of the program. Sets and
statement, the Bracketed Triple Item retrieval list are reinitialized on entering the blocks of their

[expression, and the Retrieval Triple <element> of a declaration only when such blocks are in recursiveForeach, inclusion of BINDIT will cause the search to procedures.

always fail, because BINDIT can appear in no

association. DERIVED SETS
Derived sets are really sets of answers to questions

TYPES AGAIN which search the associative memory. The conventions

The compiler can determine the type of items when are:

the item expression is a typed itemvar, a typed © b - the sof of all x such that a © b = x
[itemvar procedure, a declared item with a type, a 8b - the set of all x such that x ® a = b

typed itemvar array, or a NEW with an argument. a’'b - the set of all x such that a ® x Eb

When the compiler can determine the type of the item

expression, then and only then is it legal to use the BOOLEANS

| Datum construct on the item expression or to assign Several boolean primaries are implemented for
the item expression to a Checked itemvar. For comparing sets, lists, and items. In the following

example, the following are ILLEGAL: discussion, “ix” means item expression, “se” means set
expressions, and ‘le means list expression. These are:

[DATUM(COP(<set>))DATUM(RECORD[w]; ~ COMMENT RECORD is a list; 1) Set and List Membership. The boolean “ix IN
CHEC + NEW; COMMENT CHEC is a Checked itemvar; se” evaluates the set or list expression, and

SET AND LIST EXPRESSIONS returns TRUE if the item value specified by

[Three rather standard operations are implemented for the item expression is a member of the set
use with sets. These are union (u), intersection (a), and or list.

subtraction (-). These operators have the standard

| mathematical interpretations. The only possible 2) Association Existence. The binding boolean
confusion pertains to subtractions: if we perform the ix @ ix = ix, where the ix are item
set operation expressions or itemvars preceded by ? or

BIND, returns TRUE if a binding of the BIND

setl- set2 itemvars (and ? itemvars that contained

[BINDIT) can be found such that the
association exists in the associative store.

and if there is an instance of an item x in set2 but not See page 58 for more information on binding
In set 1, the subtraction proceeds and no error

CL booleans.

[message is given.
3) Relations:

If one considers a list to be a string of items, then

concatenation and taking sublists suggest themselves

[as likely list operations. The syntax and semantics for
sublisting and list concatenation are identical with

L 65

LEAP EXPRESSIONS SAIL USER MANUAL

ix = 1X -- obvious interpretation

ix # ix -- obvious interpretation

sel< se2 -- true if sel is a proper
subset of se2

sel< se2 - true if sel is identical to

se2 or is a proper subset of se2

sel = se2 -- obvious interpretation

sel# se2 -- obvious interpretation

sel> se2 -- equivalent to se2 <sel
sel> se2 -- equivalent to se2 <sel
lel = le2 -- obvious interpretation

lel # 1e2 - - obvious interpretation

PNAMES

For those desire them, each item may have a string,

called its PNAME, linked with it. This is completely

independent of the Datum construct. New items and

Bracketed Triple items are created with NULL strings

as their Pnames. One may delete an item’s Pname

with the DEL-PNAME function which takes an item

expression as its argument. One may give a
Pnameless item a Pname with the NEW-PNAME

procedure, which takes an item expression and a

string as its arguments. CVS! will give you the Pname
of an item, and CVIS with give you the item with the
specified Pname. No two items may have the same
Paz v2. Pnames do not follow Algol scope rules. See
pag: 84 to find out how to use the above four
functions.

If you wouid like your declared items to have Pnames

that are the same as the identifier used in their

declaration, say “REQUIRE PNAMES” or “REQUIRE n

PNAMES” before their declaration at the beginning of

the program. The n is an estimate of the number of

dynamically created items with pnames you will use --

this causes tables for n pnames to be allocated at

compile time rather than runtime, thus making your
program more efficient.

PROPS

Any item may have a PROPS. This is an extra 12 bits

of storage (frequently used for bits). PROPS { X)
) where X is an item expression is exactly an integer

variable in its syntax. See page 56 for futher

Information on props

66

SAIL USER MANUAL PROCESSES

SECTION 13 <resume-construct>

+= RESUME (<item-expression> |,

| PROCESSES <item-expression>
<algebraic-expression>)

w= RESUME (<item-expression> ,

[<item-expression>)

| 13.1 - INTRODUCTION 13.3 - SEMANTICS

A PROCESS is a procedure call that may be run STATUS OF A PROCESS

= independently of the main program. Several processes A process can be in one of four states: terminated,
may “run” concurrently. When dealing with a multi- suspended, ready, or running. A terminated process

3 process system, it is not quite correct to speak of “the can never be run again. A suspended process can be
main program”. The main program is actually a process run again, but it must be explicitly told to run by some

| itself, the main process. process that is running. Since SAIL is currently
implemented on a single processor machine, one

This section will deal with the creation, control, and cannot really execute two procedures simultaneously.

| destruction of processes, as well as define the memory SAIL uses a scheduler to swap processes from readyaccessible to a process. The following section will to running status. A running process is actually
describe communication between processes executing, while a ready process is one which may be

picked by the scheduler to become the running

| process. The user may retrieve the status of a
i} process with the execution time routine PSTATUS,

13.2 - SYNTAX page 86.

| SPROUTING A PROCESS
One creates a process with the SPROUT statement:

<process-statement>

i= <sprout-statement> SPROUT (<item><procedure call>,<options>)

| = <terminate-statements SPROUT(<it em>,<procedure call>)
== <suspend-statement> : : : : : :

“= <join-statement> <item> is a construction item expression (i.e. do not
use ANY or BINDIT). Such an item will be called a

| process item. The item may be of any type; however,its current datum will be writen over by the SPROUT
statement, and its type will be changed to “process

item” (see TYPEIT, page 83). RESTRICTION: A user
- <sprout-statement> :

| = SPROUT(<item-expressions . must never modify the datum of a process item.
<procedure-call> :

<procedure call> is any procedure call on a regular or
<algebraic-expression>)

recursive procedure, but not a simple procedure. This

| “= SPROUT(<item-expression> |, procedure will be called the process procedure for the
<procedure-call>)

New process.

<options> is an integer that may be used to specify

| special options to the SPROUTer. If <options> is left<terminate-statement> : :
-= TERMINATE { <item-expression>) out, 0 will be used. The different fields of the word

are as follows:

<suspend-statement>

| = SUSPEND {(<item-expression>
L

<Join_statement>

= JOIN (<set-expression>)

67

|

PROCESSES SAIL USER MANUAL

BITS NAME DESCRIPTION MEMORY ACCESSIBLE TO A PROCESS

A process has access to the same global variables as

14- 17 QUANTUM(X) Q « IF X=0 THEN 4 ELSE would a “normal” call of the process procedure at the

21X; The process will be given point of the SPROUT statement. For example,

a quantum of Q clock ticks, c1NOSEe you Sprouted a process in the first

indicating that if the user is iowantiation of a recursive procedure and immediately
using CLKMOD to handle clock suspended it. Then in another instantiation of the

interrupts, the process should procedure, you resumed the process. Since each

be run for at most Q clock recursive instantiation of a procedure creates and

ticks, before calling the initializes new instances of its local variables, the

scheduler. (see about CLKMOD, process uses the Instances of the recursive

page 79 for details on making procedure’s locals that were current at the time of the

processes “time share”). SPROUT, namely those of the first instantiation.

18-2 1 STRINGSTACK(X) Ss « IF X=0 THEN 16 Sail will give you an error message whenever the

ELSE X#32; The process Will be global variables of a process are deallocated but the
given S words of string stack. process still exists. Usually, this means that when the

block in which the process procedure was declared is

2 2-27 PSTACKX)P~IF X=@ THEN 32 ELSE X#32; exited, the corresponding process must be terminated
The process will be given P (one can insure this by using a small Cleanup

words of arithmetic stack. procedure that will TERMINATE the fated process or

JOIN it to the current one -- see about Cleanup, page

28-31 PRIORITY (X) P« IF X=0 THEN 7 ELSE X; 9, Terminate, page 69, and Join statements, page
The process will be given a 7d). When the process procedure has been declared
priority of P. 0 is the highest inside a recursive procedure, things become a bit more

priority, and reserved for the complex. As mentioned above, the process takes its

SAIL system. 15 is the lowest globals from the context of the Sprout statement.

priority. Priorities determine Therefore, it is only in the instantiation of the

which ready process the recursive procedure that executed the Sprout that

scheduler will next pick to make trouble can occur. For example,

running.
RECURSIVE PROCEDURE TENLEVEL(INTEGER I %

32 SUSPHIM If set, suspend the newly SE ROCEDUAE FOO
sprouted process. ; COMMENT does nothing;

33 Not used at present. IF 1=5 THEN SPROUT(NEW, FOO, SUSPHIM);

COMMENT sprouts FOO on the 5th

34 SUSPME If set, suspend the process in instantiation of TENLEVEL, then

which this sprout statement immediately suspends it;

oceurs. IF (<18 THEN TENLEVEL (I+1)
- RETURN;

35 RUNME If set, continue to run the

process in which this sprout COMMENT assuming TENLEVEL is called
statement Cours, with [=8, it will do 10 instantiations,

then come back up;

The names are defined in the file SYS:PROCES.DEF, END “TROUBLE;

. which one may require as a source file. Options words

may be assembled by simple addition, e.g. RUNME + TENLEVEL will nest 10 deep, then start returning.
PRIORITY(3) t PSTACK(2) This means “TROUBLE” will be exited five times will no

ill effects, However, when Sail attempts to exit

DEFAULT STATUSIF none of bits 32, 34, or 85 are «1RQUBLE" a sixth time, it will be exiting a block in
set, then the process in which the sprout statement which a process was sprouted and declared. It will
occurs will revert to ready status, and the newly generate the error message, “Unterminated process
sprouted process will become the running process. dependent on block exited”

The default values of QUANTUM, STRINGSTACK, 10 oonstruct DEPENDENT% <block-names), where
PSTACK, and PRIORITY are stored in the system <block-name> is a string constant, produces a set of
variables DEFQONT, DEFSSS, DEFPSS, and DEFPRI process items. The process items are those of all the
respectively. These values may be changed. The
variables are declared EXTERNAL INTEGERS in

SYS:PROCESDEF.

68

SAIL USER MANUAL PROCESSES

|

processes which depend on the current instance of the process. Suspending a terminated process will cause
named block -- i.e. all processes whose process an error message. If the process being suspended is

procedures obtain their global variables from that block the currently running process (i.e. the process

- (via the position of the process procedure’s declaration, suspends itself), then the scheduler will be called to
or occasionaly via the location of the Sprout in a nest find another process to run.
of recursive procedure instantiations). This construct

(may be used together with a CLEANUP procedure (see THE RESUME CONSTRUCT
page 9) to avoid having a block exit before all General coroutine style interactions are facilitated by
procedures dependent on it have been terminated. the RESUME construct.

If one Sprouts the same non-recursive procedure more RESUME (<process item», <return items, <options>)
— than once (with different process items, of course), the RESUME (<process item”, <return item>)

local variables of the procedure are not copied. In <process item> may be any item expression which
other words, xed" Nn process A will store 5 in the evaluates to a process item of a suspended process.
same location that "X10" in process B would store <return items is any item expression. <options> is an
10. If such sharing of memory is undesirable, declare integer expression.
the process procedure RECURSIVE, and then new

instances of the local variables of the procedure will Resume provides a means for one process to restore a
be Greaied with each Sprout involving that procedure. suspended process to ready/running status while at
Then "X" in process A will refer 1 a difiersnt memory the same time communicating an item to the awakened
location than "X" in process B. process. It may also specify what its own status

C SPROUTING MATCHING PROCEDURES should be. It may be oe anyhere an itemvar
When a matching procedure is the object of a Sprout procedure 'S Syntactica y correct. on @ process

which has suspended itself by means of a resume is

statement, the FAIL and SUCCEED statements are iv awakened bv another resume. the <return

. Interpreted differently than they would be were the subsequently : y| item> of the awakening resume is used as the value of

Taos procedue called in a roreach orpA the resume that caused the suspension. For example,procedure. is equivalent to

CALLERMYPROC) CVI2)). SUCCEED is equivalent to FPS alprocess A has suspended fiself with the
RESUME (CALLER (MYPROC),CVI(-1)). RESUME is

described on page 69, CALLER on page 85, and STARTINFO «RESUME(Zz . NEED-TOOL);
MY PROC on page 85.

. THE TERMINATE STATEMENT If later a process B executes the statement,
TERMINATE (<process items) INFOFLAG« RESUME(A | HAMMER)

<process item> may be an item expression, but must then B will suspend itself and A will become the

yield a process item. It is legal to terminate a running process. A's process information will be

terminated process. updated to remember that it was Awakened by B (so

than the runtime routine CALLER can work). Finally, A's
Termination of a process causes all blocks of the resume will return the value HAMMER, which will be

process to be exited. assigned to STARTINFO. If A had been suspended by

a Suspend statement or a Join statement, then the

A terminated process is truly dead. The item may be <return item> of B’s Resume is ignored.

| used over for anything you want, but after you have
used it for something else, you may not do a terminate Note that a process that has been suspended in any

on it. manner will run from the point of suspension onward

| when it is resumed.
be SUSPENDING A PROCESS

One can suspend a process with a SUSPEND <options> is an integer, used to change the effect of

| statement, a RESUME Construct, or a JOIN statement. the resume on the current process (Me) and the newly

i The suspend statement is simply: resumed process. If <options> is left out, 0 will beused.

SUSPEND { <process items)

All this does is suspend the process named by the
process item. As with the terminate statement,

<process item> may be an item expression, but must

yield a process item. One may suspend a suspended

69

PROCESSES SAIL USER MANUAL

BITS NAME DESCRIPTION SCHEDULING

One may change the status of a process between

33-32 READYME If 33-32 is 1, then the terminated, suspended and ready/running with the
current process will not be TERMINATE, SUSPEND, RESUME, and JOIN constructs

suspended, but be made ready. discussed above, and the CAUSE and INTERROGATE

constructs discussed in the next chapter. This section

KILLME If 33-32 is 2, then the current will describe how the the status of processes may
process will be terminated. change between ready and running.

IRUN If 33-32 is 3, then the current Whenever the currently running process performs
process will not be suspended, some action that causes its status to change (to ready,

but be made running. The newly terminated, or suspended) without specifying which

resumed process will be made process is to be run next, the Saii process scheduler

ready. will be invoked. It chooses a process from the pool of
ready processes. The process it chooses will be made

34 This should always be zero. the next running process. The scheduling algorithm is

essentially round robin within priority class. In other

35 NOTNOW If set, this bit makes the newly words, the scheduler finds the highest priority class
resumed process ready instead that has at least one ready process in it. Each class

of running. If 33-32 are not 3, has a list of processes associated with it, and the

then this bit causes a scheduler choses the first ready process on the list.

rescheduling. This process then becomes the running process and is
put on the end of the list. If no processes have ready

DEFAULT: If none of bits 35 to 32 are set, then the status, the scheduler looks to see if the program is

current process wili be suspended and the newly enabled for any interrupts (see Interrupts, page 78).
resumed process will be made running. Include a If the program is enabled for some kind of interrupt

REQUIRE "SYS:PROCESDEF" SOURCE-FILE in your that might still happen (not arithmetic overflow, for
program to get the above bit names defined. Options instance), then the scheduler puts the program in

may then be specified by simple addition, e.g. KILLME interrupt wait. After the interrupt is dismissed, the
+ NOTNOW. scheduler tries again to find a ready process. If no

interrupts that may still happen are enabled, and there

THE JOIN STATEMENT are no ready processes, the error message “No one to

If you have a number of processes running together, run.” is issued.

you may wish them all to finish. Say:

The rescheduling operation may be explicitly invoked

JOIN(<set expressions) by calling the runtime routine URSCHD, which has no
parameters.

where <set expression> evaluates to a set containing

only process items. The current process (the one with POLLING POINTS

the join statement in it) is suspended until all of the Polling points are located at “clean” or “safe” points in

. processes in the set are terminated. WARNING: Be the program; points where a process may change from

very careful with this statement, you can get into running to ready and back with no bad effects. Polling
infinite wait situations. points cause conditional rescheduling. A polling point is

an efficient version of the statement:

1. Do not join to the current process;

since the current process is now IF INTRPT a-~NOPOLL THEN

suspended, it will never terminate of BEGININTRPT<8; URSCHD END.
its own accord.

INTRPT is an external integer that is used to request

2. Do not suspend any of the joined rescheduling at the next polling point. It is commonly
processes unless you are assured set by the deferred interrupt routine DFRINT (for all
they will be resumed. about deferred interrupts, see page 89) and by the

clock interrupt routine CLKMOD (for how to make

3. Do not do an interrogate-wait in any processes time share, see page /9). The user may
of the processes unless you are sure use INTRPT for his own purposes (carefully, so as not

that the event it is waiting for will be to interfere with DFRINT or CLKMOD) by including the
caused (events are explained in declaration “EXTERNAL INTEGER INTRPT”, then

sect ion 12). assigning INTRPT a non-zero value any time he desires
the next polling point to cause rescheduling. NOPOLL

70

1

| SAIL USER MANUAL PROCESSES
t

is another external integer that is provided to give the !
user a means of dynamically inhibiting polling points,

| For example, suppose one i1stime sharing using
CLKMOD. In one of the processes, a point is reached

where it becomes important that the processes not be

swapped out until a certain tight loop is finished up. By

assigning NOPOLL (which was declared an EXTERNAL
INTEGER) a non-zero value, the polling points in the

| loop are efficiently ignored. Zeroing NGPOLL restores

1 normal time sharing.
A single polling point can be inserted with the

| statement POLL The construct
Ig REQUIRE n POLLING-INTERVAL

where n is a positive integer, causes polling points to

be Inserted at safe points in the code, namely: at the

) start of every statement provided that at least n

instructions have been emitted since the last polling

| point, after every label, and at the end of every loop.

| If n < 0 then no further polling points will be put out
until another Require n(n>@) Polling-Interval is seen.

L

-

| 71

EVENTS SAIL USER MANUAL

SECTION 14 where et is any item expression (except ANY or

BINDIT). With each such event type Sail associates:
EVENTS

1. a “notice queue” of items which have

beeen “caused” for this event type.

2. a “wait queue” of processes which are

waiting for an event of this type.

3. procedures for manipulating the

14.1 - SYNTAX queues.

The principle actions associated with the event system

are the CAUSE statement and the INTERROGATE

<event-statement> construct. Ordinarily these statements cause standard
= <cause-statement> Sail runtime routines to be invoked. However, the user

n= <interrupt-statement> may substitute his own procedures for any event

type (see User Defined Cause and Interrogate

procedures, page 73). The Cause and Interrogate

statements are here described in terms of the SAil

system supplied procedures.
<cause-statement>

= CAUSE (<item-expressions> ,

<item_expression> ,
<algebraic-expression>) 14.3 - SAIL DEFINED CAUSE AND INTERROGATE

w= CAUSE (<item-expression> |,

<item-expression>)

THE CAUSE STATEMENT

CAUSE (<event type>, <event hotice>, <options>)

CAUSE (<event type”, <event notice>)

<interrogate-construct> : : : : :

= INTERROGATE (<item-expression> <event types is an item expression, which must yield
an event type item. <eveni notice> is an item

<algebraic-expression>) : : : :
expression, and can yield any legal item. <options> is

+= INTERROGATE (<item-expression>) : :
= INTERROGATE (<list_expression> an integer expression. If <options> is left out, 0 is

<algebraic-expression> used.
+= INTERROGATE (-&t-expression>)

The Cause statement causes the wait queue of <event

type> to be examined. If it is non-empty, then the

system will give the <event notice> to the first
process waiting on the queue (see about the WAIT bit

in Interrogate, below). Otherwise, <event notice> will

14.2- INTRODUCTION be placed at the end of the notice queue for <event
type>.

. The Sai event mechanism is really a general message The effect of Cause may be modified by the
processing system which provides a means by which : : :

appropriate bits being set in the options word:
an occurrence in one process can influence the flow of

control in other processes. The mechanism allows the BITS NAME DESCRIPTION
user to classify the messages, or “event notices”, into

distinct types (“event types”) and specify how each 55 DONTSAVE Never put the <event items on
type is to be handled. the notice queue. If there is no

process on the wait queue, this

Any leap item may be used as an event notice. An makes the cause statement a

event type is an item which has been given a special no-op.
runtime data type and datum by means of the runtime

rout Ine 34 TELLALL Wake all processes waiting for
this event. Give them all this

MKEVTT (et)

72

|

SAIL USER MANUAL EVENTS

| —

item. The highest priority = <gvent type> where <event

process will be made running, type> is the type of the event

_. others will be made ready. returned. Useful with the set
TT form of the Interrogate

33 RESCHEDULE Reschedule as soon as possible construct, below.

(i.e. immediately after the cause

- procedure has completed . DEFAULT: If bits 35 to 32 are 0, then the interrogate
executed). removes an event from the event queue, and returns

it. If the event queue is empty, BINDIT is returned
DEFAULT: If bits 35 to 33 are 0, then the either a and no waiting is done; the process continues to run.

3 single process is awakened from the wait queue, or the Use a REQUIRE "SYS:PROCESDEF" SOURCE-FILE to
event is placed on the notice queue. The process get the names defined; use simple addition to form

doing the Cause continues to run. REQUIRE oplions,e.g. RETAIN t WAIT.
. "SYS:PROCESDEF" SOURCE-FILE to get the above bit
| - names defined. Options can then be constructed with THE INTERROGATE CONSTRUCT= SET FORM

simple addition, e.g. DONTSAVE t TELLALL.
<itemvar>« INTERROGATE { <event type set>)

THE INTERROGATE CONSTRUCT - SIMPLE FORM <itemvar>« NTERROGATE (<event type set,<options>

= <itemvar>« INTERROGATE (<event type>, <options>)
<itemvar>= INTERROGATE { <event type>) <event type set> is a set of event type items.

L <event types is an item expression, which must yield <options> is an integer expression. If it is left out, 0
an event type item. <options> is an integer will be used.
expression. If <options> is left out, 0 is used.

| The set form of interrogate allows the user to examineThe notice queue of <event types is examined. If it a whole set of possible event types. This form of
is non-empty, then the first element is removed and interrogate will first look at the notice queues, in turn,
returned as the value of the Interrogate. Otherwise, of each event type in <event type set>. If one of

i the special item BINDIT is returned. these notice queues is non-empty, then the first noticein that queue will be remved and that notice will be

<options> modifies the effect of the interrogate returned as the value of the Interrogate. If all the
statement as follows: notice queues are empty, and WAITIng is not specified

in the options word, then BINDIT will be returned. When

. BITS NAME DESCRIPTION the WAIT bit I1s set, the process doing the interrogate
gets put at the end of the wait queues of each event

35 RETAIN Leave the event notice on the type in <event type set>. Then, when a notice is

| notice queue, but still return finally available, the process is removed from all of the
L the notice as the value of the wait queues before returning the notice. Note that the

interrogate. If the process goes option SAY-WHICH provides a means for determing
into a wait state as a result of which event type produced the returned notice.

L this interrogate, and issubsequently awakened by a

pase. oon neoN ISAVE BY 14.4 - USER DEFINED CAUSE AND INTERROGATE
| override the RETAIN bit in the

- Interrogate if both are on.

: 34 WAIT If the notice queue is empty, By executing the appropriate runtime routine, the user
then suspend the process can specify that some non-standard action is to be

- executing the interrogate and associated with CAUSE or INTERROGATE for a
out its process item on the wait particular event type. Such user specified cause or
queue. interrogate procedures may then manipulate the event

| data structure directly or by themselves invoking the

- 33 RESCHEDULE Reschedule as soon as possible primitives used by the Sail Cause and Interrogate
(ie. immediately after execution constructs. User defined Cause and Interrogate are

: not for novice programers (this is an understatement).
| of the interrogate procedure).

— 32 SAY-WHICH Creates the association EVENT TYPE DATA STRUCTURE
EVENT-TYPE ® <event notices The datum of an event type item points to a six word

73

L

EVENTS SAIL USER MANUAL

block of memory. This block contains the following would cause CX(FOO, BAZ) to be called. This

information: procedure would print out “Causing BAZ as an event
of type FOO” and then call CAUSE.

WORD NAME TYPE DESCRIPTION

The runtime CAUSE 1(ITEMVAR etype, enol; INTEGER
0 NOTCQ LIST The list of all notices opt) is the SAilruntime routine that does all the actual

pending for this event work of causing a particular notice, enot, as an

type. instance of event type etype. It is essentially this
procedure which is replaced by a user specified cause

i WAITQ LIST The list of all processes procedure.
currently waiting for a

notice of this type. CAUSE1 uses an important subroutine which is also

available to the user. The integer runtime

2 Procedure specifier for ANSWER(ITEMVAR ev-type, ev-not, process-item) is
the user specified cause used to wake up a process that has suspended itself

procedure (zero if system with an interrogate. If the process named by
procedure is to be used). process-item is suspended, it will be set to ready

status and be removed from any wait queues it may

3 TT --- Procedure specifier for be on. ANSWER will return as its value the options

the user specified bits from the interrogate that caused the process to

interrogate procedure suspend itself. If the named process was not
(zero if system procedure suspended, then ANSWER returns an integer word

- is to be used). with bit 18 (the ‘400000 bit in the right half =

NOJOY in SYSPROCESDEF) set to 1. The evfype

4 USER 1 INTEGER Reserved for the user's and ev-not must be included in case the SAY-WHICH
pleasure. bit was on in the interrogate which caused the

suspension. ANSWER has no effect on the notice
5 USER2 INTEGER Reserved for the user’s queue of ev-type.

pleasure.

Frequently one may wish to use a cause procedure to

The appropriate macro definitions for these names (e.g. re-direct some notices to other event types. For

included in the file SYS:PROCES.DEF.

PROCEDURE CXX (ITEMVAR ET, EN; INTEGER OPT);

USER CAUSE PROCEDURES BEGIN ITEMVAR OTH; LABEL C;
IF redirecttest{ET, EN) THEN

A procedure to be used as a Cause procedure must FOREACH OTH |OTHER_CAUSE®ET=0TH DO
have three formal value parameters corresponding to Cc: CAUSEL(ET, EN, OPT)

the event type, event notice, and options of the Cause. ELSE CAUSE? (ET, EN, OPT);

Such a procedure is associated with an event type by END;

means of the runtime SETCP: In order to avoid some interesting race conditions, the
- implementaion will not execute the causes at C

SETCP (<event type>, <procedure specifiers); oo
immediately. Rather, it will save ET, EN and OPT, then,

when the procedure CXX is finally exited, any such

where <event type> must yield an event type item deferred causes will be executed in the order in which

and <procedure specifier> is either a procedure name they were requested.

o r DATUM(<procedure item>).
USER INTERROGATE PROCEDURES

For example: A user specified interrogate procedure must have two

value formal parameters corresponding to the two

PROCEDURE CX (ITEMVAR ET, EN; INTEGER OPT); arguments to INTERROGATE and should return an item

OUTSTR(‘Causing" & CVISIENFLAG)& as the value. The statement
" as an event of type " & CVIS (ET, X));
CAUSE1 (ET,EN,OPT); SETIP (<event types, <procedure specifiers);
END;

where <event type> is an event type item, and

SETCP(FOO,CX); <procedure specifier> is either a procedure name or

Now DATUM (<procedure item>), will make the specified
CAUSE (FOO, BAZ); procedure become the new interrogate procedure for

<event types. For instance:

74

.

—.

SAIL USER MANUAL EVENTS

—

ITEMVAR PROCEDURE IX (ITEMVAR ET; INTEGER OPT);
BEGIN INTEGER FLAG; ITEMVAR NOT};

NOTI~ ASKNTC(ET, OPT);
> OUTSTR("Notice " & CVISINOTLFLAG) &" returned

from interrogation of "& CVIS(ET,FLAG));
RETURN (NOT;

END;

bo “ae

SETIP (FOO, IX);

L Now,
..+ + INTERROGATE(FQOQ);

: would cause NOT to be set to the value of
— ASKNTC(FOO,@) Then the message “Notice BAZ

returned from interrogate of FOO” would be printed

| and 1X would return NOTI as its value.
The runtime ASKNTCTEMVAR etype; INTEGER opt) is
the Sall system routine for handling the interrogation
of a single event type. Essentially it is the

L procedure being replaced by the user interrogate
i procedure. —

In the case of multiple interrogations, Sail sets a

special bit (bit 19 = ‘200000 in the right half =

MULTIN in sys: PROCESDEF) in the options word
before doing any of the interrogates specified by the

event type items in the event type set. The effect of

| this bit, which will also be set in the options word
passed to a user interrogate procedure, is to cause

ASKNTC always to return BINDIT instead of ever

| waiting for an event notice. Then, if ASKNTC returnsBINDIT for all event types, Sail will cause the

interrogating process to Wait until its request is

satisfied. If multin is not set, then ASKNTC will do the

i WAIT if it is told to.

i

-

—

-

75

C

PROCEDURE VARIABLES SAIL USER MANUAL

SECTION 15 (the register used by all non-string procedures to

return a value) on exiting is an item number.

PROCEDURE VARIABLES Warning: a procedure is no ordinary datum. Using

datum on a procedure item except in the above

context will not work. Use APPLY instead.

REF_ITEM

Reference items are created at run time by the

REF_ITEM construct and are used principly in
argument lists for the APPLY construct. The datum of

15.1 - SYNTAX a reference item contains a pointer to a data object,

together with type information abcut that object. To
create a reference item one executes

<assign-statement> itm « REF,ITEM { <expression> }
= ASSIGN (<item_expr>,

<procedure-name>) A NEW item is created. If the expression is (8) a
== ASSIGN (<item_expr>,

DATUM (<item_expr>)) simple variable or an array element, then the address
will be saved in the item’s datum. If the expression is

(b) a constant or “calculated expression, then Sail will

dynamically allocate a cell into which the value of the

: expression will be saved, and the address of that ceil

<ref_jlom corsets will be saved in the datum of the item. The item is
= REF_ITEM(<expression>) then noted as having the datum type “reference” and
= REFJTEM | VALUE <itemvar>) returned as the value of the REFJTEM construct.
= REFTEM | SND <itemvar) One can slightly modify this procedure by using one of
TT the following variations.

itm « REF,ITEM (VALUE <expression>)

<apply-construct>

= APPLY(<procedure-name>) In this case, a temp cell will always be allocated. Thus
- APPLY (<procedure-name> X33: XI<REF _ITEM(VALUE xX): X4-4: would cause the

<arg_list_specifier>) datum of Xl to point at a cell containing 3.
z= APPLY (DATUM (<item>))

= APPLY (DATUM (<items) , tm « REFJTEM { 2 imvr)
op itm « REF,ITEM (BIND itmvr)

<arg_list_specifier>)
where itmvr must be an itemvar or an element of an

itemvar array, will cause the reference item’s datum to

contain information that Apply can use to obtain the

) effect of using ¢ itmvr’ or “BIND itmvr’ as an actual
<arg_list_specifier> parameter in a procedure call.

n= <list-expression>

APPLY

APPLY uses the items in the <arg_list_specifier>,
together with the environment information from the

procedure item (or from the current environment, if the

15.2 - SEMANTICS procedure is named explicitly) to make the appropriate
procedure call. <arg_list_specifier> is an ordinary list
expression, except that each element of the list must

ASSIGN be a reference item. The elements of the list will be

One may give an item a procedure “datum” using the used as the actuals in the procedure call. There must
ASSIGN statement. ASSIGN accepts as its first be at least as many list elements as there are formals

argument an item expression (do not use ANY or in the procedure The reference items must refer to

BINDIT). To this is bound the procedure an object of the same type as the corresponding
identified by its name or to the “datum” of another formal parameter in the procedure being called.
procedure item. The procedure may be any type. (EXCEPTION: if the formal parameter is an untyped
However, the value it returns will only be accessible if itemvar or untyped itemvar array, then the reference
the procedure is an itemvar or item procedure. Apply

assumes that whatever the procedure left in AC 1,

76

| SAIL USER MANUAL PROCEDURE VARIABLES

—

item may refer to a typed itemvar or itemvar array,

respectively). At present, type checking, but not type BEGIN

| coercion, is done. If the formal parameter is a ITEM P; LABEL L;

- reference parameter, then a reference to the object Ean ue OCEDURE FOO (INTEGER J)
pointed to by the reference item is passed. If the INTEGER 1:
formal parameter is a value parameter, then the value PROCEDURE BAZ;

of the object pointed to by the reference item is used. OUTSTR("J="8CVS(J)8" I="8CVS(D);
— Simi ney : IF J=I THENimilarly, 7 formals are handled appropriately when BEGIN

the reference item contains a’? or “BIND” reference. 2;

| If the procedure to be called has no parameters, the ASSIGN(P, BAZ);
L <arg_list_specifier> may be left out. Fool-L

ELSE APPLY(DATUMI(P));

Apply may be used wherever an itemvar procedure END “FOO”;

call is permitted. The value returned will be whatever FOO(L);
’ | id vb wed bv the th lied L: APPLY(DATUM(P)); COMMENT will cause a
— value would normally be returned Dy the the apple runtime error -- see discussion below;

procedure, but Apply will treat it as an item number. END

Care should therefore be taken when using the result

of Apply when the procedure being invoked is not

w itself an itemvar procedure, since this may cause an The effect of the program Is to Assign Baz to P
invalid item number to be used as a valid item (for on the first instantiation of Foo, then Apply P on

instance, in a MAKE). Recall that when a typed the second (recursive) instantiation. However, bsprocedure (or an Apply) is called at statement level, environment at the time of the Assign includes {l=2,
L the value it returns is ignored. J=1} but the environment at the time of the Apply

includes {l=@, Js-1} instead. At the time of the

Here is an example of the use of APPLY. Apply, Baz is executed with the environment from
the time of the Assign, and will print out

BEGIN

LIST L;INTEGER XX: J=1 |=2
INTEGER ITEMVAR YY;ITEMVAR ZZ;

REAL ARRAY AA[1:2];
PROCEDURE FOOQ(INTEGERXx; The Apply at L wil cause a runtime error

— Tn Y,Z; REAL ARRAY A); message because the environment of the Assign has
Y-NEW(X): been destroyed by the exiting of Foo.

{ Z~NEW(A);

L AfX]-3;END;

XX«B;

Le{{REF _ITEM{XX),REF _ITEM(YY),
REF _ITEM(Z2),REF _ITEM(AA)}};

| XX=2;AA[1]-AA[2]e1;APPLY(FOO,L);
COMMENT Y now contains an item whose

datum is 2, Z contains an item whose

datum is the array (1.8,1.0),

| } A[l]=1l.0, and A[2]=3.0.;END;

The variables accessed by a procedure called with

APPLY may not always be what you would think they

— were. Temporary terminology: the “environment” of a

procedure is the collection of variables, arrays and

procedures accessible to it. “Environment” is not

meant to include the state of the associative store or

- the universe of items. The environment of a
procedure item is the environment of the ASSIGN, and

that environment will be used regardless of the

| position of the APPLY. Since procedure items are

(— untouched by block exits, yet environments are, it is
possible to Apply a procedure item when iis

environment is gone; Sail catches most of these

situations and gIVeS an error message.
-

Consider the following example:

77

INTERRUPTS SAIL USER MANUAL

SECTION 16 16.2- IMMEDIATE INTERRUPTS

INTERRUPTS

To set up an immediate interrupt, simply say

INTMAP(<index>,<simple procedure name>8);
ENABLE(<index>)

where <index> is a code for the interrupt condition

(e.g clock, arithmetic overflow, etc.). (The codes,
16.1 - INTRODUCTION together with the names given them in

SYS:PROCES.DEF, may be found in the appendix on

Interrupt Codes) The INTMAP statement will inform the

The interrupt facilities of SAIL were built around the SAIL interrupt handler that it is to call the specified
user interrupt system provided by the Stnford time procedure (which must be SIMPLE) when it (the
sharing system. They will work, in some imited way, interrupt handler) gets invoked for the specified
for SAILs running on DEC 10-50 systeins. In this condition. Also, it causes the system user interrupt
case, the DEC APRENB trap system is used. This interface to be set up so that user interrupts are to
system has a somewhat limited utility when one is po sent to the SAIL interrupt handler. The ENABLE
dealing with “asynchronous” interrupts (sich as the statement informs that it is to execute the user
real-time clock), since nothing protects your “interrupt” interrupt procedure (which was set by INTMAP to be
routine from being itself interrupted. he Stanford the SAIL interrupt dispatcher) whenever the named
SAIL interrupts have been implementer in such a condition occurs, An interrupt may be disabled by
manner that they may be used in prograns that have the statement
also enabled themselves for APRENB interrupts (as
may happen when one uses various exterral “packages” DISABLE(<index>)

of procedures). In this case, conditions :nabled using
the runtime routines described here are Yocessed by

the SAIL interrupt handler, and those enabled for The system will not provide user interrupts for the
APRENB processing are handled by wha'ever handler specified condition until another ENABLE statement is
the user has provided (an attempt to enade the same executed.
condition on both systems causes an error). In export

SAIL, the SAIL interrupt handler is directly tied to the NV STANFORD SAIL
APRENB Interrupt system, and thus may rot be used A procedure specified by an INTMAP statement will be
with programs that also attempt to enable themselves executed at a special “user interrupt level”. A
directly for interrupts. program operating in this mode will not be interrupted,

but must finish whatever it is doing within 1/ 10 th of

Essentially, there are two types of interrupt available: a second. It may not do any UUOs that can cause it
immediate and deferred. An immediate irterrupt is to be rescheduled. Also, the accumulators will not be
executed at the time the condition causing it arises, the same ones as those that were in use by ihe

. (usually right after the current instruction ‘inishes -- regular program (ie their values will be different).
see [Moorer], IlD.16 for exceptions). A deferred Certain locations are set up as follows:
interrupt will we executed at the next “polling point” in

the user's program. (See about polling points on page ACs 1-6 Set up by the system as in [Moorer]
70), HD. 16-2

- This chapter will describe both immediate and deferred AC "15 (USER) Address of the Sail user table,
interrupts and will describe those areas in which the

Stanford system differs from the export Syitem AC ‘16 (SP) A temporary string push down
(principally: immediate interrupts and the index numbers stack pointer. NOTE: extreme care
used to specify interrupt conditions). should be used when using strings

inside interrupt procedures, since if

a string garbage collection should

take place or if one was interrupted,

then the program will die a terrible

death. This means that strings

should not be used in any

asynchronous interrupt, and that one

should avoid doing string
concatenations, CVS'S. etc.

78

[SAIL USER MANUAL INTERRUPTS
AC '17 (P) A temporary push down stack SIMPLE PROCEDURE ROUT:

pointer. BEGIN

| EXTERNAL INTEGER JOBTPC;
XJBCNI (declared in SYSPROCESDEF as an JOBTPC-LOCATION(GTFOO):

external integer). Bit mask with a COMMENT GTFOO is a non-simple procedure
bit on corresponding to the current that contains a GO TO FOO, where FOO

| condition is the location to which controlL is to be passed. This allows the
"go to solver” to be called and clean

XJBTPC (declared in SYS:PROCES.DEF as an up any unwanted procedure activations.;

| external integer) Full PC word of END;
L regular user level program.

oo WARNING: this approach is rather dangerous if the
The interrupt will be “dismissed”, and the user program interrupt occurred in certain runtime routines. In
resumed, when the interrupt procedure is exited. For particular if you were inside a string garbage

- more information on interrupt level programming, collection, or allocating an array, you will lose
consult the Stanford System documentation. miserably.

| IN EXPORT SAIL oo | THE PROCEDURE CLKMOD
— The interrupt handler again will decode the interrupt (CLKMOD is currently available only in Stanford Sail)

condition and call the appropriate procedure. Since The most common usage of immediate interrupts is to

there is no “interrupt level”, the interrupt procedure approximate time sharing among processes. Every time
must not itself generate any interrupt conditions, since the scheduler decides to run a process, it copies its
this will cause SAIL. te lose track of where in the user fime quantum (see all about quantums of Processes,
program it was interrupted (trapped). PAGE 68) into the Sail user table location TIMER.

Consider the following procedure, which is roughly

Also, the SAIL interrupt module sets up some equivalent to the one predeclared in Sail:
— temporary accumulators and JOBTPC:

SIMPLE PROCEDURE CLKMOD;

AC ‘10 index of the interrupt condition. IF (TIMER-TIMER-1) < @ THEN INTRPT«-1;

i AC' 15 (USER) Address of the SAIL user table To time share several ready processes, one should
include polling points in the relevant process

AC “16 (SP)A temporary string push down list. procedures and should execute the following
Same warning about the use of statements:

i interrunt
stings in Stanford INTMAP (INTCLK_INX, CLKMOD, 8);
procedures applies here. ENABLE (INTCLK_INX);

. AC "17 (P) A temporary push down pointer The macro SCHEDULE-ON-CLOCK-INTERRUPTS
1 defined in SYS:PROCESDEF is equivalent to these two

JOBTPC (an external integer) Full PC word of statements. Now, when the time quantum of a process

. regular user program. is exceeded by the number of clock ticks since it

began to run, the integer INTRPT is set, and this

The “real” acs -- ie the values of all accumulators at causes the next polling point in the process to cause a

the time the trap occurred -- are stored in locations rescheduling (see about rescheduling and INTRPT on

APRACS to APRACSt17. Thus you can get at the PAGE 7). The current running process will be made
value of accumulator x by declaring APRACS as an ready, and the scheduling algorithm chooses a ready

external integer and referring to process to run.

MEMORY[LOCATION(APRACS)+x). When the interrupt
procedure 1s exited, the acs are restored from

- APRACS to APRACS+1/, and the SAIL interrupt
handler jumps to the location stored in JOBTPC (which

was set by the operating system to the location at

which the trap occurred). Thus, if you want to transfer

- control to some location in your user program, a good

way to do it Isto have an interrupt routine like:

79

INTERRUPTS SAIL USER MANUAL

16.3-DEFERRED INTERRUPTS <options> are the same as those for the SPROUT

statement, page 67. However, the default priority for
INTPRO 1s 0, which 1s the highest possible priority, and

Deferred Interrupts are processed at the next polling is reserved for INTPRO alone. Thus, when

pointin your program after the interrupt occurs. rescheduling is done at the first polling point after
Essentially, they are implemented by the provision of a the Interrupt, INTPRO's high priority will automatically

special Immediate interrupt routine that writes some cause it to become the running process.

informatton into a special buffer, sets the flag INTRPT,

and dismisses itself. (For more details, see the INTMAP

following subsection). Then, when the next polling point An INTMAP must be done for each type of interrupt
IS reached, the current process is made ready while a one wants handled (clock, TTY, <escyl, etc.). To
special process (whose procedure is called INTPRO) is change the way an interrupt is handled, simply do

run INTPRO will execute any procedures which have another INTMAP for that type of Interrupt. INTMAP

been deferred to this point, and then will call the always takes three arguments:

scheduler to decide what process is to run next.
INTMAP (<index> , <simple proc> ,

One very common use of deferred interrupts is to “integer expression>)
cause an event soon after some asynchronous

condition (say, TTY activation) occurs. This effect may <index> 1s the code for the type of interrupt (see
be obtained by the following sequence: Interrupt Codes, page 1072). <simple proc> is a simple

parameterless procedure that will be run at interrupt

INTSET(IPRO-NEW,8); COMMENT this will cause level whenever an interrupt of type <index> arrives.
the interrupt process to be sprouted and
assigned to IPRO. This process will execute For deferred interrupts, this will always be the
procedure INTPRO and will have priority zero predeclared procedure DFRINT. Users who write their

(the highest possible).; own <simple proc>s should observe the restrictions
mentioned on page 78. <integer expression> acts as

INTMAP(<index>DFRINT, a parameter to DFRINT -- more about it later.
DFCPKT(9,<event type> <event notice> <cause options>));

INTMAP maintains two tables, both indexed by the
ENABLE(<index>); : : : :

interrupt code, <index>. One table is for the <simple

proos and the other is for the <integer expression>s.
In SYS:PROCES.DEF is the useful macro When any enabled interrupt occurs, the Sail interrupt

handler sets up some accumulators, then indexes into

DEFERRED_CAUSE_ON_INTERRUPT(<index>, the table of <simple proc>s, and PUSHJS to the
<event type> , <notice>, <options>) procedure. When the procedure exits, or if no <simple

proc> was found, the interrupt handler dismisses itself.

which may be used to replace the INTMAP statement.
DFRINT

DFRINT sets up a buffer with information that INTPRO

will use to call the procedure that the user wants run

16.4- MORE COMPLICATED DEFERRED INTERRUPTS at the next polling point. Such procedures must be

specified in a special way.

This section explains the Runtimes INTSET, INTMAP, The user must construct a block of core, called a
and DFRINT In detail and explains how to make more ‘calling block”, probably by using the MEMORY and
than a simple cause happen at the next polling point LOCATION features of Sail, PAGE 25, or Start Code. It
following the interrupt. must look like:

INTSET <number of words in the block>
Before any kind of deferred interrupt may be done, an <Lst parameter to the procedures< second parameter to the procedure”
INTSET must be done. It should be done only once per Cy

program The statement <last parameter to the procedure>
-1 ,<address of the procedure>

INTSET(<item_expression>, <options>);

For example, one might call FOO(l,JK) by saying:

sprouts the INTPRO process with the specified

<options>. The item of the <item-expression> will
become the process item of the INTPRO process. The

80

SAIL USER MANUAL INTERRUPTS

i
he

PROCEDURE FOO (INTEGER i,j,k);« « +; and writept. Whenever it writes a new calling block
: “on and etc. into the DI, it begins the writing at the writept
| SAFE INTEGER ARRAY FOOBLK [1:5] and then advances the writept when it's done. When

- FO0BLK [i] - 5 INTPRO reads the DI buffer, it starts at the readpt and
FOOBLK [2]« §; continues calling procedures until the writept is

ons HA reached, updating readpt as it goes. The effect of this
Lo FOOBLK [5] ~ (-1 LSH 18)+LOCATION(FOO); is to queue deferred interrupts. Interrupts Occuringwhile INTPRO is active merely add another calling

block to the DI which will be processed before the

NOTE: The procedure specified to INTPRO must not be main program is resumed.

declared inside any process except the main program.

- Otherwise, its environment will not be available when When DFRINT is finished writing into the DI buffer, it
INTPRO runs, However, there is a rather complex way changes the status of INTPRO from suspended to

to get around this by using <environment>,PDA as the ready. It sets the INTRPT integer so that the next
last word of the calling block. See a Sail hacker if you polling point will cause a rescheduling. The special

must do this and don’t know what <environment> or high priority of INTPRO causes it to be chosen by the

PDA mean. scheduler, and it begins to run.

The next step towards specifying FOO to INTPRO is to THE DEFERRED INTERRUPT PROCESS =~ INTPRO

call INTMAP like so: INTPRO first restores the following information which

was stored by DFRINT at the time of the interrupt.
INTMAP(<index>, DFRINT,

<AQBJN pointer to calling block>);
u LOCATION CONTENTS

where <index> is the code for the interrupt that you USER The base of the user table (GOGTAB).
desire. An AOBJN pointer for a block of core is

- defined as AC 1 Status of spacewar buttons.

-<number of words>,<starting address> AC 2 Your job status word (JBTSTS). See
[Moorer-I section 11.D.13.

— :
Thus to call FOO on a deferred interrupt of, say

<escs| include the statement | JBCNI(USER) XJBCNIieJOBCN) at time of
Interrupt.

INTMAP(INTTTI_INX, DFRINT,
— -5 LSH 18 + LOCATION(FOOBLK[1)); |UBTPC(USER) XJBTPC(ieJOBTPC) at time of

interrupt.

Now, whenever an interrupt of the type specified in IRUNNR(USER) Item number of running process at
INTMAP occurs, DFRINT runs, and uses the table of : :

: : time of interrupt.
<integer expression>S to retrieve the AOBJN pointer

appropriate for this type of interrupt. Using the AOBJN Then INTPRO calles the procedure described by the

[pointer, DFRINT writes the calling block and some ju piock When the procedure is finished, INTPROother useful information into a special circular buffer : :

led the Def 40 cutier. The | Hof th looks to see if the DI buffer has any more entries left.
Co o co nterrupt ou er © ore oft : If it does, INTPRO handles them in the same manner.
ulfer determines how many interrupts can be queue Otherwise INTPRO suspends itself and the highest

up waiting to be processed. INTMAP usually initializes
priority ready process takes over.

the DI buffer to 128 words, which is quite enough

unless the program is very slow about processing DERIIN

deferred interrupts (i.e. it doesn't poll very often). A For those who want more than one procedure to be
larger DI buffer can be obtained at any time that one

- . ouffer | vol g called as a deferred interrupt for a given interrupt
's sure the current buffer is empty (i.e. no deferre type, the runtime function DFRIIN is provided.
Interrupts pending) by executing the runtime

DFR1IN (<AQBJN pointer>);
| INTTBL{ <size of new Di buffer in words>)
_-

DERINT he Di buffer: q will put another calling block after writept in the DI
uses two pointers into the utter: readpt buffer. This procedure may then be called by an

immediate interrupt simple ‘procedure. For instance,

suppose we want to call FOO and BAZ as defferred

Interrupts for <e€sc>l|. This may be done by:

81

INTERRUPTS SAIL USER MANUAL

SIMPLE PROCEDURE ZORCH;
BEGIN

DFRLING <AQBJN pointer tor FCG cali” J;
DFRLINC < AOBJUN pointer for BAZ call>);
END;

INTMAP (INTTTY_INX, ZORCH, 8);

ENABLE (INTTTY_INX J;

82

[SAIL USER MANUAL LEAP AND PROCESS RUNTIMES
SECTION 17 —— CVLIST———————

_ LEAP AND PROCESS RUNTIMES LIST « CVLIST (SET)

| CVLIST returns a list given a set expression. It

| executes no machine instructions, but merely lets you
5 get around Sail type checking at compile time.

We will follow the same conventions for describing

| Leap execution time routines as were used in

- describing the runtimes of the Algol section of Sail ———CVN and CV|m8
(see page 3 1).

INTEGR « CVN (ITM)

| ITM « CVI(INTEGR)
17.1 - TYPES AND TYPE CONVERSION CVN returns the integer that is the internal

| representation of the item that is the the value of the

| item expression ITM. CVI returns the item that is
| represented by the integer expression INTEGR that

is its argument. Legal item numbers are between

———— YE —————— (inclusively) 1 and 4095, but you'll get in trouble if
you CVI when no item has been created with that

- CODE « TYPEIT (1T™) integer as its representation. Absolutely no error

checking is done. CVI is for daring men. See about

The type of the datum linked to an item is called the item implementation, page 54, for more information

type of an item. An item without a datum is called about the internal representations of items.

L untyped. TYPEIT is an integer function which returns
an integer CODE for the type of the item expression

ITM that is its argument. The codes are:

17.2 - MAKE AND ERASE BREAKPOINTS

L B - item deleted or never allocated
untyped

2 - Bracketed Triple item

3 - string
4 - real

> neeer ——— BRKERS, BRKMAK, BRKOFF --
7 - list

8 - procedure item BRKMAK { BREAKPT-PROC)

i a process tem BRKERS (BREAKPT-PROC)- event item

11 - context item BRKOFF
12 - reference item

16 - string array In order to give the programmer some idea of what is

\ - rea ee going on in the associative store, there is a provision
19- set ray y to interrupt each MAKE and ERASE operation, and
28 - list array enter a breakpoint procedure. The user can then do
24 - context array whatever he wants with the three items of the

| 25- error {the runtime screwed up) association being created or destroyed. ERASE Foo ©
The user is encouraged to use TYPEIT. It requires ANY = ANY will cause the breakpoint procedure to be
the execution of only a few machine instructions and activated once for each association that matches the

Co pattern. MAKE itle it2 =[it3e it4 = it51 will cause
can save considerable debugging time.

i the breakpoint procedure to be activated twice.

The user's breakpoint procedures must have the form:

— CVSET PROCEDURE Breakpt_proc (ITEMVAR a, o, v)

SET « CVSET (LIST)

If the association being made or erased is AeQOsV, then

CVSET returns a set given a list expression by directly before doing the Make or Erase, Breakptgroc

removing duplicate Occurences of items in the list, and is called with the items A, 0, and V for the formals a,

reordering the items into the order of their internal 0, and v.

| Integer representations.
—

83

LEAP AND PROCESS RUNTIMES SAIL USER MANUAL

To make the procedure Breakpt_proc into a breakpoint — ————— NEW-PNAME —M8M8M8Mm
procedure for MAKE, call BRKMAK with Breakptgroc

as a parameter. To make the procedure Breakpt_proc NEW-PNAME (ITEM , “STRING”);
rnto a breakpoint procedure for ERASE, call BRKERS

with Breakpt_proc as its parameter. To turn off both This function assigns to the Item the name “STRING”.
breakpoint procedures, call BRKOFF with no Don’t perform this twice for the same Item without first

parameters déleting the previous one. The corresponding name or
Item may be retrieved using CVIS or CVSI (see

NOTE: BRKMAK, BRKERS and BRKOFF are not above). The NULL string is prohibited as the second

predeclared. The user must include the declarations: argument.

EXTERNAL PROCEDURE BRKERS (PROCEDURE BP);
EXTERNAL PROCEDURE BRKMAK (PROCEDURE BP)

EXTERNAL PROCEDURE BRKOFF;
17 4 - OTHER USEFUL RUNTIMES

17 3 - PNAME RUNTIMES

—If

VALUE « LISTX { LIST , ITEM , NAVIS U STX (LIST, , N)
— The value of this integer function is 0 if the ITEM (an

PNAME” « CVIS (17em, eFLAG): item expression) does not occur in the list at least N
nt (an integer expression) different times in the LIST (a

The prin name of tha 'S returned as a string. Items list expression). Otherwise LISTX is the index of thehave print names only | one includes a REQUIRE n Nth occurrence of ITEM in LIST. For example, as
PNAMES statement in his program, where n is an

estimate of the number of pnames the program will LISTX ({{Foo, Baz, Garp, Baz}}, Baz, 2) is 4.
use An ltem’s print name is the identifier used to

declare It, or that pname explicitly given it by the

NEW-PNAME function (see below). FLAG is set to FIRST, SECOND. THIRD
False (J) if the appropriate string is found. Otherwise
If 1s set to TRUE’ (-1), and one-should not put greatL : put & ITEM « FIRST(BRAC-TRIP-ITEM)
faithin the string result.

ITEM « SECOND (BRAC-TRIP-ITEM)

ITEM « THIRD { BRAC-TRIP-ITEM)

CVS) The Item which is the FIRST, SECOND, or THIRD
element of the association connected to a bracketed

triple item (BRAC-TRIP-ITEM) is returned. If the item
ITEM «CVSI{ “PNAME”, @FLAG):

- expression BRAC_TRIP_ITEM does not evaluate to a

k ipl i forth.The Item whose pname is the same as the string bracketed triple, an error messages issues fort
argument PNAME 1s returned and FLAG is set to

FALSE If such an ITEM exists. Otherwise, something

very random is returned, and FLAG 1s set to TRUE. LOP

ITEM « LOP{ SETVARIABLE);

DEL-PNAME ITEM « LOP(LISTVARIABLE)

DEL-PNAME { ITEM} LOP will remove the first item of a set or list from the
set or list, and return that item as its value. Note that

This function deletes any string PNAME associates with the argument must be a variable because the contents
—— of the set or list is changed. If one LOPs an empty

set or a null list, an error message will be issued.

84

SAIL USER MANUAL LEAP AND PROCESS RUNTIMES

CoP————————————— 17.5 - GENERAL PROCESS RUNTIMES

: ITEM « COP{ SETEXPR);
L ITEM « COP(LISTEXPR)

COP will return the first item of the set or list just as MYPROC—rm0b m————

| LOP (above) will. However, it will NOT remove that
— item from the set or list. Since the set or list will be PROCITEM « MYPROC

unchanged, COP’s argument may be a set or list

expression. As with LOP, an error message will be MYPROC returns the process item of the process that

] returned if one COPs an empty set or a null list. it is executed in. If it is executed not inside a
process, then MAINPI (the item for the main process) is
returned.

a ————— |ENGTH—————————
|—

VALUE « LENGTH { SETEXPR); ———————— CALLER—m—————————————

VALUE ~ LENGTH (LISTEXPR J;

PROCITEM « CALLER { PROCITEM2)

LENGTH will return the number of items in that set or

list that is its argument, LENGTH(S) = 0 is a much CALLER returns the process item of the process that

[faster test for the null set or list that S = PHI or most recently resumed the process referred toS = NIL. PROCITEM2. PROCITEM2 must be the process item
of an unterminated process, otherwise an error

message will be issued. If PROCITEM2's process has

[never been called, then the process item of the—————————————————SAMElVm8 process that sprouted PROCITEM2 is returned.

VALUE « SAMEIV (ITMVARI , ITMVAR2);

L SAMEIV is useful in Matching Procedures to solve a — MKEVIT———///™™™
particular problem that arises when a Matching

Procedure has at least two 7? itemvar arguments. An MKEVTT (ITEM)

[example will demonstrate the problem:
MKEVTT will convert its item argument to an event

FOREACH X | Matchingproc! XX) DO... type item. The old datum will be overwritten. The
FOREACH X, Y | Matchingproc(X, Y J DO . . - type of the item will now be “event type”. Any item

- Clearly, the matching procedure with both arguments except an event type item may be converted to an
the same may want to do something different from the event type item by MKEVTT.
matching procedure with two different Foreach

| - itemvars as its arguments. However, there is no way

— inside the body of the matching procedure to
differentiate the two cases since in both cases both PRISET
itemvar formals have the value BINDIT. SAMEIV will

return True only in the first case, namely 1) both of PRISET (PROCITM , PRIORITY)
L its arguments are ? itemvar formals to a matching

procedure, 2) both had the same Foreach itemvar PRISET sets the priority of the process specified by
passed by reference to them. It will return False PROCITM (an item expression that must evaluate to

| under all other conditions, including the case where the the process item of a non-terminated process) to theForeach itemvar is bound at the time of the call {sO it priority specified by the integer expression PRIORITY.

is not passed by reference, but its item value is Meaningful priorities are the integer between 1, the
passed by value to both formals). highest priority, to 15, the lowest priority. Whenever

a rescheduling is called for, the scheduler finds the

— highest priority class that has at least one ready

process in it, and makes the first process on that list

the running process. See about the scheduler, page

[70.

85

|

LEAP AND PROCESS RUNTIMES SAIL USER MANUAL

— PSTATUS -——————— The procedure must have three formal parameters

corresponding to the event type, event notice, and

PRIORITY « PSTATUS (PROCITM) options words of the CAUSE statement. For example,

PSTATUS returns an integer indicating the status of PROCEDURE CAUSEIT (ITEMVAR ETYP, ENOT;
{ tie process specified by the item expression INTEGER OP);
Bi a

PROCI TM After SETIP, whenever an Interrogate statement of the
1 running specified event type is executed, the procedure
1) suspended specified by PROC-NAME or PROC-ITEM is called.
1 ready The procedure must have two formal parameters

terminated corresponding to the event type and options words of
the Interrogate statement and return an item. For

example,

———————————————— UWRSCHD——— ITEM PROCEDURE ASK_IT (ITEMVAR ETYP;
INTEGER OP

URSCHD

ltis an error if a Cause or Interrogate statement tries

URSCHD is essentially the Sail Scheduler When one to call a procedure whose environment (static - as
calls URSCHD, the scheduler finds the highest priority determined by position of its declaration, and dynamic -
class that has at leas+ 2"? Ready process in it. Each as detet mined by the execution of the SETCP or
class has a list of processes associated with it, and the SETIP) has been exited
scheduler choses the firs? ready process on the list.

This process then becomes the running process and is See page 74 and page 74 for more information on
put on the end of the list. If no processes have ready the use of SETCP and SETIP, respectively.
status, the scheduler looks to see if the program is

enabled for any interrupts. If the program is enabled mr

for some kind of interrupt that may still happen (not

arithmetic overflow, for Instance), then the scheduler CAUSE 1
puts the program into interrupt wait. After the

intrrupt is dismissed, the scheduler tries again to find ITMVAR « CAUSE1 (ETYPE . ENOT . OPTIONS)
a ready process. If no Interrupts that may still happen ITMVAR « CAUSE1 (ETYPE . ENOT)
are enabled, and there are no ready processes, the ITMVAR « CAUSE 1 (ETYPE)
error message “No one to run” is issued.

CAUSE1 is essentially the procedure executed for
CAUSE statements if no SETCP has been done for the

event type ETYPE. See the description of the Sail
7 _

) 76 RUNTIMES ~ FOR USER CAUSE AND defined Cause statement, page 74, for further -
INTERROGATE PROCEDURES elucidation.

—————————————ASKNTC —/—/™/™/™/™/™/™/™/™
———SETCP AND SETIP———m@™

i ITMVR « ASKNTC (ETYPE , OPTIONS)
SETCP(ETYPE , PROC-NAME) TMVR « ASKNTC (ETYPE)
SETCP (ETYPE , DATUM (PROC-ITEM })

SETIP ETYPE ANNA TEM) ASKNTC is the procedure executed for INTERROGATESETIP { ETYPE , DATUM - statements if no SETIP has been done for the event

h type ETYPE. See the description of the Sail defined
SETCP and SETIP associate wilh the event type Interrogate statement, page 75, for further elucidation.
specified by the item expression ETYPE a procedure
specified by Its name or the datum of a procedure
item expression.

——ANSWER ——MMM8M8m™m™m8™

After the SETCP, whenever a Cause statement of the

specified event type 1s executed, the procedure BITS « ANSWER (ETYPE . ENOT . PROC-ITEM)
specified by PROC-NAME or PROC-ITEM is called.

86

[SAIL USER MANUAL LEAP AND PROCESS RUNTIMES
ANSWER will attempt to wake up from an interrogate

| wait the process specified by the item expression
PROC_ITEM. If the process is not in a suspended
state, Answer will return an integer with the bit

‘400000 in the right half (NOJOY in

SYSPROCESDEF) turned on. If the process is
suspended, it will be made ready, and removed from

any wait queues it may be on. The bits corresponding

to the options word of the interrogate statement that

put it in a wait state will be returned. Furthermore, if

[the SAY-WHICH bit was on, the appropriate
association, namely EVENT-TYPE © ENOT & ETYPE, will

be made. See page 74 for more information on the

use of ANSWER.

—

1

87

BASIC CONSTRUCTS SAIL USER MANUAL

SECTION 18 18 2 - SEMANTICS

BASIC CONSTRUCTS

VARIABLES

If a variable is simply an identifier, it represents a

single value of the type givenmn Its declaration.

If it is an identifier qualified by a subscript list it

represents an element from the array bearing the

name of the Identifier However, an identifier qualified

18.1 - SYNTAX by a subscript list containing only a single subscript

may be either an element from a one dimensional

array, or an element of a list. Note that the token "oo"

may be used In the subscript expression of a list to

<variable> stand for the length of the list, e.g. LISTVAR[c-
= <identifier> 21 LISTVAR[w-1] |

= <Identifier> [<subscript-list> |

= DATUM { <typed-item-expression>) The array should contain as many dimensions as there
= DATUM { <typed-item-expression>)| are elements In the subscript list. All] represents tne |

<subscript-list> 1 l+ 1th element of the vector A (if the vector has a
= PROPS(<item-expressions) lower bound of @).BllJ! is the element from the ltith

= <context-element> row and Jt 1 th column of the two-dimensional array B. |
To explain the indexing scheme precisely, all arrays —
behave as if each dimension had Its origin at 0, with

(integral) indices extending infinitely far in either

<typed_item_expression> direction However, only the part of an array between |
+= <typed_itemvar> (and Including) the lower and upper bounds given in the —
= <typed-item> declaration are available for use (and in fact, these are

== <typed_itemvar_procedure> the only parts allocated). If the array is not declared
i= <typed_item_procedure> SAFE, each subscript is tested against the bounds for
== <typed_itemvar_array> lts dimension If if is outside its range, a fatal message

| <subscript-list>] 1s printed identifying the array and subscript position
= <typed_item_array> at fault SAFE arrays are not bounds-checked. Users

[<subscript-list> | must take the consequences of the journeys of errant

= <itemvar>« <typed-item-expression> subscripts for SAFE arrays. The bounds checking
= IF <boolean-expression> THEN causes at least three extra machine instructions (two

<typed-item-expression> ELSE of which are always executed for valid subscripts) to

<typed-item-expression> be added for each subscript in each array reference.

= CASE <algebraic_expression> OF(The algebraic expressions for lower and upper bounds
<typed-item-expression-list>) inarray declarations, and for subscripts in subscripted

varrablcs, are always converted to Integer values (see

page 2 1) before use. oo
<typed-item-expression-list>

= <typed-item-expression> For more information about the implementation of SAIL

= <typed_item_expresssion_list> , arrays, see page 106.
<type_item_expression>

DATUMS

-subscript_list> DATUMX) where X is a typed item expression, will
= <algebraic_expression> act exactly lke a variable with the type of the item
= <sUbscript_list> expression. The programer is responsible for seeing

<algebraic-expression> that the type of the item is that which the DATUM
construct thinks it 1s For example, the Datum of a

Real Itemvar will always Interpret the contents ot the

Datum location as a floating point number even if the

program has assigned a string item to the Real
| temvar.

PROPS

The PROPS of an itemwill always act as an integer
variable Any algebraic value assigned to a props will

88

SAIL USER MANUAL BASIC CONSTRUCTS

be coerced to an integer (see about type conversions, ARITHMETIC CONSTANTS

page 2 1) then the low order 12 bits will be stored in

the props of the item. Thus, the value returned from a 12369 Integer with decimal value 12369

~— props will always be a non-negative integer less than [52357 ACA
7777 (4095 in decimal). 0123.9 Real with floating point value 123.8

. 524 Real with floating point value 8. 524

IDENTIFIERS 5. 3@2 Real with floating point value 530.80
= You will notice that no syntax was included for the 5.342@-3 Real with floating point value 0.08085342

non-terminal symbols <identifier> or <constant>. It is The character| (right quote) precedes a string of
far easier to explain these constructs in an informal digits to be converted into an OCTAL number.

L manner.

If a. ora@ appears in a numeric constant, the type of

A SAIL letter is any of the upper or lower case letters the constant is returned as Real (even if it has an
A through Z, or the underline character (_ or !), they integral value). Otherwise it is an integer. Type

— are treated equivalently). Lower case letters are conversions are made at compile time to make the
mapped into the corresponding upper case letters for type of a constant commensurate with that required by
purposes of symbol table comparisons (SCHLUFF is the a given operation. Expressions involving only constants

[same symbol as Schiff. A digit is any of the are evaluated by the compiler and the resultant valuescharacters 0 through 9. are substituted for the expressions.

An identifier is a string of characters consisting of a The reserved word TRUE is equivalent to the Integer

i letter followed by virtually any number of ietters and (Boolean) constant -1; FALSE is equivalent to the
digits There must be a character which is neither a constant 0.
letter nor a digit (nor either of the characters "" or “$")

both before and after every identifier. In other words, STRING CONSTANTS

. if YOU can’t determine where one identifier ends and A String constant is a string of ASCII characters (any
another begins in a program you have never seen which you can get into a text file) delimited at each
before, well. neither can SAIL. end by the character ". If the * character is desired in

the string, insert two = characters (after the initial

| There is a set of identifiers which are used as SAIL delimiting * character, of course).
delimiters (in the Algol sense -- that is, BEGIN is

treated by Algol as if Tt were a single character. Such A String constant behaves like any other (algebraic)
an approach S not practical, so a reserved identifier is orimary. It is originally of type String, but may be

I- used). These identifiers are called Reserved Words and converted to Integer by extracting the first character
may not be used for any purpose other than those if necessary (see page 21).
given explicitlyin the syntax, or in declarations

i (DEFINES) which mask their reserved-word siaius over The reserved word NULL represents a String constantthe scope of the declarations. E.g., “INTEGER BEGIN” is containing no characters (length=2).
allowed, but a Synonym (see page 9) should have been

: provided for BEGIN if any new blocks are desired Examples: The left hand column in the table that
. within this one, because BEGIN is ONLY an Integer in follows gives the required input

| this block. Another set of identifiers have preset
declarations -- these are the execution time functions. I NPUT RESULT LENGTH

These latter Identifiers may also be redefined by the “A STRI NG° A STRING :
user: they behave as if they were declared in a block “WHAT'S "“DOK"" MEAN?” WHAT'S "DOK" MEAN? 18

— surrounding the outer block. A list of reserved words [7A QUOTED STRING™ "A QUOTED STRING 5
may be found in Appendix 2. A list of predeclared NULL 8

identifiers may be found in the Appendix 3. It should COMMENTS

be noted that due to the siupidily of ihe parser, it is If the scanner detects the identifier COMMENT, all
~~ impossible to declare certain reserved words to be characters up to and Including the next semicolon ()

identifiers. For example, INTEGER REAL; will give one will be ignored. A comment may appear anywhere as
ihe syniax error “Bogus token in declaration”. long as the word COMMENT is properly delimited (not

in a String constant, of course);
— Some of the reserved words are equivalent to certain

special characters (e.g. T for "SUCH THAT?) A able A string constant appearing just before a statement
of these equivalences may be found in Appendix 4. also has the effect of a comment.

L

L
89

USING SAIL SAIL USER MANUAL

SECTION 19 If you also get through loading (step 4) with no errors,

you aren't yet safe Sallwill give you error messages

USING SAIL dur Ng the execution of your program if you exceed
the bounds of an array, exceed string space, etc. See
Section 19 about these too.

If you never get an error message, and yet you don't

get the results you thought you'd get, then you've

probably made some mistakes in your programing. Use
RAID or DDT and Section 19 to follow your program

19.1 - FOR BEGINNERS as It executes, and see where it goes wrong (or else

guess at it) It is quite rare for Sail to have compiled

runable but incorrect code from a correct program.

If you simply want your Sail program compiled, loaded, The only way to ascertain whether this is the case Is
and executed, do the following: to Isolate the section of your program that is causing

Sail to generate the bad code, and then patiently step

1. Create a file with your program on it through Itinstruction by instruction using RAID or DDT,
named "XXXXXX SAN where and check to see that everything it does makes sense.
AXXXXX” may be any name you wish.

2. Get your job to monitor level, and type
“EXECUTE XXXXXX”. 19.2 - THE COMPLETE USE OF SAIL

3. The RPG system will type back at you

“SAIL: XXXXXX”, and start Sail. When The general sequence of events in using Sail is:

Sail hits a page boundry in your file, it
will type "1" or whatever the number 1. Start Sall
of the page that it is starting to read.

2. Compile one or more files into one or

4. When the compilation is complete, Sail more binary files, with possibly a
will type “LOADING”. listing file generated.

5. When the loading is complete, the 3. Load the binary file(s) with the

loader will type “LOADER nk CORE” appropriate upper segment or with the
where n is your core size. Sail will then Sail runtime library, and possibly with
type “EXECUTION”. RAID or DDT.

6 When execution is complete, Sail will 4. Start the program, possibly under the

type “END OF SAIL EXECUTION” and control of RAID or DDT.
exit.

5. Let the program finish, or stop it to

At any time during 3 through 6 above, you could get examine the core with RAID or DDT,
an error message from the system such as “ILL MEM or to reallocate storage with the

REF”, “ILLEGAL UUQO” etc. followed by some core REENTER command.

locations. These are Sail bugs. You will have to see a

Sail hacker about them, or attempt to avoid them by Starting Sail1s automatic with the RPG commands
rewriting the offense part of your program, or try described below. Otherwise, 'R SAIL” will do.
again tomorrow.

If you misspell your file, RPG will complain “UNKNOWN

FILE: YYYYYY” where “YYYYYY” is your misspelling. 19.3-COMPILING SAIL PROGRAMS

Otherwise, the error messages you receive during 3

above will be compilation errors (bad syntax, type
mismatch, begin-end mismatch, unknown identifiers, If one started Sail with 'R SAIL”, then Sail will type
etc). See Section 19 about these. back an "+ at you and wait for you to type in a

<command line> It will do the compilation specified by

If you get through compilation (step 3) with no error that command ling, then ask for another, and so on until
messages, the loading of your program will rarely fail. you type “LOADER!” Instead of a command line. At this

If it somehow does, twill tell you. See a Sail hacker pointit will call the Loader.
about these

90

-

SAIL USER MANUAL USING SAIL

If you use RPG, follow the RPG command with a list of <device_name>

<command line>s separated by commas. The += <legal_sixbit_id>

L compilation of each <command line> will be done before
the next <command line> is read and processed. The

RPG commands are: <switches>

| := (<unslashed_switch_list>)EXecute compile, load, start z= <slashed-switch-list>
TRY compile, load with RAID or DDT, start
DEBug compile, load with RAID or DDT, w= <empty>

start RAID or DDT

LOAd compile, load

[PREPare compile, load with RAID or DOT <unslashed_switch_list>
COMpile compile

= <switch_spec>

See [Moorer] for more information about the use of z= <unslashed_switch_list> <switch_spec>

a RPG and the switches available to it.
COMMAND LINE SYNTAX

- <slashed-switch-list>

i = | <switch_spec>w= <slashed-switch-list> / <switch_spec>

<command-line>

m= <binary-name> <«listing-name> ¢

[<source-list> <switch_spec> |
= <file_spec>a += <valid_switch_name>
= <file_spec> EXC = <signed-integer> <valid-switch-name>

L <binary-names <valid-switch-name>
== <f ile_spec> i= 0

| = <empty> = Ln=M

n= P

<listing_name> i= Q

[= <file_spec> = Rte <empty> eS
= CG

=~ F

[<source-list> = K=<file_spec>
= <source-list> , <file_spec>

COMMAND LINE SEMANTICS

[- All this is by way of saying that SAIL accepts<file_spec> commands in essentially the same format accepted by
w= <file-name> <file_ext> <proj_prog> DEC processors such as MACRO and FORTRAN. The

: = <device-name> <file_spec> <switches> binary file name is the name of the output device and
= <device-name> <switches> file on which the ready to load object program will beL written. The listing file, if included, will contain a copy

of the source files with a header at the top of each

{ <file-name> page and an octal program counter entry at the head

w= <legal_sixbit_id> of each line (see page 92). The listing file name is
— often omitted (no listing created). The source file list

specifies a set of user-prepared files which, when

<file_ext> concatenated, form a valid SAIL program (one outer

[= <legal_sixbit_id> block).
= <emply>

legal-sixbit-identifier is a name which is acceptable to

the time sharing system as a valid file name, device

§ <proj_prog> name, extension, etc. when its first six (device, file) or
+= | <legal_sixbit_id> | three (extension, project-programmer number) are

<legal_sixbit_id> 1 converted from ASCIl to SIXBIT. For more information

8 = <empty> about file and device names, see [Moorer)
91

USING SAIL SAIL USER MANUAL

If file_ext is omitted from the binary-name, the ARG SWITCH FUNCTION
extension for the output file will be REL. The default

extension for the listing file 1s LST SAIL will first try C This switch turns on CREFfing. The listing
to find source files under the names given. If this fails, file (which must exist) will be in a format

and the extension is omitted, the same file with a .SAl suitable for processing by CREF, the
extension will be tried. program which will generate a cross-

reference listing of your SAIL program from

If device-name is omitted, DSK. is assumed. If your listing files.
proj_prog is omitted, the project-programmer number

for the job is assumed. D For every occurrence of this switch in the
command line, the amount of space for the

Switches are parameters which affect the operation of push down stack used in expanding macros

the compiler A list of switches may appear after any (see page 40) is doubled. Use this switch if
file name The parameters specified are changed the compiler indicates to you that this stack
immediately after the file name associated with them is has overflowed. This shouldn't happen unless
processed. The meanings of the switches are given you nest DEFINE calls extremely deeply.
below.

0 F 0 is an octal number which specifies

The binary, listing and (first) source file names are exactly what kind of listing format is

processed before compilation -- subsequent source generated. 0 contains information about 5

names (and their switches) are processed whenever an separate listing features, each of which is

end-of-file condition is detected in the current source assigned a bit in 0.

file. Source files which appear after the one

containing the outer block’s END delimiter are not I List the program counter

Ignored, but should contain only comments.) seeLE wiih below.
the source text.

Each new line in the command file (or entered from the 4 List the macro names before

teletype) specifies a separate program compilation. expansion.

Any number of programs can be compiled by the same 10 Expand macro textsin the
SAIL core image. 20 Surround each listed macro

expansion with ¢ and >.

The f ile_spece@ command causes the compiler to Open
the specified file as the command file. Subsequent The compiler is initialized with [bf (i.e. list
commands will come from this file. If any of these liné numbers and macro names).
commands is file_speca, another switch will occur.

H This switch is used to make your program

The file-spec EXC command will cause the specified sharable. When loaded, the code and
file to be run as the next processor. This program will constants will be aced in the second (write-
be started In “RPG mode”. That Is,itwill look on the protected) segment, while data areas will be
disk for its commmands if its standard command file is allocated in the lower, non-shared segment.

. there -- otherwise, command control will revert to the Load such programs like this: Run the
TTY. The default option for this file name is DMP. loader directly, then respond: +ddt
The default device is SYS. switches} pro gname {other prognames}

/LSYSHLBSAn/G<crif> The sharable library

SWITCHES HLBSAnis identical to LIBSAn, except that
The following table describes the SAIL parameter t expects to run mostly in the upper
switches. If the switch letter is preceded in the table (shared) segment. Recall that n is the
by the D character, a decimal number is expected as current version number. When you have
an argument. 0 is the default value. The character 0 finished loading, in order to write-protect
indicates that an octal number Is expected for this the sharable portion, you'll have to deposit
switch. Otherwise the argument is ignored. (by hand) the following instructions:

LOCATION INSTRUCTION ~~ EXPLANATION

134 211008 1 {(MOVNI 8,1)
135 47800 36 (CALLI 36)

136 254200 © (HALT)

137 47008 12 (CALLI 12)

Then type: START 134, and SSAVE it when

itexits (worry if it HALTS). This feature

92

| SAIL USER MANUAL USING SAIL
L.

should be used only if you have a program program. See appendix 12, the Statement

which is likely to be used by a lot of Counter System. This switch is ignored

" people at once. unless a listing is specified with a /LIST.

0 L In compiling a SAIL program, an internal Here is an example of a compile string which a user

variable called PCNT (for program counter) who just has to try every bell and whistle available

is incremented (by one) for each word of-- to him might type to compile a file named NULL:

code generated. This value, initially 0,

represents the address of a word of code in COMPILE /LIST /SAIL NULL(RR-2L5000S)
the running program, relative to the load

g ooint for this program. The current octal The switch information contained in parentheses
value of PCNT plus the value of another will be sent unchanged to SAIL. Note the
internal variable called LSTOFFSET, is convention which allows one set of parentheses

% printed at the beginning of each output line enclosing a myriad of switches to replace a /
BN L in a listing file. For the first program character inserted before each one. This string tells

compiled by a given SAIL core image. the compiler to compile NULL using parse and
LSTOFFSET is initially 0. If the L switch semantic stacks four times larger than usual (RR).

g occurs in the command and the value 0 is A listing file is to be made which assumes that RAIDnon-negative, O replaces the current value will be loaded and NULL will be loaded right after
of LSTOFFSET. If 0 is 1, the current size 1 A!D (-2L) His program is big enough to need
of DDT is put into LSTOFFSET. If 0 is -2, 5000 words of String space (58805)

g the current size of RAID is used. In “RPGmode” the final value of PCNT is added to

LSTOFFSET after each compilation. Thus by

deleting all REL files produced by SAIL, and 19.4- LOADING SAIL PROGRAMS

i by compiling all SAIL programs which are to
be loaded together with one RPG command

which includes the L switch, you can obtain Load the main program, any separately compiled
listing files such that each of these octal procedure files (see page 1), any assembly language

i numbers represents the actual starting core (see page 11) or Fortran procedures, and DDT or RAIDaddress of the code produced by the line it if desired. This is all automatic if you use the LOAD or
orecedes. At the time of this writing, RPG DEBUG or EXECUTE system commands (see [Moorer)).

i would not accept minus signs in switches to Any of the SAIL exesuion ime routines oduasied w: your program wi e searched out an oade

be sent to processors. Keep trying. automatically from SYSLIBSAnREL. If the shared
. Each occurence of ine switch doubles lie segment (SYSSAISEG, etc.) is available and desired,

size of the system push down list. It has type SYS:SAILOW as as your very first LOADER
i never been known to overflow. command (before /Deven. Stanford people canabbreviate SYS:SAILOW as /Y. All this is done

Q Each occurrence doubles the size of the automatically by RPG at Stanford.

i - String push down list. No trouble has beenencountered here, either.

R Each occurrence doubles the size of the 19.5- STARTING SAIL PROGRAMS

. compiler’s parsing and semantic stacks. A
ono conaitona satemen of ihe on) For most applications, SAIL programs can by started
) has been known to cause these stacks to using the START, RUN, EXECUTE, or TRY system

i overflow their normally allocated sizes. commands, or by using the 3G command of bDT (RAID).The SAIL storage areas will be initialized. This means

D S The size of String space is Set to D words. that all knowledge of I/O activity, associative data
String space usage is a function of the structures, strings, etc. from any previous activation of
number of identifiers, especially macros, the program will be lost. All strings (except constants)

| declared by the user. In the rare case of will be cleared to NULL. All compiled-in arrays will
String space exhaustion, 5000 is a good not be reinitialized (PRELOADed arrays are preloaded

(first number to try. at compile time - OWN arrays are never initialized).
i Then execution will begin with the first statement in

- K The counter mechanism of Sail is activated. the outer block of your main program. As each block
enabling one to determine the frequency of is entered, its arrays will be cleared as they are
execution of each statement in your Sail allocated. Variables are not cleared. The program will

exit when it leaves this outer block.

-

93

USING SAIL SAIL USER MANUAL

STARTING THE PROGRAM IN “RPG” MODE

SAIL programs may be started at one of tw.
consecutive locations: at the address contained in the

ell JOBSA in the job data area, or at the address just
rollowing that one. The global variable RPGSW is set

to 0 in the former case, -1 In the latter. Aside from

this, there is no difference between the two methods,

This cell may be examined by declaring RPGSW as an
tXTERNAL INTEGER.

19.6 - STORAGE REALLOCATION WITH THE REENTER

COMMAND

The compiler dynamically allocates working storage for

'ts push down lists, symbol tables string spaces. etc. It

normally runs with a standard allocation adequate for

most programs. Switch settings given above may be
used to change these allocations If desired, these

allocations may also be changed by typing TC, followed
by REE (reenter). The compiler will ask you if you want

to allocate. Type Y to allocate, to use the standard
allocation, and any other character to use the standard

allocations and print out what they are. All entries will

ve prompted. Numbers should be decimal. Typing alt-
mode instead of CR will cause standard allocation to

be used for the remaining values. The compiler will

then start, awaiting command input from the teletype.

.-or Stanford “Global Model” users, the REE command

will also delete any REQUIREd or previously typed

zgment name information. The initialization sequence
~minen ask for new names.

94

SAIL USER MANUAL DEBUGGING SAIL PROGRAMS

SECTION 20 S Restart. Sometimes useful if you are

debugging the compiler (or if you were

DEBUGGING SAIL PROGRAMS compiling the wrong file). The program is

restarted, accepting compilation commands

from the TTY.

X Exit. All files are closed in their current

— state. The program exits to the system.

E Edit. This command must be followed by a

L 20.1 - ERROR MESSAGES carriage return, or a space, a filename (in
standard format, assumes DSK) and a

carriage return, If the filename is missing,

If the compiler detects a syntax or semantic error the SOS editor (see [Savitzky)) is started,

_ while compiling a program it will provide the user with given instructions to edit the current source
the following information: file and to move the editing pointer to the

current page and line number. If a file name

1) The error message. These are English is present, that file is edited starting at the

- phrases or sentences which attempt to beginning. This feature is available outside

diagnose the problem. If a message is vague Stanford only if the SOS editor is available,

it is because no specific test for the error and is modified to read a standard CCL file

| has been made and a catchall routine for its input.
(-. detected it If the message begins with the

word ‘DRYROT" it means that there is a bug T TV edit, Same as E only the TV editor is
in the compiler which some strangeness in used (Stanford only).

i your program was able to tickle. See asystem programmer about this. D Enter DDT or RAID if one is loaded.

Otherwise, type “NO DDT LOADED” and re-

¢ 2) The current input line. Page and line number, quest ion.

i along with the text of the line being scanned,are typed. If the console device is aTtY, a Any other character will cause the error routines to
line feed will occur at the point in the line spew forth a summary of this table and re-enter the
just following the last program element quest ion sequence.

i scanned. If the device is a DPY, the line will
be displayed with a vertical arrow below the ERROR MODES

scan position. The absence of a position The above procedure can be modified slightly by

1 indicator means that a macro (DEFINE) body setting various modes. One sets a mode by including

| is being expanded. the appropriate letter before the response. Any of the
four modes may be reset by including a minus sign (-)

3) A question mark or arrow (+ or I). before them. E.g. -Q". Error modes can also be set
. with the construct REQUIRE <string_const>

Respond to the prompt in any of the following ways: ERROR-MODES. When the compiler sees this in any

of the source files one is compiling, it reads through

<cr>Try to continue compilation. A message will the string constant and sets the modes as it sees their
! be printed and the sequence reentered if letters. These modes remain in effect until the end of

| recovery is impossible (if a "7" was typed the compilation or until reset with a response to an
instead of an arrow). error message, or another require error-modes.

C same as <Cr> . The available modes are:

-

<If> Try to continue the compilation, but don’t K KEEP type-ahead. Normally, the error

stop for user response after future errors. handler will flush the input buffer before

le. automatic continuation. Messages will fly looking for response characters. This mode

- by (at an unreadable rate on DPYS) until the allows one to type ahead.
compilation is complete or an error occurs

from which no recovery is possible. In the Q QUIET. If the error is continuable, none of

latter case the question sequence is the above will be typed. However, you will
reentered. always be notified of a non-continuable error.

A same as <If> - L LOGGING. The first and second items of the

95

L

i

DEBUGGING SAIL PROGRAMS GAIL ''SER MANUAL

error message Will be sent to a file named 20 2 - DEBUGGING

<prognam>LOG wh e re <prognam>1sthe
name of the tile of the Man program. If you

would rather have another name, use F<fiie The code output for SAIL program; Is designed to te
specification», where <file specifications fairly easy to understand when examined using the
must be a legal file name and PPN. The DDT debugging language or Stanford’s dispiay oriented

default extension is LOG and the default RAID program. A knowledge of the debugger you have
PPN 1s that of the job. The LOG file (or chosenisrequired before this sectivn will be

whatever it’s called) is closed when one’s compr ehensisle
program finishes compilation, or the

compilation is terrninated with the S, X, E, or SYMBOLS

T responses. Only those symbols which have been declared

INTERNAL (see “age 1@) and those uscigreuin the
N NUMBERS. This mode causes the message currently open program’ are evaluable at & grven time

‘CALLED FROM xxxx LAST SAIL CALL AT Tne name of a SAIL program as far as DDT or RAID
yyyy” to be typed before tne question mark (nenceforth DDRAID) is concerned 1s the name of the

or arrow. Useful to compiler debuggers and outer block of that program. If no name is given for
hand coders. this block, tha name Mwillha the default

Note that setting a mode does nothing by set a mode; Only the first six non-blank characters of a block name

It does not cause continuation. or Identifier will be used in forming a DDRAID symbol.
if two identifiersin the same block have tne same first

STOPPING RUNAWAY COMPILATIONS six characters the program using hemwiil not get
Typing <esc>! will immediately cause the Q and A confused, but the user might when trying to locate
modes to be reset so that the next error will (8) be these identifiers.

typed, and (b) wait for a response rather than

cont inuing automatically. To obtain symbols for the execution time routines, load
RUNTIM.REL (available from your friendly local SAIL

EXECUTION TIME ERROR MESSAGES maintainer) with your other files. The routines wilt be

Error messages have nearly the same format as those loaded from this file, which includes symbols, instead of

from the compiler (page 95). They indicate that from the LIBSAI library or shared segment, which do —
not. Your program will be several thousand words

1) an array subscript has overflowed; longer when this file is used.

2) a case index is out of range; BLOCKS —
All block names and identifiers used as variables,

3) a stack has overflowed while allocating procedures or labels in a given (main or separate
space for a recursive procedure; or procedure) program are available for typeout when

that program is “open” (NAME$: has been typed). To
4) one of the execution time routines has refer to a symbol, type BLOCK-NAME&SYMBOL/

. detected an error. (substitute ; for/ in RAID). The block name may be

omitted if you have “opened” the block with
In Numbers mode, the “CALLED FROM” address BLOCK-NAME$&. The symbol table is block-structured

identifies, in the first 3 cases, the location in the user only to the extent that block names have appeared in

program where the error occurred ; the “LAST SAIL the source program. For instance, in the program

CALL AT” address gives the location of the faulty call

. on the SAIL routine for type 4 messages. BEGIN "NAMEL"
INTEGER 1,4;

All the replies to error messages described in page BEGIN
95 are valid. If no file name is typed with the "E" or INTEGER 1K;
"T" option, the editor re-opens the last file mentioned Co
in the EDIT system command. END;

END "NAMEL"

The function USERERR may be used to activate the
SAIL error message mechanism. Facilities are provided the symbols J. K, and both symbols | are considered by

for changing the mode. See page 42 for details. DDRAID to belong in the same block. Therefore
confusion can result with respect to |. This approach

was taken to avoid the necessity of generating

meaningless block names for DDRAID when none were
given In the source program. A compound statement

96

.

-

: SAIL USER MANUAL DEBUGGING SAIL PROGRAMS

.

w Ill be considered by DDRAID to be a block if it has a START The first word of code generated for any

name. given program is given the name '9..

C SAIL GENERATED SYMBOLS WARNINGS
Some extra symbols are generated by SAIL and will Since only the first 6 characters of an identifier are

show up when you are using DDRAID. They are: available, it is wise to declare symbols which will be

§ . examined by DDRAID in such a way that these sixACS The accumulators P (system push down characters will uniquely identify them.
list pointer), SP(string push down pointer),

] and TEMP (commonly used temporary)
| are given symbolic names. Currently,
— P=’ 17, SP=' 16, TEMP<' 14.

| OPS The op codes for the UUOs ERR,

: i ERROR., FIX, FLOAT, PDLOV, and ARERR
(subscript overflow UUQ) are included to
make these easy to detect in the code.

| ARRAYS For each array declared in the outer
block (built-in arrays), the fixed address

of its first element is given a symbolic

name. This name is constructed from the

L characters of the array name (up to the
first BD) followed by a period. For
instance, the first element of array CHT

g is CHT.; the first element of PDQARR isPDQAR.; The last semicolon was really a

period. This dotted symbol points to the

second word of the first descriptor for

| String Arrays (see page 107, page
- 106).

STRINGS For each string declared in the outer

[block (built-in strings), the second wordof the two word string descriptor is

given the name of the string variable,

truncated to six letters. The first word

[of the string descriptor is given a name
consisting of the first five letters of the

string’s name followed by a period. For

exmple, if you declare a string INSTRING,

|) then the two word descriptor:
INSTR. : <first word>

[INSTR! : <second word>
More about string descriptors on page

] 107.
BLOCKS The first word of the first executable

statement of every block or compound

8 statement which has been given a nameis given a label created in the same way

as those for arrays above. This label

cannot be gone to in the source program.

| It causes no program inefficiency. This
L label points at the first word of the

compound tail -- not the first word of

code generated for the block (skips any

| procedure or array declaration code).
-

97

APPENDICES SAIL USER MANUAL

APPENDIX 1 OPERATION ARGL ARG2 ARGl' ARG2' RESULT

xT ¥ REAL INT REAL REAL REAL

MAX MIN INT REAL REAL REAL REAL

REAL REAL REAL REAL REAL

LL : LAND LOR INT INT INT INT INT

The data type BOOLEAN is identical to the data type EQV XOR REAL INT REAL INT REAL
INTEGER with the following conventions: FALSE =0 INT REAL INT REAL INT
and TRUE # 0. REAL REAL REAL REAL REAL

F | To LSH ROT INT INT INT INT INT
t REAL INT REAL INT REAL

0 INTEGER REAL STRING INT REAL INT INT INT
m

1 Left justify |The right 7 bits REAL REAL REAL INT REAL
N and raise to | are converted to

T appropr iate | to a 1 character / INT INT REAL REAL REAL

E bower. 14563 | | string with that REAL INT REAL REAL REALG -+1, @ ASCIT code.
yr INT REAL REAL REAL REAL

3 678-8. 78e2 | 48 = 0 REAL REAL REAL REAL REAL
| Drop deciml i Lonvert to inte- MOD DIV INT INT INT INT INT

E fract tons. yer then convert REAL INT INT INT INT
A |. 3452-134 to string.
L | -6.799%615-67 | 4.801 + “0” INT ~~ REAL INT INT INT

2.3e-2+ 0 | 4.8991 » “0” REAL REAL INT INT INT

“| The ASCII code:| Convert to in-|
S for the first teger then | an
T | character of to real. | x If ARG2 is negative for the operator 1", the result is
R | string. real
I | "esun"- 4s “BSUM"- 4.8el |

N | NULL »0 NULL #0
G_

NOTES: The NULL string is converted to 0, but 0 is

converted to the one character String with the ASCII

code of 0. If the absolute value of an Integer is

greater than 1342 17728, then some low order

significance will be lost In the conversion to real;

otherwise, conversion to real and then back to integer

will result in the same integer value. If a real number

has magnitude greater than 134217728, then

conversion to integer will produce an invalid result.

Conversion from real to integer can be sped by a

factor of 8 if SHORT reals and integers are used. It

is only necessary that one of the data types be

SHORT: both the number to be converted and the

variable need not be SHORT. SHORTness is a

dominate quality In algebraic inary operations. That
1s, the sum of a SHORT real and a regular real will be

treated as a SHORT real. SHORT integers and reals

must have an absolute magnitude of less than

-134217728

The binary arithmetic, logical, and String operations
which follow will accept combinations of arguments of

any algebraic types. The type of the result of such an

operation is sometimes dependent on the type of its

arguments and sometimes fixed. An argument may be

converted to a different algebraic type before the

operation is performed. The following table describes
the results of the arithmetic and logical operations

given various combinations of Real and Integer inputs.

ARG1 and ARG2 represent the types of the actual
arguments (strings go to integers first). ARG1’ and
ARG2’ represent the types of the arguments after any

necessary conversions have been made.

98

SAIL USER MANUAL APPENDICES

APPENDIX 2 APPENDIX 4

SAIL RESERVED WORDS CHARACTER-IDENTIFIER EQUIVALENCES

ABS ALL AND APPLY ARRAY ARRAY-PDL ASSIGN CHARACTER RESERVED WORD

ASSOC BBPP BEGIN BOOLEAN CASE CASEC CAUSE

COMMENT CONTEXT CONTINUE COP cVI CVLIST A AND

CVN CVSET DATUM DEFINE DELETE DELIMITERS DIV = EQV

DO DOC DONE DPB ELSE ELSEC END ENDC ENTRY NOT

EQV ERASE EXTERNAL FAIL FALSE FIRST FOR FORC OR

FORLC FOREACH FORGET FORTRAN FORWARD ® XOR

FROM GEQ GLOBAL GO GOTo I1BP IDPB IF IFC ILDB 00 INF
IN INF INITIALIZATION INTEGER INTER INTERNAL IN

INTERROGATE ISTRIPLE ITEM ITEMVAR LABEL LAND SUCH THAT

LDB LENGTH LEQ LET LIBRARY LOAD-MODULE # NEQ

LOCATION LNOT LOP LOR LSH MAKE MATCHING MAX < LEQ

MEMORY MESSAGE MIN MOD NEEDNEXT NEQ NEXT 2 GEQ
NEW NEW-ITEMS NOT NOW-SAFE NOW-UNSAFE { SETO
NULL NULL-CONTEXT NULL-DELIMITERS OF OFC OR } SETC

i OWN PHI PNAMES PRELOAD WITH PROCEDURE UNIONPROTECT-ACS PUT QUICK-CODE REAL RECURSIVE INTER

REFERENCE REMEMBER REMOVE ASSOC

| 1 REPLACE-DELIMITERS REQUIRE RESTORE RETURN © SWAP
| ROT SAFE SECOND SEGMENT-NAME SEGMENT-FILE || SET SETC SETO SHORT SIMPLE SPROUT

START-CODE STEP STEPC STRING STRING-PDL

| | STRING-SPACE SOURCE-FILE SUCCEED SUCH SWAP| SYSTEM-PDL THAT THEN THENC THIRD TO TRUE APPENDIX5

| UNSTACK-DELIMITERS UNTIL UNTILC VALUE VERSION

WHILE WHILEC xOR PARAMETERS TO THE OPEN FUNCTION

}

- APPENDIX 3 OPEN (CHANNEL, “DEVICE”, MODE,
INBUFS, OUTBUFS, @COUNT,

| SAIL PRE-DECLARED IDENTIFIERS @BRCHAR, EOF);
L

CHANNEL System Data Channel, @-'17
DEVICE string giving device name

: ; ARRBLT ARRINFO ARRTRAN ARRYIN ARRYOUT MODE data mode, bits 18-21, 23 |
1 BACKUP BINDITBREAKSET GALL CLOSE CLOSIN enable error returns

CLOSO CLRBUF CODE CVASC CVD CVE CVF CVFIL INBUFS number of input buffers,
cvG CVIScvo cvos cvs CVSICVSIX CVSTR Ih buffer size if #@

| CVXSTR ENTER EQU EVENT-TYPE FILEINFO OUTBUFS number of output buffers
- GETCHAN GETFORMAT INCHRW INCHRS INCHSL COUNT text input count (reference)

INCHWL INSTR INSTRL INSTRS IN P U T INTIN INTSCAN BRCHAR break char variable (reference)

LINOUT LODED LOOKUP MAINP! MTAPE OPEN OUT EOF end-of-file and IO error

OUTCHR OUTSTR PTCHRS PTCHRW PTIFRE PTOCNT flag (reference)

— PTOCHS PTOCHW PTOSTR PTYALL PTYGET PTYIN

PTYREL PTYSTR REALINREALSCAN RELEASE

RENAME SCAN SETBREAK SETFORMAT STRBRK

| TTYIN TTYINL TTYINS WORDIN WORDOUT USERCON
- USERERR USETI USETO

a

99

-

R

APPENDICES SAIL USER MANUAL

APPENDIX 6 APPENDIX 8

BREAKSET MODES COMPILE SWITCHES

| (Inclusion) string is set of break chars D double size of define pushdown stack

X (eXclusion) string of all non-break chars numL listing control -- num>@ becomes listing
0 (Omit) string of characters to be omitted starting addr. nums=-1 starts listing after

from result current DDT size. num=-2 starts listing

S (skip) break char appears only in BRCHAR after current RAID size.

variable P double Sze of system pushdown list

A (Append) break char is last char of result Q double size of string pushdown list

string H for making programs sharable (high segment).

R (Retain) break char is first char of next K for insertion of programs counters.

string R double size of parse pushdown list

P (Pass) line numbers appear in input without numMS set size of string space to num

warning C create CREF (cross-reference) input file.

N (No numbers) line numbers and the tabs that numF enable various listing formats.
follow them are removed.

L (Line no break) line numbers cause input

break. APPENDIX 9
BRCHAR is negative. Next input gets line no

characters. VALID RESPONSES TO ERROR MESSAGES
E (Erman) line numbers cause input break.

Negated line no returned in BRCHAR. Line

no removed from input. ACTION RESPONSES

D (Display) after this appears, each line no

is listed on the display (if TTY is a DPY) as cr (carriage return) try to continue
it is dealt with. C same as cr

If (line feed) continue automatically -- don’t

stop for user go-ahead after each message

APPENDIX 7 A same as If

S restart

MTAPE COMMANDS X exit -- close all files, return to monitor

E edit. Follow by CR to get file the compiler

is working on (or last thing edited, for

MODE FUNCTION Runtime routines). Follow with
<name> CR to edit <name>.

“A” Advance past one tape mark (or file) T Ditto E only with the TV editor.

"'B" Backspace past one tape mark D go to DDT or RAID

] "F* Advance one record B go to compiler or runtime debugger.
"R" Backspace one record
"W" Rewind tape

‘E" Write tape mark MODES (reset using - e.g. -Q or -L)
‘U" Rewind and unload

K keep type-ahead (i.e. don’t flush)

Q quiet - turns off display of errors

L logging - send errors to .LOG file

F file - ditto L but send to a file

specified by <file name> after F

N Numbers - display “CALLED FROM XXXX

100

| SAIL USER MANUAL APPENDICES
—

APPENDIX 10 only), You are always enabled for

| bit 20000 (EOF). However, to be
| ERROR CODES allowed to handle any of the others,

you must turn on the corresponding

bit in the right half of the MODE

word in the OPEN for this channel.

Lo ROUTINE LOCATION CONDITIONS, CODE VALUES In addition, the 10000 bit is used
to enable user handling of invalid

CALL _SKIP_ set TRUE if the UUO skips, FALSE file specifications to ENTER,

| otherwise LOOKUP, and RENAME (see above).
LL ‘7500017 in the MODE parameter

CODE SKIP. set TRUE if the constructed would enable a dump mode file for
instruction skips, FALSE otherwise user handling of ALL I/O errors on

| this channel. If you are not
- CVFIL _SKIP_ set TRUE if the file input is enabled for a given error, an error

invalidly specified (wrong message (which may or may not be
punctuation, order, etc.), FALSE fatal) will be printed, and the error

i otherwise. code word set as indicated. Inaddition, the number of words

CVIS FLAG param Set TRUE if no PNAME exists actually transferred is stored in the
: for this Item, FALSE if CVIS right half of this variable for

. succeeds. ARRY IN, ARRYOUT.
CVSl FLAG param Set TRUE if no Item exists with LOOKUP FLAG param Same as ENTER.

this String as PNAME, FALSE if

L CVS succeeds. OPEN EOF vbl If 0 on entry, prints fatal error
message if OPEN fails. If #0 on

ENTER FLAG param Set FALSE if the ENTER entry, always returns to user -- still

| | succeeds. Otherwise, the left half #0 if OPEN failed, 0 if it
L is made - 1. Then if the file name succeeded.

was invalid, the right half is made

' 10. Otherwise it is set to some RENAME FLAG param Same as ENTER.
code from 0 to 7, depending on the

_ type of ENTER failure. These TTYINS FLAG param Same as INSTRS.
codes are the same as the ENTER

UUO codes in [Moorer]. If error ' 10 Substrings _SKIP_ Consider STIX TO YI. If
(invalid Spec.) is returned, an error YSLENGTHST) it is set to

i message (non-fatal) will also be LENGTH(ST) and rh{_SKIP_) is made
printed, unless you are enabled for 1. 1f X<l it is set to 1. If X>Y it

user handling of this error (see I/O is set to Y+1 (guaranteeing a null

| - below). String result). In either case,
— I_SKIP_) is set to -1. The STIX

GETCHAN result <@ if no channel is available. FOR Y] case is first converted to

; the other case, then executed.

| INCHRS result <@ if no characters are waiting.
- You should also refer to the table for Input age 35,

INCHSL FLAG param#@ if no characters are waiting. describing the various combinations of the BRCHAR
(and EOF variables and their meanings.

INSTRS FLAG param#@ if no characters are waiting.
—

1/0 EOF vbl. 0 if no exceptional conditions

i occurred in an |/O operation.

| Otherwise, the left half has certain
bits turned on, indicating the error:

400000 is a catchall -- improper

1 mode. 200000 means parity error

| occurred. 100000 means a data
— error occurred. 40000 means

“Record number out of bounds”.

20000 means End of File (input

101
{

APEENDICES SAIL USER MANUAL

APPENDIX 11 INTINP_INX 1 4 | M P input waiting

INDICES| OR INTERRUPTS INTTTI_INX 15 You will be interrupted whenever
<esc> | 1s typed on your teletype.

STANFORD INTERRUPT SYSTEM INTPOV_INX 19 Interrupts you on push-down
overflow.

NAME NUMBER DESCRIPTION

INTILM_INX 22 Interrupts you on illegal memory

INTSWW_INX 0 You will receive an Interrupt references, that is, references to
when your job is abcut to be memory outside of your core

swapped out. image

INTSWD_INX 1 You will receive an irterrupt when INTNXM_INX 23 You will receive an interrupt
your job is swapped back into whenever your program

core If you are activated for refet €NCeS non-existant memory.

Interrupts for swap out also, you

will receive these two interrupts INTFOV_INX 29 Interrupts you on floating overflow.

as a pair in the expected order

every time your jobis swapped. INTOV_INX 32 Interrupts you on arithmetic
overflow.

INTSHW_INX 2 You will receive an interrupt when

your—job is about to be shuffled. Bits 33 through 36 are left to the user. REQUIRE
"'SYS:PROCESDEF" SOURCE-FILE to define the above

INTSHD_INX 3 You willreceive an Interrupt when names, NOTE: to program yourself for more than one

your job has been shuffled. Interrupt, you must execute two separate INTMAP
statements.

INTTTY INX 4 Y o u wilireceive an Interrupt

every time your program would be EXPORT SAIL INTERRUPT SYSTEM

activated due to the teletype if it

were waiting for the teletype. As NAME NUMBER DESCRIPTION

long as you do not ask for more

than there is in the teletype INTPOV_APR 19 Interrupts you on push-down
buffer, you may read from the stack overflow

teletype at interrupt level.

INTILM_APR 2 2 Interrupts you on illegal memory

INTPTO_INX 5 You will be interrupted every time references that is, references to
the PTY job goes into a wait state memory Oulside of your core

walling tor you to sent it Image.
characters

INTNXM_APR 23 You will receive an interrupt

IN TMAIL_INX 6 Interrupts whenever someone whenever your program
SENDs you mail (see [Moorer], references non-existant memory.

secticn 10.17) You may read the
letter at Interrupt level. iINTFOV_APR 29 Interrupts You on floating

overflow

AINTPTI_INX 8 You will be interrupted everytime
any Ich on a FTY you own send INTOV_APR 3 2 Interrupts you on arithmetic
you 3 characler (or line). overflow

INTPAR_INX 9 interrupts you on parity errors in
yudr COre image

INTCLK_INX 10 You will be interrupted at every
clock tick (1/53th of a second).

INTINR_INX 11 IMP Interrupt by receiver

INTINS_INX 1 2 IMP interrupt by sender.

IJTIMS_INX 13 IMP status change interrupt.

L

SAIL USER MANUAL APPENDICES

APPENDIX 12 IRUN If 33-32 is 3, then the current

process will not be suspended,

| BIT NAMES FOR PROCESS CONSTRUCTS but be made running. The newly
resumed process will be made

ready.

| SPROUT OPTIONS 3 4 This should always be zero.
BITS NAME DESCRIPTION 35 NOTNOW If set, this bit makes the newly

resumed process ready instead

i 14-17 QUANTUM(X) Q « IF X=0 THEN 4 ELSE of running. If 33-32 are not 3,
2TX; The process will be given then this bit causes a

a quantum of Q clock ticks, rescheduling.
: indicating that if the user is

N i using CLKMOD to handle chock CAUSE OPTIONS
interrupts, the process should

] be run for at most Q clock 35 DONTSAVE Never put the <event item> on

| ticks, before calling the the notice queue. If there is noscheduler. (see about CLKMOD, process on the wait queue, this
page 79 for details on making makes the cause statement a

processes time share”). no-op.

| 18-2 1 STRINGSTACK(X) S « IF X-0 THEN 16 34 TELLALL Wake all processes waiting for
ELSE X#32; The process will be this event. Give them all this

given S words of string stack. item. The highest priority

| process will be made running,22-27 PSTACK(X)P<IF X=0 THEN 3 2 ELSE X*32; others will be made ready.
The process will be given P

words of arithmetic stack. 33 RESCHEDULE Reschedule as soon as

i possible (i.e. immediately after
28-31 PRIORITY(X) P « IF X=0 THEN 7 ELSE X; the cause procedure has

The process will be given a completed executed).
priority of P. 0 is the highest

| priority, and reserved for the INTERROGATE OPTIONS
SAIL system. 15 is the lowest

priority. Priorities determine 35 RETAIN Leave the event notice on the

| which ready process the notice queue, but still returnscheduler will next pick to make the notice as the value of the

running. interrogate. If the process
goes into a wait state as a

. 32 SUSPHIM If set, suspend the newly result of this Interrogate, and is
sprouted process. subsequently awakened by a

Cause statement, then the

33 Not used at present. DONTSAVE bit in the Cause

_ statement will over ride the34 SUSPME If set, suspend the process in RETAIN bit in the Interrogate if
which this sprout statement both are on.

occurs.

34 WAIT If the notice queue is empty,

(_ 35 RUNME If set, continue to run the then suspend the process
process in which this sprout executing the interrogate and
statement occurs. put its process item on the wait

| queue.RESUME OPTIONS

33 RESCHEDULE Reschedule as soon as

(33-32 READYME If 3332 is 1, then the possible (i.e. immediately after
| current process will not be execution of the interrogate

— suspended, but be made ready. procedure).

KILLME If 33-32 1s 2; then the current 32 SAY-WHICH Creates the association

process will be terminated.

103

!

APPENDICES SAIL USER MANUAL

EVENT-TYPE e <event notice>s APPENDIX 13
<event type> where <event
type> is the type of the event STATEMENT COUNTER SYSTEM

returned. Useful with the set

form of the Interrogate
construct.

GENERAL DISCUSSION

The new SAIL compiler contains a feature which allows

you to determine conveniently the frequency of

execution of each statement in your SAIL program.

This is accomplished by inserting an array of

counters and placing AOS instructions at various

points in the object program (such as in loops and

conditional statements). A routine is called to zero the

counter array before your program is entered and

another routine is calied to write out the array before

calling EXIT.

Since not all programs exit IN the normal fashion

(i.e. falling out the bottom), it is possible to call
either the zero routine or the output routine as an
EXTERNAL PROCEDURE.

Another program, called PROFIL, is used to merge the

listing file produced by the SAIL compiler with the file

of counters produced by the execution run of your

program. The output of the PROFIL program is

an indented listing of your SAIL program with

execution counts in the right hand margin. The output

format of PROFIL is reasonably flexible, with several

“switches” to contro! it.

Since the AOS instructions access fixed locations,

and they are placed only where needed to determine

program flow, they should not add much overhead

to the execution time. Although no large study has

been made, the counters seem to contribute about

2% to the execution time of the profile program,

which has a falrly deeply nested structure.

SAIL EXTENSION

The mechanism for inserting counters is controlled

by a compiler switch. To tell the compiler to insert

counters, you give it a /K switch. (/C was already used

for something else.) It is also necessary to produce

a listing file, since the PROFIL program needs it. In

fact, the /K switch is ignored unless a listing is

called for. Specifying /K has several effects on the

listing. First, macros are expanded and macro
names not listed. This is necessary so that PROFIL
will know about block structure, etc. Also, the listing of

PC and line numbers is suppressed. The current

version of PROFIL is confused by all those numbers

and anyway, the lines of the PROFIL listing can differ

somewhat from the lines of the original source. The

final change In the listing is the inclusion of markers
telling where counters have been inserted. Most of

these are Ignored by the present PROFIL since it is

smart enough to know where they are from the

104

-

¢ SAIL USER MANUAL APPENDICES
'

program context. The ones that it does use are the where the <lInput> is the name of the .KNT is
. markers for counters inserted into conditional and assumed. If the output device is the DSK, the output

| case expressions. file will have a default extension of .PFL. Although
L the line spacing will probably be different from the

At the end of each program (i.e. each separate source, PROFIL makes an effort to keep any page

compilation) is the block of counters, preceeded by a spacing that was in the source. here are several

| small data block used by the zero and output possibilities for switches, for which the pertinent
— routines. This block contains such information as the ones are:

number of counters, the name of the list file, and a

| link to other such blocks of counters. The first fis indent n spaces for blocks (default Bt ”
L counter location is given omaname KOUNT, which is fa Fil out every 2th ne with". (default ON)

accessible from RAID, but cannot be referenced JI Ignore comments, strip them from the listing
by the SAIL program itself. /nK Make counter array of sizen (default 268)

. /nL Maximumline length ofn (default 120)

a § The routine K.ZERO is called to zero the counters. N Suppress /F feature/S Stop after this profile
If for some reason you wish to zero them yourself, iT TTY mode = /1C/2B/F/88L
(like if you're only interested in steady state

execution counts) you can reference this routine by

i including the declaration: SAMPLE RUNSuppose that you have a SAIL program named FOQ.SAI

EXTERNAL PROCEDURE K-ZERO: for which you desire a profile. The following

| statements will give you one.
— out png of the counters 's done by the routine . EX /LIST FOOQ(K) (or TRY or DEB or what have you). It uses the SAIL routine GETCHAN to find a . > any input to FOO . . .

spare channel, does a single dump mode output

i which writes out all the counters for all the programs EXITloaded having counters, and then releases the channel. tc
The file which it writes is XXXKNT, where xxx is the .R PROFIL

; name of the list file of the first program loaded having xFO0-FOO/T/S

| counters (usually the name of the SAIL source file). EXIT
— If there are no counters, K.OUT simply returns,

This routine can also be referenced by including the TC

i declaration: . Atthispoint,the fileFOO. PFL contains the profile,
suitable for typing on the TTY or editing.

— EXTERNAL PROCEDURE K-OUT;

{ PROFILE PROGRAM

i The program PROFIL is used to produce the program
profile, i.e. the listing complete with statement

counts. It operates in the following manner. First it

reads in the file XXxXxKNT created by the execution of

1) the user program. This file contains the values of the
counters and the names of the list files of the

programs loaded which had counters. It then reads

the the list files and produces the profile.

The format of the listing is such that only

| statements executed the same number of times are

i listed on a single line. In the case of conditionalstatements, the statement is continued on a new line

after the word THEN. Conditional expressions and

| case expression, on the other hand, are still listed on a

single line. In order that you might know the execution
- counts, they are inserted into the text surrounded

by two ‘brokets" (e.g. <<1b>>).
105

PROFIL expects a command string of the standard

- form for CUSP’s, i.e.

<output><input> {switches}.

[

APPENDICES SAIL USER MANUAL

APPENDIX 14 The formula for calculating the address of All, JK] is:

ARRAY MPLEMENTATION address(A[lJK]) =
address(DATAWD) +

{I-LOWER_BD{1 HxMULT(1) +

(J-LOWER_BD(2)}xMULT(2) +

(K-LOWER_BD(3))

Let STRINGAR be 1 (TRUE) if the array in question is

a String array, 0 (FALSE) otherwise. Then a SAIL array
: : This expands to

of n dimensions has the following format:

HEAD: ~DATAWD = MEANS "POINTS AT" Seal Rh +
HEAD-END-1 “MULT(L) + JRMULT(2)+ K

ARRHED: BASE_WORD SEE BELOW (LOWER. BIL MULTL)LOWER_BD(n)] =i ;
UPPER BD(n) LOWER_BD(2xMULT(2) +
MULT(R) LOWER_BD(3)

LOWER_BD(1) Co
UPPER_BD(1) which is
MULT(1)

NUM_DIMS, TOTAL _SIZE BASE_WORD + ixMULT(1) + JXMULT(2) + K.
DATAWD: BLOCK TOTAL_SIZE

END: prolly gl extra words> By pre-calculating the effects of the lower bounds,
) " several instructions are saved for each array

HEAD The first two words of each array, and the reference.
last, are cOhtrol words for the dynamic
storage allocator. These words are always

present for an array. The array access

code does not refer to them.

ARRHED Each array is preceded by a block of

3+n+2 control words. The BASE-WORD

entry is explained later.

NUM_DIMS This is the dimensionality of the array. If
STRINGAR, this value is negated before

storage in the left half.

DATAWD This is stored in the core location bearing

the name of the array (see symbols, page

97). If it is a string array, DATAWD+1 is
stored instead.

- TOTAL-SIZE The total number of accessible elements

(double if STRINGAR) in the array.

BOUNDS The lower bound and upper bound for each

dimension are stored in this table, the left-

hand index values occupying the higher

addresses (closest to the array data). If

they are constants, the compiler will

remember them too and try for better code

(i.e. immediate operands).

MULT This number, for dimension m, is the product

of the total number of elements of

dimensions m+1 through n. MULT for the
last dimension is always 1.

BASE-WORD This is DATAWD minus the sum of

(STRINGAR+1) = LOWER_BD(m) + MULT(m)
for all m from 1 to n.

106

SAIL USER MANUAL APPENDICES

—_

APPENDIX 15 APPENDIX 16

STRING IMPLEMENTATION PROCEDURE IMPLEMENTATION

STRING DESCRIPTORS A VERY IMPORTANT NOTE

A SAIL String has two distinct parts: the descriptor When a procedure is entered, it places three words

and the text. The descriptor is unique and has the of control Information on the run time (P) stack.
following format: This “mark stack control packet” (MSCP) contains,

among other things, pointers to the control packets

WORD 1: CONST, LENGTH for the procedure’s dynamic and static parents.

WORD2: BYTP Also, register rf (register '12) is set to point at
this area. This pointer is then used to access

1) CONST. This entry is 0 if the String is a procedure parameters and other “in stack” objects,

= constant (the descriptor will not be altered, such as the local variables of a recursive procedure.
and the String text is not in String space, is Also, many of the run-time routines (including the

therefore not subject to garbage collection), string garbage collector) use rF to find various bits

L and non-zero otherwise. and pieces of vital information. Therefore, THE USER
MUST NOT HARM REGISTER ‘12. In particular, one

2) LENGTH. This number is zero for any null should not call any runtime routines, ask the compiler
String; otherwise it is the number of text to access any stacked variables, or exit any blocks

- characters. with this register changed from the value given it by
SAIL. If you wish to refer in assembly language to a

3) BYTP. If LENGTH is 0, this byte pointer is procedure parameter, or the like, the safest way is
never checked (it need not even be a valid name it, and let SAIL do the address arithmetic.

- byte pointer. Otherwise, an ILDB machine (Similarly one may use the Access construct).
instruction pointed at the BYTP word will

retrieve the first text character of the String. Most of the remainder of this section may probably be
The text for a String may begin at any point ignored by the occasional user of assembly language

| in a word. The characters are stored as who follows the advice we have just given. It is being
LENGTH cont iguous characters. included for the benefit of those users whose use of

“hand coded” routines is sufficiently frequent (or

| A SAIL String variable contains the two word sufficiently hairy) that they need to know more aboutdescriptor for that variable. The identifier naming it the way procedures work.

points to WORD1 of that descriptor. If a String is

declared INTERNAL, a symbol is formed to reference STACK FRAME

| WORD2 by taking all characters from the original Shown here is the stack frame of a recursivename (up to B) and concatenating a ". (OUTSTRING's procedure
second word would be labeled OUTST).

|) RRNAWhen a String is passed by reference to a procedure, SPP

the address of WORD2 is placed in the P-stack (see Ee ea

page 107). For VALUE Strings both descriptor words parameter mn
[are pushed onto the SP stack. etnaddr:

A String array is a block of 2-word String descriptors. I LLTTTE TREY of calling proc

second word of the first descriptor in the array. : old value of rSP
st art of local variable area:

Information is generated by the compiler to allow the SAREE NOTE: local vat-i's for
locations of all non-constant strings to be found for eter recursive procs

purposes of garbage-collection and initialization , All P= end of Tocal variables “3 here

whenever a SAIL program is started or restarted. : to a4 recursive
EU | procrP will

] point here.

L If a formal parameter is a value parameter, then the
actual parameter value is kept on the stack. If a

: formal parameter is a reference parameter, then the
;

-
107

APPENDICES SAIL USER MANUAL

address of the actual parameter is put on the stack. ACTIONS IN THE PROLOGUE FOR NON-SIMPLE

Non-own string locals (to recursive procedures) and PROCEDURES

string value parameters are kept on the string (SP= The algorithm given here is that for a recursive
'10) stack. The stack frame for a non-recursive procedure being declared inside another procedure.
procedure is the same except that there are no local The examples show how it is simplified when possible.
variables on the stack. The stack frame for a SIMPLE

procedure consists only of the parameters and the 1. Pick up Proc descriptor address.
return address.

2. Push old rf onto the stack.

ACCESSING THINGS ON THE STACK

SIMPLE procedures access their parameters relative to 3. Calculate static link. (a). Must loop back

the top-of-stack pointers SP(for strings) and P (for through the static links to grab it. (b). once
everything else). Thus the the k’th (of Nn) string value calculated put together with the PDA and
parameter would be accessed by put it on the stack.

OP AC, 2xk-2%n(SP) 5 (SP="16) 4. Push current rSP onto the stack.

and the jth (of m) “arithmetic” -- ie not value string --

parameter would be accessed by 5. Increment stack past locals & check for
overflow.

oP AC, j-m1(P) 1 (P="17)

: 6. Zero out whatever you have to.
Non-SIMPLE procedures use If (register '12) as a y
base for addressin arameters and recursive locals.

iy 9p 7. Set rF to point at the MSCP.
Thus the jth parameter-would be accessed by

OP AC, j-m2(rF) EXAMPLES:

or, in the case of a string, by 1. A non-recursive entry (note: in this section only
case! where F is needed are considered.

MOVE ACX, 2 (rF) ipoints at top of
;string stack uhen PUSH P,rF : SAVE DYNAMC LINK
;proc was entered SKiPA AC, rf

OP ACY, 2xk-2%m (ACX) MOVE AC, 1 (AC) ;GO0 UP STATIC LINK
HLRZ TEMP,1 (AC) LOOK AT POA IN STACK
CALE TEMP, PPDA IS IT THE SAME AS PARENTS

imi : i i JRST .=3 s NO

Similarly, recursive locals are addressed using positive Ys AC. PDA "PICK UP PROC OESC
displacements from rF. PUSH P.AC :SAVE STATIC LINK

PUSH P,SP

HRRZI rf, -2{Pi} s NEW RF
An up-level reference to a procedure’s parent is made

by executing the instruction In the case that the procedure is declared in the outer
block we don’t need to worry about the static link and

HRRZ ~~ AC,1(rF) NOW AC points at the prologue can look like
;stack frame of parent

: : : PUSH P,rF SAVE DYNAMIC LINK
. and then using AC in the place of rf in the access PUSH ~~ P, [XWD PDA,@] :STATIC LINK WORD

sequences above, iterating the process if need be to PUSH P.SP : SAVE STRING STACK
, : : HRRZ1 rf, -2(P} sNEW F REG STER

get at one’s grandparent, or some more distant lexical

ancestor.
2. Recursive entry -- ie one with locals in the stack.

NOTE: When SAIL compiled code needs to make such
PUSH P,rf ; SAVE OYNAMC LINK

. an up-level reference it keeps track of any SKIPA AC,rF

Intermediate registers (called “display” registers) that HRY TEND, (AC) "LOOK AT POA IN STACK
may have been loaded. Thus, if you use several Up- CAIE TEMP, PPDA 1S IT THE SAME AS PARENTS

IRS = ;

level references together, you only pay once for ind AC, PDA ek UP PROC OESC
setting up the “display”, unless some intervening bus ie t SAVE STATIC LINK
procedure call or the like should cause SAIL to forget HRLZ1 TEMP. 1(P)

TR HRRI TEMP, 2{P)

whatever was in its accumulators. Note here that if a ADD P.IXUD locals. locals] screate space for
display register Is thrown away, there is no attempt to CAIL P,8 rarith locals

. . <trigger pdl ov error>
save its value. At some future date this may be done. SETZM. -1 (TEMP) zero out locals
It was felt, however, that the minimal (usually zero) HLT TEMP, (P}
. : : HRLZI ~~ TEMP,1 (SP)

gain in speed was just not worth the extra hair that HRR] TEMP.2 (SP)
this would entail ADD SP, [IXWD 2% string locals,2% string locals3

CAIL SP, 9 icheck for pdl ov
<cause pdl ev error»

108 SETZM 1 (TEMP)
BLT TENP, (SP) 1zero out string locals

(-

SAIL USER MANUAL APPENDICES

HRRZ | rF,- locals-3(P}

link for pd list
The BLT of zeros is replaced by repeated pushes of 8: entry address

zero if there are only a few locals. Again, the loop is string pointer for
replaced by a simple push if the procedure is declared procedure id
: P y ble p P 3: type info for procedure,
in the outer block. 4: string paramsx2, arith params+1

5: +ss displ,,+ as displ

ACTIONS AT THE EPILOGUE FOR NON-SIMPLE 0 lexiclev,=~local var info
_ PROCEDURES 7: display level,»-proc param stuff

18: pda,@
RE pent at end of mksemt,parent’s pda

1. If returning a value, set it into 1 or onto 12: pent at prdec,loc for jrst ex
right spot in the string stack. 13: type info for first argument,

—

type info for last argument,
2. Do any deallocataions that need to be made. vi: byte (Stype(9)iexical-level(23)location

4. Restore rf.

The type codes in the lvi (local variable infor) block
5. Roll back stack. are as follows:

type = 8 end of procedure area

6. Return either via POPJ P, or by JRST type = 1 arith array
~ amumble(P) type = 2 string array

type = 3 set or list
type = 4 set array

EXAMPLES: type = 5 foreach search control block
type = 6 list of all processes dependent on

— CN this black.
. No parameters. type = 7 context

type = 10 a cleanup to be executed

orem L type = 17 block boundary. Location gives basei <gtep L> , yo ,

- MOVE ~F. (rF) location of parents block s information.
SUB p, [XWD M+3,M+3] sM= # LOCAL VARS
POP] P, local variable info for each block is organized as

]
!

| 2. n string parameters, m other parameters, k string info for var
locals on stack, j other locals on stack. :info for var

17,lev,loc of parent block bbw
{ <step 1>
§ <step 2»

MOVE rf, (rF)
ha SUB SP, IXWD 2kk+2%n, 2%k+2%n)

SUB P, [XWD jtnt3, j+ms3] POPS THE STACK
JRST @M+1 (P)

L SIMPLE procedures are similar, except that rf is never
changed.

| PROCEDURE DESCRIPTORS
Se .

Procedure descriptors are used by the storage

allocation system, the interpretive caller, a planned

; debugger, and various other parts of SAIL. They are

L _ not put out for SIMPLE procedures. The entries are
- shown as they are at the present time. No promise is

made that they will not be different tomorrow. If you

do not understand this page, do not worry too much

— about it

— 109

|S_—

—

REFERENCES SAIL USER MANUAL

REFERENCES INDEX

Feldman Feldman, J.A. and Rovner, PD. An

Algal-Based Associative Language, A (AND) 23

Comm. ACM 12, 8 (Aug. 1969), ~ (NOT) 23
439-449. © in substrings 24

oo, in list REMOVEs56

JA. Feldman, J.R. Low, DC. n (INTERSECTION) 65

Swinehart, and R.H. Taylor. Recent u (UNION) 65
Developments in SAIL. AFIPS Fall v (OR) 2 3
Joint Conference, 1972, 1193- % (integer or real division) 24
1202 & (CONCATENATION), of strings 24

&, of lists 65

Frost Frost, M. UUO Manual Stanford A-l -, of sets 65

Laboratory Operating Note 55.3 / (real divison) 2 4
(June 1973) supersedes Moorer <><>=# (RELATIONS) 23

(below) ?, Foreach itemvars 5 9

?, in Binding Booleans 58
Moorer Moorer, J.A. Stanford A-l Project ?, Matching procedure formals 61

Monitor Manual, Sailons 54 and 55 <algebraic-expression> 20

(Sep. 1969). <apply-construct> 76
<arg_list_specifier> 7 6

Petit Petit, P. RAID Manual, Sailon 58.1, <array_declaration> 3
(Feb. 197 1) <array-list> 3

<array_type> 5 1

Savitzky Savitzky, S.R. Son of Stopgap, <assign-statement> 76
Sailon 50.1, (Sep. 1969) a <assignc> 4 5
revision of Stopgap, Sailon 50, by <assignment-expression> 20
W.F. Weiher. <assignment-statement> 13

<associative-statement> 55

Swinehart & Sproull Swinehart, DC. and Sproull, R.F. <backtracking-statement> 29

SAIL, SAILON 57.2 (Jan. 1971), <binding-list> 55
second of three versions of the <block> 1

Sail manual. <boolean-expression> 20

<case-expression> 20

Weiher Weiher, W.F. Loader Input Format, <case-statement> 13

Sailon 46 (Oct. 1968). <cause-statement> 7 2

<cleanup-declaration> 4

<code-block> 26

<command-line> 9 1

<compound-statement> 1

<cond_comp_statement> 4 5
<conditional-expression> 20

<conditional-statement> 13

<context-declaration> 29

<context-element> 29

<declaration> 3, 51

<define> 45

<derived-set> 63

<do-statement> 13

<element-list> 55

110

3
-—

SAIL USER MANUAL INDEX

<element> 55 allocation of variables and arrays 9
<element>, Foreach 59 ANSWER 74, 86

| <event-statement> 7 2 ANY 64
- <expression> 20 ANY, in Binding Boolean 58

<for-statement> 13 ANY, in Derived Sets 58

<foreach_statement> 55 ANY, in Erase statement 57
| <go-to-statement> 13 ANY, in Foreach 6 1
— <id-list> 3 AOBJN pointer 81

<if_statement> 1 3 APPLY 76

| <interrogate-construct> 72 ARRAY-PDL 9
<item-expression> 63 Array element designation 88

— <item_primary> 6 3 Arrays, allocation 9
<item_type> 5 1 Arrays, as parameters 7
<itemvar_type> 5 1 Arrays, declaration 6

Cy <join-statement> 67 Arrays, initialization and reinitialization 9
— <label-declaration> 3 Arrays, outer block 4, 6

<leap-expression> 63 Arrays, OWN 6
<leap-relational> 63 Arrays, PRELOADed 6

i <leap-statement> 55 Arrays, SAFE declaration 6
<list-expression> 63 Arrays, storage convention 6

| <list-statement> 55 ARRBLT 43
<macro-body> 45 ARRINFO 4 3

i <macro-call> 45 ARRTRAN 43
<preload_specification> 3 ARRYIN 3 6
<procedure-call> 14 ARRYOUT 37

8 <procedure-declaration> 4, 52 ASH 24<procedure-head> 4 ASKNTC 75, 86

<procedure-type> 5 2 ASSIGN 76

<process-statement> 67 ASSIGNC 5 0

<ref_item_construct> 7 6 assignment expressions 2 2
L <require-specification> 4 Assignment statement, semantics 14

<resume-construct> 67 ASSOCIATIONS 583

<safety-statement> 14 Associations, ERASE 5 7

<set-expression> 63 Associations, implementation 54

L <set-statement> 55 Associations, introduction 5 1
<simple_formal_type> 5 2 Associations, MAKE 5 7
<simple_type> 5 1 Associations, searching for 57

3 <sprout-statement> 67 associative booleans 65<statement> 1 associative context 59

<substring_spec> 2 1 Associative search 57

Cg) <suc_fail_statement> 5 5 Associative search, controling hash 58
<suspend-statement> 67 associative search, relative speeds 61

. <swap-statement> 13 associative searches, introduction 5 1
<synonym-declaration> 4 associative store 51, 53

<terminate-statement> 67 Associative store, searching 57

u <triple> 55 attribute 58
<type-qualifier> 3 Backtracking, introduction 29
<typed-item-expression> 88 BACKUP 38

: <variable> 88 BIND 58

<while-statement> 13 Binding Boolean 58, 65
ABS 25 Binding Booleans, general considerations 58
ACCESS 27 BINDIT 6 5

algebraic variables 6 BINDIT, in Binding Boolean 58
-

111

|
-

INDEX SAIL USER MANUAL

BINDIT, in Derived Sets 58 Constants, octal 89
BINDIT, in Foreach 6 1 Constants, real 89

BINDIT, in Foreaches 59 Constants, string 89
BINDIT, in Matching Procedures 61 constructive Item expressions 64
Block names 1, 96 CONTEXT 29

Boolean Expression <element> 60 Context elements 30
Boolean, declaration 6 CONTINUE statement 18

bound 58 Conversions, algebraic 2 1

Bracketed Triple item 57 COP 64, 85

Bracketed Triple Item Retrieval 57 coroutining with RESUMEs 69

Bracketed Triple Item retrieval 58 CVASC 41

Bracketed Triple item retrieval, general CVD 41

considerat ions 5 8 CVE 40

Bracketed Triple Items, ERASE 57 CVF 40

BREAKSET 3 3 CVFIL 4 3 —

BRKERS 83 CVG 40

BRKMAK 83 CVI 54, 83

BRKOFF 83 CVISe6, 84
BUCKETS 58 CVLIST 8 3 Lo.

BUILT-IN 49 CVMS 48

Byte pointers, creation 43 CVN 54, 83

CALL 42 cvo 41

CALLER 85 - CVOS 40 oo

calling block 80 CVS 40
CASE expressions 22 CVSET 83

CASE statement 16 CVSl 66, 84
CASEC 49 CVSIX 4 1

CAUSE 72 CVSTR 41

CAUSE, <options> 72, 103 CVXSTR 41

CAUSE, user defined procedures for 74 DATUM 52, 56, 88

CAUSE1 74, 86 DATUM, type checking 65
Causing events, introduction 72 DDT 96

CHECK-TYPE 49 deallocation of variables and arrays 9

CHECKED 53, 56 DECLARATION (a function) 49
Checked, formal parameters 54 DEFINE 45, 46, 48, 49

CHECKED, in associative searches 58 DEFPRI 6 8

Checked, itemvar procedures 54 DEFPSS 68

Checked, type checking 65 DEFQNT 68

CLEANUP 9 DEFSSS 68

CLKMOD 79 DEL-PNAME 66, 84

. CLOSE 32 DELETE 55, 56

CLOSIN 38 2 delimited-anything 49
CLOSO 32 delimited-expr 49

CLRBUF 38 delimited strings 47
CODE 42 Delimiters 46

command line 91 DELIMITERS 46

. Comment 1 DELIMITERS, NULL 46

COMMENTS 8 9 Delimiters, null 46

compile time expressions 47 DEPENDENTS 68
concatenation of lists 65 Derived sets 65

conditional compilation 49 Derived Sets, general considerations 58
Conditional Statements, ambiguity 15 DFR1IN 8 1
Constants, arithmetic 89 DFRINT 8 0

112

| SAIL USER MANUAL INDEX
DI buffer 8 1 GETCHAN 33

DIV 24 GETFORMAT 40

g DO statement 16 Go To Statements, restrictions 15DONE statement 17 GO TO, into a Foreach 59
DONTSAVE 72, 103 IBP 42

{ DPB 42 identifiers 89

Lo DRYROT 9 5 DPB 4 2
ENTER 33 IF expressions 22

| ENTRY specification 11 IF statement 14

| EQU 41 IFC 49
Co EQV 23 IFCR 4 9

— ERASE 57 ILDB 4 2
ERASE, in a Foreach 61 ILL MEM REF 90
ERROR-MODES 95 ILLEGAL UUO 90

- error messages 95 IN-CONTEXT 43
EVALDEFINE 5 0 INCHRS 3 8
EVENT-TYPE 73, 104 INCHRW 3 8

event notices 72 INCHSL 3 8

- Event type items, datums of 73 | INCHWL 3 8
event types 72 initialization 9

Events, introduction 7 2 INITIALIZATION 10

EXTERNAL declaration 4, 11 inner block 1

oe EXTERNAL procedures 8, 10 INPUT 35

FAIL 55, 56, 61, 69 INSTR 3 8

FALSE, definition 8 9 INSTRL 3 8

i FILEINFO 4 3 INSTRS 3 8FIRST 57, 84 INT._APR 102
FOR statement 15 INT._INX 102

FORC 49 integer constants 89

i FOREACH 5 5 Integers, range 5
Foreach <element>, Boolean Expression 60 INTERNAL declaration 4, 11
Foreach <element>, List membership 59 INTERNAL procedures 8
Foreach <element>, Retrieval Triple 60 INTERROGATE 73

8 Foreach <element>, Set membership 59 INTERROGATE, <opt ions> 73, 103
Foreach <element>s 5 9 INTERROGATE, set form of 73
Foreach itemvars 59 INTERROGATE, user defined procedures for 74
Foreach searches, relative speeds 61 Interrupt codes 102

| FOREACH, execution of 59 Interrupts, complicated deferred 80
FOREACH, general considerations 58 INTIN 3 7
FOREACH, increase speed of 58 INTMAP 8 0

1 i FOREACH, main discussion of 58 INTPRO 8 1

| Foreach, Matching Procedure <element> 6 1 INTRPT 70, 79
Foreach, satisfiers 59 INTSCAN 3 8
FORGET 29, 30 INTSET 8 0

FORLC 49 INTTBL 8 |

L formal parameters, Leap 54 IRUN 70, 103
formals 7 ITEM 52

FORTRAN procedures 8, 11, 19 item booleans 65

FORTRAN, actual parameters 9 Item, <typed-item-expression> 88
— FORWARD declaration 4 ltems & Itemvars, distinction between 53

FORWARD procedures 7 Items, ANY 64

generatton of symbols using macros 47 ltems, BINDIT 65

L Gensym 47 Items, Bracketed Triple 57

|

113

C

INDEX SAIL USER MANUAL

items, creation of 52 LODED 38

Items, Datums of 52 Logical expressions 23
Items, declared 52 LOOKUP 33

Items, DELETE 56 loop block 17

Items, implementation 54 LOP 41, 64, 84

Items, internal & external 52 LOR 23

Items, internal &external 54 LPARRAY 49

Items, introduct ion 5 1 LSH 24

Items, NEW 64 Macro bodies 47

Items, Pnames 66 Macro bodies, concatenation in 48

Items, props of 66 macro body delimiters 46

Items, scope 52 macro declarations 46

Items, type checking 65 Macro declarations, scope 46

Items, type of 52 macro parameter delimiters 46

Items, with array datums 52 Macros with parameters 48

ITEMVAR 5 3 Macros without parameters 46

ltemvars & Items, distinction between 53 MAKE 55, 57

ltemvars, CHECKED 53 MAKE, in a Foreach 61

ltemvars, implementation 54 Matching Procedures 6 1

ltemvars, initialization 53 Matching procedures, as processes 69

ltemvars, scope 53 Matching Procedures, sharing memory 62

itemvars, type checking 53, 56 MAX 23

ltemvars, types of 53 MEMORY 25

JOIN 70 MESSAGE 50

KILLME 70, 1083 MIN 23

Label use 5 MKEVTT 72, 85

Labels, as actual parameters 9 MOD 24

Labels, restrictions 15 MTAPE 37

LAND 23 MULTIN 7 5

LDB 42 MYPROC 85

leap booleans 65 NEEDNEXT 1 7
Leap, introduct ion 5 1 NEW 63, 64

LENGTH 41, 85 NEW-ITEMS 64

LET 9 NEW-PNAME 66, 84

letters, legal Sail letters 89 NEXT statement 17

LIBRARY 10 NIL 65

Library, runtime 31 No one to run. 70
LINOUT 3 6 NOJOY 7 4

LIST 53 NOMAC 50

list booleans 6 5 NOPOLL 7 o

list element designator 88 NOTCQ 74

. List element designators 64 notice queue 72

list expressions 65 NOTNOW 70, 103

List membership <element> 59 NOW-SAFE 19

list, sublists 65 NOW-UNSAFE 19

Lists, automatic conversion 56 NULL-CONTEXT 30

. lists, concatenation 65 NULL DELIMITERS 46

© lists, initialization 65 null delimiters mode 46

Lists, PUT 56 NULL, definition 89

Lists, REMOVE 56 object 58

LISTX 8 4 OPEN 31

LOAD-MODULE 10 operator precedence 22
LOCATION 25 OUT 36

114

SAIL USER MANUAL INDEX

}

fi
OUTCHR 38 RAID 96

F outer block 1 ready 67

OUTSTR 38 READYME 70, 103
— OWN 5 real constants 89

parametric procedures 8 REALIN 3 7
PHI 65 Reals, range 5

Pnames 66 REALSCAN 3 8

ha PNAMES 66 RECURSIVE declaration 4
POINT 43 RECURSIVE procedures 7

POLL 71 REDEFINE 47

POLLING-INTERVAL 7 1 Reentering programs 94

Polling points 70 REF_ITEM 7 6
PRELOADed arrays 6 REFERENCE 7, 8, 18
Printnames of items 66 Reference items 76

— PRIORITY(X) 68, 103 RELEASE 33
PRISET 8 5 REMEMBER 29, 30

Procedure body, emptiness 5 REMOVE 55, 56

: Procedure Calls, actual parameters 18 REMOVE, in Foreach 60
- Procedure Calls, semant ics 18 RENAME 33

Procedures, as actual parameters 18 REPLACE-DELIMITERS 46

; Procedures, assembly language 11 REQUIRE 9
Procedures, declaration 7 REQUIRE - indexed by last word of the require

L Procedures, defaults in declarations 8 statement
procedures, Leap 54 REQUIRES, list of 4

Procedures, parametric 8 RESCHEDULE 73, 103

| Procedures, restrictions 9 rescheduling of processes 70Procedures, restrictions on formal parameters 7 RESERVED 49

Procedures, separately compiled 10 Restarting programs 94

process item 67 RESTORE 29, 30

| process procedure 6 7 RESUME 69
Process procedures, Matching 69 RESUME, <options> 69, 103

Process procedures, recursive 69 RESUME, <return item> 69

Processes, control of scheduling 70 RETAIN 73, 103

| processes, creation of 6 7 retrieval item expression 65
Processes, dependency of 68 Retrieval Triple <element> 55, 60

Processes, inside recursive procedures 68 RETURN 24

PROCESSES, introduct ion 67 RETURN statement 17

| Processes, resumption of 69 ROT 24
Processes, sharable memory 69 RPG commands 9 1
Processes, status of 67 RUNME 68, 103

- Processes, suspension of 69 running 67

| Processes, termination of 69 SAFE declaration 4
Program name, for DDT 1 SAMEIV 8 5

PROPS 56, 66, 88 satisfier group 59

PROTECT-ACS 26 SAY-WHICH 73, 103

§ Pseudo-teletype functions 38 SCAN 36
PSTACK(X) 68, 103 SCHEDULE-ON-CLOCK-INTERRUPTS 79

PSTATUS 86 scheduling of processes 70

PTY... 38 scope, of variables 5

— PUT 55, 56 SECOND 57, 84

QUANTUM(X) 68, 103 SEGMENT-FILE 10

question itemvars 6 1 SEGMENT-NAME 10

L QUICK-CODE 26 SET 53

|
}

—

115

—

INDEX SAIL USER MANUAL

set booleans 6 5 type conversions, algebraic 2 1
Set expressions 65 typed-item-expression 88
Set membership <element> 59 TYPEIT 8 3

SETBREAK 3 5 unbound 58

SETCP 74, 86 UNSTACK-DELIMITERS 46

SETFORMAT 40 URSCHD 70

SETIP 74, 86 USER1 74
Sets, automatic coercion 56 USER? 74

Sets, Derived Sets 65 USERCON 4 2

Sets, initialization 65 USERERR 4 2

Sets, PUT 56 USETI3 7

Sets, REMOVE 56 USETO 3 7

SHORT 21, 98 VALUE 7, 8, 18
SIMPLE declaration 4 value 58

simple expressions 22 variables 88

SIMPLE procedures 8 Variables, allocation 9

SOURCE-FILE 10, 50 variables, initialization 9

SPROUT 67 variables, scope 5
SPROUT, <options> 68, 103 VERSION 10

START-CODE 26 WAIT 73, 103

START-CODE, calling procedures from 28 wait queue 72 ha
STDBRK 35 WAITQ 7 4
storage reallocation 94 WHILE statement 16

STRING-PDL 9 -- WHILEC 4 9

STRING-SPACE 9 WORDIN 3 6

String constant, as comment. 1 WORDOUT 3 6

string constants 89 XOR 23

String descriptors 107
String, declaration 6

STRINGSTACK(X) 68, 103

Substrings 2 4
SUCCEED 55, 56, 61, 69

SUSPEND 69

suspended 6 7

SUSPHIM 68, 103

SUSPME 68, 103

Swap statement 14

switches, in command lines 92

symbols, automatic generation of 47

SY STEM-PDL 9 —

TELLALL 72, 103
- TERMINATE 69

terminated 6 7

THIRD 57, 84

time sharing with processes 79
Triple, Binding Booiean 58

TRIPLES 583

" Triples, introduction 51

TRUE, definition 89

TTYIN 3 8

TTYINL 3 8

TTYINS 3 8

type checking, itemvars 53

116

