T s

Fr—rr——— ——

TR

AUTOMATIC CODING:
STRUCTURES

James Richard Low

Stanford University

Prepared for:

AD/A-000 500

CHOICE OF DATA

Advanced Research Projects Agency

August 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

Al I Ry R P WTATY

e

v
UNCLASSIFIED . '
SECURITY CLASSIFICATION OF THIS PAGE (When DPata Entered) DM“ dﬂ 0 é 0 0
7
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO,| 3. REC'PIENT’S CATALOG NUMBER

STAN-CS~Th=L52

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

AUTOMATIC CODING: CHOICE OF DATA STRUCTURES. technical, August 1974

6. PERFORMING ORG. REPORT NUMBER

STAN-CS=-7h-452

7.

AUTHOR(Ss 8. CONTRACT OR GRANT NUMBER(s)

James Richard Low DAHC=15=73=C=-0435

PY

9. PERFORMING ORGANIZATION NAME AND ADDRESS

t0. PROGRAM ELEMENT, PROJECT, TASK
o v . . AREA & WORK UNIT NUMBERS
otanford University

Computer Science Department

Stanford, California 94305

11, CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT DATE
ARPA/IPT, Attn: Stephen D. Crocker lugust, 197k
1400 Wilson Blvd., Arlington, Va. 22209 13. NUMBER OF PAGES

07 /4

14

MONITORING AGENCY NAME & ADDRESS(if different Irom Controlling Office) 15 SECURITY CL ASS. (of this report)
ONR Representative: Prilip Surra
Durand Aeronautics Bldg., Rm. 165 Unclassified

Stanford Univ§rsiL¥' 15a. ?E§ESSESICAHONfDOWNGRAomc
Stanford, California 94305

15

DISTRIBUTION STATEMENT (of this Report)

Releasable without limitstions on dissemination.

17

DISTRIBUTION STATEMENT (of the ahstract entered in Block 20, if different from Report)

] 8. SUPPLEMENTARY NOTES o
: 19. KEY wORDS (Continue on reverse slde tf necessary and identify by block number)
20. ABSTRACT ’Continun on reverse side If ne essary and Identlfy by block number)

A system is described which automatically chooses representations for high-leve
information structures, such as sets, sequences, and relations for a given
computer program. Representations are picked {rom a fixed library of

low-level data structures including linked-lists, binary trees and hash

tables. The representations are chosen by attempting to minimize the
predicted space-time integral of the user's program execution. Predictions

are based upon statistics of information structure use provided directly

by the user and collected by monitoring executions of the user program (cong;g

DD 132?1-'473 EDITION OF ' NOV 65 |S OBSOLETE ¢ Unclassified &JQD

’ SECURITY CLASSIFICATION OF THIS PAGE (When Date Entared)

i

ied)

UNCLASSIFIFD

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) ’ ’

A i L

using default representations for the high-level structures. A demon-

stration system has been constructed. Results using that system are
; presented.

M

T T gy py N, TSRV ST

%

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(Whan Data Entered)

i o MR RIE e 7 Ll e S b

STANFORD ARTIFICIAL INTELLIGENCE PROJECT AUGUST 1974
MEMO AIM-242

COMPUTER SCIENCE DEPARTMENT
REPORT CS-452

AUTOMATIC CODING: CHOICE OF DATA STRUCTURES

James Richard Low

ABSTRACT:

A system is described which automatically chooses representations for high-level information
structures, such as sets, sequences, and relatiuns for a given computer program. Representations
are picked from a fixed library of low-level data structures including linked-lists, binary trees and
hash tables. The representations are chosen by attempting to minimize the predicted space-time
integral of the user's program execution. Predictions are based upon statistics of information
structure use provided directly by the user and collected by monitoring executions of the user
program using default representations for the high-level structures. A demonstration system has
been constructed. Results using that system are presented.

A dissertation submitted to the Department of Computer Science and the Committee on Graduate
Studies of Stanford University in partial fulfiliment of the requirements for the degree of Doctor

of Philosophy.

The research reported here was supported in part by the Advanced Research Projects Agency of
the Department of Defense under Contract DAHC.-15-73-C-0435.

The views and conclusions contained in this document are those of the author and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency or of the U. S. Government.

Reproduced in the USA. Available from the National Technical Information Service, Springfield,
Virginia 22151, l\;

TR o Foii o R PE DT S e SRS

ACKNOWLEDGEMENTS

{ am truly grateful for the help and support of the Artificial Intelligence Laboratory and

Computer Science Department here at Stanford. | would be negligent if 1 did not also mention my

appreciation to the following people: Donald Knuth, who strongly influenced my ideas towards

software monitoring during the summer of 1970 when 1 was part of his FORTRAN optimization

study, and who later directed me n reading and research n the field of data structures; Terry

Winograd and Forest Baskett, members of my reading committee, who made many useful

suggestions about this dissertatton: Dan Swinehart, Russ Taylor, Hanan Samet and Bob Sproull,

the SAIL hackers who acted as sounding boards for my ideas; and lastly, and most importantly,

Jerry Feldman, my advisor, who was always there when [needed him, ready at any time to think

about, and talk with me about, any problems 1 was having.

i

Lame oo b -

R T O M WO, - AR o 15 P R) WS e A Gl See ol

TABLE OF CONTENTS

é‘
3
r

1.0 INTRODUCTION
.1 TRADIT'ONAL OPTIMIZATIONS
1.2 INFORMATION STRUCTURES
1.3 CODE GENERATION
14 RELATED WORK IN HIGH LEVEL ALGORITHMIC LANGUAGES

1.5 LEAP
16 EXAMPLE OF LEAP SUBPROGRAM

20 OVERVIEW OF THE SYSTEM
2.1 INFORMATION GATHERING
1 22 SELECTION
2.3 COMPILATION AND EXECUTION

30 ABSTRACT DATA STRUCTURES AND THEIR REPRESENTATIONS
| a1 SETS AND THEIR REPRESENTATIONS
A 32 LISTS
" 3.9 TERNARY RELATION
14 ESTIMATING THE EXECUTION TIME OF PRIMITIVE OPERATIONS

1 4.0 INFORMATION GATHERING

| 41 EXAMPLE OF INFORMATION GATHERING

¢ 42 STATIC ANALYSIS OF LEAP PROGRAMS
43 STATIC ANALYSIS ALGORITHM

50 SELECTION OF DATA STRUCTURES
5.1 CRITERIA
52 COMMON COST FUNCTIONS
53 PARTITIONING THE INFORMATION STRUCTURES
54 APPLICABILITY FILTERING
5.5 COST PREDICTION
56 FINAL SELECTION
57 FINAL COMPILATION

6.0 RESULTS

6.1 INSERTION SORT
6.2 MERGE SORT

6.3 TRANSITIVE CLOSURE

aaals T o S R Ui S o e e s

gl i ad i boadin SR L O i S0 e el g atuhs B e gans o LS

TABLE OF CONTENTS

20 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 58

3.1 TOPICS FOR FUTURE RESEARCH 58

7.2 FINAL CONCLUSION 62

8.0 APPENDICES 63

; 8.1 APPENDIX A - SET PRIMITIVES 63
E-i 8.2 APPENDIX B - LIST PRIMITIVES 66
8.3 APPENDIX C - META EVALUATIONS 68
1 8.4 APPENDIX D - INSRT2 69
: 8.5 APPENDIX E - INSRTS 20
3 86 APPENDIX F - MERGE 2
8.7 APPENDIX G - TRANSFORMATIONS "3
' 8.8 APPENDIX H - INSTRUCTION WEIGHTS 74
9 APPENDIX | - EXECUTION TIME COST FUNCTIONS 7%

9.0 REFERENCES 99

s L el

v

LIST OF FIGURES

FIGURE PAGE

L. LOGICAL ORGANIZATION OF SYSTEM 17
8 2. STORAGE LAYOUT OF ITEMS 23
3. ONE WAY LINKED LIST 23
: 4. HEIGHT BALANCED BINARY TREE 25
1 5. HASH TABLE WITH SIGNATURES 25
; 6. COMBINATION LINKED LIST, BIT VECTOR 27
[/ TWO-WAY LINKED LIST 29
E FLOW GRAPH OF TRANSITIVE CLOSURE

:
g;
E,
|
|
%(

SECTION |

INTRODUCTION

Many of the processes used in producing computer programs may be performed with
less user effort by using specialized computer programs. There has been a continuous stream of
developments which decrease the effort of a human programmer in producing a computer
program, including symbolic assemblers, macro assemblers, algorithmic languages, text editors,
debugging systems and so forth An important part of this series of develcpments has been the
development of higher levei programming languages. These allow the user to ignore low level
details of implementation and have the system provide for them.

Automatic Coding research involves the design and efficient implementation of very
high level programming languages. Examples of features available in such programming
languages include pattern matching, extensible data types, associative retrieval, and complex
control structures including backtracking, coroutines, multiprocessing, message passing etc. Current
research ((Bobrow73b,Smith73,Tesler73])) is aimed at developing techniques for efficient
implementation of these features.

Automatic Coding includes sucn things as algorithm transformation, optimization and
compilation. In general, 1t takes one form of a program and translates that form into another
which can be executed more effictently. Traditional optimizing techniques involve transformations
of the execution flow structure of the program, sich as moving computations out of loops and
elimination of redundant computations. Until recently there has been little work done on having a
compiler optimize the representation of data. The reason for this is clear. Most programming
languages offer only data types which have exphcit implementations. If other data structures such
as variable length strings are provided, their internal representations are also fixed. Common
larguages may allow the user to aggregate words into arrays or records, but do not provide the
user with a repretentation-free way of specifying his data structures with the generality needed for
a translator or cempiler to choose a suitable, tailor-made data structure. The complex data
structures (PL/1 structures, ALGOL 68 structs) some algorithmic languages allow are very detailed
and maintain a close tie with their implementation. They are usually equivalent to the assembly
language representations such as DSECTS in 360-ASSEMBLER ([IBM69]) which merely define
the fields of a contiguous block of storage.

Recently many ianguages, including QA4 ([Derksen?72]), PLANNER ([Sussman70,
Baumgart72]), SETL ((Morris73)), MADCAP[Morris73)), VERS2([Earley72b)),
CONNIVER([Sussman72McDermott72]) and LEAP ([Feldman69]) have incorporated high-level
abstract data structures (informatton structures) based on relations and sets. These information
structures provice not only the representation independence we desire, but also give the user good
abstract models for his data. A progiammer can think in terms of such abstiact information
structures as sets rather than in terms of linked record structures provided by languages like PL/1.
Usually this 1s much simpler and the programmer 1s able to design and debug his programs more
quickly. Unfortunately, users have often been reiuctant to use these information structures to their
fullest in produetion programs hecause of ronthime neffiriencies. These nefficiercies are caused
by the suboptimal low-level implementations of these information structures, the implementations
being a compromise over all intended usages Thus, 1n most existing programming systems the
user Ul choose betwsen the foneepiual eHwwncy of evpressing his dan using high level

T e cae o oon b o o i N L Sl i 8 7L b

1.0 INTRODUCTION 2

inforination structures, and the runtime efficiency available usmg lower level data structures. We
believe these runtime efficiencies can be remedied by providmg a library of representations for
the information structures and a user assisted automatic systemn to choose appropriate elements
from tins hibrary for the user's programs.

The main problems m such an automatic approach are: [). Building a hbrary of
representaitons; 2). Characterizing the properties of these representations; 2). understanding how
the user's program actually uses the abstract information structures; and 4). efficiently matching
the user program needs with the properties of the known representations.

The research reported here 1s an attempt to demonstrate the feastbility of such
automatic representation selectton. We allow the user to express data in terms of relations, sets,
and sequences. Our svstem then obtains information by analysis of the program, execution
statement profiles and mterrogation of the user. Using that nformation, the system selects efficient
: (in terms of time and space) low level implementations for the use:’s information structures from a
4 fixed library of information structure representations. Though we have considered only a few
j abstract information structures (those available in our programming language, SAIL) we believe
the techniques used in this system are generally applicable.

We have constructed a demonstration system which we have used to process several
example programs Example programs and the structures selected for thewr information structures
are included in Section 6. A marked 1mprovement i execurion time (over using a default
representation) 1s shown 1n several of these. Others gave us some surprises and indicate areas for
future research.

1.1 TRADITIONAL OPTIM ZATIONS

We are concerned with optimization 1n our choice of representations for information
structures 1n that we wish to decrease the cost of running the funished program. This is the same
goal as that of classical compiler optimization. In this research we have emphasized solving
problems in representation selection rather than using standard optimization techniques.

Traditional optimizations ({Allen69, Cocke?0, Geschke72, Kildall72, Wulf73])) are
concerned with reducing the execution time necessary for arithmetic calcutations by performing
equivalence preserving transformations on the program bemg optimized. Many of these
optimizations are also applicable to operattons involving mformation structures. Our system does
not include such optimizations but it should not be extremely difficult to add such optimizing
strategies to future data structute selection systems.

CONSTANT FOLDING AND PROPAGATION

Expressions involving only functrons of constants may be evaluated at compile time if
the functions do not have side effects and given the same argument always return the same value.
If a constant valued expression 1s assigned to a vartable and that variable s 10t changed
following such assignment then we may treat that variable as if 1t were the constant expression
iself. Thus in the sequence.

TRADITIONAL OPTIMIZATIONS 3

ROWSIZE « 10,

e |,

J-5

INDEN « IXROWSIZE Ji
A[INDEX+X] ~ 4;

we can realize that INDEX will be 15 and that there 1s no need to compile the code to compute its
value since its value may be computed at compile time. If the array 4 were statically allocated the
address of A[/NDEX] could also be computed at compile ime. Thus, we would only need to

generate code that will add the value of X to the computed value of the address of AUINDEX] to
obtain the address of AL//NDEX+X]

Information structure constants stich as constant sets or constant sequences do not
appear to be as common as simple arithmetic constants but when they are present the above
technique may beneficially be applied.

COMMON SUB-EXPRESSION ELIMINATION

We often see the same expression being computed several times without its arguments
being changed. Common subexpression elimination is designed to recognize such occurrences and
avoid the redundant computations by saving the expression in a temporary. For example:

Al + JJ« Bl+)l % Al +)

The expression i+j must be computed only once. Similarly the addressing function for subscripting
array A need only be computed once.

Information structures such as sets and sequences usually take more than a single word
to store. Therefore applcation of common sub-expression ehimination must be carefully weighed

to see If the time saved in avaiding redundant computation 1s more important than the added
storage needed to save temporary results.

CODE MOTION

Often, computations can be moved from portions of the program which are executed
very often (such as inside loops) to places where they would be executed fewer times without
changing the meaning of the program. For example:

for 1« 1 step | until N do
Alll - XX 41,

The expression] % X need only be computed once before the loop and then saved in a
temporary. Thus we might compile the above as if 1t were.

TEMP ~ % X;
for | « | step | until N do
All] « TEMP +

TRADITIONAL OPTIMIZATIONS

Application of these technigues to multi-word information structures involves tradeoffs
similar to those in common sub-expression elimination. We must determine if the execution time
saved is more important than the space used to store the temporary resuit.

REGISTER ALLOCATION and DEAD VARIABLE ANALYSIS

Modern day computers often have a number of fast working registers. It 1s often
beneficial to keep the most commonly used variables and common subexpressions In these
working registers rather than memory. There are usually very few of these registers so a compiler
wants to know when it no longer needs to retain the value of an expression. For example in the

sequence:

BeA-+l
_]o—X*B‘,
Be«5

we would calculate the value of A + [in a register and would notice that the use of B i the
multplication 1s the last use of B before B 1s given a new value B s said to be dead after the
multiplication. Therefore any register that was known to contain B may be reused. In the above
example we would be able to compute the value of the multiplication in the same accumulator as
we computed 4 + I (In this example, a smart compiler would realize that the value A + I need

never be actually stored into the memory location B)

The notion of dead variables is quite important i operations involving high level
structures. To make a copy of a simple arithmetic value is usually quite cheap, but making a copy
of a set can be very expensive. Consider the statements:

A«BuC
Be-{xvV1}

The subroutine implementing the union operator night simply msert all the elements of 1ts second
argument In the first argument. Thus, in the first statement above, we would normally have to
make a copy of B and pass the copy to the union subroutine. This, however, 1s the last use of B
before it is given a new value Therefore the copying operation is unnecessary. This copy

avoidance has tremendous payoff ([Schwartz74a)).

We will not discuss classical optimizations in any more detail. They are very important
and should be included in compilers which select data structures. We imagine new optimization
techmiques (including intera:tive application of the above techniques (Knuth74]) will be found ;
which are ever more helpful to optimizing programs involving fngh level data structures, than
the traditional ones mentioned above.

:

TS P L IS S, T o gL S ¥ W TR

:
|

PRIERIY

1.2 INFORMATION STRUCTURES 5

12 INFORMAT!ION STRUCTURES

Examples of common abstract niformation structures which would be nice to have n
our programming languages include simple queues, stacks, priority queues, sequences, sorted
sequences, sets, disjoint sets, oraered sets, relations and mapping functions. Each has some
particular semantic properties which make 1t conceptually appropriate for expressing certain
algorithms. The right information structure provides the important properties of the data, and the
essential primitives necessary for manipulating the data. At the same time, non-essential (and
implementation restricting) details are suppressed. For example, consider an information structure
which 1s logically a set; that is, an unordered collection of unique objects. In the absence of the
set data-type a programmer would prabably use a sequence for that data, or end up programming
his own set representation. While the operations on a set may be eastly coded as appropriate
operations on sequences, there 1s a conceptual overhead (and chance for bugs) in making sure that
only a single copy of each object is in the sequence. 1t should be much easter to prove properties
of the program knowing that the information structure 1s a set rather than having to derive that
knowledge f:om the representation of the set in terms of a sequence or other construct, and from
the way thie representation 1s updated and accessed.

An unportant attribute of a system having the righi information structures, and the
attribute on which our system 1s based, 1s that optimizers can do a much better job of selecting
data representations when they are given a free hand and are not encumbered by non-essential
details. With our set example above, we can see that an optimizer given the program in terms of
sequences, would find it extremely difficuit to recognize that the information structure was really a
set. Therefore it would not be able to consider such other set representations as boolean arrays or
hash tables. The optimizer would be forced to represent the data 1n some sequence representation
which might be inferior to available set representations.

A commonly held view is that the user should have originally expressed his information
structure 1n terms of 1ts final representation, say a hash table. This opposes many high level
language principles As stated earher 1t 1s much more difficult to prove properties of (and to
debug) programs at the representanonal level What may be the best representation when the
program is designed may not be the best later when such attributes as number of data ob jects
change. Thus, enormous reprogramming costs may occur 1n order to change representations
during the lfeume of a program, or increased computer costs from using inefficient
representations may be incurred. Similarly the best representation for the data on one machine,
might be decictedly inferior on another machine Programming at the representational level, rather
than at the information structure level, 1s therefore costly in terms of debugging, maintenance, and

portability of programs.

Our final rationale for use of abstract data structures is that we are working towards the
day when computer programs are mechanically generated by other programs ([Balzer72,
Feldman72al) It should be much easier to generate programs at the abstract level than at the

representatlonal level.

1.3 CODE GENERATION 6

1.3 CODE GENERATION

To generate code for manipulating information structures, we piust consider which
primitives are necessary in the generated code to accomplish a high-level operation. These
primitives normally will be either closed subroutines, or n-line code. In some representations
certain primitives may essentially be null operations. For example, certain representations may not
need exphicit copy or explicit release storage primiuves because these operations will be performed

inside other primitive operations.
Consider an assignment statement involving a set variable and a set expression
SETVAR ~ SETEXPR;

A single assignment primituve could take the two sets as arguments and do the assignment.
Another implementation might make a copy of the right side (SETEXPR), if necessary; release
the storaze occupied by the set on the left side, 1f necessary; and then put the descriptor for the
copy in the set variable. This implementation has the advantage that it knows whether 1t has to
make a copy of the right side (SETEXPR) or whether the right side 1s simply the result of a
computation. In an optimizing comp:ler, we could also recognize special cases where the space
occupied by the set variable on the left (SETVAR) need not be released because 1t 1s known to be
empty or previously released. To get the same effect with an assignment primitive, we would really
need four assignment primitives, each called depending on knowledge of whether the left side
needed to have its storage reclaimed or the right side needed copying.

Alternatively, an assignment primitive 1s sometimes more efficient in expressing the
concept of assigniment than lower level primitives. Consider the representation of two sets as fixed
length arrays. An assignment primitive could simply copy from one array to the other, but 1If we
had expressed the assignment in terms of copy and release primitives we would have to create and
destroy some temporary array. Allocation and deallocation of temporary arrays can be quite costly
In execution time.

The design of a set of low level primitives 1s an art very similar to the design of the
instruction set of a computer. We feel that much benefit could be derived from studying the ways
irormation structures are used 1n order to decide which primitives are most beneficial. (See
appendices A and B for the description of ‘he primitive operations which we use to describe sets

and sequences.)

|4 RELATED WORK IN HIGH LEVEL *".GORITHMIC LANGUAGES

There are several research projects which are investigaung the use of abstract
information structures in high-level programming languages. The following are projects which
have recently been conducting sucn research.

SETL({Morris73)). This language 1s being developed at the Courant Institute at NYU. It 1s based
on set-theoretic principles. Data structures are expressed in terms of finite sets and tuples of
heterogeneous ob jects, where objects are elementary types like integers and character-strings, or
more complicated ob jects such as sets and tuples. Mapping functions are expressed as sets of

s

s
E ww
‘.
3
; =
| Lt
3
- aw
¥

v
i
j
¥
f “w
$ LN
E - -
£

1.4 RELATED WORK 7

ordered pairs of function argument and function value. Most of the work on the SETL project
seems to have been spent 1n designing programming language constructs which are closely related
to mathematical set constructs. Major effort has also been spent on a series of progressively more
efficient 1implementations. Recently ([Schwartz74a, Schwartz74b]), work has been done on
optimization techniques involving data-type inference (there are no variable declarations in
SETL). SETL researchers are also interested in computation avoidance. For example in the
expression x € (AuB) there 15 no need to actually construct the union of 4 and B as we can simply
test whether x is an element of either set. SETL researchers have also investigated other more
classical optinuzations including dead variable analysis. As mentioned earlier dead variable
analysis has a large payoff in avoiding unnecessary copy operations.

MADCAP([Morris73))The latest of the series of MADCAP languages (MADCAP VI being
developed at the Los Alamos Scientific Laboratory by Morris and Wells 1s very similar to SETL.
There are minor differences in some semantics, e.g sets must contain ob jects of a single type, and
some not so minor differences. One such difference i that MADCAP is a pointer language
rather than a value language. For example, the sequence:

A=<l3>
B=A
By =2

causes 4 to have the value <2,3> rather than the expected value of </,3>. The emphasis again
has been on the language design and not in optimizing the implementation.

ELL This is the first of a family of extensible languages being developed by the ECL group at
Harvard ((Wegbreit71]). The base language itself does not include constructs of higher level than
tuples. It does, however, include extension mechanisms with which the user can define his own
abstract data-types and operators to act tpon these types (See VERS2 below). The goal of this
research has been to provide an extensible language which has several levels of implementation
from LISP-like interpreters (highly useful in debugging programs) to very complex optimizing
compilers. One important feature of these compilers is the CLOSURE mechanism ((Webreit72)).
To understand this mechanism we must realize that EL1 operators are defined in terms of user
written subroutines. These routines normally will do different things depending on the type of
their operands. At the lowest level, for example, the operator "+" will do a floating point addition
if its arguments are both real, a fixed pomt addition if its arguments are both integer, and a
floating pomt addition preceded by changing an integer argument to a real valte if one argument
1s mteger and the other is 1eal. The purpose of closure is to tailor special verstons of routines
(both operator defimitions and user defin~d procedures) which know the data-types, and perhaps
even the values of certain parameters anc free variables. With such knowledge unnecessary type
checking or computation of constant-valued expressions may be avoided. Thus, for the operator
"+" 1t would often be possible for a comptler to generate the single add instruction in-line rather
than to generate a call to a generic routine which does the type checking of arguments and then
eventually an add instruction. As closure ts sometimes a very expensive operation for a compiler
to perform, closure 1s currently invoked by user requests which are very specific as to what
quantities are bound. Future research will likely try to automate these decisions. Work is also
being done to be able to include invariants in the closure mechanism. For example, we may be
able to prove that because of certain types and values being constant, other relationships will hold
between certain expressions. We can then often improve the code. In a trivial example we might

be able to prove that some set is always empty at a given point in a prog=am. If there is a

e i o L R e bl b DR i e i A

« T 1 L W s

Cdeanaie oL Mgl i

ki o S ok ot i s e s

1.4 RELATED WORK 8

conditional expression based on that property, we could transform the expression into an
unconditional one.

VERS2((Earley73b]). This is a language being developed by Earley at the University of
California at Berkeley. It 1s actually being implemented as an extension of EL1 (above). It has
much of the flavor of SETL, sharning many of the same constructs. It includes relations and
sequences of objects (both values and variables). One of the features of this language of great
interest to us is the implementation facility. With this facihty the user can tell the programming
system how he wants various data-structures implemented. For example, he may state that he
wants a particular set 1mplemented as a sequence, run his debugging tests using the default
sequence representation, and then later specify that he wants that sequence implemented using
doubly hnked lists for production use. Earley has also been interested in high level concepts of
loops which he calls iterators ((Earley74a, Earley74b]). These iterators are at a high enough level
that algorithm transformation can often be used to arcumvent actual execution of loops. For
example, consider the iterative operation {x §5 | P(x)}, which constructs the subset of set $
whose members satsfy the predicate P. Normflly this would be impiemented using a loop. An
intelhgent optimizer could realize that no loop needs to be present if we keep an auxihary set SP
which contains all those elements of S which satisfy P. If P s sufficiently tractable (e.g. P(x) = x >
0) then to mamtain SP we need merely to check P every time we add (remove) an element to
(from) S, to decide 1f we should add (remove) that element to (from) SP. The interesting problems
of such iterator inversion include deciding when 1t 1s the more efficient thing to do, and how to
handle complex iterators. The whole concept of iterator inversion, though not currently
implemented in VERS?2, should strongly influence automatic coding research.

LEAP([Feldman69]). This language was originally implemented at MIT's Lincoln Laboratory by
Feldman and Rovner. Apart from normal ALGOL-like features, 1t contained sets of ob jects and a
single ternary relation between these ob jects. The original implementation was geared to handling
large data bases, much larger than could fit into a single core image. It was used with much
success 1n diverse applications including interactive graphics. The data structure elements of
LEAP have since been incorporated into an ALGOL-60 based artificial inteligence language
called SAIL. Here the emphasis on handling very large data bases was dropped, and the current
implementation allows only small core-resident data bases. Recently the LEAP subset of SAIL was
used as part of a basis for adding powerful control structures to SAIL including multprocessing,
coroutines, and message passing as well as a hmited form of backtracking ((Feldman72b]). In our
demonstration system we use a subset of SAIL as the language in which a user expresses his
programs. A more detailed description of the impoitant LEAP features will be given in the next
section.

Other related research projects ({Anderson72, Bobrow73a)) involve the development of
programming languages for use in Artificial Intelligence research. These programming languages
usually have associative data retrieval and complex control mechanisms including call by pattern
match and backtracking.

|
|
|

S b

N MO 2 o

|.4 RELATED WORK 9

All the projects described above have some central notions as to what types of data
structures should be available to the user. Data structures should be expressed in very general
terms to rid the programmer of unnecessary implementation details. The programmer, at least at
first, should only have to worry about his algorithm and not about details such as bit masks and
hash-tables. It 1s much easier to debug a program and prove it correct if we are dealing with sets
rather than some linked structures. Portability of programs is becoming more significant. When
we move a program from one computer to another it should be much simpler to change the
representation of high level data-structures such as sets and sequences to those more suitable to
the new machine than to reprogram application programs using low level structures. Even when
we do not consider portability we still dertve great benefits from using the higher level data
structures. It 1s a rare production program that does not get modified as its requirements change.
A programmer usually finds it simpler to understand (and thus be able to modify) programs
written in ALGOL or PL/I than the same programs written 1n assembly language; similarly, he
finds 1t easier to understand set and sequence manipulations than the corresponding pointer
structures which might have been used to represent sets and sequences.

1.5 LEAP

In order to explore the problems involved n doing automatic selection of
representations, we decided to build a demonstration system. The programming language we chose
to work with 1s a subset of SAIL ((VanLehn73)). SAIL 15 a good choice for such a demonstration
system because of the LEAP sublanguage. LEAP contains sets, sequences and a ternary relation.
Sets and sequences are common information structures and the problems in selecting
representations for them are very similar to the problems in selecting representations of other
abstract structures such as simple queues, priority queues and stacks. The LEAP ternary relation
presents problems similar to those found in partial mapping functions and n-ary relations. The
version of LEAP we use 15 core-resident, so we also restrict ourselves to relatively small data bases.

Problems involving large (disk size) and very large (tape library size) data bases are left for future
research.

LEAP consists of items (variable names), each of which may have typed datum; sets of

items; hnear lists (sequences) of items; and a single ternary relation between items (also called the
associative store or triples).

The important properties of items are:

I. They are allocated either statically (declared) or from a heap (using the NEW generic function).
Ther lifetime does not follow ALGOL block structure. A given item ceases to exist only when
It is x1ven as the argument to the DELETE procedure.

2. Each item may have a DATUM. A datum 1s a algebraic, set, or list variable. The datum of an
item has the same lifetime as the item itself. We often classify items according to the data-type
of their datum. Thus we may speak of type-less or blank items (which have no datum),

STRING tems (whose datum 1s a string variable), STRING ARRAY items (whose datum is a
STRING ARRAY) etc.

g T e Lp o o et e R R B s o
e e L e Ltk e &

o Ly W

QAR it v o

1.5 LEAP y 10

3, ltems may be referred to by their name (if declared), or as the contents of an item variable
(itemvar). In ALGOL-68 notation an itemvar would be known as a ref item. Itemvar's may
recetve values by assignment of item expressions, or by pattern matches against the associative
store, sets or lists.

SETS

LEAP has finite sets of items Normal mathematical considerations, such as
{a ab}={ab}={0ba} hold. The empty or null set 1s denoted by the name phi. Set expressions
may be stored in set variables. It 1s important to note that the semanucs of set assignment 1§ to
make a copy of the set expression. Thus in the code sequence.

XSET «{a,b,c,d }
YSET ~ XSET;
put e in XSET;

the resulting sets wili be
YSET = {a, b, ¢, d}
XSET = {a, b, ¢, d, €}
LISTS
Linear lists of items (sequences) are also available. They behave much like variable
length one dimensional arrays of items. The notation used for an expliat list is {{ a,b,¢,d }} .

"{{" and "}}" are called list brackets.

XLIST « {{a, b, ¢, d }};
XLIST{1] « b;

will result in XLIST = {{ b, b, ¢, d }}. Other operations on lists include concatenation, removal of
items from a list either by index position within the hist or by giving the item to be removed, and
insertion of 1tems into lists either by index position or after or before named items. The null list is
denoted by the name NIL.

TRIPLES

The most powerful abstract data structure in LEAP 1s the single ternary relation also
known as the associative store. The relation instance (a,0,v) 1s denoted by:

a®o=Ev.

The first component is called the attribute; the second, the ob ject; the third, the value. When we
are indicating an unspecified element (which might be returned from a search of the relational
data base) we will mark that as "?".

- A gl it L i I it b e s o o il P e
> v £ & % Lo s gta o ate D i bianl i e i ot e Lh oo Jlbn sl ol o e 2 Y T T

RN tmace s
=

-o-

L 3]

s T T L . oy

1.5 LEA? 11

ey

Normally we fix one of the elements (usually the first) and use that as a binary relation
name. Even when this i1s done, we may still do searches of the form " @ o = ?". For example,
assume we have a number of relation instances involving a certain item A and we wish to copy
them to another item B. The simplest way of doing this 1s to search the associative store (see
FOREACH!'s below) for all triples whose second component is 4 and for each such triple, create a
new relation instances which differs from the original only by having B as its second component.

b Lk SN De o
%

1
—1

In order to take advantage of the high level data structure, we must have loops which
sequence through sets of items, lists of items and items which satisfy pattern matches on the
ternary relation. T he mechanism provided by LEAP 1s called a FOREACH statement.

2 :

FOREACH STATEMENTS

et

A foreach statement consists of three parts: a binding hst of itemvars (also called foreach
locals, or local itemvars) whose elements are analogous to the loop control variable of an ALGOL
FOR statement; an associailve context, and a statement to be iterated. An associative context

consists of elements separated by "A", where an element is a boolean expression, a set iterator, a
tigt iterator or an iterator based on a pattern match on the associative store.

Each element of the associative context, other than boolean expressions, 1s said to bind
one or more of the foreach local itemvars. That 1s, the iterator successively will give various item
values to the local itemvar. The first element of the associative context which refers to a given
local itemvar, binds it. Later uses of the local itemvar in the associative context will use the ftem
previously bound to the local itemvar.

For example:

foreach pargrand | PARENT @ JOHN = par A PARENT & par = grand do

will iterate thought all the pawrs of (parentgrandparent) of JOHN. The first element,
PARENT & JOHN = par, binds the foreach local par and then that binding 1s used in the
second element to find bindings for grand.

S oms bt

FOREACH ITERATORS

Set 1terators are written in the form:

local € setexpression

These successively bind the local to each element of the setexpression. Since a set 1s conceptually
unordered, the order in which the items of the setexpression are bound to the local 15 also
undefined.

List iterators are written in the form:

local € histexpression

These will successively bind the local to the first element of the hst, second element of the hst and
so on.

1.5 LEAP 12

The FOREACH statement:

foreach X | X € LISTI do
S;

1s thus equivalent (in absence of changes to LIST! within the loop) to:

for 1 « | step | until LENGTH(LIST1) do
begin
X « LISTI0];
S,
END.

Relation iterators bind one or two locals.
foreach X | a® X = b do
will iterate through all items in the associative store which are the ob ject component of an relation

Instance with @ as the attribute component, and b as the value component.
Thus, if the associative store contained:

a®d=b
a®e=b
aef=b

then the above FOREACH would be equivalent to
foreach X | X € {d, e, f}do

As with sets, the order which the bindings are given by this iterator to the local(s) is undefined.

DECOMPOSITION OF FOREACH's

When a FOREACH statement has more than a single element, it behaves as if it were a
nest of FOREACH statements each containing a single element. A boolean expression element acts
much like an IF statement.

Thus:

foreach X, Y,Z | A& X = Y A (datum(X) > datum(Y)) A Z € ZLIST do
S;

will be semantically equivalent to:

foreach X, Y | Ae X =Y do
if (datum(X) > datum(Y)) then
foreach Z | Z € ZLIST do
S,

1.5 LEAP 13

e AT e

CHANGES TO THE INFORMATION STRUCTURES DURING ITERATION

A difficulty in the semantics of FOREACH statements (inherent in any data structure
iterator) concerns changes to an information structure which 1s currently being processed by some
1terator.

For example consider:

foreach N\ | X ¢ SET1 do
begiu
remove F(X) from SETI;
CNT « CNT |,
end;

foreach X | X € SET | do
begin
put F(X) in SETH;
CNT « CNT «I;
end,

Should changes to the set affect which items are returned by the future iterations of this loop?

If SET! 1n the first FOREACH were { a, b, ¢, F(a), F(b), F(c)} and the FOREACH
would return the items in that particular order, would the statement be executed 3 times, 6 times
or some number in between. Similarly if the SET/ in the second FOREACH were executed with
the set { a, b, ¢} would the statement CNT « CNT +] be executed only 3 times, or maybe an
indeterminate number of times as the foreach produced the set:

5
) { a, b, ¢, F(a), F(b), F(c), F(F(a)).....
H It seems desirable to minimize the differences in program execution caused by the
- i ordering which FOREACH 1terators give to to semantically unordered quantities. T herefore the
R best semantics would have the FOREACH not be affected by changes to the data structure during
f.f g its executions. Two ways of doing this are apparent. The first 15 to outlaw operations which alter
& a data structure which is being processed by an iterator. This unfortunately removes many highly
% usefvl constructs such as:
; % foreach X | X ¢ SETI do

1 if pred(X) then remove X from SETI;

The other way of solving this problem is to define the semantics as if the set were
copied before the FOREACH was entered and then the copy was used to produce the items for
the iteration. Thus the above FOREACH would be equivalent to:

TEMP « SETH,
. foreach X | X ¢ TEMP do
E 3 if pred(X) then remove X frow SETI;
&
b ¢
g 3 We see that any chanes to SET/ would not change TEMP and thus alter which items
£

R R

s M

1.5 LEAP 14

are returned by the FOREACH. Note that an optimizing compiler might be able to determine
that there 1s no possibility of a set or sequence variable being changed inside a given FOREACH
and could then suppress the copy operation. In our demonstration system we always form copies of
sets and lists being 1terated.

1.6 EXAMPLE OF LEAP SUBPROGRAM

Now let us look the procedure TRANSCLO (below), written in SAIL, which uses the
LEAP features. We will use this procedure to demonstrate some of the problems and techniques
of representation selection. This procedure computes the transitive closure of a reflexive binary
relation (REL) upon some set of items (BASE).

set procedure TRANSCLO(itemvar REL, set BASE),
begin "TRANSCLO"
set RELATED, NEWLYRELATED, FOUND; itemvar XY;
RELATED « phi, NEWLYRELATED « BASE,
while (NEWLYRELATED = phi) do
begin
FOUND «~ phi;
foreach XV | X €¢ NEWLYRELATED n REL ® X =V do
put Y in FOUND;
RELATED « RELATED u NEWLYRELATED,
NEWLYRELATED « FOUND - RELATED,
end,
return(RELATED),
end "TRANSCLO",

The binary relation is represented by a LEAP triple, whose first component is the
relation name. REL ® A = B means that 4 1s related to B by the relation REL. The input to this
procedure 1s the relation name, REL; and the original set of items, BASE. The set RELATED will
be used to collect all those items which are directly or indirectly related to the original BASE. The
set NEWLYRELATED consists of those items which have been found on the previous iteration
of the while loop to be related directly or indirectly to the base. The set FOUND 1s used to collect
all those items found to be directly related to the items of the set NEWLYRELATED during a
single 1teration of the while loop. At the end of the while loop, we add all those elements of
NEWLYRELATED to the collection RELATED. The set NEWLYRELATED 15 then given all
the ob jects which were found in this iteration yet were not processed by some previous iteration.

Now let us attempt to select efficient implementations of the information structures of
this procedure. We must consider how the various structures aie used and their sizes in making
such selections. In the absence of global knowledge of how the reiational store 1s used outside the
procedure and how the input and output sets are used, we would probably not be able to choose
the best representations, but let us see how we might agproach the selection process.

First of all we must determine what abstract data structures appear in the procedure.
We notice that the only such structures are the tour set variabless BASE, RELATED,
NEWLYRELATED, and FOUN D; and the associative store.

TR L me——

M AR PR IR T

1.6 EXAMPLE OF LEAP SUBPROGRAM 15

Nevt we must determine which operations are performed on the individual sets. These
are assignment, element insertion (PUT), set union, set subtraction and foreach iteration. The only
operation performed on the relational store 1s the foreach search with the first two components

bound.

We notice that BASE and NEWLYRELATED are both arguments tc a single
assignment statement. As a simphfication let us assume that this will influence us to choose a
common representation for base and newlyrelated. (Motvation for this will be presented later in

Sections 2, and 3). Stmilarly the statement:

RELATED « RELATED u NEWLYRELATED,;

will cause RELATED and NEWLYRELATED to have the same representation. In fact, all the
sets of this procedure will end up with a common representation.

With this information, we will attempt to choose a representation for these sets. We
immed ately realize that we still do not have enough information to choose the best representation.
We need to know how large the sets are on the average, and the relative frequency of the various
operations. Let us asiume that each set is potentially very large though its average size is a small
proportion of its potential maximum.

We probably would eliminate set representations such as binary trees and hash tables
because set union and set difference operations are time consuming using these representations. If
there were a fixed maximum number of items which could be elements of these sets we might
consider using a fixed length bit vector, since bit vectors are efficient for union and difference
operations. However, depending on set density they may not be very efficient in terms of space, or
time needed for the foreach search. Without more concrete information we cannot really decide. It
may turn out that the insertion operations so dominate the execution time of the program that we
really should consider use of a binary tree or hash table set representation. The savings from
using them for insertion may make up for their added costs in doing the other set operations.

We have similar considerations in choosing an appropriate representation for the
relation. If we find that the program in which this procedure appears does not have other types
of searches on the associative store, we will not have to provide for such searches. We will be able
to choose a very specific repiesentation which 1s sufficient and efficient for this program yet
which is not capable of handling all possible operations on the associative store.

In the next section we will examine the overall design of a system which automatically
chooses appropriate representations of the high level information structures of LEAP.

PR T UL T e L T e

FORIR T I T

f .
;

T

i e

S

T 5 N LI W SO G Uare UMy e W WP L B

el . liad A

pradd

.

—1

[
|
l’
i
f
|

2.0 16

SECTION 2

OVERVIEW OF THE SYSTEM

We have implemented a data structure selection system to demonstrate the feasibility of
our ideas. The system consists of several computer programs written in SAIL and PDP-I0
assembly language. The assembly language parts of the system have been abstracted from the
standard SAIL compiler, and are used to parse user programs and do the machine code emission
in the final compiler. All the rest 1s written in SAIL. We make extensive use of the LEAP
information structures 1n the SAIL coded portions. Communication between programs is
accomplished by having each program write the contents of the LEAP information structures to a
disk file which 1s later read by the next program in the series. The system we have designed to
perform selection of low-level data structures logically consists of three major components:
information gathering, structure selection, and final compilation and execution (See Figure 1). We
will note other techniques which we feel are applicable to a selection system which are not part of
our system.

2.1 INFORMATION GATHERING

The information our selection phase needs about the abstract information structures of
the user's program includes such things as their size, the primitive operations performed on them,
and values of other parameters which affect the execution time of the primutive operations as
tmplemented for the various representations.

We do not want to require that all of the structures of the same abstract type, such as
sets, be represented the same way. We therefore need information as to how to partiton the
abstract structures into equivalence classes, the members of each class having a common
representation. Classes will contain individual information structures of the same type which are
connected to each other in some way. Such connections include being the same positional
parameters to some procedure, and being operands to a single instance of some operator. A single
representation for a class 1s necessary to avoid dynamic checking of representation, as well as to
avoid potentially costly translations of representation. It also eliminates the need for coding
implementations of the primitive operations which take arguments with different representations.
Consider the example of a set assignment statement:

BASE « NEWLYRELATED,;

It may, because of other uses of the sets in the program. be more efficient to have
different representations for BASE and NEWLYRELATED and have the assignment do a
translation between them. We realize that this flexibility requires a much larger hibrary of set

manipulation routines. If there are n different set representations we will need n< assignment
routines 1f we implement this directly, or 2 n routines 1f we translate into a single intermediate set
representation In order to decrease the library size, our system sacrifices this flexibthity and nsists
that both the arguments to an assignment be in the same representation, thus needing at most n
different assignment routines. Similarly we will insist that both operands to any other binary set
operation be In the same representation and that the results of set union, intersection, and

Ao b LB B o

L ———

1
%
3

LOGICAL ORGANIZATION OF SYSTEM

SOURCE
PROGRAM

1

B R T TR e

MONITORING

STATIC
ANALYSIS

USER
INTERROGATION

—

COST
FUNCTIONS

SELECTION

FINAL \

EXECUTION

Figure |

LIBRARY
OF
REPS.

Labe . b e R i

& o=

AT e

R A R T YT

i
{,
-

o s T

o

(e hh

T ST S TN

&

S— et

2.1 INFORMATION GATHERING 18

difference be 1n same represen‘ation as the operands to those operators. These representation
constraints will usually produce several disjoint classes of set variables, each of which will be
forced to have a single representation. We note that this decision to avoid translation of
representation may well not be optimal, as is the decision to disallow codings of the primitve
operations taking arguments of different representations. We feel that these restrictions were

reasonable in a first implementation.

There are many way: of obtaming the required information, including assertions or
declarations by the user; monitoring the execution of the user's program (using default
representations); static analysis of the program; and interactive interrogation of the user. In the
demonstration system we have constiucted, we collect statement counts by monitoring the execution
of the program. Other stauistics of the datx use are gathered by asking the user. Partitioning
information is obtained by a static analysis to be described later.

2.2 SELECTION

TIME AND SPACE COST FUNCTIONS

A prime prerequisite for making intelligent choices between alternative wviays of
representing an information structure is a knowledge base containing information about the
properties of different representations. We need to know when a representation may bLe used
(applicability), how much space a given representation will require as @ function »f the number of
data objects (storage cost), and the expected time necessary for the primitive operations on this
representation as a function of the size of the information structure and other parameters

(execution time cost).

The attributes of the various representations are not independent of the programs in
which they are used. For example, assume we have a set represented as a binary tree. The time
needed to do an insertion into this set Is (on the average) proportional to the logarithm of the
length of the set. However, if the program inserts elements 1nto this set 1n ascending order, the
binary tree degenerates into a linear linked list and the time needed to do an insertion becomes
proportional to the number of elements in the set rather than the logarithm of the number of
elements. As a first approximation, though, we consider such attributes of representations as
invariant over the programs in which they are used. Thus, the ime required for element insertion
into a binary tree will be approximated by the average ume (ie. proportional to the logarithm).
The predicted execution time 1s thus a function only of number of efements in the set and not the
order in which elements are inserted. Note that the deficiencies of the model for this particular
example may be overcome by noticing that elements are inserted In ascending order. In this
example the programmer might have used a different information structure if he considered order
an important property (perhaps an ordored set). We would expect a good programming language
to include a ..ultitude of abstract data types or facilities for creating them. As extension
mechanisms become more powerful we would hope users would be also be able to define their
own abstract information structures, supply the appropriate cost evaluation functions and let the
system select representations from a user supplied library for the new information structures.

22 SELECTION 19

The number of computer words used to store references to n ob jects can usually be
expressed as a simple function of the maximum number of objects, and the current number of
ob jects. The expected time required for a primitive operation such as union of two sets, 15 a
function of the maximum and current sizes of the abstract structures as well as certain other
parameters unique to the primitive operation. With set union we would expect the time for union
to be dependent on the percentage of overlap between the two sets.

The attributes of the possible representations are: the applicability predicate; the space
function for the representation; and the individual time functions for the primitive operations.
These would usually be calculated once by the person who has constructed the selection system.
These cost functions may appear either as input data to a structure selector, or actually be
explicitly contained in the structure selection component of the system. It 1s, of course, easier to
add new representations 1f we need only update a data set and not a program, but it is simplier to
construct an automatic selection mechanism if the information s explicitly present (so we may
make ad hoc ad justments) rather than being present only as data. For our implementation, we
chose to obtain the best of both techniques. All information about the representations of
information structures is present in the form of procedures. To add a new representation of some
information structure to our system, we need only add a new set of procedures to the system which
indicate when the representation 1s applicable, how much storage it requires, and how much
execution time 1s required for each primitive operation. When the attributes of data structures are
expressed either as procedures or data to the structure selector, It 1s a very simple matter to change
the structure selector to select structures for a different implementation of the primitive operations
(such as when we move the program from one computer to another) by merely changing the cost

functions.

PRELIMINARY PROCESSING

The first thing the selection process must do Is partition the set and sequence variables
and expressions into equivalence classes, members of which have a common representation. The
selector then computes which primitive operations are performed on the classes.

The selection process next does some premmnary filtering to weed out obviously
undesirable representations. Some representations are incomplete. They may be used only when
specific primitive operations are not performed on the class of information structures. If we find
that the user has performed such primitive operations we can immediately eliminate those data
representations. Another re:son for discarding certain representations is that their implementation
may depend on knowing certain information at compile time, such as the maximum size of the
information structure. In cases where this information is not computable at compile time, but is a
function of data at runtime, we must discard these potential representations.

Next, the selector predicts, using time and space prediction functions for each remaining
representation, how much time and space would be needed fo. each information structure
equivalence class using each of the remaining representations. If the system notices that with two
representations for the s¢~e class, one requires both more time and space, the system removes that
representation from further consideration. The prelimmnary selection phase uses this heuristic to
filter out representations unlikely to be chosen by the final selector. It also ranks ;according to
some cost dependent criteria), the representations which have not been discarded as to their
likelihood of being the best. In our system the possible representations are ranked in increasing
order of the products of their expected sp-..” and eXecution time requirements.

i g i

i s el o e

LT

2 SELECTION 20

n

SELECTION

After the prehminary selection we should have only a small numbe: of representations
which are still candidates for any given class of information structures from the user's program.
The Selection phase must worry about the second order effects which arise from having more
than one information structure. For example, assume the user's program creates two sets and that
our measure of cost is simply the space time product. Also assume that the two sets quickly achieve
their maximum size and thereafter remain constant in size throughout the remainder of the

program.

let S,j = the space occupied by set / using representation J
fet TU = the time used by the primitive operations on set /

using representation /
let Syx = the space occupied by set 2 using representation K

let Tox = the time used on set 2 using representation X
let Sp = the space used by the non-set operations of the program
let Tp = the tume used by the non-set portion of the program

The cost of the program is thus approximately

The preliminary selector has anked representations to minimize the expected space time product
(such as SI./ X T,j) for a single abstract data structure, but because of the cross terms (such as

SU % T k) above, this may not be the best choice for minimizing the total cost function. These

cross terms indicate that the Selection Phase must consider the representations for all the
structures together, and cannot simply approach the individual structures independently. Our
final selection phase uses, as an imtial approximation, those representations which provide the
minimum space time product for the individual structures. It then proceeds to attempt to change
individual representations to minimize the predicted TOT AL cost. When it can not improve the
TOT AL cost by changing the representation of a single structure it returns the best set of
representations it has found.

P s i i i L R

2.3 COMPILATION AND EXECUTION 21

2.9 COMPILATION AND EXECUTION

REPRESENTATION DEPENDENT OPTIMIZATIONS

The final stage of the system prepares the user's program for final compilation. In a
production system, representation dependent optimizations may be performed during this stage.

For example, consider a program which has statements of the form:
if length (SET1) = O then

It might be more efficient for certain representations to check the expression:
if SET1 = phi then

and vice-versa. Another example is expressions of the form:

SET1«SETlu{ab,c}
With some representations this might be more efficiently implemented as:

put a in SETI,
put b in SETI;
put cin SETI;

In our implementation no such representation dependent optimizations are performed.

POST-SELECTION MONITORING

Once the system has compiled the user's program it should run it with a special runtime
package which gathers statistics to see if there are biases in the way the data structures are used
which were not apparent originally. For example, assume the system represents a set as a binary
tree (not balanced). It is possible that, because of biases, the tree always degenerates, resembling a
linked list. We should be able to go back to the structure selection phase with this adc.»d
information and see if the system might better select some other data structure to represent the set.
We did not have the time to include post-selection monitoring in our demonstration system, so its

benefits have not been fully determined.

-

Sm— i - e |

l"
l
U
1
.

SECTION 3

ABSTRACT DATA STRUCTURES AND THEIR REPRESENTATIONS

In Section I, we mentioned many abstract data structures which we feel should be
available in high level programming languages, including various kinds of queues, stacks, and
napping functions. This hist is far from complete. We would imagine other programmers to have
their own lists. The ones we chose hopefully form a basis for others. We hope that future systems
will not only include the information structures mentioned, but will provide extension mechanisms
to allow the user to define new information structures. These extension mechanisms should allow
representations for user defined structures to be chosen much the same way as for built-in
information structures. In our demonstration system, we have limited ourselves to those abstract
data types already available in LEAP: sets, sequences and a single ternary relation. Let us now
consider these information structures.

In the following, the reader should remember that a LEAP item 1s essentially the name
of a variable (anthrnetic, set or sequence) allocated from a heap. Its internal representation will
normally be a contiguous block of storage in the computer’s memory (in our implementation this
means each reference to an item 1s an 18-bit pointer). Thus, an item 1n our implementation 15 a
tuple (PL/I type structure) with a type field, possibly a datum field, and perhaps various other
fields which are used for representing certain information structues Figure 2 shows the layout of
our 1irems In storage. These other fields are used in the attribute bit representation of sets and the
offset representation of triples mentioned below. In certain representations of sets it 1s beneficial
to have an alternate representation of an item such as a small integer index. Translation functions
are required for these set representations to take the full i > bit representation of an item to the
small integer index representation and vice-versa. Often we will refer to the item as if it were a
value (as in a sorted list of items). Here we are really referring to the integer value of the pointer
to the item.

The representations we use do rot pack more than one piece of information per
computer word, except as explicitly noted below. Thus, even though our representations of items
take no more than 18 bits and a PDP-10 computer word consists of 36 bits, we make no attempt
to pack two items per word in any representation. In our storage requirements below we will
count the number of computer words actual'y used. Storing a single item with nothing else in the
same word will cost one word in storage, not one half a word.

3.1 SETS AND THEIR REPRESENTATIONS

Sets in LEAP are conceptually unordered collecttons of items. There 1s no restriction
that these items be of the same datum type. We have created a collection of seventeen primitive
operations, which are sufficient to perform any of the high level LEAP constructs involving sets,
such as assignment, set insertion, removal of items from sets, set union, set difference, set
intersection, and FOREACH iteration through a set. (See appendix A for descriptions of each of
the primitive operations.)

s

P L

o e s AR e

et

STORAGE LAYOUT OF ITEMS

ITEM
' ATT. BITS| TYPE
DATUM !
by SYereToraTs e e T T Y e TaT 1
'MAPPING FUNCTION!
(550 00 oo Moo ooooooohom 4
'MAPPING FUNCTION|
T e e = Eals .
[} [}
Figure 2
ONE-WAY LINKED LIST
LENGTH —

X %
ITEM : ';

}

it _ {
LIJ ITEM AL
|

/

i

Figure $ 3
i

;

:

1

T T T e T Iy e

L SET REPRESENTATIONS 24

REPRESENTATIONS OF SETS

In each of the representations we have implemented. a null descriptor (0) is always a
valid representation of the empty set. For certain representations, as noted below, there may also
be additional valid representations of the empty set. In the following, the storage requirements are
those for our implementation on the PDP-10 computer. Other implementations are likely to have
similar storage requirements.

a. Sorted one-way linked hist (See Figure 3). The descriptor contains the length of the set and a
pointer to the first of a cham of one-word nodes. The first node contains pointers to the last
node in the chain, and the next node in the chain. The remaining nodes in the chain each
contamn the 18-bit internal representation of an item and a pointer to the next element in the
chain. The pointer field of the last element of the chain contains a null pointer (0). An empty
set 15 uniquely represented by a null (0) descriptor.

The additional storage (in words) occupied by a set 1s one more than the number of elements in
the set unless the set 1s empty, 1n which case no additional storage 1s required.

b. Height Balanced Binary Tree (See figure 4) - The descriptor contains the leng:h of the set and
a pointer to the root node of an AVL (for Adel'son-Vel'shii, and Landis) tree; a binary tree
with the property that at any node, the height of the left subtree differs from the height of the
right subtree by at most ! ([Foster65, Crane’2, Knuth73))

Each (two-word) node contains the reference to an item, the balance factor (Left Heavy,
Balanced, Right Heavy), and the pointers to the left and right subtrees (perhaps null). An
empty set is uniquely represented by a null (0) descriptor.

The storage required is twice the number of elements in the set.

¢. Fixed Length Bustring (also known as boolean array, bit array, bit vector). The descriptor

contains the number of words making up the bit string and a pointer to a contiguous block of
storage of that size. We pack 32 bits per word, rather than the available 36 so that indexing
operations may be performed using shifts rather than divisions. The empty set 1s represented
by a null descriptor or by a butstring of all 0's.

The storage required is [MAXSIZE(SET)/32].

d. Hash Table (See figure 5). The descriptor contains the length of the set and a pointer to a

block of 33 words. In our implementation, we restricted ourselves to a single sized bucket hash
table ((Morr1s68)). In a more advanced system we would expect a number of different sized
rables to be avatlable, In this implementation a hash function maps each item nto a number
between 0 and 31 corresponding to a word within the the block of 33 words. This word is a list
head containing pointers to the furst and last nodes of the chain of items (conflict hist) that
hashed to the same bucket. The other word of the 33 word block contains a mask (signature)
([Harrison72)) with a | bit on corresponding to every bucket with a non-empty conflict hist.

The storage required is zero for an empty set, otherwise, 33 plus the number of elements in the
set.

BALANCED BINARY TREE 25

LENGTH ———'j

BALANCE| ITEM

BALANCE| ITEM BALANCE} ITEM

Figure 4

HASH TABLE WITH SIGNATURE

LENGTH| ——
SIGNATURE

CONFLICT LIST 0 ———4 ITEM

CONFLICT LIST |

CONFLICT LIST 2 ITEM
|] | ; :
[} [} [}] 1
! [' 1]
[}]] } .
i ! : y 3
)]] 1 ;
: : | L[TTEMm --

CONFLICT LIST 3i

Figure 5

31 SET REPRESENTATIONS 26

e. Fixed Length Sorted Array. The descriptor contains a pointer to a block of words (multiple of 8
in length) and the length of that block. The first word of the block contains the current length
of the set. The next n words (where n 1s the length of the set) contain the items of the set in
ascending order according to therr 18-bit representation.

The storage required 1s zero for an empty set; otherwise, five plus the number of elements in
the set. This 1s not always accurate since our implementation will never decrease the size of an
array. Thus, if the set becomes very large and then decreases in size it will continue tc take up

the larger amount of space.

f Attribute Bit of item. The descriptor contains a number between 1 and 18. This corresponds to
a bit position in the left half of the word pointed to by the internal representation of an item.
This 1s an incomplete representation and can not be used if operations other than inserting an
element into a set, remaving an element from a set, or testng an element for set membership are
required. Since our implementation uses a single halfword to contain attribute bits (see figure
9), a maximum of 18 sets per program may use this represeatation. There is no explicit
representation for a null set. A null set 1s indicated by every item having a zero in the bit

position corresponding to the set.

As the storage occupted by this representation would go to waste (in our implementation this
half word in each item 1s normally unused) if it were not used, we have associated a zero

storage cost to this representation.

g. Combination of Fixed Length Butstring and Unsorted Linked List (see figure 6). The descriptor
contains & pointer to a two word block. This blork contains descriptors of the form for
representations (c) and (a) above, with the exception that the linked list is not necessarily in
descending order of internal representations of items. A null set is uniquely represented by a

null descriptor.

The storage required is zero for an empty set; otherwise, three plus [MAXSIZE(set)/327 plus
the number of elements in the set.

In all of the representations above, except the boolean array, and the combination of
boolean array and linked hist, we use the full 18-bit pointer to reference items. With the boolean
array representations we use small nteger indices to reference items. Two translation functions are
necessary to translate from the full 18 but reference of items to the bitstring index (between one
and the maximum size of the set) and vice-versa.

OTHER SET REPRESENTATIONS

There are many other representations for sets which we have not implemented. Any
sequence representation may be used, since we may represent a set as an ordered or unordered
sequence of ttems. Other possible representations include 3-2 trees (B Trees) ((Knuth73)) and
linked items. The last is similar to our standard linked list representation, but the list actually runs
through the items rather than through nodes pointing at them. With our standard representation
we have a linked list of nodes, each of which points to a1 item. With the linked items
representation, each item (represented much like a PL/1 based stiucture) contains a field which is
a pointer to the next element of the set. Thus, each item tuvle would have to have a field (see

i i e

R eao o L el i e e

COMBINATION BIT VECTOR 27
AND
LINKED LIST

T oo I R I B R

—
3
LENGTH 1
4
ITEM
‘ -
- 3
L ITEM A ;

Figure 6

i T AN

TR T P

B e ol P R g T e gt il B sl D e i i i D iy W TR - [, PP
i b ity S g e e o i o e e R et

-] B b i

\4_.

e owe osn eEh U A R O S e

3l SET REPRESENTATIONS 28

figure 2) for each set of which it nught potentially be a member. Other forms of hash coding
((Morrisé8, Maurer68, Brent73, Feldman?3, Knuth73]), such as linear probing or quadratic
hashing may also prove beneficial for set representations.

32 LIST REPRESENTATIONS

LEAP lists are sequences of items. The same item may appear an arbitrary number of
times in the list. The order of items 1s that imposed by the user's prcgram. As with sets, we have
chosen a set of primitive operations which are sufficient to do all the list manipulations available
in our subset of SAIL, eg, assignment, FOREACH iteration, concatenation, selection and removal
based on index position. There are twenty primitive list operations (See appendix B for their
description).

REPRESENTATIONS FOR LISTS

I. One-Way Linked List (see Figure 3).This is the same data structure as the one-way linked hst
used for set representation, except of course the order of items is not necessarily in descending
internal representation, but is that imposed by the user's program.

The storage (in words) required 1s zero for the empty list; otherwise, one plus the length of the
list.

2. Two-way linked list (see figure 7). The descriptor contains a pointer to a two-word header node.
The header node contains the length of the list and pointers to the first and last nodes of the
list. Each two-word node contains an item, a forward pointer to the next node in the list, and a
back pointer to the previous node in the list. The forward pointer of the last node and back
pointer of the first node both point to the heauer node.

The storage required is zero for an empty list; otherwise, two plus twice the length of the list.

3. Variable Length Array. This 1s the same as the data structure used for sets except again the
order of items 1s that prescribed by the user’s program and is not dependent on the internal
representation of items.

The storage required is zero for the empty list; otherwise (on the average) five plus the length
of the list.

OTHER LIST REPRESENTATIONS

In addition to the representations mentioned above, we may use most of the
representations used for character strings since our lists are really strings of items ((Madnick67)).
Thus, we might also use fixed length arrays. A circular buffer 1s another representation which
may be useful. In a arcular buffer, we have a block of storage and two pointers to the beginning
and end of the list. The block of storage 1s thought of as circular. That is, conceptually, the next
element after the last element of the block 1s the first. Another interesting list representation is that
of a height balanced binary tree ([Crane72]).

T PR e 1 PO A 6 PRES S e G ST

SR 70 e ST O S e S G SR | R A) S S0 v W RUE S . IR WU TV, B PRy —

e ek i S

1ok

TWO WAY LINKED LIST 29

] LENGTH

—

F_

ITEM ITEM

Last Node First Node

Figure 7

i el Sk

33 TERNARY RELATION 30

3.3 TERNARY RELATION

LEAP contains a simgle ternary relation. Relation instances are written AeO=V A
ternary relation can be represented by eight mapping functions.

I.Given A,O,V 2o true, false (does relation instance exist)
2 Given A,O 2+ {V}suchthat A€ O =V

3. Given A,V 4+ {O}suchthatAeO =YV

4. Given O,V 2+ {A}suchthat A®O =V

5. Given A s {<OV>}suchthat A®O =YV

6. Given O 4+ [<A)V>}suchthat A®O =V

7. Given V s {<AO>}suchthat Ae O =V

8. 4+ [<AOV>}suchthatAs O=V

“cab>" is a meta notation the ordered tuple (ab). The eighth function which produces the
universe of ordered triples has not been implemented.

It is not common for the ternary relation to be used in the most general sense (i. e.
needing all of the mapping functions) For most programs, any given triple (relation instance)
may be referred to by only a small subset of the mapping functions. This is even more likely when
we partition the single ternary relation into several disjoint ternary relations (See description of

partitions of the ternary relation in Section 4)

G

To simplify the selection process by eliminating some redundancy, we wish to implement
only the most specific mapping functions which can not be easily derived from other mapping
functions which will be present. Let MF be the subset of the mapping functions which are needed
for the user's program (this can be determined by a static analysis of the source program). Now
remove from MF those functions which can easily be derived from others in MF. (1) can be
derived from any of the others. (2) can be derived from (5) or (6), (3) can be derived from (5) or
(7) and so forth. We now have MF containing three, two or one mapping functions. We will have
a representation for each of these mapping functions. These mapping functions may be classified
by the number of bound arguments they have. (5), (6), and (7) each have only a single bound]
argument. (2), (3), and (4) have two bound arguments, and (1) has all three arguments bound.]

Lo ot s T L

We immediately notice that by considering permutations of the components of the 1
ordered triple representing the relation instances, we can always act as if the first; first and second; ?
or all three positions within the triple were bound. This may mean we are actually keeping track
of up to three different permutations, one assoctated with each mapping function within MF.

3

Before we actually list those data structures which we will use to implement these 3
mapping functions, let us note that there are other ways of implementing relations which involve]
‘ a single data structure which is good for several mapping functions. ([Rivest74, Delobel73)).)
Some hardware associative processors ((Minter72, Minsky72, Parhami72]) have even designed to

dirertly implement associative retrieval.

4 L han ko g o e e A g FE
- ATET CRGEE S T e ST L W eT . a S o e
v L L B b il 2 albadhe Lo it i
. — = PR e TR e S, =

3.3 TERNARY RELATION 31

PRIMITIVE OPERATIONS ON THE RELATION

The primitive operations necessary for the associative store are:

1. MAKE - create an instance the ternary relation. 1f more than one mapping function may
potentially involve this triple MAKE wiii have to modify more than a single data structure.
For example assume that mapping function (2) (A e O =?) and mapping function (7)
(> @ ? = V) were required by the user's program. A make statement would have to update the

data structures corresponding to each mapping function.

9 ERASE - delete an instance from the ternary relation. |f more than one mapping function may
involve the tripies matching the pattern of the ERASE, ERASE will have to update more than

a single data structure as with MAKE.

a EXISTENCE - does a given relation instance exist. We will use the most specific mapping
function which can answer the question. Again assume that we have mapping funcuons (2) and
(7) available. To evaluate the boolean 4 ® O = ¥ we would use the more specific mapping
function, mapping function (2). Note that this is sometimes suboptimal. If there were only one
<A0> parr for each V, but many V's for each <A,0> we would be better off using mapping

function (7).

4. FOREACH iteration - as with existence (esting, we use the most specific applicable mapping
function.

REPRESENTATIONS FOR THE MAPPING FUNCTIONS
The foliowing are descriptions of how the various mapping functions may be
implemented. Due to time constraints, this implementation was not completed in our demonstration

system.

ALL THREE ITEMS BOUND

We have a block of storage 128 words long which we use as buckets for a hash table.
We take all three items, hash them together to form an :ndex between 0 and 127. This gives us an
position in the hash table of a conflict hst. Each two-word node 1n the conflict list contains the

1 three items of a relation instance and the pointer to the next node 1n the conflict list

The storage (in words) required for this representation is thus 128 words plus twice the
number of relation instances.

A PN T YA S iy e ——
.

Sl Nic S

3.9 TERNARY RELATION 32

TWO-THINGS BOUND

Hashing

We hash the two bound items together to get an index into a 64 word bucket hash table.
This gives us a linked list of three word nodes, containing the two bound items, the pointer to the
next node in the conflict list, and a set descriptor for the set of items which are the third
component of relation instances with the two bound items.

In our design, there are three variants of this which differ in the representation used
for the set of third components. Apart from the storage used for the set, the storage requirement Is
64 plus three times the number of different pairs <first component, second component> 1n the
data structure. Using a sorted linked list as the set representation, we need an additional word per
<first component, second component> pait and one word per relation Instance. Using an height
balanced binary tree, we additionally need two times the number of relation instances. Using a
fixed length biutstring, we need an additional n words, where n 1s [number of possible third
components/327] per distinct <first component, second component> pair.

Field Selection

We use the second item to select a field (offset) to the st : <ture of the first item (See
figure 2). The field contains a descriptor of standard set representation. We need a transiation
function which translates the 18 - bit representation of the second item into a field index. (In our
design this function must be executable at compile time).

The base storage requirements are the number of possible first components times the
number of possible second components. The additional storage needed for the set of third
components for each active <A, 0> pair may be calculated the same way as was done with the
hashing representation above.

ONE-THING BOUND

This mapping function has an ordering to the components of the triple. The first item
is the one which 15 always specified, the second 1tem will be the one next most often specified, and
the rhird will be the least often specified.

We use the first item to find (via hashing, or sorted linked list) the head of a sorted
linked list of ordered pairs consisting of the second item and a set of the third items.

The siorage required is the number of distinct first items plus initial hash table (if any),
plus twice the number of second items per first item, pius the storage necessary for the set of tAird

items.

34 ESTIMATING EXECUTION TIME 33

34 ESTIMATING THE EXECUTION TIME OF PRIMITIVE OPERATIONS

We have previously stated that there are three classes of information that our selection
phase needs to know about the representations available. The first, applicability, is found by
looking at which primitive operations have actually been implemented using this representation. If
any primitive operation 1s used by the user's program which has not been implemented, then this
representation is not applicable. The second piece of information, the storage cost function, has
been treated 1n the previous sections. Here we will discuss the third class of information,
prediction of the execution time which would be used by the routines implementing the primitive

operations.

We believe 1n precise analysis of program segments. It 1s not enough to know that one
routine takes time proportional to the size of a data structure and another takes time proportional
to the log of the size of the data structure. The proportionality constants and any other constant
overheads are important in making a wise choice between the two routines.

To demonstrate the importance of knowing the precise proportionality constants let us
consider two subprograms which are logically equivalent. The expected execution time of the first

[N
19 + 12 % log2(2)

time units, where A 1s the number of data objects , and the expzcted execution time of the other is

40 + 5% /32

ume units. Which should we choose? The answer clearly depends on 3, the number of data
ob jects. If X were only 2, the first program would be expected to take 31 time units and the second
slightly over 40 time units, so we would choose the furst. If A were 32 the first program would be
expected to take 79 tume umts and the second would take only 45, so here the second is superior.
If % were 1024 the first program would be expected to take |32 units, and the second , 200 50 the
first program would again be superior. The only way we can determune this analytically, is to have
precise knowleclge of the constants 19 and 12 for the fist algorithm and 40 and 5/32 for the
second. The problem to be solved now is, how do we determine the constants, and the very

dependencies on log2(x) or A?

Two methods are apparent. One 15 to simulate the routines on a large number of
collections of random data of difierent sizes then use statistical techniques to derive the
dependencies on functions of size ard the corresponding constants. This technique is vahd only
for a large enough sample, and we wonlc not expect to be able to simulate in a large range. The

results would thus be valid only in a small range.

The other method, which we have chosen, 15 to analyze mathematically the various
subprograms which are used to implement the primitive operations using the techniques of Knuth
(vo! I-111).

We are interested in the application of the analysis of algorithms technigues to the

concrete subprograms to determine both the order dependence (an order n? or order log n
algorithm) anc the proportionahty constants of all terms in the execution time cost function.

3
1
1
i
:
;
%
:
:g
;
:
{

34 ESTIMATING EXECUTION TIME 3¢

Clearly any results we obtain are not of theoretical importance (i.e. no claim 1s made that they
reflect the minimum amount of time necessary to accoiaplish the primitive operation on the given
data structure) but reflect only the expected time using our particular encouings of the primitive
operation. A better encoding of a given routine that may reduce the proportionality constants, or
even order dependency may be found in the future.

We wish to stress again the importance of precisely determining the proportionality

constants a8 well as the order dependenty. When the uze of the Gata structures 18 wnall & 100U n
.) .

encoding will be worse than a J0 n= encoding. The running time of a program which uses these

subprograms depends on the actual number of machine instructions executed within these

subprograms not on some order Gependency tuch as nl

Our basic method 15 to weight each subprogram statement with its expected execution
time, multiply that by the number of times it 15 expected to be executed (normally a function of
size of data structures etc), and then sum these numbers over all the statements of the subprogram.

We have chosen to use assembly language to implement all the primitive operations on
our representations. We have a much better idea as to how much time a machire instruction 1s
expected o consuine thain how iiuch tme a statement in a higher level language will take (See
appendix H). There has been some work on predicting execution time of ALGOL, FORTRAN
and LISP programs ((Wichman?72, Ingalls71, Knuth7l, Wegbreit74]) but current methods are still
very crude. As demonstrated above we must know precisely the reievant proportionality constants
in order to determine whether given representations are better or inferior to others.

Our method of calculating execution time cost functions is thus to associate with each
instruction a weigh® proportional to its average execution time. We also associate with each
instruction the number of times the instruction 1s expected to be executed as a function of the size
of data structure and perhaps other parameters. Finally we take the sum of the products of
instruction weight and number of times the instruction 15 executed, to construct the time function.

For example, corsider the routine for fetching the Nth item in a sequence using the one-
way hinked list representation. (My apologies to those who are not familiar with PDP-10 assembly
language. Hopefuily, the comments will help). Let /INDX, LPTR, and RESULT be symbolic
names for accumulators. Also, assume that the list index 15 in the variable named N, and the list
descriptor 1Is in the ceil named THELIST. The numbers to the right are the weighis we have
assigned to the individual instructions.

move indx,n ;.LOAD N INTO ACCUMULATOR INDX 3

move Iptrthelist ~ .LOAD THE DESCRIPTOR INTO 1
; REGISTER LPTR

hrrz lptr(iptr) GET POINTER TO NEXT NODE IN LIST ;3

sojg indx,lp ;DECREMENT INDEX, IF GREATER THAN ;2
, ZEROGOTOLP.

hirz result(ltr) .FETCH THE DESIRED ITEM .3

We immediately see that the two MOVE instrucitons and the HLRZ instruction are each executed
only once The two instricnion loop will be executed N times. where N is the hst index. Ax it i1
not clear here what N 1s, we will assume that 1t 1s equally likely to be [, 2, . X, the length of the
list. The average value of N is thus easily determined as (I + 2+ ... X)/x = (x+])/2. Therefore,
the average number of executions of the HRRZ, SO JG loop 15 also (x + 1)/2.

34 ESTIMATING EXECUTION TIME 35

Our predicted tirne for this routine is thus:
3eB3a43MQeIN242K A4 1)243115425%2

Our analysis was dependent on the assumption that the indices were randomly distributed over all
possibilities. However, if the user were actually using the sequence as a model for a stack, he
might be biased toward the lower or higher indices only, thereby invalidating our assumption.
Other forms of analysis of programs can give us worst case estimates if need to worry about the
maximum program execution tme. , perhaps because of real time constraints. Our analyses give
us average estimates which we feel are the most generally useful. We feel that the real answer to
problems involving biases in the use of data structures, either explicit semantic level ones as
above, or hidden ones that result from interactions involving internal representations, is careful
monitoring. Both pre-selection monitoring (using default representations) and post-selection
monitoring should help us alleviate problems mvolving such gross biases. We would expect future
execution time estimators to have more parameters. In the above case we would want the estimator
to depend at least on the average index value, if not the distribution of index values.

We have performed analyses (average case) like the one above on all the routines
implementing the primitive operations on our representations. (See APPENDIX I for our
execution time cost functions.)

— o UN OGN GIB UEE UHA B D o B O oad o o and S

1.0 36

SECTION ¢

INFORMATION GATHERING

A system for selecting data representations mu:t have information about representations
and about the use of the absiract data structures for which it is going to choose representations. In
the previous chapter we discussed two techniques for obtaining information about the time
functions of the primitive operations as implemented for given representations: simulation and
mathematical analysis. We will now discuss techniques for obtaining information about the use of
the abstract structures of the user's program.

The information we wish to obtain includes which primitive operations are performed,
the expected sizes of the abstract structures when the various primitive operations are performed,
the values of the other parameters of the time functions of the primitive operations, and partitions
of the information structures into classes.

It 1s common within a program to have many different abstract data structures of the
same type. Often, 1t 1s not necessary or desirable to represent all these structures the same way. We
may find that a program uses two structures of the same abstract type quite differently, even
employing different sets of primitive operations on them. If we are forced to represent both
structures the same way, we end up with a compromise representation that is probably inferior to
ones we would have chosen if we had approached each structure independently. However, there
are also gooc reasons for representing some groups of data structures the same way. We find that
with many operators we can take advantage of the internal structure to obtain more efficient
implementations. For example, assume we wished to add the elements of one set to another, e. g.,

SET! « SET1 uSETY,

An obvious way of implementing this would be to iterate though SET2 and insert those elements
into SETI. If we were representing SET/ by a sorted (on the inteinal representation of data
ob jects) linked list, this implementation would take a time proportional to the product of the
number of elements in SET] and the number of elements in SET2. If, on the other hand, both
sets were represented the same way, as sorted linked lists, we could traverse both lists in parallel
and accomplish the union i~ time proportional to the sum of the lengths of the two sets. In theory
we could have a different union implementation for every pair of possible input representations,
and every output representation but the cost of this is very large in terms of the size of the library
of implementations of the primitive operations. If we had ten set representations we might need
five hundred (ten cubed divided by two since union is commutative) union routines. The other
alternative is to have only one union routine per representation, and translation functions which
change the representation of a set from one representation to another. To perform the union, we
would make sure both arguments were in the same representation and then use the representation
dependent union routine. These transiations are usuallly expensive operations to perform, yet we
wish to use the highly efficient representation-dependent routines. Our solution, though
admittedly suboptimal, is to avoid the expensive translauon operations by insisting that both
operands to an operator be kept in the same representation. Note that even if we were willing to
have such large libraries or translations of reprewentationt we might etill wish o indis that certamn
information structures be represented the same way. One reason might be to avoid runtime
representation checking of procedure parameters when they appear as operands to primitive
operations.

Rk b

e o

4.0 INFORMATION GATHERING 37

We have chosen to require that all information structures which are operands to an
instance of an operator, or structures acting as the same positional parameters to a procedure, be
in the same equivalence class. This gives us the smallest classes possible that retain the property
that there Is no conversion hecessary from one representation to another. This also gives us the
property that no dynamic determination of 1epresentation 1s necessary and the proper routine for
a primitive operation can be totally specified at compile ume Determinations of the tradeoffs
nvolved 1n having translations of data structures from one 1epiesentation (o another, as well as
benefits versus costs of dynamic representation checking are lett to future research

One of the goals of the information gathering phase 1s thus to find the information
necessary to partition the set and sequence variables into equivalence classes.

There 1s another important use of partitioning. This occurs when we wish to split a
single information structure into several. Let us consider the ternary relation as simply a set of
triples. It 1s often possible to view this set as the union of several disjoint sets of triples. This
separation 1s useful if each update or access of the associative store in the user's program refers
only to one cf the disjoint subsets. Now, mstead of having one large data structure we have
logically several disjoint data structures which are independent of one another. 1t 1s quite likely
that each of these is less general in terms of the primitive operations performed on 1t than the
original data structure. We will thus be able to tailor a representation for each of the smaller
structures that 1s likely to be more efficient than the compromise representation we would have
had to chouse for the original structure. Note that splitung 1n general may be a useful concept in
the representation of high level data, and often it may nat even be necessary that the results of
sphtung be disjoint (No attempt 1s made 1n this system to split sets or sequences). One of the goals
of our information gathering phase will be to find information which will let us later compute a
natural disjomt split of the ternary relation.

In general, several techniques are applicable to the problem of information gathering.
First, we may let the user give us the required information. This may be done by requiring the
user to make declarations or asseitions about ins program (this 1s not done in our demonstration
system). T his information can be augmented by an interactive session 1n which the system asks the
values of additional parameters which had not been declaied. This method has the obvious
drawback that the user often does not have such information. With the current state of the art
there are many programs which can not be analyzed mathematically to the detail we require. Our
choice of data representation will be deternuned by this information. If dependent only on crude
guesstimates our choice will be just as crude. Another reason for not depending on the user is that
a voluminous amount of miormation 1s required. An enormous amount of patience Is required to
sit at a terminal for many minutes (hours?) to answer detailed questions. A good strategy is to ask
the user only when the system 15 not able to determine a piece of information 1n any other way.
During the evolution of a system like ours, this should require the user to provide less and less

information directly.

A prime means of obtaining information is the use of monitoring. The user runs his
program with his own sample input data with the system providing default representations for the
abstract information structures. A special compiler and runtime environment is used which is
geared to collecting statistics about the use of the mformation structures. The only statistics we
gather 1n our system concern the number of tumes each construct of the user's program 1s executed.
Other information which we could easily obtain in a production system would be the distribution
of sizes of the information structures at particular places n the user's pregram (e.g every time a

p
k!

T o T T T A T

= aunder bl el L84 2 -

4.0 INFORMATION GATHERING 38

primitive operation 1s performed), and the parameters of our time functions for the primitive
operations. In our current system we ask the user to provide this information during a question-
answer session.

The other technique which we depend on 1s a static analysis of the program. In our
system this takes the form of a meta-cvaluation of the program by actually following all possible
paths of control and computing the possible contents of variables and the associative store.

4.] EXAMPLE OF INFORMATION GATHERING

Before we describe the last technique of information gathering, static analysis, let us see
how the information gathering portions already described would process our transitive closure
procedure.

set procedure TRANSCLO (itemvar REL; set BASE);
begin "TRANSCLO"
set RELATED, NEWLYRELATED, FOUND; itemvar XY,
RELATED « phi; NEWLYRELATED « BASE;
while (NEWLYRELATED = phi) do
begin
FOUND « phi;
foreach XY | X ¢ NEWLYRELATED n REL ® X =Y do
put Y in FOUND;
RELATED « RELATED u NEWLYRELATED;
NEWLYRELATED « FOUND - RELATED;
end,
returu (RELATED);
end "TRANSCLO",

We first have a monitoring phase. The above procedure is compiled with a special
comptler which inserts counters before every statement and every FOREACH iterator. We obtain
a count of how many times each construct was executed by monitoring a sample run of the
program using the user's own mput data with the system supplying default representations for all
the LEAP data structures.

The system then asks the user many questions concerning the average size of various
data structures at particular program points. In the above example the system asks for the
average size of BASE when used in the assignment statement, the average size of
NEWLYRELATED in the equality test and the probability of it being empty, the average size of
NEWLYRELATED in the foreach search and again the probability of it being empty, the size of
FOUND at the PUT statement, the size and probable overlap of RELATED and
NEWLYRELATED at the union statement, and so forth. Most of these statistics could be more
easily obtained if there existed special versions of the data structure manipulation routines used
during the monitoring phase which actually recorded the information necessary to compute these
statistics. Even in the absence of such mechanisms we could possibly decrease the number of
questions the user 1s asked by doing some inference on the program. For example, above we
mentioned that the system asks the user the probability of NEW LY RELAT ED being empty at the

S g i b bl N

4.1 INFORMATION GATHERING 39

FOREACH search. This question 1s clearly superfluous because the probabihty can be inferred to
be zero from the conditional at the top of the while loop. Other inferences could be made on the
basis of certain operations not changing the size of their operands. All these inference techniques
are left to future research.

42 STATIC ANALYSIS OF LEAP PROGRAMS

PRIMITIVE CLASSES OF ITEMS

A primitive item class consists of either a single declared item or all the items potentially
allocated from a single source language call t the heap allocator (NEW). This is the finest grain
to which we can partition all the items in the user's program. There is essentially no way, at
present, to distinguish between different items produced by the same source language call to
NEW. We will use these primitive classes to model the contents of variables and the associative
store. A relatively small number of primitive classes, can be used to take the place of the usually
much larger (and sometimes indeterminate at compile time) number of items actually present
during the execution of the user's program.

Meta-evaluation

Meta-evaluation, as we use the term, means a simulation of the user's program
symbolically rather than with real data. [n our system we express the values of LEAP variables as
sets of primitive item classes.

Let us consider the transitive closure procedure we looked at earlier and note how we
would process it, before we give the actual static analysis algorithm in detail.

set procedure TRANSCLO (itemvar REL, set BASE),
begin "TRANSCLO"
set RELATED, NEWLYRELATED, FOUND; itemvar X\Y;
RELATED « phi, NEWLYRELATED + BASE,
while (NEWLYRELATED = phi) do
begin
FOUND « phi;
foreach XY | X ¢ NEWLYRELATED A REL @ X =Y do
put Y in FOUND;
RELATED « RELATED y NEWLYRELATED,
NEWLYRELATED « FOUND - RELATED,
end,
return (RELATED),
end "TRANSCLO™,

To begin processing we form a flow graph of the program which we will then analyze.
(See figure 8 for the flow graph corresponding to this procedure.)

Ay e

3
;

FLOW GRAPH OF TRANSCLO 40

WHILE

{ 3
¥ A
i

PUT

. @ e A

RETURN

—

-4

-

Figure 8

.ﬂ‘_ i s s i i L L
e a— C——
R

O T S B e o e

4.2 STATIC ANALY<", 41

We only arrive at the procedute entry point via having encountered a call to this
procedure in the flow graph of the program in which this procedure 1s found. We will therefore
know what the possible values of REL are in terms of the primitive item classes. Similarly we
will know the possible elements of the set BASE, as well as having a model about what
assoclations can possibly exist, all in terms of the primitive item classes.

When we encounter the first two assignment statements, we attach to the corresponding
flow graph nodes, the appropriate information. In this case, at the first assignment we know that
the set RELATED will be given the value PHI, 1. e. that its set of possible values in terms of the
primitive item classes 15 empty. Similarly, at the second assignment node we can determine the
possible set of values for BASE, and we will attach that same set as the potential set of values for
NEWLYRELATED at this node. In general we keep track of the nodes at which either changes
to the value sets of some variable occur, or where the value sets of all variables are known. We
will explicitly compute all the value sets at control points. This will allow us to determine the
possible set of values for any variable we encounter in the program.

We next encounter the while loop node. This 15 a control point so we will attach to this
node our knowledge as to the possible contents of all the variables. In this case it means merely
attaching the value set of the variable REL, as copied from the entry node; the value set of
BASE, as copied from the entry node; RELATED, as copred from the first assignment node; and
the value set of NEWLYRELATED as copied from the second assignment node.

We now encounter the equality test, NEWLYRELATED = PHI. This st.tement has no
effect on the value sets of any vanables so it 15 essentially treated as a null statement. In a more
advanced system, other booleans could possibly alter our views as to the value sets of certain
variables. For example, if we had the expression X € SETI’ 4R then on the true path (if this were
an If statement conditional), we would know that the possible value set for X could only be our
previous value set for X intersected with the value set of SETVAR. Our system as currently
implemented, makes no such use of boolean expressions.

The next node encountered 1s the assignment FOUND « PHI. We treat this the same
way we cid the first assignment node.

Now we come across the FOREACH loop. We treat the search X € NEWLYRELATED,
much like an assignment. The value set for X at the foreach node is thus the same as the current
value set of NEWLVYRELATED. The search REL & X =V s shghtly more complicated. We
know the value sets of REL, and X. We then use our model of what possible associations exist, to
compute the possible value set of primitive items which could be assigned to ' by this pattern
match.

The put node will take the union of the value set of ¥ and the value set of FOUND
and make that the new value set of FOUUND at this node.

We now encounter the continue node for the foreach. We notice that during the
execution of the foreach node, value sets for certain variables were changed. We must therefore
simulate the loop agamn until a fixed point 15 reached: that 15, untl no new primitive items are
added to any of the value sets of the variables at the various nodes within the loop (The reason
why a fixed point 15 always reached will be discussed with the description of the static analysis
algorithm). This guarantees that we will correctly compute the possible sets of values for variables

42 STATIC ANALYSIS 42

after loop exhaustion. As an example of why simulating until reaching a fixed point Is necessary
consider:

SETI1~{al
COUNT « 1,
SET2«~{b}
while COUNT < N do
begin
COUNT « COUNT « I;
SET2 « SET2 uSETI,
SETle«{ch
end,

If we had merely simulated the while loop once, the possible set of values for SET 2, when the
loop is exhausted, would have been computed as { @, b } which of course is incorrect. By insisting
that we have a fixed point we will simulate the loop three times and obtain the correct result

{abc}

The union node is easily handled. The new value set for RELAT ED 1s the union of the
old value sets of RELATED and NEWLYRELATED. We cannot tell if the set difference will
find any values in common, so we take the conservative approach and assign as the new value set
of NEWLYRELATED the current value set of FOUND. In general if we err in a computation of
a value set, we want it to be on the side of being larger than necessary. This may force the system
to later choose a slightly less efficient representation, but it also restrains the system from choosing
a represertation which is not applicable (1 e doesn't provide essential primitive operations).

We now come across the continue node of the while loop. Just as in the case of the
FOREACH loop we must continue processing until we reach a fixed point. So we again return to
the while node. At this point we have to insert in the value sets of the variables FOUND,
RELATED, and NEWLYRELATED all the elements of the corresponding value sets at the end
of the while loop.

Eventually we will obtain a fixed point and can then reach the return node. Here we
will take the current value set of RELATED and make it the value set of the procedure. This is
the value set that the caller of the procedure will use in its meta-evaluation.

43 STATIC ANALYSIS ALGORITHM

The first step 1s to form a graph of the user's program. As our system is only dealing
with the choice of data structures, we do not include constructs fiom the user's program which are
totally devoid of LEAP statements and expressions in this graph. For simplicity, we have also
outlawed the go fo in this system, thus giving our program graphs a nicely nested structure.

We will implicitly associate with each node (expression, or statement) of the program
graph, a set of primitive item classes (the value set) for each variable of the usei's program which
is accesstble at that node. The value set for a given variable at a given node will eventually
contain all the primitive items which that variable could possibly have at that point of the user's

DM TN P s

AR s g s e

e

Sl e 2

Liie SO dan e

4.3 STATIC ANALYSIS ALGORITHM 43

program. We also maintain a madel of the assouiative store (ternary 1elation) in terms of what
relation instances can exist between the primitive item classes. This model contains all associations
which could exist at any point in the program. We do not have separate models of the contents of
the associative store at every node of the program.

Before describing the details of the meta-evaluation process, let us define a some ternis.
A value changing node 1s a node where assighment is done to some LEAP variable itemvar, set or
hst. This may either be an exphat assignment statement, ur some FOREACH search. A control
node 15 a node representing a control pornt in the user's programy This can be the beginning of a
locp, exit of a loop, if-then-else node, case node, join node (node 1mmediately following case or if-
then-else), procedure entry node, and so forth. We keep a list (NODELIST) consisting of the most
recently encountered control node, preceded by all the value-changing nodes encountered since
that control node. The value sets (as constructed so far) of every known LEAP variable are
associated explicitly with each control node. With each value changing node we associate the
value sets for all LEAP variables whose values were possibly changed by that nole Thus, as we
encounter any node in the program, we can find the value-set associated with a given variable
Anown at that point by chaiming back the NODELIST unul we find the first node which has a
value set for that variable. If there are no nodes in the NODELIST which ha.e value sets for the
variable, then we know that this is the first encounter with that variable so it has a null value set
so far.

To begin the meta-evaluation, we mmitialize NODELIST to contain the program entry
point. Now we traverse the program graph nodes i the natural urder. As we coine 1o any set, list
or item expression we can compute the possible value set of that expression by substituting the
value sets of the constituent components of the expression and using some special rules.(See
META-LV ALUATIONS appendix € Tor example we imght encounter the eapiession,

SET1 v datum(SETITMVR)

We cam directly compute the value set for the set variable SET/ by the algorithm given above. To
evaluate the value set for datum(SETITMVR) we must first compute the value-set for
SETITMVR, and then form the union of all the value-sets of the datums of the primitive item
classes 1n the value-set for SETITMVR. Now that we have the two value sets for SET! and
datum(SETITMVR) we simply take the union of them to get the value-set for the entire
expression.

At any value changing node we will compute the new value set and either merge that
with the existing value-set (from NODELIST) for this variable (s) or make 1t the value set for the
variable at this node. We then ardd this node to the front of NODELIST.

At a MAKE node we evaluate the three item-expressions and nseit the appropriate
ternary relation instances into our modrl. ERASE nodes are 1gnoied during this phase.

When we encounter any control node, we form explicit value-sets for each variable
known at that point. We do this by stepping through the NODELIST and finding the value sets
for each variable known. We then merge these value-sets with those already present (if any) for
these variab'es at the control node. After this 1s complete we throw away NODELIST and make a
new one consisting only of this control node.

D e . PP LD

)

T N AT T T Do)

"ty ol s Aoz ae. Manens b

®

T g it s e

.

|

o

4.3 STATIC ANALYSIS ALGORITHM 44

When we encounter a branching structure in the program (case, if-then-else) we stack
the current status, follow one branch to its completion (the join node following the case or if).
Then we pop the status (NODELIST etc) and traverse any remaining branches at this level, Join
nodes are control nodes, therefore, our model of the contents of each variable contain the union of
the models resulting from traversing each branch.

Loops are handled in a similar way to branching structures with one exception. When
we reach the end of a loop, we note whether any value sets have been changed during the
simulation of this loop, or whether any associations have been added to our model of the
associative store. If there have been any such changes then we simulate the loop again. Note that
this process 1s guaranteed to terminate because: we never remove things from the value-set of a
variable at any node; we never remove associations from the associative store: there are only a
finite number of variables (standard, datums of primitive item classes), there are only a finite
number of primitive item classes. These all combine to give us the knowledge that we can only
add primitive item classes to the value-sets, a finite number of times. Thus the loop simulation
always terminates Though this process 1s finite, and 1n most of the test cases we have processed
the execution time 1s not more than we're willing to spend, static analysis of loops 1s potentially
very costly. We continue to look for ways in which the cost of this analysis can be reduced.

Procedure calls are handled in a straight-forward manner. We treat value parametets as
If they were variables which had been assigned as their ininal values, the values of the actual
parameters at the procedure entry point Reference parameters are shightly more complex. We
must keep track of the set of variables which they could represent. Except for these minor
distinctions and the fact that we have to remember where to continue simulation after procedure
exit, we treat procedure calls just as if they were simple in-line blocks of code. This method does
not allow recursive procedures. There 1s no condition implemented which would cause the meta-
evaluation process to terminate for recursive procedures, as each time 1t encountered a self call to
the procedure 1t would suspend its current evaluation and start to evaluate the recursive call. This
process would continue indefinitely. Thus our demonst:ation system outlaws recursion. One
condition which could cause termination in future systems 1s to require that we not simulate any
procedure if there 1s a pending simulation of the same procedure with the same state (all
parameters have the same value sets, and no associations have been added to our model of the
associative store).

We have now mentioned all the information gathering which 1s performed in the
System, monitoring, user interrogation and static analysis. Each of these provides essent;al
information which will be used n the next phase, selection of representation for the individual
information structure classes

e

5.0 45

SECTION 5

SELECTION OF DATA STRUCTURES

51 CRITERIA

Whenever we pick one representation of data over another, we need to have reasons
why we consider that representation to be superior (or at least not inferior) to the other
representation for the given purpose. The most common considerations used in such decisions
involve the amount of storage space (working set size 1n a virtual memory) occupied by the data
structures, and the execution time (cpu time) necessary for performing all the access and updates
to the data structures. Also involved are the programming costs (original design and debugging)
of implementing the representation. In this system we are totally ignoring these latter costs,
because all the representations which are candidates for selection are fixed in advance, and we
have already programmed and debugged the library of their implementation.

We need some way of quantifying how good a given set of representations are in
comparison with other sets of representations. 1f one takes both less space and less time It is
clearly superior. However, what If no set of representations satisfies this? We must have some
way of predicting a cost for running the program with the different representations, and then we

shall pick the representation whose expected cost is least. One way of associating such costs is an
ob jective cost function whose parameters are ime and space occupied by a program.

52 COMMON COST FUNCTIONS

Let SMAX be the maximum amount of storage which may be
necessary during a program’s execution.

Let TTOT be the total running time of the program
Let S(T) be the actual storage in use by the program
attime TO0sT < TTOTAL
I. Minimum space
COST = SMAX
Choose the set of representations which will use the least space.
2. Time %(function of space)

COST = / F(S(1)) dt

A. F(S) = 1if S < CORESIZE then | else =

52 COMMON COST FUNCTIONS 46

Cost of program is the me required as long as 1t fits in the partition allotted to 1t.
B. F(S) = 1f S < CORESIZE then S else

Cost of program 1s the time X space required

C.F(S)=IF0<S < S| THEN C,
ELSEIF S| <$ £ Sg THEN Co

ELSE IF SN-I <S¢ SN THEN CN
ELSE w

We have here a step function, €| < Co < Cq .. <Cjy are constants

D. F(S) = IF 0 < <CORESIZE THEN $2 ELSE
Quadratic in memory size.

3. Time * function(maxspace). Multiprogrammed systems will often require the user to specify in
advance the maximum storage size he will use. The cost 1s then the cpu time multiplied by a
function of maximum storage size.

In addition, other constraints may be placed on the representations. For examgle, in a
real-time system (e.g. process controi), we may have the restriction that certain operations must
never take more than some fixed time.

Virtual memory systems with their pages and segments lead to other cost functions
which may be described in terms of average working set size, maximum working set and so forth,
These quantities are very difficult to predict with the current state of the art. In the sequel we are
therefore considering only real memory or single-segment systems.

Our computer runs under an operating system whose costs are related to space
multiplied by time so selection 2 (B) above will be the objective cost function which we will
attempt to minimize. An important fact to note 1s that we have not assumed 1n the rest of the
system the form of our objective function. 1t 1s therefore rather easy to change this to some other
cost function without modification to the other parts of the system. '

5.3 PARTITIONING THE INFORMATION STRUCTURES

After we have exhaustively processed the program graph in the information gathering
phase we make one more pass to partition the set and list variables into their appropriate classes.
Recall our requirement that two variables be in the same equivalence class if they are either
operands to the same instance of a binary operator, or they are the actuals to the same formal
parameter of some procedure. We also mark every set or list binary operation node of the

Ao SEEEA o o

B a2 s e e b AR

e b i i e .

53 PARTITIONING 47

program graph with the name of tie partition to which its arguments belong.

We now partition the prinutive items into disjoint item classes. Just as we wish to avoid
dynamic representation checking with sets and hsts we do not wish to have to dynamically check
the representation of items. In our system all items are represented by dynamic records, but the
length of these records may differ depending on whether the item in question has a datum, if we
use the offset representation for associations involving the item, and so forth. Our criteria for
putting two primitive items in the same class is that they are in the same value-set for som:
variable at scme program node or they are elements of the different value-sets for the same list or
set variable. Having these disjoint item classes will make the job of implementing representations
involving transformation of item representation (such as in the bit vector representations of sets)
much easier. We will not have to worry about having different transformations for different uses
of a single item.

After partitioning the items, we partition our model of the associative store into several
different ternary relations each of which will contain associations between the dis joint 1item classes.
For example, consider:

item classt: { ITEMI1,ITEM2, NEW(scan 20) }
item class2: { ITEM3 ;
item class3: { ITEMS4, ITEMS }

where ITEMI, ITEM2, ITEM3, ITEM4, ITEMS5 are declared items and NEW(scan 20) is the
primitive item class for the call to NEW at the 20 th token in the source program.

If we see that there are possible relation instances:
ITEM| ¢ ITEM3 = ITEM4
ITEM1 ¢ ITEM3 = ITEMS
ITEM4eITEMI = ITEM3
ITEM4 @ ITEM2 = ITEM3

we can classify them into two classes, modeled by
class| @ class2=class3
and
class? o classi=class2

Each operation on the associative store within .ne user’'s program can refer to only one
of these classes (otherwise we would have had the merger of two item classes into a single item
class). Therefore we have achieved the spht of the ternary relation into smaller disjoint ternary
relations.

54 APPLICABILITY FILTERING

Our system now has partitioned the set and list variables into equivalence classes and
split the ternary relation so we must now begin the selection process. We can immediately
eliminate some representations from further consideration because they do not provide certain of
the primitive operations required by the user's program for that class of abstract data structure.

s poard

5.5 COST PREDICTION 48

5.5 COST PREDICTION

We now will predict the ume requirements and space requirements for each data
structure using each possible representation. It is clear that the size of a high-level data structure
varies over time. That 1s, the space for a data structure increases and decreases over the
execution of a program. However in this first approximation let us act as if the size of the
abstract data structure were just the aveiage size over its hfetime. This average can be
approximated by taking the average of the average sizes of the data structure at each primitve
operation on this data structure. In ou: demonstration system we have these average sizes of the
data structure from information given to us by the user. In a production system this information
would be gathered by monitoring as well

The execution time required by prumitive operations on this information structure class
can be predicted by simply processing each prumitive operation node of the program graph
referring to this class in the following manner. First use the values of the size and other
parameters in evaluating the time function using this representation for the given primitive
operation. Then muluply the result by the number of times the node 15 executed (from the
monitoring of the program). Now by summing up the time costs of the individual primitive
operations we can get an estimate of the time cost for representing this class of high-level data
structure using this representation.

For each equivalence class of nformation structures we now have a table consisting of
how much tme and space would be required using each applicable representation. If one
representation dominates ano:her, that is, both its predicted space and time costs are less, then we
drop the dominated representation from any further consideration. Note that this is a heuristic
rather than an absolutely optimal thing to do. This 1s not necessarily optimal because of cross
terms in the ob jective function (time spent in procedure for manipulation times space occupied by
other structures) and 1s similar to the reason which prohibited us from selecting each information
structure representation independently.

Now let us order the remaining representations by our objective function, in this case
space-ume product. The fust of these representations (the one with the smallest space-time
product(ignoring other data structures)) will be our initial guess as to the best representation for
this class of information structures.

56 FINAL SELECTION

The total time-space product cannot be minimized by simply minimizing the time-space
product of each data structure, because of the cross-terms of the {'*m, time of operations on
structure A multiphed bv the space occupied by structure B. We the.efore need a technique of
minimization which sui ably treats these problems

The quantity we are attempting to minimize 1s the space-time integral. We will
approximate this quantity by taking the sum of the terms of the form: average space In use
during a procedure multiplied by the average ume spent inside th2 procedure, the summation
being performed over all procedures.

-

ne

56 FINAL SELECTION 49

In this research we have restricted ourselves to non-recursive procedures. Thus we can
construct a simple sequence of all the procedures of the user's program with the property that if
procedure A calls procedure B then a node representing procedure A precedes the node
F g ” representing procedure B in the sequence. Another way of stating this, is that without recursion
v § there 1s a partial ordering of the procedures where the relation calls or calls indirectly 1s used to
15 provide this partial ordering. We construct a sequence which realizes this part.al ordering.

‘_ Once we have constructed such a sequence we now have the property that the time of
: i— execution for a procedure depends only on itself and the ume of execution of procedures later on

in the sequence. Thus, to estimate the space-time integral for a given representation set we do the
following:

I. Processing the procedure list in reverse order, we estimate each procedure's execution time by
using the already predicted average execution time of all procedures which 1t calls, the
execution time required for non-leap constructs (provided by information gathering), and the
estima.cs of the LEAP constructs of the procedure found by using the primitive operation time
cost functions associated with the representation under consideration.

r

We then muluply the predicted time cost of a procedure by the storage costs of all the variables
allocated within the procedure. Global constructs such as triples and the datums of items are
counted as variables allocated in the outer block. The storage cost of a given construct is
estimated by taking the aveiage size of the construct and using that as a parameter to the
storage cost function associated with the given representation,

Using the above algorithm we can obtain a prediction (admittedly crude) of the space-
time integral using any given set of representations for the data-structures of the user’s programs.
We now shai! state how we use these estimates to pick the final set of representations.

Our first guess of the set of representations consists of all those representations which
minimize the local space-time product (that 1s only the average space used by a class multiplied by
the execution time of the primiuve operations on the class using a single representation). Using
this set of representaiions we can form a preliminary guess as to the minimal achievable space-
time integral.

We now iterate through all the classes of data structures. For each class and each
possible representation we estimate the new space-time mntegral if that particular representation
were chosen rather than the one currently chosen. If the new estimate of the space-ume integral is
better than the best seen so far, we will record the new best representation for the data structure
class, and then continue by processing the next data structure class. We continue to iterate through
all the data structure classes until we no longer get any improvement in the predicted space-time
integral. We now have our fu.al set of representations for the data structures of the user's
program.

Py o T

e e gl i n e e i

B e i

5.7 FINAL COMPILATION 50

5.7 FINAL COMPILATION

The system has selected representations for all the LEAP data structures in the user’s
program, the system now compiles the SAIL program substituting calls on the appropriate
primitive operations to handie the LEAP constructs. In our demonstration system, all the
primitive operations were implemented as closed subroutines, but there is nc inherent reason why
the final Compiler could not generate in-line code for these primitive operations.

e g T L NP)

SECTION 6

RESULTS

We have implemented a demonstration system to test out many of these ideas. It works
on a subset of SAIL which includes LISTS and SETS. 1t does not fully handle triples. All of the
phases up to the user interrogation phase (monitoring, static analysis) process the operations on
triples; only the interrogaticn and selection phase and final compiler would have to be modified.
Also, of course, the library of primitive operations on associations (which has only been partially
implemented) would have to be completed as well as analyzed.

The system consists of several programs, most of which are written using the SAIL
Singuage.

The first program s a trivial modification to the Stanford SAIL compiler and 1s written
in assembly language. The only difference between this and the standard comptler involves the
insertion of statement counters into the object code. We needed more precise knowledge of
statement and expression counts and so we nsert more counters into the object file than the
standard compiler does. This first phase 1s used to obtain the statement frequency counts by
compiling and executing the user's program using the user's data and our own default

representations.

The next phase takes as mpuc the user's source file and the statement counter file
produced by the monttoring phase above. 1ts basic function 1s to parse the user's program into a
flow graph and associate with each node in the flow graph the corresponding statement count.
This program was formed by taking the parser and scanner from the standard SAIL compiler
and substituting our own routines for the code generators. Thus part of it is written in assembly
language and part in SAIL. The flow ¢raph is in the form of LEAP triples. Other data that will
be used in the successive phases is stored as the datums of items. The communication between
phases takes the form of data files contatnng the items, datums of 1tems, and associations between
items. At the end of each phase such a file 1s written, and the next phase reads the file as input.

The static analysis, written entirely i SAIL, 1s the next phase. It performs the meta-
evaluation of the program. It by far is the slowest of all the programs in the system. The next two
phases (also written 1n SAIL) merely partition set and list variables and the associations into the
appropriate equivalence classes.

The next phase does prelmunary filtering. That is, 1t notes which representations will
not be allowed to represent certamn hst or set classes because they do not provide essential
primitive operations. It also interrogates the user as to the expected sizes of the data structures
which are operands to the LEAP operators.

The penultimate phase uses the information gathered to select the representations of the
sets and lists of the user's program. It may also be run in a mode in which the user can choose
representations for some or all of the classes of sets and lists before the automatic selection.

The last phase 1s a compiler which uses the selections from the previous phase to decide
which library entries to use to implement the primitive operations.

Gk S a e, ook B Lo Lo R am s el 8 Coend e or ot ol T L B e S o

]
-i

R TS T 5 X WIS

T I O - AT T e - T S e

6.0 RESULTS 52

Before analyzing several test cases let us make some general observations about the
speed of this demonstration system and some of its hmitations. The ma jor imitation is in the size
of programs that 1t can handle. The standard SAIL implementation allows only 4000 items, which
is only enough to represent the flow graphs and other data of programs approximately ten pages
or so 1n length. The execution time for the various parts of the system (apart from the static
analysis) total about 10 times the time required for merely compiling the program. This does not
include the ume for writing and reading the LEAP data base between phases. This input-output
takes approximately 20 times the other execution time and tends to dominate the whole process. It
could be reduced by 2egregating several phases into single phases to reduce that cost, or by
substantial reprogramming of the mput and output primuives Execution time for the static
analysis pass varies dramatically depending on the depth of loop and procedure nesting but in
typical programs takes as much execution time as the rest of the phases put together (not
including mput-output). In extreme cases it has been known to take two or three minutes of
execution time to process a two page progiam that takes just a couple of seconds to compile.
Clearly this is the phase which would have to be dramatically improved to make the whole system
more cost effective.

Let us now analyze the results of using the system on several test programs. The
program texts may be found in the appendices.

6.1 INSERTION SORT

The oniginal insertion sort (Appendix D - INSRT2) was processed using manual
selection to choose representations for the set variable UNSORTED, and the list variable
SORTED.

Time to sort 300 integers (read from disk, originally in random order)

AVL TREE for UNSORTED , VARIABLE LENGTH ARRAY for SORTED
TIME = 6.7 (sec) SPACE = 10K

SORTED LINEAT LIST for UNSORTED, LINEAR LIST for SORTED
TIME = 18.5 (sec) SPACE = 8K

SORTED LINEAR LIST for UNSORTED, VARIABLE LENGTH ARPAY for SORTED
TIME = 4.5 (sec) SPACE = 8K

The program was then modified to form INSRT3 (Appendix E). The only difference
being that the inner loop which iterated through the SORTED list was written as a FOREACH
instead of an WHILE loop with list indexiny. This, as expected, dramatically changed the time
required for the implementation using a LINEAR LINKED LIST for the st SORTED (because
with hist selection we have to process the header of the list every time, thus the time for traversing

the list 15 proportional to N2 rather than N),

e i oo ke L o g s dl e Bobs s gt ol ke

oSl ko &

6.1 INSERTION SORT 53

AVL TREE for UNSORTED, VARIABLE LENGTH ARRAY for SORTED
TIME = 6.1 (sec) SPACE = 10K

SORTED LINEAR LIST for UNSORTED, LINEAR LIST for SORTED
TIME = 7.5 (sec) SPACE = 8K

SORTED LINEAR LIST for UNSQRTED, VARIABLE LENGTH ARRAY for SORTED
TIME = 6.0 (sec) SPACE = 8K

We note that the ume required for the last representation increased. While 1t s not
definite (because of the inaccuracies of the uming mechanism) that this 1s significant, it probably
ts. This would be caused by the fact that using FOREACH'S (in our implementation) always
copies the set or list variable being tterated while the FOR with list indexed selection does not.

We also ran this program (INSRT?) with the standard SAIL system (which uses sorted
itnear linked lists to represent sets and linear linked lists to represent lists) and obtained a running
time of 12.9 compared with 7.5 above. This time difference 1s probably caused by several factors.
First, the list and set manipulation routines in our implementation (in particutar the FOREACH
interpreter) have been carefully optimized. Secondly, we have one less level of indirection 1n
fetching the daiums of items. Finally the linear lists used for sets are sorted in ascending order in
SAIL, compared to descending order in our system. Since the NEW allocator in both systems

allocates 1tems iIn increasing order (in terms of the internal representation of items) a loop
consisting of

put NEW(x) in SET

s hikely to be much faster in our system since it will always insert the NEW at the head of the
hinked list, rather than having to traverse the entire list and then adding the new element at the
end of the linked list. This type of knowledge about the NEW allocator seems very hard to
tnclude 1n an time esumator function for the prinmitive operation. Perhaps the NEW allocation
method should be chosen with knowledge of the representations of the data structures, In our
system, though, we had fixed the allocation method 1n advance.

The automatic selection on the program INSRTS used statistics gathered from executing
the program on the same data set of 300 integers (a modified version of INSRT?2 was used with
exphait statistics pathering statements recording such things as average set size and so forth.
These extra statements were inserted manually)

The automatic selection mechanism had to consider only two information structures, the
original unsorted set, and the final sorted list. There were inttially seven possible set
representations to chose from. The applicability filter discarded the bit vector and combination of
bit vector and linked list because these repiesentations require knowledge of the maximum
number of distinct elements which can be set members. The presence of NEW's precluded the
determination of this maximum size (Note 1n future systems, user assertions may provide
information allowing such determuination). The attribute representation was also discarded by the
apphcability filter because of the FOREACH iteration through the set. There is no
implementation of iteration through a set represented by attribute bits in our library of
implementations The prelimiary prediction phase now had only four of the original seven
representations to consider. These were the <orted hnked hst, the height balanced binary tree, the

Sl Docd Uit - Lo AR i &
GRATaA e o ob Bl & s L i e L L e S L T Dy Y

6.1 INSERTION SORT 54

1 i i

hash table, and the variable length array. The prehiminary prediciion phase discarded the
vartable length array representation because predictions indicated a small additional space
requirement and a large additional ume requirement compared with the sorted linked list
representation. Similarly, the heizht balanced tee was discarded because of comparisons with the
hash table representation. The final celection phase initially chose the linear linked hist
representation and did not alter its decision

There were initially three list representations to choose from: a one way linked list, a two
E | way linked hst, and a variable length array All are complete so the applicability filter did not
E | eliminate any from further consideration. The preliminary prediction phase eliminated the doubly

linked list because predictions indicated 1t would need both morc time and space than the one-way
, linked list. The final selection phase initially chose the variable length array and did not alter its
E | decision.]

L e T WL

Thus, the automatic selection picked a hash table representation for the set
UNSORTED, and a variable length array for the list SORTED. We then ran each representation
pair 6 times to try and overcome the idiosyncrasies of our umer. The numbers below indicate the ;
average time of the 6 attempts with the ranges of times 1n parentheses The storage requirements
are the same as before.

HASH TABLE for UNSORTED, VARIABLE LENGTH ARRAY for SORTED
(these are the representations automatically selected).
59 (55,6.1)

-

LINEAR LINKED LIST for both UNSORTED, and SORTED
(these are considered the default representations)
7.3 (6.4, 8.5)

LINEAR LIST for UNSORTED, and VARIABLE LENGTH ARRAY for SORTED
(the author's own choice)
h9 (h3,6.1)

e o e e R iy S

There 1s no significant difference between the first and third pairs above. We believe
that the system chose the hashed set rather than the linked list because 1t overestimated the time
required for set insertion using the linear linked list because it didn't consider the fact that items
are allocated in increasing numerical (internal representation) order. To include this type of

knowledge in the automatic selection seems relatively hard.]
We then ran the same program over a data set contamning 1000 elements with 2 trials :

per representation. We did not rerun the automatic selector, but just used its choices from the 300 _
item sample. |

HASH TABLE for UNSORTED, VARIARLE LENGTH ARRAY for SORTED
(these are the representations automatically selected from before).
1479 (45.0 ,50.1)

LINEAR LINKED LIST for both /NSQRTED, and SORTED
(these are considered the d-fault representations)
1:.09 4 (1:08.0, 1.10.4)

!
' e ek Ui) (il S o et ks o L et e 1 sJ

6.1 INSERTION SORT 55

Before we get too ecstatic about the improvement (approximately 25%) let us note that
another program sorting the same 1000 elements ran in shightly over 6 seconds. This program,
however admittedly used a different algorithm (1t tnserted every integer read in into an AVL tree
and then traversed the tree in preorder). Of course the selection of the appropriate sorting
algorithm 1s a separate issue and has been considered elsewhere ((Knuth 73)).

i e b b o ke S i

6.2 MERGE SORT

We took a merge sorting program (Appendix F, MERGE) and processed 1t on a sample
1 data set of 300 elements. The automatic selection phase considered three equivalence classes: one
containing only the set UNSORTED; the second containing the two lists OLDLISTS, and
NEWLISTS: and the third containing the lists SORTED, MERGER, and ali the list datums. In
processing the seven possible set representations for UNSORTED, the applicability fiiter
eliminated the bit vector and combination (bit vector and linked list) because of the presence of
NEWs, which make maximum size of the sets indeterminate at compile time. The applicability
filter also eliminated the attribute bit representation because a FOREACH search was performed
on SORTED and our implementation does not provide the primitives for foreach searches on sets
represented by attribute bits. Thus, applicability frlterng eliminated three of the seven possible set
representations. The four remaining were a sorted linked hist, a height balanced binary tree, a
hash table, and a variable length array. The first prediction phase eliminated the variable length
array because predictions indicated both more execution time and more space needed than a
linked list. The height balancec binary tree was also elirunated because predictions indicated
larger execution time and space requirements using it than using the hash table. Thus, after the
preliminary processing stage. we had only two remaining candidates from our original seven: a
sorted linked list and a hash table. The predicted time for set insertion dominated the final

selection and the hash table was picked.

PP 1~ W . e W R | WL prr - v e

LU
ek

o There were three candidates for representing the lists, OLDLISTS, and NEWLISTS: a
one way linked list, a doubly inked hst, and a variable length array. The apphcability filter did
l not discard any of these representations because they are all complete. The preliminary predictor
discarded the variable length array because predictions indicated 1t would take more time and

space. The final selection phase nitially chose the one way linked list representation and then
changed 1ts decision to use the doubly linked list representation. This occurred because the extra
space needed was very small (only 300 words) but the predicted time required was about half. The
cross-terms of the form time using this representation times the space of other data structures

dominated.

k There were similarly three candidates for the last equivalence class. Applicability and
preliminary prediction did not ehminate any representations. The final selection initiaily picked a
one way linked list and did not aiter its decision.

Thus the selection picked linked list representations for the lists (linear one-way for one
. class and doubly linked for the other), and a hash table for the original unsorted set. This agrees
i I somewhat with my own choice except that | would have chosen a linear hinked-list for the set for :
the same reason we gave before (the NEIV generator retuins items i increasing mternal order). |
also would not have chosen the doubly linked list since it takes up twice as much spuce. It seems
l that 1t was selected because of some list indexing operations would be expected to take

R R e R P R S B ST S T TR SR R e

6.2 MERGE SORT 56

approximately half the time using a doubly finked hist compared with singly linked because we
-an count either forward from the head of the list of backward from the tail. However, in this
particular program the indices used were the constant I, therefore there was no advantage to
using the doubly linked structure

We ran the resulung program and it took approximately 4.2 seconds and the cr.e size
grew to approximately 12K. To demonstiate that this was a good selection we thern ran the
program using variable length-arrays for the lists and got an average time of about 5 ceconds and
a ssmilar core size.

We then ran the same programs with a sample data set of 1000 elements The linked list
and hash table version took approximately 175 seconds and the array version took about 30
seconds. The core sizes were 21K and 37K respectively. Therefore we see again that tk.e automatic
selection procedure again made a reasonably good choice. (The best choice turned out to be to use

i linear linked lists for all of them 12.5 sec, 19K core.)

i:

3 One interesting observation 1s that the core size used by the variable length array
4 implementation was 37K as opposed to 19K for the linked hist representation. According to our

model of storage costs It shouldn't be more than about 2K larger yet it was 18K larger. This is
, caused by the problem of storage fragmentation or checkerboarding. In the merge sort we are
3 continually allocating larger and larger blocks of storage while at the same time deleting twice as
' many blocks of half the si7: The storage allocalion routine we use just forms a free list of the
deleted blocks (merging blocks when ad jacent blocks become free). Therefore, when we wish to
allocate a block of 2 N words it may be true that there are 2 N free cells, but no single contiguous
block of 2 N free cells. The storage allocation routine 1s thus forced to increase the core size even
though our model of storage would mdicate that this i1 unnecessary. It 1s unclear how to include
the fragmentation costs in a model of storage 1n a simple way.

6.3 TRANSITIVE CLOSURE

As our final example we look at the transitive closure procedure we have seen so often
before. Here we represented the single binary relation REL @ 4 = B as B € datum(A4). This is
similar to the field selector (record offset) implementation of the ternary relation. We expressed
this explicitly since our demonstration system does not handle triples in its final selection phases.

The relation we created was equivalent to the son relation 1n a binary tree. That is,
every node other than leaf nodes had twe other nodes related to it. The size of the tree was 1000
nodes. And we asked the procedure to find the descendants of a node in the third row of the tree.
The time to perform the transitive closure itself was so small that we called the procedure 40 times
to get a meaningful number

There were two set equivalence classes: the first containmng all the set variables of the
procedure and the second containing the set datums we used to represent the binary relation. The
applicability filter threw out the bit vector, bit vector and hinked hst, and the attribute bit
representations because of the presence of NEW's and tteration as in the other two examples. The
prelminary predictor chose the limear linked list representation because predictions indicated it
would take both less time and space than any of the other available representations.

CECRSES P EES

—i

K;é

6.3 TRANSITIVE CLOSURE 57

Thus, the system selected the default representation (hinked list for the sers). Execution
time was about (as the average of 5 trials) 28 seconds per program execution with a core size of
17K.

To see how this compares with what we believed to be the next best representation, we
then ran the program with a variable length array representation and the program took an
average of about 31 seconds with a core size of 17K. Thus, the selection process chose a
representation about 10% more efficient than the next most likely representation.

With most of the test cases we attempted there was a marked improvement in the
execution time of the program (space cid not vary as much). In cases where the system selected a
suboptimal representation, specific defects were pinpointed (such as failure to notice constant list
indices, storage checkerboarding etc) which may be remedied in future selection systems. All in all,
we feel that the ability to automatically choose from various representations for information
structures has been shown to be feasible and obviously desirable.

S e b

T T W a—

B s o i it

- b

—

7.0 58

SECTION 7

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

We feel that the system has performed quite well. In general it has chosen appropriate
data structures for the programs considered. Where 1t has failed to choose optimum structures, it
has led us to specific defects in our models of storage and execution time. Some of these, like the
use of constant list indices can be easily handled by simple modifications. Others such as storage
fragmentation and using internal properties of other structures (such as the fact that the NEW
allocator usually returns items in increasing order) are not so easily handled.

The system we have described 1s far from complete. It works only on a subset of a
usable programming language. It 1s very slow and cannot process large user programs. However it
15, we believe, a concrete demonstration of the validity of our original hypothesis. Namely, that it
15 possible to use high-level data structures such as sets and relations with their conceptual clarity,
and have an automatic representation selector select efficient implementations of these abstract
structures. Future systems of this type should indeed be usable in a standard production
environment.

The concepts we have mentioned here, partitioning of data structures into classes, flow
analysis, analysis of algorithms, exccution time monttoring, etc, are not new. However, to our
knowledge, they have never before heen combined to form a coherent system capable of
automatically selecting representations of data.

We would be the last to claim that this system solves all the problems of automatic
selection of representations. We have barely scratch~d the surface. Below, in our suggestions for
future research we will list some of the hard problems that have occurred to us during our
research in this area. Other research 1s needed in analysis of algorithms, and classical optimization
techniques. There are potentially great payoffs in other automatic coding techniques, such as
Earley's iterator inversion.

7.1 TOPICS FOR FUTURE RESEARCH
ADDITIONAL OPTIMIZATIONS
|. Computation avoidance - takes advantage of properties of the abstract data structure.

For example, the boolean expression-
X ¢ (SET1uSET2)
is logically equivalent to
(X ¢SETH V(X ¢ SET2)

it will 1n general be faster and take less storage space to evaluate the second expression rather
than the first since the union does not have to be computed. See appendix G of
transformations.

Lo aa

7.1 TOPICS FOR FUTURE RESEARCH 59

2. Change of variables

Qften we have expressions like SET! - SET 2. Sometumes 1t 1s beneficial to keep this as an
exphcit set rather than recompute the expression every ume it is used. In this case it would
mean that every time we insert an element into SET ! we would insert it in the difference set if
it were not a member of SET2. Every ime we inserted an element into SET 2 we would remove
that element (if present) from the difference set and so forth. This 15 closely related with the
concept of iterator inversion of Earley.

3. Copy optimizations - mainly based on dead variable analysis and read-only access to data
structures being iterated through.

We often can suppress unnecessary copying operations If we use dead variable analysis. For
example:

SET! « SET2;
SET2 « phi;
put B in SETI;

We would normally compile this as: make a copy of SET 2, release SET !, place descriptor to
copy 1nto SET !, Release the space used by SET 2, insert 8 o SET 1. However, when we realize
that SET 2 1s dead after the assignment to SET! we can eliminate the copy SET 2, and release
SET 2 operations.

We can also use dead variable analysis to determine when we are through with a variable.
Thus, we can release the storape 1t required, much earlier than its exphct release in the
program. This technique will no. decrease the running ume of the program significantly but
may decrease the maximum size of the core image as we are able to reuse space sooner.

Similar analysis can tell us when 1t is necessary to copy a data structure which 1s being
processed by an iterator.

IDENTITY vs. ATOMIC OBJECTS

One question arises when we talk of sets, sequences or relations in a programming
language. What are the elements of these data structures? Are they values or variables? The
system we have described acts only on variables,

Earley has named these concepts of value and variable by the corresponding terms of
atomic objecis and identity ob jects An atomic ob ject 15 essentially a simple value, which can not be
altered. That is, 1t 15 readonly To alter a set containing the values 1,2 and 3 to contain the values
I, 2 and 4 we would probably remove the value 3 and then add the value 4 to the set. With sets
of atomic objects we often do not have to explcitly construst data structures but can utilize
functions and generators to represent them. For example, assume we had knowledge that a given
set was simply the set of integers from | to 100. To iterate through the elements of that set we

RO g

s oo

o oA i

L.

S ek SR o e v

PR e rep—

il B i

RS R SR R s O S VR W UL aeprn g TN g m—mm—gn S

e e bR Ol

71 TOPICS FOR FUTURE RESEARCH 60

need not exphaitly construct a data structure which contains 100 data ob jects, but could merely use
an standard ALGOL FOR statement. Similarly we could replace the set membership test with the
simple range check. That 1s, the integer x 1s in the set if and only if the value x is greater than or

equal to | and less than or equal to 100.

An 1dentity ob ject 1s essentially a variable name. It has its own identity and 1ts value
(datum) can be modified at will. Thus if we had a set contamng identity objects whose values
were 1, 2 and 3 and we wished to modify it to contain the identity ob jects whose datums were 1, 2
and 4, we could either change the datum of the identity ob ject which was currently 3 or we could
remove that ob ject and replace it with another identity ob ject whose datum was 4. If we wished to
have the set of integers from | to 100, we would be constrained to actually having 100 different
ob jects each of whose datum was some integer in that range.

Both identity objects and atomic ob jects are valuable concepts for very high-level data
structures. We can easily implement either one using the other but when we do so we are piaying
the same game as the fellow who wrote all his set operations in terms of sequence operations. We
have expressed data In terms of an impleinentation rather than in terms of its high level

proper:les.

In our system we concerned ourselves only with the representation of identity ob jects.
They are more easily handled than atomic ob jects because 1t 15 always clear when a new one is
being created, which 1s not the case with atomic ob jects. Possible ways in which atomic ob jects
could be handled in future systems include the obvious encoding in terms of read-only identity
ob jects (via such "symbol-table” mechanisms as hash searches etc.). The most interesting problems
involve the use of functions and generators to take the place of explicit data structures.

REDUNDANT AND ALTERNATE REPRESENTATIONS

Alternate representations for different phases of program.

Often we can partition a program into several logical phases (e. g. input, processing,
output). A representation optimal for one such phase may be suboptimal for another (depending
on which access operations are dominant). The problem 1s to recognize the phases and then decide
if 1t is worth the translation time to get from one storage structure to another. For example we
may have a file of employment records read 1n off of tape in random alphabetical order
(INPUT). The program then will update the file according to some other criteria, e.g, employee
number (PROCESSING). Finally reports to be generated wanted in alphabetical order so desire
sorting on employee name (QUTPUT) We may find 1t optimal to have different representations
for the file in each different phase of the program.

Simultaneous use of multiple representations of an information structure

Often two accessing operations may be performed on the data structure. If no single
representation Is optimal for both operations it may be advisable to store the data redundantly by
using two storage structures each containing the data structure organized in a manner optimal for
one of the access operat.ans. Recail that one of our set representations was a bit vector with a

]

PR Wy e S

———

T e

O . AP W e O e

& L s o e

71 TOPICS FOR FUTURE RESEARCH 61

redundant linked list. For example, we might have a set of possibly 72 different elements, with
two operations performed on the set: existence test (15 x 1n set), iteration (Foreach x € set). The
existence test is done best when representation 1s a bit string so only indexing 15 needed.
However, iteration 1s done best when 1epresentation s a linked list of the elements.

Note that the merger of two storage structures does not necessarily have the sum of the
updating costs of the individual structures. Normally with a list of the set elements we would
require that the hist be sorted, However now this 1s not necessary. The operation of insertion can
be done by first seeing 1t the element Is already In the set by using the bit string and then adding
it to the head of the list if 1s not. Similarly deletion can be avoided If the existence test fails.

One way of approaching multiple representations Is to consider this merger as a
separate representation with its own attributes. One problem 1s that this can lead to a squaring of
the size of the representation library if we do this with all pairs of representations.

Data structures as unions (disjoint or not) of storage structures.

We have mentioned this in the conte.. of associations. This 1s applicable even with sets.
Consider a program which 1s going to test membership 1 . .ery large set. For example a spelling
checker might check to see If every word In a piece of text were In its dictionary

The dictionary might be very large and thus would have to be stored n secondary
storage. We desire a way to mimimize the number of accesses to this storage. One technique might
be to keep a large number of words (say the last 1000 encountered) in core. Thus, our search
algorithm would furst search core for the desired word and only if 1t did not find 1t, make the
appropriate search In secondary memory. Thus, the set of allowable words 15 stored as a two data
structures (in core, ano on disk) with a partial redundancy. Other applications might require no

redundancy.

RELAXATION OF CRITERIA FOR THE EQUIVALENCE CLASSES

To reduce the combinatorics of representation selection we insisted that arguments to a
siigle operator be in the same representation. The alternatives are to have either a translation
procedure which takes as argument a set In one representation and converts it into the other
representation, to write code sequences for each operator which aie representation independent, or
to represent one or both sets redundantly.

We could thus write a representation free union code sequence as follows, where sets A
and B are the inputs.

o lon o-n e i, o

PR L PP)

G e

Wi

71 TOPICS FOR FUTURE RESEARCH 62

set procedure UNION(set A,B),
begin "UNION"
itemvar LOCAL,
set RCSULT,;
RESULT « phi;
foreach LOCAL | LOCAL ¢ A do
put LOCAL in RESULT;
foreach LOCAL | LOCAL ¢ B do
put LOCAL in RESULT,
return(RESULT),
end "UNION",

The arguments A,B and the result may be in entirely different representations. The two foreach’s
and puts could check which representation is in use for the construct and use the appropriate

routine for that representation

It 1s quite easy to write similar representation free codes for the other basic operators. However we

notice that we lose any efficiency based on representation. For example when compared to the

representation dependent model with sorted linear linked lists we find that the representation free
i

routine will take time proportionate to n“ compared to tme proportional to n for the

representation dependent union routine.

A basic problem for future research is the evaluation of the tradeoffs between using less efficient
representation-free routines, using translations to a common representation, and nsisting on

common representanons‘

USE OF PACKING

String representations have traditionally packed more than one character per compuier word.
Clearly the record type structures which a system like ours generates for items could benefit from
the same type of packing. Here we need to evaluate the tradeoffs between sometimes slower access
to elements (because of unpacking and packing) and the storage savings.

EXTENSIBLE LANGUAGES.

A user should be able to defie his own abstrict data structures and supply a library of primitive
operations using various representations and still have the system do automatic selection of
representation This is closely related to the work of Earley and the ECL group at Harvard.
However, they are not currently working on this particular problem.

72 FINAL CONCLUSION

This research has demonstrated the feasibility of automatung a significant part of the
progiamming problem: the selection of low level representations for high level information

structures Future work along these lines is likely to allow the techniques to be applied as a matter
of course 1n an optimizing compiler. We have demonstated the desirability of such work.

o

e e T

8.0 63

SECTION 8

APPENDICES

81 APPENDIX A - SET PRIMITIVES

In this implementation a set is always be represented by a one-word descriptor. This descriptor
usually contains a pointer to some other storage and perhaps additional information. In the
following routine descriptions, a value set argument is represented by the one-word descriptor.
Similarly, all set-valued primitives ieturn a one-word descriptor

I. PUT SET (itemarg, setarg) - inserts the item argument into the set represented by the set
descriptor argument. Returns a descriptor to the resultant set. This routine has the effect of
altering 1ts original set argument.

{ item]1, item?, item?3 } would thus be compiled as:
TEMP « PUT SET(temI,PHI),
TEMP « PUT SET(item2, TEMP),
TEMP « PUT SET(tem3, TEMP);

the result would then be in TEMP.

put ITEMARG in SETA would be compiled as:
SETA « PUT SET(ITEMARG, SETA),

2. REMOVE SET (itemarg, setarg) - removes the item argument from the set represented by the
set descriptor argument, RETURNING A DESCRIPTOR TO THE RESULTANT SET.
The original set is altered.

remove ITEMARG from SETA; would be compiled as:
SETA - REMOVE SET(TEMARG, SETA),

3 LENGTH SET (setarg) - returns ‘he number of elements in the set. It does not alter its
argument.

4. IN SET (itemargsetarg) - boolean returns TRUE if the itemarg 1s an clement of the set,
FALSE otherwise. Does not change the set argument.

5. COPY SET (setarg) - returns a copy of its argument. Does not change the argument. With a
representation which tried to share storage this routine might just copy the descriptor or
increment a reference count [Schwartz74a).

R T -
: v e
&

Al ey RR AL S Cli bl bl e . B g L

8.1 APPENDIX A - SET PRIMITIVES 64

6. RELEASE SET (setarg) - releases the storage (if any) used by the set argument. Thus, 1t
destroys its argument. With a representation which used garbage collection this routine would
probably do nothing at all and all storage reclamation would be done by calls to a garbage

collector located elsewhere.

FOO « BAZ would be compiled as.
TEMP « COPY SET(BAZ),
RELEASE SET(FOO),
FOO ~ TEMP;

9 SET UNION (setasetb) - forms the union of its two arguments. It has the side effect of
destroying its first argument, but leaves the second unchanged (unless the second argument
happens to be the same as the first)

Thus, FOO « FOO u BAZ would be compiled as:
FOO « SET UNION(FOO, BAZ).

FOO « BAZ u GARP would be compiled as.
TEMP « COPY SET(BAZ),
TEMP « SET UNION(TEMP, GARP),
RELEASE SET(FOO)
FOO « TEMP;

8. SET _INTERSECTION (seta, setb) - forms the intersection of its two arguments. destroying its
first argument as a side effect. It leaves its second argument unchanged.

Thus, FOO « BAZ n FOO would be compiled (using the commutativity of set intersection) as:
FOO « SET INTERSECTION(FOO,BAZ),

9. SET SUBTRACTION (seta, seth) - does the set subtraction, second argument subtracted from
the first, destroying the original first argument as a side effect. Leaves second argument
unchanged.

FOO « FOO - BAZ would be compiled as:
FOO -~ SET SUBTRACTION(FOOQ,BAZ),

10. SET_EQUALITY (seta, setb) - does the boolean comparison between its two arguments. The
two arguments are left unchanged.

FOO = {itma} would be compiled as,
TEMP « PUT SET(tma, PHI).
TBOOL « SET EQUALITY(FOO, TEMP);
RELEASE SET(TEMP),

the result of the comparison 1s contained in T BOOL.

S e S it s

|

8.1 APPENDIX A - SET PRIMITIVES 65

11. SET INCLUSION (seta, setb) - does the boolean comparison and returns FALSE if there is
an item 1n seta which 15 not in seth. Does not change either of its arguments.

12. SET PROPER INCLUSION (setasetb). same as SET_INCLUSION except also returns
FALSE 1f two set arguments were equal.

13. COP SET (seta) - returns an arbitrary element of the set argument. It does not alter its
argument.

14 LOP SET (reference seta) - takes as argument the address of the set variable (not just the
descriptor). Removes a single element from that set which it returns as its value. It alters the

set argument.

15 INIT SET FOREACH (refcrence sch; reference localitv; seta) - This 1s called when the
foreach 1s entered The scb 15 a variable which will contain status information for the iterator
such as where we are in the set and so forth. The localitv 15 the itemvar which is receiving
values from the FOREACH search. seta 1s a destroyable copy of the set through which we
wish to iterate.

16. ITERATE SET_FOREACH (reference scb) - this 1s a boolean procedure which takes the scb
variable as its parameter. It places the next element in the set (if any) into the localitv which
was mentioned 1n the imtiahzation routine above. If the set has been exhausted it returns the
boolean value FALSE, otherwise the value TRUE. On exhaustion it has the side effect of
cleaning up everything, reclaiming space and zeroing out the scb. (search control block).

17. END_SET FOREACH (reference schj - this procedure forces termination of a foreach. It 1s
used to clean up scbs before transfer of control outside a foreach statement such as a done
(loop exit) statement or return (procedure exit)

foreach X | X ¢ SET! do
if M « FOO then remove X from SET1 else done;

This 1s comptizd as:
INIT SET FOREACH(SCB, X, COPY SET(SET1)),
while ITERATE SET FOREACH(scb)) do

if X = FQOQ then

SETI ~ REMOVE SET(X,SET1)
else begin END SET FOREACH(SCB),
doue,
end,

& We should note that there are other possible ways of choosing the set of primitive operations. For
example we can conceive of an assignment primitive, or a primitive for constructing explicit sets.
Copying and releasing sets 1s sometimes very expensive. Therefore we might have many entry

points (as many as 4 for binary operations) depending on whether the arguments are dead, and so
l their storage might be reused immediately. In this system, each routine has but a single entry :
point. :
;
a
i
]
!
i

T T O T . e (B L O T T S o BT Y R e Ty T ey v

8.2 APPENDIX B - LIST PRIMITIVES 66

8.2 APPENDIX B - LIST PRIMITIVES

. PUT INDEXED (itemarg, reference lst, index) - inserts the item argument into the list
specified by the list parameter after the specified index. It has effect of altering the list
argument.

put X in LISTA after 10,
1s compiled into
PUT INDEXED(X, LISTA, 10);

and

put X in LISTB before |,

15 compiled into
PUT INDEXED(N, LISTB, 0);

2. PUT _BEFORE ITEM (iteml, refereuce lista, item?2) - inserts item! into the list immediately
before first occurence of item2. The list argument 1s altered.
put X in LISTB before Y,
1s compiled into
PUT_BEFORE ITEM(X, LIST, Y),

3. PUT _AFTER ITEM (item], reference lista, item2) - inserts item! 1nto lista immediately after
first occurrence of item2. The list argument is altered.
put X in LISTA after Y,
1s compiled into:
PUT AFTER ITEM/X, LISTA, Y)

4. REMOVE ITEM (temarg, reference listarg) - remove the first occurrence of itemarg from list.
The hist argument 1s altered.

5 REMOVE INDEXED (index, reference listi) - remove the index th element of listi. The list
argument 1s altered.

6. REMOVE. ALL (itemarg, reference lista) - remove all occurences of itemarg from lista. The list
argument 1s altered.

7. FETCH INDEXED (listexpr, index) - returns the index th element of the listexpr. The list
argument 1s unchanged.

8. REPLACE INDEXED (reference hsty, index, ttemarg) - replaces the index th element of /listi
with the itemarg. The list argument 1s altered.

9. LIST_MEMBERSHIP (itema, listb) - boolean TRUE if ittema an element of listh. The list
argument 1s not altered.

e e el

_—

82 APPENDIX B - LIST PRIMITIVES 67

10. LIST_EQUALITY (uistl, list2) - boolean, tests if two lists are equal. Neither argument is
altered.

I1. LENGTH _LIST (lista) - returns the length of lista. The list 1s unaltered.

12. COPY LIST (hsto) - given a list descriptor, returns a list descriptor pointing to a copy of the
original list. Does not alter its argument.

I3. RELEASE LIST(listr) - release the space occupied by a list expression back to free storage.
‘The argument 1s thus destroyed.

FOOLIST « BAZLIST

is compiled into:

temp « COPY LIST(BAZLIST),
RELEASE_LIST(FOOLIST),
FOOLIST « temp;

i4. COP LIST (usta) - COP of list (archaic equivalent to list{1}). The list argument is
unchanged.

15 LOP _LIST (reference lista) - Remove and return first element from list. The list argument is
altered.

16. CONCATENATION (listl, ist2) - form a new list by concatenating two lists together. Both
arguments are destroyed.

FOOLST « BAZ & FOOLST,

is compiled into:

temp - COPY LIST(BAZ),
FOQLST « CONCATENATION(temp FOOLST),

I7. INIT. LIST ITERATOR(reference sch, reference localitv, list) - initialize the foreach list
elernent iterator. List argument eventually destroyed. (See set foreach iterators Appendix A),

18 ITERATE LIST (reference SCB) - rterate through a list. Returns TRUE if it finds another

element in list. FALSE otherwise. Side effect of storing item found in the localitv mentioned in
INIT LIST ITERATOR.

19. END LIST (reference SCB) - forced termination of a FOREACH element iterating through a
list.

20. EXPLICIT_LIST (iteml, item2,.. wtemN, N) - constructs the descriptor for an explicit list.
Takes a variable number of parameters.

|

D vl - T e g v TS

P e g I 7 s, Sy e 1 1 - G - F s A e —
R e — v Rl Hah e R et i R e R e e e o e e S e

8.3 APPENDIX C 68

8.3 APPENDIX C - MLTA EVALUATIONS

Here are some examples of the meta evaluations we use during our static analysis phase.

A. Set operations

I. VALUESET(S1 u $2) » VALUESET(S1) u VALUESET(S2)
9 VALUESET(S! n $2) = VALUESET(S1) n VALUESET(S2)
3. VALUESET(S1 - $2) = VALUESET(S1)

4. after S1 « SETEXPR

a. If S1 1s a simple varable (not datum, array element, procedure parameter) new
VALUESET(S1) = VALUESET(SETEXPR)
b. If S1 1s not a simple variable, then the

new VALUESET(S1) = old VALUESET(S!) u VALUESET(SETEXPR)
5 put ITEMEXPR in S}, acts the same as S| « Sl v {ITEMEXPR };
6. remove ITEMEXPR from Si, acts ike S1 « S1 - {ITEMEXPR} i. e. no action.
B. Associative operations
I. MAKE 1expr o iexpr2 = iexprd.

Insert every nstance of Xxey=1 (x Cvalueset(iexprl), v C valueset(iexpr2),
2 € valueset(iexpr3)) into model of the associative store.

2. ERASE texpr o 1expr2 = iexpr?.
No action.

3. SEARCH 1exprl o texpr2 = texpr3.

No change to the model of associative store. If this 1s a foreach element binding some
local, do an assign to that local consisung of the corresponding elements from inodel of

associative store.

By b R e e e e i g et] o ot S s’ S e e R i SR e e ™

_ i bt e 5 e o et X%
E T R e R TR A, LR L gy Y e e

8.4 APPENDIX D - INSRT2 69

8.4 APPENDIX D - INSRT2

begin "INSRT2"

set UNSORTED:; list SORTED;
integer itemvar OBJI, OB)<;
integer COUNT, [, string TEMP,

4 comment FIRST CONSTRUCT AN "UNSORTED SET",

UNSORTED « phi,
3 COUNT « READ INTEGER;
for 1 « I step | until COUNT do
put new(READ INTEGER) in UNSORTED:

SORTED « nil,

foreach OB)1 | OBJI ¢ UNSORTED do
begin "foreach OB]1"
COUNT « |
while COUNT < length(SORTED) do
begin "INNER"
0B)J2 « SORTED[COUNT]I
if datum(OBJ2) 2 datum(OBJ1) then done "INNER"
else COUNT « COUNT + |;
end "INNER"
put OBJ1 in SORTED before COUNT;
end "foreach OBJ1"

foreach OBJ2 | OBJ2 ¢ SORTED do
WRITE INTEGER(datum(OB)2)),

end "INSRT?2"

f L e e Sl e ¢ e el T i et o T sl _LE koo il _meitt L adiih b s ek B b i Aiatase, L gt

8.5 APPENDIX E - INSRT3 70
8.5 APPENDIX E - INSRT3

begin "INSRT3"

E set UNSORTED:; list SORTED;
integer itemvar OBJ1,0B J2,

E‘ integer COUNT, 1, string TEMP;
%
’i
i

comment CONSTRUCT AN "UNSORTED SET",

UNSORTED « phi,
COUNT « READ INTEGER;
for [« 1 step 1 until COUNT do
put new(READ_INTEGER) in UNSORTED,

SORTED « nil;

foreach OBJ! | OBJI ¢ UNSORTED do
begin "foreach OB JI"

COUNT « |,

s foreach OBJ2 | OBJ2 ¢ SORTED do
begin "INNER"
if datum(OB J2) 2 datum(OB J1) then done "INNER"
else COUNT « COUNT + |;
end "INNER";
put OB]J!l in SORTED before COUNT,

end "foreach OBJ1",

comment PRINT SORTED LIST,;

foreach OBJ2 | OBJ2 (SORTED do
WRITE_INTEGER(datum(OBJ2)),

end "INSRT?3"

86 APPENDIX F - MERGE

86 APPENDIX F - MERGE

begin "MERGE"

list OLDLISTS, NEWLISTS, SORTED, MERGER,
set UNSORTED;

integer itemvar OBJ1, OB J2, INFINITY;

integer COUNT, [,

list itemvar LITM 1, LITM2;

comment CONSTRUCT AN "UNSORTED SET"

UNSORTED « phi;
COUNT « READ INTEGER;
for | « | step 1 until COUNT do
put new(READ INTEGER) in UNSORTED;

comment CREATE LIST OF LISTS TO BE MERGED;
OLDLISTS « nil,

foreach OBJ1 | OBJI ¢ UNSORTED do
put new({{ OBJI }}) in OLDLISTS after 0;

NEWLISTS « il
INFINITY « new(2130),

8.6 APPENDIX F - MERGE 72

while length(OLDLISTS) > | do
begin "OUTER"
while length(OLDLISTS) > 1 do
begin "INNER"
LITMI « lop(OLDLISTS),
LITM? « lop(OLDLISTS), Z
MERGER « nil;
while (datnm(LITM 1) = nil v datum(LITM2) = nil) do
begin "INNERMOST"
if datnm(LITM1) = uil then
OBJ! « cop(datum(LITMI))
else OBJ1 « INFINITY,
if datnm(LITM2) = nil then
OB J2 « cop(datum(LITM2))
else OBJ2 « INFINITY;
if datum(OB]I) < datum(OBJ2) then
begin
put OBJI in MERGER after lengti(M ERGER);
remove 1 from datum(LITM1),
end
else
begin
put OBJ2 in MERGER after length(MERGER);
remove I from datum(LITM2);
end;
end "INNERMOST",
put new(MERGER) in NEWLISTS after 0,
delete(LITM 1),
delete(LITM2);
end "INNER";
if OLDLISTS = nil then
put lop(OLDLISTS) in NEWLISTS after 0;
OLDLISTS « NEWLISTS;
NEWLISTS « ail;
end "OUTER";

LITMI « IOp(OLDL]STS);
SORTED « datum(LITM1);
delete(LITM 1);
delete(INFINITY),

foreach OBJ | OBJ1 ¢ SORTED do
WRITE _INTEGER(datum(OBJ1));

end "MERGE SORT"

P o s

ors doe 2

e

t!

8.7 APPENDIX G - TRANSFORMATIONS 73

8.7 APPENDIX G - TRANSFORMATIONS

The following are examples of transformations may be made to avoid certain computations.
Caution must be taken with “side effects”. None of these transformations were used in our

demonstration system.

(x ¢ setl) v (x C set2)

1. x € (set] v set2)

(x Csetl) A (x € set2)

9. x C (setl n set2)

(x € setl) A =(x € set2)

3, x ¢ (setl - set?)

ui

4. LENGTH(list] & list2) LENGTH(list1) « LENGTH(list2)

M

put iteml in x;
put item2 in X;
(no need to explicitly create {iteml, item2}.

5. x « X U {iteml, item2}

6. X « X - {iteml, item2} s remove item| from x;
remove item?2 from X;

(set] = phi) A (set2 = phi)

7. (setl u set2) « phi

e s it D . it e L

Sl e s o

e e pe b o

8.8 APPENDIX H 74

8.8 APPENDIX H - INSTRUCTION WEIGHTS

The table below contains our weightings of the individual machine instructions based on a time
unit of approximately .7 microseconds. Data from PDP-10 SYSTEM REFERENCE MANUAL
1969. Digital Equipment Corporation. Note: nc difference .iy execution time 1s noted If the source
or destination of a memory reference is an accumulator. Thus, in our model, loading an
accumulator from an accumulator will take as much time as loading an accumulator from the
slower memory.

MOVES (MOVE, HRR, HRL, MOVS ,HLL , HLR etc)

memory to accumulator 3 units

immediate to accumulator 2 units

accumulator to memory 4 units
EXCH 4 umits
BLT
PUSH, POP 5 units
LDB, ILDB 9 units (middle byte(5))
DPB, ILDB 10 umits "
IBP 4 units
LSH 6 units
LSHC 7 units
CAl 2 units
CAM
LOGICALS (OR, XOR, ANDCM, ANDCA, AND etc)

(approximate)

memory with accumulator 3 umts

immediate with accumulator 2 units

accumulator with memory 4 units
ADDSUB

memory with accumulator 3 units

immediate with accrmulator 2 units

accumulator with memory 4 units
AOB]JN 2 units
JUMP 2 unuts
SKIP 3 units
AOQJSO] 2 units
AQOS,SOS
TL, TR 3 units
TD 4 units
XCT
JFFO 5 units
JSP 2 units
JRST 2 umits

PUSHJ, POP] 4 unuts

e L ey _—" e e e B D P o e M

8.9 APPENDIX 1 7%
8.9 APPENDIX | - EXECUTION TIME COST FUNCTIONS

PUT_SET - insert itsm in set 4
n = proportion of time item already 1n the set 3
A = average size of set ;
M = maximum size of set i
REPRESENTATION set empty set non-empty i
Linked list 108 B4 - 42xn + B ;
g
AVL tree 56 188-166m+16. 8%L0G2 (3) 4
| j
Bit - Array 166 + 3xM/327 48 1
Hash tabla 521 82-48n + 3x/16 i
Bit-string .
Wwith unsorted 265 + 3xM/327 184-53x i
linked list ;
]
Attribute bit 27 i
Sorted variable 96-88n+5,85%) + i
length array 140 28.5xL0G2(A) -.3m ;

a7 ke IRl L e T e L S ke i AR R A S ARl i

8.9

APPENDIX |

REMOVE SET - remove item from set
n = proportion of time item in the set

A = size of set

76

REPRESENTATION Set empty Set non-empty Removal of last
Linked list 14 23 + 13072 + 27n 82

AVL tree 11 32 + 88n + 20%L0G2 (A) 148

Bit - Array 48

Hash table 11 42 + 3A/8 + 25n 294
Bit-string

Wwith unsorted 15 514672 + 5B8n 149

linked list

Attribute bit 27

Sorted variable 11 17 + 21.5%L0G2 (M) + 3n + 3nx 2408

length array

8.9 APPENDIX | 79

IN_SET - testf item in the set
n = proportion of time item in the set
A = size of set

REPRESENTATION set empty set non-empty
3 Linked list (sorted) 14 21 + 52
1 AVL tree 14 19 + 12%L0G2(A) -5n
‘él.
E Bit - Array 48
Hash table (32 slots) 13 48 + 5)/32
Bit-string
with unsorted 18 51
linked list
Attribute bit 26
Sorted variable 14 28 + 43xL0G2(A)/2
iength array -5n/2

SR G T e asad Gl
o

o

8.9 APPENDIX |

COP_SET - Choose element of set
A = size of set

M = maximum size of set j

‘_ REPRESENTATION TINE]

Linked list (sorted) 15 ;

] 3

s :

é“ AVL. tree 12 + 12.4xL0G2{2) ,J

1 Bit - Array 21 + 1240 - (TM/32V/AVALN (1-3/ (MM/32T%32) |

1 g
Hasr table(32 slots) 27

Bit-string i

Wi th unsorted 22 3

linked list 3

-

Attribute bit 0 3

Sorted variable 17 3

length array i

]

E

3

]

3

:
k&ha—c Py TR T S

TRy e T RO sl Lt i s dia o
" B P N P i P R e s ST TG Ty ey

8.9 APPENDIX I 29

LOP_SET - pick item and remove from the set
A = size of set
M = maximum size of set

new set empty new set non-empty
Linked list (sorted) 65 48
AVL tree 42 B4 + 18,6xL0G2 ()
Bit - Array 37 + 1247 = (TM/321/2) %N (1-A/7(TM/32%32) 1 4
5
Hash table (32 slots) 265 52 + 16%(31/32)t(x-1) i
Bit-string ‘f
with unsorted 116 83 ‘
linked list -
!
Attribute bit w f
:
Sorted variable 225 21 3
length array]
]
k

T P

T T T T (g v S ppre———T

A = size of set
M = maximum size of set

APPENDIX |

LENGTH_SET - count number of items in set

set empty +et non-empty
Linked |ist (sorted) 3
AVL tree 9
Bit - Array 20 + 12xM/327 + 9xx

Hash table (32 slots)

Bit-string
with unsorted
linked list

15

18

Attribute bit

Sorted variable
length array

12

8.9 APPENDIX [81

SET_UNION - union of two sets

n = proportion of set 2 not in set |
Al1]) = s1ze of set |
A[2] = size of set 2
M = maximum size of set
set 2 empty set 1 empty sets non-empty
Linked list 14 73 + 4BxA[2] 264+16x0 {11+ (10+47n) A [2)
AVL tree 14 67 + 59%A (2] 15 + 63x([2]) + 16670 (2] +
17n0 [21%L0OG2 (A (1])
Bit - Array 25 125 + 14xM/327 25 + 11xMM/327
11xM/327
Hash table 14 B849+33A[2] - 251 + 224(31/32)1A (1] +
128n(31/32) 1A (2) 142 (1) + (S8nr+1@)X(2)
Bit-string
With unsorted 20 252 + 4Bxa[2) | 48 + 21x[M/327 + 66mA[2)
linked list + BxM/327
Attrinbute bit (o i
Spr tad wiar i abilie 17 400 + BA[2] 581 + 19A11] + 1

length array (8+1Sm) A (2]

TR g ik ool N T Ty I L W R TR g e T . F e |
e = L e PR e e e b it g Sk bl

8.9 APPENDIX | 82

SET INTERSECTION - ntersection of two sets
n = proportion of set 1 not in set 2
A[1] = size of set |
A[2] = size of set 2
M = maximum size of set

setl empty| set2 empty normal result empty
Linked tist 11 43 36+ (164241)xx [1] 51 + 38xxlll]
+ 12xa (2] + 12x2 (2]
AVL tree 51 + 38.5x[2) + 51+308.5x 121+
13 24+32xA (1] |38A (11 + 289nx (1] 239 (11 +
+20mA [11L0G(AT11) [202 [11LOG2 (A [11)
Bit - Array 23 + 11xMM/327
3
1
y 843 - 626 - 833 -
% Hash table i1 3%4xnx 320(31/32)fA (1) | 296(31/32) A (1)
(31732} 11) + 17212) + +172 (21 +37A (1)
(B+31m)A (1]
| Bit-string
{ with unsorted 15 123 52+11%M/327 136+11xM/327
, linked list +(40428n) A (1] + 6O (1]
Attribute bit ©
Sorted variable 11 211 42 +(16+m)A (11 +| 239 + 15 (1]
length array 82 [2] + 8x (2]

ULy M B o

Fer T

APPENDIX 1 83

89

SET_SUBTRACTION - difference of two sets
n = proportion of set 2 in set |
A(1] = size of set |
2(2) = size of set 2
M = maximum size of set

s
|
| setl empty| set2 empty normal result empty
]
{ Linked list 11 14 20+ (12+14m) 0 (2] 41 + 38x (1)
E + 16% (1) + 12x2 (2]
Ej 13 + 82.5Aa02) + 13 + 82.5212]
AVL tree 11 14 88nma(2) + + 88x (2] +
F 28mA [2)L0G (A1)) | 28A[21LOG (A (1))
£
F
Bit - Array 23 + 11xMM/321
i
1
Hash table 466 + 16A111 - | BB5 + 23a (1) -
11 14 168(31/32)fA11) 130(31/32) A (1)
+(15+7m) 1A (2] + 16a12]
4 Bit-string 62+11xMM/327 136+11%M/3271
f:- with unsorted 15 18 + 402 (1) + +60x [1)
; inked 1ist + 20m (2]
Attribute bit ®
i,
2 Sorted variable 1 14 33+ 19A01] + | 238 + 10A[1) +
length array {7-9m)a (2] 7a12)

s G R

S i e

R T g e

Shaadace 0 ol Ry Lo oo S CHE e

E o s ol A

B R Y, T - oo s L —

APPENDIX |

SET_EQUALITY - boolean true if sets equal
n = proportion of time boolean true
A[1] = size of set |
A[2] = size of set 2
M « maximum size of set

lengths = both empty otheruise
Linked |ist 19 18 32 - 3m 4+ Ix(l + mrxd
AVL tree 25 24 41 + 27.25x(1 + mIxX\ + 15n
Bit - Array 26 - 2n + (5 + Sn)xMM/327
Hash table 18 19 32 + 327n + 18m)
Bit-string
with unsorted 46 39 62 - 2n + (5 + Sn)xM/327
linked list
Attribute bit ©
Sorted variable 22 19 20 + (5 + 5n}X + 3n

length array

8.9 APPENDIX |

SET_INCLUSION - boolean true if set] contained in set2
n = proportion time boolean true
a[1] = size of set |
A[2] = size of set 2
M = maximum size of set

| lengths bad set 1 empty standard case
T Linked list 17 21 32 + Bx(l+mixa [1)+
. .3 Bx (1+n) %A [2]
1 y AVL tree 25 26 49 - 3n + 16,25 [1] (14m)
+ 15,250 12]) (1+n)
3 {
3 i

' Bit - Array 25 + (B+6n)xM/327
Hash table 18 21 30 + 327n + 187 (1) + 12mA (2]
Bit-string
L with unsorted 46 22 51 + (6+6n)%MM/3271
;- linked list
1 Attribute bit ®
3 Sorted variable 26 13 44-3n + (9+43n)A[11/2

l length array + (747X (2172

8.9 APPENDIX | 86

SET_PROPER INCLUSION - boolean true if setl contained in set2 but not equal
n = proportion of time boolean true
A[1] = size of set |
A(2] = size of set 2
M = maximum size of set

lengths bad | set 1 empty standard case
Linked list 16 31 42 + B8(l+m)All] + E(l4+mIA[2]
AVL tree 16 34 89 - 3n +
{16,252 (1) + 15,25X1(21) (1+n)

Bit - Array 27 + (9+49%n) x[M/327
) Hash table 16 31 48 + 3271 + 10mA[1) + 12mA(2)

Bit-string

with urcor ted 46 39 Sl + (6+6m)xMM/327

linked !ist

Attribute bit 0 |
3 Sorted variable 22 29 60 - 3n + (94301172 +

length array {(7+7mA12) 72

e e S e S S e T

£
"

I
I
l‘

8.9 APPENDIX |

COPY_SET - form a copy of a set
A = size of set
M « maximum size of set

set empty set non-empty
Linked list (sorted) 11 43 + 46xA
AVL tree 15 48 + 59
Bit - Array 18 118 + BxMM/327
Hash table (32 siots!) 15 633-128(31/32)4x + 33x

Bit-string
Wwith unsorted 19
linked list

227 + 46X+ BxMM/327

Attribute bit

Sorted variable 15
length array

384 + BA

87

SR e Lo e SR,

'

3
Sl o it T g 20 S e e d o p s:’ﬂA

8.9

RELEASE SET - release the storage occupied by a set

A = size of set
M = maximum size of set

APPENDIX |

set empty set non-empty
Linked ist (sorted) 11 22
AVL tree 11 1+ 32X
Bit - Array 12 50
Hash tablie (32 slots) 11 818 - 384x(31/32)
Bit-string
with unsorted 15 92
linked !list
Attribute bit
Sorted variable 9 191

length array

88

O ———

8.9 APPENDIX 1 89

FOREACH LOOP (including initialization) through a set
A = size of set
M = maximum size of set

set empty set non-empty

I Linked |ist (sorted) 128 135 + 34xA

I AVL tree 87 101 + 66,52
Bit - Array 1641 + 65%x + 13xMM/327

I Hash table (32 slots) 117 12274362-448(31732) 42
Bit-string

I Wwith unsorted 175 2144402
linked list

I attribute bit (oY
Sorted variable 95 304 + 38X

l length array

i
: 89 APPENDIX |
} PUT INDEXED - insert into hist
» = size of list
k list empty list non-empty
i One-uay
linked list 93 71 + 7A/2
Two-uay
linked tist 1088 92 + Sa/4
Variable length
151 95 + 3.3x

array

PUT_AFTER - insert 1ato hist after specific item
A = size of list

list non-empty

One-uay
linked list

71 + BA

Two-+:ay
linked list

81 + 4X

Yariable length
array

97 + 5.8

90

.‘

89

APPENDIX |

PUT BEFORE - insert into list before specific item

A = size of list

list non-empty

One-uay
linked list 63 + B
Two-way
linked |18t 81 + 4x
Variable length

array 180 + 5.8X

REMOVE INDEXED - remove the n th element of a st

A = size of list

result list empty

result list non-empty

One-way

linked !ist &3 55 + Ta2
Tuwo-way

iinked list 93 B8 + Sas4
Variable length

array 221 24 + 1.52

91

APPENDIX | 92

REMOVE ITEM - remove first occurence of specified item from list

A = size of hst
n = proportion of time item in list

list empty not only item in list | only item in list

One-way
linked 1ist 12 13 + 12X-6n) +34n 88
Tuc-uay
linked list 12 12 + 82 -4m) + 39n 79

Variable length
array 12 26 + 4.5n+(5-n)A 231

REMOVE _ALL ITEM - remove all occurences of specified item from list
A = size of list
n = proportion of list that 15 item

list empty not only item in list | only item in list
One-way
linked list 12 20 + 122+48n2 49 + 52
Two-way
linked lis 12 18 + 82 + 41m 34 + 492
Yariable length
array 18 28 + 16X - 4n) - Bn 222 + 12»

89 APPENDIX |

COPY LIST - mace a copy of a hst
A = siie of List

RELEASE LIST - release space occupied by a hst
A = size of hist

list empty list non-empty
One-way
linked list 13 S1 + 4bxx
Two-way
linked |ist 15 S8 + 54
Variable length
array 17 386 + 62

list empty list non-empty
One-uay
linked list 13 24
Tuo-way
linked list 11 23
Variable length
array 9 1391

93

89 APPENDIX | 94

COP LIST - return first element of list
A = size of list

One-way
linked Iist 17
Tuo-way
linked list 15

Variable length
array 12

LOP LIST - return and remove first element of list
A = size of list

result list non empty | result list empty {

Cne-way ;
linked list 58 67 !
Tuo-way

linked list 46 76

—r =

Variable length
array 22 + 3 219 |

eswm SND BE W BN W e —3 1 |

l

89

APPENDIX |

CONCATENATION - concatenate two lists together

A = s1ze of list

list 1 empty | list 2 empty neither empty
One-way
linked list 16 14 52
Two-way
linked list i6 14 59
Variable length
array 14 11 731+ BA (11462 (2]
LIST _EQUALITY - boolean true if lists equal
n = proportion of time boolean true
A(1) = si1ze of hist |
A[2] = s1ze of list 2
lengths = both empty otherwise
One-uay
linked list 21 20 36 - 3n +(3+49r)2
Tuwo-way
linked list 29 18 26 + (444n)A - 3n
Variable length
array 24 21 22 + (545mIx + 3x

8.9 APPENDIX |

LIST MEMBERSHIP - boolean true i item an element of the list
n = proportion of time item in non-empty lis:
2 = size of list

list emply list non-empty
One-nay
finked list 15 19 &+ 112 - 5.5m
Tuwo-uay
linked list 15 19 + 3m + B2 - 4m
Variable length
array 15 23 4+ 3n/2 + (5-54/2)%

FOREACH LIST - foreach item 1n list, initiahization and iteration
2 = size of list

list empty list non-empty
One-way
linked list 112 139 + 38
Tuo-uay
linked list 92 123 + 49
Variable length
array 93 388 + 40»

i W — —— N Py — _—

% 8.9 APPENDIX | 97

FETCH INDEXED - fetch the n th element of the list
A = size of list

list non-empty

One -uay
linked list 17 + Sx/2
Tuo-way
linked list 28 4+ 8)/4

Variable iength
array)

REPLACE INDEXED - replace the n th element of the list
A = size of list

f list empty |extend list | replace | replace last

One-uay
linked list 97 79 23 + Sa/2 34
Tuo-nay
linked list 113 93 42 +5)/4 45

Variable length
array

wa*wm e T

89 APPENDIX | 98

LENGTH_LIST - returns number of elements in list
A = size of list

list empty list non-empty
; One-way
: linked list 3 9
{
: Two-way
| linked list 9 12
Variable length
array 11 16

EXPLICIT_LIST - make an xphait list
A = size of list

list non-empty

One-way

linked list B3 + 432
}
i Two-uay
H linked list 73 + 51X

Variable length
array 373 + 3

90

[Allen69)

[Anderson72)

(Baumgart72)

[Balzer67)

[Baizer72)

[Bobrow73a)

[Bobrow73b)

(Brent73]

{Cocke?0)

[Codd 70]

[Crane72]

[Crick 70}

99

SECTION 9

REFERENCES

F Allen. Program Optimization
Annual Review in Automatic Programming Vol 5 p 239.307. 1969

B Anderson. Programming Languages For Artificial Intelligence: The role of
nondeterminism

School of Artificial Inteligence, Univ. of Edinburgh Experimental Programming
Reports No 25 March 1972.

B Baumgart. Micro Planner Alternate Reference Manual
Stanford Aruficial Inteligence Laboratory, Operating Note 67 Apr 1972,

R Balzer. Dataless Programming.
AFIPS Proceedings of FJCC 1967 p 535-544.

R Balzer. Automatic Programming.
Institute Technical Memo, University of Southern California, Informaticn
Sciences Institute Sep 1972.

D Bobrow and B Raphael Bertram. New Programming Languages for Al
Research.

Tutorial presented at Third International Joint Conference on Artificial
Intelligence. Stanford Aug 1973.

D Bobrow and B Wegbreit. A Model and Stack Implementation of Multiple
Environments.
CACM vol 16, no 10 (Oct 73).

R Brent. Reducing the Retrieval Time of Scatter Storage Techniques.
CACM vol 16, no 2. (Feb 1972).

J Cocke and J Schwartz. Programming Languages and Their Compilers.
NYU Courant Institute. Apiil 1970

E Codd. 4 Relational Model of Data for Large Shared Data Banks.
CACM vol 13, no 6. (June 1970).

C Crane. Linear Lists and Priority Queues As Balanced Binary Trees.
PH. D. Thesis Stanford Computer Science Department Technical Report CS
259 February 1972

M Crick and A Symonds. A Software Associative Memory For Complex Data
Structures.

9.0

(DEC69)

{Delobel73]

{Derksen?2)

(Earley7la]

(Earley71b)

(Earley73a)

(Earley73b)

(Earley74a)

(Earley74b)

{Elias)

{Feldman69)

(Feldman72a)

{Feldman72b]

REFERENCES 100

IBM Cambridge Scientific Center. Report No. G320-2060. Aug 1970.

PDP-10 SYSTEM REFERENCE MANUAL. Digital Equipment Corporation.
1969.

C Delobel and R Casey. Decomposition of a Data Base and the Theory of Boolean
Switching Functions.
IBM Journal of Research and Development. Sep 1973.

J Derksen. The QA4 Primer
Stanford Research Institute, June 1972.

J Earley. Comments on SETL (Symmetric Use Of Relations).
SETL Newsletter 52. Courant Institute NYU. Sept 1971

J Earley. Toward an Understanding of Data Structures.
CACM vol 14, 10 (Qct 1971)

J Earley. Relational Level Data Structures For Programming Languages.
Computer Science Department, Umiversity of California, Berkeley. March 1973

J Earley. An Querview of the VERS2 Project.
Electronics Reseaich Laboratory, College of Engineermng, University of Calif,
Berkeley Memorandum ERL-M416 Dec. 1973,

J Earley. High Level lterators and a Method of Automatically Designing Data
Structure Representation

Electronic Reseaich Laboratory, College of Engineering Memorandum ERL.-
M416, Feb 1974 University of Calf, Berkeley

J Earley. High Level Operations In Automanic Programming.
SIGPLAN Notices, Vol 9, No 4. (April 1974)

P Ehas. Effiaent Storage And Retricval By Content and Address of Simple Files.
MIT Department of EE & Research Laboratory of Electronics. No Date.

J Feldman and P Rovner. An Algol-Based Associanve Language
CACM vol 12 no. § August 1954

J Feldman. Automatic Programming
Technical Repoit C. S 285 Stanford Computer Science Dept. Stanford
University. Feb 14972,

J Feldman,] Low, D Swinehart, and R Taylor. Recent Developments in SAIL -
An Algol Based Language For Artificial Intelligence
Proceedings of FJCC 1972 p 11931202,

T Y . R e N T

9.0

[Feldman73)

(Foster65)]

[(Foster?73)

(GeschkeT2)

[Harrison72]

(1BM69]

(Ingalls71]

(Johnson)

(Kildalt 72)

[Knuth68)

(Knuth73)

(Knuth71)

(Knuth74)

REFERENCES 101

Feldman and] Low Comment on Brent'S Scatter Storage Algorithm.
CACM vol 16, no 11 (November 1973).

C Foster. Information Storage and Retrieval Using AVL Trees.
Proceedings ACM National Conference. 1965. p 192-205

C Foster. A Generalization of AVL Trees.
CACM vol 16 no 8 (Aug. 1973).

C Geschke. Global Program Optimizations.
PH.D thesis Department of Computer Science, Carnegie-Mellon University. Oct

1972.

M Harrison Data Structures And Programming
Revised Version. Courant Institute of Mathematical Studies. New York

University. February 1972,

IBM, System/360 Oporating System: Assembler Language.
Systems Refererence Library C28-6514.6. June 1969

D Ingalls. FETE - A FORT RAN Execution Time Estimator
Stanford Computer Science Department Report C. S. 204 Feb 1971

T Johnson. 4 Aass Sterage Relational Data Structure For Computer Graphics

and other Arbuerary Data Stores.
MIT Department of Architecture and Department of Civil Engineering NSF
contract GK-265, MIT Project No DSR 74684. No Date.

G Kildall Global Expression Optimization During Compilation.
PH.D thesis. Department of Computer Science, University of Washington. TR

72-06-02. June 1972

D Knuth. FUNDAMENTAL ALGORIT'iMS: The Art of Computer
Programming Vol |.
Addison-Wesley 1968

D Knuth SORTING AND SEARCHING The Art of Computer Programming

Vol 111
Addison-Westey 1958

D Knuth An Empirical Study Of FORTRAN Programs.
SOFTWARE - PRACTICE AND EXPERIENCE, VOL 1 p 105-133. Wiley-

Interscience 1971

D Knuth Structured Programming With Go To Statements.
Stanford Computer Science Department. Report STAN.CS-74-416. May 1974,

e R

PO Sy

v

9.0

{Madnick67]

[(Maurer68)

(McDermott72)]

IMinter72)

(Minsky72]

(Morris73)

[(Morri1s68]

(Parhami72)

[(Randali?1)

"Rivest74)

(Schwartz71]

[Schwartz74a)

[Schwartz74b]

[(Smith73)

R . R R R R TTIRERTTEAEEZIR» —r™

REFERENCES 102

S Madnick. String Processing Techniques
CACM July 1967.

W Maurer. An Improved Hash Code for Scatter Storage.
CACM vol 11, no 1 (Jan 68).

D McDermott and G Sussman. The CONNIVER Refererence Manual.
Al Memo No. 259 MIT May 1972

J Minter. Associative Memories and Processors: A descritive ap praisal.
TR 195 Umiv of Maryland, Computer Science Center, Cullege Park, Maryland.
July 1972

N Minsky Rotating Storage Demces As Partially Associative Memories.
Technical Repoit 72-4 Computer Information and Control Sciences. Univerity
of Minnesota. Aprif 28, 1972,

] Moruis. A Comparison of MADCAP and SETL.
University of California, Los Alamos Scientific Laboratory. 1973

R Morris. Scatter Storage Techniques.
CACM vol 11, no 1(Jan 68)

B Parhami. RAPID: A Rotating Associative Processor For Information

Dissemination.
UCLA - ENG 7213 Feb. 1972. Comp. Sai Dept.

S Randall. A Relatwonal Model of Data for the Determination of Optimum
Computer Storage Structures.

Department of Electrical Engineering, Systems Engineering Laboratory Tech
Report 54 University of Michigan, A.in Arbor Sept 1971

R Ruvest. Analysis of Associative Retrieval Algoriihms.
Ph. D. Thesis Stanford Computer Science Department 1974.

] Schwartz. More Detailed Suggestions Concerning "Data Strategy” Elaboration

For SETL.
SETL Newsietter 29 NYU Courant Institute. May 1973

J Schwartz Automatic 4 ! Semiautomatic Optiruzation in SETL.
SIGPLAN Notices, vol 9, no 4 (April 1974).

J Schwartz. Automatic Data Structure Chowce in a Language of Very High Level.
Courant Institute, NYU. 1974

D Smith and H Enea. Bucktracking in MLISP2.
Proceedings of the Third 1JCAL 1972,

T T TR T RS e .

90 REFERENCES 103

G Sussman, T Winograd, and E Charmiak MICRO-PLANNER Reference

Manual
Al MEMO 203, Project MAC, MIT July, 1970

(Sussman70)

[Sussman?2] G Sussman. Why Conntuing Is Better Than Planning
A.1 Lab. MIT. A. 1 Memo 255, FEB, 1972

[Tesler?3) L Tesler, H Enea, and D Smith. The LISP70 Pattern Matching System.
Proceedings of the Third 1JCAL 1972,

(Tompa?3] F Tompa and C Gotlieb Choosing A Storage Schema.
Technical Report No. 5 May 1973 Department of Computer Science,

University of Toronto Toronto Canada

(VanLehn73) K VanLehn SAIL User Manual.
Stanford Computer Science Technical keport STAN-CS-73.373. July 1973.

(Wegbreit71] B Wegbreit. The Treatment of Data Types in ELI.
Harvard Umversity 1971

[(Wegbreit73) B Wegbreit. Procedure Closure in ELL
TR 13.7% Center for Research in Compuung Technology Harvard University

May 1972

(Wegbren74] B Wegbrei. Mechanical Program Analysis
Xerox Palo Alto Research Center july 1974.

[Wichman72) B Wichman. Estimating the execution speed of an ALGOL program.
SIGPLAN Notices. vol 7, no 8. Aug 1972

(Wulf 73] W Wulf, R Johnsson, C Weinstock, and S Hobbs. The Design of An Optimizing

Compiler.
Computer Science Department. Carvegie-Mellon University. Pittsburgh,

Pennsylvania Dec 1973

