
=»

| AD/A-000 500 |
| AUTOMATIC CODING: CHOICE OF DATA |

STRUCTURES |

James Richard Low

| Stanford University

| Prepared for:

| Advanced Research Projects Agency H
August 1974 |

DISTRIBUTED BY:

; National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

: ne di gg dh ho LL bhi Jat od J dedi ob dl iad od uk) judi Ct ak ad ad io bo dal g ig di dil i Rt oka ERE ET bike i

[
| } :

UNCLASSIFIED) ;1 SECURITY CLASSIFICATION OF THIS PAGE (When Data Fntered) D = id, (7 (7) gh 9, CC]
READ INSTRUCTIONS]

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2 GOVT ACCESSION NO. 3. REC'PIENT’S CATALOG NUMBER 3

i STAN-CS=Th4=b452 .
| 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

AUTOMATIC CODING: CHOICE OF DATA STRUCTURES. echnical, August 1974 |
6. PERFORMING ORG. REPORT NUMBER 3

| STAN-CS 7h =b52 |
E 7 AUTHOR(S. 8. CONTRACT OR GRANT NUMBER(s) |

James Richard Low DAHC =15=-73=C=0435
3 ;

| 10. PROGRAM ELEMENT, PROJECT, TASK 1
5. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJEC E

: stanford University
j Computer Sclence Department ;

Stanford, California 94305 :

3 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE y

ARPA TPT, Attn: Stephen D. Crocker August, 197k
| 1400 Wilson Blvd., Arlington, Va. 22209 13. NUMBER OF PAGES 1

Ce Br ;

1 13a MONITORING AGENCY NAME & ADDRESS(if different {rom Controlling Office) tS SECURITY CL ASS. (of this report) 3

| ONR Representative: Philip Surra 1
Durand Aeronautics Bldg., Rm. 165 Unclassified :

t] ERY 15a. DECL ASSIFICATION/DOWNGRADING

Stanford University ® SCHEDULE 3
i Stanford, California 94305 3

| 15 DISTRIBUTION STATEMENT (of this Report)]
] y

1 Releasable without limitations on disseminat.on. 3

4 17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) id

J ee —— +e_— ;
k 18. SUPPLEMENTARY NOTES i
3 3

4 Ce ————————————— b
3 19. KEY wORDS (Continue on reverse slde of necessary and identify by block number) 4

1 20. ABSTRACT “Continuo on reverse side If ne essary and identify by block number) 4
1 A system is described which automatically chooses representations for high-level ;

: information structures, such as sets, sequences, and relations for a given
computer program. Representations are picked from a fixed library of

A low-level data structures including linked-lists, binary trees and hash ;
2 tables. The representations are chosen by attempting to minimize the

predicted space-time integral of the user's program execution. Predictions

: are based upon statistics of information structure use provided directly ;
3 by the user and collected by monitoring executions of the user program (continjied) ;

: DD , rt i473 EDITION OF 1 NOV 6515 OBSOLETE ¢ Unclassified | 3)
I SECURITY CLASSIFICATION OF THIS PAGE (When Data En ared) .

1

o TF : . (GEL Nhl eh TPA CoisRi a ee Sot oe oi

UNCLASSIFIFD 3
—

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) ' ’ i

| using default representations for the high-level structures. A demon=~
: stration system has been constructsd. Results using thal system are

| presented.
Sl

| ;
3
y]

i

: k \
|
: |

J

|
|

= 2

3 |

|

5 UNCLASSIFIED
“ay

3: SECURITY CLASSIFICATION OF THIS PAGE(Whan Data Entered) pr

| i “ow 1
: y :| STANFORD ARTIFICIAL INTELLIGENCE PROJECT AUGUST 1974 ;
3 MEMO AIM-242 3
| COMPUTER SCIENCE DEPARTMENT |J REPORT CS-452 :

1 AUTOMATIC CODING: CHOICE OF DATA STRUCTURES E
James Richard Low | :

] ABSTRACT:

: A system is described which automatically chooses representations for high-level information ;
: structures, such as sets, sequences, and relatiuns for a given computer program. Representations JJ are picked from a fixed library of low-level data structures including linked-lists, binary trees and :
; hash tables. The representations are chosen by attempting to minimize the predicted space-time
Y integral of the user's program execution. Predictions are based upon statistics of informationstructure use provided directly by the user and collected by monitoring executions of the user ;
3 program using default representations for the high-level structures. A demonstration system has :

been constructed. Results using that system are presented.

] A dissertation submitted to the Department of Computer Science and the Committee on Graduate
3 Studies of Stanford University in partial fulfillment of the requirements for the degree of Doctor
1 of Philosophy.

] The research reported here was supported in part by the Advanced Research Projects Agency of
; the Department of Defense under Contract DAHC-15-73-C-0435. ;
1 The views and conclusions contained in this document are those of the author and should not be :4 interpreted as necessarily representing the official policies, either expressed or implied, of the :
: Advanced Research Projects Agency or of the U. S. Government. $
d Reproduced in the USA. Available from the National Technical Information Service, Springfield, i

Virginia 22151. AJ h, al, | - E

ACKNOWLEDGEMENTS

| b and :
[am truly grateful for the help and support of the Artificial Intelligence Laboratory

| Computer Science Department here at Stanford. | would be negligent if 1 did not also mention my
ppreciation to the following people: Donald Knuth, who strongly influenced my ideas towards; a ;

| | oftware monitoring during the summer of 1970 when 1 was part of his FORTRAN optimization
| tudy, and who later directed me 1n reading and research in the field of data structures; Terry
: Lo Winograd and Forest Baskett, members of my reading committee, who made many useful
| suggestions about this dissertation: Dan Swinehart, Russ Taylor, Hanan Samet and Bob Sproull,

ost importantly,]

| the SAIL hackers who acted as sounding boards for my ideas, and lastly, and m p y |
| dy at any time to think 4

1 Jerry Feldman, my advisor, who was always there when [needed him, ready at any 1
| about, and talk with me about, any problems | was having.

Fi i

:

: TABLE OF CONTENTS |

| 1.0 INTRODUCTION |
|] TRADIT'ONAL OPTIMIZATIONS 2

; 2 INFORMATION STRUCTURES : |
1.3 CODE GENERATION 6 3

; | 4 RELATED WORK IN HIGH LEVEL ALGORITHMIC LANGUAGES 6 i
1 16 EXAMPLE OF LEAP SUBPROGRAM 14 1
! 2.0 OVERVIEW OF THE SYSTEM 6 J2.1 INFORMATION GATHERING 16 3

2.2 SELECTION 8 }
2.3 COMPILATION AND EXECUTION ol |

10 ABSTRACT DATA STRUCTURES AND THEIR REPRESENTATIONS 99 3
| 2.1 SETS AND THEIR REPRESENTATIONS 99 §
] 32 LISTS 08
: 3.3 TERNARY RELATION 3024 ESTIMATING THE EXECUTION TIME OF PRIMITIVE OPERATIONS 33 :

1 i £0 INFORMATION GATHERING %4.1 EXAMPLE OF INFORMATION GATHERING 28 |
: 42 STATIC ANALYSIS OF LEAP PROGRAMS 39
: 43 STATIC ANALYSIS ALGORITHM 49 :

| 50 SELECTION OF DATA STRUCTURES 45
1 5.1 CRITERIA ‘5
5 52 COMMON COST FUNCTIONS 45 :
1 5.9 PARTITIONING THE INFORMATION STRUCTURES 46 354 APPLICABILITY FILTERING w J
: 55 COST PREDICTION 48 h

56 FINAL SELECTION 48
57 FINAL COMPILATION 50 1

1 6.0 RESULTS ol]
i 61 INSERTION SORT 5 |
4 6.2 MERGE SORT 5 :
4 6.3 TRANSITIVE CLOSURE 56 i

! |
TABLE OF CONTENTS

7.0 CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 58 3
7.1 TOPICS FOR FUTURE RESEARCH 68
7.2 FINAL CONCLUSION 5 :

] 8.0 APPENDICES of
| 8.1 APPENDIX A - SET PRIMITIVES 63 i
: 8.2 APPENDIX B - LIST PRIMITIVES 56 3: 8.3 APPENDIX C - META EVALUATIONS 58 !
1 8.4 APPENDIX D - INSRT?2 69 |
] 8.5 APPENDIX E - INSRT3 “0]
: 86 APPENDIX F - MERGE 11 :
; 8.7 APPENDIX G - TRANSFORMATIONS 73
) 88 APPENDIX H - INSTRUCTION WEIGHTS 74 :
: 89 APPENDIX |. EXECUTION TIME COST FUNCTIONS 75 :

9.0 REFERENCES 99

LIST OF FIGURES :

: FIGURE PAGE |

: |. LOGICAL ORGANIZATION OF SYSTEM [9

2. STORAGE LAYOUT OF ITEMS 09

3. ONE WAY LINKED LIST 09

4. HEIGHT BALANCED BINARY TREE "5

] 5. HASH TABLE WITH SIGNATURES 9%

] 6. COMBINATION LINKED LIST, BIT VECTOR 27 :

] 7. TWO-WAY LINKED LIST 29 :

8. FLOW GRAPH OF TRANSITIVE CLOSURE 40 1

EE

: 1.0 | :

| SECTION | 1
| INTRODUCTION ;

Many of the processes used in producing computer programs may be performed with :
J less user effort by using specialized computer programs. There has been a continuous stream of !
] developments which decrease the effort of a human programmer in producing a computer 3

program, including symbolic assemblers, macro assemblers, algorithmic languages, text editors, ;
debugging systems and so forth An important part of this series of developments has been the ;

: development of higher lever programming languages. These allow the user to ignore low level 21 details of implementation and have the system provide for them. k

Automatic Coding research involves the design and efficient implementation of very i
high level programming languages. Examples of features available in such programming A

: languages include pattern matching, extensible data types, associative retrieval, and complex
: control structures including backtracking, coroutines, multiprocessing, message passing etc. Current §

| research ([Bobrow73b,Smith73,Tesler73)) is aimed at developing techniques for efficient bj implementation of these features]
:

Automatic Coding includes sucn things as algorithm transformation, optimization and
compilation. In general, 1t takes one form of a program and translates that form into another j

1 which can be executed more efficiently. Traditional optimizing techniques involve transformations
! of the execution flow structure of the program, such as moving computations out of loops and }
3 elimination of redundant computations. Until recently there has been little work done on having a 3

compiler optimize the representation of data. The reason for this is clear. Most programming 4
languages offer only data types which have explicit implementations. If other data structures such 5
as variable length strings are provided, their internal representations are also fixed. Common 3

> larguages may allow the user to aggregate words into arrays or records, but do not provide the 3
3 user with a representation-free way of specifying his data structures with the generality needed for ;
A a translator or compiler to choose a suitable, tailor-made data structure. The complex data b
3 structures (PL/I structures, ALGOL 68 structs) some algorithmic languages allow are very detailed
3 and maintain a close tie with their implementation. They are usually equivalent to the assembly 3
3 language representations such as DSECTS in 360-ASSEMBLER ((IBM69]) which merely define :

the fields of a contiguous block of storage. 4

: Recently many ianguages, including QA4 ([Derksen72])) PLANNER ([Sussman?70, :
: Baumgart72]), SETL ((Morri1s73)), MADCAP[Morris73)), VERS2([Earley72b)), E
f CONNIVER([Sussman72,McDermott72]) and LEAP ([Feldman6%]) have incorporated high-level 5
3 abstract data structures (information structures) base. on relations and sets. These information
3 structures provide not only the representation independence we desire, but also give the user good 4

abstract models for his data. A programmer can think in terms of such abstiact information 3

) structures as sets rather than in terms of linked record structures provided by languages like PL/I. }
; Usually this 1s much simpler and the programmer 1s able to design and debug his programs more 5
3 quickly. Unfortunately, users have often been reiuctant to use these information structures to their
] fullest in production programs because at runbime inpfiiriencies. These mefficiercies are caused 3
3 by the suboptimal low-level implementations of these information structures; the implementations
] being a compromise over all intended usages. Thus, In most existing programming systems the
] usEe ust choose between the fF fi efituial oHrwncy i * YPreiiing Wid d4in FLT hagt layial

k

| 1.0 INTRODUCTION 2
inforination structures, and the runtime efficiency available usmg lower level data structures. We
believe these runtime efficiencies can be remedied by providing a library of representations for :

3] the (nformation structures and a user assisted automatic system to choose appropriate elements

| from this hbrary for the user's programs.
: The main problems m such an automatic approach are: [). Building a hbrary of J
| representaiions; 2). Characterizing the properties of these representations; 2). understanding how 4the user's program actually uses the abstract information structures; and 4). efficiently matching ;

the user program needs with the properties of the known representations.

The research reported here 1s an attempt to demonstrate the feasibility of such ;
automatic representation selection. We allow the user to express data in terms of relations, sets, :

] and sequences. Our svstem then obtains information by analysis of the program, execution
- statement profiles and mterrogation of the user. Using that information, the system selects efficient 3
¢ (in terms of time and space) low level implementations for the user's information structures from a i
: fixed library of information structure representations. Though we have considered only a few i
A abstract information structures (those available in our programming language, SAIL) we believe 3
1 the techniques used in this system are generally applicable. 3
: We have constructed a demonstration system which we have used to process several ¥

example programs Example programs and the structures selected for ther formation structures
are included in Section 6. A marked improvement in execution time (over using a default]

] representation) 1s shown in several of these. Others gave us some surprises and indicate areas for
future research. i

1.1 TRADITIONAL OPTIM ZATIONS

We are concerned with optimization tn our choice of representations for information y
structures in that we wish to decrease the cost of runnmg the fimished program. This is the same :
goal as that of classical compiler optimization. In this research we have emphasized solving :
problems in representation selection rather than using standard optimization techniques. 1

Traditional optimizations ([Allen69, Cocke70, Geschke72, Kildall72, Wulf73]) are y
; concerned with reducing the execution time necessary for arithmetic calculations by performing 3

equivalence preserving transformations on the program being optimized. Many of these ;
{ optimizations are also applicable to operations involving information structures. Our system does :
4 not include such optimizations but it should not be extremely difficult to add such optimizing :
A strategies to future data structure selection systems. 3

3 CONSTANT FOLDING AND PROPAGATION 4

i Expressions involving only functions of constants may be evaluated at compile time if :
1 the functions do not have side effects and given the same argument always return the same value.]
3 If a constant valued expression 1s assigned to a vartable and that variable is ot changed 3
§ following such assignment then we may treat that variable as if 1t were the constant expression :
: itself. Thus in the sequence:]

= :

| 1.1 TRADITIONAL OPTIMIZATIONS 9 :

4 ROWSIZE « 10;
gr | = I;

: H J — &
| INDEN « IXROWSIZE + J,

] we can realize that INDEX will be 15 and that there 1s no need to compile the code to compute its |
value since its value may be computed at compile time. If the array A were statically allocated the

X address of A[/NDEX] could also be computed at compile ime. Thus, we would only need to
| generate code that will add the value of X to the computed value of the address of AIINDEX] to
] obtain the address of A[INDEX+X] 4
] Information structure constants such as constant sets or constant sequences do not

appear to be as common as simple arithmetic constants but when they are present the above
FE technique may beneficially be applied :

COMMON SUB-EXPRESSION ELIMINATION

» We often see the same expression being computed several times without its arguments
1 being changed. Common subexpression elimination is designed to recognize such occurrences and |
; avoid the redundant computations by saving the expression in a temporary. For example: :

| All + Je Ble 1% AL + |

The expression i+j must be computed only once. Similarly the addressing function for subscripting 1array A need only be computed once

Information structures such as sets and sequences usually take more than a single word
to store. Therefore application of common sub-expression elimination must be carefully weighed
to see If the time saved in avoiding redundant computation 1s more important than the added
storage needed to save temporary results. j

CODE MOTION :

| Often, computations can be moved from portions of the program which are executed
very often (such as inside loops) to places where they would be executed fewer times without i
changing the meaning of the program. For example:

for 1 « I step | until N do

} The expression J X X need only be computed once before the loop and then saved in a j
temporary. Thus we might compile the above as If it were: :

TEMP « J x X;
| for | « 1 step | until N do 3
| All] « TEMP «1;

1.1 TRADITIONAL OPTIMIZATIONS 4

Application of these techniques to multi-word information structures involves tradeoffs i
: aimilar to those in common sub-expression elimination. We must determine if the execution time J
) saved is more important than the space used to store the temporary resuit. :

3 REGISTER ALLOCATION and DEAD VARIABLE ANALYSIS :

Modern day computers often have a number of fast working registers. It is often
A beneficial to keep the most commonly used variables and common subexpressions in these
: working registers rather than memory. There are usually very few of these registers so a compiler

wants to know when it no longer needs to retain the value of an expression. For example in the
> sequence: 1

] BeAsl

: B «5

3 we would calculate the value of A + [in a register and would notice that the use of B in the ;
4 multiplication 1s the last use of B before B 1s given a new value Bis said to be dead after the
] multiplication. Therefore any register that was known to contain B may be reused. In the above !

example we would be able to compute the value of the multiplication in the same accumulator as
: we computed 4 + I. (In this example, a smart compiler would realize that the value A + I neednever be actually stored into the memory location B) 1

The notion of dead variables is quite important in operations involving high level
1 structures. To make a copy of a simple arithmetic value 1s usually quite cheap, but making a copy
1 of a set can be very expensive. Consider the statements:

; The subroutine implementing the union operator might simply insert all the elements of its second 3
4 argument in the first argument Thus, in the first statement above, we would normally have to
: make a copy of B and pass the copy to the union subroutine. This, however, 1s the last use of B]
1 before it is given a new value Therefore the copying operation Is unnecessary. This copy \

| avoidance has tremendous payoff ([Schwartz74al). 4

: We will not discuss clascical optimizations in any more detail. They are very important 3
3 and should be included in compilers which select data structures. We imagine new optimization |
] techniques (including interaztive apphcation of the above techniques [Knuth74]) will be found ;
j which are ever more helpful to optimizing programs involving high level data structures, than ithe traditional ones mentioned above. 4

) he. " _ j

|
 £ 1.2 INFORMATION STRUCTURES 5 ;

1.2 INFORMATION STRUCTURES S

Examples of common abstract tniformation structures which would be nice to have In 3
| our programming languages include simple queues, stacks, priority queues, SequUENCEs, sorted ;
: , sequences, sets, disjoint sets, oraered sets, relations and mapping functions. Each has some
| particular semantic properties which make 1t conceptually appropriate for expressing certain 1
] algorithms. The right information structure provides the important properties of the data, and the J
: essential primitives necessary for manipulating the data. At the same time, non-essential (and :implementation restricting) details are suppressed. For example, consider an information structure ;

| which 1s logically a set; that 1s, an unordered collection of unique objects. In the absence of the
1 set data-type a programmer would probably use a sequence for that data, or end up programming

his own set representation. While the operations on a set may be easily coded as appropriate :
operations on sequences, there 1s a conceptual overhead (and chance for bugs) in making sure that 1

: only a single copy of each object 1s in the sequence. It should be much easier to prove properties :of the program knowing that the information structure 1s a set rather than having to derive that E
3 knowledge from the representation of the set In terms of a sequence or other construct, and from
J the way t'ie representation 1s updated and accessed.

: An tmportant attribute of a system having the righi information structures, and the ;
attribute on which our system 1s based, 1s that optimizers can do a much better job of selecting
data representations when they are given a free hand and are not encumbered by non-essential 3
details. With our set example above, we can see that an optimizer given the program in terms of]

; sequences, would find it extremely difficuit to recognize that the information structure Was really a
; cet. Therefore it would not be able to consider such other set representations as boolean arrays or ;
4 hash tables. The opumizer would be forced to represent the data 1n some sequence representation
3 which might be inferior to available set representations.

: A commonly held view is that the user should have originally expressed his information :ctructure in terms of its final representation, say a hash table. This opposes many high level
, language principles As stated earlier 1t 1s much more difficult to prove properties of (and to

debug) programs at the representational level What may be the best representation when the :
program 1s designed may not be the best later when such attributes as number of data ob jects

3 change. Thus, enormous reprogramming costs may occur in order to change representations :
during the hfeume of a program, or increased computer costs from using inefficient :

: representations may be incurred. Similarly the best representation for the data on one machine, f
might be decidedly inferior on another machine Programming at the representational level, rather 3

y than at the formation structure level, 1s therefore costly in terms of debugging, maintenance, ana 1
| portability of programs.

Our final rationale for use of abstract data structures is that we are working towards the L
day when computer programs are mechanically generated by other programs ({Balzer72,

| Feldman72a)) It should be much easier to generate programs at the abstract level than at the ;
representational level. 3

3 3
; 1.3 CODE GENERATION 6

- 1.3 CODE GENERATION

] To generate code for manipulating information structures, we just consider which]
1 primitives are necessary In the generated code to accomplish a high-level operation. These 3
1 primitives normally will be either closed subroutines, or in-line code. In some representations
y certain primitives may essentially be null operations. For example, certain representations may not

need explicit copy or explicit release storage primitives because these operations will be performed
inside other primitive operations.

| Consider an assignment statement involving a set variable and a set expression :k SETVAR ~ SETEXPR,

A single assignment primitive could take the two sets as arguments and do the assignment.
Another implementation might make a copy of the right side (SETEXPR), if necessary; release :

! the storaze occupied by the set on the left side, if necessary; and then put the descriptor for the 3
) copy 1n the set variable. This implementation has the advantage that it knows whether it has to 5

make a .opy of the right side (SETEXPR) or whether the right side 1s simply the result of a
| computation. In an optimizing compiler, we could also recognize special cases where the space | |

occupied by the set variable on the left (SETI AR) need not be released because 1t 1s known to be 1
empty or previously released. To get the same effect with an assignment primitive, we would really |
need four assignment primitives, each called depending on knowledge of whether the left side
needed to have its storage reclaimed or the right side needed copying. 1

Alternatively, an assignment primitive 1s sometimes more efficient in expressing the :
: concept of assignment than lower level primitives. Consider the representation of two sets as fixed j
| length arrays. An assignment primitive could simply copy from one array to the other, but If we
: had expressed the assignment in terms of copy and release primitives we would have to create and

destroy some temporary array. Allocation and deallocation of temporary arrays can be quite costly]
] In execution time. i

The design of a set of low level primitives Is an art very similar to the design of the :
x instruction set of a computer. We feel that much benefit could be derived from studying the ways |

in “ormation structures are used In order to decide which primitives are most beneficial. (See

J appendices A and B for the description of ‘he primitive operations which we use to describe sets 3
: and sequences.) |

; |4 RELATED WORK IN HIGH LEVEL *".GORITHMIC LANGUAGES |

J There are several research projects which are investigating the use of abstract
information structures in high-level programming languages. The following are projects which

: have recently been conducting sucn research.

: SETL((Morris73)). This language 1s being developed at the Courant Institute at NYU. It 1s based
on set-theoretic principles. Data structures are expressed in terms of finite sets and tuples of

! heterogeneous objects, where ob jects are elementary types like integers and character-strings, or
| more complicated objects such as sets and tuples. Mapping functions are expressed as sets of

1.4 RELATED WORK 7 i

2 ordered pairs of function argument and function value. Most of the work on the SETL project
EE ~~ seems to have been spent in designing programming language constructs which are closely related 1

to mathematical set constructs. Major effort has also been spent on a series of progressively more
- ol efficient implementations. Recently ([Schwartz74a, Schwartz74b]), work has been done on 1
J optimization techniques involving data-type inference (there are no variable declarations In

- SETL). SETL researchers are also interested in computation avoidance. For example in the :
3 i expression x € (4uB) there 1s no need to actually construct the union of 4 and B as we can simply
E | test whether x is an element of either set. SETL researchers have also investigated other more 1
sr 11 classical optimizations including dead variable analysis. As mentioned earlier dead variable :
1 RL analysis has a large payoff in avoiding unnecessary copy operations.

! ;

EF BT MADCAP([Morris73)).The latest of the series of MADCAP languages (MADCAP VI) being b
ef Ls developed at the Los Alamos Scientific Laboratory by Morris and Wells 1s very similar to SETL. :
= There are minor differences in some semantics, e.g sets must contain ob jects of a single type, and 1

| - some not so minor differences. One such difference is that MADCAP is a pointer language
y rather than a value language. For example, the sequence: 1

1 A= <3 4
y B=-A |

* Bi «2

3 It causes 4 to have the value <2,3> rather than the expected value of <!,3>. The emphasis again 4
) .o has been on the language design and not tn optimizing the implementation, :

11 ELL. This is the first of a family of extensible languages being developed by the ECL group at i
1 ; i. Harvard ((Wegbreit71]). The base language itself does not include constructs of higher level than
3 tuples. It does, however, include extension mechanisms with which the user can define his own 3
1 , abstract data-types and operators to act upon these types (See VERS2 below). The goal of this :
} research has been to provide an extensible language which has several levels of implementation
: from LISP-like interpreters (highly useful in debugging programs) to very complex optimizing J
4 compilers. One important feature of these compilers is the CLOSURE mechanism ((Webreit72)).
: To understand this mechanism we must realize that EL1 operators are defined in terms of user }
3 written subroutines. These routes normally will do different things depending on the type of i
3 their operands. At the lowest level, for example, the operator "+" will do a floating point addition ;
: if its arguments are both real, a fixed pomt addition if its arguments are both integer, and a 8

floating pomt addition preceded by changing an integer argument to a real valtie if one argument J
3 is mteger and the other is 1eal. The purpose of closure is to tailor special versions of routines 1
3 (both operator definitions and user defin~d procedures) which know the data-types, and perhaps ¥
1 even the values of certain parameters anc free variables. With such knowledge unnecessary type E
3 checking or computation of constant-valued expressions may be avoided. Thus, for the operator 4
E "+" 1t would often be possible for a compiler to generate the single add instruction in-line rather 3
: than to generate a call to a generic routine which does the type checking of arguments and then 3
J eventually an add instruction. As closure 1s sometimes a very expensive operation for a compiler 1
- to perform, closure 1s currently invoked by user requests which are very specific as to what 3
y quantities are bound. Future research will likely try to automate these decisions. Work is also A
; beng done to be able to include invariants in the closure mechanism. For example, we may be ;

able to prove that because of certain types and values being constant, other relationships will hold 3
] between certain expressions. We can then often improve the code. In a trivial example we might 4
3 be able to prove that some set is always empty at a given point in a progam. If there is a 3

y k.

| 4 RELATED WORK 8
conditional expression based on that property, we could transform the expression into an
unconditional one. :

4 VERS2([Earley73b]). This is a language being developed by Earley at the University of |
; Cahfornia at Berkeley. It 1s actually being implemented as an extension of ELI (above). It has
} much of the flavor of SETL, sharing many of the same constructs. It includes relations and :
1 sequences of objects (both values and variables). One of the features of this language of great
3 interest to us is the implementation facility. With this facihty the user can tell the programming 1
E system how he wants various data-structures implemented. For example, he may state that he :
3 wants a particular set implemented as a sequence, run his debugging tests using the default z

sequence representation, and then later specify that he wants that sequence implemented using ;
p doubly hnked lists for production use. Earley has also been interested in high level concepts of
1 loops which he calls iterators ((Earley74a, Earley74b]). These iterators are at a high enough level :
1 that algorithm transformation can often be used to circumvent actual execution of loops. For j

1 example, consider the iterative operation {x 4S | P(x)}, which constructs the subset of set S |whose members satisfy the predicate P. Normhlly this would be impiemented using a loop. An y
F intelligent optimizer could realize that no loop needs to be present if we keep an auxihary set SP 3

which contains all those elements of S which satisfy P. If Pas sufficiently tractable (e.g. P(x) = x > |
1 0) then to mamtain SP we need merely to check P every time we add (remove) an element to
1 (from) $, to decide if we should add (remove) that element to (from) SP. The interesting problems ?

of such iterator inversion include deciding when it 1s the more efficient thing to do, and how to
handle complex iterators. The whole concept of iterator inversion, though not currently

: implemented in VERS, should strongly influence automatic coding research. ;

LEAP([Feldman69]). This language was originally implemented at MIT's Lincoln Laboratory by
Feldman and Rovner. Apart from normal ALGOL.-like features, it contained sets of ob jects and a ;

4 single ternary relation between these ob jects. The original implementation was geared to handling 1
4 large data bases, much larger than could fit into a single core image. It was used with much
1 success 1n diverse applications including interactive graphics. The data structure elements of 3
3 LEAP have since been incorporated into an ALGOL-60 based artificial intelhigence language
: called SAIL. Here the emphasis on handling very large data bases was dropped, and the current 3

4 implementation allows only small core-resident data bases. Recently the LEAP subset of SAIL was |3 used as part of a basis for adding powerful control structures to SAIL including multiprocessing,
: coroutines, and message passing as well as a himited form of backtracking ([Feldman72b)). In our
g demonstration system we use a subset of SAIL as the language in which a user expresses his
3 programs. A more detailed description of the impoitant LEAP features will be given in the next $
k section.
& 3

: Other related research projects ({Anderson72, Bobrow73al) involve the development of ;
] programming languages for use in Artificial Intelligence research. These programming languages :
A usually have associative data retrieval and complex control mechanisms including call by pattern

3 match and backtracking.

>

i |
4 RELATED WORK 9

: I All the projects described above have some central notions as to what types of data 1
| structures should be available to the user. Data structures should be expressed in very general 1
| [terms to rid the programmer of unnecessary implementation details. The programmer, at least at
1 3 first, should only have to worry about his algorithm and not about details such as bit masks and 3
: hash-tables. It 1s much easier to debug a program and prove it correct if we are dealing with sets ;

: rather than some linked structures. Portability of programs is becoming more significant, When 3| 1 we move a program from one computer to another it should be much simpler to change the 3
; representation of high level data-structures such as sets and sequences to those more suitable to]
] the new machine than to reprogram application programs using low level structures. Even when
: | we do not consider portability we still dertve great benefits from using the higher level data |

structures. It 1s a rare production program that does not get modified as its requirements change. :
i A programmer usually finds it simpler to understand (and thus be able to modify) programs 4
4 | written in ALGOL or PL/I than the same programs written in assembly language; similarly, he 3| finds 1t easier to understand set and sequence manipulations than the corresponding pointer
: structures which might have been used to represent sets and sequences. ;

| I |.5 LEAP
In order to explore the problems involved in doing automatic selection of

1 representations, we decided to build a demonstration system. The programming language we chose
| to work with 1s a subset of SAIL ([VanLehn73)). SAIL is a good choice for such a demonstration 3

i system because of the LEAP sublanguage. LEAP contains sets, sequences and a ternary relation. :
3 i Sets and sequences are common information structures and the problems in selecting j
EL § { representations for them are very similar to the problems in selecting representations of otherd abstract structures such as simple queues, priority queues and stacks. The LEAP ternary relation 3
5 presents problems similar to those found in partial mapping functions and n-ary relations. The :
2 version of LEAP we use 1s core-resident, so we also restrict ourselves to relatively small data bases. 2x I Problems involving large (disk size) and very large (tape library size) data bases are left for future
LL & research.

& : I LEAP consists of items (variable names), each of which may have typed datum; sets of]
IR items; linear lists (sequences) of items; and a single ternary relation between items (also called the j
¢ 3 associative store or triples), 1

I The important properties of items are: 1
1 |. They are allocated either statically (declared) or from a heap (using the NEW generic function). |3 \ Ther hfetime does not follow ALGOL block structure. A given item ceases to exist only when
3 It 1s x1ven as the argument to the DELETE procedure. :

3 | 2. Each item may have a DATUM. A datum 1s a algebraic, set, or list variable. The datum of an ;
3 item has the same lifetime as the item itself. We often classify items according to the data-type

of their datum. Thus we may speak of type-less or blank items (which have no datum), 3
| STRING items (whose datum 1s a string variable), STRING ARRAY items (whose datum is a 1t STRING ARRAY) etc.

| 1

1 1.5 LEAP) 10 }

| 3, Items may be referred to by their name (if declared), or as the contents of an item variable :
i (itemvar). In ALGOL-68 notation an itemvar would be known as a ref item. ltemvar's may A

recelve values by assignment of item expressions, or by pattern matches against the associative
3 store, sets or lists.

SETS |

] LEAP has finite sets of items Normal mathematical considerations, such as |

{a ab) =1{ab}=1{0ba}, hold. The empty or null set 1s denoted by the name phi. Set expressions
: may be stored in set variables. 1t 1s tmportant to note that the semanucs of set assignment 1s to |
4 make a copy of the set expression. Thus in the code sequence.

| XSET «~ {a,b,c d }; J
! YSET ~ XSET;

A put e in XSET; }

: the resulting sets will be

YSET = {a b,c d}

| XSET = {a b,c, d, e}
: LISTS

Linear lists of items (sequences) are also available. They behave much like variable }
: length one dimensional arrays of items. The notation used for an explicit list is {{ a,b,c, d }} . |

i "{{" and "}}" are called list brackets. 3

1 XLIST « {{ a,b,c, d J)
3 XLIST{1] « b;

3 will result in XLIST = {{ b, b, ¢, d }}. Other operations on lists include concatenation, removal of
items from a list either by index position within the list or by giving the item to be removed, and
insertion of items Into lists either by index position or after or before named items. The null list is |

3 denoted by the name NIL. :

3 TRIPLES

; The most powerful abstract data structure in LEAP 1s the single ternary relation also]
: known as the associative store. The relation instance (a,0,v) 1s denoted by: 4

3 a®o=Vv. :

: The first component is called the attribute; the second, the ob ject; the third, the value. When we :
3 are indicating an unspecified element (which might be returned from a search of the relational |
5 data base) we will mark that as "?". 3

gm& Ri ph | ai ga Ee i Bl i iid Sl in Le oie al xi ali LR mi iii Li

X wl !
= 1.5 LEA? I 3

Normally we fix one of the elements (usually the first) and use that as a binary relation
— name. Even when this 1s done, we may still do searches of the form ™ ® o = ?". For example,

] assume we have a number of relation instances involving a certain item A and we wish to copy -
: ” hem to another item B. The simplest way of doing this 1s to search the associative store (see

| FOREACH's below) for all triples whose second component is A and for each such triple, create a1 1 new relation instances which differs from the original only by having B as its second component.
; In order to take advantage of the high level data structure, we must have loops which3 - sequence through sets of items, lists of items and items which satisfy pattern matches on the |
| | ternary relation. The mechanism provided by LEAP 1s called a FOREACH statement.
| | FOREACH STATEMENTS |
: A foreach statement consists of three parts: a binding hist of itemvars (also called foreach

1 | locals, or local itemvars) whose elements are analogous to the loop control variable of an ALGOL4 & FOR statement: an associailve context, and a statement to be iterated. An associative context
consists of elements separated by "A", where an element is a boolean expression, a set iterator, a

4 [list iterator or an iterator based on a pattern match on the associative store. 1
| Each element of the associative context, other than boolean expressions, 1s said to bind |one or more of the foreach local itemvars. That 1s, the iterator successively will give various item

| values to the local itemvar. The first element of the associative context which refers to a given
' | local itemvar, binds it. Later uses of the local itemvar in the associative context will use the item
& previously bound to the local itemvar.
 § : For example: :
: foreach pargrand | PARENT ¢ JOHN = par A PARENT @ par = grand do |

g £ l will iterate thought all the pairs of (parent grandparent) of JOHN. The first element,F 3 PARENT & JOHN = par, binds the foreach local par and then that binding 1s used in the

i | second element to find bindings for grand, |
1 ; FOREACH ITERATORS
3 Set iterators are written in the form: |

; l local € setexpression |
§ These successively bind the local to each element of the setexpression. Since a set 1s conceptually :

; i [unordered, the order in which the items of the setexpression are bound to the local 1s also 43 undefined.
) E

f © l List iterators are written in the form: 1
3 4 local € listex pression

] These will successively bind the local to the first element of the hist, second element of the list and :
2 so on, ;

1.5 LEAP 12 1

; The FOREACH statement: i

1 foreach X | X € LIST do |

: 1s thus equivalent (in absence of changes to LIST! within the loop) to: 1

for 1 « 1 step | until LENGTH(LIST1) do :
A begin E
) X « LISTI[i); i

2 Relation iterators bind one or two locals. 4

1 foreach X | 2@ X = b do

1 will iterate through all items in the associative store which are the ob ject component of an relation i
4 Instance with a as the attribute component, and b as the value component. 3
3 Thus, if the associative store contained:

1 a®d=b 4
3 a®e=b 4

a®f=b ;

3 then the above FOREACH would be equivalent to 1

i foreach X | X € {d, ef} do :

: As with sets, the order which the bindings are given by this iterator to the local(s) is undefined. }

. DECOMPOSITION OF FOREACH’ :

3 When a FOREACH statement has more than a single element, it behaves as if it were a J
2 nest of FOREACH statements each containing a single element. A boolean expression element acts 1
4 much like an IF statement.]
4 Thus: 4

3 foreach X,Y, Z | Ae X = Y A (datum(X) > datum (Y) AZ € ZLIST do

: will be semantically equivalent to:

foreach X,Y | Ae X =Y do |
if (datum(X) > datum(Y)) then 3

| foreach Z | Z ¢ ZLIST do :

1.5 LEAP 13 ;

: CHANGES TO THE INFORMATION STRUCTURES DURING ITERATION

| | A difficulty in the semantics of FOREACH statements (inherent in any data structure 3; iterator) concerns changes to an information structure which 1s currently being processed by some

| Iterator.
| i For example consider: |
| foreach X | X ¢ SETI do\ | begil

remove F(X) from SETI; 3

CNT « CNT +1;

i end,
; foreach X | X €¢ SET! do :

: | begin E-» put F(X) in SETI; :
2 CNT« CNT »l; |

- end,

Should changes to the set affect which items are returned by the future iterations of this loop?

1 | If SET! In the first FOREACH were { a, b, ¢, F(a), F(b), F(c)} and the FOREACH
would return the items in that particular order, would the statement be executed 3 times, 6 times }

2 or some number in between. Similarly if the SET/ in the second FOREACH were executed with 3

i the set { a,b,c} would the statement CNT « CNT +] be executed only 3 times, or maybe an i
§ indeterminate number of times as the foreach produced the set:

4] { a, b,c, F(a), F(b), F(c), F(F(a)).....
4 H It seems desirable to minimize the differences tn program execution caused by the |
: ordering which FOREACH uerators give to to semantically unordered quantities. Therefore the

f i i best semantics would have the FOREACH not be affected by changes to the data structure during 5] i its executions. Two ways of doing this are apparent. The first 1s to outlaw operations which alter 1
& a data structure which is being processed by an iterator. This unfortunately removes many highly |

¥] useful constructs such as: |
; b foreach X | X € SETI do |
Ei | if pred(X) thea remove X from SETI;

The other way of solving this problem is to define the semantics as if the set were ;
Fd copied before the FOREACH was entered and then the copy was used to produce the items for 3

1 i the iteration. Thus the above FOREACH would be equivalent to: ;
TEMP « SETI, i

y 1 I foreach X | X ¢ TEMP do 4E if pred(X) then remove X frou SETI; :

1 | We see that any chanyes to SET/ would not change TEMP and thus alter which items]

1.5 LEAP I4 4

: are returned by the FOREACH. Note that an optimizing compiler might be able to determine | 3
1] that there 1s no possibility of a set or sequence variable being changed inside a given FOREACH
: and could then suppress the copy operation. In our demonstration system we always form copies of 3

sets and lists being iterated. Er

1.6 EXAMPLE OF LEAP SUBPROGRAM 1

; Now let us look the procedure TRANSCLO (below), written in SAIL, which uses the 1

: LEAP features. We will use this procedure to demonstrate some of the problems and techniques E
of representation selection. This procedure computes the transitive closure of a reflexive binary :
relation (REL) upon some set of items (BASE).]

: set procedure TRANSCLO(itemvar REL; set BASE),
begin "TRANSCLO" i

i set RELATED, NEWLYRELATED, FOUND; itemvar XY: bp

d RELATED « phi, NEWLYRELATED « BASE; 4
: while (NEWLY RELATED = phi) do ¥
4 begin

FOUND « phi; ;
| foreach X.Y | X €¢ NEWLYRELATED An REL ® X = VY do

put Y in FOUND;
; RELATED « RELATED u NEWLY RELATED; 3

1 NEWLYRELATED « FOUND - RELATED; E

end; E
k return(RELAT ED), 3

| end "TRANSCLO", 3

The binary relation is represented by a LEAP triple, whose first component is the 3
E relation name. REL ® A = B means that 4 is related to B by the relation REL. The input to this 4
J procedure 1s the relation name, REL; and the original set of items, BASE. The set RELATED will 3
1 be used to collect all those items which are directly or indirectly related to the original BASE. The
y set NEWLYRELATED consists of those items which have been found on the previous iteration :
1 of the while loop to be related directly or indirectly to the base. The set FOUND 1s used to collect :
3 all those items found to be directly related to the items of the set NEWLYRELATED during a |
1 single iteration of the while loop. At the end of the while loop, we add all those elements of]
3 NEWLYRELATED to the collection RELATED. The set NEWLYRELATED 1s then given all §
: the ob jects which were found in this iteration yet were not processed by some previous iteration. ;

3 Now let us attempt to select efficient implementations of the information structures of i
this procedure. We must consider how the various structures are used and their sizes in making

: such selections. In the absence of global knowledge of how the reiational store 1s used outside the 3
3 procedure and how the input and output sets are used, we would probably not be able to choose i

the best representations, but let us see how we might approach the selection process.

4 First of all we must determine what abstract data structures appear in the procedure. k
i We notice that the only such structures are the tour set variables: BASE, RELATED, ;
- NEWLY RELATED, and FOUND; and the associative store. i

¥ 16 EXAMPLE OF LEAP SUBPROGRAM 15

 § l Nevt we must determine which operations are performed on the individual sets. These
EB are assighment, element insertion (PUT), set union, set subtraction and foreach iteration. The only 1
EF § | operation performed on the relational store 1s the foreach search with the first two componentsUE bound. E

108 We notice that BASE and NEWLYRELATED are both arguments tc a single 3EE assignment statement. As a simplification let us assume that this will influence us to choose a 1
3 common representation for base and newlyrelated. (Mouvation for this will be presented later in ;
| © [Sections 2, and 3). Similarly the statement: 3: = RELATED « RELATED vuNEWLYRELATED,; 3

| will cause RELATED and NEWLY RELATED to have the same representation. In fact, all the]Lg sets of this procedure will end up with a common representation. 1
With this information, we will attempt to choose a representation for these sets. We

ER immed ately realize that we still do not have enough information to choose the best representation. :
¥ We need to know how large the sets are on the average, and the relative frequency of the various 1
1 operations. Let us assume that each set is potentially very large though its average size is a small E
Fr | proportion of its potential maximum. 3

We probably would eliminate set representations such as binary trees and hash tables

LE : because set union and set difference operations are time consuming using these representations. If§ there were a fixed maximum number of items which could be elements of these sets we might 3
consider using a fixed length bit vector, since bit vectors are efficient for union and difference :

; ! operations. However, depending on set density they may not be very efficient in terms of space, or ;g 1 ume needed for the foreach search. Without more concrete information we cannot really decide. It
43 may turn out that the insertion operations so dominate the execution time of the program that we ;

i really should consider use of a binary tree or hash table set representation. The savings from i
£1 ! using them for insertion may make up for their added costs in doing the other set operations.

f We have similar considerations in choosing an appropriate representation for the y
3 [relation. If we find that the program in which this procedure appears does not have other types29 of searches on the associative store, we will not have to provide for such searches. We will be able
E to choose a very specific repiesentation which 1s sufficient and efficient for this program yet
Tt | which is not capable of handling all possible operations on the associative store. :
-§ In the next section we will examine the overall design of a system which automatically
2 « chooses appropriate representations of the high level information structures of LEAP.

: -

2.0 16 :

| SECTION 2
OVERVIEW OF THE SYSTEM |

:
; We have implemented a data structure selection system to demonstrate the feasibility of 1

“s our ideas. The system consists of several computer programs written in SAIL and PDP-I0 3
assembly language. The assembly language parts of the system have been abstracted from the }

7 standard SAIL compiler, and are used to parse user programs and do the machine code emission 3
; in the final compiler. All the rest 1s written in SAIL. We make extensive use of the [.LLAP

snformation structures in the SAIL coded portions. Communication between programs 1s ;

: - accomplished by having each program write the contents of the LEAP information structures to a
disk file which 1s later read by the next program in the series. The system we have designed to

or perform selection of low-level data structures logically consists of three major components: :
| » information gathering, structure selection, and final compilation and execution (See Figure 1). We
: will note other techniques which we feel are applicable to a selection system which are not part of ;

| : our system. i
2.1 INFORMATION GATHERING]

- 1

| The information our selection phase needs about the abstract information structures of
the user's program includes such things as their size, the primitive operations performed on them, 4

4 - and values of other parameters which affect the execution time of the primitive operations as 3
implemented for the various representations. J

We do not want to require that all of the structures of the same abstract type, such as 3

Ll sets, be represented the same way. We therefore need information as to how to partition the ;
| abstract structures into equivalence classes, the members of each class having a common

representation. Classes will contain individual information structures of the same type which are
1 : connected to each other in some way. Such connections include being the same positional i

| parameters to some procedure, and being operands to a single instance of some operator. A single
representation for a class 1s necessary to avoid dynamic checking of representation, as well as to 3

- avoid potentially costly translations of representation. It also eliminates the need for coding i
y 1 i implementations of the primitive operations which take arguments with different representations. [Consider the example of a set assignment statement:

3

| BASE « NEWLYRELATED, 3

It may, because of other uses of the sets in the program, be more efficient to have ;
different representations for BASE and NEWLYRELATED and have the assignment do a

i translation between them. We realize that this flexibility requires a much larger library of set] 2)
manipulation routines. If there are n different set representations we will need nc assignment ;
routines if we implement this directly, or 2 nn routines if we translate into a single intermediate set

{ representation In order to decrease the library size, our system sacrifices this flexibrlity and insists
3 that both the arguments to an assignment be tn the same representation, thus needing at most n
: different assignment routines. Similarly we will insist that both operands to any othe: binary set

i 2 [operation be in the same representation and that the results of set union, intersection, and
§

| LOGICAL ORGANIZATION OF SYSTEM 17 :

| SOURCE 3

| PROGRAM 1

STATIC
MONITORING]

ANALYSIS :

: USER
: INTERROGATION

COST |
FUNCTIONS

— SELECTION

3 LIBRARY :
OF |

REPS.
4

:]

| FINAL |
EXECUTION :

Figure | 3

i 1 |

| I 2.1 INFORMATION CATHERING 18 k: BB Ri

| TL difference be in same representation as the operands to those operators. These representation :: § constraints will usually produce several disjoint classes of set variables, each of which will be 1
1. forced to have a single representation. We note that this decision to avoid translation of 4
1 : | representations may well not be optimal, as 1s the decision to disallow codings of the primitive g
8 operations taking arguments of different representations. We feel that these restrictions were i

] [reasonable in a first implementation. k| . There are many ways of obtaming the required information, including assertions or |
$ declarations by the user; monitoring the execution of the user's program (using default 3

: | representations); static analysis of the program; and interactive Interrogation of the user. In the {EE demonstration system we have constructed, we collect statement counts by monitoring the execution 3

| : of the program. Other statistics of the dai: use are gathered by asking the user. Partitioning ;Fb ! information is obtained by a static analysis to be described later. :

| | ! 2.2 SELECTION ;
TIME AND SPACE COST FUNCTIONS 1!

: A prime prerequisite for making intelligent choices between alternative ways of
E ¢ T representing an Information structure 1s a knowledge base containing information about the i
Bg properties of different representations. We need to know when a representation may be used i

(applicability), how much space a given representation will require ac a function ~f the number of 1
LE data ob jects (storage cost), and the expected time necessary for the primitive operations on this
3 1] representation as a function of the size of the information structure and other parameters
: § (execution time cost).

EF § | The attributes of the various representations are not independent of the programs in]
gv which they are used. For example, assume we have a set represented as a binary tree. The time
1 needed to do an insertion into this set 1s (on the average) proportional to the logarithm of the i

: | | length of the set. However, if the program inserts elements into this set in ascending order, therE binary tree degenerates into a linear linked list and the time needed to do an insertion becomes A
1 proportional to the number of elements in the set rather than the logarithm of the number of]
1 elements. As a first approximation, though, we consider such attributes of representations as 2
£3 | invariant over the programs in which they are used. Thus, the time required for element insertion f
; 3 into a binary tree will be approximated by the average ume (i.e. proportional to the logarithm). |
32 The predicted execution time 1s thus a function only of number of elements in the set and not the 3

: | order in which elements are inserted. Note that the deficiencies of the model for this particular :
j example may be overcome by noticing that elements are inserted In ascending order. In this]

3 example the programmer might have used a different information structure if he considered order]
1 i an important property (perhaps an ordored ser). We would expect a good programming language ,p to include a ...ultitude of abstract data types or facilities for creating them. As extension 3
i mechanisms become more powerful we would hope users would be also be able to define their
1 own abstract information structures, supply the appropriate cost evaluation functions and let the

FE } system select representations from a user supplied library for the new information structures. ;
E 3 k

2.2 SELECTION 19 | i

The number of computer words used to store references to n objects can usually be ;
J expressed as a simple function of the maximum number of objects, and the current number of :
: ob jects. The expected time required for a primitive operation such as union of two seis, 1s a 3function of the maximum and current sizes of the abstract structures as well as certain other 3
E parameters unique to the primitive operation. With set union we would expect the time for union ¥.

to be dependent on the percentage of overlap between the two sets. ;

| The attributes of the possible representations are: the applicability predicate; the space]
function for the representation; and the individual time functions for the primitive operations. F

| These would usually be calculated once by the person who has constructed the selection system. 11 These cost functions may appear either as input data to a structure selector, or actually be : 3
: explicitly contained in the structure selection component of the system. It 1s, of course, easier to f

add new representations if we need only update a data set and not a program, but it is simpler to k
a construct an automatic selection mechanism if the information 1s explicitly present (so we may 4

make ad hoc adjustments) rather than being present only as data. For our implementation, we 3
: chose to obtain the best of both techniques. All information about the representations of y

information structures is present in the form of procedures. To add a new representation of some E.
information structure to our system, we need only add a new set of procedures to the system which |
indicate when the representation 1s applicable, how much storage it requires, and how much .

| execution time 1s required for each primitive operation. When the attributes of data structures are ki
expressed either as procedures or data to the structure selector, It Is a very simple matter to change :
the structure selector to select structures for a different implementation of the primitive operations 5

] (such as when we move the program from one computer to another) by merely changing the cost
; functions.

: PRELIMINARY PROCESSING i

; The first thing the selection process must do Is partition the set and sequence variables ;
and expressions into equivalence classes, members of which have a common representation. The
selector then computes which primitive operations are performed on the classes.

: The selection process next does some preliminary filtering to weed out obviously ;
| undesirable representations. Some representations are incomplete. They may be used only when 5
] specific primitive operations are not performed on the class of information structures. If we find :
1 that the user has performed such primitive operations we can immediately eliminate those data ;
3 representations. Another reson for discarding certain representations is that their implementation |
1 may depend on knowing certain information at compile time, such as the maximum size of the :
: information structure. In cases where this information is not computable at compile time, but is a L
: function of data at runtime, we must discard these potential representations. ;

y Next, the selector predicts, using time and space prediction functions for each remaining |: representation, how much time and space would be needed fo. each information structure
equivalence class using each of the remaining representations. If the system notices that with two

A representations for the si ~e class, one requires both more time and space, the system removes that 1
: representation from further consideration. The preliminary selection phase uses this heuristic to |
4 filter out representations unlikely to be chosen by the final selector. It also ranks (according to

| some cost dependent criteria), the representations which have not been discarded as to their
3 likelihood of being the best. In our system the possible representations are ranked in increasing 3
{ order of the products of their expected sp-..~ and execution time requirements.

Ei 3

1 2.2 SELECTION 20

4 SELECTION |

. After the preliminary selection we should have only a small numbe: of representations |
3 which are stll candidates for any given class of information structures from the user's program. |
1 The Selection phase must worry about the second order effects which arise from having more
A than one information structure. For example, assume the user's program creates two sets and that i

our measure of cost is simply the space time product. Also assume that the two sets quickly achieve]
E their maximum size and thereafter remain constant in size throughout the remainder of the
3 program.

+ let S1) = the space occupied by set / using representation J :
: let T; 7 = the time used by the prinutive operations on set J |
4 using representation J 1
3 let Sy = the space occupied by set 2 using representation K

1 let Toy = the time used on set 2 using representation K 4
3 let Sp = the space used by the non-set operations of the program 4

let Tp = the tume used by the non-set portion of the program 2

1 The cost of the program is thus approximately k

: (Sp+Spy+ Sok) * (Tg + Type Tog) y

1 The preliminary selector has ranked representations to minimize the expected space time product 3
4 | (such as Si) X Ty) for a single abstract data structure, but because of the cross terms (such as 3
| Si) * Tok) above, this may not be the best choice for minimizing the total cost function. These 1
| cross terms indicate that the Selection Phase must consider the representations for all the
2 structures together, and cannot simply approach the individual structures independently, Qur :
] final selection phase uses, as an initial approximation, those representations which provide the be
] minimum space time product for the individual structures. It then proceeds to attempt to change]
gE | individual representations to minimize the predicted TOT AL cost. When it can not improve the E
: TOT AL cost by changing the representation of a single structure it returns the best set of §

representations it has found. 3

2.3 COMPILATION AND EXECUTION 91 E

2.3 COMPILATION AND EXECUTION

REPRESENTATION DEPENDENT OPTIMIZATIONS 4

The final stage of the system prepares the user's program for final compilation. In a :
| production system, representation dependent optimizations may be performed during this stage. 3

| For example, consider a program which has statements of the form: ;
if length (SET1) = 0 then i4 :

3

| It might be more efficient for certain representations to check the expression: 1
| if SET = phi then 3and vice-versa. Another example is expressions of the form:]

4 SET! « SETI u{a b,c} |
With some representations this might be more efficiently implemented as:

1 put a in SETI, 3
put b in SETI; 3

| put c in SETI; E
| In our implementation no such representation dependent optimizations are performed. 4

POST-SELECTION MONITORING :

 § Once the system has compiled the user's program it should run it with a special runtime
package which gathers statistics to see if there are biases in the way the data structures are used 4
which were not apparent originally. For example, assume the system represents a set as a binary 3
tree (not balanced). It is possible that, because of biases, the tree always degenerates, resembling a [

i linked list. We should be able to go back to the structure selection phase with this adc. ~d |
1 information and see if the system might better select some other data structure to represent the set. :
1 We did not have the time to include post-selection monitoring in our demonstration system, so its
BE benefits have not been fully determined. 3

!

* LJ 5

| ! SECTION 3
| ABSTRACT DATA STRUCTURES AND THEIR REPRESENTATIONS

| In Section I, we mentioned many abstract data structures which we feel should be ;
3 ¢ available in high level programming languages, including various kinds of queues, stacks, and 1
1} napping functions. This hist is far from complete. We would imagine other programmers to have 3
J - their own lists. The ones we chose hopefully form a basis for others. We hope that future systems 3

] ¥ will not only include the information structures mentioned, but will provide extension mechanisms 3
Ek to allow the user to define new information structures. These extension mechanisms should allow ;
| representations for user defined structures to be chosen much the same way as for built-in :
i information structures. In our demonstration system, we have limited ourselves to those abstract 1

2 data types already available in LEAP: sets, sequences and a single ternary relation. Let us now
 ¥ consider these information structures. 3

4 In the following, the reader should remember that a LEAP item 1s essentially the name 1
£ of a variable (arithmetic, set or sequence) allocated from a heap. Its internal representation will ;

ao normally be a contiguous block of storage in the computer's memory (in our implementation this ;
2 means each reference to an item 1s an 18-bit pointer). Thus, an 1tem in our implementation 1s a x
| tuple (PL/I type structure) with a type field, possibly a datum field, and perhaps various other
© fields which are used for representing certain information structu:es Figure 2 shows the layout of i
E our items In storage. These other fields are used in the attribute bit representation of sets and the ;
LE § & offset representation of triples mentioned below. In certain representations of sets it 1s beneficial 3
yi to have an alternate representation of an item such as a small integer index. Translation functions 1

1 3 | are required for these set representations to take the full .” bit representation of an item to the{4 small integer index representation and vice-versa. Often we will refer to the item as if it were a ;

? 3 value (as in a sorted list of items). Here we are really referring to the integer value of the pointer |

] I to the item.
{ 3 The representations we use do rot pack more than one piece of information per
aT computer word, except as explicitly noted below. Thus, even though our representations of items :

; take no more than 18 bits and a PDP-10 computer word consists of 36 bits, we make no attempt k
] to pack two items per word in any representation. In our storage requirements below we will i

count the number of computer words actually used. Storing a single item with nothing else in the f

l same word will cost one word in storage, not one half a word. |
| :

| 3.1 SETS AND THEIR REPRESENTATIONS :
Sets in LEAP are conceptually unordered collections of items. There 1s no restriction

| that these items be of the same datum type. We have created a collection of seventeen primitive
operations, which are sufficient to perform any of the high level LEAP constructs involving sets,
such as assignment, set insertion, removal of items from sets, set union, set difference, set

i intersection, and FOREACH iteration through a set. (See appendix A for descriptions of each ofJ the primitive operations.)

1 STORAGE LAYOUT OF ITEMS 29 | 1

1 ITEM 1

: ATT. BITS | TYPE J

1 DATUM ! y
: be em FREER §

3 ' MAPPING FUNCTION! ;
E leososnmennmmanmmnnnnee-d 3
: ‘MAPPING FUNCTION, i

: Figure 2 |

: ONE-WAY LINKED LIST :

{

Figure $ |

3 | SET REPRESENTATIONS 24

] REPRESENTATIONS OF SETS ;
:) In each of the representations we have implemented. a null descriptor (0) is always a J] valid representation of the empty set. For certain representations, as noted below, there may also b
E be additional valid representations of the empty set. In the following, the storage requirements are

1 | those for our implementation on the PDP-10 computer. Other implementations are likely to have] similar storage requirements,

1 2. Sorted one-way linked hist (See Figure 3). The descriptor contains the length of the set and a 3
: 1 pointer to the first of a chan of one-word nodes. The first node contains pointers to the last inode in the chain, and the next node in the chain. The remaining nodes in the chain each

4 contain the 18-bit internal representation of an item and a pointer to the next element in the :
J i chain. The pointer field of the last element of the chain contains a null pointer (0). An empty i3 set 1s uniquely represented by a null (0) descriptor, :

1 : The additional storage (in words) occupied by a set is one more than the number of elements in f! the set unless the set 1s empty, in which case no additional storage is required. 3
b. Height Balanced Binary Tree (See figure 4) - The descriptor contains the leng:h of the set and]

1 | a pointer to the root node of an AVL (for Adel'son-Vel'skii, and Landis) tree; a binary tree 9with the property that at any node, the height of the left subtree differs from the height of the ;

| right subtree by at most ! ([Foster65, Crane’2, Knuth73)) ;E Each (two-word) node contains the reference to an item, the balance factor (Left Heavy, i
] Balanced, Right Heavy), and the pointers to the left and right subtrees (perhaps null). An h
] | empty set is uniquely represented by a null (0) descriptor. b
n T he storage required is twice the number of elements in the set. 1
1 i ¢. Fixed Length Bustring (also known as boolean array, bit array, bit vector). The descriptor j
3 contains the number of words making up the bit string and a pointer to a contiguous block of]

storage of that size. We pack 32 bits per word, rather than the available 36 so that indexing 1
1 I operations may be performed using shifts rather than divisions. The empty set 1s represented 4i by a null descriptor or by a butstring of all O's. ;

| 1 The storage required is [MAXSIZE(SET)/32]
d. Hash Table (See figure 5). The descriptor contains the length of the set and a pointer to a }

block of 23 words. In our implementation, we restricted ourselves to a single sized bucket hash :
table ([Morris68)). In a more advanced system we would expect a number of different sized E
tables to be available. In this implementation a hash function maps each item into a number 1

! between 0 and 31 corresponding to a word within the the block of 33 words. This word is a list
] 1 head containing pointers to the first and last nodes of the chain of items (conflict list) that]| hashed to the same bucket. The other word of the 33 word block contains a mask (signature)
| ([Harrison72)) with a | bit on corresponding to every bucket with a non-empty conflict hist,

l The storage required is zero for an empty set, otherwise, 33 plus the number of elements in the
set. i

BALANCED BINARY TREE 25 | ;

LENGTH| ——

| BALANCE| ITEM
5

BALANCE| ITEM BALANCE| ITEM :

, Figure 4 1

HASH TABLE WITH SIGNATURE ;

| TET— |

SIGNATURE

CONFLICTLISTO | —] _——t—# ITEM | |
CONFLICTLISTI | [| | |

1 CONFLICTLIST2 | | | ITEM | | |
? |

] | | | | ;
| | A1 !]

1 ; ; :

1 | a mem | ;

1 confLictuisTa[|| !

3 Figure 5 |

= 3.1 SET REPRESENTATIONS 26 :

] e. Fixed Length Sorted Array. The descriptor contains a pointer to a block of words (multiple of 8
in length) and the length of that olock. The first word of the block contains the current length

| of the set. The next n words (where n is the length of the set) contain the items of the set Inascending order according to their 18-bit representation.

The storage required 1s zero for an empty set; otherwise, five plus the number of elements in :
L the set. This 1s not always accurate since our implementation will never decrease the size of an parray. Thus, if the set becomes very large and then decreases in size it will continue tc take up :

I the larger amount of space.Pe ¢ Attribute Bit of item. The descriptor contains a number hetween | and 18. This corresponds to ;
a bit position 1n the left half of the word pointed to by the internal representation of an item. ;

| This 1s an incomplete representation and can not be used if operations other than inserting an ;¥ element into a set, removing an element from a set, or testing an element for set membership are 3
required. Since our implementation uses a single haifword to contain attribute bits (see figure

g 92). a maximum of 18 sets per program may use this representation. There is no explicit i
| representation for a null set. A null set is indicated by every item having a zero in the bit

position corresponding to the set. :

| As the storage occupied by this representation would go to waste (in our implementation this 1
] half word in each item 1s normally unused) if it were not used, we have associated a zero Lstorage cost to this representation. |

g. Combination of Fixed Length Butstring and Unsorted Linked List (see figure 6). The descriptor }
contains a pointer to a two word block. This blork contains descriptors of the form for 1

| representations (c) and (a) above, with the exception that the linked list is not necessarily indescending order of internal representations of items. A null set is uniquely represented by a :
null descriptor. k

4 | The storage required is zero for an empty set; otherwise, three plus [MAXSIZE(set)/327 plus3 the number of elements in the set. ;

] | In all of the representations above, except the boolean array, and the combination of ;boolean array and linked list, we use the full 18-bit pointer to reference items. With the boolean
] array representations we use small integer indices to reference items. Two translation functions are i
: 1 necessary to translate from the full 18 bit reference of items to the bitstring index (between one]J and the maximum size of the set) and vice-versa. :

; OTHER SET REPRESENTATIONS)
. £
3 There are many other representations for sets which we have not implemented. Any3 i sequence representation may be used, since we may represent a set as an ordered or unordered |3 sequence of tems. Other possible representations include 3-2 trees (B Trees) ((Knuth73]) and 1linked items. The last is similar to our standard linked list representation, but the list actually runs]

| through the items rather than through nodes pointing at them. With our standard representation5 we have a linked list of nodes, each of which points to a1 item. With the linked items
; representation, each item (represented much like a PL/1 based structure) contains a field which is

. i a pointer to the next element of the set. Thus, each item tuvle would have to have a field (see
b

y

COMBINATION BIT VECTOR 27 g

AND ;

1 LINKED LIST E

3 :

i LENGTH 3

£

4
Figure 6

.

he 3.1 SET REPRESENTATIONS 28 :

|] I figure 2) for each set of which it might potentially be a member. Other forms of hash coding |
§ ((Morr1s68, Maurer68, Brent73, Feldman73, Knuth73)), such as hnear probing or quadratic

| : | hashing may also prove beneficial for set representations. :

¥ | 32 LIST REPRESENTATIONS]
{ : LEAP lists are sequences of items. The same item may appear an arbitrary number of 3

| | times in the hst. The order of items 1s that imposed by the user's prcgram. As with sets, we haveFE chosen a set of primitive operations which are sufficient to do all the list manipulations available }
: E ' . in our subset of SAIL, eg, assignment, FOREACH iteration, concatenation, selection and removal -
¥ | based on index position. There are twenty primitive list operations (See appendix B for their ;¥ description). 3

| | REPRESENTATIONS FOR LISTS |
| : I. One-Way Linked List (see Figure 3). This is the same data structure as the one-way linked hist j
g I used for set representation, except of course the order of items is not necessarily in descending i

] 3 internal representation, but is that imposed by the user's program. |
] 3 | The storage (in words) required 1s zero for the empty list; otherwise, one plus the length of the p= list.

| | 2. Two-way linked list (see figure 7). The descriptor contains a pointer to a two-word header node. :4 The header node contains the length of the list and pointers to the first and last nodes of the §
: list. Each two-word node contains ah item, a forward pointer to the next node in the list, and a 1
A back pointer to the previous node in the hst. The forward pointer of the last node and back
4 | pointer of the first node both point to the header node. :

3 1 The storage required is zero for an empty list; otherwise, two plus twice the length of the list.! 3. Variable Length Array. This 1s the same as the data structure used for sets except again the |
order of items 1s that prescribed by the user's program and is not dependent on the internal :

1 | representation of items.
E The storage required is zero for the empty hist; otherwise (on the average) five plus the length 2

3] of the list. 1

i y OTHER LIST REPRESENTATIONS 3
: In addition to the representations mentioned above, we may use most of the
3 representations used for character strings since our hsts are really strings of items ((Madnick67)).

: | Thus, we might also use fixed length arrays. A circular buffer 1s another representation which3 may be useful. In a circular buffer, we have a block of storage and two pointers to the beginning
and end of the list. The block of storage 1s thought of as circular. That is, conceptually, the next

| element after the last element of the block 1s the first. Another interesting list representation is that :
: of a height balanced binary tree ((Crane72]). j

1 i

j 1
} TWO WAY LINKED LIST 29 - A

E: | 4

3 LENGTH 3
3 , a k

hn a. x

:

3 2

» :

ITEM ITEM :

) Last Node First Node :

i i

: Figure 7

] 3
K

1 3

|

>

’ :

18 33 TERNARY RELATION 30

I 3.3 TERNARY RELATION :

: | LEAP contains a simgle ternary relation. Relation instances are written Ae O=V A :| ternary relation can be represented by eight mapping functions. 4

: | 1. Given A,O,V +» true, false (does relation instance exist) ;F § 2. Given A,O ++ [V}suchthatAeO=V 1
3. Given A,V ++ {O}suchthat A@O=YV k

| 4¢. Given O,V ++ {A}suchthat A®O =V :L 3 5 Given A 2s {<O,V>}suchthat A®O=V ;
3 6. Given O 4» {<A V>}suchthat A®O=sV ;

| | 7. Given V ++ {<AO>}suchthat Ae O =V]8. + {<A OV>}suchthat Ag O=YV :

“<a,b>" is a meta notation the ordered tuple (a,b). The eighth function which produces the :
| § J universe of ordered triples has not been implemented. i
: [t is not common for the ternary relation to be used in the most general sense (i. e.]

s | needing all of the mapping functions). For most programs, any given triple (relation instance) 31 may be referred to by only a small subset of the mapping functions. This is even more likely when
| we partition the single ternary relation into several disjoint ternary relations (See description of

1 I partitions of the ternary relation in Section 4) 3
i To simplify the selection process by eliminating some redundancy, we wish to implement ;
5 only the most specific mapping functions which can not be easily derived from other mapping 3
Ei I functions which will be present. Let MF be the subset of the mapping functions which are needed 3
EB for the user's program (this can be determined by a static analysis of the source program). Now |
3: remove from MF those functions which can easily be derived from others in MF. (1) can be

i 1 derived from any of the others. (2) can be derived from (5) or (6), (3) can be derived from (5) ory (7) and so forth. We now have MF containing three, two or one mapping functions. We will have i
Ei a representation for each of these mapping functions. These mapping functions may be classified 3
fl | by the number of bound arguments they have. (5). (6), and (7) each have only a single bound£3 argument. (2), (3), and (4) have two bound arguments, and (1) has all three arguments bound. 3
3 1 We immediately notice that by considering permutations of the components of the 1
$4 | ordered triple representing the relation instances, we can always act as if the first; first and second,]
% 3 or all three positions within the triple were bound. This may mean we are actually keeping track :
x of up to three different permutations, one assoclated with each mapping function within MF. 4
bi Before we actually list those data structures which we will use to implement these 4
¥ 3 mapping functions, let us note that there are other ways of implementing relations which involve
$4 | a single data structure which is good for several mapping functions. ([Rivest74, Delobel73]).2 Some hardware associative processors (Minter72, Minsky72, Parhami72]) have even designed to
§ directly implement associative retrieval :

3.3 TERNARY RELATION 3 |

i DRIMITIVE OPERATIONS ON THE RELATION .
The primitive operations necessary for the associative store are: ;
1. MAKE - create an instance the ternary relation. If more than one mapping function may

potentially involve this triple MAKE wii have to modify more than a single data structure.For example assume that mapping function (2) (A @ O =?) and mapping function (7)](? @? = V) were required by the user's program. A make statement would have to update the Adata structures corresponding to each mapping function. 4
9 ERASE - delete an instance from the ternary relation. If more than one mapping function may

involve the triples matching the pattern of the ERASE, ERASE will have to update more than :a single data structure as with MAKE. 1
: 3 EXISTENCE - does a given relation Instance exist. We will use the most specific mappingfunction which can answer the question. Again assume that we have mapping functions (2) and 1

(7) available. To evaluate the boolean A ® O = V we would use the more specific mapping 3
{ function, mapping function (2) Note that this is sometimes suboptimal. If there were only one :<A,0> pair for each V, but many V's for each <A.0> we would be better off using mapping 3function (7). :

4 FOREACH iteration - as with existence testing, we use the most specific applicable mappingfunction. i

REPRESENTATIONS FOR THE MAPPING FUNCTIONS 3
: The following are descriptions of how the various mapping functions may be ;
] implemented. Due to time constraints, this implementation was not completed in our demonstration Asystem. 3

1 ALL THREE ITEMS BOUND p
3 We have a block of storage 128 words long which we use as buckets for a hash table. .3 We take all three items, hash them together to form an index between 0 and 127. This gives us an 9position in the hash table of a conflict hst. Each two-word node in the conflict list contains the i1 three items of a relation instance and the pointer to the next node tn the conflict list. ;

The storage (in words) required for this representation is thus 128 words plus twice the
g number of relation instances. 4

15 3.3 TERNARY RELATION 39 i
10 TWO-THINGS BOUND

} Hashing :
E | We hash the two bound items together to get an index into a 64 word bucket hash table.
3 This gives us a linked list of three word nodes, containing the two bound items, the pointer to the
Bi next node in the conflict list, and a set descriptor for the set of items which are the third
| component of relation instances with the two bound items.

> In our design, there are three variants of this which differ in the representation used :
| for the set of third components. Apart from the storage used for the set, the storage requirement is }E | 64 plus three times the number of different pairs <first component, second component> In the :
2 data structure. Using a sorted linked list as the set representation, we need an additional word per
| . «first component, second component> pall and one word per relation Instance. Using an height E.
B balanced binary tree, we additionally need two times the number of relation instances. Using a
e | fixed length bitstring, we need an additional n words, where n 1s [number of possible third
| components/327 per distinct <first component, second component> pair.

f Field Selection i
}] We use the second item to select a field (offset) to the st : tture of the first item (See ¥
3 - figure 2). The field contains a descriptor of standard set representation. We need a translation: function which translates the 18 - bit representation of the second item into a field index. (In our ;design this function must be executable at compile time). :

The base storage requirements are the number ot possible first components times the :
number of possible second components. The additional storage needed for the set of third F

4 components for each active <A,0> pair may be calculated the same way as was done with the 4} | hashing representation above. 3
ONE-THING BOUND :

This mapping function has an ordering to the components of the triple. The first item :
is the one which 1s always specified, the second item will be the one next most often specified, and

{ the third will be the least often specified. 4
We use the first item to find (via hashing, or sorted linked list) the head of a sorted 3

1 linked list of ordered pairs consisting of the second 1tem and a set of the third items. z
The siorage required is the number of distinct first items plus initial hash table (if any), J

plus twice the number of second items per first item, pus the storage necessary for the set of third 1
: items. i

3.4 ESTIMATING EXECUTION TIME 33 |

) 14 ESTIMATING THE EXECUTION TIME OF PRIMITIVE OPERATIONS |
We have previously stated that there are three classes of information that our selection i

; phase needs to know about the representations available. The first, applicability, is found by }
] looking at which primitive operations have actually been implemented using this representation. If ;] any primitive operation is used by the user's program which has not been implemented, then this |
1 representation Is not applicable. The second piece of information, the storage cost function, has
i been treated in the previous sections. Here we will discuss the third class of information, :
! prediction of the execution time which would be used by the routines implementing the primitive :
: operations. ;
A We believe in precise analysis of program segments. it 1s not enough to know that one ;

routine takes time proportional to the size of a data structure and another takes time proportional]
3] to the log of the size of the data structure. The proportionality constants and any other constant |

overheads are important in making a wise choice between the two routines.

E To demonstrate the importance of knowing the precise proportionality constants let us 1
i consider two subprograms which are logically equivalent. The expected execution time of the first J

: 19 + 12 % log2(2) h
time units, where X is the number of data objects , and the expected execution time of the other is

1 40 + 5% 2/32

; nme units. Which should we choose? The answer clearly depends on 2, the number of data :
j ob jects. If A were only 2, the first program would be expected to take 31 time units and the second 3
3 slightly over 40 time units, so we would choose the first. If A were 32 the first program would be |
1 expected to take 79 time units and the second would take only 45, so here the second is superior. ;
] If » were 1024 the first program would be expected to take [32 units, and the second , 200 50 the 4
i first program would again be superior. The only way we can determine this analytically, is to have
3 precise knowledge of the constants 19 and 12 for the first algorithm and 40 and 5/32 for the
] second. The problem to be solved now is, how do we determine the constants, and the very 3
{ dependencies on log2(X) or A?]
x Two methods are apparent. One 1s to simulate the routines on a large number of jcollections of random data of difierent sizes then use statistical techniques to derive the |
3 dependencies on functions of size ard the corresponding constants. This technique is valid only :
4 for a large enough sample, and we would not expect to be able to simulate in a large range. The |
i results would thus be valid only in a small range. ;

] The other method, which we have chosen, 1s to analyze mathematically the various
2 subprograms which are used to implement the primitive operations using the techniques of Knuth
{ (vol I-11]).

] We are interested in the application of the analysis of algorithms techniques to the

i concrete subprograms to determine both the order dependence (an order n¢ or order log n
3 algorithm) anc the proportionality constants of all terms in the execution time cost function. :

: ! 3.4 ESTIMATING EXECUTION TIME 34 1
: I Clearly any results we obtain are not of theoretical importance (ie. no claim 1s made that they]
i reflect the minimum amount of time necessary to accomplish the primitive operation on the given ;

| data structure) but reflect only the expected time using our particular encouings of the primitive| operation. A better encoding of a given routine that may reduce the proportionality constants, or
: even order dependency may be found in the future.

: | We wish to stress again the importance of precisely determining the proportionality
J constants as well ay the order dependeney When the ure of the Gata structures 1 triall a JU n A

1 : encoding will be worse than a /0 n? encoding. The running time of a program which uses these 4
4 | subprograms depends on the actual number of machine instructions executed within these f
] subprograms not on some order Lependaency tuch as nl 3

| | Our basic method 15s to weight each subprogram statement with its expected execution |
) time, multiply that by the number of times it 1s expected to be executed (normally a function of |
j ’ size of data structures etc), and then sum these numbers over all the statements of the subprogram.

We have chosen to use assembly language to implement all the primitive operations on
our representations. We have a much better idea as to how much time a machire instruction 1s |

] [expected to consuine thai how diuch time a statement in a higher level language will take (See ;appendix H). There has been some work on predicting execution time of ALGOL, FORTRAN ;
4 and LISP programs ((Wichman72, Ingalis71, Knuth71, Wegbreit74]) but current methods are still J
: very crude. As demonstrated above we must know precisely the rievant proportionality constants

| in order to determine whether given representations are better or inferior to others.
1 vl Our method of calculating execution time cost functions is thus to associate with each |

3 instruction a weigh* proportional to its average execution time. We also associate with each)
1 instruction the number of times the instruction 1s expected to be executed as a function of the size ‘|
3 of data structure and perhaps other parameters. Finally we take the sum of the products of

) | instruction weight and number of times the instruction 1s executed, to construct the time function. :
: For example, consider the routine for fetching the Nth item in a sequence using the one- 1

way linked list representation. (My apologies to those who are not familiar with PDP-10 assembly
| language. Hopefully, the comments will help). Let /NDX, LPTR, and RESULT be symbolic 4

names for accumulators. Also, assume that the list index is in the variable named N, and the list ¥

1 descriptor 1s in the ceil named THELIST. The numbuers io he right are the weighis we have 3
3 | assigned to the individual instructions. i
§ move Indx,n LOAD N INTO ACCUMULATOR INDX 1 2 3

3 ! move Iptrthelist LOAD THE DESCRIPTOR INTO , 3| , REGISTER LPTR i

Ip: hrrz ptr (ptr) GET POINTER TO NEXT NODE IN LIST , 3 1
sojg indx,Ip .DECREMENT INDEX, IF GREATER THAN ;2 }

l , ZERO GO TO LP. !
hirz result(l str) FETCH THE DESIRED ITEM , 3 if

i We immediately see that the two MOVE instructions and the HL RZ instruction are each executed i
] only once The two instriction loop will be executed N times where N is the list index. Ax it is iE
3 not clear here what N 1s, we will assume that it 1s equally likely to be /, 2, . x, the length of the :

A | list. The average value of N 1s thus easily determined as (1+ 2+ ... X)/x = (x+])/2. Therefore,3 the average number of executions of the HRRZ, SO JG loop 1s also (x + 1)/2. %

E o

] 3.4 ESTIMATING EXECUTION TIME 35 :

4 Our predicted tirne for this routine is thus: | 1
: JoeB 3XMAIN242K(A+1)2+3a115425%02 :

1 Our analysis was dependent on the assumption that the indices were randomly distributed over all .
3 possibilities. However, if the user were actually using the sequence as a model for a stack, he :
: might be biased toward the lower or higher indices only, thereby invalidating our assumption. : E

Other forms of analysis of programs can give us worst case estimates if need to worry about the 3
4 maximum program execution time. , perhaps because of real time constraints. Our analyses give 3
1 us average estimates which we feel are the most generally useful. We feel that the real answer to &
3 problems involving biases in the use of data structures, either explicit semantic level ones as :
4 above, or hidden ones that result from interactions involving internal representations, is careful 3
3 monitoring. Both pre-selection monitoring (using default representations) and post-selection A
1 monitoring should help us alleviate problems involving such gross biases. We would expect future | i
A execution time estimators to have more parameters. In the above case we would want the estimator 4
3 to depend at least on the average index value, if not the distribution of index values. 3

3 We have performed analyses (average case) like the one above on all the routines]
3 Implementing the primitive operations on our representations. (See APPENDIX I for our 1
3 execution time cost functions.) A

A 4

BE 4.0 36 J

| 1 I SECTION ¢ A[8 | INFORMATION GATHERING

| 1 l A system for selecting data representations mu:t have information about representations 3x4 and about the use of the abs:ract data structures for which it is going to choose representations. In ;
i ¥ the previous chapter we discussed two techniques for obtaining information about the time]
LF functions of the primitive operations as implemented for given representations: simulation and 3
$i i mathematical analysis. We will now discuss techniques for obtaining information about the use of 3
3 the abstract structures of the user's program.]

EF § | The information we wish to obtain includes which primitive operations are performed, :
3 the expected sizes of the abstract structures when the various primitive operations are performed, 1
i the values of the other parameters of the time functions of the primitive operations, and partitions i

3X} | of the information structures into classes.]
fF It 1s common within a program to have many different abstract data structures of the 3
§ 3 same type. Often, it 1s not necessary or desirable to represent all these structures the same way. We 3F § I may find that a program uses two structures of the same abstract type quite differently, even :

: employing different sets of primitive operations on them. If we are forced to represent both
 § structures the same way, we end up with a compromise representation that is probably inferior to :

53 I ones we would have chosen if we had approached each structure independently. However, there ;
9 are also gooc reasons for representing some groups of data structures the same way. We find that
' 3 with many operators we can take advantage of the internal structure to obtain more efficient i

a I implementations. For example, assume we wished to add the elements of one set to another, e. g., i
: SET! « SET! u SET; 3

4 I An obvious way of implementing this would be to iterate though SET2 and insert those elements ;
5 into SETI. If we were representing SET] by a sorted (on the inteinal representation of data ;

ob jects) hinked list, this implementation would take a time proportional to the product of the i
3 I number of elements in SET! and the number of elements in SET2. If, on the other hand, both A
A sets were represented the same way, as sorted linked lists, we could traverse both lists in parallel E
: and accomplish the union i» time proportional to the sum of the lengths of the two sets. In theory

i | we could have a different union implementation for every pair of possible input representations, k
and every output representation but the cost of this 1s very large in terms of the size of the library ;
of implementations of the primitive operations. If we had ten set representations we might need 3

p: i five hundred (ten cubed divided by two since union is commutative) union routines. The other ;alternative is to have only one union routine per representation, and translation functions which
change the representation of a set from one representation to another. To perform the union, we |

; would make sure both arguments were in the same representation and then use the representation
g ! dependent union routine. These translations are usuallly expensive operations to perform, yet we 3
4 wish to use the highly efficient representation-dependent routines. Our solution, though ;
. admittedly suboptimal, is to avoid the expensive translation operations by insisting that both i
3 operands to an operator be kept in the same representation. Note that even if we were willing to
3 have such large libraries or translations of repriwentationt we might till wish to insist that certain

information structures be represented the same way. One reason might be to avoid runtime |
representation checking of procedure parameters when they appear as operands to primitive 3

: ! operations. b

i :

4.0 INFORMATION GATHERING 37 3

We have chosen to require that all information structures which are operands to an 3
instance of an operator, or structures acting as the same positional parameters to a procedure, be :
in the same equivalence class. This gives us the smallest classes possible that retain the property
that there 1s no conversion necessary from one representation to another. This also gives us the
property that no dynamic determination of representation Is necessary and the proper routine for i
a primitive operation can be totally specified at compile ime Determinations of the tradeoffs
involved in having translatuons of data structures from one rep:esentation to another, as well as |
benefits versus costs of dynamic representation checking are lett to future research

| One of the goals of the information gathering phase 1s thus to find the information
: necessary to partition the set and sequence variables into equivalence classes.

| There 1s another important use of partitioning. This occurs when we wish to split a |
single information structure into several Let us consider the ternary relation as simply a set of

: triples.Jt 1s often possible to view this set as the union of several disjoint sets of triples. This
{ separation 1s useful if each update or access of the associative store In the user's program refers :

only to one cf the disjoint subsets Now, tnstead of having one large data structure we have| logically several disjoint data structures which are independent of one another. 1t 1s quite likely
that each of these 1s less general in terms of the primitive operations performed on it than the
original data structure. We will thus be able to tailor a representation for each of the smaller
structures that 1s likely to be more efficient than the compromise representation we would have
had to choose for the original structure. Note that splitting in gencral may be a useful concept In
the representation of high level data, and often it may not even be necessary that the results of
splitting be disjoint (No attempt 1s made In this system to split sets or sequences). One of the goals J

] of our information gathering phase will be to find information which will let us later compute a bnatural disjoint split of the ternary relation. :
1 In general, several techniques are applicable to the problem of information gathering. |

First, we may let the user give us the required information. This may be done by requiring the
3 user to make declarations or assertions about is program (this 1s not done in our demonstration
3 system). This information can be augmented by an interactive session 1h which the system asks the
| values of additional parameters which had not been declared. This method has the obvious 1
4 drawback that the user often does not have such information. With the current state of the art 3

there are many programs which can not be analyzed mathematically to the detail we require. Our k
choice of data representation will be deternuned by this information. If dependent only on crude
guesstimates our choice will be just as crude. Another reason for not depending on the user is that
2 voluminous amount of formation is required. An enormous amount of patience 1s required to 3

: sit at a terminal for many minutes (hours?) to answer detailed questions. A good strategy is to ask]| the user only when the system 1s not able to determine a piece of information in any other way.
During the evolution of a system like ours, this should require the user to provide less and less
information directly. :

A prime means of obtaming information is the use of monitoring. The user runs his
program with his own sample input data with the system providing default representations for the
abstract information structures. A special compiler and runtime environment is used which 1s
geared to collecting statistics about the use of the formation structures. The only statistics we
gather in our system concern the number of times each construct of the user's program 1s executed.

: Other information which we could easily obtain in a production system would be the distribution
] of sizes of the information structures at particular places i the user's program (e.g every time a

oo] |
| N 4.0 INFORMATION GATHERING 18 |

I primitive operation 1s performed), and the parameters of our time functions for the primitive j
| operations. In our current system we ask the user to provide this information during a question-| | answer session.

The other technique which we depend on is a static analysis of the program. In our
system this takes the form of a meta-cvaluation of the program by actually following all possible b

: | paths of control and computing the possible contents of variables and the associative store. E

s | 4.] EXAMPLE OF INFORMATION GATHERING 1
) | Before we describe the last technique of information gathering, static analysis, let us see :: how the information gathering portions already described would process our transitive closure 3

procedure. 3

| set procedure TRANSCLO (itemvar REL; set BASE), E
: begin “TRANSCLO" ;
J set RELATED, NEWLYRELATED, FOUND; itemvar X.Y; :
1 | RELATED « phi; NEWLYRELATED « BASE, 3: while (NEWLY RELATED = phi) do 1
3 begin]
1 | FOUND « phi:& foreach X.Y | X ¢ NEWLYRELATED n REL ® X = VY do ;
1 put Y in FOUND; ;

! 1 RELATED « RELATED vu NEWLYRELATED; 3R NEWLYRELATED « FOUND - RELATED; i
Al end, p
3 return (RELATED), E
1 1 end "TRANSCLO", 3
] We first have a monitoring phase. The above procedure is compiled with a special f
1 1 compiler which inserts counters before every statement and every FOREACH iterator. We obtain 1» a count of how many times each construct was executed by monitoring a sample run of the]
R program using the user's own input data with the system supplying default representations for all i
$ Il the LEAP data structures.
1 | The system then asks the user many questions concerning the average size of various 3
§ 3 data structures at particular program points. In the above example the system asks for the 1
: | average size of BASE when used in the assignment statement, the average size of i
$ NEWLY RELATED in the equality test and the probability of it being empty, the average size of ,
) NEWLY RELATED in the foreach search and again the probability of it being empty, the size of !
| I FOUND at the PUT statement, the size and probable overlap of RELATED and1 NEWLYRELATED at the union statement, and so forth. Most of these statistics could be more

J easily obtained if there existed special versions of the data structure manipulation routines used]
1 | during the monitoring phase which actually recorded the information necessary to compute these 3: statistics. Even in the absence of such mechanisms we could possibly decrease the number of }
3 questions the user 1s asked by doing some inference on the program. For example, above we
A mentioned that the system asks the user the probability of NEWLY RELATED being empty at the

4.1 INFORMATION GATHERING 39 3

FOREACH search. This question 1s clearly superfluous because the probability can be inferred to i
J be zero from the conditional at the top of the while loop. Other inferences could be made on the 4

; basis of certain operations not changing the size of their operands. All these inference techniques 3: are left to future research. :
3 5

4.2 STATIC ANALYSIS OF LEAP PROGRAMS 1

PRIMITIVE CLASSES OF ITEMS p

A primitive item class consists of either a single declared item or all the items potentially 3
allocated from a single source language call t= the heap allocator (NEW). This is the finest grain 4

; to which we can partition all the items in the user's program. There is essentially no way, at 1
] present, to distinguish between different items produced by the same source language call to
1 NEW. We will use these primitive classes to model the contents of variables and the associative ;
1 store. A relatively small number of primitive classes, can be used to take the place of the usually
: much larger (and sometimes indeterminate at compile time) number of items actually present ;
; during the execution of the user's program. |

Meta-evaluation |

| Meta-evaluation, as we use the term, means a simulation of the user's program j
: symbolically rather than with real data. In our system we express the values of LEAP variables as j
: sets of primitive item classes. x

Let us consider the transitive closure procedure we looked at earlier and note how we 1
1 would process it, before we give the actual static anaiysis algorithm in detail. ;

3 set procedure TRANSCLO (itemvar REL, set BASE),
E begin "TRANSCLO" 1
3 set RELATED, NEWLYRELATED, FOUND; itemvar X,Y; 1
] RELATED « phi, NEWLYRELATED « BASE, 3
E while (NEWLY RELATED = phi) do]

begin
FOUND « phi, }

1 foreach X.Y | X €¢NEWLYRELATED A REL ® X =¥ do 1
i put Y in FOUND; :

RELATED « RELATED u NEWLYRELATED, 1
NEWLYRELATED +» FOUND - RELATED, E

end,

} return (RELATED),
: end "TRANSCLO" §

3 To begin processing we form a flow graph of the program which we will then analyze. |
) (See figure 8 for the flow graph corresponding to this procedure.)

FLOW GRAPH OF TRANSCLO 40

Figure 8 |

: 4.2 STATIC ANALYS!, 41 ‘1

We only arrive at the procedure entry point via having encountered a call to this F 3
procedure in the flow graph of the program in which this procedure 1s found. We will therefore
know what the possible values of REL are in terms of the prumitive item classes. Similarly we
will know the possible elements of the set BASE, as well as having a model about what
associations can possibly exist, all in terms of the primitive item classes.

, When we encounter the first two assignment statements, we attach to the corresponding !
flow graph nodes, the appropriate information. In this case, at the first assignment we know that
the set RELATED will be given the value PHI, 1. e. that its set of possible values in terms of the
primitive item classes 1s empty. Similarly, at the second assignment node we can determine the
possible set of values for BASE, and we will attach that same set as the potential set of values for| NEWLYRELATED at this node. In general we keep track of the nodes at which either changesto the value sets of some variable occur, or where the value sets of all variables are known. We

] will explicitly compute all the value sets at control points. This will allow us to determine the
: possible set of values for any variable we encounter in the program.

: We next encounter the while loop node. This 1s a control point so we will attach to this
node our knowledge as to the possible contents of all the variables. In this case it means merely
attaching the value set of the variable REL, as copied from the entry node; the value set of
BASE, as copied from the entry node, RELATED, as copied from the first assignment node; and

: the value set of NEWLYRELATED as copied from the second assignment node. |

3 We now encounter the equality test, NEWLYRELATED = PHI. This st. tement has no ;
: effect on the value sets of any variables so it 1s essentially treated as a null statement. In a more

advanced system, other booleans could possibly alter our views as to the value sets of certain j
variables. For example, if we had the expression X € SETI4R then on the true path (if this were
an If statement conditional), we would know that the possible value set for X could only be our
previous value set for X intersected with the value set of SETVAR. Our system as currently
implemented, makes no such use of boolean expressions.

3 The next node encountered 1s the assignment FOUND « PHI. We treat this the same
3 way we cid the first assignment node. :

Now we come across the FOREACH loop. We treat the search X € NEWLYRELATED, CO]
| much like an assignment. The value set for X at the foreach node Is thus the same as the current

4 value set of NEWLYRELATED. The search REL ® X =¥ 15 shghtly more complicated. We :
know the value sets of REL, and X. We then use our model of what possible associations exist, to |

] compute the possible value set of primitive items which could he assigned to ¥ by this pattern |
J match. t

1 The put node will take the umon of the value set of ¥ and the value set of FOUND
4 and make that the new value set of FOUND at this node. ;

We now encounter the continue node for the foreach. We notice that during the
5 execution of the foreach node, value sets for certain variables were changed. We must therefore
1 simulate the loop again until a fixed point 15 reached; that 1s, nntil no new primitive items are |
E added to any of the value sets of the variables at the various nodes within the loop (The reason 1
: why a fixed point 1s always reached will be discussed with the description of the static analysis :

algorithm). This guarantees that we will correctly compute the possible sets of values for variables |
3 4

I 4.2 STATIC ANALYSIS 42 i

after loop exhaustion. As an example of why simulating until reaching a fixed point Is necessary 3
: } consider: 4

| . SETI ~ {a} g
1 COUNT « 1,]

SET2« {hb} 1
while COUNT < N do |

4 begin
t COUNT « COUNT + |; 1

3 SET?2 « SET2 u SET, 3
k SET1« {c} 3

) end, 3

/ . If we had merely simulated the while loop once, the possible set of values for SET2, when the 4
1 loop is exhausted, would have been computed as { a,b} which of course is incorrect. By insisting 1
1 that we have a fixed point we will simulate the loop three times and obtain the correct result 3
3 TALE 1

J - The union node 1s easily handled. The new value set for RELATED 1s the union of the g
3 old value sets of RELATED and NEWLYRELATED. We cannot tell if the set difference will 5
1 find any values in common, so we take the conservative approach and assign as the new value set 3
: of NEWLY RELATED the current value set of FOUND. In general if we err in a computation of 3
; 2 value set, we want it to be on the side of being larger than necessary. This may force the system }
1 to later choose a slightly less efficient representation, but it also restrains the system from choosing 3
3 a representation which is not applicable (1. e doesn't provide essential primitive operations). j
3 We now come across the continue node of the while loop. Just as in the case of the ;

; FOREACH loop we must continue processing until we reach a fixed point. So we again return to 3
13 the while node. At this point we have to insert in the value sets of the variables FOUND, :

RELATED. and NEWLYRELATED all the elements of the corresponding value sets at the end :
: of the while loop. s
3 Eventually we will obtain a fixed point and can then reach the return node. Here we §
1 will take the current value set of RELATED and make it the value set of the procedure. This is |
3 i the value set that the caller of the procedure will use in its meta-evaluatioh. ;

: 43 STATIC ANALYSIS ALGORITHM]

: The first step is to form a graph of the user's program. As our system is only dealing 1
3 with the choice of data structures, we do not include constructs from the user's program which are 3
: totally devoid of LEAP statements and expressions in this graph. For simplicity, we have also
3 outlawed the go fo in this system, thus giving our program eraphs a nicely nested structure.

p.

1 We will implicitly associate with each node (expression, or statement) of the program i
4 graph, a set of primitive item classes (the value set) for each variable of the user's program which i
4 is accessible at that node. The value set for a given variable at a given node will eventually L)
1 | contain all the primitive items which that variable could possibly have at that point of the user's 1

3

: 4.3 STATIC ANALYSIS ALGORITHM 43 :

3 program. We also maintain a model of the associative store (ternary relation) in terms of what | |i relation Instances can exist between the primitive item classes. This model contains all associations

j which could exist at any point in the program. We do not have separate models of the contents of |3 the associative store at every node of the program.

] Before describing the details of the meta-evaluation process, let us define a some terns.
3 A value changing node 1s a node where assignment is done to some LEAP variable itemvar, set orfe hst. This may either be an exphat assignment statement, ur some FOREACH search. A control |
| node 15 a node representing a control point in the user's program This can be the beginning of a i
! loc), exit of a loop, if-then-else node, case node, join node (node 1rmediately following case or if.
1 th en-else), procedure entry node, and so forth. We keep a list (NODELIST) consisting of the most i
j recently encountered control node, preceded by all the value-changing nodes encountered since k
p that control node. The value sets (as constructed so far) of every known LEAP variable are 53 associated explicitly with each control node. With each value changing node we associate the |
1 value sets for all LEAP variables whose values were possibly changed by that node Thus, as we

| encounter any node in the program, we can find the value-set associated with a given variable |1 hnown at that point by chaining back the NODELIST unul we find the first node which has a
| value set for that variable. If there are no nodes in the NODELIST which ha.e value sets for the |

variable, then we know that this is the first encounter with that variable so it has a null value set

5 so far.

To begin the meta-evaluation, we initialize NODELIST to contain the program entry
1 point. Now we traverse the program graph nodes in the natural urder. As we come to any set, list

1 or item expression we can compute the possible value set of that expression by substituting the |: value sets of the constituent components of the expression and using some special rules(See ;
: META-EV ALUATIONS appendix €) Tor example we anght encounter the eapiession, ;

5 SET uv datum(SETITMVR) |
We can directly compute the value set for the set variable SET/ by the algorithm given above. To

f evaluate the value set for datum(SETITMVR) we must first compute the value-set for
] SETITMVR, and then form the union of all the value-sets of the datums of the primitive item i
3 classes in the value-set for SETITMVR. Now that we have the two value sets for SET! and |3 datum(SETITMVR) we simply take the union of them to get the value-set for the entire |

expression.

: At any value changing node we will compute the new value set and either merge that j
. with the existing value-set (from NODELIST) for this variable (s) or make 1t the value set for the

: variable at this node. We then add this node to the front of NODELIST. 3
; [

4 At a MAKE node we evaluate the three item-expressions and insert the appropriate :
1 ternary relation instances into our model. ERASE nodes are ignored during this phase.

1 When we encounter any control node, we form explicit value-sets for each variable
known at that point. We do this by stepping through the NODELIST and finding the value sets

4 for each variable known. We then merge these value-sets with those already present (if any) for
: these variables at the control node. After this 1s complete we throw away NODELIST and make a
i new one consisting only of this control node.

|

i 4.3 STATIC ANALYSIS ALGORITHM 44 }
v

3 When we encounter a branching structure in the program (case, if-then-else) we stack }
- the current status, follow one branch to its completion (the join node following the case or if). 3

1 Then we pop the status (NODELIST etc) and traverse any remaining branches at this level, Join :
: nodes are control nodes, therefore, our model of the contents of each variable contain the union of 3

n the models resulting from traversing each branch. i

} Loops are handled in a similar way to branching structures with one exception. When X
§ we reach the end of a loop, we note whether any value sets have been changed during the 3
4 simulation of this loop, or whether any associations have been added to our model of the 11 | associative store. If there have heen any such changes then we simulate the loop again. Note that

this process 1s guaranteed to terminate because: we never remove things from the value-set of a ;
3 variable at any node; we never remove associations from the associative store: there are only a 4: | finite number of variables (standard, datums of primitive item classes). there are only a finite :
3 number of primitive item classes. These all combine to give us the knowledge that we can only 4
1 add primitive item classes to the value-sets, a finite number of times. Thus the loop simulation :
| | always terminates Though this process 1s finite, and in most of the test cases we have processed x
1 the execution time 1s not more than we're willing to spend, static analysis of loops 1s potentially :
» very costly. We continue to look for ways in which the cost of this analysis can be reduced. E

I | Procedure calls are handled in a straight-forward manner. We treat value parameters as 4
3 If they were variables which had been assigned as their iminal values, the values of the actual]

| parameters at the procedure entry point. Reference parameters are shghtly more complex. We1 | must keep track of the set of variables which they could represent. Except for these minor }
3 distinctions and the fact that we have to remember where to continue simulation after procedure |
1 1 | exit, we treat procedure calls just as if they were simple in-line blocks of code. This method does
3 | not allow recursive procedures. There 1s no condition implemented which would cause the meta.

evaluation process to terminate for recursive procedures, as each time it encountered a self call to
1 the procedure it would suspend its current evaluation and start to evaluate the recursive call. This ;
3 | process would continue indefinitely. Thus our demonst:ition system outlaws recursion. One }
5 A condition which could cause termination in future systems 1s to require that we not simulate any
£ procedure if there 1s a pending simulation of the same procedure with the same state (all {
3 parameters have the same value sets, and no associations have been added to our model of the
3 i associative store). 4
3 We have now mentioned all the information gathering which 1s performed in the 3
4 I System, monitoring, user interrogation and static analysis. Each of these provides essent)al :
: information which will be used in the next phase, selection of representation for the individual ;

3 l information structure classes 3

| ” SECTION 5]
| SELECTION OF DATA STRUCTURES

5.1 CRITERIA]

| Whenever we pick one representation of data over another, we need to have reasons 5
: why we consider that representation to be superior (or at least not inferior) to the other E
: representation for the given purpose. The most common considerations used in such decisions E

| involve the amount of storage space (working set size in a virtual memory) occupied by the data ;
; structures, and the execution time (cpu time) necessary for performing all the access and updates 1
1 to the data structures. Also involved are the programming costs (original design and debugging) 3

| of implementing the representation. In this system we are totally ignoring these latter costs, key because all the representations which are candidates for selection are fixed in advance, and we !
) have already programmed and debugged the library of their implementation. |

] | We need some way of quantifying how good a given set of representations are in :
| comparison with other sets of representations. 1f one takes both less space and less time It is 3
4 clearly superior. However, what If no set of representations satisfies this? We must have some 3

| I way of predicting a cost for running the program with the different representations, and then we |
| shall pick the representation whose expected cost is least. One way of associating such costs is an 4

7 objective cost function whose parameters are time and space occupied by a program.

r 52 COMMON COST FUNCTIONS 3
J Let SMAX be the maximum amount of storage which may be .

1 i necessary during a program's execution. :
: Let TTOT be the total running time of the program ;

3 I Let S(T) be the actual storage in use by the program]
) attime TOs T < TTOTAL ;

| |. Minimum space /

} COST = SMAX 1
Choose the set of representations which will use the least space. :

4 2. Time ¥(function of space) !

: | COST = / F(S(t)) dt i: A. F(S) = if S < CORESIZE then | else «

; 5.2 COMMON COST FUNCTIONS #5 :
| |
i Cost of program is the time required as long as 1t fits in the partition allotted to it. - 4

| B. F(S) = if S < CORESIZE then S else w]
Cost of program is the time X space required i

{ C.F(S)=IF0<S<S; THEN CC,
! ELSE IF S| <S s So THEN Co 3

| ELSE IF yy; <S s Sy THEN Cp 2
ELSE :

| We have here a step function, Cy < Co £ Cg .. sCp are constants 3

D. F(S) = IF 0 <S <CORESIZE THEN $2 ELSE w :

Quadratic in memory size. !
|

1 3. Time * function(maxspace). Multiprogrammed systems will often require the user to specify in
: advance the maximum storage size he will use. The cost 1s then the cpu time multiplied by a | :

function of maximum storage size. x

In addition, other constraints may be placed on the representations. For example, in a :
real-time system (e.g. process controi), we may have the restriction that certain operations mus: | 3
never take more than some fixed time. y

Virtual memory systems with their pages and segments lead to other cost functions :
which may be described in terms of average working set size, maximum working set and so forth, i
These quantities are very difficult to predict with the current state of the art. In the sequel we are
therefore considering only real memory or single-segment systems.

Our computer runs under an operating system whose costs are related to space
multiplied by time so selection 2 (B) above will be the objective cost function which we will 3
attempt to minimize. An important fact to note 1s that we have not assumed in the rest of the }
system the form of our ob jective function. It 1s therefore rather easy to change this to some other }
cost function without modification to the other parts of the system. E

7 5.3 PARTITIONING THE INFORMATION STRUCTURES j

After we have exhaustively processed the program graph in the information gathering
phase we make one more pass to partition the set and list variables into their appropriate classes.

| Recall our requirement that two variables be in the same equivalence class if they are either :
r operands to the same instance of a binary operator, or they ave the actuals to the same formal
4 parameter of some procedure. We also mark every set or list binary operation node of the

:
i

= |

5.3 PARTITIONING 17

program graph with the name of tive partition to which its arguments belong. i

al We now partition the prinutive items into disjoint item classes. Just as we wish to avoid 1dynamic representation checking with sets and hsts we do not wish to have to dynamically check 3
the representation of items. In our system all items are represented by dynamic records, but the 3

} length of these records may differ depending on whether the item in question has a datum, if we :use the offset representation for associations involving the item, and so forth. Our criteria for :
putting two primitive items in the same class is that they are in the same value-set for som: ;
variable at scme program node or they are elements of the different value-sets for the same list ar
set variable. Having these disjoint item classes will make the job of implementing representations 3
involving transformation of item representation (such as in the bit vector representations of sets)
much easier. We will not have to worry about having different transformations for different uses :

x of a single item. 3
After partitioning the items, we partition our model of the associative store into several i

1 different ternary relations each of which will contain associations between the dis joint item classes. 3For example, consider: 3

item classt: { ITEM] ,ITEM2, NEW (scan 20) } ;
| item class2: { ITEM3 }

item class: { ITEMS, ITEMS } |

| where ITEM! ITEM2, ITEM3, ITEMS4, ITEMS are declared items and NEW (scan 20) is the
primitive item class for the call to NEW at the 20 th token in the source program. y

| If we see that there are possible relation instances: 3ITEM| ¢ ITEM3 = ITEM4 :

ITEM1 ¢ ITEM3 = ITEMS |

ITEM4 © ITEM| = ITEM? :

: ITEM4 e ITEM2 = ITEM {

| we can classify them into two classes, modeled by yclass] o class2=class3 ;

; | and :
lh class? o classi=clais2]

. Each operation on the associative store within ne user's program can refer to only one
: of these classes (otherwise we would have had the merger of two item classes into a single item
3 class). Therefore we have achieved the split of the ternary relation into smaller disjoint ternary

relations. (

| 54 APPLICABILITY FILTERING |
| Our system now has partitioned the set and list variables into equivalence classes and]

split the ternary relation so we must now begin the selection process. We can immediately
eliminate some representations from further consideration because they do not provide certain of
the primitive operations required by the user's program for that class of abstract data structure,

; i facis a do a Sd pk i i ih ; ied Halil LG a maa Ta ou fp tii get a abe J ca GT ig bg rae - | & . _

5.5 COST PREDICTION 48 1

3 5.5 COST PREDICTION ,

1 We now will predict the ume requirements and space requirements for each data i
1 structure using each possible representation. It 1s clear that the size of a high-level data structure 4
i varies over time. That 1s, the space for a data structure increases and decreases over the 1
3 execution of a program However in this first approximation let us act as if the size of the 3
5 abstract data structure were just the average size over its hfetime. This average can be

approximated by taking the average of the average sizes of the data structure at each primitive |
3 operation on this data structure. In ou: demonstration system we have these average sizes of the ;
{ data structure from information given to us by the user. In a production system this information
: would be gathered by monitoring as well |

4 The execution time required by primitive operations on this information structure class 4
9 can be predicted by simply processing each prumuve operation node of the program graph 1
3 referring to this class in the following manner. First use the values of the size and other ;
4 parameters in evaluating the time function using this representation for the given primitive]
1 operation. Then muluply the result by the number of times the node 1s executed (from the
] monitoring of the program). Now by summing up the time costs of the individual primitive]
1 operations we can get an estimate of the time cost for representing this class of high-level data 1
a structure using this representation. :

For each equivalence class of information structures we now have a table consisting of
1 how much time and space would be required using each applicable representation. If one :
| representation dominates ano:her, that is, both its predicted space and time costs are less, then we J:
1 drop the dominated representation from any further consideration. Note that this is a heuristic
4 rather than an absolutely optimal thing to do. This 15 not necessarily optimal because of cross 4
] terms in the ob jective function (time spent in procedure for manipulation times space occupied by |
: other structures) and 1s similar to the reason which prohibited us from selecting each information !
] structure representation independently. 4

: Now let us order the remaining representations by our objective function, tn this case 1
: space-time product. The fust of these representations (the one with the smallest space-time 1
} product(ignoring other data structures)) will be our initial guess as to the best representation for 3
i this class of information structures. 3

4 56 FINAL SELECTION

4 The total time-space product cannot be minimized by simply minimizing the time-space 1
1 product of each data structure, because of the cross-terms of the fm, time of operations on %
4 structure A muluplied bv the space occupied by structure B. We the efore need a technique of
3 minimization which sui ably treats these problems |

{ The quanuty we are attempung to minimize 1s the space-time integral. We will]
approximate this quantity by taking the sum of the terms of the form: average space In use i

3 during a procedure multiplied by the average ume spent inside th: procedure, the summation j
being performed over all procedures, ;

: : - Ei ci il has Ee, n ii SEae i DT wt wile dl bd iia Ei doi a eh SE sl

CE 5.6 FINAL SELECTION 49

 E In this research we have restricted ourselves to non-recursive procedures. Thus we can 3
E | construct a simple sequence of all the procedures of the user's program with the property that If j
E § procedure A calls procedure B then a node represenung procedure A precedes the node :
EE representing procedure B in the sequence. Another way of stating this, is that without recursion
y | there 1s a partial ordering of the procedures where the relation calls or calls indirectly 1s used to ’
E © provide this partial ordering. We construct a sequence which realizes this part.al ordering.

1 Once we have constructed such a sequence we now have the property that the time of :
Rg © execution for a procedure depends only on itself and the ume of execution of procedures later on EL
Ee | in the sequence. Thus, to estimate the space-time integral for a given representation set we do the 3
4 i following;
} | I. Processing the procedure hist in reverse order, we estimate each procedure’s execution time by ;
ii | using the already predicted average execution time of all procedures which 1t calls, the]
Eg 3 execution time required for non-leap constructs (provided by information gathering), and the :
3 estima .s of the LEAP constructs of the procedure found by using the primitive operation time]
gp § cost functions associated with the representation under consideration. :

| © We then multiply the predicted time cost of a procedure by the storage costs of all the variablesy { allocated within the procedure. Global constructs such as triples and the datums of items are 3
: counted as variables allocated in the outer block. The storage cost of a given construct is k

estimated by taking the aveiage size of the construct and using that as a parameter to the 3
3 l storage cost function associated with the given representation.
Using the above algorithm we can obtain a prediction (admittedly crude) of the space-

] i time integral using any given set of representations for the data-structures of the user's programs. :We now shai! state how we use these estimates to pick the final set of representations. :

i Our first guess of the set of representations consists of all those representations which :
§ minimize the local space-time product (that 1s only the average space used by a class multiplied by
t § the execution time of the primitive operations on the class using a single representation). Using
a9 this set of representaions we can form a preliminary guess as to the minimal achievable space-
3 8 | time Integral.]
| & We now iterate through all the classes of data structures. For each class and each 3
3 3 i possible representation we estimate the new space-time integral if that particular representation ;$3 were chosen rather than the one currently chosen. If the new estimate of the space-time integral is E
kd better than the best seen so far, we will record the new best representation for the data structure
3 3 class, and then continue by processing the next data structure class. We continue to iterate through 4
4 all the data structure classes until we no longer get any improvement in the predicted space-time A
§ integral. We now have our final set of representations for the data structures of the user's]

- § l program.

Re: m) RARE pt 9

1 5.7 FINAL COMPILATION 50 | 3

5.7 FINAL COMPILATION

] The system has selected representations for all the LEAP data structures in the user's
3 program, the system now compiles the SAIL program substituting calls on the appropriate §
3 primitive operations to handle the LEAP constructs. In our demonstration system, all the 3

primitive operations were implemented as closed subroutines, but there is no inherent reason why ;
the final Compiler could not generate in-line code for these primitive operations. p

;

3 6.0 51 i
: E

SECTION 6

RESULTS |
| We hava implemented a demonstration system to test out many of these ideas. It works :

on a subset of SAIL which includes LISTS and SETS. It does not fully handle triples. All of the

1 phases up to the user Interrogation phase (monitoring, static analysis) process the operations on 1
: triples, only the interrogatien and selection phase and final compiler would have to be modified,]
§ Also, of course, the library of primitive operations on associations (which has only been partially
3 implemented) would have to be completed as well as analyzed.

i The system consists of several programs, most of which are written using the SAIL !
1 .nguage.

. The first program 1s a trivial modification to the Stanford SAIL compiler and 1s written
A in assembly language. The only difference between this and the standard compiler involves the

insertion of statement counters Into the object code. We needed more precise knowledge of ;

statement and expression counts and so we msert more counters into the object file than the
y standard compiler does. This first phase is used to obtain the statement frequency counts by i
: compiling and executing the user's program using the user's data and our own default
2 representations.

| The next phase takes as mput the user's source file and the statement counter file i

: produced by the monitoring phase above. Its bastc function is to parse the user's program into a |3 flow graph and associate with each node in the flow graph the corresponding statement count.
4 This program was formed by taking the parser and scanner from the standard SAIL compiler :
3 and substituting our awn routes for the code generators. Thus part of it is written in assembly
j language and part in SAIL. The flow graph is in the form of LEAP triples. Other data that will |
1 be used in the successive phases is stored as the datums of items. The communication between

| phases takes the form of data files containing the items, datums of items, and associations between }
1 items. At the end of each phase such a file 1s written, and the next phase reads the file as input.]

; The static analysis, written entirely in SAIL, 1s the next phase. It performs the meta-
4 evaluation of the program. It by far 1s the slowest of all the programs in the system. The next two
J phases (also written tn SAIL) merely partition set and list variables and the associations into the J

appropriate equivalence classes.
. a

The next phase does preliminary filtering. That is, 1t notes which representations will
1 not be allowed to represent certain list or set classes because they do not provide essential
: | primitive operations. It also interrogates the user as to the expected sizes of the data structures

1 | which are operands to the LEAP operators.
] The penultimate phase uses the information gathered to select the representations of the
4 sets and lists of the user's program. It may also be run in a mode in which the user can choose
J representations for some or all of the classes of sets and lists before the automatic selection.

1 The last phase 1s a compiler which uses the selections from the previous phase to decide
} which library entries to use to implement the primitive operations.

6.0 RESULTS £O J
1

Before analyzing several test cases let us make some general observations about the
1 speed of this demonstration system and some of its hmitations. The ma jor imitation is in the size ¥

| of programs that it can handle. The standard SAIL implementation allows only 4000 items, which] is only enough to represent the flow graphs and other data of programs approximately ten pages 1
or so in length. The execution time for the various parts of the system (apart from the static
analysis) total about 10 times the time required for merely compiling the program. This does not

: include the time for writing and reading the LEAP data base between phases. This input-output J
d takes approximately 20 times the other execution time and tends to dominate the whole process. It 4
: could be reduced by ~cgregating several phases into single phases to reduce that cost, or by

| substantial reprogramming of the mput and output primitives Execution time for the static
3 analysis pass varies dramatically depending on the depth of loop and procedure nesting but in
] typical programs takes as much execution time as the rest of the phases put together (not i

including input-output). In extreme cases it has been known to take two or three minutes of :
. execution time to process a two page program that takes just a couple of seconds to compile.
] Clearly this is the phase which would have to be dramatically improved to make the whole system
4 more cost effective. 3

Let us now analyze the results of using the system on several test programs. The
program texts may be found in the appendices.

3 ;

: 6.1 INSERTION SORT

The original insertion sort (Appendix D - INSRT2) was processed using manual
selection to choose representations for the set variable UNSORTED, and the list variable ;
SORTED.

i Time to sort 300 integers (read from disk, originally in random order)

1 AVL TREE for UNSORTED , VARIABLE LENGTH ARRAY for SORTED |
! TIME = 6.7 (sec) SPACE = 10K :

SORTED LINEAT LIST for UNSORTED, LINEAR LIST tor SORTED | |
1 TIME = 18.5 (sec) SPACE = 8K :

] SORTED LINEAR LIST for UNSORTED, VARIABLE LENGTH ARP AY for SORTED
3 TIME = 4.5 (sec) SPACE = 8K

5 The program was then modified to form INSRT3 (Appendix E). The only difference !
: being that the inner loop which iterated through the SORTED list was written as a FOREACH :
: instead of an WHILE loop with hist indexiny. This, as expected, dramatically changed the time
i required for the implementation using a LINEAR LINKED LIST for the list SORTED (because i
1 with list selection we have to process the header of the list every time, thus the time for traversing :
: the list 1s proportional to NZ rather than N),

| 6.1 INSERTION SORT 53

: AVL TREE for UNSORTED, VARIABLE LENGTH ARRAY for SORTED
! TIME = 6.1 (sec) SPACE = 10K

: SORTED LINEAR LIST for UNSORTED, LINEAR LIST for SORTED
TIME = 7.5 (sec) SPACE = 8K :

| SORTED LINEAR LIST for UNSORTED, VARIABLE LENGTH ARRAY for SORTED
TIME = 6.0 (sec) SPACE = 8K]

We note that the time required for the last representation increased. While it is not ;
definite (because of the inaccuracies of the timing mechanism) that this 1s significant, it probably 3
1s. This would be caused by the fact that using FOREACH'S (in our implementation) always E

| copies the set or list variable being tterated while the FOR with list indexed selection does not. 4
; We also ran this program (INSRT?) with the standard SAIL system (which uses sorted :
] itnear linked lists to represent sets and Inear hinked lists to represent lists) and obtained a running i

time of 12.9 compared with 7.5 above. This ime difference is probably caused by several factors. §; First, the list and set manipulation routines im our implementation (in particutar the FOREACH 4
Interpreter) have been carefully optimized. Secondly, we have one less level of indirection In 1
fetching the datums of items. Finally the linear lists used for sets are sorted in ascending order in ;
SAIL, compared to descending order in our system. Since the NEW allocator In both systems 4

| allocates items in increasing order (in terms of the internal representation of items) a loop .
consisting of 4

put NEW(x) in SET ;

1s hkely to be much faster in our system since it will always msert the NEW at the head of the 4
hinked list, rather than having to traverse the entire list and then adding the new element at the 3
end of the hnked list. This type of knowledge about the NEW allocator seems very hard to :
Include 1n an time estimator function for the prinutive operation. Perhaps the NEW allocation 1
method should be chosen with knowledge of the representations of the data structures. In our E
system, though, we had fixed the allocation method in advance. 1

The automatic selection on the program INSRT3 used statistics gathered from executing]
the program on the same data set of 200 integers (a modified version of INSRT?2 was used with :
exphcit statistics gathering statements recording such things as average set size and so forth. |
T hese extra statements were inserted manually). ¥

The automatic selection mechanism had to consider only two information structures, the]
original unsorted set, and the final sorted list. There were Initially seven possible set ;
representations to chose from. The applicability filter discarded the bit vector and combination of

bit vector and linked list because these repiesentations require knowledge of the maximum i
number of distinct elements which can be set members. The presence of NEW's precluded the |
determination of this maximum size (Note in future Systems, user assertions may provide 3
Information allowing such determination). The attribute representation was also discarded by the
applicability fitter because of the FOREACH iteration through the set. There is no :
implementation of iteration through a set represented by attribute bits in our library of
implementations The preliminary prediction phase now had only four of the original seven .
representations to consider. These were the corted hnked hst, the height balanced binary tree, the

; 6.1 INSERTION SORT 54
3 hash table, and the variable length array. The preliminary prediction phase discarded the

: variable length array representation because predictions indicated a small additional space :
| requirement and a large additional ume requirement compared with the sorted linked list
p § representation. Similarly, the height balanced tree was discarded because of comparisons with the ;
| hash table representation. The final selection phase initially chose the linear linked list ;
- representation and did not alter its decision :

| There were initially three List representations to choose from: a one way linked list, a two :y | way linked list, and a variable length array All are complete so the applicability filter did not 3
- eliminate any from further consideration. The preliminary prediction phase eliminated the doubly

linked list because predictions indicated it would need both more time and space than the one-way 3

1 linked list. The final selection phase initially chose the variable length array and did not alter its |B decision. :

1 Thus, the automatic selection picked a hash table representation for the set |UNSORTED, and a variable length array for the hist SORTED. We then ran each representation ;
. pair 6 times to try and overcome the idiosyncrasies of our mer. The numbers below indicate the :
3 average time of the 6 attempts with the ranges of umes in parentheses The storage requirements 1
4 are the same as before.

HASH TABLE for UNSORTED, VARIABLE LENGTH ARRAY for SORTED

] (these are the representations automatically selected).
1 59 (55,6.1)

| LINEAR LINKED LIST for both UNSORTED, and SORTED :| (these are considered the default representations) y
- 1.3 (6.4, 8.5)

3 LINEAR LIST for UNSORTED, and VARIABLE LENGTH ARRAY for SORTED
§ (the author's own choice) 3
1 hg (53,61) 3

i There 1s no significant difference between the first and third pairs above. We believe
3 that the system chose the hashed set rather than the linked list because it overestimated the time]
1 required for set insertion using the linear linked list because it didn't consider the fact that items]
d are allocated in increasing numerical (internal representation) order. To include this type of
3 knowledge im the automatic selection seems relatively hard.

1 We then ran the same program over a data set containing 1000 elements with 2 trials
per representation. We did not rerun the automatic selector, but just used its choices from the 300
item sample.

| HASH TABLE for UNSORTED, VARIABLE LENGTH ARRAY for SORTED
3 (these are the representations automatically selected from before).

479 (45.0 ,50.1)

3 LINEAR LINKED LIST for both [/NSORTED, and SORTED
4 (these are considered the d- fault representations)
| 1.09.4 (1:08.0, 1.10.)

| "e 3
| 3

| 6.1 INSERTION SORT 55 1

Before we get too ecstatic about the improvement (approximately 25%) let us note that
: another program sorting the same 1000 elements ran in slightly over 6 seconds. This program,

however admittedly used a different algorithm (it inserted every integer read in into an AVL tree 1
and then traversed the tree in preorder). Of course the selection of the appropriate sorting

| algorithm 1s a separate issue and has been considered elsewhere (Knuth 73)). 3
; 62 MERGE SORT 1
| We took a merge sorting program (Appendix F, MERGE) and processed it on a sample :
: i data set of 300 elements. The automatic selection phase considered three equivalence classes: one i

containing only the set UNSORTED, the second containing the two lists OLDLISTS, and
1 NEWLISTS: and the third containing the lists SORTED, MERGER, and all the hist datums. In |

processing the seven possible set representations for UNSORTED, the applicability filter
] eliminated the bit vector and combination (bit vector and linked list) because of the presence of

N EWs. which make maximum size of the sets indeterminate at compile time. The applicability |
_ filter also eliminated the attribute bit representation because a FOREACH search was performed E

on SORTED and our implementation does not provide the primitives for foreach searches on sets 3
| represented by attribute bits. Thus, applicability filtering eliminated three of the seven possible set 1
: representations. The four remaining were a sorted linked list, a height balanced binar tree, a 4
| hash table, and a variable length array. The first prediction phase eliminated the variable length :array because predictions indicated both more execution time and more space needed than a
1 inked hist. The height balanced binary tree was also elirunated because predictions indicated |
: larger executton time and space requirements using it than using the hash table. Thus, after the ;

preliminary processing stage, we had only two remaining candidates from our original seven: a
: sorted inked hst and a hash table. The predicted time for set insertion dominated the final
3 i. selection and the hash table was picked.

: 3 There were three candidates for representing the lists, OLDLISTS, and NEWLISTS: a ;
one way linked list, a doubly inked hst, and a variable length array. The apphcability filter did 4

1 | not discard any of these representations because they are all complete. The preliminary predictor 4] discarded the variable length array because predictions indicated it would take more time and 3
1 space. The final selection phase imitially chose the one way linked list representation and then i

1 changed its decision to use the doubly inked list representation. This occurred because the extra ;
§ space needed was very small (only 300 words) but the predicted time required was about half. The]
1 cross. terms of the form time using this representation times the space of other data structures 1
3 | dominated. 1

3 There were similarly three candidates for the last equivalence class. Applicability and 3
preliminary prediction did not eliminate any representations. The final selection initially picked a :

| | one way linked list and did not alter its decision. i
4 Thus the selection picked linked list representations for the lists (linear one-way for one |

class and doubly linked for the other), and a hash table for the original unsorted set. This agrees 3
i f somewhat with my own choice except that | would have chosen a linear hinked-hst for the set for :
1 the same reason we gave before (the N EIV generator returns items in increasing mternal order). I
5 also would not have chosen the doubly linked list since it takes up twice as much space. It seems |
3 | that it was selected because of some lst indexing operations would be expected to take 3

: 6.2 MERGE SORT 56 |

| approximately half the time using a doubly linked hst compared with singly linked because we :1 ‘an count erther forward from the head of the list of backward from the tail. However, in this
particular program the indices used were the constant |, therefore there was no advantage to

! using the doubly linked structure

| We ran the resulting program and it took approximately 4.2 seconds and the ce.e size
: grew to approximately 12K. To demonstiare that this was a good selection we ther ran the
1 program using variable length-arrays for the Lists and got an average time of about 5 ceconds and

a similar core size. :

| We then ran the same programs with a sample data set of 1000 elements The linked list3 and hash table version took approximately 175 seconds and the array version took about 30 1
1 seconds. The core sizes were 21K and 37K respectively. Therefore we see again that tre automatic :
1 selection procedure again made a reasonably good choice. (The best choice turned out to be to use 1

linear linked lists for all of them 12.5 sec, 19K core.) 1

: One interesting observation 1s that the core size used by the variable length array]
] implementation was 37K as opposed to 19K for the linked list representation. According to our: model of storage costs It shouldn't be more than about 2K larger yet it was 18K larger. This is 1
: caused by the problem of storage fragmentation or checkerboarding, In the merge sort we are |: continually allocating larger and larger blocks of storage while at the same time deleting twice as |
1 many blocks of half the s17: The storage allocation routine we use just forms a free list of the

deleted blocks (merging blocks when adjacent blocks become free). Therefore, when we wish to 1
allocate a block of 2 N words it may be true that there are 2 N free cells, but no single contiguous :

: block of 2 N free cells. The storage allocation routine 1s thus forced to increase the core size even 9
i though our model of storage would indicate that this 1s unnecessary. It 1s unclear how to include
i the fragmentation costs in a model of storage in a simple way.

: 6.3 TRANSITIVE CLOSURE | i
1 As our final example we look at the transitive closure procedure we have seen so often
: before. Here we represented the single binary relation REL © A = B as B € datum(A). This is 3
1 similar to the field selector (record offset) implementation of the ternary relation. We expressed |
: this explicitly since our demonstration system does not handle triples in its final selection phases. 1

The relation we created was equivalent to the son relation in a binary tree. That is,
: every node other than leaf nodes had twe other nodes related to it. "he size of the tree was 1000
i nodes. And we asked the procedure to find the descendants of a node in the third row of the tree. :
] The time to perform the transitive closure itself was so small that we called the procedure 40 times 1
: to get a meaningful number ¥

. There were two set equivalence classes: the first containing all the set variables of the 1
; procedure and the second containing the set datums we used to represent the binary relation. The :
1 applicability filter threw out the bit vector, bit vector and linked hist, and the attribute bit
1 representations because of the presence of NEW’s and iteration as in the other two examples. The ;
1 preliminary predictor chose the linear linked list representation Lecause predictions indicated it
i would take both less time and space than any of the other available representations. :

6.3 TRANSITIVE CLOSURE 57 3

- Thus, the system selected the default representation (inked list for the sets). Execution 1
i time was about (as the average of 5 trials) 28 seconds per program execution with a core size of }

17K.

To see how this compares with what we believed to be the next best representation, we :
then ran the program with a variable length array representation and the program took an 4

le average of about 31 seconds with a core size of 17K. Thus, the selection process chose a 4
; representation about 10% more efficient than the next most likely representation. :

1 With most of the test cases we attempted there was a marked improvement in the i
a. execution time of the program (space did not vary as much). In cases where the system selected a
. suboptimal representation, specific defects were pinpointed (such as failure to notice constant list ;
| indices, storage checkerboarding etc) which may be remedied in future selection systems. All in all, :
3 CC we feel that the ability to automatically choose from various representations for information i
i structures has been shown to be feasible and obviously desirable. ;

] » .

19
L I i Ao

] :

7.0 58

SECTION 7

CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH |
We feel that the system has performed quite well. In general it has chosen appropriate

data structures for the programs considered. Where 1t has failed to choose optimum structures, it
has led us to specific defects in our models of storage and execution time. Some of these, like the :
use of constant hst indices can be easily handled by simple modifications. Others such as storage :
fragmentation and using internal properties of other structures (such as the fact that the NEW |
allocator usually returns items in increasing order) are not so easily handled. y

The system we have described 1s far from complete. It works only on a subset of a
usable programming language. It 1s very slow and cannot process large user programs. However it 3
1s, we believe, a concrete demonstration of the vahdity of our original hypothesis. Namely, that it 1
1s possible to use high-level data structures such as sets and relations with their conceptual clarity,
and have an automatic representation selector select efficient implementations of these abstract i
structures. Future systems of this type should indeed be usable in a standard production :
environment.

The concepts we have mentioned here, partitioning of data structures into classes, flow
analysis, analysis of algorithms, execution time monitoring, etc, are not new. However, to our
knowledge, they have never before heen combined to form a coherent system capable of ;
automatically selecting representations of data. ;

| We would be the last to claim that this system solves all the problems of automatic
gE selection of representations. We have barely scratch~d the surface. Below, in our suggestions for 3

future research we will list some of the hard problems that have occurred to us during our 3
research in this area. Other research 1s needed 1n analysis of algorithms, and classical optimization 1
techniques. There are potentially great payoffs in other automatic coding techniques, such as :
Earley's iterator inversion. ;

. 1

EL -- 7.1 TOPICS FOR FUTURE RESEARCH

ADDITIONAL OPTIMIZATIONS 3
.. :

[. Computation avoidance - takes advantage of properties of the abstract data structure.)

For example, the boolean expression:
X ¢ (SETI u SET?)

is logically equivalent to
(X ¢ SETH V(X ¢ SET)

| it will in general be faster and take less storage space to evaluate the second expression rather
than the first since the union does not have to he computed. See appendix G of

| transformations.

7.1 TOPICS FOR FUTURE RESEARCH 59]

| :

| 2. Change of variables |§ Often we have expressions like SET! - SET2. Sometimes 1t 1s beneficial to keep this as an :
explicit set rather than recompute the expression every time it 1s used. In this case it would

3 mean that every time we insert an element into SET! we would insert it in the difference set if ;
: it were not a member of SET2. Every ime we inserted an element into SET2 we would remove
3 that element (if present) from the difference set and so forth. This 1s closely related with the
4 concept of iterator inversion of Earley. i

: 3. Copy optimizations - mainly based on dead variable analysis and read-only access to data]
j structures being iterated through. ;

; We often can suppress unnecessary copying operations If we use dead variable analysis. For

: example. 1
: 7

SETI « SET? 3

: SET? « phi; J

] put Bin SETI,
4

§ We would normally compile this as: make a copy of SET2, release SETI, place descriptor to
! copy into SETI, Release the space used by SET2, insert B into SETI. However, when we realize 4

that SET2 1s dead after the assignment to SET! we can eliminate the copy SET2, and release ;
} SET2 operations. ;

: We can also use dead variable analysis to determine when we are through with a variable. :
i Thus, we can release the storage it required, much earlier than its explicit release in the ;
1 program. This technique will no. decrease the running time of the program significantly but k

may decrease the maximum size of the core image as we are able to reuse space sooner.

: N | | 3
] Similar analysis can tell us when 1t is necessary to copy a data structure which 1s being 3

processed by an iterator.

IDENTITY vs. ATOMIC OBJECTS

; One question arises when we talk of sets, sequences or relattons mn a programming ?
J language. What are the elements of these data structures? Are they values or variables? The]
1 system we have described acts only on variables.

i Earley has named thete concepts of value and variable by the corresponding terms of |
1 atomic ob jecis and identity objects An atomic object 1s essentially a simple value, which can not be
3 altered. That 1s, it 15 readonly To alter a set containing the values 1,2 and 3 to contain the values

1 I, 2 and 4 we would probably remove the value 3 and then add the value 4 to the set. With sets
) of atomic objects we often do not have to explicitly construtt data structures but can utilize
: functions and generators to represent them. For example, assume we had knowledge that a given
. set was simply the set of integers from | to 100. To iterate through the elements of that set we

i x ;

: 5 1.1 TOPICS FOR FUTURE RESEARCH 60 4
: i 1
: J
' 8 3
3 need not exphcitly construct a data structure which contains 100 data objects, but could merely use 3

- an standard ALGOL FOR statement. Similarly we could replace the set membership test with the 3

| simple range check. That 1s, the integer x 1s in the set if and only If the value x is greater than or i
’ equal to | and less than or equal to 100. 1

| An identity ob ject 1s essentially a variable name. It has its own identity and its value]
. (datum) can be modified at will. Thus if we had a set containing identity ob jects whose values A

| were 1, 2 and 3 and we wished to modify it to contatn the identity ob jects whose datums were 1, 2 3
and 4, we could either change the datum of the identity ob ject which was currently 3 or we could

pF “ remove that object and replace it with another identity object whose datum was 4. If we wished to
have the set of integers from | to 100, we would be constrained to actually having 100 different i

| ob jects each of whose datum was some Integer In that range. 3
: Both identity objects and atomic ob jects are valuable concepts for very high-level data 1
1 structures. We can easily implement either one using the other but when we do so we are playing 4
] the same game as the fellow who wrote all his set operations in terms of sequence operations. We

| have expressed data in terms of an implementation rather than in terms of its high level !
properties. 3

In our system we concerned ourselves only with the representation of identity objects. ;
They are more easily handled than atomic objects because 1t 1s always clear when a new one is
being created, which 1s not the case with atomic ob jects. Possible ways in which atomic objects

3 could be handled in future systems include the obvious encoding in terms of read-only identity
: ob jects (via such "symbol-table” mechanisms as hash searches etc.). The most interesting problems i
: involve the use of functions and generators to take the place of explicit data structures. :

y REDUNDANT AND ALTERNATE REPRESENTATIONS ;

: Alternate representations for different phases of program. i

1 i Often we can partition a program into several logical phases (e. g. input, processing, :
2 output). A representation optimal for one such phase may be suboptimal for another (depending 4

on which access operations are dominant). The problem 1s to recognize the phases and then decide :
1 if It is worth the translation time to get from one storage structure to another. For example we
1 may have a file of employment records read in off of tape In random alphabetical order i

(INPUT). The program then will update the file according to some other criteria, e.g, employee |

| number (PROCESSING). Finally repoits to be generated wanted in alphabetical order so desire3 sorting on employee name (QUTPUT) We may find it optimal to have different representations b
for the file in each different phase of the program.

Simultaneous use of multiple representations of an information structure

| Often two accessing operations may be performed on the data structure. If no single: representation 1s optimal for both operations it may be advisable to store the data redundantly by E
| using two storage structures each containing the data structure organized in a manner optimal for

i one of the access operat.ans. Recail that one of our set representations was a bit vector with a

71 TOPICS FOR FUTURE RESEARCH 61

| redundant linked list. For example, we might have a set of possibly 72 different elements, with]
two operations performed on the set: existence test (1s x in set), iteration (Foreach x € set). The :
existence test 1s done best when representation 1s a hit string so only indexing 1s needed.

: However, iteration 1s done best when representation 1s a linked list of the elements.

| Note that the merger of two storage structures does not necessarily have the sum of the :
updating costs of the individual structures. Normally with a hist of the set elements we would :

| require that the list be sorted, However now this 1s not necessary. The operation of insertion can
J be done by first seeing it the element Is already in the set by using the bit string and then adding]
A it to the head of the list if 1s not. Similarly deletion can be avoided if the existence test fails. :

One way of approaching multiple representations Is to consider this merger as a ;
separate representation with its own aitributes. One problem 1s that this can lead to a squaring of :
the size of the representation library if we do this with all pairs of representations.

Data structures as unions (disjoint or not) of storage structures. E

We have mentioned this in the conte... of associations. This 1s applicable even with sets. 3
Consider a program which 1s going to test membership ty «ery large set. For example a spelling |

3 checker might check to see If every word In a piece of text were In its dictionary |
i The dictionary might be very large and thus would have to be stored In secondary ;
, storage. We desire a way to minimize the number of accesses to this storage. One technique might 1

| be to keep a large number of words (say the last 1000 encountered) in core. Thus, our search ;
J algorithm would first search core for the desired word and only if 1t did not find 1t, make the k

appropriate search in secondary memory. Thus, the set of allowable words 1s stored as a two data :
3 structures (in core, ano on disk) with a partial redundancy. Other applications might require no ;
3 redundancy. ;

J RELANATION OF CRITERIA FOR THE EQUIVALENCE CLASSES

3 To reduce the combinatorics of representation selection we insisted that arguments to a :J siigle operator be in the same representation. The alternatives are to have either a translation ;
3 procedure which takes as argument a set in one representatioln and converts it into the other :
3 representation, to write code sequences for each operator which ale representation independent, or
] to represent one or both sets redundantly.

) We could thus write a representation free union code sequence as follows, where sets A J
and B are the inputs.

f :

y iE i ll is obi oie4

i 7.1 TOPICS FOR FUTURE RESEARCH 62 |
2

set procedure UNION(set A,B);

| oor begin "UNION"item~ar LOCAL,

3 set RESULT, :
RESULT « phi. 3

| foreach LOCAL | LOCAL ¢ A do :| put LOCAL in RESULT; ;
: | foreach LOCAL | LOCAL¢ B do |

| i put LOCAL in RESULT,} return(RESULT), 3] f end "UNION", :
¢ ¥ | The arguments A,B and the result may be in entirely different representations. The two foreach’s i
5 and puts could check which representation is in use for the construct and use the appropriate

| ; routine for that representation ;
; It 1s quite easy to write similar representation free codes for the other basic operators. However we :E notice that we lose any efficrency based on representation. For example when compared to the
x ! representation dependent model with sorted linear linked lists we find that the representation free ;routine will take time proportionate to ne compared to time proportional to n for the

representation dependent union routine. |

) x | A basic problem for future research 1s the evaluation of the tradeoffs between using less efficient ;
i representation-free routines, using translations to a common representation, and insisting on :vi i common representations. :

| i USE OF PACKING 3
§ String representations have traditionally packed more than one character per compuier word,
£7 Clearly the record type structures which a system like ours generates for items could benefit from :
& I the same type of packing. Here we need to evaluate the tradeoffs between sometimes slower access 3: 3 to elements (because of unpacking and packing) and the storage savings, :
fl | EXTENSIBLE LANGUAGES,
id A user should be able to defme his own abstract data structures and supply a library of primitive
4 operations using various representations and still have the system do automatic selection of :
& 3 representation This 1s closely related to the work of Earley and the ECL group at Harvard

: 3 | However, they are not currently working on this particular problem.
i 72 FINAL CONCLUSION

i This research has demonstrated the feasibility of automaung a significant part of the i
progiamming problem: the selection of low level representations for high level information

x structures Future work along these lines 1s likely to allow the techniques to be applied as a matter ;
4 of course tn an optimizing compiler. We have demonstated the desirability of such work.

! 8.0 63

SECTION 8)

APPENDICES ;

8.1 APPENDIX A - SET PRIMITIVES :

E in this implementation a set 1s always be represented by a one-word descriptor. This descriptor :
3 usually contains a pointer to some other storage and perhaps additional information. In the]
: following routine descriptions, a value set argument is represented by the one-word descriptor. 3
3 Similarly, all set-valued primitives tetutn a one-word descriptor fF

3 |. PUT SET (itemarg, setarg) - inserts the item argument into the set represented by the set j
: descriptor argument. Returns a descriptor to the resultant set. This routine has the effect of 3

altering its original set argument.

1 { item], item?2, 1tem3 } would thus be compiled as:
: TEMP « PUT SET(temI,PHI) ;

3 TEMP « PUT SET(tem?2, TEMP),
E TEMP « PUT SET(tem3, TEMP), 3

] the result would then be in TEMP. 3
b put ITEMARG in SETA would be compiled as: 1
. SETA « PUT SET(TEMARG, SETA); 3

J 2. REMOVE SET (itemarg, setarg) - removes the item argument from the set represented by the |
set descriptor argument, RETURNING A DESCRIPTOR TO THE RESULTANT SET. :

i The original set 1s altered. b

g remove ITEMARG from SETA, would be compiled as: |
3 SETA « REMOVE SET(ITEMARG, SETA),

: 3 LENGTH SET (setarg) - returns "he number of elements in the set. It does not alter its J
§ argument. §

A 4. IN SET (itemargsetarg) - boolean returns TRUE if the itemarg 1s an clement of the set, :
J FALSE otherwise. Does not change the set argument. :

3 5. COPY SET (setarg) - returns a copy of its argument. Does not change the argument. With a :
i representation which tried to share storage this routine might just copy the descriptor or :
1 increment a reference count [Schwartz74a) 1

| 8.1 APPENDIX A - SET PRIMITIVES 64 }

| : 6. RELEASE SET (setarg) - releases the storage (if any) used by the set argument. Thus, 1t * ;
1} destroys its argument. With a representation which used garbage collection this routine would 3

1 probably do nothing at all and all storage reclamation would be done by calls to a garbage
g collector located elsewhere. y

= FOO « BAZ would be compiled as: :
; TEMP ~ COPY SET(BAZ) 1
=» RELEASE SET(FOO) i
1 FOO « TEMP; ;

7 SET UNION (setasetb) - forms the union of its two arguments. It has the side effect of ;
§ destroying its first argument, but leaves the second unchanged (unless the second argument 3
] happens to be the same as the first) :

3 Thus, FOO « FOQ u BAZ would be compiled as: 1
FOO « SET UNION(FOO, BAZ).

FOO « BAZ u GARP would be compiled as g
] TEMP ~ COPY SET(BAZ), 3
: TEMP « SET UNION(TEMP, GARP);

| RELEASE SET(FOO)FOO « TEMP; y

1 8. SETINTERSECTION (seta, seth) - forms the intersection of 1ts two arguments. destroying its 3
] first argument as a side effect. It leaves its second argument unchanged. 3

Thus, FOO « BAZ n FOO would be compiled (using the commutativity of set intersection) as: 3
1 FOO « SET INTERSECTION(FOO,BAZ), §

0 SET SUBTRACTION (seta, seth) - does the set subtraction, second argument subtracted from | :
: the first, destroying the origmal first argument as a side effect. Leaves second argument 1
! unchanged. ;

> FOO « FOO - BAZ would be compiled as: 3
i FOO ~ SET SUBTRACTION(FOOQ,BAZ), ;

10. SET_EQUALITY (seta, setb) - does the boolean comparison between its two arguments. The b
: two arguments are left unchanged.

) FOO = {itma) would be compiled as,
S TEMP « PUT SET(tma, PHI),

TBOOL « SET EQUALITY(FOO, TEMP),
RELEASE SET(TEMP),

; the result of the comparison 1s contained in TBOOL. :

8.1 APPENDIX A - SET PRIMITIVES 65]

} 11. SET INCLUSION (seta, setb) - does the boolean comparison and returns FALSE if there is
1 an item 1n seta which 1s not in seth, Does not change either of its arguments. i

! 19. SET PROPER INCLUSION (setaseth)- same as SETINCLUSION except also returns }
: FALSE if two set arguments were equal 1

3 12. COP SET (seta) - returns an arbitrary element of the set argument. It does not alter its :
argument. i

14 LOP SET (reference seta) - takes as argument the address of the set variable (not just the §
1 descriptor). Removes a single element from that set which it returns as its value. It alters the

set argument. 4

i 15 INIT SET FOREACH (reference sch; reference locality, seta) - This 1s called when the ;
foreach is entered The sch is a variable which will contain status information for the iterator 3

1 such as where we are in the set and so forth. The locality 1s the itemvar which is receiving

4 values from the FOREACH search. seta 1s a destroyable copy of the set through which we :
4 wish to iterate, E

: 16. ITERATE SET_FOREACH (reference scb) - this 1s a boolean procedure which takes the scb 1
variable as its parameter. It places the next element in the set (if any) into the locality which 3
was mentioned tn the mmialization routine above. If the set has been exhausted it returns the
boolean value FALSE, otherwise the value TRUE. On exhaustion it has the side effect of

3 cleaning up everything, reclaiming space and zeroing out the sch. (search control block) i

17. END_SET FOREACH (reference sch) - this procedure forces termination of a foreach. It 1s 4
used to clean tp scbs before transfer of control outside a foreach statement such as a done 4

2 (loop ext) statement or return (procedure exit). a
foreach X | X (SET do 3

3 if ¥. « FOO then remove X from SETI else done;

1 This 1s comptled as:
1 INIT SET FOREACH(SCB,X, COPY SET(SET1)), :
3 while ITERATE SET FOREACH(scb)) do j
{ if X = FOO then ;
1 SETI REMOVE SET(X, SETI) i
E else begin END SET FOREACH(SCB), 2done, {

3 end; x

i | We should note that there are other possible ways of choosing the set of primitive operations. For 3i example we can conceive of an assignment primitive, or a prinvinve for constructing explicit sets.
5 Copying and releasing sets 1s sometimes very expensive. Therefore we might have many entry
i points (as many as 4 for binary operations) depending on whether the arguments are dead, and so
3 their storage might be reused immediately. In this system, each routine has but a single entry
3 point.

y ¥
Ba

8.2 APPENDIX B - LIST PRIMITIVES 66

1 82 APPENDIX B - LIST PRIMITIVES

I. PUT INDEXED (itemarg, reference list, index) - inserts the item argument into the list |
specified by the list parameter after the specified index. It has effect of altering the list
argument.

put X in LISTA after 10, ;

1s compiled into s

PUT INDEXED(X, LISTA, 10), |

: and

put X in LISTB before I, |

] 1s compiled into |

PUT INDEXED(X, LISTB, 0) :

2. PUT BEFORE ITEM (iteml, reference lista, item?) - inserts item! into the list immediately
before first occurence of item2. The list argument 1s altered.

: put X in LISTB before Y, |
1 1s compiled into :

4 PUT BEFORE ITEM(X, LIST, Y),

; 3. PUT AFTER ITEM (iteml, reference lista, item2) - inserts item! into lista immediately after
1 first occurrence of item2. The list argument is altered. |
4 put X in LISTA after Y;

: 1s compiled into:
4 PUT AFTER ITEMIX, LISTA,Y)

3 4. REMOVE ITEM (itemarg, reference listarg) - remove the first occurrence of itemarg from list.
3 The list argument 1s altered.

4 5 REMOVE INDEXED (index, reference list) - remove the index th element of listi. The list
yr argument 1s altered. i

3 6. REMOVE. ALL (itemarg, reference lista) - remove all occurences of itemarg from lista. The list
i argument 1s altered.

7. FETCH INDEXED (listexpr, index) - returns the index th element of the listexpr. The list |
argument 1s unchanged. 4

] 8. REPLACE INDEXED (reference lists, index, ttemarg) - replaces the index th element of listi 3
; with the itemarg. The list argument 1s altered. 3

J 0. LIST_MEMBERSHIP (itema, listb) - boolean TRUE if tema an element of listh. The list i
3 argument 1s not altered. 3

] 3 I 8.2 APPENDIX B - LIST PRIMITIVES 67 j
: 3 10. LIST_EQUALITY (list], list2) - boolean, tests if two lists are equal. Neither argument is ;
3 | altered. 3

1 Il. LENGTH LIST (lista) - returns the length of lista. The list 1s unaltered. ;

} 4 1 12. COPY LIST (listo) - given a list descriptor, returns a list descriptor pointing to a copy of the :
3 b original list. Does not alter its argument. ia.]

1 1 13. RELEASE LIST(listr) - release the space occupied by a list expression back to free storage.
gE ‘The argument 1s thus destroyed. |

1 | FOOLIST « BAZLIST
a is compiled into: y

1 ; | temp « COPY LIST(BAZLIST); J
4. RELEASE_LIST(FOOLIST), i
: FOOLIST « temp;

J | | i4. COP LIST (hsta) - COP of list (archaic equivalent to list{1)). The list argument is
¥ unchanged.

1 ; | 15. LOP _LIST (reference lista) - Remove and return first element from list. The list argument is 4
1 altered. i

1 | 16. CONCATENATION (listl, list2) - form a new list by concatenating two lists together. Both 1
1 arguments are destroyed.

i | FOOLST « BAZ & FOOLST: |
| » is compiled Into: 1

i 3 | temp ~ COPY LIST(BAZ),
Fi FOOLST « CONCATENATION(temp, FOOLST),

3 1 17. INIT. LIST ITERATOR(reference sch, reference locality, hist) - initialize the foreach list]
pk elernent iterator. List argument eventually destroyed. (See set foreach iterators Appendix A), |

§ 18. ITERATE LIST (reference SCB) - iterate through a list. Returns TRUE if it finds another |
 § element in list. FALSE otherwise. Side effect of storing item found in the locality mentioned in
1 INIT LIST ITERATOR. 4

1) 19. END LIST (reference SCB) - forced termination of a FOREACH element iterating through a
: list. r

 § 20. EXPLICIT_LIST (iteml, item?2,.. itemN, N) - constructs the descriptor for an explicit list. 4
| Takes a variable number of parameters. :

8.3 APPENDIX C 68 C3

8.3 APPENDIX C - META EVALUATIONS j

Here are some examples of the meta evaluations we use during our static analysis phase. 1

| A. Set operations|. VALUESET(S1 u $2) « VALUESET(S1) u VALUESET(S2) J

| © VALUESET(S! n $2) = VALUESET(S1) n VALUESET(S2) E] 9 VALUESET(S1 -S2) = VALUESET(S1) :
4. after S| « SETEXPR]

; a. If $1 1s a simple variable (not datum, array element, procedure parameter) new
] VALUESET(S1) = VALUESET(SETEXPR)

| b. If $1 1s not a simple variable, then the] new VALUESET(S1) = old VALUESET(S!) u VALUESET(SETEXPR) :
5. put ITEMEXPR in $1, acts the same as S| « S1u {ITEMEXPR }; |

] 6. remove ITEMEXPR from Sl, acts ike SI « $1 - {ITEMEXPR} i. e. no action.

: B. Associative operations

: I. MAKE 1expr @ iexpr2 = texpr3, ;
) Insert every instance of Xoy=1 (x Cvalueset(iexprl), v(valueset(iexpr2),]
3 2 C valueset(iexpr?)) into model of the associative store. :

2. ERASE texpr & 1expr2 = texpr?. ;
No action.

1 3. SEARCH expr! e 1expr2 = expr. :
1 No change to the model of associative store. If this 1s a foreach element binding some :
} local, do an assign to that local consisting of the corresponding elements from inodel of 1
i associative store.

AE TD TE Lp ee Eo il Ua CL id di Cpa oo LoL A Eb Ra Rh dit of Ln Saal ci Tui si SRa ll Ld

| 8.4 APPENDIX D - INSRT2 69 :15 8.4 APPENDIX D - INSRT2 1

begin "INSRT2"

§ | set UNSORTED, list SORTED, |
integer itemvar OBJI, OB),
integer COUNT, [; string TEMP, |

comment FIRST CONSTRUCT AN "UNSORTED SET"

3 UNSORTED « phi; ;
2 COUNT « READ INTEGER;

: for | « I step | until COUNT do |
3 put new(READ INTEGER) in UNSORTED; |
4 SORTED « nil; |

3 foreach OB]1 | OBJI ¢ UNSORTED do |
1 begin "foreach OB]I”
i COUNT« |;
] while COUNT < length(SORTED) do |begin "INNER |
4 QB)J2 « SORTED(COUNT],
| if datum(OBJ2) 2 datum(OB]1) then done "INNER"
: else COUNT « COUNT + |;
1 end "INNER",

put OBJ1 in SORTED before COUNT,
1 end "foreach OBI", 1

J foreach OBJ2 | OBJ2 ¢ SORTED do |
: WRITE INTEGER(datum(OB]2)); :

1 end "INSRT?2" |

8.5 APPENDIX E - INSRT3 20 : |

: 8.5 APPENDIX E - INSRT3 :

| begin "INSRT3" |

| set UNSORTED; list SORTED, |] integer itemvar OBJ1,OBJ2;
integer COUNT, I; string TEMP, :

1 }
comment CONSTRUCT AN "UNSORTED SET", .

:
; UNSORTED « phi; |

COUNT « READ INTEGER; |

3 for [« | step 1 until COUNT do J
put new(READ_INTEGER) in UNSORTED, ;

; SORTED « nil; |
: foreach OBJ! | OBJ! ¢ UNSORTED do |
] begin "foreach OB]J1"

COUNT « |;

foreach OBJ2 | OBJ2 ¢ SORTED do
begin "INNER" |

if datum(OB]J2) 2 datum(OB]!) then done "INNER" 3

: else COUNT « COUNT + |; ¥
; end "INNER";
1 put OB]! in SORTED before COUNT, 1
4 end "foreach OB JI", :

; comment PRINT SORTED LIST; }

] foreach OBJ2 | OBJ2 (SORTED do |
: WRITE_INTEGER(datum(OBJ2)),

end "INSRT3" |

86 APPENDIX F - MERGE 7] 3

| 86 APPENDIX F - MERGE :
1 begin "MERGE" 1
| list OLDLISTS, NEWLISTS, SORTED, MERGER,] set UNSORTED; |
] integer itemvar OBJI, OB J2, INFINITY; iinteger COUNT, ;
: list itemvar LITM 1, LITMZ2, 1
1 comment CONSTRUCT AN "UNSORTED SET"; |
) UNSORTED « phi; !
j COUNT « READ_INTEGER,;]for | « 1 step 1 until COUNT do 3
: put new(READ INTEGER) in UNSORTLD;

comment CREATE LIST OF LISTS TO BE MERGED;

OLDLISTS « nil; ;
4

foreach OBJ1 | OBJI €¢ UNSORTED do
put new({{ OB]JI}}) in OLDLISTS after 0,

] NEWLISTS « nil.INFINITY « new(2130), :

3 :

8.6 APPENDIX F - MERGE 72 ’ ;

4 while length(OLDLISTS) > 1 do ;
3 begin "OUTER" 3
4 while length(OLDLISTS) > [do 4
2 begin "INNER"

LITMI « lop(OLDLISTS), i
: LITM2 « lop(OLDLISTS); . | i
3 MERGER « nil, p

3 while (datum (LITM 1) = nil v datum(LITM2) = nil) do 3
1 begin "INNERMOST" i
1 if dat (LITMI1) = nil then 3
; OBJ! « cop(datum(LITMI)) 5
3 else OB]J1 « INFINITY; |

if datuni(LITM2) = nil then 4
: OBJ2 « cop(datum(LITM2)) | :

else OBJ2 « INFINITY; ;
3 if datum(OB]I) < datum(OBJ2) then 3
1 begin 3
: put OBJI in MERGER after lengti(M ERGER); 3
4 remove | from datun(LITM 1); A
i end :

else A

s begin |
put OBJ2 in MERGER after length(MERGER),
remove | from datum(LITM2); 1

end; 1
3 end "INNERMOST",]
2 put new(MERGER) in NEWLISTS after 0, . 1]
i delete(LITM 1); ;
3 delete(LITM2), :
3 end "INNER", }
3 if OLDLISTS = nil then 3

3] put lop(OLDLISTS) in NEWLISTS after 0; :
1 OLDLISTS « NEWLISTS; 3
3 NEWLISTS « nil; A
j end "OUTER", 3

: LITM1 « lop(OLDLISTS); |
gE SORTED « datum(LITM1); 1
7 delete(LITM I);
; delete(INFINITY);

; foreach OB] | OBJ1 ¢ SORTED do
WRITEINTEGER(datum(OB J1)), i

1 end "MERGE SORT" 2

| b 8.7 APPENDIX G - TRANSFORMATIONS 73 3
2 8.7 APPENDIX G - TRANSFORMATIONS j
; t | The following are examples of transformations may be made to avoid certain computations. :1 : J Caution must be taken with “side effects’. None of these transformations were used in our |1 : demonstration system.]
| { l 1. x € (set vu set) = (x Csetl) v (x C set?) ;p | |
: 1 1 2. x € (setl n set?) = (x Csetl) a(x ¢ set?) b
| § 3, x ¢ (set] - set?) = (x €setl) A ~(x C set?)
5 I 4. LENG TH(list! & list2) s LENGTH(list1) + LENGTH(list2) :

bh. X « X U {item], item2} = putiteml in Xx; ;
EF | put item2 if X; A: | (no need to explicitly create {iteml, item2}. }

| ; | 6. Xx « Xx - {iteml, item2} = remove item| from Xx;remove item? from X;

| 7. (setl u set2) « phi = (setl = phi) A (set2 = phi) :

i

1 8.8 APPENDIX H 74 i
8.8 APPENDIX H - INSTRUCTION WEIGHTS a. f

1 The table below contains our weightings of the individual machine instructions based on a time :
4 unit of approximately .7 microseconds. Data from PDP-10 SYSTEM REFERENCE MANUAL :]
} 1969. Digital Equipment Corporation. Note: nc difference .ii execution time Is noted If the source
1 or destination of a memory reference is an accumulator. Thus, in our model, loading an A
4 accumulator from an accumulator will take as much time as loading an accumulator from the 3

slower memory. b

4 MOVES (MOVE, HRR, HRL, MOVS , HLL . HLR etc) E
. memory to accumulator 3 units
3 immediate to accumulator 2 units Eaccumulator to memory 4 units 1
] EXCH 4 units a 3
i BLT

] PUSH, POP 5 units :
g LDB, ILDB 9 units (middle byte(5)) 4
| DPB, ILDB 10 units 3
3 IBP 4 units :

LSH 6 units 1
! LSHC 7 units 3

CAl 2 units :
: CAM E
1 LOGICALS (OR, XOR, ANDCM, ANDCA, AND etc) |
1 (approximate) kL

f memory with accumulator 3 units i3 immediate with accumulator 2 units i
4 accumulator with memory 4 units i
s ADDSUB

i memory with accumulator 3 units
. immediate with accrmulator 2 units ¥
1 accumulator with memory 4 units
1 AOB]JN 2 units
3 JUMP 2 units :
} SKIP 3 units
: AQ]JSO] 2 units]

AOS,SQOS
4 TL, TR 3 units :
: TD 4 units i
3 NCCT 1
3 JFFO 5 units i
3 JSP 2 units y
1 JRST 2 units
3 PUSHJ, POP] 4 units a

1 | 8.9 APPENDIX I 7% :
i. 8.9 APPENDIX | - EXECUTION TIME COST FUNCTIONS

] 1 J PUT_SET - insert item in set :
F 3 n = proportion of time item already in the set 3
a A = average size of set 3
Eb M = maximum size of set 1

1 REPRESENTATION set empty set non-empty

| AVL tree S6 180-166n+16. 8%L0G2 (2) |

Bit - Array 146 + 3xMM/32] 48

) Hash tabla 621 82-48n + 32/16

1 - Bit-string :
rE With unsorted 265 + 3xM/327 184-53n ;
i . linked list ;

} ; Attribute bit 27

| Sorted variable 36-88n+5., 85% + 2
: ongth array | 140 20.54L062(A) -. 3m j

» * 1
vo SE | :

i.

89 APPENDIX | 76 1

| |
1 REMOVE SET - remove item from set 3

n = proportion of time item in the set i
A = size of set 4

REPRESENTATION Set empty Set non-empty Removal of last 3

Linked list 23 + 130/72 + 27n 82 :

AVL tree 32 + 88n + 20xL0G2(A) 140

Bit - Array 48]

Hash table 42 + 32/8 + 25n 294

Bit-string

1 with unsorted 15 S1+46nA + SOn 149
] linked list

1 Attribute bit 27

: Sorted variable 11 17 + 21.54.02(A) + 3n + 3mA 249 {
- length array

: 8.9 APPENDIX | 24

: IN SET - test if item in the set :
1 n = proportion of time item in the set :
! A = Size of set

| REPRESENTATION set empty set non-empty ;

3 Bit - Array 48

; Bit-string |
3 with unsorted 18 S1 |

linked list]

: Attribute bit 26

Sor ted variable 14 28 + 434.062(A)/2 |
] length array ~Sn/2 .

AE.

| 8.9 APPENDIX | 78 | i
COP _SET - Choose element of set a

A = size of set ;
M = maximum size of set i

} REPRESENTATION TIME

i Linked list (sorted) 15]

) AVL tree 12 + 12.4%L0G2(2)

s Bit - Array 21 + 12xM-{TM/32/A) %LN (1-27 (TM/321%32) 7 J

1 Hash table(32 slots) 27

: Bit-string 1
A With unsorted 22

linked [ist

Attribute bit i”

: Sorted variable 17 :
A length array |

| 89 APPENDIX | 29
LOP _SET - pick item and remove from the set 1

: A = size of set :. M = maximum size of set 1

new set empty new set non-empty 5

: Linked list (sorted) 65S 48]

AVL tree 42 B4 + 18.6xL0G2 (2)

| Bit - Array 37 + 12%7- (FM/321/2)0%UN (1-27 (TH/321%32) |

1 Hash table (32 slots) 52 + 16x(31/32}1(x-1)

| Bit-string 3
with unsorted 116 83

; linked list .

; Attribute bit ©

: Sorted variable 225 21 3
3 length array :

i

J 8.9 APPENDIX | 80

: LENGTH_SET - count number of items in set |
. A = size of set
1 M = maximum size of set

3 set empty vet non-empty 1
3 Linked list (sorted) J

AVL tree 9

1 Bit - Array 20 + 1241/3271 + Sx :

] Hash table (32 slots) 4]

3 Bit-string
2 with unsorted 18

linked list

{ Attribute bit w |

E Sorted variable g 12 :
length array 3

8.9 APPENDIX I 81 3

 B SET_UNION - union of two sets 1
3 n = proportion of set 2 not in set |]
1 A(1] = size of set |
] A[2] = size of set 2 |

M = maximum size of set : 3

set 2 empty set 1 empty sets non-empty)

| Linked list 73 + 4x2 [2] 264142 [11+ (10+47) A [2]]

i AVL tree 14 67 + 5912] | 15 + B32[2) + 166m (2) +]
] 17nx (2) %L0OG2 (A (11)

1 Bit - Array 25 125 + 14xMM/327 25 + 11xM/327
: 11%M/327

Hash table 14 B49+332 [2] - 251 + 224(31/32)1A(1] + 3

| 128n(31/32)MA (2)| 1411) + (S@r+1@)A[2) 3

{ Bit-string ;
with unsorted 20 252 + 46x [2] 48 + 21xMM/3271 + 66mA [2] 3
linked list + 6xM/327 {

3 Attribute bit 00 ;

J Sorted variable 17 400 + 6X I[2) 681 + 19xa(l] + ;
3 length array (8+1Sn) A [2] ;

y

|

8.9 APPENDIX | 89

SET INTERSECTION - intersection of two sets 3
n = proportion of set | not in set 2 1
A[1] = size of set |
A[2) = size of set 2]
M = maximum size of set 3

setl empty| setld empty normal result empty]

Linked fist 11 43 36+ (14+426max [11] 51 + 38xA(l]+ 12% [2] + 12% [2] :

AVL tree G1 + 38.6212] + 51+308.5x (21+ ;
13 24432x2[11 [302 {11 + 283nx({l] 239A (11 + :

+20mA [1ILOG(A (11) [202 [11LOG2(A (11) ¢

Bit - Array 23 + 11xMM/321

J 843 - 626 - 833 - 4
| Hash table 11 394 xnx 32031732)(1) | 286(31/32) fall)(31/32) 1A (1) + 172 (2) + +172 (2) +37 (1)

(6431n)A(l]

| Bit-string
with unsorted 15 123 52+11%MM/327 136+11xMM/327 :
linked list +(40+20n0)A(1) | + BOA (1]

Attribute bit 0

Sor ted variable 11 211 42 +{16+7)2(11 +| 239 + 15x(1] ,
length array 8x [2] + 8x [2]

|

!

|

| 8.9 APPENDIX I 83

SET SUBTRACTION- difference of two sets 3
n = proportion of set 2 in set |
A[1] = size of set |
A[2) = size of set 2
M « maximum size of set 3

| setl empty| set empty normal result empty
4

| Linked list 11 14 20+ (12+14n)xx (2) 41 + 38xA (1)
| + 1642 (1) + 12x [2]
| 13 + 82.5202) +| 13 + 82.5212] :AVL tree 11 14 88mA [2] + + 8812] +

| 28mr [21L0G(A [11) | 28x [21L0G(A 11)
|

Bit - Array 23 + 11xMM/327

! — |
: Hash table 466 + 1BAll) - 665 + 23x (1) - |
i 11 14 168(31/32) 12111 | 138(31/32)A (1){ + (15471) A (2) + 16a 12]

. Bit-string 62+11xMM/327 | 136+11xMM/327 :
1 with unsorted 15 18 + 482 (1) + +602 [1] :
A | inked list + 20m (2) |

{ Attribute bit 0

1 Sorted variable 1 14 33 + 19011] + | 2308 + 18A[1) + i
3 length array (7-9m) 2 (2) 73 (2] :

|

:
x 4

8.9 APPENDIX I 84 ;

SET_EQUALITY - boolean true if sets equal
n = proportion of time boolean true |
All] = size of set |

: A[2] = size of set 2
M « maximum size of set

|

1

lengths = both empty otherwise 3

| Bit - Array 26 - 2n + (5 + S5n)xlM/321 3
y Hash table 18 19 32 + 327m + 18m]

Bit-string

] linked list]

3 Attribute bit 0 1

: Sorted variable 22 19 20 + (5 + 5n)X + 3n 3
1 length array 1

pL —AIE TeTre REErs

8.9 APPENDIX | 85

| SET_INCLUSION - boolean true if set] contained in set2 1
| n= proportion time boolean true 3

] : All] = size of set | 1
: A[2] = size of set 2]

| y M = maximum size of set 1

| | lengths bad | set 1 empty standard case 3r Linked |ist 17 21 32 + Bx(l+mkA [11+]
be Bx (14+n) x2 (2) b

) AVL tree 25 24 49 - 3n + 16.25A[1] (14m) i
3 + 15.252(2) (14) 4
1 { 3

: | Bit - Array 25 + (646m) %MM/327]

Hash table EEN 30 + 327n + 18mA (1) + 12mA (2) 1
] T Bit-string 3
L with unsorted 46 22 51 + (B+Bn)xMM/3271 ;
3 linked list ;

] Attribute bit 00 4

3 Sorted variable 26 13 44-3n + (9+9n)A [11/2 j
1 A length array + (7471212172

1

8.9 APPENDIX | 86 i

4 SET_PROPER INCLUSION - boolean true if set] contained in set2 but not equal 3
n = proportion of time boolean true E-

1 All] = size of set | 3
f A(2]) = size of set 2 3

: M = maximum size of set 3

lengths bad | set 1 empty standard case

1 Linked list 42 + 8{l+mIAll] + E(l+m)A[2] :

1 AVL tree 16 34 59 - 3n + 1
1 (16.252(1) + 15.25X(2]) (1+n) 3

Bit - Array 27 + (9+434m)xM/327 !

: Hash table 16 40 + 327m + 10mA[l) + 12m (2) 3

4 Bit-string ;
| with uncor ted 46 23 51 + (6+6n)xM/327 E
5 linked !ist]

] Attribute bit 00 1

4 Sorted variable 22 29 68 - 3n + (349MA[11/2 + :
1 length array (747m) A (2) 72 rE

LB ;

| 8.9 APPENDIX I 87 ;
4 COPY _SET - form a copy of a set ;
13 A = size of set]
E Ji M = maximum size of set :

set empty set non-empty :

| ET Linked list (sorted) 11 49 + 4Ex\

| ; AYL tree 15 48 + 59x)| | Bit - Array 18 118 + 6xMM/3271 |
I Hash table (32 slots) 15 633-128 (31/32) tA + 332 |

i Bit-string ;
#4 | With unsorted 19 227 + 4BX+ BxM/321 3
: © linked list 3
oF ¥

1 o Attribute bit 0

; i Sor ted variable 15 384 + BA ;

i] | length array :

B* ¥

8.9 APPENDIX |] 88 1

| | RELEASESET - release the storage occupied by a set :
! A = size of set 3

3 M = maximum size of set

i set empty set non-empty 1

3 Hash table (32 slots) 818 - 384x(31/32)1M |

: Bit-string ;
yr with unsorted 15 92 \

] Attribute bit | 3

§ Sorted variable 9 191 A
] length array :

8.9 APPENDIX I 89

FOREACH LOOP (including initialization) through a set |
A = size of set

Ji M = maximum size of set
|

set empty set non-empty |

I Linked list (sorted) 135 + 34xA

Bit - Array 141 + 65x + 13xM/327 3

Bit-string

| With unsorted 175 214440)linked list

I attribute bit 0

Sorted variable 95 304 + 38)

I length array

|

| 8.9 APPENDIX | 90 |

PUT INDEXED - insert into list
» = size of list

list empty list non-empty

One-way
linked list 93 71 + 72/2

Two-way
linked list 188 92 + 52/4

Variable length

array 151 95 + 3.32 1

| PUT _AFTER - insert rato hist after specific item
A = size of list

list non-empty |

One-way
linked list 71 + BA

Two-+ay
linked list 81 + 4A

Variable length

1 array 97 + 5.8)

| |

| | 89 APPENDIX | 9}
T
wid

33 PUT BEFORE - insert into list before specific item

IR A = size of list

gq list non-empty |

i - One-way
linked |ist 63 + 6)

: Two-way
linked list 81 + 4A

| Variable length

1 array 188 + 5.8A |

REMOVE INDEXED - remove the n th element of a list

+ A = size of list |
4

I result list empty result list non-empty
One-way

| linked ist 85 + 7a/2
\ ET———

| Two-wayi inked list 93 E8 + S)/4 :

f Variable length

| 1 array 2] 26 + 1.52 |

|comm hr YT

89 APPENDIX | 90 +

) REMOVE ITEM - remove first occurence of specified item from list |
A = size of hist y
n = proportion of time item in list |

list empty not only item in list | only item in list

| One-way
linked 1ist 12 13 + 12X-6nd +34n 88

Tvic-uay
linked list 12 12 + 8) -4nx + 39n 73

Variable length |
array \2 26 + 4.5n+(5-n)A 231 |

REMOVE ALL ITEM - remove all occurences of specified item from list
A = size of list

n = proportion of list that is item

list empty not only item in list | only item in |ist 1

| One-way
linked list 12 20 + 122+40nA 49 + 52x i

Two-Way
linked lis 12 18 + 8) + 41m 34 + 49x

Variable length

array 19 28 + 1BA - 4m) - bn 222 + 12a

i :

= 8.9 APPENDIX | 93

COPY LIST - make a copy of a hst

I A = sie of list

| | list empty list non-empty |
One-way

| linked list 13 S1 + 46x)

| Two-way |
linked [ist 15 C8 + S42 :

Variable length |

| | array 17 386 + BA

RELEASE LIST- release space occupied by a hst

I A = size of list

} list empty list non-empty
| One-way

! I linked list 13 24

I Two-waylinked list ii 23

j a Variable length
| array 3 191

8.9 APPENDIX | 94

COP LIST - return first element of list

A = size of list

] One-way
linked list 17

Two-way)
linked [ist 15

Variable length]
array 12

LOP LIST - return and remove first element of list

A = size of list :

result list non empty | result list empty

Cne-way
) linked list 50 67

| THo-uay

; linked [ist 46 76

'

Variable length
array 22 + 3A 219

j

|

|
8.9 APPENDIX | 95 :

: CONCATENATION - concatenate two Lists together |
A = size of list

| list 1 empty | list 2 empty neither empty
| - One-way

linked list 16 14 62 :

| | Two-way
| inked |ist 16 14 58

Variable length :

I array 14 11 731+ BA[1)46A(2)

| LIST EQUALITY - boolean true if hsts equal
jp § n = proportion of time boolean true

4 | A[1) = s12e of list | :A[2]) = size of list 2 |

I lengths = both empty otherwise |

3 i] One-uay
: | linked list 21 20 346 - 3x +(9+9n)A

Two-way |

| i | inked list i’) 18 26 + (444n)) - 3x !

1 | Variable lengtharray 24 21 22 + (S545n)A + 3n

8.9 APPENDIX | 96 |

LIST MEMBERSHIP - boolean true if item an element of the list
| n = proportion of time item tn non-empty lis!

2 = size of hist

list empty | list non-empty

One-nay
linked list 13 + 112 - 5.5m

Two-uay
1 linked list 19 « 3m + 83 = 4nd

Variable length

array 15 23 + 3n/2 + (5-54/2)2

FOREACH LIST - foreach item in hist, initialization and iteration
A = size of list

list empty list non-empty |

One-way
linked list 139 + 38)

Two-way

| linked list 3% 123 + 432

Variable length

array 33 388 + 40>

rrBi Lk =
L

8.9 APPENDIX | 97 |

| FETCH INDEXED - fetch the n th element of the list

A = size of list |

4 list non-empty |

One -uay
linked list 17 + SX/2

Two-way
linked list 25 + 5/4

| Variable length
array 2

REPLACE INDEXED - replace the n th element of the list |
A = size of list

; list empty |extend |ist replace replace last
/

Ore-uay
 § linked list 7 79 23 + S)2/2 34

Two-uay
: linked 11st 113 33 42 +50/4 45

Variable length
x array 153 97 + BX 25 25

A a aaai a

J !

»

»

89 APPENDIX | a8 3
|

LENGTH_LIST - returns number of elements in list |
A = size of list

| list empty list non-empty

| One-way| inked list 9

| i
| Two-way

| linked list 12

Variable length

array In l4 1

| EXPLICIT LIST - make an *xphait list

| A = size of list |

| list non-empty

One-way

| linked list B63 + 43) |
}

{ Two-way
{ | inked list 73 + 51X i

Variable length |
array 373 + 3A

90 99

SECTION 9

REFERENCES

[Allen69) F Allen. Program Optimization
Annual Review in Automatic Programming Vol 5 p 239.307. 1969

[Anderson72] B Anderson. Programming Languages For Artificial Intelligence: The role of |
nondeterminism

School of Artificial Inteligence, Univ. of Edinburgh Experimental Programming
Reports No 25 March 1972. |

[(Baumgart72) ~~ B Baumgart. Micro Planner Alternate Reference Manual

| Stanford Artificial Intelligence Laboratory, Operating Note 67 Apr 1972.
| [Balzer67] R Balzer. Dateless Programming.AFIPS Proceedings of FJCC 1967 p 535-544.

[Baizer72] R Balzer. Automatic Programming. |
Institute Technical Memo, University of Southern California, Informaticn
Sciences Institute Sep 1972. |

[Bobrow?73a] ~~ D Bobrow and B Raphael Bertram. New Programming Languages for Al
Research.

Tutorial presented at Third International Joint Conference on Artificial
Intelligence. Stanford Aug 1973.

1 [Bobrow73b] ~~ D Bobrow and B Wegbreit. A Model and Stack Implementation of Multiple
Environments.

CACM vol 16, no 10 (Oct 73)

(Brent73] R Brent. Reducing the Retrieval Time of Scatter Storage Techniques.
CACM vol 16, no 2. (Feb 1972).]

[Cocke 70] J Cocke and J Schwartz. Programming Languages and Their Compilers. :
NYU Courant Institute. April 1970

[Codd 70] E Codd. A Relational Model of Data for Large Shared Data Banks. |
CACM vol 13, no 6. (June 1970)

[Crane?2] C Crane. Linear Lists and Priority Queues As Balanced Binary Trees.
: PH. D. Thesis Stanford Computer Science Department Technical Report CS |
| 259. February 1972 |

| [Crick 70} M Crick and A Symonds. A Software Associative Memory For Complex Data .
| Structures.

| y ? haat cl tl ~] | Bka A@ iho

9.0 REFERENCES 100

| IBM Cambridge Scientific Center. Report No. G 320-2060. Aug 1970. :
(DEC69] PDP-10 SYSTEM REFERENCE MANUAL. Digital Equipment Corporation.

1969.

[Delobel 73] C Delobel and R Casey. Decomposition of a Data Base and the Theory of Boolean |
| Switching Functions |

| IBM Journal of Research and Development. Sep 1973, |
(Derksen72] J Derksen. The QA4 Primer |

| Stanford Research Institute, June 1972. |

(Earley7la]} J Earley. Comments on SETL (Symmetric Use Of Relations)
SETL Newsletter 52. Courant Institute NYU. Sept 1971

(Earley71b] J Earley. Toward an Understanding of Data Structures.
CACM vol 14. 10 (Oct 1971)

(Earley73a) J Earley. Relational Level Data Structures For Programming Languages.
Computer Science Department, University of California, Berkeley. March 1973.

| (Earley73b] J Earley. An Overview of the VERS2 Project.
Electronics Research Laboratory, College of Engineering, University of Calif,
Berkeley Memorandum ERL-M +416 Dec. 1973.

| (Earley74a) J Earley. High Level lterators and a Method of Automatically Designing Data
Structure Representation

Electronic Research Laboratory, College of Engineering Memorandum ERL-
M416, Feb 1974 University of Calif, Berkeley

| (Earley74b] J Earley. High Level Operations In Automatic Programming |
SIGPLAN Notices, Vol 9, No 4. (April 1974)

(Elias) P Ehas. Efficient Storage And Retrieval By Content and Address of Simple Files.
MIT Department of EE & Research Laboratory of Electronics. No Date.

(Feldman69] ~~] Feldman and P Rovner. An dlgol-Based Associative Language
CACM vol 12 no. § August 1059

(Feldman72a] J Feldman. Automatic Programming
Technical Report C. S255 Stanford Computer Science Dept. Stanford
University. Feb 1472

[Feldman72b] J Feldman, J Low, D Swinehart, and R Taylor. Recent Developments in SAIL -
An Algol Based Language For Artificial Intelligence
Proceedings of FJCC 1972. p 1193.1202.

|
| :

|

90 REFERENCES 101

(Feldman?73) J Feldman and J Low Comment on Brent'S Scatter Storage Algorithm.

| CACM vol 16, no 11 (November 1973)
[Foster65) C Foster. Information Storage and Retrieval Using AVL Trees.

Proceedings ACM National Conference. 1365. p 192-205

[Foster?73] C Foster. A Generalization of AVL Trees.CACM vol 16 no 8 (Aug. 1973). h

[(Geschke 72] C Geschke. Global Program Optimizations.
PH.D thesis Department of Computer Science, Carnegie-Mellon University. Oct
1972. ,

| [Harrison 72. M Harrison Data Structures And Programming
Revised Version. Courant institute of Mathematical Studies. New York
University. February 1972.

(1BM69] IBM, System/360 Operating System. Assenibler Language.
Systems Refererence Library C28-6514-6. June 1969 j

|

[Ingalls7!] D Ingalls. FETE - A FORTRAN Execution Time EstimatorStanford Computer Science Department Report C. S. 204 Feb 1971. |!

[Johnson] T Johnson. A Mass Storage Relational Data Structure For Computer Graphics
1 and other Arbitrary Data Stores.

| MIT Department of Architecture and Department of Civil Engineering NSF
contract GK-265, MIT Project No. DSR 74684. No Date.

1 [Kildalt 72] G Kildall Global Expression Optimization During Compilation. |
4 PH.D thesis. Department of Computer Science, University of Washington. TR |

72-06-02. June 1974

] [Knuth68] D Knuth. FUNDAMENTAL ALGORIT'iMS: The Art of Computer |
2 Programming Vol |.

; . Addison-Wesley 1068 |

4 (Knuth?3) D Knuth SORTING AND SEARCHING The Art of Computer Programming
~ Vol 111

Addison-Wesley 1968

 § [Knuth71] D Knuth An Empirical Study Of FORTRAN Programs.
3) SOFTWARE - PRACTICE AND EXPERIENCE, VOL 1 p 105-133. Wiley-
| Interscience 1971.

Fd [Knuth74) D Knuth Structured Programming With Go To Statements.

, | Stanford Computer Science Department. Report STAN-CS-74-416. May 1974.

| |
ig

| 90 REFERENCES 102

| (Madnick6?] S Madnick. String Processing Techniques |
| CACM July 1967.

[Maurer68] W Maurer. An Improved Hash Code for Scatter Storage. | |
CACM vol 11, no | (Jan 68).

[McDermott72] D McDermott and G Sussman. The CONNIVER Refererence Manual
: Al Memo No. 259 MIT May 1972 :

(Minter 72] J Manter. Associative Memories and Processors: A descritive appraisal.
TR 195 Univ of Maryland, Computer Science Center, College Park, Maryland.
July 1972

[Minsky72) N Minsky Rotating Storage Devices As Partially Associative Memories.
Technical Report 72-4 Computer Information and Control Sciences. Univerity
of Minnesota. April 25, 1972. |

[Morris73] J Morris. A Comparison of MADCAP and SETL.
University of California, Los Alamos Scientific Laboratory. 1973

[Morr1568] R Morris. Scatter Storage Techniques.
CACM vol 11, no I(Jan 68) |

[Parham 72] B Parhami. RAPID: A Rotating Associative Processor For Information
Dissemination

| UCLA - ENG 7213 Feb. 1972. Comp. Sci Dept.

[Randall] S Randall A Relauonal Model of Data for the Determination of Optimum
Computer Storage Structures.
Department of Electrical Engineering, Systems Engineering Laboratory Tech
Report 54 University of Michigan, Ain Arbor Sept 1971 :

"Rivest74] R Rivest. Analysis of Associative Retrieval Algoriihms. |
3 Ph. D. Thesis Stanford Computer Science Department 1974.

[Schwartz71) J Schwartz. More Detailed Suggestions Concerning "Data Strategy” Elaboration |
For SETL.

SETL Newsletter 29. NYU Courant Institute. May 1971

| [Schwartz74a) | Schwartz Automatic A! Semiautomatic Optiruzation in SETL. i
SIGPLAN Notices, vol 9, no4 (April 1974). |

[Schwartz74b] | Schwartz. Automatic Data Structure Chowce in a Language of Very High Level.
Courant Institute, NYU. 1374

[Smith73] D Smith and H Enea. Bucktracking in MLISP2.
Proceedings of the Third 1JCAL 1972.

| 9.0 REFERENCES 103
| [Sussman70) G Sussman, T Winograd, and E Charniak MICRO-PLANNER Reference

Manual

| Al MEMO 203, Project MAC, MIT July, 1970
1 [SussmanT2) G Sussman, Why Conniving Is Better Than Planning ;

A 1 Lab. MIT. A. 1. Memo 255, FEB, 1972 J

[Tesler73) L Tester. H Enea, and D Smith. The LISP70 Pattern Matching System.
Proceedings of the Third 1JCAL 1973

[Tompa??] F Tompa and C. Gotlieb Choosing A Storage Schema.
Technical Report No. 5 May 1972 Department of Computer Scence,
University of Toronto Toronto Canada

(VanLehn73] K VanLehn SAIL User Manual |
J Stanford Computer Science Technical kepoit STAN-CS-73.373. July 1973.

| [(Wegbret71) ~~ B Wegbreit. The Treatment of Data Types in ELI. :f Harvard Umversity 1971 ;

| [Wegbrent73] ~~ B Wegbreit. Procedure Closure in ELL || TR 13.7% Center for Research in Computing Technology Harvard University
May 1972

| [Wegbrent74] ~~ B Wegbreit. Mechanical Program Analysis |¥ Xerox Palo Alto Research Center July 1974.

(Wichman72) B Wichman. Estimating the execution speed of an ALGOL program. |
SIGPLAN Notices. vol 7, no 8. Aug 1972

[(Wulf73] W Wulf, R Johnsson, C Weinstock, and S Hobbs. The Design of An Optimizing |
| Compiler.

Computer Science Department. Carregie-Mellon University. Pittsburgh, |
| Pennsylvania Dec 1973

) ¢

