THE EARLY DEVELOPMENT OF PROGRAMMING LANGUAGES

by

Donald E. Knuth
Luis Trabb Pardo

STAN-CS-76-562
AUGUST 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

The Early Development of Programming Languages

by Donald E. Knuth and Luis Trabb Pardo

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

This paper surveys the evolution of "high level" programming languages
during the first decade of computer programming activity. We discuss the
contributions of Zuse ("Plankalkil", 1945), Goldstine/von Neumann ("Flow
Diagrams", 1946), Curry ("Composition", 1948), Mauchly et al. ("Short Code",
1950), Burks ("Intermediate PL", 1950), Rutishauser (1951), Bohm (1951),
Glennie ("AUTOCODE", 1952), Hopper et al. ("A-2", 1953), Laning/Zierler .
(195%), Backus et al. ("FORTRAN", 1954-1957), Brooker ("Mark I Autocode",
1954), Kemynin/Liubimskii ("mm-2", 1954), Ershov ("mm", 1955), Grems/Porter
("BACAIC", 1955), Elsworth et al. ("Kompiler 2", 1955), Blum ("ADES", 1956),
Perlis et al. ("IT", 1956), Katz et al. ("MATH-MATIC", 1956-1958),

Hopper et al. ("FLOW-MATIC", 1956-1958), Bauer/Samelson (1956-1958).

The principal features of each contribution are illustrated; and for
purposes of comparison, a particular fixed algorithm has been encoded

(as far as possible) in each of the languages. This research is based
primarily on unpublished source materials, and the authors hope that they
have been able to compile a fairly complete picture of the early
developments in this area.

This article was commissioned by the Encyclopedia of Computer Science

and Technology, ed. by Jack Belzer, Albert G. Holzmen, and Allen Kent,

and it is scheduled to appear in vol. 6 or vol, 7 of that encyclopedia
during 1977.

The preparation of this paper has been supported in part by National
Science Foundation grant MCS 72-03752 AO3, by the Office of Naval Research
contract NOOO1lL-76-C-0%330, and by IBM Corporation. Reproduction in whole
or in part is permitted for any purpose of the United States Government.

The Early Development of Programming Languages

It is interesting and instructive to study the history of a subject
not only because it helps us to understand how the important ideas were
born -- and to see how the "human element" entered into each development --
but also because it helps us to appreciate the amount of progress that
has been made. This is especially striking in the case of programming
languages, a subject which has long been undervalued by computer scientists.
After learning a high-level language, a person often tends to think mostly
of improvements he or she would like to see (since all languages can be
improved), and it is very easy to underestimate the difficulty of creating
that language in the first place. The real depth of this subject can
only be properly perceived when we realize how long it took to develop
the important concepts which we now regard as self evident. These ideas
were by no means obvious a priori, and many years of work by brilliant
and dedicated people were necessary before our current state of knowledge
was reached.

The goal of this paper is to give an adequate account of the early
history of "high level" programming languages, covering roughly the first
decade of their development. Our story will take us up to 1957, when the
practical importance of algebraic compilers was first being demonstrated,
and when computers were just beginning to be available in large numbers.

We will see how people's fundamental conceptions of algorithms and of the
programming process evolved during the years -- not always in a forward
direction -- culminating in languages such as FORTRAN I. The best languages
we shall encounter are, of course, very primitive by today's standards, but
they were good enough to touch off an explosive growth in language
development; the ensuing decade of intense activity has been detailed in
Jean Sammet's 785-page book [SA 69]. We shall be concerned with the more
relaxed atmosphere of the "pre-Babel" days, when people who worked with
computers foresaw the need for important aids to programming that did not
vet exist. In many cases these developments were so far ahead of their
time that they remained unpublished, and they are still largely unknown
today.

Altogether we shall be considering about 20 different languages, and
it follows that we will have neither the space nor the time to characterize
any one Sf'them completely; besides, it would be rather boring to recite
so many technical rules. The best way to grasp the spirit of a programming
language is to read example programs, so we shall adopt the following
strategy: A certain fixed algorithm -- which we shall call the "TPK
algoritm" for want of a better namei/ -- will be expressed as a program in
each language we discuss. Informal explanations of this progrem should
then suffice to capture the essence of the corresponding language,
although the TPK algorithm will of course not exhaust that language's
capabilities; once we have understood the TPK program, we will be able
to discuss the most important language features it does not reveal.

Note that the same algorithm will be expressed in each language,
in order to provide a simple means of comparison. A serious attempt
has been made to write each program in the style originally used by the
author of the corresponding langusge; and if comments appear next to the
program text, they attempt to match the terminology used at that time
by the original authors. Our treatment will therefore be something
like "a recital of Chopsticks as it would have been played by Bach,
Beethoven, Brahms, and Brubeck." The resulting programs are not truly
authentic excerpts from the historic record, but they will serve as
fairly close replicas; the interested reader can pursue each language
further by consulting the bibliographic references to be given.

The exemplary TPK algorithm which we shall be using so frequently
can be written as follows in a dialect of Algol 60.

1 TPK: begin integer i; real y; real array a[0:10];
2 real procedure £(t); iggivé;jzgigs ts

3 f := sqrt(abs(t)) +5 xt t3;

L for i :=0 step 1 until 10 do read(a[i]);
2 225 i :=10 Ezsg -1 EEEE& O‘gg

& begin y := f(a[i]);

1 if y > LOO then write(i, "TOO LARGE")
8 else write(i,y);

2 end

10 e,

*
—/Cf. "Grimm's Law" in comparative linguistics, and/or the word "typical",
and/or the names of the authors of this article.

3

(Actually Algol 60 is not one of the languages we shall be discussing,
since it was a later development, but the reader ought to know enough
about it to understand TPK. If not, here is a brief run-down on what
the above program means: Line 1 says that i is an integer-valued
variable, while y takes on floating-point approximations to real

values; and 80s 81 +ses8y are also real valued. Lines 2 and 3 define

the function f(t) = VTZT + St3 ; for use in the algorithm proper
which starts on line 4. Line 4 reads in the values B8y eeesByg s
in this order; then line 5 says to do lines 6, 7, 8, 9 (delimited by
begin and end) for i =10,9,...,0 , in that order. The latter

lines cause y to be set to f(ai) , and then one of two messages is
written out. The message is either the current value of i followed
by the words "TOO LARGE" , or the current values of i and vy,
according as y > 400 or not.)

Of course this algorithm is quite useless; but for our purposes
it will be helpful to imagine ourselves vitally interested in the process.
Let us pretend that the function f(t) ==VT;T + 5t3 has a tremendous
practical significance, and that it is extremely important to print out
the function values f(ai) in the opposite order from which the a;
are received. This will put us in the right frame of mind to be reading
the programs. (If a truly useful algorithm were being considered here,
it would need to be much longer in order to illustrate as many different
programming language features.)

Meny of the programs we shall discuss will have italicized line
numbers in the left-hand margin, as in the Algol code above. Such numbers
are not really part of the programs, they appear only so that the
accompanying text can refer easily to any particular line.

It turns out that most of the early high-level languages were
incapable of handling the TPK algorithm exaectly as presented above;
so0 we must make some modifications. In the first place, when a language
deals only with integer variables, we shall assume that all inputs and
outputs are integer valued, and that " sqrt(x) " denotes the largest
integer not exceeding VX . Secondly, if the language does not provide

for alphabetic output, the string "TOO LARGE" will be replaced by the
number 999 . Thirdly, some languages do not provide for input and
output at all; in such a case, we shall assume that the input values
858y« e 08y have somehow been supplied by an external process, and
that our job is to compute 22 output values bo,bl,...,b21 . Here
bo,b,&,,...,beO will be the respective " i values" 10,9,...,0 , and the

alternate positions bl,bz,...,b will contain the corresponding f(ai)
7

21
values and/or 999 codes. Finally, if a language does not allow the
programmer to define his own functions, the statement " y := f(a[i]) "
will essentially be replaced by its expanded-out form

"y := sqrt(abs(ali])) +5 xa[i] t3 ".

Prior develoEments.

Before getting into real programming languages, let us try to set
the scene by reviewing the background very quickly. How were algorithms
described prior to 19457

The earliest known written algorithms come from ancient Mesopotamia,
about 2000 B.C. In this case the written descriptions contained only
sequences of calculations on particular sets of data, not an abstract
statement of the procedure; it is clear that strict procedures were
being followed (since, for example, multiplications by 1 were explicitly
performed), but they never seem to have been written down. TIterations
like " for i := 0 step 1 until 10 " were rare, but when present they
would consist of a fully-expanded sequence of calculations. (See [KN 72],
for a survey of Babylonian algorithms.)

By the time of Greek civilization, several nontrivial abstract
algorithms had been studied rather thoroughly; for example, see [KN 69,

p. 291 for a paraphrase of Euclid's presentation of "Euclid's algorithm".
The description of algorithms was always informal, however, rendered
in natural language.

During the ensuing centuries, mathematicians never did invent a
good notation for dynamic processes, although of course notations for
(static) functional relations became highly developed. When a procedure
involved nontrivial sequences of decisions, the available methods for

precise description remained informal and rather cumbersome.

Example programs written for early computing devices, such as those

for Babbage's Calculating Engine, were naturally presented in "machine
language" rather than in a true programming language. Thus: (a) The

three-address code for Babbage's machine was to consist of instructions

] " 1

x 1
on an Operation-card, and subscript numbers like (4, 0, 10) would appear

such as " Vh)(VO = Vlo ', where operation signs like would appear
on a separate Variable-card. The most elaborate program developed by
Babbage and Lady Lovelace for this machine was a routine for calculating
Bernoulli numbers; see [BA 61, pp. 68, 286-297]. (b) In 1914, Leonardo
Torres y Quevedo used natural language to describe the steps of a short
program for his hypothetical automaton; and Helmut Schreyer gave an
analogous description in 1939 for the machine he had helped Konrad Zuse
to build [see RA 73, pp. 95-98, 167]. (c) An example MARK I program
given in 1946 by Howard Aiken and Grace Hopper [see RA 73, pp. 216-218]
shows that its machine language was considerably more complicated.
Although all of these early programs were in a machine language,
it is interesting to note that Babbage had noticed already on July 9, 1836

that machines as well as people could produce programs as outpub:

This day I had for the first time a general but very indistinct
conception of the possibility of making an engine work out algebraic
developments. I mean without any reference to the value of the
letters. My notion is that as the cards (Jacquards) of the

Calc. engine direct a series of operations and then recommence

with the first so it might perhaps be possible to cause the same
cards to punch others equivalent to any given number of repetitions.
But there hole [sic] might perhaps be small pieces of formulae
previously made by the first cards. [RA 73, p. 349]

To conclude this survey of prior developments, let us take a look at
A. M. Turing's famous mathematical paper of 1936 [TU 36], where the
concept of a universal computing machine was introduced for theoretical
rurposes., Turing's machine language was more primitive, not having a
built-in arithmetic capability, and he defined a complex program by
giving what amounts to macro-expansions or open subroutines. For example,

1"

here was his program for making the machine move to the leftmost "a" on

its working tape:

£5(C,B,8)

behavior final m-config.
L El(g’ B’ a')
L £(C,B,a)
C
R £,(CBe)
R £ _(C,B,a)
~2 ~ ~
C
R £,(&Ba)
R B

[In order to carry out this operation, one sends the machine to state

f(C,B,a) ; it will immediately begin to scan left (L) until first

passing the symbol 5 . Then it moves right until either encountering
the symbol a or two consecutive blanks; in the first case it enters
into state C while still scanning the a , and in the second case it
enters state: B after moving to the right of the second blank. Turing
used the term ~ "m-configuration" for state.]

Such '"skeleton tables", as presented by Turing, represented the
highest-level notations for precise algorithm description that were
developed before our story begins -- except, perhaps, for Alonzo Church's
"\-notation" [CH 36] which represents an entirely different approach to
calculation. Mathematicians would traditionally present the control
mechanisms of algorithms informally, and the computations involved would
be expressed by means of equations. There was no concept of assignment

(i.e., of replacing the value of some variable by a new value); instead

1" n

of writing S ~ -8 one would write s = -sn , giving a new name to

n+l
each quantity that would arise during a sequence of calculations.

zZuse's "Plancalculus".
MAM’W\M‘WVWV\N\M;

Near the end of World War II, Allied bombs destroyed nearly all of
the sophisticated relay computers that Konrad Zuse had been building in
Germany since 1936. Only his Z4 machine could be rescued, in what Zuse
describes as a fantastic ["abenteuerlich"] way; and he moved the Z4 to
a little shed in a small Alpine village called Hinterstein.

It was unthinkable to conti

my small group of twelve co~workers disbanded. But it was now a

satisfactory time to pursue theoretical studies. The Z4 Computer

which had been rescued could barely be made to run, and no
especially algorithmic language was really necessary to program
it anyway. [Conditional commands had consciously been omitted;

see [RA 73, p. 181].] Thus the PK [Plankalkil] arose purely as a

piece of desk-work, without regard to whether or not machines

suitable for PK's programs would be available in the foreseeable

future. [2U 72, p. 6].

Zuse had previously come to grips with the lack of formal notations

for algorithms while working on his planned doctoral dissertation

[zU 4k]. Here he had independently developed a three-address notation
remarkably like that of Babbage; for example, to compute the roots

Xy and X5 of x2+a.x+b=0, given a,=Vl and b=V2,he
prepared the following Rechenplan [p. 26]:

Vl:2 ='V3
VsV =V,
V-V, =Yg
Vs =,
v5(-1) = V7
V7-+V6 = V8 =X,

V7-V6 =V9=x2 .

. . 2 - B TP G, D, r W, R T
He reglized thot thic notation was vraight-line prograiis

52 1-3m3
Seta v Vedd o sdV VOV id WSO daddidd,

[so-called starre Plénel, and he concluded his previous manuscript with

the following remark:
Unstarre Rechenpléne constitute the true discipline of higher

combingtorial computing; however, they cannot yet be treated in
this place. [ZU 44, p. 31]

The completion of this work was the theoretical task Zuse set himself
in 1945, and he pursued it very energetically. The result was an amazingly
comprehensive language which he called the Plankalkiil [program calculus],
an extension of Hilbert's Aussagenkalkiil [propositional calculus] and
Pradikatenkalkiil [predicate calculus]. Before laying this project aside,
Zuse had completed an extensive manuscript containing programs far more
complex than anything ever written before. Among other things, there were
algorithms for sorting; for testing the connectivity of a graph represented
as a list of edges; for integer arithmetic (including square roots) in

binary notation; and for floating-point arithmetic. He even developed

algorithms to test whether or not a given logical formula is syntactically
well-formed, and whether or not such a formula contains redundant
parentheses ~-- assuming six levels of precedence between the operators.
To top things off, he also included 49 pages of algorithms for playing
chess. (Who would have believed that such pioneering developments
could emerge from the solitary village of Hinterstein? His plans to
include algorithms for matrix calculations, series expansions, etc.,
had to be dropped since the necessary contacts were lacking in that
place; furthermore, his chess playing program treated "en passant
captures" incorrectly, because he could find no chess boards or people
to play chess with [2U 72, pp. 32, 35]!)

Zuse's 1945 manuscript unfortunately lay unpublished until 1972,
although brief excerpts appeared in 1948 and 1959 [ZU 48, zU 59]; see also
[BW 72], where his work was brought to the attention of English-speaking
readers for the first time. It is interesting to speculate about what
would have happened if he had published everything at once; would many
people have been able to understand such radical new ideas?

The monograph [ZU 45] on Plankalkiil begins with the following

statement of motivation:

Aufgabe des Plankalkiils ist es, beliebige Rechenvorschriften rein
formal darzustellen. [The mission of the Plancalculus is to
provide a purely formal description of any computational procedure.]

So, in particular, the Plankalkil should be able to describe the TPK
algorithm; and we had better turn now to this program, before we forget

what TPK is all about. Zuse's notation may appear somewhat frightening

at first, but we will soon see that it is really not difficult to understand.

10

1 2 = (A9 An1)
2 Pl R(V) = R

3 vl o 0

L Al 0 m

5 Vv +5 x vV = &

6 V| © 0 0

7 Al Al Al Al

8 m R(V) = R

9 v 0 0

10 Al 1lxal 11x2

1 w) [r(v) = z

12 v 0 0 0

13 K i

1k ISR

15 Z2>h40 - (i,+®) = R r(lo-i)
16 v 0 oJ

17 K

18 A vk 9 2 9
19 z>40 - (i,Z) = R (10-1)
20 v 0 0 0

21 K

22 A AL 9 m 2 9

Line 1 of this code is the declaration of a compound data type, and
before we discuss the remainder of the program we should stress the richness
of data structures provided by Zuse's language (even in its early form
[ZU LL4]). This is, in fact, one of the greatest strengths of the
Plankalkiil; none of the other languages we shall discuss had such a
perceptive notion of data, yet Zuse's proposal was simple and elegant.

He started with data of type SO, a single bit ["Ja-Nein-Wert"] whose
value is either " -" or "+". From any given data types O #+ 291 7

a programmer could define the compound data type (OO,...,Gk_l) s and

11

individual components of this compound type could be referred to by
applying the subscripts 0 ,..., k-1 to any variable of that type.
Arrays could also be defined by writing mx0 , meaning m identical
components of type 0 ; and this idea could be repeated, in order to
obtain arrays of any desired dimension. Furthermore m could be "[J",
meaning a list of variable length, and Zuse made good use of such list
structures in his algorithms dealing with graphs, algebraic formulas, and
chessplay.

Thus the Plankalkiil included the important concept of hierarchically
structured data, going all the way down to the bit level. Such advanced
data structures did not enter again into programming languages until the
late 1950's, in IBM's Commercial Translator. The idea eventually
appeared in many other languages, such as FACT, COBOL, PL/I, and
extensions of ALGOL 60; cf. [CL 61] and [SA 69, p. 325].

Integer variables in the Plankalkiil were represented by type A9 .

Another special type was used for floating-binary numbers, namely

AN = (3x80,7x80,22x80) .

The first three-bit component here was for signs and special markers --
indicating, for example, whether the number was real or imaginary or zero; the
second was for a seven-bit exponent in two's complement notation; and

the final 22 ©bits represented the 23-bit fraction part of a normalized number,
with the redundant leading " 1" bit suppressed. Thus, for example, the

g-point number +L00.0 would have

O e

and it also could be written
(L0, 1L.OOO , LOOLOO0000000000000000)

[The +'s and -'s notation has its bits numbered 0,1,... from left-to-
right, while the L's and O's notation corresponds to the more familiar
binary notation, putting most significant bits at the left.] There was a
special representation for "infinite" and "very small" and "undefined"

quantities; for example,

+e = (LLO, LOOOO, 0) .

Note that the above program uses + » instead of 999 on line 15, since
such a value seems an appropriate way to render the concept "TOO LARGE" .
Let us return now to the program itself. Line 1l introduces the data
type A2 , namely an ordered pair whose first component is an integer
(type A9) and whose second component is floating-point (type Aal).
This data type will be used later for the 11 outputs of the TPK algorithm.
Lines 2 thru 7 define the function f£(t) , and lines 8 thru 22 define the
main TPK program.

The hardest thing to get used to about Zuse's notation is the fact
that each operation spans several lines; for example, lines 11l thru ;& must
be read as a unit. The second line of each group (labelled " V") is used
to identify the subscripts for quantities named on the top line; thus

R, V, Z stands for the variables R
O O o0

primarily on output variables ["Resultatwerte'] Rk > input variables

0 2 Vb 3 ZO . Operations are done

["Variablen"] Vi » and intermediate variables ["Zwischenwerte'] A
The " K" line is used to denote components of a variable, so that, in
our example, g means component i of the input variable VO .
i
(A completely blank " K" line is normally omitted.) Complicated subscripts
can be handled by making a zig-zag bar from the K-line up to the top line,
as in line 17 of the above program where the notation indicates component
10-i of Ry - The bottom line of each group is labeled A .or S, and
it is used to specify the type of each variable. Thus the "2" in line 18
of our example means that Ry is of type A2 ; the " Al " means that Z,
is floating-point (type AAl); and the " 9" means that i is an integer.
Thus each " A" in the left margin is implicitly attached to all types in
its line,

Zuse remarked [ZU L5, p. 10] that the number of possible data types
was so large, it would be impossible to indicate a variable's type simply
by using typographical conventions as in classical mathematics; thus he
realized the importance of apprehending the type of each variable at
each point of a program, although this information is usually redundant.
This is probably one of the main reasons he introduced the peculiar

multi-line format. Incidentally, a somewhat similar multi-line notation

13

has been used in recent years to describe musical notes [SM 73]; it is
interesting to speculate if this notation will evolve in the same way
that programming languages have.

We are now ready to penetrate further into the meaning of the above
code. Each plan begins with a specification part ["Randauszug"], stating
the types of all inputs and outputs. Thus, lines 2 thru L4 mean that Pl

is a procedure that takes an input V. of type AAlL (floating point) and

0
produces RO of the same type. Lines § thru 10 say that P2 maps VO of

type 11 xAAL (namely, a vector of 1 floating-point numbers, the array a;
of our TPK algorithm) into a result R,
of 11 ordered pairs as described earlier).

The double arrow = , which Zuse called the Ergibt-Zeichen (yields-sign),

of type 11 xA2 (namely, a vector

was introduced for the assignment operation; thus the meaning of lines >
thru 7 should be clear. As we have remarked, mathematicians had never
used such an operator before; in fact, the systematic use of assignments
constitutes a distinct break between computer-science thinking and
mathematical thinking. Zuse consciously introduced a new symbol for the

new operation, remarking [ZU 45, p. 15] that Z+1 = Z was analogous to
3 3

to the more traditional equation zZ +1 = Z . (Incidentally, the
3.1 3,1+l

publishers of [2ZU 48] used the sign > instead of = , but Zuse never
actually wrote = himgelf,) Note that the variable receiving a new value
appears on the right, while most present-day languages have it on the left,
We shall see that there was a gradual "leftist" trend as languages
developed.

It remains to understand lines 1l thru 22 of the example. The notation
" W2(n) " represents an iteration, for i = n-1 down to O , inclusive;
hence W2(1l) stands for the second for loop in the TPK algorithm.
(The index of such an iteration was always denoted by i, or i.0 ; if
another iteration were nested inside, its index would be called i.l1l,
etc.) The notation gl(x) on line 11 stands for the result Ry of

applying procedure PL +to input x . Lines 15 thru ;§ of the program mean
"if Zy > 400 ‘then RO[lO-i] := (1, +») "; note Zuse's new notation -

for conditionals. ILines 19 thru 22 are similar, the bar over " Z, > Loo "
indicating the negation of that relation. There was no equivalent of

" else " in the Plankalkil, nor were there go to statements. Zuse did,

14

however, have the notation " Fin " with superscripts, to indicate a
Jjump out of a given number of iteration levels and/or to the beginning
of a new iteration cycle [ef. ZU 72, p. 28; ZU 45, p. 32]; this idea
has recently been revived in the BLISS language [WR 71].
The reader should now be able to understand the above code completely.
In the text accompanying his programs in Plankalkiil notation, Zuse
made it a point to state also the mathematical relations between the

variables which appeared. He called such a relation an impliciter Ansatz;

we would now call it an "invariant". This was yet another fundemental

idea about programming; and, like Zuse's data structures, it disappeared
from programming languages during the 1950's, waiting to be enthusiastically
received when the time was ripe [HO 71].

Zuse had visions of using the Plankalkiil some day as the basis of a
programming language that could be translated by machine (ef. [2U 72,
pp- 5, 18, 33, 34]); but in 1945, he was considering first things first
-- namely, he needed to decide what concepts should be embodied in g
notation for programming. We can summarize his accomplishments by
saying that the Plankolkill incorporated many cxbremely Luportant ildeas, out
it lacked the "syntactic sugar" for expressing programs in a readable
and easily writable format.

Zuse says he made modest attempts in later years to have the
Plankalkil implemented within his own company, "but this project
necessarily foundered because the expense of implementing and designing
compilers outstripped the resources of my small firm." He also mentions
his disappointment that more of the ideas of the Plankalkiil were not
incorporated into Algol 58, since some of Algol's original designers
knew of his work. [2U 72, p. 7] Such an outcome was probably inevitable,
because the Plankalkiil was far ahead of its time from the standpoint of
available hardware and software development. Most of the other languages
we shall discuss started at the other end, by asking what was possible
to implement rather than what was possible to write; and it naturally
took meny years for these two approaches to come together and to achieve

a suitable synthesis.

10

Flow Diagrams.

On the other side of the Atlantic, Herman H. Goldstine and John
von Neumann were wrestling with the same sort of problem that Zuse had
faced: How should algorithms be represented in a precise way, at a
higher level than the machine's language? Their answer, which was due
in large measure to Goldstine's analysis of the problem together with
suggestions by von Neumann, Adele Goldstine, and Arthur W. Burks [GO T2,
pp. 266-268], was quite different from the Plankalkiil: they proposed a
pictorial representation involving boxes Jjoined by arrows, and they called
it a "flow diagram". During 1946 and 1947 they prepared an extensive
and carefully worked out treatise on programming based on the idea of
flow diagrams [GV L7], and it is interesting to compare this work to
that of Zuse. There are striking differences, such as an emphasis on
numerical calculation rather than on data structures; and there are also
striking parallels, such as the use ot the term "Plan" in the titles of
both documents. Although neither work was published in contemporary
journals, perhaps the most significant difference was that the treatise
of Goldstine and von Neumann was beautifully "Varityped" and distributed
in quantity to the vast majority of people involved with computers at
that time. This fact, coupled with the high quality of presentation and
von Neumann's prestige, meant that their report had an enormous impact,
forming the foundation for computer programming techniques all over the
world. The term "flow diagram" became shortened to "flow chart" and
eventually it even became "flowchart" -- a word which has entered our
language as both noun and verb.

We all know what flowcharts are; but comparatively few people have
seen an authentic original flow diagram. In fact, it is very instructive
to go back to the original style of Goldstine and von Neumann, since
their inaugural flow diagrams represent a transition point between the
mathematical "equality" notation and the computer-science "assignment"
operation. Here is how the TPK algorithm would probably have looked,
if Goldstine and Von Neumann had been asked to deal with it in 1947:

16

A.j 2'l°a1. (j = 0y...,10)

ay (3 = 0y++4,10) B.J bj.(j =0y ...,19-21)
10.2729 c.1 2%
(a+1o)o 2 (a+i)o
5 (br20-21) B.j by (3 =05 .00s2)
| I |
l # I 11 # |
u'S; 10 = i e J-; L B I ;L @
.\ |
2
2
11T
i1 -1 |4 2y =wla | ¢ “29) to D
6 -1
 § b — SRE!
vy
VII + ,-l L00-y -
2'59(1-1) to C.l L \ b
. U, = 1
(a+1-l)o to 2 — i "
(b+22-21), to 3 #] vy =999
V., =
1 yl v b 1+-5
999.27%0 o T
4.5
A
5
VI c.1 2%
-39 : - :
k by py =2 Uy to B.20-2i - 2 (ati)y
-10) : o
boyni =27V to B.21-21i 3 (_b+20-_1)0
D 2'lovi

17

Several things need to be explained about this original notation,
and probably the most important consideration is the fact that the boxes
containing " 10 -1 " and " i-1 -+ i " were not intended to specify any
computation. This amounts to a significantly different viewpoint than
we are now accustomed to, and the reader will find it worthwhile to
ponder this conceptual difference until he or she understands it. The

box "

i-1 - i " represents merely a change in notation, as the flow

of control passes that point, rather than an action to be performed by
the computer. For example, box VII has done the computatim necessary
to place 2-59(1-1) into storage position C.1 ; so after we pass the

" i-1 - i " and go thru the subsequent junction point to box II,

box
location C.1 now contains 2'391 . The external notation has changed
but location C.l has not! This distinction between external and internal
notations occurs throughout, the external notation being problem-oriented
while the actual contents of memory are machine-oriented. The numbers
attached to each arrow in the diagram indicate so-called "constancy
intervals'", where all memory locations have constant contents and all
bound variables of the externmal notation have constant meaning.

A "storage table" is attached by a dashed line to the constancy intervals,
to show the relevant relations between external and internal values at
that point. Thus, for example, we note that the box " 10 - i " does

not specify any computation, but it provides the appropriate transition
from constancy interval 1.5 +to constancy interval 2 . (Cf. [GV 47,

§ 7.6, 7.71.)

There were four kinds of boxes in a flow diagram: (a) Operation
boxes, marked with a Roman numeral; this is where the computer program
was supposed to make appropriate transitions in storage. (b) Alternative
boxes, also marked with a Roman numeral, and having two exits marked +
and - ; this is where the computer control was to branch, depending on
the sign of the named quantity. (c) Substitution boxes, marked with a
and using the " - " symbol; this is where the external notation for
a bound variable changed, as explained above. (d) Assertion boxes, also
marked with a # ; this is where important relations between external
notations and the current state of the control were specified. The

example shows three assertion boxes, one which says " i = -1 ", and two

18

which assert that the outputs u, and A (in a problem-oriented
notation) now have certain values. Like substitution boxes, assertion
boxes did not indicate any action by the computer, they merely stated
relationships which helped to prove the validity of the program and
which might help the programmer to write code for the operation

boxes.

The next most prominent feature about original flow-diagrams is
the fact that a programmer was required to be conscious of the scaling
(i.e., the binary point location) of all numbers in the computer memory.
A computer word was L0 bits long and its contents was to be regarded as a binary
fraction x 1in the range -1 <x <1l . Thus, for example, the above
flowchart assumes that E-loaj is initially present in storage position
A.j , rather than the value aj itself; and the outputs bj are
similarly scaled.

The final mystery which needs to be revealed is the meaning of

notations such as (a.+i)O , (b)o , etec. In general, " X, " was used
when x was an integer machine address; and it represented the number

-=19_ . .-39 - o s . o R
¢ 'x+2 "“x , namely a binary word with Xx appearing twice, in bit

positions 9 to 20 and 29 to 4O (counting from the left). Such a
number could be used in their machine to modify the addresses of 20-bit
instructions that appeared in either half of a L40-bit word.

Once a flow diagram such as this had been drawn up, the remaining
task was to prepare so-called "static coding" for boxes marked with
Roman numerals. In this task a programmer would use his problem-solving
ability, together with his knowledge of machine language and the
information from storage tables and assertion boxes, to make the required
transitions. For example, in box VI one should use the facts that u; = i,
that storage D contains 2'-10‘4'i » that storage C.1 contains 2'39:1 B
and that storage C.3 contains (b+20 -21)O [a word corresponding to
the location of variable B.20-2i] to carry out the specified assignments.
The job of box VII is slightly trickier: One of the tasks, for example,
is to store (b+22 -21)0 in location C.3 ; the programmer was supposed
to resolve this by adding 2-(2-19+2-39) to the previous contents of (.3
In general, the job of static coding required a fairly high level of

artificial intelligence, and it was far beyond the state of the art in

19

in those days to get a computer to do such a thing. As with the
Plankalkul, the notation needed to be simplified if it was to be
suitable for machine implementation.

Let us make one final note about flow diagrams in their original
form: Goldstine and von Neumann did not suggest any notation for
subroutine calls, hence the function f(t) in the TPK algorithm has
been written in-line. In [GV 47, §12] there is a flow diagram for
the algorithm that a loading routine must follow in order to relocate
subroutines from a library, but there is no example of a flow diagram
for a driver program that calls a subroutine. An appropriate extension
of flow diagrams to subroutine calls could surely be made, but it would

have made our example less "authentic'".

A Logician's Aggroach.

Let us now turn to the proposals made by Haskell B. Curry, who was
working at the Naval Ordnance Laboratory in Silver Spring, Maryland;
his activity was partly contemporaneous with that of Goldstine and
von Neumann, since the last portion of [GV 47] was not distributed until
1948,

Curry wrote two lengthy memoranda [CU 48, CU 50] which have never
been published; the only appearance of his work in the open literature
has been the brief and somewhat cryptic summary in [CU 50']. He had
prepared a rather complex program for ENIAC in 1946, and this experience
led him to suggest a notation for program construction that is more
compact than flowcharts.

His aims, which correspond to important aspects of what we now call

"structured programming', were quite laudable:

The first step in planning the program is to analyze the computation
into certain main parts, called here divisions, such that the
program can be synthesized from them. Those main parts must be

such that they, or at any rate some of them, are independent
computations in their own right, or are modifications of such
computations. [CU SO,CH 34]

20

But in practice his proposal was not especially successful, because

the way he factored a problem was not very natural; his components

tended to have several entrances and several exits, and perhaps his
mathematical abilities tempted him too strongly to pursue the complexities
of fitting such pieces together. As a result, the notation he developed
was somewhat eccentric; and the work was left unfinished. Here is how

he might have represented the TPK algorithm:

F(t) = W|t| + 5t7:a)
I = {10:i} - {t = L(a+i)} - F(t) - {A:y}
- IT - It7(o,i) - 0, &1,
IT = {x=L(+20-21)} - {i:x} - III
~ {w=L(b+21-21)} - {y:w}
III = {y > 400} - {999:y} &0,

The following explanations should suffice to make the example clear,
although they do not reveal the full generality of his language:

{E:x} means "compute the value of expression E and store it in
location x ".

A denotes the accumulator of the machine.

{x = L(E)}] means "compute the value of expression E and substitute
it into all appearances of ' x' in the following instruction
groups" .

X - Y means "substitute instruction group Y for the first exit
of instruction group X ".

Ij denotes the j-th entrance of this routine, namely the beginning
of its j-th instruction group.

0, denotes the j-th exit of this routine (he used the words "input"

J

and "output" for entrance and exit).

mns L4 "
{x >y} ~ 07 &0, means "if x >y , go to 0, , otherwise to 0, ".

It7(nbi) = 0, &0, means "decrease i by 1, then if i >m go
to 02 , otherwise to Ol ".

Actually the main feature of interest in Curry's early work is not

this programming language, but rather the algorithms he discussed for

21

converting parts of it into machine language. He gave a recursive
description of a procedure to convert fairly general arithmetic expressions
into code for a one-address computer, thereby being the first person to
describe the code-generation phase of a compiler. (Syntactic analysis

was not specified; he gave recursive reduction rules analogous to well-
known constructions in mathematical logic, assuming that any formula

could be parsed properly.) His motivation for doing this was stated in

[cu 50']):

Now von Neumann and Goldstine have pointed out that, as programs

are made up at present, we should not use the technique of program
composition [i.e., subroutines] to make the simpler sorts of programs
-- these would be programmed directly -- but only to avoid
repetitions in programs of some complexity. Nevertheless, there

are three reasons for pushing clear back to formation of the
simplest programs from the basic programs [i.e., machine language
instructions], viz.: (1) Experience in logic and in mathematics
shows that an insight into principles is often best obtained by a
consideration of cases too simple for practical use -- e.g., one
gets an insight into the nature of a group by considering the
permutations of three letters, etc. ... (2) It is quite possible
that the technique of program composition can completely replace

the elaborate methods of Goldstine and von Neumann; while this may
not work out, the possibility is at least worth considering.

(3) The technique of program composition can be mechanized; if

it should prove desirable to set up programs, or at any rate certain
kinds of them, by machinery, presumably this may be done by

analyzing them clear down to the basic programs.

The program he would have constructed for F(t) , if £2 were replaced by
tetet , is

t]:4} - {VA:4) - {A:w} - {t:R} -~ {tR:A} - {A:R} - {{R:A)
3

- {A:R} - {5R:A} - {Atw:A} .

Here w 1is a temporary storage location, and R is a register used in

multiplication.

An Algebraic Interpreter.
D A A eV W S)

The three languages we have seen so far were never implemented; they
served purely as conceptual aids during the programming process. Such
conceptual alds were obviously important, but they still left the
programmer with a lot of mechanical things to do, and there were many
chances for errors to creep in.

The first "high-level" programming language actually to be implemented
was the Short Code, originally suggested by John W. Mauchly in 1949.
William F. Schmitt coded it for the BINAC at that time. Late in 1950,
Schmitt recoded Short Code for the UNIVAC, with the assistance of
Albert B. Tonik, and J. Robert Logan revised the program in January of 1952,
Details of the system have never been published, and the earliest
extant programmer's manual [RR 55] seems to have been written originally
in 1952.

The absence of data about the early Short Code indicates that it
was not an instant success, in spite of its eventual historic significance.

R e e Tt T o P T |
Lullnd il Llic piliad

s 1 9 R i W T S - -
his lack of popularity is not surprising when w

[

number of scientific users of UNIVAC equipment in those days; in fact,
the most surprising thing is that an algebraic language such as this was
not developed first at the mathematically-oriented centers of computer
activity. Perhaps the reason is that mathematicians were so conscious
of efficiency considerations, they could not imagine wasting any extra
computer time for something a programmer could do by himself. Mauchly

had greater foresight in this regard; and J. R. Logan put it this way:

By means of the Short Code, any mathematical equations may
be evaluated by the mere expedient of writing them down. There
is a simple symbological transformation of the equations into
code as explained by the accompanying write-up. The need for
special programming has been eliminated.

In our comparisons of computer time with respect to time
consumed by menual methods, we have found so far a speed ratio
of at least fifty to one. We expect better results from future

operations.

23

... It is expected that future use of the Short Code will

demonstrate its power as a tool in mathematical research and

[RR 55]

as a checking device for some large-scale problems.

We cannot be certain how UNIVAC Short Code looked in 19503 but

it probably was closely approximated by the 1952 version, when TPK

could have been coded in the following way.

00
01
02
03
oL
05
06
o7
08
09
10

Memory equivalents:

i=WO, 't=TO,

Eleven inputs go respectively into words

Constants:

Equation number

Short Code:

Z0 = 000000000000
Z1 = 010000000051
Z2 = 010000000052 [10.0]
73 = 040000000053 [L00.0]
Z4 = AAATQOALARGE

75 = 050000000051 [5.0]

II

O =1line 01, 1 = line 06 ,

Equations

i =10
o: y=(

vy 4oo
i print
0O O

1: i print

abs t) + 5 cube t

if<to 1
» 'TOO0 LARGE' print-and-return
if=to 2

» ¥y print-and-return

2: TO UO shift

i=1i-1
0 i
stop

if<to 0

2k

y=YO.

U0, 179,178, ..., TO .

recall information [labels]:
2 = line 07

[1.0 in floating-decimal form]

Coded representation

00
TO
00
00
00
00
00
00
00
00
00

00
o2
Y0
00
00
00
00
00
WO
00
00

00
o7
03
00
zh
00
YO
00
03
00
00

WO
V47
09
YO
9
z0
29
TO
WO
z0
00

03
11
20
3
WO

zZ0
WO
Uo
ol
WO
2z

72
TO
06
41
58
72
58
99
71
4o
08

Each UNIVAC word consisted of twelve 6-bit bytes, and the Short
Code equations were "symbologically" transliterated into groups of six

2-byte packets using the following equivalents (among others):

01 - 06 abs value In (n+2)nd power 59 print and return carriage
02 (07 + 2n (n+2)nd root 7n if=ton

03 = 08 pause bn if<to n 99 cyclic shift of memory
ok / 09) 58 print and tab Sn,Tn, ..., Zn quantities

Thus, " i =10 " would actually be coded as the word " 00 00 00 WO 03 zZ2 "
as shown; packets of 00 's could be used at the left to fill a word.
Multiplication was indicated simply by juxtaposition (see line OL).

The system was an algebraic interpreter, namely an interpretive

routine which continuously scanned the coded representation and performed
the appropriate operations. The interpreter processed each word from
right to left, so that it would see the " =" sign last. This fact needed
to be understood by the programmer, who had to break long equations up

tely into several words (ef, linec 01 and 02); sce also the
print instructions on lines Ob and 06, where the codes run from right
to left.

This explanation should suffice to explain the TPK program above,
except for the "shift" on line 07. Short Code had no provision for
subscripted variables, but it did have a 99 order which performed a
cyclic shift in a specified block of memory. For example, line 07 of
the above program means " temp = TO, TO=Tl, ..., T9 = U0, UO = temp ";
and fortunately this facility is all that the TPK algorithm needs.

The following press release from Remington Rand appeared in Journal

of the ACM, 1955, page 291:

Automatic programming, tried and tested since 1950, eliminates
comunication with the computer in special code or language. ...
The Short-Order Code is in effect an engineering "electronic
dictionary" ... an interpretive routine designed for the solution

of one-shot mathematical and engineering problems.

25

(Several other automatic programming systems, including "B-zero" -- which
we shall discuss later -- were also ammounced at that time.) This is one
of the few places where Short Code has been mentioned in the open
literature; Grace Hopper referred to it briefly in [HO 52, p. 243]
(calling it "short-order code"), [HO 53, p. 142] ("short-code"),

[HO 58, p. 165] ("Short Code"). In [HM 53, p. 1252] it is stated that
the "short code" system was "only a first approximation to the complete
plan as originally conceived." This is probably true, but several
discrepancies between [HM 53] and [RR 55] indicate that the authors

of [HM 53] were not fully familiar with UNIVAC Short Code as it actually

existed.

The Intermediate PL of Burks.

Independent efforts to simplify the job of coding were being made
at this time by Arthur W. Burks and his colleagues at the University of
Michigan. The overall goal of their activities was to investigate the
process of going from the vague "Ordinary Business English" description
of a data-processing problem to the "Internal Program Language" description
of a machine-language program for that problem; and, in particular, to

break this process up into a sequence of smaller steps.

This has two principal advantages. First, smaller steps can
more easily be mechanized than larger ones. Second, different
kinds of work can be allocated to different stages of the
process and to different specialists. [BU 51, p. 12]

In 1950, Burks sketched a so-called "Intermediate Programming Language"
which was to be the step one notch above the Internal Program Language.
Instead of spelling out complete rules for this Intermediate Programming
language, he took portions of two machine programs previously published
in [BU 50] and showed how they could be expressed at a higher level of
abstraction. From these two examples it is possible to make a reasonable

guess at how he might have written the TPK algorithm at that time:

26

l. 10-1

To 10.

From 1,35
10.

11.

12.

13.
To 20

To 30

From 13
20.

To 30 -

From 13,20
30.
31.
32.
33.
3L,
35.

To Lo

To 10

From 35

Lo,

A+i - 11
[Avi] -t
6|2 +585 -y
Loo,y; 20,30
if y > 4oo

if y < koo

999 -y

(B+20 -2i)" - 31
i~ [B+20-2i]
(B+20 -2i)+1 - 33
vy = [(B+20 -2i)+1]
i-1 - i

i,0; Lo,10

if i<0

Compute location of a;

Look up a; and transfer to storage

V. ==V|ai| + Sag

1

Determine if vy =Yy

vy = 999

Compute location of b20—2i

boops =1

Compute location of b21—2i
Po1-pi = V3

i - i+l

Repeat cycle until

Stop execution

27

1 negative

Comments at the right of this program attempt to indicate Burks's
style of writing comments at that time; and they succeed in making the
program almost completely self-explanatory. Note that the assignment
operation is well established by now; and Burks used it also in the
somewhat unusual form " i - i+l " shown in the comment to instruction 34
[BU 50, p. k1]. _

The prime symbol which appears within instruction 30 meant that the
computer was to save this intermediate result, as it was a common
subexpression that could be used later without recomputation. Burks
mentioned that several of the ideas embodied in this language were due
to Janet Wahr, Don Warren, and Jesse Wright.

Methods of assigning addresses and of expanding abbreviated
commands into sequences of commands can be worked out in advance.
Hence the computer could be instructed to do this work. ... It
should be emphasized, however, that even if it were not efficient
to use a computer to make the translation, the Intermediate PL
would nevertheless be useful to the human programmer in planning
and constructing programs. [BU 51, p. 13]

At the other end of the spectrum, nearer to Ordinary Business
Language, Burks and his colleagues later proposed an abstract form of
description which may be of independent interest, even though it does
not relate to the rest of our story. The following example suffices
to give the flavor of their "first Abstraction Language', proposed in

1954k

X1

¢,d*(= 1 inst)

L (d-: [k, S:u]:[ayr])

1 ult <d<d*
2 (s-1) 2 (s-v) + =~ 2 (s-r)
a<1l ult d<1l ult 1 ult<d<d*

FORM XI: CUSTOMER'S STATEMENT

28

On the first line, ¢ denotes the customer's name and address; and d*

is " 1 inst ", the first of the current month. The symbol.lz;i(xl,...,xn)
was used to denote a list of all n-tuples (xl,...,xn) of category 1,
in order by the first component X 3 and the meaning of the second line
is "a listing, in order of date d , of all invoices and all remittances
for the past month". Here [k,s,u] was an invoice, characterized by

its number k , its dollar amount s , and its discount u ; [a,r] was
a remittance of r dollars, identified by number a ; and " 1 ult " means
the first of the previous month., The bottom gives the customer's old
balance from the previous statement, and the new balance on the right.
"The notation is so designed as to leave unprejudiced the method of the
statement's preparation." [BC 54] Such notations have not won over the
business community, however, perhaps for the reasons explained by

Grace Hopper in [HO 58, p. 198]:

I used to be a mathematics professor. At that time I found there
were a certain number of students who could not learn mathematics,
I then was charged with the job of making it easy for businessmen
to use our computers., I found it was not a question of whether
they could learn mathematics or not, but whether they would., ...
They said, "Throw those symbols out ~-- I do not know what they mean,
I have not time to learn symbols." I suggest a reply to those

who would like data processing people to use mathematical symbols
that they make them first attempt to teach those symbols to
vice-presidents or a colonel or admiral, I assure you that I

tried it.

Rutishauser's contribution.
L e e e et alaa Y vV)

Now let us shift our attention once again to Europe, where the first
published report on methods for machine code generation was about to
appear. Heinz Rutishauser was working with the 74 computer which, by
then, had been rebuilt and moved to the Swiss Federal Institute of
Technology (E.T.H.) in Zirich; and plans were afoot to build a brand new
machine there, The background of Rutishauser's contribution can best be

explained by quoting from a letter he wrote some years later:

29

I am proud that you are taking the trouble to dig into my 1952
paper. On the other hand it makes me sad, because it reminds me
of the premature death of an activity that I had started hopefully
in 1949, but could not continue after 1951 because I had to do
other work -- to run practically singlehanded a fortunately slow
computer as mathematical analyst, programmer, operator and even
troubleshooter (but not as an engineer), This activity forced

me also to develop new numerical methods, simply because the ones
then known did not work in larger problems., Afterwards when I
would have had more time, I did not come back to automatic
programming but found more taste in numerical analysis. Only much
later I was invited -- more for historical reasons, as a living
fossil so to speak, than for actual capacity -- to join the ALGOL
venture, The 1952 paper simply reflects the stage where I had to
give up automatic programming, and I was even glad that I was able
to put out that interim report (although I knew that it was final).
[RU 63]

Rutishauser's comprehensive treatise [RU 52] described a hypothetical
computer and a simple algebraic language, together with complete
flowcharts for two compilers for that language. One compiler expanded
all loops out completely, while the other produced compact code using
index registers. His source language was somewhat restrictive, since
there was only one nonsequential control structure (the EEE statement);
but that control structure was in itself an important contribution to
the later development of programming languages. Here is how he might

have written the TPK algorithm:

1l Fir i = 10(-1)0

2 a; = t

3 (Sgrt Abs t) + (5 xt xtxt) =y
L Max(Sgn(y-400), 0) 2= h

2 203 Dy p;

& (8x999) + ((1-h) x¥y) = by o4
7 Ende Index i

8 Schluss

30

Since no "if ... then" construction --much less go to -- was present
NI NN

~r AR

in his language, the computation of

y, if y < koo,
999 , if y > Loo ,

has been done here in terms of the Max and Sgn functions he did have,
plus appropriate arithmetic; see lines L4 and 6. (The function Sgn(x)
is 0 if x=0, or +1 if x>0, or -1 if x <0 .) Another
problem was that he gave no easy mechanism for converting between
indices and other variables; indices (i.e., subscripts) were completely
tied to Fir -Ende loops. The above program therefore invokes a
trick to get i into the main formula on line L; " Z Oi " is intended
to use the Z instruction which transfered an indexed address to the
accumulator in Rutishauser's machine [RU 52, p. 10], and it is possible
to write this in such a way that his compiler would produce the correct
code, It is not clear whether or not he would have approved of this
trick; if not, we could have introduced another variable, maintaining
its value egquai to 1 . But since ne later wrote a paper entitled
"Interference with an ALGOL procedure,”" there is some reason to believe
he would have enjoyed the trick very much.

As with Short Code, the algebraic source code symbols had to be
transliterated before the program was amenable to computer input, and
the programmer had to allocate storage locations for the variables and
constants, Here is how our TPK program would have been converted to a
sequence of (floating-point) numbers on punched paper tape, using the
memory assignments a; = 100+1i , bi =200+i, 0=300, 1=2301,
5=302, Lo0o=303, 999 =30k, y=305, h=306, t=307:

31

I+

1ro

N

|+

I\

|ON

Fir i =210 (1) o0

1012,50110, -1, 0, Q,

begin stmt a sub i 3> t
010000 , 100, .00L , 200000 , 307 , Q,

begin stmt (t Abs durmy Sqrt
010000 , 010000 , 307 , 110000 , O , 350800 ,
dummy) + (5 X t X
0 , 2000000 , 020000 , 010000 , 302 , 060000 , 307 , 060000 ,
t X t) >= v

307 , 060000 , 307 , 200000 , 200000 , 305 , Q ,
begin stmt ((v - 400) Sen
010000 , 010000 , 010000 , 305 , 030000 , 303 , 200000 , 100000 ,
dummy) Max 0 D= h
0 , 200000 , 080000 , 300 , 2000000 , 306 , Q ,

begin stmt z 0 subi > by, sub -2i
010000 , O, 230000 , O, .00l , 200000 , 220 , -.002 , Q,

begin stmt (h X 999) + (
0100000 , 010000 , 306 , 060000 , 304 , 200000 , 020000 , 010000 ,
(1 - h) X y) >

010000 , 301 , 030000 , 306 , 200000 , 060000 , 305 , 200000 , 200000 ,
by, sub -2
221) e 002 5] Q F]

Ende
Q) Q,

Schluss
Qs Q.

%2

Here Q represents a special flag that was distinguishable from
all numbers. The transliteration is straightforward, except that unary
operators such as " Abs x" have to be converted to binary operators
"x Abs O". An extra left parenthesis is inserted before each formula,
to match the == (which has the same code as right parenthesis).
Subscripted variables whose address is o+ 2 cjij are specified by
writing the base address « followed by a sequence of values cle-BJ H
this scheme allows multiple subscripts to be treated in a simple way.
The operator codes were chosen to make life easy for the compiler;
for example, 020000 was the machine operation "add" as well as the
input code for + , so the compiler could treat almost all operations
alike. The codes for left and right parentheses were the same as the
machine operations to load and store the accumulator, respectively.

Since his compilation algorithm is published and reasonably simple,
we can exhibit exactly the object code that would be generated from the
above source input. The output is fairly long, but we shall consider
it in its entirety in view of its importance from the standpoint of
complier history. Each word in Rutishauser's machine held two instructions,

and there were 12 decimal digits per instruction word.

Machine instruction Symbolic form
230010 200050 10 -0p, Op—-1i,
230001 120000 l1-0p, -Op~0p,
200051 230000 Op =i’ , 0 - Op
200052 220009 Op »i% , %1 - IR,
239001 200081 1+IR9 - 0p, Op =L
000000 230100 No-op , loc a - Op
200099 010050 Op=-T, i -0p
020099 210001 OptT ~» Op , Op — IR,
011000 200307 a; »O0p, Op ~t
010307 110000 t -0p, |op| - Op
220009 350800 *+1 - 139 , go to Sqrt
000000 000000 no-op, no-op
200999 010302 Op ~P; , 5~ 0p

33

Machine Imnstruction Symbolic form

060307 060307 Opxt -0p, Opxt - Op
060307 200998 Opxt -0p, Op - F,
010999 020998 P, ~0p, OptP, = Op
200305 010305 Oop -y, y—~0p

030305 200999 Op-400 - Op , Op - Py
010999 100000 P, »Op, Sgn Op - Op
200998 010998 Op - P, , Py = Op
080300 200306 Max(0Op,0) - Op , Op = h ,
230000 200099 0-0p, Op—-T

010050 020099 i-0p, OptT - Op
210001 230220 Op —» IR, , loc by, = Op
200099 230002 Oop - T, 2-0p

120000 060050 -0p - Op , Opxi - Op
020099 210002 OptT - Op , Op — IR,
010000 231000 (0) - 0p, IR; - Op
202000 230221 Op = b,y pg » 10C Dyy — 0P
200099 230002 Op-T, 2 - 0p

120000 060050 -0p - Op , Opxi = Op
020099 210001 OptT — Op , Op - IR,
0L0301 030306 1-0p, Op-h - Op
200999 010306 Op - P; , h —Op

06030k 200998 Opx999 - Op, Op » F,
010999 060305 P; »Op, Opxy -~ Op
200997 010998 Op » Pz » Fy = 0p
020997 201000 OptPz = 0p 5 Op = Dbyy o5
010081 210009 L ~0p, Op ~ IR
010050 220008 i-0p, *1 - IRg
030052 388003 Op-i” - Op , to (IRgt3) if Op = 0
010050 020051 i-0p, Opti’ - Op
200050 359000 Oop -1i, to (IR9)
000000 999999 no-op , stop

999999 stop

34

(Several bugs on pp. 39-40 of [RU 52] needed to be corrected in order
to produce this code, but Rutishauser's original intent was reasonably
clear, The most common error made by a person who first tries to write
a compiler is to confuse compilation time with object-code time, and
Rutishauser gets the honor of being first to make this error!)

The above code has the interesting property that it is completely
relocatable -- even if we move all instructions up or down by one-half
a word, Careful study of the output shows that index registers were
treated rather awkwardly; but after all, this was 1951, and many
campilers even nowadays produce far more disgraceful code than this,

Rutishauser published slight extensions of his source language
notation in [RU 55] and [RU 55'].

An Ttalian graduate student, Corrado Bohm, developed a compiler at
the same time and in the same place as Rutishauser, so it is natural to
assume -- as many people have -- that they worked together. But in fact,
their methods had essentially nothing in common. BOhm (who was a student
of Eduard Stiefel) developed a language, a machine, and a translation
method of his own, during the latter part of 1950, knowing only of
[GV 47] and [2U 48]; he learned of Rutishauser's similar interests only
after he had submitted his doctoral dissertation in 1951, and he amended
the dissertation at that time in order to clarify the differences between

their approaches.

35

Bohm's dissertation [BO 52] was especially remarkable because he
not only described a complete compiler, he also defined that compiler
in its own language! And the language was interesting in itself,
because every statement (including input statements, output statements,
and control statements) was a special case of an assignment statement.

Here is how TPK looks in Bohm's language:

A. Set i =0 (plus the - A
base address 100 for 100 - i
the input array a). B - =

B. Let a new input a; be " - B
given. Increase 1 by unity, 7 = i
and proceed to C if i > 10, itl - 1
otherwise repeat B . [(;I_.ﬂ(i:-J_'LO))'C]+[(1.1(13110))-3] - T

C. Set i =10 . ' - C

110 - 1

D. Call x the number a; > nt - D
and prepare to calculate i - x
its square root r (using E - X
subroutine R), returning R » =
to E .

E. Calculate f(ai) and ' - E
attribute it to y . r+oedicdieli -y
If y > 40O, continue [(1n(y2L00)) FI+[(1=(y=400)):G] - =

at F, otherwise at G.

F. Output the actual value nt - F
of i , then the value 12100 = ?
999 ("too large"). 999 - ?
Proceed to H. H - n

36

G. Output the actual - G

values of i1 and Yy . i<100 - ?

y - ?

H - =

H. Decrease 1 by unity, n' - H
and return to D if i2l - 1

i > 0. Otherwise stop. [(12(10021))-D]+[(1 N (100%1i))-Q] - =«

Here comments in an approximation to Bohm's style appear on the left,
while the program itself is on the right. As remarked earlier, every-
thing in Bohm's language appears as an assignment. The statement

"B on " means " go to B ", i.e., set the program counter =n to the
value of variable B . The statement " n' - B " means "this is label B";
a loading routine preprocesses the object code, using this type of
statement to set the initial value of variable B rather than to store
an instruction in memory. The symbol " ? " stands for the external

" means "input a value and assign

world, hence the statement " ? - x
it to x"; the statement " x - ? " means "output the current value of x".
M arrow " § " is used to indicate indirect addressing (restricted to

one level); thus, " ? - i " in part B means 'read one input into the
location whose value is i", namely into a; -

BShm's machine operated only on nonnegative integers of 1L decimal

digits. As a consequence, his operation x*y was the logician's

subtraction operator,

X~y if x>y ;

0 s if x<y.

He also used the notation xNy for min(x,y) . Thus it can be verified
that
1, if 1i>J ;
1n(123) =

37

0o , if i>3;
1:(i2)) =
1, if i<j.

Because of these identities, the complicated formula at the end of part B

is equivalent to a conditional branch,

C-m, if i>110 ;
B-n, if i <110 .

It is easy to read Bdhm's program with these notational conventions
in mind. Note that part C doesn't end with " D —» n ", although it could
have; similarly we could have deleted " B - m " after part A. (BShm
omitted a redundant go-to statement only once, out of six chances he
had in [BO 52].)

Part D shows how subroutines are readily handled in his language,
although he did not explicitly mention them. The integer square root
subroutine can be programmed as follows, given the input x and the

exit location X :

R. Set r=0 and t = 2h6 . n' - R
O - r
7036874417766k - t
' 5 - =
S. If r+t <x, goto T, o - S
otherwise go to U . r+t2x - u
[(1*w)-T]+[(1 Nu).U] - =
T. Decrease x by r+t, ' - T
divide r by 2 , increase x2r:t - X
r by t, and go to V. r:2+t - r
V - =x
U. Divide r by 2. nt - U
r:2 - r

vV -

28

V. Divide t by 4. If t=0, - U
exit, otherwise return to S. t:h -t
[(1=t)-X]+[(1Nt)+8] - =

(This algorithm is equivalent to the classical pencil-and-paper method

for square roots, adapted to binary notation. It was given in hardware-
oriented form as example P9.18 by Zuse in [ZU 45, pp. 143-159]. To prove
its validity, one can verify that the following invariant relations hold

when we reach step S:

t 1is a power of L ;
r is a multiple of Ut ;
r°/4t +x = initial value of X3

0 < x <2rtht .

At the conclusion of the algorithm these conditions hold with t = 1/4 ;
so r 1is the integer square root and x is the remainder.)

BShm's one-pass compiler was capable of generating instructions
rapidly, as the input was being read from paper tape. Unlike Rutishauser,
BShm recognized operator precedence in his language; for example, r:2+t
was interpreted as (r:2)+t , the division operator " : " taking
precedence over addition. However, Bdhm did not allow parentheses to be
mixed with precedence relations: If an expression began with a left
parenthesis, the expression ﬂad to be fully parenthesized even when
associative operators were present; on the other hand if an expression
did not begin with a left parenthesis, precedence was considered but no
parentheses were allowed within it. The complete program for his

compiler consisted of 114 assignments, broken down as follows:

(1) 59 statements to handle formulas with parentheses

(ii) 51 statements to handle formulas with operator precedence
(ii1) L4 statements to decide between (i) and (ii).

There was also a loading routine, described by 16 assignment statements;
so the compiler amounted to only 130 statements in all, including 33
statements which were merely labels (n' - ...) . This brevity is

especially surprising when we realize that a good deal of the program

39

was devoted solely to checking the input for correct syntax; this check
was not complete, however. [It appears to be necessary to add one more
statement in order to fix a bug in his program, caused by overlaying
information when a left parenthesis follows an operator symbol; but even
with this "patch" the compiler is quite elegant.]

Rutishauser's parsing technique often required order n2 steps to
process a formula of length n . His idea, which we have seen illustrated
above, was to find the leftmost pair of parentheses which have the highest
level, so that they enclose a parenthesis-free formula o , and to compile
the code for " a - Pq "; then the subformula " (@) " was simply replaced
by " Pq ", q was increased by 1 , and the process was iterated until
no parentheses remained. Bohm's parsing technique, on the other hand,
was of order n , generating instructions in what amounts to a linked
binary tree while the formula was being read in; to some extent, his
algorithm anticipated modern list-processing techniques, which were first
made explicit by Newell, Shaw, and Simon about 1956 (cf. [KN 68, p. 4571).
Here is a brief indication of how Bohm's algorithm would have translated
the statement ((a:(b-c))+((dne)2f)) - g ,‘assuming that the bug referred

to above had been removed:

o)

Contents of tree (instructions and stack pointers)

® ® ® 06

Current
position
in tree

Current
partial
Input instruction

©

(@) ©

(® © @

a @ © @)

: ® © D

(©) © 23,0 |®

b b (:) (:) a:(:),(:) (:)

: b 6) © 2:3,Q |®

c b-c (3) (:) a:(Z),(E) (:)

) ® ©) 2:0,Q@ |p-c-0O)

) | @) © a: ~@| e~

+ (:)+ (:> (:) a:(ED ﬁ(:) b c-a(:)

(® OMONC LHORIO ERIIE) (@)

(® | @0, @0 -0oc-0® |®

d a @ @+@,@a:@ —»@ b-c —»@@ @

n an ® @+®,Q=:0 ~@|v-c~B|@ @

e ane ® @+®, Q=:B -B|r-c~-B|@ ®
) ® @+®.Q)=:@ ~@|v-c-B|@ ane-

: OF ® @+®,©Q2:0 ~-@|v-B|@ ine-@
£ ®:tr | ® @+®,Qe:0 -O|bv-c-Q|@D ane-@®
) @ | @® 00 -Blrc-0l@:x-0ane-@
) © | @@k -O|v-c-0|@:x-® ane-G
- @ © ®+®~®|a=© ~@|p-c-QD - ane -G

At this point the contents of the tree would be punched out, in reverse

preorder:

dne - ®
@ -®
' bec —*(ED
a:® -~ @
e® -

and the following symbol " g " would evoke the final instruction " (:) -g".

L1

Bohm's compiler assumed that the source code input would be trans-
literated into numeric form, but in an Italian patent filed in 1952 he
proposed that it should actually be punched on tape using a typewriter
with the following keyboard [BO 52', Fig. 9]:

OOOOBOOOOO
OJO0JOJOXONOROIOXOCXOXO.
GEOOOOOOO®O

OOOOLEOG®OO
C)

Constants in the source program were to be assigned a variable name and
input separately.

Of all the authors we shall consider, Bdhm was the only one who gave
an argument that his language was universal, i.e.,, capable of computing
any computable function.

Meanwhile, in England.

Our story so far has introduced us to many firsts, such as the first
algebraic interpreter, the first algorithms for parsing and code generation,
the first compiler in its own language. Now we come to the first real
compiler, in the sense that it was really implemented and used; it really
took algebraic statements and translated them into machine language.

AT 2 "y

- -~ T manand A AL T
as ALLCh L, UlTLIILT UL T

The unsung hero o Hals
the Royal Armaments Research Establishment. We may justly say "unsung"
because it is very difficult to deduce from the published literature that

Glennie introduced this system. When Christopher Strachey referred favorably

to it in [ST 52, pp. 46-47], he did not mention Glennie's name, and it was
inappropriate for Glennie to single out his own contributions when he co-authored
an article with J, M., Bennett at the time [BG 53, pp. 112-113]. In fact,

there are apparently only two published references to Glennie's authorship

of this early compiler; one of these was a somewhat cryptic remark inserted

by an anonymous referee into a review of BShm's paper [TA 56] while the

other appeared in a comparatively inaccessible publication [MG 53].

Lo

Glennie called his system AUTOCODE; and it may well have helped to inspire
many other "Autocode" routines, of increasing sophistication, developed
during the late 1950's. Strachey said that AUTOCODE was beginning to
come into use in September, 1952. The Manchester Mark I machine language
was particularly abstruse -- see [WO 51] for an introduction to its
complexities, including the intricacies of Teleprinter code (used for
base-32 arithmetic, backwards) -- and its opaqueness may have been why
this particular computer witnessed the world's first compiler. Glennie
stated his motivations this way, at the beginning of a lecture he

delivered at Cambridge University in February, 1953:

The difficulty of programming has become the main difficulty
in the use of machines. Aiken has expressed the opinion that the
solution of this difficulty may be sought by building a coding
machine, and indeed he has constructed one. However it has been
remarked that there is no need to build a special machine for
coding, since the computer itself, being general purpose, should

be used. ... To make it easy, one must make coding comprehensible.

This may be done only by improving the notation of programming.
Present notations have many disadvantages: all are incomprehensible
to the novice, they are all different (one for each machine) and
they are never easy to read. It is quite difficult to decipher
coded progranmes even with notes, and even if you yourself made
the programme several months ago.

Assuming that the difficulties may be overcome, it is obvious
that the best notation for programmes is the usual mathematical
notation, because it is already known. ...

Using a familiar notation for programming has very great
advantages, in the elimination of errors in programmes, and the

simplicity it brings. [GL 52]

His reference to Aiken should be clarified here, especially because
Glennie stated several years later [GL 65] that "I got the concept from
a reported idea of Professor Aiken of Harvard, who proposed that a
machine be built to make code for the Harvard relay machines." Aiken's

coding machine for the Harvard Mark III was cited also by Bchm

43

[BO 52, p. 176]; it is described in [HA 52, pp. 36-38, 229-263, illustrated
on pp. 20, 37, 230]. By pushing appropriate buttons on the console of
this machine, one or more appropriate machine codes would be punched
on tape for the equivalent of three-address instructions such as
" b3 x|ci| »ai " or " 1//X9 - r0 "; there was a colum of keys for
selecting the first operand's sign, its letter name, and its (single)
subscript digit, then another column of keys for selecting the function
name, etc. (Incidentally, Heinz Rutishauser is listed as one of the
fifty-six authors of the Harvard report [HA 52]; his visit to America
in 1950 is one of the reasons he and BShm did not get together.)

Our TPK algorithm can be expressed in Glennie's AUTOCODE as follows:

1l c@VA t@IC x@4C y@RC z@NC

2 INTEGERS +5 — ¢

3 -1t

4 +t TESTA 2

5 -t

6 ENTRY Z

7 SUBROUTINE 6 -z

8 +tt -y -x

9 +tx -y =x

10 +z+cx CLOSE WRITE 1

1l aB/# b@MA c@®GA dBOA e@PA f@HA i@VE x@ME
12 INTEGERS +20 -»b +10 —»c +400 »d +999 —»e +1 —~f
13 LOOP 10n

14 n-x

15 +b-x -x

16 X~q

17 SUBROUTINE 5 —aq

18 REPEAT n

19 +c -1

20 LOOP 10n

21 +an SUBROUTINE 1 -y
22 +d-y TESTA Z

L

+i SUBROUTINE 3
+e SUBROUTINE L
CONTROL X
ENTRY Z
+i SUBROUTINE 3
+y SUBROUTINE L4
ENTRY X
+ie-f -3
REPEAT n
ENTRY A CONTROL A WRITE 2 START 2

% 1218 18 13 13 18 1 2 13

Although this language was much simpler than the Mark I machine code,
it was still very machine-oriented, as we shall see. (Rutishauser and
Bohm had had a considerable advantage over Glennie in that they had
designed their own machine code!) Lines 1 -10 of this program represent
a subroutine for calculating f(t) ; " CLOSE WRITE 1 " on line 10 says
that the preceding lines constitute subroutine number 1. The remaining
lines yield the main program; " WRITE 2 START 2 " on line 52 says that
the preceding lines constitute subroutine number 2, and that execution
starts with number 2.

Let's begin at the beginning of this program and try to give a
play-by-play account of what it means. ILine 1l is a storage assignment
for variables c,t,x,y , and 2z , in terms of absolute machine
locations represented in the beloved Teleprinter code. Line 2 assigns
the value 5 to c¢ ; like all early compiler-writers, Glennie shied
away from including constants in formulas. Actually his language has
been extended here: he had only the statement "FRACTIONS" for producing
constants between -3 and % > assuming that a certain radix point
convention was being used on the Manchester machine. Since scaling
operations were so complicated on that computer, it would be inappropriate
for our purposes to let such considerations mess up or distort the
TPK algorithm; thus the INTEGERS statement (which is quite in keeping
with the spirit of his language) has been introduced to simplify our

exposition.

L5

Upon entry to subroutine 1, the subroutine's argument was in the
machine's lower accumulator; line 3 assigns it to variable t . Line 4
means " go to label Z if t is positive "; line 5 puts -t in the
accumulator; and line 6 defines label Z'. Thus the net effect of lines
L4 thru 6 is to put |t| into the lower accumulator. Line 7 applies
subroutine 6 (integer square root) to this value, and stores it in =z .
On line _8_ we compute the product of t by itself; this fills both
upper and lower accumulators, and the upper half (assumed zero) is
stored in y , the lower half in x . Line 9 is similar, now X
contains t° . Finally line 10 completes the calculation of f(t)
by leaving z+5x in the accumulator. The "CLOSE" operator causes the
compiler to forget the meaning of label 7Z , but the machine addresses
of variables ¢, x, ¥y, and 2z vremain in force.

Line 11 introduces new storage assignments, and in particular it
reassigns the addresses of ¢ and x . New constant values are defined
on line 12. Lines 135 thru @ constitute the input loop, enclosed by
LOOP 10n ... REPEAT n ; here n denotes one of the index registers
(the famous Manchester B-lines), the letters k, 1, n, o, g, T
being reserved for this purpose. Loops in Glennie's language were
always done for decreasing values of the index, up to and including O ;
and in our case the loop was performed for n = 20,18,16,...,2,0 .

These values are twice what might be expected, because the Mark T
addresses were for half-words. Lines l_lt_ thru _J_._6_ set index g equal
to 20-n ; this needs to be done in stages (first moving from n to
a normal variable, then doing the arithmetic, and finally moving the
result to the index variable). The compiler recognized conversions
between index variables and normal variables by insisting that all
other algebraic statements begin with a + or - sign. Line 17 says
to store the result of subroutine 5 (an integer input subroutine) into
variable aq .

Lines 20 thru 31 comprise the output loop. Again n has the value
so the true value of i has been maintained in parallel with n (see
lines 19 and 30). Line 21 applies subroutine 1 (namely our subroutine
for calculating f(t)) to a, and stores the result in y . Line 22

L6

2i,

branches to label 2z if k00 >y ; line 25 is an unconditional jump
to label X . Line 25 outputs the integer i . using subroutine 3, and
subroutine 4 in line g& is assumed to be similar except that a carriage-
return and line-feed are also output. Thus the output is correctly
performed by lines 22 thru 29.

The operations " ENTRY A CONTROL A " on line 32 define an infinite
loop " A: go to A "; this was the so-called dynamic stop used to

terminate a computation in those good old days.

Our analysis of the sample program is now complete, Glennie's
language was an important step forward, but of course it still remained
very close to the machine itself. And it was intended for the use of
experienced programmers, As he said at the beginning of the user's
manual {GL 52'], "The left hand side of the equation represents the
passage of information to the accumulator through the adder, subtractor,
or multiplier, while the right hand side represents a transfer of the
accumulated result to the store.," The existence of two accumulators
complicated matters; for example, after the multiplication in lines 8
and 9 the upper accumulator was considered relevant (in the -y), while
elsewhere only the lower accumulator was used. The expression " +atbc "
meant "load the lower accumulator with a , then add it to the double
length product bec ", while " +bcta " meant "form the double length
product be , then add a into the upper half of the accumulator".
Expressions like +ab+cd+ef were allowed, but not products of three
or more quantities; and there was no provision for parentheses. The
language was designed to be used with the 32-character Teleprinter code,
where - was substituted for " .

We have remarked that Glennie's papers have never been published;
this may be due to the fact that his employers in the British atomic
weapons project were in the habit of keeping documents classified,
Glennie's work was, however, full of choice quotes, so it is interesting

to repeat several more remarks he made at the time:

There are certain other rules for punching that are merely a
matter of common sense, such as not leaving spaces in the middle
of words or misspelling them., I have arranged that such accidents

will cause the input programme to exhibit symptoms of distress ...

b7

This consists of the programme coming to a stop and the machine
making no further moves.

[The programme] is quite long but not excessively long, about
750 orders. ... The part that deals with the translation of the
algebraic notation is the most intricate programme that I have ever
devised ... [but the number of orders required] is a small
fraction of the total, about 1kO,

My experience of the use of this method of programming has
been rather limited so far, but I have been much impressed by
the speed at which it is possible to make up programmes and the
certainty of gaining correct prograrmes, ... The most important
feature, I think, is the ease with which it is possible to read
back and mentally check the programme. And of course on such
features as these will the usefulness of this type of programming
be judged. [GL 52]

At the beginning of the user's manual [GL 52'], he mentioned that
"the loss of efficiency (in the sense of the additional space taken by
routines made with AUTOCODE) is no more than about 10%." This remark
appeared also in [BG 53, p. 113], and it may well be the source of the
oft-heard opinion that compilers are "90% efficient".

On the other hand, Glennie's compiler actually had very little
tangible impact on other users of the Manchester machine. For this reason,
Brooker did not even mention it in his 1958 paper entitled "The Autocode
Programs developed for the Manchester University Computers" [BR 58],

This lack of influence may be due in part to the fact that Glennie was

not resident at Manchester, but the primary reason was probably that his
system did little to solve the really severe problems that programmers

had to face, in those days of small and unreliable machines. An

improvement in the coding process was not regarded then as a breakthrough

of any importance, since coding was often the simplest part of a programmer's
task. When one had to wrestle with problems of numerical analysis, scaling,
and two-level storage, meanwhile adapting one's program to the machine's

current state of malfunction, coding itself was quite insignificant.

L8

Thus when Glennie mentioned his system in the discussion following
[MG 53], it met with a very cool reception, For example, Stanley Gill's

comment reflected the prevailing mood:

It seems advisable to concentrate less on the ability to write,
say

+a+b+ab - ¢
as it is relatively easy for the programmer to write

A a

ADb

Ha

Vb

Tec . [MG 53, p. 79]

Nowadays we would say that Gill had missed a vital point, but in 1953
his remark was perfectly true.
Some 13 years later, Glennie had the following reflections [GL 65]:

[The compiler] was a successful but premature experiment.
Two things I believe were wrong: (a) Floating-point hardware
had not appeared. This meant that most of a programmer's effort
was in scaling his calculation, not in coding. (b) The climate

_ of thought was not right., Machines were too slow and too small.
It was a programmer's delight to squeeze problems into the
smallest space. ...

I recall that automatic coding as a concept was not a novel
concept in the early fifties. Most knowledgeable programmers
knew of it, I think, It was a well known possibility, like the
possibility of computers playing chess or checkers, ... [Writing
the compiler] was a hobby that I undertook in addition to my
employers' business: they learned about it afterwards. The
compiler ... took about three months of spare time activity to

complete,

L9

Early American "Compilers'.

None of the authors we have mentioned so far actually used the word
"compiler" in connection with what they were doing; the terms were

automatic coding, codification automatique, Rechenplanfertigung. 1In fact

it is not especially obvious to programmers today why a compiler should be
so called. We can understand this best by considering briefly the other
types of programming aids that were in use during those early days.

The first important programming tools to be developed were, of course,
general-purpose subroutines for such commonly needed processes as
input-output conversions, floating-point arithmetic, and transcendental
functions. Once a library of such subroutines had been constructed, there
was time to think of further ways to simplify programming, and two
principal ideas emerged: (a) Coding in machine language could be made
less rigid, by using blocks of relocatable addresses [WH 50]. This idea
was extended by M. V. Wilkes to the notion of an "assembly routine'", able
to combine a number of subroutines and to allocate storage [WW 51, pp. 27-32];
and Wilkes later [WI 52, WI 53] extended the concept further to include
general symbolic addresses (i.e., not simply relative to a small number of
origins). For many years these were called "floating addresses". Similar
developments in assembly systems occurred in America and elsewhere;
cf. [RO 52]. (b) An artificial machine language or pseudo-code was
devised, usually providing easy facilities for floating-point arithmetic
as if it had been built into the hardware. An "interpretive routine”
(sometimes called "interpretative" in those days) would process these
instructions, emulating the hypothetical computer. The first interpretive
routines appeared in programming's first textbook, by Wilkes, Wheeler,
and Gill [WW 51, pp. 34-37, TL-77, 162-16L4]; the primary aim of this book
was to present a library of subroutines and the methodology of their use.
Shortly afterwards a refined interpretive routine for floating-point
calculation was described by Brooker and Wheeler [BW 53], including the
ability for subroutines nested to any depth. Interpretive routines in
thelr more familiar compact form were introduced by J. M. Bennett (cf.

[WW 51, Preface and pp. 162-16L4], [BP 52]); the most influential was
perhaps John Backus's IBM 701 Speedcoding System [BA 54, BH 5L]., As we

have already remarked, Short Code was a different sort of interpretive

50

routine. The early history of library subroutines, assembly routines,
and interpretive routines remains to be written; we have just reviewed
it briefly here in order to put the programming language developments

intoc context.

During the latter part of 1951, Grace Murray Hopper developed the
idea that pseudo-ccdes need not be interpreted, they could also be
expanded out into direct machine language instructions. She and her
associates at UNIVAC proceeded to construct an experimental program

which would do such a translation, and they called it a compiling routine.

To compile means to compose out of materials from other documents.
Therefore, the compiler method of automatic programming consists
of assembling and organizing a program from programs or routines
or in general from sequences of computer code which have been

made up previously. [MO 5k, p. 15]

(See also [HO 55, p. 22].) The first "compiler" in this sense, named A-O,
was in operation in the spring of 1952, when Dr. Hopper spoke on the
subject at the first ACM National Conference [HO 52]. Incidentally,
M. V. Wilkes came up with a very similar idea, and called it the method of
"synthetic orders" [WI 52]; we would now call this a macro expansion.

The A-O "compiler" was improved to A-1 (January, 1953) and then
to A-2 (August, 1953); the original implementors were Richard K. Ridgeway
and Margaret H. Harper. Quite a few references to A-2 have appeared in
the literature of those days [HM 53, HO 53, HO 53', MO 54, WA 54], but
these authors gave no examples of the language itself. Therefore it will
be helpful to discuss here the state of A-2 as it existed late in 1953,
when it was first released to UNIVAC customers for testing [RR 53]. As
we will see, the language was quite primitive by comparison with those
we have been studying, and this is why we choose to credit Glennie with
the first compiler although A-O was completed first; yet it is important
to understand what was called a "compiler" in 195k, in order to appreciate
the historical development of programming languages.

Here is how TPK would have looked in A-2 at the end of 1953:

51

Use of working storage

00 02 ok 06 08 10 12 1k to 34 36 38 Lo ko -58
10 5 Lo -1 = L 3 a8y to a1 y,¥ny” t,t7,t” temp storage

Program

0. GMIO00 000002 Read input and necessary constants from T2
ITEMOl WS.000
SERVO2 BLOCKA
1RGOOO 000000

1. GIMOOO 000001
000180 020216 10.0 =1
1RGOOO 001000

AMOOBL 03kOMO &f, =
RNAOLO 0100LkO %/t =t
APNO3L 012038 aio -
AMO002 038038 5y =y~
AAOOLO 038038 t/+ys =y~

ASOOOL 038040 LOO-y# =17

.

Ol N o V= W
L]

. OWNACO DEAQOO3
KOO000 KOOO00
FOO912 EOOIRG if t” > 0, go on to Op. 10
000000 QOOLCN
1RGOCO 0080k0
1CNOOO 000010

9. GMMOOO 000001
000188 020238 'AAATOO ALARGE AADAMA ABAMAL' = y7
1RGO0 009000

10. YTO036 038000 Print i,y”

11. GMMOOO 000001
000194 200220 Move 20 words from WS1h to WSLO
1RGOOO 011000

52

12. GMMOOO 000001
000222 200196 Move 20 words from WSLO to WS16
1RGOOO 012000

13. ALIO12 FOOOT{

1RGO0O0 013036 Replace i by i+(-1) and go to Op. 2
2RGO00 000037 if i # -1, otherwise go to Op. 1k
3RGO00 000006

LRGOOO 000007

5RGO00 000006

6RGO0O 000007

1CNOOO 000002

2CNOOO 00001k

1RSO00 000036

2RS000 000037

1L. OWNACO DEAQOR
810000 820000 Rewind tapes 1 and 2, and halt.

JUULULU SUUULUU

1RGO0O 014000

RPENDA INFO.R

There were 60 words of working storage, and each floating-point number
used two words. These working storages were usually addressed by numbers
00,02, ...,58, except in the GMM instruction (move generator) when
they were addressed by 180,182, ..., 238 respectively; see operations
1, 9, 11, and 12. Since there was no provision for absolute value
operations 2 and 3 of this program find Vlalol by computing %Jgfg .
(The A-2 compiler would replace most operators by a fully expanded subroutine,
in line; this subroutine would be copied amew each time it was requested,
unless it was one of the four basic floating-point arithmetic operations.)
Since there was no provision for subscripted variables, operations 11
and 12 shift the array elements after each iteration.

Most arithmetic instructions were specified with a three-address

code, as shown in operations 2 thru 7. But at this point in the development

23

of A-2 there was no way to test the relation " > " without resorting
to machine language -- only a test for equality was built in -- so
operation 8 specifies the necessary UNIVAC instructions. (The first
word in operation 8 says that the following 003 lines contain UNIVAC
code. Those three lines extract (E) the sign of the first numeric
argument (1RG) using a system constant in location 912 , and if it
was positive they instruct the machine to go to program operator 1CN .
The next two lines say that 1RG is to be t* (working storage L0),
and that 1CN is to be the address of operation 10. The " 008" in the
1RG specification tells the compiler that this is operation 8; such
redundant information was checked at compile time. Note that the
compiler would substitute appropriate addresses for 1RG and 1CN
in the machine language instructions. Since there was no notation
for " 1RG+1 ", the programmer had to supply ten different parameter
lines in operation 13.
By 1955, A-2 had become more streamlined, and the necessity for
OWN CODE in the above program had disappeared; see [PR 55] for a description
of A-2 coding, vintage 1955. (Another paper [TH 55] also appeared at that time,
presenting the same example program.) Operations 7 and the following of

the above program could now be replaced by

7. QIO038 004000 To Op. 9 if y~ > LOO
1CNOOO 000009

8. Quoo38 038000 Go to Op. 10
1CNOOO 000010

9. MV0O00O8 001038)

10. YTQ036 038000

11. MvoOolk 010040

12. MVOOLO 010016

13. AATO36 006006 > Same meaning as before, but new syntax.
1CNOOO 000002
2CNOOO 00001k

1L. RWS120 000000
ENDACO DINGAA

5k

Laning and Zierler.

Grace Hopper was particularly active as a spokesperson for
automatic programming during the 1950's; she went barnstorming
throughout the country, significantly helping to accelerate the
rate of progress. One of the most important things she
accomplished was to help organize two key symposia on the topic, in
1954 and 1956, under the sponsorship of the Office of Naval Research.

These symposia brought together many people and ideas at an important

time. (On the other hand, it must be remarked that the contributions

of Zuse, Curry, Burks, Mauchly, Bthm, and Glennie were not mentioned at either
symposium, and Rutishauser's work was cited only once -- not quite

accurately [GO 54, p. 76]. Communication was not rampant!)

In retrospect, the biggest event of the 1954 symposium on automatic
programming was the announcement of a system that J. Halcombe Laning, Jr. and
Niel Zierler had recently implemented for the Whirlwind computer at M.I.T.
However, the significance of that announcement is not especially evident

from the published proceedings [NA 54], 97% of which are devoted to

U R I T - PN
a

Attt mmn AP aaarwhl ave Svd Aveeat A s

Covhdpvdviin Vi Guouvda vl oy B e 2

and 108h_ctrle
P A

"compilers". We know of the impact mainly from Grace Hopper's introductory

remarks at the 1956 symposium, discussing the past two years of progress:

A description of Laning and Zierler's system of algebraic
pseudocoding for the Whirlwind computer led to the development

of Boeing's BACAIC for the 701, FORTRAN for the 704, AT-3 for

the Univac, and the Purdue System for the Datatron and indicated
the need for far more effort in the area of algebraic translators.

[HO 56]

A clue to the importance of Laning and Zierler's contribution can also

be found in the closing pages of a paper by John Backus and Harlan Herrick
at the 1954 symposium. After describing IBM 701 Speedcoding and the
tradeoffs between interpreters and "compilers", they concluded by

speculating about the future of automatic programming:

55

A programmer might not be considered too unreasonable if he
were willing only to produce the formulas for the numerical
solution of his problem, and perhaps a plan showing how the
data was to be moved from one storage hierarchy to another,
and then demand that the machine produce the results for his
problem. No doubt if he were too insistent next week about
this sort of thing he would be subject to psychiatric
observation. However, next year he might be taken more

seriously. [BH 54]

After listing numerous advantages of high-level languages, they said:
"Whether such an elaborate automatic-programming system is possible
or feasible has yet to be determined." As we will soon see, the system
of Laning and Zierler proved that such a system is indeed possible.
Brief mention of their system was made by Charles Adams at the
symposium [AL 54]; but the full user's manual [LZ 54] ought to be
reprinted some day because their language went so far beyond what had
been implemented before. The programmer no longer needed to know much
about the computer at all, and the user's manual was (for the first time)

addressed to a complete novice. Here is how TPK would look in their

system:

1 v|N= (input),
2 1 =0,

3 1 j=1itl,

L ali=v|J,

2 i=J,

6 e =1i-10.5,

7 CP 1,

8 i =10,

9 2 y=r(rtali))e5(ali),
10 e =y-k0o,

11 Cp 3,

12 z =999,

13 PRINT i, z.

56

1L SP L,
15 3 PRINT i,y.
16. L4 i=1i-1,

17 e =-0.5-1,
18 CP 2,
19 STOP

The program was typed on a Flexowriter which punched paper tape
and had a fairly large character set (including both upper and lower
case letters); at M.I.T. they also had superscript digits O,l,...,9
and a vertical line | . The language used the vertical line to
indicate subscripts; thus the " S(a\i)3 " on line 9 means 5a2 .

A programmer would insert his eleven input values for the TPK
algorithm into the place shown on line 1; then they would be converted
to binary notation and stored on the magnetic drum as variables
V9sVprseesVyy o If the numbers had a simple arithmetic pattern, an
abbreviation could also be used; e.g.,

. v f N A f AN = (1N E C
Vll\l = A e/ e e \~,) S/

would set (vl,...,vll) -(1,1.5,2,2.25,2.5,2.75,3%,3.25,3.5,4.5,5.5) .
If desired, a special code could be punched on the Flexowriter tape in
line 1, allowing the operator to substitute a data tape at that point
before reading in the rest of the source program.
Lines 2 thru 7 are a loop which moves the variables Vs eeer Vg from

the drum to variables 8qy e eer @ in core. (All variables were in core

unless specifically assigned tolihe drum by an ASSIGN or |N’instruction.
This was an advanced feature of the system not needed in small problems.)
The only thing that isn't self-explanatory about lines 2 thru 7 is line T;
" CP k, " means "if the last expression computed was negative, go to the
instruction labeled k".

In line 9, Fl denotes square root and Fll denotes absolute value.
In line 14, " SP " denotes an unconditional jump. (CP and SP were the
standard mnemonics for jumps in Whirlwind machine language.) Thus, except
for control statements -- for which there was no existing mathematical

convention -- Laning and Zierler's notation was quite easy to read.

o7

Their expressions featured normal operator precedence, as well as
implied multiplication and exponentiation; and they even included a
built-in Runge - Kutta mechanism for integrating a system of differential

equations if the programmer wrote formulas such as

Dx
Dy = -x

y+ 1,

where D stands for d/dt ! Another innovation, designed to help
debugging, was to execute statement number 100 after any arithmetic
error message, if 100 was a PRINT statement.

According to [IM 70], Laning first wrote a prototype algebraic
translator in the summer of 1952. He and Zierler had extended it to a
usable system by May, 1953, when the Whirlwind had only 1024 16-bit
words of core memory in addition to its drum. The version described in
[LZ 54] utilized 2048 words and drum, but earlier compromises due to
such extreme core limitations caused it to be quite slow. The source
code was translated into blocks of subroutine calls, stored on the drum,
and after being transferred to core storage (one equation's worth at a
time) these subroutines invoked the standard floating-point interpretive

routines on the Whirlwind.

The use of a small number of standard closed subroutines has
certain advantages of logical simplicity; however, it also often
results in the execution of numerous unnecessary operations.

This fact, plus the frequent reference to the drum required in
calling in equations, results in a reduction of computing speed
of the order of magnitude of ten to one from an efficient computer
program. [AL 54, p. 64]

From a practical standpoint, those were damning words. Laning recalled,

eleven years later, that

This was in the days when machine time was king, and people-time
was worthless (particularly since I was not even on the Whirlwind
staff). ... [The program] did perhaps pay for itself a few times
when a complex problem required solutions with a twenty-four
hour deadline. [LA 65]

58

In a recent search of his files, Laning found a listing of the

Whirlwind compiler's first substantial application:

The problem addressed is that of a three-dimensional lead
pursuit course flown by one aircraft attacking another, including
the fire control equations. What makes this personally interesting
to me is tied in with the fact that for roughly five years previous
to this time the [M.I.T. Instrumentation] Lab had managed and
operated the M.I.T. Rockefeller Differential Analyzer with the
principal purpose of solving this general class of problem.
Unfortunately, the full three dimensional problem required more
integrators than the RDA possessed.

My colleagues who formulated the problem were very skeptical
that it could be solved in any reasonable fashion. As a challenge,
Zierler and I sat down with them in a 2-1/2 hour coding session,
at least half of which was spent in defining notation. The tape
was punched, and with the usual beginner's luck it ran successfully
the first time! Although we never seriously capitalized on this
capability, for reasons of cost and computer availability, my own

ego probably never before or since received such a boost. [LA 76]

The lead-pursuit source program consisted of 79 statements, including 29
which merely assigned initial data values, and also including seven uses
of the differential equation feature.

Laning describes his original parsing technique as follows:

Nested parentheses were handled by a sequence of generated
branch instructions (sp). In a one-pass operation the symbols
were read and code generated a symbol at a time; the actual
execution sequence used in-line sp orders to hop about from
one point to another. The code used some rudimentary stacks,
but was sufficiently intricate that I didn't understand it without
extreme concentration even when I wrote it., ,.. Structured programs
were not known in 1953!

The notion of operator precedence as a formal concept did not
occur to me at the time; I iived in fear that someone would write
a perfectly reasonable algebraic expression that my system would

not analyze correctly. [LA 76]

29

Plans for a much expanded Whirlwind compiler were dropped when the
M.I.T. Instrumentation Lab acquired its own computer, an IBM 650.
Laning and his colleagues Philip C. Hankins and Charles P. Werner
developed a compiler called MAC for this machine in 1957 and 1958.
Although MAC falls out of the time period covered by our story, it
deserves brief mention here because of its unusual three-line format
proposed by R. H. Battin c. 1956, somewhat like Zuse's original language.

For example, the statement

E 3
M Y = SQRT(ABS(A))+5 A
S I+1 I+l

would be punched on three cards., Although this language has not become
widely known, it was very successful locally: MAC compilers were later
developed for use with IBM 704, 709, 7090 and 360 computers, as well as
the Honeywell H800 and H1800 and the CDC 3600. (See [IM 70].) "At the
present time [1976], MAC and FORTRAN have about equal use at CSDL,"
according to [LA 76]; here CSDL means C. S. Draper Laboratory, the
successor to M.I.T. Instrumentation Lab.

But we had better get back to our story of the early days.

FORTRAN O,

During the first part of 1954, John Backus began to assemble a group

of people within IBM to work on improved systems of automatic programming

(see [BA 76]). Shortly after learnin

i ning ¢
Loes [o28103 40N Llipy

o)

+he Tanin end Zierler avetoem
Viile AdCAL L 4 d Ak L \A e N e e N L ~ o

(o))

at the ONR meeting in May, Backus wrote to Laning that "our formulation
of the problem is very similar to yours: however, we have done no
programming or even detailed planning." Within two weeks, Backus and his
co-workers Harlan Herrick and Irving Ziller visited M.I.T. in order to see
the Laning/Zierler system in operation. The big problem facing them was

to implement such a language with suitable efficiency.

60

At that time, most programmers wrote symbolic machine
instructions exclusively (some even used absolute octal or
decimal machine instructions). Almost to a man, they firmly
believed that any mechanical coding method would fail to apply
that versatile ingenuity which each programmer felt he possessed
and constantly needed in his work. Therefore, it was agreed,
compilers could only turn out code which would be intolerably
less efficient than human coding (intolerable, that is, unless
that inefficiency could be buried under larger, but desirable,
inefficiencies such as the programmed floating-point arithmetic
usually required then). ...

[Our development groupl had one primary fear. After working
long and hard to produce a good translator program, an important
application might promptly turn up which would confirm the views
of the sceptics: ... its object program would run at half the
speed of a hand-coded version. It was felt that such an occurrence,
or several of them, would almost completely block acceptance of
the system. [BH 64]

By November of 1954, Backus's group had specified "The IBM Mathematical
FORmula TRANslating system, FORTRAN". (Almost all the languages we shall
discuss from now on had acronyms.) The first paragraph of their report
[IB 54] emphasizes that previous systems had offered the choice of easy
coding and slow execution or laborious coding and fast execution, but
FORTRAN would provide the best of both worlds. It also places specific
emphasis on the IBM 704; machine independence was not a primary goal,
although a concise mathematical notation "which does not resemble a machine
language" was definitely considered important. Furthermore they stated
that "each future IBM calculator should have a system similar to FORTRAN
accompanying it,"

It is felt that FORTRAN offers as convenient a language for stating

problems for machine solution as i1s now known. ... After an hour

course in FORTRAN notation, the average programmer can fully under-
stand the steps of a procedure stated in FORTRAN language without

any additional comments. [IB 54]

ol

They went on to describe the considerable economic advantages of
programming in such a language.

Perhaps the reader thinks he knows FORTRAN already; it is certainly
the earliest high-level language that is still in use. However, few
people have seen the original 1954 version of FORTRAN, so it is
instructive to study TPK as it might have been expressed in "FORTRAN O":

1 DIMENSION A(11)

2 READ A

3 2 DO 3,8,11 J=1,11

L 3 1=11-J

5 Y = SQRT(ABS(A(I+1))) + 5*A(T+1)**3
6 IF (Loo. >=7Y) 8,4

7 L PRINT I,999.

8 GO TO 2

9 8 PRINT I,Y

10 11 STOP

The READ and PRINT statements do not mention any FORMATs, although an
extension to format specification was contemplated [p. 26]; programmer-
defined functions were also under consideration [p. 27]. The DO statement
in line 3 means, "Do statements 3 thru 8 and then go to 11"; the
abbreviation " DO 8 J=1,11 " was also allowed at that time, but the
original general form is shown here for fun. Note that the IF statement
was originally only a two-way branch (line é); the relation could be =,
>, or >= , On line > we note that function names need not end in F ;
they were required to be at least three characters long, and there was
no maximum limit (except that expressions could not be longer than 750
characters). Conversely, the names of variables were restricted to be

at most two characters long at this time; but this in itself was an
innovation, FORTRAN being the first language in which a variable's

name could be larger than one letter, contrary to established

mathematical conventions. Note that mixed mode arithmetic

62

was allowed, the compiler was going to convert "5" to "5.0" in line 5.
A final curiosity about this program is the GO TO statement on line §;
this did not begin the DO loop all over again, it merely initiated the
next iteration.

Several things besides mixed-mode arithmetic were allowed in FORTRAN O
but withdrawn during implementation, notably (a) subscripted subscripts
to one level, such as A{(M(I,J),N(K,L)) were allowed; (b) subscripts
of the form N¥I+J were allowed, provided that at least two of the
variables N, I, J were declared to be "relatively constant" (i.e.,
infrequently changing); (c) a RELABEL statement was intended to permute
array indices cyclically without physically moving the array in storage.
For example, " RELABEL A(3) " was to be like setting
(A(1),A(2),A(3);...5A(n)) ~ (A(3)5 - .+5A(n),A(2),A(2)) .

Incidentally, statements were called formulas throughout the 1954
document;‘there were arithmetic formulas, DO formulas, GO TO formulas,
etc. Similar terminology had been used by Bohm, while Laning and

Zierler and Glennie spoke of "equations"j; Grace Hopper called them

M A vat s An Thvtheovymove +he wnrd "ﬂmﬁp:l-lﬁ'v‘" iec newvar nnged in TR 5h]-
more ae wWorsd compller 1g never ucsed In [1R M3

e e e e vas e

there is a FORTRAN language and a FORTRAN system, but not a FORTRAN
compiler.

The FORTRAN O document represents the first attempt to define the
syntax of a programming language rigorously; Backus's important notation
[BA 59] which eventually became " BNF" [KN 64] can be seen in embryonic
form here.

With the FORTRAN language defined, it "only" remained to implement
the system. It is clear from reading [IB 54] that considerable plans
had already been made towards the implementation; however, the full job
took 2.5 more years (18 man-years), so we shall leave the IBM group at

work while we consider other developments.

Brooker's Autocode.

Back in Manchester, R. A. Brooker introduced a new type of Autocode for
the Mark I machine. This language was much "cleaner” than Glennie's,
being nearly machine-independent and using programmed floating-point

arithmetic, but it allowed only one operation per line, there were few

63

mnemonic names, and there was no way for a user to define subroutines.
The first plans for this language, as of March 1954, appeared in [BR 55],
and the language eventually implemented [BR 56, pp. 155-157] was almost
the same. Brooker's emphasis on economy of description was especially
noteworthy: "What the author aimed at was two sides of a foolscap sheet
with possibly a third side to describe an example." [BR 55]

The floating-point variables in Brooker's Mark I Autocode are called
vl,v2,... and the integer variables -- which may be used also as
indices (subscripts) -- are called nl,n2,... . The Autocode for TPK is
easily readable with only a few auxiliary comments, given the memory

.

assignments a; = Vg 0 ¥V = Vips 1=mn,:

1 nl =1 sets n, = 1
vnl =T reads input into v,
nl =nl+l 1
J1,11 > nl Jumps to 1 if ng <11
nl =11
2 * n2 =nl-1 prints 1 = nl-l
vl2 = vnl
J3,v12 > 0.0
v12 = 0.0-v12 sets vy, = el
3 vle = F1l(vl2) (v12 ='\/l_a])
vl3 =50 vnl
vl = ml®vl3
vl3 = vnl®vl3 655 ==53€)
vle = v12 +v13 (v = f(ai))
ik, vi2 > L00.0
* vle = vl2 prints y
3o
L * v12 = 999.0 prints 999
nl =nl-1
Je,nl >0 tests for last cycle
H halt
(31) starts programme

6l

The final instruction illustrates an interesting innovation: An
instruction or group of instructions in parentheses was obeyed
irmediately, rather than added to the program. Thus " (jl) " jumps
to statement 1.

This language is not at a very high level, but Brooker's main
concern was simplicity and a desire to keep information flowing
smoothly to and from the electrostatic high-speed memory. Mark I's
electrostatic memory consisted of only 512 20-bit words, and it was
necessary to make frequent transfers from and to the 32K-word drum;
floating-point subroutines could compute while the next block of
program was being read in. Thus two of the principal difficulties
facing a programmer -- scaling and coping with the two-level store --
were removed by his Autocode system, and it was heavily used. For

example:

Since its completion in 1955 the Mark I Autocode has been used

extensively for about 12 hours a week as the basis of a computing

service for which customers write their own programs and post

them to us. [BR 58, p. 16]

Gary E, Felton, who developed the first Autocode for the Ferranti

PEGASUS, says in [FE 60] that its specification "clearly owes much to

Mr. R. A. Brooker." 1Incidentally, Brooker's next Autocode (for the

Mark II or 'Mercury' computer, first delivered in 1957) was considerably

more ambitious; see [BR 58, BR 58', BR 60].

65

Russian Programming Programs.

Work on automatic programming began in Russia at the Mathematical
Institute of the Soviet Academy of Sciences, and at the Academy's
computation center, which originally was part of the Institute of Exact
Mechanics and Computing Technique. The early Russian systems were
appropriately called Programming Programs [Programmiruinoshchye Programmy]
-- or MM for short. An experimental program TITi-1 for the STRELA computer
was constructed by E. Z. Iiﬂl'lbimski:'\: and S. S. Kamynin during the summer
of 195k4; and these two authors, together with M. R. Shura-Bura,

E. L. Luld'lovi‘tskai’z;, and V. S. Shtarkman, completed a production compiler
called TMM-2 in February, 1955. This compiler is described in [KL 58].
Meanwhile, A. P. Ershov began in December 1954 to design another programming
program, for the BESM computer, with the help of L. N. Korolev,

L. D. Panova, V. D. Poderinugin and V. M. Kurochkinj; this compiler, called
simply T, was completed in March, 1956, and it is described in Ershov's
book [ER 58]. A review of these developments appears in [KO 58]. _

In both of these cases, and in the later system /-3 completed in 1957
(see [ER 58']), the language was based on a notation for expressing

n
programs developed by A. A. Liapunov in 1953. Li“apunov's operator

66

schemata [LJ 58] provide a concise way to represent program structure
in a linear manner; in some ways this approach is analogous to
the ideas of Curry we have already considered, but it is somewhat
more elegant and it became widely used in Russia.

Let us consider first how the TPK algorithm (exclusive of input-
output) can be described in T-2, The overall operator scheme for the

program would be written

6 L 11 9
AlﬁjzeAaRhl_As _\A6R7%A8N9r7lAlo—‘A11F12R15|?N1h .

n
Here the operators are numbered 1 thru 14 ; and r_, [_ mean
m

respectively " go to operator n if true, go to operator m if false ",
i
while _l B __[are the corresponding notations for "coming from operator i'".
i

This operator scheme was not itself input to the programming pfogram
explicitly, it would be kept by the programmer in lieu of a

flowchart. The details of operators would be written separately and

input to TM-2 after dividing them into operators of types R (relational),
A (arithmetic), 2 (dispatch), F (address modification),

0 (restoration), and N (nonstandard, i.e., machine language). In the

above case, the details are essentially this:

Ry, . Py 6, 5 [if p; is true go to 6 else to 5]
RY' Po’ 8, 10 [if p, is true go to 8 else to 10]
Rz Dz} 14, 2 [if Py is true go to 1b else to 2]
Py~ cs < v, [0 < x]

. Lhoo <
P, c, < v3 (400 < y]
P - Ve < g [i < 0]
A - cp = Vg [10 =1, i.e., set i equal to 10]
A3° vy =Y, [ai = x|
AS. Cz=V, =V, [0-x = x]

67

Ag- (/'Vé)+(c5~vl-vl-vl) = v, [/ x)+(5-a;-a;-8,) =]

Ag. Vg = Vi Cp = v5 (1= bi’ 999 = ci]

Ags Vg =V Vg =g [1 =b.,, ¥y = ci]

App- VgmCy = Vg [i-1 = 1]

Zye V5 35 6 [dispatch a; to special cell, in operators 3 thru 6]
FlE' Vs 2, 10 [modify addresses depending on parameter i, in

operators 2 thru 10]
BP 11 [go to operator 11]
Njj- OST [stop]
Dependence on parameter Ve VsV, -1; V) Ves +2

[when i changes, v, goes down by 1, Vh thru v5 go up 2]

1
cy- .l-lOl [1]
cpr 999107 [999]
cB. 0]
ee Wkel0? [400]
.
Cs .5+10 [5]
Working cells: 100,119 [compiled program can use locations 100-119 for temp
storage]
vy 130 [initial address of ai]
V. 131 [address of x]
V- 132 [address of y]
vy. 133 [initial address of bi]
Vs - 134 [initial address of ci]
Vg 154 [address of i]

Operator 1 initializes i , then operators 2 thru 13 are the loop on i .

Operator 2 moves a; to a fixed cell, and makes sure that operators 3

68

thru 6 use this fixed cell; this programmer-supplied optimization
means that fewer addresses in instructions have to be modified when

1 changes. Operators 3 thru 5 set x = Iai[, and operator 6 sets

y = f(ai) . (Note the parentheses in operator 6; precedence was not
recognized.) Operators 7 thru 10 store the desired outputs in memory;
operators 1l and 12 decrease i and appropriately adjust the addresses
of quantities that depend on i . Operators 13 and 14 control looping
and stopping.

The algorithms used in TT-2 are quite interesting from the standpoint
of compiler history; for example, they avoided the recomputation of
common subexpressions within a single formula. They also produced
efficient code for relational operators compounded from a series of

elementary relations, so that, for example,
(b v(pyps) VEy) *P5 ViPg

would be compiled as

Ershov's TIT language improves on -2 in several respects, notably
(a) the individual operators need not be numbered, and they may be
intermixed in the natural sequence; (b) no address modification need
be specified, and there is a special notation for loops; (c) the
storage for variables is allocated semi-automatically; (d) operator
Precedence can be used to reduce the number of parentheses within
expressions. The TPK algorithm looks like this in TT:

69

n
1 Massiv a (11 iacheek) [declares an array of 11 cells]
2 ay = 0 [address in array al
3 8y = -1.j+10 [address in array a depending on j]
4 J: jnach = 0, Jkon = 11 [information on loop indexes]
5 o, 11, 10, 5, y, 400, 999, i [1ist of remaining constants and variables]
6 (Ma,080,0,25); (Mp,0,01,0);
T [lO-j:oi;/modaj-FExag::y;
i
0101
8 R(y,0102; [(L0O,));
010

9 \ Vyd i, = 05 Vyd 999, = O; I 5

0101 ’
10 | Vyd i, = 0; Vyd y, = 03 | 13 STOP

0102 0103

After declarations on lines 1 thru 5, the program appears here on lines §_
thru 10. In TIT each loop was associated with a different index name, and
the linear dependence of array variables on loop indices was specified

as in line 3; note that aJ. does not mean the j-th element of a , it
means an element of a which depends on j . The commands in line 6

are BESM machine language instructions which read 11 words into memory
starting at ay - Line 7 shows the beginning of the loop on J , which
ends at the "]" on line 10; all loop indices must step by +1 . (The
initial and final-plus-one values for the Jj loop are spevcified on line L.)
Line 8 is a relational operator which means, "If y is in the interval
(400,) , i.e., if y > LOO , go to label 0101 ; otherwise go to 0102 ."

Labels were given as hexadecimal numbers, and the notation |_ indicates
n

the program location of label n . The " Vyd" instruction in lines 9 and
10 means convert to decimal, and " , = O " means print. Everything
else should be self-explanatory.

70

The Russian computers had no alphabetic input or output, so the
programs written in TIT-2 and TIT were converted into numeric codes.
This was a rather tedious and intricate process, usually performed by
two specialists who would compare their independent hand-transliterations
in order to prevent errors. As an example of this encoding process,
here is how the above program would actually have been converted into
BESM words in the form required by M. (The hexadecimal digits were
written 0,1,...,9,0,1,...,5 . A 39-bit word in BESM could be represented

either in instruction format,
bbh bghh bghh bghh

where b denotes a binary digit (0 or 1), g a quaternary digit
(0,1,2, or 3), and h a hexadecimal digit; or in floating-binary

numeric format,
k .
+ 2 ,hh hh hh hh
where k 1is a decimal number between -32 and +31 inclusive. Both of

these representations were used at various times in the encoding of a

T program, as shown below.)

Location Contents Meaning
o7 000 0000 0000 0000 no space needed for special subroutines
08 000 0000 0000 0013 last entry in array descriptor table
09 000 0000 0000 0015 first entry for constants and variables
00 000 0000 0000 0012 last entry for constants and variables
ol 000 0000 0000 0025 base address for encoded program scheme
02 000 0000 0000 0042 last entry of encoded program
03 000 0000 0000 0295 base address for "block y "
ok 000 0000 0000 02I5 base address for "block o "
05 000 0000 0000 0235 base address for "block B "
10 015 0000 0001 0000 a = array of size 11
11 000 1001 0000 0000 coefficient of -1 for linear dependency
12 21, 00 00 00 00 aO = 0 relative to a
13 22, 14 00 00 00 a = -1.j+10 relative to a
1k 000 0015 0016 0000 j = loop index from O to 11

71

Location Contents

15
16
17
18
19
10
11
12
30
31
32
33
3L
35
36
37

, 00 00 00 00
10 00 00 00
00 00 00 00
00 00 00 00
28 00 00 00
59 20 00 00

0000 0000 0000

0000 0000 0000

0080 0000 0012

0000 0001 0000

0014 0000 0000

17 ok 1k 08

11 53 53 13

0% 18 09 13

02 08 153 00

0000 0012 0102

0019 0000 0101
0101 0000 0000
54 11 07 00
54 10 07 00

1 0000 0000 0103

0102 0000 0000
54 11 07 00
54 13 07 00
0103 0000 0000

5 1355 1355 1355
5 0000 0000 0000

Meaning

0

11

10

5

Tele)

999

i

y

(Ma., 080, 0, ao)

(Mo,0,01,0)

L5

10- § =

i / mod aj

; 5 x 8
>y

R(y, 0102;
0101

r___- (hOO,m))

0l01
vya i

Vyd 999 ,= O
0103

Fe

0102
Vyd 1 ,» 0

Vyd y , 0

,= 0

0103

STOP

72

The BESM had 102Lk words of core memory, plus some high-speed
read-only memory, and a magnetic drum holding 5 x 1024 words. The T
compiler worked in three passes (formulas and relations, loops, final
assembly), and it contained a total of 1200 instructions plus 150
constants. Detailed specifications of all its algorithms were published
in [ER 58]; Ershov was aware of Rutishauser's work [p. 9], but he gave

no other references to non-Russian sources.

A Western Development.
L e e g S Y S e o o i

Computer professionals at the Boeing Airplane Company in Seattle,
Washington, felt that "In this jet age, it is vital to shorten the time
from the definition of a problem to its solution." So they introduced
BACAIC, the Boeing Airplane Company Algebraic Interpretive Computing
system for the IBM 701 computer.

BACAIC was an interesting language and compiler developed by
Mandalay Grems and R. E. Porter, who began work on the system in the
latter part of 1954; they presented it at the Western Joint Computer
Conference held in San Francisco, in Februarv, 1956 [GP 56]. Although
the " I" in BACAIC stands for "Interpretive", their system actually
translated algebraic expressions into machine language calls on
subroutines, with due regard for parentheses and precedence, so we
would now call it a compiler.

The BACAIC language was unusual in several respects, especially in
its control structure which assumed one-level iterations over the entire
program; & program was considered to be a nearly straight-line computation
to be applied to various "cases" of data. There were no subscripted
variables; however, the TPK algorithm could be performed by inputting

the data in reverse order using the following program:

>

I-K1*I
X

WHN X GRT K2 USE 5
K2-X*2

SRT X+ K3 . X PWR Kb
WHN 5 GRT K5 USE 8
TRN 9

K6%5

TAB I 5

O O ~N O VM &= W o

Here " *" is used for assignment, " ." for multiplication; variables
are given single-letter names (except K), and constants are denoted
by KL thru K99 . The above program is to be used with the following
input data:

Case 1. KL =1.0 K2 =0.0 K3 =5.0 Kt =3.0 K5 = L00.0 K6 = 999.0
I=11.0 X =a

10
C 2. X =a
ase 9
Case 3. X = a8
Case 11. X = ao .

Data values are identified by name when input; all variables are zero
initially, and values carry over from one case to the next unless changed.
For example, expression 1 means " I-1 - I ", so the initial value I = 11
needs to be input only in Case 1.

Expressions 2, 3, L4 ensure that the value of expression 2 is the
absolute value of X when we get to expression 5. (The "2" in
expression 4 means expression 2, not the constant 2 .) Expression 5
therefore has the value f(X) .

A typical way to use BACAIC was to print the values associated with
all expreséions 1,2,... ; this was a good way to locate errors.
Expression 7 in the above program is an unconditional jump; expression 9
says that the value of I and expression 5 should be printed.

The BACAIC system was easy to learn and to use, but the language
was too restrictive for general-purpose computing. One novel feature
was its "check-out mode", in which the user furnished hand-calculated data

and the machine would print out only the discrepancies it found.

T4

According to [BE 57], BACAIC became operational also on the
IBM 650 computer, in August of 1956.

Kompilers,
[a¥aa e a o arar o

Another independent development was taking place almost simultaneously
at the University of California Radiation Laboratory in Livermore,
California; this work has apparently never been published, except as an
internal report [EK 55]. In 1954, A. Kenton Elsworth began to experiment
with the translation of algebraic equations into IBM 701 machine language,
and called his program KOMPILER 1; at that time he dealt only with
individual formulas, without control statements or constants or input/output.
Elsworth and his associates Robert Kuhn, Leona Schloss, and Kenneth Tiede
went on to implement a working system named KOMPILER 2 during the following
year. This system is somewhat similar in flavor to 17-2, except that it
is based on flow diagrams instead of operator schemata. They characterized

its status in the following way:

In many ways Kompiler is an experimental model; it is therefore
somewhal limited 1n applications, For example it is designed to
handle only full-word data and is restricted to fixed-point
arithmetic. At the same time every effort was made to design a
workable and worthwhile routine: the compiled code should approach
very closely the efficiency of a hand-tailored code; learning to
use it should be relatively easy; compilation itself is very

fast. [EK 55]

In order to compensate for the fixed-point arithmetic, special
features were included to facilitate scaling. As we will see, this is
perhaps KOMPILER 2's most noteworthy aspect.

To solve the TPK problem, let us first agree to scale the numbers

by writing

Furthermore we will need to use the scaled constants

V = 5.7 s, F o= 1400.2~10 ;, N = 999.2‘10 y, W o= 1.073°

The next step is to draw a special kind of flow diagram for the program;

75

1

CARD constants Read values of constants and initial
value of I from a data card.
2
CARD A:L Read AO, ceoy AlO from two more dats cards.
I
@—' V\Ailb-2'5 v 2 oy Calculate Y.
i

L
>
(F:Y = Go to 6 if LOO >y.
<
54
N=Y Set y to 999.
6
@— PRINT i,y Print answer.
L~
12072 1 Decrease i by 1.

Decrease address of Ai by 2

wherever it appears.

Return to 3 if i > 0.,

Stop the machine,.

76

The third step is to assign the data storage, for example as follows:
61=1,63=Y, 65=V, 67=F, 69=N, 7L =W;
81 =4y, =4, «o., 0L =4, .
(Addresses in the IBM 70l go by half words, but variables in KOMPILER 2

occupy full words. Address 61 denotes halfwords 60 and 61 in the

"second frame" of the memory.)

The final step is to transcribe the flow-diagram information into
a fixed format designated for keypunching., The source input to
KOMPILER 2 has two parts: the so-called "flow diagram cards", one
card per box in the flow diagram, and the "algebraic cards", one per

complex equation. In our case the flow diagram cards are

1CARD 61 2 235 0 103 310 310 135 0 61
2CARD 81 2 310 310 310 310 310 310 310 95 14
3CALC 101 8 65 w01 8 63

LTRPL 67 63 6

5PLUS 69 63

6PRNT 61 63 2 1 35 10

TMINS 71 61 61

8DECR 2

9TRPL 6L Z 3
10STOP

and the algebraic cards are

1*ACARD
2*%APRNT
3 ASRTAABSA, -05+VA3 ., +13=Y

Here is a free translation of the meaning of the flow diagram cards:

1. Read data cards into locations beginning with 61 in steps of 2. The

words of data are to be converted using respective scale codes 235,0,103,

««+,0 5 stop reading cards after the beginning location has become 61 ,

i.e., immediately. (The scale code ddbb means to take the 10-digit

T

data as a decimal fraction, multiply by lOdd , convert to binary,
and divide by 2bb . In our case the first input datum will be
punched as 1000000000 , and the scale code 235 means that this
is regarded first as (lO.OOOOOOOO)lo and eventually converted to
(.OO...OlOlO)2 = 10-2_35 , the initial value of I . The initial
value of N , with its scale code 310 , would therefore be punched
9990000000 . Up to seven words of data are punched per data card.)

2. Read data cards into locations beginning with 81 in steps of 2.
The words of data are to be converted using respective scale codes
310,310, ...,310 ; stop reading cards after the beginning location
has become 95. The beginning location should advance by 1k
between data cards (hence exactly two cards are to be read).

3. Calculate a formula using the variables in the respective locations
101 (which changes at step 8); 65; 101 (which changes at step 8);
and 63.

4, If the contents of location 67 minus the contents of location 63
is nonnegative, go to step 6.

5. Store the contents of location 69 in location 63 .

6. Print locations 61 through 63, with 2 words per line and 1 line
per block. The respective scale factors are 35 and 10.

T Subtract the contents of location 71 from the contents of location 61
and store the result in location 61.

8. Decrease all locations referring to step 8 (cf. step 3) by 2.

9. If the contents of location 61 is nonnegative, go to step 3.

10, Stop the machine.

The first two algebraic cards in the above example simply cause the
library subroutines for card reading and line printing to be loaded with

the object program, The third card is used to encode

Viag| -2 rva) 2P -y .
The variable names on an algebraic card are actually nothing but dummy
placeholders, since the storage locations must be specified on the
corresponding CALC card. Thus, the third algebraic card could also

have been punched as

78

3 ASRTAABSX. ~05+XX3 . +13=X

without any effect on the result.

KOMPILER 2 was used for several important production programs
at Livermore. By 1959 it had been replaced by KOMPILER 3, a rather
highly developed system for the IBM 704 which used three-line format
analogous to that of MAC (but apparently designed independently).

79

A Declarative Language.

During 1955 and 1956, E. K. Blum at the U. S. Naval Ordnance
Laboratory developed a language of a completely different type. This
language ADES (Automatic Digital Encoding System) was presented at the
ACM national meetings in 1955 [when no proceedings were published] and
1956 [BL 56"], and at the ONR symposium in 1956 [BL 56'].

The ADES language is essentially mathematical in structure. It
is based on the theory of the recursive functions and the schemata

for such functions, as given by Kleene. [BL 56', p. 72]

The ADES approach to automatic programming is believed to be
entirely new. Mathematically, it has its foundations in the
bedrock of the theory of recursive functions. The proposal
to apply this theory to automatic programming was first made
by C. C. Elgot, a former colleague of the author's. While at
the Naval Ordnance Laboratory, Elgot did some research on a
language for automatic programming. Some of his ideas were
adapted to ADES. [BL 56, p. iii]

A full description of the language was given in a lengthy report
[BL 56]; it is rather difficult to understand several aspects of ADES,
and we will content ourselves with a brief glimpse into its structure
by considering the following ADES program for TPK. (The conventions
of [BL 57'] are followed here since they are slightly simpler than the
original proposals in [BL 56].)

80

1 aoll:qolL

2 fSO =+ / abs eyt 5 C1 Cq Cy»
3 dlebl = ro,

4 d.22b2 =< b3 Loo, b5, 999,

5 b3 = f50 8y Ty

6 ry = -10 g,

T VYO 95 10 bo = fo bl b2,

Here is a rough translation: Line 1 is the so-called "computer table",
meaning that input array aq has 11 positions, and the "independent
index symbol" 4 takes 11 values. Line 2 defines the auxiliary function
fSO , our f(t) ; arithmetic expressions were defined in Zukasiewicz's
parentheses-free notation, now commonly known as "left Polish". Variable

c, here denotes the first parameter of the function. (Incidentally,

"iight Polish" notation seems to have been first proposed shortly
afterwards by C. L. Hamblin in Australia, cf. [HA 57].)

Line 3 states that the dependent variable bl is equal to the dependent
index ry the " d12 " here means that this is to be output as component 1
of a pair. Line 4 similarly defines b, , which is to be component 2.
55h0031f£b33553999 ".
(Such branch equations are an embryonic form of the conditional expressions

introduced later by McCarthy into LISP and ALGOL. Blum remarked that the

This line is a "branch equation" meaning " if b
~o

equation " < x a, f, g "

could be replaced by ¢ f + (1-p)g , where ¢

is a function that takes the value 1 or O according as X <a or
x>a ., [BL56, p. 16] "The function ¢ is a primitive recursive
function, and could be incorporated into the library as one of the given
functions of the system. Nevertheless, the branch equation is included

in the language for practical reasons. Many mathematicians are accustomed
to that terminology, and it leads to more efficient programs." In spite
of these statements, Blum may well have intended that f or g not be

evaluated or even defined when ¢ = O or 1 , respectively.)

81

Line > says that b5 is the result of applying fSO to the Ty -th

element of a. . Line 6 explains that ry is 10-q . Finally, line 7

is a so-calleg "phase equation" which specifies the overall program flow

by saying that bl and b2 are to be evaluated for 45 = 0,1,...,10 .
The ADES language is "declarative" in the sense that the programmer

states relationships between variable quantities without explicitly

specifying the order of evaluation. John McCarthy put it this way, in 1958:

Mathematical notation as it presently exists was developed to
facilitate stating mathematical facts, i.e., making declarative
sentences, A program gives a machine orders and hence is usually
constructed out of imperative sentences., This suggests that it

will be necessary to invent new notations for describing complicated
procedures, and we will not merely be able to take over intact the
notations that mathematicians have used for making declarative

sentences. [ER 58', p. 275]

The transcript of a 1965 discussion of declarative vs. imperative languages,
with comments by P. Abrahams, P. Z. Ingerman, E., T. Irons, P. Naur,

B. Raphael, R, V. Smith, C. Strachey, and J. W. Young, appears in

Comm. ACM 9 (1966), pp. 155-156, 165-166,

Although ADES was based on recursive function theory, it did not
really include recursive procedures in the sense of ALGOL 60; it dealt
primarily with special types of recursive equations over the integers,
and the emphasis was on studying the memory requirements for evaluating
such recurrences,

An experimental version of ADES was implemented on the IBM 650,
and described in [BL 57, BL 57']. Blum's translator scheme was what
we now recognize as a recursive approach to the problem, but the recursion
was not explicitly stated; he essentially moved things on and off various
stacks during the course of the algorithm., This implementation points
up the severe problems people had to face in those days: The ADES
encoder took 3500 instructions while the Type 650 calculator had room
for only 2000, so it was necessary to insert the program card decks
into the machine repeatedly, once for each equation! Because of further
machine limitations, the above program would have been entered into the

computer by punching the following information onto six cards:

82

AOO 011 P02 @O 011 POl F50 EOO FO2 F20
FO6 CO1 FOL FO4 FOL 005 CO1 CO1 CO1 POl
D12 BO1L EOO ROO PO1 D22 BO2 EOO Fll BO3
LoO PO1L BO3 POl 999 PO1 BO3 EOO F50 AO0O
ROO PO1 ROO EOO FO3 010 Q0 PO1 PO3 000
Q@O0 010 BOO EOO FOO BO1 BO2 POL - -

Thus Pnn was a punctuation mark, Fnn a function code, etc. Actually
the implemented version of ADES was a subset that did not allow
auxiliary f-equations to be defined, so the definition of b, in

3
line 5 would have been written out explicitly.

The IT.

In September, 1955, four members of the Purdue University
Computing Laboratory -- Mark Koschman, Sylvia Orgel, Alan
Perlis, and Joseph W. Smith -- began a series of conferences
to discuss methods of automatic coding. Joanne Chipps joined
the group in March, 1956. A compiler, programmed to be used

on the Datatron, was the goal and result. [OR 58, p. 1]

Purdue received one of the first Datatron computers, manufactured by
Electrodata Corporation (cf, J. ACM 2 (1955), p. 122, and [PE 55]); this machine
was later known as the Burroughs 205. By the summer of 1956, the Purdue
group had completed an outline of the basic logic and language of its
compiler, and they presented some of their ideas at the ACM national
meeting [CK 56]. It is interesting to note that their 1956 paper
used both the words "compiler" and "statement" in the modern sense;

a comparison of the ONR 1954 and 1956 symposium proceedings makes it
clear that the word "compiler" had by now acquired its new meaning.
Furthermore the contemporary FORTRAN manuals [IB 56, IB 57] also used
the term "statement" where [IB 5k] had said "formula". Terminology was
crystallizing.

At this time Perlis and Smith moved to the Carnegie Institute of
Technology, taking copies of the flowcharts with them, and they adapted
their language to the IBM 650 (a smaller machine) with the help of
Harold Van Zoeren. The compiler was put into use in October, 1956,

(cf. [PS 57, p. 102]), and it became known as IT, the Internal Translator.

83

Compilation proceeds in two phases: 1) translation from an IT
program into a symbolic program, PIT and 2) assembly from a PIT
program into a specific machine coded program, SPIT. [PS 57', p. 1.23]

The intermediate "PIT" program was actually a program in SOAP language [PM 551,
the source code for an excellent symbolic assembly program for the IBM 650.
Perlis has stated that the existence of SOAP was an important simplifying
factor in their implementation of IT, which was completed about three

months after its authors had learned the 650 machine language.

This was the first really useful compiler; IT and IT's derivatives were
used successfully and frequently in hundreds of computer installations until
the 650 became obsolete. (Indeed, R. B. Wise stated in October, 1958
that "the IT language is about the closest thing we have today to the universal
language among computers.'" [WA 58, p. 131]) The previous systems we have
discussed were important steps along the way, but none of them had the
combination of powerful language and adequate implementation and documentation
needed to make a significant impact in the use of machines. Furthermore, IT
proved that useful compilers could be constructed for small computers
without enormous investments of manpower.

Here is an IT program for TPK:

READ
3,11,10,-1,0,
Yl « "20E, AC(I1+1)"
+(5x(c(11+1)*3))

G3 IF 400.0 > Y1
Yl < 999

3: TI1 TYl

10: H

Fach statement has an identifying number, but the numbers do not have to
be in order. The READ statement does not specify the names of variables
being input, since such information appears on the data cards themselves.
Floating-point variables are called Y1,Y2,... or C(l,C2,... ; the above
program assumes that the input data will specify eleven values for Cl
thru C11.

Statement number 2 designates an iteration of the following program through
statement number 3 inclusive; variable Il runs from 10 in steps of -1
down to O, Statement 5 sets YL to f(CIl+l) 5 the notation " 20E,x "

8l

is used for "language extension 20 applied to x", where extension 20
happens to be the floating-point square root subroutine. Note the use
of mixed integer and floating-point arithmetic here. The redundant
prarentheses emphasize that IT did not deal with operator precedence,
although in this case the parentheses need not have been written since
IT evaluated expressions from right to left.

The letter A is used to denote absolute value, and * means
exponentiation. Statement 6 goes to 3 if Y1 < LOO ; and statement 3
outputs Il and Y1 . Statement 10 means "halt".

Since the IBM 650 did not have such a rich character set at the
time, the above program would actually be punched onto cards in the
following form -- using K for comma, M for minus, @ for quote,

I, and R for parentheses, etc.:

0001 READ F
0002 3K T1K 10K MLK OK F
0005 Y1 Z Q 20EK ACLI1SIR Q F
0005 5 15 X LCLLIL1SIK P 3RR I
0006 G3 IF L0OJO W Y1 F
0006 Y1 Z 999 F
0003 TI1 Tyl F

0010 H FF

The programmer also supplied a "header card", stating the limits on
array subscripts actually used; in this case the header card would

say 1 I wvariable, 1 Y variable, 11 C variables, 10 statements.
(It was possible to "go to" statement number n, where n was the value
of any integer expression, so an array of statement locations was kept
in the running program.)

The Purdue compiler language discussed in [CK 56] was in some respects
richer than this, it included the ability to type out alphabetic information
and to define new extensions (functions) in source language. On the other
hand, [CK 56] did not mention iteration statements or data input. Joanne
Chipps and Sylvia Orgel completed the Datatron implementation in the
sumer of 1957; the language had lost the richer features in [CK 56], however,

85

probably since they were unexpectedly difficult to implement. Our
program in the Purdue Compiler language [OR 58] would look like this:

input i0 y0 ¢l0 sl0 f [maximum subscripts used]
e "80oe" f [read input]

2 s i0=10T°F [set io = 10]

5 s yoO = "200e, aci0"+(5x(ciOp3)) f

6 r g8, r yo <400.0 f [go to 8 if Vo < 400.0]
7T s y0o=99 f

8 o io f [output io]

9 o yof [output yo]

b s i0 =i0-1f

3 r g, r0<iof [go to 5 if iy > 0]
10 h f [halt]

Note that subscripts now may start with O , and that each statement
begins with a letter identifying its type. There are enough differences

between this language and IT to make mechanical translation nontrivial.

FORTRAN Arrives.

During all this time the ongoing work on FORTRAN was widely publicized.
Max Goldstein may have summed up the feelings of many people when he made
the following remark in June, 1956: "As far as automatic programming
goes, we have given it some thought and in the scientific spirit we
intend to try out FORTRAN when it is available. However ..." [GO 56, p. 40]

s
the history of programming languages, namely a language description which
was carefully written and beautifully typeset, neatly bound with a glossy

cover, It began thus:

This manual supersedes all earlier information about the Fortran

system. It describes the system which will be made available during
late 1956, and is intended to permit planning and Fortran coding in
advance of that time. [IB 56, p. 1]

Object programs produced by Fortran will be nearly as efficient

as those written by good programmers. [p. 2]

86

"Late 1956" was, of course, a euphemism for April, 1957. Here is how
Saul Rosen described FORTRAN's debut:

Like most of the early hardware and software systems, Fortran
was late in delivery, and didn't really work when it was
delivered. At first people thought it would never be done.
Then when it was in field test, with many bugs, and with some
of the most important parts unfinished, many thought it would
never work. It gradually got to the point where a program

in Fortran had a reasonable expectancy of compiling all the
way through and maybe even of running. [RO 6L]

In spite of these difficulties, it is clear that FORTRAN I was
worth waiting for; it soon was accepted even more enthusiastically

than its proponents had dreamed.

A survey in April of this year [1958] of twenty-six 70L4 installations
indicates that over half of them use FORTRAN for more than half

of their problems. Many use it for 80% or more of their work
(particularly the newer installations) and almost all use it

for some of their work. The latest records of the 704 users:!
organization, SHARE, show that there are some sixty installations
equipped to use FORTRAN (representing 66 machines) and recent

reports of usage indicate that more than half the machine

instructions for these machines are being produced by FORTRAN.

[BA 58, p. 246]

On the other hand, not everyone had been converted. The second
edition of programming's first textbook, by Wilkes, Wheeler, and Gill,
was published in 1957, and the authors concluded their newly-added
chapter on "automatic programming" with the following cautionary

remarks:

87

The machine might accept formulas written in ordinary
mathematical notation, and punched on a specially designed
keyboard perforator. This would appear at first sight to
be a very significant development, promising to reduce
greatly the labor of programming. A number of schemes of
formula recognition have been described or proposed, but

on examination they are found to be of more limited utility
than might have been hoped, ... The best that one could
expect a general purpose formula-recognition routine to do,
would be to accept a statement of the problem after it had
been examined, and if necessary transformed, by a numerical
analyst. ... Even in more favorable cases, experienced
programmers will be able to obtain greater efficiency by

using more conventional methods of programming. [WW 57, pp. 136-137]

An excellent paper by the authors of FORTRAN I, describing both the language

and the organization of the compiler, was presented at the Western Joint Computer

Conference in 1957 [BB 57]. The new techniques for global program flow analysis

and optimization, due to Robert A, Nelson, Irving Ziller, Lois M, Haibt, and

Sheldon Best, were particularly important. By expressing TPK in FORTRAN I

we can see most of the language changes that had occurred:

10

THE TPK ALGORITHM, FORTRAN STYLE
FUNF(T) = SQRTF(ABSF(T))+5.0%¥T*%3
DIMENSION A(11)

FORMAT (6F12.4)

READ 1, A

DO 10 J = 1,11

I=11-J

Y = FUNF(A(I+1))

TF (400.0-Y)4,8,8

PRINT 5, I

FORMAT (110, 10H TOO LARGE)

GO TO 10

PRINT 9, I, Y

FORMAT(I10, Fl12.7)

CONTINUE

STOP 52525
88

The chief innovations are

(1) Provision for comments: No programming language designer had thought
to do this before! (Assembly languages had comment cards, but
programs in higher-level languages were generally felt to be self-
explanatory.)

(2) Arithmetic statement functions were introduced. These were not
mentioned in [IB 56], but they appeared in [BB 57] and (in detail)
in the Programmer's Primer [IB 57, pp. 25, 30-31].

(3) Formats are provided for input and output. This feature, due to
Roy Nutt, was a major innovation in programming languages; it
probably had a significant effect in making FORTRAN popular since
input/output conversions were otherwise very awkward to express
on the 70k4.

(4) Lesser features not present in [IB 5L4] are the CONTINUE statement,
and the ability to display a five-digit octal number when the
machine halted at a STOP statement.

MATH-MATTC and FLOW-MATTC.

Meanwhile, Grace Hopper's programming group at UNIVAC had also been busy.
They had begun to develop an algebraic language in 1955, a project that was
headed by Charles Katz, and the compiler was released to two installations for
experimental tests in 1956, (Cf. [BE 57], p. 112.) The language was 6riginally

called AT-3; but it received the catchier name MATH-MATIC in April, 1957, when
its preliminary manual [AB 57] was released. The following program for TPK
gives MATH-MATIC's flavor:

(1) READ-ITEM A(11) .

(2) VARY I 10(-1)0 SENTENCE 3 THRU 10 .
(3) J=1I+l .

(%) Y =18@R |A(9)] + S*A(J)5 .

(5) IF Y > Loo, JUMP TO SENTENCE 8 .
(6) PRINT-OUT I, Y .

(7) JUMP TO SENTENCE 10 .

(8) z=99%.

(9) PRINT-OUT I, Z .

(10) IGNORE .

(11) sTOP .

89

The language was quite readable; note the vertical bar and the superscript
% in sentence (4), indicating an extended character set that could be
used with some peripherals. But the MATH-MATIC programmers did not share
the FORTRAN group's enthusiasm for efficient machine code; they translated
MATH-MATIC source language into A-3 (an extension of A-2), and this
produced extremely inefficient programs, especially considering the fact
that arithmetic was all done by floating-point subroutines. The UNIVAC
computer was no match for an IBM 704 even when it was expertly programmed,
so MATH-MATIC was of limited utility.

The other product of Grace Hopper's programming staff was far more
influential and successful, since it broke important new ground. This
was what she originally called the Data-Processing compiler in January,
19555 it was soon to be known as "B-0", later as the "Procedure
Translator" [KM 57], and finally as FLOW-MATIC [HO 58, TA 60]. This
language used English words, somewhat as MATH-MATIC did but more so,
and its operations concentrated on business applications. The following

examples are typical of FLOW-MATIC operations:

(1) COMPARE PART-NUMBER (A) TO PART-NUMBER (B) ; IF GREATER GO TO
OPERATION 13 ; IF EQUAL GO TO OPERATION L ; OTHERWISE GO TO
OPERATION 2 .

(2) READ-ITEM B ; IF END OF DATA GO TO OPERATION 10 .

The allowable English templates are shown in [SA 69, pp. 317-322].
The first experimental B-O compiler was operating in 1956 [HO 58,

p. 171], and it was released to UNIVAC customers in 1958 [SA 69, p. 316].

FLOW-MATIC had a significant effect on the design of COBOL in 1959.

A Formula-controlled Computer.

At the international computing colloquium in Dresden, 1955, Klaus Samelson
presented the rudiments of a particularly elegant approach to algebraic
formula recognition [SA 55], improving on Bohm's technique. Samelson and
his colleague F. L. Bauer developed this method during the ensuing years,

and their subsequent paper [SB 59] describing it became well known.

90

One of the first things they did with their approach was to design
a computer in which algebraic formulas themselves were the machine
language. This computer design was submitted to the German patent office
in the spring of 1957 [BS 57], and to the U.S. patent office (with the
addition of wiring diagrams) a year later. Although the German patent was
never granted, and the machines were never actually constructed, Bauer and
Samelson eventually received U.S. Patent 3,047,228 for this work [BS 62].
Their patent describes four possible levels of language and machine., At
the lowest level they introduced something like the language used on today's pocket
calculators, allowing formulas consisting only of operators, parentheses,
and numbers, while their highest level includes provision for a full-
fledged programming language incorporating such features as variables
with multiple subscripts and decimal arithmetic with arbitrary precision.
The language of Bauer and Samelson's highest-level machine is of
principal concern to us here, A program for TPK could be entered on

its keyboard by typing the following:

> 0000.00000000 = ai1l1
2.27 = aillt

LA} o

I\N

5.28764 = alllt
10= 1
Lh* gli+lt = t
J BttSxtxtxt = y
i=0d=1
y > 40O - 77%
18 y=001.00U=y
19 -~ 88
20 Tr* 999 =000 .00d>y
21 88% i-1= i
22 i > -1 - Lhx

5 15 1 16 12 15 15

(This is the American version; the German version would be the same if

all the decimal points were replaced by commas.)

91

The " <:>" at the beginning of this program is optional; it means that
the ensuing statements up to the next label (bh*) will not enter the
machine's "formula storage", they will simply be performed and forgotten.
The remainder of line 1 specifies storage allocation; it says that a is
an ll-element array whose entries will contain at most 12 digits.

Lines 2 through 12 enter the data into array a . The machine also
included a paper tape reader in addition to its keyboard input; and if the
data were to be entered from paper tape, lines 2 through 12 could be
replaced by the code

1l=1
33% eeeee® = ali1t
itl = i

1 <12 - 33%

Actually this input convention was not specifically mentioned in the patent,
but Bauer [BA 76'] recalls that such a format was intended.

The symbols | and +t for subscripts would be entered on the keyboard
but they would not actually appear on the printed page; instead, the
printing mechanism was intended to shift up and down. The equal signs
followed by square boxes on lines 16, 18, and 20 indicate output of a
specified number of digits, showing the desired decimal point location.

The rest of the above program should be self-explanatory, except perhaps
for the B in line 15 which denotes absolute value ("Betrag").

Summary .

We have now reached the end of our story, having covered essentially
every high-level language whose design began before 1957. It is
impossible to summarize all of the languages we have discussed by
preparing a neat little chart; but everybody likes to see a neat little

chart, so here is an attempt at a rough but perhaps meaningful comparison.

92

[
[}
e o
81,19
5 lw g
RS
-] § ‘0
4+ S la e | B
9] « 4+ + [$] (9]
- 42 e 9] = o
» S I &
] @ ot -3 + g R
< o :g £ 4%
Principal hat :3'1 e 8181
Language Author(s) Year b g2 18812 1a First
Plankalkill Zase 1945 XSF | F {D|[AJALJB]C Yrogramaing language, olorarenic oabs
Flow Diagrams Goldstine/ 1946 %06 FlalD |CiB A Acceptud prograrming methodology
von Neumann -
Comrosition Curry 1048 X F {D |C pjcy| ™ Cude gen=ration ulgorithm
Short Code Mauchly 1950 i c (¢ |F | F{B|D High level language inilemented
Tntermediate PL Earks 1950 i A D C AL} T Common sube Jlon mototion
Klarmerausdricke Rutichacser 1951 F I B r C B <) simple code gancraticn, locp erponiicn
Formules i BChm 1951 X FIB |D |C Do Compiler in own longi=ge
Aut:code ! Clennie 1952 ¥ (c tec yc by Vonful compller .
A-2 1 Hopyer 195 i C nogr ¥ c T acro oxpanuel
ilgebraic intervreter Lanirg/ 105 I B A {D |C|a]|®x Cenctants in Jormulas
Zierler
Autocode Brooker 195k %, 0 B | JC AT Jlean Lwo-icvel LLorogc
mr-2 . Kamy™iin/ Sy K Z oo < Doy e nillidllilion
Liubimski¥
1 Ershov 1555 ¥ B JER o R 2 Book abcut az congiler
BACAIC Grems/FPorter | 1955 o A }A |DJFjA]D ixpression-oriented
KOMPILER 2 Elsworth/Kuhn| 1955 S ¢ jc 2 Jjcjc|F Sceling aids
ADES Blunm 1950 Lo D D D C AGF Declarative language
IT Perlis 195 ’ X, F A B C C}|A|B cuccessiul canpiler, change of machine
FORTRAN I Backuc 19506 X, T A | A C ClA LA I/0 formats, global it ization
ATH-1ATIC Katz 1955 T B iA jCjC AU Heavy uce of Dnglish
]
Tatent 3,047,228 Bauer/ 1957 T D 'B D IC 1B C rormula-controiled computer
Samelson !]
I

Table 1

93

Table 1 shows the principal mathematically-oriented languages we
have discussed, together with their chief authors and approximate year
of greatest research or development activity. The "arithmetic" column
shows X for languages that deal with integers, F for languages that
deal with floating-point numbers, and S for languages that deal with
scaled numbers. The remaining columns of Table 1 are filled with very

subjective "ratings" of the languages and associated programming systems

according to various criteria.

Implementation: Was the language implemented on a real computer?

If so, how efficient and/or easy to use was it?

Readability: How easy is it to read programs in the language?
(This includes such things as the variety of symbols usable

for variables, the closeness to familiar notations.)

Control structures: How high-level are the control structures?
Are the existing control structures sufficiently powerful?
(By "high level" we mean a level of abstraction; something

the language has that the machine does not.)

Data structures: How high-level are the data structures? (For

example, can variables be subscripted?)

Machine independence: How much does a programmer need to keep

in mind about the underlying machine?

TImpact: How many people are known to have been directly influenced
by this work at the time?

Finally there is a column of "firsts", which states some new thing(s)

this particular language or system introduced.

The Sequel.

What have we not seen, among all these languages? The most significant
gaps are the lack of high-level data structures other than arrays (except
in Zuse's unpublished language); the lack of high level control structures

other than iteration controlled by an index variable; and the lack of

ok

recursion., These three concepts, which now are considered absolutely
fundamental in computer science, did not find their way into languages
util the 1960's. Our languages today probably have too many features,
but the languages up to FORTRAN T had too few.

At the time our story leaves4off, explosive growth in language
development was about to take place, since the successful compilers
touched off a language boom. Programming languages had reached a stage
when people began to write translators from IT to FORTRAN [GR 58] and
from FORTRAN to IT (cf. [BO 58], who describes the FOR TRANSIT compiler
which was developed by a group of programmers at IBM under the direction
of R. W. Bemer and D. Hemmes). An excellent survey of the state of
automatic programming at the time was prepared by R. W. Bemer [BE 57].

Perhaps the most significant development then in the wind was the
international project attempting to define a "standard" algorithmic
language. Just after the 1955 meeting in Darmstadt, a group of
Furopean computer scientists began to plan a new language (cf. [LE 55]),
under the auspices of the Gesellschaft flir Angewandte Mathematik und
Mechanik (GAMM, the Associalion fur Applied Mathemetics and Mechanics).
They later invited American participation, and an ad hoc ACM committee
chaired by Alan Perlis met several times beginning in January, 1958,
During the summer of that year, Zlirich was the site of a meeting attended
by representatives of the American and European committees: J. W. Backus,
F. L. Bauer, H. Bottenbruch, C. Katz, A. J. Perlis, H. Rutishauser,

K. Samelson, and J. H. Wegstein. (See [BB 58] for the language proposed
by the European delegates.)

It seems fitting to bring our story to a close by stating the TPK
algorithm in the "International Algebraic Language" (IAL, later called
ALGOL) developed at that historic Zirich meeting [PS 58]:

2

procedure TPK (a[]) =: b[];
array (al0:10],b[0:211);
comment given 11 input values a[0],...,a[10], this procedure
produces 22 output values b[0],...,b[21], according
to the classical TPK algorithm;
begin for i := 10(-1)0;
begin y := f(a[il);
£(t) := sqrt(abs(t)) +5 x 1343
if (v > 400); y := 999;
b[20-2xi] :=1i;
b[21-2xi] =y
end;
return;
integer (i)

end TPK

~rro

96

[AB 57]

[AL 54]

(BA 5k]

[BA 58]

[BA 59]

[BA 61]

[BA 76]

[BA 76']
[BB 57]

References

R. Ash, E. Broadwin, V. Della Valle, C. Katz, M. Greene, A, Jenny,
and L. Yu, "Preliminary Manual for MATH-MATIC and ARITH-MATIC
Systems (for Algebraic Translation and Compilation for UNIVAC I
and II)," (Philadelphia, Pa.: Remington Rand Univac, 1957).
Charles W. Adams and J. H. Laning, Jr., "The M.I.T. systems of
automatic coding: Comprehensive, Summer Session, and Algebraic,"
Symposium on Automatic Programming for Digital Computers
(Washington, D.C.: Office of Naval Research, Dept, of the Navy,
1954), L40-68. [Although Laning is listed as co-author, he did

not write the paper or attend the conference; in fact, he states

that he learned of his "co-authorship" only ten or fifteen

years later!]

J. W. Backus, "The IBM 70l Speedcoding system," J.ACM 1 (195k4),

L-6,

J. W. Backus, "Automatic programming: Properties and performance

of FORTRAN.systems I and II," Mechanisation of Thought Processes,
National Physical Laboratory Symposium No. 10, 1958 (London:

Her Majesty's Stationery Office, 1959), 231-255.

J. W. Backus, "The syntax and semantics of the proposed International
Algebraic Language of the Zurich ACM-GAMM conference," Proc, Int.
Conf. Inf. Processing (Paris: UNESCO, 1959), 125-131.

Charles Babbage and his Calculating Engines, ed., by Philip

Morrison and Emily Morrison (New York: Dover, 1961), xxxviii + 400 pp.

John Backus, "Programming in America in the Nineteen Fifties --

some personal impressions," Proc, International Research Conf.

on the History of Computing (Los Alamos, 1976), to appear.
F. L. Bauer, letter to D. E. Knuth dated July 7, 19763 2 pp.

J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. Mitchell
Haibt, H., L. Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan,

H., Stern, I. Ziller, R. A. Hughes, and R. Nutt, "The FORTRAN
automatic coding system," Proc. Western Joint Comp. Conf. (1957),

188-197.

[BB 58] F. L. Bauer, H. Bottenbruch, H. Rutishauser, and K. Amelson,
"Proposal for a universal language for the description or
computing processes," in Computer Programming and Artificial
Intelligence, ed. by John W. Carr, III (Ann Arbor, Mich.:
University of Michigan, College of Engineering, 1958), 353-373,
[Translation of original German draft dated May 9, 1958, in Ziirich.]

[BC 54] Arthur W. Burks, Irving M. Copi, and Don W. Warren, "Languages for
analysis of clerical problems," Engineering Research Institute,
Informal Memorandum 5 (Ann Arbor, Mich.: Univ. of Michigan, 195L),
iii + 2k pp.

[ss}
tz3

5 571 R. W. Bemer, "The status of automatic programming for scientific
problems," Proc., Lth Annual Computer Applications Symposium,
Armour Research Foundation (1957), 107-117.

[BG 53] J. M. Bennett and A, E. Glennie, "Programming for high-speed digital

calculating machines,”" in Faster Than Thought, ed. by B. V. Bowden
(London: Pitman, 1953), 101-113,
[BH 54] John W. Backus and Harlan Herrick, "IBM 70l Speedcoding and other

automatic-programming systems," Symposium on Automatic Programming
for Digital Computers (Washington, D.C.: Office of Naval Research,
Dept. of the Navy, 195L4), 106-113.

[BH 6k] J. W, Backus and W. P. Heising, "FORTRAN," IEEE Trans. Electronic
Comp. EC-13 (196L4), 382-38%.

[BL 56] E. K. Blum, "Automatic Digital Fncoding System II (ADES II),"
NAVORD Report L4209, Aeroballistic Research Report 326, U, S.
Naval Ordnance Laboratory (February 8, 1956), v +45 pp. +
(2+1+7) pp. of appendices.

[BL 56'] E. K, Blum, "Automatic Digital Encoding System, I1I," Symposium on
Advanced Programming Methods for Digital Computers, Washington, D.C.
ONR Symposium Report ACR-15 (1956), T1-76.

[BL 56"] E. K. Blum, "Automatic Digital Encoding System, II (ADES IT),"
Proc. ACM National Conference 6 (1956), paper 29, L4 pp.

[BL 57] E. K. Blum, "Automatic Digital Encoding System II (ADES II),
Part 2: The Encoder," NAVORD Report 4hll, U, S, Naval Ordnance
Laboratory (November 29, 1956), 82 pp. + appendix.

[BL 57'] E. K. Blum and Shane Stern, "An ADES Encoder for the IBM 650
calculator,” NAVORD Report 4412, U. S. Naval Ordnance Laboratory
(December 19, 1956), 15 pp.

98

[BO 52]

[BO 52']

[BO 54]

[BO 58]

[BP 52]

[BR 551

[BR 56]

[BR 58]

[BR 58']

Corrado BShm, "Calculatrices digitales: Du déchiffrage de
formules logico-mathématiques par la machine méme dans la
conception du programme" [Digital computers: On the deciphering
of logical-mathematical formulae by the machine itself during
the conception of the program], Annali di Matematica Pura ed

Applicata (L) 37 (195k4), 175-217.

Corrado Bohm, "Macchina calcolatrice digitale a programma con
programma preordinato fisso con tastiera algebrica ridotta atta
a comporre formule mediante la combinazione dei singoli elementi
simbolici" [Programmable digital computer with a fixed preset
program and with an algebraic keyboard able to compose formulae
by means of the combination of single symbolic elements], Patent
application No, 13567, filed in Milan on October 1, 1952;

26 pp. + 2 tables.

Corrado Bohm, "Sulla programmazione mediante formule" [On
programming by means of formulas], Atti L° Sessione Giornate
della Scienza, suppl. de "La ricerca scientifica" (Rome, 195L4),
1008-101k,

B. C. Borden, "FORTRANSIT, a universal automatic coding system,"
Canadian Conf. for Computing and Data Proc., (Toronto: U, of
Toronto Press, 1958), 349-359,

J. M. Bennett, D. G. Prinz, and M. L. Woods, "Interpretative
sub-routines," Proc. ACM National Conference 2 (Toronto, 1952),
81-87. '

R. A. Brooker, "An attempt to simplify coding for the Manchester
electronic computer," British J, Appl. Physics 6 (1955), 307-311.

[This paper was received in March, 195L.]

R. A. Brooker, "The programming strategy used with the Manchester
University Mark 1 computer," Proc. I.E.E, 103, part B, supplement
(1956), 151-157.

R. A. Brooker, "The Autocode programs developed for the Manchester

Comp, J. 1 (1958), 15-21.
R. A. Brooker, "Some technical features of the Manchester Mercury

University computers,"

AUTOCODE programme," Mechanisation of Thought Processes,
National Physical Laboratory Symposium No, 10, 1958 (London:
Her Majesty's Stationery Office, 1959), 201-229.

99

[BR 60] R. A. Brooker, "MERCURY Autocode: Principles of the Program
Library," Ann. Rev. in Automatic Prog. 1 (1960), 93-110.
[Bs 57] Friedrich Ludwig Bauer and Klaus Samelson, "Verfahren zur

automatischen Verarbeitung von kodierten Daten und Rechenmaschine
zur Ausiibung des Verfahrens," Deutsches Patentamt, Auslegeschrift
1094019 (March 30, 1957), published December, 1960; 26 cols. plus
6 Figs.

[BS 62] Friedrich ILudwig Bauer and Klaus Samelson, "Automatic computing
machines and method of operation," United States Patent Office,
patent 3,047,228 (July 31, 1962); 32 cols. plus 17 Figs.

[BU 50] Arthur W. Burks, "The logic of programming electronic digital
computers, " Industrial Math., 1 (1950), 36-52,

[BU 51] Arthur W. Burks, "An intermediate program language as an aid in

program synthesis," Engineering Research Institute, Report for
Burroughs Adding Machine Company (Ann Arbor, Mich.: Univ. of
Michigan, 1951), ii+15 pp.

[BW 53] R. A. Brooker and D. J. Wheeler, "Floating operations on ‘the
EDSAC," Math. Tables and other aids to Computation 7 (1953), 37-L47.

[BW 72] F. L. Bauer and H., Wossner, "The 'Plankalkiil' of Konrad Zuse:
A forerunner of today's programming languages," Comm., ACM 15
(1972), 678-685,

[CH 36] Alonzo Church, "An unsolvable problem of elementary number
theory," Amer. J., Math., 58 (1936), 3L45-363,

(CK 56] J. Chipps, M. Koschmann, S. Orgel, A, Perlis, and J. Smith,

"A mathematical language compiler," Proc, ACM National Conf. 6

(1956), paper 30, 4 pp.
[CL €1] R. F. Clippinger, "FACT - A Business Compiler: Description and

comparison with COBOL and Commercial Translator," Ann, Rev. in

Auto, Prog., 2 (1961), 231-292,
{CU 48] Haskell B, Curry, "On the composition of programs for automatic

computing,” Naval Ordnance Laboratory Memorandum 9806 (Silver
Spring, Md., 1949); 52 pp. [Written in July, 1948.]

[CU 50] H. B. Curry, "A program composition technique as applied to inverse
interpolation," Naval Ordnance Laboratory Memorandum 10337 (Silver
Spring, Md., 1950); 98 pp. + 3 figs.

100

[cu 50']

[EK 55]

[ER 58]

[ER 58']

[FE 60]

[GoL 52]

[GL 52']

[GL 65]

[GO 54]

[GO 56]

[Go 57]

(GO 72]

H. B. Curry, "The logic of program composition," Applications
scientifigues de la logique mathématique, Actes du 2¢ Colloque

International de Logique Mathématique, 1952 (Paris: Gauthier-

Villars, 1954), 97-102. [Paper written in March, 1950,]

A. Kenton Elsworth, Robert Kuhn, Leona Schloss, and Kenneth Tiede,
"Manual for KOMPILER 2," Univ. of California Radiation Lab.,

Livermore, Calif., report UCRL-4585 (November 7, 1955), 66 pp.

A. P, Ershov, Programmirufashchafa Programma dl{é Bystrodeistvufgshche;
Elektromnoi Schetnol Mashiny (Moscow: Akad. Nauk SSSR, 1958),

116 pp. English translation, Programming Programme for the BESM

Computer (London: Pergamon, 1959), v+ 158 pp.

A. P. Ershov, "The work of the Computing Centre of the Academy
of Sciences of the USSR in the field of automatic programming,"
Mechanisation of Thought Processes, National Physical Laboratory

Symposium No. 10, 1958 (London: Her Majesty's Stationery Office,
1959), 257-278.

G. E. Felton, "Assembly, interpretive and conversion programs for
PEGASUS," Ann. Rev. in Automatic Prog. 1 (1960), 32-57.

A. E. Glennie, "The automatic coding of an electronic computer,"
unpublished lecture notes dated Dec. 14, 1952; 15 pp. [This
lecture was delivered at Cambridge University in February, 1953.]

A. E. Glennie, "Automatic Coding," unpublished manuscript (undated,
probably 1952), 18 pp. [This appears to be a draft of a user's
manual to be entitled "The routine AUTOCODE and its use."]

Alick E. Glennie, letter to D. E. Knuth dated September 15, 1965;
6 pp.

Saul Gorn, "Planning universal semi-automatic coding," Symposium
on Automatic Programming for Digital Computers (Washington, D.C.:
Office of Naval Research, Dept. of the Navy, 1954), 74-83,

Max Goldstein, "Computing at Los Alamos, Group T-1," Symposium on
Advanced Programming Methods for Digital Computers, Washington, D.C.,
ONR Symposium Report ACR-15 (1956), 39-L43,

Saul Gorn, "Standardized programming methods and universal

coding," J. ACM 4 (1957), 254-273.

Herman H. Goldstine, The Computer from Pascal to von Neumann

(Princeton, N. J.: Princeton University Press, 1972), xi +378 pp.

101

[cp 56]

[Gr 58]

[Gv b7]

[HA 52]

[HO 53]

[HO 53']

[HO 55]

[HO 56]

[HO 57]

Mandalay Grems and R. E, Porter, "A truly automatic computing
system," Proc. Western Joint Computer Conf. (1956), 10-21.

Robert M. Graham, "Translation between algebraic coding languages,"
Proc. ACM National Conf, 8 (1958), paper 29, 2 pp.

Herman H., Goldstine and John von Neumann, Planning and Coding

of Problems for an Electronic Computing Instrument: Report on

the Mathematical and Logical Aspects of an Electronic Computing
Instrument (Princeton, N.J.: The Institute for Advanced Study,
1947-1948), Volume 1, iv+69 pp.; Volume 2, iv+ 68 pp.;

Volume 3, iii+23 pp. Reprinted in von Neumann's Collected Works,
ed. by A. H. Taub, Vol. 5 (London: Pergamon, 1963), 80-235,
Staff of the Computation Laboratory [Howard H. Aiken and 55
others], Description of a Magnetic Drum Calculator: The Annals

of the Computation Laboratory of Harvard University 25 (Cambridge,

Mass.: Harvard University Press, 1952), xi +318 pp.

C. L. Hamblin, "Computer languages," Australian J. Science 20, 6
(December 1957), 135-139,

Grace M. Hopper and John W. Mauchly, "Influence of programming
techniques on the design of computers,”" Proc. I.R.E. 41 (1953),
1250-125k,

Grace Murray Hopper, "The education of a computer," Proc. ACM
National Conf, 1 (Pittsburgh, 1952), 243-250.

Grace Murray Hopper, '"The education of a computer," Symp. on
Industrial Appl. of Automatic Computing Equipment (Kansas City,
Mo.: Midwest Research Institute, 1953), 139-1Lk,

Grace M., Hopper, "Compiling routines," Computers and Automation
2, 4+ (May, 195%3), 1-5.

G. M, Hopper, "Automatic coding for digital computers,”

Computers and Automation 4%, 9 (September 1955), 21-2L,

Grace M, Hopper, "The interlude 1954-1956," Symposium on Advanced
Programming Methods for Digital Computers, Washington, D.C.,

ONR Symposium Report ACR-15 (1956), 1-2.

Grace M, Hopper, "Automatic programming for business applications,"
Proc. 4th Annual Computer Applications Symposium, Armour Research
Foundation (1957), 45-50.

102

[HO 58]

[HO 71]

[IB 54]

[IB 56]

[1B 57]

[kA 571

[KL 58]

(K1 57]

[KY 6k4]

[KN 68]

[KN 69]

Grace Murray Hopper, "Automatic programming: present status
and future trends," Mechanisation of Thought Processes,
National Physical Laboratory Symposium No. 10, 1958 (London:
Her Majesty's Stationery Office, 1959), 155-200.

C. A. R. Hoare, "Proof of a program: FIND," Comm. ACM 1L
(1911), 39-45.

Programming Research Group, I.B.M. Applied Science Div.,
"Specifications for The IBM Mathematical FORmula TRANslating
System, FORTRAN," Preliminary report (New York: I.B.M. Corp.,
19%k4), i+29 pp.

J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, H. L. Herrick,
R. A. Hughes, L. B. Mitchell, R, A. Nelson, R. Nutt, D. Sayre,
P. B. Sheridan, H., Stern, I. Ziller, "Programmer's Reference

Manual: The FORTRAN Automatic Coding System for the IBM 70k

EDPM," Applied Science Div. and Programming Research Dept.,

IBM (October 15, 1956), 51 pp.

International Business Machine Corporation, '"Programmer's

Primer for FORTRAN Automatic Coding System for the IBM 704"
(1957), iii+6k pp.

Charles Katz, "Systems of debugging automatic coding," Automatic
Coding, Franklin Institute monograph no. 3 (1957), 17-27.

S S. Kamynin, E., Z. Llub:l.ms}ul, and M, R. Shura-Bura, "Ob
avtomatizatsii programnurovanlla pri pomoshchi programxnlmloshchel
programmy," Problemy Kibemetiki 1 (1958), 135-171.

English translation, "Automatic programming with a programming
programme, " Problems of Cybernmetics 1 (1960), 1L49-191.

Henry Kinzler and Perry M, Moskowitz, "The Procedure Translator --

a system of automatic programming," Automatic Coding, Franklin
Institute monograph no. 3 (1957), 39-55.

Donald E. Knuth, "Backus Normal Form vs. Backus Naur Form,"

Comm. ACM 7 (196k4), 735-736.

Donald E. Knuth, Fundamental Algorithms: The Art of Computer
Programming 1 (Reading, Mass.: Addison-Wesley, 1968), xxi + 634 pp.
Donald E, Knuth, Seminumerical Algorithms: The Art of Computer
Programming 2 (Reading, Mass.: Addison-Wesley, 1969), xi+ 624 pp.

103

[k 72]

(kO 58]

(1A 65]
(1A 76]
[LE 55]

[LJ 58]

(IM 70]

[Lz 54]

[MG 53]

(MO 5L]

Donald E. Knuth, "Ancient Babylonian algorithms," Comm. ACM 15
(1972), 671-677. Errata in Comm. ACM 19 (1976), 108.

L. N. Korolev, "Some methods of automatic coding for BESM and
STRELA computers,” in Computer Programming and Artificial
Intelligence, ed. by John W. Carr, III (Ann Arbor, Mich.:
University of Michigan, College of Engineering, 1958), 489-507.

J. H. Laning, letter to D. E. Knuth dated January 13, 19655 1 p.

J. H. Lening, letter to D, E. Knuth dated July 2, 1976; 11 pp.

N. Joachim Lehmann, "Bemerkungen zur Automatisierung der
Programmfertigung fiir Rechenautomaten," Elektronische Rechenmaschinen

und Informationsverarbeitung - Electronic Digital Computers and

Information Processing, proceedings of October, 1955, conference
at Darmstadt, Nachrichtentechnische Fachberichte 4 (1956), p. 143

(including discussion).

A. A. Liapunov, "O logicheskikh skhemakh programm, " Problemy
Kibernetiki 1 (1958), L46-7h. English translation, "The logical
structure [sic] of programs," Problems of Cybernetics 1 (1960),
48-81.

J. Halcombe Laning and James S, Miller, "The MAC algebraic
language," MIT Instrumentation Laboratory report R-681
(November 1970), 2% pp.

J. H. Laning, Jr., and N, Zierler, "A program for translation of

mathematical equations for Whirlwind I," Engineering memorandum
E-364 (Mass. Inst. of Technology: Tnstrumentstion Laboratory,
January, 1954), v+21 pp.

E. N. Mutch and S. Gill, "Conversion routines," Automatic Digital

Computation, Proc, of a symposium held at the National Physical
Laboratory on March 25, 26, 27 & 28, 1953 (London: Her Majesty's
Stationery Office, 1954), 74-80,

Nora B. Moser, "Compiler method of automatic programming, "
Symposium on Automatic Programming for Digital Computers
(Washington, D.C.: Office of Naval Research, Dept. of the Navy,
195k4), 15-21.

10k

[NA 54] Navy Mathematical Computing Advisory Panel, Symposium on
Automatic Programming for Digital Computers (Washington, D.C.:
Office of Naval Research, Dept, of the Navy, 19%4), v+152 pp.

[OR 58] Sylvia Orgel, "Purdue Compiler: General description"
(W. Lafayette, Ind.: Purdue Research Foundation, 1958), iv+33 pp.

[PE 55] A. J. Perlis, "DATATRON," transcript of lecture given August 11, 1955;
in Digital Computers and Data Processors, ed, by John W, Carr
and Norman R, Scott (Ann Arbor, Mich.: University of Michigan,
College of Engineering, 1956), Section VII.20.1l, 3 pp.

[PE 57] Richard M. Petersen, "Automatic coding at G.E.," Automatic
Coding, Franklin Institute monograph no. 3 (1957), 3-16.

[PM 55] Stanley Poley and Grace Mitchell, "Symbolic Optimum Assembly
Prograrmming (SOAP)," IBM Corporation, New York, 650 Programming
Bulletin 1, Form 22-6285-1 (November, 1955), k4 pp.

[PR 55] Programming Research Section, Eckert Mauchly Division, Remington

Rand, "Automatic programming: The A-2 Compiler System,"
Computers and Automation L, 9 (September 1955), 25-29; L4, 10

~e N N

{(Cctuver 1555, 15-27.

[PS 57] Alan J. Perlis and Joseph W. Smith, "A mathematical language
compiler,”" Automatic Coding, Franklin Institute monograph no. 3
(1957), 87-102.

[Ps 57'] A. J. Perlis, J. W. Smith, and H. R. Van Zoeren, "Internal
Translator (IT): A compiler for the 650," Computation Center,
Carnegie Institute of Technology (March, 1957). Part I,
Programmer's Guide, 47 pp. ©Part II, Program Analysis, 68 pp.

Addenda, 12 pp. (flow charts were promised on p. 3.12).
Reprinted in Applications of Logic to Advanced Digital Computer

Programming (Ann Arbor, Mich.: University of Michigan, College
of Engineering, 1957). This report was also available from

IBM Corp. as a 650 Library Program; File Number 2,1.001.
[Autobiographical note: D, E, Knuth learned about system
programming by reading the program listings of part II in the

summer of 1957; this changed his life,]

105

[Ps 58] A. J. Perlis and K. Samelson, "Preliminary report, International
Algebraic Language," Comm, ACM 1, 12 (December 1958), 8-22. Also
"Report on the Algorithmic Language ALGOL by the ACM Committee
on Programming Languages and the GAMM Conmittee on Programming,"
Numer. Math. 1 (1959), L41-60., Also reprinted in Ann. Rev. in
Automatic Programming 1 (1960), 269-290.

[RA 73] Brian Randell, The Origins of Digital Computers: Selected

Papers (Berlin: Springer, 1973), xvi + L6k pp.

[RO 52] N. Rochester, "Symbolic programming," I.R.E, Trans. EC-2
(1952), 10-15.

[RO 64] Saul Rosen, "Programming systems and languages, a historical

survey," Proc, Spring Joint Computer Conf, (196L4), 1-16,

[RR 53] Remington Rand, Inc., "The A-2 Compiler System Operations
Manual" (November 15, 1953), iii +54 pp. Prepared by
Richard K. Ridgway and Margaret H., Harper under the direction

of Grace M, Hopper.

[RR 55] Remington Rand UNIVAC, UNIVAC Short Code, unpublished collection
of dittoed notes. Preface by A. B. Tonik, dated Oct. 25, 1955
(1 page); preface by J. R. Logan, undated but apparently from
1952 (1 page); "Preliminary Exposition" (19527, 22 pages,
where pp. 20-22 appear to be a later replacement); "Short Code

Supplementary Information, Topic One" (7 pp.); Addenda # 1,2,3,4
(9 pp.).

[RU 52] Heinz Rutishauser, "Automatische Rechenplanfertigung bei
programmgesteuerten Rechenmaschinen" [Automatic machine-code

generation on program-directed computers], Mitteilungen aus

dem Iust. fir angew. Math., an der E,T.H. Zirich No. 3
(Basel: Birkhduser, 1952), ii+L45 pp.

[RU 55] Heinz Rutishauser, "Some programming techniques for the ERMETH,"
J. ACM 2 (1955), 1-L,

[RU 55'] Heinz Rutishauser, "Massnahmen zur Vereinfachung des Programmierens

(Bericht iiber die in fiinfjshriger Programmierungsarbeit mit der

Z4 gewonnenen Erfahrungen)," Elektronische Rechemmaschinen und

Informationsverarbeitung - Electronic Digital Computers and

Information Processing, proceedings of October, 1955, conference

106

at Darmstadt, Nachrichtentechnische Fachberichte 4 (1956), 26-30.

English summary, "Methods to simplify programming, experiences

based on five years of programming work with the Z4 computer,"
D. 225.

[RU 63] H. Rutishauser, letter to D. E., Knuth (Oct. 11, 1963), 2 pp.

[SA 55] Klaus Samelson, "Probleme der Programmierungstechnik,'" Aktuelle
Probleme der Rechentechnik, Ber. Uber das Int. Mathematiker-
Kolloquium, Dresden, 1955 (Berlin: VEB Deutcher Verlag der
Wissenschaften, 1957), 61-68.

[SA 69] Jean E. Sammet, Programming Languages: History and Fundamentals
(Englewood Cliffs, N.J.: Prentice-Hall, 1969), xxx+785 pp.

[SB 59] K. Samelson and F. L. Bauer, "Sequentielle Formeliibersetzung,"
Elektronische Rechenanlagen 1 (1959), 176-182. Also "Sequential
formula translation," Comm., ACM 3 (1960), 76-83, 351.

[sM 721 Leland Smith, "ZEditing and printing music by computer,”

J. Music Theory 17 (1973), 292-309,
[ST 52] C. S. Strachey, "Logical or non-mathematical programmes,"

rroc. aCH watlonal coni, 2 (roronto, iypz), 4o-iy,
[TA 56] D. Tamari, review of [BO 52], Zentralblatt fiir Mathematik
57 (1956), 107-108,
[TA 60] Alan E. Taylor, "The FLOW-MATIC and MATH-MATIC Automatic
Programming Systems," Ann, Rev, in Auto. Prog. 1 (1960), 196-206,
[TH 55] Bruno Thiiring, "Die UNIVAC A-2 Compiler Methode der automatischen

Programmierung," Elektronische Rechenmaschinen und

Informationsverarbeitung - Electronic Digital Computers and

Information Processing, proceedings of October, 1955, conference
at Darmstadt, Nachrichtentechnische Fachberichte 4 (1956), 15L-156.

Fnglish summary, p. 226.

[TU 36] A, M., Turing, "On computable numbers, with an application to the
Entscheidungsproblem," Proc. London Math. Soc. (2) 42 (1936),
230-265; correction in vol., 43 (1937), SLL-5L6.

(WA 54] John Waite, "Editing generators," Symposium on Automatic

Programming for Digital Computers (Washington, D.C.: Office oi

Naval Research, Dept. of the Navy, 195k4), 22-29,

107

[wa 58] F. Way III, "Current developments in computer programming
techniques,"
Armour Research Foundation (1958), 125-132,

[WH 50] D. J. Wheeler, "Programme organization and initial orders for
the EDSAC," Proc. Royal Soc. (A) 202 (1950), 573%-589.

[WI 52] M. V. Wilkes, "Pure and applied programming," Proc. ACM National
Conf. 2 (Toronto, 1952), 121-12k,

[WI 53] M. V. Wilkes, "The use of a 'floating address' system for orders

Proc., 5th Annual Computer Applications Symposium,

in an automatic digital computer," Proc. Cambridge Philos., Soc.
49 (1953), 84-89.
[WO 51] M. Woodger, "A comparison of one and three address codes,"

Manchester University Computer Inaugural Conference (Manchester,
1951), 19-23.

[WR 71] W. A. Wulf, D. B. Russell, and A. N. Habermann, "BLISS, a language
for systems programming,” Comm. ACM 14 (1971), 780-790.

[WWw 51] Maurice V. Wilkes, David J. Wheeler and Stanley Gill, The
Preparation of Programs for an Electronic Digital Computer,

with special reference to the EDSAC and the use of a library of
subroutines (Cambridge, Mass.: Addison-Wesley Press, 1951),
x1i+170 pp.

[ww 57] Maurice V. Wilkes, David J. Wheeler, and Stanley Gill, The
Preparation of Programs for an Electronic Digital Computer,
second edition (Reading, Mass.: Addison-Wesley, 1957),
xii +238 pp.

[ZU 44] K. Zuse, "Ansatze einer Theorie des allgemeinen Rechnens unter
besonderer Berilcksichtigung des Aussagenkalkiils und dessen
Anwendung auf Relaisschaltung i
calculation in general, considering in particular the propositional
calculus and its application to relay circuits.] Manuscript
dated 194k4; Chapter 1 has been published in Berichte der
Gesellschaft fUr Mathematik und Datenverarbeitung, No. 63
(Bonn, 1972), part 1, 32 pp. English translation, No, 106
(Bonn, 1976), 7-20.

[zZU 5] K. Zuse, "Der Plankalkiil," manuscript prepared in 1945. Published
in Berichte der Gesellschaft flir Mathematik und Datenverarbeitung,
No. 63 (Bonn, 1972), part 3, 285 pp. Fnglish translation of all
but pp. 176-196 in No. 106 (Bonn, 1976), L2-2Lk,

108

[ZU 48] K. Zuse, "Uber den allgemeinen Plankalkiil als Mittel zur
Formulierung schematisch kombinativer Aufgaben,'" Archiv der
Math, 1 (1948/49), hLhl-LLo,

[zU 59] K. Zuse, "Uber den Plankalkiil," Elektron. Rechenanl. 1 (1959),
68-71.

[zU 72] Konrad Zuse, "Kommentar zum Plankalkiil," in Berichte der
Gesellschaft fiir Mathematik und Datenverarbeitung, No. 63
(Bonn, 1972), part 2, 36 pp. English translation, No. 106
(Bonn, 1976), 21-41.

109

