
Ca i . - Lo a .. . RE a .

a Te td : - Lr REE BE “uy.
Fa + an n 1 ep . A cay . .. SE EAE)

: rgaw : : : - ES FT

- EEA Fl SEE y . Le - Cem . R A - >

. , R . PRN

A . A . .- . - d . . . ,
-. <- . - \ . - —. : ed

- : ' LY - : . . roo. SE PE J .

} . J i N . LI re

: , . ‘un oe aT ee A
' : . oo ra te ALR

I i . wooo ta cd . Ie ET PO: - FE "I . EY BL . Noa

- - yo [A ’ : . . RS BY

. : . - . boi ” Th Cael dk ES Te CT.aaT- Mo ot Lo, a. ca ToL. Sy NF
a . - RAE ERT SE Ye En al TE TT Te A EI EES 3 . 7 EET — N BRERA TON: ~

' . J hn ors ho JI I Fla Sa, ae =~ - A ~ be : > TRA . . POE I > bdpad + Ed. cm. VL Nepey Lani l 3 A Ms va po. v iy a 5 Pe ’ . R ur i oeJF .
. , Le gh HL, xy ~ ES. dy ry Ay LCE FA LAE PEA - Pes

a a Lo TT han oe Fat A ET AS Te) EE Us PTL SCR
. - SOUT een ge Ne . RI, Sr - on . soe et . . . i a ee

fe LN «ol i AEA, 2 EY pe Tai . cap Pe, wT, A oo hS ~ Mt ae .

: : - ER 3 a AL TN . - : PRERE
oo. . AEE I eAak om PL La grtel EPO sows ATT ow wr el oo" o x .

a I REID nr ti HEAP RE Sch SI UOINDRR * ~~
. Cope . ; PLL A I A ara I SE I PL a h JR =

. T ea 3 + TE en . - Pa al PE SE - : - eg LUT i -

4 * es [a we Rey rs SRApoWm cs aid Lome. . ; E 1. a
\ al EA a [a Tig, Ton BL AL ry i ov Pres RN “. rl -. — - . a. Ia mpi,| 4 La A came TL Lo at . . 2 R a. so x X ’ +" . + - .

’ ‘ ld al i PRT 5% a ey SE A I LACT . : .

: . NN EEE Ce EEE SIT pA Lenty re TT 4 Tn ET :
oo } , Tel a sent " ar TR re, ES LT | m-. Lo <r Co.ST 2 - ERE I Ca iF . i B PE PE R =e a - Lawes. .a BR - 3 SERA et Yapge TT Le Tm TR ee

. i I Pi Fi Va JE ES , WE - : Lo . a Se i i

: ' Doe EVE LY i. I EA .- i . by } N.

kT LI A I : [PTE EE [7 J . pr
‘wal esRR an oo ws. td Ce ee Lo. - Ler .

y D1 et = TI LE } & .

‘e - X ;F Bal PISS Ww" i FE LE. LO " Tog . or
A ¥ ” Es. £ B To = MEAL aT ES al ay TL a BC AFA : Td ad

~ . - . = . Sa I X we i . , . J . A R

LE SERENE a rap : hE) AERP ; LI Po- FYE * Lo aa
FE oe : «! i. . ET . avg? Na - Lo . x . Ph HE LO

. he i * . . oh ATR . . ye i . a \ i N , f: i : EL by : To ey, hy FEES : CL FE . 9 i Cat iM)

N - o - : ~. - ov gL. Calm Ae a ta . HEE - .
<0 F $ - PRY oH NR Gl pm pe Be Re v Na at

, i. . ~ o EETRE i Cr N . Tals ot cL Te) 2 aly od

] a TI, ae ERE Se
. : = [4 ip ; HR Vt : r. : roe C Fn
- K J a Lo. FTV pe Co Linley

ES, N > » h : . R CS x Lf frtwer - y * a . . Sp
- WE wR . LA a FE IR og X

A oo EE - ROE: a OE SERIEBR TEEENEC : Coy IN Ri 4 ol ty on BF Sa - . v = . -; = Ri .. or RB: i TR . PUN Er | . . 3 ‘ A - 4

Ln bz - 5 alive VEL wr La A Tr RAPER REL : JE ASE rE . . wt . .

. EAA Cagalrn eSEE EL Eo ; So '

a . awr . .- - x LY h a at Cb Co . Re ETA, PTR LI ;a A . B . - “ve 4 Sa R: TN Es +) ARE : 3 I Sa.
- : Id : - : . LNT WO - -

“eo he 5 . R . JE By sy rh EEE ‘e = - LES SPE Cae,7.3 os . Cone Ted ge Vr gw Ne hdl ETIWO | Le

. 2% . . PRE . a . , hp ER Oh hat By i EAN Ea To Cait eT Fes aE ey) ay a, 8 “0 BASEN J
a 9 B's) * . EI I FX - i hl. | REL A fw LPN het hi ow, Lull Me, oi 4b She The Fi The BERS
¥ I L ‘ . LA 1 - A : . . ee Lhd Ther Er RPT Ee aL, Beem dv y ry . So

Ta - ve k . - . " x rm. EGE CP I TH oon ET" a ry EA ae . . or3 , : ins “+ > LEY TE ere AEE, aE wk JWT TT : . CoN N

. , - a ‘: ef a. Bh he LM NEE +. ; - a vo . . FEM [ERTIES a ® RY SE ww

= . - : - ye Lo a i PEE TAN EL ey aT Ree ER CR Ho BRAN gr ;

oe oo i. : oo SP PRET1d INRA 38 rate ae TTT An ye er nC £

i ET or, INANE IY ph PETE Se RAY RNC IN 2Tw . Caen . -y A. EY a Ta ut - gg rp fm A Ww REET La JaToa i. - PERE ML IRE 4 oa) Tm Y AI Tl RVI PEER A JER RU RL - :
EE. ST B aif £ El oes elk . Fos, et Vir Ha Hed Cat Fm Se Jeol, A.: oC Re BT py oe BT Rn ALRegt ai >

. R _ dy SARE RE, - RE ee Thr 3 FRI og pe 3 ;]
FE or a - RA o . A oP APRLI *iais i A or SE g Eh A eI - IRS
FO EE ») Lt ali i TRS a CAL vy BERS REEa fing aL NEA Rn ~ yh .

Co ’ ry RES g 3 2 ae? Clee gale oF CTRL To" poo Sip
: - * - © ely DR, cf. waS LE PR TE Lt a Ri : PEAR 8 - k: ISICHRI Noa . - Br Yo - RRC, . * A [EAI LAR ,* 3 I pd FURR

yr = i. - itd : vhs, arb SE - ~ - Tl SoA <r o “ ye IE LC Dyn. ha FEE
. Lote DEE TY a aT UTE Ae Coe .

i. - : 3 4 LT - pole Ne wei ay Be TRA) af A - Te
Dae. is i . bl . yo CIS . Hh ir. , 3 ~ PASIAN . rr, .9 en - ; LY . a A Lo De GsFE i . Way of A bap .

Lon fl 3d pr Wit plcce=1% Sop pf
“e Pars or * EE i ~ I P- *; oe Sut RaW i~ ST - Tt , EA] EA . . A er -

- ark gid X . BO » . 5 . pe) d no FALE - , ¢ Be ~~ »

rR CREE pee CERT opty WytT Z -+ ERATE E,W ws ERNE ao od Bs ys ..
h fly i. hh - jo. ’ X Sw Ge ta Mak [Sy AER LETS Trae - i : vient

FCI a Lo. BRS - X _ ae 3 gy A Far7. a fr LWT 3% WT: ot we ve

) Lvl A - < 4 f Tn | LA eo x srg aL N - 1 ud + hr We. A
a i A. - } =~ oo . < * _ . a TN BNET ot “Foltaga “2 Mm bg ed

. Ll Tl Ny - Be “YAR, a & ea . . oe
; ERE, © ein~ Saati Ep Rr ili IESR a My JE - CL papier Xe :

tN ER yr EB ot LRNNA ha . “y » : . : - . I Atal FIER: toe : - Le . [XS FL Rl ala hd Ry
oli i - R .. ! yo . i Lo Lo - [Pe TC 1

le . TE ies -, re . Su LT rE FANE - ’ u ppl ~ Ty cr] NRT un Sn
pa vat Ty Eg EEN - : RR ME TN ’ Pa NLD Lr Cee aAS AR -

’ htew ‘ : - , * . ENR hg, ~~ - [al TA We Ne 4% pe Ba So owed
-. To . a) + a [SA ri 3.4

Coun WED gn RR Xr Na: : pe Og Tf | a a
LY - ol Br an hy A, ou B at] a
rymy Canna RE aeTE ad

hy = Nl x - aid | h “ 3 oe K

RA 4 - - . =. PINT, Pa, 22

oe TH Lo Te . . Va od Te CTR AST SNe : - REN Tht PNP? ~

het na REVERIE Cage . - Le BP RredTE TE ea

FE) . = . FEES EET _ Sp . hard TA SEETl 7i hs civil, al ~ TTT "ahSEER Ev VE
nF PO PEAT . FI SERRE pel . N PA ; : ~& : J bh La : v Bre, hv Fa pl PE

9 ; te Coa i“ I wo re [a ' ry . os Ta JA N . hs har TI sl, be < Coa bh Re3 Ta u ass v. So " EA .. ’ - N ; FI . fai H Sta BE - : PE Pg - gt oe a r N : '
oF. . CY a Coa x > el Te ee RAT ow . ete! - ®. an Fag A Fg aA JE grag , Pe - Np EE
NO - I Le CORE yay x - Cy EY bl BAN ES Bla, on Ce. CR RRC Te - !

A . EL ve Ca “h Lp A Ey . . aki ALP iy re : PT SIE
~ = - - [kt pr a -

Stanford Artificial Intelligence Laboratory August 1976
Memo AIM-289

Computer Science Department
Report No. STAN-CS-7 6-574

SAIL

edited by

John F. Reiser

ABSTRACT

Sail is a high-level programming language for the PDP-10 computer, It includes an
extended ALGOL 60 compiler and a companion set of execution-time routines. In
addition to ALGOL, the language features: (1) flexible linking to hand-coded machine

language algorithms, (2) complete access to’ the PDP-10 I/O facilities, (3) a complete
system of compile-time arithmetic and logic as well as a flexible macro system, (4) a
high-level debugger, (5) records and references, (6) sets and lists, (7) an associative
data structure, (8) independent processes (9) procedure varaiables, (10) user
modifiable error handling, (11) backtracking, and (12) interrupt facilities.

This manual describes the Sail language and the execution-time routines for the typical

Sail user: "a non-novice programmer with some knowledge of ALGOL. It lies

somewhere between being a tutorial and a reference manual.

This manual was supported by the Advanced Research Projects Agency under Contract MDA 903-76-C-0206.

The views and conclusions contained in this document are those of the author(s)and should not be interpreted 8s necessarily
representing the official policies, either expressed or implied, of Stanford University, ARPA, or thr United States Government.

We thank Bernard A. Goldhirsch and the Institute for Advancement of Sailing for their kind permission to use the cover design of
the August 1976 issue of SAIL magazine.

Reproduced in the US.A. Available from the National Technical Information Service, Springfield, Virginia 22161.

I

Wy

7

Ni

#

i

4

SAIL PREFACE

points deserving emphasis are marked by

PREFACE vertical bars in the margin. This paragraph is
so marked, as an example.

OPERATING SYSTEMS

HISTORY OF THE LANGUAGE Sail runs under several operating systems. In

The GOGOL Ill compiler, developed principally this manual distinction is drawn between the
by Dan Swinehart at the Stanford Artificial operating system at the Stanford Artificial
Intelligence Project, was the basis for the non- Intelligence Laboratory (SUAI), the TOPS- 10
LEAP portions of SAIL. Robert Sproull joined operating system from Digital Equipment
Swinehart in incorporating the features of LEAP Corporation, the TENEX operating system from
The first version of the language was released Bolt Beranek and Newman, and the TYMSHARE
in November, 1969. SAIL’s intermediate operating system. The major distinction is

development was the responsibility of Russell between TENEX and non-TENEX systems,
Taylor, Jim Low, and Hanan Samet, who although the differences between SUAl and
int roduced processes, procedure variables, TOPS-10 are also significant. The TOPS-20
interrupts, contexts, matching procedures, a operating system from Digital Equipment
new macro system, and other features. Most Corporation is the same as TENEX as far as Salil

recently John Reiser, Robert Smith, and Russell is concerned. TENEX users should substitute
Taylor maintained and extended SAIL. They “<SAIL>" for “SYS.” wherever the latter appears
added a high-level debugger, conversion to in a file name (except when talking to the
TENEX, a print statement, and records and LOADER).
references.

UNIMPLEMENTED CONSTRUCTS

LEARNING ABOUT SAIL The following items are described in the manual

A novice programmer (or one who is unfamiliar as if they existed. As the manual goes to
with ALGOL) should start with the Sail Tutorial press, they are not implemented.
[SmithN]. An experienced programmer with a
knowledge of ALGOL should be able to use this I. NEW (<context-variable>). Creates a new
Sail manual at once. Begin with Appendix A, item which has a datum that is a context.
Characters; in this manual the symbol "_"
designates the character with code ‘030. For 2. Using a <context-variable> instead of a list
the first reading, a light skim of sections 1, 2, 3, of variables in any of the REMEMBER,
4, and 8, followed by a careful perusal of FORGET or RESTORE statements.
subsection 21.1 should be adequate to
familiarize the new user with the differences 3. Using o in the expression n of REMOVE n
between ALGOL and SAIL and allow him to start FROM list.

writing programs in SAIL. The other sections of
this manual are relatively self contained, and 4. ANYeANY=ANY searches in Leap (searches
can be read when one wants to know about the where no constraints at all are placed on

features they describe. The exceptions to this the triple returned.)
rule are sections 12, 13, and 14. These

describe the basics of the LEAP and are 5. CHECKED itemvars (the dynamic
essential for understanding of the following comparison of the datum type of an item
sect ions. to the datum type of the CHECKED itemvar

to which the item is being assigned.) It is

Special effort has gone into making the index currently the user's responsibility to
more comprehensive than in previous versions insure that the type of the item agrees
of this manual. Please use it. with the type of the itemvar whenever

DATUM is used.

CHANGES IN THE LANGUAGE

| There are no known incompatibilities at the ACKNOWLEDGEMENTS
SAIL source level with the language described Les Earnest and Robert Smith assisted the
i n [vanLehn). PRINT, BAIL, operation under editor in PUB wizardry and reading drafts.
TENEX, and records are major additions to the

| language. Significant revisions to [vanLehn] or

bil

WE CL a

SAIL - TABLEOF CONTENTS

TABLE OF CONTENTS . 7 EXECUTION TIME ROUTINES

1 Type Conversion Routines 46
2 String Manipulation Routines 477

SECTION PAGE 3 Liberation-from-Sail Routines 48

4 Byte Manipulation Routines 50
5 Other Useful Routines 50

1 PROGRAMS AND BLOCKS 6 Numerical Routines 51

I Syntax 1
2 Semantics 1 8 PRINT

1 Syntax 53
2 ALGOL DECLARATIONS 2 Semantics 53

I Syntax 3
2 Restrictions 4 9 MACROS AND CONDITIONAL COMPILATION

3 Examples J

4 Semant ics 5 | Syntax 56
5 Separately Compiled Procedures 12 2 Delimiters 57

3 Macros 57

4 Macros with Parameters 59

3 ALGOL STATEMENTS 5 Conditional Compilation 60
6 Type Determination at Compile Time 61

1 Syntax 14 / Miscellaneous Features 62
2 Semant ics 15 8 Hints 62

4_ALGOL EXPRESSIONS 10 RECORD STRUCTURES

1 Syntax 22 1 Introduction 64
2 Type Conversion 23 2 Declaration Syntax 64
3 Semant ics 24 3 Declaration Semantics 64

4 Allocation 65

5 Fields 65

5 ASSEMBLY LANGUAGE STATEMENTS 6 Garbage Collection 65
7 Internal Representations 66

I Syntax 29 8 Handler Procedures 66
2 Semant ics 29 9 More about Garbage Collection 67

6 INPUT/OUTPUT ROUTINES 11 TENEX ROUTINES

i Execution-time Routines in General 33 1 Introduction 69

2 1/0 Channels and Files 33 2 TOPS-10 Style Input/Output 69
3 Break Characters 36 3 TENEX Style Input/Output 70
4 1/0 Routines 39 4 Terminal Handling 76

5 TTY and PTY Routines 43 5 Utility TENEX System Calls 80
6 Example of TOPS-10 I/O 45

12 LEAP DATA TYPES

1 Introduction 83

2 Syntax 83
3 Semantics 84

V

TABLE OF CONTENTS SAIL

13 LEAP STATEMENTS 20 LEAP RUNTIMES

1 Syntax 88 1 Types and Type Conversion 123
2 Restrictions 89 2 Make and Erase Breakpoints 124
3 Semantics 89 3 Pname Runtimes 124

4 Searching the Associative Store 91 4 Other Useful Runtimes 125
5 Runtimes for User Cause and Interrogate

Procedures 126

14 LEAP EXPRESSIONS

1 Syntax 97 21 BASIC CONSTRUCTS
2 Semant ics 98

I Syntax 128
2 Semantics 128

15 BACKTRACKING

1 Introduction 101 22 USING SAIL

2 Syntax 101
3 Semantics 101 1 For TOPS-10 Beginners 131

2 For TENEX Beginners 131

3 The Complete use of Sail 132
16 PROCESSES 4 Compiling Sail Programs 132

5 Loading Sail Programs 136
1 Introduction 104 6 Starting Sail Programs 137
2 Syntax 104 7 Storage Reallocation with REEnter 137
3 Semantics 104

4 Process Runtimes 107

23 DEBUGGING SAIL PROGRAMS

17- EVENTS | 1 Error Messages 138
2 Debugging 140

1 Syntax 110 3 BAIL 141
2 Introduction 110

3 Sail-defined Cause and Interrogate 110
4 , User-defined Cause and Interrogate 112 APPENDICES

A Characters 150

18 PROCEDURE VARIABLES B Sail Reserved Words 151

C Sail Predeclared Ident if iers 152

I Syntax 114 D Indices for Interrupts 153
2 Semant ics 114 E Bit Names for Process Constructs 154

F Statement Counter System 156
G Array Implementation 157

19 INTERRUPTS H String Implementation 158
| Save/Continue 159

| Introduction 117 J Procedure Implementation 160
2 Interrupt Routines 117
3 Immediate Interrupts 119
4 Clock Interrupts 120 REFERENCES 163
5 Deferred Interrupts 121

INDEX 165

Vi

TTTEE

SAIL - PROGRAMS ‘AND BLOCKS

SECTION 1 = <process-statement>
um <gvent_statement>

PROGRAMS AND BLOCKS w= <string_constant> <statement>
w= <label_identifier> : <statement>

u= <empiy>

1.1 Syntax
1.2 Semantics

<program>

i= <block> DECLARATIONS

Sail programs are organized in the traditional

block structure of ALGOL-60 [Nauer].
<block>

u=<block_head>; <compound-tail> Declarations serve to define the data types and
dimensions of simple and subscripted (array)

variables (arithmetic variables, strings, sets,

<block_head> lists, record pointers, and items). They are also
::= BEGIN <declaration> used to describe procedures (subroutines) and
::= BEGIN <block-name> <declaration> record classes, and to name program labels.
w= <block-head> ; <declaration>

Any identifier referred to in a program must be
described in some declaration. An identifier

<compound-t ail> may only be referenced by statements within
i= <statement> END the scope (see page 5) of its declaration.
iim <statement> END <block-name>

sim <statement> ; <compound-tail> STATEMENTS
As in ALGOL, the statement is the fundamental

unit of operation in the Sail language. Since a

<compound-statement> statement within a block or compound
2:= BEGIN <compound-tail> statement may itself be a block or compound
:= BEGIN <block_name> <compound-tail> statement, the concept of statement must be

understood recursively.

<statement> The- block representing the program is known
i= <block> as the “outer block”. All blocks internal to this

$= <compound-statement> one will be referred to as “inner blocks”.
i= <reqguire _snecification>

i= <assignment> BLOCK NAMES
i= <swap-statement> The block name construct is used to describe
n= <conditional_statement> the block structure of a Sail program to a
i= <{f_statement> symbolic debugging routine (see page 140).
n= <go_to_statement> The name of the outer block becomes the title
w= <for-statement> of the binary output file (not necessarily the

u= <while-statement> file name). In addition, if a block name is used
i= <do_statement> following an END then the compiler compares it
= <case_statement> with the block name which followed the

i= <print-statement> corresponding BEGIN. A mismatch is reported
i= <return-statement> to the user as evidence of a missing (extra)
u= <done_statement> BEGIN or END somewhere.

= <next_statement>

i= <continue_statement> The <string-constant> <statement> construct is
i= <procedure-statement> equivalent in action to the <statement> alone;
i= <safety-statement> that is, the string constant serves only as a
::= <backtracking-statement> comment.
w= <code_block>
i= <|eap_statement>

|

PROGRAMS AND BLOCKS SAIL

EXAMPLES

Given:

S is a statement,

Scisa Compound Statement,
D is & Declaration,

B isa Block.

Then:

(S¢) BEGINS;S;S;...;SEND

(Se) BEGIN“SORT” S:'S;...:S END “SORT

(B) BEGIND;D;D;..iS:S:Si..i SEND

(B) BEGIN “ENTER NEW INFO" D;D;. . .
S;..$SEND

are syntactically valid Sail constructs.

2

SAIL - ALGOL DECLARATIONS

SECTION 2 <array-declaration>
= <simple_type> ARRAY <array_list>

ALGOL DECLARATIONS = <type_qualifier> <array declarations

<array_list>
= <array_segment>

2.1 Syntax um <array_list> , <array_segment>

<id_list> <array_segment>
= <ident if ier> um <id_list> [<bound_pair_list>]
n= <identifier> , <id_list>

<bound_pair_list>
<declaration> w= <bound_pair>

i= <type-declaration> w= <bound_pair_list> , <bound_pair>
w= <arrav_declaration>
= <preload_specif ication> :
= <|label-declaration> <bound_pair>
::= <procedure-declaration> n= <lower_bound> : <upper_bound>
$= <synonym-declaration>

um <require-specification> <lower_bound>

i= <context-declaration> i= <algebraic-expression>
iim <|eap-declaration>

| i= <record_class-declaration> <upper_bound>
u=<protect _acs declarations = <algebraic-expression>
w= <cleanup_declaration>

-u= <type-qualifier> <declaration>

<preload_specification>
= PRELOAD,WITH <preload_list>

<simple_type> | i= PRESET-WITH <preload_list>
::= BOOLEAN

v= INTEGER

= REAL <preload_list>
| ::= RECORD-POINTER (<classid_list>) w= <preload_element>

n= STRING n= <preload_list> , <preload_element>

<type_qualifier> <preload_element>
i= EXTERNAL im <expression>
::= FORTRAN i:= [expression } <expressions
i= FORWARD

i= [INTERNAL

v= OWN <label-declaration>

:»= RECURSIVE w= LABEL <id_list>
w= SAFE

2» SHORT

2= SIMPLE <procedure-declaration>
::= PROCEDURE <ident if ier>

. <procedure-head>
<tvpe_declaration> <procedure-body>

n= <simple_type> <id_list> i= <simple_type> PROCEDURE <identifier>
i= <type-qualifier> <type-declaration> <procedure_head> <procedure-body>

n= <type_qualifier>
<procedure-declaration>

3

ALGOL DECLARATIONS SAIL

| <procedure-head> <require-element>

i= <empty> | = <constant-expression> <require_spec>
= (<formal_param_decl>) ::= <procedure_name> INITIALIZATION

::= <procedure-name> INITIALIZATION

| | [<phase>]
<procedure-body>

l= <empty>

=; <statement> <require_spec>
.:= STRING-SPACE

$= SYSTEM,PDL

<formal_param_decl> ::= STRING,PDL

w= <formal_parameter_list> | w= |TEM-START
| u= <formal_parameter_list> ; := NEWJTEMS

<formal_param_decl> wm PNAMES
n= |OAD-MODULE

«= | IBRARY

| <formal_parameter_list> ::= SOURCE-FILE
= <formal_type> <id_list> w= SEGMENT-FILE

| = <formal_type> <id_list> := SEGMENT-NAME

j (<default-value>) | ::= POLLING_INTERVAL
::= POLLING-POINTS

::= VERSION

j <formal_type> i= ERROR-MODES

= <simple_formal_type> ::= DELIMITERS
::= REFERENCE <simple_formal_type> st= NULL-DELIMITERS
= VALUE <simple-formal-type> .:= REPLACE-DELIMITERS

wm UNSTACK-DELIMITERS

] a= BUCKETS

<simple_formal_type> ::= MESSAGE

| = <simple_type> | ::= COMPILER-SWITCHES
| = <simple_type> ARRAY

| n=<simple_type> PROCEDURE

<synonym-declaration> 2.2 Restrict ions
i= LET <synonym_list>

For simplicity, the type-qualifiers are listed in

only one syntactic class. Although their uses

<synonym_list> are always valid when placed according to the .
=m <synonyms above syntax, most of them only have meaning

| nm <synonym_list> | <synonym> when applied to particular subsets of these
product ions:

<synonym> SAFE is only meaningful in array
n= <identifier> = <reserved_word> declarations.

INTERNAL/EXTERNAL have no

<cleanup-declaration> meaning in formal parameter
i= CLEANUP <procedure_identifier _list> declarations.

<require_specification> SIMPLE, FORWARD, RECURSIVE, and
::= REQUIRE <require_list> FORTRAN have meaning only in

procedure type specifications.

J <require_list> SHORT has meaning only when
i= <require-element> applied to INTEGER or REAL entities.

j u= <require_list> , <require_element>

] 4

SAIL - ALGOL DECLARATIONS

For array declarations in the outer block BEGIN “SAMPLE BLOCK”

substitute <const ant-expression> for INTEGER |, J, K;
<algebraic-expression> in the productions for REAL X,Y;
<lower-bound> and <upper_bound>. STRING A;

INTEGER PROCEDURE P (REFERENCE REAL X);
A label must be declared in the innermost block BEGIN “P"

in which the statement being labeled appears D;D;D;...i8...iS
(more information, page 16). The syntax for ~ END"P%
procedure declarations requires semantic
embellishment (see page 7) in order to make REAL ARRAY DIPHTHONGS(0: 10, 1: 100);
total- sense. In particular, a procedure body
may be empty only in a restricted class of S;S;S;S

declarations. END “SAMPLE BLOCK”

2.3 Exampl ss 2.4 Semantics

Let I, J, K, L, X, Y, and P be identifiers, and let S SCOPE OF DECLARATIONS
be a statement. Every block automatically introduces a new

level of nomenclature. Any identifier declared

(<type_declaration>) in a block's head is said to be LOCAL to that
INTEGER |, J, K block. This means that:
EXTERNAL REAL X, Y

INTERNAL STRING K a. The entity represented by this
identifier inside the block has no

(<array_declaration>) existence outside the block.
INTEGER ARRAY X [0:10, 0:10]

REAL ARRAYY [X:P(L)}; Comment illegal b. Any entity represented by the same
in outer block unless P is a macro identifier outside the block is

"STRING ARRAY| [0:F BIG THEN 30 ELSE3) completely inaccessible (unless it
has been passed as a parameter)

(<label_declaration>) inside the block.
LABEL L, X, Y

An identifier occurring within an inner block

(<procedure declarations) and not declared within that block will be
PROCEDURE P; S nonlocal (global) to it; that is, the identifier will
PROCEDUREP (INTEGER |, J; represent the same entity inside the block and

REFERENCE REAL X; REAL YXS in the block or blocks within which it is nested,

INTEGER PROCEDUREP (REAL PROCEDUREL; up to and including the level in which the
STRING I,J; INTEGER ARRAY K);S identifier is declared:

EXTERNAL PROCEDURE P (REAL X)
FORWARD INTEGER PROCEDUREX (INTEGER I) The Scope of an entity is the set of blocks in

which the entity is represented, using the

Note that these sample declarations are all above rules, by its identifier. An entity may
given without the semicolons which would not be referenced by any statement outside its
normally separate them from the surrounding scope.
declarations and statements. Here is a sample
block to bring it all together (again, let S be TYPE QUALIFIERS
any statement, D any declaration, and other An array, variable, or procedure declared OWN
identifiers as above): will behave as if it were declared globally to

the current procedure; the OWN type qualifier
on a variable, etc. declared in a block not

nested inside a procedure declaration will have
no effect. This means that in a second call of a

procedure with OWN locals (or a recursive call)

5

ALGOL DECLARATIONS SAIL

the OWN variables will not be reinitialized; they page 39), or from the concatenation or
will have the values that they had when the decomposition of already existing strings (see

first call of the procedure finished.. page 27).
Furthermore, OWN arrays, etc. will not be

deallocated upon exiting the procedure in which When strings appear in arithmetic operations
they are declared. or vice-versa, a somewhat arbitrary conversion

is performed to obtain the proper type (by

INTERNAL and EXTERNAL procedures, variables, arbitrary we do not mean to imply random --
etc. let one link programs that are loaded see page 23). For this reason arithmetic,

together but were compiled separately. See | String, and Record-pointer variables are
page 12 for more information. referred to as “algebraic variables” and their

corresponding expressions are called “algebraic

RECURSIVE, SHORT, FORTRAN, FORWARD, expressions” (to differentiate them them from
SIMPLE, and SAFE will be explained when the the variables and expressions of LEAP -- see
data types they modify are discussed. page 83).

NUMERIC DECLARATIONS ARRAY DECLARATIONS

Identifiers which appear in type declarations In general, any data type which is applicable to
with types REAL or INTEGER can subsequently a simple variable may be applied in an Array
be used to refer to numeric variables. An declaration to an array of variables. The entity

Integer variable may take on values from represented by the name of an Array, qualified
-2135 to 2135-1(-2126 to 2726-1 for SHORT with subscript expressions to locate a
INTEGERS). A Real variable may take on particular element (e.g. A[l,J]) behaves in every
positive and negative values from about lot-38 way like a simple variable. Therefore, in the
to 10738 with a precision of 27 bits (same future we shall refer to both simple variables
range for SHORT REALs as for SHORT and single elements of Arrays (subscripted
INTEGERS). REAL and INTEGER variables (and variables) as “variables”. The formal syntax for
constants) may be used in the same arithmetic <variable> can be found on page 128.
expressions; type conversions are carried out

automatically (see page 23) when necessary. For an Array which’ is not qualified by the
SAFE attribute, nor had a NOW-SAFE statement

The advantage of SHORT reals and integers is done on it (Now_Safe - see page 21), each
that the conversion from integer to real is sped subscript will be checked to ensure that it falls
by a factor of 8 if either the integer or the real within the lower and upper bounds given for
is SHORT. See page 23 for more information. the dimension it specifies. Subscripts Outside

the bounds trigger an error message and job

The BOOLEAN type is identical to INTEGER. abortion. The SAFE declaration inhibits this
BOOLEAN and algebraic expressions are really checking, resulting in faster, smaller, and
equivalent syntactically. The syntactic context bolder code.
in which they appear determines their meaning.

Non-zero integers correspond to TRUE and 0 Arrays which are allocated at compile time
corresponds to FALSE. The declsrator (OWN arrays and arrays in the outer block) are
BOOLEAN is included for program clarity. restricted to 5 or fewer dimensions. There is

no limit to the number of dimensions allowed

STRING DECLARATIONS for an Array which is dynamically allocated.

A variable defined in a String declaration is a However, the efficiency of Array references
two-word descriptor containing the information tends to decrease for large dimensions. Avoid
necessary to represent a Sail character string. large dimensionality. *

A String may be thought of as a variable- OWN Arrays are available in part. They must
length, one-dimensional array of 7-bit ASCII be declared with constant bounds, since fixed
characters. Its descriptor contains a character storage is allocated. They are NOT initialized
count and a byte pointer to the first character when the program is started or restarted
(see page 158). Strings originate as constants (except in preloaded Arrays, see page 7). A
at compile time (page 130), as the result of a certain degree of extra efficiency is possible in
String INPUT operation from some device (see accessing these Arrays, since they may be

6

SAIL ALGOL DECLARATIONS

assigned absolute core locations by the repeat argument). The next two elements will
compiler, eliminating some of the address be 3 and 4, followed by four 6's and a 2. The
arithmetic. Constant bounds always add a little array will look like this:
efficiency, even in inner blocks. Arrays
declared in the outer block must have constant 123 (second subscript)

bounds, since no variable may yet have been 18 8 8

assigned a value. They are thus automatically (first 218 8 3
made OWN. For more details concerning the rubscript) 3 | 4 6 6

internal structure of Arrays see page 140 and é | 6 6 2
page 157.

PRELOAD SPECIFICATIONS PRESET-WITH is just like PRELOAD-WITH except

Any OWN arithmetic or String Array may be that an array which is PRESET is placed in the
“pre-loaded” at compile time with constant upper segment of a /H compilation. This allows
information by preceding its declaration with a constant arrays to be in the shared portion of
<preload_specification>. This specification the code.
gives the values which are to be placed in
consecutive core locations of the Arrays PROCEDURE DECLARATIONS
declared immediately following the If a Procedure is typed then it may return a
<preload_specification>. “Immediately”, in this value (see page 18) of the specified type. If
case, means all identifiers up to and including formal parameters are specified then they must
one which is followed by bound-pair-list be supplied with actual parameters in a one to
brackets (e.g. in REAL ARRAY X,Y, Z[0:10), one correspondence when they are called (see
W[1:5); -- preloads X, Y, and Z; not W). It is the page 28 and page 19).
user's responsibility to guarantee that the

proper values will be obtained under the FORMAL PARAMETERS
subscript mapping, namely: arrays are stored Formal parameters, when specified, provide
by rows; if A[l,J] is stored in location 10000, information to the body (executable portion) of
then A[l, J+1] is stored in location 10001. the Procedure about the kinds of values which

will be provided as actual parameters in the

The current values of non-String pre-loaded call. The type and complexity (simple or Array)
Arrays will not be lost by restarting the are specified here. In addition, the formal
program; they will not be re-initialized or re- parameter indicates whether the value (VALUE)
preloaded. For preloaded String Arrays, the or address (REFERENCE) of the actual
non-constant elements are set to NULL by a parameter will be supplied. If the address is
restart. supplied then the variable whose identifier is

given as an actual parameter may be changed

Algebraic type conversions will be performed by the Procedure. This is not the case if the
at compile-time to provide values of the proper value is given.
types to pre-loaded Arrays. All expressions in
these specifications must be constant To pass a PROCEDURE by value has no readily
expressions -- that is, they must contain only determined meaning. ARRAYs passed by value
constants and algebraic operators. The (requiring a complete copy operation) are not
compiler will not allow you to fill an Array implemented. Therefore these cases are noted
beyond its capacity. You may, however, as errors by the compiler.
provide a number of elements less than the

total size of the Array; remaining elements will The proper use of actual parameters is further

be set to zero or to the null string. discussed on page 19 and page 28.

Example: DEFAULT PARAMETER VALUES
Default values for trailing parameters may be

PRELOAD-WITH [5] 0, 3, 4,[4]) 6, 2; specified by enclosing the desired value in
INTEGER ARRAY TABL [| :4,1:3}; parentheses following the parameter

declaration.

The first five elements of TABL will be

initialized to 0 (bracketed number is used as a PROCEDURE FOO (REAL X; INTEGER (2);
STRING S ("FOO"); REAL Y (3.14 159));

ll

—

ALGOL DECLARATIONS SAIL

If a defaulted parameter is left Out Of a Notice that the forward declaration is required
procedure call then the compiler fills in the only because BOTH Procedures are called in the
default automatically. The following all compile body of the block. These procedures should
the same code: also be declared RECURSIVE if recursive

entrance is likely. If only T1 were called from
FOO (A+B); statements within the block then this example
FOO (A+B, 2, "FOO"); could be implemented as:
FOO (A+B, 2, “FOO”, 3.14 159);

BEGIN “NO FORWARD’

Only VALUE parameters may be defaulted, and RECURSIVE INTEGER PROCEDURE T1 (INTEGER I);
the default values must be Constant BEGIN

expressions. A parameter may not be left out INTEGER PROCEDURE T2 (J);
of the middle of the parameter list; i.e, RETURN (T1(J))+3);

FOO (A+B, “BAR”) won't work. Finally, it RETURN(IF le 15 THEN|
should be ‘noted that the compiled code ELSET2 (I-1));
assumes that all parameters are actually END“T 1%;

present in the call, so be careful about odd .
START-CODE or INTERNAL-EXTERNAL linkages. KeT1 (L);
However, APPLY will fill in default values if not "

enough actual parameters are supplied in an END “NO FORWARD’;

interpreted call.
RECURSIVE PROCEDURES

FORWARD PROCEDURE DECLARATIONS If a procedure is to be entered recursively then

A Procedure’s type and parameters must be the compiler must be instructed to provide code
described before the Procedure may be called. for allocating new local variables when the
Normally this is accomplished by specifying the Procedure is called and deallocating them when
procedure declaration in the head of some it returns. Use the type-qualifier RECURSIVE in
block containing the call. If, however, it is the declaration of any recursive Procedure.
necessary to have two Procedures, declared in
some block head, which are both accessible to The compiler can produce much more efficient
statements in the compound tail of that block code for non-recursive Procedures than for

and to each other, then the FORWARD construct recursive ones. We feel that this gain in
permits the definition of the parameter efficiency merits the necessity for declaring

. information for one of these Procedures in Procedures to be recursive.

advance of its declaration. The Procedure

body must be empty in a forward procedure If a Procedure which has not been declared
declaration. When the body of the Procedure recursive is called recursively then all its local
described in the forward declaration is actually variables (and temporary storage locations
declared, th8 types of the Procedure and of its assigned by the compiler) will behave as if they
parameters must b e identical in both were global to the Procedure -- they will not
declarations. The declarations must appear at be reinitialized, and when the recursive call is
the same level (within the same block head). complete, the locals of the calling procedure

Example: will reflect the changes made to them during
the recursive call. Otherwise, no ill effects

BEGIN “NEED FORWARD” should be observed.

FORWARD INTEGER PROCEDURE T1 (INTEGER i);
COMMENT PARAMS DESCRIBED; SIMPLE PROCEDURES

INTEGER PROCEDURE T2 (INTEGERJ); Standard procedures contain a short prologue
RETURN (T 1 (J)+3) COMMENT CALL T1; that sets up some links on the stack and a

INTEGER PROCEDURET1 (INTEGER I); descriptor that is used by the storage allocation

COMMENT ACTUALLY DEFINE T 1; system, the GOTO solver, and some other
RETURN (IF l= 15 THEN | ELSE T2(l-1)); routines. For most procedures, this overhead is

COMMENT CALLS T2; insignificant. However, for small procedures
. that just do a few simple statements and exit,
KeT ICL)... ileT2(K);. .. this overhead is excessive and unneeded. To

END “NEED FORWARD’;

8

i SAIL ALGOL DECLARATIONS

| skip the prologue, just include SIMPLE in the the type and name of an external Procedure
] attribute list for the procedure. RESTRICTIONS: which is to be called using a Fortran calling
j sequence. Either the old F40 or the new

1. Simple procedures may not be FORTRAN-10 calling sequence can be
Recursive and may not be SPROUTed generated, depending on the /A switch (page

| or APPLYed. 134). All parameters to Fortran Procedures are
by reference. In fact, the procedure head part

2. ARRAY locals must be OWN. of the declaration need not be included unless

the types expected by the Procedure differ

3. Set and List locals must be OWN from those provided by the actual parameters--

(Sets and list are part of Leap, page the number of parameters supplied, and their
83). types, are presumed correct. Fortran

| Procedures are automatically External
4. Procedures declared local to a Procedures. See page 10, page 19, page

simple procedure must also be of of 28 for more information about Fortran
| type SIMPLE, and may not reference Procedures. Example:

any of the parameters of the outer

simple procedure. FORTRAN PROCEDURE FPF;
. YeFPF (X, 2);

5. One may not GO TO a statement

outside the body of the simple PARAMETRIC PROCEDURES
procedure. The calling conventions for Procedures with

Procedures as arguments, and for the execution

6 . RECORD_POINTERs may not be of these parametric Procedures, are described
| declared or passed as arguments to on page 19 and page 28. Any Procedure PP

other procedures, and the code must which is to be used as a parameter to another
not cause the compiler to create Procedure CP must not have any Procedure or
RECORD-POINTER temporaries. array parameters, or any parameters called by

value. In other words, PP may only have simple

EXTERNAL PROCEDURES reference parameters. The number of
A file compiled by Sail represents either a parameters supplied in a call on PP within CP,
“main” program or a collection of independent and their types, will be presumed correct, and

procedures to be called by the main program. should not be specified in the procedure head.
The method for preparing such a collection of Example:
Procedures is described in page 12. The

| EXTERNAL and FORTRAN type-qualifiers allow PROCEDURE CP (INTEGER PROCEDURE FP);
| description of the types of these Procedures BEGIN INTEGERA, I; REAL X;

and their parameters. An EXTERNAL or
FORTRAN procedure declaration, like the AFP (l,X); COMMENT| AND X PASSED BY
FORWARD declaration, does not include a REFERENCE, NO TYPE CONVERSION; '

procedure body. Both declarations instead END "CP";
result in requests to the loader to provide the
addresses of these Procedures to all statements INTEGER PROCEDURE PP (REFERENCE INTEGERJ;
which call them. This means that an EXTERNAL REFERENCE REAL Y);

Procedure declaration (or the declaration of any BEGIN ...
External identifier) may be placed within any END "PP";

| block head, thereby controlling the scope of .
this External identifier within this program. CP (PP);

Any Sail Procedure which is referenced via DEFAULTS IN PROCEDURE DECLARATIONS
these external declarations must be an If no VALUE or REFERENCE qualification appears

INTERNAL Procedure. That is, the type-qualifier in the description then the following
INTERNAL must appear in the actual declaration qualifications are assumed:
of the Procedure. Again, see page 12.

VALUE Integer, String, Real, Record-pointer,

The type-qualifier FORTRAN is used to describe Set, List variables.
REFERENCE Arrays, Contexts and Procedures.

9

ALGOL DECLARATIONS SAIL

RESTRICTIONS ON PROCEDURE DECLARATIONS BRTAB is 0 then, whereas it is not for any of
the other calls. If READIN were a recursive

1) Fortran Procedures cannot handle procedure then CHANNEL and BRTAB would be
String parameters. Nor can a allocated and hence initialized with every call.
Fortran Procedure return a string as
a result. When one REEnters a program, some things are

reinitialized and some are not. Namely, strings

2) Labels may never be passed as and non-preloaded arrays will be reinitialized,
arguments to Procedures. but simple variables will not; Preloaded arrays

will not be re-preloaded.

3) Procedures may not have the type
“CONTEXT”. SYNONYMS

The Sail Synonym ("LET") permits one to
4) Arrays and Context parameters must declare any identifier to act as a reserved

always be passed by reference. word. The effect of the reserved word is not
changed; it may be used as well as the new
identifier. Synonyms follow the same scope
rules that identifiers used for variables, arrays,

ALLOCATION AND DEALLOCATION ete. do.

All simple variables (integer, real, string,
boolean, record pointer) are allocated at Since Sail permits one to declare almost any
compile time. Non-own simple variables that reserved word to be an identifier for
are local to a recursive procedure are an variables, procedures, etc. (see about
exception to this and are allocated (on the restrictions on identifiers, page 129),
stack) upon instantiation of the procedure; they synonyms -are used to keep the effect of the
are deallocated when the instantiation is reserved word available. For example,

terminated. Simple variables which are

declared but not subsequently referenced are LET BEG. BEGIN;

| not allocated at all. PROCEDURE BEGIN;
Al? outer-block and OWN arrays are allocated at on
compile time. All other arrays are allocated
when the block of their definition is entered, END;
and deallocated when it is exited.

INITIALIZATION AND REINITIALIZATION IF OK THEN BEGIN;

Upon allocation, everything is initialized to 0 or - | |

the NULL string (except preloaded arrays, which
are initialized to their the values of their CLEANUP DECLARATIONS

PRELOAD). Nothing is reinitialized unless the The CLEANUP declaration requires a list of
program is restarted by typing TC and REEnter. procedure names following the “CLEANUP”
This lack of reinitialization is noticeable when token. Each procedure specified must be

one enters a block for the second time, and that SIMPLE and have no formal parameters. The

block is not the body of a recursive procedure. specified procedures will be called at the exit :
For example, of the block that the CLEANUP declaration

occurs in. They will be called in the order of
STRING PROCEDURE READIN; their appearance on the list, and before any of
BEGIN the variables of the block are deallocated.

INTEGER CHANNEL, BRTAB; NOTE: If the block is part of a process (see

IF BRTAB=O THEN BRTAB «INIT (CHANNEL); about processes, page 104) that is being
RETURN (INPUT (CHANNEL, BRTAB)); terminated then the cleanup procedures will be

END; called before the terminate is completed.

will return a string from an input operation with Cleanup procedures are normally used in
every call. However, on the first call, it will do connection with processes to “cleanup” a block
some initialization of the I/O channel because by terminating the processes dependent on that

10

SAIL ALGOL DECLARATIONS

block (it is an error to leave active a process LOADER may do strange things with files
that depends on an exited block). | requested twice.

REQUIREMENTS Sail automatically places a request for the

The user may, using the REQUIRE construct, library SYS:LIBSAn (<SAIL>LIBSAn on TENEX)
specify to the compiler conditions which are [HLBSAnN for /H compilations) in each main
required to be true of the execution-time program, where n is the version number of the
environment of his programs. All requirements current Sail library of runtime routines.
are legal at either declaration or statement
level. The requirements fall into three The inclusion of REQUIRE "PREAMB.SA}"
classifications, described as follows: SOURCE-FILE will cause the compiler to save

| the state of the current input file, then begin| Group 1 - Space requirements -- scanning from PREAMB. When PREAMB is
STRING-SPACE, SYSTEM,PDL, etc. exhausted, Sail will resume scanning the original

| file on the line directly following the REQUIRE.The inclusion of the specification “REQUIRE Commonly-used declarations, particularly
1000 STRING-SPACE” will ensure that at least EXTERNAL declarations for libraries, are often

1000 words of storage will be available for put in a separate file which is then REQUIRE.
storing (the text characters of) Strings when
the program is run. Similar provisions are made Restrictions: A SOURCE-FILE request must be
for various push-down stacks used by the followed by a semicolon (only one per
execution-time routines and the compiled code. REQUIREment), and must be the last text on the

: If a parameter is specified twice, or if line in which it appears. SOURCE-FILE
separately compiled procedures are loaded (see switching must not be specified from within a
page 12) then the sum of all such DEFINE body (see page 57). SOURCE-FILEs
specifications will be used. These parameters may be nested to a depth of about 10 levels.
could also be typed to the loaded program just

before execution (see page 137), but it is often The SEGMENT-NAME, SEGMENT-FILE
more convenient to specify differences from specifications are currently applicable only to
the standard sizes in the source program. Use the SUAI “global model” users of Sail. They
these specifications only if messages from the allow specification of the name of a special
running program indicate that the standard non-sharable “HISEG”, and the name of the file
allocations are not sufficient. used to create this HISEG. These specifications

may, like the space REQUREments, b e
Group 2 -- Other files -- LOAD_MODULE, overridden by using the system REENTER
LIBRARY, SOURCE-FILE, etc. command (see page 137).

The inclusion of the specification REQUIRE Group 3 -- other= INITIALIZATION, VERSION
“PROCS 1" LOAD-MODULE, "HELIB[1,3]" LIBRARY;
would inform the Loader that the file Before the execution of a program, Sail runs

PROCS 1.REL must be loaded and the library through an initialization routine. The user can
HELIB.REL[1,3] searched whenever the program specify things that he wants done at
cant aining the specification is loaded. The | initialization time by declaring an outer-block
parameter for both features should be a string Procedure without arguments, then saying
constant of one of the above forms. The file

extension .REL is the only value permitted, and REQUIRE procedure-name INITIALIZATION.
is therefore assumed; the device, name, and ppn

may be specified. TENEX users should note Require-initialization procedures are run just
that the LOADER restricts LOAD-MODULE and before the first executable statement in the

LIBRARY file names to 6 characters in the main outer block of the program. They are run in
name and 3 characters in the extension. order of ascending phase number, and within

each phase in the order the compiler saw the
LOAD_MODULES (.REL files to be loaded) may REQUIREs. There are currently three user
themselves contain requests for other phases, numbered 0, 1, and 2. Phase 1 is the
LOAD_MODULES an d LIBRARYs. LIBRARYs m ay default if no phase is specified. WARNING: you

| only contain requests for other LIBRARYs. The should not Require initialization of a procedure
which is declared inside another procedure.

11

ALGOL DECLARATIONS SAIL

REQUIRE n VERSION (na non-zero integer) will 3) The reserved word ENTRY, followed by
flag the resultant .REL file as version n. When a semi-colon, must be the first item in
a program loaded from several such RELfiles is the program (preceding even the
started, the Sail allocation code will verify that - BEGIN for its outer block). No starting
all specified versions are equal. A non-fatal address will be issued for a program
error message is generated if any disagree. As containing an Entry Specification.
much as will fit of the version number is also Since no starting address is present

stored in Ih(.JBVER), where .JBVER is location for this file, entry to code within it
‘137. may only be to the procedures it

contains. The statements in the outer

For other requirements, check the index under block, if any, can never be executed.
the specific condition being Required.

4) Should you desire your separatedly

COMMENT: You have probably noticed that a compiled procedures to be collected
great deal of prior knowledge is required for into a user library, include, a list of
proper understanding of this section. For more their identifiers between the ENTRY
information about storage allocation, see page and the semi-colon of the Entry
137 below. The form and use of .REL files and Specification of the program containing

libraries are described in [TopHand). those procedure declarations. The
format of libraries is described in

[TopHand]. The identifier(s) appearing
in the entry list may be any valid

2.5 Separately Compiled Procedures identifiers, but usually they will be the
names of the procedures contained in

When a program becomes extremely large it the file. No checking is done to see if
becomes useful to break it up into several files entry identifiers are ever really
which can be compiled separately. This can be declared in the body of the program.
done in Sail by preparing one file as a main
program, and one or more other files as 5) Any variables (simple or array) which
programs each of which contains one or more appear in the outer block of a

procedures to be called by the main program. Separately Compiled Procedure
The main program must contain EXTERNAL program will be global to the
declarations for each of the procedures procedures in this program, but not
declared in the other files. (EXTERNAL available to the main program (unless
declarations have no procedure body.) The they are themselves connected to the
non-main program files must have the following main program by Internal/External

characteristics: declarations -- see below). Non-LEAP
arrays in these outer blocks will

1) All procedures to be called from the always be zero when the program is
main program (or procedures in other first loaded, but will never be cleared

files) must be qualified with the as others are by restarting your

INTERNAL attribute when they are program (see reinitialization, page 10).

declared. External procedure
declarations with headings identical to Any variable, procedure or label may contain
those of the actual declarations must the attribute INTERNAL or EXTERNAL in its

appear in “all those programs which call declaration (ITEMS may not -- items are part of
these procedures. leap, page 83). The INTERNAL attribute does

not affect the storage assignment of the entity
2) These internal procedures must be it represents, nor does it have any effect on

uniquely identifiable by the first six the behavior of the entity (or the scope of its
characters of their identifiers. In identifier) in the file wherein it appears.

general, _ any two internal procedure However, its address and (the first six

names (or any other Internal variables characters of) its name are made available to

in the same core image) with the same the loader for satisfying External requests.

first six characters will cause incorrect | GOTO an external label is for wizards only.
linkages when the programs are
loaded.

12

SAIL ALGOL DECLARATIONS

No space is ever allocated for an External may be used as a push-down
declaration. Instead, a list of references to pointer for arithmetic values and

each External identifier is made by the return addresses. SP is the string
compiler. This list is passed to the loader along stack pointer. String results are
with the first six characters of the identifier returned on this stack. Arithmetic

name. (If there are no references then Sail results are returned in AC 1.

| ignores the External declaration.) When a
matching Internal name is found during loading, 3) Those who wish to provide their
the loader places the associated address in own UUO handlers or to increase
each of the instructions mentioned on the list. their core size should read the code.

No program inefficiency at all results from BN
External/lnternal linkages (belay that -- There are no other known processors which
references to External arrays are sometimes will produce Sail-compatible programs.
less efficient).

The entity finally represented by an External
identifier is only accessible within the scope of
the External declaration.

FORTRAN PROCEDURES

For a program written in either FAO or
FORTRAN-10 to run in the Sail environment,

the following restrictions must be observed: Co.

1) It must be a SUBROUTINE or

FUNCTION, not a main program.

2) It must not execute any FORTRAN
I/O calls. The UUO structures of the

two languages are not compatible.

3) It must be declared as a Fortran
Procedure (see page 20) in the Sail
program which calls it.

The type bits required in the argument

addresses for Fortran arguments are passed
correctly to these routines.

The Sail compiler will not produce a procedure
to be called from FORTRAN.

ASSEMBLY LANGUAGE PROCEDURES

The following rules should be observed:

1) The ENTRY, INTERNAL, and
EXTERNAL pseudo-ops should be
used to obtain linkages for

procedure names and “global”
identifiers; remember that only six
characters are used for these

linkage names.

2) Accumulators F (currently 12), P
(currently “17) and SP (‘16) should
be preserved over function calls. P

13

i ALGOL STATEMENTS SAIL

SECTION 3 <while_statement>

sw» WHILE <boolean-expression> DO
ALGOL STATEMENTS <statement>

i ::= NEEDNEXT <while_statement>

| <do_statement>

3.1 Syntax "= DO <statement> UNTIL
<boolean-expression>

<assignment-statement>
= <algebraic-variable> « <case_statement>

<algebraic-expression> i= <case-statement-head>
1 <statement-list>

<case_statement_tail>
| <swap_statement> = <case_statement_head>
i 1:=<variable>e <variable> <numbered_state_list>

i= <variable> SWAP <variable> <case-statement-tail>

<conditional-statement> <case_statement_head> |

= <if_statement> ::= CASE <algebraic-expression> OF BEGIN
u=<if_statement> ELSE <statement> ::= CASE <algebraic-expression> OF BEGIN

<block_name>

<if_statement>

::= IF <boolean-expression> THEN <case-statement-tail>
<statement> | ::= END

| ::= END <block_name>
<go_to_statement>

: z= GO TO <label-identifier>

= GOTO <label-identifier> <statement_list>
ii= GO <label-identifier> = <statement>

..= <statement_list>; <statement>
<label-identifier>

i= <identifier>

<numbered-state-list>

<for_statement> n= [<integer_constant>] <statement>
| :2= FOR <algebraic-variable> « <for_list> :: = [<integer_constant>]

DO <statement> | <numbered_state_list>
::= NEEDNEXT <for-statement> 2= <numbered-state-list> ;

[<integer_constant>] <statement>

<for_list>

| = <for_list_element> <return_statement>
n= <for_list> | <for_list_element> ::= RETURN

::= RETURN (<expression>)

<for_list_element>
som <algebraic_expression> <done_statement>
.:= <algebraic-expression> STEP ::= DONE

"<algebraic_expression> UNTIL ::= DONE <block_name>
<algebraic-expression>-

..= <algebraic-expression> STEP

<algebraic-expression> WHILE <next_statement>
<boolean-expression> ::= NEXT

: um NEXT <block_name>
| 14

SAIL- ALGOL STATEMENTS

<continue-statement> ¢) The value of the expression is
::= CONTINUE assigned to the left part variable,

::= CONTINUE <block_name> with subscript expressions, if any,
having values as determined in step
a.

<procedure-statement>
i= <procedure-call> This ordering of, operations may usually be

disregarded. However it becomes important.
when expression assignments (page 25) or

<procedure-call> function calls with reference parameters appear
= <procedure-identifier> anywhere in the statement. For example, in the
= <procedure-identifier> (statements:

<actual_parameter_list>)
Ke3;

A[K]e3+(Ke1)
<actual_parameter_list> :

= <actual-parameter> A[3] will receive the value 4 using the above
= <actual_parameter_list> | algorithm. A[1] will not change.

<actual-parameter>
Any algebraic expression (REAL, INTEGER

(BOOLEAN), or STRING) may be assigned to any

<actual_parameter> variable of algebraic type. The resultant type
i= <expression> will be that of the left part variable. The
u= <array-identifier> conversion rules for assignments involving
i2= <procedure-identifier> mixed types are identical to the conversion

rules for combining mixed types in algebraic

expressions (see page 23).

<safety-statement>
= NOW-SAFE <id_list> SWAP ASSIGNMENT

-um NOW-UNSAFE <id_list> The & operator causes the value of the variable
on the left hand side to be exchanged with the

value of the variable on the right hand side.
Arithmetic (REAL®INTEGER) type conversions

3.2 Semantics are made, if necessary; any other type
conversions are invalid. Note that the e

ASSIGNMENT STATEMENTS operator may not be used in assignment

The assignment statement causes the value expressions.
represented by an expression to be assigned to

the variable appearing to the left of the CONDITIONAL STATEMENTS
assignment symbol. You will see later (page These statements provide a means whereby the
25) that one value may be assigned to two or execution of a statement, or a series of
more variables through the use of two or more statements, is dependent on the logical value
assignment symbols. The operation of the produced by a Boolean expression.
assignment statement proceeds in the following

order: A Boolean expression is an algebraic expression
whose use implies that it is to be tested as a

a) The subscript expressions of the logical (truth) value. If the value of the
left part variable (if any = Salil expression is 0 or NULL then the expression is
defines “variable” to include both a FALSE boolean expression, otherwise it is

array elements and simple variables) TRUE. See about type conversion, page 23.
are evaluated from left to right (see
Expression Evaluation Rules, page IF STATEMENT - The statement following the
25). operator THEN (the “THEN part’) is executed if

the logical value of the Boolean expression is

b) The expression is evaluated. TRUE; otherwise, that statement is ignored.

15

ALGOL STATEMENTS SAIL

IF .. ELSE STATEMENT = If the Boolean BEGIN "B1"

expression is true, the “THEN part” is executed INTEGER I, J; LABEL L1;

and the statement following the operator ELSE
(the “ELSE part”) is ignored. If the Boolean IF BE3 THEN BEGIN“C |"

expression is FALSE, the “ELSE part” is »
executed and the “THEN part” is ignored. Li:

AMBIGUITY IN CONDITIONAL STATEMENTS END “C 1%

The syntax given here for conditional .
statements does not fully explain the GO TOL!

correspondences between THEN-ELSE pairs END "BI"
when conditional statements are nested. An

ELSE will be understood to match the is legal.

immediately preceding unmatched THEN.

Example: 3) Rule 2 can be violated if the inner
block(s) have no array declarations. E.g.:

COMMENT DECIDE WHETHER TO GO TO WORK;

Legal illegal
IF -WEEKEND THEN

IF GIANTS-ON-TV THEN BEGIN BEGIN “B 1" BEGIN "B1*"

PHONE-EXCUSE (“GRANDMOTHER DIED”); INTEGER 1, J; INTEGER |, J;
ENJOY (GAME); LABEL L I; LABEL L 1;
SUFFER (CONSCIENCE-PANGS) - -

END BEGIN "B2" BEGIN "B2"

ELSE iF REALLY-SICK THEN BEGIN REAL X; REAL ARRAYX[1:10};
PHONE-EXCUSE (“REALLY SICK”); . .
ENJOY (0); Li: Ll...

SUFFER (AGONY) . .
END END "B2"; END "B2";

ELSE GO TO WORK; GO TOLL; GO TOLL;
END "B11" END "B1"

GO TO STATEMENTS

Each of the three forms of the Go To statement 4) No Go To statement may specify a
(GO, GOTO, GO TO) means the same thing -- an transfer into a FOREACH statement
unconditional transfer is to be made to the (FOREACH statements are part of LEAP --
“target” statement labeled by the label page 83), or into complicated For loops
identifier. The following rules pertain to labels: (those with For Lists or which contain a

NEXT statement).

1) All label identifiers used in a program
must be declared. Labels will seldom be needed for debugging

purposes. The block name feature (see page

2) The declaration of a label must be local 140) and the listing feature which associates
to the block immediately surrounding the with each source line the octal address of its

statement it identifies (see exception corresponding object code (see page 134)
below). Note that compound statements should provide enough information to find

(BEGIN-END pairs containing no things easily.
declarations) are not blocks. Therefore ’

the block Many program loops coded with labels can be
alternatively expressed as For or While loops,

augmented by DONE, NEXT, and CONTINUE
statements. This often results in a source

program whose organization is somewhat more
transparent, and an object program which is
more efficient.

16

SAIL ALGOL STATEMENTS

FOR STATEMENTS value used for the step element will remain

For, Do and While statements provide methods constant throughout the execution of the For
for forming loops in a program. They allow the Statement. If AE5 is an expression then it will
repetitive execution of a statement zero or be evaluated before each iteration, so watch
more times. These statements will be described this possible source of inefficiency.

by means of Sail programs which are
functionally equivalent but which demonstrate Now consider the For Statement:
better the actual order of processing. Refer to

these equations for any questions you might FOR VBL«AE] STEP CONST UNTIL AE2 DO S;
have about what gets evaluated when, and how
many times each part is evaluated. where const is a positive constant. The

| compiler will simplify this case to:

Let VBL be any algebraic variable, AEl, ...,
AE8 any algebraic expressions, BE a Boolean VBLAE|;
expression, TEMP a temporary location, S a LOOPS: IF VBL$ AE2 THEN BEGIN
statement. Then the following Sail statements Si
are equivalent. VBL«VBL+CONST;

GO TO LOOP3

Using For Statements: END;

FOR VBL « AE 1, AE2, AE3 STEP If CONST is negative then the line at LOOPS3
AE4 UNTIL AE5, AE6 STEP AE? WHILE would be:
BE, AE8 DO S;

LOOP3: IF VBL 2 AE2 THEN BEGIN

Equivalent formulation without For Statements:
The value’of VBL when execution of the loop is

VBLAE 1; terminated, whether it be by exhaustion of the
S; For list or by execution of a DONE, NEXT or GO

VBLAE2; TO statement (see page 18, page 19, page
S; 16), is the value last assigned to it using the

algorithm above. This value is therefore always

VBLCAE3; Comment STEP-UNTIL loop; well-defined.
LOOP1 : IF (VBL-AES)* SIGN(AE4) $ 0 THEN

BEGIN The statement S may contain assignment
S; statements or procedure calls which change the

VBL«VBL+AE4; value of VBL. Such a statement behaves the
GO TO LOOP] same way it would if inserted at the

END; corresponding point in the equivalent loop
described above.

VBLeAE6; Comment STEP-WHILE loop;

LOOP2: IF BE THEN BEGIN WHILE STATEMENT

S; The statement:

VBLeVBL+AE7;
GO TO LOOP2 WHILE BE DO S;

END;

is equivalent to the statements:
VBLtAES;

S; " LOOP: it BE THEN BEGIN
If AE4 (AE7) is an unsubscripted variable then GO TO LOOP
changing its value within the loop will cause the END;
new value to be used for the next iteration. If

AE4 (AE?7) is a constant or an expression
requiring-evaluation of some operator then the

17

ALGOL STATEMENTS SAIL

DO STATEMENT CASE AE OF BEGIN {4][1]s41;[2][3] S23 END;

The statement: | CASEAE OF BEGIN [1]S41;[2] S23;[3] S23; [4) S41 END;
j DO S UNTIL BE;

is equivalent to the sequence: Block names (i.e. any string constant) may be
i used after the BEGIN and END of a Case

LOOP: S; statement with the same effect as block names

IF ~BE THEN GO TO LOOP; on blocks or compound statements. (See about
block names on page 1).

] CASE STATEMENTS
The statement: RETURN STATEMENT

| This statement is invalid if it appears outside a

CASE AE OF BEGIN SO; $1;S2...SnEND procedure declaration. It provides for an early
return from a Procedure execution to the

is functionally equivalent to the statements: statement calling the Procedure. If no return
: statement is executed then the Procedure will

TEMPeAE; return after the last statement representing

IF TEMP<O THEN ERROR the procedure body is executed (see page 7).
ELSE IF TEMP = 0 THEN SO

ELSE IF TEMP «1 THEN S1 An untyped Procedure (see page 19) may not
ELSE IF TEMP. 2 THEN S2 return a value. The return statement for this

1 kind of Procedure consists merely of the word
ELSE IF TEMP. n THEN Sn RETURN. If an argument is given then it will

ELSE ERROR; cause the compiler to issue an error message.

For applications of this type the CASE A typed Procedure (see page 28) must return
statement form will give significantly more a value as it executes a return statement. If no
efficient code than the equivalent If statements. argument is present an error message will be
Notice that dummy statements may be inserted given. If the Procedure has an algebraic type

: for those cases which will not occur or for then any algebraic expression may be returned
which no entries are necessary. For example, as its value; type conversion will be performed

in a manner described on page 23.
1 CASE AE OF BEGIN SO; ii S3; i: S6; END

| If no RETURN statement is executed in a typed
provides for no actions when AE is 1, 2, 4, 5, or Procedure then the value returned is undefined.

: 7. When AE is 0, 3, or 6 the corresponding
statement will be executed. However, slightly DONE STATEMENT

1 more efficient code may be generated with a The statement containing only the word DONE
i second type of Case statement that numbers may be used to terminate the execution of a

each of its statement with [n] where n is an FOR, WHILE, or DO (also FOREACH- see page
integer constant. The above example using this. 92) loop explicitly. Its operation can most
type of Case statement is then: easily be seen by means of an example. The

statement

J CASE AE OF BEGIN [8] S3; [0] SO; [6] S6 END;
FOR le1 STEP 1 UNTIL n DO BEGIN

All the statements must be numbered, and the Si
numbers must all be non-negative integer

constant expressions, although they may be in IF BE THEN DONE;
1 any order. .
: END

: Multiple -case numbers may precede each

| statement; the statement is executed for any is equivalent to the statement
one of the numbers specified. The following

| two CASE statements are equivalent:

1 18

SAIL ALGOL STATEMENTS

Unless a block name follows NEXT, the

FOR le1 STEP | UNTIL n DO BEGIN innermost loop containing the NEXT statement is

S; used as the “Loop Block” (see page 18). The
- terminating condition for the loop block is
IF BE THEN GO TO EXIT; checked. If the condition is met then all inner

. loops are terminated (in DONE fashion) as well.

END; If continuation is indicated then no inner-loop
EXIT: FOR-variable or WHILE-condition will have been

affected by the NEXT code.
In either case the value of | is well-defined

after the statement has been executed (see The reserved word NEEDNEXT must precede
page 17). FOR or WHILE in the “Loop Block”, and must not

appear between this block and the NEXT

The DONE statement will only cause an escape statement. Example:
from the innermost loop in which it appears,
unless a block name follows “DONE”. The block NEEDNEXT WHILE® ECF DO BEGIN

name must be the name of a block or compound S«INPUT(1,1);
statement (a “Loop Block”) which is the object NEXT:
statement of some FOR, WHILE, or DO statement " Comment check EOF and terminate if TRUE;

in which the current one is nested. The effect TeINPUT(1,3);

is to terminate all loops out to (and including) PROCESS_INPUT(S,T);
the Loop Block, continuing with the statement END;
following this outermost loop. For example:

CONTINUE STATEMENT

WHILE TRUE DO BEGIN "B1" The Continue statement is valid in only those
. contexts valid for the DONE statement (see
IF OK THEN DO BEGIN "B2" page 18); the “Loop Block” is determined in the

. same way (i.e., implicitly or by specifying a
FOR le1 STEP 1 UNTIL K DO block name). All loops out to the Loop Block

IF A[i}»FLAGWORD THEN DONE "B1"; are terminated as if DONE had been requested.
Control is transferred to a point inside the loop

END "B2" UNTIL COWS-COME-HOME; containing the Loop Block, but after all
. statements in the loop. Example:
END "B1";

FOR le} STEP 1 UNTIL N DO BEGIN

Here the block named "Bl" is the “loop block”. .
CONTINUE;

NEXT STATEMENT

A Next statement is valid only in a For END
Statement or a While Statement (or Foreach-
see page 92). Processing of the loop is semantically equivalent to:

statement is temporarily suspended. When the
NEXT statement appears in a For loop, the next FOR It 1 STEP1 UNTIL N DO BEGIN
value is obtained from the For List and LABEL CONT;

assigned to the controlled variable. The
termination test is then made. If the GO TO CONT;
termination condition is satisfied then control is -

passed to the statement following the For CONT:
Statement. If not, control is returned to the END

inner statement following the NEXT statement.
In While and Do loops, the termination condition PROCEDURE STATEMENTS
is tested. If it is satisfied, execution of the loop A Procedure statement is used to invoke the
terminates. -Otherwise it resumes at the execution of a Procedure (see page 7). After
statement within the loop following the NEXT execution of the Procedure, control returns to

statement. the statement immediately following the

19

ALGOL STATEMENTS SAIL

Procedure statement. Sail does allow you to The type of each actual parameter passed by
use typed Procedures as procedure statements. reference must match that of its corresponding
The value returned from the Procedure is formal parameter, modulo Sail type conversion.
simply discarded. The exception is reference string formals, which

must have string variables (or string array

The actual parameters supplied to a Procedure elements) passed to them. If an algebraic type
must match the formal parameters described in mismatch occurs the compiler will create a
the procedure declaration, modulo Sail type temporary variable containing the converted
conversion. Thus one may supply an integer value and pass the address of this temporary

expression to a real formal, and type as the parameter, and a warning message will
conversion will be performed as on page 23. be printed. An exception is made for Fortran

calls (see page 20).

If an actual parameter is passed by VALUE then
only the value of the expression is given to the PROCEDURES AS ACTUAL PARAMETERS
Procedure. This value may be changed or If an actual parameter to a Procedure PC is the

examined by the Procedure, but this will in no name of a Procedure PR with no arguments
way affect any of the variables used. to then one of three things might happen:
evaluate the actual parameters. Any algebraic

expression may be passed by value. * Neither 1) If the corresponding formal
Arrays nor Procedures may be passed by value parameter requires a value of a
(use ARRBLT, page 51, to copy arrays). See type matching that of PR (in the
the default declarations for parameters in page loose sense given above in page
9. 20), the Procedure is evaluated

and its value is sent to the

If an actual parameter is passed by REFERENCE Procedure PC.
then its address is passed to the Procedure.
All accesses to the value of the parameter 2) If the formal parameter of PC
made by the Procedure are made indirectly requires a reference Procedure of
through this address. Therefore any change identical type, the address of PR is
the Procedure makes in a reference parameter passed to PC as the actual
will change the value of the variable which was parameter.

used as an actual parameter. This is sometimes

useful. However, if it is not intended, use of 3) If the formal parameter requires a
this feature can also be somewhat confusing as reference variable, the Procedure is
well as moderately inefficient. Reference evaluated, its result stored, and its

parameters should be used only where needed. address passed (as with expressions
in the previous paragraph) as the

Variables, constants, Procedures, Arrays, and parameter.
most expressions may be passed by reference.

No String expressions (or String constants) may If a Procedure name followed by actual
be reference parameters. parameters appears as an actual parameter it is

evaluated (see functions, page 28). Then if
If an expression is passed by reference then the corresponding formal parameter requires a

its value is first placed in a temporary location; value, the result of this evaluation is passed as
a constant passed by reference is stored in a the actual parameter. If the formal parameter

unique location. The address of this location is requires a reference to a value, it is called as a

passed to the Procedure. Therefore, any reference expression.
values changed by the Procedure via reference

parameters of this form will be inaccessible to FORTRAN PROCEDURES
the user after the Procedure call. If the called If the Procedure being called is a Fortran
program is an assembly language routine which Procedure, all actual parameters must be of

saves the parameter address, it is dangerous to type INTEGER (BOOLEAN) or REAL. All such
pass expressions to it, since this address will parameters are passed by reference, since
be used by the compiler for other temporary Fortran will only accept that kind of call. For
purposes. A warning message will be printed convenience, any constant or expression used

when expressions are called by reference. as an actual parameter to a Fortran Procedure

20

SAIL _ ALGOL ‘STATEMENTS

is stored in a temporary cell whose address is

given as the reference actual parameter.

It was explained in page 7 that formal

parameters need not be described for Fortran
Procedures. This allows a program to call a

Fortran Procedure with varying numbers of
arguments. No type conversion will be
performed for such parameters, of course. If
type conversion is desired, the formal
parameter declarations should be included in
the Fortran procedure declaration; Sail will use
them if they are present.

To pass an Array to Fortran, mention the
address of its first element (e.g. A[0} or
B[1, 1).

NOW-SAFE and NOW_UNSAFE
The NOW-SAFE and NOW-UNSAFE statements

both take a list of Array names (names only -

no indices) following them. From a NOW-SAFE
until the end of the program or the next
NOW-UNSAFE, the specified arrays will not

have bounds checking code emitted for them. If

an array has had a NOW-SAFE done on it, or
has been declared SAFE, NOW-UNSAFE will

cause bounds checking code to be emitted until
the array is made safe again (if ever). Note

that NOW-SAFE and NOW-UNSAFE are compile
time statements. “IF BE THEN NOW-SAFE . .."

will not work.

21

ALGOL EXPRESSIONS SAIL

SECTION 4 <negated-expression>
. i=~ <relational-expression>

ALGOL EXPRESSIONS w= NOT <relational-expression>
u=<relational_expression>

<relational-expression>

4.1 Syntax i= <algebraic_relational>
= <leap_relational>

<expression>

i= <simple-expression> <algebraic_relational>
3= <conditional-expression> i= <pounded-expression>
i= <assignment-expression> w= <relational-expression>
= <case-expression> <relational_operator>

<bounded-expression>

<conditional-expression>

i= |F <boolean-expression> THEN <relational-operator>
<expression> ELSE <expression> nm <

vm >

<assignment-expression> Hm =
iim <variable> & <expression> n= S

n= 2

<case-expression> wm
::= CASE <algebraic-expression> OF (n= LEQ

<expression-list>) = GEQ
= NEQ

<expression-list>

i= <expression> <bounded-expression>
i= <expression-list> , <expression> u= <adding-expression>

i= <pbounded-expression> MAX

<adding-expression>
<simple-expression> n= <pounded-expression> MIN

$= <algebraic-expression> <adding-expression>
w= <|eap-expression>

<adding-expression>
<boolean-expression> i= <term>

i= <expression> i= <adding-expression> <add_operator>
<term>

<algebraic_expression>

i= <disjunct ive_expression> <adding_operator>
i= <algebraic-expression> v n= +

<disjunctive-expression> n= -
i= <algebraic-expression> OR t= |AND

<disjunctive-expression> w= [OR
n= EQV

n= XOR

<disjunctive-expression>

si= <negated-expression>

w= <disjunctive-expression> A <term>

<negated-expression> im <factor>

i= <disjunctive-expression> AND um <term> <mult_operator> <factor>
<negated-expression>

2 2

SAIL. ALGOL EXPRESSIONS

4.2 Type Conversion
<mult_operator>

mk Sail automatically converts between the data

co types Integer, Real, String and Boolean. The
= % following table illustrates by description and

2= [SH example these conversions. The data type
i= ASH boolean is identical to integer under the

wm ROT mapping TRUE#¥O and FALSE-O.
w= MOD

w= DIV F |To

um ro

° | INTEGER REAL STRINGm_

<factor> I | Left justify | Make a string
i= <primarys N | | and raise to | of 1 character
um <primary> T <primary> T | | appropriate uith the low

E | | power. | 7 bits for its6 {1345+1. 34563 | ASCII code.

<primary> E | -678+-6.7822 | 48 »"8"

2= <algebraic-variable> R_ FE EE PR.
sim = <primary> |

sm NOT <primary> R | Takr greatest] Convert to in-
= ABS <primary> E | integrr. | teger, then to
n= <string_expression> [<substring_spec> 1.34562+ 134 | string.

3 L | -6.716l.+ -68| 4.8e1 » "8"
i= 00 | 2.3¢e-2+ 8 | 4.898el +» "g"

w= [NF -

s= <const ant> | The ASCII code|Convert to in-I

um <function-designator> S | for the first] teger then
z= LOCATION (<loc_specifier>) T| character of | to real. |
:m= (<alge braic_expression>) R | string. | |

| | "0SUN"+ 4 8 | "SUM" 4.881 |
N| NULL -8 | NULL «+ 8

<string-expression> J PAHE
w= <algebraic-expression>

NOTES: The NULL string is converted to 0, but 0
is converted to the one character string with

<substring_spec> the ASCII code of 0. If an integer requires more
um <algebraic-expression> TO than 27 bits of precision (2127= 134217728)

<algebraic-expression> then some low order significance will be lost in
um <algebraic-expression> FOR the conversion to real; otherwise, conversion to

<algebraic-expression> real and then back to integer will result in the
same integer value. If a real number has

magnitude greater than 2735 -218
<function-designator> (-34359738112) then conversion to integer will

::= <procedure_call> produce an invalid result. UUOFIX does no
error checking for this case; KIFIX and FIXR will

| set Overflow and Trap 1.
<loc_specifier>

i= <variable> The default instruction compiled for a real to

uw <array_identifier> integer conversion is a UUO which computes
w= <procedure_identifier> FLOOR (x), the greatest integer function, This
a= <|abel_identifier> can be changed with the /A switch (page 134)

to one of several other instructions. For real

to integer conversion the choices are

<algebraic-variable> UUOFIX(opcode 003), KIFIX(122) and FiIXR(126);
w= <variable>

23

ALGOL EXPRESSIONS SAIL

the effect of each is shown in the following Beware: automatic type conversion can be a

able. curse as well as a blessing. Study the
conversion rules carefully; note that Sail has

real UUOFIX KIFIX FIXR three division operators, %, DIV, and /.
1.5 1 2 OPERATION ARG! ARGP ARG!’ ARG2' RESULT
16 1 1 2

-1.4 -2 -1 -1 .- INT INT INT INT INT*

15 2 -1 -1 * 1 7 REAL INT REAL REAL REAL

-1.6 2 -1 -2 MAX MIN INT REAL REAL REAL REAL
REAL REAL REAL REAL REAL

IJUOFIX is the default. In mathematical terms,

JUOFIX (x)=FLOOR (x)=[x Jwhere[x]is the LANDLOR INT INT INT INT INT
| raditional notation for the greatest integer less EQV XOR REAL INT REAL INT REAL

| than or equal to x. This UUO requires execution INT REAL INT REAL INT
3 of 18.125 instructions (32 memory references) REAL REAL REAL REAL REAL

on the average. Many FORTRANs use the
| Jnction implemented by KIFIX; LSH ROT INT INT INT INT INT

KIFIX (x)=SIGN (x)*FLOOR (ABS (x)). Many | AsH REAL INT ~~ REAL INT REAL
ALGOLs use FIXR: FIXR (x)=FLOOR (x+0.5). Note INT REAL INT INT INT

| that FIXR (-1.5) is not equal to -FIXR (1.5). REAL REAL REAL INT REAL

| For integer to real conversion the choices are / INT INT REAL REAL REAL
UUOFLOAT(002) and FLTR(127). FLTR rounds REAL INT REAL REAL REAL

| while UUOFLOAT (the default) truncates. It only INT REAL REAL REAL REAL
nrakes a difference when the magnitude of the REAL REAL REAL REAL REAL

integer being converted is greater than
; 134217728. In such cases it is always true that MOD DIV INT INT INT INT INT
| UUOFLOAT (i)si and FLTR (i)2i. UUOFLOAT REAL INT INT INT INT

: merely truncates after normalization, while INT REAL INT INT INT
| FLTR adds +0.5 Isb and then truncates. Most REAL REAL INT INT INT

users will never see the difference. UUOFLOAT
; tiakes 18.625 instructions (32 memory * For the operator T, ARG2' and RESULT are

references) on the average. REAL unless ARG2 is a positive integer
| constant.

; [For integer to real conversion involving a
SHORT quantity, FSC ac,233 is used. At SUAI

| real to integer conversion involving a SHORT

quantity uses KAFIX a¢,233000; as this manual 4.3 Semant ics
wrent to press KAFIX was simulated by the

| system and was very expensive.] CONDITIONAL EXPRESSIONS
A conditional expression returns one of two

| The binary arithmetic, logical, and String possible values depending on the logical truth
operations which follow will accept value of the Boolean expression. If the Boolean

| combinations of arguments of any algebraic expression (BE) is true, the value of the
types. The type of the result of such an conditional expression is the value of the

| operation is sometimes dependent on the type expression following the delimiter THEN. If BE

| of its arguments and sometimes fixed. An is false, the other value is used. If both
; argument may be converted to a different expressions are of an algebraic type, the

algebraic type before the operation is precise type of the entire conditional
! performed. The following table describes the expression is that of the “THEN part”. In
: results of the arithmetic and logical operations particular, the “ELSE part” will be converted to

given various combinations of Real and Integer the type of the “THEN part” before being
inputs. ARG1 and ARG2 represent the types of returned as the value of the conditional
the actual arguments. ARG’ and ARG2’ expression. Reread and understand the last

4 represent the types of the arguments after any sentence.

necessary conversions have been made.

24

SAIL ALGOL ‘EXPRESSIONS

Unlike the nested If statement problem, there OUT (TTY, CASE ERRNO OF (“BAD DIRECTORY”,
can be no ambiguity for conditional expressions, “IMPROPER DATA MODE”,

since there is an ELSE part in every such “UNKNOWN I/O ERROR’,
expression. Example:

“COMPUTER IN BAD MOOD”);
FOURTHDOWN (YARDSTOGO,YARDLINE,

IF YARDLINE< 70 THEN PUNT ELSE SIMPLE EXPRESSIONS

IF YARDLINE« 90 THEN FIELDGOAL ELSE Simple expressions are simple only in that they

RUNFORIT) are not conditional, case, or assignmerit
expressions. There are in fact some exciting

ASSIGNMENT EXPESSIONS complexities to be discussed with respect to
The somewhat weird syntax for an assignment simple expressions.
expression (it is equivalent to that for an

assignment statement) is nonetheless accurate: PRECEDENCE OF ALGEBRAIC OPERATORS
the two function identically as far as the new The binary operators in Sail generally follow

value of the left part variable is concerned. “normal” precedence rules. That is,
The difference is that the value of this left part exponentiations are performed before
variable ‘is also retained as the value of the multiplications or divisions, which in turn are

entire expression. Assuming that the performed before additions and subtractions,
assignment itself is legal (following the rules etc. The bounding operators MAX and MIN are
given in page 15 above), the type of the performed after these operations. The logical
expression is that of the left part variable. connectives A and v, when they occur, are
This variable may now participate in any performed last (A before v). The order of
surrounding expressions as if it had been given operation can be changed by including
its new value in a separate statement on the parentheses at appropriate points.
previous line. Only the « operator is valid in
assignment expressions. The g@perator is In an expression where several operators of
valid only at statement level. Example: the same precedence occur at the same level,

the operations are performed from left to right.
IF (KeK+1)< 30 THEN KeO ELSE KeKe1; See page 26 for special .evaluation rules for

h logical connect ives.
CASE EXPRESSIONS

The expression TABLE OF PRECEDENCE

CASE AE OF (EO, EI E2,...En)

| | */7% & MOD DIV LSH ROT ASH
is equivalent to: +-®E LAND LOR

MAX MIN

IF AE«O THEN EO »f<S>2 LEO GEQNEQ
ELSE IF AEs] THEN El AAND

ELSE IF AE=2 THEN E2 v OR

ELSE IF AE=n THEN En EXPRESSION EVALUATION RULES

ELSE ERROR Sail does not evaluate expressions in a strictly
left-to-right fashion. If we are not constrained

The type of the entire expression is therefore to a left-to-right evaluation, (as is ALGOL 60),
that of EO. If any of the expressions El . . . En we can in some cases produce considerably
cannot be fit into this mold an error message is better code than a strict left-to-right scheme
issued by the compiler. Case expressions differ could achieve. Intuitively, the essential features
from Case statements in that one may not use (and pitfalls) of this evaluation rule can be
the [n] construct to number the expressions. illustrated by a simple example:
Example:

be?26;

cebelbe b/2);

The second statement is executed as follows:

25

ALGOL EXPRESSIONS SAIL

divide b by 2 and assign this value (1.3) to b. "<=" (NOT)
Add this value to b and assign the sum to c. The unary Boolean operator = applied to an
Thus ¢ gets 2.6. If the expressions were argument BE (a relational expression, see
evaluated in a strictly left-to-right manner, c Syntax) has the value TRUE if BE is false, and
would get 2.6 + 1.3. FALSE if BE is true. Notice that =A is not the

bitwise complement of A, if A is an algebraic
The evaluation scheme can be stated quite value. If used as an algebraic value, Ais
simply: code is generated for the operation simply 0 if A¥0O and some non-zero Integer.
represented by a BNF production when the otherwise. The reserved word NOT is
reduction of that BNF production takes place. equivalent to "=".
That is, b + (b « b/2) isn’t reduced until after
(b « b/2) is reduced, so the smaller expression "OQ=4" (RELATIONS)
gets done first. If any of the binary relational operators is

encountered, code is produced to convert any

"v" (OR) String arguments to Integer numbers. Then
If an algebraic expression has as its major type conversion is done as it is for the +
connective the logical connective "Vv" the operations (see page 23). The values thus
expression has the logical value TRUE obtained are compared for the indicated
(arithmetic value some non-zero integer) if condition. A Boolean value TRUE or FALSE is
either of its conjuncts (the expressions returned as the value of the expression. Of
surrounding the "v") is true; FALSE otherwise. course, if this expression is used in subsequent
The reserved word OR is equivalent to the arithmetic operations, a conversion to integer is
symbol "v". AvB does NOT produce the bit- performed to obtain an integer value. The
wise Or of A and B if they are algebraic reserved words LEQ, GEQ, NEQ are equivalent
expressions. Truth values combined by numeric to "<", "2", "¥" respectively.
operators will in general be meaningless (use

the operators LOR and LAND for bit operations). The syntax El RELOPI E2 RELOP2 E3 where El,
E2, and E3 are expressions and RELOPI,

The user should be warned that in an RELOP2 are relational operators, is specially

expression containing logical connectives, only interpreted as (El RELOPI (T«E2)) A(T RELOP2
enough of the expression is evaluated (from left E3). The compiler can sornetimes produce
to right) to uniquely determine its truth value. better code when the special syntax is used.
Thus in the expression Thus a bounds check may be written IF L<i<U

THEN RELOPI and RELOP2 may be any
(J<3 v (KeKe1) > 0), relational operators, and need not be in

transitive order. The following are equivalent:
K will not be incremented if J is less than 3

since the entire expression is already known to IFA<X>B THEN .. and
be true. Conversely in the expression IF X > (A MAXB) THEN ..

(X 20 A SQRT(X)>2)

there is never any danger of attempting to MAX MIN
extract the square root of a negative X, since A MAX B (where A and B are appropriate
the failure of the first test testifies to the expressions -- see the Syntax) has the value of

falsity of the entire expression -- the SQRT the larger of A and B (in the algebraic sense).
routine is not even called in this case. Type conversions are performed as if the

operator were “+. ‘0 MAX X MIN 10 is X if
“A" (AND) 0sX<£10, 0 if X<0, 10 if X>10.
If a disjunctive expression has as its major

connective the logical connective “A”, the “+= (ADDITION AND SUBTRACTION)
expression has the logical value TRUE if both of The + and - operators will do integer addition
its disjuncts ate TRUE; FALSE otherwise. Again, (subtraction) if both arguments are integers (or
if the first disjunct is FALSE a logical vatue of converted to integers from strings); otherwise,
FALSE is obtained for the entire expression rounded Real addition or subtraction, after
without further evaluation. The reserved word necessary conversions, is done.

AND is equivalent to “A”.

26

i

SAIL ALGOL EXPRESSIONS

LAND LOR XOR EQV LNOT characters of the second string concatenated to

LAND, LOR, XOR, and EQV carry out bit-wise the end of all the characters of the first. The
And, Or, Exclusive Or, and Equivalence operands will first be converted to strings if
operations on their arguments. No type necessary as described in page 23 above.
conversions are done for these functions. The Numbers can be converted to strings
logical connect ives A and v do not have this representing their external forms (and vice-
effect -- they simply cause tests and jumps to versa) through explicit calls on execution time
be compiled. The type of the result is that of routines like CVS and CVD (see page 4.6
the first operand. This allows expressions of below). NOTE: Concatenation of constant
the form X LAND ‘777777777, where X is Real, strings will be done at compile time where

if they are really desired. possible. For example, if SS is a string variable,
SS&’12&’1S will result int w o runtime

The unary operator LNOT produces the bitwise concatenations, while SS&(’12&’15) will result in
complement of its (algebraic) argument. No one compile time concatenation and one runtime
type conversions (except strings to’ integers) concatenation.
are performed on the argument. The type of
the result (meaningful or not) is the type of the "t" (EXPONENTIATION)
argument. A factor is either a primary or a primary raised

to a power represented by another primary.

“%/72" (MULTIPLICATION AND DIVISION) As usual, evaluation is from left to right, so that
The operation * (multiplication), like + and =, ATBIC is evaluated as (ATB)TC. In the factor
represents Integer multiplication only if both XTY, a suitable number of multiplications and
arguments are integers; Real otherwise. Integer additions is performed to produce an “exact”
multiplication uses the IMUL machine instruction answer if Y is a positive integer. Otherwise a
-- no double-length result is available. routine is called to approximate

ANTILOG (Y LOG X). The result has the type of
The[operator (division) always does rounded X in the former case. It is always of type Real
Real division, after converting any Integer in the latter.
arguments to Real.

SUBSTRINGS

The% (division) operator has the same type A String primary which is qualified by a
table as +,-, and &. It performs whatever substring specification represents a part of the

division is appropriate. specified string. The characters of a string STR
are numbered 1, 2, 3, LENGTH (STR).

DIV MOD ST[X FOR Y] represents the substring which is
DIV and MOD force both arguments to be Y characters long and begins with character X.
integers before dividing. X MOD Y is the ST[X TO Y) represents the Xth through Yth
remainder after X DIV Y is performed: characters of ST.

XMOOY « Xx -(XDIVY)%Y. Consider the ST[X TO Y] case. This is evaluated

ASH LSH ROT | _SKIP_<FALSE; XTeX; YTeY;
LSH and ROT provide logical shift operations on IFYT> LENGTH (ST) THEN BEGIN
their first arguments. If the value of the YT<LENGTH (ST); righthalf (_SKIP_)«TRUE END;
second argument is positive, a shift or rotation IFYT<0 THEN COMMENT result will be NULL;
of that many bits to the left is performed. If it BEGIN YTeO0;righthalf (_SKIP_)e«TRUE END;
is negative, a right-shift or rotate is done. ASH IF XT< | THEN
does an arithmetic shift. Assume that A is an BEGIN XT «1; lefthaif (_SKIP_)«TRUE END;

integer. If N is positive then the expression A IF XT >¥T THEN COMMENT result will be NULL;
ASH N is equal to A *2TN. If N is negative then BEGIN XT « YTe1;lefthalf (_SKIP_)«TRUE END;
A ASH N is equal to FLOOR (A J 2T(-N)). <return the XTth through YTth characters of ST»

“"&"(CONCATENATION) LENGTH returns the number of characters in a
This operator produces a result of type String. string (see page 48). The ST[X FOR Y]
It is the String with length the sum of the operation is converted to the ST[X TO Y] case
lengths of its arguments, containing all the before the substring operation is performed.

27

ALGOL EXPRESSIONS SAIL

| The variable _SKIP_ can be examined to One can store and retrieve from the elements

: determine if the substring indices were “out of of MEMORY just as with any other array.
: bounds”. However, with MEMORY, one can control how

the compiler interprets the type of the
“oo” (SPECIAL LENGTH OPERATOR) accessed element by including type declarator

3 This special primary construct is valid only reserved words after the <integer expressions.
within substring brackets. It is an algebraic For example:

{ value representing the length of the most
| immediate string under consideration. The ..« MEMORY[X, INTEGER]

reserved word INF is equivalent to "eo" MEMORY[X,REAL] « . ..
Example: . .« MEMORY[X, ITEM]

COMMENT items and sets are part of Leap;

| A[0-2 to ©] yields the last 3 MEMORY[X, SET] «. ..
characters of A. . .+ MEMORY[X, INTEGER ITEMVAR)

| A[3 for B[oo-1 for 1]] uses the next to Note that one can not specify the contents of
| the last character of string memory to be an Array or a String.

B as the number of

characters for the A LOCATION is a predeclared Sail routine that

substring operation. returns the index in MEMORY of the Sail
| construct furnished it. The following is a list of

FUNCTION DESIGNATORS constructs it can handle and what LOCATION will

| A function designator defines a single value. return.

This value is produced by the execution of a

typed user Procedure or of a typed execution- CONSTRUCT x LOCATION (x) RETURNS
time routine (See «chapters 6 and 7 for
execution-time routines). For a function variable address of the variable

designator to be an algebraic primary, its

Procedure must be declared to have an | string variable -1,address of word2
algebraic type. Untyped Procedures may only

be called as Procedure statements (see page array name address of a word containing
19). The value obtained from a user-dofined the the address of the first
Procedure is that provided by a Return data word of the array

Statement within that Procedure.

array element address of that element

The rules for supplying actual parameters in a

: function designator are identical to those for procedure name address of the procedure’s
supplying parameters in a procedure statement entry code

| (see page 19).
labels address of the label

| UNARY OPERATORS
The unary operator ABS is valid .only for Simple example:

{ algebraic quantities. It returns the absolute

value of its argument. REAL X;
MEMORY [LOCATION (X), REAL] « 2.0;

-X is equivalent to (O-X). No type conversions PRINT (X)i COMMENT " 2.000000 ";
3 are performed. MEMORY [LOCATION (X)]« 2.0; PRINT (X);

COMMENT *.0000000@-38", MEMORY is INTEGER

f -X is the logical negation of X unless otherwise specified;
MEMORY [LOCATION (X), INTEGER] ¢ 2.0;

: MEMORY AND LOCATION PRINT (X)i COMMENT same as sbove;

One's core image can be considered a giant one
dimensional array, which may be accessed with
the MEMORY construct. You had better be a

good sport, or know what you are doing.

MEMORY [<integer ®@ xprorsion,}

28

SAIL ASSEMBLY LANGUAGESTATEMENTS

SECTION 5 <simple-address>
u=<identifier>

ASSEMBLY LANGUAGE STATEMENTS w= <static_array_name> [
| <constant-subscript-list>]

u= <constant-expression>
i= <literal>

5.1 Syntax
<literal>

um [<constant-expression> J
<code_block>

um <code_head> <code_tail>
<index_field>

i= <constant-expression>
<code_head>

= <code_begin>
um <code_begin> <block_name> <opcode>
u= <code_head> <declaration> ; «= <constant-expression>

= <PDP-10_opcode>

<code_begin>
w= START-CODE

::= QUICK-CODE 5.2 Semantics

Within a START-CODE (QUICK-CODE) block,
<code_t ail> statements are processed by a small and weak,

@= <instruction> END but hopefully adequate, assembly language

= <instruction> END <block_name> translator. Each “instruction” places one
-. u= <instruction>; <code_tail> instruction word into the output file. An

instruction consists of

<instruction> <label>i<opcode> <ac_field>, B<simple__addr> (<index>)

i= <addresses>

w= <opcode> or some subset thereof (see syntax). Each
::= <opcode> <addresses> instruction must be followed by a semi-colon.

DECLARATIONS IN CODE BLOCKS

<addresses> A code-block behaves like any other block with
i= <address> respect to block structure. Therefore, all

i= <ac_field> , declarations are valid, and the names given in
«= <ac_field> , <address> these declarations will be available only to the

instructions in the code-block. All labels must

be declared as usual. Labels in code-blocks

<ac_field> may refer to instructions which will be
i= <constant-expression> executed, or to those which are not really

instructions, but data to be manipulated by
these instructions (these latter words must be

<address> bypassed in the code by jump instructions).
i= <indexed-address> The user may find it easier to declare variables
#=@ <indexed-address> or SAFE arrays as data areas rather than using

labels and null statements. As noted below,

- = identifiers of simple variables are addresses of

<indexed-address> core locations. Identifiers of arrays are
um <gimple_address> addresses of the first word of the array header
= <simple-address> (<index_field>) (see the appendix on array implementation).

29

ASSEMBLY LANGUAGE STATEMENTS SAIL

PROTECT ACS DECLARATION If the <address> is an identifier, the machine

address (relative to the start of the compilation)

PROTECT,ACS <ac#>,...,<ac ®>; is used, and will be relocated to the proper

value by the Loader.

where <ac#> is an integer constant between 0
and ‘17, is a declaration. Its effect is to cause If the <address> is an identifier which has been
Sail not to use the named accumulators in the declared as a formal parameter to a procedure,
code it emits for the block in which the addressing arithmetic will be done automatically
declaration occurred (only AFTER the to get at the VALUE of the parameter. Hence if
declaration). The most common use is with the the <address> is a formal reference parameter,
ACCESS construct (see below); if one is using the instruction will be of the form OP AC,@-
accumulators 2, 3, and 4 in a code block, then x(’12) where x depends on exactly where the
one should declare PROTECT,ACS 2, 3, 4 if one parameter is in the stack. If the formal was

is going to use ACCESS. This way, the code from a simple procedure, then ‘17 will be used
emitted by Sail for doing the ACCESS will not as the index register rather than ‘12. When
use accumulators 2, 3, or 4. WARNING: this computing x Sail will assume that the stack
does not, prevent you from clobbering such ACs pointer has not changed since the last
with procedure calls (your own procedures or procedure entry; if you use PUSH, POP, etc. in a
Sail’s). However, most Sail runtimes save their Simple Procedure then you must calculate x
ACs and restore them after the call. yourself.

RESTRICTION: Accumulators P (17), SP (’16), F If a literal is used, the address of the compiled
(‘12) and 1 are used for, respectively, the constant will be placed in the instruction.
system push down pointer, the string push

down pointer, the display pointer, and returning Any reference to Strings will result in the
results from typed procedures and runtimes. address of the second descriptor word (byte
More about these acs on page 31. The pointer) to be placed in the instruction (see the
protect mechanism will not override these appendix on string implementation for an
usages, so attempts to protect 1, ‘12, ‘16, or explanation of string descriptors).
"17 will be futile.

Accessing parameters of procedures global to

OPCODES the current procedure is difficult. ACCESS

The Opcode may be a constant provided by the (<expr>) may be used to return the address of
user, or one of the standard (non |/O) POP-10 such parameters. ACCESS will in fact do all of
operation codes, expressed symbolically. If a the computing necessary to obtain the value of
constant, it should take the form of a complete the- expression <expr>, then return the address
PDP-10 instruction, expressed in octal radix of that value (which might be a temporary).
(e.g. DEFINE TTYUUO = “‘51000000000”;). Any Thus, MOVE AC, ACCESS(GP) will put the value
bits appearing in fields other than the opcode of the variable GP in AC, while MOVEI AC,
field (first 9 bits) will be OR’ed with the bits ACCESS(GP) will put the address of the variable
supplied by other fields of instructions in which GP in AC. If the expression is an item
this opcode appears. In TOPS-10 Sail the expression (see Leap), then the item's number
MUUQOs (ENTER, LOOKUP, etc.) are available. In will be stored in a temp, and that temp’s
TENEX Sail the JSYSes are available. Within a address will be returned. The code emitted for

code-block opcodes supersede all other an Access uses any acs that Sail believes are
objects; a variable, macro, or procedure with available, so one must include a PROTECT,ACS
the same name as an opcode will be taken for declaration in a Code block that uses ACCESS if
the opcode instead. you want to protect certain acs from being

munged by the Access. WARNING: skipping
The indirect, index, and AC fields have the same over an Access won't do the right thing. For

syntax and perform the same functions as they example,
do in the FAIL or MACRO languages.

To SKIPE FLRG;

THE <simple addr> FIELD MOVE ’18,ACCESS ('777 LAND INTIN(CHAN));
If the <address> in an instruction is a constant MOVE1 '18,8;

(constant expression), it is assumed to be an

immediate or data operand, and is not relocated.

30

SAIL ASSEMBLY LANGUAGE STATEMENTS

will cause the program to skip into the middie “display” structure of
of the code generated by the access if FLAG is procedures. DO NOT HARM AC
0. F!! Disaster will result. A more

exact description of its usage

START-CODE VERSUS QUICK-CODE may be found in the appendix

Before your instructions are parsed in a block on procedures and by reading
starting with START-CODE, instructions are the code.
executed to leave all accumulators from 0

| through ‘11 and ‘13 through ‘15 available for CALLING PROCEDURES FROM INSIDE CODE
your use. In this case, you may use a JRST to BLOCKS
transfer control out of the code-block, as long To call a procedure (say, PROT) from inside a
as you do not leave (1) a procedure, (2) a code block, use PUSHJ P, PROT. If the
block with array declarations, (3) a Foreach procedure requires parameters, PUSH P them in
loop, (4) a loop with a For list, or (5) a loop order before you PUSHJ P (i.e. the first one
which uses the NEXT construct. In a first, the second one next, etc.). If the formal is

QUICK_CODE block, no accumulator-saving a reference, push the address of the actual
instructions are issued., Ac's‘13 through ‘15 onto the P stack. If the formal is a value string,
only are free. In addition, some recently used push onto the SP stack the two words of the
variables may be given the wrong values if string descriptor (see the appendix on string
used as address identifiers (their current values implementation for an explanation of string
may be contained in Ac’s0-’l 1); and control descriptors). If the formal is a reference string,
should not leave the code-block except by simply PUSH P the address of the second word
“falling through”. of the string descriptor. If the procedure is

typed, it will return is value in AC 1, except
ACCUMULATOR USAGE IN CODE BLOCKS that STRING procedures return their values as

Although we have said that accumulators are | the top element of the SP stack. More
“freed” for your use, this does not imply a information can be found in the appendix on
carte blanche. Usually this means the compiler procedure implementation. Example:
saves values currently stored in the ACs which
it-wants to remember (the values of variables INTEGER Ki STRING S, SS;
mostly), and notes that when the code block is INTEGER PROCEDURE PROT (REALT; REFERENCE
finished, these ACs will have values in them INTEGERTT; STRING TTT; REFERENCE
that it doesn’t care about. However, this is not STRING TTTT);

. the case with the following accumulators, which BEGIN COMMENT BODY; END;

are not touched at all by the entrance and exit
of code blocks: DEFINE P = ‘17, SP= ‘16;

NAME NUMBER USAGE START-CODE

PUSH P, [3.14158];

P ‘17 The system push down list MOVE! I, K;

pointer. All procedures are | PUSH PL
called with a PUSHJ P, PROC MOVEI 1, S;

and exited (usually) with a PUSH SP, -1(1); COMMENT if Sail allowed address
POPJ P. Use this as your PDL arithmetic in Start_code, you
pointer in the code block, but could hrvr said PUSH SP, S- };
be sure that its back to where PUSH SP,s;

it was on entrance to the block MOVEI 1, SS;

by the time you exit. | PUSH P, Li
PUSHJ P,PROT;

SP ‘16 The string push down stack END;
pointer. Used in all string

operations. For how to do gives the same effect as
your own string mangling, read
the code. PROT (3.14 159, K, S, SS)

F ‘12 This is used to maintain the NOTE: procedures will change your

31

ASSEMBLY LANGUAGE STATEMENTS SAIL

accumulators unless the procedure takes special
pains to save and restore them.

BEWARE

The Sail <code block> assembler is not FAIL or

MACRO. Read the syntax! Address arithmetic is
not permitted. All integer constants are decimal
unless specified explicitly as octal (e.g., ‘120).

Each instruction is a separate <statement> and
must be separated from surrounding statements
by a semicolon. If you want comments then use

COMMENT just like anywhere else in Sail.
QUICK-CODE is for wizards.

32

i SAIL INPUT/OUTPUT ROUTINES

} | SECTION 6 assumes Integer arguments (for
those functions which are

INPUT/OUTPUT ROUTINES predeclared). The user may pass
Real arguments to these routines by

: re-declaring them in the blocks in
which the Real arguments are
desired.

6.1 Execution-t ime Routines in General

i 2) If the @ character precedes the
| SCOPE sample identifier, the argument will

A large set of predeclared, built-in procedures be called by reference. Otherwise it
1 and functions have been compiled into a library is a value parameter.

permanently resident on the system disk area

(SYS:LIBSANn.REL or <SAIL>LIBSAN.REL- n is the Example:
current version number; HLBSAn for /H

1 compilations), and optionally into a special “RESULT” « SCAN (@"SOURCE", BREAK-TABLE, @BRCHAR)

: sharable write-protected high segment. The
1 library also contains programs for managing is - a predeclared procedure with the implicit
! storage allocation and initialization, and for declaration:

certain String functions. If a user calls one of
these procedures, a request is automatically EXTERNAL STRING PROCEDURE SCAN

s made to the loader to include the procedure, (REFERENCE STRING SOURCE;
J and any other routines it might need, in the INTEGER BREAK-TABLE;
1 core image (or to link to the high segment). REFERENCE INTEGER BRCHAR);

These routines provide input/output (1/0)
facilities, Arithmetic-String conversion facilities, SKIP,

| array-handling procedures and miscellaneous Some routines return secondary values by
other interesting functions. The remainder of storing them in _SKIP_, Declare EXTERNAL

: this section and the next describes the calling INTEGER _SKIP_ if you want to examine these
sequences and functions of these routines. values. In FAIL or DDT the spelling is ".SKIP.".

NOTATIONAL CONVENTJONS

. A short-hand is used in these descriptions for

1 specifying the types (if any) of the execution- 6.2 I/O Channels and Files
] time routines and of their parameters. Before
: the description of each routine there is a

sample call of the form
—_— OPENmm

VALUE « FUNCTION (ARG1, ARG2, . ARGn)

] OPEN (CHANNEL, “DEVICE”, MODE,

If VALUE is omitted, the procedure is an NUMBER-OF-INPUT-BUFFERS,
untyped one, and may only be called at NUMBER_OF _OUTPUT_BUFFERS,
statement level (page 19). @COUNT, @BRCHAR, ®EOF);

The types of VALUE and the arguments may be Sail input/output operates at a very low level
1 determined using the following scheme: in the following sense: the operations

necessary to obtain devices, open and close

{ 1) If* characters surround the sample files, etc., are almost directly analogous to the
identifier (which is usually mnemonic system calls used in assembly language. OPEN

: in- nature) a String argument is is used to associate a channel number (0 to ‘17)
1 expected. Otherwise the argument with a device, to determine the data mode of
b is- Integer or Real. If it is important the 1/0 to occur on this channel (character
3 which of the types Integer or Real mode, binary mode, dump mode, etc.), to
i must be presented, it will be made specify storage requirements for the data

clear in the description of the buffers used in the operations, and to provide

: function. Otherwise the compiler the system with information to be used for

| 33

INPUT/OUTPUT ROUTINES SAIL

input operations. See page 45 for an example The remaining arguments are applicable only

| of TOPS-10 I/O programming. for INPUT (String input), They will be ignored
for any other operations (although their values

CHANNEL is a user-provided channel number may be changed by the Open function).
which will be used in subsequent I/O
operations to identify the device. COUNT designates a variable which will
CHANNEL may range from 0 to 15 contain the maximum number of
(‘17). A RELEASE will be performed characters to be read from “DEVICE” in.
before the OPEN is executed. : a given INPUT call (see page 39,

page 36). Fewer characters may be

DEVICE must be a String (i.e. “TTY”,” “DSK”) reed if a break character is
which is recognizable by the system as encountered or if an end of file is
a physical or logical device name. detected. The count should be a

variable or constant (not an
MODE is the data mode for the I/O operation. expression), since its address is stored,

MODE 0 will always work for and the temporary storage for an
characters (see INPUT, page 39 and expression may be re-used.
OUT, page 40). Modes 8 (‘10) and 15
(‘17) are applicable for binary and BRCHAR designates a variable into which the
dump-mode operations using the break character (see INPUT and
functions WORDIN, WORDOUT, ARRYIN, BREAKSET again) will be stored. This
or ARRYOUT (see page 40 and variable can be tested to determine
following). For other data modes, see which of many possible characters
[SysCall]. If any of bits 18-21 are on terminated the read operation.
in the MODE word, the I-O routines will

not print error messages when data EOF designates a variable to be used for

errors occur which present the two purposes:
corresponding bits as a response to

the GETSTS UUO. Instead, the GETSTS 1) Error handling when OPEN is called.
bits will be reported to the user as If the system call used by OPEN
described under EOF below. If bit 23 succeeds then EOF is set to zero

is on, no error message will be printed and OPEN returns. If the system
if an invalid file name specification is call fails then OPEN looks at the
presented to LOOKUP, ENTER, or EOF variable; if it is nonzero then
RENAME, a code identifying the OPEN returns. If EOF is zero then
problem will be returned (see page the user is given the option of
36 ff. for details). If you don't retrying or continuing without the

understand any of this, leave all non- device. If a retry is successful
mode bits off in the MODE word. then EOF is zeroed. If the user

proceeds (gives up) then EOF is set
NUMBER_OF _{INPUT/OUTPUT}_BUFFERS to nonzero. The net effect is that

specifies the number of buffers to be the program may interpret EOF=0
reserved for the I/O operations. At as a successful OPEN and EOF #0 as
least one buffer must be specified for an unsuccessful OPEN.
input if any input is to be done in

modes other than ‘17; similarly for 2) Error handling for subsequent I/O
output. If data is only going one operations. EOF will be made non-
direction, the other buffer specification zero (TRUE) if an end of file

should be 0. Two buffers give condition, or any error condition
reasonable performance for most among those enabled (see MODE,
devices (1 is sufficient for a TTY, more above) is detected during any Sail
are required for DSK if rapid operation input/output operation. It will be 0

is desired). The left half of the (FALSE) on return to the user
BUFFER parameter, if non-zero, otherwise. Subsequent inputs
specifies the buffer size (mod 7777) after an EOF return will return
for the I/O buffers. Use this only if non-zero values in EOF and a null
you desire non-standard sizes.

34

SAIL- INPUT /OUTPUT ROUTINES

String result for INPUT. For = CLOSE, CLOSIN, CLOSO=
ARRYIN, a 0 is returned as the

value of the call after end of file is CLOSE (CHANNEL, BITS(O));
detected. If EOF is TRUE after such CLOSIN (CHANNEL, BITS(O));

an operation, it will contain the CLOSO (CHANNEL, BITS(0))
entire set (18 bits) of GETSTS
information in the left half. The The input (CLOSIN) or output (CLOSO) side of

EOF bit is ‘20000, and is the only the specified channel is closed: all output. is
one you'll ever see if you haven't forced out (CLOSO); ‘the current file name is
specially enabled for others. forgotten. However the device is still active; no

OPEN need be done again before the next

Here are the error bits for SUAlI and TOPS-IO: LOOKUP/ENTER operation. Always CLOSE
TENEX Sail uses the ERSTR error number output files: Sail exit code will deassign the
instead. device, but does not force out any remaining

400000 improper mode (a catchall) output; you must do a CLOSE when writing on a
200000 parity error disk file to have the new file (or a newly edited
100000 data error old file) entered on your User File Directory.
40000 record number out of bounds No INPUT, OUT, etc., may be given to a directory

20000 end of file (input only) device until an ENTER, LOOKUP, or RENAME has
been issued for the channel.

You -are always enabled for bit 20000 (EOF).
However, to be allowed to handle any of the CLOSE is equivalent to the execution of both
others, you must turn on the corresponding bit CLOSIN and CLOSO for the channel. BITS
in the right half of the MODE word. In addition, specifies the close inhibit bits, which default to
the 10000 bit is used to enable user handling zero. See [SysCall] for the interpretation of
of invalid file specifications to ENTER, LOOKUP, | the bits.
and RENAME. ‘7500017 in the MODE parameter
would enable a dump mode file for user

handling of ALL 1/O errors on the channel. If
yOu are not enabled for a given error, an error —— (GETCHANrr
message (which may or may not be fatal) will

be printed, and the error code word set as VALUE« GETCHAN
indicated.. In addition, the number of words

actually transferred is stored in the right half GETCHAN returns the number of some channel
of the EOF variable for ARRYIN, ARRYOUT. which Sail believes is not currently open. The

value -1 is returned if all channels are busy.
Assembly Language Approximation to OPEN:

INIT CHANNEL, MODE

SIXBIT /DEVICE —————— RELEASE —m™

XViD OHED,1 HED
JRST <handle error condition> | RELEASE (CHANNEL, BITS(0))
JUMPE <NUMBER_OF _OUTPUT_BUFFERS>, GETIN

<a! locate buffer space» If an OPEN has been executed for this channel,

OUTBUF CHANNEL, NUMBER_OF _OUTPUT_BUFFERS a CLOSE is now executed for it. The device is

GETIN: JUMPE <NUMBER_OF _INPUT_BUFFERS>, DONE dissociated from the channel and returned to
<allocate buffrr space> the resource pool (unless it has been assigned
I NBUF CHANNEL, NUMBER_OF _INPUT_BUFFERS by the monitor ASSIGN command). No I/O

DONE: <mark channel open -- internal bookkeeping» operation may refer to this channel until
*return> another OPEN denoting it has been executed.

BITS specifies the CLOSE inhibit bits; see

| OHED: BLOCK 3 | [SysCali}.
SHED: BLOCK3 -

Release is always valid. If the channel
mentioned is not currently open, the command

: is simply ignored.

.s

INPUT/OUTPUT ROUTINES SAIL

—_———— |OOKUP, ENTER=e ———————— RENAME —————oo—

LOOKUP (CHANNEL, “FILE”, @FLAG); RENAME (CHANNEL, “FILE-SPEC”,
ENTER (CHANNEL, “FILE’, ®@F LAG) PROTECTION, @FLAG)

Before input or output operations may be The file open on CHANNEL is renamed to
performed for a directory device (DECtape or FILE,SPEC (a NULL file-name will delete the file)
DSK) a file name must be associated with the with read/write protection as specified in
channel on which the device has been opened PROTECTION (nine bits, described in [SysCali]).
(see page 33). LOOKUP names a file which is to FLAG is set as in LOOKUP and ENTER.
be read. ENTER names a file which is to be

created or extended (see [SysCall}. It is
recommended that an ENTER be performed
after every OPEN of an output device so that — RENAMEm—
output not normally directed to the DSK can be
directed there for later processing if desired. ERENAME (CHANNEL, FILE-SPEC”,
The format for a file name string is PROTECTION, DATE, TIME,

MODE, @FLAG)
“NAME”, or

"NAME.EXT*", or (Not on TENEX.) This extended version of

"NAME([P,PN]", or RENAME allows complete specification of all the
"NAME.EXT[P,PN]", or data which may be changed by a RENAME.

| "NAME. EXT[P,PN"

See [MonCom] for the meaning of these things
if you do not immediately understand. 6.3 Break Characters

Sail is not as choosy about the characters it
allows as some processors are. Any character
which is not a comma, period, right square -_BREAKSET —-nono-u-—
bracket, or left square bracket will be passed

on. Up to 6 characters from NAME, 3 from EXT, BREAKSET (TABLE, “BREAK-CHARS”, MODE)
P, or PN will be used -- the rest are ignored.

Character input/output is done using the String

If the LOOKUP or ENTER operation fails then features of Sail. In fact, I/O is the chief
variable FLAG may be examined to determine justification for the existence of strings in the
the cause. The left half of FLAG will be set to language.
“777777 (Flag has the logical value TRUE). The
right half will contain the code returned by the String input presents a problem not present in

system giving the cause of the failure. An String output. The length of an output String
invalid file specification will return a code of can be used to determine the number of
‘10. In this case, if the appropriate bit (bit 23, characters written. However it is often

see OPEN) was OFF in the MODE parameter of awkward to require an absolute count for input.
the OPEN, an error message will be printed; Quite often one would like to terminate input,
otherwise, the routine just returns without or “break”, when one of a specified set of

performing the UUO. : characters is encountered in the input stream.
In Sail, this capability is implemented by means

If the LOOKUP or ENTER succeeds, FLAG will be of the BREAKSET, INPUT, TTYIN, and SCAN
set to zero (FALSE). functions. The value of TABLE may range from

-17 to 54, but tables -17 through -1 are
reserved for use by the runtime system. Thus

(up to S54 different sets of user break
specifications may exist at once. Which set will

be used is determined by the TABLE parameter

} in an INPUT or SCAN function call. Breaktables

36

SAIL INPUT/OUTPUT ROUTINES

are dynamically allocated in blocks of 18 (1-18, set currently specified for this table. Any "QO"
195.5% 37-54). command completely specifies the set of

omitted characters, without altering the break

BREAKSET merely modifies the existing settings characters for the table in question. If a
in TABLE; use GETBREAK (which returns a character is a break-character, any role it might

| virgin table) if you want to achieve an absolute play as an omitted character is sacrificed.
known state. The function of a given

BREAKSET command depends on the MODE, an The next group of MODEsdetermines the
integer which is interpreted as a right-justified disposition of break characters in the input
ASCIl character whose value is intended to be stream. The "BREAK_CHARS" argument is
vaguely mnemonic. BREAKSET commands can ignored in these commands, and may in fact be

| be partitioned into 4 groups according to mode: NULL:

GROUP 0 -- Conversion specifications GROUP 2 -- Break character disposition

MODE FUNCTION MODE FUNCTION

"K" (Konvert) The minuscule letters (a-t) "Ss" (Skip -- default mode) After
will be converted to majuscule (A-2) execution of an "S§" command the
before doing anything else. break character will not appear

either in the resultant String or in

"FE" (Full character set) Undoes the subsequent INPUTsor SCANs-- the
effect of “K”. Mode "F" is the character is “skipped”. Its value

default. may be determined after the INPUT
by- examination of the break

"Zz" (Zero bytes) Believe the breaktable character variable (see page 33).
when INPUT reads a zero byte.

| INPUT automatically omits zero “A” (Append) The break character (if
characters otherwise. Mode “Z" is there is one -- see page 33 and
turned off by both mode “I” and page 39) is appended, or
mode “X". concatenated to the end of the input

string. It will not appear again in
GROUP 1 -- Break character specifications subsequent inputs.

MODE FUNCTION "R" (Retain) The break character does
| not appear in the resultant INPUT or

"® (by Inclusion) The characters in the SCAN String, but will be the first
BREAK-CHARS String comprise the character processed in the next
set . of characters which ~~ will operation referring to this input

terminate an INPUT (or SCAN). source (file or SCAN String).

| "xX" (by eXclusion) Only those characters Text files containing line numbers present a
(of the possible 128 ASCII special problem. A line number is a word
characters) which are NOT contained containing 5 ASCII characters representing the

| in the String BREAK-CHARS will number in bits O-34, with a "1" in bit 35. No
terminate an input when using this other words in the file contain 1's in bit 35.
table. Since String manipulations provide no way for

distinguishing line numbers from other

"Oo" (Omit) The characters in characters, there must be a way to warn the
| “BREAK-CHARS” will be omitted user that line numbers are present, or to allow

(deleted) from the input string. him to ignore them entirely.

Bry “I” or "X* command completely specifies the The next group of MODEsdetermines the
break character set for its table-(i.e., the table disposition of these line numbers. Again, the

] is reset before these characters are stored in “BREAK-CHARS” argument is ignored:
it). Neither will destroy the omitted character

37

INPUT-/OUTPUT ROUTINES SAIL

Group 3 -- Line number disposition BREAKSET (DELIMS, " | ;"&TAB&LF, “I");
Comment break on any of these;

MODE FUNCTION

BREAKSET (DELIMS, ‘15, 0");

"p (Pass -- default) Line numbers are Comment ignore carriage return;
treated as any other characters.
Their identity is lost; they simply BREAKSET(DE LIMS, NULL, "N");

appear in the result string. Comment ignore line numbers;

“N" (No numbers) No line number (or the BREAKSET (DELIMS, NULL, "R"):
TAB which always follows it in Comment save break char for next time;
standard files) will appear in the
result string. They are simply Breaktable 0 is builtin as equivalent to
discarded. SETBREAK (0, NULL, NULL, "I"). This is break-

on-count for INPUT and returns the whole

"LL" (Line no. break) The result String string from SCAN.
will © be terminated early if a line

number iS encountered. The
characters comprising the line
number and the associated TAB will -_— SETBREAK ———ve—

appear as the next 6 characters
read or scanned from this character SETBREAK (TABLE, “BREAK-CHARS’,
source. The user's break character “OMIT-CHARS”, “MODES”)

variable (see page 33 and ‘page

39) will be set to -1 to indicate a SETBREAK is logically equivalent to the Sail
line number break. statement:

"g" (Lee Erman’s very own mode) The BEGIN “SETBREAK’
result String is terminated on a line INTEGER |;
number as with “L”, but neither the

line number nor the TAB following it IF LENGTH (OMIT-CHARS) » 0 THEN
will appear in subsequent inputs. BREAKSET (TABLE, OMIT-CHARS, "0");

The line number word, negated, is

returned in the user's (integer) FOR le} STEP | UNTIL LENGTH (MODES) DO
BRCHAR variable. BREAKSET (TABLE, BREAK-CHARS, MODES[I FOR 1))

|] "0 (Display) obsolete END “SETBREAK’

Once a break table is set up, it may be
referenced in an INPUT, TTYIN or SCAN call to

control the scanning operation. — GETBREAK, RELBREAK =e

Example: To delimit a “word”, a program might TABLE« GETBREAK;
wish to input characters until a blank, a TAB, a RELBREAK (TABLE)
line feed, a comma, or a semicolon is

encountered, ignoring line numbers. Assume GETBREAK finds an unreserved breaktable,
also fhat carriage returns are to be ignored, reserves it, sets it to a completely virgin state,
and that the break character is to be retained and returns the number of the table.

in the character source for the next scanning GETBREAK returns -18 if there are no free
operation: tables. Breaktables are reserved by

GETBREAK, SETBREAK, BREAKSET, and STDBRK.
RELBREAK returns a table to the available list.

38

SAIL INPUT/OUTPUT ROUTINES

—— STDBRKm— automatically omitted (text editor convention)

unless mode "I" was specified for theSTDBRK (CHANNEL) BEX: Input may be terminated in several
ways. The exact reason for termination can be

Eighteen breakset tables have been selected as obtained by examining BRCHAR and EOF:
representative of the more common input
scanning operations. The function STDBRK EOF BRCHAR
initializes the breakset tables by opening the
file SYS:BKTBL.BKT on CHANNEL and reading #0 0 End of file or an error (if
in these tables. The user may then reset those enabled, see page 33) occurred
tables which he does not like to something he while reading. The result is a
does like. String containing all non-

omitted characters which
The eighteen tables are described here by remained in the file when
giving the SETBREAKs which would be required INPUT was called.
for the user to initialize them:

0 0 No break characters were

DELIMS¢ ‘15 & ‘12 & ‘40 & ‘1 1 & ‘14; encountered. The result is a

Comment carriage return, line food, space, String of length equal to the
tab, form ford; current COUNT specifications

LETTS « “ABC... 2abc...2_" for the CHANNEL (see page 33).
DIGS « “0 123456789”;

SAILID « LETTS&DIGS; 0 <0 A line number was encountered
and the break table specified

SETBREAK(1, ‘12, ‘15, “INS"); that someone wanted to know.

SETBREAK(2, “12, NULL, "INA" The result String contains all

SETBREAK (3, DELIMS, NULL, "XNR"); characters up to the line
SETBREAK(4, SAILID, NULL, “INS"): number. If mode "L"was
SETBREAK(5, SAILID, NULL, "INR" specified in the Breakset

- SETBREAK(6, LETTS, NULL, "XNR"); setting up this table, bit 35 is
SETBREAK(7, DIGS, NULL, "XNR"); turned off in the line number

SETBREAK(8, DIGS, NULL, "INS"); word sothat it will be input
SETBREAK(9, DIGS, NULL, "INR") next time. -1 is placed in
SETBREAK (10, DIGS&"+-@.", NULL, “XNR"); BRCHAR. If mode "E" was
SETBREAK(1 1, DIGS&"+-0.", NULL, “INS”; specified, the line number will

SETBREAK (12, DIGS&"+-8.", NULL, "INR") not appear in the next input
SETBREAK (13-18, NULL, NULL, NULL); String, but its negated ASCII

value, complete with low-order
line number bit, will be found
in BRCHAR.

6.4 I/O Routines

0 >0 A break character was

encountered. The break

character is stored in BRCHAR

et[NPTsee (an INTEGER reference variable,
see page 33) as a right-

“RESULT” « INPUT (CHANNEL, BREAK-TABLE) justified 7-bit ASCII value. It
may also be tacked on to the

A string’ of characters is obtained for the file end of the result String or
open on CHANNEL, and is returned as the saved for next time, depending
result. The INPUT operation is controlled by on the BREAKSET mode (see
BREAK-TABLE (see page 36) and the reference page 36).
variables BRCHAR, EOF, and COUNT ‘which are

provided by the user in the OPEN function for If break table 0 is specified, the only criteria

| this channel (see page 33). Zero bytes are for termination are end of file or COUNT
exhaustion.

39

INPUT/OUTPUT ROUTINES SAIL

-_— SCAN ——— _— oJ——m

“RESULT” « SCAN (@"SOURCE", OUT (CHANNEL, “STRING”)
BREAK-TABLE, @BRCHAR)

STRING is output to the file open on CHANNEL.

SCAN functions identically to INPUT with the If the device is a TTY, the String will be typed
following exceptions: immediately. Buffered mode text output is

employed for this operation. The data mode

l. The source is not a data file but the specified in the OPEN for this channel must be

String SOURCE, called by reference. 0 or 1. The EOF variable will be set non-zero
The String SOURCE is truncated as described in page 33 if an error is detected
from the left to produce the same and the program is enabled for it; O otherwise.
effect as one would obtain if

SOURCE were a data file. The

disposition of the break character is
the same as it is for INPUT. -_ LINOUT ——————

2. BRCHAR is directly specified as a LINOUT (CHANNEL, NUMBER)
parameter. INPUT gets its break
character variable from a table set ABS (NUMBER) mod 100,000 is converted to a 5

up by page 33. character ASCII string. These characters are
placed in a single word in the output file

3. Line number considerations are designated by CHANNEL with the low-order bit

irrelevant. (line-number bit) turned on. A tab is inserted
after the line number. Mode 0 or 1 must have

been specified in the OPEN (page 33) for the
results to be anywhere near satisfactory. EOF

 SCANC ———————— is set as in OUT.

“RESULT” « SCANC (“SOURCE”,
“BREAK”, “OMIT”, “MODE”);

 SETPL ——@8@ 8

This routine is equivalent to the following Sail

code: SETPL (CHANNEL, @LINNUM,
@PAGNUM, @SOSNUM)

STRING PROCEDURE SCANC (STRING ARG, BRK,

OMIT, MODE); This routine allows one to keep track of the
BEGIN “SCANC” INTEGER TBL, BRCHAR; STRING RSLT; string input from CHANNEL. Whenever a ‘12 is

TBL«GETBREAK; SETBREAK (TBL, BRK, OMIT, MODE); encountered, LINNUM is incremented. Whenever
RSLT«SCAN (ARC, TBL, BRCHAR); a ‘14 is encountered, PAGNUM is incremented
RELBREAK (TBL) and LINNUM is zeroed. Whenever an SOS line

RETURN (RSLT) END “SCANC’; number is encountered it is placed into
SOSNUM.

Note that the arguments are all value

parameters, so that SCANC will be called at
compile time if the arguments are constants. It
is intended that SCANC be used with ASSIGNC —eWORDIN ——rrr—

in macros and conditional compilation. For
scanning at execution time, it is much more VALUE «WORDIN (CHANNEL)
efficient to use SCAN directly.

The next word from the file open on CHANNEL

is returned. A zero is returned, and EOF (see
page 33, page 39) set, when end of file or
error is encountered. This operation is

performed in buffered mode or dump mode,
depending on the mode specification in the
OPEN.

40

SAIL INPUT/OUTPUT ROUTINES

WARNING ABOUT DUMP MODE IO —INOUT——

; Dump Mode (mode ‘15, ‘16, or ‘17) is
J sufficiently device and system dependent that INOUT (INCHAN, OUTCHAN, HOWMANY)

you should consult [SysCall} and be extremely
3 careful. INOUT reads HOWMANY words from channel
i INCHAN and writes them out on channel
1 OUTCHAN. Each channel must be open in a

mode between 8 and 12. On return, the EOF

f —_—— ARRYIN variables for the two channels will be the same

: as if ARRYIN & ARRYOUT had been used. If

! ARRYIN (CHANNEL, ®@LOC, HOW-MANY) HOWMANY is less than zero, then transfer of
1 data will cease only upon end of file or a

HOW-MANY words are read from the device and device error. INOUT is not available in TENEX
| file open on CHANNEL, and deposited in memory Sail.
: starting at location LOC. Buffered-mode input

is done if MODE (see page 33) is ‘10 or ‘14.

3 Dump-mode input is done if MODE is ‘16 or ‘17.
Other modes are illegal. See the warning about — GETSTS, SETSTS ——

! Dump Mode IO above. If an end of file or
i enabled error condition occurs before SETSTS (CHAN, NEW-STATUS);

J] HOW-MANY words are read in buffered mode
i then the EOF variable (see page 33) is set to issues a SETSTS uuo on channel CHAN with the

the enabled bits in its left half, as usual. Its status value NEW-STATUS.
] right half contains the number of words actually

read. EOF will be 0 if the full request is STATUS « GETSTS (CHAN)
j satisfied. Noindication of how many words

were actually read is given if EOF is returns the results of a GETSTS uuo on channel

i | encountered while reading a file in DUMP mode. CHAN.

j These functions do not exist in TENEX Sail.
Instead, see GTSTS, GDSTS, STSTS, and SDSTS

i —WORDOUT —— for analogous features.

WORDOUT (CHANNEL, VALUE)

VALUE is placed in the output buffer for -— MIAPEmm
CHANNEL. An OUTPUT is done when the buffer

| is full or when a CLOSE or RELEASE is executed MTAPE (CHANNEL, MODE)
3 for this channel. Dump mode output will be
1 done if dump mode is specified in the OPEN (see MTAPE is ignored unless the device associated

page 33). EOF is set as in OUT. See the with CHANNEL is a magnetic tape drive. It
| warning about Dump Mode IO above. performs tape actions as follows:

i MODE FUNCTION

| -_ ARRYOUT "A" Advance past one tape mrrk (or file)
x "8" Backspace past one tape mark

3 ARRYOUT (CHANNEL, @LOC, HOW-MANY) “E" Write trpe mark
J "F" Advance one record

3 HOW-MANY words are written from memory, po Set ‘IBM compatible’ mode
| starting at location LOC, onto the device and "R" Backspace one record
3 file open on channel CHANNEL. The valid modes "Ss" Write 3 inches of blank tape
A are again 10, ‘14, “16, and ’'l7. The EOF "T" Advance to logical end of tape
1 variable is set as in ARRYIN, except that the "U" Rewind and unload
i EOF bit itself will never occur. "WwW" Rewind tape
3] NULL Wait until all activity ceases

| 41

INPUT/OUTPUT ROUTINES SAIL

| —_ USETI, USETO ——— — <sign>
Hw +

USETI (CHANNEL, VALUE); nm -
USETO (CHANNEL, VALUE) um <empty>

These routines are for random file access (see If the digit is not part of a number an error
[SysCall)). message will be printed and the program will

halt. Typing a carriage return will cause the
input function to return zero.

—_—. REALIN, INTIN ———————re On input, leading zeros are ignored. The ten
most significant digits are used to form the

VALUE «REALIN (CHANNEL); number. A check for overflow and underflow is
VALUE «INTIN (CHANNEL) made and an error message printed if this

occurs. When using INTIN any exponent is

Number input may be obtained using the removed by scaling the Integer number.
functions REALIN or INTIN, depending on Rounding is used in this process. All numbers
whether a Real number or an Integer is are accurate to one half of the least significant
required. Both functions use the same free bit;
field scanner, and take as argument a channel

number. After scanning the number the last delimiter is
replaced on the input string and is returned as

Free field scanning works as follows: the break character for the channel. If no
characters are scanned one at a time from the number is found, a zero is returned, and the

input channel, ignoring everything until a digit break variable is set to -1; If an end of file or
or decimal point is encountered. Then a enabled error is sensed this is also returned in
number is scanned according to this syntax, the appropriate channel variable. The maximum
with zero bytes, line numbers, and carriage character count appearing in the OPEN call is
returns (but not linefeeds) ignored: ignored.

<number>

i= <sign> <real number> ———————— REALSCAN, INTSCAN

VALUE « REALSCAN (@"NUMBER_STRING",
| <real number> @BRCHARY);
| = <decimal number> VALUE ¢« INTSCAN (&NUMBER-STRING”,

= <decimal number> <exponent> @BRCHAR)
= <exponent>

| These functions are identical in function to

REALIN and INTIN. Their inputs, however, are
<decimal number> obtained from their NUMBER-STRING arguments.

| w= <integer> These routines replace NUMBER-STRING by a
| = <integer>. string containing all characters left over after

w= <integer> . <integer> the number has been removed from the front.
i= <integer>

: <integer> es TMIPIN, TMPOUT eee
1 = <digit>

= <integer> <digit> “RESULT” « TMPIN (“FILE”, @ERRFLAG);
TMPOUT (“FILE”, “TEXT”, ®ERRFLAG)

<exponent> These routines do input and output to tmpcor
1 = @ <sigh> <integer> files (simulated files kept in core storage--see

| = E <sign> <integer> [SysCall]).

| 42

SAIL INPUT/OUTPUT ROUTINES

TMPIN returns a string consisting of the entire 6.5 TTY and PTY Routines
contents of the tmpcor file of the specified

name. Only the first three characters in the file
name are significant. If the input fails for some

reason (most likely: no tmpcor file with the — TELETYPE |/O ROUTINES se
specified name) then ERRFLAG is set to true
and NULL is returned. Otherwise ERRFLAG is

set to false. Each of the I/O functions uses the TTCALL

UUO’s to do direct TTY I/O.

TMPOUT writes its string argument into the
specified tmpcor file. The ERRFLAG has the BACKUP
same function as in TMPIN; in case of error, the The system attempts to back up its

tmpcor file is not written. Likely causes for TTY input buffer pointer to the
error are running out of tmpcor space beginning of the last “line”, thus

(currently, the sum of the sizes of all the allowing you to reread it. In
tmpcor files for a single job may not exceed general this cannot possibly work,
=256 words) or attempting to write a null so do not use BACKUP.
tmpcor file (i.e., calling TMPOUT with the string
argument NULL). CLRBUF

Flushes the input buffer.
TMPIN executes a TMPCOR uuo with code 1, and

hence does not delete the specified tmpcor file. CHAR ¢ INCHRS
The length of the returned string will always be Returns a negative value if no

a multiple of five, since words rather than characters have been typed;
characters are actually being transferred. otherwise it is INCHRW.
TMPOUT executes a TMPCOR uuo with code 3.

The last word of the string is padded with nulls CHAR¢ INCHRW
f necessary before the data transfer is done. Waits for a character to ‘be typed

and returns that character.

N@ither function is available in TENEX Sail.

"STR" « INCHSL (@FLAG)
Returns NULL with FLAG #¥ 0 if no

lines have been typed. Otherwise

————— AUXCLR, AUXCLV =e it sets FLAG to 0 and performs
INCHWL.

RSLT « AUXCLR (PORT, ®@ARG, FUNCTION);
RSLT « AUXCLV (PORT, ARG, FUNCTION) “STR” + INCHWL

Waits for a line to be typed and

(TYMSHARE only.) These functions perform returns a string containing all
AUXCAL system calls; the only difference is characters up to (but not including)

whether ARG is by reference or by value. the activation character. The
SKIP is set. activation character is put into

SKIP. If the activation character
is CR then the next character is

discarded (on the assurnption that
—GHNIOR, CHNIQV =— it is LF).

RSLT « CHNIOR (CHAN, &ARG, FUNCTION); "STR" «INSTR (BRCHAR)
RSLT « CHNIOV (CHAN, ARG, FUNCTION) Returns as a string all characters

up to, but not including, the first
(TYMSHARE only.) These functions perform instance of BRCHAR, The BRCHAR
CHANIO system calls; the only difference is instance is lost.
whether ARG is by reference or by value.
SKIP is set. "STR"« INSTRL (BRCHAR)

Waits for a line to be typed, then

performs INSTR.

43

INPUT/OUTPUT ROUTINES SAIL

| "STR"« INSTRS (FLAG, BRCHAR) wee PSEUDO-TELETYPE FUNCTIONS emmemmeem
Is INCHSL if no lines are waiting;
INSTRL otherwise.

Pseudo-teletype functions are available at SUAI
IONEOU (CHAR) only.

(TYMSHARE only.) The low-order 8
| bits of CHAR are sent to the TTY in LODED ("STR")

image mode. Loads the line editor with the
string argument. PTOSTR should

OUTCHR (CHAR) be used rather than LODED if
Types its character argument possible, since LODED works only

: (right-justified in an integer on a DD or Ill, while PTOSTR works
variable). on all terminals.

OUTSTR (“STR”) “STR"« PTYALL (LINE)
Types its string argument until the Returns whatever is in the PTY’s
end of the string or a null output buffer. No waiting is done.

| character is reached.

CHAR « PTCHRS (LINE)

“STR” « TTYIN (TABLE, @BRCHAR) Reads a character from the PTY if
Uses the break table features there is one, returns -1 if none.

described in page 36 and page 39
to return a string and break CHAR¢« PTCHRW (LINE)

| character. Mode “"R" is illegal; line Waits for a character from the PTY
number modes are irrelevant. The and returns it.

: input count (see page 33) is set at
100. PTOCHS (LINE, CHAR)

| Tries to send a character to a PTY.
"STR"« TTYINL (TABLE, @BRCHAR) If the attempt was successful, the

| Waits for a line to be typed, then global variable _SKIP_is -1,
does TTYIN. otherwise 0.

“STR” «TTYINS (TABLE, @BRCHAR) PTOCHW (LINE, CHAR)
Sets BRCHAR to #0 and returns Sends a character to a PTY, waiting
NULL if no lines are waiting. if necessary.
Otherwise it is TTYINL.

NUMBER « PTOCNT (LINE)

| OLDVAL « TTYUP (NEWVAL) Returns the number of free
Causes conversion of lower case characters in the PTY output

characters (a-z) to their upper buffer.
; case equivalents for strings read

by any of the Sail teletype NUMBER « PTIFRE (LINE)
: routines that do not use break Returns the number of free

tables. If NEWVAL is TRUE then characters in the PTY input buffer.

j conversion will take place on all
: subsequent inputs until PTOSTR (LINE, "STR")

TTYUP(FALSE) is called. OLDVAL Sends the string to the PTY,
| will be set to the previous value of waiting if necessary. PTOSTR (0,
; the conversion flag. If TTYUP has "STR") sends the string to your
| j never been called, then no TTY.

| conversions will take place, and the
| first call to TTYUP will return LINE« PTYCET

FALSE. In TENEX, TTYUP sets the Gets a new pseudo-teletype line

system parameter using the STPAR number and returns it. The global
; jsys to convert to upper case. variable _SKIP_ is -1 if the attempt

to get a PTY was successful, and 0
otherwise.

44

SAIL. INPUT/OUTPUT ROUTINES

CHARACTERISTICS * PTYGTL (LINE) IF NOT($FILE:EOF[Q])) THEN BEGIN |
Returns line characteristics for the SETPL ($FILE:CHANNEL[Q], $FILE:LINNUM[Q),

PTY. $FILE:PAGNUMIQ), $FILE:SOSNUMI[Q):
IF IBUF THEN

"STR"« PTYIN (LINE, BKTBL, @BRCHAR) LOOKUP ($FILE:CHANNEL[Q]), $FILE:NAME[Q), $FILE:EOF[Q));
Reads from the PTY (waiting if IF OBUF AND NOT (SFILE:EOF[Q]) THEN

necessary) according to break ENTER ($FILE:CHANNEL([Q), $FILE:NAME[Q), $FILE:EOF[Q));
table conventions. The break END;

. character is stored in BRCHAR. SFILE:PAGNUM[Q]e1;
IF $FILE:EOF[Q) THEN RELEASE($FILE:CHANNEL[Q));

PTYREL (LINE) RETURN(Q)
Releases PTY identified by LINE. END “OPENUP’;

COMMENT Sail I/O should be rewritten to do this ft;

PTYSTL (LINE, CHARACTERISTICS)
Sets line characteristics for the RECORD-POINTER ($FILE) PROCEDURE GETFILE

PTY specified by LINE. (STRING PROMPT; INTEGER MODE, I, 0);
BEGIN “GETFILE”

"STR"« PTYSTR (LINE, BRCHAR) RECORD-POINTER ($FILE) F; INTEGER REASON;
Reads characters from the’ PTY, WHILE TRUE DO BEGIN “try”
waiting if necessary, "until a PRINT (PROMPT);
character equal to BRCHAR is seen. IF (REASON«SFILE:EOF[F~OPENUP (INCHWL,
All but the break character is MODE, I, 0)})=0 THEN RETURN (F);

returned as the string. If the IF REASON-1 THEN
break character was ‘15 (carriage PRINT ("Device", $FILE:DEVICE[F]," not available.")

return), the following character is ELSE PRINT("Error,", CASE (0 MAX REASON MIN 4) OF
snarfed (on the assumption that it (“no such file", "illegal PPN ", “protection
is a linefeed). “‘ousy , "77? "), $FILE:NAME[F], CRLF);

END “try”;

END “GETFILE”;

6.6 Example of TOPS-1 0 I/O
RECORD-POINTER ($FILE) SRC, SNK;

BEGIN “COPY” INTEGER FFLFTAB;

: COMMENT copiesa text file, insorting 8 semicolon 8tthe
. beginning of each line, deleting SOS line numbers and SETBREAK (COLONTAB«GETBREAK, ":", "*, "ISN");

| zero bytes, if rny. Prints the page number as it goes; WHILE TRUE DO BEGIN “big loop”
STRING LINE;

REQUIRE "[){]" DELIMITERS; SRC«GETFILE (“Copy from: 0, 5, 0)
DEFINE CRLF={('15&'12)],LFe[’12),FFs[14]; SFILE:COUNT[SRC)«200;

| INTEGER COLONTAB; SNKe«GETFILE (" to, 0, 0, 5);
SETBREAK (FFLFTAB~GETBREAK, FF&LF, "", "INA");

] RECORD-CLASS &FILE (STRING DEVICE, NAME;
: INTEGER CHANNEL, MODE, IBUF, OBUF, WHILE TRUE DO BEGIN “a line”
| COUNT, BRCHAR, EOF, LINNUM, PAGNUM, sosNUM); LINE<INPUT (S$FILE:CHANNEL{SRC], FFLFTAB);

IF $FILE:EOF[SRC] THEN DONE;
} RECORD_POINTER(SFILE) PROCEDURE OPENUP IF $FILE:BRCHAR[SRC}«FF THEN BEGIN
: (STRING FILNAM; INTEGER MODE, BUF, OBUF); PRINT ("", $FILE:PAGNUM[SRC));
pC BEGIN "OPENUP" LINE«LINE&

STRING T; RECORD-POINTER ($FILE)Q; INTEGER BRK; INPUT (S$FILE:CHANNEL[SRC], FFLFTAB) END;
QeNEW_RECORD (SFILE); T«SCAN (FILNAM, COLONTAB, BRK); CPRINT ($FILE:CHANNEL[SNK}, "i", LINE)

| $FILE:DEVICE[Q)«(IF BRKe":" THEN T ELSE “DSK; END "a line”;
| $FILE:NAME[Q)«(IFBRK=":" THEN FILNAM ELSE T) RELEASE ($FILE:CHANNEL[SRC));

$FILE:MODE[Q)«MODE; SFILE:IBUF[Q]«IBUF; RELEASE (SFILE:CHANNEL[SNK])
| $FILE:OBUF[Q)«OBUF; OPEN (SFILE:CHANNEL[Q)«GETCHAN, END “big loop”;

$FILE:DEVICE[Q], MODE, 1BUF, OBUF, $FILE:COUNT[Q}, END “COPY”
$FILE:BRCHAR{[Q), $FILE:EOF[Q)e- 1);

45

EXECUTION TIME ROUTINES SAIL

SECTION 7 —_— vsmm

EXECUTION TIME ROUTINES "ASCI_STRING" « CVS (VALUE);

The decimal Integer representation of VALUE is
Please read Execution Time Routines in General, produced as an ASCII String with leading zeroes

page 33, if you are unfamiliar with the format omitted (unless WIDTH has been set by
used to describe runtime routines. SETFORMAT to some negative value). "-" will be

concatenated to the String representing the

| decimal absolute value of VALUE if VALUE is
negative.

7.1 Type Conversion Routines

-_— ———o—0o—

—_— SETFORMAT ——r———

| VALUE « CVD ("ASCII_STRING")

SETFORMAT (WIDTH, DIGITS)

: ASCII-STRING should be a String of decimal
§ This function allows specification of a minimum ASCII characters perhaps preceded by plus
1 width for strings created by the functions CVS, and/or minus signs. Characters with ASCII

CVOS, CVE, CVF, and CVG (see page 46 and values € SPACE (‘40) are ignored preceding the
! following). If WIDTH is positive then enough number. Any character not a digit will
y blanks will be inserted in front of the resultant. terminate the conversion (with no error
3 string to make the result at least WIDTH indication). The result is a (signed) integer.

characters long. The sign, if any, will appear
| after the blanks. If WIDTH is negative then

leading zeroes will be used in place of blanks.

The sign, of course, will appear before the -_—CV——
zeroes. The parameter WIDTH is initialized by

the system to zero. “ASCII-STRING” « CVOS (VALUE)

| . In addition, the DIGITS parameter allows one to The octal Integer representation of VALUE is

| specify the number of digits to appear produced as an ASCIl String with leading zeroes
following the decimal point in strings created omitted (unless WIDTH has been set to some

] by CVE, CVF, and CVG. This number is initially negative value by SETFORMAT. No "-" will be
7. See the writeups on these functions for used to indicate negative numbers. For

details. : instance, -5 will be represented as
“TTT777777773.

NOTE: All type conversion routines, including
those that SETFORMAT applies to, are

i performed at compile time if their arguments
; are constants. However, Setformat does not _—_ OV —0————

have its effect until execution time. Therefore,

CVS, CVOS, CVE, CVF, and CVG of constants will VALUE « CVO ("ASCII_STRING")
have. no leading zeros and 7 digits (if any)
following the decimal point. This function is the same as CVD except that

the input characters are deemed to represent
: Octal values.

ee GETFORMAT =———————

i GETFORMAT (-@WIDTH, @DIGITS)

1 The WIDTH and DIGIT settings specified in the
last SETFORMAT call are returned in the

! appropriate reference parameters.
46

a

SAIL - EXECUTION TIME ROUTINES

CVE, CVF, CVG= —C\/ASC, CVASTR, CVSTR =———

“STRING” « CVE (VALUE); VALUE « CVASC (“STRING”);
“STRING” « CVF (VALUE); | “STRING” « CVASTR (VALUE);
“STRING” « CVG (VALUE) “STRING” « CVSTR (VALUE)

Real number output is facilitated by means of These routines convert between a Sail String
one of three functions CVE, CVG, or CVF, and an integer containing 5 ASCII characters

corresponding to the E, G, and F formats of left justified in a 36-bit word; the extra bit is
FORTRAN IV. Each of these functions takes as made zero (CVASC) or ignored (CVASTR,
argument a real number and returns a string. CVSTR). CVASC converts from String to ASCII.
The format of the string is controlled by Both CVSTR and CVASTR convert from a word

another function SETFORMAT (WIDTH, DIGITS) of ASCII to a string. CVSTR always returns a
(see page 46) which is used to change WIDTH string of length five, while CVASTR stops
from zero and DIGITS from 7, their initial values. converting at the first null (‘O) character.

WIDTH specifies the minimum string length. If
WIDTH is positive leading blanks will be inserted CVASTR (CVASC (“ABC”) is “ABC”
and if negative leading zeros will be inserted. cVSTR (CVASC (“ABC”) is “ABC” & 0 & 0

The following table indicates the strings
returned for some typical numbers. _ indicates
a space and it is assumed that WIDTH«10 and —ee CV/GSTR, CVSIX, CVXSTR eee
DIGITS «3.

| “STRING” «CV6STR (VALUE);
CVF CVE CVG VALUE « CVSIX (“STRING”);

—88 8 __.180e-3_ —.1808e-3_ “STRING” « CVXSTR (VALUE)
881 —.100e-2_ —. 180@-2_

.818 __.100e-1_ —.100a-1_ The routines CVGSTR, CVSIX, and CVXSTR are

.100 lee - 1 1880 the SIXBIT analogues of CVASTR, CVASC, and
. 1.888 _.. 18811, 1.80 CVSTR, respectively. The character codes are

18.888 __.180e2__ 18.8 converted, ASCII in the String « SIXBIT in the

-.los.880 __.100e3__ 188. eee = CVXSTR always returns a string of
_1800.0808 __.180e4__ —-l00@é__ length six, while CVGSTR stops converting upon
J8888.888 __.180eS5__ _.188e5__ reaching a null character.

_160800,088 __.1808e6__ —.100eb6__
-1888888,888 _ .l60e7__ _.1808e7__ CVGSTR (CVSIX ("XYZ") is "XYZ", not "XYZ *.
-1888888.888 _-.180e7__ —-.100e7__ CVESTR (cvsix ("Ky 2") is "X", not "KY Z" or “XYZ”.

The first character ahead of the number is

either a blank or a minus sign. With WIDTH«-10

plus and minus 1 would print as: 7.2 String Manipulation Routines

CVF CVE CVG

-88881.888 _8.180el__ _81.88___

-88881.888 -8.1808el__ -81.088____ _— QU—_—_—

All numbers are accurate to one unit in the VALUE « EQU ("STR1", “STR2")
eighth digit. If DIGITS is greater than 8, trailing
zeros are included; if less than eight, the The value of this function is TRUE if STRI and
number is rounded. STR2 are equal in length and have identically

the same characters in them (in the same
order). The value of EQU is FALSE otherwise.

47

EXECUTION TIME ROUTINES SAIL

em| ENGTH= In other words, it executes the instruction

formed by adding the address of the ADDR

VALUE « LENGTH (“STRING”) variable (passed by reference) to the number
INSTR. Before the operation is carried out, ACT

LENGTH is always an integer-valued function. If is loaded from a special cell (initially 0). AC1 is
the argument is a String, its length is the returned as the result, and also stored back
number of characters in the string. The length into the special cell after the instruction is
of an algebraic expression is always 1 (see executed. The global variable _SKIP_ {(.SKIP. in
page 23). LENGTH is usually compiled in line. DDT or FAIL) is FALSE (0) after the call if the

executed instruction did not skip; TRUE
(currently -1) if it did. Declare this variable as

EXTERNAL INTEGER _SKIP_ if you want to use
—— OP——— it.

VALUE « LOP (@STRINGVAR)

The LOP operator applied to a String variable —_—. CALL ——r—rr—
removes the first character from the String and
returns it in the form given in page 23 above. RESULT« CALL (VALUE, “FUNCTION”)
The String no longer contains this character.
LOP applied to a null String has a zero value. This function is equivalent to the FAIL
LOP is usually compiled in line. LOP may not statements:
appear as a statement.

EXTERNAL . SKIP.

SETOM SKIP.

| MOVE 1, VALUE
—SUBSR, SUBST =————— CALL 1, [SIXBIT /FUNCTION/I

SETZM «SKIP. ;010 NOT SKIP

“RSLT” « SUBSR (“STRING”, LEN, FIRST); RETURN (REGISTER 1)
“RSLT” « SUBST (“STRING”, LAST, FIRST)

| TENEX users should see more on CALL, page
These routines are the ones used for 80.

| performing substring operations. SUBSR (STR,
LEN, FIRST) is STR[FIRST FOR LEN] and
SUBST (STR, LAST, FIRST) is STR[FIRST TO
LAST). ——— CAlll—

| RESULT «CALL (VALUE, FUNCTION)

7.3 Liberation-from-Sail Routines (TYMSHARE only.) Like CALL, only CALLL

—_—CODE— -_eee JSERCON —rerororororoeo—

RESULT « CODE (INSTR, @ADDR) USERCON (@INDEX, @VALUE, FLAG)

This function is equivalent to the FAIL This function allows inspection and alteration of
J statements: the “User Table”. The user table is always

loaded with your program and contains many

EXTERNAL .SKIP. ;DECLARERS _SKIP_IN SAIL interesting variables. Declare an index you are

| SETON _ «SKIP. jRSSUNE SKIP interested in as an External Integer (e.g.
] HOVE 8, INSTR EXTERNAL INTEGER REMCHR). This will, when

RDDI 8, ¢ADOR loaded, give an address which is secretly a
; XCT 8 small Integer index into the User Table. When

SETZ2M «SKIP. DIDN'T SKIP passed by reference, this index is available to
: RETURN (1)

48

LL—

SAIL. EXECUTION TIME ROUTINES

USERCON. The names and meanings of the USERERR(0, 1, “LINE TOO LONG"); Gives
various User Table indices can be found in the error message end allows continuation.

file HEAD, wherever Sail compiler program text
files are sold. USERERR (0, 1, NULL, "QLA"); Resets mode

of error handier to Quiet, Logging, end

USERCON always returns the current value of Automatic continuation. Then continues.
the appropriate User Table entry (the Global
Upper Segment Table is used if FLAG is
negative and your system knows about such
things). If FLAG is odd, the contents of VALUE _— ERMSBF ———————
before the call replaces the old value in the
selected entry of the selected table. ERMSBF (NEWSIZE)

By now the incredible danger of this feature This routine insures that error messages of
must be apparent to you. Be sure you NEWSIZE characters can be handled. The error
understand the ramifications of any changes message buffer is initially 256 characters,
you make to any User Table value. which is sufficient for any Sail-generated error.

USERERR can generate longer messages,
GOGTAB however.

Direct access to the user table can be gained
by declaring EXTERNAL INTEGER ARRAY
GOGTAB[O:n}; The clumsy USERCON linkage is
obsolete. -_ BDOFILE ———

The symbolic names of all GOGTAB entries can EDFILE (“FILENAME”, LINE, PAGE, BITS(O))
be obtained by requiring SYS:GOGTAB.DEF
(<SAIL>GOGTAB.DEF on TENEX) as a source file. (Not on TENEX.) Exits to an editor. Which editor
This file contains DEFINEs for all of the user is determined by the bits which are on in the

table entries. second parameter, LINE. If bit 0 or bit 1
(600000,,0 bits) is on, then LINE is assumed to
be ASCID and SOS is called. If neither of these

bits is on, then LINE is assumed to be of, the

—_—. USERERR ———— form attach count, sequential line number and E
is called. PAGE is the binary page number.

USERERR (VALUE, CODE, “MSG”, BITS defaults to zero and controls the editing
"RESPONSE"(NULL)) mode.

USERERR generates an error message. See 0 edit
page 138 for a description of the error I no directory (as in /N)
message format. MSG is the error message that 2 readonly be in /R)
is printed on the teletype or sent to the log 4 create (as in /C)
file. If CODE = 2, VALUE is printed in decimal
on the same line. Then on the next line the In’ addition, the accumulators are set up from

“Last SAIL call” message may be typed which INIACS (see below) so that the E command «X
indicates where in the user program the error RUN will run the dump file from which the
occurred. If CODE is 1 or 2, a "=" will be typed current program was gotten. [Accumulators 0
and execution will be allowed to continue. If it (file name), 1 (extension), and 6 (device) are

is 0, a?" is typed, and no continuation will be loaded from the corresponding values in
permitted. The string RESPONSE, if included in INIACS.]
the USERERR call, will be scanned before the
input buffer is scanned. In fact, if the string
RESPONSE satisfies the error handler, the input
buffer will not be scanned at all. Examples: -_ INIACS ——

, The contents of locations 0-‘17 are saved in

49

EXECUTION TIME ROUTINES SAIL

block INIACS when the core image is started for programmer numbers are returned in the

the first time. Declare INIACS as an external respective reference parameters. Any
integer and use START-CODE or unspecified portions of the FILE,SPEC will

MEMORY[LOCATION(INIACS)+n] to reference this result in zero values. The global variable
block. _SKIP_ will be 0 if no errors occurred, non-

zero if an invalid file name specification is

presented.

7.4 Byte Manipulation Routines

—FILEINFO—

———————————— LDB, DPB, 6fC. =—— FILEINFO (@INFOARRAY)

VALUE «LDB (BYTE-POINTER); FILEINFO fills the 6-word array INFOARRAY with
VALUE «ILDB{(@ BYTE-POINTER); the following six words from the most recent
DPB (BYTE, BYTE-POINTER); LOOKUP, ENTER, or RENAME:
IDPB (BYTE, @ BYTE_POINTER);
IBP (@ BYTE-POINTER) FILENAME

EXT,,(2)hidate2(15)date 1

LDB, ILDB, DPB, IDPB, and IBP are Salil (9)prot (4)Mode (11)time (12)lodate2
constructs used to invoke the POP-10 byte negative swapped word count
loading instructions. The arguments to these 0 (unless opened in magic mode)

functions are expressions which are interpreted 0
as byte pointers and bytes. In the case of ILDB,
IDPB, and IBP, you are required to use an See [SysCall]; TENEX users should use JFNS
algebraic variable as argument as the instead.
byte-pointer, so that the byte pointer (i.e. that
algebraic variable) may be incremented.

—_—ARRINFO ooo

-PONT——— VALUE « ARRINFO (ARRAY, PARAMETER)

VALUE « POINT (BYTE SIZE, ARRINFO (ARRAY, -1) is the number of
@EFFECTIVE ADDRESS, LAST BIT NUMBER) dimensions for the

array. This number is
POINT returns a byte pointer (hence it is of negative for String
type integer). The three arguments correspond arrays.
exactly to the three arguments to the POINT
pseudo-op in FAIL. ARRINFO (ARRAY, 0) is the total size of the

array in words.

ARRINFO (ARRAY, 1) is the lower bound for

7.5 Other Useful Routines the first dimension.

ARRINFO (ARRAY, 2) is the upper bound for
the first dimension.

-_—CVF —nouuo-—

B ARRINFO (ARRAY, 3) is the lower bound for
VALUE « CVFIL (“FILE,SPEC”, @EXTEN, @PPN) the second dimension.

FILE,SPEC has the same form as a file name ARRINFO ({... etc.
specification for LOOKUP or ENTER. The SIXBIT
for the file name is returned in VALUE. SIXBIT

values for the extension and project-

50

§ Ia

SAIL EXECUTION TIME ROUTINES

eeARRBLT ——————e element or array was REMEMBERed in that

context, IN-CONTEXT will return True.
ARRBLT (@DEST, @SOURCE, NUM) IN-CONTEXT will also return true if VARI is an

array element and the whole array was

NUM words are transferred (using BLT) from Remembered in that context (by using
consecutive locations starting at SOURCE to REMEMBER <array_name>). On the other hand,
consecutive locations starting at DEST. No if VARI is an array name, then IN-CONTEXT will
bounds checking is performed. This function return true only if one has Remembered. that
does not work well for String Arrays (nor set array with a REMEMBER <array_name>.,
nor list arrays).

—— CHNCDB—

—_— ARRTRAN ——

VALUE « CHNCDB (CHANNEL)

ARRTRAN (DESTARR, SOURCEARR)
(Not on TENEX.) This integer procedure returns

This function copies information ~~ from the address of the block of storage which Sail
SOURCEARR to DESTARR. The transfer starts at uses to keep track of the specified channel. It

. the first data word of each array. The minimum is provided for the benefit of assembly
of the sizes of SOURCEARR and DESTARR is the language procedures that may want to do I/O
number of words transferred. inside some fast inner loop, but which may want

to live in a Sail core image & use the Sail OPEN,
etc.

-—————— ARRCLR——

ARRCLR (ARRAY, VALUE(O)) | 7.6 Numerical Routines

This routine stores VALUE into each element of These numerical routines are new as

ARRAY. The most common use is with VALUE predeclared runtimes in Sail. The routines
omitted, which clears the array; i.e., arithmetic themselves are quite standard.
arrays get filled with zeros, string arrays with

. NUL Ls, itemvar arrays with ANYs, The standard trigonometric functions. ASIN,
record-pointer arrays with NULL-RECORD. One ACOS, ATAN and ATAN2 return results in
may use ARRCLR with set and list arrays, but radians. The ATAN2 call takes arc-tangent of
the set and list space will be lost (i.e., un- the quotient of its arguments; in this way, it
garbage-collectible). Do not supply anything correctly preserves sign information.
other than. 0 (0, NULL, PHI, NIL, NULL-RECORD)

for VALUE when clearing a string, set, list, or REAL PROCEDURE SIN (REAL RADIANS);
record-pointer array unless you know what REAL PROCEDURE COS (REAL RADIANS);

you are doing. Using areal value for an REAL PROCEDURE SIND (REAL DEGREES);
itemvar array is apt to cause strange results. REAL PROCEDURE COSD (REAL DEGREES);

(If you use an integer then ARRAY will be filled
with CVI (value).) REAL PROCEDURE ASIN (REAL ARGUMENT);

REAL PROCEDURE ACOS (REAL ARGUMENT);

REAL PROCEDURE ATAN (REAL ARGUMENT);
REAL PROCEDURE ATAN2 (REAL NUM, DEN)

ms |N-CONTEXT e——

The hyperbolic trigonometric functions.

VALUE « IN-CONTEXT (VARI, CONTXT)
} REAL PROCEDURE SINH (REAL ARGUMENT);

IN-CONTEXT- is a boolean which tells one if the REAL PROCEDURE COSH (REAL ARGUMENT);

specified variable is in the specified context. REAL PROCEDURE TANH (REAL ARGUMENT)

VARI may be any variable, array element, array
name, or Leap variable. If that variable, The square-root function:

51

EXECUTION TIME ROUTINES SAIL

arithmetic routines all have a "$" appended to
REAL PROCEDURE SQRT (REAL ARGUMENT) the end. Thus, SIN has the entry point SINS,

etc. WARNING: If a program plans to use the

A pseudo-random number generator. The Sail intrinsic numerical routines, it should NOT
argument specifies a new value for the seed (if include external declarations to them, since this
the argument is 0, the old seed value is used. will probably cause the FORTRAN library
Thus to get differing random numbers, this routines to be loaded.
argument should be zero.) Results are
normalized to lie in the range [0,1] OVERFLOW IMPLEMENTATION

This section may be skipped by all but those

REAL PROCEDURE RAN (INTEGER SEED) interested in interfacing number crunching

assembly code (where overflow and underflow

Logarithm and exponentiation functions. These are expected to be a problem) with Sail
functions are the same ones used by the Sail routines.
exponentiation operator. The base is e
(2.71828182845904). The logarithm to the The Sail arithmetic interrupt routines first
base 10 of e is 0.4342944819. check to see if the interrupt was caused by

floating exponent underflow. If it was, then the

REAL PROCEDURE LOG (REAL ARGUMENT); result is set to zero, be it in an accumulator,
REAL PROCEDURE EXP (REAL ARGUMENT) memory, or both. Then if the arithmetic

instruction that caused the interrupt is followed

These functions may occasionally be asked to by a JFCL, the AC field of the JFCL is compared
compute numbers that lie outside the range of with the PC flag bits to see if the JFCL tests
legal floating-point numbers on the PDP-10. In for any of the flags that are on. If it does,
these cases, the routines issue sprightly error those flags are cleared and the program
messages that are continuable. proceeds at the effective address of the JFCL

(i.e., the hardware is simulated in that case).
OVERFLOW Note that no instructions may intervene

In order to better perform their tasks, these between the interrupt-causing instruction and
routines enable the system interrupt facility for the JFCL or the interrupt routines will not see
floating-point overflow and underflow errors. the JFCL. They only look one instruction ahead.
If an underflow is detected, the results are set Note that in any case, floating exponent

to 0 (a feat not done by the PDP-10 hardware, underflow always causes the result to be set to
alas). Be aware that such underflow fixups will zero. There is no way to disable that effect.
be done to every underflow that occurs in your
program. For further implementation details,
see the section below.

If you would like to be informed of any

numerical exceptions, you can call the runtime:

TRIGIN! (LOCATION (simple-procedure-name))

Every floating-point exception that is not

expected by the interrupt handler (the

numerical routines use a special convention to
indicate that arithmetic exception was expected)
will cause the specified simple procedure to be

called. This procedure may look around the
| world as described for ‘export’ interrupt

handlers, page 120. If no TRIGINI call is done,
the interrupt routine will simply dismiss
unexpected floating-point interrupts.

| ENTRY POINTS

In order to avoid confusion (by the loader) with
older trig packages, the entry points of the Sail

52

SAIL- PRINT

SECTION 8

PRINT (CVOS (1);

PRINT

will print | in octal, since CVOS is called first.
: (The expression CVOS (I) is of course a String

expression,) Wizards may also change the

default formatting function for a given syntactic

8.1 Syntax type.

<print_statement> DESTINATIONS
| = PRINT (<expression_list>) CPRINT interprets <integer-expression> as a

i= CPRINT(<integer-expression> Sail channel number and sends all output to
<expression_list>) that channel. The following two statements are

4 functionally equivalent:

j CPRINT (CHAN, “The values ars”, |, "and", X);

i g.2 Semantics OUT (CHAN, "The values are "&CVS (N&" and "&CVG (X));

j The new constructs PRINT and CPRINT are PRINT initially sends all output to the terminal
conveniences for handling character output. but can also direct output to a file or any

; Code which formerly looked like combination of terminal and/or file. The modes
i of PRINT are (dynamically) established and
] OUTSTR (“The values are"& cvs () & "and"& queried by SETPRINT and GETPRINT.
3 CVG (X)&" for itrm "&CVIS (IT, JUNK);

} may now be written
=SETPRINT, GETPRINT —————

: PRINT (“The valves are”, |, X, " for item", IT);
; SETPRINT (“FILE-NAME”, “MODE”);

f The first expression in <expression-list> is “MODE” « GETPRINT
{ evaluated, formatted as a string, and routed to

the appropriate destination. Then the second Here MODE is a single character which
1 . expression is evaluated, formatted, and represents the destination of PRINT output.
] dispatched; etc. (If an expression is an
! assignment expression or a procedure call then MODE MEANING
i side effects may occur.)

"T" the Terminal gets al PRINT
i DEFAULT FORMATS output. If an output file is open

String expressions are simply sent to the then close it. "T" is the mode in
! output routine. Integer expressions are first which PRINT is initialized.
) sent to CVS, and Real expressions are passed

to CVG; the current SETFORMAT parameters are "F" File gets PRINT output. If no file
used. Item expressions use the print name for is open then open one as
the item if one exists, otherwise ITEM!nnnn, described below.
where nnnn is the item number. Sets and lists

1 show their ‘item components separated by "8" Both terminal and file get PRINT
commas. Sets are surrounded by single braces output. If no file is open then
and lists by double braces. PHI and NIL are open one as described below.
printed for the empty set and empty list

respectively. Record pointers are formatted as "N" Neither the file nor the terminal
the name of the record class, followed by a "" gets any output. If a file is open
followed by the (decimal) address of the record. then close it.
NULL!RECORD is printed for the empty record.

"g" Suppress all output, but open a
| If the default format is not satisfactory then the file if none is open.

user may give a function call as an argument.

j For example,

53

PRINT- SAIL

"0" a file is Open, but the terminal is 1) PRINT to TERMINAL. Simply use PRINT; do
getting all output. If no file is not bother with SETPRINT,
open then open one as described
below. 2) PRINT to FILE. Call SETPRINT (NULL, "F")

and type the name of the output file when

"Cc" the terminal gets output, but it asks.
ignore whether or not a file is
open and whether or not it is 3) PRINT to FILE and TERMINAL. At the
getting output. beginning of the program call SETPRINT

I (NULL, "B"); and type the name when asked.
"| terminal does not get output.

Ignore whether or not a file is 4) PRINT to FILE always and sometimes also to
open and whether or not file is TERMINAL. Use SETPRINT (NULL, "B"); and
getting any output. give the name of the file when it asks. This

sets output to both the terminal and the

The first 6 possibilities represent the logical file. Then to ignore the terminal (leaving
states of the PRINT system and are the the file alone), call SETPRINT (NULL, “I”); To
characters which GETPRINT can return. The "C" resume output at the terminal use SETPRINT
and “I” modes turn terminal output on and off (NULL, "C"); This is useful for obtaining a
without disturbing anything else. The PRINT cleaned-up printout on the file with error

statement is initialized to mode “T" -- print to messages going to the terminal.
Terminal. Modes "T", "F", and "B" are probably
the most useful. The other modes are included CAVEATS

for completeness and allow the user to switch Trying to exploit the normal Sail type

between various combinations dynamically. conversions will probably lead to trouble with

PRINT and CPRINT. Printing single ASCII
If SETPRINT is called in such a way that a file characters is a particular problem.
has to be opened -- e.g., mode “F* and no file is
open -- then FILE-NAME will be used as the OUTSTR(* 14);

name of the output file. If FILE-NAME is NULL
then the filename will be obtained from the prints a form-feed onto the terminal , but
terminal.

PRINT (14);

. SETPRINT (NULL, "F%);

prints "12". The reason, of course, is the
first types the message default formatting of integers by PRINT or

CPRINT. This problem is particularly severe
| File for PRINT output « with macros that have been defined with an
| integer to represent an ASCII character. For

and uses the response as the name of a file to example,
open. On TENEX, GTJFN with recognition is
used; on TOPS-10 and its variants the filename DEFINE TAB." 11"

] is read with INCHWL. The file opened by PRINT (TAB);
SETPRINT will be closed when the program
terminates by falling through the bottom. It will will print "9". The solution is to define the
also be closed. if the user calls SETPRINT with macro sothat it expands to a STRING constant

: some mode that closes the file -- e.g., “T” will rather than an integer.

| close an output file if one is open.
DEFINE TABsc" "Dior

| SETPRINT and GETPRINT are related only to. DEFINE TABse('11& NULL);
| PRINT; they have no effect on CPRINT.

Also, remember that the first argument to
SIMPLE USE CPRINT is the channel number.

Here are a few examples of common output
situations.

| 54

| SAIL PRINT

FOR WIZARDS ONLY

; All output going to either the PRINT or CPRINT
statements can be trapped by setting user

table entry SSPROU to the address of a SIMPLE

| procedure that has one string and one integer
argument.

SIMPLE PROCEDURE MYPRINT

| (INTEGER CHAN; STRING S);
BEGIN .. END;

GOGTAB[$$PROU]« LOCATION (MYPRINT);

The CHAN argument is either the CHAN

; argument for CPRINT, or -1 for PRINT. If this
i trap is set then all output from PRINT and

CPRINT goes through the user routine and is
not printed unless the user invokes OUT or
OUTSTR from within the trap routine itself.

To trap the formatting function for any
syntactic type the user should set the

i appropriate user table address to the location
: of a function that returns a string and takes as

an argument the syntactic type in question. To

print integers in octal , preceded by ™", use

| SIMPLE STRING PROCEDURE MYCVOS (INTEGER I
RETURN (™"& cvos (BD)

1 _ GOGTAB[$$FINT] « LOCATION (MYCVOS);

The names for the addresses in the user table

associated with each formatting function are:

INDEX TYPE

: $SFINT INTEGER
3 $SFREL REAL

SSFITM ITEM

i $SFSET SET
i $SFLST LIST
§ $8FSTR STRING a

$SFREC RECORD_POINTER

: To restore any formatting function to the
| default provided by the PRINT system, zerothe
FC appropriate entry of the user table.

i

55

| MACROS AND CONDITIONAL COMPILATION SAIL

SECTION 9 w= <for_c.c,s.>
w= <tor_list_c.c.s.>

MACROS AND CONDITIONAL COMPILATION. i= <case_cC.C.5.>

<conditionai_c.c.s.>

#= |FC <constant-expression> THENC

9.1 Syntax <anything> ENDC
= |FC <constant-expression> THENC

<define> <anything> ELSEC <anything> ENDC
::= DEFINE <def_list>; = |FCR <constant-expression> THENC
::= REDEFINE <def_list>; <anything> ENDC
= EVALDEFINE <def_list>; #=lFCR <constant-expression> THENC

| ::= EVALREDEFINE <def_list>; <anything> ELSEC <anything> ENDC

<def_list> <while_c.c.s.>

i= <def> w= WHILEC <delimited_expr> D O C
i= <def_list> , <def> <delimited-anything> ENDC

<def> <for_¢.c.s.>

= <identifier> = <macro_body> | n= FORC «identifiers «
= <identifier> (<id_list>) = <constant-expression> STEPC

<macro-body> <constant-expression> UNTILC
iim <identifier> <string-constant> = <constant-expression> DOC

<macro_body> <delimited-anything> ENDC
i= <identifier> (<id_list>)

<string-constant> =<macro_body>
| <for_list_c.c.s.>

us FORLC <«identifier> «

| <macro_body> (<macro_param_list>) DOC
i= <delimited-string> <delimited-anything> ENDC
i= <constant_expression>
= <macro_body> & <macro_body>

<case_c.c.s.>

:'= CASEC <constant-expression> OFC
<macro_call>" <delimited-anything-list> ENDC

::= <macro-identifier>

i= <macro-identifier>

(<macro_param_list>) <delimited-anything-list>
| :i= <macro-identifier> <string-constant> n= <delimited-anything>

(<macro_param_list>) w= <delimited-anything-list>
1 <delimited-anything>

| <macro_identifier>

i= <identifier> <assignc>
= ASSIGNC <identifier> =<macro_body>;

<macro_param_list>

: = <macro_param>

= <macro_param_list> , <macro_param> <delimited_string>, <macro_param>,
<delimited_expr>, <anything> and
<delimited-anything> are explained in the

<cond_comp_statement> following text.
n=<conditional_c.c.s.>

= <while_c.c.s.>

56

SAIL - MACROS AND CONDITIONAL COMPILATION

9.2 Delimiters instead of REQUIRE "ea<>" DELIMITERS. This

doesn’t deactivate the stacking feature, it
There are two types of delimiters used by the merely changes the active delimiters without
Sail macro scanner: macro body delimiters and stacking them.
macro parameter delimiters. Their usage will

be precisely defined in the sections on Macro To revert to the primitive, initial delimiter mode
Bodies and Parameters to Macros. Here we will where double quotes are the active delimiters,

discuss their declaration and scope, which is one may say
very important when using source files with

different delimiters (see page 11 to find out REQUIRE NULL DELIMITERS
about source files).

Null delimiters are stacked in the delimiter stack

Sail initializes both left and right delimiters of in the ordinary REQUIRE "e€2<>" DELIMITERS
both body and parameter delimiters to the way. In null delimiters mode, the double quote
double quote ("). One may change delimiters by character may be included in the macro body or
saying macro parameter by using two double quotes:

. REQUIRE "ea<>" DELIMITERS. DEFINE SOR « "OUTSTR(""SORRY"");";

In this example, the left and right body The Null Delimiters mode is essentially the
delimiters become "€" and "2", while the left macro facility of ancient versions of Sail where
and right parameter delimiters become "<" and " was the only delimiter. Programs written
">". Require Delimiters may appear wherever a ancient in Sail versions will run in Null
statement or declaration is legal. One should Delimiters mode. Null delimiters mode has all
Require Delimiters whenever all but the most the rules. and quirks of the prehistoric Sail
simple macros are going to be used. The first macro system (the old Sail macro facility is
Require Delimiters will initialize the macro described in [Swinehart & Sproull], Section 13).
facility; if this is not done, some of the following Compatibility with the ancient Sail is the only
conveniences will not exist and only very reason for Null Delimiters.
simple macros like defining CRLF = “(‘12 & ‘15
)" may be done.

Delimiters do not follow block structure. They 9.3 Macros
persist until changed. Furthermore, each time

new delimiters are Required, they are stacked We will delay the discussion of macros with
on a&aspecial “delimiters stack”. The old parameters until the next section. A macro
delimiters may be revived by Saying without parameters is declared by saying:

REQUIRE UNSTACK-DELIMITERS DEFINE <macro_name> « <macro-body> ;

Thus, each source file with macros should begin where <macro_hame> is some legal identifier
with a Require delimiters, and end with an name (see page 129 for a definition of a legal
Unstack-delimiters. It is impossible to Unstack identifier name). <macro_body>s can be simply
off the bottom of the stack. The bottom a sequence of Ascii characters delimited by

element of the stack is the double quote macro body delimiters, or they can be quite
delimiters that Sail initialized the program to. If complex. Once the macro has been defined, the
you Unstack from these, the Unstack will macro body is substituted for every subsequent
become ano-op, andthe double quote appearance of the macro name. Macros may be
delimiters remain the delimiters of your called in this way at any point in a Sail
program. program, except inside a Comment or a string

constant.

One may circumvent the delimiter stacking
feature by saying Macro declarations may also appear virtually

anywhere in a Sail program. When the word
REQUIRE “e2<>"REPLACE_DELIMITERS DEFINE is scanned by Sail, the scanner traps to

a special production. The Define is parsed, and

57

MACROS AND CONDITIONAL COMPILATION SAIL

| the scanner returns to its regular mode as if 1. A sequence of Ascii characters
there had been no define there at all. Thus preceded by a left macro body

things like delimiter and followed by a right
| macro body delimiter.

| «J + 5+ DEFINE CON . €'7772;K12;..

2. An integer expression that may be

are perfectly acceptable. However, don’t put a evaluated at compile time.
Define in a string constant or a Comment.

3. A string expression that may be
SCOPE evaluated at compile time.

Macros obey block structure. Each DEFINE

serves both as a declaration and an assignment 4. Concatenations of the above.
of a macro body to the newly declared symbol.

Two DEFINEs of the same symbol in the at the WARNING: Source file switching inside macros
same lexical level will be flagged as an error. will not work.
However, it is possible to change the macro
body assigned to a macro name without DELIMITED STRINGS
redeclaring the name by using saying REDEFINE Any sequence of Ascii characters, including “
instead of DEFINE. For example, may be used as a macro body if they are

properly delimited. The macro body scanner
BEGIN keeps a count of the number of left and right

. delimiters seen and will terminate its scan only
BEGIN when it has seen the same number of each.

This lets the macro body delimiters “nest” so

DEFINE SQUAK = ¢OUTSTR("OUTER BLOCK"); that one may include DEFINEsinside a macro
body. For example,

BEGIN

| . DEFINE DEF .

REDEFINE SQUAK « ¢OUTSTR("INNER BLOCK"):>; cDEFINE sym « SYMBOL; SYM>;

END; One may temporarily override the active
. delimiters by including a two character string

SQUAK COMMENT Here the program types before the "=" of the Define statement. For
“INNER BLOCK’; example:

END; COMMENT Here SQUAK is undefined.

| If SQUAK were included here, you'd DEFINE LES "&7" « & 0sSX<BIGGESTAY>X 7;
; get the error message

“UNDEFINED IDENTIFIER: SQUAK"; The first character of the two character string
| END becomes the left delimiter, and the second

becomes the right delimiter.
REDEFINE of a name that has not been declared

in a DEFINE will act as a DEFINE. That is, it will INTEGER COMPILE TIME EXPRESSIONS
also declared the macro name as well as Sail tries to do as much arithmetic as it can at

assigning a body to it. compile time. In particular, if you have an
| arithmetic expression of constants, such as

MACRO BODIES

| A Macro Body may be 81.504 + (3.14]15.81(98-7))
% “Sail can convert strings"

then the whole expression will be evaluated at

compile time and the resultant constant, in this

case 93.9263610, will be used in your code
instead of the constant expression. Runtirne

functions of constants will be done at compile

time too, if possible. EQU and the conversion
: routines (CVS, CVO, etc.) will work.

| 58

SAIL MACROS AND CONDITIONAL COMPILATION

When an integer compile time expression is To convert a macro body to a string constant,
scanned as part of @ macro body, it is one may use CVMS. Similarly, a macro
immediately evaluated. The integer constant parameter is converted to a string constant by
which results is converted to a character string, CVPS.
and that character string used for the place in

the macro body of the integer expression. <string constant> « CVMS (<macro name>);
; Thus, <string constant>« CVPS (<macro parameter name>)

DEFINE TTYUUO ='51LSH 27; A string that has the exact same characters as

| the macro body will be returned. For example:

| will cause ‘51 LSH 27 to be evaluated, and the

resulting constant, 5502926848, will be DEFINEA =cB & Co;
| converted to the character string 5502926848, DEFINE ABC . CVMS (A) & c & D>;
| and that character string assigned to the macro COMMENT ABC now stands for the text B&C & D;
| name TTYUUO.

| HYBRID MACRO BODIES
STRING COMPILE TIME EXPRESSIONS When two delimited strings are concatenated,

| If a compile time expression has the type string the result is a longer delimited string. "&" in
(constant), the macro scanner will evaluate the compile time expression behaves the same way
expression immediately. However, the string it behaves in any expression. When a compile
constant that results will not be converted to time expression is concatenated to a delimited

the character string that represents that character string in a macro body, the result is
constant, but to the character string with the exactly the result one would get if the delimited
same characters that the string constant had. character string were a string constant, except

| Thus, the way to use a macro for string that the result is a delimited character string.
; constants is to delimit the string constant like For example:
t this:

i DEFINE N . 1;

DEFINE STRINCON . "Very long DEFINE Ms2;

complex ® tring thrtis herd DEFINE SYM = CVS(N%M + N12) & c-SQRT(N*M=1)>;
to typo more then once”; DEFINE SYM | « €3-SQRT(N*M+1)>;

J However, the automatic conversion of string Here SYM is exactly the same as SYM.
. constants to character strings is helpful and
indeed essential for automatic generation of
identifiers:

9.4 Macros with Parameters

| DEFME Nel;

] COMMENT we will use this like 8 variable; One defines a macro with parameters by

g specifying the formal parameters in a list
DEFINE GENSYM . € following the macro name:

! DEFINE SYM . eTEMP_o& CVS(N);
1 COMMENT SYM is defined to be the character DEFINE MAC (A, B) + elf A THENB ELSE ERR+ 1:2;

string TEMP_® where o isan number;
1 One calls a macro with parameters by including

1 1 REDEFINE N =Nel; a list of delimited character strings that will be
i . COMMENT Thir increments N; substituted for each occurrence of the

! corresponding formal in the macro body. For
] SYM >; example,
! COMMENT At the call of SYM, the character
3 @® tringis rerd like program text. E.g...;

{ INTEGER GENSYM, GENSYM, GENSYM, GENSYM;
REAL GENSYM, GENSYM;

; COMMENT We have generated 6 identifiers with
F unique names, end declared 4 es integers,
3 2 as reals; |

i 59

MACROS AND CONDITIONAL COMPILATION SAIL

having ‘177, n for each appearance of the nth

COMMENT we assume that "<" and "»" are the formal parameter in the body.
f parameter delimiters at this point;

i MAC (<BYTES LAND (BITMASK «'2000)>, <
BEGIN

WWDAT & FETCH (BYTES, ENVIRON); 9.5 Conditional Compilat ion
COLOR(WWDAT }& ‘2000;

END >) The compile time equivalents of the Sail IF,
| WHILE, FOR and CASE statements are

expands to
IFC <CT expr> THENC <anything> ENDC

IF BYTES LAND (BITMASK +'2000) THEN

1 BEGIN IFC <CT expr> THENC <anything> ELSEC
WWDAT « FETCH (BYTES, ENVIRON); <anything> ENDC
COLOR[WWDAT] « ‘2000;

END WHILEC c<CT expr>> DOC c<anything>> ENDC
ELSE ERRe1;

FORC <CT variable> « <CT expr> STEPC <CT expr>

Parameter delimiters nest. Furthermore, if no UNTILC <CT expr> DOC e<anything>> ENDC

delimiters are used about a parameter, nesting]
counts are kept of "()","[]", and "{}" character FORLC <CT variable> « (<macro params,. . . ,
pairs. The parameter scan will not terminate <macro param>) DOC c<anything>> ENDC
until the nesting counts of each of the three

pairs is zero. One may temporarily override CASEC <CT expr> OFC e<anything>>, c<anything>>,
] the active parameter delimiters by including a .., c<anything>> ENDC
: two character string ahead of the parameter

list in the macro call: where <CT expr> is any compile time
| expression. <CT expr> could itself include IFCs,

MAC "€3" (BYTES> 20003, eMATCH(BYTES)3) FORCs or whatever. <CT variable> is a macro
name such as N from a define such as DEFINE N

: Formal parameters may not appear in compile = MUMBLE; <macro param> is anything that is
1 time expressions that are used to specify macro delimited like a macro parameter. <anything>
1 bodies. This is quite natural: compile time can be anything one could want in his program
: expressions must be evaluated as they are at that point, including Defines and other

~scanned, bwt the value of a formal parameter conditional compilation statements. The usual
: isn’t known until later. However, if the macro care must be taken with nested IFCs so that the

| body is a hybrid of expressions and delimited ELSECs match the desired THENCs. The "ce" and
! character strings, then formal parameters may ">" characters above are to stand for the

appear in the delimited string parts. current MACRO BODY DELIMITER pair.

| When doing a CVMS on a macro with The semantics are exactly those of the
parameters, use only the macro name in the corresponding runtime statements, with one

i call; the parameters are unnecessary. The exception. When the list to a FORLC is null (i.e.
string returned will have the two character it looks like "()"), then the <anything> is

} strings "Al", "a2", etc. (here X\ stands for the inserted in the compilation once, with the <CT
Ascii character ‘177) where the formal variable> assigned to the null macro body.
parameters were in the macro body. A "Al"
will appear wherever the first formal parameter Situations frequently occur where the false

! of the formal parameter list appear in the part of an IFC must have the macros in it
i macro body, a “X2” will appear wherever the expanded in order to delimit the false part

second parameter appeared, etc. The correctly. For example,
unfortunate appearance of the Ascii character

‘177 in CVMS-generated strings is a product of
the representation of macro bodies as strings
ending in ‘177, ‘0 (which CVMS removes),

60

SAIL. MACROS AND CONDITIONAL’ COMPILATION

periodically anyway. The best way to decode
DEFINE DEBUG-SELECT. the integer returned by Declaration is to

clFC DEBNUM . 2 THENC 3; compare it to the integer returned by
DEFINE DEBUG-END CHECK-TYPE (<a string of Sail declarators>). A
cELSEC OUTSTR (“DEBUG POINT") ENDC>; Sail declarator is any of the reserved words

used an a declaration. Furthermore, the

Debug _select declarators must be listed in a legal order,
OUTSTR (“DEBUG POINT #"& cvs (DBN)); namely, an order that is legal in declarations

Debug_end (i.e. ARRAY INTEGER won't work). One may
include as arguments to CHECK-TYPE the

If DEBNUM is not 2, then the program must following special tokens:
expand the macro Debug-end in order to pick

up the ELSEC that terminates the false part of TOKEN EFFECT
the conditional. The expansion is only to pick

up such tokens -- the text of the false part is BUILT-IN The bit that is on when a
not sent to the scanner as the true part is. In procedure is known to
order to avoid such expansion, one may use preserve ACs 0-‘11 (except
IFCR (the R stands for “recursive”) instead of AC1 if returning a value) is
IFC. returned. Sail does not

clear the ACs when

As an added feature, when delimiters are compiling a «cal on a

required about an <anything> in the above BUILT-IN procedure.
(such constructs are named
<delimited-anything> in the BNF), one may | LEAP-ARRAY The bit that is on when an
substitute a concatenation of constant identifier is an item or

expressions and delimited strings. This is just itemvar with a declared
like a macro body, except the concatenation array datum is returned
MUST contain at least one delimited string, (the discussion of Leap
thereby forcing the result of the concatenation starts on page 83).
to- be a delimited string, rather than a naked

expression. RESERVED The bit that is on for a
reserved word is returned.

As a further added feature,
DEFINE The bit that indicates the

| IFC «CT @® xprs THENC c<anything>> ELSEC identifier is a macro name
c<anything>> ENDC is returned (note: a macro

name as the argument to

may be substituted in FORCs, FORLCs, and DECLARATION will not be
WHILECs for the <anything> following DOC. expanded).

NOTE: In a WHILEC, the expression must be CONOK The bit which says “this
delimited with the appropriate macro body procedure will be evaluated
delimiters (hence the construct at. compile time if all its

] <delimited_expr> in the BNF). arguments are constant
expressions” is returned.

Examples:

9.6 Type Determination at Compile Time
DECLARATION (FOQ)s CHECK-TYPE (INTEGER)

To ascertain the type of an identifier at compile Thisis an exact compare. Only if Foo is
time, one may use the integer function an integer variable will equality hold.
DECLARATION (<identifier>). This returns an

integer with bits turned on to represent the DECLARATION (A) LAND CHECK-TYPE (ARRAY)
type of identifier. Exactly what the bits This is not an exact compare. If A is any
represent is a dark secret and changes kind of an array, the LAND will be non-zero.

61

MACROS AND CONDITIONAL COMPILATION SAIL

ASSIGNC

DECLARATION (CVS) CHECK_TYPE(EXTERNALCONOK The following compile time construct makes

| OWN BUILT-IN FORWARD STRING PROCEDURE) recursive macros easier.The equality holds. FORWARD so that you can

redeclare it without complaints; OWN as a hack " ASSIGNC <name 1> = <macro_body>;
which saves space in the compiler.

<namel> must be a formal to a macro, and

DECLARATION (BEG) LAND CHECK-TYPE (RESERVED) <macro_body> may be any macro body.
This is non-zero only if one has arid Thereafter, whenever <namel> is instantiated,
LET BEG . BEGIN. DEFINE BEG . BEGIN the body corresponding to <macro_body> is)

will only turn the Define bit of BEG on. used in the expansion rather than the text
passed to the formal at the macro call.

NOTE: if the <identifier> of DECLARATION has

not yet been declared or was declared in an RESTRICTION: ASSIGNC may only appear in the
inner block, then 0 is returned -- it is body of the macro that <namel> is a formal of.
undeclared so it has no type. If it appears anywhere else, the <namel> will

be expanded like any good formal, and that text
EXPR_TYPE returns the same bits that used in the ASSIGNC as <namel>. Unless
DECLARATION does, except that the argument to you're being very clever, this is probably not
EXPR,TYPE may be an expression and not just what you want.

| an ident if ier.
NOMAC

Preceding anything by the token NOMAC will
inhibit the expansion of that thing should that

9.7 Miscellaneous Features thing turn out to be a macro.

COMPILE TIME 1/0 COMPILER-BANNER

Compile time input is handled by the REQUIRE This is a predefined macro which expands to a
“<file_name>" SOURCE-FILE construct. string constant containing the text of the two-
<fHe_name> can be any legal file, including TTY: line banner which would appear at the top of
and MTAO: and of course disk files. (MTA does the current page if a listing file were being
not work for TENEX.) The file will be read until made. This string contains the date, time, name
the its end of file delimiter is scanned {<ctri>Z and page of the source file, the value of all
‘for TTYs or <meta><ctri><if> at SUAI), and its compiler switches, the name of the outer block,
text will replace the REQUIRE statement in the and the name of the current block. Thus you
main file. can automatically include the date of

compilation in a program by using
Compile time output is limited to typing a COMPILER_BANNER[n TO m] for appropriate n
message on the user's teletype. To do this say and m Try REQUIRE COMPILER-BANNER
REQUIRE <string_constant> MESSAGE, and the MESSAGE; or look at a listing for the exact
<string-constant> will appear on your teletype format.
when the compilation hits that point in your file.

EVALDEFINE, EVALREDEFINE

The reserved word EVALDEFINE may be used in 9.8 Hints
place- of the word DEFINE if one would like the
identifier that follows to be expanded. When The following is a set of hints and aids in
one follows a DEFINE with a macro name, the debugging programs with macros. Unless

macro- is not expanded, but rather the macro otherwise stated array brackets "[]" are the
name is declared at the current lexical level and macro body delimiters.

assigned ~~ the specified macro body.
EVALDEFINE gets you around that. Helps with IFC and friends will not trigger at the point of

automatic generation of macro names. macro definition, in a macro actual parameter
EVALREDEFINE is also available. list, or inside a string constant.

62

SAIL _ MACROS AND CONDITIONAL ‘COMPILATION

The 6ame reasoning hold6 for parameter lists to

DEFINE FOO . [IFC A THENC B ELSEC D ENDC]); FORLC.
which is not the same as

DEFINE FOO . IFC A THENC [B] ELSEC (D] ENDG; DEFINE FOO . [A, B,C};
"which is the same as FORLC I. (FOO) DOC [OUTSTR (“);] ENDC

IFC A THENC DEFINE FOO . [B] will result in FOO typed out on your terminal,
ELSEC DEFINE FOO « [D) ENDC;

DEFINE FOO . (A, B, C));
DEFINE BAZ (A) . [OUTSTR (“A%);); FORLC | = FOO DOC [OUTSTR ("I");] ENDC
BAZ (IFC B THENC C ELSEC D ENDC) will have the desired result ABC typed out.

will result in the following string typd

On your trrminrl: In order to take advantage of the nestable
IFC B THENC C ELSEC D ENDC character feature in the parameter6 to a macro

call, one must be in REQUIRE DELIMITERS mode.

STRING A; Otherwise scanning will break upon seeing a
A«"IFC WILL NOT TRIGGER HERE”; comma or & right parenthesis.

Macros will not be expanded in strings, but BEGIN
macro formal parameters will be expanded DEFINE FOO(A). "A";
when they occur in strings within macro bodies . INTEGER ARRAY ABC[1:10, 1:10];
as seen in the second example above. FOO (ABC[1, 2))«3;

END;

DEFINE FOO . [BAZJ;
OUTSTR ("FOO"); This Is identical to:

which will type out the string FOO on your BEGIN
terminal rather than BAZ. INTEGER ARRAY ABC[1:10, 1:10};

ABC[1«3; Comment illegal;
Caution should be employed when using letters END;
(specifically €2) as delimiters. This may lead to
problems when defining macros within macros. However, if the original program had included a

REQUIRE DELIMITERS statement prior to the

DEFINE MAC(A) "ea" . cREDEFINEFOO ® cAaisi macro call, as below, then the desired effect
would have resulted -i.e., ABC[1,2])«3.

Inside the macro body of MAC, A will not be
recognized as a formal since the scanner has "BEGIN
scanned €A> as an identifier by virtue of €2 REQUIRE "{}Z8" DELIMITERS;
being internally represented as letter6 60 that DEFINE FOO (A) « (A};
they could be defined to mean BEGIN and END INTEGER ARRAY ABC[1:10, 1:10};
respectively (also € as COMMENT). More FOO (ABC[1, 2))e3;
justification for this feature i$ seen by the END;
following example:

DEFINE MAC(ABC) “Ac” = A V&ABC; C;

We want ABC in the text to be the parameter

and not B if we were to ignore the macro
delimiters.

When scanning list6 of actual parameters,
macros are not expanded.

DEFINE FOO= [A,B];
MAC (FOO) wil not have the result MAC(A,B). However,

DEFINE FOO. [(A, B)):
followed by MAC FOO will have the same effect as
MAC (A, B).

63

RECORD STRUCTURES SAIL

SECTION 10 10.3 Declaration Semantics

RECORD STRUCTURES The <field-declarations> have the same form

as the <formal_param_decl> of a procedure,
except that the words VALUE and REFERENCE
should not be used, and default values are

ignored. Each record class declaration is

10.1 Introduction compiled into a record descriptor (which is a
record of constant record class SCLASS) and is

Record structures are new to Sail. They used by the runtime system for allocation,
provide a means by which a number of closely deallocation, garbage collection, etc. At runtime
related variables may be allocated and record pointer variables contain either the
manipulated as a unit, without the overhead or value NULL-RECORD (internally, zero) or else a
limitations associated with using parallel pointer to a record. The <c¢lassid list> is used
arrays and without the restriction that the to make a compile-time check on assignments
variables all be of the same data type. In the and field references. The pseudo-class
current implementation, each record is an ANY-CLASS matches all classes, and effectively
instance of a user-defined record class, which disables this compile-time check.

serves as a template describing the various

fields of the record. Internally, records are For inst ance,
small blocks of storage which contain space for

X the various fields and a pointer to a class RECORD-CLASS VECTOR (REAL X,Y, 2);
descriptor record. Fields are allocated one RECORD-CLASS CELL
per word and are accessed by constant (RECORD-POINTER (ANY-CLASS) CAR, CDR);
indexing off the record pointer. Deallocation is RECORD-CLASS TABLEAU
performed automatically by a garbage collector (REAL ARRAY A, B, C; INTEGER N, M);
or manually through explicit calls to a RECORD-CLASS FOO (LIST L;ITEMVARA);

deallocation procedure.
RECORD-POINTER (VECTOR) V 1,V2;
RECORD-POINTER (VECTOR, TABLEAU) T1,T2;
RECORD-POINTER (ANY-CLASS) R;

10.2 Declaration Syntax
RECORD-POINTER (FOO, BAR) FB 1, FB2;
RECORD-POINTER (FOO) FB3;

<record-class-declaration> RECORD-POINTER (CELL) C;

::= RECORD-CLASS <¢lass_id>(RECORD-POINTER (ANY-CLASS) RP;
<field-declarations>)

::= RECORD-CLASS <class_id>{ COMMENT the following are all ok syntactically;

<field-declarations>)[<handler>] Cx NEW-RECORD (CELL);PeC;
FB2 « NEW-RECORD (FOQ);

<record_pointer_declaration> FBI « FB3:
i= RECORD-POINTER (<classid_list> FB3 « RP; COMMENT This is probably a runtime bug

) <id_list> since RP will contain a cell record. Sail
::= RECORD-POINTER (ANY-CLASS won't catch it, however;
.) <id_list> CELL:CAR[RP] « FBI:

CELL:CAR[RP] + FBI;

COMMENT The compiler will complain about these: ;
FBI «GC;

FB3+ NEW-RECORD (CELL);

RP « CELL:CAR[FB3};

NO runtime class information is kept with the
record pointer variables, and no runtime class

64

SAIL- RECORD STRUCTURES

checks are made on record assignment or field record, then a runtime error message will be
access. Record pointer variables are allocated generated. This is the only runtime check that
quantities, and should not appear inside SIMPLE is made at present. l.e., no runtime checks are
procedures. They resemble lists in that they made to verify that the <classid> in the field
are not given any special value upon block statement matches the class of the record
entry and they are set to a null value whose field is being extracted.
(NULL-RECORD) when the block in which they
are declared is exited. (This is sO that any An array field may be used as an array’ name,
records referred to only in that block can be as in
reclaimed by the garbage collector.)

RECORD-POINTER (TABLEAU) T;

Record pointers are regular Sail data types,
just like integers or strings; record pointer TABLEAUA[T](1,J]« 25:
procedures, arrays, and items all work in the
normal way. As indicated earlier, the constant provided that a valid array descriptor has been
NULL-RECORD produces a null reference. stored into the field. Unfortunately, Sail does

not provide any clean way to do this. One
unclean way is

10.4 Allocation EXTERNAL INTEGER PROCEDURE ARMAK
(INTEGER LB, UB, #DIMS);

Records are allocated by COMMENT returns address of first data word of new
array. For String arrays set #DIMS to= 1 ,,n.

NEW-RECORD (<classid>) For higher dimrnrions declare with morr LB, UB pairs;

which returns a new record of the specified EXTERNAL PROCEDURE ARYEL (INTEGER ARR);
class. All fields of the new record are set to COMMENT deallocates an array. ARR is the address of

the null or zero value for that field; i.e., real the first data word;

and integer fields will be set to 0, itemvar fields

to-ANY, lists to NIL, etc. Note that entry into a RECORD-CLASS FUBAR (INTEGER ARRAY A);

block with local record pointer variables does RECORD-POINTER (FUBAR) FB;
NOT cause records to be allocated and assigned
to those variables. MEMORY[{LOCATION (FUBAR:A[FB])]« ARMAK (1, 100, 1);

ARYEL (MEMORY[LOCATION (FUBAR:A[FB])])

(Warning: the above advice is primarily

10.5 Fields intended for hackers. NO promises are made
that it will always work, although this particular

Record fields are referenced by trick is unlikely to be made obsolete in the
forseeable future.)

<classid> : <fieldid> [<record pointer expression> }

and may be used wherever an array element

may be used. For example 10.6 Garbage Collection

RECORD-POINTER (VECTOR) Vi The Sail record service routines allocate

RECORD-POINTER (CELL) GC; records as small blocks from larger buffers of

RECORD-POINTER (FOO)F; free storage obtained from the normal Sail free
storage system. (The format of these records

VECTOR:X[V] « VECTOR:Y{V]; will be discussed in a later section.) From time
CELL:CAR[C « NEW-RECORD (CELL)] «Vi; to time a garbage collector is called to reclaim
VECTOR:Z[V } « VECTOR:X[CELL:CAR[C]); the storage for records which are no longer

SUBLIS« FOO:L[F][1 TO 3); accessible by the user’s program (i.e., no
variables or accessible records point to them).

If the <record pointer expression> gives a null

65

j RECORD STRUCTURES SAIL

The garbage collector may be called explicitly SRECS, which is the standard procedure for
from Sail programs as external procedure such functions as allocation, deallocation, etc.
SRECGC, and automatic invocation of the

garbage collection may be inhibited by setting TYPARR and TXTARR are indexed [0:RECSIZ].
user table entry RGCOFF to TRUE. (In this case, TXTARR[O] is the name of the record class.
Sail will just keep allocating more space, with TYPARR[O] contains type bits for the record

j nothing being reclaimed until RGCOFF is set class.
back to FALSE or SRECGC is called explicitly).

{ In addition, Sail provides a number of hooks Example:
that allow a user to control the automatic

invocation of the garbage collector. These are RECORD-CLASS FOO (LIST Li ITEMVARA);
discussed later.

f The record class descriptor for FOO contain:

FOO-1: <ptrs for ring of all records of $CLASS>

10.7 Internal Representations FOO: <ptr to $CLASS>
FOOs 1: <ptrs for ring of all records of class FOO;

Each record has the following form: initialized to <F00+2,F00+2>>.
FOO+2: <ptr to handler procedure $RECE>

-1: <ptrs to ring of all records of class> FOO«3: 2
4 0: <garbage collector ptr>,<ptr to class descriptor> FOO+4 <ptrt o TYPARR>

+l: <first field» FOO+5: <ptr t 0 TXTARR>

+n: <last field> The fields of FOO are:

Record pointer variables point at word 0 $CLASS:RECRNG[FOOQ]= «initialized to null ring,
of such records. A String field contains the i.e., xwd(loc(FOO)+2,loc(FO0)+2)>
address of word2 of a string descriptor, like SCLASS:HNDLER[FOOQ]. SRECS
the string was a REFERENCE parameter to a SCLASS:RECSIZ[FOO] . 2
procedure. The string descriptors are also SCLASS:TXTARR[FOO] [0] = “FOO”
dynamically allocated. SCLASS:TXTARR[FOO] [1]. "L"

$CLASS:TXTARR[FOO] [2] = “A"

The predefined record class SCLASS defines all $CLASS:TYPARR[FOO][0] » <bits for garbage collectors
| record classes, and is itself a record of class $CLASS:TYPARR[FOO][1) « <descriptor for LIST>
4 SCLASS. SCLASS:TYPARR[FOO] {2]) « <descriptor for ITEMVAR>

RECORD-CLASS $CLASS

(INTEGER RECRNG, HNDLER, RECSU;

] INTEGER ARRAY TYPARR; STRING ARRAY TXTARR); 10.8 Handler Procedures

RECRNG is a ring (bidirectional linked list) of Sail uses a single runtime routine SRECFN (OP,
4 all records of the particular class. REC) to handle such system functions as

allocation, deallocation, etc. The code compiled

HNDLER is a pointer to the handler procedure for r « NEW-RECORD (feo) is
for the class (default SRECS).

| PUSH P, [1]

RECSIZ is the number of fields in the class. PUSH ~~ P, [fool
PUSHJ P,SRECFN

TYPARR is an array of field descriptors for MOVEM 1,r
1 each field of the class.

SRECFN performs some type checking and then
TXTARR _is an array of field names for the jumps to the handler procedure for the class.

class. The normal value for this handler procedure is
3 SRECS. It is possible to substitute another

The normal value for the handler procedure is handler procedure for a given class of records

66

| SAIL RECORD STRUCTURES

by including the procedure name in bracket6 6hould also be used to release the space.
after the record class declaration. The handler These points are illustrated by the following

must have the form example:

i RECORD-POINTER (ANY-CLASS) PROCEDURE <procid> FORWARD RECORD-POINTER (ANY-CLASS) PROCEDURE
: (INTEGER OP; RECORDJOINTER (ANY-CLASS) R); FOOH (INTEGER OP:
| RECORD_POINTER (ANY-CLASS) R);
j RECORD-CLASS FOO (ITEMVAR 1v) [FOOH});
: Here OP will be a small integer saying what is RECORD-POINTER (ANY-CLASS) PROCEDURE FOOH

to be done. The current assignments for OP (INTEGER OP; RECORD-POINTER (ANY-CLASS) R);

1 are: . BEGIN
PRINT("CALLING FOOH. OP =", OP);

value meaning : IF oP. 1 THEN
BEGIN

0 invalid RECORD-POINTER (FOO)F;

{ allocatea now record of record class R F « SRECS (1,R);
2 not used FOO:IVIF}e NEW;
3 not used RETURN (F);
4 mark all fields o f record R END

5 deletesll ® paco for recordR ELSE IF OP . 5 THEN
- DELETE (FOO:V[R));

| At SUAI, macro definitions for these functions RETURN ($RECS(OP, R));
may be found in the file SYS:RECORD.DEF, which END;
also includes EXTERNAL declarations for

! SCLASS, 8RECS, and SRECFM

SRECS (1, R) allocates a record of the record 10.9 More about Garbage Collection
. class specified by R, which must be a record of

class SCLASS. All fields (except string) are The information used by the system to decide
initialized to zero. String fields are initialized when to call $RECGC on it6 own is accessible
to a pointer to a string descriptor with length through the global array 8SPCAR. In general,

j zero (null string). $SPCAR[n] point6 at @ descriptor block used to
1 control the allocation of small blocks of n

$RECS$(4,R) is used by the garbage collector to words. This descriptor includes the following
: mark all record fields of R. fields:

: SRECS (5, R) deallocates record R,” and BLKSIZ number of words per block in this space
i deallocates all string and array fields.of record TRIGGER a counter controlling time of garbage collection

R. Care must be exercised to prevent multiple TGRMIN described below
pointers to string and array fields; i.e., DC NOT TUNUSED number of unused blocks on the free list

store the location of an array in fields of two TINUSE total number of blocks in use for this space
1 different records unless extreme caution is CULPRIT the number of times this space has caused

taken to handle deletion. This can be collection

accomplished through user handler procedures

which zero array fields (without actually The appropriate macro definitions for access to
deleting the arrays) prior to the call on these fields may be found in the source file

| SRECS (5, R). eSUAI>SYS:RECORD.DEF. The decision to invoke
) the garbage collector is made as part of the

: NOTE: When an alternate handler procedure is block allocation procedure, which works roughly
supplied it must perform all the necessary as follows:

| functions. One good way to do this is to test
J for those OPs performed by the alternate

handler and call SRECS for the others. If SRECS

] is used to allocate space for the record then it

: 67

RECORD STRUCTURES SAIL

which contains 8 number of useful examples
INTEGER spc,size; and auxilliary functions.
size « $CLASS:RECSIZ[classid)+2;
IF size>16 THEN returns CORGET block;

spc « $SPCAR[size):
Li: |

IF (MEMORY[spc+TRIGGER)
« MEMORY[spc«TRIGGER]- 1) <0

THEN BEGIN

IF ~sMEMORY[GOGTAB+RGCOFF) THEN BEGIN .
MEMORY [spc+CULPRIT] « MEMORY [spc+CULPRIT)s 1;
SRECGC;

GO TO LI;

END END;

<allocate the block from space rpc,
update counters, etc.> »

Once SRECGC has returned all unused records

to the free lists associated with their

respective block sizes, it must adjust the
trigger levels in the various spaces. Todo this,
it first looks to see if the user has specified the

location of an adjustment procedure in
TGRADJ(USER). If this cell is non-zero then

SRECGC calls that procedure (which must have
no parameters). Otherwise it calls a default
system procedure that works roughly like this:

<set all TRIGGER levels io «1>

FOR size « 3 STEP 1 UNTIL 16 DO BEGIN

spc « $SPCAR[size);
IF MEMORY[spc+TRIGGER)<O THEN BEGIN

t«MEMORY[spc+TINUSE)+RGCRHO(USER);
te MAX(t, MEMORY[spce TUNUSED],

MEMORY[spc+TGRMIN));
END END;

RGCRHO(USER) is a real number currently
initialized by the system to 0.33. Thus the

behavior of Sail’s automatic garbage collection

system may be modified by

Setting RGCOFF (USER).
Supplying a procedure in TGRADJ(USER).
Modifying RGCRHO(USER).
Modifying the TGRMIN entries in the space descriptors. |

One word of caution: User procedures that set
trigger levels must set the trigger level of the
space that caused garbage collection to some

positive value. If not then aruntime error
message will be generated.

Look at the file €SUAIDRECAUX.SAI[CSP,SYS],

68

LL —

SAIlL- TENEX ROUTINES

SECTION 11 same channel number. In TENEX Sail,
GETCHAN returns the number of a

TENEX ROUTINES channel for which no OPEN or

GETCHAN is currently in effect; thus
successive GETCHANs will return

different channel numbers.

11.1 Introduction GETSTS not available; see GDSTS, GTSTS.

This section describes routines which interface INOUT not available.

Sail with the TENEX operating system. Routines
for file input/output, terminal handling, and INPUT assumes 200 characters maximum if
miscellaneous system calls are described here. no length variable has been
For TENEX-specific details of other routines associated with the channel.
(such as interrupts) consult the appropriate

chapter. INTIN no differences.

LINQUT no differences.

11.2 TOPS- 10 Style input /Out put LOOKUP no differences.

“Standard” Sail programs written using TOPS- MTAPE Options “I” and NULL are not
10 I/O routines such as OPEN, LOOKUP, etc., will available.
run under TENEX with little or no conversion

necessary. The TENEX Sail routines simulate OPEN MODE is mostly ignored (exception:
most of the effects of the TOPS-10 I/O calls dump mode on a dectape ignores the

without using the PA-1050 emulator. directory). The number of input and
output buffers serves only to indicate

In"TENEX Sail the non-zero values of error flags whether reading or writing is desired.
returned by routines 6uch as LOOKUP are
ERSTR JSYS error numbers. The interpretation OUT no differences.
of zero/nonzero is the same as with the TOPS-
10 I/O routines, but the specific nonzero values REALIN no differences.
are probably different.

RELEASE The close inhibit bits have no effect.

Here are the TOPS-10 |I/O routines and the

differences, if any, under TENEX. RENAME Changing the protection does not
work. See GTFDB and CHFDB.

ARRYIN TENEX dump mode implies a single
DUMP! JSYS. SETPL The routines CHARIN and SINI do not

update the variables associated with
ARRYOUT similar to ARRYIN. the channel by SETPL.

CLOSE The close inhibit bits have no effect. SETSTS not available; see SDSTS, STSTS.

CLOSIN same as CLOSE. STDBRK no differences.

CLOSO same as CLOSE. TMPIN not available.

ENTER “no differences. TMPOUT not available.

GETCHAN ‘In TOPS-10, GETCHAN return6 the USETI works only on those devices where
number of a channel for which no the SFPTR JSYS works. On a dectape
OPEN is currently in effect. Thus the MTOPR JSYS is used, and may not

successive GETCHANS without produce the same results as on a
intervening OPENs will return the TOPS-10 system. USETI takes effect

69

TENEX ROUTINES SAIL

; immediately (the nondeterminancy of ARRYIN Read in an array (36-bit words)
the standard TOPS-10 (not SUAI)
USETI is not simulated). Equivalent to ARRYOUT Write an array
SFPTR (chan, (N-1)¥'200);

CFILE Release a file

USETO same as USETI. TENEX has only one
| file pointer, so in fact USETI and CPRINT Write a string
] USETO are EXACTLY the same

function. INPUT Read in a string

WORDIN no differences. JFNS Read file name

WORDOUT no differences. OPENFILE Obtain a file

MAGTAPE 1/0 ouT Write a string
The user is warned that there are serious

limitations in TENEX regarding magtapes. While SETINPUT Set parameters for input
TENEX is supposed to have device-independent

1/0, the magtape code in TENEX (as of .v. |-31) OBTAINING ACCESS
is minimal, allowing only dump mode transfers. The main procedure for obtaining access to
Further, end of file markers must be written files is OPENFILE. In terms of JSYSes, OPENFILE

explicitly, and it is sometimes necessary to do does a GTJFN and OPENF. Additional routines
an MTOPR operation 0 to reset the magtape provide support to OPENFILE, including
status bits. SETINPUT, INDEXFILE, and CFILE.

| TENEX Sail has been designed to handle some DATA TRANSFER
of these things in a way that makes features The TENEX routines for transferring data are
available on a standard TOPS-10 system generally the same as the TOPS-10 routines.

available in a transparent way. For example, One improvement in TENEX Sail is that
string input and output functions work, with Sail characters and words can be mixed in reading
assuming 128-word records on the tape. or writing to a file, provided the file is on the
ARRYIN and ARRYOUT cause the DUMP! and disk. Such I/O is called “data mixed 1/0”.

| DUMPO JSYSes to be executed for the specified
word counts. TENEX Sail does not actually open The following interpretation is given to data
tapes for write until a write operation is mixed |[/O. There is one logical character
requested. A CLOSF or CFILE on a tape will pointer into the file. When a character is read
write two EOF’'S (MTAPE (ch, "E")) and or written the routines access the byte

| backspace over one of them, if and only if the designated by the pointer and then increment
file has been opened. Do not rewind a tape the pointer. There is only one pointer for both
unless it has been closed. The user who wants input and output. When a word is read or

| to write magtape code for operations other written, the next full word in the file is
than the above is hereby warned that the accessed. Accessing a word advances the
TENEX magtape code is fraught with peril. character pointer to the next full word in the
TENEX Sail certainly allows full access to TENEX file, where five 7-bit ASCII characters occupy
in this regard, however. one 36-bit word. If a read passes the end of

: the file then the EOF variable (specified by
: SETINPUT or OPEN) and the external integer

SKIP are set to -1. If a write passes the end

11.3 TENEX Style Input /Out put of file then the end of file is advanced.

| The following functions satisfy most Sail and RANDOM 1/O
TENEX needs: The routines RCHPTR, SCHPTR, RWDPTR, and

SWDPTR give access to the file pointer. USETI

and USETO are equivalent to SWDPTR (chan,
(N-1)%°200);.

70

1 SAIL- TENEX ROUTINES

: ERROR HANDLING CHARIN————

When errors occur the runtime routines will

sometimes trap the errors themselves. This CHAR « CHARIN (CHAN)
practice is held to a minimum since the error

1 itself may be information that the user is The next character from CHAN is returned. Zero
| interested in seeing. Usually the routines (as is returned if the file is at the end.

marked) put the TENEX error code in _SKIP_,
which may be examined by the program. The

TENEX error numbers do not always make good
sense, ‘but for the cases that they do the ERSTR ——————— CHAROUT ———
routine will print out on the terminal the

message associated with a given error number. CHAROUT (CHAN, CHAR)

DIRECT DSK OPERATIONS The single character CHAR is written to CHAN.
| The routines DSKIN and DSKOUT do direct DSK

operations in TENEX Sail, using the DSKOP JSYS.
These routines relate only to the IMSSS version
of TENEX-Sail. — CHFDB’=—

CHFDB (CHAN, DISPLACEMENT,
MASK, CHANGED-BITS)

| —————— ASND, RELD=—

This routine ‘performs the CHFDB JSYS on

| SUCCESS « ASND (DEVICE-DESCRIPTOR); CHAN, with DISPLACEMENT, MASK, and
| SUCCESS « RELD (DEVICE-DESCRIPTOR) CHANGEDG&BITS as described. in the JSYS
; manual.

DEVICE_DESCRIPTOR (in the TENEX sense) is
assigned to or deassigned from the job. If

DEVICE-DESCRIPTOR is -1 when calling RELD
then’ all devices assigned to the job are — CLOSE=—

deassigned. TENEX error codes are returned in

SKIP, which is zero if no errors occurred. CLOSF (CHAN)

This routine does a CLOSF on CHAN. CHAN is

not released, If the device is & magtape open

—BJF— for output then 2 file marks are written and a
backspace is performed. This writes a standard

BKJFN (CHAN) end-of-file on the tape.

Does the BKJFN JSYS on CHAN. TENEX error

codes are returned in _SKIP_, which is zero if
: no error6 occurred. This function is escape - (VJ ————

from Sail.

REAL, JFN « CVJFN (CHAN)

i The full TENEX JFN (including flags in the left
-_—— CFILE=— half) corresponding to Sail channel CHAN is

returned. Only a hacker will ever need this.

; SUCCESS ¢ CFILE (CHAN)

This routine closes the file (CLOSF) and
releases the CHAN(RLJFN). This is the ordinary —DELF—
way to dispense with a file. CFILE returns
TRUE -if CHAN is legal and released; it returns DELF (CHAN)
FALSE otherwise.

The file on CHAN (which must NOT be open) is

,

TENEX ROUTINES SAIL

deleted. TENEX error codes are returned in -———— bVCHR —nou—

-SKIP, which is zero if no errors occurred.

DEVICE-CHAR « DVCHR (CHAN, @AC 1, @AC3)

1 The DEVCHR JSYS is performed. The flags from
-_ DELNF ——————— AC2 are returned as the value of the call, and

AC1 and ACS get the contents of ac’s 1 and 3.
DELETED « DELNF (CHAN, KEPT)

| This routine deletes all but KEPT versions of

the file on CHAN, which must have had a CLOSF ee ERSTR —————
| done on it first. If KEPT=0 then all versions of

| the file are deleted. If KEPT=1 then all versions ERSTR (ERRNO, FORK)
! except the most recent are deleted. The

number of files actually deleted is returned as Using the ERSTR JSYS, this routine types on the
: the value of DELNF. console the TENEX error string associated with

ERRNO for fork FORK (‘400000 for the current
fork). Parameters (in the sense of the ERSTR

JSYS) are expanded. Types ERSTR:
—DEVST, STDEV —————— UNDEFINED ERROR NUMBER (and sets _SKIP_ to

-1) if something is wrong with ERRNO or FORK.
: “DEVICE-NAME” « DEVST (DEVICE-DESIGNATOR);

DEVICE_DESIGNATOR« STDEV (“DEVICE-NAME”)

| These routines convert between string — GDSTS, SDSTS ——re—re——

DEVICE-NAMEs (such as "DTAO") and TENEX
DEVICE-DESIGNATORs. TENEX does not believe STATUS « GDSTS (CHAN, @WORD-COUNT);
that lower case letters are equivalent to upper SDSTS (CHAN, NEW-STATUS)
case letters in STDEV. TENEX error codes are

returned in _SKIP_, which is zero if no errors The status of the device on CHAN is returned
occurred. or changed. For GDSTS, @WORD-COUNT is set

1 to the contents of ACS.

Remark: some magtape statuses (such as EOF)
-_ DEVITYPE —————rrrr— are set by MIOPR and not by SDSTS.

Ordinarily the Sail runtirne system takes care of
DEVICE-TYPE « DEVTYPE (CHAN) this, but it is worth mentioning since so many

users have run into this poorly documented fact
The DVCHR JSYS is used to return the device about TENEX.

type of the device open on CHAN.

—_— GNJIN —@— ———

——— DSKIN, DSKOUT=e
| MORE-FILES « GNJFN (CHAN)

DSKIN (MODULE, RECNO, COUNT, @LOC);
1 DSKOUT (MODULE, RECNO, COUNT, @LOC) Does the GNJFN JSYS. A: file that is open
; cannot have GNJFN applied to it. INDEXFILE

[IMSSS only.] These routines do direct DSK I/O. should normally be used instead of GNJFN. An
: MODULEs 4-7 are legal for everyone; other exception is if files are being indexed without

| modules require enabled status. The routines actually being opened (i.e., without an OPENF
transfer COUNT (£1000) words, starting at JSYS), which is a sensible way of performing

| location LOC in memory and at record RECNO in operations such as counting the number of files
| MODULE. TENEX error codes are returned in. in a group.

| _SKIP_, which is zero if no errors occurred.
WARNING: No bounds checking is performed to
see if the LOC is a legal Sail array.

72

SAIL _ TENEX ROUTINES

—(GTO =— Argument Where placed Whet

GTFDB (CHAN, @BUF) “ORIGSTR® AC 2 Partial or complete string
FLAGS E+O Flags to GTJFN

The entire FDB of CHAN is read into the array JFN,JFN Eel xwd input JFN, output JFN
BUF. No bounds checking is performed, so BUF "DEV" E+2 device
should be at least ‘25 words. “DIR” E+3 directory

“NAME” E+4 name

“EXT” E«5 @ xioneion

"PROT" E+6 protection
-_— GIJFN —————— “ACCOUNT” E+7 account

DESIRED,JFN E¢'l10 desired JFN if B11 on

CHAN « GTJFN (“NAME”, FLAGS)

Does a GTJFN. If NAME is non-null then it is

used, otherwise the terminal is queried for a — GTSTS, STSTS=
filename. Any error code is returned in _SKIP_,
The Sail channel number obtained is returned STATUS « GTSTS (CHAN);

as the value of GTJFN. STSTS (CHAN, NEW-STATUS)

The following values for FLAGS will be These routines examine and change the file
translated by Sail before doing the JSYS: status using the JSYSes. TENEX error codes

. are returned in -SKIP, which is zero if no
| value translated to errors occurred.

| 0 ' 10000 1000000 (ordinary input) WARNING: The results of GTSTS are not
1 ‘60000 1000000 (ordinary output) necessarily appropriate for determining end-of-

file if the file is being page-mapped by Sail.

| Other values are taken literally. Look. at the EOF variable instead. See
SETINPUT.

Ordinarily OPENFILE will be used rather than
GTJFN. The routines GTJFN, OPENF, GNJFN,

CLOSF, RLJFN, and DVCHR are all in the

category of being included only for r—ND)EX || E—
completeness; they are not necessary in most

programs. ANOTHER « INDEXFILE (CHAN)

If CHAN was opened With the "#" option by
OPENFILE then INDEXFILE will try to get the

-_GTJFNL next file in the "*" group. INDEXFILE returns
TRUE as long as another file can be found on

CHAN « GTJFNL (“ORIGSTR”, FLAGS, JFN,JFN, CHAN. Example:
"DEV", “DIR”, “NAM”, “EXT”,
“PROT”, “ACCOUNT”, DESIRED,JFN) JFN « OPENFILE ("<JONES>* SAl;*", "RO%");

COMMENT Read li of Jones's Sail programs;

Does the long form of the GTJFN JSYS (and SETINPUT (JFN, 200, 0, EOF);

does not do an OPENF). The arguments are put
into the accumulators and locations in the table DO BEGIN “INDEX’

accepted by the long form of the GTJFN JSYS. DO BEGIN “READ FILE”
These arguments are given below, where “AC STRING S;
X" means an accumulator and "E+X" means in S « INPUT (JFN, BREAK-TABLE);
the Xth address of the table. COMMENT process

END “READ FILE” UNTIL EOF;
Co . END “INDEX” UNTIL NOT INDEXFILE (JFN);

73

TENEX ROUTINES SAIL

The "*" option takes the place of reading the value translatedt 0
MFD and UFD on a TOPS-10 system. INDEXFILE 0 ‘070000200000 (input characters)
clears the EOF, LINNUM, SOSNUM, and PAGNUM ‘070000 100000 (output characters)

variables associated with CHAN if these have 2 ‘440000200000 (input words)

been set by SETINPUT and SETPL. 3 ‘440000 100000 (output words)
4 ‘447400200000 (dump read)
5 ‘447400 100000 (dump write)

JN——— Values 6-10 are reserved for expansion; ‘other
values are taken literally.

“NAME” « JFNS (CHAN, FLAGS)
Best results are obtained by opening a TTY in

The name of the file associated with CHAN is 7-bit mode, the DSK or DTA in 36-bit mode, and

returned. FLAGS are for accumulator 3 as a magtape in 36-bit dump mode.
described in the JSYS manual. Zero is a

reasonable value for FLAGS.

-_—eee QPENFILE —————

rere JF NS || meee CHAN « OPENFILE (“NAME”, “OPTIONS”)

“NAME” « JFNSL (CHAN, FLAGS, LHFLAGS) NAME is the name of the file to be opened. If it
is null then OPENFILE gets the filename from the

(This routine corrects a deficiency in the JFNS terminal using TENEX filename recognition.
function.) The name of the file associated with CHAN, the value returned by OPENFILE, is a Salil
CHAN is returned, using FLAGS for accumulator channel number. This is not necessarily the
3 and putting LHFLAGS into the left half of same as the TENEX JFN (see CVJFN). All TENEX
accumulator 2 as described in the JSYS manual. Sail functions (except SETCHAN) require Sail

If LHFLAGS is -1 then the value returned by channel numbers for arguments. OPTIONS is
GTJFN is used. one or more characters specifying the kind of

access desired. The legal characters are

Read or write:

—MIOPR —@™— R read

W write

MTOPR (CHAN, FUNCTION, VALUE) A ‘append

The MTOPR JSYS is executed with FUNCTION Version numbering, old-new:
placed into AC2 and VALUE into AC3. The 0 old file
TOPS-10 style MTAPE function may be more N new file

comfortable. [(Stupid!) IMSSS and SUMEX: skip T temporary file
to end of tape does not work.] * index with INDEXFILE routine

Independent bits to be set:
C require confirmation

————— OPENF= D ignore deleted bit
H “thawed” access

OPENF (CHAN, FLAGS)
Error handling:

Does the OPENF JSYS on CHAN with FLAGS as E return errors to user in the external

the contents of accumulator 2. TENEX error integer -SKIP, TENEX error codes are used.
codes are-returned in -SKIP, which is zero if (CHAN will be released in this case.)
no errors occurred. The following values for

FLAGS will be translated by Sail before setting If an error occurs and mode "E" was not
| AC2: specified then OPENFILE gives an error message

and attempts to obtain a file name from the

74

SAIL TENEX ROUTINES

terminal. If an error occurs when "E" was - RFBS/ ——ou

] specified then OPENFILE will return -1 for CHAN
and the TENEX error code will be put into BYTE-SIZE « RFBSZ (CHAN)
SKIP.

The byte-size of the file open on CHAN is

: Examples: returned. This function is escape from Sail.

COMMENT get a filename from the terminal
; and write the file;

BEGIN —_— RFPTR, SFPTR—
INTEGER JFN;

OUTSTR (CRLF & “FILE NAME*"); PTR « RFPTR (CHAN);
| JFN « OPENFILE (NULL, “WC”); SFPTR (CHAN, NEWPTR)

COMMENT write, confirm name;

CPRINT (JFN, “text These routines perform JSYSes and are escape
") from Sail. TENEX error codes are returned in

CFILE (JFN); COMMENT close thr file; _SKIP_, which is zero if no errors occurred.
; END;

COMMENT read a known file;

BEGIN —RF]—

| STRING S;

INTEGER JFN, BRCHAR, EOF; RLJFN (CHAN)
| SETBREAK(1, ‘12, '15&’14, “IN’);

JFN « OPENFILE ("<JONES>SECRET.DATA", "RCO"); This routine does the RLJFN JSYS.
SETINPUT (JFN, 200, BRCHAR, EOF);
DO BEGIN

S « INPUT (JFN, 1)

END UNTIL EOF; —RNAMF —m—m—m—
CFILE (JFN);

END; SUCCESS « RNAMF (EXISTINGCHAN, NEWCHAN)

: Wizards: The OPENF is for 36-bit transfers; The RNAMF JSYS is ‘performed, renaming the

except that TTY, LPT, and a device for which a file on EXISTINGCHAN to the name of the
36-bit OPENF fails get 7-bit mode. (vestigial) file on NEWCHAN. It is necessary

that CLOSF(EXISTINGCHAN) be done before

1 RNAMF and that OPENF be done afterwards.

The TOPS-10 style RENAME is sometimes more

——ee RCHPTR, SCHPTR =— convenient to use than RNAMF, since RENAME
i performs the GTJFN and OPENFs necessary for

PTR« RCHPTR (CHAN); the renaming operation. However, the actual

! SCHPTR (CHAN, NEWPTR) JFN associated with CHAN is changed by
RENAME.

: The number of the byte which will be accessed
1 next by character I/O is returned or set. The

tirst character of a file is character number 0.

If NEWPTR--1 for SCHPTR then the pointer is — RWDPTR, SWDPTR=

] set to end of file, Setting the pointer beyond
: end of file will change-fhe length of the file if it PTR« RWDPTR (CHAN);

is being written. TENEX error codes are SWDPTR (CHAN, NEWPTR)
: returned in _SKIP_, which is zero if no errors

occurred. The number of the word which will be accessed

1 next by word I/O is returned or set. The first
word of a file is word number 0. If NEWPTR=-~1

- for SWDPTR then the pointer is set to end of

| 75

TENEX ROUTINES SAIL

} file. Setting the pointer beyond end of file will _SKIP_ to -1 if the string was terminated for
change the length of the file if it is being count; otherwise _SKIP_ will be set to BRCHAR.

| written. To determine end-of-file, examine the EOF
variable for the channel (see SETINPUT).

! -_e SETCHAN ————
SIZE—o——

CHAN « SETCHAN (REAL,JFN,

] GTJFN,FLAGS, OPENF,FLAGS) SIZE « SIZEF (CHAN)

This function is liberation from Sail I/O. It is The size in pages of the file open on CHAN is

provided for doing Sail 1/0 on a JFN that is returned. TENEX error codes are returned in
: obtained from some means other than the Sail _SKIP_, which is zero if no errors occurred.

i file-opening routines -- for example, a JFN
1 passed from a superior fork.

] REAL,JFN is a 36-bit JFN (or JFN substitute, -_ UNDELETE
1 such as a Teletype number), GTJFN,FLAGS and
: OPENF,FLAGS are the flags that should be UNDELETE (CHAN)
1 recorded describing how the GTJFN and OPENF

4 were accomplished. REAL,JFN need not be The file open on CHAN is undeleted. TENEX
| open. The value returned by SETCHAN is the error codes are returned in _SKIP_, which is

Sail channel number which should be used for zero if no errors occurred.

b subsequent Sail 1/0. SETCHAN is the only
I function in TENEX Sail that takes an actual JFN

as an argument.

11.4 Terminal Handling

) The simplest way to write strings on the

-_ SETINPUT —-——— terminal is with PRINT. See page 53. The
1 simplest way to read strings from the terminal

] SETINPUT (CHAN, @COUNT, @BRCHAR, @EOQF) is with INTTY. See page 79. The following
detailed discussion about terminal handling will

f This function relates the COUNT, BRCHAR, and normally be of interest only to advanced

EOF variables to channel CHAN in the same way | programmers. The rest of this section is new.
i that OPEN does. The INPUT function (page 39)
] uses 200 for the default value of COUNT if no THE TERMINAL AS A DEVICE
] location has been associated with CHAN. We first discuss some of the problems in using

: the terminal as a device (i.e., when device
All 1/0 transfer routines also set _SKIP_ to “TTY:” is opened by OPENFILE or a similar
indicate end-of-file and |/O errors. For function). Since Sail has various functions for

1 example, on return from INPUT _SKIP_ will be reading strings, reals, and integers from an
-1 if an end-of-file occurred, a TENEX error arbitrary device, this can be a useful feature.
number if an error occurred, and zero

! otherwise. TENEX provides quite general teletype service.
J However, the lack of a default system line

editor creates some problems. Note the
proliferation of line editors in the many

SIN———— commonly used TENEX programs. Some of them,
such as the INTERLISP editor, are carefully and

: “STRING” «SiNI (CHAN, MAXLENGTH, BRCHAR) cleanly written. Most TENEX utility programs,
however, work quite poorly and inconsistently

A string of characters terminated-by BRCHAR or with regard to the controlling terminal.
: by reaching MAXLENGTH characters, whichever

: happens first, is read from CHAN. SINl sets The TOPS-10 system has a simple line editor.

76

SAIL TENEX ROUTINES

On a standard Teletype device, the standard years there have been several
TOPS-10 editor activates on a carriage return, altmodes: ‘33, ‘175, and ‘176.0 n
altmode, control-G, or control-Z. ASCII DEL terminals that TENEX believes to be a

(‘177) deletes the previous character; control-U model 33 teletype, the characters ‘175
deletes the current line; control-R retypes the and ‘176 are transliterated to ‘33 by
current line; and control-Z signifies end-of-file TENEX before the Sail runtime system
when the terminal is INITted as a device. (The sees them.
SUAI display line editor also has character
insertion, deletion, searching, kill-to-character, ‘37 (US, TENEX EOL), which is found in the
and settable activation characters.) The great input buffer when CR is typed at the
virtue of this is that programs can be written in terminal, is transliterated to a ‘15 ‘12
a device-independent manner. When the (CRLF) sequence.
terminal is accessed as a device the system

handles line editing. ‘177 (DEL, rubout) deletes the last character;
consecutive deleted characters are

Many TOPS-10 programs take advantage of this echoed, surrounded by backslashes "\".
device-independence, using the INPUT, REALIN (At IMSSS and SUMEX the deleted
and INTIN functions to access the system line characters are removed from the screen
editor. TENEX has had no system line editor; with the DELCH JSYS, which is not
while IMSSS and SUMEX have had a line editor supported by BBN.)

| in their TENEX for some time, it is not in
general use. The editor activates on line feed, altmode,

control-G, and control-Z.

Therefore, the features of a “system” line
editor have been put into the TENEX Sail All this means that programs written for the
runtime system. Several schemes have been TOPS-10 system, accessing the controlling
implemented in TENEX Sail as of this writing. terminal with INPUT et al, should work with
When a channel is opened to the controlling regard to teletype input. The above is also a

terminal, three kinds of line editing are description of the operation of INCHWL, except
available: 1) a TOPS-10 style line editor, 2) a that control-Z is simply a break character to
TENEX-style line editor, and 3) no line editor at INCHWL.
all. The TOPS-10 style editor is the default
with. a channel opened via OPEN; the TENEX-Style Editor. The OPENFILE, GTJFN, and

| TENEX-style editor is the default when a TENEX GTJFNL functions to the controlling terminal set
| function (such as OPENFILE or GTJFN) is used to the TENEX Sail line editor to the following

obtain the channel. The function SETEDIT can conventions:

be used to change which convention is used.
More detailed description of these three kinds IMSSS and SUMEX. These sites use the PSTIN
of editing follows. JSYS for line editing in TENEX, with the

following conventions:
TOPS-10 Style Editor. The OPEN function to
the controlling terminal, usually “TTY” in the ‘12 (linefeed) allows input to continue on the
second argument, gets the following editing next line.
conventions for functions INPUT, INTIN and

REALIN: ‘22 (control-R) retypes the current line.

‘25 (control-U) deletes the entire line and ‘27 (control-W) deletes a “word” (up to the
echoes control-G (BEL) CR LF to the next space). This prints as "«e«&" on
terminal. the terminal.

‘32 (control-z) means end-of-file, after all ‘30 (control-X) deletes the entire line.
previous input is read in.

‘32 (control-Z) signifies end of file.
‘33 (ESC, altmode) activates and-is sent to the

program as ‘33. This is consistent with ‘37 (TENEX EOL) is transliterated to a ‘15 ‘12
current TOPS-10 practice. Over the sequence.

77

TENEX ROUTINES SAIL

‘177 (rubout) or ‘1 (control-A) deletes the last SETEDIT is a no-op. Otherwise, it sets the line
character, using the DELCH JSYS to editing mode to NEW-MODE” and returns
remove it from the display (if any). OLD-MODE, both according to the following

code:

] The PSTIN JSYS transliterates ‘175 and ‘176 to
‘33 MODE Meaning

The editor activates on the characters defined "0" TOPS-10 mode, as above

by the PSTIN JSYS (q.v.); these include “T" TENEX mode, as above
| linefeed (‘12 after EOL), escape ('33), "B" (BBN bag)Byte(ing) mode, no editing

control-G, control-Z.

; Notes:
Sites other than IMSSS and SUMEX have the

following editing conventions when the channel (1) MODE SETTINGS. SETEDIT does not change
i is opened with the TENEX routines OPENFILE, or access the parameters set by such
| GTJFN, etc.: functions as SFMOD, SFCOC, STPAR,

TTYUP, etc. Changes made with these

J ‘22 (control-R) retypes the current contents latter functions will affect editing.
of the buffer.

| (2) NON-CONTROLLING TERMINALS. Terminals
: ‘30 (control-X) deletes the entire line and’ other than the controlling terminal will

echoes CR LF to the terminal. have byte mode -- no editing.

‘32 (control-Z) signifies end-of-file. (3) INCHWL no longer transliterates ‘33 to ‘175.
Previous versions of TENEX Sail

‘37 (TENEX EOL) is transliterated to a ‘15 ‘12 transliterated ‘33 to ‘175.
j sequence.
: TERMINAL MODE FUNCTIONS

“177 (rubout) or ‘1 (control-A) deletes the The routines in this section really refer to
last character. Consecutive deleted terminals only in the “mini-system” version of

characters are echoed surrounded by TENEX. The argument CHAN may be either a
i backslashes. Sail channel number associated with a terminal,
i or a terminal specifier (such as ‘100 or ‘101 for

‘The editor activates on line feed (’12), escape the controlling terminal).
(’33), control-G (7) and control-Z (’32).

i This is also the action of the INTTY routine,

except that. control-Z is simply a break - GITYP, STTYP ———————
character to INTTY.

TERMINAL-TYPE « GTTYP (CHAN, @BUFFERS);

The third mode is the BBN standard mode. In STTYP (CHAN, AC2)

; this mode all characters are simply passed

through. In particular, control-Z does not The indicated JSYS is performed. In GTTYP the
signify end of file, typing a rubout gives a ‘177, additional values returned from accumulator 2
ESC gives a ‘33, CR gives a ‘37, etc. No editing are stored into reference parameter BUFFERS.

| is done by the system. This is the mode in
which a terminal other than the controlling

i terminal is accessed using any Of the functions.
—RFCOC, SFCOC ———

RFCOC (CHAN, @AC2, @AC3);
—_———— SETEDIT meee SFCOC (CHAN, AC2, ACJ)

“OLD-MODE” «SETEDIT (CHAN, “NEW-MODE”) The indicated JSYS is performed.

If CHAN is not the controlling terminal then

i 78

SAIL. TENEX ROUTINES

-_eee RFMOD, SFMOD ———— -PBN —_——

MODE-WORD « RFMOD (CHAN); CHAR « PBTIN (SECONDS)
SFMOD (CHAN, AC2)

[IMSSS only.] Executes the PBTIN JSYS with

A file's mode word is queried or altered using timing of SECONDS.
the JSYS. WARNING: some features, such as

| upper case conversion, that are advertised by SUPPRESSING OUTPUT
| BBN as being accomplished with the SFMOD This new section is for advanced Sail users

JSYS are actually accomplished with the STPAR only, and supposes a knowledge of the pseudo-
i JSYS. interrupt system; see the JSYS manual and the

| interrupt section of this manual.

| The TOPS-10 system allows the user to type a
— STPAR ————— control-O and suspend program output to the

terminal until either another control-O is typed

| STPAR (CHAN, AC?2) or program input is requested. (See [MonCom]
for a complete description.) TENEX does not

Does the STPAR JSYS, setting to AC2. have this at the system level, but pseudo-
interrupts provide an alternative with which the
program can receive control and abort

processing as well as flush output.
3 -_——— J —m—m———

TENEX Sail has complete access to the TENEX

STI(CHAN, CHAR) pseudo-interrupt system. In order to facilitate
handling of control-0 an EXTERNAL INTEGER

Does the STI jsys (Simulate Terminal Input) to CTLOSW has been added to the TENEX Sail

| channel CHAN (usually the controlling terminal), runtime system. If CTLOSW is TRUE then any
inserting byte CHAR into the input stream. output to the controlling terminal (device “TTY”)

j is flushed by the following functions:
1 DATA TRANSFER

The usual Sail routines for teletype I/O (see PBOUT

: page 43) are available. In addition, PBIN, PSOUT
] PBOUT, and PSOUT have been added, although OUT to achannel open to “TTY”, or to * 10 1

they execute exactly the same code as INCHRW, OUTCHR
OUTCHR, and OUTSTR respectively. OUTSTR

CTLOSW is likewise made FALSE when input is
: requested by any of the following:
—.[NTTY een

INCHRS INPUT INTIN TTYIN

“STRING” « INTTY INCHRW INSTR INTTY TTY INS
! INCHSL INSTRL + PBTIN TTY INL

| INTTY does a TENEX-style input. (Note that INCHWL INSTRS REALIN TTYUP
INCHWL does a TOPS-10 style input.) Up to

1 200 characters are transfered. The activation Note: functions SINI, CHARIN and CHAROUT are
] character is not appended to the string, but is not affected. CTLOSW may be accessed by
] put into _SKIP_. The value -1 is placed ‘into declaring it as an EXTERNAL INTEGER. |
] _SKIP_ if the input is terminated for exceeding

the 200 character limit. Here is an example of a control-O handler.

The normal activation characters are EOL, ESC,

i control-Z, and control-G; however, see thd
section regarding line editing in TENEX Sail. At
IMSSS and SUMEX this routine uses the PSTIN

: JSYS with the standard system break
characters; no timing is available.

79

TENEX ROUTINES SAIL

rrturn if user node;

ENTRY; BEGIN IF (USERPC LAND ' 818888888880) THEN RETURN;
REQUIRE "«<>«<>" DELINITERS;
DEFINE !=<COMMENT>; ! in monitor. Return if not in the middle

! This program sets up acontrol-O interrupt of a PSOUT or (SOUT to ’181);
using PSI channel 8, level 8. IF NOT (

: (USERINST « MEMORY [USERPC-1))=PSOUT_JSYS
OR (USERINST=SOUT_JSYS RND

EXTERNRL INTEGER CTLOSH,PS1RCS; ((RC1« MEMORY[LOCRTION(PSIRCS) + 11)
= 101 OR DEV(ACL1)=CVASC("TTY"))))

SIMPLE PROCEDURE CTLO, BEGIN "THEN RETURN,
I NTEGER USERPC,PSL1,USERINST,RCl,SRVERDOR;
LRBEL LERVE; I modify return so that output stops;
DEFI NE PSOUT_JSYS=<’18480880080876>, SAVERDDR « (MEMORYIPSLL) LAND ' 777777888888~

SOUT_JSYS=«’ 1848080800853»; + LOCATION (LEAVE);
MEMORY (PSL1] SHRP SAVEADDR;

SIMPLE INTEGER PROCEOURE DEV (INTEGER JFN); RETURN! ! to Sail interrupt handler;
START _CODE

HRRZ 2, JEN; | THE IFN, START- CODE LERVE: JRST &SAVERDOR; END;
SET2 4,; END;
HRROI 1,4; | PUT STRING IN 4;
MOVSI 3,°288880; 1 ONLY THE DEVICE; INTERNRL PROCEDURE INITIALIZE;
J FNS; | GET THE STRING; BEGIN
MOVEM 4,1; ' CVASC("DEV"); PSIMARP(8,CTLO,8,1);

END; ENABLE(8) ;
ATI(8,"0"-'188);

! this is Sail immediate interrupt level. END;
No dynamc strings are accessed.;

REQUIRE INITIALIZE INITIALIZATION;
IF CTLOSU THEN

BEGIN END,
CTLOSU « FALSE; | TOGGLE IT;

RETURN, I AND RETURN,
END;

~ STRRT_CODE 11.5 Utility TENEX System Calls
MOVET 1,’181;

CFOBF; An effort has been made to provide calls that
END, read and write strings which may be
OUTSTR ("10 inconvenient to perform from START-CODE.
"); Note that the TENEX Sail compiler has the
CTLOSU + TRUE; I NO MORE OUTPUT; TENEX JSYS mnemonics defined in START-CODE.

In START-CODE these definitions take

| get user PC and address into LEVIAB; precedence over the function calls of the same
START_COOE name.

MOVET 1,’4080080;
RIR;

HLRZ 2,2; | LEVIRB RODRESS;

MOVE 2,(2); I PC FOR LEVEL I; -CALL——
MOVEM 2,PSLI;

MOVE 2,(2); I USER PC RESULT « CALL (AC,ARG, “FUNCTION”)
MOVEM 2, USERPC;

END; A limited set of CALLsis simulated by TENEX
Sail. Those available are

80

SAIL- TENEX ROUTINES

call. Reference values are: the number of the

| EXIT logged directory (LOGDIR), the connected
DATE directory (CONDIR), and the TENEX Teletype

| DATSAV [IMSSS only.) | number (TTYNO).
GETINF [1MSSS only]
GETPPN
LOGOUT

MSTIME (3ADse—

PJOB

PUTINF (MmsSSS only. } DT « GTAD
RANDOM [IMSSS only.]

RUN The current date and time (in TENEX

RUNTIM representation) is returned.
TIMER

If any other FUNCTION is specified then a
continuable error message is given. —_—eee |DTIM, ODTIM ——o—o—

DT «IDTIM (“DATIME”);
“DATIME” « ODTIM (DT, FORMAT)

—CNDIR ———————

| These routines convert between TENEX internal

| CNDIR (DIRNO, “PASSWORD”) representation DT and string representation
DATIME. If DT is -1 in ODTIM then the current

| Does the CNDIR jsys, connecting to DIRNO with date and time is used. If FORMAT is -1 then the
password “PASSWORD”. If "PASSWORD" is null format used is “TUESDAY, APRIL 16, 1974
then the user must have connect privileges. 16:33:32". For IDTIM, TENEX error codes are

| TENEX error codes are returned in _SKIP_, returned in _SKIP_, which is zero if no errors
which is zero if no errors occurred. occurred. WARNING: the IDTIM JSYS is nearly

an inverse to the ODTIM JSYS; however, the

- format returned by ODTIM with FORMAT-1 will
NOT be recognized by IDTIM unless the day

~—————————— DIRST, STDIR =——— (“TUESDAY, ") is first removed. Blame BBN.

“DIRECTORY” ¢ DIRST (DIRNO);

| DIRNO« STDIR (“DIRECTORY”, DORECOGNITION)
—DMAP——

These routines convert between TENEX

directory numbers and strings. TENEX error PMAP (ACl, AC2, AC3)
] codes are returned in _SKIP_, which is zero if

no errors occurred. For STDIR the error codes Does the PMAP JSYS, using the accumulators
in _SKIP_ are for the arguments.

} string does not match
! 2 string is ambiguous.

—_— RDSEG ————

Note that DIRECTORY must be in uppercase for
the STDIR JSYS. RDSEG (@SEGPAGES, @BUFPAGES)

i This function returns the pages which are
i specially used by the Sail runtime system. The
! ——. GJ INFee starting and ending pages of the runtime

segment are returned in the left and right

JOBNO« GJINF (@LOGDIR, @CONDIR, @TTYNO) halves, respectively, of SEGPAGES. The first
and last pages used for bufferring are returned

: The job number is returned as the value of the in the left and right halves of BUFPAGES. This
] function is escape from Sail.

81

TENEX ROUTINES SAIL

Memory map, in general:

pages contents

(Compile time)
O-n impure data
400-450 compiler code
600-604 START-CODE table, if needed

640-670 runtime system
770-m UDDT

(Run time)
O-n impure data

400-m code and pure data
600-637 I/O buffers

640-677 runtime system
770-p UDDT

—_—eeeee RUNPRG —————

RUNPRG (“PROGRAM’, INCREMENT, NEWFORK)

This does two entirely different things

depending on the value of NEWFORK. If
NEWFORK is true then a new fork is created,
capabilities are transmitted, and PROGRAM is
run in the new fork (with the current fork

suspended by a WFORK). INCREMENT is added
to the entry vector location. If NEWFORK is
false then the current fork is replaced with
PROGRAM. In this case RUNPRG is like the.

"TOPS-10 RUN UUQ; if the INCREMENT is 1 then

the program is started at the CCL address. If
RUNPRG returns at all then there was a

problem with the file. Remember to say .SAV
as the PROGRAM extension.

-_— RUNTM——

RUNNING « RUNTM (FORK, @CONSOLE)

The running time in milliseconds for FORK is
returned and the console connect time is

returned in CONSOLE.

82

|

SAIL LEAP DATA TYPES

: SECTION 12 by use of the DATUM construct. Declared items
| have names which may be used to identify them

LEAP DATA TYPES in expressions, etc. The simple variable whose
value is an item is called an ITEMVAR.

| 12.1 introduction 12.2 Syntax

In addition to the standard algol-like statements The following syntax is meant to REPLACE not
and expressions, Sail contains an associative supplement the syntax of algebraic declarations,
data store and auxiliary facilities called LEAP. except where noted.
Sail’'s version of LEAP is based on the

associative components of the LEAP language

] implemented by J. Feldman and P. Rovner as <declaration>
i described in [Feldman]. u= <type-declaration>
] i= <array-declaration>
§ An associative store allows the retrieval of data i= <preload_specification>
5 based on the partial specification of that data. n= <label declaration>
3 LEAP stores associative data in the form of n= <procedure-declaration>
: ASSOCIATIONS, which are ordered three-t uples w= <synonym-declaration>

of ITEMS. Associations are frequently called us <require-specification>

TRIPLES. Associations are placed in the n= <context-declaration>
associative store by MAKE statements and | i= <record-class-declaration>
removed from the store by ERASE statements. u=<protect_acs declaration>
The associative searches allow us to specify $= <cleanup-declaration>

; items and their position in the triple and then w= <tvpe_qualifier> <declaration>

| have the LEAP interpreter search for triples in l = <sprout_default_declaration>
the associative store which have the same items

i in the same positions. The interpreter will

1 extract the items from such triples, which <simple_type>
! correspond to the positions left unspecified in ::= BOOLEAN

the original search request. For example say w= INTEGER

4 we had triples representing the binary relation ue | |ST
3 Father-of, and we had “made” associations of sm REAL

the form ::= RECORD-POINTER (<classid_list>)
] sm SET

Father-of ® John & Tom w= STRING

Father-of ® Tom & Harry,

Father-of ® Jerry ® Tom,
<itemvar_type>

- where Father-of, John, Tom, Harry, and Jerry w= |[TEMVAR

| are names of items. We could then perform u=<simple_type> ITEMVAR
searches to find the sons of Tom by specifying w=<array_type> ARRAY ITEMVAR
to the leap search routines that we wanted to , ::= CHECKED <itemvar_type>
find triples whose first component was | := GLOBAL <itemvar_type>

: Father_of and whose third component was Tom.
Associative searches inherently produce

y multiple values (i.e., both Jerry and John are <item_type>
sons of -Tom). To deal with multiple values, s= [TEM

: Leap has SETs and LISTsof items. n= <simple_type> ITEM

Items are constants. They may -be created by
declaration or by the function NEW. Items may <array_type>

: have a single algebraic variable, set, list or w= <simple_type>
array associated with them which is accessible ne <itemvar_type>

ww <item_type>

83

LEAP DATA TYPES SAIL

<type-declaration> 12.3 Semantics
= <simple_type> <identifier_list>
n= <itemvar_type> <identifier_list> ITEM GENESIS
w= <item_type> <identifier_list> Although items are constants, they must be
= <arrav_tvoe> ARRAY <array_list> created before they can be used. Items may
u=<array tvpe> ARRAY ITEM <array_list> be created in three ways:
u= <type_qualifier> <type-declaration>

1) A Declared Item may created by
declaration of an identifier to be of

<array-list> - as on page 3 type ITEM.

2) An item may be created with the
<procedure-declaration> NEW construct (see page 98).

; ::= PROCEDURE <ident if ier>

<procedure-head> 3) A bracketed triple item is created

<procedure-body> by the MAKEiIng of a bracketed
w= <procedure-type> PROCEDURE triple (see MAKE, page 90).

<identifier>

<procedure-head> <procedure-body> Items of type 1 and 2 are the same except

w= <type_qualifier> those of type 1 may be referred to by the
<procedure-declaration> identifier that is associated with them. For

example one may say . .. ITEM DAD; ... Xe«DAD;....
NOTE: DAD is the name of an item, not a

<procedure-type> variable! Saying DADeX is just as illegal as
u= <simple-type> saying 15«X.
= <itemvar_type>

i= MATCHING <procedure-type> Items of type 3 are different from those of

| «t= MESSAGE <procedure-type> type 1 and 2. Discussion of them will be left
until the creation of associations with the MAKE

statement is discussed (page 90).
<procedure-head> and <procedure-body> -- as

on page 4 except: SCOPE OF ITEMS
Items do not obey the traditional Algol scope
rules. All declared items are allocated in the

<simple_formal_type> outer block. All other items are allocated
w= <simple_type> dynamically. All items exist until a
em <itemvar_type> DELETE (<item expressions) is done on them
i= ? <itemvar_type> (see page 90 for the details of DELETE), or
w= <simple-type> ARRAY until the outer block is exited at the end of the

i= <jtemvar_type> ARRAY program. HOWEVER, the identifiers of declared
1= <simple_type> PROCEDURE items (type 1 above) DO obey scope rules.
= <itemvar_type> PROCEDURE After exiting the block in which item X was

declared, it will be impossible to refer to X by

its declared name. However, X may have been

<preload_specification>, <synonym-declaration>, stored in an itemvar, associations, etc. and thus
<label-declaration>, still be retrieved and used.

and <require-specification> as on page 3 Warning: items in recursive procedures behave
differently from variables in recursive

procedures. At each recursive call of a

<context_declaration> as on page 101 procedure, the local variables are reinstantiated
(unless they were declared OWN). Items are
constants. There is never more than one

instantiation of an item around at a time.

34

SAIL LEAP DATA TYPES

DATUMS OF ITEMS ITEMVARS

An item of type 1 or 2 may have an associated An ltemvar is a variable whose value is an Item.
variable, called its DATUM. The Datum of an Just as the statements "X&«3; YX" and "Y«3“

item is like any variable; it may be declared to are equivalent with respect to Y, the statements
have any type that a variable may have, except "X«DAD; YX" and "Y«DAD" are equivalent with
the type Iltemvar. Because an item may have respect to VY, if X and Y are itemvars, DAD an
only one datum from its creation until its item. The distinction between itemvars and
death, we frequently will say the “type of an items is identical to the distinction between

item” referring to the type of the datum. integer variables and integers. An integer
7 RESTRICTIONS: It is currently impossible to variable may only contain an integer and a
| make either items or their datums either variable declared ITEMVAR may only contain an

Internal or External. However, the effect of item. This may be confusing since historically,
External items can be duplicated by integer variables have always been called

| - manipulating the order in which items are INTEGER rat hert hrn INTECERVAR.
| declared (see page 87). OWN is not applicable

as items are constants, not variables. Items of Properly speaking, one should have
type ARRAY must be declared with constant INTEGERVAR ARRAYsinstead of INTEGER
bounds ‘since they are allocated upon entering ARRAYs. Originally, Sail only allowed ITEMVAR

| the outer block. ARRAYs. However, somany people found this

| confusing that now one may say ITEM ARRAY,
Example declarations of items with datums: and it will be interpreted to mean ITEMVAR

ARRAY. Similarly, an Item procedure is exactly
| INTEGER ITEM FATHER-OF; the same as an ltemvar procedure.

STRING ITEM FOO;

INTEGER ARRAY ITEM NAMES [1:4,1:8); COMMENT not. An itemvar may contain items of any type.
the specification of thr array’s dimensions; However, when one says DATUM (ITMVR) where

SHORT REAL ITEM POINT; ITMVR is an itemvar, the compiler must know
| the type of the datum of the item (i.e. the type
: EXTERNAL ITEM BLAT; COMMENT illogrl; of the item) contained in the itemvar so that

- ITEMVAR ITEM BLAT; COMMENT illogrl; the the correct conversions, etc. may be done.

EE STRING ITEMVAR ITEM BLAT; COMMENT illegal; Thus, one may declare itemvars to have the
REAL PROCEDURE ITEM BLAT; COMMENT illegal; same types that are legal for items. If one has

PROCEDURE ITEM BLAT; COMMENT illegal, declared STRING ITEMVAR ITMVR, then the
vse ASSIGN; compiler assumes that you have stored an

string item in ITMVR, and and will treat

The syntax for variable includes the Datum DATUM (ITMVR) as a string variable.
construct. That is, if AGE is a declared an

Integer Item, then DATUM (AGE) behaves An Itemvar may be declared CHECKED if the
exactly like’ an Integer variable. If ARR is user desires the type of itemvar checked

fC declared as against the type of the datum of the item

i expressions assigned to it. That is, only a
| STRING ARRAY ITEM ARR [2:4,1:9+2) string item could be stored in a Checked

: String ltemvar. If the itemvar is not declared
| then DATUM (ARR) is a string array with two Checked, it may have an item of any type

) dimensions of the declared size. A new array assigned to it and their types need not match at
may not be assigned to the Saturn of ARR, all. This can be very dangerous. For example,
though of course the individual elements of the an integer array item might be assigned to a
array may be changed. Datums obey the same string itemvar. When the datum of this itemvar

type checking and type conversion rules that is later assigned to an integer variable, say, Sail
1 the algebraic variables of Sail do. For example, will try to treat the array header as a string

when a string is assigned to an integer datum, pointer and get very confused. The runtime
the integer stored in the integer datum is the routine TYPEIT, page 123, returns a code for
ASCII of the first character of the string. the type of its argument, and can be useful for

| avoiding type matching errors with un-checked
itamvars.

85

LEAP DATA TYPES SAIL

GLOBAL itemvars are a special kind for SUAI store, its component items can not be changed,
global model users. Global model operation although an approximation to this can be
allows several jobs to share a data segment, obtained by erasing the association then making
and GLOBAL itemvars are used to build the data a new association with the altered components.

structures in this segment. MESSAGE You will note there is no syntax for declaring a
procedures are also related to global model triple. Triples can only be created with the
operations. These features have fallen into MAKE statement. In the examples which follow,
disuse. a triple is represented by :

EXTERNAL, OWN and INTERNAL Itemvars are AeQ=eV
legal. ‘SAFE applies to either the array of an
array itemvar, the array of an itemvar array, or where A, 0, and V represent the items stored in

both arrays of an array itemvar array. the association. The associative store is
accessed by the FOREACH statement, derived

ltemvars obey traditional Algol block structure. sets, and binding triples (see Searching the
Upon exiting the block of their declaration, their Associative Store, page 91).
names are unavailable and their storage is
reallocated. However, the item stored in an PROCEDURES

itemvar is not affected -- it continues to exist ltemvar, Item, List, and Set procedures all exist.
until DELETEd or until the end of the program. ltemvar procedures may be CHECKED if one

desires the item RETURNed to have the same

ltemvars are initialized to the special item ANY type as the type of the Itemvar procedure.

at the beginning of one’s program. Otherwise, the compiler only checks to see that
the value returned to an itemvar procedure is

SETS AND LISTS an item.

Sets and Lists are collections of items. There

are two distinctions between Sets and Lists: a Every type except Item may be used in formal

list may contain multiple occurrences of any parameter declarations; items are constants yet
item while a set contains at most a single pararneters always have something assigned to
instance of an item. Second, the order in which them in the procedure call. Since you can’t

items appear within a list is completely within assign something to a constant, you can’t have
the control of the user program, while with a item parameters.
set, the order is fixed by the internal

‘representation of the items. Lists and Sets do WARNING: when using Checked Reference
not care what type if any the datums of their ltemvar formals, no type checking is performed
members are. as the actual is assigned to the formal at the

procedure call. However, type checking,, will
List and Set Arrays, Itemvars, Items, and only be done during the procedure, and when

Procedures are all legal, as well as External, the formal is assigned to the actual upon the
Own and Internal Sets and Lists. Like itemvars, (normal) exit of the procedure.

the scope of Set and List variables is the block
they were declared in. Exiting that block does IMPLEMENTATION
not destroy the items stored in the departed Each Item is represented by a unique integer in
sets or lists. the compiler. The numbers are assigned in the

order the items are declared, e.g. the first

ASSOCIATIONS declared item gets 1, the second gets 2, etc.

Perhaps the most important form of storage of (Actually, Sail has already declared 8 items that
items is the Association, or TRIPLE. Triples of it needs, so user item numbers start with 9.
items may be written into or retrieved from a REQUIRE n ITEM-START changes the number at
special store, the associative store. The which user items start (only useful for SUAI

method of storage of these triples is designed | global model users). Lexical nesting is not
to facilitate fast and flexible retrieval. Sail uses observed; it is only the sequence in which the

approximately two words of storage for each declarations are scanned that determines their

triple in the associative store.. There is at most numbers. The NEW function does not affect this
one copy of a triple in the store at any tirne. assignment of numbers. Items created by the
Once a triple has been stored in the associative New function are assigned the next available

number at the time of the execution of the New.

86

SAIL LEAP DATA TYPES

Those who use separately compiled procedures

! (see page 12) may wish to have declared items
common to both programs. However, Internal

1 and External items do not exist. The same
effect may be achieved by carefully declaring

1 the desired items in the same order in both

| programs so that their numbers match. The
: message “Warning -- two programs with items
1 in them.” will be issued at the begining of
! execution, and may be ignored if you are

certain the items are declared in the same

i relative positions. No checking of names, types,

| arrays bounds, etc. is done, so be very careful.

Items occupy no space (neither does the
constant integer 15). The numbers ascribed to

i items are stored in ltemvars and Associations.

ltemvars are simply a word of storage. An
association is two words of storage, one with

three 12 bit bytes, each containing the number
of one of the items of the association, and a

| second word containing two pointers relating
the association to the associative search

structure. Since the number of an item must fit

in 12 bits, the number of items is limited to
about 4090.

The number of an item may be retrieved from

i the item as a integer with the predeclared
4 f inet ion CVN (<item-expression>). The item
f represented by a certain integer may be
; retrieved by the predeclared function

CVI (<algebraic-expression>). CVN and CVI
“should only be used by those who know what

] they're doing and have kept themselves up to
1 date on changes in Leap.

|

87

LEAP-STATEMENTS SAIL

SECTION 13 <element_location>

n= <item_expression>

LEAP STATEMENTS = <algebraic-expression>

| <associative-statement>

::= DELETE (<item-expression>) |

| 13.1 Syntax w= MAKE <triple>
w= ERASE «triple>

<leap-statement>

.:= <leap-assignment-statement>

i= <|eap-swap-statement> <triple>
n= <get_statement> w= <item exnressian> ® <item-expression>
n= <|ist_statement> s <item_expression>
;i= <associative-statement>

= <foreach_statement>

i= <suc_fail_statement> <foreach_statement>
;:= FOREACH <binding_list> SUCH THAT

<element_list> DO <statement>
<leap-assignment-statement> i= NEEDNEXT <foreach_statement>

w= <itemvar_variable> «

<item-expression>

n= <set-variable> « <set-expression> <binding_list>
i= <|ist_variable> « <list_expression> = <itemvar_variable>

um <pinding_list> , <itemvar_variable>

<leap-swap-statement>

x= <itemvar_variable> <element_list>
| <itemvar_variable> u= <element>

i= <get_variable> & <set_variable> n= <glement_list> AND <element>
= <|ist_variable> & <list_variable>

<element>

<set_statement> = <item-expression> IN
w= PUT <item-expression> IN <list_expression>

<set-variable> =(<boolean-expression>)
::= REMOVE <item-expression> FROM w= <retrieval-triple>

<set_variable> im <matching-procedure-call>

<list-statement> <retrieval-triple>
22= PUT <item-expression> IN n= <ret_trip_element>

<list-variable> <ret_trip_element>
<location_specification> o <ret_trip_element>

::= REMOVE <item-expression> FROM
| <list-variable>

i= REMOVE ALL <item-expression> FROM W&trip-element>
<list_variable> i= <item-expression>

us <derived-set>

<location_specification>
::= BEFORE <element _location> <matching_procedure_call>
= AFTER <element-location> i= <procedure-call>

88

k SAIL LEAP STATEMENTS

PROPS (X), where X is an item expression, is
<suc_fail_statement> legal regardless of the type of X. X may even

x= SUCCEED evaluate to a bracketed triple item, procedure

i= FAIL item, or event item. PROPS (X) is syntactically
an integer variable. It is limited to integers n

where 0 £n £4095. If negative (i.e. two's
3 complement) integers or integers larger than
: 4095 are [assigned to a PROPS, only the right
oo 13.2 Restrict ions 12 bits are stored. The rest of the integer is

lost.

| SUCCEED and FAIL statements must be lexically
{ nested inside a matching procedure to be legal. PUT

[| Sets and lists are initially empty. One may put
items in them with the PUT statement. “PUT

<item expression> [IN <set variable>" does

13.3 Semant ics exactly what it says.

1 ASSIGNMENT STATEMENTS “PUT <item expression> IN <list variable>
] Assignment statements in Leap are similar to BEFORE <algebraic expression>” evaluates the

those in Algol. ltemvars, Set variables, and List item expression, evaluates the algebraic
variables may be assigned item, set and list expression and coerces it into an integer, say n,
expressions, respectively. Only one automatic then puts the item into the list at the nth

: coercion is done: a set expression may be position, bumping the old nth item to the n+lth
3 assigned to a list variable. NOTE: lists may not position, and so on down the list. This

be assigned to set variables (use CVSET). increases the length of the list by one. “PUT
item IN list AFTER n" places the item in the

| The type of an itemvar is checked against the n+lth position and bumps the old n+lth item
type of the item expression assigned to it if down to the n+2th position, and so on. If n <0
and only if the itemvar is declared Checked. If or n> (1 + length-of-list), then an error
a typed item is assigned to an un-Checked message is given. The special token "oo" may
itemvar of different or no type, the datum is be used in the expression for n to stand for the
not affected. Assign an integer item to a string length of the list.

. itemvar and the string itemvar will now contain
an item with an integer datum. Sail will not “PUT <item expression 1> IN «list variable>
know that you have in effect switched the type BEFORE <item expression 2>" cause a search to

i of the datum and will get very confused if you be made of the list for the item of <item
later try to use the datum of the itemvar; it will expression 2>. If it is found, the item of <item
treat the integer as a pointer to a two word expression 1> is placed in the list immediately
string descriptor in this case. ahead of the item found by the search. “PUT

i item IN list AFTER item” proceeds the same way,

DATUM (X) is legal only when X is a typed item but puts the first item in the list immediately
] expression, namely an item expression that the following the second item. If the second item is

| compiler can discover the type of (not not an element of the list, a BEFORE will put the
i COP (<set>) for example). See page 128 for the first item at the begining of the list, while an
: BNF of typed item expressions. DATUM (X) is AFTER will put it at the end of the list.
5 syntactically a variable. It has the type of the

typed item expression, X. If X has an array REMOVE
J type, then DATUM (X) should be followed by To remove an item from a set or list, one may
[[<subscript-list>) Appropriate coercions will use REMOVE. “REMOVE item FROM set” does

be done (i.e., string to integer, integer to real, just what it says. If the item to be removed
| etc) just as with regular variables in from the set does not occur in the set, this
3 expressions.- NOTE: the user is responsible for statement is a no-op.

; seeing that the datum of an item expression
3 really is the type that Datum thinks it is (i.e., “REMOVE n FROM list” removes the nth item

Datum of a Real itemvar that has had a string from the list. The old n+lth item becomes the
3 item stored in it will give you garbage). nth, and so forth. An error is indicated if n £0

89

LEAP STATEMENTS | SAIL

or n > length-of-list. As before, © should stand BRACKETED TRIPLE ITEMS
for the length of the list. However, [tems may be created by declaration, by the

NEW function, or by using BRACKETED TRIPLEs
“REMOVE item FROM list” removes the first in Make statements. A Bracketed Triple item
occurrence of the item from the list. If the item may not have a datum, but may have a PROPS

is not found, this statement is a no-op. or a PNAME (see page 124 for pnames, page 89
for props). Instead, a Bracketed Triple item has

“REMOVE ALL item FROM list” removes all an Association connected to it. One creates a

occurrences of the item from the list. Bracketed Triple item by executing a Make
statement:

DELETE
Items are represented by unique integer MAKE item1 @ [item2®item3%item4])& items
numbers in Sail. Due to the overwhelming

desire to store an association in one word of where the itemN are item expressions.
storage, these unique numbers are limited to 12 "[item2¢item3zitem4]"” is the Bracketed Triple
bits. Thus the total number of items is limited item, and of course need not always be the
to 4090, The DELETE statement allows one to second component of the association. The
free numbers for reuse. it is also the only way association connected to the Bracketed Triple
to get rid of an item short of exiting the item is “item2 @ item3 sitem4”. The above
program. WARNING: The Delete statement in no Make statement actually creates two triples and
way alters the instances of the Deleted items one item. Namely, the associations
which are present in sets, lists, associations, or
itemvars. The user should be sure that there item] ® itemXX& items

are no instances of the Deleted item occurring item2 @ item3 E item4
in itemvars, sets, lists or associations. Even

saying DELETE (ITMVR) where ITMVR is an and the item "itemXX" which is a Bracketed
| itemvar with an item to be deleted in it will not Triple item and has the second association

remove the item from ITMVR; one must be connected to it. One can access a Bracket

careful to change the contents of ITMVR before Triple item, with the an associative search
using it again. called the Bracketed Triple item Retrieval:

MAKE itmvar « [itm@® itm3 Eitm4);

| The MAKE statement is the only way to create COMMENT itmvrr now contains itmXX;
Associations (Triples) and add them to the

associative store. if the association already The Bracket Triple construct may be used in
exists in the store, no alterations are made. any expression. See page 92.
The argument to the Make statement is a triple

of item expressions: Having "itmXX", one may access the items of the
association connected to with the predeclared

; MAKE item1 ® item2 ® item3 functions FIRST, SECOND, and THIRD (see page
MAKE item1 @ itemvrr 1 8 NEW 125 for more information on these runtime

MAKE itemvar_array[23]® item1 ®itemvar2 functions):

The component item expressions are evaluated FIRST (itemXX) is item2

left to right. The three items that the three SECOND (itemXX) is item3

expressions evaluate to are then formed into an THIRD. (itemXX) is item4
association, and the association is hashed into

the associative store. The item expressions ERASE
must be constructive, that is, one may use the The way to remove an association from the

NEW function but not the ANY or BINDIT items associative store and destroy it is to ERASE it:
(see NEW, page 98, ANY, page 99, and

BINDIT, page 99). ERASE item1® item? Bitem3

where the itemN are item expressions. The |
item expressions must be retrieval item

90

SAIL LEAP STATEMENTS

expressions; that is, one may use the ANY item where A, 0 and V stand for the “attribute”,
| but not the NEW function or the BINDIT item “object” and “value” items of an association.

(see ANY, page 99, and NEW, page 98, and
BINDIT page 99). Using ANY as one, two, or The terms “bound” and “unbound” will find
three of the item expressions allows ‘many heavy use in this section. Bound describes an
associations to be erased in one statement. If itemvar that has an item assigned to it.

the association to be erased does ‘not exist, Unbound describes an itemvar that, at. this time
Erase is a no-op. in the execution of the program, has no item

] bound to it. The object of searching the
Whenever one Erases an association, none of associative store is usually to bind unbound

| the "items of the association are deleted. In itemvars to specific, but unknown, items. If the

particular, when one Erases an association itemvar to be bound was declared Checked,
that has a Bracketed Triple item as one of its then type checking will be done, and the

- components, the Bracketed Triple item is not appropriate error message will be issue if the
deleted. Furthermore, the association binding item does not have the same type as
connected to the Bracketed Triple item is not the itemvar.
automatically erased by erasing an association
containing a Bracketed Triple item. The Throughout this section, references to item
following Erase erases only one association: expressions will always mean retrieval item

expressions. Do not use NEW in such
ERASE item! ® [item2@item3Bitem4) & iteamb expressions.

| However, erasing the association connected to a A hashing algorithm is used in storing and
Bracketed Triple deletes the item. Deleting the retrieving associations in Leap. The user can
Bracketed Triple item DOES NOT erase the increase the speed of associative searching or
association connected to it. decrease his core image by using the REQUIRE n

BUCKETS construct to control the size of his

| associative search hash table to reflect the

number of associations he will be using. A hash

13.4 Searching the Associative Store table will be allocated with (2Tm) hash codes
where m is the smallest integer such that

| Flexible searching and retrieval are the main (2Tm)2 n. Sail initializes the hash size to
motivations for using an associative store. It “1000.
follows that this is the most important section
of the Leap part of this manual. It is a rare BINDING BOOLEANS
Leap program that does not use at least one of A Binding Boolean searches the associative
the searches described below. store for a specified triple, returning true if

: one can be found, and false otherwise. A

Four methods of searching the associative store Binding Boolean is a triple:
) exist in Sail:

itml @ itm2 & itm3

Binding Booleans
Derived Sets where "itmN" is one of three things: an item

. Bracketed Triple item retrieval expression, or the reserved word “BIND”
Foreach Statements followed by an itemvar, or the token "?*

followed by an itemvar. An item expression as

The first three are properly part of the a component of the Binding Boolean means that
discussion of Leap Expressions in the next component of the triple that the boolean finds

1 chapter, but are included here for must be the item specified by the item
completeness. expression (unless the item expression

evaluates to the item ANY, which specifies that
Throughout -this section we will use the any item is okay). If a “BIND” itemvar is the A,
following notation for an association: 0 or V of the triple, then the Binding Boolean

will attempt to find an association which meets

AeQsV the constraints imposed by the item expression
A, 0 or V components, and then binds to the

: O1

LEAP -STATEMENTS SAIL

“BIND” itemvar the items occuring in the THE FOREACH STATEMENT
corresponding positions of the association that This statement is the heart of Leap. It is similar

the Binding Boolean found. If no such to the FOR statement of Algal in that a
association can be found, then the Binding statement is executed once for each binding of

Boolean returns FALSE and leaves the “BIND” a variable. In this semi-schematic example,
itemvars with their previous values. If “?"
precedes an itemvar, then the itemvar will FOREACHX SUCH THAT <element>AND . . . AND

behave like a “BIND” itemvar if it is currently <elementy DO <statements;
contains BINDIT, but will behave like an item
expression if it is bound to some other item the <statement> is executed once for each

than BINDIT. Example: binding of the itemvar X. The <element>s in the
element list (i.e. <element> AND..AND <element>)

IF Father ® ?Son ® ANY THEN PUT Son IN Sonset; determine the bindings of the itemvar, and
IF -Father ® BIND Son & Bob THEN CHILDLESS (Bob); hence how many times the <statement> is
ERCHEK « Father ® COP(Sonset)® ANY; executed. If the <element>s are such that there

is no binding possible for X, then the
DERIVED SETS <statement> is never executed. Like a Sail FOR

Derived Sets are quite simple: “Foo ® Garp” statement, one may use DONE, NEXT, and
where Foo and Garp are item expressions, is CONTINUE within the <statement>. As before,
the set of all items X such that Foo ® Garp & X when one uses a NEXT inside the loop, the
exists. "Garp® Sister” is the set of all items X word NEEDNEXT must precede the FOREACH of
such that X ® Garp ® Sister exists. the Foreach that one wants checked and
“Foo' Sister” is the set of all items X such that possibly terminated. See pages 18, 19, and 19
Foo®X eo Sister exists. Examples: for more information about Done, Next, and

Continue.

Dadset« Father ® ANY;

Danson« Father * Dan; Restriction: Jumping (i.e. with a GO TO) into a
News¢ (Son ¥ Dad) | attset; Foreach is illegal. However, it is legal to jump

out of a Foreach, or to jump around within the
ANY specifies "lI don’t care” to the search. same Foreach.
BINDIT has no special meaning to the search,
and behaves like any other items. Since BINDIT Foreach statements differ from For statements
can never appear in an association, this means in that more than one itemvar may be included

the set returned will always be the empty. set to be given bindings:
PHI.

FOREACH X, Y, Z SUCH THAT <elements....

BRACKETED TRIPLE ITEM RETRIEVAL

A Bracketed Triple item can be referenced by X, Y, and Z are called Foreach itemvars. Just as
specifying the association it is connected to. one must declare the integer | before using it in

For example, the Sail For statement

mvar« [itml ® itm2 & ANY) FOR | « 1 STEP 2 UNTIL 21 DO...

PUT (ANY @ ANY B ANY) IN Bracset

IF Foo ® Garp¥ [itm| ® itm2 & ANY] THEN . . . so must one declare Foreach itemvars before
itmvar« [itm] ® [itm2 ® itm3 E itm4] E itm5) using them in Foreaches. Foreach itemvars are

no more than normal itemvars receiving special

where itmN is any item expression not assignments; they may have any type. If a
containing NEW or BINDIT. ANY means you Foreach itemvar that has been declared
don’t care what item occupies that component. Checked is assigned an item by the search that
If the designated Bracketed Triple is not found has a different type than the Checked itemvar,
then BINDIT is returned and no error message is an error message will result.

| given. .
Foreach itemvars differ from For variables in a

more radical way. It is possible to specify to

92

| SAIL LEAP STATEMENTS

the Foreach that a certain Foreach itemvar be a associative context is satisfied) then the

variable to the search only on the condition <statement> is executed, and the Foreach backs
that that the itemvar contains the special item up to the last <element> of the element list.
BINDIT et the time the Foreach is called. One When the Foreach backs up off the left end of

| precedes such itemvars with the "?" token. For the element list, the Foreach is exited.
example:

When a Foreach is exited by backing up off the
FOREACH7X, ? Y, Z SUCH THAT <element>... left, the Foreach itemvars are restored to the

last satisfier group bound to them, regardless

If X contains BINDIT but Y does not when this of what the <statement> may have done. If the

Foreach starts execution, then the search will associative context was never satisfied, then

be conducted exactly as if the statement the Foreach itemvars have the values that they
had before the Foreach. When a Foreach is

FOREACHX,Z SUCH THAT <element... exited with a GO TO, DONE, or RETURN, the

Foreach leave the itemvars with the bindings
were the Foreach specified. The itemvar X will they had at the GO TO, or whatever, including
then act just like an ordinary, non-foreach any modifications that the <statement> may
itemvar that was bound previous to the have made to them.
Foreach. All Foreach itemvars may be "?"

| itemvars if this is desired. THE LIST MEMBERSHIP <ELEMENT>

[In the following, one may also read “set” for

| There are four different types of <element “list”; Sail automatically coerces set expressions
: that may be used in foreach element lists: into list expressions.] This <element> does not

search the associative store to bind an itemvar,

| Set Membership but merely binds it with an item of a specified
Boolean Expressions list. In the Foreach,
Retrieval Triples

Matching Procedures FOREACH X| X IN L DO <statement>;

B (here we have used the Sail synonym "|" for
The order of the <element>s in the element list “SUCH THAT”), the Foreach itemvar X is bound
is very important, as we shall see. successively to each element of the set L,

| starting at the beginning of the list. If an item

Terminology: we say that a certain binding of occurs n times in L, then X will be bound to that
the the Foreach itemvars “satisfies” an item n times in the’ course of the Foreach.

<element. If that binding satisfies each Thus, the number of satisfiers to the above
<element> of the element list, then we say it Foreach is LENGTH (L).
“satisfies the associative context”. A fancy way

| of refering to the element list is “associative In the current implementation of Leap, there ig
context”. We also refer to the collection of a difficulty that should be pointed out. If inside

bindings that satisfy the associative context as the <statement>, one changes L by list
the “satisfier group” of the Foreach. | assignment, Removes, etc. in such a way as to

remove the next item of the list that the

| The execution of a Foreach proceeds as follows. Foreach itemvar would have been bound to,
i After initialization, the Foreach proceeds with a Leap may go crazy. Foreach searches look

search specified by the first <element> of the one ahead and save a pointer to the next items
element list. If a binding can be found that to be bound to the Foreach itemvars. This
satisfies the first <element> t h e Foreach allows one to remove the items of the current
proceeds forward to the new <element> of the bindings of the Foreach itemvars from lists or

1 list and tries to satisfy it, and so on. When the whatever, but makes other removals hazardous.
Foreach can not satisfy an <element>, it “backs For example,
up” to the previous element and tries to get a

different binding. If it can’t find satisfaction FOREACH Xx | x IN L DO REMOVE X FROM L;
there, it backs up again and tries again to get a
different binding. When a Foreach proceeds will work, but
forward off the end of the element list (i.@. the

93

LEAP STATEMENTS SAIL

WARNING: Foreach itemvars can not be bound

PUT V IN L BEFORE FOO, by a Boolean Expression <element>. Therefore,

FOREACHX| X IN L DO REMOVE V FROM L; all itemvars used in a Boolean Expression

<element> must be bound by previous

will probably fail. No error checking is done. <element>s in the element list. A Boolean
Expression <element> with unbound Foreach

whenever t h e Foreach itemvar of a list itemvars in it causes an error message.

<element> has been bound previously, the list
element behaves like a boolean. It does not THE RETRIEVAL TRIPLE <ELEMENT>

rebind the itemvar but only checks to see that To search the associative store with a Foreach,
it is in the list. For example, one uses the Retrieval Triple <element>. A

Retrieval Triple is satisfied if a binding of the
FOREACHX|XINL AND X IN LL DO <statements; Foreach itemvars can be found such that !:

triple is an extant association. If all of {ng

X is bound by the <element "X IN L" itemvars of the Retrieval Triple <element> were
<element> "X IN LL” is satisfied if the item bound previous to the execution of the
containedin the itemvar X is in the list LL. Retrieval Triple <element>, then the Triple does

no further binding; it is satisfied if the
If two different Foreach itemvars are used with specified triple is in the associative store. For

two different lists, i.e. example,

FOREACH X,Y | X INL AND Y IN LL FOREACHX | FATHER @ TOM & X AND
DO «<statement>; X IN PTA-SET DO «statements;

then after execution of the <statement>, the FOREACHx |x IN PTA-SET AND

Foreach will go back the last <element> that FATHER ® TOM & X DO «statement»;
searches for bindings, in this case "Y IN LL” and
gets a new binding for Y. It is only on failure The two Foreaches have the sarne effect.
of this search that the Foreach goes back to However, in the first case, X is bound by a
the- first <element>, "X IN S$" and gets a new search of the associative store for any triple
binding for X. Thus the <statement> will be that has FATHER as its attribute component, and
executed once for each possible X,Y pair. In TOM as its object component. When such a
the Foreach, triple is found, X is bound to the item that is

the value component. Then, if X is in the

FOREACHXY|XINLANDYINL..; PTA-SET, the Foreach lets the staicinent
execute. If X is not” in PTA-SET, thenthe

X and Y will be bound to all possible pairs of Foreach backs up and tries to find another
elements in L. This includes pairs with triple with FATHER as its attribute and TOM a-¢
duplicate elements, like (aa) Different its value. In the second Foreach, X is bound
orderings of the same elements will NOT be with an item from PTA-SET, then the
ignored. Thus, pairs like (a,b) and (b,a) will associative store is checked to see that the
each be a satisfier group sometime during the triple FATHER®TOM=x, where x is the binding of
Foreach. Furthermore, if the list L contains X, is in the store. If it is, the <statement> is

duplications of the same item, identical pairs executed, otherwise the Foreach backs up and
wiil occur in proportion to the number of gets a different item from PTA-SET and binds
auphications. That is, regardless of the that to X. Assuming that Tom has oniy one
duplications within the list, the number of father, the first search is much faster.

czt.sfier groups to the Foreach above is
LENGTH (L)T2. Using ANY in a Retrieval Triple indicated that

you don’t care what item occupies that position.
Tht BOOLEAN EXPRESSION <ELEMENT> For instance, in

Any Sail boolean expression may be used as
an <element> in the Associative Context of a FOREACH X | FATHER ® ANY £ X DO <statements;

Foreach if it is inclosed by parentheses. A
Boolean Expression <element> is satisfied if it is X is bound successively to all fathers.
TRUE. Note that the boolean expression must However, if the associative store included the
rave parentheses around it. following three associations,

94

—

SAIL LEAP STATEMENTS

can only be guaranteed to to work safely if the

] FATHER © KAREN ®& PAUL association erased is the one we just got a
FATHER @ LYNNE& PAUL binding from, e.§.
FATHER @ TERRY 8 PAUL

FOREACHX |A ®08 X DO ERASE A ® (EX

| then X would be bound to PAUL only once, not
thrice. BINDIT has no special meaning to the or if the association erased could not possible
search. Since BINDIT can never appear in an be used for a binding of a Foreach itemvar,
association, a Retrieval Triple containing it will such as,

; cause the search to always fail.
4 FOREACHX| Link @ X ® Node DO

Different kinds of associative searches proceed ERASE Nod.® X® ANY;
with different efficiencies. Listed below in

] order of decreasing efficiency are the various Foreaches look one ahead to the next binding
: forms of Retrieval Triple <element>s that are of its itemvars, and leaves a pointer to those

legal. A, 0, and V represent either bound associations. If you Erase any of those
Foreach itemvars or items from explicit item associations, the Foreach gets lost in the
expressions in the triple. x, y, and 2 represent boondocks. No error checking is done.

: unbound Foreach itemvars or the item ANY.
(note that x ® x & V is really x ® 0% V, and so However, as long as the associative store is not
on). The two forms of the List Membership changed during the execution of the Foreach,a

1 <element> are included for comparison. Retrieval Triple will not itself repeat a
1 particular set of bindings that it bound before.

x IN L All itemsx in the list L.

A®OEx Only the vrluo is free. THE MATCHING PROCEDURE <ELEMENT>

x®yaV Attribute and objectare free. Matching Procedures are the most general

A IN L Vorificrtion that itemA is in list L. search mechanism in Leap. They also provide
: A®OEV Verification that the triple a convenient method of writing coroutines.
1 is in the store.

-A®@xEV Only the objrct is free. A: MATCHING Procedure is very similar to a
x@08V Only the attribute is free. boolean procedure (in fact outside of Foreach
A®x®y Object and vriuo are free. associative contexts, it behaves like a boolean

] x@O0sy Attribute and value are free. procedure and may be called within
1 x@yBz Attribute, vrluo rnd objrct are free. expressions, etc.). It must be declared type
] MATCHING. It may not be declared SIMPLE. The
i Note that MAKEing an association inside a formal parameters of a Matching Procedure may
i Foreach may or may not affect subsequent include zero or more "?" itemvars (pronounced
: bindings. For example, in “question itemvars”) which may have any datum
1 type but may not be VALUE or REFERENCE.

| FOREACHX,Y| Link ® XE Y DO These parameters correspond roughly to either

MAKE Link ® X & Newlink; call by value or call by reference, depending on

the actual parameter when the procedure is

1 it is uncertain whether Y will ever receive called. When the actual parameter is an item

1 Newlink as its binding or not. expression or a bound itemvar the parameter is
[equivalent to a value parameter. However, if

1 The A, 0, and V used in a Retrieval Triple of a the actual parameter is an unbound Foreach
Foreach may be a derived set expressions as itemvar, then the parameter is treated as a
well as item expressions. For example, reference parameter, and on entry is is

! initialized to the special item BINDIT.
| FOREACH X, Y| Link @ (Father®Y)®X DO. . ..

Matching Procedures are exited by SUCCEED

| ERASE in the <statement> of a Foreach that and FAIL statements instead of RETURN
; binds any of its itemvars with Retrieval Triples statements. When used outside of an
3 may cause problems. This is similar to REMOVE associative context, SUCCEED corresponds to

| used in Foreaches with List Membership RETURN(TRUE) and FAIL corresponds to
<element>s controling some bindings. ERASE RETURN(FALSE) [this is not strictly true when

95

LEAP STATEMENTS) SAIL

the matching procedure is sprouted as a The following program illustrates techniques
process -- see page 106). Inside an associative one may use with matching procedures by
context, Succeed and Fail determine whether simulating the List Membership and Retrieval

the Foreach is to proceed to the next Triple <element>s with matching procedures.
<element> of the element list or to backup to

the previous <element> of the element list. RECURSIVE MATCHING PROCEDURE INLIST
When the Foreach backs up into a Matching (? ITEMVARX; LISTL);
Procedure, the procedure is not recalled, but BEGIN "INLIST*
resumed, at the statement following the last COMMENT THIS PROCEDURE SIMULATES THE CONSTRUCT
Succeed executed. On the other hand, when a X€L FOR ALL CASES EXCEPTTHE SIMPLE

Foreach proceeds forward into a Matching PREDICATE BINDITeL;
Procedure, the procedure is called, not IF X # BINDIT THEN
resumed. BEGIN WHILE LENGTH (LY DO IF X= LOP (L)

THEN BEGIN SUCCEED; DONE END;

When a Matching Procedure is the last FAIL

<element> of the associative context, END;
Succeeding will cause the <statement> to be WHILE LENGTH (L)DO BEGIN X«LOP (L);
executed; the Foreach then backs up into SUCCEED END
the Matching Procedure, and the Matching END “INLIST”;
Procedure is resumed at the statement

following the Succeed. When a Matching MATCHING PROCEQURETRIPLE (? ITEMVAR A, 0, V);
Procedure is the first <element> of an BEGIN“TRIPLE"

associative context, Failing will exit the Foreach. DEFINE BINDING (A)="(A=BINDIT)";
SET SETI; INTEGER INDX;

WARNING: Matching procedures are’ RECURSIVE PROCEDURE SUCC,SET (REFERENCE
implemented as processes and two calls of the ITEMVARX; SET S1);

same matching procedure may share the same WHILE LENGTH (81) DO BEGIN X«LOP(S1);
memory unless the procedure is declared SUCCEED END;

RECURSIVE. See Memory Accessible to a
Process, page 105. INDX« 0;

IFBINDING(A) THEN INDX «1;

If a Matching Procedure is explicitly SPROUTed IF BINDING (0) THEN INDX « INDX +2;
as a process then the Matching Procedure can IF BINDING (V) THEN INDX « INDX +4;
-be made running by a RESUME. In such a case CASE INDX OF
the item sent by RESUME is returned as the BEGIN [0] "A@O=V"IF AeO®V THEN SUCCEED;
value of the SUCCEED or FAIL statement which [1])"?7@08V" SUCC,SET (A, OaV);

suspended the Matching Procedure, just as [2] "A®?®V" SUCC,SET (0,A'V);
though SUCCEED or FAIL were an item [3] "7@?8V" BEGINSET1« ANY BV;

procedure. (In fact Succeed and Fail always WHILE (LENGTH (SET1)) DO
return an item value, but the value is ANY BEGINA « LOP (SET 1);

except in this special case.) Being Resumed is SUCC,SET(0, A'V) END END;
the only was in which a Matching Procedure can [4] "A®@Q=?" SUCC,SET(V, AeV);

| be reactivated after a FAIL. [5]"7@08?" BEGIN SET| « 0% ANY;
WHILE (LENGTH (SET 1) DO

When a Matching Procedure is used exterior to BEGINA « LOP (SET1%
the associative context of a Foreach, one may SUCC,SET (V, A@0) END END;
use “BIND” in the call preceding those actuals (6) "A@?87" BEGIN SET l« A' ANY;
which one wishes bound regardless of their WHILE (LENGTH(SET 1)) DO
current binding. Preceding the actual. with *?" BEGIN0 « LOP (SET 1);
will have the save effect as “BIND” if the SUCC,SET(V, A20) END END;

current value of the itemvar is BINDIT, and will [7] "7022"

have no effect otherwise (the procedure will USERERR(0,1, "ANY®ANYZANY IS IN BAD TASTE”)
not attempt to-find it a binding). END;

END “TRIPLE”;

That is all there is to Matching Procedures,

Their power lies in the using them cleverly.

96

: SAIL LEAP EXPRESSIONS

3 SECTION 14 <item_expr_list>
} i= <jtem-expression>
i LEAP EXPRESSIONS um <iterm_expr_list> , <item-expression>

3 <set-expression>
n= <set_term>

J 14.1 Syntax = <get_expression> U <set_term>

z <leap_expression> <set_term>
| i= <item-expression> n= <get_factor>

um <set-expression> uw <set_term> n <set_factor>
= <list_expression>

| <set_factor>

<item_expression> n= <set_primary>
| = <item-primary> n= <gset_factor> - <set_primary>

3 wm [<item_p rimary> ® <item_primary> &
1 <item-primary>]

| <set-primary>
w= PHI

: <item_primary> n= <set-variable>

: i= NEW i= (item,expr-list)
: = NEW(<algebraic-expression>) ::=(<set-expression>)

| ::= NEW(<set-expression>) w= <derived_set>
| = NEW(<list-expression>)
us w= NEW (<array_name>)

= ue ANY <derived_set>

a= BINDIT = <item-expression>
3 wm <item-identifier> <associative-operator>

i= <itemvar_variable> <item-expression>
i= <|ist-expression> |

3 <algebraic-expression>]
| = <itemvar procedure-call> <associative-operator>

i= <resume_construct> n= ®

4 u= <interrogate_construct> som
n= E

<itemvar_procedure_call>
::= <procedure_call> <itemvar_variable>

i= <variable>

g <list-expression>
4 um <|list-primary> <set_variable>

: i= <list-expression> & <list-expression> i= <variable>

5 <list_primary> <list-variable>
| sem NIL = <variable>
3 um <|ist-variable>

; wm {{ <ifem_expr_list> }}
§ w=(<list-expression>) <leap_relational>
- = <list_primary> [<substring_spec>] i= <item-expression> IN
& sm <gset_primary> <set_expression>

um <item-expression> IN

t <list-expression>

.

LL—

LEAP -EXPRESSIONS SAIL

i= <item-expression> RECORD[5]« ITMVR;
<item_relational_operator> ITMVR« RECORD[c0-1]};
<item-expression> RECORD([w] « RECORD[1);

iim <set-expression>
<set_relational_operator> are all legal. The special token "0" means the
<set-expression> length of the list when used in this context.

w= <list-expression> The contents of the square brackets. may be
<list_relational_operator> any algebraic expression as long as it evaluates
<list-expression> to an integer n where 1 £n £ LENGTH (list).

n= <triple>
<list-expression> [<algebraic-expression>|

returns a particular element of a list, but may
<item_relational_operator> not appear on the left of an assignment

n= = expression, because assignment must be to
=f variables.

NEW

<set_relational_operator> The- function NEW creates an item at execution
n= = time. Since space must be allocated at loading
n= pf for various tables, one must indicate

n= < approximately how may NEW items he will

n= > create (the compiler counts the declared items

n= S for you). Therefore, one should say “REQUIRE n
n= 2 NEW-ITEMS.” where n is some integer less than

4090 (the maximum number of items allowed in
Sail). n may be larger than the actual number

<list_relational_operator> of New items created, but the excess will be
n= = wasted space. If 0 <n < 50, you get tables for

L u= pg 50 New items anyway.

NEW may take an argument. In this case, the
datum of the created item is preloaded with the

value passed as argument. If this argument is

14.2 semantics algebraic, set or list, then the datum will be of

the sarne type. No type conversions are done
ITEM EXPRESSIONS when passing the algebraic argument. NEW will

ltemvars and itemvar arrays may be used in also accept an array name as argument. In this
item expressions just as algebraic variables and case, the created item will be of the type array.
algebraic arrays are used in algebraic In fact, the array cited as argument will be
expressions. Itemvars and itemvar arrays are copied into the newly created array. The new
initialized to the special Sail item ANY. array will have the same bounds and number of

| dimensions as the array cited as argument.

Items may be retrieved from sets and lists with This array will not disappear even if the block
the Sail functions COP and LOP. COP (<set that the original array was declared in is exited.

expression or list expressions) yields the item It will only be deallocated if the item is deleted.
which is the first element of the set or list that

the set or list expression evaluated to. LOP NEW in an item expression makes that item
also yields the first item of the set or list, but expression a “constructive item expression”.
removes that item from the set or list. Because Constructive item expressions are illegal in

LOP changes the contents of the set or list that some places, namely anywhere that attempts to
is its argument, it can only accept set or list gets an item from an existing structure (i.e.,
variables, not expressions. See page 48. ERASE, REMOVE, and Associative searches). It is

usually clear whether or not a constructive item

List element designators may be used as expression is illegal.
itemvars in expressions. For example, if
RECORD is a list, and ITMVR an itemvar,

98

: SAIL LEAP EXPRESSIONS

ANY SET AND LIST EXPRESSIONS

| Some associative searches may need only Three rather standard Operations are
| partial specification. The ANY item is used to implemented for use with sets. These are union

specify exactly which parts of the specification (vu), intersection {n), and subtraction (=). These
are “don’t cares™s. Examples: operators have the standard mathematical

interpretations. The only possible confusion
FOREACH X SUCH THAT Father® X 8ANY DO. pertains to subtractions: if we perform the set

IF Father® BIND X ® ANY THEN. . operation

ANY in an item expression makes that item tl «0 on
expression a “retrieval item expression”. This
is the opposite of a constructive item and if there is an instance of an item x in set2

| expression, and is illegal anywhere the but not in setl, the subtraction proceeds and
| statement is creating new structure, namely, a no error message is given.
; MAKE statement. Thus, ANY is legal

everywhere items are, except a MAKE If one considers a list to be a string of items,
statement. then concatenation and taking sublists suggest

2 themselves as likely list operations. The syntax
3 BINDIT and semantics for sublisting and list

Like ANY, BINDIT specifies no constraints on the concatenation are identical with those of
associative search. However, BINDIT has a strings, with the natural exception that the

| special meaning to some searches, namely the results are lists, and not strings. There is also
: Binding Boolean and Matching Procedures a difference in that if the indices to the

| (depending on how they're written). An substringer do not make sense, an error
: itemvar containing BINDIT will be bound by the message is generated rather than setting of the

search to an item of the association that the SKIP_ variable. Examples:
search found. For example:

LISTVAR «LISTVAR[2 TO ®-1};

X « BINDIT; LISTVAR «LISTVAR[9 FOR 2%N};
IF Father® 2 X @ Bob LISTVAR « LISTVAR[1 FOR 2} & LISTVAR([3 TO «J;

. THEN PUT X IN Bobfatherset;
One may generate sets with

Like ANY, BINDIT is illegal in MAKE statements.
| . In certain associative searches, namely the {item 1, item2, item3)
: ERASE statement, the Bracketed Triple Item
] retrieval expression, and the Retrieval Triple and may generate lists with

<element> of a Foreach, inclusion of BINDIT will
cause the search to always fail, because BINDIT {(item 1, item 1, item2, item3}}.

| can appear in no association.
Sets are initialized to the empty set, PHI. Lists

TYPES AGAIN are initialized to the null list, NIL. Initialization

The compiler can determine the type of items occurs at the beginning of the execution of the
when the item expression is a typed itemvar, a program. Sets and list are reinitialized on
typed itemvar procedure, a declared item with entering the blocks of their declaration only
a type, a typed itemvar array, or a NEW with when such blocks are in recursive procedures.
an argument. When the compiler can determine
the type of the item expression, then and only DERIVED SETS
then is it legal to use the Datum construct on Derived sets are really sets of answers to
the item expression or to assign the item questions which search the associative memory.
expression to a Checked itemvar. For example, The conventions are:
the following are ILLEGAL:

_ a®b -- the set of all x such that a® b = x

: DATUM (COP (<set>)) al b —-therot of allx ® uch thatx ®a&Db
i DATUM (RECORD{®)); COMMENT RECORDis 8 list; a'b -- the sot of all x such that a @® x E b

CHEC « NEW; COMMENT CHEC is 8 Checked itemvar;

99

LEAP EXPRESSIONS) SAIL

BOOLEANS not follow Algol scope rules. See page 124 to
Several boolean primaries are implemented for find out how to use the above four functions.

comparing sets, lists, and items. In the following
discussion, “ix” means item expression, "se If you would like your declared items to have
means set expressions, and "le" means list Pnames that are the same as the identifier used
expression. These are: in their declaration, say “REQUIRE PNAMES” or

“REQUIRE n PNAMES” before their declaration at

1) Set and List Membership. The the beginning of the program. The n is an
boolean “ix IN se” evaluates the set estimate of the number of dynamically created

or list expression, and returns TRUE items with pnames you will use -- this causes
if the item value specified by the tables for n pnames to be allocated at compile
item expression is a member of the time rather than runtime, thus making your
set or list. program more efficient. }

2) Association Existence. The binding PROPS
| boolean “ix ® ix ® ix”, where the ix Any item may ‘have a PROPS. This is an extra

are item expressions or itemvars 12 bits of storage (frequently used for bits).
preceded by ? or BIND, returns PROPS (X) where X is an item expression is
TRUE if a binding of the BIND exactly an integer variable in its syntax. See
itemvars (and ? itemvars that page 89 for further information on props.
contained BINDIT) can be found such
that the association exists in the

associative store. See page 91 for
more information on binding
booleans.

3) Relations.

ix » ix obvious interpretation
-ix fix obvious intorprotrtion
sel < se2 true if selis® proper

subset of se2

® 1Sse2 true if sel is identical to

$02 or is a proper subset of se2
sel . s82 obvious intwprotrtion
sel ¥ se2 obvious interpretation

sel > 882 quivrknt to se2< sel
sel 2302 @ quivBlont to se2S eel
lel = le2 obvious intorprotrtion
lel f/f l62 .obviour intorpntrtion

PNAMES

For those desire them, each item may have a

string, called its PNAME, linked with it. This is
completely independent of the Datum construct.

New items and Bracketed Triple items are
created with NULL strings as their Pnames. One
may deletea n item's Pname with the
DEL,PNAME function which takes an item

expression as its argument. One may give a
Pnameless item a Pname with the NEW_PNAME
procedure, which takes an item expression and
a string as its arguments. CVSJ will give you

the Pname ‘of an item, and CVIS with give you
the item with the specified Pname. No two
items may have the same Pname. Pnames do

100

SAIL- BACKTRACKING

SECTION 15 <vari>

i= <variable>

BACKTRACKING n= <array-identifier>

<context-variable>

i= <variable>

15.1 Introduction

Backup or backtracking is the ability to “back <array-identifier>
up" execution to a previous point. Salil u=<identif ier>
facilitates backtracking by allowing one to
REMEMBER, FORGET, or RESTORE variables in

the data type CONTEXT. <context-element>
u= <context-variable> : <variable>

16.2 Syntax
15.3 Semantics

<context-declaration> THE CONTEXT DATA TYPE

::= CONTEXT <id_list> | A context is essentially a storage place of
::= CONTEXT ARRAY <array_list> undefined capacity. When we REMEMBER a
::m CONTEXT ITEM <id_list> variable in a context, we remember the name of
::= CONTEXT ITEMVAR <id_list> the variable along with its current value (if an

array, values). If we remember a value which
we have already remembered in the named

<backtracking-statement> context, we destroy the old value we had
- u= <rem_keyword> <variable_list> remembered and replace it with the current

<rem_preposition> <context_variable> value of the variable. Values can be given back
to variables with the RESTORE statement.

<rem_keyword> Context variables are just like any other
+= REMEMBER variables with respect to scope. Also, at
$= FORGET execution time, context variables are destroyed
stm RESTORE when the block in which they were declared is

exited in order to reclaim their space. Context
arrays, items, and itemvars are legal (items and

<rem_preposition> itemvars are part of Leap). NEW(<context
wm IN variables) is legal (NEW is also part of Leap).
= FROM

RESTRICTIONS:

<variable_list> I. Context procedures do not exist. Use
um <vari_list> context itemvar procedures instead.
a= (<vari_list>)

wm ALL 2. Context variables may only be passed
w= <context-variable> by reference to procedures (i.e.,

contexts are not copied).

<vari_list> 3. Contexts may not be declared “GLOBAL”
3m <vari> (shared between jobs =SUAI only).
um <vari_list> , <vari>

4. +, %, [, and all other arithmetic
operators have no meaning when

101

BACKTRACKING SAIL

applied to Context variables. Therefore, WARNING!!! Restoring variables that have been
context variable ' expressions always destroyed by block exits will give you garbage.
consist only of a context variable. For example, the following will blow up:

The empty context is NULL-CONTEXT. Context BEGIN “BLOWS UP”
variables are initialized to NULL-CONTEXT a t CONTEXT Ji;

program entry. INTEGER J;
BEGIN INTEGER ARRAY L{ 1:J};

REMEMBER REMEMBER J, L INJ;

To save the current values of variables, list END;

them, wit h or without surrounding parentheses, RESTORE ALL FROM Jl;
in the remember statement. All of an array will END “BLOWS UP" .
be remembered if subscripts of an array are

not used, otherwise, only the value indicated FORGET
will be remembered. If a variable has already The forget statement just deletes the variable
been remembered in context, its value is from the context without touching the current

replaced, by the current value, If one wants to variable’s value. Variables remembered in a
update all the variables so far remembered in context should be forgotten before the block in
this context, one may say which the variables were declared is exited.

FORGET ALL FROM XI and FORGET CNTXTI

REMEMBER ALL IN «context. FROM CNTXT2 work just as the similar Restore
statements work, only the variables are

If you have several contexts active, Forgotten instead of Restored.

REMEMBER CNTXT 1 IN CNTXT2 IN-CONTEXT

The runtime boolean IN-CONTEXT returns true

will note the variables Remembered in CNTXTI, if the specified variable is in the specified
and automatically Remember their CURRENT context. For details, see page 51.
values in CNTXT2.

- CONTEXT ELEMENTS

RESTORE Context elements provide a convenient method
To restore the values of variables that were of accessing a variable that is being
saved in a context, list them (with or without remembered in a context. Examples of context

‘surrounding parentheses) in a restore elements:
statement. Restoring an array without using
subscripts causes as much of the array that CNTXT,VARI : SOME,VARI
was remembered to be restored magically to OATUM (CNTXT_ITEM) : SOME, VARI
the right locations in the array. You can CNTXT_AR[2,3]: ARRY[A4]
remember a whole array, then restore all or DATUM (CNTXT,VARI :ITMVR)

selected parts (e.g. RESTORE A[l, 23 FROM IX;). CNTXT,VARI : DATUM(ITMVR)
If you remembered only A[l, 23, then restoring
A will only update A[l,2} RESTORE ALL IN IX A context element is syntactically and
will of course restore all the variables from [IX semantically equivalent to a variable of the
RESTORE CNTXTI FROM CNTXT2 will act like a same type as the variable following the colon.
list of the variables in CNTXTlI was presented For the complete syntax of variables, see page
to the Restore instead of the identifier CNTXTI. 128. Assignments to context elements change

the Remembered value (i.e., X4-5; REMEMBER X

Astute Leap users will have noted that the IN C; C:Xe6; RESTORE X FROM C; will leave X
syntax for variables includes Datum(typed with the value 6).
itemvar) and similar things. If one executes

REMEMBER DATUM (typed-item-expression-|) As with the Restore statement, one may not use
IN CNTXT, then RESTORE DATUM Context Elements of variables destroyed by
(<item_expression_2>) FROM CNTXT will give an block exits.
error message unless the

<typed_item_expression_2> returns the same RESTRICTIONS: (1) One may not Remember
item as <typed_item_expression_1>. Context Elements. (2) Passing Context Elements

102

I

SAIL BACKTRACKING

by reference to procedures that change
| contexts is dangerous. Namely, if the

procedure Forgets the element that was passed
to it by reference, then the user is left with a

dangling pointer. A more subtle variation of
this disaster occurs when the Context element

passed is an array element. If the procedure

Remember6 the array that that array element
was a part of, the formal that had the array

| element Context Element passedto it is left
with. a dangling pointer.

103

PROCESSES : SAIL

SECTION 16 that is running. Since Sail is currently
i implemented on a single processor machine, one

PROCESSES cannot really execute two procedures
simultaneously. Sail uses a scheduler to swap
processes from ready to running status. A
running process is actually executing, while a
ready process is one which may be picked by

16.1 Introduction the scheduler to become the running process.
: The user may retrieve the status of a process

A PROCESS is a procedure call that may be run with the execution time routine PSTATUS, page
independently of the main program. Several 109.
processes may “run” concurrently. When

] dealing with a multi-process system, it is not SPROUTINGA PROCESS
quite correct to speak of “the main program”. One creates a process with the SPROUT

The main program i$ actually a process itself, statement:
the main process.

SPROUT (<item>, <procedure call», *options*)

This section will deal with the creation, control, SPROUT (*item*, <procedure cally)

and destruction of processes, as well as define

the memory accessible to a process. The <item> is a construction item expression (i.e. do
| following section will describe communication not use ANY or BINDIT). Such an item will be

bet ween processes. called a process item. The item may be of any
| type; however, its current datum will be writen

over by the SPROUT statement, and its type will
be changed to “process item” (see TYPEIT, page

| 16.2 Syntax 123). RESTRICTION: A user must never modify
the datum of a process item.

<process_statement> <procedure call> is any procedure call on a
u= <sprout-statement> regular or recursive procedure, but not a

simple procedure. This procedure will be called

the process procedure for the new process.

<sprout-statement>

| 22» SPROUT (<item_expression> <options> is an integer that may be used to
<procedure_call> specify special options to the SPROUTer. If

i <algebraic_expression>) <options> is left out, 0 will be used. The
: = SPROUT (<item_expression> different fields of the word are as follows:

<procedure-call>)
i = SPROUT(<item-expression> |, BITS NAME DESCRIPTION

| <apply-construct>)
| 14-17 QUANTUM (X)Q« IF X-O THEN 4 ELSE

2TX; The process will be
| <sprout-default-declaration> given a quantum of Q clock

| ::= SPROUT-DEFAULTS <integer_constant> ticks, indicating that if the
user is using CLKMOD to
handle clock interrupts, the

process should be run for at

16.3 Semant ics most Q clock ticks, before
| calling the scheduler. (see

STATUS OF A PROCESS about CLKMOD, page 120 for
: A process can be in one of four states: details on making processes

terminated, suspended, ready, or running. A “time share”).
terminated process can never be-run again. A

suspended process can be run again, but it 18-21 STRINGSTACK (X)S « IF X=0 THEN 16
must be explicitly told to run by 6ome process ELSE X*32; The process will

104

a

SAIL . PROCESSES

be given S words of string corresponding field of the specified
stack. <integer_constant> of the SPROUT-DEFAULTS

for the procedure being sprouted. If the field

22-27 PSTACK (X)P«IlF X=0 THEN 32 ELSE is non-zero then that value will be used;

X*32; The process will be otherwise the current “system” default will be
given P words of arithmetic used.
stack.

NOTE: SPROUT-DEFAULTS only applies to
28-31 PRIORITY (X) Pe IF X-O THEN 7 ELSE “allocations”, i.e., the process status control bit6

| X; The process will be given (e.g. SUSPME)are not affected. Example:
a priority of P. 0 is the

highest priority, and RECURSIVE PROCEDURE FOC;
reserved for the Sail system. BEGIN
15 is the lowest priority. SPROUT-DEFAULTS STRINGSTACK (10);
Priorities determine which INTEGER XXX;

ready process the scheduler
will next pick to make
running. END;

32 SUSPHIM If set, suspend the newly SPROUT(P1, FOO, STRINGSTACK(3));
sprouted process. SPROUT (P2,F00);

COMMENT P1 will have a string stack of 3%¥32 words.

33 Not used at present. P2 will havea string stack of 10¥32 words;

34 SUSPME If set, suspend the process
in which this sprout
statement occurs. MEMORY ACCESSIBLE TO A PROCESS

| A process has access to the same global

35 RUNME If set, continue to run the variables as would a “normal” call of the

| process in which this sprout process procedure at the point of the SPROUT
| statement occurs. statement. For example, suppose you Sprouted

| a process in the first instantiation of a
The names are defined in the file recursive procedure and immediately suspended

| . €SUAISSYS:PROCES.DEF, which one may require it. Then in another instantiation of the
as a source file. Options words may be procedure, you resumed the process. Since

; assembled by simple addition, e.g. RUNME+ each recursive instantiation of a procedure
PRIORITY (3) + PSTACK (2). creates and initializes new instances of its local

| variables, the process uses the instances of the
] DEFAULT STATUS: If none of bits 32, 34, or 35 recursive procedure’s locals that were current

are set, then the process in which the sprout at the time of the SPROUT, namely those of the
statement occurs will revert to ready status, first instantiation.
and the newly sprouted process will become

the running process. Sail will give you an error message whenever
the global variables of a process are

: The default values of QUANTUM, STRINGSTACK, deallocated but the process still exists. Usually,

4 PSTACK, and PRIORITY are stored in the system this means that when the block in which the
variables DEFQNT, DEFSSS, DEFPSS, and DEFPRI process procedure was declared is exited, the

respectively. These values may be changed. corresponding process must be terminated (one
: The variables are declared EXTERNAL INTEGERS can insure this by using a small Cleanup

in © SUAIDSY S:PROCES.DEF. procedure that will TERMINATE the fated

: process or JOIN it to the current one -- see
SPROUT-DEFAULTS about Cleanup, page 10, Terminate, page 107,

| V1 one of the "a'location” fields of the options and Join, page 109). When the process
: word passed to the SPROUT routine -- i.e., procedure has been declared inside a recursive

QUANTUM, STRINGSTACK, PSTACK, or PRIORITY procedure, things become a bit more complex.
is zero, then SPROUT will look at the As mentioned above, the process takes its

8

] 105 .

PROCESSES SAIL

| globals from the context of the Sprout "Xe5"in process A will store 5 in the same
statement. Therefore, it is only in the location that "Xe10" in process B would store
instantiation of the recursive procedure that 10. If such sharing of memory is undesirable,
executed the Sprout that trouble can occur. declare the process procedure RECURSIVE, and

| For example, then new instances of the local variables of the
| procedure will be created with each Sprout

RECURSIVE PROCEDURE TENLEVEL (INTEGER I); involving that procedure. Then "X" in process
BECIN “TROUBLE” A will refer to a different memory location than

| PROCEDURE FOO, "X" in process B.
, COMMENT does nothing;

SPROUT APPLY

iFiab THEN SPROUT (NEW, FOO, SUSPHIM), The <procedure call> in a SPROUT statement
may be an APPLY construct. In this case

COMMENT sprouts FOO on the 5th SPROUT will do the “right” thing about setting
instantiation of TENLEVEL, then up the static link for the APPLY. That is, "up-

| immediately suspends it; level” references by the process will be made
| to the same variable instances that would be

doe 0G Tri TENLEVEL (le 1); used if the APPLY did not occur in a SPROUT

RETURN, statement. (See page 115.)

COMMENT assuming TENLEVEL is called However, there is a glitch. The sprout
with I=0, it will do 10 instrntirtionr, mechanism is not yet smart enough to find out
then OMe ack up; the block of the declaration of the procedure

used to define the procedure item. It would be
END "TROUBLE"; nice if it did, since then it could warn the user

when that block was exited and yet the process

TENLEVEL will nest 10 deep, then start was still alive, and thus potentially able to refer

| returning. This means “TROUBLE” will be exited to deallocated arrays, etc. What the sprout
five times will no ill effects. However, when does instead is assume the procedure was

Sail attempts to exit “TROUBLE” a sixth time, it declared in the outer block. This may be fixed
will be exiting a block in which a process was eventually, but in the meantime some extra care
sprouted and declared. It will generate the should be taken when using apply in sprouts to

error message, “Unterminated process avoid exiting a block with dependents.
dependent on block exited”. Similarly, be warned that the

| “DEPENDENTS (<blockid>)" construct may not
7 he construct DEPENDENTS (<block_name>), give the “right” result for sprout applies.
where <block-name> is a string constant,

produces a set of process items. The process SPROUTING MATCHING PROCEDURES
items are those of all the processes which When a matching procedure is the object of a

| depend on the current instance of the named Sprout statement, the FAIL and SUCCEED
block -- i.e. all processes whose process statements are interpreted differently than
procedures obtain their global variables from they would be were the matching procedure
that block (viathe position of the process called in a Foreach or as a regular procedure.
procedure’s declaration, or occasionaly via the FAIL is equivalent to

| location of the Sprout in a nest of recursive RESUME (CALLER (MYPROC), CVI (0)). SUCCEED
procedure instantiations). This construct may is equivalent to RESUME (CALLER (MYPROC),

| be used together with a CLEANUP procedure CVI (-1)).
(see page 10) to avoid having a block exit
before- all procedures dependent on it have SCHEDULING

been terminated. One may change the status of a process
between terminated, suspended and

If one Sprouts the same non-recursive ready/running with the TERMINATE, SUSPEND,
procedure more than once (with different RESUME, and JOIN constructs discussed above,
process tems, of course), the local variables of and the CAUSE and INTERROGATE constructs

1 the procedure are not copied. In other words, discussed in the next chapter. This section will

106

i SAIL - PROCESSES

1 describe how the the status of processes may CLKMOD) b y including the declaration
: change between ready and running. “EXTERNAL INTEGER INTRPT”, then assigning

INTRPT a non-zero value any time he desires

i Whenever the currently running process the next polling point to cause rescheduling.

| performs some action that causes its status to NOPOLL is another external integer that is
5 change (to ready, terminated, or suspended) provided to give the user a means of
! without specifying which process is to be run dynamically inhibiting polling points. For

: next, the Sail process scheduler will be invoked. example, suppose one is time sharing using
It chooses a process from the pool of ready CLKMOD. in one of the processes, a point is

| processes. The process it chooses will be made reached where it becomes important that the

i the next running process. The scheduling processes not be swapped out until a certain
] algorithm is essentially round robin within tight loop is finished up. By assigning NOPOLL
: priority class. In other words, the scheduler (which was declared an EXTERNAL INTEGER) a

: finds the highest priority class that has at least non-zero value, the polling points in the loop
: one ready process in it. Each class has a list of are efficiently ignored. Zeroing NOPOLL

| processes associated with it, and the scheduler restores normal time sharing.
choses the first ready process on the list. This

$ process’ then becomes the running process and A single polling point can be inserted with the
5 is put on the end of the list. if no processes statement POLL. The construct
; have ready status, the scheduler looks to see if

the program is enabled for any interrupts (see REQUIREn POLLING-INTERVAL

: interrupts, page 117). if the program is
: enabled for some kind of interrupt that might where n is a positive integer, causes polling

1 still happen (not arithmetic overflow, for points to be inserted at safe points in the code,
5 instance), then the scheduler puts the program namely: at the start of every statement
i in interrupt wait. After the interrupt is provided that at least n instructions have been

J dismissed, the scheduler tries again to find a: emitted since the last polling point, after every
| ready process. if no interrupts that may’still label, and at the end of every loop. If n £0
] happen are enabled, and there are no ready then no further polling points will be put out

: processes, the error message “No one to run” is until another Require n (n>0) Polling_Interval is
| issued. seen.

i The rescheduling operation may be explicitly
f invoked by calling the runtime routine URSCHD,

which has no parameters. 16.4 Process Runtimes

] POLLING POINTS
Polling points are located at “clean” or “safe”

points in the program; points where a process ee TERMINATE—
may change from running to ready and back

with no bad effects. Polling points cause TERMINATE (PROCJTM)
conditional rescheduling. A polling point is an

| efficient version of the statement: The process for which PROC_ITM is the process
item is terminated. it is legal to terminate a

] IF INTRPT A-NOPOLL THEN terminated process. A terminated process is
| : BEGIN INTRPT«0; URSCHD END; truly dead. The item may be used over for

3 anything you want, but after you have used it
INTRPT is an external integer that is used to for something else, you may not do a terminate
request rescheduling at the next polling point. on it. Termination of a process causes ail
it is commonly set by the deferred interrupt blocks of the process to be exited.
routine “DFRINT (for ail about deferred

9 interrupts, see page 121) and by the clock

; interrupt routine CLKMOD (for how to ‘make
3 processes time share, see page 120).. The user

may use INTRPT for his own purposes

(carefully, soas not to interfere with DFRINT or

107

PROCESSES SAIL

-_— SUSPEND —————— by B (so than the runtime routine CALLER can
work). Finally, A's RESUME will return the

ITM« SUSPEND (PROCJTM) value HAMMER, which will be assigned to
STARTINFO. If A had been suspended by

The process for which PROCJTM is the process SUSPEND or JOIN then the SENDJTM of B’s
item is suspended. if the process being RESUME is ignored.
suspended is not the currently running process
then the item returned is ANY. in cases such as A process that has been suspended in any

manner will run from the point of suspension
X « SUSPEND (MYPROC); onward when it is resumed.

where the process suspends itself, it might OPTIONS is an integer used to change the effect
happen that this process is made running by a of the RESUME on the current process
RESUME from another process. If so, then X (MYPROC) and the newly resumed process.
receives the SENDJTM that was an argument
to the RESUME. BITS NAME DESCRIPTION

One may suspend a suspended process. 33-32 READYME if 33-32 is 1, then the
Suspending a terminated process will cause an current process will not be
er for message. if the process being suspended suspended, but be made
is the currently running process (i.e. the ready.
process suspends itself), then the scheduler will

be called to find another process to run. A KILLME If 33-32 is 2, then the
process may also be suspended as the result of current process will be
RESUME or JOIN. terminated.

IRUN If 33-32 is 3, then the
current process will not be

———— RESUME=— suspended, but be made

running. The newly
RET,ITM « RESUME (PROC_ITM, resumed process will be

SENDJTM, OPTIONS(O)) made ready.

‘RESUME provides a means for one process to 34 This should always be zero.
restore a suspended process to ready/running

status while at the same time communicating an 35 NOTNOW If set, this bit makes the
item to the awakened process. It may also newly resumed process
specify what its own status should be. It may ready instead of running. If
be used anywhere that an itemvar procedure is 33-32 are not 3, then this
syntactically correct. When a process which bit causes a rescheduling.
has suspended itself by means of a RESUME is
subsequently awakened by another resume, the DEFAULT: If none of bits 35 to 32 are set, then

SENDJTM of the awakening RESUME is used as the current process will be suspended and the
the RET,ITM of the RESUME that caused the newly resumed process will be made running.
suspension. For example, suppose that process At SUAl include a REQUIRE "SYS:PROCES.DEF"
A hassuspended itself: SOURCE-FILE in your program to get the above

bit names defined. Options may then be
STARTINFO « RESUME (2, NEED-TOOL); specified by simple addition, e.g. KILLME +

NOTNOW.

if later a process B executes the statement

INFOFLAG c-RESUME (A, HAMMER);
—CALLER=—

then B will suspend itself and A will become the
running process. A’s process information will PROCITEM« CALLER (PROCITEM2)
be updated to remember that it was awakened

108

SAIL - PROCESSES

CALLER returns the process item of the process — PRISE] ———————
that most recently resumed the process
referred to PROCITEM2. PROCITEM2 must be PRISET (PROCITM, PRIORITY)

the process item of an unterminated process,

otherwise an error message will be issued. If PRISET sets the priority of the process
PROCITEM2’s process has never been called, specified by PROCITM (an item expression that
then the process item of the process’ that must evaluate to the process item of a non-
sprouted PROCITEMZ2 is returned. : terminated process) to the priority specified by

the integer expression PRIORITY. Meaningful
priorities are the integer between 1, the
highest priority, to 15, the lowest priority.

ee DDFINT eee Whenever a rescheduling is called for, the

scheduler finds the highest priority class that
DDFINT has at least one ready process in it, and makes

| the first process on that list the running

A polling point is SKIPE INTRPT; PUSHJ P, process. See about the scheduler, page 107.
DDFINT.. DDFINT suspends the current process
(but leaves it ready to run), then calls the
scheduler; DDFINT is like SUSPEND (MYPROC,
IRUN+NOTNOW). -_ PSTATUS —m——————

STATUS « PSTATUS (PROCITM)

—JO— PSTATUS returns an integer indicating the
status of’ the process specified by the item

JOIN (SET-OF-PROCESS-ITEMS) expression PROCITM

The current process (the one with the JOIN -1 running
statement in it) is suspended until ail of the 0 ® umpondad
processes in the set are terminated. WARNING: 1 ready
Be very careful; you can get into infinite wait 2 terminated
situations.

1. Do not join to the current process;
since the current process is now _— UJRSCHD —————
suspended, it will never terminate of
its own accord. URSCHD

2. Do not suspend any of the joined URSCHD is essentially the Sail Scheduler. When
processes unless you are assured one calls URSCHD, the scheduler finds the
they will be resumed. highest priority class that has at least one

Ready process in it. Each class has a list of

3. Do not do an interrogate-wait in any processes associated with it, and the scheduler
of the processes unless you are choses the first ready process on the list. This
sure that the event it is waiting for process then becomes the running process and
will be caused (page 110). is put on the end of the list. If no processes

have ready status, the scheduler looks to see if

the program is enabled for any interrupts. If
the program is enabled for some kind of

ee MYPROC m—— interrupt that may still happen (not arithmetic
overflow, for instance), then the scheduler puts

PROCITEM« MYPROC the program into interrupt wait. After the
interrupt is dismissed, the scheduler tries again

MYPROC returns the process- item of the to find a ready process. if no interrupts that
process that it is executed in. If it is executed may still happen are enabled, and there are no
not inside a process, then MAINPI (the item for ready processes, the error message “No one to
the main process) is returned. run” is issued.

EVENTS SAIL

SECTION 17 1. a “notice queue” of items which
have been “caused” for this event

EVENTS type.

2. a “wait queue” of processes which
are waiting for an. event of this
type.

17.1 Syntax
3. procedures for manipulating the

queues.

<event_statement>
:= <cause_statement> The principle actions associated with the event

n= <interrupt_statement> : system are the CAUSE statement and the
INTERROGATE construct. Ordinarily these
statements cause standard Sail runtime routines

<cause_statement> to be invoked. However, the user may
22m CAUSE(<item-expression> substitute his own procedures for any event

<item-expression> , type (see User Defined Cause and Interrogate
<algebraic-expression>) procedures, page 112). The Cause and

= CAUSE(<item-expressions |, interrogate statements are here described in
<item-expression>) terms of the Sail system supplied procedures.

<interrogate-construct>

ii INTERROGATE (<item-expression> , 17.3 Sail-defined Cause and Interrogate
<algebraic-expression>)

i= [INTERROGATE (<item-expression>) THE CAUSE STATEMENT
= INTERROGATE (<list-expression> ,

<algebraic-expression>) CAUSE (<event type>, <svent notice>, *options*)
= INTERROGATE (<list_expression>) CAUSE (<svent typs>, <event notices)

<event type> is an item expression, which must
yield an event type item. <event notice> is an

17.2 Introduction item expression, and can yield any legal item.

<options> is an integer expression. If <options>

The Sail event mechanism is really a general is left out, 0 is used.
message processing system which provides a

means by which an occurrence in one process The Cause statement causes the wait queue of
can influence the flow of control in other <event type> to be examined. If it is non-

processes. The mechanism allows the user to empty, then the system will give the <event
classify the messages, or “event notices”, into notice> to the first process waiting on the
distinct types (“event types”) and specify how queue (see about the WAIT bit in Interrogate,
each type is to be handled. below). Otherwise, <event notice> will be

placed at the end of the notice queue for

Any leap item may be used as an event notice. <event type>.
An event type is an item which has been given

a special runtime data type and datum by The effect of Cause may be modified by the
means of the runtime routine: appropriate bits being set in the options word:

MKEVTT (et)

where et is any item expression (except ANY or

BINDIT). With each such event type Sail
associates:

110

SAIL EVENTS

BITS NAME DESCRIPTION DONTSAVE bit in the Cause

statement will override the

35 DONTSAVE Never put the <event item> RETAIN bit in the
on the notice queue. If Interrogate if both are on.
there is no process on the

wait queue, this makes the 34 WAIT If the notice queue is
cause statement & no-op. empty, then suspend the

process executing the

34 TELLALL Set the status of all interrogate and put its
processes waiting for this process item on the wait
event to READY. queue.

33 RESCHEDULE Reschedule as soon as 33 RESCHEDULE Reschedule as soon as

possible (i.e., immediately possible (i.e., immediately
after the cause procedure after execution of the
has completed executed). interrogate procedure).

DEFAULT: If bits 35 to 33 are 0, then the either 32 SAY-WHICH Creates the association

a single process is awakened from the wait EVENT-TYPE @ <event
queue, or the event is placed on the notice notice>® <eventtypes>
queue. The process doing the Cause continues where <event type> is the
to run. At SUAI, REQUIRE "SYS:PROCES.DEF" type of the event returned.
SOURCE-FILE to get the above bit names Useful with the set form of
defined. Options can then be constructed with the Interrogate construct,
simple addition, e.g. DONTSAVE + TELLALL. below.

THE INTERROGATE CONSTRUCT = SIMPLE FORM DEFAULT: If bits 35 to 32 are 0, then the

interrogate removes an event from the event
~<itemvar> « INTERROGATE (<eventtype>, <options>) queue, and returns it. If the event queue is
<itemvar>« INTERROGATE (<event type>) empty, BINDIT is returned and no waiting is

done; the process continues to run. At SUAI,

<event types is an item expression, which must use a REQUIRE "SYS:PROCES.DEF" SOURCE-FILE
. yield an event type item. <options> is an to get the names defined; use simple addition to
integer expression. If <options> is left out, 0 is form options, e.g. RETAIN + WAIT.
used.

THE INTERROGATE CONSTRUCT = SET FORM

The notice queue of <event type> is examined.
If it is non-empty, then the first element is <itemvar>« INTERROGATE (<eventtypo set>)
removed 8nd returned as the value of the <itemvar>« INTERROGATE (<event type set>, <options>)

Interrogate. Otherwise, the special item BINDIT
is returned. <event type set> is a set of event type items.

<options> is an integer expression. If it is left

<options> modifies the effect of the interrogate out, 0 will be used.
statement as follows:

The set form of interrogate allows the user to

BITS NAME DESCRIPTION examine a whole set of possible event types.
This form of interrogate will first look at the

35 - RETAIN Leave the event notice on notice queues, in turn, of each event type in

the notice queue, but still <event type set>. If one of these notice queues
return the notice as the is non-empty, then the first notice in that

value of the interrogate. If queue will be remved and that notice will be
the process goes into a returned as the value of the Interrogate. If all
wait state as-a result of the notice queues are empty, and WAITing is
this interrogate, and is not specified in the options word, then BINDIT
subsequently awakened by will be returned. When the WAIT bit is set, the

] Cause, then the process doing the interrogate gets put at the

111

EVENTS SAIL

end of the wait queues of each event type in names (eg. WAITQ (et)= "MEMORY[
<event type set> Then, when a notice is finally DATUM (et)+l, LIST J") are included in the file
available, the process is removed from all of cSUAI>SYS:PROCES.DEF.
the wait queues before returning the notice.
Note that the option SAY-WHICH provides a USER CAUSE PROCEDURES
means for determining which event type A procedure to be used as a Cause procedure
produced the returned notice. must have three formal value parameters

corresponding to the event type, event notice,

and options of the Cause. Such a procedure is :
associated with an event type by means of the

17.4 User-defined Cause and Interrogate runtime SETCP:

By executing the appropriate runtime routine, SETCP (<event type», <procedure specifiers);
the user can specify that some non-standard
action is to be associated with CAUSE or where <event type> must yield an event type

INTERROGATE for a particular event type. Such item and <procedure specifier> is either a
user specified cause or interrogate procedures procedure name or DATUM (<procedure items).
may then manipulate the event data structure For example:
directly or by themselves invoking the

primitives used by the Sail Cause and PROCEDURE CX (ITEMVAR ET, EN; INTEGER OPT);
Interrogate constructs. User defined Cause and BEGIN
Interrogate are not for novice programmers PRINT (“Causing", EN,
(this is an understatement). " as an event of type ", ET);

CAUSE! (ET, EN, OPT);
EVENT TYPE DATA STRUCTURE END;

The datum of an event type item points to a six »

word block of memory, This block contains the
following information: SETCP (FOO, CX);

WORD NAME TYPE DESCRIPTION Now,

CAUSE (FOO, BAZ);

0 NOTCQ LIST The list of all notices
pending for this event would cause CX (FOO, BAZ) to be called. This
type. procedure would print out “Causing BAZ as an

event of type FOO” and then call CAUSEL. The
WAITQ LIST The list of all processes runtime CAUSE1 (ITEMVAR etype, enot; INTEGER

currently waiting for a opt) is the Sail runtime routine that does all the
notice of this type. actual work of causing a particular notice, enot,

as an instance of event type etype. [It is

2 --- -— Procedure specifier for essentially this procedure which is replaced by
the user specified cause a user specified cause procedure.
procedure (zero if
system procedure is to CAUSE1 uses an important subroutine which is
be used). also available to the user. The integer runtime

ANSWER (ITEMVAR ev_type, ev,not,
3 --- -—- Procedure specifier for ~ process-item) is used to wake up a process

the user specified that has suspended itself with an interrogate.
interrogate procedure If the process named by process-item is
(zero if system suspended, it will be set to ready status and
procedure is to be used). be removed from any wait queues it may be on.

ANSWER will return as its value the options bits
4 USER1 INTEGER Reserved for user. from the interrogate that caused the process to

suspend itself. If the named process was not

5 USER2 INTEGER Reserved for user. suspended, then ANSWER returns an integer
word with bit 18 (the ‘400000 bit in the right

The appropriate macro definitions for these half =NOJOY in €SUAI>SYS:PROCES.DEF) set to

112

1 SAIL EVENTS

| 1. The ev,type and ev_not must be included in would cause NOTI to be set to the value of
] case’ the SAY-WHICH bit was on in the ASKNTC (FOO, 0). Then the message “Notice
5 interrogate which caused the suspension. BAZ returned from interrogate of FOO” would
i ANSWER has no effect on the notice queue of be printed and IX would return NOT! as its
i ev,type. value.

Frequently one may wish to us8 a cause The runtime ASKNTC (ITEMVAR etype; INTEGER
g procedure to re-direct some noticesto Other opt) is the Sail system routine for handling the

event types. For instance: interrogation of a single event type.
| | Essentially it is the procedure being replaced

PROCEDURE CXX (ITEMVAR ET, EN; INTEGER OPT); by the user interrogate procedure.
4 BEGIN KEMVAR OTH; LABEL C;

| IF redirecttest(ET, EN) THEN In the case Of multiple interrogations, Sail sets a
] FOREACH OTH | OTHER_CAUSE®ET-OTHDO special bit (bit 19 = ‘200000 in the right half =
: c: CAUSE1 (ET, EN, OPT) MULTIN i n cSUAISSYS:PROCES.DEF) i n t h e
i ELSE CAUSE1 (ET, EN, OPT); options word before doing any of the
| END: interrogates specified by the event type items

in the event type set. The effect of this bit,

§ In order to avoid some interesting race which will also be set in the options word
{ conditions, the implementation will not execute passed to a user interrogate procedure, is to
i the causes at C immediately. Rather, it will cause ASKNTC always to return BINDIT instead
: save ET, EN and OPT, then, when the procedure of ever waiting for an event notice. Then, if

CXX is finally exited, any such deferred causes ASKNTC returns BINDIT for all event types, Sail
will be executed in the order in which they will cause the interrogating process to Wait

] were requested. until its requestis satisfied. If multin is not set,
] then ASKNTC will do the WAIT if it is told to.
1 USER INTERROGATE PROCEDURES

A user specified interrogate procedure must

1 have two value formal parameters
i corresponding to the two arguments to
: INTERROGATE and should return an item as the

1 value. The statement

: SETIP (<cevent type>, <procedurs specifier>);

, where <event type> is an event type item, and
| <procedure specifier> is either a procedure
1 name or DATUM (<procedure item>), will make

the specified procedure become the new
: interrogate procedure for <event type>, For

inst ance:

3 ITEMVAR PROCEDURE IX (ITEMVAR ET; INTEGER OPT);
| BEGIN ITEMVAR NOT;

NOTle ASKNTC (ET, OPT);
! PRINT ("Notice *, NOTI, * returned

from interrogation of *, ET);
1 “RETURN (NOTI);
| END;

| SETIP (FOO, IX);

Now, -
: . + INTERROGATE (FOO);

113

PROCEDURE. VARIABLES SAIL

SECTION 18 procedure item except in the above context
will not work. Use APPLY instead.

PROCEDURE VARIABLES

REF,ITEM

Reference items are created at run time by the
REF,ITEM construct and are used principally in

argument lists for the APPLY construct. The

18.1 Syntax datum of a reference item contains a pointer to
a data object, together with type information
about that object. To create a reference item

<assign-statement> On8 executes
z= ASSIGN (<item_expr>,

<procedure-name>) itm « REFJTEM (<expression>)
im ASSIGN (<item_expr>,

DATUM (<item_expr>)) A NEW item is created. If the expression is (a)
a simple variable or an array element, then the
address will be saved in the item’s datum. If

<ref_item_construct> the expression is (b) a constant or “calculated”
i= REF,ITEM (<expression>) expression, then Sail will dynamically allocate a
#= REF,ITEM (VALUE <expression>) cell into which the value of the expression will
::= REF-ITEM (BIND <itemvar>) be saved, and the address of that cell will be
i= REF-ITEM (? <itemvar>) saved in the datum of the item. The item is

then noted as having the datum type
“reference” and returned as the value of the

<apply-construct> REFJTEM construct. One can slightly modify
2:= APPLY(<procedure-name>) this procedure by using one of the following
s= APPLY (<procedure-name> , variations.

<arg_list_specifier>)
~~ u= APPLY (DATUM (<item>)) itm t REFJTEM (VALUE <expression>)

n= APPLY (DATUM (<item>),
<arg_list_specifier>) In this case, atemp cell Will always be allocated.

Thus Xe3; XI«REF_ITEM (VALUE X); X«4; would
cause the datum of Xl to point at a cell

<arg_list_specifier> containing 3.
i= <|ist-expression>

u= ARG,LIST (<expr_list>) itm « REFJTEM (? itmvr)
itm « REFJTEM (BIND itmvr)

where itmvr must be an itemvar or an element

18.2 Semantics of an itemvar array, will cause the reference
item’s datum to contain information that Apply

ASSIGN can use to obtain the effect of using "? itmvr”
One may give an item a procedure “datum” or “BIND itmvr” as an actual parameter in a
using the ASSIGN statement. ASSIGN accepts procedure Calf.
as its first argument an item expression (do
not use ANY or BINDIT). Tothis is bound ARC-LIST

the procedure identified by its name or to the The ARG,LIST construct assembles a list of

“datum” of another procedure item. The “temporary” reference items that will be
procedure may be any type. However, the deleted by APPLY after the applied procedure
value it returns will only be accessible if the returns. Arguments to ARG,LIST may be
procedure is an itemvar or item procedure. anything legal for REFITEM. Thus
Apply assumes that whatever the procedure
left in AC 1, (the register used by-all non-string APPLY (proc, ARG,LIST (foo, bar, VALUE baz))

procedures to return a value) on exiting is an
item number. Warning: a procedure is no is roughly equivalent to
ordinary datum. Using DATUM on a

114

SAIL - PROCEDURE VARIABLES

i returns is ignored. Here is an example of the
3 tmpist« {{REF_ITEM (foo), REFJTEM (bar), US8 Of APPLY.

REFJTEM (VALUE baz)}})
3 APPLY (proc, tmpist); BEGIN

: WHILE LENGTH (tmplst) DO DELETE (LOP (tmplst)); LIST LINTEGER xXx;
3 INTEGER [TEMVAR YYiITEMVAR 22;

1 but is somewhat easier to type. Note that the REAL ARRAY AA[1:2);
! reference items created by ARG,LIST are just PROCEDURE FOO (INTEGER X;
1 like those created by REFJTEM, except that ITEMVAR Y,2: REAL ARRAY A);

ey are marked so that APPLY will know to Kill BEGIN
i them. Y t NEW (X);
f Zt NEW (A);

| APPLY A[X}+3;
3 APPLY uses the items in the END;

<arg_list_specifier>, toget her with the XX «0;
] environment information from the procedure L « (REFJTEM (XX), REFJTEM (YY),

| item (or from the current environment, if the REF,ITEM @2), REFJTEM (AA)));

i procedure is named explicitly) to make the XX t 2; AA[1]t AA[2) t 1;
appropriate procedure call. <arg_list_specifier> APPLY (FOO,L)

- is an ordinary list expression, except that each COMMENTY now contains sh item whose
element of the list must be a reference item. datum is 2, contains an item whose

i The elements of the list will be used as the datum is thr array (1.0, 1.0),

; actuals in the procedure call. There must be at A[1]s 1.0,and A[2 }s3.0;
. least as many list elements as there are formals END;
§ in the procedure. The reference items must

3 refer to an object of the same type as the The variables accessed by a procedure called
3 corresponding formal parameter in the with APPLY may not always be what you would

procedure being called. (EXCEPTION: if the think they were. Temporary terminology: the
] formal parameter is an untyped itemvar or “environment” of a procedure is the collection

untyped itemvar array, then the reference item of variables, arrays and procedures
may refer to a typed itemvar or itemvar array, accessible to it. “Environment’™ is not meant

: respectively.) At present, type checking (but to include the state of the associative store or

] not type coercion) is done. If the formal the universe of items. The environment of a
1 , parameter is a reference parameter, then a procedure item is the environment of the
5 reference to the object pointed to by the ASSIGN, and that environment will be used

reference item is passed. [If the formal regardless of the position of the APPLY.
f parameter is a value parameter, then the value Since procedure items are untouched by
] of the object pointed to by the reference item block exits, yet environments are, it is possible

is used. Similarly, "?" formals are handled to Apply a procedure item when its
3 appropriately when the reference item contains environment is gone; Sail catches most of these

1 a"™ or “BIND” reference. If the procedure to situations and gives an error message.
be called has no parameters, the Consider the following example:
<arg_list_specifier> may be left out.

3 Apply may be used wherever an itemvar
] procedure call is permitted. The value returned
t will be whatever value would normally be
5 returned by the the applied procedure, but
] Apply will treat it as an item number. Care

should therefore be taken when using the

| result of Apply when the procedure being
invoked is not itself an itemvar procedure, since
this may cause an invalid item number to be

4 used as a valid item (for instance, in a MAKE).
g Recall that when a typed procedure (or an
3 Apply) is called at statement level, the value it

3 115

PROCEDURE VARIABLES SAIL

BEGIN

ITEM Pi LABEL L;
RECURSIVE PROCEDURE FOO (INTEGER J);
BEGIN “FOO”

INTEGER I;

PROCEDURE BAZ;

PRINT ("J=*, J, "le", I);
IF Ja} THEN

BEGIN

le2;

ASSIGN (P, BAZ)
FOO (1);
END

ELSE APPLY (DATUM (P));
END “FOO”;

FOO (1);

L: APPLY (DATUM (P)); COMMENT will causes
runtime error -- see discussion below;

END

The effect of the program is to Assign Baz
to P on the first instantiation of Foo, then

Apply P on the second (recursive)
instantiation. However, the environment at

the time of the Assign includes {I=2,J=1} but
the environment at the time of the Apply
includes (I-O, J=-1} instead. At the time of
the Apply, Bat is executed with the

| environment from the time of the Assign, and
will print out

Cal ke2

The Apply at L will cause a runtimeerror
message because the environment of the
Assign has been destroyed by the exiting of
Foo.

116

SAIL - INTERRUPTS

oo SECTION 19 To use interrupts a program must. first tell Sail
| what procedure(s) to, run, when an interrupt

INTERRUPTS happens. The routines INTMAP and PSIMAP
] perform this task. Deferred interrupts use the

Sail process machinery (page 104), so INTSET is
: used to sprout the interrupt process. Then the

operating system must be told to activate (and

19.1 Introduction deactivate) interrupts for the desired
conditions. ENABLE and DISABLE are used by

The interrupt facilities of Sail are based on the the program to tell Sail, which tells the
: interrupt facilities provided by the operating operating system.

system under which Sail is running. For
programs running at SUAIl or on TENEX this A good knowledge of the interrupt structure of
results in satisfactory interrupt operation. the operating system which you are trying to
TOPS-10 programs are at a distinct use should be considered a prerequisite for this
disadvantage because the operating system chapter.

| does not prevent interrupt handlers from being
interrupted themselves. At SUAl the Sail
system uses new-style interrupts [Frost});

programs may also enable for old-style 18.2 Interrupt Routines
interrupts and the two will work together

provided that the same condition is not enabled

under both Kinds. On TENEX the
pseudointerrupt (PSI) system is used; programs ATI, DT ————

| may use the interrupt system independently of
Sail. Only interrupt functions pertaining to the ATI (PSICHAN, CODE);
current fork are provided. TOPS-10 interrupts DTI (PSICHAN, CODE)

are directly tied to the APRENB system; Sail and
non-Sail use do not mix. (TENEX only.) CODE is associated or dissociated

with PSICHAN, using the appropriate JSYS.
Sail gives control to the user program as, soon Executing ATl is an additional step (beyond

| as the operating system informs the Sail ENABLE) which is necessary to receive TENEX
| “interrupt handler. This can be dangerous TTY interrupts.

because the Sail runtime system may be in the
middle of core allocation or garbage collection.

| Therefore Sail provides a special runtime
DFRINT which can receive control in the -_—eee DFR] IN —o—rr

| restricted environment of an interrupt. DFRINT

records the fact that an interrupt happened and DFR1 IN (AOBJN,PTR)
that a particular user procedure is to be run at

| the next polling point (page 107), when the DFRIIN is the procedure used by DFRINT to
integrity of all runtime data structures is record the interrupt and the AOBJN,PTR. Thus
(normally) assured. If the Sail interrupt handler DFRINT is (partially) equivalent to

| passes control to DFRINT then the user
procedure (which is run at the next polling SIMPLE PROCEDURE DFRINT; BEGIN

| point) is called a “deferred interrupt DFR | IN (<AOBJIN_PTRspecif isd
| procedure”, even though the only connection it to INTMAP>) END;

has with interrupts is the special status and
priority given to it by the Sail Process To have more than one procedure run

| machinery. If DFRINT is not used then the user (deferred) as the result of an interrupt, a

3 procedure to which the Sail interrupt handler program may use DFRIINto record the
3 passes control is called an “immediate interrupt AOBJIN_PTRs explicitly. Example:
3 procedure”. (This is orthogonal to the TENEX

f distinction between immediate and deferred TTY

interrupts.)

117

INTERRUPTS SAIL

handler receives an interrupt corresponding to
SIMPLE PROCEDURE ZORCH; the condition specified by INDEX. A separate

BEGIN INTMAP must be executed for each interrupt

DFR1IN (<AOBJN pointer for FOO call>); condition. If the same INDEX is specified on two
DFR1IN(<AOBJN pointer for BAZ call>); calls to INTMAP then the most recent call is the

END; one in effect. PROC must be a simple
procedure with no formal parameters. If PROC

INTMAP (INTTTY,INX, ZORCH,0); is a user procedure then PROC is run as a Sail
ENABLE (INTTTY_INX); immediate interrupt.

Both FOO and BAZ will be run (deferred) as the AOBJN-PTR should be zero unless DFRINT is
result of INTTTY,INX interrupt. specified for PROC. If PROC is DFRINT (and thus

will be a Sail deferred interrupt) then
AOBJN,PTR gives the length and location of a
block of memory describing a procedure call.

DFRINT meee Such a block has the form

DFRINT <number of words in the block>

-<|st parameter to the procedure,

DFRINT is a predeclared simple procedure which <second parameter to the procedure»
handles the queueing of deferred interrupts. -

Specify DFRINT to INTMAP for each interrupt <last parameter to the procedure,
which will be run as a Sail deferred interrupt. - 1,,<address of the procedure>
When run as the result of an interrupt, DFRINT
grabs the AOBJN-PTR pointer specified to and an AOBJN,PTR to it has the form
INTMAP (or PSIMAP) and copies the block along
with other useful information into the circular -<number of words>,<starting address,.

deferred interrupt buffer. (See INTTBL.)
DFRINT then changes the status of the interrupt Here is an example in which FOO (I, J, K) is to
process INTPRO from suspend to ready, and be called as a deferred interrupt.
turns on the global integer INTRPT.

PROCEDURE FOO (INTEGERi, j,k):

SAFE INTEGER ARRAY FOOBLK [1:5];

—DISABLE, ENABLE =——————— ITEMVAR IPRO; COMMENT for process item of INTPRO;

DISABLE (INDEX); FOOBLK[1] « 5;
ENABLE (INDEX) FOOBLK [2]« I;

FOOBLK [3]« J;

Sail tells the operating system to ignore. FOOBLK[4] ¢ K;
(DISABLE) or to send to the program (ENABLE) FOOBLK [5)«(-1 LSH 18)+LOCATION(FOO);
interrupts for the condition specified by INDEX.

INDEX is a bit number (0-35) which varies from INTSET (IPRO « NEW, 0); COMMENT sprout INTPRO;
system to system; consult [SysCall]. INDEX is INTMAP (INTTTI_INX, DFRINT,
sometimes called a “PSI channel” on TENEX («5 LSH 18) + LOCATION (FOOBLK[!))):

ENABLE(INTTTI_INX)

NOTE: The procedure (FOO in this case) must
es[NTAP mee not be declared inside any process except the

main program. Otherwise, its environment will
INTMAP (INDEX, PROC, AOBJN,PTR) not be available when INTPRO runs. However,

there is a rather complex way to get around

(TENEX users should see PSIMAP.) The routine this by using <environment>,PDA as the last
INTMAP specifies that the simple procedure word of the calling block. See a Sail hacker if
PROC is to be run whenever the Sail interrupt you must do this and don't know what

<environment> or PDA mean.

118

4 SAIL- "INTERRUPTS

} ——— TSE]— INTMAP (<index>, <simple procedure name>, 0);
ENABLE («index»)

INTSET (ITM, OPTIONS) or on TENEX,
1 PSIMAP (<PSichan>, <simple procedure name>, 0, <PSliev>);

INTSET sprouts the interrupt process INTPRO ENABLE (<PSlchan>)
: with process options OPTIONS; see page 104.
| The default priority of INTPRO is zero; this is where <index> is a code for the interrupt

the highest possible priority and no other condition. To turn off an interrupt use
process may have priority zero. Thus INTPRO

| is sure to be run first at any polling point. ITM DISABLE (<index>)
must. be an item; it will become the process item

| of INTPRO, the interrupt process. INTSET must The system will not provide user interrupts for
be called before any deferred interrupts are the specified condition until another ENABLE

: used. statement is executed.

IN SUAI Sail

i A procedure specified by an INTMAP statement

! es [NT TB me— will be ® xocuted at user interrupt level. A
program operating in this mode will not be

INTTBL (NEW-SIZE) interrupted, but must finish whatever it is doing
within 8/60 ths of a second. It may not do any

The buffer used to queue deferred interrupts is UUOs that can cause it to be rescheduled. Also,
1 initially 128 locations long. The queue has not the accumulators will not be the same ones as

been know to overflow except for programs those that were in use by the regular program.
! which do not POLL very often. INTTBL changes Certain locations are set up as follows:
: the buffer size to NEW-SIZE. Do not call

INTTBL if there are any deferred interrupts ACs 1-6 Set up by the system as in
| pending; wait until they have all been executed. [Frost]

_ AC ‘15 (USER) Address of the Sail user
| table.

-_—— PS | MAP

| AC ‘16 (SP) A temporary string push

PSIMAP (PSICHAN, PROC, down stack pointer (for the
| AOBJNQTR, LEVEL) foolhardy who chose to

disregard the warnings about

(TENEX only.) This routine is the same as strings in immediate
| INTMAP except that LEVEL may be specified. interrupts).
| ROUTINE is ‘executed at interrupt level LEVEL

(TENEX INTMAP is equivalent to PSIMAP (, , ,3).) AC ‘17 (P) A temporary push down
| PROC and AOBJN,PTR have the same meaning stack pointer.

as for INTMAP.

XJBCNI (declared in SYS:PROCES.DEF
| as an external integer.) Bit

mask with a bit on

| 19.3 Immediate Interrupts. corresponding to the current
condition.

Do not access, create, or destroy strings,

| records, arrays, sets, or lists. If these data XJBTPC (declared in SYS:PROCES.DEF
/ structures are needed then use deferred as an external integer.) Full

interrupts. PC word of regular user level
lL program.

3 To set up an-immediate interrupt say
5 The interrupt will be dismissed and the user

program resumed when the interrupt procedure
] is exited. For more information on interrupt

level programming consult [Frost].

119

INTERRUPTS SAIL

IN TOPS-1 0 WARNING: this does not work very well if you

The interrupt handler again will decode the were interrupted at a bad time.
interrupt condition and call the appropriate

procedure. Since there is no “interrupt level”, IN TENEX Sail
the interrupt procedure must not itself Sail initialization does a SIR, setting up the
generate any interrupt conditions, since this tables to external integers LEVTAB and
will cause Sail to lose track of where in the CHNTAB, then an EIR to turn on the interrupt

user program it was interrupted (trapped). system. PSIMAP fills the appropriate CHNTAB
location with XWD LEV,LEVROU, where LEVROU

Also, the Sail interrupt module sets up some is the address of the routine that handles the
temporary accumulators and JOBTPC: interrupts for level LEV. LEVROU saves the

accumulators in blocks PS1ACS, PS2ACS, and

AC ‘10 index of the interrupt PS3ACS, which are external integers, for levels
condition. 1 through 3 respectively. Thus for a level 3

interrupt accumulator x can be accessed by

AC ‘15 (USER) Address of the Sail user MEMORY [LOCATION (PS3ACS)+ x). The PC can
table. be obtained by reading the LEVTAB address

with the RIR JSYS. Temporary stacks are set

AC ‘16 (SP) A temporary string push up for both immediate and deferred interrupts.
down list. Beware.

See page 79 for an example of TENEX

AC ‘17 (P) A temporary push down immediate interrupts. The functions GTRPW,
pointer. RTIW, STIW provide for some of the information

set up in ACs under SUAI or TOPS-IO.
JOBTPC (an external integer) Full PC

word of regular user program.

The “real” acs - i.e, the values of all GIRPW mm

accumulators at the time the trap occurred --
are stored in locations APRACS to APRACS+17. STATUS « GTRPW (FORK);
Thus you can get at the value of accumulator x
by declaring APRACS as an external integer and The trap status of FORK is returned, using the

. referring to MEMORY [LOCATION (APRACS)+x]. GTRPW JSYS.
When the interrupt procedure is exited the acs
are restored from APRACS to APRACS+17 and

the Sail interrupt handler jumps to the location
stored in JOBTPC (which was set by the -_— RTIW, STIW ore
operating system to the location at which the

trap occurred). Thus, if you want to transfer AC1 «RTIW (PSICHAN, @AC2);
control to some location in your user program, STIW (PSICHAN, AC2, AC3);
a way to do it is to have an interrupt routine
like: The indicated JSYS is performed.

SIMPLE PROCEDURE IROUT;

BEGIN

EXTERNAL INTEGER JOBTPC; 18.4 Clock Interrupts

JOBTPC«LOCATION (GTFOO) (This feature is currently available only in SUAI
COMMENT GTFOO is a non-simpb procedure Sail and TENEX Sail.) Clock interrupts are a kind

that contains & GO TO FDO, where FDD of immediate interrupt used to approximate time

] is the bcrtbn to which control sharing among processes. Every time the
is to be passed. This allows the scheduler decides to run a process it copies the

“go to solver” to be calledand clean procedure’s time quantum (see all about
up any unwanted procoduro sctivations.; quantums of processes, page 104) into the Salil

END; user table location TIMER. Consider the
| following procedure, which is roughly

equivalent to the one predeclared in Sail:

120

: SAIL " INTERRUPTS

The current fork is interrupted every MSTIME

| SIMPLE PROCEDURE CLKMOD; milliseconds of runtime. The inferior is
3 IF (TIMER«TIMER-1)$ 0 THEN INTRPTe-1; approximately

To time share several ready processes one WRIT: MOVE 1,NSTINE ; HOH LONG

“should include polling points in the relevant DISKS
process procedures and should execute the HOVEI 1,-1 3 SUPERIOR FORK

: following statements: RUNTH jRUNTINME OF SUPERIOR
SE CAMGE 1,NEXTTIME READY?

INTMAP (INTCLK_INX, CLKMOD, 0); JRST KRIT sNO
ENABLE (INTCLK_INX); ROD 1,MSTIME

g or on TENEX MOVEM 1,NEXTTINE ;RECHRRGE
! PSIMAP(1, CLKMOD, 0, 3); HOVE1 1,-1 s SUPERIOR
: ENABLE (1); MOVE 2 (bitmask); SELECTED CHANNEL

A PSIDISMS (1,1000/60); 11C s CRUSE INTERRUPT
JRST WRIT

1 The macro SCHEDULE-ON-CLOCK-INTERRUPTS
defined .in €SUAIDSYS:PROCES.DEF is equivalent

i to these statements. When the time quantum of
] a process is exceeded by the number of clock —_— KPSITIME=
5 ticks since it began to run, the integer INTRPT

1 is set, and this causes the next polling point in KPSITIME (PSICHAN)
} the process to cause a rescheduling (see about

rescheduling and INTRPT on page 107). The Discontinues clock interrupts on PSICHAN.
| | current running process will be made ready,

J and the scheduling algorithm chooses a ready Several channels can be interrupted by
] process to run. PSIRUNTM or PSIDISMS, each with different

| timing interval.

| In TENEX Sail clock interrupts are handled
differently. Since TENEX does not directly
provide for interrupting user processes on

clock ticks, an inferior fork is crested which 195 Deferred Interrupts
periodically generates the interrupts.

i Deferred interrupts use the Sail Process
machinery (page 104) to synchronize the Sail

i runtime system with the running of user
—PSIDISMS= procedures in response to interrupts. The

routine INTSET sprouts the interrupt process
PSIDISMS (PSICHAN, MSTIME) INTPRO, the process which eventually does the

calling of deferred interrupt procedures. This

: An inferior fork is created which interrupts the process is special because it is (ordinarily)
current fork every MSTIME milliseconds of real guaranteed to be the first process run after a
time. The inferior is approximately rescheduling. (See page 107 and page 109 for

: information on rescheduling.) When DFRINT
| WAIT: HOVE 1,MSTIME HON LONG runs as the result of an interrupt, it copies the

DISHS GO RNAY calling block (specified to INTMAP with the

MOVE] i,-1 s HANDLE TO SUPERIOR AOBJN,PTR) into the deferred interrupt buffer
MOVE 2, (bit mask); SELECTED CHANNEL and turns on the global integer INTRPT. At the
11C 3 CAUSE RN INTERRUPT next polling point the process supervisor will
JRST WRIT j CONTINUE suspend the current process and run INTPRO.

INTPRO calls the procedures specified by the
calling blocks in the deferred interrupt buffer,

turns off INTRPT, and suspends itself. The
: — PSRUNTM s— process scheduler then runs the process of

highest priority.
| PSIRUNTM (PSICHAN, MSTIME)
: | One very common use of deferred interrupts is

| 121

INTERRUPTS SAIL

to cause an event soon after some process scheduler to run INTPRO, where the

asynchronous condition (say, TTY activation) deferred interrupt calling block (which was
occurs. This effect may be obtained by the copied by DFRINT) is used to call FOO.
following sequence:

THE DEFERRED INTERRUPT PROCESS = INTPRO

INTSET (IPRONEW, 0); COMMENT this will cause INTPRO first restores the following information
the interrupt process to be sproutedand which was stored by DFRINT at the time of the
assigned to IPRO. This process will execute interrupt.
procedure INTPRO and will have priority zero

(the highest possible).; LOCATION CONTENTS

INTMAP (<index>, DFRINT, USER The base of the user table
DFCPKT (0, <event type>, <svent notice>, (GOGTAB).

<Cause® options>));

AC 1 Status of spacewar buttons.
ENABLE (<index>);

AC 2 Your job status word (JBTSTS).

In €SUAISSYS:PROCES.DEF is the useful macro See [Frost).

DEFERRED-CAUSE-ON-INTERRUPT (<index>, |JBCNI(USER) XJBCNI (i.e., JOBCNI) at time of
<event type>, <notice>, <options>) interrupt.

which may be used to replace the INTMAP IJBTPC(USER) XJBTPC (i.e., JOBTPC) at time
statement. of interrupt.

The following program illustrates how deferred IRUNNR(USER) Item number of running
interrupts on TENEX can be accomplished. process at time of interrupt.

BEGIN REQUIRE|NEW-ITEM: Then INTPRO calles the procedure described by
ITEMVARIPRO; COMMENT for process item; the calling block. When the procedure is

finished, INTPRO looks to see if the deferred

PROCEDURE FOO (INTEGER} J% interrupt buffer has any more entries left. If it
PRINT ("HI%L"" J; does, INTPRO handles them in the same manner.

Otherwise INTPRO suspends itself and the

INTEGER ARRAY FOOBLK] 1:4); highest priority ready process takes over.
FOOBLK[1)e 4; COMMENT a words;
FOOBLK(2) « 12; COMMENT arguments;
FOOBLK[3])« 13;
FOOBLK[4)« -1 LSH 18 + LOCATION (FOO);

INTSET (IPRO« NEW, 0)
PSIMAP(1, DFRINT,

-4 LSH 18 «+ LOCATION (FOOBLK[1]), 3);
ENABLE (1); ATI (1, "Q"-'100);

DO BEGIN OUTCHR ("."); POLL; END UNTIL FALSE;
END;

The program prints dots, interspersed with “Hl

12 13” for each control-9 typed on the console.

Whenever a control-Q is typed, DFRINT buffers
the request and makes INTPRO ready to run;
then DFRINT DEBRKs (in the sense of the DEBRK
JSYS) back to the interrupted code. At Sail
user level the POLL statement causes the:

122

i SAIL- LEAP RUNTIMES

5 SECTION 20 - (CVSET ————

] LEAP RUNTIMES SET « CVSET (LIST)

CVSET returns a set given a list expression by

We will follow the same conventions for removing duplicate occurrences of items in the

- describing Leap execution time routines as list, and reordering the items into the order of
§ were used in describing the runtimes of the their internal integer representations.

Algol section of Sail (see page 33).

—(C\/L|ST e—

20.1 Types and Type Conversion
LIST « CVLIST (SET)

: CVLIST returns a list given a set expression. It
—_— TYPEIT— executes no machine instructions, but merely

lets you get around Sail type checking at

3 CODE « TYPEIT (ITM); compile time.

3 The type of the datum linked to an item is
2 called the type of an item. An item without a
: datum is called untyped. TYPEIT is an integer -_ CWN and CV| eee
] function which returns an integer CODE for the
i type of the item expression ITM that is its INTEGR « CVN (ITM);
i argument. The codes are: ITM« CVI (INTEGR)

0 - item deleted or never allocated CVN returns the integer that is the internal

| 1 - untyped representation of the item that is the the value
2 - Bracketed Triple item of the item expression iTM. CVI returns the
3-0 tring item that .is represented by the integer

1 4 - real expression INTEGR that is its argument. Legal

3 5 - integer item numbers are between. (inclusively) 1 and
: 6 - sot 4095, but you'll get in trouble if you CVI when

I 7 - list no item has been created with that integer as
3 8 - procedure item its representation. Absolutely no error

9 - process item checking is done. CVI is for daring men. See
10-® vint item about item implementation, page 86, for more
1 1 - context item information about the internal representations
12 - reference itrm of items.

13 - record pointer
14 - label

| 15 - record class
| 23 - string array -—MKEVIT mmm

24 - real array

25 - integer array MKEVTT (ITEM)
26 - set rrrry

g 27 - list rrrry MKEVTT will convert its item argument to an
i 31 - context rrrry event type item. The old datum will be

33 - record pointar array overwritten. The type of the item will now be
37 = error (the runtime screwed up) “event type”. Any item except an event type

item may be converted to an event type item

] The user is encouraged to use TYPEIT. It by MKEVTT.
3 requires the execution of only a few machine
r instructions and can save considerable

| debugging time.

| 123

LL

LEAP-RUNTIMES SAIL

20.2 Make and Erase Breakpoints 20.3 Pname Runt imes

—————— BRKERS, BRKMAK, BRKOFF =e —_— OVI§ —@8@™

BRKMAK (BREAKPT_PROC); “PNAME” « CVIS (ITEM, @FLAG)
BRKERS (BREAKPT_PROC);
BRKOFF The print name of ITEM is returned as a string.

Items have print names only if one includes a

In order to give the programmer some idea of REGUIRE n PNAMES statement in his program,
what is going on in the associative store, there where n is an estimate of the number of
is a provision to interrupt each MAKE and pnames the program will use. An Item’s print
ERASE operation, and enter a breakpoint name is the identifier used to declare it, or that
procedure. The user can then do whatever he pname explicitly given it by the NEW,PNAME
wants with the three items of the association function (see below). FLAG is set to False (0) if
being created or destroyed. ERASE Foo © ANY the appropriate string is found. Otherwise it is
e ANY will cause the breakpoint procedure to set to TRUE (-1), and one should not put great
be activated once for each association that faith in the string result.

matches the pattern. MAKE it 1 ® it2 £[it3® it4
2it5] will cause the breakpoint procedure to be
activated twice.

| _— CVS———

The user's breakpoint procedures must have
the form: ITEM «CVS! (“PNAME”, @FLAG)

PROCEDURE Breakpt_proc (ITEMVAR a, 0, Vv): The Item whose pname is the same as the string

argument PNAME is returned and FLAG is set to

If the association being made or erased is FALSE if such an ITEM exists. Otherwise,
AeQOsV, then directly before doing the Make or something very random is returned, and FLAG is
Erase, Breakptgroc is called with the items A, set to TRUE.
0, and V for the formals a, o, and v.

To make the procedure Breakpt_proc into a
breakpoint procedure for MAKE, call BRKMAK _— DEL,PNAME ———————
with Breakptgroc as a parameter. To make
the procedure Breakpt_proc into a breakpoint DEL,PNAME (ITEM)
procedure for ERASE, call BRKERS with
Breakptgroc as its parameter. To turn off This function deletes any string PNAME
both breakpoint procedures, call BRKOFF with associates with this ITEM.
no parameters.

NOTE: BRKMAK, BRKERS and BRKOFF are not

predeclared. The user must include the r— NEN PNAME m—
declarations:

NEW,PNAME (ITEM, “STRING”)
EXTERNAL PROCEDURE BRKERS (PROCEDURE BP);

EXTERNAL PROCEDURE BRKMAK (PROCEDURE BP); This function assigns to the Item the name
EXTERNAL PROCEDURE BRKOFF “STRING”. Don’t perform this twice for the

same Item without first deleting the previous

one. The corresponding name or Item may be

retrieved using CVIS or CVSI (see above). The
NULL string is prohibited as the second
argument.

124

; SAIL- LEAP RUNTIMES
!

4 20.4 Other Useful Runtimes -_— (COP =—————————

ITEM « COP (SETEXPR);
ITEM « COP (LISTEXPR)

—_—LISToo
COP will return the first item of the set or list

: VALUE ¢ LISTX (LIST, ITEM, N) just as LOP (above) will. However, it will NOT
‘ remove that item from the set or list. Since the

i The value of this integer function is 0 if the set or list will be unchanged, COP’s argument
ITEM (an item expression) does not occur in the may be a set or list expression. As with LOP,

1 list at least N (an integer expression) different an error message will be returned if one COPs
1 times in the LIST (a list expression). Otherwise an empty set or a null list.
3 LISTX is the index of the Nth occurrence of

| ITEM in LIST. For example,
:

LISTX ({{Foo, Baz, Garp, Baz}}, Baz, 2) is 4. —|ENGTH —

: VALUE ¢ LENGTH (SETEXPR);
j VALUE « LENGTH (LISTEXPR)

ee. FIRST, SECOND, THIRD me

3 LENGTH will return the number of items in that

i ITEM « FIRST (BRAC, TRIP-ITEM); set or list that is its argument. LENGTH (S) = 0
ITEM « SECOND (BRAC_TRIP_ITEM) is @ much faster test for the null set or list

ITEM « THIRD (BRAC, TRIP-ITEM) that S = PHI or S= NIL.

The Item which is the FIRST, SECOND, or THIRD
element of the association connected to a

3 bracketed triple item (BRAC, TRIP-ITEM) is —SAME]—
returned. If the item expression
BRAC, TRIP-ITEM does not evaluate to a VALUE « SAMEIV (ITMVARI, ITMVAR2)

] bracketed triple, an error messages issues
1 forth. SAMEIV is useful in Matching Procedures to

solve a particular problem that arises when a

Matching Procedure has at least two ? itemvar
arguments. An example will demonstrate the

i —_—|STRIPLE ——————— problem:

i RSLT «ISTRIPLE (ITM) FOREACHX | Matchingproc (X, X) DO.
FOREACH X, Y | Matchingproc(X Y) 00. . .;

If ITM is a bracketed triple item then ISTRIPLE
returns TRUE; otherwise it returns FALSE. Clearly, the matching procedure with both

] ISTRIPLE (ITM) i s equivalent t o (TYPEIT (ITM) = arguments the same may want to do something
2). different from the matching procedure with two

different Foreach itemvars as its arguments.
However, there is no way inside the body of

3 the matching procedure to differentiate the two
—e. |OPen cases since in both cases both itemvar formals

: have the value BINDIT. SAMEIV will return True
] ITEM « LOP (@SETVARIABLE); only in the first case, namely 1) both of its

ITEM « LOP (@LISTVARIABLE) arguments are ? itemvar formals to a matching
1 procedure, 2) both had the same Foreach
3 LOP will remove the first item of a set or list itemvar passed by reference to them. It will
: from the set or list, and return that item as its return False under all other conditions,
] value. Note that the argument must be a including the case where the Foreach itemvar is
3 variable because the contents of the set or list bound at the time of the call (so it is not passed

is changed. If one LOPs an empty set or a null by reference, but its item value is passed by
I list, an error message will be issued. value to both formals).

: 125

LEAP RUNTIMES SAIL

20.5 Runtimesfor User Cause and —————————CAUSEl ———

Interrogate Procedures
ITMVAR ¢ CAUSE1 (ETYPE, ENOT, OPTIONS);
ITMVAR « CAUSE1 (ETYPE, ENOT);
ITMVAR ¢« CAUSE1 (ETYPE)

————————— SETCP AND SETIP =————

CAUSE]1 is essentially the procedure executed
SETCP (ETYPE, PROC,NAME); for CAUSE statements if no SETCP has been
SETCP (ETYPE, DATUM (PROCJTEM)); done for the event type ETYPE. See the
seTIpP (ETYPE, PROC_NAME); description of the Sail defined Cause statement,
SETIP (ETYPE, DATUM (PROCJTEM)) page 112, for further elucidation.

SETCP and SETIP associate with the event type
specified by the item expression ETYPE, a
procedure specified by its name or the datum -ASKNTC —————————
of a procedure item expression.

ITMVR « ASKNTC (ETYPE ,OPTIONS);
After the SETCP, whenever a Cause statement ITMVR « ASKNTC (ETYPE)
of the specified event type is executed, the

procedure specified by PROC,NAME or ASKNTC is the procedure executed for
PROCJTEM is called. The procedure must INTERROGATE statements if no SETIP has been
have three formal parameters corresponding to done for the event type ETYPE. See the
the event type, event notice, and options words description of the Sail defined Interrogate
of the CAUSE statement. For example, statement, page 113, for further elucidation.

PROCEDURE CAUSEIT (ITEMVAR ETYP, ENOT;
INTEGER OP)

_—ANSWER ——————o—

After SETIP, whenever an Interrogate statement
of the specified event type is executed, the BITS« ANSWER (ETYPE, ENOT, PROCJTEM)
procedure specified by PROC,NAME or
PROCJTEM is called. The procedure must have ANSWER will attempt to wake up from an

. two formal parameters corresponding to the interrogate wait the process specified by the
event type and options words of the item expression PROCJTEM. If the process is
Interrogate statement and return an item. For not in a suspended state, Answer will return an
example, integer with the bit ‘400000 in the right half

(NOJOY in cSUAI=SYS:PROCES.DEF) turned on.

ITEM PROCEDURE ASK_IT (ITEMVAR ETYP; If the process is suspended, it will be made

INTEGER OP) ready, and removed from any wait queues it
may be on. The bits corresponding to the

It is an error if a Cause or Interrogate options word of the interrogate statement that
statement tries to call a procedure whose put it in a wait state will be returned.
environment (static = as determined by position Furthermore, if the SAY-WHICH bit was on, the
of its declaration, and dynamic = as determined appropriate association, namely EVENT-TYPE @
by the execution of the SETCP or SETIP) has ENOT 8 ETYPE, will be made. See page 112 for
been ‘exited. more information on the use of ANSWER.

See page 112 and page 113 for more
information on the use of SETCP and SETIP,

respectively. —ee. DFCPKT meee

AOBJN,PTR « DFCPKT (@BLOCK, EVTYP,
EVNOT, OPTS)

This routine is a convenience for causing an

event as a deferred interrupt. If BLOCK is non=-

126

J

1 zero then it should be an array with at least 5
| elements; if BLOCK is zero then a five-word
r block is allocated. DFCPKT constructs a call for

§ CAUSE (EVTYP, EVNOT, OPTS) in this block and
: returns an AOBJN pointer to it.

127

BASIC CONSTRUCTS SAIL

SECTION 2 1 21.2 Semantics

BASIC CONSTRUCTS VARIABLES

If a variable is simply an identifier, it

represents a single value of the type given in
its declaration.

21.1 Syntax If it is an identifier qualified by a subscript list
it represents an element from the array bearing
the name of the identifier. However, an

<variable> identifier qualified by a subscript list containing

= <ident if ier> only a single subscript may be either an
w= <identifier> [<subscript_list>] element from a one dimensional array, or an
= DATUM (<typed_item_expression>) element of a list. Note that the token "oo" may
= DATUM (<typed-item-expression>){ be used in the subscript expression of a list to

<subscript-list>] stand for the length of the list, e.g. LISTVAR[co-
= PROPS (<item-expression>) 2 J«LISTVAR[0-1).
i= <context-element>

um <record-class> : <field>[The array should contain as many dimensions as
<record-pointer-expression> there are elements in the subscript list. A[l]

represents the l+1th element of the vector A (if
the vector has a lower bound of 0). B[l,J] is

<typed-item-expression> the element from the I+1th row and J+Ith
n= <typed_itemvar> column of the two-dimensional array B. To
n= <typed_item> explain the indexing scheme precisely, all
= <typed_itemvar_procedure> arrays behave as if each dimension had its
w= <typed_item_procedure> origin at 0, with (integral) indices extending
= <typed_itemvar_array> infinitely far in either direction. However, only

[<subscript_list>] the part of an array between (and including)
w= <typed_item_array> the lower and upper bounds given in the

[<subscript-list.?] declaration are available for use (and in fact,
i= <itemvar>ee <typed-item-expression> these are the only parts allocated). If the array
w= |F <boolean-expression> THEN is not declared SAFE, each subscript is tested

<typed-item-expression> ELSE against the bounds for its dimension. If it is

<typed-item-expression> outside its range, a fatal message is printed
zm CASE <algebraic-expression> OF (identifying the array and subscript position at

<typed_item_expression_list>) fault. SAFE arrays are not bounds-checked.
Users must take the consequences of the
journeys of errant subscripts for SAFE arrays.

<typed-item-expression-list> The bounds checking causes at least three
w= <typed-item-expression> extra machine instructions (two of which are
u= <typed-item-expression-list> , always executed for valid subscripts) to be

<type-item-expression> added for each subscript in each array
reference. The algebraic expressions for lower

<subscript-list> and upper bounds in array declarations, and for
w= <algebraic-expression> subscripts in subscripted variables, are always
um <gubscript_list> | converted to Integer values (see page 23)

<algebraic-expression> before use.

For more information about the implementation

of Sail arrays, see page 157.

DATUMS

DATUM (X) where X is a typed item expression,
will act exactly like a variable with the type of
the item expression. The programmer is

128

SAIL _ BASIC’ CONSTRUCTS

responsible for seeing that the type of the item used for any purpose other than those given
is that which the DATUM construct thinks it is. explicitly in the syntax, or in declarations

For example, the Datum of a Real Itemvar will (DEFINES) which mask their reserved-word
always interpret the contents of the Datum status over the scope of the declarations. E.g.,
location as a floating point number even if the “INTEGER BEGIN” is allowed, but a Synonym (see
program has assigned a string item to the Real page 10) should have been provided for BEGIN
ltemvar. if any new blocks are desired within this one,

because BEGIN is ONLY an Integer in this block.
PROPS Another set of identifiers have preset

The PROPS of an item will always act as an declarations -- these are the execution time
integer variable. Any algebraic value assigned functions. These latter identifiers may also be
to a props will be coerced to an integer (see redefined by the user; they behave as if they
about type conversions, page 23) then the low were declared in a block surrounding the outer
order 12 bits will be stored in the props of the block. A list of reserved words and
item. Thus, the value returned from a props predeclared identifiers may be found in the
will always be a non-negative integer less than appendices. It should be noted that due to the

‘7777 (4095 in decimal). stupidity of the parser, it is impossible to
declare certain reserved words to be

RECORD FIELDS identifiers. For example, INTEGER REAL; will

A field in a record is also a variable. The give one the syntax error “Bogus token in
variable is allocated and deallocated with the declaration”.

other fields of the same record as the result of

calls to NEW-RECORD and the record garbage Some of the reserved words are equivalent to
collector. For more information see page 65. certain special characters (e.g. "|" for “SUCH

THAT”). A table of these equivalences may be
IDENTIFIERS found in the appendices.

You will notice that no syntax was included for

the non-terminal symbols <identifier> or ARITHMETIC CONSTANTS
<constant>. It is far easier to explain these
constructs in an informal manner. 12369 Integer with decimal value 12369

' 12357 Integer with octal value 12357

A Sail letter is any of the upper or lower case 123. Real with floating point value 123.0
letters A through Z, or the underline character 0 123.0 Real with floating point value 123.0
(_ or!, they are treated equivalently). Lower 524 Real with floating point value 0.524
case letters are mapped into the corresponding 5.322 Real with floating point valve 530.0
upper case letters for purposes of symbol table 5.342@-3 Real with floating point value 0.005342
comparisons (SCHLUFF is the same symbol as
Schluff). A digit is any of the characters 0 The character * (right quote) precedes a string
through 9. of digits to be converted into an OCTAL

number.

An identifier is a string of characters consisting

of a letter followed by virtually any number of If a.or a® appears in a numeric constant, the
letters and digits There must be a character type of the constant is returned as Real (even
which is neither a letter nor a digit (nor either if it has an integral value). Otherwise it is an
of the characters "." or “S”) both before, and integer. Type conversions are made at compile
after every identifier. In other words, if YOU time to make the type of a constant
can’t determine where one identifier ends and commensurate with that required by a given

another begins in a program you have never operation. Expressions involving only constants
seen before, well, neither can Sail. are evaluated by the compiler and the resultant

values are substituted for the expressions.
There is a set of identifiers which are used as

Sail delimiters (in the Algol sense -- that is, The reserved word TRUE is equivalent to the
ocGIN is treated by Algol as if it were a single Integer (Boolean) constant -1; FALSE is
character; such an approach is not practical, so equivalent to the constant O.
a reserved identifier is used). These identifiers

are called Reserved Words and may not be

129

BASIC CONSTRUCTS SAIL

STRING CONSTANTS

A String constant is a string of ASCII characters
(any which you can get into a text file)

delimited at each end by the character “. If the
" character is desired in the string, insert two "
characters (after the initial delimiting ”
character, of course).

A String constant behaves like any other
(algebraic) primary. It is originally of type
String; but may be converted to Integer by
extracting the first character if necessary (see

page 23).

The reserved word NULL represents a String
constant containing no characters (length-o).

Examples: The left hand column in the table that

| follows gives the required input

INPUT RESULT LENGTH

"A STRING” A STRING 8

"WHRT?S ""DOK"" MEAN?" HHART’S “ D O K ” NERAN? 18
"“"Q QUOTED STRING” “A QUOTED STRING” 17

"nN 8

NULL]

COMMENTS

: If the scanner detects the identifier COMMENT,
all- characters up to and including the next
semicolon (;) will be ignored. A comment may
appear anywhere as long as the word
COMMENT is properly delimited (not in a String
‘constant, of course);

A string constant appearing just before a
statement also has the effect of a comment.

| 130

i SAIL. USING SAIL

SECTION 2 2 be compilation errors (bad syntax, type
mismatch, begin-end mismatch, unknown

USING SAIL identifiers, etc.). See page 138 about these.

If you get through compilation (step 3) with no

| error messages, the loading of ‘your program
will rarely fail. If it somehow does, it will tell

] 22.1 For TOPS-1 0 Beginners you. See a Sail hacker about these.

If you simply want your Sail program compiled, If you also get through loading (step 4) with no
loaded, and executed, do the following: errors, you aren't yet safe. Sail will give you

error messages during the execution of your
_ 1. Create a file called "XXXXXX.SAI" program if you exceed the bounds of an array,

4 with your program in it, where refer to a field of a null record, etc. See
“XXXXXX” may be any name you section 1 about these too.

1 wish.

If you never get an error message, and yet you

2. Get your job to monitor level and don’t get the results you thought you'd get,
type “EXECUTE XXXXXX. then you’ve probably made some mistakes in

your programming. Use BAIL (or RAID or DDT)

| 3. The system program (variously and section 2 to aid in debugging. It is
| called SNAIL, COMPILE, RPG) which quite rare for Sail to have compiled runable but

handles requests like EXECUTE will incorrect code from a correct program. The
then start Sail. Sail will say "Sail: only way to ascertain whether this is the case

| XXXXXX”. When Sail hits 8 page is to isolate the section of your program that is
| boundary in your file, it will type causing Sail to generate the bad code, and then

| “1” or whatever the number of the patiently step through it instruction by

page that it is starting to read. instruction using RAID or DBT, and check to see
| - that everything it does makes sense.

| 4. When the compilation is complete
| Sail swaps to the loader, which will

| say “LOADING”.

22.2 For TENEX Beginners
3. When the loading is complete the

loader will type “LOADER nP CORE’ If .you simply want your Sail program compiled,
where n is your core size. The loaded, and executed, do the following.
loader then says “EXECUTION”.

I. Create a file called "XXXXXX.SAI"

6. When execution is complete Sail will with your program in it, where
| type “End of Sail execution” and XXXXXX may be any name you wish.

2. Type “Sail”, followed by a carriage

| At any time during 3 through 6 above, you return, to the TENEX EXEC.
A could get an error message from Sail of the

form. "DRYROT: <cryptic text>", or from the 3. The EXEC will load and start Sail.
system, such as “ILL MEM REF”, “ILLEGAL UUQO” Sail will say “Tenex Sail 8.1 8-5-76
etc. followed by some core locations. These £', Type "XXXXXX<cr>" (your file

] are Sail bugs. You will have to see a Sail name). Sail will create a file
J hacker about them, or attempt to avoid them by XXXXXX.REL, and will type the page
: rewriting the offending part of your program, number of the source file as it

or try again tomorrow. begins to compile each page.

If you misspell the name of your file then SNAIL 4, When Sail finishes it will type “End
will complain “File not found: YYYYYY” where of compilation.”. Return to the EXEC
‘WYYW” is your misspelling. Otherwise, the and type "LOADER<cr>". The loader

| error messages you receive during 3 above will will type "£", Type

| 131

USING SAIL SAIL

"SYS:LOWTSA,DSK:XXXXXXS", where EXecute compile, lord, start
§ is the altmode key. This loads TRY compile, lord with BAIL, start
your program into core. DEBug compile, lord with BAIL,

start BAIL

5S. When the LOADER exits, the program is LOAd compile, lord
loaded. You may now either SAVE the program, PREPare compile, lord with BAIL
for later use, or run it with the EXEC START COMpile compile
command.

See [MonCom] for more information about the
use of SNAIL and the switches available to it.

22.3 The Complete use of Sail COMMAND LINE SYNTAX
TOPS-10 COMMAND LINE SYNTAX

The general sequence of events in using Sail is:

1. Start Sail. <command_line>

i= <binary_name> <listing_name>«
2. Compile one or more files into one <source_list>

or more binary files, with possibly a w= <file_spec> @
listing file generated. w= <file_spec>|

3. Load the binary file(s) with the
appropriate upper segment or with <binary_name>
the Sail runtimelibrary, and wm <file_spec>
possibly with RAID or DDT. n= <empty>

4. Start the program, possibly under
the control of BAIL, RAID or DDT. <listing_name>

um | <file_spec>
DS. Let the program finish, or stop it to t= <empty>

use a debugger or to reallocate .

storage with the REENTER command.
<source_list>

Starting Sail is automatic with the SNAIL n= <file_spec>
commands described below. Otherwise, “R SAIL” uw <source_list> , <file_spec>
will do.

<file_spec>
w= <file_name> <file_ext> <proj_prog>

22.4 Compiling Sail Programs 1= <device_name> <file_spec> <switches>
u= <device-name> <switches>

When started explicitly by monitor command,

Sail will type back an "*" at you and wait for
you to type in a <command line>. It will do the <file_name>
compilation specified by that command line, then n= <legal_sixbit_id>
ask for another, etc.

If you use SNAIL then follow the SNAIL <file_ext>
command with a list of <command line>s w= <legal_sixbit_id>
separated-by commas. The compilation of each um <empty>
<command line> will be done before the next

<command line> is read and processed. The
SNAIL commands are: <proj_prog>

uw [<legal_sixbit_id> |
<legal_sixbit_id>]

we <empty>

132

] SAIL" USING SAIL

5 <device_name> um <file> <file_list>
3 um <|egal_sixbit_id>

<subcommand>

<switches> uw» CR

um (<unslashed_switch_list>) um <control-R>
| i= <glashed_switch_list> n= <control-L>

um <empty> nm [<switch>
e_ Nn

/ <unsiashed_switch_list>

= <switch_spec> <switch>
| = <unsiashed_switch_list> <switch_spec> um <number> <switch>

sm <TOPS-10 switch>

% um G
i sum |

| <gslashed_switch_list> um T
1 ::- | <switch_spec>]
3 = <glashed_switch_list> / <switch_spec> COMMAND LINE SEMANTICS
1 All this is by way of saying that Sail accepts
§ commands in essentially the same format
: <switch_spec> accepted by other processors written for the
: u= <valid-switch-name> operating system on which you are running.

: n= <gigned_integer> <valid_switch_name> The binary file name is the name of the output
. device and file on which the ready to load

object program will be written. The listing file,

! <valid_switch_name> if included, will contain a copy of the source
i us A files with a header at the top of each page and

wm B an octal program counter entry at the head of
: v= C each line (see page 134). The listing file name

um D is often omitted (no listing created). The source
| sm file list specifies a set of user-prepared files
|: t= H which, when concatenated, form a valid Sail

) nm K program (one outer block).
sm |

1 ue P If file_ext is omitted from the binary-name then
ne Q the extension for the output file will be .REL.
us R The default extension for the listing file is .LST.

! im Sail will first try to find source files under the

f HL AY; names given. If this fails, and the extension is
A sem omitted, the same file with a .SAl extension will

| ium X be tried.

3 If device-name is omitted then DSK: is

| TENEX SAIL COMMAND LINE SYNTAX assumed. If proj_prog is omitted, the project-
| programmer number for the job is assumed.
| <command_line>

: wm <file_list> CR Switches are parameters which affect the
’ um <file_list> , CR operation of the compiler. A list of switches
} um <filo_list> « may appear after any file name on TOPS-10;
: um <file_list> | « use subcommand mode on TENEX. The
3 um <file _list> parameters specified are changed immediately
3 =? after the file name associated with them is
: processed. The meanings ‘of the switches are

given below.

| <file_list>

| 133

USING SAIL SAIL

The binary, listing and (first) source file names ARG SWITCH FUNCTION
are processed before compilation -- subsequent
source names (and their switches) are 0 A The octal number 0 specifies bits
processed whenever an end-of-file condition is which determine the code compiled in
detected in the current source file. Source files certain cases.

which appear after the one containing the outer

block’s END delimiter are not ignored, , but luse KIFIX for real to integer conversion
should contain only comments. 2 use FIXR

otherwise use UUOFIX

Each new line in the command file (or entered 4 vse FLTR for integer to real conversion

from the teletype) specifies a separate program otherwiseuse UUOFLOAT

compilation. Any number of programs can be 10 vse ADJSP whenever possible
compiled by the same Sail core image. otherwise use SUB, or ADD with

PDLOV drtection

The file_spec@ command causes the compiler to 20 use FORTRAN- 10 calling sequence for ceiling
open the specified file as the command file. Fortrrn Procedures; @ Isr old F40 style
Subsequent commands will come from this file.
If any of these commands is file_spec®, another The compiler is initialized with JOA;
switch will occur. the compiled code will run on a KA1lO

using FA0 calling sequence for
] The filespec |! command will cause the Fortran Procedures.
specified file to be run as the next processor.
This program will be started in “RPG mode”. 3 B The octal number 0 specifies bits
That is, it will look on the ‘disk for its which determine how much

commmands if its standard command file is there information is produced for BAIL.
-- otherwise, command control will revert to

the TTY. The default option for this file name I Program counter to sourcellisting directory.
is DMP. The default device is SYS. 2 Include information on all symbols. If not

_ selected thrn do not include non-intornrl
TENEX Sail command syntax is much like the local variables.
syntax of the TENEX DIRECTORY command. 4 SIMPLE procedures get proc. descriptors.

Filenames are obtained from the terminal using 10 Don’t automatically lord SYS:BAIL.REL.
recognition; .SAl,.REL, and .LST are the default 20 Make the Sail predeclared runtimes
extensions. Command lines ending in comma or known by requiring SYS:BAIPDn.REL.
comma backarrow enter subcommand mode.

Command lines ending in backarrow cause C This switch turns on CREFfing. The
termination of command scanning and start listing file (which must exist) will be

compilation; the program will be loaded with in a format suitable for processing by
DDT and DDT will be started. A file name CREF, the program which will
appearing before a backarrow is taken as a generate .a cross-reference listing of
source file; the .REL file will have the same your Sail program from your listing
(first) filename. A command line beginning with files.

backarrow causes no .REL file to be generated.
In subcommand mode the characters control-R D D If the decimal number D is zero or

and control-L allow complete specification of does not appear then double the
the binary and listing file names, respectively. amount of space for the push down

stack used in expanding macros (see
SWITCHES page 57). If D is not zero then set
The following table describes the Sail the stack size to D. Use this switch if
parameter switches. If the switch letter is the compiler indicates to you that this

preceded in the table by the D character, a stack has overflowed. This shouldn’t
decimal number is expected as an argument. 0 happen unless you nest DEFINE calls

is the default value. The character 0 indicates extremely deeply.
that an octal number is expected for this

switch. Otherwise the argument is ignored. 0 F 0 is an octal number which specifies
exactly what kind of listing format is

134

i SAIL USING SAIL

generated. 0 contains information one) for each word of code
about 7 separate listing features, generated. This value, initially 0,

: each of which is assigned a bit in O. represents the address of a word of
code in the running program, relative

1 List the program counter (see / L switch). to the load point for this program.

2 List with line numbers from the source text. The current octal value of PCNT plus
; 4 List the macro names before expansion, the value of, another internal variable

1 10 Expand macro texts in the listingfils. called LSTOFFSET, is printed at the
{ 20 Surround each listed macro expansion beginning of each output line in a

with <and> listing file. For the first program

: 40 Suspend listing. compiled by a given Sail core image,
| 100 No bannerat the top of each page. LSTOFFSET is initially 0. If the L

] [This is a wry to "permanently" @ xprnd switch occurs in the command and the
macros.A /110F listing is (almost) value 0 is non-negative, 0 replaces

d suitsbk as a Ssil source file.) the current value of LSTOFFSET. If O
is -1, the current size of DDT is put

The compiler is initialized with [7f into LSTOFFSET. If 0 is -2, the
(i.e., list program counter, line current size of RAID is used. In “RPG

i numbers, and macro names). mode” the final value of PCNT is
added to LSTOFFSET after each

G (TENEX only) Load after compilation, compilation. Thus by deleting all .REL
3 exiting to the monitor. files produced by Sail, and by

compiling all Sail programs which are

1 H (Default on TENEX) This switch is to be loaded together with one RPG
) used to make your program sharable. command which includes the L switch,
: When loaded, the code and constants you can obtain listing files such that

will be placed in the second (write- each of these octal numbers
1 protected) segment, while data areas represents the actual starting core

will be allocated in the lower, non- address of the code produced by the

shared segment. Programs compiled line it precedes. At the time of this
with /H request SYS:HLBSAn as a writing, SNAIL would not accept minus
‘library (<SAIL>HLBSAn on TENEX). signs in switches to be sent to

i The sharable library HLBSARn is processors. Keep trying.
} identical to LIBSAn, except that it
3 expects tO run mostly in the upper DP Set the size of the system pushdown
4 (shared) segment. Recall that nis the list to D (decimal). If D is zero or
i current version number. At SUAI, use does not appear then double the
f the monitor command SETUWP to (current) size of the list. Thus
| write protect the upper segment. [35P/P will first set the stack size to
: Then SSAVE the core image. 35, then double it to 70. It has never
[been known to overflow.
3 (TENEX only) Do not compile two-

i segment code. D Q Set the size of the string pushdown
: list to D (decimal). If D is zero or

§ K The counter mechanism of Sail is does not appear then double the size
activated, enabling one to determine of the list. No trouble has been
the frequency of execution of each encountered here, either.

] statement in your Sail program. See
: Appendix F, the Statement Counter DOR Set the size of the compiler’s parsing

System. This switch is ignored unless and semantic stacks to D (decimal). If
a listing is specified with a /LIST. D is zero or does not appear then

double the size of the stacks. A long
| 0 L In compiling a Sail program, an conditional statement of the form (IF

internal variable called PCNT (for .. THEN... ELSEIF... THEN...

: program counter) is incremented (by ELSE IF ..) has been known to

135

WE

USING SAIL SAIL

cause these stacks to overflow their X Enable compiler save/continue (page
normally allocated sizes. 159).

D S The size of String space is Set to D Here is an example of a compile string which a
words. String space usage is a user who just has to try every bell and
function of the number of identifiers, whistle available to him might type to compile

especially macros, declared by the a file named NULL:
user. In the rare case of String
space exhaustion, 5000 is a good first COMPILE /LIST /SAIL NULL(RR-2L5000S)

number to try.
The switch information contained in

T (TENEX only) Load with DDT, exit to parentheses will be sent unchanged to Sail.
DDT. Note the convention which allows one set

of parentheses enclosing a myriad of switches

V Always put loader link blocks and the to replace a "/" character inserted before each
characters for constant strings into one. This string tells the compiler to compile

the low segment, even if [H is NULL using parse and semantic stacks four
selected. This is intended for use in times larger than usual (RR). A listing file is

overlay systems where code is to be made which assumes that RAID will be
overlaid but data is not. loaded and NULL will be loaded right after

RAID (-2L). His program is big enough to
WwW Generate additional suppressed DDT need 5000 words of String space (500009.

symbols. These symbols are The statement REQUIRE “chars”
designed to serve as comments to a COMPILER-SWITCHES; can be used to change
programmer Or processor rummaging the settings of the compiler switches. “chars”

though the generated code. Symbols must be a string constant which is a legitimate
generated by this switch all begin switch string, containing none of the characters
with a percent sign (%), and many (eq.
come in pairs. A %8 symbol points to
the first word of an area and a %. REQUIRE "20F* COMPILER-SWITCHES;

symbol points to the first word

beyond the area. Thus the length of The string of characters is merely pasded to
an area is the difference of its %. and the switch processor, and it may be possible to
%8 symbols. The symbols are: cause all sorts of problems depending on the

switches you try to modify. Switches A, B, and
ZSADCN 7.ADCN address constants F are the only ones usually modified. The

7$LIT 2.LT literals switches which set stack sites (D, P, Q, R) or
78RLIT . Z.RLIT reference literals string space (S) should be avoided. Switches
7SCOD 7.8COD START(er QUICK),CODE which control the format of files (B,F) should
78STRC 728STRC string variables only be used if you have such a file open.
78VARS %ZVARS simple variables
ZALSTO start to clear registers
7SARRY first data word of a fixed array

78FORE FOREACH satisfier block 22.5 Loading Sail Programs
28$SUCC SUCCEED/FAIL return block

Load the main program, any separately
/W tends to increase the number of compiled procedure files (see page 12), any
DDT symbols by a factor of 2 or 3. assembly language (see page 13) or Fortran

procedures, and DDT or RAID if desired. This is
all automatic if you use the LOAD or DEBUG or

EXECUTE system commands (see [MonCom]).
Any of the Sail execution time routines

requested by your program will be searched

out and loaded automatically from
SYS:LIBSAn.REL (<SAIL>LIBSAn on TENEX). If

136

I

!
; SAIL - USING SAIL

: the shared segment is available and desired, allocations and print out what they are. All
1 type SYS:SAILOW (SYS:LOWTSA for TENEX) as entries will be prompted. Numbers should be
: as your very first LOADER command (before /D decimal. Typing alt-mode instead of CR will
i even). SUAI people can abbreviate SYS:SAILOW cause standard allocation to be used for the
! as [Y. All this is done automatically by SNAIL at remaining values. The compiler will then start,
i SUAI. Other loaders (e.g., LINK10) can also be awaiting command input from the teletype.
: used.

] For SUAl “Global Model” users, the REE
oo command will also delete any REQUIRED or

previously typed segment name information.

i 22.6’ Starting Sail Programs The initialization sequence will then ask for new
| names.

] For most applications, Sail programs can by
| started using the START, RUN, EXECUTE, or TRY

; system commands, or by using the SG command
| of DDT (RAID). The Sail storage areas will be

initialized. This means that all knowledge of 1/0

: activity, associative data structures, strings, etc.
] from any previous activation of the program
] will be lost. All strings (except constants) will

be cleared to NULL. All compiled-in arrays will
| not be reinitialized (PRELOADed arrays are
i preloaded at compile time = OWN arrays are

never initialized). Then execution will begin
with the first statement in the outer block of

! your main program. As each block is entered,
1 its arrays will be cleared as they are allocated.
1 Variables are not cleared. The program will

exit when it leaves this outer block.

STARTING THE PROGRAM IN “RPG” MODE

Sail programs may be started at one of two
consecutive locations: at the address contained

in the cell JOBSA in the job data area, or at the
1 address just following that one. The global
) variable RPGSW is set to 0 in the former case,
JE -1 in the latter. Aside from this, there is no
} difference between the two methods. This cell

may be examined by declaring RPGSW as an
EXTERNAL INTEGER.

| 22.7 Storage Reallocation with REEnter

| The compiler dynamically allocates working
3 storage for its push down lists, symbol tables,

string spaces, etc. It normally runs with a
| standard allocation adequate for most programs.

| Switch settings given above may be used to
change these allocations. If desired, these

9 allocations may also be changed by typing TC,
i followed by REE (reenter). The- compiler will
: ask you if you want to allocate. Type Y to
} allocate, N to use the standard allocation, and

: any other character to use the standard

137

bf

EE

Ct BUGGING SAIL PROGRAMS SAIL

SECTION 23 A same as <if>

DEBUGGING SAIL PROGRAMS | B Enter BAIL if it is loaded.

C same as <cr>

D Enter DDT or RAID if one is loaded.

23.1 Error Messages Otherwise, type “No DDT” and re-
question. Do not type D if you

It the compiler detects a syntax or semantic really mean B.
er ror while compiling a program it will provide

{rie user with the following information: E Edit. This command must be
followed by a carriage return, or a

i) The error message. These are space, a filename (in standard
English phrases or sentences which format, assumes DSK) and a carriage
attempt to diagnose the problem. If return. If the filename is missing,
a. message is vague it is because no the SOS editor (see [Savitzky]) is
specific test for the error has been started, given instructions to edit
made and a catchall routine detected the current source file and to move

it. If the message begins with the the editing pointer to the current
word "DRYROT" it means that there page and line number. If a file name

is a bug in the compiler which some is present, that file is edited starting
strangeness in your program was at the beginning. This features
able to tickle. See a system available outside SUAI only if the
programmer about this. SOS editor is available, and is

modified to read a standard CCL file

2) The current input line. Page and for its input. If you change your

| line number, along with the text of | mind and do not wish to edit, typingthe line being scanned, are typed. an altmode will get you back to the
A line feed will occur at the point in question loop.

| the line just following the last
program element scanned. The S Restart. Sometimes useful if you
absence of a position indicator are debugging the compiler (or if

: means that a macro (DEFINE) body is you were compiling the wrong file).
| being expanded. The program is restarted, accepting

compilation commands from the TTY.

3) A question mark (?) or arrow (T).
T TV edit. Same as E except that E is

Kespond to the prompt in any of the following used at SUAI, TVEDIT at IMSSS and
ways: SUMEX.

<cr> Try to continue compilation. A X Exit. All files are closed in their
message will be printed and the current state. The program exits to
sequence reentered if recovery is the system.
impossible (if a" was typed
instead of an arrow). Any other character will cause the error

routines to spew forth a summary of this table

<if> Try to continue the compilation, but and re-enter the question sequence.
don’t stop for user response after
future errors. |l.e., automatic ERROR MODES

cont inuat ion. Messages will fly by | For errors which occur during compilation, the
(at an unreadable rate on DPYs) above procedure can be modified slightly by
until the compilation is complete or setting various modes. One sets a mode by
an error occurs from which no including the appropriate letter before the

recovery is possible. In the latter response. Any of the four modes may be reset
case the question sequence is by including a minus sign (=) before them. E.g.
reentered.

138

S AI L - DEBUGGING SAIL PROGRAMS

"-Q". Error modes can also be set with REQUIRE EXECUTION TIME ERROR MESSAGES
: <string_const> ERROR-MODES. When the Error messages have nearly the same format as

compiler sees this it reads through the string those from the compiler (page 138). They
constant and sets the modes as it sees their indicate that

letters. These modes remain in effect until the

end of the compilation or until reset with a 1) an array subscript has overflowed;
response to an error message, or another
require error-modes. 2) a case index is out of range;

The available modes are: 3) a stack has overflowed while
1 allocating space for arecursive

K KEEP type-ahead. The error procedure; or
| handler flushes all typeahead except

a LF (linefeed). If KEEP mode is 4) one of the execution time routines
ever implemented then the input has detected an error.
buffer will not be flushed.

In Numbers mode, the “Called from” address

L LOGGING. The first and second identifies, in the first 3 cases, the location in

items of the error message will be the user program where the error occurred ;
| sent to a file named <prognam>.L0G the “Last SAIL call . at” address gives the

where <prognam> is the name of the location of the faulty call on the Sail routine for
file of the main program. If you type 4 messages.
would rather have another name,

use F<file specification>, where All the replies to error messages described in
<file specification> must be a legal page 138 are valid. If no file name is typed
file name and PPN. The default with the “E” or "T" option, the editor re-opens
extension is .LOG and the default . the last file mentioned in the EDIT system

PPN is that of the job. The .LOG file command.
(or whatever it's called) is closed
when one’s program finishes The function USERERR may be used to activate
compilation, or the compilation is the Sail error message mechanism. Facilities

| terminated with the S, X, E, or T are provided for changing the mode. See page

responses. 49 for details.

N NUMBERS. This mode causes the USER ERROR PROCEDURES

message “Called from xxxx Last A user error procedure is a user procedure
SAIL call at yyyy” to be typed that is run before or instead of the Sail error
before the question mark or arrow. handler every time an error occurs at
Useful to compiler debuggers and runtime. This includes all array errors, 10

3 hand coders. errors, Leapish errors and all USERERRs. It
does not include system errors, such as Ill Mem

! Q QUIET. If the error is continuable, Ref or III UUO.

3 none of the above will be typed.
] Hawever, you will always be notified The procedure one uses for a user error
i of a non-continuable error. procedure must be of the following type:

1 Note that setting a mode does nothing but set a SIMPLE INTEGER PROCEDURE proc
i mode; it does not cause continuation. (INTEGER lo¢; STRING msg, rsp);

STOPPING RUNAWAY COMPILATIONS Only the names proc, loc, msg, and rsp may

Typing [ESC] | at SUAI or control-H on TENEX vary from the example above, except that
will immediately cause the Q and A modes to be one may declare the procedure INTERNAL if
reset so that the next error will (a) be typed, one wishes to use it across files.

; and (b) wait for a response rather than
continuing automatically. Whenever the external integer _ERRP_ is

loaded with LOCATION (proc), the error handler

139

— [—

DEBUGGING SAIL PROGRAMS SAIL

will call proc before it does anything else. It 23.2 Debugging
will set loc to the core location of the call to

the error handler. Msg will be the message Sail has a high-level debugger called BAIL; see
that it would have printed. Rsp will be non- the description beginning in the next
NULL only if the error was from a USERERR subsection. This subsection gives necessary
which had response string argument. Proc can information for those who wish to use DDT or
do anything that a simple procedure can do. RAID. The code output for Sail programs is
When it exits, it should return an integer designed to be fairly easy to understand when
which tells the error handler if it should do examined using the DDT debugging language or

anything more. If the integer is 0, the error SUAPs display oriented RAID program. A
handler will (1) print the message, (2) print knowledge of the debugger you have chosen is

the location, and (3) query the tty and dispatch required before this section will be
on the response character (i.e., ask for a <cr>, comprehensible.
<lt>, etc.). If the right half of the integer is
non-zero, it is taken as the ascii for a character SYMBOLS

to dispatch upon. The left half may have two Only those symbols which have been declared
bits to control printing. If bit 17 in the integer INTERNAL (see page 12) and those declared in
is on, message printing is inhibited. If bit 16 is the currently open “program” are available at a
on, then the location printing is inhibited. For given time. The name of a Sail program as far
example, "X"+(1 LSH 18) will cause the location as DDT or RAID (henceforth DDRAID) is
to be printed and the program exited. "C"+(3 concerned is the name of the outer block of
LSH 18) will cause the error handler to continue that program. If no name is given for this
without printing anything. block, the name M. will be the default.

Note that simple procedures can not do a Only the first six non-blank characters of a
non-local GOTO. However, the effect of a block name or identifier will be used in forming
non-local GOTO can be achieved in a user a DDRAID symbol. If two identifiers in the same

error procedure by loading the external integer block have the same first six characters the

ERRJ with the LOCATION of a label. The label program using them will not get confused, but
should be a on a call to a non-simple procedure the user might when trying to locate these
which does the desired GOTO. The error identifiers.

handler clears _ERRJ_ before calling the
procedure in _ERRP_. If _ERRJ_ is non-zero BLOCKS
when the user procedure returns, and All block names and identifiers used as
continuing was specified, then the error variables, procedures or labels in a given (main
handler’'s exit consists of a simple transfer to or separate procedure) program are available
that location. Note that for this simple transfer for typeout when that program is “open”
to work properly, the place where the error (NAMES: has been typed). Torefer to a symbol,
occurred (or the call to USERERR) must be in type BLOCK-NAME&SYMBOL/ (substitute ;for/
the same static (lexical) scope as the label in RAID). The block name may be omitted if you
whose LOCATION is in _ERRJ_ If this is really have “opened” the block with BLOCK-NAMES&.
important to you, see a Sail hacker. The symbol table is block-structured only to

the extent that block names have appeared in
WARNING! Handling errors from strange places the source program. For instance, in the
like the string garbage collector and the core program
management routines will get youinto deep
trouble. BEGIN "NAME 1”

INTEGER |, J;

BEGIN

INTEGER |, K;

END;

END “NAME 1"

140

SAIL DEBUGGING SAIL PROGRAMS

the symbols J, K, and both symbols | are INSTR.: <first word>
considered by DDRAID to belong in the same INSTR! : <second word>

| block. Therefore confusion can result, with
respect to |. This approach was taken to avoid

1 the necessity of generating meaningless block More about string descriptors on
3 names for DDRAID when none were given in the page 158.
f source program. A compound statement will be

considered by DDRAID to be a block if it has a BLOCKS The first word of the first

: name. executable statement of every
3 block or compound statement
3 SAIL GENERATED SYMBOLS which has been given a name is

Some extra symbols are generated by Sail and given a label created in the same
will show up when you are using DDRAID. They way as those for arrays above.

| are: This label cannot be gone to in
the source program. It causes no

ACS The accumulators P (system push program inefficiency. This label
, down list pointer), and SP (string points at the first word of the

: push down pointer) are given compound tail -- not the first
symbolic names. Currently P='}7, word of code generated for the
SP-‘16. block (skips any procedure or

array declaration code).
OPS The op codes for the UUQs FIX,

FLOAT, and ARERR (subscript START The first word of code generated

! overflow UUQ) are included to for any given program is given
) make these easy to detect in the the name "S."

| code.

PROCEDURES The word at
| ARRAYS For each array declared in the entry address -1 of an

| outer block (built-in arrays), the INTERNAL procedure contains the
| fixed address of its first element address of the procedure

is given a symbolic name. This descriptor. (This enables APPLY

name is constructed from the of an EXTERNAL procedure to

5 characters of the array name (up work.) The first word of the
| to the first 5) followed by a procedure descriptor is given a

3 period. For instance, the first name consisting of the first 5
! element of array CHT is CHT.; the characters of the procedure
: first element of PDQARR is name, followed by a dollar sign

PDQAR.; The last semicolon was ($).
really a period. This dotted
symbol points to the second word WARNINGS
of the first descriptor for String Since only the first 6 characters of an identifier

| Arrays (see page 158, page are available, it is wise to declare symbols
| 157). which will be examined by DDRAID in such a

way that these six characters will uniquely
STRINGS For each string declared in the identify them.

| outer block (built-in strings), the
] second word of the two word

| string descriptor is given the

name of the string variable, 23.3 BAIL
: | truncated to six letters. The first

~ word of the string descriptor is BAIL [Reiser] is a high-level breakpoint package
3 given a name consisting of the for use with Sail programs. Communication
g first five letters of the string’s between the programmer and BAIL is in
: name followed by a period. For character strings which are the names and

| example, if you declare a string values of Sail objects. BAIL reads general
INSTRING, then the two word Sail expressions typed by the programmer,

¥ descriptor:

141

- ee Ee

DEBUGGING SAIL PROGRAMS SAIL

evaluates them in the context of the place in BAIL prompts the programmer for input by
the program where execution was suspended, typing a number and a colon. The number
and prints the resulting value in an indicates how many times BAIL has been

| appropriate format. The evaluation and entered but not yet exited, and thus is the
printing are performed just as if the recursion depth inside BAIL. Input to BAIL can
programmer had inserted an extra statement be edited using the standard Sail input-editing
into the original program at the point where characters for the particular operating system
execution was suspended. BAIL also provides under which the program is running. [BAIll

| a way to tak about the program, to requests input via INCHWL on DEC TOPS-10
answer the questions “Where was execution. systems and via INTTY on TENEX systems.]
suspended?“, “By what chain of procedure Input is terminated whenever the editor
calls did execution proceed to that point?“, and activates, string quotation marks balance,
“What is the text of the program?” and the last character is a semicolon;

otherwise input lines are concatenated into

In order to perform these functions, BAIL must one string before being processed further.
have some information about the program

being debugged. The Sail compiler will The programmer may ask BAIL to evaluate
produce this information on a file with any Sail expression or procedure call whose
extension .SM! if the program is compiled with evaluation would be legal at the point at which
an appropriate value supplied for the /B switch. execution of, the program being debugged was
The .SM1l information consists of the name, suspended (except that expressions involving

type, and accessing information for each AND, OR, IF-THEN-ELSE, and CASE are not
variable and procedure, the location of the allowed.) BAIL evaluates the expression, prints
beginning and end of each statement, and a the resulting value in an appropriate format,
description of the block structure. and requests further input.

The code for BAIL itself is loaded automatically Declared inside BAIL are several procedures
when the program is loaded. In order for the whose values or side effects are useful in the
added information and code to be of any use, debugging process. These procedures handle
it must be possible to give control to BAIL at the insertion and deletion of breakpoints,
the appropriate time. An explicit call to BAIL display the static and dynamic scope of the
is possible by declaring EXTERNAL PROCEDURE current breakpoint, display selected statements

BAIL; in the program and using the procedure from the source program, allow escape to
call BAIL;. This works well if it , can be a n assembly- language debugging program,
predicted in advance where BAIlLing might be and cause resumption of the suspended
helpful. Runtime errors, such as subscript main program.
overflow or CASE index errors, are not as

predictable; but responding “B” to the Sail COMPILE-TIME ACTION
error handier will activate BAIL. Interrupting The principal result of activating BAIL at
the program while it is running (to investigate compile-time is the generation of a file of

a possible infinite loop, for example) can be information about the source program for use
achieved under the TENEX operating system by by the run-time interpreter. This file has the
typing control-B. On a DEC TOPS-10 operating same name as the .REL file produced by the
system, first return to monitor mode by typing compilation, except that the extension is .SMI.
one or more control-C’s, then activate BAIL by If requested, BAIL will also generate some

typing DD<cr>. additional code for SIMPLE procedures to
make them more palatable to the run-time

BAIL performs some initialization the first time interpreter.
it is entered. The information in the .SMI

file(s) is collected and processed into a .BAl The action of BAIL at compile time is governed
file. This new file reflects all of the by the value of the /B switch passed to the
information - from the .SMl files of any compiler. If the value of this switch is zero
separately-compiled programs, and the (the default if no value is specified) then
relocation performed by the loader. If the BAIL is completely inactive. Otherwise, the
core image was SAVEd or SSAVEd then in low-order bits determine the actions which
subsequent runs BAIL will use the .BAl file and BAIL performs. [The value of the [/B
bypass much of the initialization. switch is interpreted as octal]

142

S AI L - DEBUGGING SAIL PROGRAMS

1 bit action if on The B switch must occur on the binary term,
] not the listing or source term. Thus:
i The .SM1 file will contain the program
: counter to source/listing text directory. R SAIL or .COM PROG(278,)
; -PROG/278PROG

2 The .SM1 file will contain symbol
3 information for all Sail symbols The program counter to source/listing index is
4 encountered in the source. If this bit is kept in terms of coordinates. The coordinate
! off, then information is kept only for counter is zeroed at the beginning of the

procedures, parameters, blocks, and compilation and is incremented by one for each
internals; le. non-internal local BEGIN, ELSE, and semicolon seen by the parser,

3 variables are not recorded. provided at least one word of code has been
compiled since the previous coordinate was

i 4 SIMPLE procedures will get procedure defined. Note that COMMENTs are seen only
descriptors, and one additional instruction by the scanner, not the parser, and that
(@ JFCL 0) is inserted at the beginning DEFINEsand many declarations merely define
of SIMPLE procedures. Except for symbols and do not cause instructions to be
these two changes, all properties of generated. For each coordinate the

3 SIMPLE procedures remain the same as directory contains the coordinate number,’ the
: before. The procedure descriptor is value of the program counter, and a file
1 necessary if the procedure is to be pointer to the appropriate place. The

called interpretively or if the procedure appropriate place is the source file unless a
: is to be TRACEd. listing file is being produced and the CREF

] switch is off, in which case it is the listing
‘10 BAIL will not be automatically loaded file. [The’ listing file produced for CREF is

and initialized, although all other actions nearly unreadable.] On a non-CREF listing, the
requested are performed. This is program counter is replaced by the coordinate

i primarily intended to make it easier to number if bit 1 of the /B switch is on.
| debug new versions of BAIL

; without interfering with SYS:BAIL.REL. The symbol table information consists of the
: By using this switch the decision to load block structure and the name, access

BAIL is delayed until load time. information, and type for each symbol.

3 ‘20 A request to load SYS:BAIPDn.REL is If a BEGIN-END pair has declarations (i.e., is a oo
generated. This file contains requests to true block and not just a compound statement)
load procedure descriptors for most of but does not have a name, then BAIL will
the predeclared runtime routines, making invent one. The name is of the form Bnnnn

: it possible to call them from BAIL. The where nnnn is the decimal value of the current
procedure descriptors and their coordinate.

: symbols occupy about 12P. Subsets of
these procedure descriptors can be RUN-TIME ACTION
loaded individually to reduce memory The BAIL run-time interpreter is itself a Sail
space requirements, at the cost of not program which resides on the system disk

] being able to talk about the routines area. This program is usually loaded
omitted. The subsets are BAICLC automatically, and does some initialization
(containing SQRT, EXP, LOG, SIN, COS, when entered for the first time. The

; RAN, CVOS, CVSTR, CVXSTR), BAIIOl initialization generates a BAI file of
4 (major input/output and string information collected from the .SMl files

procedures), BAIIO2 (minor produced by separate compilations (if any).
| input/output and string procedures), The .SM1 files correspond to .REL files, and
| BAIMSC (terminal functions and the .BAl file corresponds to the .DMP or .SAV

miscellaneous), and BAIPRC (process file. Like RPG or CCL, BAIL will try to bypass
; and interrupt routines). To use these much of the initialization and use an existing
i subsets, request’ them explicitly (e.g., .BAl file if appropriate. During initialization
J REQUIRE "SYS:BAICLC" LOAD_MODULE; BAIL displays the names of the .SM1 files it
: or on TENEX, "<SAIL>BAICLC") and leave is processing. For each .SMl file which
! the./20B bit off.

143

TTTET

DEBUGGING- SAIL PROGRAMS SAIL

contains program counter/text index —ARGS —8@™
information, BAIL displays the names of the
text files and determines whether the text files “STR” « ARGS

are accessible.

The arguments to the procedure which was

The interpreter is activated by explicit call, most recently called.
previously inserted breakpoints, or the Sail
error handler. For an explicit call, say
EXTERNAL PROCEDURE BAIL; . . . BAIL;. From

the error handler, respond B. Breakpoints -_ BREAK
will be described later in this section.

BREAK (“LOCATION”, "CONDITION"(NULL),
DEBUGGING REQUESTS "ACTION"(NULL), COUNT(O))
When entered, BAIL prints the debugging
recursion level followed by a colon, and awaits A breakpoint is inserted. The syntax for the
a debugging request. BAIL accepts ALGOL and first argument is
LEAP expressions of the Sail language. The

following exceptions should be noted. <location>
Expressions involving control structure are not n= <label>
allowed, hence BAIL will not recognize AND, n= <procedure>
OR, IF-THEN-ELSE, or CASE. Bracketed triple i= <block name>
items are not allowed. The TO and FOR a= #<nnnn>

substring and sublist operators have been = <block name> . <location>
extended to operate as array subscript
ranges, FOR PRINT-OUT ONLY. If FOO is an <nnnn>

array, then FOO[3 TO 7} will act like FOO[3], w= «decimal coordinate number>
FOO[4],FOO[5], FOO[6], FOO[7); but is easier to
type. This extension is for print-out only; If the location is specified by the <block
ne general APL syntax or semantics are name>.<location> construct then the blocks of
provided. the core image are searched in ascending order

of address of BEGINs until the first <block

BAIL evaluates symbolic names according to the name> is matched. The search continues until

scope rules of ALGOL, extended to always the second <block name> is matched, etc. The
recognize names which are globally unique and breakpoint is inserted at the label, procedure,
have a fixed memory location (everything or coordinate declared within the scope of the
except parameters and recursive locals). For last <block name>. This detailed specification is
any activation of BAIL, the initial scope is the not usually necessary. The action taken at a
ALGOL scope of the statement from which BAIL breakpoint is
was activated. The procedure SETLEX (see
below) may be used to change the scope to IF LENGTH (CONDITION) AND EVAL (CONDITION)
that of any one of the links in the dynamic AND (COUNT « COUNT- i)<Q AND LENGTH(ACTION)
activation chain. See also the section below on THEN EVAL(ACTION);

BLOCK STRUCTURE for a way to evade the EVAL(TTY)
scope rules.

Several procedures are predeclared in the
outermost block to handle breakpoints and —— COORD ————————
display information. These are described

individually below. NUMBER ¢« COORD (“LOCATION”)

Returns the coordinate number of the location

given as its argument. LOCATION has the same

syntax as in BREAK.

144

f .
! SAIL DEBUGGING SAIL PROGRAMS

§ —_— DOT—— ——.SHOWrn

i DOT "STR"« SHOW (FIRST, LAST(O))

This procedure transfers control to an assembly The text of the program from the source or
; language debugging program (if one was listing file. If last is less than first then set last
3 loaded). to last+first. Return coordinates first through
1 last. SHOW (5, 3) gives coordinates 5, 6, 7, and
] 8; SHOW (5, 7) gives coordinates 5, 6, and 7;

1 SHOW (5) gives coordinate 5 only.
: -_. DEFINE eee

| A plus sign ("+") following the coordinate
i DEFINE (CHAR, “MACRO”) number indicates that the values of some
: variables have been carried over in

Macros from the source file(s), are not accumulators from the previous coordinate.
] recognized at the present time. There are 26 Changing the value of variables might not be
4 character macros definable, from “A” to "2% successful in such a case, because BAIL will not

DEFINE macros substitute the given ‘string for change any accumulator value directly. The
each occurrence of <alt><char> which is not MEMORY construct can be used to modify any

] part of a string constant. If the operating location in a core image, including the
] system can send characters of more than 7 bits accumulators.
] to INCHWL (INTTY under TENEX) then any
1 activation character with high order bits will
] also activate the macro. Thus at SUAIl<alt>P,

oP, and «BP are all equivalent. In all cases the _—TEXT —————
/ character is converted to upper case before
: doing anything else. The macros G, P, S, and X "STR"« TEXT

are predefined to be "1GQ;"," "GO;", " USTEP;",
and "WGSTEP;" respectively. The current static and dynamic scopes, with

text from the source or listing file.

HELP————

—— TRACE —m—m™—™

i HELP

: TRACE (“PROCEDURE”)
3 A list of options, including short descriptions of

3 the procedures described in this section, is Special breakpoints are inserted at the
3 printed. An input consisting of a question mark beginning and end of the procedure named. On

followed by a carriage return is interpreted as entry, the procedure name and arguments are
| a call to HELP. typed. On exit, the name and value returned (if

! any) are typed.

| ——————— SETLEX——

! TRAPS —m@8@™m

i SETLEX (LEVEL)
"STR"« TRAPS

) Evaluating SETLEX(n) changes the static (lexical)
: scope to the scope of the n-th entry in the A list of the current breakpoints and traces.

dynamic scope list. SETLEX(0) is the scope of
s t h e breakpoint; SETLEX(l) is the scope of
; the most recent procedure call in the
A dynamic scope, etc.

| 145

DEBUGGING SAIL PROGRAMS SAIL

—— |JNBREAK ~=— —GOGTAB ——r—rer—rerr———

UNBREAK (“LOCATION”) EXTERNAL INTEGER ARRAY GOGTAB[O:n]

The breakpoint at the location specified is This array is the Sail user table, containing all
removed. kinds of magical information. (The procedure

USERCON was formerly the only way to access
the user table.) If you are a hacker then pick up

a copy of SYS:GOGTAB.DEF (<SAIL>GOGTAB.DEF
—_— UNTRACE—— on TENEX) and poke around. Do not change any

values unless you know what you are doing.

UNTRACE (“PROCEDURE”)
STRING TYPEOUT

The breakpoints inserted by TRACE are Strings are usually typed so that the output
removed. looks the same as the input, i.e., a string is

typed with surrounding quotation marks and
doubled internal quotation marks. For SHOW,
ARGS, and TEXT this would ordinarily create

—_—m I—— confusion, so they are handled specially. When

these procedures are evaluated they set a flag
"GO which inhibits quotation mark fiddling, provided

that no further evaluation takes place before

An immediate exit from the current instantiation. the next typeout. Thus SHOW (5, 3); will be

of BAIL is taken and execution of the program typed plain, but STR « SHOW (5, 3); will have
is resumed. NGO is a reserved word (the only quotation marks massaged.
one) in BAIL.

BLOCK STRUCTURE

Variables not in the current scope can be

referenced by using the same scheme used to
—————————— || GSTEP— describe locations to BREAK. If you have

something of your own named SHOW then you

INIGSTEP can access the BAIL SHOW function by using
SRUNS.SHOW (coord);. Warning: this mode

Temporary breakpoints are inserted at all of assumes that you know what you are doing.
the logical exits of the current statement, and :

execution of the program is resumed. Logical BAIL and DDT
exits are the next statement and locations to When BAIL is loaded by a non-TENEX system, it

which the current statement can jump, sets .JBDDT to the address of one of its
excluding any procedure calls. All of the routines. (If you load both BAIL and DDT then
breakpoints which are inserted will be removed the last module loaded wins.) Under TENEX,
as soon as one of them is encountered. BAIL sets .JBDDT at runtime, but only if it is

zero when BAIL looks. If BAIL is initialized in a

core image which does not have DDT or RAID
then things will be set up so that the monitor

—_——————————— ||STEP= command DDT gets you into BAIL in the right
way. That is, BAIL will be your DDT. To enter

ISTEP BAIL from DDT (provided that the Sail
initialization = sequence has already been

Temporary breakpoints are inserted at all performed), use
locations _to which the current statement can

jump, including procedure calls, and execution pushi P,<program counter>$X
of the program is resumed. JRST BRILSX

For example, if .JBOPC contains the program
counter,

146

S AI L - DEBUGGING SAIL PROGRAMS

you want to get back to where you were

PUSH P, . JBOPCSX before the procedure was called. Then UP will
JRST BRILSX do the trick if the value of level is correct.

The entry B. provides a path from DDT to BAIL HQUERY
which works whether or not the core image has (Declare as EXTERNAL STRING "QUERY in your
been initialized. One use of this feature is to program.) Whenever BAIL wants input, it checks

BREAK a procedure in an existing production this string first. If it is not NULL then QUERY
- program without recompiling. For example, is used instead of asking the operating system

for input from the terminal. (!QUERY is set to
@; PROG compiled, loaded with BAIL rnd DDT, and SSAVEd NULL each time this is done.) Thus a program
®GET PROG can simulate the effect of typing to its own

. @DD input buffer by stuffing the text into !!/QUERY.
B$G In particular, file input to BAIL and various

BAIL initialization macro hacks can be effected by using
procedures which assign values to !!/QUERY.

1:BREAK ("procedure");
1:4 GO;

-_SETSCOPE ————

$G.

SETSCOPE (ITEMVAR PITEM)
To enter DDT from BAIL, simply say DDT;. For
operation under TENEX, control-B is a pseudo- If you have processes then SETSCOPE can be
interrupt character which gets you into BAIL. used to peek around the world. Specifically,

the static and dynamic scopes are set to those

WARNINGS of the process for which PITEM is the process
Since BAIL is itself a Sail procedure, entering item, This will allow access to variables and
BAIL from the error handler or DDT after a traceback from TEXT, but care must be

push-down overflow or a string garbage exercised when calling procedures. A call to a
collection error will get you into trouble. procedure which is not defined at the top level

will probably not work. Also, if the procedure

SIMPLE procedures cause headaches for BAIL does not return successfully then your stacks
. because they do not keep a display pointer. will be hopelessly confused.
BAIL tries to do the right thing, but
occasionally it gets lost. BAIL will try to warn Note on processes: BAIL runs in the process
you if it can. In general, looking at value string which caused the break. Thus stack space must
parameters of SIMPLE procedures does not be provided in each process. The minimum
work. amount is PSTACK(4)+STRINGSTACK(2).

HGOTO (“LOCATION”) RESOURCES USED
(For wizards only.) The return address is set to At compile time one channel, a small amount of
the location specified, and then a GO is done. additional memory, and approximately 0.3
Note that the location should be in the same seconds of KA1O CPU time per page are used.
lexical scope as the most recent entry to BAIL, BAIL uses two channels at runtime and a third
or the program will probably get confused. during initialization. These channels are

obtained with GETCHAN. If the debugging

WUP (LEVEL) recursion level exceeds 3 or 4 then it will be
(For wizards only.) This procedure trims the necessary to increase the pushdown stacks
runtime stack back to LEVEL, then reenters (particularly STRING,PDL) appropriately. BAIL

BAIL. CLEANUPs and deallocations are uses 7 of the privileged breaktables, obtaining
performed for the procedures thus killed. Level them with GETBREAK. BAIL occupies 19.5
~~ ‘“2¢amé interpretation as in SETLEX, and pages. Symbols require 5 words each with an
in addition must not designate a SIMPLE additional 2 words for each block; one word for
procedure. Suppose you ask BAIL to evaluate a each 128 coordinates is also required. The disk
procedure call, the procedure hits an error, and space required for .SM1 and .BAl files is

147

s DEBUGGING SAIL PROGRAMS SAIL

| generally one half that required for the .REL
1 files. 1:FOO[35);

3 EXAMPLE SUBSCRIPTING ERROR.

1 INDEX VALUE MIN MAX
@TYPE TEST 1 SAI l 35 0 15 : FOO[35]

: , <REISER>TEST 1.SAl;1 SAT 28-AUG-76 4:20PM PAGE 1 1:BREAK (“ADD’);

1:ADD (B, 4);
] BEGIN “TEST”
(EXTERNAL PROCEDURE BAIL; 2:ARGS:

1 INTEGER |, J, K; STRING A, B, C; REAL X, Y, Z; 3 4

INTEGER ARRAY FOO[0:15); STRING ARRAY STRARR]| :5, 2:6); 2:11G0;

3 INTEGER PROCEDURE ADD (INTEGER |, J); BEGIN “ADD” HI. GLAD YOU STOPPED BY. 7
| OUTSTR (" 1:1GO;

1 HI. GLAD YOU STOPPEO BY."); RETURN (lJ) END “ADD”; EXT{ 1: ;

; FOR l«0 STEP| UNTIL 15 DO FOO[!)els}; LEXICAL SCOPE, TOP DOWN:
FOR It | STEP 1 UNTIL 5 00 SRUNS

FOR Jt2 STEP 1 UNTIL 6 DO STRARR[l, J]«64+8¢l+J; TEST
ld; Je6; Kc 112; Xe3.14 159265; Y¢0; 223; ADD

| A«"BiG DEAL”; B«"QED"; Ce"THE LAST PICASSO’;
: ROUTINE TEXT

BAIL; ADO (7,45); USERERR (0,1, “THIS IS A TEST"); ADD «4 INTEGER PROCEDURE ADO (INTEGER I, J);
1 END “TEST”; TEST #24 ADO (7,45);
4 TL

AT SETLEX(0);

&SAIL.SAV; 10

TENEX SAIL 8.1 8-28-76(? FOR HELP) 1 :UNBREAK ("ADD");
«TEST ,«

«+/278B 1:11G0;
oe HI. GLAD YOU STOPPED BY.

TEST1SAL1 | THIS IS A TEST

END OF COMPILATION. CALLED FROM 642124 LAST SAIL CALL AT 400303

; LOADING 1B

} 1:TEXT;
i LOADER 6+9K CORE

EXECUTION LEXICAL SCOPE, TOP DOWN:
$RUNS

£G

| BAIL VER. 28-AUG-76 DYNAMIC SCOPE, MOST RECENT FIRST:
TEST 1 SM1;2 ROUTINE TEXT

TEST1 .SAl;1 SIMPLE. ‘642124 777 FILE NOT VIEWABLE
] End of BAIL initialization. TEST a26 USERERR(O,1, “THIS IS A TEST);

1:45, 7.089, “SOME RANDOM STRING”; AT SETLEX(0);
45 7.089000 “SOME RANDOM STRING” fi

1:'275, TRUE, FALSE, NULL;
: 189 -1 0 ™ UNKNOWN ID: |

j 1:J, X, l«486;
6 3.141593 46 1:SETLEX (1);

: 1:1 led;

46 0 LEXICAL SCOPE, TOP DOWN:
| 1:45.(89.4-53.06); SRUNS

1635.300 TEST

| 1 :ADD (3, 4);
f Ll:

HI GLAD YOU STOPPED BY. 7 64

1 1:F OO; 1:160;
| <ARRAY>[0:15)

| 1:FOO[4); END OF SAIL EXECUTION.
16

1:STRARR{[1 FOR 2, 4 TO 6);
] "w" "MM" “N* "IT “u" "Vv"

148

SAIL- DEBUGGING SAIL PROGRAMS

: CURRENT STATUS things which are globally unique) and programs
3 which do not use BAIL will not have it loaded

The state of the world is determined by just because the library was used. This same
: the values of the accumulators and problem occurs with EXTERNAL RECORD-CLASS
; the value of the Sail variable _SKIP_ declarations. Use of the field index

. information does not cause a reference to the

The run-time interpreter recognizes only class name but NEW-RECORD does. Thus the
] the first 15 characters of identifier same [10B trick must be used if there are no

names; the rest are discarded without NEW-RECORD calls.
comment. The characters which are

legal in identifiers are BAIL and other language processors: If CALCOM
RBCOEFGHIJKLMNOPQRS TUVIXY2 in the paragraph above was compiled by some

abcde fghi jk Imnopqrs tuvixyz processor other than Sail (e.g. FAIL, MACRO,
8123456789! _afnacoV3+~iS\| BLISS, . ..) then further steps must be taken if

Notable for its absence: period. BAIL is to know about the procedures
contained in the file. BAIL must have access

LOCATION of a procedure does not work. to a procedure descriptor in order to call any
procedure (cf. the /4B switch). Thus a user

PROPS is read-only. who wishes to use assembly language
procedures with BAIL must provide

| Bracketed triple items are not allowed. appropriate procedure descriptors. The file
| cSUAISSAILPD.FAI[S,AIL] defines a FAIL macro

A procedure call containing the name of a which will generate a Sail procedure
parametric procedure (functional descriptor. The procedure descriptors may
argument) is not handled properly. reside in a separate load module if desired;

but they must be in the core image when BAIL

| Contexts are not recognized. is being used.

External linkage: If an identifier is never

referenced by code (i.e., has an empty fixup
chain at the time fixups are put out to the
loader) then that identifier is not defined by
Sail. Thus variables which are never used do

not take up space and a request to the
loader is not made for EXTERNALS which are

not referenced. This feature of Sail. As a

result, the following DOES NOT WORK unless
special precautions are taken:

BEGIN

| EXTERNAL PROCEDURE BAIL;
EXTERNAL PROCEDURE

PLOT (REAL XO, YO, X1,Y1);
REQUIRE “CALCOM’ LIBRARY;

| BAIL END

PLOT will not be defined by Sail, hence BAIL
will not know about it. However if there are

| any references to PLOT (real or “dummy” calls)
then BAIL will know. The following trick can

also be used, assuming that CALCOM is a Sail-
compiled library: Compile CALCOM with /10B,
which says ~ “make the .SMl file but don’t
automatically load SYS:BAIL.REL". Then the
above will win (due to BAIL recognizing

149

APPENDICES SAIL

APPENDIX A similar terminals with restricted character sets.

The obscure names for the ASCII codes below

Characters 40 are listed just for confusion. Notes: “DEL”
(177) is the ASCII delete. “ESC” (33) is their alt
mode. Codes 136 and 137 have two different

interpretations, as shown below. The SOS

CHARACTER EQUIVALENT RESERVED WORD representation is so called because it is
provided by SOS, the Teletype editor. Certain

A AND other programs also know about this
5 EQV representation, but it is not built into Sail in
-. NOT any way.
\V/ OR
® XOR Standard RSCII

0 INF

¢ IN 8 1 2 3 4 S§ 6 17

| | SUCH THAT
¥ NEQ 888 NUL SOH STX ETX EOT ENQ ACK BEL
< LEQ - 818 BS TAB LF VI FF CR SO SI

| 2 GEQ 828 OLE DC10C2 0c3 DC4 NRK SYN ETB

£0 SETO 838 CRN Etl1 SUB ESC FS GS Rs US
} SETC 848 SP | “4S 78
U UNION 858 () x A

n INTER 868 8 12 3 & 5 6 7
ASSOC 878 8 9 : 3 << = > 7?

oe SWAP 188 e@ A B CC D E F 6
_ ! 118 H T 4 KK L MN N 0

126 PQ R Ss T U Vv H

Stanford (SUAI) Character Set 138 X Y 2L\N 3 At _-
The Stanford ASCII character set is displayed in 148 ‘a bcd e f g
the following table. The three digit octal code 158 h i j kK m n 0

for a character is composed of the number at 0 p gq PF Ss t u Vv uW
the left of its row plus the digit at the top of 178 x y zz {| I ~ DEL
its column. For example, the code for “A™ is
100+1lor 101. SOS Reprrsentation of Standard ASCII

ASCII 8 1 2 3 4 5 6 7 el 2 3 4 5 6 7

$id

880 NUL a B A = ¢ nm 888 --- 21 ? WW ?% ?% 2 ?
818 A TAB LF VI FF CR wd 810 ?(TAB LF VI FF CR ?)?x

SIXBIT 626 ¢ >» AN U Vv 3 ee = 828 ?+ ?, ?- 2, ?/ 28 ?1 22

$¢ 038 _ + ~ x £ 2 EB Vv 038 78 76 724 ?= ?< ?> ?7 78

63 0848 SP 1 f§£& S$ 2 & 848 SP "4 S$ ZL 8°
16 850 () ¥ +, - / 050 () +, . /
26 08 8 1 2 3 4& 5 6 7 868 8 12 3 4656 7
30 0878 8 9 1 3 < = >» 2? g78 8 9 i <= >» 17
«3 188 ¢ AB CC 0 E F © 100 e A B co E F ©
S8 10H IT J kK L M% N 0 il8 HH IT J Kk L HN N 0
60-1286 P QQ R S T U V WwW 120 PQ R ss T U Vv H

78 138 x Y 2 LN 1 1 13 x Y 2 [NN 1 1 e

140 ‘ab C d ® f g 148 ?€ °?A ?B ?C ?0 ?E °?F 7G
1% nh i jj kk I an o 158 MH 21 20 2k 2b 2M oN 20
168 p q r 8 t wu Vv ou 168 ?P ?2@ ?R ?S ?T ?U ?v 2U
176 x y 2 t | ALT } BS 178 ?X ?2Y 2? [0 2: 2) 23 2\

The Sail compiler automatically transliterates "!"
to "_" before doing anything else (outside of

The tables below display the standard ASCII string constants, of course). It also believes

codes, and the SOS representation for entering that BOTH ‘175 and ‘176 represent the right
the full ASCII character set from Teletypes or brace character "}".

150

S AIL - APPENDICES

APPENDIX B LIST REQUIRE

LISTC RESERVED

Sail Reserved Words LISTO RESTORE

LNOT RETURN

| LOAD-MODULE ROT

j ABS END LOCATION SAFE
ACCESS ENDC LOP SAMEIV

| AFTER ENTRY LOR SECOND

- ALL EQV LSH SEGMENT-FILE

ALLGLOBAL ERASE MAKE SEGMENT-NAME
| AND ERROR_MODES MATCHING SET

ANY-CLASS EVALDEFINE MAX SETC
. APPLY EVALREDEFINE MEMORY SETCP

ARG_LIST EXPR, TYPE MESSAGE SETIP
ARRAY EXTERNAL MIN SETO
ASH FAIL MOD SHORT

ASSIGN FALSE NEEDNEXT SIMPLE

ASSIGNC FIRST NEQ SOURCE-FILE
ASSOC FOR NEW SPROUT

BBPP FORC NEW-ITEMS SPROUT-DEFAULTS

| BEFORE FOREACH NEW-RECORD START-CODE
| BEGIN FORGET NEXT STEP

BIND FORLC NIL STEPC

BOOLEAN FORTRAN NOMAC STRING

BUCKETS FORWARD NOT STRING,PDL
BUILT-IN FROM NOW-SAFE STRING-SPACE

CASE GEQ NOW-UNSAFE SUCCEED
CASEC GLOBAL NULL SUCH

CAUSE GO NULL-CONTEXT SWAP
| CHECK-TYPE GOTO NULL-DELIMITERS SYSTEM, PDL

| CLEANUP IBP NULL-RECORD THAT
| COMMENT IDPB OF THEN

| .COMPILER_SWITCHES IF OFC THENC
CONOK IFC OR THIRD

CONTEXT IFCR OWN TO

CONTINUE ILDB PHI TRUE
! COP IN PNAMES UNION

| CPRINT IN-CONTEXT POLL UNSTACK-DELIMITERS
| cv INF POLLING-INTERVAL UNTIL

CVLIST INITIALIZATION PRELOAD,WITH UNTILC
CVMS INTEGER PRESET-WITH VALUE
CVN INTER PRINT VERSION
CVPS INTERNAL PROCEDURE WHILE

FC CVSET INTERROGATE PROCESSES WHILEC
DATUM ISTRIPLE PROTECT,ACS XOR
DECLARATION ITEM PUT

DEFINE ITEM-START QUICK-CODE
DELETE ITEMVAR REAL
DELIMITERS KILL-SET RECORD-CLASS
DEPENDENTS LABEL RECORD-POINTER

DIV LAND RECURSIVE’

NO - LDB REDEFINE

DOC LEAP-ARRAY REF, ITEM
DONE LENGTH REFERENCE

DPB LEQ REMEMBER
ELSE LET REMOVE

ELSEC LIBRARY REPLACE-DELIMITERS

151

| APPENDICES SAIL

| APPENDIX C SUAI ONLY

GET-BIT PTCHRS PTYALL

Sail Predeclared Identifiers GET-DATA PTCHRW PTYGET

GET-ENTRY PTIFRE PTYIN

GET-SET PTOCHS PTYREL

SPINT CVSTR RAN IFGLOBAL PTOCHW PTYSTR
SPITM CVXSTR REALIN ISSUE PTOCNT PUT-DATA

SPLST DOFINT REALSCAN LODED PTOSTR QUEUE

SPREC DEL,PNAME RELEASE
| SPREL DFCPKT RENAME

| SPRINT DFR1IN RESUME TOPS-1 0 ONLY
! SPSET DFRINT SCAN BACKUP INQUT INTMOD

SPSTR DISABLE SCANC CHNCDB GETSTS TMPIN

ACOS EDFILE SETBREAK ERENAME SETSTS TMPOUT

1 ANSWER ENABLE SETFORMAT

ARRBLT ENTER SETPL
ARRCLR EQU SETPRINT CMU ONLY
ARRINFO ERMSBF SIN ARDINIT DOTVEC SEAINIT

i ARRTRAN EVENT-TYPE SIND ARDSTR INITSEA SEAREL
ARRYIN EXP SINH CHARSZ INVVEC SETPNT

] ARRYOUT FILEINFO SQRT CHRMOD MOUSES SVEC
ASIN GETBREAK STDBRK CLEAR MOUSEW VISVEC

| ASKNTC GETCHAN SUBSR

! ATAN GETFORMAT SUBST
i ATAN2 GETPRINT SUSPEND TYMSHARE ONLY

BBPP. INCHRS TANH AUXCLR CALLI CHNIQV
BINDIT INCHRW TERMINATE AUXCLV CHNIOR IONEQU

1 BREAKSET INCHSL TRIGINI
CALL INCHWL TTYIN

| CALLER INPUT TTYINL TENEX ONLY
CAUSEH1 INSTR TTYINS ASND INDEXFILE RTIW
CHNCDB INSTRL TTYUP ATI INTTY RUNPRG
CLKMOD INSTRS TYPEIT BKJFN JFNS RUNTM
CLOSE INTIN URSCHD CFILE JFNSL RWDPTR

| CLOSIN INTMAP USERCON CHARIN KPSITIME SCHPTR

| CLOSO INTPRO USERERR CHARQOUT MTOPR SDSTS
CLRBUF INTSCAN USET! CHFDB ODTIM SETCHAN

; CODE INTSET USETO CLOSF OPENF SETEDIT

COMPILER_ INTTBL WORDIN CNDIR OPENFILE SETINPUT
BANNER JOIN WORDOUT CVJFN PBIN SFCOC

| CoS LINOUT DEVST PBOUT SFMOD

COSD LISTX DEVTYPE PMAP SFPTR
COSH LOG DIRST PSIDISMS SINI

CV6STR LOOKUP DTI PSIMAP SIZEF

/ CVASC MAINPI DVCHR PSIRUNTM STDEF

CVASTR MAINPR ERSTR PSOUT STDIR

| CVD MKEVTT GDSTS RCHPTR STI
| CVE MTAPE GJINF RDSEG STIW

CVF MYPROC GNJFN RELD STPAR
CVFIL ~ NEW,PNAME GTAD RFBSZ STSTS
CVG OPEN GTFDB RFCOC STTYP

] CVIS OUT GTJFN RFMOD SWDPTR
CVO OUTCHR GTRPW RFPTR UNDELETE

CVOS OUTSTR GTSTS RLJFN

CVs POINT IDTIM RNAMF

CVS PRISET

CVSIX PSTATUS

152

SAIL ~ APPENDICES

APPENDIX D INTPAR_INX 9 Interrupts you on parity
errors in your core image.

Indices for Interrupts
INTCLK_INX 10 Yo uwill be interrupted at

every clock tick (1/60th of a

SUAI INTERRUPT SYSTEM second).

NAME NUMBER DESCRIPTION INTINR,INX 11 IMP interrupt by receiver.

INTSWW,INX 0 You will receive an interrupt INTINS_INX 12 IMP interrupt by sender.
when your job is about to

be swapped out. INTIMS_INX 13 IMP status change interrupt.

INTSWD_INX 1 You will receive an interrupt INTINP_INX 14 IMP input waiting.
when your job is swapped
back into core. If You’ are INTTTILINX 1 5 Yo uwill be interrupted
activated for interrupts for whenever <es¢c> | is typed
swap out also, you will on your teletype.
receive these two interrupts

as a pair in the expected INTPOV,INX 19 Interrupts you on push-down
order every time your job is overflow.
swapped.

INTLM_INX 22 Interrupts youon illegal
INTSHW,INX 2 You will receive an interrupt memory references, that is,

when your job is about to references to memory
be shuffled. outside of your core image.

INTSHD_INX 3 You will receive an interrupt INTNXM,INX 23 You will receive an interrupt
when your job has been whenever your program
shuffled. references non-existent

memory.

INTTTY_INX 4 You will receive an interrupt
every time your program INTFOV,INX 29 Interrupts you on floating
would be activated due to overflow.

the teletype if it were

waiting for the teletype. As INTOV_INX 32 Interrupts you on arithmetic
long as you do not ask for overflow.
more than there is in the

teletype buffer, you may | Bits 33 through 35 are left to the user.
read from the teletype at REQUIRE "SYS:PROCES.DEF" SOURCE-FILE to
interrupt level. define the above names. NOTE: to program

yourself for more than one interrupt, you must

INTPTO_INX 5 You will be interrupted execute two separate INTMAP statements.
’ every time the PTY job goes

into a wait state waiting for

you to sent it characters.

INTMAIL,INX 6 Interrupts whenever
someone SENDs you mail
(see [Frost]). You may read

the letter at interrupt level.

INTPTI_INX 8 You will be interrupted
every time any job on a PTY

you own send you a

character (or line).

153

APPENDICES SAIL

TOPS-1 0 INTERRUPT SYSTEM APPENDIX E

NAME NUMBER DESCRIPTION Bit Names for Process Constructs

INTPOV_APR 19 Interrupts you on push-down
stack overflow.

SPROUT OPTIONS

INTILM_APR 22 Interrupts you on illegal
memory references, that is, BITS NAME DESCRIPTION
references to memory

outside of your core image. 14-17 QUANTUM(X) Qe« IF X=0 THEN 4 ELSE
2TX; The process will be

INTNXM_APR 23 You will receive an interrupt given a quantum of Q
whenever your program clock ticks, indicating that
references non-existent if the user is using

memory. CLKMOD to handle clock
interrupts, the process

INTFOV,APR 29 Interrupts you on floating should be run for at most
overflow. Q clock ticks, before

calling the scheduler. (see

INTOV_APR 32 Interrupts you on arithmetic about CLKMOD, page 120
overflow. for details on making

processes “time share”).

TENEX PSI CHANNELS 18-21 STRINGSTACK(X) S « IF X=0 THEN 16

ELSE X*32; The process
CHANNEL USE will be given S words of

string stack.
0-5 terminal character

6 APR integer overflow, no divide 22-27 PSTACK(X) P<IF X=0 THEN 32 ELSE
7 APR floating overflow, exponent X*32; The process will be

underflow given P words of
‘8 unused arithmetic stack.

9 pushdown overflow
10 file EOF 28-31 PRIORITY(X) P « IF X=0 THEN 7 ELSE
11 file data error X; The process will be

12 file, unassigned given a priority of P. 0 is
13 file, unassigned the highest priority, and
14 time of day reserved for the Sail
15 illegal instruction system. 15 is the lowest
16 illegal memory read priority.. Priorities
17 illegal memory write determine which ready
18 illegal memory execute process the scheduler will
19 subsidiary fork termination, forced next pick to make running.

freeze

20 machine size exceeded 32 SUSPHIM If set, suspend the newly
21 SPACS trap to user sprouted process.
22 reference to non-existent page :

23 unused 33 Not used at present.
25-35 ferminal character

34 SUSPME If set, suspend the
process in which this

sprout statement occurs.

35 RUNME If set, continue to run the
process in which this

sprout statement occurs.

154

S A I L ~ APPENDICES

RESUME OPTIONS If the process goes into a
wait state as a result of

33-32 READYME If 33-32 is 1, then the this Interrogate, and is
current process will not subsequently awakened
be suspended, but be by a Cause statement,
made ready. then the DONTSAVE bit in

the Cause statement will

KILLME If 33-32 is 2, then the over ride the RETAIN bit
current process will be in the Interrogate if both
terminated. are on.

IRUN If 33-32 is 3, then the 34 WAIT If the notice queue is
current process will not empty, then suspend the
be suspended, but be process executing the
made running. The newly interrogate and put its
resumed process will be process item on the wait
made ready. queue.

34 This should always be 3 3 RESCHEDULE Reschedule as soon as
zero. possible (i.e., immediately

after execution of the

35 NOTNOW If set, this bit makes the interrogate procedure).
newly resumed process

ready instead of running. 32 SAY-WHICH Creates the association
If 33-32 are not 3, then EVENT-TYPE ® <event

this bit causes a notice> & <event type>
rescheduling. where <event type> is the

type of the event

CAUSE OPTIONS returned. Useful with the
set form of the

35 DONTSAVE Never put the <event Interrogate construct.
item> on the notice queue.
If there is no process on
the wait queue, this makes
the cause statement a no-

op.

34 TELLALL Wake all processes
waiting for this event.
Give them all this item.

The highest priority

process will be made
running, others will be

made ready.

33 . RESCHEDULE Reschedule as soon as

possible (i.e., immediately

after the cause procedure

has completed executed).

INTERROGATE OPTIONS

35 RETAIN Leave the event notice on

the notice queue, but still
return the notice as the

value of the interrogate.

155

APPENDICES: SAIL

APPENDIX F K-OUT uses GETCHAN to find a spare
channel, does a single dump mode output

Statement Counter System which writes out all the counters for all the
programs loaded having counters, and then
releases the channel. The file which it

writes is xxx.KNT, where xxx is the name of the
GENERAL DISCUSSION list file of the first program loaded having

The statement counter system allows you to counters (usually the name of the Sail source
determine the number of times each statement file). If there are no counters, K_QUT simply
in your program was executed. Sail returns.
accomplishes this by inserting an array of
counters and placing AOS instructions at PROFILE PROGRAM

various points in the object program (such as in The program PROFIL is used to produce the
loops and conditional statements). Sail program profile, i.e. the listing complete with
automatically calls K-ZERO to zero the counter statement counts. It operates in the following
array before your program is entered and manner. First it reads in the file xxx.KNT
K-OUT to write the array before exiting to the created by the execution of the user
system. If your program does not exit by program. This file contains the values of the
falling out the bottom, or you are interested counters and the names of the list files of the
only in counts during specific periods, then you prograrns loaded which had counters. It then
may declare K-OUT and K-ZERO as external reads the the list files and produces the
procedures and call them yourself. profile.

Anot her program, called PROFIL, is used to The format of the listing is such that only
merge the listing file produced by the Sail statements executed the same number of times

compiler with the file of counters produced by are listed on a single line. In the case of
the execution of your program. The output conditional statements, the statement is
of the PROFIL program is an indented listing continued on a new line after the word THEN.

with execution counts in the right hand margin. Conditional expressions and case expression,
on the other hand, are still listed on a single

Since the AOS instructions access fixed line. In order that you might know the
locations, and they are placed only where execution counts, they are inserted into the
needed to determine program flow, they text surrounded by two “brokets” (e.g. <<15>>),
should not add much overhead to the

execution time. Although no large study has PROFIL expects a command string of the
been made, the counters seem to contribute form
about 2% to the execution time of the

profile program, which has a fairly deeply <output>e<input> (switches)
nested structure.

where <input> is the name of the file containing
HOW TO GET COUNTERS the counters; extension .KNT is assumed. If

In order to use the counter system you must the output device is the DSK, the output file will

generate a listing and also specify the /K have a default extension of .PFL. Although
switch. Specifying /K automatically selects the line spacing will probably be different
/10F, since the PROFIL program needs this from the source, PROFIL makes an effort to
listing format. The characters ‘002 and ‘003 in keep any page spacing that was in the source.
the listing mark the location of counters. The switches allowed by PROFIL are

At the end of each program (i.e. each separate

compilation) is the block of counters, preceded

by a small data block used by K-ZERO and
K-OUT. This- block contains the number of

counters, the name of the list file, and a link
to other such blocks. The first counter

location is given the symbolic name .KOUNT,
which is accessible from DDT, but cannot

be referenced by the Sail program itself.

156

SAIL ~ APPENDICES

APPENDIX G

/nB Indent n spaces for blocks (default 4)

] /nC Indent n spaces for continuations (default 2) Array Implement at ion
/F Fill out every 4th line with ".." (default ON)
Jl Ignore comments, strip them from the listing
/nK Make counter array of size n (default 200)

Jnl Maximum line length of n (default 120) Let STRINGAR be 1 (TRUE) if the array in
/N Suppress [JF feature question is a String array, 0 (FALSE) otherwise.
/S Stop after this profile Then a Sail array of n dimensions has the

EE - JT TTY mode =/1C/2B/F/80L following format:

HEAD: -+DATAWD i» MEANS “POINTS AT’

| SAMPLE RUN HEAD-END-|

Suppose that you have a Sail program named ARRHED: BASE-WORD SEE BELOW
FOO.SAI for which you desire a profile. The LOWER_BD(n)

4 following statements will give you one. UPPER_BOD(n)
1 MULT (n)

EX /LIST FOO(K) (or TRY or DEB or what hrve you) -
... any input to FOO. . . LOWER_BD(1)

! - UPPER_BD(1)
EXIT MULT(1)

NUM_DIMS,TOTAL _SIZE

] 1C DATAWD: BLOCK TOTAL-SIZE
i .R PROFIL <sometimes a few extra words>
; . FOO«FOO/T/S END: 400000,,+HEAD

; EXIT HEAD The first two words of each array,
and the last, are control words for

tC the dynamic storage allocator.

These words are always present

At this point, the file FOO.PFL contains, the for an array. The array access
profile, suitable for typing on the TTY or code does not refer to them.

] editing.
ARRHED Each array is preceded by a block

{ of 3*n+2 control words. The
BASE-WORD entry is explained

: later.

NUM_DIMS This is the dimensionality of the
! array. If STRINGAR, this value is
g negated before storage in the left

half.

DATAWD This is stored in the core location

bearing the name of the array (see

3 symbols, page 141). If it is a string

3 array, DATAWD-+ 1 is stored
i instead.

TOTAL-SIZE The total number of accessible

| elements (double if STRINGAR) in
the array.

! BOUNDS The lower bound and upper bound

157

|

APPENDICES SAIL

for each dimension are stored in APPENDIXH

this table, the left-hand index

values occupying the higher St ring Implement at ion
addresses (closest to the array

data). If they are constants, the

compiler will remember them too

and try for better code (i.e STRING DESCRIPTORS
immediate operands). A Sail String has two distinct parts: the

descriptor and the text. The descriptor is

MULT This number, for dimension m, is unique and has the following format:

the product of the total number of
elements of dimensions m+] WORD1: CONST, LENGTH
through n. MULT for the last WORD2: BYTP
dimension is always 1.

1) CONST. This entry is 0 if the String is
BASE-WORD This is DATAWD minus the sum of a constant (the descriptor will not be

(STRINGAR+1) * LOWER_BD(m) «x altered, and the String text is not in
MULT(m) for all m from 1 to n. If - String space, is therefore not subject
this is a string array then the left to garbage collection), and non-zero
half is -1. otherwise.

The formula for calculating the address of 2) LENGTH. This number is zero for any
ALJ,K] is: null String; otherwise it is the number

of text characters.

address(A[L,JK]) =

address(DATAWD) + 3) BYTP. If LENGTH is 0, this byte pointer

(I-LOWER_BD(1))*MULT(1) + is never checked (it need not even be
(J-LOWER_BD(2))*MULT(2) « a valid byte pointer. Otherwise, an
(K-LOWER_BD(3)) ILDB machine instruction pointed at the

BYTP word will retrieve the first text

character of the String. The text for a

This expands to String may begin at any point in a
word. The characters are stored as

address(A[l,J,K]) = LENGTH contiguous characters.
address(DATAWD) «

IEMULT(1)« JEMULT(2)+ K A Sail String variable contains the two word
-(LOWER_BD(1)¥MULT(1)+ descriptor for that variable. The identifier

LOWER_BD(2)*MULT(2) « naming it points to WORD1 of that descriptor. If
LOWER_BD(3) a String is declared INTERNAL, a symbol is

formed to reference WORD2 by taking all
characters from the original name (up to 5) and

which is concatenating a "."(OUTSTRING’s second word
would be labeled OUTST.).

BASE-WORD « [#MULT(1)+ JEMULT(2)+ K.

When a String is passed by reference to a
By fire-calculating the effects of the lower procedure, the address of WORD2 is placed in
bounds, several instructions are saved for each the P-stack (see page 160). For VALUE Strings
array reference. both descriptor words are pushed onto the SP

stack.

The LOADER gets confused if BASE-WORD does
not designate the same segment as DATAWD. A String array is a block of 2-word String

The difference between BASE-WORD and the descriptors. The array descriptor (see page

address of any location in the array should be 157) points at the second word of the first

less than ‘400000. Avoid constructs like descriptor in the array.

INTEGER ARRAY X[1000000: 1 000005}. Declare
large static arrays last. Information is generated by the compiler to

158

|__|

} S A | L._ APPENDICES

allow the locations of all non-constant strings APPENDIX|
] to be found for purposes of garbage-collection
¢ and initialization. All String variables and non- Save/Continue

preloaded arrays are cleared to NULL whenever

a Sail program is started or restarted. The
| non-constant strings in Preloaded arrays are

1 also set to null by a restart. | A (new) save/continue facility has been
1 implemented in the Sail compiler. This allows
i INEXHAUSTIBLE STRING SPACE : compiling header files, saving the state of the
g The string garbage collector expands string compiler, and resuming compilation at a later
- space (using discontiguous blocks) whenever time. The save/continue facility works with

necessary to satisfy the demand for places to files as the basic unit; compilation can be
put strings. interrupted only at the end of a file, The /X

(eXtend) switch controls the new feature. The

3 Here are some points of interest: examples shown here are for TOPS-lo.
1 Analogous commands work under TENEX, using
| 1) The initial string space size is settable the TENEX RUN and SAVE commands. Example:
? via REQUIRE or the ALLOC sequence. Each
] string-space increment will be the same .R SAIL

as the original size. The threshold (see " +INTRMD.REL[PRJ,PRG)«A,B,C/X
| below) for expansion is 1/8 the string ASAIl ete.
| space size (increment size). One can

modify these values with USERCON or by SAVE ME FOR USE AS XSAIL.
1 storing directly into GOGTAB. EXIT

SAVE XSAIL

: NAME VALUE JOB SAVED IN 25K

STI NCR LH: # chars in incronrnt UPPER NOT SAVED!

RH: 4+ # words in increment

RU XSAIL

, STREQD LH # chars in threshold +FINAL«D,E,F
5 RH: # words in threshold DSA

| Copying ODSK:INTRMD.REL[PRJ,PRG)
2 3 ric.

| 2) (the threshold) Assume that the garbage
collector was called to make room for R "A
characters, and that after garbage
collect ion M- 1 discont iguous string spaces The above is equivalent to

] are full, with the Mth having N free
characters. If N is less than or equal to R SAIL

| R+LH (STREQD) then expansion to M+! ® FINALcABCDEF
string spaces takes place. In other words,

3 if STREQD is 1/8 the size of the current On TENEX, the user will want to save all of
space then that space will not be allowed core when creating the XSAIL.SAV file.

| to become more than about 7/8 full. All
but the current space are allowed to Information is saved in XSAIL.SAV and in the
become as full as possible, however. binary file from the first “compilation” (in this

case INTRMD.REL). When compilation is
| 3) Wizards may cause the garbage collector resumed, the final binary file is initialized
3 to keep some statistics by setting SGCTIME by copying the intermediate file.
| to -1. Save/continue is not allowed if the file break
; occurs while scanning false conditional

compilation or actual parameters to a macro

: call.

3 A hint on using this feature: If the source

| 159

APPENDICES SAIL

term of your command string consists of just APPENDIXJ
one file, and this one file does REQUIREsof

other source files, the following setup works Procedure implement at ion
well.

Original file FOO.SAI:

BEGIN “FOO” When a procedure is entered it places three
REQUIRE "[][]" DELIMITERS; words of control information on the run time

DEFINE 'e[COMMENT]; (P) stack. This “mark stack control packet”
REQUIRE "BAZ SAI" SOURCE-FILE; contains pointers to the control packets for
REQUIRE "MUMBLE SA!" SOURC E-FILE; the procedure’s dynamic and static parents.

Register F (12) is set to point at this area,

| <rest of file> This pointer is then used to access procedure
parameters and other “in stack” objects, such

END “FOO | as the local variables of a recursive procedure.

Many of the run-time routines (including the

New file FOQ.SA: string garbage collector) use rF to find vital
IFCR NOT DECLARATION(GARPLY) THENC information. Therefore, THE USER MUST NOT

BEGIN “FOO” HARM REGISTER ‘12. If you wish to refer in
REQUIRE "[J[]" DELIMITERS; assembly language to a procedure parameter,

DEFINE GARPLY=TRUE; the safest way is name it, and let Sail do the
DEFINE '«{COMMENT}); address arithmetic. (Similarly one may use the
REQUIRE "BAZ. SA!" SOURCE-FILE; ACCESS construct).
REQUIRE "MUMBLE SAI" SOURCE-FILE;

ENDC; STACK FRAME
Shown here is the stack frame of a recursive

<rest of file> procedure.

END “Foo” I SUNN

parane ter | :
New file FOO HDR: BO SP

IFCR NOT DECLARATION(GARPLY) THENC
BEGIN "FOO" Cesesiserarenerarteereereroant

REQUIRE"{ J{ J DELIMITERS; parameter n

DEFINE GARPLY=TRUE; IE
DEFINE '«[COMMENT}; . ret. addr
REQUIRE "BAZ SAI” SOURCE_FILE; A
REQUIRE "MUMBLE.SAI" SOURCE-FILE; rf + : dynamic | ink (old rF)

ENDC; anes toranaesennresonneennsnst
{ =»proc desc : static | ink (rFo fstatic

Initial compilation: : old value of rSP

R SAIL Soohe
«FOO.INT{PRJ,PRG])«FOO.HDR/X ! start of recursive locals

SAVE ME! : |

rP +: end of recursive locals te«(rP points

Now the command string feveeeanenanereseosarsaenesseet here after
! start ofworking storage . entry to a

FOO«FOO fences seesonsanssenssesrssnsest recurs i ve

; . procedure)

will work both in the case of .R SAIL and in the er reeeereenneeeenireenraerast

case .RU XSAIL.

If a formal parameter is a value parameter then

160

! SAIL " APPENDICES

the actual parameter value is kept on the stack. any intermediate registers (called “display”
If a formal parameter is a reference parameter, registers) that may have been loaded. Thus, if
then the address of the actual parameter is put you use several up-level references together,

[on the stack. Non-own string locals (to you only pay once for setting up the “display”,
} recursive procedures) and string value unless some intervening procedure call or the
j parameters are kept on the string (SP & ‘16) like should cause Sail to forget whatever was in
i stack. The stack frame for a non-recursive its accumulators. Note here that if a display
] procedure is the same except that there are no register is thrown away, there is no attempt to
i local variables on the stack. The stack frame save its value. At some future date this may be
3 for a SIMPLE procedure consists only of the done. It was felt, however, that the minimal

parameters and the return address. (usually zero) gain in speed was just not worth
1 the extra hair that this would entail.
i ACCESSING THINGS ON THE STACK
i SIMPLE procedures access their parameters ACTIONS IN THE PROLOGUE FOR NON-SIMPLE
i relative to the top-of-stack pointers SP(for PROCEDURES

strings) and P (for everything else). Thus the The algorithm given here is that for a recursive
the k’th (of n) string value parameter would be procedure being declared inside another
accessed by procedure. The examples show how it is

! simplified when possible.
oP AC, 22k-2%n(SP) ; (SP=’16)

J 1. Pick up proc descriptor address.

A and the j'th (of m) “arithmetic” -- i.e., not value
] string -- parameter would be accessed by 2. Push old rF onto the stack.

: oP RC, j-m-1 (P) 5 (P='17) 3. Calculate static link. (a). Must loop
back through the static links to grab

Non-SIMPLE procedures use rF (register ‘12) as it. (b). once calculated put together
] a base for addressing parameters and recursive with the PDA and put it on the
! locals. Thus the j’th parameter would be stack.
J accessed by

4, Push current rSP onto the stack.

oP RC, j-m-2(rF)

: 5. Increment stack past locals & check
4 or, in the case of a string, by for overflow.

3 MOVE ACX, 2 (rF) points at top of 6. Zero out whatever you have to.
3 ;$tring st ac k When
! sproc Was entered 7. Set rF to point at the MSCP.
; oP ACY, 2¥k-2&m (RCX)

{ EXAMPLES:
f Similarly, recursive locals are addressed using
i positive displacements from rF. I. A non-recursive entry (note: in this section
5 only cases where F is needed are considered).
| An up-level reference to a procedure’s parent

is made by executing the instruction | PUSH P,rF 3 SAVE DYNAMIC LINK
SKIPR RC,rf

g . HRRZ RC, 1(rF) snow AC points at MOVE RC, 1 (AC) ; GO UP STATIC LINK
| jstack frane of parent HLRZ TEMP, 1 (RC) ; LOOK RT PDA IN STACK
3 CARIE TEMP, PPDR IS IT THE SAME RS PRRENTS

| and then using AC in the place of rF in the JRST ~~ «= ; NO
] access sequences above, iterating the process HRLI ~~ AC,PODA sPICK UP PROC CESC
: if need be to get at one’s grandparent, or some PUSH P,RC sSAVE STATIC LINK
1 more distant lexical ancestor. PUSH P,SP
j HRR2I rF,-2(P) sNEW RF

NOTE: When Sail compiled code needs to make

| such an up-level reference it keeps track of In the case that the procedure is declared in

. 161

APPENDICES SAIL

the outer block we don't need to worry about 6. Return either via POPJ P, or by
the static link and the prologue can look like JRST @mumble(P)

PUSH P,rF s SAVE DYNAMIC LINK EXAMPLES:
PUSH Pp, [XWD PDR,8] s STATIC LINK WORD

PUSH P,SP s SAVE STRING STRCK 1. No parameters.
HRRzI rF,=2(P) sNEW F REGISTER

“step 1»

2. Recursive entry -- i.e one with locals in the <step 2>
stack. MOVE rF, (rF)

SUB P, [XHDM+3,M+3] ;M= # LOCAL VARS
PUSH P,rf ; SAVE DYNAMIC LINK POP] P,
SKIPA AC,rf

MOVE RC, 1 (RC) ; GO UP STRTIC LINK 2. n string parameters, m other parameters, k

HLRZ TEMP, (AC) sLOOK FIT PDA IN STRCK string locals on stack, j other locals on stack.
CRIt TEMP, PPOR + IS IT THE SANE AS PARENTS
JRST =3 :NO <step I>

HRL I RC, POA ; PICK UP PROC DESC <step 2>
PUSH P, AC s SAVE STATIC LINK MOVE rf, (rf)
PUSH P,SP suB SP, [(XHD2%k +2%n, 2%k +2%n)
HRLZI ~~ TEHP, 1(P) SUB P, [XHD jtmt3, j+m+3] PDP STACK
HRRI TEMP, 2 (P) : JRST em+l (P)
ADD P,[XWD locals, locals! jereate space for

CRIL P,0 arith 1 ocals SIMPLE procedures are similar, except that rF is
<trigger pd | ov error» never changed.
SETZM -1 (TEMP) ;2ero out locals

BLT TEMP, (P) : PROCEDURE DESCRIPTORS

HRLzI ~~ TEMP, 1(SP) Procedure descriptors are used by the storage

HRRI TEMP, 2 (SP) allocation system, the interpretive caller, BAIL,
RODD SP, (XWD2% string locails,2% string locals and various other parts of Sail. They are not
CAIL SP, 8 scheck for pdlov put out for SIMPLE procedures. The entries are
<cause pdl ov errors shown as they are at the present time. No
SETZM -1 (TEMP) promise is made that they will not be different

BLT TEMP, (SP) ;28r0 out string locals tomorrow. If you do not understand this page,
HRRZI rF,-locais=-3(P) do not worry too much about it.

The BLT of zeros is replaced by repeated -1: link for pd list

pushes of zero if there are only a few locals. 0: entry address
Again, the loop is replaced by a simple push if I: word]of string for prec name

the procedure is declared in the outer block. 2: word2 of string for proc name
is: type info for procedure, sprout defaults

ACTIONS AT THE EPILOGUE FOR NON-SIMPLE 4: ® string params*2,,% arith params|
PROCEDURES 5: +88 displ,, + as displ

6: lexic iav,,~=tlocalvar info

l. If returning a value, set it into 1 or 7: display level,+-proc param stuff
onto right spot in the string 10: pda,0

stack. 11: pent at end of mksemt, parent's pda
12: pent at prdec,loc for jrst exit

2. - Do any deallocations that need to be p13 type info for first argument,,0 (or »=defauit value)
made.

type info for last argument,,0 (or »=default value)

4. - Restore rF. Ivi: byte (Q)type(9)lexical-level(23)location

dD. Roll back stack.

A62

Ss A | L "APPENDICES

The type codes in the lvi (local variable info) REFERENCES
block are as follows:

type = 0 end of procedure area

type =) rrith array BBNEXEC Bolt Beranek and Newman,
type ® 2 string array TENEX Executive Manual,
type = 3 set or list Cambridge, Massachusetts,
type « 4 set or list array April 1973.
type = 5 foreach search control block

type . 6 list of all processes dependent on Feldman J.A. Feldman and P.D. Rovner,
this block. An Algol-Based Associative

typo » 7 context Language, CACM 12, 8 (August
type = 10 a cleanup to be executed 1969), 439-449,
type sll record pointrr

| typo o 12 record pointer array J.A. Feldman, J.R. Low, D.C.
type= 17 block boundary. Location gives base Swinehart, and R.H. Taylor,

location of parents block's information Recent Developments in SAIL,
AFIPS FUCC 1972, 1193-1202.

local variable info for each block is organized
as Frost M. Frost, UUO Manual (Second

Edition), Stanford Artificial
info for var Intelligence Laboratory

Operating Note 55.4 (July

info for var 1975).
17,lev,loc of parent block bbw

Harvey B. Harvey (M. Frost, ed),
Monitor Command Manual,
Stanford Artificial Intelligence

Laboratory Operating Note 54.5

) (January 19786).

JSYS Bolt, Beranek, and Newman,

TENEX JSYS Manual, Cambridge,

Massachusetts, September
1973.

vanLehn K. vanLehn, SAIL, SAILON 57.3,
(June 1973).

MonCom [Harvey), [BBNEXEC], [OSCMA]

Nauer P. Nauer (ed.), Revised Report
J on the Algorithmic Language

1 ALGOL-60, CACM 6 (1963) 1-

OSCMA decsysteml0 Operating System
Commands Manual DEC-10-

OSCMA-A-D, Digital Equipment
Corporation, Maynard,

| Massachusetts, May 1974.

Petit P. Petit (R. Finkel, ed.), RAID
| Manual, SAILON 58.2, (March

1975).

163

E

REFERENCES SAIL

Reiser J.F. Reiser, BAIL--A Debugger
for SAIL, Stanford Artificial

Intelligence Laboratory Memo
AIM-270, Cornputer Science
Department Report STAN-CS-
75-523, October 1975.

Savitzky S.R. Savitzky (L. Earnest, ed.)
Son of Stopgap, SAILON 50.3,
March 1971.

SmithN N. Smith, Sail Tutorial, Stanford

Aritifical Intelligence
Laboratory Memo AIM-290,

Computer Science Department

Report STAN-CS-76-575,
August 1976.

SmithR R. Smith, TENEX SAIL, Institute)
for Mathematical Studies in the

Social Sciences T.R. 248,
Stanford University, January
1975.

Swinehart & Sproull D.C. Swinehart and R.F.

Sproull, SAIL, SAILON 57.2,
(January 197 1).

SysCall [Frost J,[JSYS], [TopHand]

TopHand decsystemlO Assembly
Language Handbook DEC-10-
NRZC-D, Digital Equipment
Corporation, Mayna rd,
Massachusetts, 1973.

|

§ SAIL INDEX

3 INDEX ANY, in Binding Boolean 91
ANY, in Derived Sets 92

1 ANY, in Erase statement 91
3 ANY, in Foreach 94

f APPLY 115
1 <apply-construct> 114

A (AND) 26 ARG_LIST 114

| - (NOT) 26 <arg_list_specifier> 114
00 in substrings 28 ARGS 144

: ©, in list REMOVEs 90 Array element designation 128
Nn (INTERSECTION) 99 <array-declaration> 3

u (UNION) 99 <array_list> 3
3 Vv (OR) 26 <array-type> 83
3 I1GO 146 Arrays, allocation 10

IIGSTEP 146 Arrays, as parameters 7
| ISTEP 146 Arrays, declaration 6

% (integer or real division) 27 Arrays, initialization and reinitialization 10
& (CONCATENATION), of strings 27 Arrays, outer block 5, 7
&, of lists 99 Arrays, OWN 6

: -, of sets 99 Arrays, PRELOADed 7
: / (real division) 27 Arrays, SAFE declaration 6

<><2=# (RELATIONS) 26 Arrays, storage convention 7
i ?,Foreach itemvars 93 ARRBLT 51

} ?, in Binding Booleans 91 ARRCLR 51
§ ?, Matching procedure formals 95 ARRINFO 5 0
! ARRTRAN 5 1
! Nn (intersection) 97 ARRYIN 41, 69

ARRYOUT 41}, 69
U (union) 97 ASCII 150

; - ASH 27

te (EQV) 150 ASIN 5 1
ASKNTC 113, 126

| _ERRJ_ 140 ASND 71
| _ERRP_ 139 ASSIGN 114

3 _SKIP_ 27, 33, 43, 44, 48, 50, 70, 71, 72, 73, <assign-statement> 114
: 74, 75, 76, 79, 81, 149 ASSIGNC 6 2
i <assignc> 5 6
! SCLASS 66 assignment expressions 25

SRECS 66 Assignment statement, semantics 15

: SRECFN 66 <assignment-expression> 22
SRECGC 66 <assignment-statement> 14
$§SPCAR 6 7 ASSOC 150

ASSOCIATIONS 86

! ABS 28 Associations, ERASE 90
| ACCESS 30 Associations, implementation 87

ACOS 51 Associations, introduction 83

ADJSP 134 Associations, MAKE 90

AFTER 88, 89 Associations, searching for 9 1
algebraic variables 6 associative booleans 100
<algebraic-expression> 22 associative context 93

: ALL 88, 90 Associative search 9 1

1 allocation of variables and arrays 10 Associative search, controling hash 91
4 AND 26, 88, 150 associative search, relative speeds 95
2 ANSWER 112, 126 associative searches, introduction 83
1 ANY 99 associative store 83, 86
3 ANY-CLASS 64 Associative store, searching 9 1

165

INDEX SAIL

<associative-statement> 88 CAUSE, user defined procedures for 112
ATAN 5 1 CAUSE] 112, 126

ATANZ2 5 1 Causing events, introduction 110
ATI 117 CFILE 70, 71
attribute 91 character codes 150

AUXCLR 43 CHARIN 71, 79
AUXCLYV 43 CHARQOUT 71, 79

CHECK-TYPE 6 1

<backtracking-statement> 101 CHECKED &5, &9
Backtracking, introduction 101 Checked, formal parameters 86
BACKUP 43 CHECKED, in associative searches 91

BAIL 141 Checked, itemvar procedures 86
BEFORE 88, 89 Checked, type checking 99
BIND 91 CHFDB 71

Binding Boolean 91, 100 CHNCDB 51
Binding Booleans, general considerations 91 CHNIOR 4 3
<binding_list> 8 8 CHNIOV 4 3
BINDIT 9 9 CHNTAB 120

BINDIT, in Binding Boolean 92 CLEANUP 10
BINDIT, in Derived Sets 92 <cleanup-declaration> 4
BINDIT, in Foreach 95 CLKMOD 120

BINDIT, in Foreaches 93 CLOSE 35, 69
BINDIT, in Matching Procedures 95 CLOSF 70, 71
BKJFN 71 CLOSIN 35, 69

Block names 1, 140 CLOSO 35, 69
<block> 1 CLRBUF 43

Boolean Expression <element> 94 CNDIR 8 1
<boolean-expression> 22 CODE 48
Boolean, declaration 6 <code_block> 2 9
bound 91 command line 133

Bracketed Triple item 90 <command_line> 132
Bracketed Triple Item Retrieval 90 Comment 1

Bracketed Triple Item retrieval 92 COMMENTS 130

 Bracketed Triple item retrieval, general compile time expressions 58
considerations 91 COMPILER-BANNER 62

Bracketed Triple Items, ERASE 91 COMPILER-SWITCHES 136

BREAK 144 <compound-statement> 1
BREAKSET 3 6 concatenation of lists 99

BRKERS 124 <cond_comp_statement> 5 6
BRKMAK 124 conditional compilation 60

BRKOFF 124 Conditional Statements, arnbiguity 16
BUCKETS 9 1 <conditional-expression> 22
BUILT-IN 6 1 <conditional-statement> 14

Byte pointers, creation 50 CONOK 6 1
Constants, arithmetic 129

CALL. 48, 80 Constants, octal 129

CALLER 108 Constants, real 129

CALLI 4 8 Constants, string 130
CASE expressions 25 constructive item expressions 98
CASE statement 18 CONTEXT 101

<case-expression> 22 Context elements 102
<case-statement> 14 <context_declaration> 101
CASEC 60 <context-element> 101

CAUSE 110 CONTINUE statement 19

<cause-statement> 110 Conversions, algebraic 23
CAUSE, <options> 110, 155 COORD 144

166

] SAIL . INDEX

1 COP 98, 125 Derived sets 99
coroutining with RESUMEs108 Derived Sets, general considerations 91

1 cos 51 <derived_set> 9 7
COSD 51 DEVST 72

COSH 51 DEVTYPE 72

j CPRINT 5 3 DFCPKT 126
CTLOSW 79 DFRIIN 117

; CV6STR 4 7 DFRINT1 1 8
i CVASC 47 DIRST 8 1
F CVASTR 47 DISABLE 118

: CVD 46 DIV 27

CVE 47 DO statement 18

] CVF 47 <do-statement> 14
i CVFIL5 0 DOC 56
! CVG 47 DONE ‘statement 1 8
! CVI 87, 123 DONTSAVE 111, 155
1 CVIS 100, 124 DPB 50
! CVJFN 71 DRYROT 131, 138
] CVLIST 123 DSKIN 7 2

| CVMS 59, 60 DSKOP 71

1 CVN 87, 123 DSKOUT 72
1 CVO 46 DTI 117

CVOS 46 DVCHR 72

CVPS 5 9

| CVS 46 EDFILE 4 9
CVSET 123 EIR 120

CVSI 100, 124 <element_list> 8 8
CVSIX 47. <element> 88

| CVSTR 47 <element>, Foreach 93
CVXSTR 47 ELSE 14, 22

ELSEC 56

DATUM 85, 89, 128 ENABLE 118
DATUM, type checking 99 ENDC 56

] DDT 140, 145 ENTER 36, 69
deallocation of variables and arrays 10 ENTRY specification 12
DECLARATION (a function) 61 EQU 47
<declaration> 3, 83 EQV 27, 150

i default parameters 7 ERASE 90
DEFINE 56, 57, 59, 61, 145 ERASE, in a Foreach 95

] <define> 56 ERENAME 36
DEFPRI 105 ERMSBF 49

i DEFPSS 105 error messages 138
DEFQNT 105 error procedures 139

i DEFSSS 105 ERROR-MODES 138
DEL-PNAME 100, 124 ERSTR 72
DELETE 88, 90 EVALDEFINE 6 2

] DELF 71 EVALREDEFINE 6 2
delimited strings 58 event notices 110

| delimited-anything 61 Event type items, datums of 112
delimited,expr 61 event types 110
Delimiters- 57 <event_statement> 110

| DELIMITERS 57 EVENT-TYPE 111, 155

ocuMITERS, NULL 57 Events, introduction 110
; Delimiters, null 57 EXP 52

! DELNF 72 EXPR, TYPE 62
DEPENDENTS 106 <expression> 22

167

INDEX SAIL

EXTERNAL declaration 4, 13 GTAD 81

EXTERNAL procedures 9, 12 GTFDB 73
GTJFN 73

FAIL 89, 95, 106 GTJFNL 73

FALSE, definition 129 GTRPW 120

FILEINFO 5 0 GTSTS 73

FIRST 90, 125 GTTYP 78

fix (convert real to integer) 23

FIXR 24, 134 handler procedures, Record-class 66
float (convert integer to real) 24 HELP 145
FLTR 24, 134

FOR (substringer) 23, 27 IBP 50
FOR statement 17 <id-list> 3

<for-statement> 14 identifiers 129

FORC 60 IDPB 5 0

FOREACH 8 8 IDTIM 8 1

Foreach <element>, Boolean Expression 94 IF expressions 24
Foreach <element>, List membership 93 IF statement 15
Foreach <element>, Retrieval Triple 94 <if_statement> 1 4
Foreach <element>, Set membership 93 IFC 60
Foreach <element>s 9 3 IFCR 6 1

Foreach itemvars 92 LOB 50

Foreach searches, relative speeds 95 ILL MEM REF 131
<foreach_statement> 8 8 ILLEGAL UUO 131

FOREACH, execution of 93 IN 88, 89, 150
FOREACH, general considerations 91 IN-CONTEXT 5 1
FOREACH, increase speed of 91 INCHRS 43, 79
FOREACH, main discussion of 92 INCHRW 43, 79
Foreach, Matching Procedure <element> 95 INCHSL 43, 79
Foreach, satisfiers 93 INCHWL 43, 79
FORGET 101, 102 INDEXFILE 7 3

FORLC 60 INF 150

formal parameters, Leap 86 INIACS 5 0
‘formals 7 initialization 10

FORTRAN procedures 9, 13, 20 INITIALIZATION 11
FORTRAN, actual parameters 10 inner block 1

FORWARD declaration 4 INOUT 41, 69
FORWARD procedures 8 INPUT 39, 69, 79
FROM 88 INSTR 43, 79

INSTRL 43, 79
GDSTS 72 | INSTRS 44, 79
generation of symbols using macros 59 INT..._APR 154

Gensym 59 INT..._INX 153

GEQ 150 integer constants 129
GETBREAK 3 8 Integers, range 6
GETCHAN 35, 69 INTER 150

GETFORMAT 46 INTERNAL declaration 4, 12

GETPRINT 5 3 INTERNAL procedures 9
GETSTS 41, 69 INTERROGATE 111

GJINF 8 1 <interrogate-construct> 110
GLOBAL 86 INTERROGATE, <options> 111, 155
GNJFN 72 INTERROGATE, set form of 111
Go To Statements, restrictions 16. INTERROGATE, user defined procedures
GO TO, into a Foreach 92 for 113

<go_to_statement> 14 Interrupt codes 153
GOGTAB 49, 146 INTIN 42, 69, 79

168

] SAIL INDEX

| INTMAP 118 Label use 5INTPRO 122 <label-declaration> 3

{ INTRPT 107, 121 Labels, as actual parameters 10
i INTSCAN 4 2 Labels, restrictions 16

INTSET 119 LAND 27

INTTBL 119 LDB 50

} INTTY 7 9 leap booieans 100
: IRUN 108, 155 LEAP-ARRAY 6 1

i ISTRIPLE 125 <leap-expression> 97
1 ITEM 84 <leap-relational> 97
! item booleans 100 <leap-statement> 88

<item-expression> 97 Leap, introduction 83

<item_primary> 9 7 LENGTH 48, 125
i ITEM-START 86 LEQ 150
1 <item_type> 8 3 LET 10
i Item, <typed-item-expression> 128 letters, legal Sail letters 129
: Items & ltemvars, distinction between 85 LEVTAB 120

Items, ANY 99 LIBRARY 11

Items, BINDIT 99 Library, runtime 33
Items, Bracketed Triple 90 LINOUT 40, 69
items, creation of 84 LIST 86

B Items, Datums of 85 list booleans 100
Items, declared 84 list element designator 128

Items, DELETE 90 List element designators 98

! Items, implementation 86 list expressions 99
j Items, internal & external 85 List membership <element> 93
] Items, internal &external 87 <list-expression> 97
: Items, introduction 83 <list_statement> 8 8

Items, NEW 98 list, sublists 99

: Items, Pnames 100 Lists, automatic conversion 89
] Items, props of 100 lists, concatenation 99
) Items, scope 84 lists, initialization 99
] Items, type checking 99 Lists, PUT 89

Items, type of 85 Lists,REMOVE 8 9
f Items, with array datums 85 | LISTX 125
i ITEMVAR 8 5 LNOT 27

<itemvar_type> 8 3 LOAD-MODULE 11
ltemvars & Items, distinction between 85 LOCATION 28

; ltemvars, CHECKED 85 LODED 44
i ltemvars, implementation 87 LOG 52
i ltemvars, initialization 86 Logical expressions 27

] ltemvars, scope 86 LOOKUP 36, 69
{ ltemvars, type checking 85, 89 loop block 19

ltemvars, types of 85 LOP 48, 98, 125
/ LOR 27

JENS. 74 LSH 27

1 JFNSL 74

(JOIN 109 Macro bodies 58

Macro bodies, concatenation in 59

K-OUT 156 macro body delimiters 57
1 K-ZERO 156 macro declarations 57

1 KAFIX 2 4 Macro declarations, scope 58
| Kix 24, 134 macro parameter delimiters 57

KILLME 108, 155 <macro_body> 5 6
i KPSITIME 12 1 <macro-call> 56
] Macros with parameters 59

169

| N D E X SAIL

Macros without parameters 57 OWN 5
MAKE 88, 90

MAKE, in a Foreach 95 Parameters, default values 7

Matching Procedures 95 parametric procedures 9
Matching procedures, as processes 106 PBIN 7 9
Matching Procedures, sharing memory 96 PBOUT 79
MAX 26 PBTIN 7 9

MEMORY 28 PHI 99

MESSAGE 62 PMAP 81

MESSAGE procedures 86 Pnames 100
MIN 26 PNAMES 100

MKEVTT 1 10, 123 POINT 50
MOD 27 POLL 107

MTAPE 41, 69 Polling points 107
MTOPR 74 POLLING-INTERVAL 107

MULTIN 113 <preload_specification> 3
MYPROC - 109 PRELOADed arrays 7

PRESET-WITH 7
NEEDNEXT 1 9 PRINT 5 3

NEQ 150 Printnames of items 100

NEW 97, 98 PRIORITY 105(X)
NEW-ITEMS 98 PRIORITY(X) 154
NEW-PNAME 100, 124 PRISET 109

NEW-RECORD 65 Procedure body, emptiness 5

NEXT statement 19 Procedure Calls, actual parameters 20
NIL 99 Procedure Calls, semant ics 19

No one to run 107 <procedure-call> 15

NOJOY 112 <procedure-declaration> 3, 84

NOMAC 62 <procedure-head> 4
NOPOLL 107 <procedure-type> 84
NOT 26, 150 Procedures, as actual parameters 20

NOTCQ 112 Procedures, assembly language 13

notice queue 110 Procedures, declaration 7
NOTNOW 108, 155 Procedures, defaults in declarations 9
NOW-SAFE 2 1 procedures, Leap 86
NOW-UNSAFE 2 1 Procedures, parametric 9
NULL DELIMITERS 57 Procedures, restrictions 10

null delimiters mode 57 Procedures, restrictions on formal

NULL-CONTEXT 102 parameters 7

NULL-RECORD 64, 65 Procedures, separately compiled 12
NULL, definition 130 procedures, user error 139

process item 104

object 9 1 process procedure 104
ODTIM 8 1 Process procedures, Matching 106
OF 18, 22 Process procedures, recursive 106

OFC 56 <process-statement> 104

OPEN 33, 69 Processes, control of scheduling 106

OPENF 74 processes, creation of 104
OPENFILE 7 4 Processes, dependency of 105
operator precedence 25 Processes, inside recursive procedures 105
OR 26, 150 PROCESSES, introduction 104

OUT 40, 69, 79 Processes, resumption of 108

OUTCHR 44, 79 Processes, sharable memory 106
outer block 1 Processes, status of 104

OUTSTR 44, 79 Processes, suspension of 108
OVERFLOW 52 Processes, termination of 107

170

SAIL INDEX

Program name, for DDT 1 RESTORE 101, 102
PROPS 89, 100, 128, 129 RESUME 108

PROTECT,ACS 30 RESUME, <options> 155
Pseudo-teletype functions 44 RESUME, <return item> 108
PSIDISMS 12 1 RETAIN 111, 155

PSIMAP 119 retrieval item expression 99
PSIRUNTM 12 1 Retrieval Triple <element> 88, 94
PSOUT 79 RETURN 28

PSTACK 105(X) RETURN statement 18
. PSTACK(X) 154 RFBSZ 75

PSTATUS 109 RFCOC 78

PTY... 44 RFMOD 79

PUT 88, 89 RFPTR 75
RGCOFF 66

QUANTUM 104(X) RLJFN 75
QUANTUM(X) 154 RNAMF 75

question itemvars 95 ROT 27
QUICK-CODE 29 RPGSW 137

RTIW 120

RAID 140 RUNME 105, 154
RAN 52 running 104
RCHPTR 75 RUNPRG 82

RDSEG 81 RUNTM 82

ready 104 RWDPTR 75
READYME 108, 155
real constants 129 SAFE declaration 4

REALIN 42, 69, 79 <safety_statement> 1 5
Reals, range 6 SAMEIV 125
REALSCAN 4 2 satisfier group 93
RECORD-CLASS 64 SAY-WHICH 111, 112, 155
RECORD-POINTER 64 SCAN 40

RECURSIVE declaration 4 SCANC 40

RECURSIVE procedures 8 SCHEDULE-ON-CLOCK-INTERRUPTS 12 1
REDEFINE 58 scheduling of processes 106

Reentering programs 137 SCHPTR 75
REF,ITEM 114 scope, of variables 5

| <ref_item_construct> 114 SDSTS 72

REFERENCE 7, 9, 20 SECOND 90, 125
Reference items 114 SEGMENT-FILE 11

| RELBREAK 38 SEGMENT-NAME 11

RELD 71° SET 86

RELEASE 35, 69 set booleans 100
REMEMBER 101, 102 Set expressions 99
REMOVE 88, 89 Set membership <element> 93
REMOVE, in Foreach 93 <set-expression> 97
RENAME 36, 69 <set_statement> 8 8
REPLACE-DELIMITERS 57 SETBREAK 3 8

REQUIRE 11 SETC 150

REQUIRE - indexed by last word of the require SETCHAN 76
statement 62 SETCP 112, 126

<require-specification> 4 SETEDIT 7 8
REQUIREs, list of 4 SETFORMAT 46

RESCHEDULE -111, 155 SETINPUT 7 6

rescheduling of processes 106 SETIP 113, 126
RESERVED 6 1 SETLEX 145

Restarting programs 137 SETO 150

171

INDEX SAIL

SETPL 40, 69 STSTS 73
SETPRINT 5 3 STTYP 78
Sets, automatic coercion 89 SUBSR 48
Sets, Derived Sets 99 SUBST 48

Sets, initialization 99 <substring_spec> 2 3
Sets, PUT 89 Substrings 27
Sets, REMOVE 89 <suc_fail_statement> 8 9
SETSCOPE 147 SUCCEED 89, 95, 106
SETSTS 41, 69 SUCH THAT 88, 150
SFCOC 78 SUSPEND 108

SFMOD 79 suspended 104
SFPTR 75 SUSPHIM 105, 154
SHORT 3, 4, 6, 24 SUSPME 105, 154
SHOW 145 SWAP 150

SIMPLE declaration 4 Swap statement 15
simple expressions 25 <swap_statement> 1 4
SIMPLE procedures 8 SWDPTR 75

<simple-formal-type> 84 switches, in command lines 134
<simple_type> 8 3 symbols, automatic generation of 59
SIN 51 <synonym-declaration> 4
SIND 5 1 SYSTEM,PDL 11
SINH 5 1

SINl 76, 79 TANH 51

SIR 120 TELLALL 111, 155
SIZEF 7 6 TERMINATE 107
SNAIL commands 132 terminated 104
SOS representation 150 TEXT 145
SOURCE-FILE 11, 62 THAT 88

SPROUT 104 THEN 14, 15, 22
SPROUT DEFAULTS 105 THENC 56

<sprout-default-declaration> 104 THIRD 90, 125
SPROUT-DEFAULTS 104 time sharing with processes 120
<sprout-statement> 104 TMPIN 42, 69
SPROUT, <options> 104, 154 TMPOUT 42, 69
SQRT 52 TO 23, 27
Stanford character set 150 TRACE 145
START-CODE 29 TRAPS 145

START-CODE, calling procedures from 31 TRIGINI 5 2

<statement> 1 Triple, Binding Boolean 91
STDBRK 39, 69 <triple> 88
STDEV 72 TRIPLES 86

STDIR 8 1 Triples, introduction 83
STEP 14 TRUE, definition 129
STEPC 56 TTYIN 44, 79
STI 79 TTYINL 44, 79
STW 120 TTYINS 44, 79
storage reallocation 137 TTYUP 44, 79
STPAR 79 type checking, itemvars 85
String constant, as comment 1 type conversions, algebraic 23
string constants 130 <type_qualifier> 3
String descriptors 158 typed-item-expression 128
STRING-PDL 11 <typed-item-expression> 128
STRING-SPACE 11 TYPEIT 123
String, declaration 6

STRINGSTACK 104(X) unbound 91
STRINGSTACK(X) 154 UNBREAK 146

172

; SAIL - INDEX

2 UNDELETE 76

1 UNION 150

; UNSTACK-DELIMITERS 57
UNTIL 14, 18
UNTILC 5 6

| UNTRACE 146

] URSCHD 107
i USER1 112

} USER2 112

USERCON 4 8

USERERR 4 9

k USETI 42, 69
3 USETO 42, 70
] UUQFIX 2 4

} VALUE 7, 9, 20
value 91 .

3 <variable> 128

: variables 128

Variables, allocation 10

{ variables, initialization 10

: variables, scope 5

f VERSION 11, 12

3 WAIT 111, 155
1 wait queue 110

WAITQ 112
WHILE 14

WHILE statement 17

<while_statement> 1 4
WHILEC 6 0

! WORDIN 40, 70
1 WORDOUT 41, 70

j XOR 27, 150

| 173

