" UAD-A038 867 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/6 9/%
COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION.(U)
JAN 77 M R GAREY: R L GRAHAM» D S JOHNSON nooon-n-c-osso

UNCLASSIFIED STAN=CS=77-587

END

DATE I

FILMED
S=77 |

U 1.0 ke
|"”§ ! E 22
I <

= lleE
ILzs flis e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Do
O
Q0 A
| Q0
M
-
- COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION
Q 7/
<< by
M. R. Garey, R. L. Graham, D. S. Johnson, &D. E. Knuth
o .‘\‘:\\."\\
\
X \
| STAN-CS-77-587 ' .
k| JANUARY 1977 .

| COMPUTER SCIENCE DEPARTMENT
2 School of Humanities and Sciences
: STANFORD UNIVERSITY

.:;7"“'1‘

An

m “0. E

i

s
3K

(o 'L’,":" 3

- DDC FILE coPY,

Unclassified R ? I Sl cinld: o '&
Nt g L \~ “
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) \ s ’
READ INSTRUCTIONS
REPORT DOCUMENTAT|0N PAGE BEFORE COMPLETING FORM
~ 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
!j T stan-cs-77-587 | -
i 8. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
i
- ¥ - > 6. PERFORMING ORG. REPORT NUMBER

- s o Pt e et

STAN-CS-77~587 .-
g,-cmruc*r OR GRANT NUMBER(s)

7 2 AUTHOR(.) \ ‘CL \A {
b wwchael @on® PPNV ES o 00014-76-C-0330,), — 2 §
y'_ R,/Garey, R. L./Gra.ham, R. S.,Johnsgr.l E./Knuthv‘ SF,Mc_g—?;_as?gaz!

10. . - |
AREA & WORK UNIT NUMBERS |

D

(.é/ COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION, / TR 2tk JARIBEE] ou
— - o -) IR

g

. PERFORMING O?GANIZ.ATION NAME AND ADDRESS
Stanford University

Computer Science Department "
Stanford, Ca. 94305

11, € S E

Ofctgfggoé 'Nﬁagr” C%gg'éaﬁgﬁ g (T! Janwewy @77
Department of the Navy

7 13. NUMBER oFI,PAesg’h—-f-_-~-~«..

Arlington, Va. 22217 56‘s {12) SO .\

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY '(&l_l_‘lﬂ_s-re

ONR Representative: Philip Surra s e ,

; Unclassified

Durand Aeronautics Bldg., Rm. 165 ;
Stanford University 15a. DCECLDASSIFlCATION/DoVINGRADING

Stanford, Ca. 94305 R |

16. DISTRIBUTION STATEMENT (of this Report)

Releasable without limitations on dissemination

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES |

N it bl O el s

PR

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

;5-' bandwidth, directed bandwidth, linear algorithm, NP-complete
: problems, optimum permutations, siphonophora

i

E

E 20. ABSTRACT (Continue on reverse side if necesaary and identify by block number)

We present a linear-time algorithm for sparse symmetric matrices
which converts a matrix into pentadiagonal form ("bandwidth 2"),

whenever it is possible to do so using simultaneous row and column

permutations. On the other hand when an arbitary integer k and

FORM .
DD , Jan 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE Unclassfledw
SECURITY CLASSIFICATION OF THIS PAGE (Whdn Dlta Entered) 4

cabs :

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

graph G are given, we show that it is NP-complete to determine
whether or not there exists an ordering of the vertices with

bandwidth < k , even when G is restricted to the class of free

tress with all vertices of degree < 3 . Related problems for

acyclic directed graphs (upper triangular matrices) are also discussed.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date

al*‘

Complexity Results for Bandwidth Minimization

by Miéhael R. Garei,:/ Ronald LI“Graham;:/‘D&Vid S. JOhnsonT:L"“V~'*‘—“—'""_— o F
and Donald E. Knuth

Computer Science Department ;
Stanford University
Stanford, California 94305

Abstract. & 3

We present K}linear-time algorithm for sparse symmetric matrices

which converts a matrix into pentadiagonal form (33andwidth 2'*%

whenever it is possible to do so using simultaneous row and column
permutatioﬁg? On the other hand when an arbitrary integer k and
graph G are given, we show that it is NP-complete to determine
whether or not there exists an ordering of the vertices with

bandwidth < k , even when G is restricted to the class of free
trees with all vertices of degree < 3 . Related problems for acyclic

directed graphs (upper triangular matrices) are also discussed.

Keywords: bandwidth, directed bandwidth, linear algorithm, NP-complete

problems, optimum permutations, siphonophora.
§ ACELESION for
xS hfta

e Balt Sactiat
CAAMIOUNCED
JSTEtinron LB

S

:/ usulmﬂlﬂnuuumn'uu
Bell Telephone Laboratories, Murray Hill, New Jersey O797L. u—i:———ﬁﬁzjir']ﬁf

visiting Stanford University, was supported by National Science
Foundation grant MCS 72-03752 AO3 and by the Office of Naval Research|
contract NOOO1lL-76-C-0330. Reproduction in whole or in part is
permitted for any purpose of the United States Government.

This research, performed in part while the first three authors were n

e Introduction.

Let G be a graph on the set of vertices V , where V| =n.

We -shall write u — v if vertex u is adjacent to vertex v in G,
and u -+ v 1if they are not adjacent. A layout of G is a one-to-one
mapping f that takes V into the positive integers; equivalently, a

layout can be regarded as a string of vertices and "blanks", with each

vertex of V appearing exactly once, for instance b_c__da . The

correspondence between these two definitions is simply that f(v) = k |
if and only if v is the k-th element of the string; thus i
b_c__da corresponds to f(a) =7, f(b)=1, f(c)=3, f(d)=6, E

where V = {a,b,c,d}. {
The bandwidth of a layout f is defined to be

bandwidth(f) = max{|f(u)-f(v)|: u — v},

the greatest distance between G-adjacent vertices in the string corresponding

to f . The bandwidth of graph G is then

6 Bandwidth(G) = min{bandwidth(f): f is a layout of G} .
It is clear that

Bandwidth(G)

n

max {Bandwidth(G'): G' is a connected component of G} ,

for if f is any layout there is another layout f' , having the same
bandwidth, in which the connected components of G appear "unmixed" as

substrings. (We can let f'(v) = f(v)+Ne(v) , for example, where c(v)

is the number of the component containing v , and where N is sufficiently

large,)

e At

Perhaps the most important application of the bandwidth notion arises #

o Sand S ¥ L

in connection with sparse matrices, Given a sparse nxn matrix
. A= (aij) , let G be the graph on vertices {vl,...,vn} vhere v, — v,
{ | for 14 if and only if ag # O or ay # 0. Then Bandwidth(G) < k :

- if and only if there is a permutation matrix P such that all elements

of PTAP lie on the diagonal or on one of the first k superdiagonals

or the first k subdiagonals. This is easily proved by observing that
blanks may be removed from a layout without increasing the bandwidth.

I

: When G has no edges, its bandwidth is trivially -« ,
: Otherwise the bandwidth will be as low as 1 if and only if each component

i | of G is an isolated point or a path, namely a subgraph of the form

v_
1 2
determine whether or not Bandwidth(G) = 1 , even when G is not known

Vo = ee. — V_, vhere v, ot iff |i-j| =1 . It is easy to

to be connected, in linear time; in other words, there is an algorithm
which decides in 0(n) steps whether or not a sparse matrix can be

- converted into tridiagonal form by simultaneous row and column permutations,

(see [13].) The simplicity of this algorithm suggests naturally
that the next harder case might not be too difficult, and indeed we shall
see below that the condition Bandwidth(G) = 2 can be tested in linear

time. However, the algorithm which achieves this is quite intricate,

laseie k. sl s o o o

and there appears to be no elegant way to characterize graphs of
bandwidth 2 .

The authors have been unable to construct a polynomial-time algorithm
that decides whether or not Bandwidth(G) = 3 . The bandwidth 2 case

indicates some of the difficulties which must be surmounted. Section 8

e

below shows that the general problem of deciding whether or not

Bandwidth(G) < k , given k , is NP-complete, even if G is a free tree
with all vertices of degree < 3 . This restriction to trees is of special
interest because the analogous problem of minimizing 2. |[f(u) - f(v)| instead
of max|f(u) - £f(v)| over all layouts can be done in polynomial time when the
graph is a free tree [31], yet it is NP-complete for general graphs [17].

Section 9 considers the analogous problems which arise when acyclic

directed graphs replace undirected graphs. Several open problems conclude

the paper. 1

T T TV

~—

A

T T W I RIS A vy

2. Preliminaries for the Algorithm.

In this section we shall begin to develop an algorithm that tests
whether or not Bandwidth(G) = 2 . We shall assume that G is connected
and that it has at least one vertex of degree >3 . (If all vertices
are of degree <2 , it is easy to see that Bandwidth(G) <2, since such
a graph is = collection of isolated points, paths, and cycles.) The
connectedness assumption implies that G has at least n-~1 edges, and
on the other hand we may assume that G has at most 2n-3 edges since
a graph of bandwidth k cannot have more than (n-1)+ (n-2)+ ...+ (n-k)
pairs of adjacent vertices. Therefore our algorithm will take O(n)
steps if its running time is bounded by a constant times the number of
edges in G .

In order to get into the right frame of mind for this problem, the
reader is urged to try his or her hand at finding a bandwidth-2 layout
for the graph in Figure 1., Like all graphs of bandwidth 2, this one is
rather "skinny"; a breadth-first search will not involve many unexplored
nodes at any time, The puzzle which the reader is now asked to try is
simply this: Arrange the 27 vertices of Figure 1 into a straight line
so that all pairs of vertices which are directly linked in that graph are
separated by at most one other vertex in the line. (This puzzle is not
quite so easy as it looks. The algorithm we shall develop is supposed
to work in linear time, essentially without backing up, but no such

restriction is being imposed on the reader.)

V—W

] e

T —

AN

—) —

Noq
¥
M P
g
L 0

) e U] e 3

e -
N\
¥
B
Z

O e Q>
|

H
|
£
|
dJ

[

DI | —

Figure 1. Example of a graph which the reader is urged to arrange
into a bandwidth-2 layout before proceeding further.

et

e T . L ol i

Perhaps the most important notion which arises in connection with
graphs of bandwidth 2 is the concept of chains within G . We say
that v begins a chain of length k if there are vertices v = VyseeesVy

such that

vl——v2—°“—-vk

in G, and each of Vireeor Vi g has degree 2 ; furthermore " must 3
be of degree 1 , an endpoint. k

Let us define f(v) =1 if deg(v) =1, and 2(v) = k+t1 if
» , This

i

deg(v) =2 and v — w where £(w) = k ; otherwise f(v)
function is well-defined since Bandwidth(G) > 1 ; and it is clearly ;-

possible to compute £(v) , for all v, in O0(n) steps. Therefore

our algorithm will assume that this precomputation has been carried out.
The values of £ for the example graph in Figure 1 are shown in
Figure 2. Note that vertex v is part of a chain if and only if (£(v) < =,

2 —1

S_
R

—

Figure 2. The £ function for the example graph in Figure 1;

there are three chains of length 2.

We shall say that a layout f is chain-stretched if lf(vi)—i‘(vi+l)l = 2

whenever Vi and Vi+l are consecutive vertices of a chain., This

terminology is justified because of the following observation,

Lemma. Every graph of bandwidth < 2 has a chain-stretched layout of
bandwidth <2 .

Proof, Let f be a layout for the graph G , where Bandwidth(G) <2 ;
we may assume that G 1is connected., Furthermore we shall choose f +to

have the maximum "range span” over all bandwidth~2 layouts for G ; i.e.,

\N

-

oy
e maemepa——

SR b
foag

.

T

v AT P R SR

m f(v) - min__o f(v) is to be maximum over all f with

ax
bangizdth(f) =2, (The maximum range span is finite, at most 2n-2 ,
since G is connected.) We shall prove that f 1is chain-stretched.

If not, the string ¢ corresponding to f contains the substring
uv , where u and v are consecutive vertices of a chain. By definition,
deg(u) and deg(v) are at most 2 , and u— Vv, hence u and v are
each adjacent to at most one other vertex. By maximality of f's range
span, the strings obtained from ¢ by replacing uv by u v and Vv u
are not layouts of bandwidth <2 . It follows that ¢ contains the
substring uvab or abuv , where a —u — Vv — b ; by left-right
symmetry we may assume that ¢ contains abuv . Then v must be the
rightmost nonblank element of ¢ . If £(u) > £(v) = k, graph G
contains the chain v, — v where v = v and. b =W

k | S 1 k x-1 *
but then ¢ must end with ViUs oo W Vi 1% Vi and it can be

e N

lengthened by replacing this substring by -u2-'"-uk-l-uk—vk-vk-l-"’-Vl -

On the other hand if f(v) > £(u) = k , a similar argument shows that
® ends with WVl eee Uy oV WV where u = Uy and a = W o and

this substring can be replaced by Vioeee Vi W W q_eee Ug e In both

cases the maximality of range span has been contradicted. U
The algorithm we shall develop below is based on a subalgorithm

which solves the following problem: "Given a connected graph G and two
vertices a and b , decide whether or not there exists a layout [of
bandwidth < 2 such that f(a) =1 and f(b) =2 ." If such a layout
beginning with ab exists, the algorithm will construct one; and in all
cases the algorithm will terminate after 0(n) steps. The idea is to
build the layout step by step, working with partial layouts, namely with

one-to~-one functions f that are defined only on a subset of the vertices,
All partial layouts we shall deal with will satisfy the bandwidth 2
condition, in the sense that |f(u)-f(v)| <2 whenever f(u) , f(v) are
both defined and uw — v . Furthermore we know by the lemma that it
suffices to restrict attention to chain-stretched partial layouts.

T—

oy

v

P L el S

If f 1is a partial layout defined on the set of vertices U,
the active vertices of f are those elements wueU such that u— v

for some v§fU ., If f. is a partial layout defined on V.

is a partial layout de%ined on Vé = V; , we say that f2 lis an extension
af £, if f2(v) = fl(v) for all veV
complete layout if V, = V and bandwidth(fé) <2 . Thus the task of our
subalgorithm will be to decide whether or not the partial layout f

defined by the string ab (i.e., f(a) =1 and f(b) =2) can be

and f2

1 e We also say that f2 is @

extended to a complete layout.
The subalgorithm actually does more, since its initial task leads

to a family of similar subtasks of three types:

Type A. Given a partial layout defined by the string « ab , where at
most a and b are active, can it be extended to a
complete layout?

Type B. Given two partial layouts defined by the strings
aambm...albl and abma,m...bla1 , for some m>1,

where at most ay and bl are active, can at least one
of these be extended to a complete layout?
Type C. Given a partial layout defined by the string ¢ = X8y eee_8q

for some m > 1 , where at most a, is active, can it

be extended to a complete layout? 5
In each case a is a (possibly empty) initial string which has no important
influence on the algorithm, since it represents inactive vertices and blanks
that have already been permanently placed., The string & 1in tasks of Type C
will have length > 2 , and its final two elements will be nonblank. The two
strings in tasks of Type B will be denoted by ¢ = a(ambm)... <albl> 8

The idea of the cubelgorithm is quite simple, namely to "keep doing

something useful." Let f be a partial layout of one of the three types,
defined on the vertices U ., (Actually f represents two partial
layouts if it is of Type B, but it will be convenient to ignore this
fine distinction in our informal discussion.) By looking at how the
active vertices of f interact with vertices { U, it may be obvious
that f cannot be completed. Otherwise the subalgorithm will find a

sufficiently general extension of f , namely an extension layout f"

[

which can be completed whenever f can be; and f' will have one of the
three basic types. If any suitable extension is found, the string ¢
corresponding to f will be replaced by the string @' corresponding
to f' , and the process will continue until either reaching an impasse
or a complete layout. The running time for each extension step will be
bounded, except in one case where the running time can be "charged" to
subsequent extension steps; hence the total time will be 0(n) .

In Section 7 we shall show how the subalgorithm can be used to
construct an algorithm that solves the general bandwidth 2 problem

(without any given partial layout), in linear time.

- ——————

g acpm s Amgron

5
i
E
:
§
|
i
}
|
s
i
f
{
i
|
!

Je The Subalgorithm for Types A and B.

We shall present the subalgorithm informally, with proofs of the

validity of each extension intermixed with specifications of the actual
operaiibns to be carried out. The actions will be of three kinds:

(a) Terminate successfully because ¢ is complete; (b) terminate
unsuccessfully because ¢ cannot be completed; (c) =set @' toa
sufficiently general extension of ¢ . It is hoped that this manner of
presenting the procedure will make it easy to understand and reasonably
enjoyable to read. Examples of the subalgorithm in operation appear in

Section 6 below.
The following notation will be used for convenience:

U = set of vertices appearing in ¢ = domain of current
partial layout £ ;

S(u) {v|u—v and vfU} = "successors" of vertex u ;

L}

l(S(u)|| = number of "successors" of u ;

n(u) (

2(u) = chain level of u (defined earlier).

It is clearly possible to build and maintain data structures so
that references to S(u) , n(u) , £(u) take a bounded amount of time.
The subalgorithm consists of a long but exhaustive list of cases covering
which actions are appropriate under various circumstances that can arise.

First let us consider Type A, recalling that tasks of this type are

specified by the string ¢ = aab , where at most a and b are active.

: Case Al, n(a) >1 or n(b) >2 . Failure.

& Case A2, n(a) =1 . Set @' = aabc where S(a) = {c} .
. Case A3, n(a) =0, n(b) =2 . Set @' = aab{cd) where S(b) = {c,d} .
Case Ab, n(a) =0, n(b)=1. Set ¢'=aqab_ c where 5(b) = {c}.

0 . Success.

Case A5, n(a) = 0, n(b)

B by o me ro b
.
.

Note that Cases A2, A3, A4 lead to new problems of Type A, B, C respectively;

the proofs of validity in each case are trivial.

g

LSS b’

g

Recall that tasks of Type B are specified by the string
P = o:(ambm) e L lbl> , for some m >1, where at most a; and b,

are active, Actually ¢ represents a potential choice between two

partial layouts, aambm 1) albl and abmam i blal . For convenience

we shall write a = a
n(a) < n(b) .

17 b = bl ; we may assume by symmetry that

Case Bl, |S(a)us(b)||>2 or n(a) =n(p) =2 . Failure,

Case B2, n(a) =1, n(d)=2. Set ¢'= Qa b ...abcd
where S(a) = {c} and 8(b) = {c,d} .

Case B3, n(a) =0, n(b)=2. Set ¢' = Qg b ... albl<cd)
where S(b) = {c,d} .

Case B, n(a) =1, n(p) =1, 5S(a)=:5() . Set 9'=0aab ... a,b,c
where S(a) = {c} .

Case B5, nfa) =1, n() =1, 8S(a) # S(b) . Set

@' = aab) ... (agPy)(cd) where S(a) = {c} , s(d) = {d} .

Case B6, n(a) =0, n(b) =1. Set @' =aab ...ab) c vhere
S(a) = {c} .
Case Bf. n(a) = 0, n(b) = 0. Success.

Again the proofs in each case are trivial; we shall discuss only case BO
here: Any completion of ¢ must be of the forms Otambm coe alblxcw
(where x it a vertex or a blank), Qg b e..abicw , or

o[bmam ...blalcw . The first of these is an extension of ¢' ; and the
second or third imply that ozambm coe albl_cw is also a complete

extension.

10

%

e
hd
3

e
d

4, The Subalgorithm for Type C.

Recall that tasks of Type C are specified by the string ¢ = X G eee 2q)

for some m > 1 , where at most is active and & contains no usable

a
115
blanks. This type of partial layout allows considerably more flexibility
than Types A and B do, since it may be possible to make good use of the
m blanks., Let us write a as a shorthand for ay - Furthermore we

shall write U' = UUS(a) , with S'(u) and n'(u) defined correspondingly.
Case C1, n(a) >3 . Failure.
Case C2, S(a) = {b,c,d} .

In this case the final neighborhood of a in a complete extension must be
bacd , badc , cabd , cadb , dabc , or dacb ; the possibilities can be
narrowed down by considering various subcases, Symmetry between b , ¢ , d
is used in order to reduce the number of possibilities; in other words, there
is always a way to rename the elements of 5S(a) so that some subcase
applies. We shall say that a vertex u in S(a) is feasible if it can
conceivably fit to the left of a;, ; thus u is feasible if S'(u) = {v}
where {(v) <m, or if n'(u) = 0 . In the former case we say that u

is #(v) -feasible; in the latter case we say that u is O-feasible.

Case C2,1, b—c¢c, b—d, ¢c —d . Failure.
Case C2.2, b~+c, b—d, c—d.
In this case we must decide between badc and cadb .
Case C2.2.1, neither b nor c¢ 1is feasible, Failure.
Case C2.2.2, b is feasible but not c¢ . Set ¢' = a[baldc .
Here and in the sequel we shall use the following notation:
[bal] = _a ... apyobydpsqeesbga; if b = by is k-feasible and
b, — ... — b, is the corresponding chain of length k . In other words,

B | k

[ba] stands for the string with b and its successors

-am. . o_al

inserted into the appropriate blank spaces.

Case C2,2.3, b 1is k-feasible and c¢ is f-feasible
where k > { . Set @' = a[balde .

e

T .“—-'v N

To justify this step, we shall prove that
af[valde > afcaldd ,

where we say that partial layout P dominates Ps (written P =P)
if every completion of ?p implies the existence of a completion of Py -
In our case any chain-stretched completion of ¢ which is not an
extension of @' must be an extension of «fcaldb , so it must have

"o — —— —
the form o" = a[ca]dobodlbl cerd b0 . Let cy cy shn c,

be the chain adjacent to c¢ = o and let cj be blank if £ < J sk,

Then we may interchange CoreeesCy with bo,...,b in 9" , obtaining

k
a valid completion of ¢ which extends o' .

It is important that the reader understand the Jjustification of
step C2.2.,3 at this point before proceeding further. Although the
argument is very simple, we shall be using it repeatedly in the sequel,

with various refinements and extensions as the cases get more complex.
Case (2,3, b~—c, b+d, c+4d .,
In this case we must decide between bacd , cabd , dabc , and dacb .

Case C2,3.,1, neither b nor c 1is feasible, Failure, unless
d is feasible. In the latter case, set
o' = afda](be) .

Case C2,3.2, b 1is feasible but not c¢ j; say b is k-feasible,
If 4 is f-feasible where (¢ >k, set ¢' = afdalbe,
otherwise set ¢' = a[bajecd .

To justify this step, note that «a[balJcd is forced unless d is feasible,
In the latter case «afdalcb cannot be better than a[dalbe , since

b= by must be followed by bl""’bk » with bi+l following two
positions after bi 3 it is easy to see that any completion of af[dalcb

can be converted into one which extends «a[dalbc . Thus we must simply

distinguish between bacd and dabc , and the argument is similar to
Case C2,2.3.

&
}
s
i
-

¢
“
§
1

Case C2.3.3, b is k-feasible and c¢ 1is f-feasible, where
k>»2, Set @ = afbaled .

The argument is like Case 2.2.3 again; if d is feasible too, we will
soon be successful, regardless of which alternative is chosen.

Case C2.%, b~+c,b~+4+da, c4+4d.
All six possibilities of Case C2 still remain, but we can make use of
the symmetry.

Case C2.,4.1, none of b, c, & is feasible, Failure,

Case C2.4.2, b 1is feasible but ¢ and d are not. Set
@' = a[bal{cd) .

Case C2,4.3, b 1is k-feasible and c¢ is f-feasible, where £ <k,
but d is infeasible, Set @' = af[balecd .

In this case &[baled > &[baldc and af[calbd > afcaldb as in Case C2.3.2,
while af[balcd > afcalbd as in Case 2.2.3.

Case C2,4.4%, all of b, ¢, d are feasible. Set @' = [balcd .
Success is imminent,

Case C3, S(a) = {b,c} . See Section 5.
This is by far the hardest case to handle, and we shall postpone it for
a moment since the remaining cases are very simple.

° - t -
Case Ck, S(a) = {p} . Set @' =a a ... 8y D.

P : cen BB o
This clearly dominates o _a ... _asbay and @ _a .. 8y

Case C5, n(a) = 0 . Success,

-

5. The Subalgorithm for Type C, Case C3.

Now we must face up to Case C3; as above we have ¢ = A _Bpeee 8y

and a=a, and S(a) = {b,c} . We should replace the substring _a at

the right of ¢ by either _abc , _acb , bac , ba c, cab, or cab,

where the dashes may or may not get filled in later. Fortunately we can

rule out two of these possibilities immediately, since bac 1is never better
than _abc and cab 1is (similarly) never better than _acb : The complete
layout «a[balecw which extends bac can always be converted to a complete

layout a[bla]bcw which extends _abc .
Case C3.1, b —rc .

In this case we have to distinguish between abc and _acb . Let us say

that b is k-lucky if S'(b) contains a vertex b, with l(bl) = k and

3

l J
maximum k .) Similarly c¢ might be lucky; we can use the blanks left

k<m. (If there are two or more such vertices b choose one with

of a for one of the successors of a lucky vertex.
| Case C3.,1.1, neither b nor c¢ 1is lucky. Set o' = a_am..._al<bc) .

Case C3.1.2, b is k-lucky and c is either (i) unlucky or
(ii) f£-lucky where ¢ <k, or (iii) k-lucky and
n'(b) <n'(c) . Set o' = a[bla]bc .

To justify this step, we first argue (as in Case (2.2.3) that the layout
a_am..._albcbl has no advantage over ¢' . Therefore the only competing
i possibility is a_am..._alcb . By considering the two ways to place bl

,i in the latter string, we have two possible types of completion to consider,

say o" = a[cla]cbxlbl...xkbkw and o¢"' = a[cla]cbblxl... k-1Pxw » since
P |
-2 bl has degree < 2 and is part of a stretched chain. (Here cq is blank
pr - > if ¢ is unlucky or if we do not choose to make use of c 's luckiness.) j

We can always replace o¢" by a[bla]bcxlcl...xkckw sy an extension of @' j
similarly, "' can always be replaced by a[bla]bcxlcl...xk_lck_lw

unless c¢ is k-lucky. But in the latter case we have n'(b) <n'(c) =1

R T o T L

by hypothesis, so the X, are all blank and w is empty; ¢"' can
therefore be replaced by a[bla]bc_cl..._ck s

Case C3.2, b -4 c and n'(b) >3 . Failure,

Case C3.3, b+ c and n'(b) =3 . If S'(b)NS'(ec) = {d} and
either 8'(c) = {d} or s'(c) = {c;,d} where Z(cl) <®,
set @' = afcaldb . If §'(b)NS'(c) =P and either
8'(c) =P or s'(c) = {cl} where Z(cl) <m, set

@' = a[ca] b . Otherwise failure.

Case C3.4, b 4+ c and max(n'(b),n'(c)) =2 .
Case C3.4.1, 8'(b) = S'(c) . Failure.

Case C3.k.2, S'(b)Nns'(c)={d} . If n'(b) =2, let
S'(b) = {bl,d} ; if n'(e) =2 let 5S'(c¢)

{cl,dj -

In this case we say that b is k-lucky if l(bl) =k and k<m;

b is O-lucky if n'(b) = 1 ; otherwise b is unlucky. Similarly <¢ can
be lucky or unlucky. There are four viable alternatives to decide between,
namely a[balde , a[bla]bcd , d[caldb , and a[cla]cbd -

Case C3.4.2.1, neither b nor c¢ is lucky. Failure,

Case C3.4.2.2, b 1is k-lucky and ¢ is unlucky. If k=m, set
' = a[bla]bcd . Otherwise set

P = a-am'°'-ak+2<bkak+l>"'<bal><dc> .

This is the neatest part of the entire algorithm, since the two viable
alternatives «a[baldec and a[bla]bcd turn out to be essentially a
Type B situation. (On the other hand it may also be considered the

sloppiest part of the algorithm, since an abuse of notation is involved
here: If the Type B specification is ultimately completed to a string
of the form a_am..._ak+2ak+lbk...albcdm ,» a blank should actually be
inserted just before a, v)

Case C3.4.2.3, b is k-lucky and c¢ 1is f-lucky, where Kk > 1.
Set o' = a[bla]bcd "

It is easy to check that ¢' dominates the other three alternatives,

using arguments like those in Section U,

15

i

Case C3.4.3., s'(®)NS'(c) =P and n'(b) =n'(ec) =2 . Let
S'(v) {bl,bi} and 8'(¢) = {cl,ci
2(b l(bi) and I(Cl) < z(ci) .

} , where

(AN

1)
; The only possibilities are a[ba]bicclci and a[ca]cibblbi , perhaps
‘ interchanging b; with b and/or c; with c¢j .

Case C3.k.3.1, Z(bl) >m . If Z(cl) >m , failure; otherwise if
l(ci) >m, set @' = a[ca]cib ; otherwise set
o' = a[c'a]clb , where " [c'a] " means that the
blanks are to be filled by ¢ and the chain

containing ci -

These actions are forced unless l(cl) = l(ci) =1, for if c¢; and c;

both have finite level we must have l(cl) = 1 or failure will be imminent,

Case C3.k.3.2, z(bl) <m< l(bi) - !(cl) <m < l(ci) , and
n'(by) <m'(ef) . If 8'(bj) # {e} , failure;
! otherwise set ¢' = a[ba]bic .

In this case it is impossible to complete ¢ with a[ba]bicclci s Since
l(bi) > 1 ; the only viable alternatives are a[ba]bicciel and a[ca]cibbibl 5

1
is forced, otherwise success is imminent.

] and we must have bj — ¢y . Now if S'(ci) # {bi} , the stated value of ¢

Case €3.4.3.5, l(bl) <m < I(bi) and l(ci) MW Set o a[c'a]clb v

This is essentially forced, since a[ba]bic(clci) implies l(bi) =1
when ¢y and ci have finite level.
. Case C3.4.3.4, l(bi) <M, ’(ci) <m, and z(bl) < z(cl) . Set
; P' = a[b'a]blc .
po-
: As in Case C3.L4,3.1 we see that failure will occur unless l(bl) =1.

£, 5
s C R ULt

Case C3.h.h, sS'(b)ns'(c) =P, n'(b) =2, and n'(c) <1 . Let

: s'(b) = {bl,bi] , where t(bl) < i(bi) s and if
g : n'(c) =1, let 8S'(c) = {cl] » otherwise let ¢y
[be blank and £(cq) = O .

There are many possible arrangements to choose from, and the csubcases
require careful analysis.

‘ Case C3.4.4.1, l(bl) . If l(cl) >m, set @' =8 ... acac;d,
Tf Z(Cl) =m, set o' = a[cla]cb . Otherwise set
@' = afcal b .

Case C3.4.4.2, l(bl) <m, l(cl) <m . If l(cl) =m or l(bi) < o,
a[cjaleb . Otherwise if t(cl) & !(bl)-z *
a[bla]bc ; otherwise set ¢' = a[ca]blb 3

‘ : set o'

set o'

]

EE t(bi) < » , success is imminent, so we may assume that t(bi) =®,

1 1 .
Then a[bla]bcbl > a[ba]blc ; and afca] b > a[cla]cb >Qaa ... acacib,
unless f£(c;) =m when «fca] b is inapplicable. If t(cy) = m, it is

clear that a[cla]cb > a[bla]bcbi ; otherwise we need to compare

a[bla]bcbi with afca] b, and the best place for b, in the latter

1.

string is a[ca]blb_bi . The stretched chains in these two alternatives

now fill respectively l(cl) and l(bl)-2 positions to the right of by ,

and it is best to minimize this quantity.

Case C3.L.L4.3, £(b,) <m and l(cl) > e EE l(bl) =m, set

I

o' a[bla]bcb'lcl . Otherwise if l(bi) =m, set
p' = a[bia]bcblcl . Otherwise if l(bi) <m, set
P' = a[b'a]blc . Otherwise let k = l(bl) ; set

' p' = a_am..._ak+2(bkak+l)...(blaz)(bal)(bic) s

As in Case C3,4.2,2, thic is a slight abuse of notation.

Case (3.4.5, g'(b)ns'(e) = p, max(n'(b)y,n'(c)) =1. If
n'(b) =1, let s'(b) = {bl} ; otherwise let b
be blank and set l(bl) = 0. Define c

B L St

- .-

d
similarly.

.

i

S

Case C3.4.5.1, l(bl)

A

m and t(cl) <m. Set @' = gbc,
‘ Success is imminent.,

. Case C3.4.5.2, l(bl) <m and l(cl) S WMo &% l(bl) =m, set

P = a(bla]bc » otherwise set ¢' = a[ba] c .

2P

B e s e & 2

Case C3.4.5.3%, l(bl) >m and l(cl) >m .

In this final case we must "look ahead" before deciding what to do.

For k>1 1if bk has degree 2 , let bkﬁl be the

vertex adjacent to bk which has not yet been given
a name; continue until having found the sequence

b—b, — ... — b, where deg(bk) # 2 . Similarly,

3 k
find the sequence c L, Nt L Bl where

deg(cl) #2.
(This process must terminate, since G is not a cycle.)

¢, =48 or deg(bk) = deg(ci) =1 . Set

('pl)C .

Case (B.kh.5.3.1, bk
m'

n

Success is imminent.

Case C3.4.5.3.2, deg(bk) = 1 and deg(cl) S SeE
@' = a_am..._agbablc .

Case C(3elti5eBe3; deg(bk) > 2, deg(cl) >2, and k< /.

In this case we must decide between four alternatives _abcblcl...bk_lck_lbk 3
_acbclbl...ck_lbk_lck ’ bablcbzcl"'bkck-l , and cacleEbl"'ckbk-l <
by acquiring a little more information about bk 3 c[y kK, and £ 1t will

become clear which of these dominates;:

Case CFol545.361; b, = C, - If k=14, set o' = mbcblcl 3

otherwise set o' = a_am..._agcalclb .

Case C5.4:5:5:5.2 b, —c, . If k=14, set ' = @(bc)(blcl) 3

otherwise set o' = a_am..._ah(ac)(bcl) .
Case C3.L.5.3.3.3, b, # s bk_-F-cl . Failure,

Note that the "lookahead time" required to find k and [{ in Case C3.4.5.3
is O(k+f) , not 0(1) ; but Case C3.4.5.3 cannot occur again until
bl""’bk-l’cl""’c[-l have all been included in the string ¢ . Thus
the lookahead time can be distributed among the subsequent steps, and the
subalgorithm runs in linear time.

We have now exhausted all possible cases, and the subalgorithm is complete.

18

. e T e

6. Examples.

Here is how the subalgorithm would proceed to search for a layout
for the graph of Figure 1, beginning with DC :

On the other hand, if we begin with DA , the algorithm succeeds:

b, 1(i)

BRATRRR

Al
C3.bh.h4,1(i1)
A

B5

B6

ch
£2.3.2(11)
B2

A5

Here is how the algorithm would construct the same solution

"backwards", starting with 2Z& :

C3.bh.4,2(ii1)
A2

A2

AL
CHelbo ki, 1(1)
A2

GREB

P
DC

DC{AE)
DCAEBF
DCAEBF(GJ)
Failure.

DA

DAC

DACB

DACBE

DACBE_F

DACBEGFHJ

DACBEGFHJ T

DACBEGFHJIK

DACBEGFHJIK L

DACBEGFHJ IKNLMO

DACBEGFHJ IKNIMO(¥R)
DACBEGFHJ IKNLMO{FR) (QS)
DACBEGFHJ IKITLMOPRQS_T
DACBEGFHJIKNLMOFRQS T U
DACBEGFHJ TKNLMOPRQSWTVU(XY)
DACBEGFHJ IKNIMOPRQSWIVUYX&: Z
Success.

Z&

2&X

78 XY

7&XYU

Z&XYU(TV)

Z&XYU(TV) (SW)

7&XYUVIWS R

Z&XYUVTWS_R_O
Z&XYUVTWSQRPOML

7&XY UVTWS QRPOMLN

7&XYUVTWS QRPOMLNK
Z&XYUVTWSQRPOMLNK J
7&XYUVTWSQRPOMLNKIJHF
Z&XYUVTWSQRPOMLNKIJHFG
2&XYUVTWSQRPOMLNKIJHFGE
Z&XYUVTWSQRPOMLNKI JHFGE{BC)
Z&XYUVTWS QRPOMLNKT JHFGEBCAD
Success.

RARRORo—e- ¥ ~ W

i ————

|
i
{
g
%
{
|

If the algorithm had chosen the somewhat tempting alternative
78XYUVTWSNRMOLPK at step C3.4.4.2 in this example, failure would have

followed soon after.

Suppose Figure 1 were changed so that F — J Dbecame

Then the algorithm would invoke further cases:

oh 7¢XYUVTWSQRPOMLNK J
232'1"5'5'5'1(11) 78 XYUVTWS QRPOMLNKI JH*

- 78X YUVTWSQRPOMLNKI JH*G
al 7&XYUVTWSQRPOMLNKI JH*GF
3.4.2.3 78 XY UVTWSQRPOMLNKIJH¥GF _E

25 En T 78 XYUVTWSQRPOMLNKI JH*GFDECBA

Success.

F—*_J.

T—

Te Applications of the Subalgorithm.

The subalgorithm determines in O(n) steps whether or not G has
a bandwidth-2 layout beginning with ab ; by trying all possible a and
b we have an O(ni) algorithm for deciding whether or not Bandwidth(G) <2 .

This can be improved to an O(ne) algorithm, by using the subalgorithm
to decide whether or not G has a complete layout that extends xy_a , for
some vertex a and some (nonexistent) dummy vertices x and y . However, we

really want an O(n) algorithm, so it is necessary to be a little more careful.

-

We observed at the beginning of Section 2 that G may be assumed
to contain a vertex v of degree >3 ; suppose v—a , V—Db , and

v — ¢ . Then any layout for G must contain one of the six substrings
vab , vVvba , vae ', vea 5 Vvbe ; veb o,

or their left-right reflections, since two of {a,b,c} must appear on the
same side of v . To test Bandwidth(G) <2 in linear time, it therefore
suffices to have a linear-time algorithm that determines whether or not a
complete layout exists containing a given substring of three vertices.

! (Recall that a "complete layout"” always has bandwidth 2 according to

the definition in Section 2.)
Let us first develop an algorithm which decides in 0(n) steps
whether or not there is a complete layout for a given connected graph G,

containing a given substring abcd of length L:

Step 1. Stop with failure if a —d .

Step 2. Let Go be the graph obtained from G by deleting all
edges among {a,b,c,d} . If there is a path in GO from
a or b to ¢ or d, stop with failure. (This path

cannot possibly be incorporated into a complete layout

.' R -,},‘.‘?NF" T

= containing abcd , since it cannot get to the right of b .)

k Step 3. Let the vertices of V\{a,b,c,d} be partitioned into two

subsets
Vv

;= v | 2 path exists in G, from v to a or b} ,

v, = {v | a path exists in Gy from v to c or d} .

(By step 2, V, and V, are disjoint, Furthermore

V= {a,b,c,d}LJvilJvé , since G wes connected.) Let

2l

Gl be G

be GO
to find a layout P for Gl beginning with ba ,

o restricted to VlLJ{a,b} , and let G,

restricted to VELJ{c,d} . Use the subalgorithm

and also to find a layout @2 for Gg beginning with cd .
If either attempt fails, stop with failure; otherwise
stop with success, since mi@e is a complete layout

for G as required.

Now to solve the similar problem given a substring abc of length 3,

we consider two cases:

(1)

(i1)

There is at least one vertex d # a,c such that b — d . Then
the complete layout must contain either abed or dabc , and we
use the previous algorithm to try both cases.

There is no vertex d £ a,c such that b — d . Then we can use

G

G, be G minus
v

an algorithm analogous to the one above: Let
all edges among {a,b,c} and stop if there is a path from a
te e in Gy Otherwise partition V\{a,b,c} into disjoint

sets Vl and V2 , where Vl contains the vertices reachable

from a and V2 those reachable from c¢ . Any complete layout

containing the substring abc must be composed of a complete

ending with ab and a complete layout for G

layout for G 2

1
beginning with bec .

It is also possible to construct a linear-time algorithm that

decides whether or not a complete layout exists containing a given

substring ab of length 2 ; details are left to the reader.

Theorem, The following problem is NP-complete: Given an integer k , and
e ara oo

8. Tree Bandwidth is NP-complete,

In this section we shall prove that the general problem of determining
the bandwidth of a graph is NP-complete; that is, any problem in the large
class NP can be transformed into the problem of determining whether or
not the bandwidth of some graph is less than some integer k , with at most
a polynomial increase in the size of the problem specification. (See [25]
and [2, Chapter 10] for surveys of NP-complete problems.) This particular
result was first obtained by C. H. Papadimitriou [28]; we shall prove it

in a sharper form, by severely restricting the form of G .

7]

given a graph G which is a free tree with no vertices of degree > 3% , i

Bandwidth(G) < k ¢

troof. The problem of determining whether or not Bandwidih(G) k , given i
k and an arbitrary graph G , is clearly in NP . We shall complete the
proof by showing that the "3-partition problem," which is known to be
NP-complete [16, p. 120], can be polynomially transformed into the restricted
bandwidth problem stated in the theorem.

Given a sequence of 3n integers <al’82""’a3n> » where
ay*tay+...+ay =nA and A/b < a; < A/2 for each i , the 3-partition

problem asks whether or not there is a way to partition the integers

{1,2,+..,3n} into disjoint triples Tl""’Tn so that Z:{aj]je Ti} = A

bl s

for 1 <i<n . In other words it is a special bin-packing problem,
where we are to take 3n objects of integer sizes al,aQ,...,a3n and

pack them into n boxes of size A whenever possible. The condition

Ak < a; < A/2 means that each box in any such packing must contain
exactly three objects.
Given the specification of a 3-partition problem, our job is to construct
an integer k and a free tree G whose vertices all have degree <3 ,
such that there is a 3-partition if and only if Bandwidth(G) < k . From
the proof in [14] it suffices to do this with a tree whose size is at most
a polynomial in n and A, since the 3-partition problem is NP-complete
even when the magnitudes of all 3n numbers are boaunded above by a
(suitably large) polynomial function of n . (See [15] for a discussion

of this "strong NP-completeness" property.)
5,

e

‘woTqoad uctytyaaed-¢ o3 Butpuodsaaaoo ydead saoydouoydts *¢ 2an31dg

SaToelUual}

we3s Jo Sutuurldsq

peay 3sITg

The free trees we shall construct bear more resemblance to pelagic

hydrozoa of the order Siphonophora than to actual trees, so we shall find

it convenient to use terms from marine biology rather than botany. Our
construction involves parameters ml,...,m3n , d , and k which we shall
specify later after the properties we need for the proof have been
explained,

The graphs of interest to use all have the general structure shown in
Figure 5. There is a long stem, a path in which every d-th vertex has a

special name; the respective names of these special stem vertices are

by by by py by £y by Dy By £y wee By By £ Bopg By Dopn By Bopys

from left to right. It follows that the stem contains Ldn+6d+1 vertices
in all. There are also 3n long tentacles attached to special vertices
tl""’tBn ; the i-th tentacle consists of a long filament followed by Emi
nematocysts as shown in Figure 4, 1If we break off each tentacle just

below the node ti , and if we remove the boundary nodes bO’bl""’b2n+5 ’
the remaining graph consists of 2n+3 connected pieces called polyps,

named respectively

Hl Pl Fl P2 F2 cee Pn Fn H2

from left to right. Note that the vertices tl,...,t3n all belong to the
polyp called H, , the animal's "second head".

Qmi vertices

hdn vertices
L

AN r -
ORI e s
t filament nematocysts

i

Figure L. General form of the i-th tentacle,

We have noted that the special vertices bo’hl’bl""’b2n+3 are
separated by distance d ; our construction will also have the property
that every pode of a polyp Hi) Pi s oF Fi is distance < d from its
"central" node hi » Py » Or fj -

Now we shall impose further constraints on the construction, so that
it will not be easy to make layouts of bandwidth k . 1In the first place,
we will require each of the heads Hi to contain exactly 2dk-1 vertices.
This means that there are exactly 2dk vertices # hi at distance < d
from hi (since each head touches two boundary nodes bj Ys se it is
necessary to lay these vertices out in such a way that the dk nearest
locations on each side of hi are occupied by precisely those elements
at distance d or less in the graph. In particular, consider the layout

off H and assume without loss of generality that vertex bl occurs to

l)
the right of hl ; then all of the other polyps must appear to the right
of Hl

get to the left of hl without making the bandwidth > k . A similar

argument applies to the third head H3 s which therefore must appear

in the layout, since there is no way for any of their vertices to

(together somehow with b2n+3) at the extreme right of the layout. All
of the other polyps, and allrof the tentacles, must appear between Hl
and H, .

.

We shall arrange things so that the total number of vertices in the
graph is exactly (2n+3)(2dk)+l . This means that the situation will be
very "tight": There are (2n+l)(2dk)-1 vertices which must appear in the

ont?
(?n+1)(2d) from each other in the graph, so we muct conclude that the ctem

Layout, between by and b?n+2 » but vertices bl and b arc at distance

is stretched tightly. 1In other words, two adjacent

between bl and b2n+2

nodes in this portion of the stem must be placed k positions apart.
(It does not follow that the stem from b, to h; or from h3 to b
is stretched; b, might even appear to the right of hl . But all we

0
and H3 for is to confine the other nodes and therefore to

2nt+3

are using Hl
assign a rigid structure to the interior parts of the layout.)
Since the stem is stretched tightly, and since the polyps contain no

nodes at distance > d from their central node, the layout must now appear

as a sequence of regions which we may represent as follows:

' '] Al Al 1 1 1 1
Hl bl Pl b,‘3 Fl b3 P2 bh Fg oo Pn b2n Fn b2n+l H? b2n+2 H3 .

Here Hi is a layout ot HlLJ{bO} S Hé is a layout of H2 3 Hé is

a layout of HBLJ{b and (Pi, F&) are respectively layouts of

ant3)
(Pi’ Fi) plus portions of the tentacles which just manage to fit. Each
of the regions Pi B Fi includes exactly 2dk-1 vertices of the layout.
The reader should stop at this point to review the construction before
going on.

If we choose the sizes of Pi ’ Fi carefully it will be difficult
to place the tentacles. Let us say that

Fi contains exactly 2dk -1-6di vertices,

P, contains exactly 2dk-1l-c -18di+ 124 vertices, i
so that %

Fi contains exactly ©(di tentacle vertices, |

and P} contains exactly c+18di - 12d tentacle vertices, ?4

where ¢ is a constant to be determined later. Note that the tentacles

are all connected to H so they have to emanate from near the right end

’
of the layout, passing ihrough Fi before coming to Pi PP Pi,...,P{
together contain portions of at least ry different tentacles then Fi

must contain at least edri vertices of these tentacles, since a path .
cannot cross Fi without using up at least 2d positions; hence 2dri < 6di , i
1.6.5

ry =L

2| Furthermore if r, = 3i each tentacle must use exactly 2d positions of

Fi , so there can be no nematocysts in Fi in this case,
By choosing the values of c,ml,...,m3n we will be able to guarantee
that exactly 3i tentacles come through Fi +« Consider first Pi s which

must contain c+ 64 tentacle vertices; these must come from at most three

DRSS

B b

different tentacles because of the constraint on rl . If we choose each

N Y N

m, as a function of the given numbers a, o that the number of nodes in

7%

two tentacles is always less than c+ 6d , then Pi must contain vertices

from exactly three different tentacles, and it must include all of their

nematocysts too because of the constraint on Fi . Furthermore we will
be able to argue in the same way that Pé must now include all the
nematocysts of three other tentacles because of the constraint on é ’ l
and so on.

In order to make this argument go through properly we will want to
define things so that the three tentacles whose nematocysts appear in Pi
have their filaments "pulled completely through” the succeeding regions,
with exactly 24 vertices of their filaments appearing in each of

Fi, Pi+l’ ey Pﬁ, Fﬁ . It turns out that we can do this by making each

m, a multiple of 6dn , and requiring that ai+-aj+-al = A if and only
if 2(n&-+n5-+ml) =c . Let us set

m, = Gdna;, , c=12dnA ;

we shall prove that a layout of bandwidth k implies the existence of a
3-partition:

EEEEE. For 1 <i<n, region Pi contains all of the nematocysts from
exactly three tentacles, namely the tentacles connected to tj where
is in some triple T; , and Z}{aj | 3 eTi} = A . Furthermore P! also
contains as much as possible of the filaments from these tentacles, i.e.,

each tentacle in Ti has only 24 vertices in each of

By, Plygs eees BYs Fp

Proof. By induction on i , we know that Fi and Pi each contain
3(i-1)(2d) filament nodes from tentacles whose nematocysts appear in
P{ ... P} ; . That leaves 6d empty positions in F} and 12dnA+ 12di - 64
in Pi . Now Pi must contain vertices from at least three tentacles,
since two tentacles have at most 8dn4-2(mj+1n1) = 8dn*-l2dn(aj+ al)

< 8dn + 12dn(A-1) = 12dnA - kdn vertices altogether,

Hence P{ has vertices from exactly three tentacles, defined by some

triple Ti c {l,2,...,3n} , and it includes all of their nematocysts

because Fi has room for only 6d more vertices from all three tentacles. ¥ J
let T [aj | Je T;} = @ ; then the 12dnA+ 12di- 6d available positions

in Pi are taken up by 12dnx nematocysts and somewhere between O and

3(bdn - (2n -2i+1)(2d)) = 12di - 6d filament nodes. It follows that « = A

e N AN v
e s e s

and exactly 12di 64 filament nodes are present., O

The lemma proves that a bandwidth-k layout for a graph of this kind
necessarily leads to a valid 3-partition. To complete the proof
of the theorem, we must define the graphs so that existence of a
3-partition is sufficient to imply the existence of a layout with bandwidth
k . This means in particular that we will have to choose d and k
appropriately. Furthermore the graphs must be constructible by an algorithm
whose running time is bounded by a polynomial in n and A .

In the first place we want to choose k large enough that Pn

contains at least 2d-1 vertices, hence we require
k26IlA+9n--5-

For convenience we let k be the smallest power of 2 satisfying this

condition, and we write

Finally we choose
d = fic

From these parameters k and d we can construct G by explaining
how to construct each polyp. The head polyps H, are formed by the
bandwidth-zl layout indicated in Figure 5 for { = 3 (elthough ¢ will
never be this small)., A periodic pattern begins to repeat after the
f-th stem node to the right of hi : the j-th node preceding a stem node
branches to the (2j) -th and (2j+1) -st nodes preceding the next stem
node, for 0 < j < 2[-1 . Before this pattern is established, we have
(12,15 00002 %) g the respective limits on Jj . An additional "thread
branch" goes out of h, to fill up the remaining

£-1y _ 4x-2%1 = d-k+1 holes near the

(f-1)+ 2F2)+ ...+ (21 -2
center, To the left of hi we use essentially the same idea in mirror
image; thus it is clear that no vertex is at distance greater than d from
the center node. The special nodes tl""’tBn in H2 are taken to be

the leftmost 3n nodes in its layout.

29

___, _,...__,A
Y

St

Caia il Ll s

thread branch

i first sg;m node

Figure 5. Layout of a head polyp Hi in the immediate vicinity

of' its center node hi o

A similar procedure is used to construct the other polyps Pi and f
F; . In each case we wish to remove 2dx nodes from a full head polyp,
for some integer x , and we do this by removing x nodes betwecn each “H
pair of adjacent stem nodes. The x nodes immediately to the right of]
each stem node in Figure 5 are simply deleted from the graph, together with '
all edges touching them, and the "thread branch" is reconnected for the
remaining nodes; again the mirror image of this pattern is used to the left of
the center vertex, and we<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>