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1 1. Introduction. !

; Let G be a graph on the set of vertices V , where [|v =n, J
8mee——— We -ghall--weite u —v 1if vertex u is adjacent to vertex v in G, j
& and u —+v if they are not adjacent. A layout of G is a one-to-one J

> mapping f that takes V into the positive integers; equivalently, a i

: ; layout can be regarded as a string of vertices and"blanks", with each 4
3 vertex of V appearing exactly once, for instance b_c__da . The 3
: . correspondence between these two definitions is simply that f(v) = k | 4
9 if and only if Vv is the k-th element of the string; thus |
4 b_c__da corresponds to f(a)=7, f(b)=1, f(c)=3, f(d)=26, { 4
: where V = {a,b,c,d}. |]

y | The bandwidth of a layout f is defined to be | |
3 bandwidth(f) = max{|f(u)-£(v)|: u — v} , 1

{ §

3 the greatest distance between G-adjacent vertices in the string corresponding |]

; to f . The bandwidth of graph G is then i
| Bandwidth(G) = min{bandwidth(f): f is a layout of G} . £

4 It is clear that {H]

] Bandwidth(G) = max{Bandwidth(G'): G' is a connected component of G} ,

1 for if f is any layout there is another layout f' , having the same 3

3 bandwidth, in which the connected components of G appear "unmixed" as t

3 substrings. (We can let f'(v) = f(v) +Ne(v) , for example, where c(v) i

: | is the number of the component containing v , and where N is sufficiently EB
| large.) :

| Perhaps the most important application of the bandwidth notion arises 3
ad in connection with sparse matrices, Given a sparse nxn matrix 5
i. . A = (a; 5) , let G be the graph on vertices {Vis ener Vv } vhere v, — Vs :
E | | for 1 # j if and only if 84 5 £0 or 84 # 0. Then Bandwidth(G) < k ;
4 E  ~ if and only if there is a permutation matrix P such that all elements
=| £ of pl AP lie on the diagonal or on one of the first k superdiagonals
EB or the first k subdiagonals. This is easily proved by observing that

= : blanks may be removed from a layout without increasing the bandwidth.
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3 When G has no edges, its bandwidth is trivially -o . 7
| Otherwise the bandwidth will be as low as 1 if and only if each component

1 of G is an isolated point or a path, namely a subgraph of the form

3 Vy = Vp == ees ==, 5 VooTe Vv, — iff |i-j| =1. It is easy to
; determine whether or not Bandwidth(G) = 1 , even when G is not known

to be connected, in linear time; in other words, there is an algorithm

1 which decides in 0(n) steps whether or not a sparse matrix can be
3 converted into tridiagonal form by simultaneous row and column permutations. :
4 (See [13].) The simplicity of this algorithm suggests naturally |

that the next harder case might not be too difficult, and indeed we shall i

3 see below that the condition Bandwidth(G) = 2 can be tested in linear
; | time, However, the algorithm which achieves this is quite intricate,
1 and there appears to be no elegant way to characterize graphs of

3 bandwidth 2 . |
The authors have been unable to construct a polynomial-time algorithm :

] that decides whether or not Bandwidth(G) = 3 . The bandwidth 2 case

3 | indicates some of the difficulties which must be surmounted. Section 8
3 below shows that the general problem of deciding whether or not

3 Bandwidth (G) < kK, given k , is NP-complete, even if G is a free tree 1
with all vertices of degree < 3 . This restriction to trees is of special |

] interest because the analogous problem of minimizing2. |f(u) - f(v)| instead |
: of max |f(u) - £(v)| over all layouts can be done in polynomial time when the 3
1 graph is a free tree [%1], yet it is NP-complete for general graphs [17]. 3
¥ Section 9 considers the analogous problems which arise when acyclic J
2 | directed graphs replace undirected graphs. Several open problems conclude :
z | the paper.
4 |

4 .

E | :
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| 2. Preliminaries for the Algorithm. f
| In this section we shall begin to develop an algorithm that tests :
2 whether or not Bandwidth(G) = 2 . We shall assume that G is connected
| and hat it has at least one vertex of degree > 3 . (If all vertices §
; are of degree <2 , it is easy to see that Bandwidth (G) <2, since such

| a graph is = collection of isolated points, paths, and cycles.) The

‘ connectedness assumption implies that G has at least n-1l edges, and 1

5 : on the other hand we may assume that G has at most 2n-3 edges since ]
a graph of bandwidth k cannot have more than (n-1)+ (n-2)+...+ (n-k) 1

b pairs of adjacent vertices. Therefore our algorithm will take O(n)
steps if its running time is bounded by a constant times the number of

} edges in G . 3

In order to get into the right frame of mind for this problem, the 3

| reader is urged to try his or her hand at finding a bandwidth-2 layout i

| for the graph in Figure 1. Like all graphs of bandwidth 2, this one is :
| rather "skinny"; a breadth-first search will not involve many unexplored

: | nodes at any time. The puzzle which the reader is now asked to try is
; simply this: Arrange the 27 vertices of Figure 1 into a straight line :

so that all pairs of vertices which are directly linked in that graph are 3

separated by at most one other vertex in the line. (This puzzle is not

| quite so easy as it looks. The algorithm we shall develop is supposed
to work in linear time, essentially without backing up, but no such

restriction is being imposed on the reader.)

gl 3

C | A=—B G —H N Q T—U—V-—W

4 po) 1) a i
adeA

9 § = Sune E meleGwe B® 5 & !
ke

k Figure 1. Example of a graph which the reader is urged to arrange J
into a bandwidth-2 layout before proceeding further.
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Perhaps the most important notion which arises in connection with |

graphs of bandwidth 2 is the concept of chains within G . We say

that v begins a chain of length k if there are vertices v = Viseees Vy
such that

| ig in G, and each of Viseser Vy 4 has degree 2 ; furthermore Vie must
8 be of degree 1 , an endpoint. ;

- Let us define f(v) = 1 if deg(v) = 1, and ¢(v) = k+l if
deg(v) = 2 and v — w where [(w) = k ; otherwise [(v) = » , This ]

2 function is well-defined since Bandwidth(G) > 1 ; and it is clearly 3
possible to compute f(v) , for all v, in O(n) cteps. Therefore ;

our algorithm will assume that this precomputation has been carried out. |

The values of {£ for the example graph in Figure 1 are shown in ;
Figure 2. Note that vertex v is part of a chain if and only if f(v) < = , ]

| 0 w——— 5 CO meme(1) 1 1 © e——DO< —_—1 ]i 1 0 2 2 © ) — rr)
1 00 ———(0 mn OsQO)—00 1 © |

Figure 2. The { function for the example graph in Figure 1;

| there are three chains of length 2.
1 ;

A We shall say that a layout f is chain-stretched if |£(v, }-£lv,, 4 )] = 2 1
i | whenever Vv, and Viel are consecutive vertices of a chain. This :

| - terminology is justified because of the following observation, :

| : - Lemma. Every graph of bandwidth <2 has a chain-stretched layout of ;
$F bandwidth <2 . :

| ; Proof’, Let f be a layout for the graph G , where Bandwidth (G) S25
: we may assume that G is connected. Furthermore we shall choose f to
| have the maximum "range span” over all bandwidth-2 layouts for G ; i.e.,



] max, _. f(v) - min _o f(v) is to be maximum over all f with
| bandwidth(f) < 2 . (The maximum range spen is finite, at most 2n-2, ]

| 4 since G is connected.) We shall prove that f is chain-stretched. :

; If not, the string ¢ corresponding to f contains the substring 3
b uv , where u and v are consecutive vertices of a chain. By definition, ;
| : deg(u) and deg(v) are at most 2, and u~— Vv, hence u and v are
: each adjacent to at most one other vertex. Bymaximality of f's range

; : span, the strings obtained from ¢ by replacing uv by uv and Vv u
P are not layouts of bandwidth <2 . It follows that ¢ contains the 3

| substring uvab or abuv , where a—u -— Vv — 1b ; by left-right 3
i symmetry we may assume that ¢ contains abuv . Then Vv must be the 4

| rightmost nonblank element of ¢ . If £(u) > £(v) = k, graph G

| contains the chain Vi pug was m= where Vv = Vi and b = Vy :
| but then ¢ must end with Vly eee Uy VyWV and it can be :

le.gthened by replacing this substring by Uy eee Wp q We Vy Vi oq eee Vy oe

| On the other hand if f(v) > £(u) = k , a similar argument shows that i
bi ¢ ends with WViu, ceo(Vy (WV where u=u and a=w _,, and .

this substring can be replaced by Vy ee. Vi W Wj ... U; . In both

| cases the maximality of range span has been contradicted. UJ

The algorithm we shall develop below is based on a subalgorithm 3

which solves the following problem: "Given a connected graph G and two .

4 vertices a and b , decide whether or not there exists a layout f of
Fo bandwidth < 2 such that f(a) =1 and f(b) = 2 ." If such a layout
‘| beginning with ab exists, the algorithm will construct one; and in all j

b cases the algorithm will terminate after O(n) steps. The idea is to
E: | build the layout step by step, working with partial layouts, namely with

he - one-to-one functions f that are defined only on a subset of the vertices,
; | 8 All partial layouts we shall deal with will satisfy the bandwidth 2 9
: 3 condition, in the sense that |f(u)~f(v)| <2 whenever f(u) , f(v) are |

3 : both defined and u — v . Furthermore we know by the lemma that it
t suffices to restrict attention to chain-stretched partial layouts. ;

| : :
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If ff is a partial layout defined on the set of vertices U, |

i the active vertices of f are those elements wueU such that u—v |
| for some v§U , If fy is a partial layout defined on Vi and £,
i is a partial layout defined on V,2 V, , we say that f, is an extension

3 of f; if f,(v) = f;(v) for all veV, . We also say that f, is a 1
3 complete layout if V, = V and bandwidth(f,) <2 . Thus the task of our :
E/ subalgorithm will be to decide whether or not the partial layout f 3

3 defined by the string ab (i.e., f(a) =1 and f(b) = 2 ) can be
4 : extended to a complete layout. 3
1 The subalgorithm actually does more, since its initial task leads

: | to a family of similar subtasks of three types:

| Type A. Given a partial layout defined by the string «a ab , where at J
1 most a and b are active, can it be extended to a

complete layout?

Type B. Given two partial layouts defined by the strings :
4 da b esea:bq and ab a eeaDqy , for some m>1,

| where at most a, and b, are active, can at least one J
of these be extended to a complete layout?

: Type C. Given a partial layout defined by the string 9 = @ a...a 3
] for some m > 1, where at most aq is active, can it !
3 be extended to a complete layout?

] In each case a is a (possibly empty) initial string which has no important
3 influence on the algorithm, since it represents inactive vertices and blanks i

pe | that have already been permanently placed. The string & in tasks of Type C i
| will have length > 2 , and its final two elements will be nonblank. The two 3
a strings in tasks of Type B will be denoted by ¢ = ala bo) eee (a,b) s 1
®, } The idea of the subelgorithmic quite simple, namely to "keep doing |
d : something useful." Let ff be a partial layout of one of the threc types,
g ; i defined on the vertices U . (Actually f represents two partial :
3 : layouts if it is of Type B, but it will be convenient to ignore this :
: | : fine distinction in our informal discussion.) By looking at how the
3 active vertices of f interact with vertices ¢ U, it may be obvious :

i that f cannot be completed. Otherwise the subalgorithm will find a |

| sufficiently general extension of f , namely an extension layout f

: os Su 7 yr
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E which can be completed whenever ff can be; and f' will have one of the ¢
F three basic types. If any suitable extension is found, the string ¢ 4
: | corresponding to f will be replaced by the string ¢' corresponding i

i | to f' , and the process will continue until either reaching an impasse 3

3 or a complete layout. The running time for each extension step will be i
4 bounded, except in one case where the running time can be "charged" to ;

: : subsequent extension steps; hence the total time will be O(n) . 4
1 In Section 7 we shall showhow the subalgorithm can be used to }
4 construct an algorithm that solves the general bandwidth 2 problem :
3 (without any given partial layout), in linear time.

|

|



4 5. The Subalgorithm for Types A and B.

1 | We shall present the subalgorithm informally, with proofs of the
o validity of each extension intermixed with specifications of the actual
y operations to be carried out. The actions will be of three kinds:
3 (a) Terminate successfully because ¢ is complete; (b) terminate

1 unsuccessfully because © cannot be completed; (c) set o' to a

J sufficiently general extension of ¢ . It is hoped that this manner of
f : presenting the procedure will make it easy to understandand reasonably
3 enjoyable to read. Examples of the subalgorithm in operation appear in

4 Section 6 below.

4 The following notation will be used for convenience;

4 U = set of vertices appearing in ¢ = domain of current

F partial layout ff ;

1 S(u) = {v]iu—v and vfU} = "successors" of vertex u ;

4 n(u) = ||S(u)|| = number of "successors" of u ;

3 | £(u) = chain level of u (defined earlier).

i It is clearly possible to build and maintain data structures so
A that references to S(u) , n(u) , £(u) take a bounded amount of time. |

1 The subalgorithm consists of a long but exhaustive list of cases covering
- which actions are appropriate under various circumstances that can arise.

: First let us consider Type A, recalling that tasks of this type are
= specified by the string ¢ = @ab , where at most a and b are active,

i: | Case AL, n{(a)>1 or n(b) >2 . Failure.

bs Case A2, n(a) =1. Set ¢' = aabc where S(a) = {c}. |
y a i

Case 3, n(a) =0, n(b)=2. Set ¢' =qabled) where S5(b) = {c,d} . |

E } - Case Al, n(a) = 0, n(b)=1. Set ¢' =aabc where 3(b) = {c}.

b ; Case A5, n(a) =0, n(b) =0. Success.

| Fg Note that Cases A2, A3, A4 lead to new problems of Type A, B, C respectively;

| the proofs of validity in each case are trivial.



: | Recall that tasks of Type B are specified by the string 3
F Aw |

| QP = aa b 7 he (a,bq) , for some m > 1, where at most a; and by
i are active, Actually ¢ represents a potential choice between two 3

partial layouts, aa bo pa a,b, and ab a. Coe bag . For convenience

4 we chall write a =a, , b =D; ; we may assume by symmetry that :
) n(a) < n(b) .

3 Case Bl, ||S(a)usS(®)||>2 or n(a) = n(b) = 2 . Failure, 3

: Case B2, n(a)=1, n(®)=2., Set o@' = aab ... abcd :
F | where S{a) = {c} and S(b) = {c,d}. 3

: Case B3, na) = 0, nb) =2., Set ¢'= Qa bees a,b, (ed)
4 where S(b) = {c,d} .

Case Bb, na) =1, n(®)=1, S(a)=5(b). Set 9'= ab ue. abc

i where Sa) = {c} . 1

- Case B5, n(a) =1, n(b) =1, S(a)# S(b) . Set ;

| ¢' = alagb) +o. (agby)(cd) where s(a) = {c}, 5(b) = {4} . 3

1 Case B6. n(a) = 0, n(b)=1. Set ¢'=aqaDb ...ab;c where |

% | Case Bf. n(a) = 0, n(b) = 0. Success. 1

oy : Again the proofs in each case are trivial; we shall discuss only case BO ]
= | here: Any completion of ¢ must be of the forms Qa b “on a,b xcuw

gr (where x ig a vertex or a blank), Qa, bo *or a,b, cw 5 OF :
- ab a eos Dja cw » The first of these is an extension of ¢' ; and the ]
= | second or third imply that aa b «..a,b;cw is also a complete :

i : extension. 3

Gh. 10



3 | L. The Subalgorithm for Type C.
i Recall that tasks of Type C are specified by the string ¢ = X_ 8eeeBq |
8 for some m > 1 , where at most aq is active and a contains no usable
4 blanks. This type of partial layout allows considerably more flexibility
1 than Types A and B do, since it may be possible to make good use of the
3 m blanks. Let us write a as a shorthand for aq Furthermore we
4 shall write U' = UUS(a) , with S'(u) and n'(u) defined correspondingly.

i Case Cl, n(a) > 3% . Failure, 3

1 | In this case the final neighborhood of a in a complete extension must be :
1 | bacd , badc , cabd , cadb , dabc , or dacb ; the possibilities can be 4
3 narrowed down by considering various subcases, Symmetry between bb , c¢ , d ;

| is used in order to reduce the number of possibilities; in other words, there :
1 is always a way to rename the elements of 5(a) so that some subcase

applies. We shall say that a vertex u in S(a) is feasible if it can

- conceivably fit to the left of a, ; thus u is feasible if st(u) = {v} |
| where {(v) <m, or if n'(u) = 0 . In the former case we say that u |

o is 2(v) -feasible; in the latter case we say that u is O-feasible. i

| Case 2.1, b—c, b—d, c —d . Failure. :

a Case (2.2, b+ ¢,b~4dd, ¢c—4d.

. In this case we must decide between badc and cadb . |

<5 Case C2.2.1, neither db nor c¢ is feasible, Failure. |
= |

i Case C2.2.2, b is feasible but not c¢ . Set ¢' = a{baldc .

2 E . Here and in the sequel we shall use the following notation:

- , [ba] = _8e ee Bppobp dp qeesbyag if b = by is k-feasible and
a - by —_— ee — bp is the corresponding chain of length k . In other words, 3

| ; [ba] stands for the string JB eee 8g with b and its successors

er | : inserted into the appropriate blank spaces. |

Case C2.2.3, b is k-feasible and c¢ is [-feasible

: where k > f . Set ¢' = a[baldc .

AR



1 To justify this step, we shall prove that

1 a[balde > af[caldd ,

1 where we say that partial layout Pq dominates Po (written Py =P, )
k if every completion of Po implies the existence of a completion of Pq
3 In our case any chain-stretched completion of ¢ which is not an
2 X extension of ¢' must be an extension of dfcalddb , so it must have
£ "oo —— ~~ —

; the form o" = afcald bod; by ceed bw. Let cy cy eh c,
4 be the chain adjacent to c¢ = cy and let C3 be blank if £2 <j <k. |
J Then we may interchange Cpr every with Drees; Oy in oo" , obtaining |
| a valid completion of ¢ which extends ¢' . |

] | It is important that the reader understand the justification of |
] | step C2.2.3 at this point before proceeding further. Although the
: | argument is very simple, we shall be using it repeatedly in the sequel,

1 with various refinements and extensions as the cases get more complex.
nN

] In this case we must decide between bacd , cabd , dabc , and dacb .

: | Case C2,3.1, neither db nor c¢ is feasible, Failure, unless

j d is feasible. In the latter case, set |
¢' = afdal(be) . |

; Case C2.3.2, b 1s feasible but not c¢ ; say b 1s k-feasible.

ie, | If 4 is f-feasible where { >k , set ¢' = af[dalbe ,

otherwise set ¢' = a[balcd . !

Foe To justify this step, note that a[bajcd is forced unless d is feasible, |v In the latter case «afda]cb cannot be better than afdalbe , since

. | b = bq must be followed by Dysecesby » with big following two |
E positions after b, ; it is easy to see that any completion of afdalecb
} . i

E can be converted into one which extends «[dalbc . Thus we must simply vi
i

: distinguish between bacd and dabc , and the argument is similar to oa

Case C2.2.3. 5
x



: Case C2.3.3, b is k-feasible and c is f-feasible, where |

k>£2, Set 9'=0fbaled,

i The argument is like Case 2.2.3 again; if d is feasible too, we will |
: soon be successful, regardless of which alternative 1s chosen, |
: Case C24, b~+4c, ba, c+ 4a.

. All six possibilities of Case C2 still remain, but we can make use of |
the symmetry.

A Case C2.4.1, none of b, ¢c, 4 is feasible, Failure, |

] Case C2.4.2, b is feasible but c¢ and d are not. Set |
i | Pp = afbal{cd) .

] Case C2.4.3, b is k-feacible and c¢ is f-feasible, where [ < k,
1 but 4d is infeasible. Set ¢' = [baled .

: In this case «baled > &[baldec and @[calbd > glcaldb as in Case C2.3.2,

; while Q[baJcd > a[calbd as in Case 2.2.3.

| Case 2.4.4, all of b, c, d are feasible. Set @' = a[balcd .

: Success is imminent,

: Case C3, S(a) = {b,c} . See Section 5. |

1 This is by far the hardest case to handle, and we shall postpone it for ;

a moment since the remaining cases are very simple. ]

e | > = t= soe » 3¢ | Case Ck, S(a) = {pb} . Set ¢ a_a, _aq.b 3
pe | 1 o i seq 2 b . -
se : This clearly dominates A 8. eee_BpbAg and @_aees By

£3 | Case C5, n(a) = 0. Success, J



3 i The Subalgorithm for e C, Case C3. i

4 Now we must face up to Case C3; as above we have @ = Q_&a «..._ 84 1
) and a = aq and S(a) = {b,c} . We should replace the substring _a at 3
f the right of ¢ by either _abc , acb , bac , bac, cab, or cab, 1

where the dashes may or may not get filled in later. Fortunately we can |

L : rule out two of these possibilities immediately, since bac is never better

; than _abc and cab is (similarly) never better than _acb : The complete 1

: ‘ layout «a[bajcw which extends bac can always be converted to a complete

: layout [bj albew which extends abc .

1 Case C3.1, b — c . :
| |

| In this case we have to distinguish between abc and acb . Let us say 3

| that b is k-lucky if $8'(b) contains a vertex b; with £(by) = k and
3 k <m. (If there are two or more such vertices b, , choose one with :

maximum k .) Similarly c¢ might be lucky; we can use the blanks left

| of a for one of the successors of a lucky vertex.

a Case C3.l.1, neither b nor c is lucky. Set o' =a a... a, (bc) .= 1 - ~ :

1 Case C3.1.2, b is k-lucky and c¢ is either (i) unlucky or

y (ii) f£-lucky where ¢ <k , or (iii) k-lucky and 3

oq n'(b) <n'(c) «+ Set o'= a[b, abe . :

] To justify this step, we first argue (as in Case (2.2.3) that the layout i
} @_a +++ _a,bcb, has no advantage over ¢' . Therefore the only competing ]

4 i possibility is Q_&a ees _aqCh « By considering the two ways to place bq
po | in the latter string, we have two possible types of completion to consider,
WB “ , ne : k
Z | say oo" = a[cqalebx by eeex byw and o"' = afcqalebbyXieeexy (byw , since
I |

fe. | LY has degree < 2 and is part of a stretched chain. (Here Cq is blank |
: . if c¢ is unlucky or if we do not choose to make use of c¢ 's luckiness.)

i | : We can always replace o¢" by a[bjalbexcq.s.xpCiw , an extension of @' j

F : f similarly, "' can always be replaced by a[bjaJbexiciaeeXy (Cp qW j
gE : unless c¢ is k-lucky. But in the latter case we have n'(b) <n'(ec) = 1 1

3 | : by hypothesis, so the x. are all blank and w is empty; o@"' can |
: therefore be replaced by a[bjalbe_cqeee cp .
: |

FE | i



: Case C3.2, b 4c and n'(b) >3 . Failure.

Case C3.3, b +c and n'(b) =3. If s'(b)ns'(c) = {ad} and |

- either S'(c) = {d} or 8'(c) = {c;»d} where £(cq) <n,
i set @' = afcalddb . If S'(b)NS'(c) = P and either

3 S'(c) =@ or 8'(c) = {c;] where 2(cy) <m, set
3 @' = Q[ca]b . Otherwise failure.

4 Case C3.4, b 4+c and max(n'(b),n'(c)) = 2 . ]
. 1
bs Case C3.4.1, S'(b) = S'(c) . Failure. :

3 Case (3.4.2, 8'(0)n8'(c)={d} . If n'(b) =2, let :

a S'(b) = {by,d} ; if n'(c) =2 let S'(c) = {cy,d} v |
1 | In this case we say that b is k-lucky if £(by) = kK and k<m; :FE -
! b is O-lucky if n'(b) = 1 ; otherwise b is unlucky. Similarly <¢ can ;

- be lucky or unlucky. There are four viable alternatives to decide between,

; namely «Q[balde , a[b,a]bed , a[caldb , and afc alcbd .
] :

1 Case C3.4.2.1, neither b nor c¢ is lucky. Failure, !

3 | Case C3.4.2.2, b is k-lucky and c¢ is unlucky. If k =m, set |

A P' = afb albed . Otherwise set

g This is the neatest part of the entire algorithm, since the two viable

3 alternatives «a[baldec and «[b,a]bed turn out to be essentially a
3 Type B situation. (On the other hand it may also be considered the |
| sloppiest part of the algorithm, since an abuse of notation is involved

i here: If the Type B specification is ultimately completed to a string
e of the form A_a eee 8p nb Desa body , a blank should actually be |
YE inserted just before a,, .) j
SE.

x : . Case C3.4.2.3, b is k-lucky and c¢ is f-lucky, where Kk > [ . 1
Ee : Set @' = a[b;a]bed "
; g

3 | It is easy to check that ¢' dominates the other three alternatives,

] : using arguments like those in Section kL.

ap 15
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: Case C3.4.3. 8'(0)NS'(c) =¢ and n'(b) =n'(c) =2 . Let |
8'(b) = {b;>b;} and 8'(c) = {c;,c1} , where ]

4 << 1 1

2 (by) < t(bg) and £(c;) < £(eyg) .

4 The only possibilities are afba]bjec cq and a[ca]eibb by , perhaps |
4 interchanging b; with bj and/or c; with cj .

{ | Case C3.4.3.1, f(b) >m. If £(c;) >m, failure; otherwise if |
3 £(c;) >m, set @' = afcaJelb ; otherwise set
i P' = afc'aleqb , where " [c'a] " means that the
: blanks are to be filled by c¢ and the chain ]

4 containing cy :

: These actions are forced unless £(cy) = £(cy) «= 1 , for if cq and cq
} both have finite level we must have f(c;) = 1 or failure will be imminent. 1

J Case C3.k4.3.2, £(b,) <m < 2(by) y £(eq) <m < £(cy) , and :
1 n' (by) < n' (cy) ov If 5' (v3) #4 {c]] , failure;
3 otherwise set ¢' = a[ba]b;e ‘

| In this case it is impossible to complete ¢ with afba]bjec, cq , since
£(v) > 1 3; the only viable alternatives are afbalbjceiey and a[ca]e bb by ;

: and we must have py cq . Now if §' (cy) #4 {bq} y the stated value of :
4 is forced, otherwise success is imminent. i

1 Case C3.4.3.%, t(by) <m < ¢(by) and £(cy) mM, Set ¢'= alcrale,b ‘ :
2 | 4
| This is essentially forced, cince a[ba]bjele; cy) implies 2(by) = 1 )
% |

+ when c¢ and c¢! have finite level. 3ed | 1 1 |

¥ Bo Case C3.h.3.4, £(bg) <m, f(cj) <m, and £(by) =£(c;) . Set |
- ; P' = alb'alb;c . 3

v . As in Case C3.4,%3.1 we see that failure will occur unless £(by) =1. i

3 Case C3.k.4k, 8'(b)NS'(c) =P, n'(b) =2, and n'(c) <1. Let

| | s'(b) = {bsb3} , where £(by) < (by) ; and if |
; n'(c)=1, let 8S'(c) = {cy} » otherwise let c¢, :
E be blank and £(c;) = O .



|

|
There are many possible arrangements to choose from, and the cubcacses i
require careful analysis. J

oc :
Case C3.4.4.1, 2(b) >S% + IF £(eq) >m, set @' =0aa... acac;b,

| If £(cy) =m, set o@' = afc alcb . Otherwise set
i ¢' = Gfcalb .

Case C3.4.4.2, £(b;) <m, £(cq) <Sm. If £(cq) =m or £(by) < ® ,
set @' = afc ach « Otherwise if £(c;) < £(b,)-2 >

; set @' = a[b,albe ; otherwise set ¢' = afcalb,b ,

| If 1(b]) < » , success is imminent, so we may assume that £(bg) = =.
' 1 .

Then a[bya]beby > afbajbje ; and afca] b > ale aleb >a... a,cac,b ;
unless £(cy) =m when «Q[calb is inapplicable. If £(cy) =m, it is
clear that afcyaleb > a[bjalbeby ; otherwise we need to compare
@[b,albeby with [ca] b, and the best place for b, in the latter

| string is afcalbib_by . The stretched chains in these two alternatives

E now fill respectively £(c;) and £(by)-2 positions to the right of b; ,
bi and it is best to minimize this quantity.

Case C3.Lh.k4.3, £(b,) <m and £(c,) >m «+ If 2(b,) =m, set |
VY a 3 * 1 -— x

p' = a[b,albebycy . Otherwise if £(byg) =m, set
p' = a[bjalbeb, cy . Otherwise if £(by) <m, set |
P' = a[b'alb,c . Otherwise let k = £(b;) ; set :

| , J 1 (Hh! 3
o P= 0 Bree Bp Bilin 0 By 80)(00, 3 10)
£1 |

' | As in Case C3,4,2.2, thic is a slight abuse of notation. 3

8 i Case (3.4.5, s'(b)ns'(e) =p, max(n'(b)yn'(c)) =1. If :

Es n'(b) =1, let s'(b) = {b, } ; otherwise let b, :
4 Ie be blank and set #(b,) = 0. Define c, similarly.

Bo 3. Case C3.L4.5.1, £(b,) <m and £(cy) <m. Set ¢' = gpbc. |
:
¢ Success is imminent.

| Case C3.1.5.2, 2(b;) <m and #(c;) >m. If £(b,) =m, set
p' = afbjalbc , otherwise set ¢' = alba]c . :
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| Case 3.4.5.3, £(b)) >m and (cy) >m .
4

| In this final case we must "look ahead" before deciding what to do. 4

| For k>1 if b, has degree 2 , let bri be the |
vertex adjacent to by which has not yet been given £

P a name; continue until having found the sequence 4
| |

E find the sequence ¢ — ¢;— +... —C, where |
b : deg(c,) £2. §

(This process must terminate, since G is not a cycle.) i]

E | Case C3.h,5.3.1, b =c, =a or deg(b, ) = deg(c,) = 1 . Jet || ! Kk f §
| p' = gbe . :

Success is imminent. {

Case C3.4.5.3.2, deg(b,) = 1 and deg(c,) >2 . Set §
; | P' = a_a ..._a,bab;c . §

| Case C3.4.5.3.3, deg(b,) > 2, deg(c,) >2, and k<#. |

| In this case we must decide between four alternatives _abebycy.elby Cp by ’
| | _acbe,by...cy Gb) Cp ; bab,ebye, aby) 4 » and cac beybieeec by 4 ;

by acquiring a little more information about ob, > C40 kK, and 1 it will |
become clear which of these dominates:

4 Case C5.4.5.5.%.1, b, = C, If k=1, set o' = pbeb, eq : :

1 otherwise set o' =a .
k | Case C5.4.5.5.3.2; b, Cy If k= 1, set o' = poe) (byeq) 3
of gE otherwise set ¢' = a a_... a(ac)(be,) .
SN al a - |
' ]

El § Case C3.4.5.3.3.3, b _#¢c,, b +c, . Failure, :

: Note that the "lookahead time" required to find k and { in Case C3.L4.5.3
E. : is O(k+f) , not ©(1) ; but Case C3.4.5.3 cannot occur again until

Diseeasby 15C500esC, 4 have all been included in the string ¢ . Thus |
the lookahead time can be distributed among the subsequent steps, and the

Eo! subalgorithm runs in linear time.

Es We have now exhausted all possible cases, and the subalgorithm is complete.

’



| |

6. Examples.

Here is how the subalgorithm would proceed to search for a layout

for the graph of Figure 1, beginning with DC : |

Case P |

| 2 DC{AE) |
po DCAEBF
io DCAEBF(GJ)

On the other hand, if we begin with DA , the algorithm succeeds: i

| DA |

> DAC :
ps DACB
pri DACBE ]

: DACBE F 1

C3.4.4.1(1) DACBEGFH.] |
2 DACBEGFHJT :
AL DACBEGFHJIK
03. hb. 1 (11) DACBEGFHJ IK L
igi DACBEGFHJ IKNIMO ]
: DACBEGFHJ TKNIMO(PR) :
nv DACBEGFHJ IKNLMO{ PR) { QS)
oh DACBEGFHJ IKNLMOPRQS_T 3
02.5.1(i1) DACBEGFHJ IKNLMOPRQS T_U
os oSediil DACBEGFHJ TKNTMOPRQSWTVU(XY)
AS DACBEGFHJ IKNIMOPRQSWIVUYXE: Z iSuccess. |

| Here is how the algorithm would construct the same solution :

| "backwards", starting with Z& :

| 2 78X |
| s 78 XY
: : A Z&XYU |

. > Z8XYU(TV)
| : i, 2X YU(TV) (SW) |

: co1y Z&XYUVIWS R O J

| ¥ C3. bh. b,2(iid) 76XTUVTHSGREOML
~ 7&XY UVTWS QRPOMLN |
~ Z&XYUVTWS QRPOMLNK

: bh, 1(i) Z&EXYUVIWSQRPOMLNK _J
Getete ll) 2aXYUVTWS QRPOMINKT HF |
Jos Z&X YUVTWSQRPOMLNKIJHFG }

| Z&XYUVTWS QRPOMLNKIJHFGE

| % Z&XYUVTWS QRPOMLIVKT JHFGE ( BC) |
25 Z&XYUVTWS QRPOMLNKT JHFGEBCAD

an Success.



If the algorithmhad chosen the somewhat tempting alternative

78XYUVTWSNRMOLPK at step C3.4.4.,2 in this example, fallure would have
followed soon after. |

Suppose Figure 1 were changed so that F -— J became F—% — J, |
Then the algorithm would invoke further cases: |

i 74XYUVTWSQRPOMLNK J
: i 74 XYUVTWS QRPOMLNKI JH*

n AD 78&XYUVTWSQRPOMLNKIJH*G
Al 28 XYUVTWSQRPOMLNKT JH*GF :

| 3.4.2.3 78XYUVTWSQRPOMLNKIJH¥GF_E
bo Z&XYUVTWSQRPOMLNKT JH*GFDECBA :

| Success. | :

i ]
j |

:

|

}

% ’

t
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The subalgorithm determines in O(n) steps whether or not G has :
| a bandwidth-2 layout beginning with ab j; by trying all possible a and 1

| b we have an on’) algorithm for deciding whether or not Bandwidth(G) <2 . :
A This can be improved to an O(n°) algorithm, by using the subalgorithm

to decide whether or not G has a complete layout that extends Xxy_a , for |
some vertex a and some (nonexistent) dummy vertices x and y . However, we |

 - really want an O(n) algorithm, so it is necessary to be a little more careful. |
| We observed at the beginning of Section 2 that G may be assumed

to contain a vertex v of degree > 3 ; suppose v— a, V—>b , and I

| v — ¢ . Then any layout for G must contain one of the six substrings |

vab , Vvba , vac , vea , voce , veh , J

or their left-right reflections, since two of {a,b,c} must appear on the :

same side of v . To test Bandwidth(G) <2 in linear time, it therefore

suffices to have a linear-time algorithm that determines whether or not a 1

: complete layout exists containing a given substring of three vertices, 3
(Recall that a "complete layout" always has bandwidth 2 according to ;
the definition in Section 2.)

Let us first develop an algorithm which decides in O(n) steps i
| whether or not there is a complete layout for a given connected graph G , 1

containing a given substring abcd of length bk:

E 1 Step 1. Stop with failure if a —d .

1 Step 2. Let G, be the graph obtained from G by deleting all
h | edges among {a,b,c,d} . If there is a path in G, from

2 a or b to ¢ or 4d, stop with failure. (This path J
4 cannot possibly be incorporated into a complete layout
ig : containing abcd , since it cannot get to the right of b .) :
; | Step 3. Let the vertices of V\{a,b,c,d} be partitioned into two 3

1 : subsets x
vy = {v | a path exists in G, from v to a or b} , rE

| ; Vv, = {v| a path exists in Gy from v to c or d} . x

| (By step 2, V, and Vs, are disjoint, Furthermore 3
V = {a;b,c,d} Uv, UV, , since G wes connected.) Let 2

Et 2



1 |
| | Gy be Gy restricted to Vy U {a,b} , and let G, |
: | be G, restricted to Vv, U {c,d} . Use the subalgorithm |1 to find a layout ¢q for Gy beginning with ba , :
1 | and also to find a layout Pp for Gs, beginning with cd . ]
3 If either attempt fails, stop with failure; otherwise

i stop with success, since AR ic a complete layout
E ‘ for G as required. UJ |

3 . Now to solve the similar problem given a substring abc of length 7, i
3 we consider two cases: :

; (i) There is at least one vertex d # a,c such that b — da . Then |
: the complete layout must contain either abcd or dabc , and we :
3 use the previous algorithm to try both cases. :

3 (ii) There is no vertex 4 #£ a,c such that b — d . Then we can use
3 an algorithm analogous to the one above: Let Gj be G minus
4 all edges among {a,b,c} and stop if there is a path from a |

- to ee in Gy . Otherwise partition V\{a,b,c} into disjoint :
4 sets V; and V,, where V, contains the vertices reachable
: | from a and Vs those reachable from c¢ . Any complete layout |
E | containing the substring abc must be composed of a complete |

. layout for Gy ending with ab and a complete layout for 4, :
beginning with bec . |

? It is also possible to construct a linear-time algorithm that |

x | decides whether or not a complete layout exists containing a given
| substring ab of length 2; details are left to the reader. ]

Ty.Ay—
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| 8. Tree Bandwidth ig NP-complete,
1 | In this section we shall prove that the general problem of determining
y | the bandwidth of a graph is NP-complete; that is, any problem in the large

4 class NP can be transformed into the problemof determining whether or

g not the bandwidth of some graph is less than some integer Kk , with at most
1 a polynomial increase in the size of the problem specification. (See [25]
3 and [2, Chapter 10] for surveys of NP-complete problems.) This particular

result was first obtained by C. H. Papadimitriou [28]; we shall prove it :

3 in a sharper form, by severely restricting the form of G .

3 | Theorem, The following problem is NP-complete: Given an integer k , and |
given a graph G which is a free tree with no vertices of degree > 3%, is |

Bandwidth(G) < k ¢
p

3 trool, The problem of" determining whether or not Bandwidth(G) kK, given |
: k and an arbitrary graph G , is clearly in NP . We shall complete the |

j proof by showing that the "3-partition problem," which is known to be |
: NP-complete [16, p. 120], can be polynomially transformed into the restricted

bandwidth problem stated in the theorem. |

1 Given a sequenceof 3n integers (a1s80s ecers)) , where

] | 2 tant seta, = nA and A/l < as < A/2 for each i , the 3-partition

1 : problem asks whether or not there is a way to partition the integers |
; | {1,2,++.,3n} into disjoint triples Ty5eees T so that 2 {a | JeT,) = A |
> | for 1 <1i<n. In other words it is a special bin-packing problem,

br where we are to take 3n objects of integer sizes 2y38p3 «0038s, and |
dr | pack them into n boxes of size A whenever possible. The condition

2 Alb < a; < A/2 means that each box in any such packing must contain |
- exactly three objects. g
ik Given the specification of a 3-partition problem, our job is to construct 3
: : an integer k and a free tree G whose vertices all have degree < 3 , A
] a such that there is a 3-partition if and only if Bandwidth(G) <k. From 4
; the proof in [14] it suffices to do this with a tree whose size is at most }
1 a rolynomial in n and A, since the *-partition problem is Nl-complete :
3 even when the magnitudes of all 3n numbers are baanded above by a :

(suitably large) polynomial function of n . (See [15] for a discussion

p of this "strong NP-completeness" property.)
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|
; | The free trees we shall construct bear more resemblance to pelagic |

hydrozoa of the order Siphonophora than to actual trees, so we shall find |
1 it convenient to use terms from marine biology rather than botany. Our |
3 construction involves parameters Mys seers, » d , and k which we shall |
i specify later after the properties we need for the proof have been

¢ explained. |
4 The graphs of interest to use all have the general structure shown in

A Figure 3. There is a long stem, a path in which every d-th vertex has a |

3 special name; the respective names of these special stem vertices are |

4 Po 8 Py Py Bp 5) by Bp By By ves By Uap Bn Bones Bo Pome Ms Bogus

4 from left to right. It follows that the stem contains Udn+6d+1 vertices
in all. There are also 3n long tentacles attached to special vertices

1 Bir eersty, ; the i-th tentacle consists of a long filament followed by em, |
4 nematocysts as shown in Figure 4. If we break off each tentacle just |

4 | below the node ty , and if we remove the boundary nodes Dy Dys easly, z ’ 4
| the remaining graph consists of 2n+3 connected pieces called polyps,

s named respectively

: | from left to right. Note that the vertices SERETTA™ all belong to the
| polyp called H, , the animal's "second head".

ie, em, vertices
be j hdn vertices |

3 PRAIRIE
- t. filament nematocysts

: Figure L, General form of the i-th tentacle. |

: |
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| |

| We have noted that the special vertices AS LAS LAL EE LE are :
| separated by distance d ; our construction will also have the property |

a that every pode of a polyp H, » P; , or F, is distance <d from its

"central" node h, » Pp; , Or £. ‘ |

- Now we shall impose further constraints on the construction, so that |
it will not be easy to make layouts of bandwidth k . In the first place,

: we will require each of the heads Hy to contain exactly 2dk-1 vertices. |

: This means that there are exactly 2dk vertices # h, at distance <d ]

\ f'rom nh. (since each head touches two boundary nodes b, }s so it is ]
: necessary to lay these vertices out in such a way that the dk nearest |

locations on each side of ny are occupied by precisely those elements :
| at distance d or less in the graph. In particular, consider the layout

of Hy and assume without loss of generality that vertex by occurs to 1
: the right of hy ; then all of the other polyps must appear to the right

; of Hy in the layout, since there is no way for any of their vertices to 4

get to the left of hy without making the bandwidth > k . A similar |

3 argument applies to the third head Hy » Which therefore must appear
| (together somehow with Bones ) at the extreme right of the layout. All 1

| of the other polyps, and all of the tentacles, must appear between Hy |

| and H, . |
] We shall arrange things so that the total number of vertices in the

graph is exactly (2n+3)(2dk)+1l . This means that the situation will be |

: very "tight": There are (2n+l)(2dk)-1 vertices which must appear in the

: 3 layout, between by and boo » but vertices by and ben are at distance
| (Pn+tl)(2d) from each other in the graph, so we muct conclude that the ctem |

7 between by and bry 40 is stretched tightly. In other words, two adjacent J
£5 | nodes in this portion of the stem must be placed k positions apart. PE

F. (It does not follow that the stem from by to hy or from hy to Pores |
E is stretched; by might even appear to the right of hy « But all we

are ucing Hy and Hy for is to confine the other nodes and therefore to 3
assign a rigid structure to the interior parts of the layout.) :

: | Since the stem is stretched tightly, and since the polyps contain no :
nodes at distance > d from their central node, the layout must now appear :

as a sequence of regions which we may represent as follows:

| od 26 j



! ! t ' ' 1 1 ' 1 ;

| 5 Bb By 0, By poet BY Bo Yones Bo Vp 1 |

2 Here Hy is a layout ot Hy U {by} ’ Hy, is a layout of H, Hy ig
: 1 1 - > - > oo - 4 ;

| a layout of H, Ub, and (P; Fi) are respectively layouts of |

! (P; » F.) plus portions of the tentacles which just manage to fit. Each :
- of the regions pi ’ Fi includes exactly 2dk-1l vertices of the layout.

The reader should stop at this point to review the construction before

3 going on. 1

: If we choose the sizes of PF, , F. carefully it will be difficult ]
3 to place the tentacles. Let us say that :

: | Fo contains exactly 2dk -1-6di vertices, i

bP. contains exactly 2dk-1-c -18di+ 12d vertices, | 3

} so that 1

| Fe contains exactly ©di tentacle vertices, §

and P! contains exactly c+ 183i- 124 tentacle vertices, {

: where c¢ 1s a constant to be determined later. Note that the tentacles 1

: are all connected to H, , sO they have to emanate from near the right end J
3 of the layout, passing through Fs before coming to bs « IT Plseees Fy

J together contain portions of at least r. different tentacles then Fe |

4 must contain at least edr, vertices of these tentacles, since a path |3 cannot cross Fe without using up at least 2d positions; hence adr, <641 , |
< 1 =

a Furthermore if r, = 2i each tentacle must use exactly 2d positione of |
~ F: » 80 there can be no nematocysts in Fy in this case. 1 4. 1-1

> - By choosing the values of CyMyseeesly, We will be able to guarantee 14
ge that exactly 3i tentacles come through F: . Consider first Py » which t
; rust contain c+ 6d tentacle vertices; these must come from at most three i

= different tentacles because of’ the constraint on ry If we choose each :
3 m, ag a function of the given numbers a, £0 that the number of nodes in £

two tentacles is always less than c+ 6d , then Py must contain vertices ;
; from exactly three different tentacles, and it must include all of their :

E
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|

i | * nematocysts too because of the constraint on Fy . Furthermore we will i

| be able to argue in the same way that FP; must now include all the 13 nematocysts of three other tentacles because of the constraint on FA y t
| and so on. 3

3 ; In order to make this argument go through properly we will want to i
1 define things so that the three tentacles whose nematocysts appear in Ps
. have their filaments "pulled completely through” the succeeding regions,

1 with exactly 2d vertices of their filaments appearing in each of

4 : Fi ’ Piiqo roe) Pl ’ 2 . It turns out that we can do this by making each
: m. a multiple of 6dn , and requiring that a; + ay + a, = A if and only
? | if 2(m; +m, +m) =¢ . Let us set :

E m, = dna, y C= 12dnA ; :

4 we shall prove that a layout of bandwidth k implies the existence of a |
: 3-partition: ;

1 Lemma. For 1L<1<n, region Pp: contains all of the nematocysts from |
] exactly three tentacles, namely the tentacles connected to t, where J
: is in some triple T, , and 2, {ay | Je T,} = A . Furthermore PL also |

contains as much as possible of the filaments from these tentacles, i.e.,

: each tentacle in T. has only 2d vertices in each of |
Flos Bl gees B08 :

g | Proof. By induction on i, we know that F! and P; each contain |
> | %3(i-1)(2d) filament nodes from tentacles whose nematocysts appear in

% | Pl see Pi; » That leaves 6d empty positions in F: and 12dnA+ 12di - 6d
| in P} . Now P! must contain vertices from at least three tentacles,

3 : since two tentacles have at most 8dn+ 2(m, +m) = Odn+ 12dn (a + a,) |
E < 8dn+ 12dn(A-1) = 12dnA- hdn vertices altogether,

A Hence Pe has vertices from exactly three tentacles, defined by some |
i triple T, c {1,2,...5%n} , and it includes all of their nematocysts |
: because Fi has room for only 6d more vertices from all three tentacles. &

4 Let ZT {a, | jeT,} = a; then the 12dnA+12di-6d available positions |
y in Pp: are taken up by 1l2dnx nematocysts and somewhere between O and
3 5(kdn - (2n -2i+1)(2d)) = 12di - 6d filament nodes. It follows that « = A



p and exactly 12di 6d filament nodes are present. [I

2 The lemma proves that a bandwidth-k layout for a graph of this kind

3 necessarily leads to a valid 3-partition. To complete the proof :
3 of the theorem, we must define the graphs so that existence of a J

} 3-partition is sufficient to imply the existence of a layout with bandwidth 4
p- k . This means in particular that we will have to choose d and k :

1 F appropriately. Furthermore the graphs must be constructible by an algorithm ]

4 whose running time is bounded by a polynomial in n and A . 1

} In the first place we want to choose k large enough that PF
contains at least 24-1 vertices, hencewe require i

1 k >mA+9n-5 ,

J For convenience we let k be the smallest power of 2 satisfying this |
3 condition, and we write |

3 k = ot .

| Finally we choose :

] From these parameters k and d we can construct G by explaining

3 how to construct each polyp. The head polyps H, are formed by the |
| bandwidth-2! layout indicated in Figure 5 for f = 3 (although ¢ will |

| never be this small). Aperiodic pattern begins to repeat after the ;
/ f-th stem node to the right of hy : the j-th node preceding a stem node |
Ea | branches to the (2j) -th and (2j+1) -st nodes preceding the next stem | 3

E node, for 0 < j < pled . Before this pattern is established, we have |

be | (2,2, 55 vee 2V%) Per the respective limits on J . An additional "thread ibranch" goes ont of hy to fill up the remaining £

: i-1)+ to) +o. @1-22"1) = gx-2%1 = d-kt1 holes near the i
. | center, To the left of h, we use essentially the same idea in mirror :
- image; thus it is clear that no vertex is at distance greater than d from :

; the center node. The special nodes tirecertsy in H, are taken to be S
1 the leftmost 3n nodes in its layout. ;



a :

. ‘ h, first stem node ~ thread branch :

: Figure 5. Layout of a head polyp Hy in the immediate vicinity y

of its center node h, . |

|

| A similar procedure is used to construct the other polyps P. and Hl

> F. . In each case we wish to remove 2dx nodes from a full head polyp, 1
: for come integer x , and we do this by removing Xx nodes between each

) pair of adjacent stem nodes. The x nodes immediately to the right of
| each stem node in Figure 5 are simply deleted from the graph, together with 4

: all edges touching them, and the "thread branch" is reconnected for the ;

remaining nodes; again the mirror image of this pattern is used to the left of

2 | the center vertex, and we clearly have a tree, Tt ic easy to see that the |

| resulting polyp has a layout of length 2dk-l in which the Xx positions ]
| :

fs | just to the left of each stem node are empty. (Simply shift all non-stem 3

2 vertices which lie to the right of the center vertex exactly x places to E

po the left,) These x slots form x parallel "channels" through which 3

pt filaments can pass. .

Now it is not difficult to see how to embed the tentacles into these :

a | polyp layouts whenever a 3-partition is given. For example, we can place :
_ filaments for the three tentacles specified by Ty into the rightmost

3 | three channels of FisFosFnyeees Py Fp . Now it is easy to make the remaining
b nematocyst and filament nodes fit into the remaining spaces in P, without
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exceeding bandwidth k ; further details are left to the reader. It is :

possible to link up any channel in F_ with any t; , since K>6n. DO :
E 3

i
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9. Directed Bandwidth. ;

Analogous problems can be studied when G 1s an acyclic directed

| graph, where we require its layout to be a topological sorting of the

vertices; in other words, we stipulate that f(u) < f(v) whenever :
u —- v in the graph, and we ask for the minimum bandwidth subject to this :

: constraint.

The algorithm in Sections 2 through 7 above can readlly be modified

: to test for "directed bandwidth 2 .," In fact, the situation becomes so

much simpler that it is tempting to try for directed bandwidth 3 in ;

polynomial time,

| The NP-completeness construction in Section 8 can be modified in a 4
| straightforward way to obtain an analogous result,

Theorem, The following problem is NP-complete: Given an integer Kk ,
and given a directed graph which is an oriented tree having no vertices

of in-degree > 2 , is its directed bandwidth < k ? :

| (Bach vertex of an oriented tree has out-degree < 1, and there are no

cycles.) |

The analogous problem of minimizing 2. (f(v)- £(u)) over all topological !

sortings of a general acyclic directed graph has recently been proved

NP-complete by E., L. Lawler [26]; on the other hand Adolphscn and Hu [1] J
have resolved this problemin polynomial time when the directed graph is an

oriented tree, even when the arcs have been assigned arbitrary weights,

The above theorem indicates that the bandwidth problem ic somewhat harder

| than this optimal ordering problem, in the directed ac well ac the
undirected case,

i 1

|

(sda,Rs nm gain. " | ¥



10. Some Open Problems.

The following related questions are still waiting for an answer: 3

| (a) Is the problem "Bandwidth(G)< 3 " NP-complete, given an arbitrary }
graph (or perhaps a tree) G ?

(b) Is there a polynomial time algorithm to enumerate the number of 4

j distinct bandwidth-2 layouts of a given graph G ¢ ]

(¢c) For which exponents m is the problem "Some layout of G satisfies ]

> {r) - ev): u—Vv in G}< k " NP-complete, when G is a free i
tree?

(d) What is the expected minimum bandwidth, for random graphs on n :

vertices and m edges, as n and m -»« ? 1

Question (b) is of potential interest because there seems to be a |

vague connection between efficient algorithms for enumeration and efficient |

algorithms for testing existence. For example, there is a determinant

formula for evaluating the number of spanning trees of a graph, and there

| are efficient algorithms for testing connectedness. The problems of |
enumerating the number of hamiltonian paths of a graph, or the number of |

ways to satisfy a given set of clauses, etc., do not seem to be in NP; i
there most likely are polynomial-time reducibilities between such probleme,

but such transformations remain to be investigated. In the case of |

bandwidth-2 layouts for a graph, there is a linear time algorithm for

existence, yet no apparently "nice" characterization. So this is a

j candidate problem in which enumeration might be definitely more difficult |

| than existence. |

| Question (c) is suggested by the observation that the stated problem ic
solvable in polynomial time for m= 1 [31], but as m increases the |

| best layouts are eventually those with minimum bandwidth.

All four problems can be considered also for the case of directed 3
bandwidth.

| Another interesting question is to discover how far from optimum the

various heuristic methods for bandwidth reduction can be; see the reference: j

below for several approaches that have been proposed.

| ¥
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