Stanford Artificial Intelligence Laboratory June

Memo AIM=-=30 1

Computer Science Department
Report No. STAN-CS-77-624

Recent Research in Computer Science
by

John McCarthy, Professor of Computer Science
Principal Investigator

Associate Investigators:

Thomas Binford, Research Associate in Computer Science
Cordell Green, Assistant Professor of Computer Science
David Luckham, Senior Research Associate in Computer Science
Zohar Manna, Research Associate in Computer Science
Terry Winograd, Assistant Professor of Computer Science

Edited by
Lester Earnest, Research Computer Scientist

Research sponsored by

Advanced Research Projects Agency

COMPUTER SCIENCE DEPARTMENT
Stanford University

1977

Stanford Artificial Intelligence Laboratory June 1977
Memo AIM-301

Computer Science Department
Report No. STAN-CS-77-624

Recent Research in Computer Science

by

John McCarthy, Professor of Computer Science
Principal Investigator

Associate Investigators:

Thomas Binford, Research Associate in Computer Science
Cordell Green, Assistant Professor of Computer Science
David Luckham, Senior Research Associate in Computer Science
Zohar Manna, Research Associate in Computer Science
Terry Winograd, Assistant Professor of Computer Science

Edited by
Lester Earnest, Research Computer Scientist

ABSTRACT

This report summarizes recent accomplishments in six related areas: (1) basic Al research and
formal reasoning, (2) image understanding, (3) mathematical theory of computation, (4) program
verification, (5) natural language understanding, and (6) knowledge based programming.

This research was supported by the Advanced Research Projects Agency of the Department of
Defense under ARPA Order No. 2494, Contract MDA903-76-C-0206. The views and conclusions
contained in this document are those of the author(s) and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of Stanford University or any agency
ofthe V. S. Government.

Reproduced in the U.S.A. Available from the National Technical information Service, Springfield,
Virginia 22161.

1.

TABLE OF CONTENTS

Section

Introduction

Page

2. Basic Research in Artificial Intelligence

3.

1.

5.

and Formal Reasoning

2.1 Formal reasoning related to Al
questions

2.2 Formal reasoning related to MTC
questions

2.3 A reas of work and specific
accomplishments

2.4 The FOL proof checker

2.5 References

Image Understanding
3.1 Achievements
3.1.1 Vehicle Location
3.1.2 Locating Buildings and
Change Monitoring
3.1.3 System Description
3.2 References

Mathematical Theory of Computation
4.1 Motivation

4.2 The Goals

4.3 Current Research

4.4 References

Program Verification
5.1 Overview
5.2 The Stanford Interactive Verifier
5.3 Summary of Recent Work
5.3.1 Stanford Pascal Verifier
5.3.2 Applications of Verifiers

5.3.3 Operating Systems Verification

5.4 Proposal
5.4.1 Stanford Pascal Verifier
5.42 Verification Experiments
5.4.3 Design of a Concurrent
Programming Language and
Verifier
5.5 References

[CS R O N o)

17
17
17
18
22

24
24
24
25
25
27
28
29
29
30

32

Section

6. Natural Language Understanding
6.1 Building the KRL-0 System

~ 6.2 Experiments using KRL-0

6.3 The Problems
6.4 Current Directions
6.5 References

7. Knowledge Based Programming
7.1 Introduction
7.2 Research Objectives
7.3 A Sample Session with PSI
74 System Organization
1.5 Conclusions
7.6 Acknowledgements
1.7 References

Appendices
A. Theses
B. Film Reports
C. External Publications

D. Abstracts of Recent Reports

Page

34
36
38

54
57

59
59
60
61
64
72
72
72

74
78
80
88

1. Introduction

This report summarizes six related research
projects, with both basic and applied research
objectives.

® Basic research in artifcial intelligence and
formal reasoning addresses fundamental
problems in the representation of
knowledge and reasoning processes applied
to this knowledge. Solution of these
problems will make possible the
development of analytical applications of
computers with large and complex data
bases, where current systems can handle
only a very restricted set of data structures
and queries.

© [mage understanding is"aimed at
mechanizing visual perception of three-
dimensional objects either from
photographs or from passive imaging
sensors. Advances in this field are
expected to lead to much more efficient
photointerpretation capabilities as well as
automatic visual guidance systems.

® Mathematical theory of computation studies
the properties of computer programs and
digital logic. The goal is to provide a
sound theoretical basis for proving
correctness or equivalence of designs.

© Program verifcation is a closely related
- project whose goal is to improve the

reliability of important classes of programs
such as compilers, operating systems and
realtime control systems, and to
standardize techniques for program
construction, documentation and
main ten ance.

© Natural Language Understanding research
is developing a knowledge representation
language (called KRL) that is expected to
support sophisticated systems and theories
of language understanding.

® Knowledge based programming is developing

a new interactive approach to
programming in which the computer
assists the user in formulating the
specification of his problem and in
designing the procedures needed to solve
1t

Readers who wish to dig deeper should see
the references at the end of each section.
Appendices list dissertations, films, and other
recent reports as well as external publications
by the staff.

2. Basic Research in Artificial Intelligence
and Formal Reasoning

Personnel: John McCarthy,
Richard Weyhrauch, Martin Davis,
Student Research Assistants:
Juan Bulnes, Robert Filman,
Robert Moore, Andrew Robinson,
David Wilkins.

The long range goals of work in basic Al and
formal reasoning are to make computers carry
out the reasoning required to solve problems.
We believe that our recent work has made it
substantially clearer how the more formal
approach to Al can be used not only in
traditional AI areas but also applied to
proving programs correct and hardware
verification. This brings applications nearer
and has changed the direction of some of our
research.

The research we do is primarily technical in
. nature. When dealing with questions about
the basic adequacy of systems of
representations of .data it is the technical
details that are most important. The next two
short sections describe the context in which we
view formal reasoning to be applicable. We
then will describe in detail our recent results.

2.1 Formal reasoning related to Al questions

We feel that for data bases to include many
types of information that decision makers
really need will require major advances in
representation theory. In order for programs
to use this information effectively will also
require new modes of reasoning. Current data
base technology at best allows simple relations
to be represented - e.g. “Smith is the
supervisor of Jones.” Additions from current
Al techniques would allow simple
generalizations of relations (“Every employee
has a supervisor except the director.”), but this
leaves a tremendous range of representation
problems untreated:

1. Mental states - what a person believes,
knows, wants, fears, etc.

2. Modalities - what may happen, what must
happen, what ought to be done, what can
be done, etc.

3. Counterfactual conditionals - if something
were true what else would be the case.

4. Causality - how does one event follow
because of another.

5. Actions and their modifiers.

6. Self reference - how can I be aware of
myself and think about what I am
thinking.

None of these concepts can be satisfactorily
handled at present, and there are undoubtedly
other phenomena which are yet to be
discovered. What we are working on is an
integrated system in which these kinds of
notions can be represented.

2.2 Formal reasoning related to MTC
questions

Here we are interested in how to verify to
properties of computer programs. The
problem, as above, is that there are many
interesting questions about programs that
existing verification schemes were not designed
to answer. There are two main styles of
program verification at present, the Hoare-
Floyd type, and the the approach of Dana
Scott, et al. Although both of these have
advantages, neither will comfortably treat the
range of problems below. Each example is
followed by a typical question we would like to
ask the verification system about the programs
and specification language it admits.

1. Parsing - is p a well formed program; is s
an acceptable specification?

2. Correctness - does a program, p, satisfy
some specification, s?

3. Equivalence - do two programs do the
same thing, i.e. meet the same specs?

4. Collections of programs - can we mention
set of programs which only contain
assignment statements.

5. Properties of such sets - can we state in
the language that equivalence of any two
of the above programs is decidable.

2.2 Formal reasoning related to MTC questions

6. Lemmas - can the system specialize the
above fact to specific programs?

7. Resources - how much storage does this
program use?

We believe that it is possible to handle these
questions in a unified system. Recent progress
in our ability to represent the correctness of
recursive programs in first order logic has
been very encouraging.

2.3 Areas of work and specific
accomplishments

The above remarks sets the context of our
work. It briefly relates some of the questions
we think are important. The sections below
give some details of the work we have actually
done together with some further remarks
about questions above.

Representing general facts

The most developed logical system which
deals with general facts is first order logic.
Statements like “For all programs . ." are
represented by using quantifiers. But even
within first order logic, there are many
possible ways of representing a particular kind
of fact, and much further study is required.
The FOL system has the ability to enter these
general facts into its data base. A different
kind of general statement is about facts
themselves. For example, we want to be able
to say, “Unbelievable statements cannot be
true” or “The algorithm a, when applied to a
number, generates a true sentence”. The latter
example is what is usually called an axiom
schema. It is an example of a
metamathematical sentence. R. Weyhrauch is
interested in the problem of how to
incorporate general statements into deductions
and how to use metamathematics to reason
about these facts rather than with them. His
work has been primarily in designing and
integrating the specific code described below.

Knowledge and belief

The notion X thinks Y will soon know Z is not

anusually complex when adversaries try to

outwit each other, but it presents problems for
machine representation that haven’t been
conclusively solved but on which we have
made recent progress. A good artificial
intelligence program must be able to prove or
conjecture it under appropriate circumstances
and it must be able to draw correct
conclusions from it - and not draw incorrect
conclusions. The latter is the the more
immediate problem. Let us use a simpler
example. Suppose we have the sentences Pat
knows Mike’s telephone number and Mike’s
telephone number is the same as Mary’s, A
computerized deduction system that uses the
rule that equals may be substituted for equals
might conclude Pat knows Mary’s telephone
number. This is not a legitimate deduction,
even though it would be legitimate to deduce
that Pat dialed Mary’s telephone number from
the fact that he dialed Mike’s number and the
fact that the numbers are the same.

Recently McCarthy has discovered how to
represent such facts in unmodified first order
logic and the solution works no matter how
many mental qualities must be treated. The
work is described in (McCarthy 1977b) and
will be further developed in the next year and
a half.

Partial information

Robert Moore has found some new results on
representing partial information about
knowledge and belief. He has shown that
some of the “multiple data base‘ approaches
of previous Al work cannot represent partial
knowledge - e.g. they cannot represent the
assertion that the Russians know how many
divisions the Chinese have, unless the
program knows this also, so it can include the
information in the data base representing the
Russians’ model of the world. Moore has
shown how this and related difficulties can be
avoided by talking not about beliefs

4 Basic Research in Artificial Intelligence and Formal Reasoning

themselves, but rather the possible worlds in
which the beliefs are true or false. A very
elegant theory has been developed based on
this approach.

Minimal inference

It has long been recognized that standard logic
does not represent the many kinds of
reasoning that people use in forming
conjectures. This reasoning requires the
ability to conjecture that the known facts
about a phenomenon are all the relevant facts.

J- McCarthy has recently found a partial
solution to this problem. An axiom schema of
first order logic called a minimization schema
can be used to represent in a flexible way the
conjecture that the entities that can be shown
to exist on the basis of the information in a
certain data base are all the relevant entities
that exist. The flexibility comes from the fact
that the set of information conjectured to be
‘all the relevant information is readily
changed. Martin Davis has helped in the
mathematical formulation of this method.

Reasoning with observation

R. Filman has demonstrated that the chain of
reasoning involved in a complex chess
problem requires programs that observe a
chess board as well as perform deductions if
the solution is to be considered feasible. The
“‘point of his research was not to solve chess
problems, but to explore how the ability to
make direct observations of the world, in this
case a chessboard, can be interspersed with
deduction to better solve problems. A human
player doesn’t usually prove that his king is in
check by reasoning from the rules. He simply
looks at the board and sees that the rook can
capture his king (or even more likely is that
me hear’s his opponent say check). The
ability of a person to look at the real world is
facilitated by what we have called the
semantic attachment feature of FOL, which
was designed by R. Weyhrauch. Filman’s
experience with observational reasoning shows
that we still have only begun to understand it.

Facts about one’sown knowledge

For a system to explain how it arrived at its
conclusions it must be able to reason about its

" own program. This problem has two parts.

One is how to reason about programs, which
meshes with our interest in mathematical
theory of computation. The aspect directly
related to the formal reasoning project
involves the question of how can you write a
program that can reason about itself.
Weyhrauch has designed a system that has
some ability to reason about itself. It also can
reason some about what it knows. This is a
special but particularly tricky case of
reasoning about knowledge mentioned above.
This system requires several pieces of software
the implement which are presently being
coded.

Correctness of programs

One of the most important results is
McCarthy’s ideas for using axiom schemas to
embed parts of Scott’s style of doing program
verification in first order logic. This work is a
outgrowth of a thesis by Cartwright which
puts in usable form some of the earlier ideas
of Kleene. This work has made it possible for
us to prove the correctness and termination of
several programs and we hope to use these
ideas to develop this new style of verification.

2.4 The FOL proof checker

Our main software tool for making a
computer follow reasoning is a proof checker.
Ours is called FOL (for First Order Logic)
and checks proof in a system of first order
logic that has been enhanced in many ways.
We use this tool to formulate the facts
involved in an intellectual problem and check
that our representation is adequate to solve
the problem. As stated above the facts we are
studying are general facts about situations and
events and actions and goals, the effects of
actions that manipulate physical objects, and
the facts about sources of information such as
books, computer files, people and observation

2.4 The FOL proof checker

that are necessary in order for a program to
obtain the information required to solve
problems.

The building of FOL as a test ground for
theoretical ideas is one way we keep from
presenting ivory tower solutions to problems.
We actually use FOL to implement our ideas
about representation theory. We are
interested in theories whose details can
actually be realized as a computer program.
Over the past year FOL has been improved
in many ways.

It should be noted that three of the tasks
described below: the semantic attachment code,
the monadic predicate calculus decision
procedure and the syntactic simplifier were
each programming tasks comparable in scope
to - lisp interpreters, and this represents an
enormous amount of work.

© A decision procedure for the monadic
predicate calculus has been added to FOL to
decide first-order statements about sorts.

© Semantic attachment has been completely
rewritten and is now compatible with the full
many sorted logic of FOL.

© A syntactic simplifier has been written.
This program allows a user to do the symbolic
evaluation various terms and well formed
formulas of FOL.

@ Several axiomatizations of set theory have
been expressed in FOL in order to study their
suitability for practical proof-checking. The
work with Kelly set theory is a kind of
benchmark for this work.

® The McCarthy-Painter compiler has been
proved correct in FOL.

© FOL languages have been extended to
include conditional terms and function
parameters. Introduction and elimination
rules corresponding to these notions have been
added.

® Two new rules for manipulating quantifiers
have been added to FOL.

® A new axiomatization of a theory of
knowledge suitable for implementation in
FOL has been developed.

2.5 References

{Kelley 1955) John Kelley, General Topology,
D. van Nostrand Company, Inc., 1955.

[McCarthy 19591 John McCarthy, Programs
with Common Sense, Proc.Int. Conf. on
Mechanisation of Thought Processes,
Teddington, England, National Physical
Laboratory, 1959.

[McCarthy 19611 John McCarthy, A Basis for
a Mathematical Theory of Computation,
Proc. of the Western joint Computer Conf.,
New York, Spartan Books Inc., 1961,

[McCarthy 1963a) John McCarthy, A Basis
for a Mathematical Theory of
Computation, in Braffort, P. and
Herschberg, D. (eds.), Computer
Programming and Formal Systems, North-
Holland, Amsterdam, 1963.

[McCarthy 1963b] John McCarthy, Towards
a Mathematical Science of Computation,
in Popplewell, C.M. (ed.), Information
processing: Proceedings of IFIP Congress
62, North Holland, Amsterdam, 1963.

[McCarthy 19641 John McCarthy, A Formal
Description of a Subset of ALGOL, in
Steel, T.B., Jr. (ed.), Formal Language
Description Languages for Computer
Programming, North Holland, Amsterdam,
1966.

[McCarthy 19651 John McCarthy, A Proof-
Checker for the Predicate Calculus,
Stanford AI Memo AIM-27, March 1965.

[McCarthy and Hayes 1969) John McCarthy
and Patrick Hayes, Some Philosophical

6 Basic Research in Artificial Intelligence and Formal Reasoning

Problem from the Standpoint of
Artificial Intelligence, Stanford Al Memo
AIM-73, November 1968; also in D.
Michie (ed.), Machine Intelligence,

A merican Elsevier, New York, 1969.

[McCarthy and Painter 1967) John McCarthy
and James Painter, Correctness of a
Compiler for Arithmetic Expressions, in
Schwartz, J.T. (ed.), Proc.of a Symposium
in Applied M athematics, Vol. 19 —
Mathematical Aspects of Computer Science,
American Mathematical Society,
Providence, Rhode Island, 1967.

[McCarthy 1977] First Order Theories of
Individual Concepts and Propositions,
forthcoming.

[McCarthy 1977]Minimal Inference- A way
of jumping to conclusions, forthcoming.

[Prawitz 1965] Dag Prawitz, Natural
Deduction, A Imqvist & Wiksell, Stockholm,
1965.

[Weyhrauch 1977] Proofs using FOL,
forthcoming.

3. Image Understanding

Personnel: Thomas Binford, Srudent
Research Assistants: Reginald Arnold,
Donald Gennery.

The objective of this research in Image
Understanding is to build computer systems
which locate and monitor buildings, airfields,
aircraft and vehicles in aerial imagery. A
scientific objective is to accomplish these tasks
by building spatial structural models of
observed scenes, and matching spatial models,
as contrasted with image matching. This
approach is taken in order to lead to systems
which can use images taken from various
viewpoints, sun angles, weather conditions,
different sensors, and different seasons of the
year.

3.1 Achievements

This research has demonstrated high potential
for the use of passive ranging techniques for
high resolution depth measurement. Aircraft
flying at low altitude using terrain following
radar are endangered if ‘they use active
ranging, which broadcasts their presence.
Passive ranging has the advantage of
covertness in hostile environments.

Sequences of images from a moving aircraft
have been used to find the ground plane and
separate objects from ground. The accuracy
attained has been demonstrated to be 27
height error for 3” horizontal pixel size on the
ground. The system should be effective with
camouflaged surfaces. On a general purpose
computer, the process requires about 8 seconds
with no guidance information. That can
likely be reduced at least a factor of 2. With
accurate guidance information, the time
required is estimated to be about 250
milliseconds (most missions probably fall in
this class). The system is self-calibrating and
highly reliable. Other groups in image
understanding have begun using these
algorithms and the code.

The system includes a promising solution to a
problem in terminal guidance, guiding a
vehicle to a target. This is solved by
determining the Observer Model. Imagine an
aircraft approaching a runway. As it moves,
objects on both sides appear to move radially
outward from a center, the fixed point. The
center is the instantaneous direction of motion.
The pilot knows that the point which does not
appear to move is where he will touch down,
unless he changes direction. The Observer
Model contains the information necessary to
calculate the distance of each point from the
observer and from the vehicle path. The
touchdown point can be calculated from the
trajectory of instantaneous directions of
motion. The system determines the transform
from one view to another in a sequence of
views from a moving observer.

3.1.1 Vehicle Location

The objective of this research is to locate cars
in an aerial stereo pair of a suburban scene,
using stereo. The goal was 80% recognition
with 20 hours of processing.

Status: the system successfully separates
vehicles from ground and has succeeded in
describing the projection of a car as a
rectangle of approximately the right size and
orientation. The length and width of the car
are accurate to about 5% in this example. The
system is very near to labeling objects as cars.
Cars have been isolated in both aerial and
ground level images. Both feature-based and
area-based depth mapping have achieved that
level of performance. Feature-based stereo is
based on edge fragments from the Hueckel
operator [Hueckel]; a new technique of linking
edge fragments in depth has been developed.

A sequence of steps ending in description of a
car by the rectangular outline is shown in the
figures which follow. It is not yet possible to
estimate its recognition rate. The program
finds a coarse depth map and finds the ground
plane in about 8 seconds. Then it must make
a denser depth map for describing the car.

Image Understanding

Figure 1. Segment of aerial photo

Figure 2. Features of interest

No evaluation has been made of the time
required for making the denser depth map
and for describing and matching the car, but
a crude guess is that potentially about ten
seconds is required.

3.1.2 Locating Buildings and Change
Monitoring

The same stereo techniques are being applied
to build models of buildings in aerial photos
of suburban scenes. Because buildings are
larger than cars and because they are more
likely to have plane sides and box-like
sections, the techniques are expected to work
even better than for cars. The programs have
been developed and preliminary results have
been obtained which support this expectation.

3.1.3 System Description
0 bserver Model

The program first orients itself in the scene
and finds an Observer Model, a model for the
transform between the two views. This step
takes 60% of the time required for finding the
ground plane. If two views are an accurately
calibrated stereo pair, this operation is not
necessary. If accurate guidance information is
available, this operation can be speeded up
enormously. In any case, this process makes
up for any inaccuracies in calibration,
maintains a continuous self-calibration, and in
the worst case, works even if no calibration or
guidance information is available. The
program finds a camera transform model by
finding-a sample of features of interest in one
image . and matching them with their
corresponding view in the other image. It
needs only to know pairs of corresponding
points in the two views; it does not need to
know where the points are.

The system automatically selects points of
interest. Figure 1 shows a portion of a stereo
pair of a parking lot. Figure 2 shows features
of interest selected by the program. The
Interest ~ Operator rea uires about 75

milliseconds for a 256x256 frame. Interesting
features are areas (typically 8x8) which can be
localized in two dimensions without a camera
transform. The operator chooses those areas
with large variance along all grid directions.
That is roughly equivalent to a large drop in
autocorrelation along all grid directions, which
means that the area can be localized closely.
Points on a line will match anywhere along
the line, which means that lines are not useful
features at this stage, but corners are useful.

———! INTEREST
OPERATOR
PIX MATCHER
———
GUIDBANCE l TRANSFORM
——»I SOLVER
Figure 3

Observer Modeling System

The correlator matches the features in the
other image by a coarse to fine strategy: It has
versions of the picture at resolutions. of
256x256,128x 128,64x64, 32x32, and 16x 16.

Figure 4 shows the neighborhoods at each of
those resolutions, centered around a pair of
matching features in the stereo pair. It first
matches by a small search on a very coarse
version (16x16) of the image. It then
performs asearch in the next finer version of
the image (32x32), in the neighborhood of the
best match in the previous image. That step
is repeated until the full resolution is reached.
The matching process requires only 50
milliseconds for a match of a single feature no
matter where it is in the image.

10 Image Understanding

Figure 4. Neighborhoods at various resolutions

x 63206398

82

Figure 5. Ground plane estimates

Once the camera transform is known, search is
necessary only along a line in the image. In
this case, search is about a factor of seven
faster. If the depth of neighboring points is
used as a starting point for the search, the
match is another factor of seven faster. It is
planned to incorporate those speedups; neither
is now used. The matcher makes about 10%
errors. Both the camera transform solver and
the ground surface solver reject the points
with erroneous matches. It encounters fewer
ambiguities than brute force matching, since
not only must the feature match, but the
surrounding context must also match. The
procedure should not work for parts of scenes
where the background of objects (context)
changes drastically from one view to another.
This is true only in parts of images at wide
angles and close range. This is also a problem
for matching images from very different
sensors. The problem will be less important
where guidance information is available, since
matching breaks down at the coarse phase of
coarse-to-fine matching.

Aerial views are mostly planar, so failure of
matching should not be a problem, nor has it
been in practice. The process requires about
50k of 36 bit words now. It is possible to
implement the coarse-to-fine search strategy in
a raster scan and keep only a portion of each
image in core. This would cut memory size by
a large amount, but it has not been done. A
version is being designed using this strategy.

The program automatically determines the
transform between the twb views. Given
corresponding views of five points which are
non-degenerate (i.e. no colinear and planar
degeneracies) the relative transform of the two
views can be found. Itis not necessary to
know the position of these points, only two
views that correspond. The transform is
determined except for a scale factor, the length
of the stereo baseline. That does not affect
subsequent matching of two views using the
transform, and the scale factor can often be
determined from known scene distances or
guidance information.

If the scene is nearly flat, then certain
parameters are ill-determined. However, that
does not affect the accuracy of measuring
heights using the transform. If the scene is
nearly flat, then a special simplified form of
the solver can be used. The special case
version has been used on some images. It is
much faster than the full transform solver. In
the present form of the camera transform
solver, it sometimes encounters stability
problems in degenerate cases. It will be
investigated to examine when it is limited by
data, in which case more data are required,
and when it is subject to difficulties in the
numerical solution.

Part of the job of the transform solver is to
deal with mistaken matches. The procedure
calculates an error matrix for each point and
iterates by throwing out wild points. It
calculates an error matrix from which errors
in depths of point pairs are calculated. The
solver. uses typically 12 points and requires
about 300 milliseconds per point. It requires
about 20k of memory. About 60% of the time
for finding the ground plane is spent in the
camera solver.

With accurate guidance information, this
operation would not be necessary. However, it
can be used directly to find the instantaneous
direction of the vehicle. As mentioned above,
as the vehicle moves, points in the image
appear to move radially away from the center
which is the instantaneous direction of the
vehicle. Three angles relate the coordinate
system of one view with the other, and two
angles specify the direction of the
instantaneous direction of motion.

Ground Plane

The approach to discriminating objects is to
find the local ground surface and then
describe objects above the ground. Finding
the ground requires a more dense depth
sample. The camera transform model makes
it economical to make a denser depth map. A
point in one view corresponds to aray in

12

space which corresponds to a line in the other
view. The search is limited to this line, and
in addition, nearby points usually have about
the same disparity as their neighbors. Thus,
search is limited to a small interval on a line.
A high resolution correlator has been
developed which interpolates to the best
match, and which calculates the precision of
the match based on statistics of the area.

The system then finds a best ground plane or
ground parabola to the depth points, in the
least squares sense. Figure 5 shows the
distribution of points and the best ground
plane fit for the parking lot scene of figure 1.
The ground surface finder gives no weight to
points above the ground plane; it expects
many of those. It includes points below the
ground plane and near. the ground plane.
Since points below the ground plane may be
wild points, they are edited out in an iterative
procedure. Of course, there may be holes. If
they are small, there is no problem. If the
hole is big, it becomes the ground plane. The
ground plane finder requires 5 milliseconds
per point.

Edge-Based Stereo

Feature-based stereo using edges is interesting,
since it increases the accuracy with which
boundaries of depth discontinuities can be
found by about a factor of 25. That accuracy
allows making accurate measurements of
dimensions of objects, an important part of
our approach. It also provides additional
information about surface markings which are
not available in stereo based on area
correlation. Feature-based stereo is also
potentially very fast, although now area-based
techniques are considerably faster. Edge-
based techniques have not been developed
very far, and would benefit from “smart
sensor” technology. Figure 6 shows the images
from the parking lot scene transformed into
the canonical stereo coordinate system, with
stereo axis along the x axis. Figure 7 shows
edges from the Hueckel operator [Hueckel] in
the stereo coordinate system.

Image Understanding

A new technique has been developed to use
edge features in stereo. Edges are linked
along smooth curves in 3d (in the image
coordinates and in depth). The new technique
is used in the object modeling and recognition
modules of the system. Those edges out of the
ground plane delimit bodies, if isolated.
Figure 8 shows linked edges superimposed on
one picture from the pair of images. The left
image shows edges near the ground. The
right image shows edges above ground level.
A vertical rectangular parallelepiped fit to
edges gives approximately the right size and
direction for car examples. A first crude
identification of cars is near. Figure 9 shows
the rectangle superimposed on one of the
images.

The photos were taken with a wide angle lens
at an altitude of about 1500 feet and about
1500 feet apart. They subtend an angle of
about sixty degrees. Several areas were
digitized to resolutions of about 3” on the
ground (courtesy the Image Processing
Laboratory, USC). TV images from a
parking lot were also used as examples of
ground level images.

The limiting accuracy obtainable from a pair
of images can be calculated accurately.
Consider the vector connecting the two camera
centers. Its length will be called b. The angle
from this baseline to a point p will be called a.
The angle shift of the two views on the unit
sphere of the viewer is the same as the angle
subtended by the baseline from the point p.
That angle is:

theta = bxsin(a)/s.
Here s is the distance of p from the observer.
Solve for s:

s = bxsin(a)/theta.
The distance of p from the instantaneous
direction of motion is the target error, t.

tesxksin(a).
The error in the range has two components.
The first is a global scale error from errors in
b. This affects all distances in the same way.
The other is the error in angle measurements.

13

Figure 6. Stereo pair

Figure 7. Edges from Hueckel operator

14 Image Understanding

Figure 8. Linked edges near ground (left) and above ground (right).

Figure 9. Rectangular parallelepiped fit

Relative distances can be determined to the
accuracy with which angles can be measured.
Relative distance errors are thus determined
by dtheta. Differentiate the above equation
for s and substitute for theta:

ds = -(bxsin(a)/thetat2)xdtheta

ds = —(s72/(bxsin{a))xdtheta.
The range error thus increases as the square
of s. Consider:

ds/s= dtheta/theta.
Relative ranging error is constant for constant
theta. In the case of the above photos, this
corresponds to errors of about 1/2 pixel in
registration. Previous experience has been
about a factor of 3 better than that.

Image Matching System

A system has been built which assists a user to
program image matching tasks in about 20
minutes [Bolles). The system is effective for
tasks for which test images are nearly the
same as training images; i.e. for which
matching can be done in the image. It is more
general than 2d since objects and features can
move relative to one another. It has shape
matching capability, but strictly 2d. It has no
3d models and only point features.

The system suggests features to the user, who
chooses among them. Features are chosen by
the Interest Operator, mentioned above. The
system evaluates the expected cost and utility
of each operator. Utility is defined as the
contribution to the probability of a decision or
as the contribution to positional accuracy. At
training time, the system gathers statistics
about the effectiveness of the operators. At
planning time, it ranks operators according to
their expected utility and estimates the total
cost of the task by a simple best first strategy.
At execution time, the system applies operators
in a pre-ordered sequence, combines their
results by least squares into confidence and
precision, and stops when it reaches adesired
confidence or positional accuracy or when it
exceeds its cost limit.

Previously, an automated picture retrieval

15

system was implemented. = That system
provided the user with a way to reference all
pictures which covered a specified area. That

picture retrieval system could be used with

depth maps and other feature descriptors.
This would make possible picture retrieval on
con tent and location.

There has been progress in other areas. New
results have been obtained in quantifying
behavior of the Hueckel operator: an
automatic determination has been obtained of
sensor noise for sensors with square-root noise
characteristic (USC digitizer); a sensitivity
analysis has been performed for line features;
theoretical estimates for errors in position and
angle have been made which are in agreement
with experimental error distributions; a
degeneracy has been found in the edge
solution. An improved program to link edges
has been implemented. It is not yet operating
adequately. However, a stereo version,
described above, is operating. That version
links edge fragments by both colinearity and
depth continuity.

A previous achievement of the program was
the formulation of the “generalized
translational invariance” representation for
complex volume shapes [Binford]. That
representation and a laser triangulation system
developed here were part of a research
program which led to recognition of a doll, a
toy horse, and objects of similar complexity
[Agin), [Nevatia). Now, the representation is
being widely accepted. Marr has obtained an
interesting result that the most reasonable
simple assumptions about interpretation of 2d
boundaries as 3d objects are equivalent to
interpretation in terms of “generalized cones”
[(Marr].

16

3.2 References

[Agin) G.J.Agin and T.O.Binford;
Representation and Description of
Curved Objects; IEEE Transactions on
Computers; Vol C-25, 440, April 1976;

[(Binford] T.O.Binford; Visual Perception by
Com pu ters; Invited Paper IEEE Systems
Science and Cybernetics; Miami Fla; Dec
1971.

[(Bolles]R.C.Bolles; Verification Vision;
submitted to Sth IJCAI, Boston, 1977;

(Gennery) D.B.Gennery; A Stereo Vision
System for Autonomous Vehicles;
submitted to 5th IJCAI, 1977,

[Hueckel]l M.H. Hueckel, A Local Visual
Operator which Recognizes Edges and
Lines, J. ACM, October 1973.

[1U-1], T.O.Binford; Presentation to first
Image Understanding Workshop; USC;
April 19°76;

(IU-2], T.O.Binford; Presentation to second
Image Understanding Workshop; Univ of
Md; October 1976;

(Marr]), D.Marr; Analysis of Occluding
Contour; MIT Al Memo 372; October
1976;

[Nevatia] R.Nevatia and T.O.Binford;
Structured Descriptions of Complex
0 b jects; Artificial Intelligence forthcoming;
-and Proc 3rd Int Joint Conf on AI (1973).

[Shortliffe], E.H.Shortliffe, R.Davis,
S.G.Axline, B.G.Buchanan, C.C.Green,
and S.N.Cohen; Computer-Based
Consultations in Clinical Therapeutics:
Explanation and Rule Acquisition
Capabilities of the MYCIN system,;
Computers and Biomedical Research,
Volume 8, June 1975;

Image Understanding

4. Mathematical Theory of Computation
Unified Framework for Program Verification

Personnel: Zohar Manna, John McCarthy,
Student Research A ssistants: Martin
Brooks, Nachum Dershowitz, Chris
Goad, Todd Wagner.

4.1 Motivation

In the past decade there has been intense
research into the problem of proving the
correctness of computer programs. As a result,
a variety of different program verification
techniques have appeared. These methods
have different realms of application: some
show partial correctness and others show
termination, total correctness or equivalence;
some apply to recursive and others to iterative
programs; some apply to the program itself,
but others require that the program be
documented or altered.

Here are some of the principle program
verification methods and their applications:

® Invariant-assertion method: partial
correctness of iterative programs
(Floyd[19673, Hoare[1969])

® Well-founded ordering method: termination
of iterative programs (Floyd[19671)

® Siructural-induction method total
correctness and equivalence of recursive
programs (Burstalll 19691)

® Subgoal-assertion method: partial correctness
of iterative and recursive programs
(Manna[1971], Morris and
Wegbreit[1977))

® Counters method: termination of iterative
programs (Elspas et al.[1973], Katz and
Manna[19751)

® [ntermittent-assertion method: total
correctness of iterative programs

17

(Burstall[1974], Manna and
Waldinger[19761).

“Most current verification systems employ only
the invariant-assertion method for proving
partial correctness and the counters method
for proving termination, even though for some
situations another of the techniques may be
decidedly superior. For instance, these two
techniques cannot be applied to verify certain
classes of programs, such as recursive
programs, or to prove certain properties, such
as the equivalence of two programs.
Furthermore, for some verification problems
another of the techniques may yield
significantly simpler proofs than those
required by the two most commonly used
methods.

Most verification methods require some form
of documentation, in which the user expresses
his intuition about how he expects the
program to work. However, different
techniques require very different sorts of
documentation; that which is most natural and
easy to provide varies in form from program
to program.

4.2 The Coals

We are therefore conducting an investigation
with the following goals.

(A) Comparing methods:

® We hope to discover which methods are
equivalent in power and which methods are
strictly stronger than others, and to determine
situations in which a given method may yield
simpler proofs than another.

e We want to compare the documentation
requirements of the different methods in a
rigorous way. Ideally, we wish the user of a
verification system to be able to document his
intuitions in whatever way he finds most
convenient, and have the system select the
technique that best matches the program and

18

documentation supplied and the property to
be proved.

(B) Strengthening methods:

© We need to make the existing methods less
dependent on the documentation supplied by
the user. Thus, we will devise new ways of
generating documentation automatically, and
of altering and extending the documentation
supplied by the user.

® We would like to extend the realm of
application of some of the methods, e.g. find
how to apply the intermittent-assertion
method to show the equivalence of two
iterative programs or the correctness of
nondeterministic or parallel programs.

© We hope to develop more general
techniques that will be able to draw on the
advantages of all the existing techniques, and
compensate for weaknesses in the existing
methodology.

(C) Finding new applications:

We intend to apply methods devised for
program verification to other problems such
as:

© Development: constructing a program to
meet given specifications.

® Transformation: altering a given program to
compute the same output in a different way,
generally in order to optimize the program.

© Modifcation: altering a given program to
debug it, to adapt it to meet revised
specifications, or to extend its capabilities.

A unified survey of verification techniques
and various applications appears in Manna
and Waldinger [July 1977).

Mathematical Theory of Computation

4.3 Current Research
Unified Framework

In his Stanford PhD thesis, supported by this
project, Robert Cartwright[1977] proposed a
way of representing the functional equation of
a Lisp program entirely within first order
logic. Using this and some earlier results,
McCarthy [1977] showed that Lisp and other
recursive programs can be completely
characterized within first order logic by the
functional equation and a minimization axiom
schema. It had been previously thought that
such characterization required second order
logic which is much more difficult to compute
with. McCarthy further showed that the well
known proof methods of invariant assertions
and subgoal assertions were expressible as
axiom schemata in first order logic. This
unexpected result makes all first order methods
of verification and proof-checking more
valuable than expected, and it also permits
postponing the expression of the full Scott
fixed-point theory in first order logic.

John McCarthy plans to exploit this
breakthrough by verifying more complex
programs directly within first order logic.
Because the breakthrough is very new
(February 1977), it is not possible to say how
far the new methods will go and whether it
will still be necessary to develop the
extensional form theory. Most likely, the
extensional form theory will still be needed,
but we will be able to distinguish programs of
simple structure that don’t require it for their
verification.

Wolfgang Polak has an indication that the
subgoal-assertion method 18 exatly
McCarthy’s minimization schema extended to
relations. If this is true, the list of methods
for inductively proving programs correct will
be greatly shortened by showing that most of
the existing methods are subcases of more
general methods. This will make it much
easier to write verifying programs, both the
automatic kind and those that use human
help.

4.3 Current Research

McCarthy has investigated continuous
functionals that don’t arise from simple
recursive programs. Some of them require
parallel evaluation, and the work may lead to
a treatment of program correctness that unifies
parallel programs with the more usual
sequential programs.

Program Annotation

Zohar Manna is investigating techniques by
which an Algol-like program, given together
with its input-output specifications, may be
documented automatically, This
documentation expresses invariant
relationships that hold between program
variables at intermediate points in the
program, and explains the acutal workings of
the program regardless of whether the
program is correct. Thus this documentation
can be used for proving the correctness of the
program, or may serve as an aid in the
debugging of an incorrect program.

He recently succeeded in unifying existing
approaches to this problem, and improving
most of the known methods. The techniques
are expressed as rules which derive invariants
from the assignment statements and from the
control structure of the program, and as
heuristics which propose relationships whose
invariance ~ must be verified. The
implementation of this system is in progress.

Results along this line have beein reported in
Katz and Manna [1976] and Dershowitz and
Manna [1977].

Program Modification

Nachum Dershowitz (graduate student) is
attempting to formulate techniques of program
modification whereby a program that achieves
one result can be transformed into a new
program that uses the same principles to
achieve a different goal. For example, a
program that uses the binary search paradigm
to calculate the square-root of a number may
be modified to divide two numbers in a
similar manner, or vice versa.

19

The essence of the approach lies in the ability
to formulate an analogy between two sets of
specifications, those of a program that has
already been constructed and those of the
program that we desire to construct. The
analogy is then wused as the basis for
transforming the existing program to meet the
new specifications.

Program debugging is considered as an
important special case of program
modification: the properties of an incorrect
program are compared with the specifications,
and a modification (correction) sought that
transforms the incorrect program into a correct
one.

This approach has been embedded in an
experimental implementation and appears in
Dcrshowitz and Manna [1976).

Program Synthesis

Manna and Waldinger are developing
deductive techniqes for the automatic
construction of recursive programs to meet
given input-output specifications. These
specifications express what conditions the
output of the desired program is expected to
satisfy. The deductive techniques involve
transforming the specifications by a collection
of rules, summoned by pattern-directed
function invocation. Some of these
transformation rules express the semantics of
the subject domain; others represent more
general programming techniques. The rules
that introduce conditional expressions and
recursive calls into the program are being
investigated in detail.

The deductive techniques were embedded in a
running system called SYNSYS. This system
accepts specifications expressed in high-level
descriptive language a n dttempts to
transform them into a corresponding LISP
program. The transformation rules are
expressed in the QLISP programming
language. The synthesis of several programs
performed by the system are presented in
Manna and Waldinger [Aug. 19771.

20

The Intermittent-Assertion Method

Zohar Manna explored a new technique for
proving the correctness and termination of
programs simultaneously. This approach,
which he calls the intermittent-assertion
method, involves documenting the program
with assertions that must be true at some time
when control - passes through the
corresponding point, but that need not be true
every time. The method, introduced by
Burstall[19741, promises to provide a
valuable complement to the more conventional
methods.

On all the examples attempted, the
intermittent-assertion proofs turned out to be
simpler than their conventional counterparts.
On the other hand, he showed that a proof of
correctness or termination by any of the
conventional techniques can be rephrased
directly as a proof using intermittent-
assertions. The intermittent-assertin method
can also be applied to prove the validity of
program transformations and the correctness
of continuously operating programs.

This work is described in a recent paper by
Manna and Waldinger [1976]. Manna and
W aldinger believe that the intermittent-
assertion method will have practical impact
because it often allows one to incorporate his
intuitive understanding about the’ way a
program works directly into a proof of its
correctness.

Hardware Verification

The research of Todd Wagner (graduate
student) involves developing methods for
detecting logical errors in hardware designs
using symbolic manipulation techniques
instead of simulation. A very simple register
transfer language has been proposed which
can be used to specify the desired behaviour
of a digital system. The same language can
also be used to describe the individual
components used in the design. A series of
logical transformations can then be used to

Mathematical Theory of Computation

prove that the set of interconnected
components correctly satisfy the specifications
for the overall system.

The process of hardware verification uses the
basic boolean identities derived from
switching theory along with some techniques
for determining the possible effects of clock
transitions as they move through a circuit.
Methods for detecting timing anomalies such
as races, hazards, and oscillations have also
been studied.

A major goal of this research is to be able
deal with fairly complex large scale integrated
components without having to reduce their
descriptions to the gate level. For example, if
a designer requires several complex operations
and uses a microprocessor in his circuit, it
should only be necessary to demonstrate that
the required operations are included in the
microprocessor instruction set and that the
timing and control logic are correct. Current
methods would require a gate level model of
the microprocessor and fairly exhaustive
simulation. ~ As components become more
complex it will become increasingly
advantageous to prove circuit correctness
algebraically and at a fairly high level.

Preliminary results were presented at the
Symposium on Design Automation and
Microprocessors (Palo Alto, Ca., February
1977).

Automatic Debugging

Martin Brooks (graduate student) is currently
developing methods for specifying and
analyzing LISP programs, considering both
the theoretical and practical aspects. One goal
of this research is the design and
implementation of an automatic LISP
debugging system.

The automatic debugger is initially supplied
with an undebugged program. The system
then analyzes the program by symbolic
evaluation and automatically generates a

4.3 Current Research

sufficient fnite set of test inputs for which the
user supplies the intended outputs. The system
extracts the structure of the undebugged
program and then use the input-output pairs
to fill out the missing details, yielding a new
debugged program.

The main advantage of this approach is that
it does not require the user to give a formal
specification, usually a difficult and error-
prone task.

The emphasis of Brooks’ research will be to
develop a general theory for finding a finite set
of input-output pairs which represent a
complete specification of a program, depending
on the structure of the program.

Generalizing--Proofs

Reasoning by example is a technique
frequently used in human problem solving.
For this reason,if one regards automatic
theorem proving as a mechanical incarnation
of human problem solving, the topic of the
automatic generalization of proofs from
special cases is important. Even if one has no
faith in analogies between theorem provers
and people, this topic has practical interest
since generalizing proofs is likely to be a
practically important tool in theorem proving.
The effectiveness of a mechanical procedure
for generalizing proofs depends on the degree
to which it takes advantage of such systematic
relationship as may exist between proofs of
instances of theorems and proofs of the
theorems themselves.

Chris ‘Goad (graduate student) is currently
working on a class of technical questions
which are relevant to understanding this
relationship. These technical questions arise
from looking at pairs of formal systems, such
that one system is a weak subsystem of the
other. Specifically, let T and T be two such
systems, where T’ is a weak subsystem of T,
that is to say, every proposition provable in T’
is also provable in T, but not the other way
around. The idea here is that T be a system

21

within which proofs can be mechanically
found with comparative ease, and T is a more
general system whose theorems we wish to
reduce by instantiation to theorems in T°.
Then we may ask for (1) conditions under
which the instances of a theorem in T are
provable within T, and (2) a uniform method
for obtaining proofs in T’ of instances of a
theorem in T from a proof of the theorem in
T.

Goad has obtained solutions to the problems
posed above for arithmetic and one of its
weak subsystems, namely “proposition al”
arithmetic. By “propositional” arithmetic is
meant, roughly, the subtheory whose formulas
contain no unbounded quantifiers (so each
formula only concerns a finite collection of
numbers), and where the proofs involve only
“propositional” methods (e.g. induction is not
allowed). The plan for future work includes
the extension of the results on arithmetic, and
the study of the same type of problem for
other theories of inductively constructed -
objects, such as the theory of lists. An
ultimate goal of this reasearch is the
application of these results to program
synthesis. That such applications exist is
apparent, since mechanical methods are
known for extracting programs from
constructive proofs of the existence of the
functions they compute. Thus any method for
generalizing proofs extends immediately to a
method for generalizing programs.

Fixedpoint Theory

The classical method for constructing the least
fixedpoint of a recursive definition is to
generate a sequence of functions whose initial
element is the totally undefined function and
which converges to the desired least
fixedpoint. This method, due to Kleene,
cannot be generalized to allow the construction
of other fixedpoin ts.

Manna and Shamir [1997) have been
investigating an alternate definition of
convergence and a new “fixedpoint access”

22

method of generating sequences of functions
for a given recursive definition. The initial
function of the sequence can be an arbitrary
function, and the sequence will always
converge to a fixedpoint that is “close” to the
initial function. This defines a monotonic
mapping from the set of partial functions onto
the set of all fixedpoints of the given recursive
definition.

They have also suggested a new approach
which replaces the classical least fixedpoint
with an “optimal” fixedpoint. An informal
exposition of this approach appears in Manna
and Shamir [1975] and a formal presentation
in Manna and Shamir [1976).

4.4 References

1 Burstall, R. M. [Feb. 1969), Proving
properties of programs by structural
induction, Computing J., Vol. 12, No. 1,

. pp. 41-48.

2 Burstall, R. M. [Aug. 1974], Program
proving as hand simulation with a little
induction, Information Processing 1974,
North Holland, Amsterdam, pp. 308-312.

3 Cartwright, Robert [Jan. 1977), A practical
formal semantic defnition system for typed
Lisp, Ph.D. Thesis, Stanford University,
Stanford, Ca.

4 Dershowitz N. and Z. Manna [Dec. 19761,
The evolution of programs: automatic
program modifcation, IEEE Software
Engineering (to appear).

5 Dekhowitz, N. and Z. Manna [July 1977],
Derivation rules for program annotation,
Acta Informatica (submitted).

6 Elspas, B., K. N. Levitt and R. J. Waldinger
[Sept. 1973]), An interactive system for the
verifeation of computer programs, technical
report, Stanford Research Institute, Menlo
Park, Ca.

Mathematical Theory of Computation

7 Floyd, R. W. [19671, Assigning meaning to
programs, Proc. Symp. in Applied
Mathematics, Vol. 19 (J.T. Schwartz, cd.),
American Mathematical Society,
Providence, R. L., pp. 19-32.

8 Katz, S. M. and Z. Manna [1975), A closer
look at termination, Acta Informatica, Vol.
5, No. 4, pp. 333-352.

9 Katz, S. M. and Z. Manna [Apr. 19761,
Logical analysis of programs, CACM, Vol.
19, No. 4, pp. 188-206.

10 Hoare, C. A. R. [Oct. 19691, An axiomatic
basis of computer programming, CACM,
Vol. 12, No. 10, pp. 576-580, 583.

11 Manna, Z. [June 1971], M athematical theory
of partial correctness, JCSS, Vol. 5, No. 3,
pp. 239-253.

12 Manna, Z. and A. Shamir [Dec. 1975], A
new approach to recursive programs,
CACM (to appear).

13 Manna, Z.and A. Shamir [Sept. 19761 The
theoretical aspects of the optimal ficedpoint,
SIAM Journal of Computing, Vol. 5, No.
3, pp. 4 14-426.

14 Manna, Z. and A. Shamir [May 1977], The
convergence of functions to ficedpoints of
recursive defnitions, Theoretical Computer
Science (submitted).

15 Manna, Z. and R. Waldinger [Oct. 1976],
Is ‘sometime’ sometimes better than ‘always’?
intermittent assertions in proving program
correctness, CACM (to appear).

16 Manna, Z. and R. Waldinger [July 1977],
The logic of computer programming,
Computing Surveys (to appear).

17 Manna, Z. and R. Waldinger [Aug. 19771,
The automatic synthesis of recursive
programs, Fifth Intl. Joint Conf. on
Artificial Intelligence, Cambridge, Ma.

4.4 References

18 McCarthy, J. [Feb. 19771, Representation of
recursive programs in frst order logic, draft
of a technical report, Artificial Intelligence
Lab., Stanford University.

19 Morris, J. H. and B. Wegbreit [1976],
Subgoal induction, CACM (to appear).

23

24

5. Program Verification

Personnel: David C.Luckham,
Derek C. Oppen, Student Research
Assistants: R.A. Karp, S. German,
W. Scherlis, R. Drysdale, C.G. Nelson,
W. Polak.

5.1 Overview

The work of the Verification Group is
directed towards the development of new
programming tools and techniques. Our goal
is to improve the reliability of important
classes of programs such as compilers,
operating systems and realtime control systems,
and to standardize techniques for program
construction, documentation and maintenance.

Our major effort is in three research areas:

A. Design and implementation of on-line
interactive program verifiers.

B. Applications of verifiers in the design,
documentation, debugging and
maintenance of programs.

C. Design of a high level specification and
programming language for implementing
and verifying multiprocessing and realtime
systems.

Within each of these three main research
areas we have pursued specific tasks as
follows.

A. 1 Specification and implementation of an
extended parser and verification condition
generator for the verifier.

A.2 Design and implementation af fast, special
purpose theorem provers to improve the
capability of verifiers.

A.3 Design and implementation of a user-
oriented interface to the verifier. This
includes specification languages for
programs and documentation, and a
command language for the verifier.

A 4 Development of special-purpose verifiers
for completely automatic detection of
common runtime errors in some programs.

B.1 Standardization of techniques for
documenting and verifying important
classes of programs, based on our
experience in verifying these classes of
programs.

B.2 Extension of the use of v<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>