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1. Introduction a new Interactive approach to
programming in which the computer

This report summarizes six related research assists the user in formulating the
projects, with both basic and applied research specification of his problem and in
objectives. designing the procedures needed to solve

It.

® Basic research in artifcial intelligence and
formal reasoning addresses fundamental Readers who wish to dig deeper should see
problems in the representation of the references at the end of each section.
knowledge and reasoning processes applied Appendices list dissertations, films, and other
to this knowledge. Solution of these recent reports as well as external publications
problems will make possible the by the staff.
development of analytical applications of
computers with large and complex data
bases, where current systems can handle
only a very restricted set of data structures
and queries.

© [mage understanding isaimed at

mechanizing visual perception of three-
dimensional objects either from
photographs or from passive imaging
sensors. Advances in this field are

expected to lead to much more efficient
photointerpretation capabilities as well as
automatic visual guidance systems.

® Mathematical theory of computation studies
the properties of computer programs and
digital logic. The goal is to provide a
sound theoretical basis for proving
correctness or equivalence of designs.

© Program verifcation 1s a closely related
- project whose goal 1s to improve the

reliability of important classes of programs
such as compilers, operating systems and
realtime control systems, and to
standardize techniques for program

. construction, documentation and
main ten ance.

© Natural Language Understanding research
1s developing a knowledge representation
language (called KRL) that 1s expected to
support sophisticated systems and theories
of language understanding.

® Knowledge based programming 1s developing
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2. Basic Research in Artificial Intelligence 2. Modalities - what may happen, what must
and Formal Reasoning happen, what ought to be done, what can

be done, etc.

Personnel: John McCarthy, 3. Counterfactual conditionals - if something
Richard Weyhrauch, Martin Davis, were true what else would be the case.
Student Research Assistants: 4. Causality - how does one event follow
Juan Bulnes, Robert Filman, because of another.
Robert Moore, Andrew Robinson, 5. Actions and their modifiers.
David Wilkins. 6. Self reference - how can I be aware of

myself and think about what I am
The long range goals of work in basic Al and thinking.
formal reasoning are to make computers carry
out the reasoning required to solve problems. None of these concepts can be satisfactorily
We believe that our recent work has made it handled at present, and there are undoubtedly
substantially clearer how the more formal other phenomena which are yet to be
approach to Al can be used not only in discovered. What we are working on is an
traditional AI areas but also applied to integrated system in which these kinds of
proving programs correct and hardware notions can be represented.
verification. This brings applications nearer
and has changed the direction of some of our 2.2 Formal reasoning related to MTC
research. questions

The research we do 1s primarily technical in Here we are interested in how to verify to
. nature. When dealing with questions about properties of computer programs. The
the basic adequacy of systems of problem, as above, is that there are many
representations of data it is the technical interesting questions about programs that
details that are most important. The next two existing verification schemes were not designed
short sections describe the context in which we to answer. There are two main styles of
view formal reasoning to be applicable. We program verification at present, the Hoare-
then will describe in detail our recent results. Floyd type, and the the approach of Dana

Scott, et al. Although both of these have
2.1 Formal reasoning related to Al questions advantages, neither will comfortably treat the

range of problems below. Each example is
We feel that for data bases to include many followed by a typical question we would like to

" types of information that decision makers ask the verification system about the programs
really need will require major advances in and specification language 1t admits.
representation theory. In order for programs
to use this information effectively will also 1. Parsing - is p a well formed program; 1s s
require new modes of reasoning. Current data an acceptable specification?
base technology at best allows simple relations 2. Correctness - does a program, p, satisfy
to be represented - e.g. “Smith 1s the some specification, s?
supervisor of Jones.” Additions from current 3. Equivalence - do two programs do the
Al techniques would allow simple same thing, 1.e. meet the same specs?
generalizations of relations (“Every employee 4. Collections of programs - can we mention
has a supervisor except the director.”), but this set of programs which only contain
leaves a tremendous range of representation assignment statements.
problems untreated: 5. Properties of such sets - can we state in

the language that equivalence of any two
1. Mental states - what a person believes, of the above programs is decidable.

knows, wants, fears, etc.
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2.2 Formal reasoning related to MTC questions

6. Lemmas - can the system specialize the Knowledge and belief
above fact to specific programs?

7. Resources - how much storage does this The notion X thinks Y will soon know Z is not
program use? unusually complex when adversaries try to

outwit each other, but it presents problems for
We believe that it 1s possible to handle these machine representation that haven’t been
questions in a unified system. Recent progress conclusively solved but on which we have
in our ability to represent the correctness of made recent progress. A good artificial
recursive programs in first order logic has intelligence program must be able to prove or
been very encouraging. conjecture it under appropriate circumstances

and 1t must be able to draw correct

2.3 Areas of work and specific conclusions from it - and not draw incorrect
accomplishments conclusions. The latter 1s the the more

immediate problem. Let us use a simpler
The above remarks sets the context of our example. Suppose we have the sentences Pat
work. It briefly relates some of the questions knows Mike's telephone number and Mike's
we think are important. The sections below telephone number is the same as Mary’s, A
give some details of the work we have actually computerized deduction system that uses the
done together with some further remarks rule that equals may be substituted for equals
about questions above. might conclude Par knows Mary's telephone

number. This 1s not a legitimate deduction,
Representing general facts even though it would be legitimate to deduce

that Pat dialed Mary’s telephone number from
The most developed logical system which the fact that he dialed Mike’s number and the
deals with general facts is first order logic. fact that the numbers are the same.
Statements like “For all programs . ." are
represented by using quantifiers. But even Recently McCarthy has discovered how to
within first order logic, there are many represent such facts in unmodified first order
possible ways of representing a particular kind logic and the solution works no matter how
of fact, and much further study 1s required. many mental qualities must be treated. The
The FOL system has the ability to enter these work is described in (McCarthy 1977b) and
general facts into its data base. A different will be further developed in the next year and
kind of general statement is about facts a half.
themselves. For example, we want to be able
to say, “Unbelievable statements cannot be Partial information
true” or “The algorithm a, when applied to a
number, generates a true sentence”. The latter Robert Moore has found some new results on
example 1s what 1s usually called an axiom representing partial information about
schema. It is an example of a knowledge and belief. He has shown that
metamathematical sentence. R. Weyhrauch 1s some of the “multiple data base approaches
interested in the problem of how to of previous Al work cannot represent partial
incorporate general statements into deductions knowledge - e.g. they cannot represent the
and how to use metamathematics to reason assertion that the Russians know how many
about these facts rather than with them. His divisions the Chinese have, unless the

work has been primarily in designing and program knows this also, so it can include the
integrating the specific code described below. information in the data base representing the

Russians’ model of the world. Moore has

shown how this and related difficulties can be

avoided by talking not about beliefs
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themselves, but rather the possible worlds in Facts about one’s own knowledge
which the beliefs are true or false. A very
elegant theory has been developed based on For a system to explain how it arrived at its
this approach. conclusions it must be able to reason about its

"own program. This problem has two parts.
Minimal inference One 1s how to reason about programs, which

meshes with our interest in mathematical

It has long been recognized that standard logic theory of computation. The aspect directly
does not represent the many kinds of related to the formal reasoning project
reasoning that people use in forming involves the question of how can you write a
conjectures. This reasoning requires the program that can reason about itself.
ability to conjecture that the known facts Weyhrauch has designed a system that has
about a phenomenon are all the relevant facts. some ability to reason about itself. It also can

reason some about what it knows. This 1s a

J. McCarthy has recently found a partial special but particularly tricky case of
solution to this problem. An axiom schema of reasoning about knowledge mentioned above.
first order logic called a minimization schema This system requires several pieces of software
can be used to represent in a flexible way the the implement which are presently being
conjecture that the entities that can be shown coded.
to exist on the basis of the information in a

certain data base are all the relevant entities Correctness of programs
that exist. The flexibility comes from the fact
that the set of information conjectured to be One of the most important results 1s
-all the relevant information is readily McCarthy’s ideas for using axiom schemas to
changed. Martin Davis has helped in the embed parts of Scott’s style of doing program
mathematical formulation of this method. verification in first order logic. This work 1s a

outgrowth of a thesis by Cartwright which
Reasoning with observation puts in usable form some of the earlier ideas

of Kleene. This work has made it possible for
R. Filman has demonstrated that the chain of us to prove the correctness and termination of
reasoning involved in a complex chess several programs and we hope to use these
problem requires programs that observe a ideas to develop this new style of verification.
chess board as well as perform deductions if
the solution 1s to be considered feasible. The 2.4 The FOL proof checker
‘point of his research was not to solve chess
problems, but to explore how the ability to Our main software tool for making a -
make direct observations of the world, in this computer follow reasoning is a proof checker.
case a chessboard, can be interspersed with Ours 1s called FOL (for First Order Logic)
deduction to better solve problems. A human and checks proof in a system of first order
player doesn’t usually prove that his king is in logic that has been enhanced in many ways.
check by reasoning from the rules. He simply We use this tool to formulate the facts
looks at the board and sees that the rook can involved 1n an intellectual problem and check
capture his king (or even more likely is that that our representation 1s adequate to solve
me hear’s his opponent say check). The the problem. As stated above the facts we are
ability of a person to look at the real world 1s studying are general facts about situations and
facilitated by what we have called the events and actions and goals, the effects of
semantic attachment feature of FOL, which actions that manipulate physical objects, and
was designed by R. Weyhrauch. Filman’s the facts about sources of information such as
experience with observational reasoning shows books, computer files, people and observation
that we still have only begun to understand it.
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that are necessary in order for a program to ® Two new rules for manipulating quantifiers
obtain the information required to solve have been added to FOL.
problems.

® A new axiomatization of a theory of
The building of FOL as a test ground for knowledge suitable for implementation in
theoretical ideas 1s one way we keep from FOL has been developed.
presenting ivory tower solutions to problems.
We actually use FOL to implement our 1deas 2.5 References
about representation theory. We are
interested 1n theories whose details can (Kelley 1955) John Kelley, General Topology,
actually be realized as a computer program. D. van Nostrand Company, Inc., 1955.
Over the past year FOL has been improved
In many ways. [McCarthy 19591 John McCarthy, Programs

with Common Sense, Proc. Int. Conf. on
It should be noted that three of the tasks Mechanisation of Thought Processes,
described below: the semantic attachment code, Teddington, England, National Physical
the monadic predicate calculus decision Laboratory, 1959.
procedure and the syntactic simplifier were
each programming tasks comparable in scope [McCarthy 19611 John McCarthy, A Basis for
to * lisp interpreters, and this represents an a Mathematical Theory of Computation,
enormous amount of work. Proc. of the Western joint Computer Conf.

New York, Spartan Books Inc., 1961,
© A decision procedure for the monadic
predicate calculus has been added to FOL to [McCarthy 1963a] John McCarthy, A Basis
decide first-order statements about sorts. for a Mathematical Theory of

Computation, in Braffort, P. and
© Semantic attachment has been completely Herschberg, D. (eds.), Computer
rewritten and 1s now compatible with the full Programming and Formal Systems, North-
many sorted logic of FOL. Holland, Amsterdam, 1963.

© A syntactic simplifier has been written. [McCarthy 1963bJ John McCarthy, Towards
This program allows a user to do the symbolic a Mathematical Science of Computation,
evaluation various terms and well formed in Popplewell, C.M. (ed.), Information
formulas of FOL. processing: Proceedings of IFIP Congress

62, North Holland, Amsterdam, 1963.

© Several axiomatizations of set theory have
been expressed in FOL in order to study their [McCarthy 19641 John McCarthy, A Formal
suitability for practical proof-checking. The Description of a Subset of ALGOL, in
work with Kelly set theory is a kind of Steel, T.B,, Ir. (ed.), Formal Language
benchmark for this work. Description Languages for Computer

Programming, North Holland, Amsterdam,
® The McCarthy-Painter compiler has been 1966.
proved correct in FOL.

[McCarthy 19651 John McCarthy, A Proof-
© FOL languages have been extended to Checker for the Predicate Calculus,
include conditional terms and function Stanford AI Memo AIM-27, March 1965.
parameters. Introduction and elimination
rules corresponding to these notions have been [McCarthy and Hayes 1969] John McCarthy
added. and Patrick Hayes, Some Philosophical
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Problem from the Standpeint of

Artificial Intelligence, Stanford AI Memo
AIM-73, November 1968; also in D.
Michie (ed.), Machine Intelligence,
A merican Elsevier, New York, 19609.

[McCarthy and Painter 1967) John McCarthy
and James Painter, Correctness of a

Compiler for Arithmetic Expressions, in
Schwartz, J.T. (ed.), Proc.of a Symposium
in Applied Mathematics, Vol. 19 —

Mathematical Aspects of Computer Science,
American Mathematical Society,
Providence, Rhode Island, 1967.

[McCarthy 1977] First Order Theories of
Individual Concepts and Propositions,
forthcoming.

[McCarthy 1977]Minimal Inference - A way
of jumping to conclusions, forthcoming.

[Prawitz 1965] Dag Prawitz, Natural
Deduction, A Imqvist & Wiksell, Stockholm,
1965.

[Weyhrauch 1977] Proofs using FOL,
forthcoming.
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3. Image Understanding The system includes a promising solution to a
problem in terminal guidance, guiding a

Personnel: Thomas Binford, Student vehicle to a target. This is solved by
Research Assistants: Reginald Arnold, determining the Observer Model. Imagine an
Donald Gennery. aircraft approaching a runway. As it moves,

objects on both sides appear to move radially
The objective of this research in Image outward from a center, the fixed point. The
Understanding 1s to build computer systems center 1s the instantaneous direction of motion.
which locate and monitor buildings, airfields, The pilot knows that the point which does not
aircraft and vehicles in aerial imagery. A appear to move 1s where he will touch down,
scientific objective 1s to accomplish these tasks unless he changes direction. The Observer
by building spatial structural models of Model contains the information necessary to
observed scenes, and matching spatial models, calculate the distance of each point from the
as contrasted with image matching. This observer and from the vehicle path. The
approach 1s taken in order to lead to systems touchdown point can be calculated from the
which can use images taken from various trajectory of instantaneous directions of
viewpoints, sun angles, weather conditions, motion. The system determines the transform
different sensors, and different seasons of the from one view to another in a sequence of
year. = views from a moving observer.

3.1 Achievements 3.1.1 Vehicle Location

This research has demonstrated high potential The objective of this research is to locate cars
for the use of passive ranging techniques for in an aerial stereo pair of a suburban scene,
high resolution depth measurement. Aircraft using stereo. The goal was 80% recognition
flying at low altitude using terrain following with 20 hours of processing.
radar are endangered if ‘they use active
ranging, which broadcasts their presence. Status: the system successfully separates
Passive ranging has the advantage of vehicles from ground and has succeeded in
covertness In hostile environments. describing the projection of a car as a

rectangle of approximately the right size and
Sequences of images from a moving aircraft orientation. The length and width of the car
have been used to find the ground plane and are accurate to about 5% in this example. The
separate objects from ground. The accuracy system 1s very near to labeling objects as cars.
attained has been demonstrated to be 2” Cars have been isolated in both aerial and

height error for 3” horizontal pixel size on the ground level images. Both feature-based and
ground. The system should be effective with area-based depth mapping have achieved that
camouflaged surfaces. On a general purpose level of performance. Feature-based stereo is
computer, the process requires about 8 seconds based on edge fragments from the Hueckel
with no guidance information. That can operator [Hueckel]; a new technique of linking
likely be reduced at least a factor of 2. With edge fragments in depth has been developed.
accurate guidance information, the time
required 1s estimated to be about 250 A sequence of steps ending in description of a
milliseconds (most missions probably fall in car by the rectangular outline 1s shown in the
this class). The system is self-calibrating and figures which follow. It is not yet possible to
highly reliable. Other groups in image estimate 1ts recognition rate. The program
understanding have begun using these finds a coarse depth map and finds the ground
algorithms and the code. plane in about 8 seconds. Then it must make

a denser depth map for describing the car.
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Figure 1. Segment of aerial photo

Figure 2. Features of interest
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No evaluation has been made of the time milliseconds for a 256x256 frame. Interesting
required for making the denser depth map features are areas (typically 8x8) which can be
and for describing and matching the car, but localized in two dimensions without a camera
a crude guess 1s that potentially about ten transform. The operator chooses those areas
seconds 1s required. with large variance along all grid directions.

That 1s roughly equivalent to a large drop in
3.1.2 Locating Buildings and Change autocorrelation along all grid directions, which

Monitoring means that the area can be localized closely.
Points on a line will match anywhere along

The same stereo techniques are being applied the line, which means that lines are not useful
to build models of buildings 1n aerial photos features at this stage, but corners are useful.
of suburban scenes. Because buildings are
larger than cars and because they are more my| INTEREST
likely to have plane sides and box-like OPERATOR
sections, the techniques are expected to work SE———
even better than for cars. The programs have |
been developed and preliminary results have
been obtained which support this expectation.

h PIX MATCHER

3.1.3 System Description ee

0 bserver Model

The program first orients itself in the scene
and finds an Observer Model, a model for the GUIDANCE TRANSFORM

transform between the two views. This step —| SOLVER
takes 60% of the time required for finding the EE ——
ground plane. If two views are an accurately
calibrated stereo pair, this operation 1s not Figure 3
necessary. If accurate guidance information is Observer Modeling System
available, this operation can be speeded up
enormously. In any case, this process makes The correlator matches the features in the
up for any inaccuracies in calibration, other 1mage by a coarse to fine strategy: It has
maintains a continuous self-calibration, and in versions of the picture at resolutions. of
the worst case, works even if no calibration or 256x256,128x 128,64x64, 32x32, and 16x 16.
guidance information 1s available. The
program finds a camera transform model by Figure 4 shows the neighborhoods at each of
finding-a sample of features of interest in one those resolutions, centered around a pair of
image . and matching them with their matching features in the stereo pair. It first
corresponding view in the other image. It matches by a small search on a very coarse
needs only to know pairs of corresponding version (16x16) of the 1mage. It then
points in the two views; it does not need to performs a search in the next finer version of
know where the points are. the image (32x32), in the neighborhood of the

best match in the previous image. That step
The system automatically selects points of 1s repeated until the full resolution is reached.
interest. Figure 1 shows a portion of a stereo The matching process requires only 50
pair of a parking lot. Figure 2 shows features milliseconds for a match of a single feature no
of interest selected by the program. The matter where it 1s in the image.
Interest ~~ Operator rea uires about 75
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Figure 4. Neighborhoods at various resolutions
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Once the camera transform is known, search is If the scene 1s nearly flat, then certain
necessary only along a line in the image. In parameters are 1ll-determined. However, that
this case, search 1s about a factor of seven does not affect the accuracy of measuring
faster. If the depth of neighboring points is heights using the transform. If the scene is
used as a starting point for the search, the nearly flat, then a special simplified form of
match 1s another factor of seven faster. It 1s the solver can be used. The special case
planned to incorporate those speedups; neither version has been used on some images. It 1s
1s now used. The matcher makes about 10% much faster than the full transform solver. In

errors. Both the camera transform solver and the present form of the camera transform
the ground surface solver reject the points solver, it sometimes encounters stability
with erroneous matches. It encounters fewer problems in degenerate cases. It will be
ambiguities than brute force matching, since investigated to examine when it 1s limited by
not only must the feature match, but the data, in which case more data are required,
surrounding context must also match. The and when it 1s subject to difficulties in the
procedure should not work for parts of scenes numerical solution.
where the background of objects (context)
changes drastically from one view to another. Part of the job of the transform solver is to
This 1s true only in parts of images at wide deal with mistaken matches. The procedure
angles and close range. This is also a problem calculates an error matrix for each point and
for matching images from very different iterates by throwing out wild points. It
sensors. The problem will be less important calculates an error matrix from which errors
where guidance information 1s available, since in depths of point pairs are calculated. The
matching breaks down at the coarse phase of solver. uses typically 12 points and requires
coarse-to-fine matching. about 300 milliseconds per point. It requires

about 20k of memory. About 60% of the time
Aerial views are mostly planar, so failure of for finding the ground plane is spent in the
matching should not be a problem, nor has it camera solver.
been in practice. The process requires about
50k of 36 bit words now. It 1s possible to With accurate guidance information, this
implement the coarse-to-fine search strategy in operation would not be necessary. However, it
a raster scan and keep only a portion of each can be used directly to find the instantaneous
image 1m core. This would cut memory size by direction of the vehicle. As mentioned above,
a large amount, but it has not been done. A as the vehicle moves, points in the image
version 1s being designed using this strategy. appear to move radially away from the center

which 1s the instantaneous direction of the

The program automatically determines the vehicle. Three angles relate the coordinate
transform between the twb views. Given system of one view with the other, and two
corresponding views of five points which are angles specify the direction of the
non-degenerate (i.e. no colinear and planar instantaneous direction of motion.
degeneracies) the relative transform of the two
views can be found. It is not necessary to Ground Plane
know the position of these points, only two
views that correspond. The transform 1s The approach to discriminating objects 1s to
determined except for a scale factor, the length find the local ground surface and then
of the stereo baseline. That does not affect describe objects above the ground. Finding
subsequent matching of two views using the the ground requires a more dense depth
transform, and the scale factor can often be sample. The camera transform model makes
determined from known scene distances or it economical to make a denser depth map. A :
guidance information. point in one view corresponds to aray in
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space which corresponds to a line in the other A new technique has been developed to use
view. The search 1s limited to this line, and edge features in stereo. Edges are linked
in addition, nearby points usually have about along smooth curves in 3d (in the image
the same disparity as their neighbors. Thus, coordinates and in depth). The new techmque
search 1s limited to a small interval on a line. 1s used in the object modeling and recognition
A high resolution correlator has been modules of the system. Those edges out of the )
developed which interpolates to the best ground plane delimit bodies, if isolated.
match, and which calculates the precision of Figure 8 shows linked edges superimposed on
the match based on statistics of the area. one picture from the pair of images. The left

image shows edges near the ground. The
The system then finds a best ground plane or right image shows edges above ground level.
ground parabola to the depth points, in the A vertical rectangular parallelepiped fit to
least squares sense. Figure 5 shows the edges gives approximately the right size and
distribution of points and the best ground direction for car examples. A first crude
plane fit for the parking lot scene of figure 1. identification of cars is near. Figure 9 shows
The ground surface finder gives no weight to the rectangle superimposed on one of the
points above the ground plane; it expects images.
many of those. It includes points below the
ground plane and near. the ground plane. The photos were taken with a wide angle lens
Since points below the ground plane may be at an altitude of about 1500 feet and about
wild points, they are edited out in an iterative 1500 feet apart. They subtend an angle of
procedure. Of course, there may be holes. If about sixty degrees. Several areas were
they are small, there 1s no problem. If the digitized to resolutions of about 3” on the
hole 1s big, it becomes the ground plane. The ground (courtesy the Image Processing
ground plane finder requires 5 milliseconds Laboratory, USC). TV images from a
per point. parking lot were also used as examples of

ground level images.
Edge-Based Stereo

The limiting accuracy obtainable from a pair
Feature-based stereo using edges 1s interesting, of 1mages can be calculated accurately.
since it increases the accuracy with which Consider the vector connecting the two camera
boundaries of depth discontinuities can be centers. Its length will be called b. The angle
found by about a factor of 25. That accuracy from this baseline to a point p will be called a.
allows making accurate measurements of The angle shift of the two views on the unit
dimensions of objects, an important part of sphere of the viewer 1s the same as the angle
our approach. It also provides additional subtended by the baseline from the point p.
information about surface markings which are That angle 1s:
not available in stereo based on area theta = bxsin(a)/s.

correlation. ~~ Feature-based stereo 1s also Here s 1s the distance of p from the observer.
potentially very fast, although now area-based Solve for s:
techniques are considerably faster. Edge- s = bxsin(a)/theta.
based techniques have not been developed The distance of p from the instantaneous
very far, and would benefit from “smart direction of motion 1s the target error, ft.
sensor’ technology. Figure 6 shows the images tesxksin(a).
from the parking lot scene transformed into The error in the range has two components.
the canonical stereo coordinate system, with The first 1s a global scale error from errors in
stereo axis along the x axis. Figure 7 shows b. This affects all distances in the same way.
edges from the Hueckel operator [Hueckel] in The other 1s the error mn angle measurements.
the stereo coordinate system.
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Relative distances can be determined to the system was implemented. @ That system
accuracy with which angles can be measured. provided the user with a way to reference all :
Relative distance errors are thus determined pictures which covered a specified area. That
by dtheta. Differentiate the above equation picture retrieval system could be used with
for s and substitute for theta: depth maps and other feature descriptors.

ds = -(bxsin(a)/theta?2)kdtheta This would make possible picture retrieval on
ds = -(sT2/(bxsin(a))kdtheta. con tent and location.

The range error thus increases as the square
of s. Consider: There has been progress in other areas. New

ds/s= dtheta/theta. results have been obtained in quantifying
Relative ranging error is constant for constant behavior of the Hueckel operator: an
theta. In the case of the above photos, this automatic determination has been obtained of
corresponds to errors of about 1/2 pixel in sensor noise for sensors with square-root noise
registration. Previous experience has been characteristic (USC digitizer); a sensitivity
about a factor of 3 better than that. analysis has been performed for line features;

theoretical estimates for errors in position and
image Matching System angle have been made which are in agreement

with experimental error distributions; a
A system has been built which assists a user to degeneracy has been found in the edge
program image matching tasks in about 20 solution. An improved program to link edges
minutes [Bolles]. The system is effective for has been implemented. It 1s not yet operating
tasks for which test images are nearly the adequately. However, a stereo version,
same as training images; 1.e. for which described above, 1s operating. That version
matching can be done in the image. It is more links edge fragments by both colinearity and
general than 2d since objects and features can depth continuity.
move relative to one another. It has shape
matching capability, but strictly 2d. It has no A previous achievement of the program was
3d models and only point features. the formulation of the “generalized

translational invariance” representation for
The system suggests features to the user, who complex volume shapes [Binford]. That
chooses among them. Features are chosen by representation and a laser triangulation system
the Interest Operator, mentioned above. The developed here were part of a research
system evaluates the expected cost and utility program which led to recognition of a doll, a
of each operator. Utility is defined as the toy horse, and objects of similar complexity
contribution to the probability of a decision or [Agin], [Nevatial. Now, the representation is
as the contribution to positional accuracy. At being widely accepted. Marr has obtained an
training time, the system gathers statistics interesting result that the most reasonable
about the effectiveness of the operators. At simple assumptions about Interpretation of 2d
planning time, 1t ranks operators according to boundaries as 3d objects are equivalent to
their expected utility and estimates the total interpretation in terms of “generalized cones”
cost of the task by a simple best first strategy. [Marr].
At execution time, the system applies operators
in a pre-ordered sequence, combines their
results by least squares into confidence and
precision, and stops when it reaches a desired
confidence or positional accuracy or when it
exceeds its cost limit.

Previously, an automated picture retrieval
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4. Mathematical Theory of Computation (Burstall[ 1974], Manna and
Waldinger[ 19761).

Unified Framework for Program Verification

Personnel: Zohar Manna, John McCarthy, “Most current verification systems employ only
Student Research Assistants: Martin the invariant-assertion method for proving
Brooks, Nachum Dershowitz, Chris partial correctness and the counters method
Goad, Todd Wagner. for proving termination, even though for some

situations another of the techniques may be
4.1 Motivation decidedly superior. For instance, these two

techniques cannot be applied to verify certain
In the past decade there has been intense classes of programs, such as recursive
research into the problem of proving the programs, or to prove certain properties, such
correctness of computer programs. As a result, as the equivalence of two programs.
a variety of different program verification Furthermore, for some verification problems
techniques have appeared. These methods another of the techniques may yield
have different realms of application: some significantly simpler proofs than those
show partial correctness and others show required by the two most commonly used
termination, total correctness or equivalence; methods.
some apply to recursive and others to iterative
programs; some apply to the program itself, Most verification methods require some form
but others require that the program be of documentation, in which the user expresses
documented or altered. his intuition about how he expects the

program to work. However, different
Here are some of the principle program techniques require very different sorts of
verification methods and their applications: documentation; that which is most natural and

easy to provide varies in form from program
© [nvariant-assertion method: partial to program.

correctness of iterative programs
(Floyd[ 19673, Hoare[1969)) 4.2 The Coals

® Well-founded ordering method: termination We are therefore conducting an investigation
of iterative programs (Floyd[ 19671) with the following goals.

® Structural-induction method total (A) Comparing methods:
correctness and equivalence of recursive
programs (Burstalll 19691) ® We hope to discover which methods are

equivalent in power and which methods are
® Subgoal-assertion method: partial correctness strictly stronger than others, and to determine

of iterative and recursive programs situations in which a given method may yield
(Manna[1971), Morris and simpler proofs than another.
Wegbreit[1977])

eo We want to compare the documentation
® Counters method: termination of iterative requirements of the different methods in a

programs (Elspas et al.[1973], Katz and rigorous way. Ideally, we wish the user of a
Manna[ 19751) verification system to be able to document his

intuitions in whatever way he finds most
© [ntermittent-assertion method: total convenient, and have the system select the

correctness of iterative programs technique that best matches the program and
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documentation supplied and the property to 4.3 Current Research
be proved.

Unified Framework

(B) Strengthening methods:
In his Stanford PhD thesis, supported by this

© We need to make the existing methods less project, Robert Cartwright[1977] proposed a
dependent on the documentation supplied by way of representing the functional equation of
the user. Thus, we will devise new ways of a Lisp program entirely within first order
generating documentation automatically, and logic. Using this and some earlier results,
of altering and extending the documentation McCarthy [1977] showed that Lisp and other
supplied by the user. recursive programs can be completely

characterized within first order logic by the
® We would like to extend the realm of functional equation and a minimization axiom
application of some of the methods, e.g. find schema. It had been previously thought that
how to apply the intermittent-assertion such characterization required second order
method to show the equivalence of two logic which 1s much more difficult to compute
iterative programs or the correctness of with. McCarthy further showed that the well
nondeterministic or parallel programs. known proof methods of invariant assertions

” and subgoal assertions were expressible as
© We hope to develop more general axiom schemata in first order logic. This
techniques that will be able to draw on the unexpected result makes all first order methods
advantages of all the existing techniques, and of verification and proof-checking more
compensate for weaknesses in the existing valuable than expected, and it also permits
methodology. postponing the expression of the full Scott

fixed-point theory in first order logic.
(C) Finding new applications:

John McCarthy plans to exploit this
We intend to apply methods devised for breakthrough by verifying more complex
program verification to other problems such programs directly within first order logic.
as: Because the breakthrough is very new

(February 1977), it is not possible to say how
© Development: constructing a program to far the new methods will go and whether it
meet given specifications. will still be necessary to develop the

extensional form theory. Most likely, the
® Transformation: altering a given program to extensional form theory will still be needed,
compute the same output in a different way, but we will be able to distinguish programs of
generally in order to optimize the program. simple structure that don’t require it for their

verification.

© Modifeation: altering a given program to
debug it, to adapt it to meet revised Wolfgang Polak has an indication that the :
specifications, or to extend its capabilities. subgoal-assertion method 1s exatly

McCarthy’s minimization schema extended to
A unified survey of verification techniques relations. If this 1s true, the list of methods
and various applications appears in Manna for inductively proving programs correct will
and Waldinger [July 1977). be greatly shortened by showing that most of

the existing methods are subcases of more
general methods. This will make it much
easier to write verifying programs, both the
automatic kind and those that use human

help.
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McCarthy has investigated continuous The essence of the approach lies in the ability
functionals that don’t arise from simple to formulate an analogy between two sets of
recursive programs. Some of them require specifications, those of a program that has
parallel evaluation, and the work may lead to already been constructed and those of the
a treatment of program correctness that unifies program that we desire to construct. The
parallel programs with the more usual analogy 1s then used as the basis for
sequential programs. transforming the existing program to meet the

new specifications.
Program Annotation

Program debugging 1s considered as an
Zohar Manna 1s investigating techniques by important ~~ special case of program
which an Algol-like program, given together modification: the properties of an incorrect
with its input-output specifications, may be program are compared with the specifications,
documented automatically, This and a modification (correction) sought that
documentation expresses invariant transforms the incorrect program into a correct
relationships that hold between program one.
variables at intermediate points in the
program, and explains the acutal workings of This approach has been embedded in an
the program regardless of whether the experimental implementation and appears in
program is correct. Thus this documentation Dershowitz and Manna [1976].
can be used for proving the correctness of the
program, or may serve as an aid in the Program Synthesis
debugging of an incorrect program.

Manna and Waldinger are developing
He recently succeeded in unifying existing deductive  techniqes for the automatic
approaches to this problem, and improving construction of recursive programs to meet
most of the known methods. The techniques given input-output specifications. ~~ These
are expressed as rules which derive invariants specifications express what conditions the
from the assignment statements and from the output of the desired program is expected to
control structure of the program, and as satisfy. The deductive techniques involve
heuristics which propose relationships whose transforming the specifications by a collection
invariance ~~ must be verified. The of rules, summoned by pattern-directed
implementation of this system is in progress. function invocation. Some of these

transformation rules express the semantics of
Results along this line have beein reported in the subject domain; others represent more
Katz and Manna [1976] and Dershowitz and general programming techniques. The rules
Manna [1977]. that introduce conditional expressions and

recursive calls into the program are being
Program Modification investigated in detail.

Nachum Dershowitz (graduate student) is The deductive techniques were embedded in a
attempting to formulate techniques of program running system called SYNSYS. This system
modification whereby a program that achieves accepts specifications expressed in high-level
one result can be transformed into a new descriptive language a n dttempts to
program that uses the same principles to transform them into a corresponding LISP
achieve a different goal. For example, a program. The transformation rules are
program that uses the binary search paradigm expressed in the QLISP programming
to calculate the square-root of a number may language. The synthesis of several programs
be modified to divide two numbers in a performed by the system are presented in
similar manner, or vice versa. Manna and Waldinger [Aug. 19771.
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The Intermittent-Assertion Method prove that the set of interconnected
components correctly satisfy the specifications

Zohar Manna explored a new technique for for the overall system.
proving the correctness and termination of
programs simultaneously. This approach, The process of hardware verification uses the
which he calls the intermittent-assertion basic boolean identities derived from

method, involves documenting the program switching theory along with some techniques
with assertions that must be true at some time for determining the possible effects of clock
when control ~~ passes through the transitions as they move through a circuit.
corresponding point, but that need not be true Methods for detecting timing anomalies such
every time. The method, introduced by as races, hazards, and oscillations have also
Burstall[ 19741, promises to provide a been studied.
valuable complement to the more conventional
methods. A major goal of this research is to be able

deal with fairly complex large scale integrated
On all the examples attempted, the components without having to reduce their
intermittent-assertion proofs turned out to be descriptions to the gate level. For example, if
simpler than their conventional counterparts. a designer requires several complex operations
On the other hand, he showed that a proof of and uses a microprocessor in his circuit, it
correctness or termination by any of the should only be necessary to demonstrate that
conventional techniques can be rephrased the required operations are included in the
directly as a proof using intermittent- microprocessor instruction set and that the
assertions. The intermittent-assertin method timing and control logic are correct. Current
can also be applied to prove the validity of methods would require a gate level model of
program transformations and the correctness the microprocessor and fairly exhaustive
of continuously operating programs. simulation. As components become more

complex 1t will become increasingly
This work 1s described in a recent paper by advantageous to prove circuit correctness
Manna and Waldinger [1976]. Manna and algebraically and at a fairly high level.
W aldinger believe that the intermittent-
assertion method will have practical impact Preliminary results were presented at the
because it often allows one to incorporate his Symposium on Design Automation and
intuitive understanding about the’ way a Microprocessors (Palo Alto, Ca., February
program works directly into a proof of its 1977).
correctness.

Automatic Debugging
Hardware Verification

Martin Brooks (graduate student) is currently
The research of Todd Wagner (graduate developing methods for specifying and
student) involves developing methods for analyzing LISP programs, considering both
detecting logical errors in hardware designs the theoretical and practical aspects. One goal
using symbolic manipulation techniques of this research is the design and
instead of simulation. A very simple register implementation of an automatic LISP
transfer language has been proposed which debugging system.
can be used to specify the desired behaviour
of a digital system. The same language can The automatic debugger is initially supplied
also be used to describe the individual with an undebugged program. The system
components used in the design. A series of then analyzes the program by symbolic
logical transformations can then be used to evaluation and automatically generates a
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: sufficient fmite set of test inputs for which the within which proofs can be mechanically
user supplies the tended outputs. The system found with comparative ease, and T 1s a more
extracts the structure of the undebugged general system whose theorems we wish to
program and then use the input-output pairs reduce by instantiation to theorems in T’.
to fill out the missing details, yielding a new Then we may ask for (1) conditions under
debugged program. which the instances of a theorem in T are

provable within T°, and (2) a uniform method
The main advantage of this approach is that for obtaining proofs in T° of instances of a
it does not require the user to give a formal theorem in T from a proof of the theorem in
specification, usually a difficult and error- T.
prone task.

Goad has obtained solutions to the problems
The emphasis of Brooks’ research will be to posed above for arithmetic and one of its
develop a general theory for finding a finite set weak subsystems, namely “proposition al”
of input-output pairs which represent a arithmetic. By “propositional” arithmetic is
complete specification of a program, depending meant, roughly, the subtheory whose formulas
on the structure of the program. contain no unbounded quantifiers (so each

formula only concerns a finite collection of
Generalizing--Proofs numbers), and where the proofs involve only

“propositional” methods (e.g. induction 1s not
Reasoning by example 1s a technique allowed). The plan for future work includes
frequently used in human problem solving. the extension of the results on arithmetic, and
For this reason,if one regards automatic the study of the same type of problem for
theorem proving as a mechanical incarnation other theories of inductively constructed -
of human problem solving, the topic of the objects, such as the theory of lists. An
automatic generalization of proofs from ultimate goal of this reasearch 1s the
special cases 1s important. Even if one has no application of these results to program
faith in analogies between theorem provers synthesis. That such applications exist 1s
and people, this topic has practical interest apparent, since mechanical methods are
since generalizing proofs is likely to be a known for extracting programs from
practically important tool in theorem proving. constructive proofs of the existence of the
The effectiveness of a mechanical procedure functions they compute. Thus any method for
for generalizing proofs depends on the degree generalizing proofs extends immediately to a
to which it takes advantage of such systematic method for generalizing programs.
relationship as may exist between proofs of
instances of theorems and proofs of the Fixedpoint Theory
theorems themselves.

The classical method for constructing the least
Chris ‘Goad (graduate student) is currently fixedpoint of a recursive definition is to
working on a class of technical questions generate a sequence of functions whose initial
which are relevant to understanding this element 1s the totally undefined function and
relationship. These technical questions arise which converges to the desired least
from looking at pairs of formal systems, such fixedpoint. This method, due to Kleene,
that one system 1s a weak subsystem of the cannot be generalized to allow the construction
other. Specifically, let T and T’ be two such of other fixedpoin ts.
systems, where T’ 1s a weak subsystem of T,
that 1s to say, every proposition provable mn T° Manna and Shamir [1997] have been
1s also provable in T, but not the other way investigating an alternate definition of
around. The idea here 1s that T” be a system convergence and a new ‘“fixedpoint access”
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method of generating sequences of functions 7 Floyd, R. W.[ 19671, Assigning meaning to
for a given recursive definition. The initial programs, Proc. Symp. in Applied
function of the sequence can be an arbitrary Mathematics, Vol. 19 (J.T. Schwartz, cd.),
function, and the sequence will always © American Mathematical Society,
converge to a fixedpoint that 1s “close” to the Providence, R. I, pp. 19-32.
initial function. This defines a monotonic

mapping from the set of partial functions onto 8 Katz, S. M. and Z. Manna [1975), A closer
the set of all fixedpoints of the given recursive look at termination, Acta Informatica, Vol.
definition. 5, No. 4, pp. 333-352.

They have also suggested a new approach 9 Katz, S. M. and Z. Manna [Apr. 19761,
which replaces the classical least fixedpoint Logical analysis ofprograms, CACM, Vol.
with an “optimal” {fixedpoint. An informal 19, No. 4, pp. 188-206.
exposition of this approach appears in Manna
and Shamir [1975] and a formal presentation 10 Hoare, C. A. R. [Oct. 19691, An axiomatic
in Manna and Shamir [1976]. basis of computer programming, CACM,

Vol. 12, No. 10, pp. 576-580, 583.
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5. Program Verification B.l Standardization of techniques for
documenting and verifying important

Personnel: David C.Luckham, classes of programs, based on our
Derek C. Oppen, Student Research experience mn verifying these classes of
Assistants: R.A. Karp, S. German, programs.
W. Scherlis, R. Drysdale, C.G. Nelson, B.2 Extension of the use of verifiers to the
W. Polak. design, documentation, debugging and

maintenance of programs.
5.1 Overview C.1 Specification and verification of

components of the Solo operating system.
The work of the Verification Group 1s
directed towards the development of new 5.2 The Stanford Interactive Verifier
programming tools and techniques. Our goal
1s to improve the reliability of important The Stanford Interactive Verifier 1s a
classes of programs such as compilers, verification system for proving properties of
operating systems and realtime control systems, programs written in Pascal. The verifier
and to standardize techniques for program accepts as mput a documented Pascal
construction, documentation and maintenance. program, and tries to prove either

automatically or with interactive guidance that
Our major effort 1s 1m three research areas: the program satisfies its documentation. The

choice of Pascal 1s not crucial and the verifier

A. Design and implementation of on-line can be changed to accept programs written in
Interactive program verifiers. other “Algol-like” languages.

B. Applications of verifiers in the design, The verifier constructs its proofs within the
documentation, debugging and Floyd-Hoare logic of programs. It requires as
maintenance of programs. input a Pascal program together with

documentation in the form of Entry and Exit
C. Design of a high level specification and assertions and inductive assertions at crucial

programming language for implementing points in the program. Fig. 1 shows what
and verifying multiprocessing and realtime happens when the programmer gives this
systems. input to the verifier. The input goes first to a

verification condition generator which gives as
Within each of these three main research output a set of purely logical conditions called
areas we have pursued specific tasks as Verification Conditions (VCs). There is a
follows. VC for each path in the program. If all of
A. 1 Specification and implementation of an the VC's can be proved, the program satisfies

extended parser and verification condition its specification. The next step is to try to
generator for the verifier. prove the VC’s using various simplification

A.2 Design and implementation af fast, special and proof methods. Those VC’s that are not
purpose theorem provers to improve the proved are displayed for analysis by the
capability of verifiers. programmer. If the VC’s are incorrect, this

A.3 Design and implementation of a user- may reveal a bug in the program or
oriented interface to the verifier. This insufficient documentation at some point. A
includes specification languages for modification 1s made to the input and the
programs and documentation, and a problem 1s rerun. If the unproven VC's are :
command language for the verifier. all correct this merely indicates that the proof

A 4 Development of special-purpose verifiers procedures need more mathematical facts
for completely automatic detection of (called lemmas). The time for a complete cycle
common runtime errors in some programs.
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(Fig. 1) in the AI Lab. interactive computing 5.3 Summary of Recent Work
environment is on the order of a minute for a

one page program. 5.3.1 Stanford Pascal Verifier

Lemmas Parser and Verification Condition Generator

(proof ru | es)

1} The parser has been written and debugged. It
Input — Verif. —— parses both programs with inductive

Program — | VCG |————| PROVER | assertions and rulefiles containing lemmas
and ‘\—J cond. bb" necessary for verification. It gives error

Documentation ) messages concerning syntax errors in Pascal
T Simplified code, ‘assertions, and rules. Its diagnostic

| VCS capability for finding both syntactic and
! semantic errors in programs exceeds that of
— most of the Pascal compilers presently

| Modified | ANALYSIS OF| available. To accomplish this, it requires
—————————| OuTPuT | certain additional information (such as

Problem —eeee GLOBAL declarations) which improves the
readability and reliability of programs in the

Figure 1. language. It permits certain extensions of
Pascal (e.g. dynamic arrays). It can be

The first Stanford verifier was written during modified to accept other programming
the period 1972 - 1975. It was successfully languages and other mput character sets.
used to verily about two hundred programs
including about fifty programs involving A new verification condition generator (VCC)
pointer manipulation (7, 8, 11, 12, 131. has been written and is operational. It is a |

great deal more comprehensive and powerful
In the autumn of 1975, a comprehensive than any other such generator we know of.
review of the verifier was made and it was The major effect is to substantially reduce the
decided to design and implement a more amount of documentation the programmer has
powerful version for general distribution. This to include in his program. Thus the VCG
was prompted by the successful initial helps remove one of the major problems of
experiments in verification and in the use of using program verifiers.
the verifier as a programming aid.

Prover

Version 2 was planned to include: (1) a flexible
and robust interactive user interface, (ii) a The prover takes as input a verification
more extensive assertion language for condition and outputs either a proof of the
specifying properties of programs, (ii1) a verification condition or else whatever
language for defining rules (lemmas), (1v) simplification of the verification condition 1s
extensive syntactic and semantic error possible.
checking for both documented programs and
rules, (v) more powerful theorem provers. It The design and construction of provers is the
was planned to be extensible and modular so main research battleground in the construction
that it could be easily modified for other of practical verifiers, simply because it is their
programming languages, including deficiencies which have thus far been the
multiprocessing languages like Concurrent main stumbling block to the general
Pascal. acceptance of program verifiers. We have
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made, substantial progress in this area, and minimizing search time for proofs, mainly by
believe that further major progress is’ feasible. avoiding following long and fruitless paths in

trying to find a proof. This part of the prover
A completely new prover has been written. It seems to be surprisingly good, and we feel it is
consists of a top level driving routine which substantially better than previous efforts.
interacts with a series of fast, special purpose
theorem provers over various useful types of How to write rules is an interesting study in
data (integers, pointers, arrays, reference itself, and we return to it later,
classes, records [13]). The top level driving
routine and several special purpose provers On-line User Interface
have been implemented. Forthcoming reports
on this work are [16,17]. This has reached a semi-stable design. That

1s, we are willing to release a version with the
Because we feel it essential that all our built- present interface. It is intended to permit the
in provers be efficient and not waste the user’s user to alternate between fully automatic
time with fruitless searches for proofs, we verification and user assisted verification. The
have not tried to make these special purpose latter 1s important in debugging and analysis
provers too powerful or -general. Instead, we of the verification BASIS.
have programmed into them only the facts
that are common to all programs. In this way, The top level routine in the prover has been
we are assured that they are always useful extensively redesigned to permit effective
without being unnecessarily time-consuming. interaction with the user. The user may now
The problem with this approach is of course interactively guide the proof by specifying
that many programs will involve concepts which rule 1s to be applied next with what
(such as orderedness in sorting programs, or instantiation of variables, by cutting off lines
fairness in operating systems) about which the of proof search that he knows will be fruitless,
prover has no built-in knowledge. We have by interactively adding a rule to prove a
solved this problem by designing the prover to lemma which cannot otherwise be proved and
be “extendible” in that the user may extend its so on. The major effort in this has been to
power in a consistent fashion by interactively minimize the amount of unnecessary
adding more useful knowledge. interaction required. The goal has been to

have the prover ask the user for guidance
To accomplish this, we have designed a new only if it 1s trying to prove a particular atomic
rule language for interactively adding formula and 1s unable to find a proof quickly
information to the prover. The rule language by itself. The user 1s thus spared having to
effectively allows the user to write his own give trivial commands such as “see if you
special purpose prover and to attempt to have proved this lemma already” or provide
optimize its performance by specifying for trivial information such as “yes, 1 = 0 1s false”,
each rule the amount of effort that should be which 1s an unfortunate deficiency of many
expended in trying to apply it. totally interactive provers. We feel that we

have found a good compromise between no
The top level driving routine of the prover interaction and total interaction.
stores these rules, and applies them when
necessary to obtain a proof of a verification Runtime Error Checking
condition. A great deal of effort and empirical
study has gone into designing the top level Experimentation has started with a special
routine so that it applies these rules as version of the verifier which is intended to
efficiently as possible. The present top level check programs for common runtime errors
routine appears to be very successful at (e.g. array indices out of bounds, dereferencing
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. a NIL pointer, accessing an uninitialized We are preparing an Rlisp version of the
variable, division by 0, numerical overflow). verifier for distribution to selected users. We
This 1s mtended to require as little as possible are also preparing a user manual and an
documentation from the programmer. implementation guide on the verifier to help
Theoretical principles of modifying verifiers to other institutions to use our verifier, and to
check automatically for runtime errors are modify and extend it to meet their own needs.
given in [6]. About 20 programs have been
checked so far including Bubble Sort, Comparison with Previous Version
Quicksort, Matrix Multiplication, Wirth’s
version of the Eight Queens, and several We have repeated all the correct previous
programs operating on lists and queues by experiments to make comparison of efficiency
means of pointer manipulation. It was found, and power with the old verifier. In all cases
for example, that a Pascal version of the the verification was faster and used fewer
Schorr-Waite marking algorithm for garbage lemmas. The speed-up varies with the
collection, the standard specifications of which problem, and 1s usually better on the harder
had already been verified, could generate a problems; some that used to take about 2
runtime error by dereferencing a NIL pointer. hours. of elapsed time at the console now take

about 10 minutes. Only the parser 1s slower,
This is a highly experimental area and the reason being that it 1s doing a lot more
includes the automatic construction of work.

inductive assertions for limited kinds of

verification. It has a potentially high payoff in As a result of user complaints and suggestions,
making compiled code more efficient by the verifier has gone through over 40 versions
eliminating the need for code to check for since the system became operational in
runtime errors. The basic theory [6] has been September 76. These reflect changes mainly to
implemented for these experiments. We make the Parser to handle new features of the Rule
no claims about how “automatic” this kind of and assertion languages, and to the prover
error checking can become. The results so far and user interface.
are teresting, and show some problems to be
harder than was thought. Even “semi- 5.8.2 Applications of Verifiers
automatic” checking for runtime errors may be
really useful. (i) MATHEMATICAL ALGORITHMS.

This includes Sorting and various tricky
_ Distributable Versiott programs. Verification experiments in this

area have been directed towards

The verifier 1s implemented in various standardization of techniques, and use of the
versions of LISP (Mlisp, Lisp 1.6, Maclisp). verifier for debugging and documentation.
Translators between these lisps have been New algorithms have been verified by
written; and debugged by the group. Two beginning students (e.g. Knuth’s In-Situ
thirds of the verifier has been compiled into permutation [I4]). The writing and
Hear-n’s Rlisp as an experiment. Rlisp 1s a verification of sorting programs on-line in
standard Lisp available for a wide variety of realtime 1s now very close to being a routine
machines (the Rlisp compiler 1s very good). task (a report is forthcoming [2]).
Currently the Lisp 1.6 version of the complete
verifier including workspace occupies about (11) PROGRAMS WITH POINTERS. We
80k PDP- 10 core. Documented source code are attempting to formulate standard methods
listings are available. There 1s a plan to for verifying programs that manipulate
separate the parser-vcgen and the prover into pointers based on extending our previous
segments for greater efficiency in timeshared work [13]. Current experiments being
environments.
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attempted 1n this area include the balanced distributed as an experimental single user
tree insertion and deletion program (a deep operating system. The claim has been made
algorithm of about 3 pages of Pascal code), that such operating systems, written in a high
and cyclic list structure copying programs [3]. level language which has the Monitor

construct available to modularize (or package)
(11) JUSTIFICATION OF VERIFICATION the code, are easy to write, debug, and verify. :
BASES. The drive towards standardizing the The figures quoted for writing time 1s 3
verification of classes of programs is based on man/months, and for debugging, 2 days. It 1s
producing the concepts that lie behind the known that Solo 1s a slow system. But it is the
programs, and are adequate for specifying first working system in such a language, and it
them, and the necessary lemmas defining those 1s claimed that anyone can understand the
concepts. We need justify the BASIS of whole system. We might view part of our
lemmas once and for all. Most of the time the work 1n this area as investigating these claims.
Bases are obviously correct. But this can get
quite tricky when one starts dealing with We are experimenting with the automation of
pointer manipulations. the verification of Solo using the present

verifier. We are redesigning Concurrent
The Resolution Prover that was developed at Pascal to improve runtime efficiency, and
Stanford some years ago has been run recently verifiability, and to extend the class of realtime
In an attempt to prove some verification Bases systems that can be written in it.
(e.g. the Basis for the In-Situ program which
depends on some quite sophisticated RESULTS SO FAR: We have verified the
mathematics about disjoint cycles within correctness (including Fairness) of a queuing

. permutations). The results were surprisingly system for the implementation of Monitors [8].
good although not overwhelming [14]; it We have verified two fundamental
shows that if justification becomes a problem, components of Solo-Fifo which controls
this line might be worth a little effort. queuing stategy of Solo, and Resource (a

monitor with synchronization) which is used
(iv) VERIFICATION ORIENTED to protect other components of Solo [9]. The
PROGRAMMING. This concerns using the proof rules for Concurrent Pascal were
verifier as a programming aid. We have applied by hand (very simple) and the
continued experiments reported in [11,2] to resulting sequential Pascal problems (much
develop methods of using the verifier to plan longer) were given to the verifier. The
a program with some combination of verification of FIFO turned out to depend on
-specifications and code, and to test the plan at a simple but unstated assumption about Solo,
each step as more and more of its details are but was otherwise an easy verification. The -
coded. The methods are based on the analysis proof that Resource enforces mutual exclusion
of verification conditions to discover bugs and (Le. any process having access to a component
incomplete documentation. The verifier 1s that 1s protected by Resource has exclusive
now being used by one student to do some access) 1s interesting; it depends on a theory of
examination assignments in advanced how to state such properties of a continuously
programming courses at Stanford. running multiprocessing environment as

mutual exclusion, fairness, and freedom from
5.3.3 Operating Systems Verification deadlock. This theory depends on the use of

virtual data structures.

We have been studying the Solo operating
system for the PDP-11. This 1s a working Some other components of Solo, such as
system, about 22 pages of source code. Solo 1s Terminal, are going to be difficult to verify in
written in Concurrent Pascal and widely their present form. We have rewritten
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. Terminal so that it is more efficient and is almost certainly require expansion of the user
verifiable. Interface, and the theorem proving

capabilities.
We have also begun a study of Inaguage
features for concurrent systems that facilitate Our plans for improving the verifier are as
verification [18]. Theoretical developments, follows:
proof rule design, and other initial research
has been completed. (1) Typed Rule Language (7/77-9/78). Many

errors in verification bases can be caught at
We draw some conclusions from this work. parse time if the rule language contains the
(a) The verifier can be used to automate the same type compatibility conventions as Pascal.

checking of important properties of high Such type information can also be used by the
level language operating systems. theorem prover to select the correct special

(b) We can extend Concurrent Pascal with purpose prover and will speed the proof
some simple and natural programming search on some complex data structure
constructs which would make the checking programs by a factor of 5. Furthermore
of protection in such systems easy, programmers are already used to type
eliminate bugs due to misuse of protector declarations and will find this extension of the
components, and speed up Solo. rule language natural; the type declarations of

(¢) Techniques for writing specialized the program will simply be appended to the
operating system components need to be basis of lemmas.
refined, and versions of new language
constructs already studied should be added (i1) Design Specification of Prover (7/77-
for this purpose (this would eliminate 12/77). Our concern here is to give a
problems with Terminal for example). specification of the Prover which contains

clear and uniform specifications for all sub-
5.4 Proposal provers. This will enable a user to add his

own special provers. A critical point is the
In this section proposed research tasks are specification of the interface between the
presented together with estimated dates for controlling prover and any sub-prover; this
achieving planned milestones towards the must depend on limiting the interactions
completion of each task. Dates in parentheses between the sub-provers. (We have
refer to the expected duration of each task. theoretical studies showing that almost all such

Interactions are unnecessary). We are working
5.4.1 Stanford Pascal Verifier on this now but the final specification will

depend on introducing types into the rule
Work in this area attempts to define standards language.
for program documentation and certification,
to introduce the use of verifiers as a (111) Special Purpose Provers (7/77-7/79). The

) programming aid, and to develop new success or failure of verifiers in the long run
methods of programming and program will depend largely on their proof capabilities.
maintenance. Experience shows that ideas in Much work needs to be done to find efficient
this area must be sub jected to testing by provers for the sorts of data that appear in
people other than the system implementors. programs and in verification. We need to

investigate the advantages of different special
We propose to attempt this by very limited purpose provers. This involves experimental
and cautious distribution of the verifier. The comparison of different methods as well as the
first distribution will begin in September 1877 design of new methods. We also need to
to selected sophisticated users. Feedback will design and implement special provers for new
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kinds of data structures (e.g. trees which ® Implementation and testing of new special
appear in compilers). provers (7/77-6/78).

© Completion of new proof system with
(iv) Analyser (7/77-7/79); first version (7/78). . extended rule language (9/78).
This 1s a proposed new module of the verifier
to aid in analysis of verification conditions as 5.4.2 Verification Experiments
they relate to the program code. This 1s
intended to aid debugging and documentation. Proposed experiments in verifying programs

are aimed at extending the classes of programs
(v) Code Generator (12/77). We propose to which can be verified and improving the
add a code generator to the verifier to enable verifier to achieve this. In particular, we will
the user to alternate between verification and go beyond sorting programs, and develop
compilation. This will be for a subset of standard techniques for operations on complex
Pascal types, including Boolean, Integer, data structures by means of pointer
Scalar, Array, Record, but not Real. The manipulation. Programs with pointers have
amount of effort to do this with the current already been verified with this system
system 1s not large and should broaden the (previous reports), but the methods are not yet
base of users. The compiler can be extended standard. Here we mention tasks aimed at
for the concurrent language (below). extending the kinds of programs that can be

handled by verifiers. There are two categories
(vi) R u ncheck Version (first version 12/78). of experiments.
As mentioned previously this includes
automating the construction of inductive Milestones
assertions for runtime error problems.
Experiments towards the construction of such (i) Deep Properties (i.e. depending on
a version are already in progress. It 1s not mathematics) of Small Complex Programs:
clear which runtime errors in which kinds of © Balanced tree insertion and deletion (first
program can be caught by fully automatic results, 6/77; finished 12/77). (this program
verification (no assertion required), and which combines both sorting and pointer
errors will always require some user supplied operations).
information 1m order to be detected. © Cyclic list structure copying algorithms (first

results, 9/77; finished 6/78).

The runcheck version will be able to detect ® Average running time estimates of
fide-effects in procedure and function calls. mathematical algorithms (typical of
Some languages have disallowed this feature properties depending on probabilistic
because 1t can lead to unexpected errors even analysis). (First results, 9/77, complete
though the feature 1s useful. We propose analysis of the problem, 9/78).
leaving in this feature, but locating bad side-
effects with our runcheck verifier before (11) Shallow properties of large programs:
compilation. © Pascal compiler. This requires theory of

segmentation into verifiable passes, and
Milestones specification of each pass. We have

© Limited distribution of the verifier with started on the segmentation theory, and on
documentation (9/77). verification of the lexical scanner pass.

© Redesign of the rule language (12177). (First results, 6/77; finished 9/78).
© Preliminary experimental version of © Operating Systems. We will vestigate the

Runcheck (12/77). verification of protection and deadlock
© Modification of Parser for the new rule problems for entire operating systems

language (3/78). derived from Solo and other sources. See
the next section.
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5.4.3 Design of a Concurrent 1s not because the problems are hard, but
Program ming Language and because necessary information 1s never stated
Verifier explicitly. Of course, some properties of single

components (written as single Concurrent
We propose to design a concurrent Pascal monitors) can be verified, but this 1s
programming language and implement a much different from verifying that the whole
verifier for it. The reasons for this are: system possesses a certain simple but crucial

property (e.g. all data structures that require
1. A verifier for Concurrent Pascal will protection are in fact protected).
require simple changes to that language
(below). So some redesigning has to be done For example, component classes and monitors
anyway. in Solo perform specialized tasks such as

scheduling, protection and buffering. None of
2. With the changes, the verification of some these specialized tasks 1s declared, so there no
operating system specifications for the whole of explicit assertion to be checked about the
Solo 1s not difficult. So the concurrent systems function of the component. Also components
verifier should be useful. -- that must be bound together (e.g. a scheduler

and the component to be scheduled) are done
3. We wish to extend verification techniques to so by means of a single general mechanism,
systems that cannot be written in Concurrent binding of accessrights at mitialization, which
Pascal, e.g. realtime systems involving, for 1s not only uninformative for verification, but

\ example, interrupt handling, = memory also leads to inefficient blocks of components.
allocation, and dynamic process mvocation. Scheduling is one of the bottlenecks in Solo,

and protection works correctly only because
Implementation of the new language itself may the programmer bound the accessrights of
be undertaken at a later time. Solo correctly in the initialization process (one

slip there, and the system would never work).
Some of the changes we propose making to The monitor construct alone does not write
Concurrent Pascal should make systems within correct operating systems, nor does it specify
the new language more efficient than Solo. them.
This may be a step towards making high-level
language operating systems more practical. So Also note that some important parts of the
the extension of the present verifier to a Solo operating system (interrupt handling,
concurrent systems verifier with a compile- memory allocation, process suspension and
and-run option 1s an interesting possibility. resumption) are handled by an invisible,

unverifiable assembly language kernal. We
Next we make some comments about changes propose to develop high level, verifiable
to Concurrent Pascal. language constructs, where possible, to make

these aspects of operating systems visible. The
Our study of Solo has led us to formulate work in [18] is a very small portion of this.
extensions to Concurrent Pascal which express
both the specifications of some Solo Examples of proposed extensions are to
components and the programming discipline in troduce:
that has been used in Solo. Unless the

specifications and discipline are expressed in (1) Declarations of the specialized function of
the syntax of the language (in a form certain components (from which we can tell
somewhat analogous to assertions and type what needs to be verified about them in the
declarations in sequential languages) the context of the whole system).
problem of verifying Solo 1s horrendous. This
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6. Natural Language Understanding

A joint project with the Xerox Palo Alto
Research Center.

EXPERJENCE WITHKRL-0

ONE CYCLE OF A KNOWLEDGE REPRESENTATION

LANGUAGE

Daniel G. Bobrow, Terry Winograd,
and the KRL research group’

‘The projects and implementation described in this paper were done at

Xerox Palo Alto Research Center, Palo Alto, California by Dan Bobrow,
Ron Kaplan, and Martin Kay from Xerox PARC; Jonathan King, David

Levy, Paul Martin, Mitch Model, and Terry Winograd from Stanford;

Wendy Lehnert from Yale; Donald A. Norman from U.C. San Diego; Brian

Smith from M.LT; and Henry Thompson from U.C Berkeley.
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The goal of the xr research group 1s to develop a knowledge
representation language with which to build sophisticated
systems and theories of language understanding. This 1s a
difficult goal to reach, one that will require a number of
years. We are using an iterative strategy with repeated cycles
of design, implementation and testing. An initial design is
described in an overview of kri. (Bobrow& Winograd,
1977). The system created in the first cycle is called xri—o,
and this paper describes its implementation, an analysis of
what was learned from our experiments in using kr.—o0, and a
brief summary of plans for the second iteration of the cycle
(the KRL-1 system). In writing this paper, we have
emphasized our difficulties and disappointments more than
our successes, because” the major lessons learned from the
iterative cycle were in the form of problems. We mention
only briefly in the summary of experiments those features of
krL—o that we found most satisfactory and useful.

In order to put our experiments in some perspective, we
summarize here the major intuitions we were testing in the
design of KRL-0:

1. Knowledge should- be organized around conceptual
entities with associated descriptions and procedures.

2. A description must be able to represent partial
knowledge about an entity and accommodate multiple
descriptors which can describe the associated entity
from different viewpoints.

3. An mmportant method of description 1s comparison
with a known entity, with further specification of the
described instance with respect to the prototype.

4. Reasoning is dominated by a process of recognition in
which new objects and events are compared to stored
sets of expected prototypes, and in which specialized
reasoning strategies are keyed to these prototypes.

5. Intelligent programs will require multiple active
: processes with explicit user-provided scheduling and

resource allocation heuristics.

6. Information should be clustered to reflect use in

-processes whose results are affected by resource
limitation and differences in information accessibility.

7. A knowledge representation language must provide a
flexible set of underlying tools, rather than embody
specific commitments about either processing strategies
or the representation of specific areas of knowledge.

Some of these intuitions were explored in cus (Bobrow, et al,
1977). a dialog system for making airline reservations. GUS
used 1deas of procedural attachment (Winograd, 1975), and
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context dependent description (Bobrow & Norman, 1975).
Experience with GUS led to some changes to our ideas for
KRL-0, although cus and krr.-o were basically concurrent
projects; we started programming GUS just prior to intensive
design on xrL—o. The GUS system was primarily an attempt to
explore the integration of already existing programming
technology for a performance demonstration, while kr.—o was
a first attempt at outlining a new basis for representation.

1. Building the xrr-o System

krRL—o Was implemented in INTERLISP (Teitelman, 1975), along
the lines described in Bobrow and Winograd (1977). The
design was specified mostly during the summer of 1975. The
initial kxr—o 1mMplementation was programmed primarily by
Bobrow, Levy, Thompson, and Winograd during December
and January, with parts of the development being done by the
rest of the xr. group. It included basic structure
manipulating facilities, a reader and printer for kr
structures, a simple agenda manager and scheduler, a
procedure directory mechanism, and a matcher which handled
only the most elementary cases. Many more pieces were built
into this system by people working on the test projects over
the following 6 months. The system was first implemented
on the MAXC computer at Xerox PARC and later transferred
to the SUMEX PDP-10, (where one of the projects was done
as an AIM Pilot project), and to the IMSSS PDP-10 at
Stanford. When the test projects were complete, the system
was retired from active duty.

As an experimental system, there was no commitment to
continue support after the initial purposes were satisfied.
Despite its avowed experimental nature, however, building
KRL-0 was a major system programming effort; programming
any “new Al language” for users 1s larger task than just trying
out the new ideas. Having the many facilities of INTERLISP to
build on eased our programming burden, but a number of

* new facilities were built for the project:

» Ron Kaplan developed a set of utilities, including special
data structure manipulation and formatted printing
routines, as a base for much of the implementation.
The entire utility package (called usys) was interfaced
so smoothly that the user could think of it as simply an
extended interiise. This package will be used in the
development of KRL-1.

» An on-line cross-reference and documentation system
(called the names system) was used to coordinate the
efforts of the people doing interactive debugging of a
shared set of programs. The facility was designed and
built by Ron Kaplan and Martin Kay. It
communicated with the editor and file package
facilities in INTERLISP so that the programmer was
prompted for a comment whenever programs or record
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declarations were created or edited. The information

available to the system (e.g. procedure name, variable
names, etc.) was combined with user supplied comments
in a standardized data base which could be interrogated
on line. The programmer was automatically warned of
potential naming conflicts with anything anywhere else
in the system. It also provided facilities for entering
comments associated with global variable names and
file names. The file of names grew to contain over
1000 entries during the course of implementing KRL-0.
For the KRL-1 implementation we are extending the
interface to work with Masterscope, the INTERLISP
cross-reference and program analysis package written
by Larry Masinter.

» A simulated match interface was built by Paul Martin,
which enabled the programmer to intercept calls to the
matcher and gather data on what kinds of problems
came up before programming the necessary’ extensions.
The user returned an answer for the match, and on
future identical matches the same answer was used.

» A tracing facility for the matcher was implemented by
Jonathan King, to facilitate debugging of programs
which were organized around matching

. As problems came up in using krr—o0, they were handled in
several ways. Those which seemed general and could be
handled within the existing framework were set up as tasks
for the KRL-0 programming effort. Usually design discussions
were shared by everyone, and the implementation done by the
person whose program faced the problem. Those problems
which were either too specialized or obviously beyond the
scope of our current design were programmed around by the
problem-finder. Most of these cases led to changes in the
krL—1I design to accomodate solutions more naturally.
Because krL—o was embedded in internIse, “patching” was

- usually straightforward in that it was the same as what would
have been involved in trying to write the program in a bare
INTERLISP 1n the first place. Of course, sometimes these
“patches” interacted with other parts of the xr code in
unpredicted and confusing ways. Those problems for which
there was no acceptable way to escape were chalked up to
experience, and the goals of the program reduced accordingly.
Usually this was in cases where there had been an unresolved
question as to how much the program should be expected to
handle. Issues raised by these problems were a major driving
force in the xrr—1 design.

A very rough draft of a manual was distributed, but became
rapidly obsolete as the system evolved. It was highly
incomplete (for example, the section on the matcher consisted
of a single paragraph describing why the section was going to
be difficult to write). It was never completed or re-edited,
and those doing the programming had to rely on discussion
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with the implementers and on the source code of the
interpreter for up to date information. It worked reasonably
well, with some frustration, but not enough so that anyone
ever felt moved to volunteer the time to do the writing
needed to produce a real manual and keep it current. We
were somewhere around the upper bound of the size of
project (number of people, amount of programming) where so
informal an approach was feasible.

2. Experiments using krr—o

krL—o Notation and programs were tested in nine different
small projects. Each of these projects was intended to test
some aspect of the kr.—o language or system. They took from
3 to 15 person-weeks of effort each. In most cases, the goal
was to produce an actual running program which could
handle enough examples to convince us that it did what the
original program was intended to. In no case was an effort
made to do the kind of final debugging and polishing which
would make the program robust or usable by anyone but the
original author. We will describe three of these in detail: a
cryptarithemetic problem solver; a story analysis program; and
a medical diagnosis system. We list below the other projects
that were done to give a flavor of the range of projects tried:

» LEGAL -- done by Jonathan King -- an
implementation of a portion of a legal reasoning
system sketched by Jeffery Meldman (1975) in his
doctoral dissertation. This program forced
consideration of matching in which both patterns and
data could specify bindings that were needed.

» ARCHES -- done by Paul Martin -- a concept learning
progam based on Patrick Winston’s (1975) program for
recognizing visual scenes. Matching sets of
descriptions, and the use of instances as patterns were
the interesting parts of this project

» COIL -- done by Wendy Lehnert -- a new program for
drawing inferences about objects, based on methods
related to those of conceptual dependency. This
program used the contingent description mechanism to
select knowledge to be used in a particular context, and
the agenda to interweave syntactic and semantic
processing of input English.

» FLOW -- done by Dan Bobrow and Don Norman -- a
program sketch which simulated a person’s access to
long term memory while using a recently learned
simple computer language. The indexing mechanism of
KRL was used to simulate properties of human
associative retrieval (including errors of various kinds).

» PHYSIOLOGY -- done by Brian Smith -- a program
sketch which explored the problems of using xkrr—o for
a system which could reason about physiological
processes. This project forced consideration of the gaps
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In krRL-o With respect to specifying temporal and
causal structures, and the need for stronger structuring
to factor information in units by viewpoints, e.g.,
information about the heart as viewed as a mechanism,

versus information when viewing it from an anatomical
perspective. )

» KINSHIP - - done by Henry Thompson -- a theoretical
paper, using the kRriL-o notation as a basis for
comparing kinship terms in English and Sherpa. The
attempt to communicate results of encoding to
non-computer scientists led to a simplified notation
which has contributed to the syntax for KRL-1.

Cryptarithmetic

The initial test program was a simple cryptarithmetic problem
solver (see Newell and Simon, 1972 for a description of the
domain) written by Terry Winograd and debugged and
extended by Paul Martin. it exercised the basic data
structures, agenda, and triggering facilities, and was
successfully tested on several problems (including DONALD
+ GERALD = ROBERT with D=5). No attempt was made to
provide complete coverage of the class of problems handled
by humans. Interesting aspects of the design included:

» Use of triggers to combine goal directed and data
directed processing

» Use of “patterns” to suggest strategies

» Use of levels on the agenda to control ordering of
strategies

» Use of multiple descriptors to accumulate information
about the value of a letter

» Use of contingencies to handle hypothetical assignments

» Use of the signal table to control work within
hypothetical worlds

Much’ of the processing was associated with procedures
attached to the units for Column (a vertical column in the
addition problem) and Letter. The Unit for Column is given
below. It gives some idea of the use of procedural attachment
to propagate information, search for patterns such as a
column with TwoeBlanks and trigger arithmetic processing
(using the use function ProcessColumn).

[COLUMN UNIT Basic
CSELF {P>

CleftNeighbor (a Column)>
CrightNcighbor (a Column)>
(topl.ctter (a Letter)>
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ChottomLetter (a Letter)
(triggers (WhenKnown

(DoWhenKnown (topl.etter) Column
(TryToFurtherSpecify UNIT

'(TwoBlanks OneBlank TwinAddend)
‘AddendType]>

{sumLetter (a Letter)

(triggers (WhenKnown
(DoWhenKnown (topLetter botomLetter) Column

(CheckSumkqualAddend UNIT]>

CtopDigit (a Digit)
(triggers (WhenKnown (Assign ‘topLetter)(ProcessColumn)))>

< bot tomDigit (a Digit)
(triggers (WhenKknown (Assign ‘bottomLetter)(ProcessColumn)))>

<sumDigit (a Digit)

(triggers (WhenKnown (Assign ‘sumLetter)(ProcessColumn)))>
<sum { (an Integer)

(which I1sSumOf
(Allitems (the carryln) (the topDigit)(the bottomDigit)))}

(triggers (WhenKnown (ProcessColumn)))>
<carryln{ (an Integer)

(XOR 0 1)
(the carryOut from Column(the rightNeighbor))(; CARRYOUT))

(triggers (Whenknown (GoFill 'CARRYOUT)(ProcessColumn)))>
{carryQut {(an Integer)

(XOR 0 1)

(the carryln from Column (the leftNeighhor)) (; CARRYIN))

(triggers (WhenKnown (GoFill ‘CARRYIN) (ProcessColumn)))>]

There was a set of recognized patterns for columns (for
example, a column with the sum letter identical to one of the
addends) and a set of pattern driven strategies was associated
with each. Each strategy was a usp procedure which used the
KRL-o Structures only as a data base. Some of the strategies
caused values to be computed. Whenever a new value was
filled into a column, triggers caused data driven strategies to
be suggested, such as trying to bound the possible value of
other letters based on this information. Constraints on values

were added in the form of new descriptions for the value of
) the letter, for example specifying that the value must be an

even or odd integer. Each such description was added to the
existing description of the value of that letter, so that at any
point in the computation, some letters had a value described
-as a specific digit, while others had complex desciptions, such
-as “Greater than 3 and odd”. Each time a new description
was added, a trigger in the unit for Letter caused a procedure
to be run which matched each still-unassigned digit against
the accumulated description, and if only one matched, it was
assigned.

When new strategies were suggested by a new value being
filled in, or by the match of one of the patterns describing
columns, all of the triggered strategies were put onto the
agenda. They were assigned priority levels on the basis of a
fixed scheme: Level 1 was immediate propagation of
information (e.g. if the value of a letter 1s determined, then
that value gets entered into all of the places where the letter
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appears). Level 2 was for straightforward arithmetic
computations, Level 3 for the strategy being worked on
currently, Level 4 for other simple strategies, Level 5 for

y more complex and less likely strategies, Level 6 for last-ditch
strategies (brute force trial and error) and Level 7 contained a

single entry which caused the problem to be abandoned.

This rather ad hoc use of agenda levels achieved a number of
goals. The use of Level 1 for simple propagation served as a
kind of data locking scheme to maintain consistency. As long
as there were more results to be propagated, no other part of
the program would run. This meant, for example, that if
some letter were assigned to a digit, no other letter could be
assigned to the same digit before the result had been properly
recorded. The use of a separate level for the current strategy
allowed it to trigger sub-strategies without getting put aside
for work on a different strategy. This meant that each
strategy could run to completion. The use of levels to
distinguish how promising different strategies were allowed
the system to focus its effort on whatever were the most
likely things at the moment. Placing last-ditch strategies on
lower levels when they were thought of made it easy for the
program to fall back on them -- they automatically ran if
nothing at any higher priority was scheduled. This provided a
weak global structuring in what was inherently a data-driven

, process.

The mechanisms for multiple worlds and contingent
descriptors made it possible to deal with hypothesized values
while using the normal mechanisms. When all but two
possible values had been eliminated for some letter, and no
other strategies were pending, the program chose one of them,
and created a hypothetical world, in which the letter had that
value. Describing the letter as having that value
hypothetically caused all of the same triggering as would
noncontingent assignment of the value, leading to propagation
of new information, computations, strategies, etc. However,
by modifying the signal table, all derived information was
asserted as contingent on that hypothetical world. This
special signal table also affected the processing in two other
ways: First, only simple strategies were allowed to be placed
on the agenda. Second, if a contradiction occurred, the
hypothesis was rejected instead of the problem being declared
impossible. If a hypothesis was rejected, the contingent
descriptors were not removed, but would not be accessed by
programs looking for descriptions in other hypothetical
worlds, or in the world of actually inferred facts.

Sam

David Levy implemented and tested a program which
reproduced the simple text analysis and questioning aspects of
the sam program (Schank et. al, 1975) which uses scripts in
analyzing short “stories” containing stylized sequences of
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events. It used Ron Kaplan’s ssp parser(Kaplan, 1973), and a
grammar writtenby Henry Thompson for the initial input of
the stories. It processed two stories (Schank, p. 12),
summarized them and answered a number of simple
questions. It was a full fledged language-processor in that it
took its immput in English and generated English output.
Questions were entered in an internal representation. Its
main features were: :

» Interfacing an existing parser (Kaplan's csp) with a
krL—o program which used the results of the parsing for
further analysis

» Using slots to represent the basic elements (both events
and participants) of scripts, and perspectives to
represent instances of the scripts.

» Using the notion of “focus lists” as the basis for
determining definite reference, including reference to
objects not explicitly mentioned in the input text. It
used the index mechanism to speed up search through
the focus lists.

» Using the matcher in a complex way to compare story
events to prototypical script events, with side effects
such as 1dentifiying objects for future reference

» Using units describing lexical items and English
grammatical structures as the basis for analysis and
generation, using signals and procedural attachment

SAM’s basic processing loop consisted of parsing, construction
of conceptual entities followed by script lookup:

Parsing. A sentence from the story was fed to ssp, which
_ produced as output a surface syntactic parse identifying

clauses, noun phrases, etc. as a xr. declarative structure. For
example, for the sentence “John went to a restaurant” GSP
produced the following rather shallow syntactic structure:

(a Declare with clause =

(a Clause with

surfaceForm = ‘John went to a restaurant”

verb = GO

subject = (a NounPhrase with

head = JOHN)

prepPl = (a PrepositionalPhrase with

preposition = TO

object = (a NounPhrase with

head = RESTAURANT

determiner = A))))
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Construction of conceptual entities. The next step was to map
this syntactic object into a set of conceptual objects with the
help of declarative and procedural information stored in the
prototypical syntactic units (Clause, NounPhrase, e¢tc.) and in
the lexical units. For example, the Clause unit specified that
the filler of the verb slot would guide the mapping process
for the entire clause, and the lexical representation of each
verb included a case frame mapping from syntactic to
conceptual structures. Following 1s a partial description of
sam’ s representation of the verb “go”:

[GO UNIT Individual

i <self ((a Verb with

root = “go”

past = “went”)

(which IsAConstituentOf

(a Clause with

referent =

(a Go with

goer = (the referent from NounPhrase

A (the subject from Clause (a Clause)))

source = (the referent from NounPhrase
(the object from PrepositionalPhrase

(a PrepositionalPhrase with

preposition = FROM)))

destination = (the referent from NounPhrase

(the object from PrepositionalPhrase

(a PrepositionalPhrase with

preposition = TO)))))} >]

As a description was created for each conceptual object (e.g.
as 1t was determined that the appropriate filler for the goer
slot in the above example was (a Person with name = “John”)),
this description was matched against a list of units in a focus
list which contained the conceptual objects thus far created.
If the description matched one of these objects, the slot was
filled with a pointer to this object, and this object was moved
to the front of the focus list. In order to make the search

through the focus list faster, the index facility was used to
find good potential matches from the list. If the description
matched no object, a new object (a KRL unit) was created, the
description was attached to it, and this object was pushed onto
the front of the focus list. In this way referents were
established and maintained.

This scheme handled pronominal as well as definite
reference. From the word “she”, for example, the conceptual
description (a FemalePerson) was constructed, a description
which would match the last mentioned reference (if any) to a
female person (e.g. “the waitress”).

Script lookup. Next the program tried to identify the
conceptual event just created as a step in an active script. It
did this by stepping’ through the script from the last event
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identified, and matching the description of this prototypical
event to the event just created from the input sentence. This
process exercised the xru matcher rather heavily. Once the
step in the script (represented as a slot) was identified, this
slot was filled with the new conceptual event. In addition,
any previous steps not explicitly filled by story inputs were
then filled by creating conceptual events from the
prototypical descriptions contained in the script. These
events too were added to the focus list. The program also
dealt with what-ifs or predictable error conditions, but these
will not be discussed here.

The result of this iterative process was therefore the
construction of a representation for the story consisting of:

» a set of syntactic units representing the surface syntactic
form of the input sentences |

» a set of conceptual units representing story objects:
people, events (including inferred events), physical
objects a

» a focus list containing these objects

» a (partially) instantiated script, whose event slots were
filled with the conceptual events in the focus list

Having analyzed a story, SAM could then summarize,
paraphrase, and answer questions.

The different stages of processing in the analysis of inputs
were controlled through the use of special signal tables.
These tables provided special responses to the addition of
descriptions to units. For example, the search for a referent
was keyed by a signal set off by the addition of a perspective,
of type NounPhrase. The generation process used a different

] set of signal tables to direct the inverse process of building a
surface syntactic construction from a conceptual object. SAM
was an interesting exercise in system construction, useful
mainly as a tool for understanding problems in representation
and debugging xrr—o. When finished, it did not, and was not
intended to, rival the power of the Yale group’s original
program.

Medical

Mitch Model implemented and tested a program for medical
diagnosis based on a model for diagnosis which had not been
directly implemented before (Rubin, 1975). In writing the
program, it was necessary to fill in a number of details, and
correct some minor inconsistencies in the original. The
program successfully duplicated, with some minor exceptions,
the performance described for Rubin's hypothesized system.
Part of the reason for the exceptions was incomplete
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specifications in Rubin's thesis, but there was also a major
problem in that the implementation isp code and data base

completely filled the storage available in the xr1. system.

] (This program, sam, and corr. were the most extensive tests,
and all ran into space problems discussed below). Some of

the major features of the implementation were:

» The use of the abstraction hierarchy to represent the set

of disease types and finding types, with information

and procedures attached at different levels of

generality.

» The use of kxr1.—0o triggers to implement the conceptual

“triggering of potential diagnoses on the basis of

having relevant symptoms described

» The use of signals to provide run-time monitoring of

what the system was doing as it generated new

hypotheses and evaluated them

» A direct encoding of the declarative “slices” of Rubin's
version into the declarative forms of xrrL-o. This

included extensive use of the “Using” descriptor (a

declarative conditional) to explicitly represent the

decision trees in the units for diagnosing different
conditions

. There were four major kinds of representational objects in the

system.

» *Elementary hypotheses” which corresponded to the
“slices” of Rubin's thesis; these were named after the

disease [e.g. Glomerulitis or Renallnfarction] the data
structure was intended to represent. Elementary
hypotheses had descriptions in slots to indicate such

things as likely symptoms, links to other elementary

hypotheses that might be related, and how to evaluate

how well the patients symptoms would be accounted for

) by a diagnosis of this disease.

» “Elementary hypothesis instances” were data structures

created for each diagnosis the system decided might

account for the presented symptoms; these contained

. pointers to the findings that suggested the diagnosis,

- and a pointer to the elementary hypothesis representing

the disease of the diagnosis. It also contained values
for how well the diagnosis accounted for the symptoms,

obtained by applying the evaluation information

represented in the elementary hypothesis to the specific

details of the elementary hypothesis instance.

» “Findings” were units for specific symptoms, facts,
historical information, physical examination data, or

lab data (e.g. Fever, Hematuria, or Biopsy), a finding
was mostly a hook on which to hang procedural

information about what to do when the patient

exhibited something abnormal with respect to the
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particular kind of finding.

» Finding instances were the input to the system, having

a structure similar to that Rubin suggested in her thesis,
having slots for such things as finding, duration,

severity, and normality. There were also further

specified finding instances such as symptom instance.

The system worked essentially as follows. A unit might be

described by:

(a Symptominstance with
mainConcept = Hematutia

presence = “present”

severity = “gross”

time = (a TimePoint with .

direction = “past”

magnitude = (a Quantity with

unit = “days”

number = 3)))

A WhenKnown trigger on the presence slot of the
Symptomlinstance prototype would be set off; examination of
the specific description caused this entity to be described also
as: (a Symptomlnstance with normality = “abnormal”) Further

triggers and traps might result in the creation of new

elementary hypothesis instances, according to the information

found in the description. After all the information

propagation activity, each of the currently active elementary

hypothesis instances would be evaluated based on information

found in the corresponding elementary hypotheses. Based on

the evaluation, the status of the elementary hypothesis

instances might be changed to reflect possible dispositions of

the hypothesis such as acceptance, rejection, or alteration.

The indexing facility was used to facilitate operations such as

obtaining a list of all the hypotheses activated by a finding.

Functionals and ToMatch triggers on prototypes were defined
. to handle special time-related matches to enable the system to

tell, for example, that “3 days ago” is more recent than “1

year ago” or that “48 hours” is the same as “2 days”. Signal
tables were used locally to govern the handling of error-like

occurrences and globally to effect trace and printout;
different degrees of detail were specified by use of several

signal tables, and it was thus quite simple to change modes by

pushing or popping a table. The agenda was used for
organizing the flow of control in a manner similar to that

described for the Cryptarithmatic program. The built-in
triggering mechanisms provided the means for a very natural

modeling of the kind of medical reasoning discussed in
R ubin’s thesis.
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3. The problems

As we had hoped, these projects pointed out many ways in

which kr1.—0o was deficient or awkward. People were able to

complete the programs, but at times they were forced into ad

hoc solutions to problems which the language should have

dealt with. The problems can be grouped as: ”

» Basic representation problems -- ways in which it was

difficult to express intuitions about the semantic and

logical structure of the domain

» Difficulties in manipulating descriptions explicitly

» Shortcomings in the matcher

» The awkwardness of the Lisp—xkrL interface

» Facilities which should have been available as

standardized packages

» Infelicitous syntax

» Cramped address space

Due to the embedding of kxr1.—0 in INTERLISP, none of these

problems were fatal. Even with the difficulties, we found it
possible to write complex programs rapidly, and to

experiment with interesting representation and processing

‘strategies. This list also does not include the social and
organizational problems which are bound to infect any effort

of this nature. Everyone on the project exhibited heroism

and stoicism, persisting in their programming without a

manual and in a rapidly evolving language which kept

slipping out from under the programs almost as fast as they
could be modified.

Basic representation problems

kRL—o embodied a number of commitments as to how the

‘world should be represented. Some of these seemed
intuitively justifiable, but did not work out in practice.

Others were too vague to implement in a way which seemed

satisfactory.

The categorization of units: Each unit bad a category type
(as described in Bobrow and Winograd (1977, pp 10-12)) of
Individual, Manifestation, Basic, Specialization, Or Abstract

Category. This was based on a number of intuitions and
experiments about human reasoning, and on the belief that it

would facilitate mechanisms such as the quick rejection of a

match if there was a basic category disagreement. In practice,

these distinctions turned out to be too limiting. In many of

the hierarchies for specialized domains (such as medicine)

there was no obvious way to assign Basic, Specialization, and
Abstract. In dealing with units describing events, the notion

of Manifestation was not precise enough to be useful. It was
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generally felt that although the concepts involved were useful,

they had been embedded at too low a level in the language.

Viewpoints: One of the major issues in developing KRL was

the desire to have facilities for “chunking” knowledge into
relevant units. This proved to work out well in most cases, but

there was an additional dimension of organization which was

lacking. For many purposes, it is useful to combine in a

single unit information which will be used in several contexts,

and to associate with each piece of the description some

identifier of the context (or viewpoint) in which it will be

used. In the natural language programs, it seemed natural to

classify descriptions associated with words and phrases

according to whether they related to the structure of syntactic

phrases, or to meaning. In the physiology sketch, there were

clear places where different viewpoints (e.g. looking at the

form of an organ or looking at its function) called for using
different information. There were two primitive mechanisms

for doing this factoring in xr.—o -- attaching features to

descriptors, and embedding information in contingencies.
Both were used, but proved clumsy and felt ad hoc.

The relation between prototype and concept: xkrL Is built on
the assumption that most of the information a system has

about classes of objects is stored in the form of “prototypes”

rather than in quantified formulas. In general, this proved to

be a useful organizational principle. However, there were

cases of complex interactions between instance and

prototype. In the medical domain, for example, a disease
such as AcuteRenalFailure could be thought of as an instance
of the prototype for Disease but could also be thought of as a

prototype for specific cases of this disease. There are a

number of issues which arise in trying to represent these

connections, and although xri1—o did not make obviously

wrong choices, it also did not make obviously right ones. In

general, we seem to have been hoping that too many

~ consequences would just naturally fall out of the notation,

when in fact they take more explicit mechanisms.

Further specification hierarchies: In simple network or
frame systems (see, for example Goldstein and Roberts, 1977)
there is a natural notion of hierarchy, in which each

descendant inherits all of the slots (or cases) from its parent.

Thus, if a Give is a further specified Act then it has a slot for

actor as well as its own slots for object and recipient. In a

system based on multiple description, the inheritance of slots

Is not as straightforward. This is especially true when there is

an attempt to do Merlin-like reasoning and use perspectives

to “view an x as a y’. The basic inheritance mechanism in
krL—o does not include automatic inheritance of slots. This is

vital for cases in which there are multiple descriptions using

the same prototype units. However, it makes it awkward

(though possible) to program the cases where the slots are to

be inherited simply. Therefore, we included a mechanism for
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- “further specification” which allowed a unit to inherit slots

(along with their attached procedures) from a single parent.

This was not fully implemented into the system, and was a

. dangling end in the implementation.

The factoring of context-dependent descriptions: One major

design decision in kr. was the use of an object-factored data
base, rather than a context-factored one. The unit for a

particular object contained all of the different contingencies

representing the facts about it in different worlds. This

proved quite successful; however, when combined with the

kind of descriptions provided by mappings, another issue

arises. Using the example of the cryptarithmetic units given

earlier, consider the problem of representing what is known

about a column in the addition problem if worlds are used to

represent hypothetical assignments. Imagine that we know

that in the unmarked global world, Column1 is an instance of
Column, with values for topletter, bottomletter, etc. If in a

hypothetical World] (in which some value is assumed for a
letter) we infer that its sum is 17, we want to add a contingent

descriptor. This could be done in two ways:

[Column | UNIT Individual

<self { (a Column with

topletter = A

(during Worldl then (a Column with sum =17))}>]

[Column | UNIT Individual

<self { (a Column with
topLetter = A

sum = (during Worldl then 17)
Nid

These are equivalent at the semantic level, and the first was

chosen in the initial implementation -- all factoring into

contexts was done at the top level of slots. However this
proved to be tremendously clumsy in practice, since it meant

that much of the information was duplicated, especially in

cases of recursive embedding. This was exacerbated by the
fact that features (See Bobrow and Winograd, p. 14)
demanded factoring as well, and were used for a variety of

purposes, such as the viewpoints mentioned above. There was

a reimplementation midway in the life of «rin which the

basic data structures were changed to make it possible to

merge as much of the shared information as possible. There

are a number of difficult tradeoffs between storage
redundancy, running efficiency, and readability when
debugging, and we never found a fully satisfactory solution
within «ro.

Data structure manipulation

kkL-0 was not a fully declaratively recursive language in the

sense that machine language and pure scare. It was not
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possible to write kxr1.—o descriptions of the xrL—0o structures

(e.g. units, slots, descriptions) themselves, and use the
descriptive mechanisms to operate on them. Instead, there

were a number of isp primitives which accessed the data

structures directly. People ran into a number of problems

which could be solved by explicit surgery (i.e. using the vis
functions for accessing xr. data structures, and RPLACA and

repacp) but which gave the programs a taint of ad hocery
and overcomplexity. As an exercise in using k=RrRL

representational structures, Brian Smith tried to describe the
krL data structures themselves in kr.—0. A brief sketch was

completed, and in doing it we were made much more aware of

the ways in which the language was inconsistent and

irregular. This initial sketch was the basis for much of the

development in KRL-1.

Deletion of information: One of the consequences of seeing
KRL-structures as descriptions, rather than uninterpreted

relational structures was a bias against removing or replacing

structures. Descriptions are by nature partial, and can be

expanded, but the most natural style is to think of them as
always applicable. Thus, for example, if a slot was to contain

a list (say, the list of digits known to have been assigned in a

cryptarithmetic problem), the descriptor used in an instance

was the Items descriptor, which is interpreted as enumerating

some (but not necessarily all) items in a set. If the

description of some object changed over time, then it was

most naturally expressed explicitly as being a time-dependent

value, using the Contingency descriptor. There are some deep

representational issues at stake, and the intuition of thinking

of descriptions as additive was (and still is) important.

However, it led to an implementation which made it
impossible to delete descriptions (or remove items from lists)

without dropping to the level of LISP manipulations on the

descriptor forms. This caused problems both in cases where
values changed over time, and in cases where the programmer

wanted the program to delete unnecessary or redundant

descriptors in order to gain efficiency. Although deletion and

replacement were doable (and often done), they went outside

of the xr. semantics in a rather unstructured way.

Explicit manipulation of descriptions: For some of the
programs, it was useful to have parts of the code which dealt

with the descriptions themselves as objects. For example, in
the cryptari thmetic program, the set of descriptions being
added to the value slot of an individual Digit could be

thought of as a set of “constraints”, and used in reasoning.

One might ask “What unused digits match all of the
descriptors accumulated for the value of the letter A”. This is

quite different from asking “Which unused digits match the

description ‘the value of letter A”. Similarly, in the
implementation of Winston’s program, the descriptions

themselves needed to be thought of and manipulated as

relational networks. The ability to use descriptions in this
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style gave power in writing the programs, but it had to be

done through LISP access of the descriptor forms, rather than

through the standard match and seek mechanisms.

Problems with the matcher

Specifying the match strategies: The matcher in KRL-0 took
a krL—o description as a pattern, and matched” it against

another description viewed as a datum. For each potential
descriptor form in the pattern, there were a set of strategies

for finding potentially matching descriptions in the datum.

The ordering of these named strategies, and the interposition

of special user-defined strategies was controlled by use of the

signal mechanism. This was designed to give complete

flexibility in how the match was carried out, and succeeded in

doing so. Many specialized match proceses were designed for
the different projects. However, the level at which they had
to be constructed was too detailed, and made it difficult to

write strategies which handled wide ranges of cases. The

strategies were mostly reflections of the possible structures in

the datum, and did not deal directly with the meaning of the

descriptors. This led to-having to consider all of the possible

combinations of forms, and to programs which did not

function as expected when the descriptions contained

different (even though semantically equivalent) forms from

those anticipated.

Returning bindings: Since patterns for the matcher were
simply xriL—o descriptors, and there was no coherent

meta-description language to define procedural side effects, it
was very difficult to extract the bindings from a match. This

was handled in the legal example, which most needed it, by

providing special signal tables for these matches, again

leading to a feeling of ad hocery to get around a basic
problem in matching.

Control of circularities: In using matching as a control
structure for reasoning, it is often useful to expand the match

by looking at the descriptions contained in the units being

compared. Consider the units:
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[Give UNIT Basic

<self (A Receive with

received+ (the given)

receiver = (the . receiver)

giver = (the giver))>

<giver (A Person)>

<receiver (A Person)>

<given (A PhysicalObject)>}

[Receive UNIT Basic

<self (A Give with

given= (the received)

receiver = (the receiver)

giver = (the giver))>

<giver (A Person)>

<receiver (A Person)>

<received (A PhysicalObject)>]

[Event 17 UNIT Individual

<self (A Give with

giver = Jane
receiver = Joan

_givem= (A Hammer))>

If asked whether the pattern (A Receive with received = (A
Hammer)) matches Event17, the matcher needs to look in the

unit for Give in order to see that every Give is indeed a
Receive, and to match up the slots appropriately. However,

this can lead to problems since descriptions in units could

easily be self-referential, and mutually cross-referential. In a

slightly more complex case, the matcher could try to match a

Give by looking at its definition as a Receive, and then

transform that to a Give, and so on. Some of the early match
strategies we developed fell into this trap and looped. The

simple solution that was adopted to limit such circular

expansion was to adopt a depth first expansion policy, and to

limit the total depth of expansion (recursion through

definition). This obviously works both in this case, and to

limit arbitrarily large non-circular searches. In the limited
"data bases we used, it never caused a match to be missed when

the programmer expected it to be found. But it is a crude

device which does not provide adequate control over search.

Inefficiencies due to generality: Since the matcher was
designed to allow a wide range of strategies, a fairly large

amount of processing was invoked for each call. Often, the
programmer wanted to check for the direct presence of a

certain descriptor, and to avoid the overhead, dived into

LISP. Thus, instead of writing: .

(Match ‘Event 17

‘(A Give with giver = Jane)

‘SimpleStructureMatchTable)

it was possible to write:
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(EQ 'Jane

(Getltem (GetFiller ‘giver
(Get Perspective ‘Give

(GetSlot ‘self ‘Event 17)))))

Given that the SimpleStructureMatchTable caused the matcher
to look only at direct structural matches, the two forms were
equivalent, and the second avoided much of the overhead.
Many problems arose, however, in cases where later decisions
caused the description form to be different (for example,

embedded in a contingency) but to reflect equivalent
information.

Problems in the interface between xr. and rise

One of the major design decisions in kru—o was the use of
rise for writing procedures, rather than having a xrL

programming language. This was viewed as a temporary
measure, allowing us to quickly build the first version, and
work out more of the declarative aspects before trying to

formulate a complete procedural language in the following
versions. A number of awkward constructs resulted from the

need to interface r1isp procedures and variables to the KRL
environment.

Limited procedural attachment modes: Only the simplest
forms of procedural attachment were implemented. Thus, for
example, there was no direct way to state that a procedure
should be invoked when some combination of slots was filled

into an instance. Procedures had to be associated with a

single condition on a single slot. It was possible to build
more complex forms out of this by having a trigger establish
further triggers and traps (there are examples of this in the
unit for Column given above), but this led to some rather
baroque programming.

Communication of context: When a trap or trigger was
_ invoked, the code associated with it needed to make use of

contextual information about what units were involved in the

invocation and what state the interpreter was in (for example

in the use of hypothetical worlds). This was done simply by

adopting a set of .1sp free variables which were accessible by

any piece of code. and were set to appropriate values by the
interpreter when procedures were invoked. This approach was

adequate in power, but weak in structure, and a number of the

detailed problems which arose in the projects grew out of
insufficient documentation and stability of what the variables

were, and what they were expected to contain when.

Unstructuredness of procedure directories: The notion of
having a “signal table” containing procedural variables was a

first step towards breaking out of the normal hierarchical

definition scheme of rn1sp. The intention in developing a rw

procedural language- is to develop a set of structured control
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notions which make it unnecessary for the programmer to fill

in the detailed responses to each possible invocation. In the

absence of this, xr.—o signal tables had much the flavor of
machine code. A clever programmer could do some striking

things with them (as in their use in sam for controlling

language analysis and generation), but in general they were

hard to manage and understand.

Underdeveloped Facilities

The xrr. overall design (see Bobrow and Winograd, p. 3)
involved a series of “layers” beginning with the primitive
underlying system and working out towards more

knowledge-specific domains. Part of the ability to implement

and test the language so quickly came from deferring a

number of problems to higher layers, and letting users build
their own specialized versions of pieces of these layers as they
needed them. In most cases this worked well, but there were

some areas in which a certain amount of effort was wasted,

and people felt hampered by not having more general

facilities. -

Sets and sequences: xkrL—o provided only three primitive
descriptors (Items, Aliltems, and Sequence) for representing
sets and sequences. Notions such as subset, position in
sequence, member of set, etc. all had to be built by the user

out of the primitives. Everyone needed some of them, and it

became clear that a well thought out layer of standard units

and procedures would have greatly simplified the use of the

language.

Indexing schemes: The index mechanism built into xr1.—0c Was
based on simple collections of key words. It was assumed

from the beginning that this was to be viewed not as a theory

of memory access, but as a minimal primitive for building

real istic access schemes. One of the projects (FLOW) attacked
} this directly, but the rest stuck to simple uses of indexing, and

did not explore its potential in the way they might have if a
more developed set of facilities had been provided initially.

Scheduler regimes: As with indexing, the scheduler
mechanism of xr1—o was intended primarily as a primitive

with which to build interesting control structures which

explored uses of parallelism, asynchronous multi-processing,

etc. The only structuring was provided by the use of a

multi-layer queue Like the category types discussed above, it

was an attempt to embed some much more specific
representation decisions into a system which in most places

tried for generality. It was not restrictive, since the system

made it possible to ignore it totally, allowing for arbitrary

manipulation of agenda items. However, because it (and no

other scheme) was built in, it tended to be used for problems

where other regimes would have been interesting to explore.



Notation

The kr.—0o notation was strongly LiSP-based, using
parenthesization as the primary means of marking structure.

’ This made it easy to parse and manipulate, but led to forms
which were at times cumbersome. This was especially true
because of the use of different bracketing characters ("()",
"{}","<>") for descriptors, descriptions and slots. At times a
unit would end with a sequence such as “})})}>)". There was
one simplification made during the course of the

implementation, allowing the description brackets "{}" to be
omitted around a description containing a single descriptor.

The examples in this paper use this convention. In addition,

better notations were needed for expressing sets and
sequences, and were explored in the xinsuir project.

Limited address space

One of the shortcomings which most strongly limited the

projects was in the implementation, not the basic design.
INTERLISP is a paged system, based on a virtual memory which
uses the full 18 bits of the PDP-10 address space. The

philosophy has always been that with some care to separate

working sets, system facilities could grow to large sizes

without placing extra overhead on the running of the program

when they were not being used. This has led to the wealth of
user aids and facilities which differentiate INTERLISP from

other LISP systems.

As a result, more than half of the address space is used by the

INTERLISP system itself. The kr1.—-o system added another

quarter to this, so only a quarter of the space was available
for user programs (including program storage, data structure

storage, and working space). Both of the extended systems
(sam and Medical) quickly reached this limit. This resulted

in cutting back the goals (in terms of the number of stories

and questions handled by sav, and the amount of the sample

diagnosis protocol handled by Medical), and also led the

programmers to put a good deal of effort into squeezing out

maximal use of their dwindling space. Some designs were
sketched for providing a separate virtual memory space for

krL data structures, but their implementation was put off for

later versions, since the lessons learned in using xr.—o within

the space limitation were quite sufficient to give us direction
for KRL-1.

4. Current Directions

The projects described above were completed by the end of

summer 1976. Since that time, we have been primarily
engaged in the design of KRL-1, and as of this writing (June

1977) are in the midst of implementing it. The development

has involved a substantial shift of emphasis towards semantic

regularity in the language, and a formal understanding of the
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kinds of reasoning processes which were described at an

intuitive level in the earlier paper. Much of this has been the
result of collaboration with Brian Smith at M.LT, who is

developing a semantic theory (called xrs for Knowledge

Representation Semantics) which grew out of attempts to

systematize and understand the principles underlying systems
like xrL.

The new aspects of KRL-1 include:

» A uniform notion of meta-description which uses the
descriptive forms of KRL-1 to represent a number of

things which were in different ad hoc forms in kr1-o.
The old notions which are covered include features,

traps and triggers, index terms, and a variety of other

detailed mechanisms. The emphasis has been on
providing a clear and systematic notion of how one
description can describe another, and how its meaning

can be used by the interpreter. A number of the

problems related to the manipulation of description

forms are solved by this approach.

» A more structured notion of the access and inference
steps done by the interpreter. The interpreter is written

in a style which involves operating on the meaning of
the forms, rather than the details of the forms

themselves. This makes possible a more uniform
framework for describing matching and searching

procedures, and the results they produce. It allows the

language to be described in terms of a clear semantics

(see Hayes, 1977 for a discussion of why this is

important). We expect it to make the development of
complex Match and Seek processes much easier.

» A notion of data compaction which makes it possible to

use simple data record structures to stand for complex

descriptor structures, according to a set of declarations

about how they are to be interpreted. This enables the

system to encode all of the internal structures (e.g. the

structure which represents a unit) in a form which can

be manipulated as though it were a full-fledged

description.

"» A compiler which converts simple Match, Seek, and

Describe expressions into corresponding INTERLISP

record structure manipulations, reducing the overhead

on those instances of these processes in which only

simple operations are to be done. This should make it

possible to preserve efficiency while writing much more

uniform code, with no need to use explicit r1sp

manipulations of the structures. Use of the notions of

compiling and compaction allows the conceptually

correct but notationally expensive use of uniform

metadescription to be supported without excessive
running cost in the common cases.
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» A uniform notion of systemevents which allows more

general kinds of procedural attachment, and includes
traps, triggers, and signals. Also, by including much of
the inTerLISP interface in description form, it has
become more uniform and understandable as well.

» A simplified syntax, in which indentation is used to

express bracketing, eliminating the need’ for most

paren theses. It also uses “footnotes” for attaching
meta-descriptions, and has simple set and sequence
notations.

» Simplified notions of categories, inheritance chains,

and agendas, which avoid some of the specific
commitments made in xrL—o.

» Expanded facilities for sets, sequences, scheduling,

time-dependent values, category hierarchies, matching

information and multiple-worlds. These are all built
up out of the simpler, uniform facilities provided in
the kernel, but they represent a substantial body of
standardized facilities available to the user.

We are currently exploring a number of different solutions to

the address space problem. Until .zsp systems with a larger

address space are available, some sort of swapping mechanism

will be necessary, but we see this as a temporary rather than

. long- term problem.

The cycle of testing on KRL-1 will be similar to the one
described in this paper, but with an emphasis on a smaller

number of larger systems, instead of the multiple
mini-projects described above. We feel that with KRL-0 we

explored a number of important representation issues, but
were unable to deal with the emergent problems of large

systems. Jssues such as associative indexing, viewpoints,
concurrent processing, and large-scale factoring of knowledge

can only be explored in systems large enough to frustrate

simplistic solutions. Several programs will be written in
krL—1I, ON the order of magnitude of a doctoral dissertation

project. Current possibilities include: a system for
comprehension of narratives; a system which reasons about
the dynamic state of a complex multi-process program, and
interacts with the user about that state; and a travel

arrangement system related to GUS (Bobrow et. al., 1977).
Current plans include much more extensive description and

documentation of the system than was the case with xrrL—o0.

We do not view KRL-1 as the final step, or even the

next-to-last step in our project. In Bobrow and Winograd,
1977 (pp. 34-36) we discussed the importance of being able to

describe procedures in kr: structures. Our plan at that time

was to design a comprehensive programming formalism as

part of KRL-I. In light of the shift of emphasis towards
better understanding the aspects which we had already
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implemented, we have postponed this effort for later versions,

still considering.it one of the major foundations needed for a

full xr. system. There remains .the large and only vaguely

understood task of dealing in a coherent descriptive way with

programs and processes. It is likely that to develop this aspect

will take at least two more cycles of experience, and as we

learned so well with xr1.—0, there is always much much more
to be done.
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7. Knowledge Based Programming
THE DESIGN OF °9

, THE PSI PROGRAM SYNTIIESIS SYSTEM

Cordell Green

Artificial intelligence Laboratory,Computer Science Department,Stanford University

Keywords: automatic programming, program understanding, The user specifies or describes the desired program through
knowledge-based systems, natural language, program an interactive dialogue between the system and the user,
Inference, algorithm analysis, automatic coding, program where each Is able to take the Initiative in leading the
synthesis, program modeiling discussion and asking questions as the situation requires. The

intent is that the dialogue be as natural as possible to the
user for the particular class of programs being produced. We
allow two specification methods In the initial implementation.
The principal method is the use of natural language, in

Abstract particular a reasonably useful subset of English. A second
specification method available to the user of PSI is traces, a

This paper presents an overview of the current state of the Sequence ‘of “snapshots” of the state of execution of the
PSI automatic program synthesis system and dicusses the desired program. Effectively the user shows the system in a
design considerations. The PSI system allows a user to step-by-step manner how the desired program should work.
specify a desired program in a dialogue using natural language and then the system writes the actual program.
and traces. PSI then synthesizes a program meeting these

specifications. The target programs are simple symbolic PSI is organized as a knowledge-based system containing a
computation programs in LISP. great deal of information about the process of writing a

program and about discussing a program with a user. The

PSI may be described as a knowledge-based program system is organized as a set of closely Interacting modules or
understanding system. It is organized as a collection of experts. There are programmed modules for the following
closely interacting modules, or experts in the areas of natural areas.
language, discourse, traces, application domain, high-level

program modelling, coding, and efficiency. An implementation Parser-Interpreter
effort is underway and several modules are now working. Discourse (including User Model)

Application Domain

Trace Understanding

1. Introduction Model Building (constructs @ model from fragments)
Coding (pure programming knowledge)
Ef ficlency (Including algorithm analysis)

This paper describes the research goals and system design of There is currently no explanation or natural language

a knowledge-based automatic programming system, PSI generation system, although such an expert is clearly needed.

(sometimes referred to as ¥). The PSI program allows a
user to interactively describe in natural language a desired The operation of the system may be said to fall into two (not
program. PSI then synthesizes a program meeting the entirely distinct) phases. The first is the model acquisition
specifications. The PSI system is a group project being done phase in which a high-level model of the desired program is
at the Stanford University Artificial intelligence Laboratory. built up through conversation with the user. Ihthe second
The personnel include David Barstow, Jerrold Ginsparg, phase, an efficient program that meets these specifications is
Cordell Green, Elaine Kant, Brian McCune, Jorge Phillips, produced.
Louis Steinberg, and Ronny van den Wuevel. Former members

include Avra Cohn and Bruce Nelson. As of November 1976 an initial implementation of
the PSI system has been completed and has

PSI deals with the world of symbolic computation (as successfully synthesized several programs from

opposed 10mt) andtoniat natural language dialogues. In particular, the two
processing, searching, sorting, set operations, data storage synthesis group modules, the coder and the
and retrieval, and pattern matching. efficiency expert, have synthesized many test

programs. The parser-interpreter works properly
There is a variety of programming applications that can bc on several of the target dialogues, including the
made up out of these kinds of techniques, including algebraic one presented in this paper. The model builder
simplification, symbolic learning programs, simple data can currently construct program models from a
management systems, etc. We expect the class of programs ~~ few dialogues. There are partial implementations

a eC eds oan, for the other modules in the acquisition group, but
programs that use increasing amounts of boihlow-lcvcl they are not yet in a state to be interfaced or
programming knowledge and of higher-levci or application- tested. In general, our progress Is encouraging,
specific knowledge. We present later in this paper an and we hope to be able to report in later papers
example of a specific learning program to be written by PSI. the details of the impiementations and the

successes end iimltations of our design.
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How does this system compare with others? At {he time of Wc also hope to shed light on ether research issues, although
its design there were no really comparable systems in In a sense they are less pressing, due to the amount of effort
cxistcnce, although a few arc similar. The closest was already being expended on them by others. These areas
Hcidorn’s natural language programming system [Heidorn, include work on parsers for limited natural language and the
1974 7. which was a specialized design for writing simulation use of inference and problem-solving techniques for program
programs. There are three other automatic programming synthesis.
research projects whlch rely on natural language, at MIT, ISt, 2.1 Dcsidcrata

and IBM Yorktown Heights. All of these projects have the

same global goal of making programming easier. Since all of In arder to accomplish our research objectives, it was
these projects, including ours, are continually undergoing necessary to carefully draw up a set of design constraints
redefinition, it is somewhat speculative to compare them, but that was ambitious enough to force us to look at the
we can try. Our system is distinguished from fie others important issues and yet limited enough to make the project
perhaps by its scope--ranging from the usc of traces as feasible. The design constraints decided upon are as follows:
inputs to reliance on discourse cxpcrtisc, domain cxpcrtisc

and some automatic analysis of algorithms for cflicicncy. In Program Specification: The specification process may bc
addition to using all of these parts, we are concentrating on interactive. The range of specificity allowed the user is
finding solutions to the various problems of system large, varying from one extreme in which the user gives
integration. The other projects may be distinguished from great detail, to the other extreme in which the system uses
ours as follows: At MIT the OWL project [Hax and Martin, its domain knowledge to suggest a complete progam. More
1973). emphasizes natural language. A second MIT project than one natural specification method will be available to the
(PROTOSYSTEM 1) deals with a system specially devised for user (forcing the system to internally integrate different
the problems of data management and inventory control. forms of program description). A program can be specified
Currently, these two efforts are not integrated into one relative to an existing program (this is similar to a program
system, At ISI[Balzer, 1974), there has been greater modification capability, but in our system the modification
cmphasis on acquisition of domain knowledge from English occurs at the program description level).
rather than having this knowlcdgc built in, as in our system.

That IS! effort focused on the program model acquisition Languages for Program Specification: These should include
phase rather than producing efficient code from the model. examples, traces, and a reasonable subset of English.
IBM [Mikclsons, 1978] has shifted major emphasis from

synthesis of new programs to understanding of existing User Interaction: Both the system and the user will be able to
programs, utilizing Heidorn's system for the natural language explain the program, ask necessary questions, and provide
processing. In summary, these efforts are complementary, answers. A mixed-initiative dialogue will be possible.
each ernphasizing somewhat different aspects of automatic

programming. There is, additionally, much research on Documentation: The system shall be able to explain its
relevant independent subparts of the entire problem, ranging operation and its finished program by answering "why" and
from natural language to analysis of algorithms. The research “how” questions at each significant lcvel. These reasons
in related areas is too voluminous to discuss here, but two should form the basis for a later system that would produce
recent papers survey the field of automatic programming readable documentation. This would require additional
[Hoidorn, 1976].[ Biermann, 1976). information on how to convert reasoning chains into readable

prose. We are not currently working on this problem.

User: The user must have in mind a general idea of the

2. Research Objectives desired program, should be a programmer, and should be able
to stay within a limited subset of English. If thcuser's

general view of the program is at odds with the domain

Our major reason for atternpting a synthesis of the many knowledge of the system, then the user will have to be very
aspects of automatic programming was the belief that an specific, but still will need no detailed knowlcdgc of the
attempt to integrate a total system would serve to focus target language.
research efforts. There has been much research on particular

related sub-problems, e.g. program Inference from traces or System Model of tho User: The system will have a
| examples, and program synthesis from formal specifications, reasonable model of the user and of the discourse. The

but we felt that an overall framework was missing. Without model will Include topics under discussion, degree of user
knowing ‘where and how the pieces would fit in, it was initiative, discourse history, etc.
difficult to decide on optimal research strategics for the

parts. For this reason we have chosen relatively long-term Class of Target Programs and Knowledge: They are,
total system goals. We are evolving a framework to meet generally, symbolic computation programs. At the lower
these goals. levels, the type of programming knowledge necessary to

write them includes such subjects as list processing. sect

In our efforts, we hope to establish the feasibility of this operations, sorting, pattern matching, etc. The system shall
approach to automatic programming, and to answer some key have domain knowl>dge about higher-level application or
questions, such as: How should a total system bc organized? problem domains, c.g. data management programs, symbolic
How much programming knowledge is needed to accomplish a classification programs, simple leaming programs, etc.
particular task, and can this knowledge be cedificd in machine Initially, the system shall know about one high-level domain--
form? How critical arc questions of efficiency, and can that of concept formation programs. This domain is rather
algorithm analysis techniques bc automated in any uscful broad and presumes some simpler application uoinains, such as
way? 00 there exist alternative natural ways of expressing classification and symbolic (as opposed, say, to statistical)
programs that are better than current pragramining languages? pattern recognition.



Variability in Target Programs: The system will allow a That is, we do not expect to automatically devise really good
varicty of alijorithm and data structures in the programs being sort algorithms from first principles. Instead, our sysicm will
constructed. For fow-leve! algorithms (such as table look-up be able to synthesize a reasonable sort routine or cvena
or setinlersection) there should bc several varictics of variation that is suitable for the task at hand, but it will know
aiqgorithun and data structures that the system can synthesize the principles of sorting and programming necessary for that
for each problem. Data struétures should include lists, arrays, derivation from the outset.
records and references. Control structures should include

iteration and recursion. At higher levels, the system should . : :
be able to produce many significantly different types of 3. "A Sample Session with PSI
prograrns (although we don‘t quite know how to characterize

this desired variety except to list typical target programs). 3.1 The Specification Dialogue

Efficiency of Target Programs: The programs produced To show how our system will work we present here a
should be efficient. i.e. cornparablc to those produced by an dialogue In which the user describes a desired concept-

. average programmer. This will require some algorithm formation program. This dialogue has been uscd for hand
analysis capability beyond conventional optimization ~~ simulations to guide the design of PSI and should be
techniques. representative of its capabilities. We have prepared 20

dialogues for 20 different target concept formation programs,
2.2 Assumptions about the Future World of Programming to characterize the desired performance; the program

discussed here is approximately mid-range in the difficulty

Underlying this set of constraints and choices about What level of the target dialogues. Other dialogues wc prepared
abilities are important to include and to omit in planning an specified a symbolic pattern classification program and a
automatic programming system for the future, there are a simple data storage and retrieval program.
few assumptions about what the programmhg environment of
the future will be like. We would like to warn the reader that the dialogue is

illustrative of our intent but should not be construed too

Perhaps the most significant assumption is that much higher- literally. In particular, this dialogue endows PSI with an
level languages will come into use in our interactions with impressive English synthesis ability. While this makes for
computers. Limited English is a very high-level language easier reading, our near-term implementation will use simpler
suitable to certain applications. (This does not imply that an standard responses, since synthesis of natural language is not
algorithmic language such as ALGOL has no place, but merely the focus of our research. We also anticipate the necessity
that it can often be successfully rcplaccd.) When we are of more interaction to disambiguate the user sentences.
specifying a program in English, there is little nced for the

user to go through the target language program and make To understand this dialogue, wc digress briefly to discuss in
changes at that level. If the user wishes to modify a general what a “concept formation program” is. It is a typc
program, the desired modificatinn would be expressed at the of simple learning program that takes as Input several objects
English level, not at the target language level. Reflection that are instances of some concept and also several objects
upon this point implies that our si:iem need not necessarily that are not Instances of the concept. As output, it produces
modify object or target programs in the conventional sense an abstracted description of the concept so that given a new

of program modification. Instead, a high-level internal model instance, it can classify that instance a5 representing thator description of the desired program would be modified, and concept or not. A typical concept formation program, given
a new and efficient program could be produced from this the instances
model. Whether or not any of the old program would be

used or modified would be a question of synthesis efficiency part of the concept not part of the concept
to be decided by the code-producing part of the automatic bluo circle blue square
programining system. Coranilers provide a good analogy. biuo oval rod ellipso
Users need to look at target code only for special purposcs;
most interaction is carried out at the source code level.

might conclude that the concept includes “blue, curved

A second assumption is that some part of the art of computer ~~ shapes” as features. Then, given a new instance "ycliow
programming can be made into a science or a theory of circle,” the program would say “not an instance of the
computer programming. In addition, we think that this theory concept.” In our dialogue the input instances are called
can be a detailed, machine-usable theory of the process of “scenes”, For further explanation of concept formation
programming. We are assuming that such a theory can be put programs, the reader may peruse section 4.3. Concept
into some form of rules, embodied in a computer program. formation programs can also be quite complex; for example
Evidence that this is possible is provided by the machine- Winston's doctoral thesis [Winston, 1975) was bascd on

usable theories 0 f sorting [Green a nd Barstow, such a concept formation program. Our current example is
1976].[ Green and Barstow, 1975] and theories of hash one that lies somewhere between these two cxtremes,
tables [Rich and Shrobo, 1974). The important questions Concept formation is in fact quite a good domain, since the

are the amount of knowledge that will be n=cessary to carry programs involved call upon an interesting body of
out synthesis of a particular class of programs and the programming ideas and these programs can vary consider ably
difficulty of embedding this knowledge in useful programs. in difficulty. They exercise our system well. Oar targ.:t

programs are typically several pages of moderately complex
Although there is an optimistic feeling that conventional LISP code.

synthesis knowledge can be encoded in a machine-usable
theory. we imagine that it will bc more difficult to be able to

automatically synthesize novel and very clover clgorithins.
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dialogue is as follows: :
The g [21]JUSER: Yes, stop whenthe user types quit instead
[1] USER: Please write me a theory formation of an input scene.

rogram.

progra [22]PSi: OK. Now we need to talk about inputting a

[2] PSI: What would you like to call the theory pay esd weiner ie at he ne concept,formation program? erl ying e result o e test wi the uscr, and
updating the concept. Would you describe the test

[3] USER: “TF”. - that a scene fits the concept?

[4] PSI: Tell mc more about TF. [23]USER: OK. Trei scene fits the concept if allathe concept that are marked

[5] USER: Where should | start? “necessary” are part of the scene.

[6] PSI: First, lets make sure we're talking about the [24]PSi: What is the concept initially”
same thing. | will assume that by "thcory CL
formation" you mean what Is frequently referred [25]USER: It has no relations stored initially.
to as concept formation. To me, a concept

formation program is a program which accepts [26]781: OK. Can we tak about how to verity the
scenes from a user end forms theories to explain esutt o
or model the scenes. Is that close to what you

ano at y [27JUSER: Yes. Output the result of the test, ask the
user if this is correct, and input the user's

[7] USER: Yes. response. The response should be either corrector
wrong.

[8] PSI: There are now several things to talk obout: [287]PsI: What should be done if the user's response is
the input scenes, the structure of the thcorics, and neither?
the theory formation algorithm. Is that OK with

you? [297]USER: Output “type correct or wrong” and input a
new response.

[9] USER: Yes.

} [30]Psi: In what output format should the result of the
[[10]PSi: What is the structure of the input scenes? test be output given?

each of which is a properly name foilowed by the didn't.
navies of the objects over which the property

holds. [32]PSl: OK. | think we are done talking abcut
verifying the result of the test. Can we talk about

[12]PS1: OK. | think we're done with scenes for now, how to update the concept now?
Is it all right if we go on now to talk about the

theories? [337]USER: OK. Thcrc are four cases, depending on
whetherthe scene fit or didn’t and whetherthe

[ 13]JUSER: Yes. user said the program’s gucss was correct or
oo wrong. If the scene fit and the user said the guess

E14]Psi: Should the program maintain several different was correct, then every relation thatis part of the
theorles at the same time, or only one theory? scene but not part of the concept should be added

\ to the concept and marked “maybe”.
[15]USER:| call theories “concepts”. There should be

only onc of them. It shouldbe a set of relations, [34]PSi: [interrupts] Above you said that relations in
each marked either as “possible” or “necessary”. the concept were to be marked "possitle” or

. "neccessary", Do you want to add “maybe” as
[16]PSI: OK. | think we’re done with concepts for another marking?

now. Is it OK if wc go on now to talk about how

a scene is used to form and modify the tiworics? [35]USER: No, “maybe” means the same as “possible™.

[17 ]JUSER: Yes. [36]PSI: Go on.

[ 1 8]PS!: Please describe the top level of TF. [37]USER: Where ami?

[19]USER: It inputs a scene, tests whether it fits the [28]PS!: You were just talking about four different
concept, verifies the result of this test wiih the cases f 0 r updating the concept. You had just
user, and updates the concept. Then it repeats tie talked about the case wlicre the scene fit and the
pt OCCSS. user said the uess was correct,

[20]PsS!: | take it you mean that it repeats uniil the
user provides an exit signal.
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[39]JUSER: OK. The next case is If the scene fit, and TE AVEDA (x Y)
the user said “wrong”. then find a relation in the (PROG (STATE)

concept which is marked “possible” and which is RPT SETS STATE (COR X))
not in the scene. Change its marking to ((NULL STATE)

“necessary”. If the scene did not fit, and the user CIEVIBER. (CAR STATE) ¥said correct, then do nothing. If the scene did not (SETQ STATE (CDR STATE)
fit, and the user said wrong, then for each relation ) (GO RPT)Y)
in the concept marked “necessary” that is not in (Tr --
the scene, re-mark it “possible”. (RETURN NIL})

OER | FY

[40]PSI: In the case where the scene fit and the user [LAMBDA (TE)
said wrong, what if there is no description in the (PROG EER
concept marked possible that is not in the scene? (PRIN1 (COND

(TRY fit”). i |] ”

{417]JUSER: Do nothing. (TERPRI) (T "didn't £1273)
(PRINI "correct or wrong? ")’

[42]PSI: Can we talk about input formats now? IN SE RESPONSE (READ))
oo ((EQP RESPONSE (QUOTE CORRECT))

[43]USER: OK. Input a scene es a list of descriptions, (RETURN T))

where each description is a list of the property CO Ere (QUOTE WRONG))
name followed by its objects. (T (PRIN1 "Type ‘correct’ or ‘wrong’®)

(GO IN})

[44]PSI: OK. How should TF prompt the user for an
input scene? (UPDATE

les (INPUT GUESS RESPONSE)
[45]USER: By typing reedy. - [GUESS (COND

(RESPONSE (UPDATE: FIT: CORRECT INPUT))
[46]PSl: That seems to complete the description of TF. (NOT RESPONSE) FIT: WRONG INPUT]Anything else? (UPDATE: DI DNT: WRONG INPUT) )

(T T))

[47 JUSER: No. (UPDATE: FIT: CORRECT
[LAMBDA INEUT)[487]PSi: Then | will begin writing the program now and (MAPC INPUT (FUNCTION ADD: POSSIBLE?] )

let you know if further questions arise. (ADD: POSS | BLE?
{LAMBDA XD

(COND . .

((OR (MEMBER X (CDR NECESSARY)

3.2 The Final Program
g (CONS X (COR POSSI BLE)

The resulting program produced consists of nine LISP (UPDATE: FIT: WRONG
functions in the hand simulation of PSI. We exhibit it here to [LAMBDA (INPUT)

give the reader a rough idea of the complexity of the output. (PROG (PRED)
: ) Lo - (SETQ PRED POSSIBLE)

Sce section 4.6 for a high-level algorithmic description of RPT (COND

this program, our program model which serves as the (NULL (CDR PRED))
principal intermediate representation (RETURN T))

(NOT (MEMBER (CAR FRED)NPUT))
(RPLACD NECESSARY (CONS (CADR PRED)

(PROGRAM-X | (CDR NECESSARY) ))
[LAMBDA NIL (RPLACD PRED (CDDR PRED) )

(PROG (NECESSARY POSSIBLE SCENE GUESS USER) (RETURN T))

(INITIALIZE) (T (SETQ PRED (CDR PRED))STAR (GO RPT})

(PRIN R d (UPDATE: DIDNT: WRONGv1 “Ready” : : .
STARTX Y) (LAMBDA (INPUT) |

(SETQ SCENE (READ)) (PROG (FRED)
{CCL (SETQ PRED NECESSARY)

( (ATOM SCENE) RPT1 (COND

(Cong (peATSRED) )((EQP_SCENE TE QUIT

RETURNA QUIT) ((NOT (MEMBER (CADR PRED)
(T (TERPRI) INPUT))

(FRIN1 “Type ‘quit’ or a scene") (RPLACD POSSIBLE (CONS (CAR PRED)

(GQ STARTY) (CDR POSSIBLE)))(SETQ GUESS (TEST: SUBSET (CDR NECESSARY) (RPLACD PRED (CDDR PRED))
SCENE)) (CQ RPT1))

(SETQ USER (VERIFY GUESS) (T (SETQ PRED (CDR PRED))

ial SCENE GUESS USER) (GO RPT1})GO START) )

(NIZE L For the reader concerned about a more "structured" program.
(5ETQ NECESSARY (LST (QUOTE NECESSARY: ))) the coder does indeed produce a cleaner intermediate(SETQ POSSIBLE (LIST (QUOTE POSSIBLE: 1) program: an example is given in [Green and Earstow,197G ].
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4. System Organization The specification phase consists of interaction between the
user and the system. The flow of the dialogue is governed

by the discourse expert, based on its measurements and

We will first describe the overall design and then discuss estimations about the user's state of mind (the uscr model)
each module in detail. and on the current toplc under discussion. The discourse

expert adjusts to changes in initiative (whether the user or

the system seems to be leading the discussion at a given
time), changes in topics (different users may want to discuss

different aspects of their programs in different orders), and

41 Tho System Design the degree of user control (different users may want the
system to make different choices automatically). Since the

The structure of the system is shown in the block diagram dialogue is to be conducted in a subset of English, there is a
here. Arrows indicate paths of communication, and the parser-interpreter which parses the sentences and then
experts appear in the frames. partially interprets them into a relational structure. The

ability to complete the interpretation of the incoming

“The experts may be conveniently divided into two groups, utterances (and to make reasonable responses or requests)
acquisition and synthesis. The former group of experts requires the help of two other modules: the domain expert
acquiresa model of the desired program from the user. The and the model-building expert. The domain expert interprets
latter group synthesizes an efficient target program that terms with domain-specific meanings, providing disambiguation
satisfies the model. The majority of the interactions within information to the natural language expert. It provides
the system are within each group, and the program model is guidance to the discourse expert regarding the user's
the major communication between the two groups. (It turns apparent knowledge of the domain, and provides help to both
out that ths simplified view is not quite accurate, since, for the user and the model-building expert regarding possible
example, certain questions from the efficiency cxpcrt can algorithms and information structures to be used. In addition
reach the user, but the division is convenient and mostly to the English dialogue input, input in the form of traces and
true.) examples is allowed. The trace expertinterprets such inputs,

receiving help in the process from the domain cxpcrt. Its

The program model can be scen as a very high-level language output to the model builder is a partial description of the
program, or alternatively, as a description of a program. It ~~ program. The model-building expert constructs a comptcte and
allows high-level procedures and information structures, as ~~ consistent high-level program model by assembling
well as assertions about these items. We have developed an fragmentary program descriptions from the user, the domain
exact language for specifying this model. It is concrete ~~ expert, and the trace expert, and by asking questions when
enough that it can be interpreted, albeit slowly compared to ~~ necessary. It also acts as a source of information for the
the synthesized program. The interpreter for the model user and all of the other experts regarding the program model
language has been implemented by Bruce Nelson [Nelson, being constructed. Hs knowledge includes very generat high-
1976). level program description knowledge.
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| n the synthesis phase PSI takes the program model and ow 65
: : (FIT NN

derives a LISP program from it. The process is based on a (SUBJECT (SCENE THE))
body of systematized, codified programming knowledge to (OBJECT KOSCEPT THE))
which the coding expert will have access, When faced with a (IF (BE NY: : CL (SUBJECT (ALL
choice, the coding expert is guided by the efficiency export, (OF (RELATIONS THE

which evaluates the alternatives in terms of relative space SLA KOSCEPT THE))
) and time efficiency. The efficiency expert uses heuristic OBJECT THAT)

analysis of algorithms techniques. 1) (MARKI NG NECESSARY)
A comment on the modularity of our system may be (OBJECT (PART (OF (SCENE THE))))))}
appropriate at this point. In this presentation, and in our where NN and PN are tense markers.
design,we have drawn somcwhnt over-simplified boundaries

around the various modules Or experts, Two purposes are

served by this simplification: firstly, the system is made From this parsed form, it produces the following INT form.
easier to understand, and secondly, both responsibility and

credit for the implementation of particular system capabilities -
becomes easier to assign, in practice, such a clean and EQUATE adverb
simple separation is not always possible or efficient. A shou| Cl

closer examination will reveal that the required degree of

communication between certain modules can be quite large, | argl arg?
and that certain tasks may require cooperation between two

or more experts. For this reason, the implementation is more

complex than this design indicates; some knowledge is equated-to
duplicated for the sake of efficiency, and some code | (should)
“oelonging” to one-expert is physically located within another

expert. For a further discussion of some of these issues, sec — | memberof[Barstow and Kant, 1876]. Now that the rcader has been amount
warned that the design presented-here is over-simplified and

in some cases untested, we proceed with the exposition,
plural

mark ing

4.2 Parser-intorproter TRUE |

The function of the parser-interpreter is to parse and partially object
interpret sentences into less linguistic, and more program-

oriented terms. it consists of two parts, READER and SPAN. argl argz
both described in [Ginsparg, 1976]. READER is a
nondeterministic parser. The SPAN program converts the | POSSIBLE NECESSARY
output of the parser into a more usable form called INT. INT
is a relational structure, suited for describing programs. in

INT some pronoun and noun references have been found.

Verbs and nouns have taken on subject-specific senses. For sub ject
example, "of" can be interpreted to be set membership, “is”
can be interpreted to be data-structure definition, etc. condition : SCENE

We now show a simple example of whst the natural language object

expert does. Given the two sentences, partof

"lt should be a set of relations, each marked either subject

as possible or necessary"

“The scene fits the concept if all of the relations in marking
the- concept that are marked “necessary” arc part NECESSARY

of the scene | per
it produces the following parses: TRUE

{BE (NN SHOULD)
(SUBJECT 1 T)

(OBJECT The natural language piograms interact with thc dialogue

CET A (RELATIONS expert, domain cxpcrt, and model buifdcr, Ail of these
(DESCRIPTION EACH experts play a role in the disambiguation of the input. Take,

(MARK OB) ECT NOUNDIM) for example, the sentence
(MARKI SG (OR (EITHER)

POSSIBLE "It inputs a scene, tests whether it fils the

Miiritied concept, verifies the result with the user, and
updates the concept. Then it repeats the
process.”
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ihe references for the italicized parts may be found as The concept is initially null. The scene

follows: the first ifis solved by the parser-interpreter and

dialogue expert by knowing which topic was just asked (Block a)
about: the second it is solved by the domain expert using (Block Db)
knowledge of what Can fit a concept; the last it and the (Supports b a)
process use knowfcdgc from the domain expert and model is input to the TF program. Match the scene and
builder about what a concept-formation program can do, and the concept. The scene fits the concept. Output

what constitutes a process. “fits” to the user. Prompt the user. The user
.. replies “correct”, and the concept becomes

4.3 Trace Expert (Block a) possible)
Block b) possible

The trace expert allows the usc of an alternative input Simos > b) cousiblc)
language to specify a program. A trace is a series of Assume now that the input scene is
snapshots of a program’s execution. Example input/output

pairs are treated as subcases of traces. The trace expert is (Block a)
strongly oriented toward inductive inference; i.e. it does (Block b)
more ‘guessing than natural language input requires, which in Match the scene and the concept. The scene fits
turn is more than conventional programming language input ihe concept, so output “fits” to the user and
requires. prompt her for a reply. The user replies “wrong”

so the concept becomes

Let us illustrate how one would input a trace of the ‘desired P
program to the system. The user gives a sequence of inputs

and internal states. In the example below, these states and Be ald
inputs correspond to the formation of the concept "tower". (Block b) possible)
The input consists of twc parts, a scene and its catcgory.

The niernal concept consists of two parts, necessary and The trace expert is being designed and implemented by Jorgepossible. Phillips. Its operation is described in more detail in [Phillips,
1976]. It is the most recent addition to the PSI system.

The trace shown here is shortened and specifies a simpler The J. | expert uses the natural language arser and
Bo than neo program specified I. the dialogue. ro interpreter on the English sentences. From these and special

: P er . y y p knowledge of input formats, a sequence of state-ask the user if that is correct.) charactcriring schemata Is produced. From these, a set of

Note that in this case, a trace is a conveniont way for a program model fragments is inferred and sent to the modelbuilder.

human user to communicate the generalidea about how a

program works. (It is a good way for the program to reveal The trace expert has several new and significant
to the user how it works.) In this case, and in certain others characteristics. It allows the use of high-level traces

we have studied, races are iy natural than med nate expressed in natural language. It also incorporates into the
OF Said anduages, a pol 1974 not universally race the use of example input-output pairs. Another featuretrue. For discussion see [Green et al, J is that it draws upon a large knowledge base, incorporating

. : . knowledge of Input formats and knowledge about inference

Since there is no graphic input available, the actual form of of algorithms and data structures. Finally, it utilizes
he. race input i ook more like the following excerpt from knowledge from the domain expert, which we feel is an
a dialogue specitying the TF program. important source of .constraint in a heavily inductive inference

oriented system.

INPUT CONCEPT

SCENE CATEGORY NECESSARY POSSIBLE

(1) none none empty set empty set

(2) 8 is a tower empty set (BLOCK A)
(BLOCK B)
(SUPPORTS A B)

(3) | A 88] nor a tower (SUPPORTS A B) (BLOCK A)
(BLOCK B)

(4) |B is not a tower (SUPPORTS AB) (BLOCK B)
a A (BLOCK A)

(5) /8\ is a tower (sUrPPORTs A B) (BLOCK B)
A (BLOCK A) (PYRAMID 8B)
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4.4 Tho Discourse Expert (including tho User Modal) Thus, the questions tend to be phrased in terms thc uscr finds
meaningful, i.e., terms related to the problem domain, rather

The discourse expert (or dialogue expert) allows for a very than the more programming-oriented terms used by the model
flexible interface with the user. This flexibility is one of the builder.
core issues of automatic programming; how well can a

- computer system bend itself to the current task and user, 4.5 The Domain Expert
rather than vice-versa? . The discourse expert is being .

designed and implemented by Louis Steinberg [Steinberg, ~~ The domain expert functions in several ways in the PSI
1976-4. system. Its principal purpose is to take partially interpreted

sentences as input from the natural language expert, and

The function of the discourse expert is to model the user, the produce as output more specific fragments of prograrn
dialogue, and the state of the system. Using thcsc models description, which are given to the model builder to assemble.
the discourse expert selects appropriate questions or In this process, the information is converted from a
statements to present to the user. It determines whether linguistically oriented form to a more program-usable forn,
user or expert has the initiative and at what level and on and much of the ambiguity is removed. The domainexpert
what subject. Additionally, it helps to disambiguate the also makes domain-specific inferences to fill in missing
natural language input by keeping track of the dialogue information. The output from the domain expert is in a
context. language called FRAGMENTS. FRAGMENTS is a program

description-oriented language, but is not specific chough to be

The parts of the discourse expert Include a semantic structure interpretable as a program in any ordinary sense. The domain
and a discourse tree. The semantic structure tncodcs the ~~ expert is described in more detail in [Steinberg, 1976].
semantic relations among the possible topics of discussion. Avra Cohn, Louis Steinberg, Jorge Phillips, and Brian McCune
These relations, such as super and subalgorithm, and usc of all helped in defining and formulating the domain expert. ‘The
data structure by algorithm define the set of potential paths current design and implementation is being done by Ronny van
the dialogue may take, in that any relation is a potential path den Heuvel.
for changing topics. The Dialogue Tree encodes the path

actually taken by the dialogue. Finally, there is a user model As an example of the domain expert's performance, suppose
that includes what topic(s) the user Is talking about, how it received the INT form of the sentences
much initiative the user has taken, how confused the user is,
etc. "It should be a set of relations, each marked either

as possible or necessary.”

We can illustrate the discourse expert's operation by

example. In the dialogue given earlier, we have a rcasonably “The scene fits the concept if all of the relations in
unconfused user, but one who asks for some guidance in the the concept that are marked “necessary” arc part
discussion. In this dialogue the discourse expert generally of the scene.”
suppresses questions, since the user's statements seem to fit

internal models of the domain. The first significant question For the sentence referring to concepts, "It should be a set of
“Tell me more about TF" allows the user to take the initiative relations, each marked either ‘possible’ or ‘necessary, the

and guide the discussion. At first the user is unsure and asks input to the domain expert in INT form is
where to start, so the discourse expert delivers a topic

outline provided by the domain expert and suggests beginning
with the first topic, the form of the Input. A heuristic is that

users and programmers often like to begin with the format of :

the input. This indeed works and the discussion is underway. | adverb
should

After digesting the input, the system suggests the next topic. ara)
Typitally, with complex programs, programmers get lost (lose g arg2
context) and some assistance is helpful. This occurs in more |

dramatic form In line 37 where, in the middle of a complex equated-to
algorithm the user asks, “Where am [7° (should)

Interruptions occur in line 20 and 40, where {he system member membero
perceives -a fairly serious omission. In the first case, a amount |
missing exittest implies an infinite input loop, and the system
suggests that the user provide a ‘stop’ command. In the

second instance, the user is listing what to do in cach case : 1
and forgets to say what to do in the last case. The plural
discourse expert decided that an interruption in the form of a marking
question would be less disruptive at this time than in alater TRUE

context. [cue o| EXCLUSIVE OR

At any moment, there are many questions being asked aral) : i : 4) argl

internally by the various experts. The discourse expert J \
sclects from among these the ones that will bc presented to POSS | BLE NECESSARY
the user. Some heuristics include the fact that a supcrtopic
subsumes a subtopic, and that usually,the domain expert's

questions subsume any related general programming questions.
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The program model fragments produced as an output provide ~~ The output produced is roughly,
the following information:

fit (input scene, concept) is defined to be

A Concept is an information structure. It is 8 set.

There Is only one concept. It changes during the (v rel ¢ concept)Marking(rel)="necessary"
execution of the program. Elements of the cct are =» part-of(rel,input scene)
marked features.

_ Again, it takes a slightly different internal form,
A marked feature is a pair (plcx) consisting of a

mark and a feature. A mark is a primitive. There The domain expert serves other purposes as well. It helps to
are two types of markings, may-marking and must- disambiguate input sentences by answering questions for the
marking. natural language expert during the course of parsing and

interpreting the sentence. Some disambiguation is done

A feature is a pair (plex) consisting of a relation interactively with the natural language expert and further
name and its argument list. dlsambiguation occurs after the natural language expert is

through and INT has been passed to the domain expert.

Similarly, the domain expert answers questions posed by the

trace expert, the model builder and even the efficiency

expert. To whatever extent possible, the domain expert

The above information is coded in the special internal prevents the nonessential questions from propagating to the
fragment language and really looks more like user. The domain expert is a very important information

source, and without one, an automatic programming system

(NAME CONCEPT has significantly less capability and utility.
CLASS INFORMATION STRUCTURE

TYPE SET In addition, the domain expert should enable thc system to
SIZE M1 NIMUM 0) carry on a relatively coherent dialogue by phrasing questions
DYNAMIC YES and comments which are in domain-specific terms and which
ELEMENT MARKED-FEATURE) are directly relevant to the user's particular idea of the

and soon. Observe that the domain expert has produced a domain. Finally, the domain expert should be able to inform
much more precise description of the data structure the discourse expert about how we he users apparent ae
information “concept”, adding information of its own that was oe obt alenes Pv : rom foeneJaio

. not previously known about concepts and features. Often, as - well re user Is folloning the system) 9
in this case, much of the detail omitted from the input

dialogue can pe supplied by ihe domain expert. Also noe Let us now look at the role of the domain expert in the
that fragments do not correspond in a one-to-one fashion to mole dial We can see the use of aeneral knowledae
sentences, but can be the result of several sentences or of sample dialogue. : : 9 °d9
part of a sentence. about, concept formation when input becomes the topic of

conversation:

As a second example, the INT form for the sentence “The [8] PSI: There are now several things to talk about:
receseary’ are part of he al the, elations that are marked the input scene, what the theories are like, and

’ how the scene Is used to form and modify the

theories. Is that OK with you?

Since the concept formation expert seems to be following the
. user fairly well, the discourse expert assumes that responscs

object subject suggested by the concept formation expert are the most apt.
As part of its information about concept formation, the expert

knows about the nature and purpose of inputs to typical

condition SCENE concept formation programs, and in particular that inputs are
information structures. The form of information structures Is

of interest, since it helps specify what sort of concept

object formation program the user wants. Therefore, a question is
osed to the user:

par tof P

RY [ 1 0]PSi: What is the structure of the input scene?
marking Further information about inputs enables the concept

NECESSARY formation expert (and the system) to follow the rest of the
discussion about inputs.

plural

It is our intent to separate the domain knowledge as much as

TRUE possible from the rest of the system. This modularity should

help to maintain the generality of the rest of the system, so

that a new domain can eventually be added. Accordingly, this
expert is organized with most of the knowicdge encoded in

an easy-to-modify relational data structure,
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4.6 Tho Modal-Building Expert sets, and nmultisets), plexes (record structures), booluans.

and strings. The high-level procedural units, Abstract Control

1 he model-building expert (or simply “model builder”) Units (ACUs), Include partially ordered se';of actions, tests,
contains high-level, general programming knowledge and rules cases, loops, and many high-level operations oi the AlUs

for assembling fragments of program description into a (e.g., take the inverse of a correspondence). The moda!
complete algorithm and information structure model. These builder's programming knowledge occurs at two levels: (1)

fragments come from the domain expert or trace cxpcrt. In the syntax and semantics of the primitives of the modelling
the event that the domain expert or trace expert cannot help language and (2) high-level knowledge built upon tis base.
in interpreting INT, the model builder can attempt to perform This second type of knowledge includes ways of expressing
the same interpretation and disambiguation functions as the common constructs such as names of objects, relations, data

domain expert, although the task is more difficult without which arc input, input-and-process loops, ang
domain knowledge. The model builder is being designed and correspondences.
implemented by Brian McCune [McCune, 1976).

To clarify the notion of a program model, Brian McCune has

The program model (also called the algorithm model) itselt prepared a simplified program model for the TFprogram,
may be thought of as a very high-level program, allowing which Is shown here. This example represents about half of
annotation, such as comments about the information the program model; all information structure descriptions,sel

structures, the constraints on the program, which parts of the sizes, branching probabilities, cross-references. and other
program use what data, likely sizes of data sets, and annotations have been omit ted. Also, we do no! have

sometimes estimates about the probable outcome of tests sufficient space to define the terms used. Still, we feel that

used for branching. The high-level data structures are’ called from a perusal of the version given here the reader may gain
Abstract Information Units (AlUs) and include a better understanding of the procedural portion of the model,
correspondences (mappings), collections (sets, lists, ordered

THE PROCEDURAL PART OF THE PROGRAM MODEL FOR TF

Input. and_ process:
Initialize:

parbegin
Initialize labels:

necessary « new_ primitive(necessary prototype),
possible « new- primitive(possible. prototype);

Initialize. concept:
concept « new_correspondence(concept_ prototype, @);

parend;
Input_and_process_body:

loop until exit;
Input and test for. exit:

Input:

input_data « input(input_data. prototype, Ready”, Type ‘Quit’ or a scene.)
Test-for-exit:

if input_data = "Quit” then exit else distinguish{input data,relations),
Process:

Classify:
Test fit:

‘ test_fit_ result « concept” (necessary) c relations;
Verify:

Output. test fit. result:
inform user(if test_fit. result then "Fit" clse “Didn't fit");

Input-verification

user response « input(user response prototype,“Is this correct or wrong?" “Type ‘Con ect’ or ‘W rong);
Undate:

case (test_fit_ resultuser response) of
begin
if test. fit resultA user response= “Correct” then

V rel € relations | rel ¢ domain{concept)
do establish correspondence(concept,rel » possible);

if test.fit. result Auser. response = “Wrong” then
if 3 rel € concept” (possible) | rel ¢ relation 5
then establish correspondencelconceptyel » necessary),

if ~test fit result A user response - “Correct” then nil,
i f ~test fit result A user response = “Wrong” then

V rel € concept H(necessny) | rel ¢ relations
do establish correspondence(conce ptrel -» possible),

end;

repeat;
Exit:
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As an example of the operation of the model builder, suppose The model-building expert also acts as a source of
that it received the model fragments discussed in ihe domain information for the wuscr and the other experts in the system,
cxpcrt section, Rccali that one sct of fragments was the an example of its providing help to the dialogue cxpert is the
definition of a concept as a collection of marked fcaturcs. disainbiguation of referents in the dialogite. it does this by
The model builder uses this as the basis for constructing an keeping track of the most recently discussed portion of thie
Abstract Information Unit. In . this case ihc concept is model and determining which possible referents are plausible
represented as a correspondence between relations and their in terms of the semantics of the model. An example of help
labels, “necessary” and “possible”. The correspondence to the efficiency expert might consist of providing a list of all
representing the concept is marked as many-to-one, with the the accesses of an information structure so that an efficient
set of relations in the concept as the domain, and the set of data representation can be selccied.
two labels as the range. Correspondences can later bc

implemented by the coder in many ways, e.g., using. tables, The model-building expet t must check that the final progrem
association lists, functions, etc. The Internal representation model produced has no obvious inconsistencies, either
for this AlU is intcrnaiiy or as it relates to the desires of the user.

Consistency checking at each step will thus help assure a

rs ir program model which is both legal and correct. This capability
TYPE CORRESPONDENCE is useful for program modification, where small local changes
SUPER-AIUS %0 can cause interactions with other parts of the modcl and have
INSTANCES (CONCEPT-1XSTASCE) tremendous implications for later implementation choices.
DOMAIN-AIU RELATIONS- I N-COXCEPT :

DOMAIN SIZE GIININUM 0 MAXIMUM ¥1L 4.7 The Coding Expert
MEAN NIL VARIANCE NIL)

RANGE-AIU LABELS The purpose of the coding expertot coder" is to take as
RANGE SIZE (\1NIMUMO MAXIMUM 2 input the program model and produce as output an efficient

MEAN NIL VARIANCE NIL) target language program that satisfies the program model.
WHAT-TO-ONE MANY The coder interacts closely with the efficiency expert in this

- task. The knowledge base f o r the coder consists 0 f

Another type of high-level structure used by the model relatively “pure,” domain-indcpendent knowlicage about the
builder is the Abstract Control Unit, which provides control of process of programming. The Coding Expert is being designed
procedure flow. As an example of the use of ACUs, consider and implemented by David Barstow [Barstow and Kant,
our other scntence stating that the scene fits the concept if 1.076).
all relations in the concept that arc marked "nccessary® are

part of the scene. The on representing this scntcncc % the jo show by example how it works, consider the high-level
model fragment discussed in the previous section, information structure, a correspondence, used to represent a

concept. The coder sclects a proper data structure to

fit (input scene, concept) is defined to be implement the correspondence. Recall that the
correspondence maps the set of necessary relations into the

(v rel¢ concept) Marking (rel)="nccessary" term “necessary” and the set of possible relations into the
» Part-of(rel,input scene) term “possible.” By analyzing all uses of the correspondence,

as discussed in the next sectionon the efficiency expert, an

This fragment (along with knowledge from other fragments, appropriate data struciure is chosen, Pio set Of “necessary’
including the information structure sclcctcd for the relations is represented by a linked list, and that list is
correspondence) yields the high-level algorithm structure jejoronced oy being the value of He atom HY In order to
which we may describe as facilitate insertions and dclctions, a special clement is kept as

the first element of the list. Thus (CDR N) is a pointer to the

test-fit-result « [Concept-' (necessary) c relations] list of elements. The "possible" set is represented similarly.

This statement then forms the test-fit scction of the Consider next the test to sce i f the input fits the concept.
procedural part of the model shown earlier. This means that Recall that the condition for successful fit was that the set
the result of the “fit” test is true if the inverse mapping of of necessary relations must bc a subset of the input scene
the range element “necessary” under the correspondence relations. So a subset test must be constructed. The input
"concept" is a subset of the relations of the input scene. scene 1s represented as 8 linked list and is the value of a
Observe that the test has been mapped into suitable high- variable, "I". The completed program for the test is
level operations (inverse and subset) on the high-level (PROG (STATE)
information structure, and that the result will be remembered (SETQ STATE (CDR N))
in the Boolean test-fit-result for later use. RET (COND

((NULL STATE)
O n c e this program modcl h a s been completed t o the AOR STATE) I)
satisfaction of the model-building cxpcrt, control is turncd (SETQ STATE (CDR STATL))
over to the coding cxpert for synthesis of a LISP program (T (GO RFD)
which satisfies tic descriptions in the modci. Note, however, (RETURN NIL)Y))

that this process is not necessarily scqucntinl: the coding
cxpert or the efficiency expert may have questions for the The coding expert uses a large knowlccge base of
model-building expert about possible further assumptions programming lecaniques to generate, In successiveiy ine!
which, if considered before coding occurs, would Icad to a detall, alternative algorithms and data structures that satisfy
better program. its goals. These techniques, along with simple keariedge

bases, are discussed in [Green and Barstovs, 19767]. [Green



| and Barstow, 1976]. The knowledge and methodology, as 4.8 Efficiency Expert rl
expanded in these papers and in the implementation of the

coder, constitute our first attempt at a theory of the process The function of the elficicncy expert is to select effirient
of programming, algorithms and data structures, from the alternatives offered

: by the coding expert. The tools available are analysis of
To exemplify the coding process, consider the subset algorithm techniques, heuristics, and sinwlation. The
operation above. One method of testing whether set A is a efficiency expert uses primarily the first tvso methods.
subset of set B, is to test whether all elements in A are Based upon sizes of data sets, probabilities of the outcomes
members of B. This may be done by enumerating over A, of tests, algorithm and data structures, and costs of
testing each element for membership in B. In order to operations, it is able to calculate symbolic space-time cost
enumerate A, an enumeration order is selected, a method for functions of competing alternatives. The efficicncy expert is
saving the state of the enumeration is selected, and then a being designed and implemented by Elaine Kant [Barstow and
loop is written, having appropriate body, initializer, Kant, 1976].
incrcmenter, and termination test. Each part is selected

intelligently, e.g., if the set is a linked list, the enumeration As an example of the operation of the efficiency cxpcrt,
order is front-to-back, and the state saving scheme is a consider the choice of the data structures to represent a
pointer that moves along the list, and if the target Innguogc is concept. The concept Is a correspondence between the
LISP, then the termination test is a test that the pointer has necessary relations and the label “necessary”, andbetween
the value "NIL." the possible relations and the label “possible”. There are

The coder proceeds through these steps of generating many ways to represent a correspondence, including various
alternative data structures and algorithms. At choice points, forms of tables, bit maps, or functions. Let us examine the
the alternatives are passed to the efficiency expert for choice between only wo alternatives. We shall call the two
recommendations about which path to choose. Since an choices “set of pairs and "one set per range element”, To
exact analysis could not bc completed until all code is lllustrate, let the relations bc simple propositions such as blue,
finished, this efficiency analysis Is heuristic in nature, using triangle, curved, tilted, red, etc. Thenweean illustrate tic
estimates on the efficiency of-the process on subparts not two cases as follows:
yet written.

(a) one set per range element

) The knowledge base for the coder is in the form of a set of
rules. Some examples of such rules, given here in informal (blue, curved, tilted) « Necessary
English, are: (square, triangular, red) « Possible

“One technique for representing a correspondence (b) set of pairs
is to use a collection where the elements are
plcxes of size 2, with one part being the domain (blue necessary) (curved necessary) (square possible)
elcmcnt and the other part being the range (triangular possible) (tilted necessary) (red possible))
element.”

Note that (b) corresponds to a form of association list or

“In order to write an enumeration for an explicitly property list (with parentheses added for clarity). Note that
represented collection, first determine the order in (a) wc do not specify how the sets are associated with
for generating the elements, then sclect an their labels: the sets may bc the value of a variable
appropriate scheme for saving the state of the corresponding to the label, or the label could be a hash link
enumeration between the production of the from the list, or the set could be on the property list of the
elements, then write the body, initializer, label, or the set and label could be a plex, etc.
Incrementor, and termination test.”

Next, consider how the efficiency expert chooses bctween

"In LISP, the function CAR applied to a pointer to a these two data structures. Since the data structure is
list returns the first element in the list.” accessed in many places, the calculation actually rade by the

efficiency expert is rather complex. For our example, wc

A more detailed discussion of the nature of theserules can ~~ Will simplify matters by considering only one access to the

be found in [Barstow and Kant, 1976 J. For this overview a data, the "too many necessaries" update.
short summary will suffice. it appears that approximately a
thousand rules will be necessary for the task we have The “too many necessaries” case occurs in ihe lcarning
chosen, and the level of competence at which we aim. The portion of the TF program, in which the conceptbeinglearned
rules span many levels, from high-level concepts such as is incorrect and must be modified. Bccausc too many
correspondences, to low-level LISP-specific concepts, such relations were marked necessary, a scene that wasa correct
as knowledge about CONS-cells. The rules scem to fail into Instance was rejected as not being an instance of tic
two broad classes: those dealing with general programming concept. Accordingly, some of the “nccessarics” musthe
techniques and those dealing with LISP-snecific details. made into “possibles”. In particular, any relations that arc not
Currently we estimate that about two-thirds cl the rules arc in the scene are not necessary, so any such relations in the
general and the rest are specific to the LISP language. concept must be changed to possible.
tlowever, we expect the set of LISP-specific rules to stay

fixed, while the data base of general rules grows.
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In the model, this update action is represented rouchly as information is available, the probabilities may be treatedas
variables In which case it maybepossibietocompare

(v rcl cconcept-i{neccessary) such that rel ¢ input symbolic cost functions.
do establish-correspondence (concept, rel-.possible :P ( P Pp ) For the example considered above the probabilitieswere

For each possible data structure implementation,the coder estimated oy [ne dome expert one Lf © space me cost
produces the appropriate algorithms in a special intermediate i or turned out to Ne a polynomial function of the vlacs of
language used for analysis. These andlysis language programs og S¢ > of Concept X AEA and Input. For reasonable
are passed to the efficiency expert to make the cost pe lons about © size 0 |! coe sets, the program selectscalculation. The two programs passed to the ciiicicncy ~~ Choice (a), one set perrarge clement,
expert look something like:

. :

(a) one set per range element 5. Conclusions

(Foral Xin ee. suet thal x nput In conclusion, we have specified some of the desired© move x from Nec. to Poss.) capabilities of an automatic programimingsystem. we have
created an overall rough system design tomecet these

5 t of pai specifications. An implementation effort is underway and(b) set of pairs scveral key parts of the system arc? workini.lt is too early

(Forall pairs <x.y> in Concept to make an evaluation of our goals,designs, and
such that [y = Nec. and x ¢ input] implementation at this time.

do re-pair(x,possible))
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Appendix A Donald Kaplan, AIM-60
Theses The Formal Theoretic Analysis of Strong

Equivalence for Elemental Properties,
Ph.D. in Computer Science,

Theses that have been published by this July 1968.
laboratory are listed here. Several earned
degrees at institutions other than Stanford, as Barbara Huberman, AIM-65
noted. This list 1s kept in diskfile THESES A Program to Play Chess End Gatnes,
(BIB, DOC] eSU-AL Ph.D. in Computer Science,

A ugust 1968.
D. Raj. Reddy, AIM-43
An Approach to Computer Speech Donald Pieper, AIM-72
Recognition by Direct Analysis of the The Kinematics of Manipulators under
Speech Wave, Com pu ter Control,
Ph.D. in Computer Science, Ph.D. in Mechanical Engineering,

Septem ber 1966. October 1968.

S. Persson, AIM-46 Donald Waterman, AIM-74

Some Sequence Extrapolating Programs: a Machine Learning of Heuristics,
Study of Representationand Modeling in Ph.D. in Computer Science,
Inquiring Systems, December 1968.
Ph.D. in Computer Science, University of
California, Berkeley, Roger Schank, AIM-83
September 1966. A Conceptual Dependency Representation

for a Computer Oriented Semantics,
Bruce Buchanan, AIM-47 Ph.D. in Linguistics, University of Texas,
Logics of Scientific Discovery, March 1969.
Ph.D. in Philosophy, University of California,
Berkeley, Pierre Vicens, AIM-85
Decem ber 1966. Aspects of Speech Recognition by

Com pu ter, ,
James Painter, AIM-44 Ph.D. in Computer Science,
Semantic Correctness of a Compiler for an March 1969.
Algol-like Language,
Ph.D. in Computer Science, Victor D. Scheinman, AIM-92
March 1967. Design of Computer Controlled Manipulator,

Eng. in Mechanical Engineering,
William Wichman, AIM-56 June 1969.

Use of Optical Feedback in the Computer
Control of an Arm, Claude Cordell Green, AIM-96
E ng. in Electrical Engineering, The Application of Theorem Proving to
A ugust 1967. Question-answering Systems,

Ph.D. in Electrical Engineering,

Monte Callero, AIM-58 August 1969.
An Adaptive Command and Control System
Utilizing Heuristic Learning Processes, James J. Horning, AIM-98
Ph.D. in Operations Research, A Study of Grammatical Inference,
December 1967. Ph.D. in Computer Science,

A ugust 1969.
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Michael E. Kahn, AIM-106 Jonathan Leonard Ryder, AIM-155
The Near-minimum-time Control of Open- Heuristic Analysis of Large Trees as
loop Articulated Kinematic Chains, Generated in the Game of Go,
Ph.D. in Mechanical Engineering, Ph.D. in Computer Science,
December 1969. December 197 1.

Joseph Becker, AIM-1 19 Jean M. Cadiou, AIM-163
A nInf ortn ation-processing Model of Recursive Definitions of Partial Functions
Intermediate-Level Cognition, and their Computations,
Ph.D. in Computer Science, Ph.D. in Computer Science,

May 1972. April 1972.

Irwin Sobel, AIM-121 Gerald Jacob Agin, AIM-173
Camera Models arid Machine Perception, Representation and Description of Curved
Ph.D. in Electrical Engineering, Objects,
May 1970. Ph.D. in Computer Science,

October 1972.

Michael D. Kelly, AIM-130
Visual Identification of People by computer, Francis Lockwood Morris, AIM-174
Ph.D. in Computer Science, Correctness of Translations of
July 1970. Programming Languages — an Algebraic

Approach,
Gilbert Falk, AIM-132 Ph.D. in Computer Science,
Computer Interpretation of Imperfect Line August 1972.
Data as a Three-dimensional Scene,

Ph.D. in Electrical Engineering, Richard Paul, AIM-177
August 1970. Modelling, Trajectory Calculation and

Servoing of a Computer Controlled Arm,
Jay Martin Tenenbaum, AIM-134 Ph.D. in Computer Science,
Accommodation in Computer vision, November 1972.
Ph.D. in Electrical Engineering,
September 1970. A haron Gill, AIM-178

Visual Feedback and Related Problems in

Lynn H. Quam, AIM-144 Computer Controlled Hand Eye
Com puter Comparison of Pictures, Coordination,
Ph.D. in Computer Science, Ph.D. in Electrical Engineering,
May 1971. October 1972.

Robert E. Kling, AIM-147 Ruzena Bajcsy, AIM-180
Reasoning by Analogy with Applications to Computer Identification of Textured Visiual
Heuristic Problem Solving: a Case Study, Scenes,
Ph.D. in Computer Science, PAD. in Computer Science,
August 1971. October 1972.

Rodney Albert Schmidt Jr., AIM-149 Ashok Chandra, AIM-188
A Study of the Real-time Control of a On the Properties and Applications of
Computer-driven Vehicle, Programming Schemas,
Ph.D. in Electrical Engineering, Ph.D. in Computer Science,
August 1971. March 1973.
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Gunnar Rutger Grape, AIM-201 James R. Low, AIM-242
Model Based (Intermediate Level) Computer Autotnatic Coding: Choice of Data
Vision, Structures,
Ph.D. in Computer Science, Ph.D. in Computer Science,

May 1973. August 1974.

Yoram Y akimovsky, AIM-209 Jack Buchanan, AIM-245
Scene Analysis Using a Semantic Base for A Study in Automatic Programming
Region Growing, Ph.D. in Computer Science,
Ph.D. in Computer Science, May 1974.
July 1973.

Neil Goldman, AIM-247

Jean E. Vuillemin, AIM-218 Computer Generation of Natural Language
Proof Techniques for Recursive Programs, From a Deep Conceptual Base
Ph.D. in Computer Science, Ph.D. in Computer Science,

October 1973. January 1974.

Daniel C. Swinehart, AIM-230 Bruce Baumgart, AIM-249
COPILOT: A Multiple Process Approach to Geometric Modeling for Computer Vision
Interactive Programming Systems, Ph.D.in Computer Science,
Ph.D. in Computer Science, October 1974.
May 1974.

Ramakant Nevatia, AIM-250

James G ips, AIM-231 Structured Descriptions of Complex Curved
Shape Grammars and their Uses Objects for Recognition and Visual Memory
Ph.D. in Computer Science, Ph.D. in Electrical Engineering,

May 1974. October 1974.

Charles J. Rieger III, AIM-233 Edward H. Shortliffe, AIM-25 1
Conceptual Memory: A Theory and MYCIN: A Rule-Based Computer Program
Computer Program for Processing the for Advising Physicians Regarding
Meaning Content of Natural Language" Antimicrobial Therapy Selection
Utterances, Ph.D. in Medical Information Sciences,
Ph.D. in Computer Science, October 1974.
June 1974.

Malcolm C. Newey, AIM-257
Christopher K. Riesbeck, AIM-238 Formal Semantics of LISP With
Computational Understanding: Analysis of Applications to Program Correctness
Sentences and Context, Ph.D. in Computer Science,
Ph.D. in Computer Science, January 1975.
June 1974.

Hanan Samet, AIM-259

Marsha Jo Hannah, AIM-239 Autotnatically Proving the Correctness of
Computer Matching of Areas in Stereo Translations Involving Optimized Coded
Im ages, PhD in Computer Science,
Ph.D. in Computer Science, May 1975.
July 1974.
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Theses 77

David Canfield Smith, AIM-260 July 1976.
PYGMALION: A Creative Programming
Environment Michael Roderick, AIM-287

PhD in Computer Science, Discrete Control of a Robot Arm
June 1975. Engineer in Electrical Engineering,

August 1976.
Sundaram Ganapathy, AIM-2T2
Reconstruction of Scenes Containing Robert C. Bolles, AIM-295
Polyhedra From Stereo Pair of Views Verification Vision Within a Programmable
Ph.D. in Computer Science, Assem bly System
December 1975. Ph.D. in Computer Science,

December 1976.

Linda Gail Hemphill, AIM-273
A Conceptual Approach to Automated Robert Cartwrigh t, AIM-296
Language Understanding and Belief Practical Formal Semantic Definition and
Structures: with Disambiguation of the Verification Systems
Word ‘For’ Ph.D. in Computer Science,
Ph.D. in Linguistics, December 1976.
May 1975.

Norihsa Suzuki, AIM-279

Automatic Verification of Programs with
Corn plex Data Structures
Ph.D. in Computer Science,

February 1976.

Russell Taylor, AIM-282
Synthesis of Manipulator Control Programs
From Task-Level Specifications
PhD in Computer Science,

July 1976.

Randall Davis, AIM-283

Applications of Meta Level Knowledge to
the Construction, Maintenance

aiid Use of Large Knowledge Bases
Ph.D. in Computer Science,

July 1976.

Rafael Finkel, AIM-284

Constructing and Debugging Manipulator
Programs
Ph.D. in Computer Science,

August 1976.

Douglas Lenat, AIM-286
AM: An Artificial Intelligence Approach to
Discovery in Mathematics as Heuristic
Search

Ph.D. in Computer Science,
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Appendix B 4. Gary Feldman and Donald Peiper, Avoid,
Film Reports 16mm color, silent, 5 minutes, March 1969.

An illustration of Peiper’s Ph.D. thesis. The
Prints of the following films are available for problem 1s to move the computer controlled
distribution. This list 1s kept in diskfile mechanical arm through a space filled with
FILMS [BIB,DOC] &U-AL one or more known obstacles. The film shows

the arm as 1t moving through various
1. Art Eisenson and Gary Feldman, Ellis D. cluttered environments with fairly good

Kroptechev and Zeus, his Marvelous Success.
Time-sharing System, 16mm B&W with
sound, 15 minutes, March 1967. 5. Richard Paul and Karl Pingle, Instant

Insanity, 16mm color, silent, 6 minutes,
The advantages of time-sharing over August, 1971.
standard batch processing are revealed
through the good offices of the Zeus time- Shows the hand/eye system solving the puzzle
sharing system on a PDP-1 computer. Our Instant Insanity. Sequences include finding
hero, Ellis, 1s saved from a fate worse than and recognizing cubes, color recognition and
death. Recommended for mature audiences object manipulation. [Made to accompany a
only. = paper presented at the 1971 IJCAI. May be

hard to understand without a narrator.]

2. Gary Feldman, Butterfinger, 16mm color
with sound, 8 minutes, March 1968. 6. Suzanne Kandra, Motion and Vision,

16mm color, sound, 22 minutes, November

Describes the state of the hand-eye system at 1972.
the Artificial Intelligence Project in the fall of
1967. The PDP-6 computer getting visual A technical presentation of three research
information from a television camera and projects completed in 1972: advanced arm
controlling an electrical-mechanical arm solves control by R. P. Paul [AIM-177], visual
simple tasks involving stacking blocks. The feedback control by A. Gill [AIM-178), and
techniques of recognizing the blocks and their representation and description of curved
positions as well as controlling the arm are objects by G. Agin[AIM-173]. Drags a bit.
briefly presented. Rated "G".

7. Larry Ward, Computer Interactive
3. Raj Reddy, Dave Espar and Art Eisenson, Picture Processing, (MARS Project),

" Hear Here, 16mm color with sound, 15 16mm color, sound, 8 min., Fall 1972.
minutes, March 1969.

This film describes an automated picture
Describes the state of the speech recognition differencing technique for analyzing the
project- as of Spring, 1969. A discussion of variable surface features on Mars using data
the prdblems of speech recognition is followed returned by the Mariner 9 spacecraft. The
by two real time demonstrations of the current system uses a time-shared, terminal oriented
system. The first shows the computer learning PDP- 10 computer. The film proceeds at a
to recognize phrases and second shows how breathless pace. Don’t blink, or you will miss
the hand-eye system may be controlled by an entire scene.
voice commands. Commands as complicated
as ‘Pick up the small block in the lower
lefthand corner’, are recognized and the tasks
are carried out by the computer controlled
arm.
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8. D.I. Okhotsimsky, et al, Display from a run-time error, Finally, a cinematic
Simulations of 6-Legged Walking, first: two arms cooperating to assemble a hinge.
Institute of Applied Mathematics ~ USSR
Academy of Science, (titles translated by 12. Brian Harvey, Display Terminals at
Stanford Al Lab and edited by Suzanne Stanford, 16mm B&W, sound, 13 minutes,
Kandra), 16mm black and white, silent, 10 May 1975.
minutes, 1972.

Although there are many effective programs to
A display simulation of a 6-legged ant-like use display terminals for special graphics
walker getting over various obstacles. The applications, very few general purpose
research 1s aimed at a planetary rover that timesharing systems provide good support for
would get around by walking. This cartoon using display terminals in normal text display
favorite beats Mickey Mouse hands down. Or applications This film shows a session using
rather, feet down. the display system at the Stanford AI Lab,

explaining how the display support features in
9. Richard Paul, Karl Pingle, and Bob Bolles, the Stanford monitor enhance the user’s

Automated Pump Assembly, 16mm color, control over his job and facilitate the writing
silent (runs at sound speed!), 7 minutes, of display-effective user programs.
A pril, 19°73.

Shows the hand-eye system assembling a
simple pump, using vision to locate the pump
body and to check for errors. The parts are
assembled and screws inserted, using some
special tools designed for the arm. Some titles
are cluded to help explain the film.

10. Terry Winograd, Dialog with a robot,
MIT A. I. Lab., 16mm black and white,
silent, 20 minutes, 1971.

Presents a natural language dialog with a
simulated robot block-manipulation system.
The dialog 1s substantially the same as that in
V nderstanding Natural Language (T.
Winograd, Academic Press, 1972). No
explanatory or narrative material 1s on the
film.

11. Karl Pingle, Lou Paul, and Bob Bolles,
Programmable Assembly, Three Short
Examples, 16mm color, sound, 8 minutes,
October 1974.

The first segment demonstrates the arm’s
ability to dynamically adjust for position and
orientation changes. The task 1s to mount a
bearing and seal on a crankshaft. Next, the
arm 1s shown changing tools and recovering



80

Appendix C 7. Barstow, David, A Knowledge-Based
External Publications System for Automatic Program

Construction, Proc. Int. Joint Con. on

A.l, August 1977.
Articles and books by project members that
have appeared since July 1973 are listed here 8.-Biermann, A. W., R.I. Baum, F.E. Petry,
alphabetically by lead author. Earlier Speeding Up the Synthesis of Programs
publications are given in our ten-year report from Traces, IEEE Trans. Computers,
[Memo AIM-2281 and in diskfile PUBS.OLD February 1975.
[BIB,DOC]eSU-AI The list below is kept
in PUBS (BIB, DOC] eSU-AI 9. Bobrow, Daniel, Terry Winograd, An

Overview of KRL, a Knowledge
1. Agin, Gerald J., Thomas 0. Binford, Representation Language, J. Cognitive

Computer Description of Curved Science, Vol. 1, No. 1, 1977.
Objects, Proceedings of the Third
International Joint Conference on Artifeial 10. Bobrow, Dan, Terry Winograd, & KRL
Intelligence, Stanford University, August Research Group, Experience with KRL-0:
1973. One Cycle of a Knowledge

Representation Language, Proc. ht.
2. Aiello, Mario, Richard Weyhrauch, Joint Con. on A.l., August 1977.

Checking Proofs in the

Metamathetnatics of First Order Logic, 11. Bolles, Robert C. Verification Vision for
Adv. Papers of 4th Int. Joint Conference Programmable Assern bly, Proc. Int. Joint
on Artifeial Intelligence, Vpl. 1, pp. 1-8, Con/. on Al, August 1977.

. September 1975.
12. Chandra, Ashol, Zohar Manna, On the

3. Ashcroft, Edward, Zohar Manna, Amir Power of Programming Features,
Pnueli, Decidable Properties of Monodic Computer Languages, Vol. 1, No. 3, pp.
Functional Schemas, J.ACM, July 1973. 219-232, September 1975.

4. Ashcroft, Edward, Zohar Manna, 13. Chowning, John M., The Synthesis of
Translating Program Schemas to While- Complex Audio Spectra by means of
schemas, SIAM Journal on Computing, Frequency Modulation, J.Audio
Vol. 4, No. 2, pp. 125-146, June 1975. Engineering Society, September 1973.

5. -Bajesy, Ruzena, Computer Description of 14. Clark, Douglas, and Green, C. Cordell, An
Textured Scenes, Proc. Third Int. Joint Empirical Study of List Structure in
Conf. on Artifeial Intelligence, Stanford U., LISP, Communications of the ACM,
1973. Volume 19, Number 11, November 1976.

6. Barstow, David, Elaine Kant, Observations 15. Colby, Kenneth M., Artifeial Paranoia; A
on the Ineraction between Coding and Computer Simulation of the Paranoid
Efficiency Knowledge in the PSI Mode, Pergamon Press, N.Y., 1974.
Program Synthesis System, Proc. 2nd Int.
Conf. on Software Engineering, IEEE 16. Colby, K.M. and Parkison, R.C. Pattern-
Computer Society, Long Beach, California, matching rules for the Recognition of
October 1976. Natural Language Dialogue Expressions,

American Journal of Computational
Linguistics, 1, September 1974.
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17. Dershowitz, Nachum, Zohar Manna, On 25. Fuller, Samuel H., Forest Baskett, An

| Automating Structural Programming, Analysis of Drum Storage Units, J.
HT Collogues IRIA on Proving and Improving ACM, Vol. 22, No. 1, January 1975,

Programs, Arc-et-Senans, France, pp. 167-
193, July 1975. 26. Funt, Brian, WI-IISPER: A Problem-

solving System utilizing Diagrams and a
18. Dershowitz, Nachum, Zohar Manna, The Parallel Processing Retina, Proc. Int.

Evolution of Programs: a System for Joint Con. on A.l., August 1977.
Automatic Program Modification, Proc.
4th Symp. on Principles of Programming 27. Gennery, Don A Stereo Vision System

. Languages, Los A ngeles, pp. 144- 154, for an Autonomous Vehicle, Proc. ht.
January 1977. Joint Conf. on A.l., August 1977.

19. Dobrotin, Boris M., Victor D. Scheinman, 28. Goldman, Neil M., Sentence

Design of a Computer Controlled Paraphrasing from a Conceptual Base,
Manipulator for Robot Research, Proc. Comm. ACM, February 1975.
Third Int. Joint Conf. on Artifrial
Intelligence, Stanford U., 1973. 29. Goldman, Ron, Recent Work with the

_ AL System, Proc. ht. Joint Con. on A.l,
20. Enea, Horace, Kenneth Mark Colby, August 1977.

Idiolectic Language-Analysis for
Understanding Doctor-Patient Dialogues, 30. Green, Cordell, David Barstow, Some
Proceedings of the Third International Rules for the Automatic Synthesis of

. Joint Conference on Artifcial Intelligence, Programs, Adv. Papers of 4th Int. joint
Stanford University, August 1973. Conference on Artifeial Intelligence, Vol. 1,

pp. 232-239, September 1975.
2 1. Faught, William S., Affect as Motivation

for Cognitive and Conative Processes, 31. Green, Cordell, and Barstow, David,
Adv. Papers of 4th Int. Joint Conference Some Rules for the Automatic Synthesis
on Artifeial Intelligence, Vol. 2, pp. 893- of Programs, Advance Papers of the
899, September 1975. Fourth International Joint Conference on

Artifcial Intelligence, Volume 1, Artificial
22. Feldman, Jerome A., James R. Low, Intelligence Laboratory, Massachusetts

Commenton Brent's Scatter Storage Institute of Technology, Cambridge,
_ Algorithm, Comm. ACM, November 1973. Massachusetts, September 1975, pages 232-

239.

23. Feldman, Jerome A., Yoram Yakimovsky,
Decision Theory and Artificial 32. Green, Cordell, The Design of the PSI
Intelligence: I A Semantics-based Region Program Synthesis System, Proc. 2nd ht.
Analyzer, Artifeial Intelligence J., Vol. 5, Conf. on Software Engineering, IEEE
No: 4, Winter 1974. Computer Society, Long Beach, California,

October 1976.

24. Finkel, Raphael, Russell Taylor, Robert
Bolles, Richard. Paul, Jerome Feldman, An 33. Green, Cordell, The PSI Program
Overview of AL, a Programming System Synthesis System, 1976, ACM ‘76:
for Automation, Adv. Papers of 4th Int. Proceedings of the Annual Conference,
Joint Conference on Artifcial Intelligence, Association for Computing Machinery,
Vol. 2, pp. 758-765, September 1975. New York, New York, October 1976, pages

14-75.
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34. Green, C. C., and Barstow, D. R., .A 42. Igarashi, S., R. L. London, D. C.
Hypothetical Dialogue Exhibiting a Luckham, Automatic Program
Knowledge Base for a Program Verification I: Logical Basis and its
Understanding System, in Elcock, E. W_, Implementation, Acta Informatica, Vol. 4,
and Michie, D., editors, Machine _pp-145-182, March 1975.
Intelligence S: Machine Representations of
Knowledge, Ellis Horwood, Ltd., and John 43. Ishida, Tatsuzo, Force Control in
Wiley and Sons, Inc., New York, New Coordination of Two Arms, Proc. Int.
York, 1976. Joint Conf. on Al, August 1977.

35. Green, C. C., A Summary of the PSI 44. Kant, Elaine, The Selection of Efficient
Program Synthesis System, Proc. ht. Implementations for a High-level
Joint Conf. on A.l, August 1977. Language, Proc. SIGART -SIGPLAN

Symp. on A.l.& Prog. Lang., August 1977.
36. Harvey, Brian, Increasing Programmer

Power at Stanford with Display 45. Karp, Richard A., David C Luckham,
Terminals, Minutes of the DECsystem-10 Verification of Fairness in an
Spring-75 DECVS Meeting, Digital Implementation of Monitors, Proc. 2nd
Equipment Computer Users Society, Intnl. Conf. on Software Engineering, PP.
Maynard, Mass., 1975. 40-46, October 1976.

37. Hieronymus, J. L., N. J. Miller, A. L. 46. Katz, Shmuel, Zohar Manna, A Heuristic
Samuel, The Amanuensis Speech Approach to Program Verification,
Recognition System, Proc. IEEE Proceedings of the Third International

. Symposium on Speech Recognition, April Joint Conference on Artifeial Intelligence,
- 1974. Stanford University, August 1973.

38. Hieronymus, J. L., Pitch Synchronous 47. Katz, Shmuel, Zohar Manna, Towards
Acoustic Segmentation, Proc. [EEE Automatic Debugging of Programs, Proc.
Symposium on Speech Recognition, April Int. Con. on Reliable Software, Los
1974. Angeles, April 1975.

39. Hilf, Franklin, Use of Computer 48. Katz, Shmuel, Zohar Manna, Logical
Assistance in Enhancing Dialog Based Analysis of Programs, Comm. ACM, April

_ Social Welfare, Public Health, and 1976.
Educational Services in Developing
Countries, Proc. 2nd Jerusalem Conf. on 49. Katz, Shmuel, Zohar Manna, A Closer
Info. Technology, July 1974. Look at Termination, Acta Informatica,

Vol. 5, pp. 333-352, April 1977.
40. Hilf, Franklin, Dynamic Content

Analysis, Archives of General Psychiatry, 50. Lenat, Douglas B., BEINGS: Knowledge
January 1975. as Interacting Experts, Adv. Papers of

4th Int. Joint Conference on Artifrial
41. Hueckel, Manfred H., A Local Visual Intelligence, Vol. 1, pp. 126-133,

Operator which Recognizes Edges and September 1975.
Lines, /. ACM, October 1973.

51. Luckham, David C., Automatic Problem

Solving, Proceedings of the Third
International Joint Conference on Artifcial
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Intelligence, Stanford University, August Proving Program Correctness, Proc. 2nd
1973. Int. Con. on Software Engineering, IEEE

Computer Society, San Francisco,
52. Luckham, David C., Jack R. Buchanan, California, October 1976.

Automatic Generation of Programs
Containing Conditional Statements, Proc. 62. Manna, Zohar, Richard Waldinger, The
AlISB Summer Conference, U. Sussex, July Automatic Synthesis of Recursive
1974. Programs, Proc. SIGART -SIGPLAN

Symp. on A.1.& Prog. Lang., August 1977.
53. Luckham, David C., Program

Verification and Verification-oriented 63. Manna, Zohar, Richard Waldinger, The
Programming, Proc. l.F.l.P., August 1977. Automatic Synthesis of Systems of

Recursive Programs, Proc. ht. Joint Conf.
54. Manna, Zohar, Program Schemas, in on 4.1, August 1977.

Currents in the Theory of Computing (A.
V. Aho, Ed.), Prentice-Hall, Englewood 64. McCarthy, John, Mechanical Servants
Cliffs, N. J., 1973. for Mankind, Britannica Yearbook of

Science and the Future, 1973.

55. Manna, Zohar, Stephen Ness, Jean
Vuillemin, Inductive Methods for 65. McCarthy, John, Book Review: Artificial
Proving Properties of Programs, Comm. Intelligence: A General Survey by Sir
ACM, August 1973. James Lighthill, Artifrial Intelligence, Vol.

5, No. 3, Fall 1974.

56. Manna, Zohar, Automatic Programming,
Proceedings of the Third International 66. McCarthy, John, Modeling Our Minds
Joint Conference on Artifeial Intelligence, Science Year 1975, The World Book
Stanford University, August 1973. Science Annual, Field Enterprises

Educational Corporation, Chicago, 1974.
57. Manna, Zohar, Mathematical T heory of

Computation, McGraw-Hill, New York, 67. McCarthy, John, Proposed Criterion for
1974. a Cipher to be Probable-word-proof,

Comm. ACM, February 1975.
58. Manna, Zohar, Amir Pneuli, Axiomatic

Approach to Total Correctness, Acta 68. McCarthy, John, An Unreasonable Book,
. Informatica, Vol. 3, pp. 243-263, 1974. a review of Computer Power and Human

Reason by Joseph Weizenbaum (W.H.
59. Manna, Zohar, Richard Waldinger, Freeman and Co., San Francisco, 1976),

Knowledge and Reasoning in Program SIGART Newsletter #58, June 1976.
Synthesis, Artifcial Intelligence, Vol. 6,
Na. 2, pp. 175-208, 1975. 69. McCarthy, John, Review: Computer Power

and Human Reason, by Joseph
60. Manna, Zohar, Adi Shamir, The Weizenbaum (W.H. Freeman and Co.,

Theoretical Aspects of the Optimal San Francisco, 1976) in Physics Today,
Fixpoint, SIAM Journal of Computing, 1977.
Vol. 5, No. 3, pp.414-426, September 1976.

70. McCarthy, John, Another
61. Manna, Zohar, Richard Waldinger, Is SAMEFRINGE, SIGART Newsletter No.

‘Sometime’ sometimes better than 61, February 1977.
‘Always’? Interinittant Assertions in
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71. McCarthy, John, The Home Information 82. Nevatia, Ramakant, Thomas 0. Binford,
Terminal, The Grolier Encyclopedia, 1977. Structured Descriptions of Complex

Objects, Proceedings of the Third
72. McCarthy, John, M. Sato, S. Igarashi, T. International Joint Conference on Artifcial

Hayashi, On The Model Theory of _ Intelligence, Stanford University, August
Knowledge, P roc. 5th international joint 1973.
Conference on Artifeial Intelligence, MIT,
Cambridge, 1977 (to appear). 83. Newell, A., Cooper, F. S., Forgie, J. W.,

Green, C. C., Klatt, D. H., Medress, M. F.,

73. McCarthy, John, M. Sato,T. Hayashi, S. Neuburg, E. P., O'Malley, M. H., Reddy,
Igarashi, Onthe Model Theory of D. R., Ritea, B., Shoup, J. E., Walker, D.
Knowledge, Proc. ht. Joint Con. on Al, E., and Woods, W. A., Considerations for a
August 1977. Follow-On ARPA Research Program for

Speech Understanding Systems,

74. McCarthy, John, Epistemological Information Processing Techniques Office,
Problems of Artificial Intelligence, Proc. Advanced Research Projects Agency,
Int. Joint Con.. on Al, August 1977. Department of Defense, Arlington,

Virginia, August 1975.
75. McCune, Brian, The PSI Program Model

Builder: Synthesis of Very High-level 84. Oppen, Derek, S.A. Cook, Proving
Programs, Proc. SIGART-SIGPLAN Assertions about Programs that
Symp.on A.l.& Prog. Lang., August 1977. Manipulate Data Structures, Acta

Informatica, Vol. 4, No. 2, pp. 127-144,
76. Miller, N. J., Pitch Detection by Data 1975.

. Reduction, Proc. IEEE Symposium on
Speech Recognition, April 1974. 85. Phillips, Jorge, T. H. Bredt, Design and

Verification of Real-time Systems, Proc.

77. Moore, Robert C., Reasoning about 2nd Int. Con- on Software Engineering,
Knowledge and ‘Action, Proc. Int. Joint IEEE Computer Society, Long Beach,
Conf.on A.l, August 1977. California, October 1876.

78. Moorer, James A., The Optimum Comb 86. Phillips, Jorge, Program Inference f rom
Method of Pitch Period Analysis of Traces using Multiple Knowledge
Continuous Speech, [EEE Trans. Sources, Proc. Int. Joint Conf. on A.l,

_ Acoustics, Speech, and Signal Processing, August 1977.
Vol. ASSP-22, No. 5, October 1974.

87. Quam, Lynn, Robert Tucker, Botond
79. Moorer, James A., On the Transcription Eross, J. Veverka and Carl Sagan,

of Musical Sound by Computer, US A- Mariner 9 Picture Differencing at
JAPAN Computer Conference, August Stanford, Sky and Telescope, August 1973.
1975.

88. Rubin, Jeff, Computer Communication
80. Morales, Jorge J., Interactive Theorem via the Dial-up Network, Minutes of the

Proving, Proc. ACM National Conference, DECsystem-10 Spring-75 D ECU §
August 1973. Meeting, Digital Equipment Computer

Users Society, Maynard, Mass., 1975.
81. Moravec, Hans, Towards Automatic

Visual Obstacle Avoidance, Proc. ht.

Joint Conf. on A.lL, August 1977.
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89. Sagan, Carl, J. Veverka, P. Fox, R. Biomedical Research, Volume 8, Number 3,
Dubisch, R. French, P. Gierasch, L. Quam, June 19735, pages 303-320.

- J. Lederberg, E. Levinthal, R. Tucker, B.
Eross, J. Pollack, Variable Features on 97. Smith, David Canfield, Horace J. Enea,

Mars II: Mariner 9 Global Results, J. . Backtracking in MLISP2, Proceedings of
Geophys. Res., 78, 4 163-4 196, 1973. the Third International Joint Conference

on Artifeial Intelligence, Stanford
90. Schank, Roger C., Neil Goldman, Charles University, August 1973.

J. Rieger III, Chris Riesbeck, MARGIE:
Memory, Analysis, Response Generation 98. Smith, Leland, Editing and Printing
and Inference on English, Proceedings of Music by Computer, J Music Theory,
the Third International Joint Conference Fall 1973.
on Artifeial Intelligence, Stanford
University, August 1973. 99. Sobel, Irwin, On Calibrating Computer

Controlled Cameras for Perceiving 3-D
91. Schank, Roger C., Kenneth Colby (eds), Scenes, Proc. Third Int. Joint Conf. on

Computer Models of Thought and Artifeial Intelligence, Stanford U., 1973;
Language, W. H. Freeman, San Francisco, also in Artificial Intelligence J., Vol. 5, No.
1973. 2, Summer 1974.

92. Schank, Roger, The Conceptual Analysis 100. Suzuki, N., Verifying Programs by |
of Natural Language, in R. Rustin (ed.), Algebraic and Logical Reduction, Proc.
Natural Language Processing, Int. Conf. on Reliable Software, LoS
Algorithmics Press, New York, 1973. Angeles, Calif, April 1975, m ACM

SIGPLAN Notices, Vol. 10, No. 6, pp.
93. Schank, Roger, Charles J. Rieger III, 473-481, June 1975.

Inference and Computer Understanding
of Natural Language, Artifrial 101. Tesler, Lawrence G., Horace J. Enea,
Intelligence J, Vol.5, No. 4, Winter 1974. David C. Smith, The LISP30 Pattern

Matching System, Proceedings of the
94. Schank, Roger C., Neil M. Goldman, Third International Joint Conference on

Charles J. Rieger III, Christopher K. Artifeial Intelligence, Stanford University,
R 1esbeck, Interface and Paraphrase by August 1973.
Computer, J.ACM, Vol 22, No. 3, July
1975. 102. Thomas, Arthur J., Puccetti on

Machine Pattern Recognition,
95. Shaw, David E., William R. Swartout, C. Brit. J Philosophy of Science, 26:227-232,

Cordell Green, Inferring LISP Programs 1973.
from Examples, Adv. Papers of 4th Int.
Joint Conference on Artifeial Intelligence, 103. Veverka, J., Carl Sagan, Lynn Quam, R.
Vol: 1, pp. 260-267, September 1975. Tucker, B. Eross, Variable Features on

Mars III: Comparison of Mariner 1969
96. Shortliffe, Edward H., Davis, Randall, and Mariner 1971 Photography, /carus, 21,

A xline, Stanton G., Buchanan, Bruce G., 317-368, 1974.

Green, C. Cordell, and Cohen, Stanley N.,
Corn pu ter-Based Consultations in 104. von Henke, F. W., D.C. Luckham, A
Clinical Therapeutics: Explanation and Methodology for Verifying Programs,
Rule Acquisition Capabilities of the Proc. Int. Conf. on Reliable Software, LOS
MYCIN System, Computers and Angeles, Calif, April 1975, m ACM
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SIGPLAN Notices, Vol. 10, No. 6, pp. 113. Wilks, Y., Semantic Procedures and
156-164, June 1975. Information, in Studies in the

Foundations of Communication, R. Posner
105. Wilks, Yorick, The Stanford Machine (ed.), Springer, Berlin, forthcoming.

Translation and Understanding Project,
in R. Rustin (ed.), Natural Language 1 I4. Wilks, Yorick, A Preferential, Pattern-
Processing, Algorithmics Press, New York, Seeking Semantics for Natural Language
1973. Inference, Artifcial Intelligence J, Vol. 6,

No. 1, Spring 1975.
106. Wilks, Yorick, Understanding Without

Proofs, Proceedings of the Third 115. Wilks, Y., An Intelligent Analyser and
International Joint Conference on Artifcial Understander of English, Comm. ACM,
Intelligence, Stanford University, August May 1975.
1973.

116. Winograd, Terry, A Process Model of
107. Wilks, Yorick, Annette Herskovits, An Language Understanding, in Schank and

Intelligent Analyser and Generator of Colby (eds.), Computer Models of Thought
Natural Language, Proc. int. Conf. on and Language, W. H. Freeman, San
Computational Linguistics, Pisa, Italy, Francisco, 1973.
Proceedings of the Third Internation Joint

Conference on Artifeial Intelligence, 117. Winograd, Terry, The Processes of
Stanford University, August 1973. Language Understanding in Benthall,

(ed.), The Limits of Human Nature, Allen
108. Wilks, Yorick, The Computer Analysis Lane, London, 1973.

. of Philosophical Arguments, C/IRPHO,
Vol. 1, No. 1, September 1973 118. Winograd, Terry, Language and the

Nature of Intelligence, in G.J. Dalenoort
109. Wilks, Yorick, An Artificial Intelligence (ed.), Process Models for Psychology,

Approach to Machine Translation, in Rotterdam Univ. Press, 1973
Schank and Colby (eds.), Computer Models
of Thought and Language, W. H. Freeman, 119. Winograd, Terry, Breaking the
San Francisco, 1973. Complexity Barrier (again), Proc.

SIGPLAN-SIGIR interface Meeting,
110. Wilks, Yorick, One Small Head - 1975; ACM SIGPLAN Notices, 10:1, pp.

Models and Theories in Linguistics, 13-30, January 1975.
" Foundations of Language, Vol. 10, No. 1,
January 1974. 120. Winograd, Terry, Artificial Intelligence

~ When Will Computers Understand
111. Wilks, Yorick, Preference Semantics, E. People?, Psychology Today, May 1974.

Keenan (ed.), Proc. 1973 Colloquium on
Formal Semantics of Natural Language, 121. Wmograd, Terry, Frame
Cambridge, U.K., 1974. Representations and the Procedural -

Declarative Controversy, in D. Bobrow
112. Wilks, Yorick, The XGP Computer- and A. Collins, eds., Representation and

driven Printer at Stanford, Bulletin of Understanding: Studies in Cognitive
Assoc. for Literary and Linguistic Science, Academic Press, 1975.
Computing, Vol. 2, No. 2, Summer 1974.
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122. Winograd, Terry, Reactive Systems,
Coevolution Quarterly, September 1975

123. Winograd, Terry, Parsing Natural
Language via Recursive Transition Net, .
in Raymond Yeh (ed.) Applied
Computation Theory, Prentice-Hall, 1976.

124. Winograd, Terry, Computer Memories
— a Metaphor for Human Memory, in
Charles Cofer (ed.), Models of Human

Memory, Freeman, 1976.

125. Yakimovsky, Yoram, Jerome A.
Feldman, A Semantics-Based Decision

Theoretic Region Analyzer, Proceedings
of the Third International Joint Conference

on Artifeial Intelligence, Stanford
University, August 1973.

126. Yolks, Warwick, There’s Always Room
at the Top, or How Frames gave my Life
Meaning, SIGART Newsletter, No. 53,
August 1975.
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Appendix D may or may not have the report. In
Abstracts of Recent Reports requesting copies in this case, give them both

the ‘AIM-’ and "CS-nnn" numbers, with the

latter enlarged into the form "STAN-CS-yy-
Abstracts are given here for Artificial nan", where "yy" is the last two digits of the
Intelligence Memos published since July 1973. year of publication.
For earlier years, see our ten-year report
[Memo AIM-2281 or diskfile AIMS.OLD Memos that are also Ph.D. theses are so
[BIB,DOC] &U-AI. The abstracts below are marked below and may be ordered from:
kept in diskfile AIMS {BIB,DOC] eSU-AI University Microfilm
and the titles of both earlier and more recent P. 0. Box 1346

A. I. Memos are in AIMLST[BIB,DOC] Ann Arbor, Michigan 48106
eSU-AL

For people with access to the ARPA Network,
In the listing below, there are up to three the texts of some A. I. Memos are stored
numbers given for each report: an “AIM” online in the Stanford A. I. Laboratory disk
number on the left, a "CS" (Computer Science) file. These are designated below by “Diskfile:
number in the middle, and a NTIS stock <file name>" appearing in the header.
number (often beginning ‘AD...) on the right.
Special symbols preceding the ‘AIM” number x AIM-21 1 cs-383 AD769673
indicate availability at this writing, as follows: Yorick Wilks,

+ hard copy or microfiche, Natural Language Inference,
e microfiche only, 24 pages, September 1973.

~ % out-of-stock.

If there 1s no special symbol, then it is The paper describes the way in which a
available in hard copy only, Reports that are Preference Semantics system for natural
in stock may be requested from: language analysis and generation tackles a

Documentation Services difficult class of anaphoric inference problems
Artificial Intelligence Laboratory (finding th correct referent for an English
Stanford University pronoun in context): those requiring either
Stanford, California 94305 analytic (conceptual) knowledge of a complex

sort, or requiring weak inductive knowledge of
Rising costs and restriction, on the use of the course of events in the real world. The
research funds for printing reports have made method employed converts all available
it necessary to charge for reports at their knowledge to a canonical template form and
replacement cost. By doing so, we will be able endeavors to create chains of non-deductive
to reprint popular reports rather than simply inferences from the unknowns to the possible
declaring them “out of print”. referents. Its method of selecting among

possible chains of inferences is consistent with
Alternate Sources the overall principle of ‘semantic preference’

used to set up the original meaning
Alternatively, reports may be ordered (for a representation, of which these anaphoric
nominal fee) in either hard copy or microfiche inference procedures are a manipulation.
from:

National Technical Information Service x AIM-212 CS-384 AD769379

P. 0. Box 1553 Annette Herskovits,

Springfield, Virginia 22 16 1 The Generation of French from a Semantic
Representation,

If there 1s no NTIS number given, then they 20 pages, September 1973.
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The report contains first a brief description of features are not necessarily distinctive or
Preference Semantics, a system of minimal, in the sense that they do not divide
representation and analysis of the meaning the phonemes into mutually exclusive subsets,
structure of natural language. The analysis and can have high redundancy. This concept
algorithm which transforms phrases into of feature can thus avoid aptiori binding
semantic items called templates has been between the phoneme categories to be
considered in detail elsewhere, so this report recognized and the set of features defined in a
concentrates on the second phase of analysis, particular system.
which binds templates together into a higher
level semantic block corresponding to an An adaptive technique 1s used to find the
English paragraph, and which, in operation, probability of the presence of a feature. Each
interlocks with the French generation feature 1s treated independently of other
procedure. During this phase, the semantic features, An unknown utterance 1s thus
relations between templates are extracted, represented by a feature graph with associated
pronouns are referred and those word probabilities. It 1s hoped that such a
disambiguations are done that require the representation would be valuable for a
context of a whole paragraph. These tasks hypothesize-test paradigm as opposed to a one
require items called paraplates which are which operates on a linear symbolic input.
attached to keywords such as prepositions,
sub junctions and relative pronouns. The AIM-214 CS-386 AD767332
system chooses the representation which Walter A. Perkins, Thomas 0. Binford,
maximizes a carefully defined ‘semantic A Corner Finder for Visual Feedback,
density’. 59 pages, September 1973. Cost: $3.35

A system for the generation of French In visual-feedback work often a model of an
sentences 1S described, based on the generation object and its approximate location are known
of French sentences is described, based on the and it 1s only necessary to determine its
recursive evaluation of procedural generation location and orientation more accurately. The
patterns called stereotypes. The stereotypes are purpose of the program described herein 1s to
semantically context sensitive, are attached ro provide such information for the case in
each sense of English words and keywords which the model 1s an edge or corner. Given ,
and are carried into the representation by the a model of a line or a corner with two or three
analysis procedure. The representation of the edges, the program searches a TV window of
meaning of words, and the versatility of the arbitrary size looking for one or all corners
stereotype format, allow for fine meaning which match the model. A model-driven
distinctions to appear in the French, and for program directs the search. It calls on another
the construction of French differing radically program to find all lines inside the window.
from the English origin. Then it looks at these lines and eliminates

lines which cannot match any of the model
AIM-213 CS-385 lines. It next calls on a program to form
Ravindra B. Thosar, vertices and then checks for a matching
Recognition of Continuous Speech: vertex. If this simple procedure fails, the
Segmentation and Classification using model-driver has two backup procedures.
Signature Table Adaptation, First it works with the lines that it has and
37 pages, September 1973. Cost: $2.75 tries to form a matching vertex (corner). If

this fails, 1t matches parts of the model with
This report explores the possibility of using a vertices and lines that are present and then
set of features for segmentation and takes a careful look in a small region in which
recognition of continuous speech. The it expects to find a missing line. The program
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often finds weak contrast edges in this manner. A computer program has been written that
Lines are found by a global method after the successfully discovers syntheses for complex
entire window has been scanned with the organic chemical molecules. The definition of
H ueckel edge operator. the search space and strategies for heuristic

search are described in this paper.
x AIM-215 CS-387 A D769380

Bruce G. Buchanan, N. S. Sridharan, x AIM-218 CS-393 AD772063/4WC

Analysis of Behavior of Chemical Molecules: Jean Etienne Vuillemin,
R ule Form ationon Non-homogeneous Proof Techniques for Recursive Programs,
Classes of Objects, Thesis: Ph.D. in Computer Science,
15 pages, September 1973. 97 pages, October 1973.

An information processing model of some The concept of least fixed-point of a
important aspects of inductive reasoning 1s continuous function can be considered as the
presented within the context of one scientific unifying thread of this dissertation. The
discipline. Given a collection of experimental connections ~~ between ~~ fixed-points and
(mass spectrometry) data from several chemical recursive programs are detailed in Chapter 2,
molecules the computer program described providing some insights on practical
here separates the molecules into well-behaved implementations of recursion. There are two
subclasses and selects from the space of all usual characterizations of the least fixed-point
explanatory processes the characteristic of a continuous function. To the first
processes for each subclass. The definitions of characterization, due to Knaster and Tarski,
well-behaved and characteristic embody several corresonds a class of proof techniques for
heuristics which are discussed. Some results programs, as described in Chapter 3. The
of the program are discussed which have been other characterization of least fixed points,
useful to chemists and which lend credibility better known as Kleene’s first recursion
to this approach. theorem, 1s discussed in Chapter IV. It has

the advantage of being effective and it leads
x AIM-216 CS-389 AD771299 to a wider class of prrof techniques.
Larry Masinter, N.S. Sridharan, J. Lederberg,
S. H. Smith, x AIM-219 cs-394 AD769674

Applications of Artificial Intelligence for C. A. R. Hoare,
Chemical Inference: XII. Exhaustive Parallel Programming: an Axiomatic
Generation of Cyclic and Acyclic Isomers, Approach,
60 pages, September 1973. 33 pages, October 1973.

A systematic method of identification of all This paper develops some ideas expounded in
possible graph isomers consistent with a given [1). It distinguishes a number of ways of
empirical formula 1s described. The method, using parallelism, including disjoint processes,
embodied in a computer program, generates a competition, cooperation, communication and
complete list of isomers. Duplicate structures “colluding”. In each case an axiomatic proof
are avoided prospectively. rule 1s given. Some light 1s thrown on traps

or ON conditions. Warning: the program
x AIM-217 cs-39 1 ADT770610 structuring methods described here are not
N. S. Sridharan, suitable for the construction of operating
Search Strategies for the Task of Organic systems.
Chemical Synthesis,
32 pages, August 1973.



 —

Abstracts of Recent Reports 91

AIM-220 CS-396 AD772064/2WC + AIM-222 cs-467

Robert Bolles, Richard Paul, Mario Aiello, Richard Weyhrauch,
The use of Sensory Feedback in a Checking Proofs in the Metamathematics of
Programmable Assembly Systems, First Order Logic,
26 pages, October 1973. Cost: $2.45 55 pages, August 1974. Cost: $3.25

This article describes an experimental, This 1s a report on some of the first
automated assembly system which uses sensory experiments of any size carried out using the
feedback to control an electro-mechanical arm new first order proof checker FOL. We
and TV camera. Visual, tactile, and force present two different first order
feedback are used to improve positional axiomatizations of the metamathematics of the
information, guide manipulations, and logic which FOL itself checks and show
perform inspections. The system has two several proofs using each one. The difference
phases: a planning phase in which the between the axiomatizations 1s that one defines
computer 1s programmed to assemble some the metamathematics in a many sorted logic
object, and a working phase in which the the other does not.
computer controls the arm and TV camera in
actually performing the assembly. The e AIM-223 cs-400 AD772509
working phase is designed to be run on a C. A. R. Hoare,
mini-computer. Recursive Data Structures,

32 pages, December 1973.
The system has been used to assemble a water
pump, consisting of a base, gasket, top, and six The power and convenience of a
screws. This example 1s used to explain how programming language may be enhanced for
the sensory data is incorporated into the certain applications by permitting data
con trol system. A movie showing the pump structures to be defined by recursion. This
assembly 1s available from the Stanford paper suggests a pleasing notation by which
A rtificial Intelligence Laboratory. such structures can be declared and processed;

it gives the axioms which specify their
® AIM-221 CS-447 AD787631/1WC properties, and suggests an efficient
Luigia A iello, Mario Aiello, Richard implementation method. It shows how a
Weyhrauch, recursive data structure may be used to
The Semantics of PASCAL in LCF, represent another data type, for example, a set.
78 pages, October 1974. It then discusses two ways in which significant

gains in efficiency can be made by selective
We define a semantics for the arithmetic part updating of structures, and gives the relevant
of PASCAL by giving it an interpretation in proof rules and hints for implementation. It 1s
LCF, a language based on the typed A- shown by examples that a certain range of
calculus.. Programs are represented in terms of applications can be efficiently programmed,
their abstract syntax. We show sample proofs, ithout introducing the low-level concept of a
using LCF, of some general properties of reference into a high-level programming
PASCAL and the correctness of some language.
particular programs. A program
implementing the McCarthy Airline e AIM-224 cs-403 AD773391
reservation system 1s proved correct. C. A, R. Hoare,

Hints on Programming Language Design,
29 pages, December 1973.

This paper (based on a keynote address
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presented at the SIGACT/SIGPLAN features are described. Although FAIL uses
Symposium on Principles of Programming substantially more main memory than
Languages, Boston, October 1-3, 1973) MACRO- 10, it assembles typical programs
presents the view that a programming about five times faster. FAIL assembles the
language 1s a tool which should assist the entire Stanford time-sharing operating system
programmer in the most difficult aspects of his (two million characters) in less than four
art, namely program design, documentation, minutes of CPU time on a KA -10 processor.
and debugging. It discusses the objective FAIL permits an ALGOL-style block
criteria for evaluating a language design, and structure which provides a way of localizing
illustrates them by application to language the usage of some symbols to certain parts of
features of both high level languages and the program, such that the same symbol name
machine code programming. It concludes with can be used to mean different things in
an annotated reading list, recommended for all different blocks.
intending language designers.

+ AIM-227 CS-408 ADAO003483

eo AIM-225 CS-406 AD775645/5WC A. J. Thomas, T. 0. Binford,
W. A. Perkins, Information Processing Analysis of Visual
Memory Model For a Robot, Perception: A Review,
118 pages, January 1974. 50 pages, June 1974. Cost: $3.10

A memory model for a robot has been We suggest that recent advances in the
designed and tested in a simple toy-block construction of artificial vision systems provide
world for which it has shown clarity, the beginnings of a framework for an
efficiency, and generality. In a constrained information processing analysis of human
psuedo-English one can ask the program to visual perception. We review some pertinent
manipulate objects and query it about the investigations which have appeared in the
present, past, and possible future states of its psychological literature, and discuss what we
world. The program has a good think t be some of the salient and potentially
understanding of its world and gives useful theoretical Concepts which have resulted
intelligent answers in reasonably good English. from the attempts to build computer vision
Past and hypothetical states of the world are systems. Finally we try to integrate these two
handled by changing the state the world in an sources of ideas to suggest some desireable
imaginary context. Procedures interrogate and structural and behavioural concepts which
modify two globabl databases, one which apply to both the natural and artificial
contains the present representation of the systems.
world and another which contains the past
history of events, conversations, etc. The e AIM-228 CS-409 AD776233/9WC
program has the ability to create, destroy, and Lester Earnest (ed.),
even resurrect objects in its world. FINAL REPORT: The First Ten Years of

Artificial Intelligence Research at Stanford,
+ AIM-226 CS-407 AD778310/3WC 118 pages, July 1973.
F.H.C. Wright II, R. E. Gorin,
FAIL, The first ten years of research in artificial
6 1 pages, April 1974. Cost: $3.40 intelligence and related fields at Stanford

University have yielded significant results in
This 1s a reference manual for FAIL, a fast, computer vision and control of manipulators,
one-pass assembler for PDP-10 and PDP-6 speech recognition, heuristic programming,
machine language. FAIL statements, pseudo- representation theory, mathematical theory of
operations, macros, ‘and conditional assembly computation, and modeling of organic
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chemical processes. This report summarizes processing. Although COPILOT 1s compiler-
the accomplishments and provides based, many of our solutions could also be
bibliographies 1n each research area. applied to an interpretive system.

e AIM-229 cs-4 11 Central to the design 1s the use of CRT
D.B. Anderson, T.O. Binford, A.J. Thomas, displays to present programs, program data,
R.W. Weyhrauch, Y.A. Wilks, and system status. This continuous display of
AFTER LEIBNIZ . . . : Discussions on information in context allows the user to

Philosophy and Artificial Intelligence, retain comprehension of complex program
43 pages, April 1974. environments, and to indicate the

environments to be affected by his commands.
This 1s an edited transcript of informal
conversations which we have had over recent COPILOT uses the multiple processing
months, in which we looked at some of the facilities to its advantage to achieve a kind of
issues which seem to arise when artificial interactive control which we have termed non-

intelligence and philosophy meet. Our aim preem pltive. The user's terminal 1s
was to see what might be some of the continuously available for commands of any
fundamental principles of attempts to build kind: program editing, variable inquiry,
intelligent machines. The major topics program control, etc., independent of the
covered are the relationship of AI and execution state of the processes he is
philosophy and what help they might be to controlling. No process may unilaterally gain
each other; the machanisms of natural possession of the user’s input; the user retains
inference and deduction; the question of what control at all times.
kind of theory of meaning would be involved
in a successful natural language understanding Commands in COPILOT are expressed as
program, and the nature of models in Al statements in the programming language.
research. This single language policy adds consistency to

the system, and permits the user to construct
e AIM-230 CS-412 AD786721/1WC procedures for the execution of repetitive or
Daniel C. Swinehart, complex command sequences. An
COPILOT: A Multiple Process Approach to abbreviation facility 1s provided’ for the most
Interactive Programming Systems, common terminal operations, for convenience
Thesis: Ph.D. in Computer Science, and speed.
2 13 pages, August 1974.

We have attempted in this thesis to extend the
The addition of multiple processing facilities facilities of interactive programming systems
to a language used in an interactive in response to developments in language
computing environment requires ~~ new design and information display technology.
techniques. This dissertation presents one The resultant system provides an interface
approach, emphasizing the characteristics of which, we think, is better matched to the
the interface between the user and the system. interactive needs of its user than are its

predecessors.
We have designed an experimental interactive
programming system, COPILOT, as the ¢ AIM-231 cs-413 ADAOO1814
concrete vehicle for testing and describing our James Gips,
methods. COPILOT allows the user to create, Shape Grammars and their Uses,
modify, investigate, and control programs Thesis: Ph.D. in Computer Science,
written in an Algol-like language, which has 243 pages, August 1974.
been augmented with facilities for multiple
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Shape grammars are defined and their uses language utterances. The computation 1s |
are investigated. Shape grammars provide a principally meaning-based, with syntax and
means for the recursive’specification of shapes. traditional semantics playing insignificant
A shape grammar 1s presented that generates roles. This thesis supports this conjecture by
a new class of reversible figures. Shape Synthesis of a theory and computer program
grammars are given for some well known which account for many aspects of language
mathematical curves. A simple method for behavior in humans. It 1s a theory of language
constructing shape - grammars that simulate and memory.
Turing machines is presented. A program has
been developed that uses a shape grammar to Since the theory and program deal with
solve a perceptual task involving the analysis language in the domain of conceptual
and comparison of line drawings that portray meaning, they are independent of language
three-dimensional objects of a restricted type. form and of any specific language. Input to
A formalism that uses shape grammas to the memory has the form of analyzed
generate paintings 1s defined, its conceptual dependency graphs which represent
implementation on the computer is described, the underlying meaning of language
and examples of generated paintings are utterances. Output from the memory 1s also in
shown. The use of shape the form of meaning graphs which have been

~ produced by the active (inferential) memory
e AIM-232 CS-4 14 AD780452/9WC processes which dissect, transform, extend and
Bruce G. Baumgart, recombine the mput graphs in ways which are
GEOMED - A Geometric Editor, dependent upon the meaning context in which
45 pages, May 1974. they were perceived.

GEOMED 1s a system for doing 3-D A memory formalism for the computer model
geometric modeling; used from a keyboard, it 1s first developed as a basis for examining the
1s an interactive drawing program; used as a inferential processes by which comprehension
package of SAIL or LISP accessible occurs. Then, the notion of inference space 1s
subroutines, it 1s a graphics language. With presented, and sixteen classes of conceptual
GEOMED, arbitrary polyhedra can be inference and their implementation in the
constructed; moved about and viewed in computer model are examined, emphasizing
perspective with hidden lines eliminated. In the contribution of each class to the total
addition to polyhedra; camera and image problem of understanding. Among the sixteen
models are provided so that simulators inference classes are: causative/resultative
relevant to computer vision, problem solving, inferences (those which explain and predict
and animation may be constructed. cause and effect relationships relative to the

memory’s model of the world), motivational
e AIM-233 CS-419 ADA 000086/9WC inferences (those which infer the probable
Charles J. Rieger, III, intentions of actors), enabling inferences (those
Conceptual Memory: A Theory and which predictively fill out the circumstances
Computer Program for Processing the which were likely to have obtained at the time
Meaning Content of Natural Language of an action), action prediction inferences
Utterances, (those which make guesses about what a
Thesis: Ph.D. in Computer Science, person might be expected to do in some
393 pages, June 1974. situation), knowledge propagation inferences

(those which predict what knowledge 1s
Humans perform vast quantities of available to a person, based on what the
spontaneous, subconscious computation in memory already knows or can infer he knows),
order to understand even the simplest natural normative inferences (those which assess the
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“normality” of a given piece of information), Man-machine dialogues using everyday
and state duration inferences (those which conversational English present difficult
predict the probable duration of specific states problems for computer processing of natural
in the world). All inferences are probabilistic, language.  Grammar-based parsers which
and “backup” is deemphasited as a perform a word-by-word, parts-of-speech
programming tool. analysis are too fragile to operate satisfactorily

in real time interviews allowing unrestricted
The 1dea of points of contact of information English. In constructing a simulation of
structures in inference space 1s explored. A paranoid thought processes, we designed an
point of contact occurs when an inferred unit algorithm capable of handling the linguistic
of meaning from one starting pont within one expressions used by interviewers in teletyped
utterance’s meaning graph either confirms diagnostic psychiatric interviews. The
(matches) or contradicts an inferred unit of algorithm uses pattern-matching rules which
meaning from another point within the graph, attempt to characterize the input expressions
or from within the graph of another utterance. by progressively transforming them into
The quantity and quality of points of contact patterns which match, completely or fuzzily,
serve as the primary definition of abstract stored patterns. The power of this
understanding, since such points provide an approach lies in its ability to ignore
effective measure of the memory’s ability to recognized and unrecognized words and still
relate and fill in information, grasp the meaning of the message. The

methods utilized are general and could serve
Interactions between the inference processes any “host” system which takes natural
and (1) word sense promotion (how meaning language input.
context influences the language analyzer’s
choice of lexical senses of words during the + AIM-235 CS-432 ADA006898/1WC
parse), and (2) the processes of reference (how Richard W. Weyhrauch, Arthur J. Thomas,
memory pointers to tokens of real world FOL: A Proof Checker for First-order Logic,
entities are established) are examined. In 57 pages, September 1974. Cost: $3.30
particular, an important inference-reference
relaxation cycle is identified and solved. This manual describes a machine

implementation of an extended version of the
The theory forms a basis for a system of natural deduction described by
computationally effective and comprehensive Prawitz. This language, called FOL, extends
theory of language understanding by Prawitz’s formulation to a many-sorted logic
conceptual inference. Numerous computer allowing a partial order over sorts. FOL also
examples are included to illustrate key points. allows deductions to be made in some
Most issues are approached from both intuitionistic, modal and strict-implication
psychological and computational points of logics. It 1s intended to be a vehicle for the
view, and the thesis 1s intended to be investigation of the metamathamatics of first-
comprehensible to people with a limited order systems, of problems in the theory of
background in computers and symbolic computation and of issues in representation
computation. theory.

e AIM-234 cs43 1 not at NTIS eo AIM-236 CS-433 AD784513/4WC

Kenneth Mark Colby, Roger C. Parkison, Bill Jack R. Buchanan and David C. Luckham,
Faught, On Automating the Construction of
Pattern-Matching Rules for the Recognition Programs,
of Natural Language Dialogue Expressions, 65 pages, May 1974.
23 pages, June 1974,
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A n experimental system for automatically system for the computer analysis of written
generating certain simple kinds of programs is natural language texts that could also serve a
described. The programs constructed are a theory of human comprehension of natural
expressed in a subset of ALGOL containing language. Therefore the construction of this
assign men ts, function calls, conditional system was guided by four basic assumptions
statements, while loops, and non-recursive about natural language comprehension. First,
procedure calls. The input 1s an environment the primary goal of comprehension 1s always
of primitive programs and programming to find meanings as soon as possible. Other
methods specified in a language currently used tasks, such as discovering syntactic
to define the semantics of the output relationships, are performed only when
programming language. The system has been essential to decisions about meaning. Second,
used to generate programs for symbolic an attempt 1s made to understand each word
manipulation, robot control, everyday as soon as it 1s read, to decide what it means
planning, and computing arithmetical and how it relates to the rest of the text.
functions. Third, comprehension means not only

understanding what has been seen but also
+ AIM-237 CS-436 predicting what 1s likely to be seen next.
Yorick Wilks, Fourth, the words of a text provide the cues
NaturalLanguage Understanding Systems for finding the information necessary for
Within the AI Paradigm - A Survey and comprehending that text.
Som e Comparisons,
40 pages, December 1974. Cost: $2.85 o AIM-239 CS-438 AD786720/3WC

Marsha Jo Hannah,

The paper surveys the major projects on the Computer Matching of Areas in Stereo
understanding of natural language that fall Im ages,
within what may now be called the artificial Thesis: Ph.D. in Computer Science,
intelligence paradigm for natural language 99 pages, July 1974.
systems. Some space 1s devoted to arguing
that the paradigm 1s now a reality and This dissertation describes techniques for
different in significant respects from the efficiently matching corresponding areas of a
generative paradigm of present day linguistics. stereo pair of images. Measures of match
The comparisons between systems center which are suitable for this purpose are
around questions of the relative perspicuity of discussed, as are methods for pruning the
procedural and static representations; the search for a match. The mathematics
aduantages and disadvantages of developing necessary to convert a set of matchings into a
systems over a period to test their limits; and workable camera model are given, along with
the degree of agreement that now exists on calculations which use this model and a pair
what are the sorts of information that must be of image points to locate the corresponding
available to asystem that 1s to understand scene point. Methods are included to detect
everyday language. some types of unmatchable target areas in the

original data and for detecting when a
® AIM-238 cs-437 A DA 005040 supposed match 1s invalid, Region growing
Christopher K. Riesbeck, techniques are discussed for extend matching
Computational Understanding: Analysis of areas into regions of constant parallax and for
Sentences and Context, delimiting uniform regions in an image. Also,
Thesis: Ph.D. in Computer Science, two algorithms are presented to show some of
245 pages, May 1974. the ways in which these techniques can be

combined to perform useful tasks in the
The goal of this thesis was to develop a processing of stereo images.



-I=

Abstracts of Recent Reports 97

e AIM-240 cs-444 AD787035 and relations for a given computer program. |
C. Cordell Green, Richard J. Waldinger, Representations are picked from a fixed :
David R. Barstow, Robert Elschlager, Douglas library of low-level data structures including
B. Lenat, Brian P. McCune, David E. Shaw, linked-lists, binary trees and hash tables. The
and Louis I. Steinberg, representations are chosen by attempting to
Progress Report on Program-understanding minimize the predicted space+time integral of
Systems, the user’s program execution. Predictions are
47 pages, August 1974. based upon statistics of information structure

use provided directly by the user and collected
This progress report covers the first year and by monitoring executions of the user program
one half of work by our automatic using default representations for the high-
programming research group at the Stanford level structures. A demonstration system has
Artificial Intelligence Laboratory. Major been constructed. Results using that system
emphasis has been placed on methods of are presented.
program specification, codification of
programming knowledge, and implementation o AIM-243 CS-456 ADAO03815
of pilot systems for program writing and Raphael Finkel, Russel Taylor, Robert Bolles,
understanding. List processing has been used Richard Paul, Jerome Feldman,
as the general problem domain for this work. AL, A Programming System for

Automation,

+ AIM-241 CS-446 AD786723/TWC 130 pages, November 1974.
Luigia Aiello, Richard W. Weyhrauch,
LCFsmall: an Implementation of LCF, AL 1s a high-level programming system for
45. pages, August 1974. Cost: $2.95 specification of manipulatory tasks such as

assembly of an object from parts. AL includes
This 1s a report on a computer program an ALGOL-like souce language, a translator
implementing a simplified version of LCF. It for converting programs in runnable code,
1s written (with minor exceptions) entirely in and a runtime system for controlling
pure LISP and has none of the user oriented manipulators and other devices. The system
features of the implementation described by includes advanced {features for describing
Milner. We attempt to represent directly in individual motions of manipulators, for using
code the metamathematical notions necessary sensory Information, and for describing
to describe LCF. We hope that the code is assembly algorithms in terms of common
simple enough and the metamathematics 1s domain-specific primitives. This document
clear enough so that properties of this describes the design of AL, which is currently
particular program (e.g. its correctness) can being implemented as a successor to the
eventually be proved. The program 1s Stanford WAVE system.
reproduced in full.

+ AIM-244 cs-457 not at NTIS

e AIM-242 CS-452 ADA000500/9WC Kenneth Mark Colby,
James R. Low, Ten Criticisms of PARRY,

Automatic Coding: Choice of Data 7 pages, September 1974. Cost: $1.90
Structures,

Thesis: Ph.D. in Computer Science, Some major criticims of a computer simulation
110 pages, August 1974. of paranoid processes (PARRY) are reviewed

and discussed.

A system is described which automatically
chooses representations for high-level
information structures, such as sets, sequences,
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e AIM-245 CS-458 AD7848 16/1 WC language understanding; A description of the
Jack Buchanan, SHRDLU system; A comparison of
A Study in Automatic Programming, representations used in Al programs; A rough
Thesis: Ph.D. in Computer Science, sketch of some ideas for a new representation
148 pages, May 1974. which combines features of the previous ones;

A discussion of the applications of these ideas
A description of methods and an to programming systems.
implementation of a system for automatic
generation of programs 1s given. The e AIM-2477 CS-461 ADA005041/9WC
problems of writing programs for numerical Neil Goldman,
computation, symbol manipulation, robot Computer Generation of Natural Language
control and everyday planning have been From a Deep Conceptual Base,
studied and some programs generated. A Thesis: Ph.D. in Computer Science,
particular formalism, 1.e. a FRAME, has been 318 pages, January 1974.
developed to define the programming
environment and permit the statement of a For many tasks involving communication
problem. A frame, F, is formulated within the between humans and computers it is necessary
Logic of Programs [Hoare 1969, Hoare and for the machine to produce as well as
Wirt h 1972] and includes--primitive functions understand natural language. We describe an
and procedures, axioms definitions and rules implemented system which generates English
of program composition. Given a frame, F, a sentences from Conceptual ~~ Dependency
problem for program construction may be networks, which are unambiguous, language-
stated as a pair <I,G>, where I is an input free representations of meaning. The system
assertion and G is an output assertion. The 1s designed to be task independent and thus
program generation task is to construct a capable of providing the language generation
program A such that I{A}l’, where I’ > G. mechanism for such diverse problem areas as
This process may be viewed as a search in the question answering, machine translation, and
Logic of Programs for a proof that the interviewing.
generated program satisfies the given input-
output assertions. Correctness of programs + AIM-248 CS-462
generated using the formal algorithm 1s Karl Pingle, Arthur Thomas,
discussed. A Fast, Feature-Driven Stereo Depth

Program,
® AIM-246 CS459 ADA 000085/1WC 15 pages, May 1975. Cost: $2.15
Terry Winograd,
Five Lectures on Artificial Intelligence, In this paper we describe a fast, feature-
93 pages, September 1974. driven program for extracting depth

information from stereoscopic sets of digitized
This publication 1s a slightly edited TV 1mages. This 1s achieved by two means:
transcription of five lectures delivered at the in the simplest case, by statistically correlating
Electrotechnical Laboratory in Tokyo, Japan variable-sized windows on the basis of visual
from March 18 to March 23, 1974. They were texture, and in the more complex case by pre-
intended as an introduction to current processing the images to extract significant
research problems in Artificial Intelligence, visual features such as corners, and then using
particularly in the area of natural language these features to control the correlation
understanding. They are exploratory in process.
nature, concentrating on open problems and
directions for future work. The five lectures The program runs on the PDP-10 but uses a
include: A survey of past work in natural PDP-I 1/45 and an PSP-41 Signal Processing
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Computer as subsidiary processors. The us of and arbitrary shaped normal cross-sections
the two small, fast machines for the along this axis.
performance of simple but often-repeated
computations effects an increase in speed Techniques for segmenting an object into
sufficient to allow us to think of using this sub-parts and generating structured, symbolic,
program as a fast 3-dimensional segmentation graph like descriptions are described. These
method, preparatory to more complex image symbolic descriptions are matched with stored
processing. It 1s also intended for use in descriptions and the best match 1s picked for
visual feedback tasks involved in hand-eye recognition. A limited amount of indexing
coordination and automated assembly. The capability exists to efficiently retrieve a sub-
current program 1s able to calculate the three- class of similar objects from the models stored
dimensional positions of 20 points in an image in the memory. Indexing is a necessity if a
to within 5 millimeters in less than 5 seconds large number of visual models 1s to be used.
of computation.

Results of working programs for the stated
+ AIM-249 CS-463 A DA 00226 } tasks on many actual scenes are presented.
Bruce Baumgart, The scenes consist of single as well as multiple
Geometric Modeling for Computer Vision, models 1s to be used.
Thesis: Ph.D. in Computer-Science,
14 1 pages, October 1974. Cost: $5.65 e AIM-251 CS-465 ADAO001373

Edward H. Shortliffe,

A 3-D geometric modeling system for MYCIN: A Rule-Based Computer Program
application to computer vision is described. for Advising Physicians Regarding
In computer vision geometric models provide Antimicrobial Therapy Selection,
a goal for descriptive image analysis, an origin Thesis: Ph.D. in Medical Information Sciences,
for verification image synthesis, and a context 409 pages, October 1974.
for spatial problem solving. Some of the
design ideas presented have been implemented This thesis describes a rule-based problem-
in two programs named CEOMED and CRE; solving system, termed MYCIN, which 1s
the programs are demonstrated in situations designed to assist physicians with the selection
involving camera motion relative to a static of appropriate therapy for patients with
world. bacterial infections. After a brief survey of

medical computing, with an emphasis on
e AIM-250 CS-464 A DA 003486 computer-based medical decision making, the
Ramakant Nevatia, report describes the clinical problem and th
Structured Descriptions of Complex Curved design considerations necessary for a
Objects for Recognition and Visual consultation program to gain acceptance by
Memory, the physicians for whom it is intended. The
Thesis:. Ph.D. in Electrical Engineering, three system components are then described in
126 pages, October 1974. detail: 1) a Consultation System which

interacts with the physician and gives
Description and recognition of three- therapeutic advice, 2) an Explanation System
dimensional objects from range data obtained which seeks to justify the program’s adivce,
by a laser triangulation technique are and 3) a Rule-Acquisition System which
described. A complex object 1s described by accepts rules from experts and codes them for
decomposition into sub-parts and relations of use during future consultation sessions.
these sub-parts. The individual parts are MYCIN’s quantitative model of inexact
described by generalized cones, which are reasoning in medicine 1s also described in
defined by a space curve known as the axis, detail, and the results of an evaluation study
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comparing MYCIN’s advice to that of experts + AIM-254 CS-472 ADA005407/2WC
are presented. The report closes with Lynn Quam, Marsha Jo Hannah,
speculations regarding future extensions and Stanford Automatic Photogramrnetry
applications of a system such as MYCIN and Research,
with a discussion of the program’s I pages, November 1974. Cost: $2.15
contributions to medical decision making and
artificial intelligence. This report documents the feasibility study

done at Stanford University’s Artificial
+ AIM-252 CS-466 A DA 002246 Intellignece Laboratory on the problem of
Lester Earnest (ed.), computer automated aerial/orbital
Recent Research in Artificial Intelligence, photogrammetry. The techniques investigated
Heuristic Programming, and Network were based on correlation matching of small
Protocols, areas In digitized pairs of stereo images taken
74 pages, July 1974. Cost: $3.80 from high altitude or planetary orbit, with the

objective of deriving a S-dimensional model
This 1s a progress report for ARPA- for the surface of a planet.
sponsored research projects in computer
science for the period July 1973 to July 1974. t AIM-255 CS-473 ADA005412/2WC
A ccomplishmen ts are reported in artificial Northisa Suzuki,
mmtelligence (especially heuristic programming, Automatic Program Verification II:
robotics, theorem proving, automatic Verifying Programs by Algebraic 256
programming, and natural language Logical Reduction,
understanding), = mathematical theory of 29 pages, December 1974. Cost: $2.50
computation, and protocol development for
communication networks. References to recent Methods for verifying programs written in a
publications are provided for each topic. higher level programming language are

devised and implemented. The system can
+ AIM-253 cs-47 1 ADAO003487 verify programs written in a subset of
Bill Faught, Kenneth Colby, Roger Parkison, PASCAL, which may have data structures
The interaction of Inferences, Affects, and and control structures such as WHILE,

Intentions in a Model of Paranoia, REPEAT, FOR, PROCEDURE,
38 pages, December 1974. Cost: $2.75 FUNCTION and COROUTINE. The

process of creation of verification conditions is
The analysis of natural language input into its an extension of the work done by Igarashi,
underlying semantic content 1s but one of the London and Luckham which 1s based on the
tasks necessary for a system (human or non- deductive theory by Hoare. Verification
human) to us natural language. Responding conditions are proved using specialized
to natural language input requires performing simplification and proof techniques, which
a number of tasks: 1) deriving facts about the consist of an arithmetic simplifier, equality
input : and the situation in which 1t was replacement rules, fast algorithm for
spoken; 2) attending to the system’s needs, simplifying formulas using propositional truth
desires, and interests; 3) choosing intentions to value evaluation, and a depth first proof
fulfill these interests; 4) deriving and executing search process. The basis of deduction
actions from these intentions. We describe a mechanism used in this prover is Gentzen-
series of processes in a model of paranoia type formal system. Several sorting programs
which performs these tasks. We also describe including Floyd’s TREESORTS and Hoare’s
the modifications made by the paranoid FIND are verified. It is shown that the
processes to the normal processes. A computer resulting array is not only well-ordered but
program has been constructed to test this also a permutation of the input array.
theory.
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e AIM-256 CS-474 ADA007563/0WC o AIM-257 CS-475 ADA 005407/2WC

Friedrich W. V.Henke, David C. Luckham, Malcolm C. Newey,
Automatic Program Verification III: A Formal Semantics of LISP With
Methodology for Verifying Programs, Applications to Program Correctness,

Thesis: Ph.D. in Computer Science,

45 pages, December 1974. 184 pages, January 1975.

The paper investigates methods for applying Described are some experiments in the
an on-line interactive verification system formaiisation of the LISP programming
designed to prove properties of PASCAL language using LCF (Logic for Computable
programs. The methodology is intended to Functions). The bulk of each experiment was
provide techniques for developing a debugged concerned with applying the formalisation to
and verified version starting from a program, proofs of correctnes of some interesting LISP
that ~ 1s possibly unfinished in some respects, - functions using Milner’s mechanised version
may not satisfy the required specifications,i.e., of LCF.
may contain bugs, - may be incompletely
documented in the sense that the assertions A definition of Pure LISP is given in an
provided by the programmer are not sufficient environment which includes an axiomatisation
for proving correctness. It deals with of LISP S-expressions. A primitive theory (a
programs that may be written in non-standard body of theorems in LCF) of Pure LISP is
ways, e.g., permits user defined data structures. derived and 1s applied to proving the

correctness of some simple LISP functions
The methodology involves - techniques for using the LCF proof checking system. A
describing data structures, type constraints, proof of correctness of McCarthy’s interpreter
and properties of programs and rubprograms is described and a machine checked proof of
(i.e. lower level procedures); =the use of the partial correctness is outlined,
(abstract) data types in structuring programs
and proofs. = interactive application of a A more substantial subset of LISP and a
verification condition generator, an algebraic subset of LAP (a LISP-oriented assembly

. simplifier and a theorem-prover; language for the PDP-10 computer) were
formalised and simple theories for the two

Within each unit (i.e. segment of a problem), languages were developed with computer
the interactive use 1s aimed at reducing assistance. This was done with a view to
verification conditions to manageable proving the correctness of a compiler, written
proportions so that the non-trivial factors may the LISP subset, which translates LISP
be analysed. Analysis of verification functions to LAP subroutines. The coarse
conditions attempts to localize errors in the structure of such a compiler correctness proof
program logic, to extend assertions inside the 1s displayed.
program, to spotlight additional assumptions
on program subfunctions beyond those already Particular attention 1s paid, in describing the
specified by the programmer, and to generate experiments, to deficiencies revealed in the
appropriate lemmas and assumptions that expressive power of LCF as a logical language
allow a verification to be completed. Methods and to limitations on the deductive power of
for structuring correctness proofs are the machine implementation of the logic.
discussed.

A detailed case study of a pattern matching
algorithm illustrating the various aspects of
the methodology (including the role played by
the user) 1s given.
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e ATM-258 CS-476 ADA006294/3WC on the assembly language programs relate to
Cordell Green, David Barstow, calling sequences and well-formedness. The
A Hypothetical Dialogue Exhibiting a assembly language programs are processed by
Knowledge Base for aProgram- a program understanding system which
Understanding System, -simulates their effect and returns as its result a
38 pages, January 1975. representation of the program in the form of a

tree.

A hypothetical dialogue with a fictitious
program-understanding system 1s presented. The proof procedure is independent of the
In the interactive dialogue the computer intermediary mechanism which translates the
carries out a detailed synthesis of a simple high level language into the low level
insertion sort program for linked lists. The language. A proof consists of applying valid
content, length and complexity of the dialogue transformations to show the equivalence of the
reflect the underlying programming knowledge forms corresponding to the assembly language
which would be required for a system to program and the original higher level
accomplish this task. The nature of the . language program, for which there also exists
knowledge 1s discussed and the codification of a tree-like intermediate form.
such programming knowledge 1s suggested as
a major research area in the development of Some interesting results include the ability to
program-understanding systems. handle programs where recursion 1s

implemented by bypassing the start of the
+ AIM-259 (CS-498 program, the detection and pinpointing of a
Hanan Samet, wide class of errors in the assembly language
Automatically Proving the Correctness of programs, and a deeper understanding of the
Translations Involving Optimized Code, question of how to deal automatically with
Thesis: PAD in Computer Science, translations between high and extremely low
2 14 pages, May 1975. Cost: $7.70 level languages.

A formalism 1s described for proving that o AIM-260 CS-499 ADAO1681 1/2WC
programs written in a higher level language David Canfield Smith,
are correctly translated to assembly language. PYGMALION: A Creative Program ming
In order to demonstrate the validity of the Environment,
formalism a system has been designed and Thesis: PhD in Computer Science,
implemented for proving that programs 193 pages, June 1975.
written in a subset of LISP 1.6 as the high
level language are correctly translated to LAP PYGMALION is a two-dimensional, visual
(an assembly language for the PDP-10) as the programming system implemented on an
low level language. This work involves the interactive computer with graphics display.
identification of critical semantic properties of Communication between human being and
the language and their interrelationship to the computer 1s by means of visual entities called
instruction repertoire of the computer “icons”, subsuming the notions of “variable”,
executing these programs. A primary use of “reference”, “data structure”, “function” and
the system 1s as a postoptimization step In “picture”. The heart of the system is an
code generation as well as a compiler interactive “remembering” editor for icons,
debugger. which executes and (optionally) saves

operations for later re-execution. The display
The assembly language programs need not screen 1s viewed as a document to be edited.
have been generated by a compiler and in fact Programming consists of creating a sequence
may be handcoded, The primary restrictions of display frames, the last of which contains
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the desired information. Display frames are representations used in the mind in thinking
modified by editing operations. about a problem and representations used In
PYGMALION employs a powerful paradigm programming the problem.
that can be incorporated in virtually any other
programming language: The main innovations of PYGMALION are:

Every operation has both visual (aesthetic) (1) a dynamic representation for programs —
semantics and internal (mechanical) semantics. an emphasis on doing rather than telling;

In fact, every operation in PYGMALION has (2) an iconic representation for parameters
three responsibilities: and data structures requiring less translation

from mental representations;
(a) for accomplishing a given internal machine
task — the machine “semantics” of the (3) a “remembering” editor for icons;
operation;

(4) descriptions in terms of the concrete, which
(b) in display mode, for generating a represen- PYGMALION turns into the abstract.
tative visual action;

3 The responsive, visual characteristics of
(¢) in remember mode, for adding onto a code PYGMALION permit it to play an active role
list the operation(s) necessary to reproduce in human problem solving. The principal
itself. application has been in assisting the design

and simulation of algorithms.
Thus the system includes an incremental
“iconic compiler”. Since each operation has This dissertation was submitted to the
visual semantics, the display becomes a visual Department of Computer Science and the
metaphor for computing. The programmer Committee on Graduate Studies of Stanford
need deal with operations only on the display University in partial fulfillment of the
level; the corresponding machine semantics are requirements for the degree of Doctor of
managed automatically. The mechanical Philosophy.
aspects of programming languages has been
and 1s continuing to be well studied. The + AIM-26 1 CS-501 ADAO016808/8WC
focus 1n this paper is on developing and Odd Pettersen,
interacting ~~ with an articulate visual Procedural Events as Software Interrupts,
presentation. 8 pages, June 1975. Cost: $1.95

PYGMALION 1s a computational extension The paper deals with procedural events,
of the brain’s short term memory. It is providing a basis for synchronization and
designedto relieve the load on the short term scheduling, particularly applied on real-time
memory .by providing alternative storage for program systems of multiple parallel activities
mental images during thought. The display (“multi-task”).
screen 1s seen as a “dynamic blackboard”, on
which ideas can be projected and animated. There 1s a great need for convenient
Instead of abstract symbols, the programer scheduling mechanisms for minicomputer
uses explicit display images. Considerable systems as used in process control, but so far
flexibility 1s provided for designing icons; the mechanisms ~~ somewhat similar to those
programmer may give them any shape that proposed here are found only in PL/I among
can be generated by a routine. This helps to the generally known high-level languages.
reduce the translation distance between PL/I, however, is not very common on
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computers of this size. Also, the mechanisms knowledge of the internal structures and
in PL/I seem more restricted, as compared to working of the system, and that section is
those proposed here. unnecessary for the plain use of the described

feature.

A new type of boolean program variable, the
EVENTMARK, 1s proposed. Eventmarks The extension, 1f not used, 1s completely
represent events of any kind that may occur invisible to the user: No rules, as described in
within a computational process and are the original literature, are changed. A user,
believed to give very efficient and convenient unaware of the extension, will see no
activation and scheduling of program modules difference from the original version.
in a real-time system. An evenfmark is
declared similar to a procedure, and the + AIM-264 CS-506
proposed feature could easily be amended as Michael Gordon,
an extension to existing languages, as well as Operational Reasoning and Denotational
incorporated in future language designs. Semantics,

33 pages, August 1975. Cost: $2.65
+ AIM-262 CS-502 ADAO016810/4WC

Odd Pettersen, “Obviously true” properties of programs can
Synchronization of Concurrent Processes, be hard to prove when meanings are specified
14 pages, July 1975. Cost: $2.10 with a denotational semantics. One cause of

this 1s that such a semantics usually abstracts
This paper gives an overview of commonly away from the running process - thus
used synchronization primitives and literature, properties which are obvious when one thinks
and presents a new form of primitive about this lose the basis of their obviousness
expressing conditional critical regions. in the absence of it. To enable process-based

intuitions to be used in constructing proofs
A new solution 1s presented to the problem of one can associate with the semantics an
“readers and writers”, utilizing the proposed abstract interpreter so that reasoning about
synchronization primitive. The solution 1s the semantic can be done by reasoning about
simpler and shorter than other known computations on the interpreter. This
algorithms. The first sections of the paper give technique 1s used to prove several facts about
a tutorial introduction into established a semantics of pure LISP. First a denotational
methods, in order to provide a suitable semantics and an abstract interpreter are
background for the remaining parts. described. Then it 1s shown that the

denotation of any LISP form 1s correctly
+ AIM-263 cs-503 computed by the interpreter. This 1s used to
Odd Pettersen, justify an inference rule - called “LISP-
The Macro Processing System STAGEZ2: induction” which formalises induction on the
Transfer of Comments to the Generated size of computations on the interpreter.
Text, Finally LISP-induction 1s used to prove a
20 pages, July 1975. Cost: $2.25 number of results. In particular it 1s shown

that the function eval is correct relative to the

This paper 1s a short description of a small semantics - i.e. that it denotes a mapping
extension of STAGE, providing possibilities which maps forms (coded asd S-expressions)
to copy comments etc. from the source text to on to their correct values.
the generated text. The description
presupposes familiarity with the STAGE?
system: its purpose, use and descriptions, like
[1] to [9). Only section 3 of this paper requires
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+ AIM-265 cs-507 + AIM-267 CS-520 ADA019664/2WC

Michael Gordon, Friedrich W. von Henke,

Towards a Semantic Theory of Dynamic On the Representation of Data Structures in
Binding, LCF with Applications to Program
28 pages, August 1975. Cost: $2.50 Generation,

41 pages, September 1975. Cost: $2.85
The results in this paper contribute to the
formulation of a semantic theory of dynamic In this paper we discuss techniques of
binding (fluid variables). The axioms and exploiting the obvious relationship between
theorems are language independent in that program structure and data structure for
they don’t talk about programs - 1.e. syntactic program generation. We develop methods of
objects - but just about elements in certain program specification that are derived from a
domains. Firstly * the equivalence (in the representation of recursive data structures in
circumstances where it’s true) of “tying a knot” the Logic for Computable Functions (LCF).
through the environment (elaborated in the As a step towards a formal problem
paper) and taking a least fixed point 1s shown. specification language we define definitional
This 1s central in proving the correctness of extensions of LCF. These include a calculus
LISP "eval" type interpreters. Secondly the for (computable) homogeneous sets and
relation which must hold between two restricted quantification. Concepts that are
environments 1f a program 1s to have the obtained by interpreting daa types as algebras
same meaning in both 1s established. It 1s are used to derive function definition schemes
shown how the theory can be applied to LISP from an LCF term representing a data
to yield previously known facts. structure; they also lead to techniques for the

simplification of expressions inthe extended
+ AIM-266 cs-517 ADAO19641 language. The specification methods are
Randall Davis, Bruce Buchanan, Edward illustrated with a detailed example.
S hortliffe,

Production Rules as a Representation for a + AIM-268 CS-521 ADA019663/4WC
Knowledge-Based Consultation Program, Clark Thompson,
37 pages, October 1975. Cost: $2.78 Depth Perception in Stereo Computer

Vision,
The MYCIN system has begun to exhibit a 16 pages, October 1975. Cost: $2.15
high level of performance as a consultant on
the difficult task of selecting antibiotic therapy This report describes a stereo vision approch
for bactercrmia. This report discusses issues of to depth perception; the author has build
representation and design for the system. We upon a set of programs that decompose the
describe the basic task and document the problem in the following way: 1) Production
constraints involved in the use of a program of a camera model: the position and
as a consultant. The control structure and orientation of the cameras in 3-space. 2)
knowledge representation of the system are Generation of matching point-pairs: loci of
examined im this light, and special attention is corresponding features in the two pictures. 3)
given to the impact of production rules as a Computation of the point in S-space for each
representation. The extent of the domain point-pair. 4) Presentation of the resultant
independence of the methodology is also depth information.
examined.
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+ AIM-269 CS-522 ADA019569/3WC t AIM-271 CS-524 ADAO019702/0WC

David C. Luckham, Norhisa Susuzki, Randall David, Jonathan King,
Automatic Program Verification IV: Proof An Overview of Production Systems,
of Termination Within a Weak Logic of 40 pages, October 1975. Cost: $2.85
Programs,
29 pages, October 1975. Cost: $2.50 Since production systems were first proposed

in 1943 as a general computational -
A weak logic of programs is a formal system mechanism, the methodology has seen a great
in which statements that mean “the program deal of development and has been applied to
halts” cannot be expressed. In order to prove a diverse collection of problems. Despite the
termination, we would usually have to use a wide scope of goals and perspectives
stronger logical system. In this paper we show demonstrated by the various systems, there
how we can prove termination of both appear to be many recurrent themes. This
iterative and recursive programs within a paper 1s an attempt to provide an analysis and
weak logic by adding pieces of code and overview of those themes, as well as a
placing restrictions on loop invariants and conceptual framework by which many of the
entry conditions. Thus, most of the existing seemingly disparate efforts can be viewed,
verifiers which are based on a weak logic of both in relation to each other, and to other
programs can be used to--prove termination of methodologies.
programs without any modifidation. We give
examples of proofs of termination and of Accordingly, we use the term ‘production
accurate bounds on computation time that system’ in a broad sense, and attempt to show
were obtained using the Stanford Pascal how most systems which have used the term
program verifier. can be fit into the framework. The

comparison to other methodologies 1s intended
+ AIM-270 CS-523 ADAO019467 to provide a view of PS characteristics in a
John F. Reiser, broader context, with primary reference to
BAIL - A debugger for SAIL, procedurally-based techniques, but with
26 pages, October 1975. Cost: $2.45 reference also to some of the current

developments in programming and the
BAIL 1s a debugging aid for SAIL programs, organization of data and knowledge bases. |
where SAIL 1s an extended dialect of

ALGOL60 which runs on the PDP-10 This 1s a slightly revised version of a paper to
computer. BAIL consists of a breakpoint appear In Machine Representations of
package and an expression interpreter which Knowledge, Dordrecht, D. Reidel Publishing
allow the user to stop his program at selected Company (1976).
points, examine and change the values of
variables, and evaluate general SAIL + AIM-272 CS-525
expressions. In addition, BAIL can display Sundaram Ganapathy,
text from the source file corresponding to the Reconstruction of Scenes Containing
current location in the program. In may Polyhedra From Stereo Pair of Views,
respects BAIL 1s like DDT or RAID, except Thesis: Ph.D. in Computer Science,
that BAIL 1s oriented towards SAIL and 204 pages, December 1975. Cost: $7.40
knows about SAIL data types, primitive
operations, and procedure implementation. The problem of constructing a 3-D

description of a scene given two views of it,
taken from widely different angles, 1s attacked
in this thesis. The program accepts line
drawing data as input and uses a large
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number of rules to match the corresponding eo AIM-273 cs-534
features in the two views. These rules are Linda Gail Hemphill,
derived from observation and are based on A Conceptual Approach to Automated
the fact that the scene consists of polyhedral Language Understanding and Belief
bodies only. Structures: with Disambiguatiora of the

Word ‘For’,

There are .several possible approaches to the Thesis: Ph.D. in Linguistics,
problem. We have taken one approach which 254 pages, May 1975.
involves matching up the corresponding
vertices and building up from that. The This thesis deals with the problem of human
problem of matching up the corresponding language understanding, that is, what kinds of
vertices 1s combinatorial in nature and 1s information does a person use in order to be
somewhat analogous to graph matching. able to understand what 1s said to him. The
However the structure of objects provides word “for” 1s examined because it can have
helpful clues and constrains the search more than twenty different meanings, and yet,
considerably. In fact quite often no search 1s° a person rarely misinterprets an instance of
necessary, 1f the rules are combined properly. “for” or finds it ambiguous.

Towards this end, the individual rules have The problem 1s approached from the
been studied in great detail and their power standpoint of a computer understanding
analysed both from a theoretical and model, that is, what kinds of information must
experimental standpoint. We have developed a computer understanding model have to
a theoretical framework, in which the power interpret sequences of language, in particular,
and. the probability of application of these those in which “for” occurs, as an American
rules can be studied. A scheme has been English-speaking person might. This model
designed which combines these rules in such a would of necessity be idiosyncratic, since a
way so as to make the best match (based on person’s 1diosyncratic background determines
scoring functions) the right match with a very the way in which he interprets certain
high probability. But in as much as no utterances.
algorithm exists for doing vision, the best
match is not always the right match. However It 1s shown that a conceptual approach to
a wrong match would result in an analysis must be used in order for an
interpretation that 1S inconsistent. Ideas have understanding system to perform the tasks
been developed which will verify the that a human being does in understanding.
consistency of a match. A procedure has been In order for an understanding model to assign
designed which will backtrack and correct the a meaning representation to utterances, 1t must
errors 1n an incorrect match. manipulate conceptual information. For

example, the model must make inferences
All these ideas have been implemented as a from the sentences under analysis; it must
computer program which works extremely well analyze two syntactically different sentences
on idealised drawings. The problems which are paraphrases of each other into the
encountered 1n applying these ideas to real same meaning representation; and it must
data have been analysed. Finally suitable interact with a memory structure; each of these
modifications have been made to make these tasks requires that a conceptual approach to
same 1deas work well on real-data as well. language analysis be used. Conceptual

Dependency Theory 1s the approach used
here.

The memory structure required by an
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understanding model must have certain types instances of language understanding and
of conceptual information. The memory generation as well.
information that must interact in the

disambiguation of “for” is varied. Certain + AIM-274 CS-536 ADA 020842/9WC
conceptual features that apply to objects must David Grossman, Russell Taylor,
be specified, as well as conceptual features that Interactive Generation of Object Models
apply to actions; the concept of different with a Manipulator,
Scales, and terms that designate evaluations 32 pages, December 1975. Cost: $2.60
on those scales, interact in the understanding
of “for”. Often the understanding model must Manipulator programs in a high level
interact with Expectancy Rules. The language consist of manipulation procedures
Expectancy Rules deal with the different types and object model declarations. As higher
of non-linguistic information that interact in level languages are developed, the procedures
the understanding process. The Expectancy will shrink while the declarations will grow.
Rule is of the form:ss IF situation A occurs, This trend makes it desirable to develop
THEN EXPECT B. This type of rule . means for automating the generation of these
interacts constantly in language understanding, declarations. A system 1s proposed which
and examples are given where this type of would permit users to specify certain object
rule must interact in a-. model of language models interactively’ using the manipulator
generation. This type of rule (or one might itself as a measuring tool in three dimensions.
say “belief”) 1s so basic that people do not feel A preliminary version of the system has been
the need to state it explicitly in language, and tested.
thus it must be in the memory of an
understanding system. + AIM-275 CS-537 ADA020943/7TWC

Robert C. Bolles,

The context of an utterance, both linguistic Verification Vision Within a Programmable
and non-linguistic, determines the way 1n Assembly System: An Introductory
which that utterance 1s interpreted. Discussion,
Therefore, the understanding model must 82 pages, December 1975. Cost: $4.00
store formation as a “conversation” proceeds,
because context ultimately determines the This paper defines a class of visual feedback
meaning of “for”, not the sentence which tasks called Verifeation Vision which includes a
contains “for”. Specific procedures for the significant portion of the feedback tasks
disambiguation of each meaning of “for” are required within a programmable assembly
given, which are based on elements of the system. It characterizes a set of general-
“for” sentence itself; however, context can set purpose capabilities which, if implemented,
up a completely different-interpretation for a would provide a user with a system in which
“for” by providing the conceptual format to write programs to perform such tasks.
underlying a particular meaning of “for”, in Example tasks and protocols are used to
which case the model would choose the motivate these semantic capabilities. Of
contextual interpretation. particular importance are the tools required to

extract as much information as possible from
The theory of an understanding model that planning and/or training sessions. Four
would correctly interpret all stances of “for” different levels of verification systems are
points out many of the problems that any discussed. They range from a straightforward
natural language understanding model must interactive system which could handie a subset
handle, and the types of information needed of the verification vision tasks, to a completely
for an understanding system to correctly automatic system which could plan its own
interpret “for” were shown to interact in other strategies and handle the total range of
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verification tasks. Several unsolved problems semantics of the new primitives are given.
in the area are discussed. Proof rules for standard Pascal operations on

pointer variables are then defined in terms of
+ AIM-276 CS-539 ADA021055/8WC the extended assertion language. Similar rules
Zohar Manna, Adi Shamir, for records and arrays are special cases. An
A New Approach to Recursive Programs, extensible axiomatic rule for the Pascal
25 pages, December 1975. Cost: $2.40 memory allocation operation, NEW, 1s also

given.

In this paper we critically evaluate the
classical least-fixed point approach towards These rules have been implemented in the
recursive programs. We suggest a new Stanford Pascal program verifier. Examples
approach which extracts the maximal amount illustrating the verification of programs which
of valuable information embedded in the operate on list structures implemented with
programs. The presentation 1s informal, with pointers and records are discussed. These
emphasis on examples. include programs with side-effects.

eo AIM-277 CS-542 ADA027454 eo AIM-279 CS-552

Zohar Manna, Adi Shamir, Norihsa Suzuki,

The Theoretical Aspects of-the Optimal Autotnatic Verification of Programs with
Fixedpoint, Complex Data Structures,
24 pages, March 1976. Thesis: Ph.D. in Computer Science,

194 pages, February 1976.
In this paper we define a new type of
fixedpoint of recursive definitions and The problem of checking whether programs
investigate some of its properties. This work correctly or not has been troubling
optimal fixedpoint (which always uniquely programmers since the earliest days of
exists) contains, in some sense, the maximal computing. Studies have been conducted to
amount of “mteresting” information which can formally define semantics of programming
be extracted from the recursive definition, and languages and derive proof rules for
it may be strictly more defined than the correctness of programs.
program’s least fixedpoint. This fixedpoint
can be the basis for assigning a new semantics Some experimental systems have been built to
to recursive programs. mechanically verify programs based on these

proof ruler, However, these systems are yet
+ AIM-278 cs-549 ADAO027455 far from attacking real programs in areal
David Luckham, Norihisa Suzuki, environment. Many problems covering the
Automatic Program Vcrificatiorr VI ranges from theory to artificial intelligence and
Verification-Oriented Proof Rules for programming languages must be solved in
Arrays, Records and Pointers, order to make program verification a practical
48 pages; March 1976. Cost: $3.05 tool. First, we must be able to verify a

complete practical programming language.
A practical method is presented for One of the important features of real
automating in a uniform way the verification . programming languages which is not treated
of Pascal programs that operate on the in early experimental systems 1s complex data
standard Pascal data structures ARRAY, structures. Next, we have to study
RECORD, and POINTER. New assertion specification methods. In order to verify
language primitives are introduced for programs we have to express what we intend
describing computational effects of operations to do by the programs. In many cases we are
on these data structures. Axioms defining the not sure what we want to verify and how we
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should express them. These specification used verifier implemented so far. There 1s yet
methods are not independent of the proof a great deal of research necessary in order to |
rules. Third, we have to construct an efficient fill the gap between the current verifier and
prover so that we can interact with the the standard programming tools like editors
verification process. It 1s expected that and compilers.
repeated verification attempts will be necessary
because programs and specifications may have This dissertation was submitted to the
errors at first try. So the time to complete one Department of Computer Science and the
verification attempt is very important in real Committee on Graduate Studies of Stanford
environment. University in partial fulfillment of the

requirements for the degree of Doctor of
We have chosen Pascal as the target language. Philosophy.
The semantics and proof rules are studied by
Howe & Wirth and Igarashi, London & + AIM-280 cs-555
Luckham. However, they have not treated David D. Grossman,
complex data structures obtained from arrays, . Monte Carlo Simulation of Tolerancing in
records, and pointers. In order to express the Discrete Parts Manufacturing and Assem bly,
state of the data structures concisely and 25 pages, May 1976. Cost: $2.40
express the effects of statements we troduced
special assertion language primitives and new The assembly of discrete parts is strongly
proof rules. We defined new methods of affected by imprecise components, imperfect
introducing functions and predicates to write fixtures and tools, and inexact measuremets. It
assertions so that we can express simplification 1s often necessary tor design higher precision
rules and proof search strategies. We into the manufacturing and assembly process
introduced a special language to document than 1s functionally needed in the final
properties of these functions and predicates. product. Production engineers must trade off
These methods enable users to express between alternative ways of selecting
assertions in natural ways so that verification individual tolerances in order to achieve
becomes easier. The theorem prover 1s minimum cost, while preserving product
constructed so that it will be efficient for integrity. This paper describes a
proving a type of formulas which appear very comprehensive Monte Carlo method for
often as verification conditions. systematically ~~ analysing the stochastic

implications of tolerancing and related forms
We have successfully verified many programs. of imprecision. The method is illustrated by
Using our new proof rules and specification four examples, one of which 1s chosen from
methods we have proved properties of sorting the field of assembly by computer controlled
programs such as permutation and stability manipulators.
which have been thought to be hard to prove.
We see no theoretical as well as practical + AIM-28 1.1 CS-558 AD-A031
problems in verifying sorting programs. We 406/2W C
have also verified programs which manipulate Zohar Manna, Richard Waldinger,
pointers. These programs change their data Is ‘sometime’ sometimes better than ‘always’?
structures so that usually verification Intermittent assertions in proving program
conditions tend to be complex and hard to correctness,
read. Some study about the complexity 41 pages, June 1976, revised March 1977.
problem seems necessary. Cost: $2.85

The verifier has been used extensively by This paper explores a technique for proving
various users, and probably the most widely the correctness and termination of programs
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simultaneously. This approach, which we call objects being manipulated; (2) situational
the [intermittentl-[assertion method], involves information describing the execution-time
documenting the program with assertions that environment; and (3) action information
must be true at some time when control is defining the task and the semantics of the
passing through the corresponding point, but execution-time environment.
that need not be true every time. The
method, introduced by Knuth and further A standard subtask in mechanical assembly,
developed by Burstall, promises to provide a insertion of a pin into a hole, 1s used to focus
valuable complement to the more conventional the technical issues of automating manipulator
met hods. coding decisions. This task Is first analyzed

from the point of view of a human
We first introduce and illustrate the technique programmer writing in the target language,
with a number of examples. We then show AL, to identify the specific coding decisions
that a correctness proof using the invariant required and the planning information
assertion method or the subgoal induction required to make them. Then, techniques for
method can always be expressed using’ representing this information in a
intermittent assertions instead, but that the computationally useful form are developed.
reverse 1s not always the case. The method Objects are described by attribute graphs, in
can also be used just to prove termination, which the nodes contain shape information.
and any proof of termination using the the links contain structural information, and
conventional well-founded sets approach can properties of the links contain location
be rephrased as a proof using intermittent information. Techniques are developed for
assertions. Finally, we show how the method representing object locations by parameterized
can be applied to prove the validity of mathematical expressions mn which free scalar
program transformations and the correctness variables correspond to degrees of freedom
of continuously operating programs. and for deriving such descriptions from

symbolic relations between object features.
This 1s a revised and simplified version of a Constraints linking the remaining degrees of
pevious paper with the same title (AIM-281, freedom are derived and used to predict
June 1976). maximum variations. Differential

approximations are used to predict errors in
+ A IT M-282 CS-560 location values. Finally, procedures are
Russell Taylor, developed ~~ which use this planning
Synthesis of Manipulator Control Programs information to generate AL code
from Task-level Specifications, automatically.
Thesis: Ph.D. in Computer Science,

229 pages, July 1976. Cost: $8.10 The AL system itself performs a number of
coding functions not normally found in

This research 1s directed towards automatic algebraic compilers. These functions and the
generation of manipulator control programs planning information required to support
from task-level specifications. The central them are also discussed.
assumption 1s that much manipulator-level
coding 1S a process of adapting known eo AIM-283 CS-552
program constructs to particular tasks, in Randall Davis,
which coding decisions are made by well- Applications of Meta Level Knowledge to
defined computations based on planning the Construction, Maintenance and Use of
information. For manipulator programming, Large Know ledge Bases,
the principal elements of planning information Thesis: Ph.D. in Computer Science,
are: (1) descriptive information about the 304 pages, July 1976.
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The creation and management of large an understanding of its representations.
knowledge bases has become a central problem Chapter 5 documents the use of abstracted
of artificial intelligence research as a result of models of knowledge (rule models) as a guide
two recent trends: an emphasis on the use of to acquisition. Chapter & demonstrates the
large stores of domain specific knowledge as a utility of describing to a program the structure
base for high performance programs, and a of its representations (using data structure
concentration on problems taken from real schemata). Chapter 7 describes the use of
world settings. Both of these mean an strategies in the form of mete rules, which
emphasis on the accumulation and contain knowledge about the use of
management of large collections of knowledge, knowledge.
and in many systems embodying these trends
much time has been spent on building and o AIM-284 cs-567
maintaining such knowledge bases. Yet there Rafael Finkel,
has been little discussion or analysis of the Constructing and Debugging Manipulator
concomitant problems. This thesis attempts to Programs,
define some of the issues involved, and Thesis: Ph.D. in Computer Science,

explores steps taken toward solving a number 171 pages pages, August 1576.
of the problems encountered. It describes the
organization, implementation, and operation This thesis presents results of work done at
of a program called TEIRESIAS, designed to the Stanford Artificial Intelligence Laboratory
make possible the interactive transfer of in the field of robotics. The goal of the work
expertise from a human expert to the 1s to program mechanical manipulators to
knowledge base of a high performance accomplish a range of tasks, especially those
program, in a dialog conducted in a restricted found in the context of automated assembly.
subset of natural language. The thesis has three chapters describing

significant work in this domain. The first
The two major goals set were (i) to make it chapter 1s a textbook that lays a theoretical
possible for an expert in the domain of framework for the principal issues mvolved in
application to “educate” the performance computer control of manipulators, including
program directly, and (i1) to ease the task of types of manipulators, specification of
assembling and maintaining large amounts of destinations, trajectory specification and
knowledge. planning, methods of interpolation, force

feedback, force application, adaptive control,
The central theme of this work 1s the collision avoidance, and simultaneous control

exploration and use of what we have labelled of several manipulators. The second chapter
meta level knowledge. This takes several is an implementation manual for the AL
different forms as its use 1s explored, but can manipulator programming language. The
be summed up generally as “knowing what goals of the language are discussed, the
you know”. It makes possible a system which language 1s defined, the compiler described,
has both the capacity to use its knowledge and the execution environment detailed. The
directly, and the ability to examine it, abstract language has special facilities for condition
it, and direct its application. monitoring, data types that represent

coordinate systems, and affixment structures
We report here on the full extent of the that allow coordinate systems to be linked
capabilities it makes possible, and document together. Programmable side effects play a
cases where its lack has resulted in significant large role in the implementation of these
difficulties. Chapter 3 describes efforts to features. This chapter closes with a detailed
enable a program to explain its actions, by programming example that displays how the
giving it a model of its control structure and constructs of the language assist in
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formulating and encoding the manipulation e AIM-286 cs-370
task. The third chapter discusses the Douglas Lenat,
problems involved in programming in the AL AM: An Artificial Intelligence Approach to
language, including program preparation, Discovery in Mathematics as Heuristic
compilation, and especially debugging. A Search,
debugger, ALAID, is designed to make use of Thesis: Ph.D. in Computer Science,
the complex environment of AL. Provision 1s 350 pages, July 1976.
made to take advantage of the multiple-
Processor, multiple-process, real-time, A program, called “AM”, 1s described which
interactive nature of the problem. The models one aspect of elementary mathematics
principal conclusion is that the debugger can research: developing new concepts under the
fruitfully act as a uniform supervisor for the guidance of a large body of heuristic rules.
entire process of program preparation and as “Mathematics” 1s considered as a type of
the means of communication bet ween intelligent behavior, not as a finished product.
cooperating processors.

+ AIM-287 cs-57 1

e AIM-285 CS-568 PB-259 130/3WC Michael Roderick,
T. O. Einford, D. D. Grossman, C. R. Lui, R. Discrete Control of a Robot Arm,

C. Bolles, R. A. Finkel, M. 8. Mujtaba, M. D. Thesis: Engineer in Electrical Engineering,
Roderick, B. E. Shimano, R. H. Taylor, R. H. 98 pages, August 1976. Cost: $4.45
Goldman, J. P. Jarvis, V. D. Scheinman, T. A.

Gafford, The primary goal of this thesis was to
Exploratory Study of Computer Integrated determine the {feasibility of operating the
Assembly Systems, Progress Report 3, Stanford robot arm and reduce sample rates.
336 pages, August 1976. A secondary goal was to reduce the effects of

variations in inertia and sampling rates on the
The Computer Integrated Assembly Systems control system’s stability.
project 1s concerned with developing the
software ~~ tech nology of programmable A discrete arm model was initially developed
assembly devices, including ~~ computer to illustrate the effects of mertia and sampling
controlled manipulators and vision systems. A rate variations on the present control system.
complete ~~ hardware system has been Modifications were then suggested for
implemented that includes manipulators with reducing these effects. Finally, a method was
tactile sensors and TV cameras, tools, fixtures, demonstrated for reducing the arm sampling
and auxiliary devices, a dedicated rate from its present value of 60 hertz to
minicomputer, and a time-shared large approximately 45 hertz without significantly
computer equipped with graphic display effecting the arms performance.
terminals. An advanced software system call
AL has . been developed that can be used to + AIM-288 CS-572
program: assembly applications. Research Robert Filman, Richard Weyhrauch,
currently underway includes refinement of AL, An FOL Primer,
development of improved languages and 36 pages, September 1976, Cost: §2.70
interactive ~~ programming techniques for
assembly and vision, extension of computer This primer is an introduction to FOL, an
vision to areas which are currently infeasible, interactive proof checker for first order logic.
geometric modeling of objects and constraints, Its examples can be used to learn the FOL

| assembly simulation, control algorithms, and system, or read independently for a flavor of
adaptive methods of calibration. our style of interactive proof checking.

Several example proofs are presented,
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successively increasing in the complexity of the included throughout, and only a minimum of
FOL commands employed. programming background 1s assumed.

FOL runs on the computer at the Stanford eo AIM-291 cs-577
Artificial Intelligence Laboratory. It can be Bruce Buchanan, Joshua Lederberg, John
used over the ARPA net after arrangements McCarthy,
have been made with Richard Weyhrauch Three Reviews of J. Weizenbaum’s
(network address RWWeSU-AI). Computer Power and Human Reason,

28 pages, November 1976.
+ AIM-2S9 cs-574

John Reiser (ed.), Three reviews of Joseph Weizenbaum’s
SAIL, Computer Power and Human Reason (W.H.
178 pages, August 1976. Cost: $6.70 Freeman and Co., San Francisco, 1976) are

reprinted from other sources. A reply by
SAIL 1s a high-level programming language Weizenbaum to McCarthy’s review 1s also
for the PDP-10 computer. It includes an . reprinted.
extended ALGOL 60 compiler and a
companion set of execution-time routines. In + AIM-292 cs-580
addition to ALGOL, thetanguage features: (1) Terry Winograd,
flexible linking to hand-coded machine Towards a Procedural Understanding of
language algorithms, (2) complete access to the Semantics,
PDP- 10 I/O facilities, (3) a complete system of 30 pages, October 1976. Cost: $2.55
compile-time arithmetic and logic as well as a
flexible macro system, (4) a high-level The term “procedural semantics” has been
debugger, (5) records and references, (6) sets used in ‘a variety of ways, not all compatible,
and lists, (7) an associative data structure, (8) and not. all comprehensible. In this paper, I
independent processes, (9) procedure variables, have chosen to apply the term to a broad
(IO) user modifiable error handling, (11) paradigm for studying semantics (and in fact,
backtracking, and (12) interrupt facilities. all of linguistics). This paradigm has

developed in a context of writing computer
This manual describes the SAIL language and programs which use natural language, but it 1s
the execution-time routines for the typical not a theory of computer programs or
SAIL user: a non-novice programmer with programming techniques. It 1s “procedural”
some knowledge of ALGOL. It lies because it looks at the underlying structure of
somewhere between being a tutorial and a language as fundamentally shaped by the
reference manual. nature of processes for language production

and comprehension. It is based on the belief
+ AIM-290 cs-575 that there 1s a level of explanation at which
Nancy W. Smith, there are significant similarities between the
SAIL: Tutorial, psychological processes of human language use
54 pages, November 1976. Cost: $3.20 and the computational processes in computer

programs we can construct and study. Its goal
This TUTORIAL 1s designed for a beginning 1s to develop a body of theory at this level.
user of Sail, an ALGOL-like language for the This approach necessitates abandoning or
PDP 10. The first part covers the basic modifying several currently accepted doctrines,
statements and expressions of the language; including the way in which distinctions have
remaining topics include macros, records, been drawn between “semantics” and
conditional compilation, and input/output. “pragmatics” and between “performance” and
Detailed examples of Sail programming are “competence”.
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The paper has three major sections. It first internal structure of a conceptual object. This
lays out the paradigm assumptions which procedural attachment allows the steps for a
guide the enterprise, and elaborates a model of particular operation to be determined by
cognitive processing and language use. It then characteristics of the specific entities involved.
illustrates how some specific semantic problems
might be approached from a procedural The control structure of KRL 1s based on the
perspective, and contrasts the procedural belief that the next generation of intelligent
approach with formal structural and truth programs will integrate data-directed and
conditional approaches. Finally, it discusses goal-directed processing by using multi-
the goals of linguistic theory and the nature of processing. It provides for a priority-ordered
the linguistic explanation. multi-process agenda with explicit (user-

provided) strategies for scheduling and
Much of waht 1s presented here 1s a resource allocation. It provides procedure
speculation about the nature of a pradigm yet directories which operate along with process
to be developed. This paper 1s an attempt to frameworks to allow procedural
be evocative rather than definitive; to convey parameterization of the fundamental system
intuitions rather than to formulate crucial processes for building, comparing, and
arguments which justify this approach over retrieving ~~ memory structures. Future
others. It will be successful if it suggests some development of KRL will include integrating;
ways of looking at language which lead to procedure definition with the descriptive
further understanding. formalism.

e@ A TM-293 cs-3s 1 + AIM-294 cs-586

Daniel Bobrow, Terry Winograd, Nachum Dershowitz, Zohar Manna,
A 1mOverview of I1 RL, The Evolution of Programs: A System for
10 pages, November 1976. Automatic Program Modification,

45 pages, December 1976. Cost: 82.95
This paper describes KRL, a Knowledge
Representation Language designed for use in An attempt 1s made to formulate techniques of
understander systems. It outlines both the program modification, whereby a program that
general concepts which underlie our research achieves one result can be transformed into a
and the details of KRL-0, an experimental new program that uses the same principles to
implementation of some of these concepts. achieve a different goal. For example, a
KRL 1s an attempt to integrate procedural program that uses the binary search paradigm
knowledge with a broad base of declarative to calculate the square-root of a number may
forms. These forms provide a variety of ways be modified to divide two numbers in a
to express the logical structure of the similar manner, or vice versa.
knowledge, 1n order to give flexibility in
associating procedures (for memory and Program debugging 1s considered as a special
reasoning) with specific pieces of knowledge, case of modification: if a program computes
and to control the relative accessibility of wrong results, 1t must be modified to achieve
different facts and descriptions. The the intended results. the application of
formalism for declarative knowledge is based abstract program schemata to concrete
on structured conceptual objects with associated problems is also viewed from the perspective
descriptions. These objects form a network of of modification techniques.
memory units with several different sorts of
linkages, each having well-specified We have embedded this approach in a
implications for the retrieval process. running implementation; our methods are
Procedures can be associated directly with the illustrated with several examples that have

been performed by it.



116 Appendix D

+ AIM-295 cs-39 1 desired task. The VV system has also been
Robert C. Bolles, interfaced to the AL control system for the :
Verification Vision Within a Programmable mechanical arms and has been tested on tasks
Assem bly System, that involve a combination of touch, force,
Thesis: Ph.D. in Computer Science, and visual feedback.
245 pages, December 1976. Cost: $8.55

+ AIM-296 CS-592

The long-range goal of this research 1s to Robert Cartwright,
simplify visual information processing by Practical Formal Semantic Definition and
computer. The research reported in this thesis Verification Systems,
concentrates on a subclass of visual Thesis: Ph.D. in Computer Science,

information processing referred to as 158 pages, December 1976. Cost: $6.15
verifra tion vision (abbreviated VV). VV
includes a significant portion of the visual Despite the fact that computer scientists have
feed back tasks required within programmable developed, a variety of formal methods for
assembly. There are several types of ° proving computer programs correct, the formal
information available in VV tasks that can verification of a non-trivial program is still a
facilitate the solution of such tasks. The main formidable task. Moreover, the notion of

question addressed in this thesis 1s how to use proof is so imprecise in most existing
all of this information to perform the task verification systems, that the validity of the
efficiently. = Two steps are involved 1n proofs generated 1s open to question. With an
answering this question: (1) formalize the types aim toward rectifying these problems, the
of tasks, available information, and quantities research discussed in this dissertation attempts
of interest and (2) formulate combination rules to accomplish the following objectives:
that use the available information to estimate |

the quantities of interest. 1. To develop a programming language
which 1s sufficiently powerful to express many

The combination rules that estimate interesting algorithms clearly and succintly, yet
confidences are based upon Bayes’ theorem. simple enough to have a tractable formal
They are general enough to handle operators semantic definition.
that are not completely reliable, i.e., operators
that may find any one of several features or a 2. To completely specify both proof theoretic
surprise. The combination rules that estimate and model theoretic formal semantics for this
precisions are based upon a least-squares language using the simplest possible
technique. They use the expected precisions abstractions.
of the operators to check the structural
consistency of a set of matches and to estimate 3. To develop an interactive program
the resulting precisions about the points of verification system for the language which
interest. An interactive VV system based automatically performs as many of the
upon: these ideas has been implemented. It straightforward steps 1n a verification as
makes 1t possible for a person who 1s not an possible. [continued next page) .univ .next
expert in vision research to program visual page
feedback tasks. This system helps the
programmer select potentially useful The first part of the dissertation decribes the
operator/feature pairs, provides a training motivation for creating TYPED LISP, a
session to gather statistics on the behavior of variant of PURE LISP including a flexible
the operators, automatically ranks the data type definition facility allowing the
operator/feature pairs according to their programmer to create arbitrary recursive types.
ex pected contributions, and performs the It 1s argued that a powerful data type
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definition facility not only simplifies the task of + AIM-297 CS-610
writing programs, but reduces the complexity Terry Winograd,
of the complementary task of verifying those A Framework for Understanding Discourse,
programs. 24 pages, April 1977. Cost: $2.40

The second part of the thesis formally defines There 1s a great deal of excitement in
the semantics of TYPED LISP. Every linguistics, cognitive psychology, and artificial
function symbol defined in a program P is intelligence today about the potential of
identified with a function symbol 1n a first understanding discourse. Researchers are
order predicate calculus language Lp. Both a studying a group of problems in natural
standard model Mp and a natural deduction language which have been largely ignored or
system Np are defined for the language Lp. finessed in the mainstream of language
In the standard model, each function symbol is research over the past fifteen years. They are
interpreted by the least call-by-value fixed- looking into a wide variety of phenomena,
point of its defining equation. An informal and although results and observations are
meta-mathematical proof of the consistency of scattered, it 1s apparent that there are many
the model Mp and the deductive system Np 1s interrelationships. While the field s not yet at
given. a stage where it 1s possible to lay out a precise

unifying theory, this paper attempts to provide
The final part of the dissertation describes an a begining framework for studying discourse.
interactive verification system implementing Its main goal 1s to establish a general context
the natural deduction system Np. and give a feeling for the problems through

examples and references. Its four sections
The verification system includes: attempt to:

1. A subgoaler which applies rules specified Delimit the range of problems
by the user to reduce the proof of the current covered by the term “discourse.”
goal (or theorem) to the proof of one or more
subgoals. Characterize the basic structure of

natural language based on a notion of
2. A powerful simplifier which automatically communication.
proves many non-trivial goals by utilizing
user-supplied lemmas as well as the rules of Propose a general approach to
Np. formalisms for describing the phenomena and

: building theories about them
With a modest amount of user guidance, the
verification system has proved a number of Lay out an outline of the different
interesting, non-trivial theorems including the schemas involved in generating and
total correctness of an algorithm which sorts comprehending language
by successive merging, the total correctness of
the McCarthy-Painter ~~ compiler for + AIM-298 CS-6 11
expressions, the termination of a unification Zohar Manna, Richard Waldinger,
algorithm and the equivalence of an iterative The Logic of Computer Programming,
algorithm and a recursive algorithm for 90 pages, June 1977. Cost: $4.25
counting the leafs of a tree. Several of these
proofs are included in an appendix. Techniques derived from mathematical logic

promise to provide an alternative to the
conventional methodology for constructing,
debugging, and optimizing computer
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programs. Ultimately, these techniques are the development of theories of language. The
intended to lead to the automation of many of authors of that paper declare that workers in
the facets of the programming process. Al have misconstrued what the goals of an

explanatory theory of language should be, and
In this paper, we provide a unified tutorial that there is no reason to believe that the
exposition of the logical techniques, development of programs which could
illustrating each with examples. We assess the understand language in some domain could
strengths and limitations of each technique as contribute to the development of such theories.
a practical programming aid and report on This paper concentrates on the assumptions
attempts to implement these methods in underlying their view of science and language.
experimental systems. It draws on the notion of “scientific

paradigms” as elaborated by Thomas Kuhn,
+ AIM-299 CS-614 pointing out the ways in which views of what
Zohar Manna, Adi Shamir, a science should be are shaped by unprovable
The Convergence of Functions to assumptions. It contrasts the procedural
Fixedpoin ts of Recursive Definitions, | paradigm (within which artificial intelligence
45 pages, May 1977. Cost: $2.95 research 1s based) to the currently dominant

paradigm typified by the work of Chomsky. It
The classical method for-constructing the least describes the ways in which research in
fixeclpoint of a recursive definition 1s to artificial intelligence will increase our
generate a sequence of functions whose initial understanding of human language, and
element 1s the totally undefined function and through an analogy with biology, raises some
which con verges to the desired least questions about the plausibility of the
fixedpoint. This method, due to Kleene, Chomskian view of language and the science
cannot be generalized to allow the construction of linguistics.
of other fixedpoints.

In this paper we present an alternate
definition of convergence and a new
[fixedpoint access] method of generating
sequences of functions for a given recursive
definition. = The initial function of the

sequence can be an arbitrary function, and the
sequence will always converge to a fixedpoint
that 1s “close” to the initial function. This

defines a monotonic mapping from the set of
partial functions onto the set of all fixedpoints
of the given recursive definition.

+ AIM-300 CS6 17

Terry Winograd,
0 msom ¢ con tested suppositions of
gencrative linguistics about the scientific
study of language,
25 pages, May 1977. Cost: $2.40

This paper 1s a response to a recently
published paper which asserts that current
work 1 artificial intelligence is not relevant to


