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a laser rangefinder. The research thus divides conveniently into two portions: stereo
mepping and three-dimensional modelling and matching.

The stereo mapping techniques are designed to be suitable for the kind of pictures
that 2 Mars rover might obtain and to produce the kind of data that the modelling
techniques need. These stereo techniques are based upon area correlation and produce a
depth map of the scene. Emphasis is placed upon extraction of ussful data from noisy
pictures and upen the estimation of the accuracy of the data produced. Included are the
following: a self-calibration method for computing the stereo camera model (the relative
position and orientation of the two camera positions); a high-resolution stereo correlator for
fooducing accu.zle matches with accuracy and confidence estimaztes, which includes the
zbility to compensate for brightness and contrast changes between the pictures; a search
technique for using the correlator to produce 2 dense sampling of matched points for a pair
of pictures; and the computation of the distances to the matched points, including the
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These technigues have been tried on stereo pictures of the Martian surface taken by
ne vinng Lander 1. The object finder was zble to locate rocks fairly successfully, and the
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ABSTRACT

This dissertation describes research involving vision techniques which would be
useful in an autonomous exploring vehicle, such as a Mars rover. These techniques
produce a description of the surroundings of the vehicle in terms of the position, size, and
approximate shape of ob jects, and can match such scene descriptions with others previously
produced. The information produced is thus useful both for navigation and obstacle
avoidance. The techniques operate by using three-dimensional data which they can
produce by means of stereo vision from stereo picture pairs or which can be obtained from
a laser rangefinder. The research thus divides conveniently into two portions: stereo
mapping and three-dimensional modelling and matching.

The stereo mapping techniques are designed to be suitable for the kind of pictures
that a Mars rover might obtain and to produce the kind of data that the modelling
techniques need. These stereo techniques are based upon area correlation and produce a
depth map of the scene. Emphasis is placed upon extraction of useful data from noisy
pictures and upon the estimation of the accuracy of the data produced. Included are the
following: a self-calibration method for computing the stereo camera model (the relative
position and orientation of the two camera positions); a high-resolution stereo correlator for
producing accurate matches with accuracy and confidence estimates, which includes the
ability to compensate for brightness and contrast changes between the pictures; a search
technique for using the correlator to produce a dense sampling of matched points for a pair
of pictures; and the computation of the distances to the matched points, including the
propagation of the accuracy estimates.

The three-dimensional modelling and matching techniques are designed to be
tolerant of the errors that stereo mapping techniques often produce. First, a ground surface
finder tries to find a set of points that form a well-defined smooth surface that lies below
most of the other points. Then, by using this knowledge of the ground surface and
knowledge of the camera viewpoint that produced the points in the scene, an ob ject finder
approximates-the ob jects that are above the ground by ellipsoids. Finally, a scene matcher
can use the descriptions of scenes in terms of ellipsoidal ob jects. By using a search pruned
by using probabilities obtained by means of Bayes' theorem, it determines the probability
that two scene descriptions refer to the same scene and the linear transformation needed to
bring the two scenes into alignment.

These techniques have been tried on stereo pictures of the Martian surface taken by
the Viking Lander I. The object finder was able to locate rocks fairly successfully, and the
scene matcher was able to match successfully the resulting scene descriptions. Examples of
these resuits are shown.
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Chapter 1
INTRODUCTION

This chapter describes the types of problems attacked in the current work, provides
an overview of the system which was produced, and describes the notation used herein.

1.1 Motivation and Scope

An important capability possessed by all higher animals is the ability to find their
way around in the world. This ability includes both obstacle detection and navigation.
Although some insects rely mostly on touch and chemical sensors for this purpose, the more
intelligent animals rely largely on vision, which has the advantages of long range, speed in
determining shape information, and the ability to determine the reflectance of surfaces to
aid in identification.

It will become increasingly important for machines to have similar capabilities. For
example, a robot vehicle for planetary exploration, such as a Mars rover, should have some
such ability. Because of the long radio propagation times involved (between 6 minutes and
45 minutes from Earth to Mars or between 133 minutes and 184 minutes from Earth to
Titan, round trip), and because of the fact that radio transmissions may be interrupted
when the vehicie is on the other side of the planet, it is highly desirable that the vehicle be
largely on its own, with instructions being sent occasionally from Earth.

As with animals, so also with machines it seems desirable to rely heavily on vision. A
robot vehicle may have other navigation devices which are far superior to those of any
animal, such as an inertial navigator, radio navigation equipment, a wheel-revolution
counter for dead reckoning, or even celestial navigation equipment, but each of these has
inherent limitations (and of course is useless for obstacle detection). For example, dead
reckoning can be very accurate over short distances, but as the vehicle travels errors build
up without bound, and thus the position information must be corrected with occasional
fixes from another source. Thus, determining the vehicle position by inspection of its
surroundings when it is in a familiar area can be very important.

As a vehicle explores, it can build up a description of its environment from visual
data. The vehicie position information that it needs for this purpose may come primarily
from dead reckoning, perhaps supplemented by other navigation systems. However, when
the vehicle enters a previously explored area, a considerable position error may have
occured since its previous time there. By visual inspection of its environment it should be
able to recognize the area and correct its position data.



Several types of vision systems are possible. In the most common type, one or more
cameras simply passively view a scene. Although three-dimensional information can be
deduced from such pictures in many cases, more direct, active means of measuring range to
the points in a scene are sometimes used. One possibility is to illuminate the scene with a
light source at one position and view the result with a camera at a different position. By
triangulation, distance can be unambiguously determined. By scanning, the entire scene can
be measured in this manner. Such a system is described by Agin and Binford [1973)
Another possibility is to measure range by the round trip time of flight of a beam of light
which illuminates the scene. (The term Tlidar® is sometimes used for such a device) A
raster scan can cover the entire scene. Such a system is described by Lewis and Johnston
[19771. Although not absolutely necessary, lasers are very convenient for the light source
for both types of rangefinder systems and are used in the existing systems. Thus the term
"laser rangefinder” is used to describe both types of system. It is a moot point whether such
systems should even be called vision. It might be argued that such a laser rangefinder
system is really using touch; its feelers are merely made of photons instead of solid matter.
Be that as it may, the term "vision” will be used here to include such a system, not only
because it uses light, but also because of the similarity of the data that it produces to the
data which can be extracted from other types of vision systems, as described below. (No
animal has a system exactly like this, although the sonar of porpoises and bats may come
close.)

A vision system used for mavigation can measure various properties of the scenes
being viewed. Reflectivity patterns on objects can be used to identify them as particular
fandmarks, or the scene can be identified by the three-dimensional shape of its contents,
regardless of their coloring. Animals use both of these methods, and so should a good robot
vision system. However, the research in this thesis is restricted to the latter method.

There are basically three ways in which the desired three-dimensional information
can be obtained by vision. First, a passive monocular view can be used, from which depth
information can be deduced by various clues, such as perspective, shading, shadows, texture
variation, and knowiedge about the ob jects in the scene. Some of the recent work on vision
systems of this type is described in Hanson and Riseman [1978] and Shirai {1978] Second,
stereo vision can be used, in which two or more views from different locations can be
compared to deduce the distances to points in the scene by triangulation. This can be
accomplished either by binocular vision, in which two eyes or cameras mounted in fixed
positions obtain simultaneous views, or by motion parallax, in which similar information
can be derived from a single moving sensor. These are equivalent if nothing moves in the
scene, so they are both refered to here as "stereo." Third, a scanning laser rangefinder can
be used. Animals use both monocular clues and motion paraltax, and some use binocular
vision also. The easiest method to use in a robot from the viewpoint of computational
difficulty is the laser rangefinder. The most difficult is monocular vision, because of the
inherent ambiguities in a monocular view, which must be resolved by various heuristics.
Therefore, although an intelligent robot should use a combination of these methods, the use



-of monocular cues will not be discussed in this thesis.

If stereo vision is used, each stereo pair of pictures can be processed to produce a
depth map consisting of the distances to points densely spaced over the scene. This is
similar to the data that a scanning laser rangefinder produces. (The stereo method usually
produces less reliable ranges and more blank areas than would the laser rangefinder
method, but the latter may be limited in range and in some cases is not available)
Therefore, the further processing needed is fairly independent of which method was used.
This further processing, which can be called "modelling”, consists of the reduction of the
information from one or more views to an abstract or symbolic form in order to save
storage, to facilitate recognition upon encountering the same area in the future, and to detect
obstacles.

Vision tasks may be discussed in terms of three types: description, recognition, and
verification, as described by Baumgart [1974] and Bolles [1976) The type considered in
this thesis is mainly description. An unknown scene is viewed and the task is to describe it
in suitable form for the data base. There will be no a priori knowledge of the precise
shapes of ob jects in the scene, which may consist of rocks scattered around on the surface of
Mars, for example. Thus the system works primarily in a bottom-up fashion, extracting
from the raw data the information needed to describe the scene in terms of the approximate
size, shape, and position of objects. However, some similarity to recognition and
verification vision occurs when a current scene is compared to the data base.

An important issue in navigating by visual means is how, in the recognition phase,
the information obtained from a view or views of the current scene is to be matched with
the information previously accumulated in the data base. Should the current data be
transformed into the same kind of data that is in the data base and be compared in that
form, or should a portion of the data base be transformed back into a more primitive form
and compared to the current scene in this low-level form? For example, if monocular vision
is used, an extreme form of the second possibility would be to assume a viewing position
and to project the scene into a two-dimensional picture to be compared to the actual current
picture.  With stereo vision or a scanning laser rangefinder, the same kind of
transformation could be made, except that range pictures would be compared instead of
brightness pictures.

It is an important assumption of this thesis that the best choice for the kind of scenes
described above is the first of the above two possibilities. That is, the same kind of
description process should be used on the current scene as was used in generating the data
base. There are two principal reasons for this. First, the search needed in order to deduce
position is less when the matching process operates on symbolic data. If the data were to be
matched in the form of numerical values of distance or height at some dense sampling,
values of vehicle position spaced at some fine increment would have to be tried in order to
determine the best matching position. Second, in order to save storage and to make the



stored data as independent as possible of viewing conditions, the representation used must
discard a good deal of information about the scene and abstract only the significant
features. It then becomes impossible to reconstruct exactly what would be seen from any
particular point. Note that this conclusion might be quite different if the data base
consisted of accurate models of ob jects, such as known manmade ob jects, in which case a
top-down recognition process might be more appropriate. :

One purpose of the research described herein is to develop a way of representing
scenes so that they can be matched in this manner and a technique for matching them, and
to see how well these methods work on typical outdoor scenes such as might be seen by a
Mars rover. This problem will be discussed further in Section 1.3. Another purpose is to
develop stereo vision techniques which produce the kind of data that these methods need.
The rationale behind these techniques and their general outline will be discussed in Section

1.2

1.2 Stereo Processing

Several different types of stereo vision systems are possible, depending on the level at
which the matching of the two (or more) pictures occurs. Area correlation operates on the
brightness levels in the actual pictures, attempting to match a small window in one picture
to some area of the same size in the other picture. (Hannah [1974] and many others have
used this method.) Edge correlation first applies an edge operator to the pictures to detect
brightness edge elements and then attempts to match the edges in one picture to those in the
other picture, as in Arnold [1978). Other techniques match even higher features extracted
from the pictures (for example Ganapathy [1975])). Each of these methods has advantages
and disadvantages, and for different types of pictures different methods may be most
suitable. (Stereo vision systems also can differ in the number of views used to extract the
depth information. For example, Moravec (1979 and 1980) uses nine-eyed stereo to aid in
resolving ambiguities. However, only two-eyed stereo is used in the system described in this

thesis.)

Scenes of manmade objects often contain smooth lines of high contrast separating
regions that may be fairly uniform in brightness. In this case a system based on edges or
lines would be appropriate. The edge detector would be able to locate the boundaries in
the scene accurately. An area correlator might not be able to match at an edge produced by
a depth discontinuity if the background side of the edge is textured, and if the foreground
ob ject is untextured the edges might be the only information about it that can be seen.

On the other hand, natural outdoor scenes often are highly textured. An edge
detector might produce an enormous number of edges to deal with, and the boundaries of
objects may be very rough and thus not produce edges that can be easily matched.
However, area correlation should work weli in this case. The presence of texture within the



windows being matched should produce good matches over most of the scene. Trouble may
still exists at edges of ob jects because of depth discontinuities, but if matches are found over
the rest of each ob ject, these may suffice.

The use of area correlation produces a loss in resolution, because the match represents
an average over the match window. Typically the match window may be eight pixels by
eight pixels. in which case there would by a loss of resolution of a factor of eight. If
highly detailed information about the shape of ob jects is desired, this would be a drawback.
However, the application in mind here is to produce data for the modelling process, which
will discard fine details anyway in order to represent the scene economically in a partially
symbolic form. Therefore, the loss of resolution is not very harmful here.

For these reasons area correlation will be used in this thesis. It should produce points
for which the distance can be caiculated spread over the ground and over the surface of
each large object in the scene. From this information the ob jects can be detected and their
approximate size and shape can be measured in the modelling process.

The particular type of correlator used in this research, which includes some
improvements over usual cross correlation, is described in Chapter 2. It produces a match
when applied locally to a small area by some higher-level procedure, which must perform
the more global search. In addition to the computed most probable position of match in the
image plane, it computes a two-by-two covariance matrix which represents the estimated
accuracy of the match, and a probability estimate which indicates the goodness of the
match. The correlator includes the ability to aliow for various amounts of brightness and
contrast change between the pictures, depending on the available knowledge about the
pictures.

In some cases the stereo camera model (the relative position and orientation of the
cameras which produced the stereo views) is accurately known before the pictures are
obtained. For example, two cameras may be rigidly mounted on a vehicle and their
positions and orientations may have been accurately measured in the laboratory. In other
cases, the stereo camera model may be unknown or inaccurately known. For example,
flexure in a vehicle may cause slight variations from the previously measured values, or a
one-camera vehicle may move to separate, poorly known, locations for the individual
pictures. In such cases the information to calibrate the stereo camera model can come from
the pictures themselves, although the distance between the cameras cannot be so determined.
Such a self-calibration method is described in Chapter 3. This involves finding a set of
matching points sparsely scattered over the picture, applying the correlator to these points,
and using the resulting information to solve for the parameters that define the position and
orientation of one camera relative to the other.

In any case, once the stereo camera model is known it is easier to produce a dense
sampling of matched points over the pictures, because the necessary search is



one-dimensional instead of two-dimensional. A search procedure for doing this, which
applies the correlator locally as needed, is described in Chapter 4. It decides whether or not
to accept matches by using the probability values produced by the correlator and the
agreement of matches with neighboring matches.

From each matched pair of points found by this search procedure, the distance to the
corresponding point in the scene (and thus the coordinates of a point in three-dimensional
space) can be computed by using the stereo camera model. The computations for doing this,
including the use of the accuracy estimates, are described in Chapter 5.

The mathematics derived in this thesis for the above cormputations assume that the
relationship between points in three-dimensional space and points in the image plane is the
central projection. (See, for example, Duda and Hart [1973]) Where this is not the case,
distortion corrections can be included in the computations to convert between the central
projection and the actual projection used, insofar as it is known. The places where this
occur in the processing are pointed out in the subsequent chapters. Two types of distortion
correction are available in the implemented programs. One of these assumes that the image
pixel coordinates, together with range, form a spherical coordinate system, as is the case
with the Viking Lander pictures. The other uses a two-dimensional polynomial to describe
the distortion. It is used with pictures taken with the Stanford Al Lab Cart, and a way of
calibrating this distortion is described by Moravec [1979 and 1980].

1.3 Three-Dimensional Modelling and Matching

Regardless of whether a scanning laser rangefinder or stereo vision has been used,
the result is the three-dimensional coordinates of a set of points in the scene. This must be
converted into a suitable form for storing in the data base of an exploring vehicle and for
comparing to previously accumulated information in the data base.

One possibility would be simply to express each point in terms of height as a function
of horizontal position, relative to a nominally horizontal reference plane. Points gathered
from several observations would simply be combined. When a scene described in this
fashion is compared to similar data in the data base, the heights would be correlated using
something similar to the ordinary two-dimensional correlation coefficient, except that it
would have to take into account the fact that the points are not equally spaced (there even
may be large blank areas). There are several disadvantages to this method. The data base
would require a large amount of storage, and a search to find the correct match would
require a large amount of computing. Therefore, the scene should be represented in a more

compact, abstract way.

The way that has been chosen here represents a scene in terms of ellipsoidal ob jects
and a ground surface. A scene represented in this way is in the form needed for obstacle



avoidance, in addition to being suitable for storing and comparison with the data base. It
is not necessary that the actual objects in the scene (for example, rocks on the surface of
Mars) be ellipsoids. Approximating them by ellipsoids, while throwing away a good deal of
information about their shape, retains the important information needed for obstacle
avoidance (unless it is desired to pass very close to obstacles), and, if there are many ob jects
in a scene, sufficient information is retained for recognition. (Of course, some types of
obstacles, such as cliffs, could not very well be represented as ob jects in this way. However,
they could be included as part of the ground surface.)

Thus, information from one or more stereo pairs or scanning laser rangefinder views
is transformed into coordinate system aligned with a nominally horizontal plane. A ground
surface finder is then used to find the ground for portions of the scene, which may be tilted
slightly relative to the assumed horizontal coordinate system. In addition, the computed
ground surface may be curved and may have other complications, depending on the exact
method used, as described in Chapter 6. The ground surface finder operates by trying to
find a set of points that form a well-defined smooth surface that lies below most of the
other points. It allows a few points below this surface, such as might be caused by errors in
the stereo processing, and it allows a fairly large number of points above the surface, such
as might occur on ob jects.

The next step in the three-dimensional modelling consists of the application of an
object finder, described in Chapter 7. Points that are sufficiently far above the ground
surface are clustered into ob jects approximated by ellipsoids. Each ellipsoid is ad justed in
such a way so as not only to fit the points which seem to lie on this ob ject but also to avoid
hiding other paints as seen from the camera position.

The representation of the scenes used in the data base could use both the ellipsoid
information (their positions, sizes, and shapes) and some characteristics of the ground
computed by the ground surface finder (perhaps slope, curvature, and discontinuities).
However, only the use of the ellipsoid information has been implemented in a scene
matcher. For fairly flat ground covered with many ob jects such as rocks, this is the most
important information.

The scene matcher compares the descriptions of two scenes in terms of ellipsoidal
ob jects, as described in Chapter 8. By using Bayes’ theorem it determines the probability
that two scene descriptions refer to the same scene and the translation needed to bring the
two scenes into alignment. [t also can ad just for smali rotations and scale factor changes.

The techniques described in this thesis have been tested on pictures primarily from
two sources. One of these is the old version of the Stanford Al Lab Cart described by
Moravec [1977) The object finder was able to locate cars in a parking lot using pictures
digitized from the television camera on the Cart. The other source is the Viking Lander 1
on the surface of Mars. Sample results using these Mars pictures are given in appropriate



places in this thesis. The Mars pictures used for this purpose are described in Appendix C.

1.4 Notation

Matrix notation is used heavily in this thesis. A reader who is unfamiliar with
matrix algebra can find the necessary background information in Hohn [1973).

Matrices are denoted here by capital letters and scalars by lower-case letters, with the
exceptions mentioned below. The transpose of a matrix A is denoted by AT, and the
inverse of A is denoted by A”!. The trace of a square matrix 4 (sum of the diagonal
elements, which is equal to the sum of the eigenvalues) is denoted by tr(4), and the
determinant of A is denoted by det(4). The identity matrix of any size is denoted by /.
The term "vector” is used here in general to denote any column matrix. -

In the special case of a physical vector in three-dimensional space, the vector is
represented by a 3-by-1 matrix containing the components in a particular rectangular
coordinate system. However, in this case the symbol for the vector will be a boldface
lower—case letter instead of a capital letter, to emphasize its nature. The cross product of

two physical vectors a and b is denoted by a x b. The magnitude (-J a'a) of a vector a is
denoted by a or |al A unit vector is denoted by the symbol 1 with an appropriate
subscript. (Thus, a=al,, where a represents any vector, provided that a and 1, are
expressed in the same coordinate system.)

It sometimes will be needed to deal with derivatives involving matrices. The
derivative of a matrix (including the case of a vector) with respect to a scalar is def ined to
mean the matrix whose elements are the derivatives of the elements of the original matrix
with respect to the scalar. The derivative of a scalar with respect to a vector (column
matrix) is defined to mean the row matrix whose elements are the partial derivatives of the
scalar with respect to the elements of the vector. The derivative of a vector with respect to
another vector is defined to mean the matrix composed of the partial derivatives of the
individual elements, such that the rows correspond to the elements of the first vector and

the calumns correspond to the elements of the second vector. (That is, the {,] element of
dA4 . 94 i .
75 S 55 ) Other combinations are not defined.
J
Standard mathematical symbols are used. Thus the use of the symbol I' to denote the
gamma function and the references to the F test in statistics represent exceptions to the

above rule about capital letters being used for matrices.

Symbols for individual quantities differ from chapter to chapter and will be defined
as needed,



Chapter 2
STEREO CORRELATOR

This chapter describes the correlator (called the high-resolution correlator in Gennery
(1977)) which refines local matches between a pair of pictures. It is the basic low-level
component which operates on raw picture data and produces the information used by all
the higher-level components of the system described in this thesis (except in the camera
model solution, if done, where Moravec's interest operator and binary-search correlator also
operate on raw data, as described in Chapter 3).

2.1 Statement of Problem

Consider the following problem. A pair of stereo pictures is available. For a given
point in Picture I, it is desired to find the corresponding point in Picture 2. It will be
assumed here that a higher-level process has found a tentative approximate matching point
in Picture 2, and that there is an area surrounding this point, called the search window, in
which the correct matching point can be assumed to lie. A certain area surrounding the
given point in Picture 1, called the match window, will be used to match against
corresponding areas in Picture 2, with their centers displaced by various amounts within the
search window in order to obtain the best match.

Let a,(x, y) represent the measured brightness values in Picture 1, a,(x, y) represent
the measured brightness values in Picture 2, X,,%, represent the point in Picture | that we
desire to match, xz', yé represent the center of the search window in Picture 2, w,,, represent
the width of the match window (assumed to be square), and w, represent the width of the
search window (assumed to be square), where x and y take on only integer values
representing individual pixels.

The following assumptions are made. The pixel values ¢, and a, consist of true
brightness values linearly related to each other, translated by an unknown amount in x and
%, and having normally distributed random errors added. The errors are uncorrelated with
each other, both within a picture (autocorrelation) and between pictures (cross correlation),
and the errors are uncorrelated with the true brightness values. (The assumptions
concerning errors hold fairly accurately for the usual noise content of pictures. However,
another type of change is perspective distortion, which can be important with large match
windows, but it will not be discussed here) No assumptions about the nature of the true
picture content are made, except briefly when discussing interpolation in Section 2.5.

Thus the assumed relationship between the measured brightness values in the two
pictures is



afxtx, =%, §43,-9,) + 1,{%,9) = s1+c + ca(x,y) + 1(x,9) (2.1-1)

where x,, 3, is the true matching point in Picture 2 corresponding to x,,y, in Picture 1,
7,(x.y and r(x,y) are independent normally distributed random variables (noise), and &
and ¢ are the brightness and contrast changes (bias and scale factor) between the pictures.

(The factor Jﬁ is included in the bias term so that the bias represents the perpendicular
distance from the origin in 6, , space to the straight line with slope of ¢ which represents
the relationship between a, and a,, This makes the relationship symmetrical with respect to
interchanging a, and a,)

It is further assumed that a priori values of bias and scale factor b, and ¢, and their
standard deviations 0"y and 0, are available. There may also be some information
] [
available about the standard deviation of the noise, as described in Section 2.3.

The correlator should use the information in the pictures (the portions specified by
the windows) and whatever information is available about bias, scale factor, and noise in
order to arrive at an estimate of the matching point x,, y,, suppressing the noise as much as
possible based on the statistics of the noise. It also should produce an estimate of the
accuracy of the match in the form of the variances and covariance of the x and ¥y
coordinates of the matching point in the second picture, and an estimate of the probability
that the match Is consistent with the statistics of the noise in the pictures, rather than being
an erroneous match. The subsequent sections explain how these goals are achieved.

2.2 Basic Correlator

It is assumed in this section that the standard deviation of the noise is known for
every point in each picture, that the bias and scale factor are known to be zero and unity,
respectively, and that x, and y, are integers (that is, no fractional-pixel shifts have occured).

Thus we now wish to find the matching point x,,y,, which will produce the best
match of a(x+x, -x , y+y,,~y,) to a,(x,y) in some sense. Traditionally the match which
maximized the correlation coefficient between @, and a, has been used (as in Hannah
[1974]). Indeed, this is optimum when the bias and scale factor are completely unknown, if
one of the two functions has no noise. However, here both functions have noise. This fact
introduces fluctuations in the cross-correlation function which may cause its peak to differ
from the expected value. Ad hoc smoothing techniques could be used to reduce this effect,
but an optimum solution can be derived from the assumed statistics of the noise.

Let £ represent the w? -vector of the differences a,(x+x,,~%,, 3+3,,-3,) — @ (x, y) over
the w_—by-w, match window, for a given trial value of x,,,y,,, and let x,, 5, represent
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the true (unknown) value of x_,y,. Let p represent a probability and p represent a
probability density with respect to the vector E. Then by Bayes' theorem

E) P Im=*e> Je) PE | Xy, Im=¥c+ I¢)
P(xm"m' e Ye ( = me"m'xc”c) pE Ixm"m"xc"c)

(2.2-1)

If we assume that the a priori probability plx,.,%,=%..9,) Is constant over the search
window and is zero elsewhere, this reduces to

P Im=%er Ve V E) o< P(E | X0, 3pu=¥c1 ¥e) (2.2-2)

Since E consists of uncorrelated normally distributed random variables,
P V5T nexp( oes)

- exp( 5 2

where ¢; denotes the components of E, 0, and 0, are the standard deviations of ¢, and a,,
and the product and sum are taken over the match window. (Very often, the variances 02
and 0’3 can be considered to be constant. In this case, the summation can be reduced to the
sum of the squares of the differences over the match window, with the sum of the two
variances factored out) Thus, defining w to be

w-exp(iz

(2.2-3)

0”+0’2

) (22-4)

02+ t'.t'2
produces

P Ipy=Xer Y | E) = kw (2.2-5)
where k is a constant of proportionality.

So far, the derivation is quite usual. If we simply wanted to maximize p (for the
maximum likelihood solution), we would minimize the above sum (that is, use a weighted
least-squares solution). However, because of the fluctuations in w caused by the presence of
noise in both images, the peak of p in general differs from the center of the distribution of
P in a random way due to the random nature of the errors.

Therefore, we define the optimum estimate of the matching position to be the

mathematical expectation of x, .y, according to the above probability distribution. Thus,
letting (xz, jz) represent this optimum estimate, we have



Eﬁxm
R
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where the sums are taken over the search window. The variances and covariance of x, and
Jy, are given by the second moments of the distribution around the expected values:

(2.2-6)

2 m _ 2
I5 " T R

0% = wo - % (22-7)

The covariance matrix of x, and y, consists of Uiz and 0';2 on the main diagonal and

o, oY 1 both sides off the diagonal.

Because of the finite search window size, the covariance matrix computed by (2.2-7)
may be an under-estimate. It is possible to apply an approximate correction for this effect
(and the implemented correlator does so), but as long as the width of the correlation peak
represented by (2.2-5) is considerably less than the width of the search window, the effect is

negligible.

It might appear that the above analysis is not correct because of the fact that certain
combinations of errors at each point of each picture are possible for more than one match
position, and the probability of these combinations is split up among these match positions.
However, this fact does not influence the results, as can be seen from the following
reasoning. The possible errors at each point of each picture form a multidimensional space.
When a particular match position is chosen, a lower-dimensioned subspace of this space is
selected, in order to be consistent with the measured brightness values. When another
match is chosen, a different subspace is selected. These two subspaces in general intersect, if
at all, in a subspace of an even lower number of dimensions. Thus the hypervolume (in the
higher subspace) of this lower subspace is zero. Therefore, the fact that the two subspaces
intersect does not change the computed probabilities. '

The computation of the output probability estimate depends on some quantities

computed in the variance estimation portion of the computations, so it will be discussed in
the next section.

12



2.3 Variance Estimation

If the amount of noise in the pictures is not known, it is possible to estimate it from
the pictures themselves, provided that some assumptions are made about the way in which
the variance (square of the standard deviation) of the noise varies over the pictures. In
some cases, the variance may be a function of brightness. For example, shot noise variance,
which is the primary source of noise with some photodiodes, is proportional to the
amplitude of the signal (and thus the standard deviation is proportional to the square root
of the signal). For some solid-state cameras the noise might need to be calibrated for each
pixel in the picture. (If it can be completely calibrated, then it can be used in the equations
in Section 2.2, and no variance ad justment is needed.) It is assumed in this section that the
noise variance is constant over each picture. (If it actually varies with brightness in a
known way, the data can be transformed by a nonlinear function to make the variance
constant. For example, taking the square root of each pixel brightness value will cause shot
noise to become constant.)

Let v represent the total variance in both pictures. Thus
v = 02+0} (2.3-1)
The task at hand is to estimate v, since this is the quantity that is needed in (2.2-4).

Often some knowledge is available about the noise variance, even if it is not known
exactly. It is assumed here that this knowledge can be represented by a chi-square
distribution. Let the a priori value of v be denoted by v,. Then it is assumed that v, has
the chi-square distribution with n, degrees of freedom. This assumption is made both for
its convenience in the subsequent calculations and because of the fact that, if the variance
has been estimated by squaring n, samples from a normal distribution and averaging them,
it will have this distribution. Thus n, can be considered to be the weight of the
observation v,. (See Hogg and Craig [1965) for this and other information about the
chi-square distribution.) If the variance is completely unknown, n, = 0. If it is known
exactly, n, = =.

An estimate of the variance can be obtained from the goodness of fit between the two
pictures when matched. This computed estimate is denoted .. If the correct matching
point x_, y, were known, it could be used for x_,5, to compute the vector of differences
between the two pictures £, and then a good value for v, would be the mean square value
of these differences, Zef/w? . However, the correct match is not known. However, w from
(2.2-4) is proportional to the probability that each x_ .,y match is correct, according to
(2.2-5). Therefore, a weighted average over the search window, with w as the weight, of the
mean (over the match window) squared value of the differences is used as a preliminary
vaiue for v, That is,

13



EwZXed
T w (2.3-2)
m

where the outer sums are taken over the search window and the inner sum in the
numerator is taken over the match window. (Remember that w and the differences e; are
implicit functions of the position of x, .,y within the search window, in addition to ¢;
being a function of the position within the match window as indicated explicitly by the
subscript i) Since the computation of w requires the value of v in (2.2-4), the process is
iterative, and v from the previous iteration is used to compute @ in this iteration.

The estimate given by (2.3-2) is called "preliminary” because the process of averaging
over the search window, weighted by w, introduces a bias. The mean squared residuals
fluctuate over the search window because of the random nature of the noise in the pictures.
The weights are computed from this value according to (2.2-4), and thus there is a
statistical tendency for the smaller values to have the greater weights. This causes v, to be
an underestimate of the variance by varying amounts depending on the sharpness of the
correlation peak. At one extreme, the correlation peak is very sharp, one value of w is
much larger than all of the others, and thus only one term has any appreciable effect in the
summation over the search window, and since this is almost certainly the correct matching
point there is no bias in v;. At the other extreme, when the correlation peak is very broad,
there are many roughly equal terms in the summation, with fluctuations from noise greater
than their difference from the peak caused by true brightness differences across the
pictures. In this case v, approaches being an underestimate by some constant factor.

To see how much of an underestimate is produced in the limiting case of a very
broad correlation peak, first note that the sum of the squares of the differences has the
chi-square distribution with w?, degrees of freedom (because the noise has the normal
distribution). Specifically, if we define

U = -z—‘3
v
(2.3-3)
n = wl
where v is the true total variance, then the probability density function of u is
. 1 u"/"""exp(— ;) (2.3-4)

IY g yon/2

Now assume that the variance is known exactly, so that the correct variance is used in
{2.2-4), which becomes

w - exp(-;) : (2.3-5)
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(The variance may not be known at the start, of course, but as the method iterates to a final
solution for variance, a good estimate of the variance wiil become available to compute w.)

Then (2.3-2) can be rewritten as

, v X wu
Uc = m— (2.3-6)

In the limit as the search window over which the summations are taken increases without
limit, the ratio in (2.3-6) approaches a constant that is the ratio of the expected values of
the quantities wu and u. Thus,

©
v b Pwudu

v‘; - —— (2.3-7)
n| pwdu

Substituting (2.3-4) and (2.3-5) into (2.3-6) produces

[+ 0]

1 nf2-1
v)] ———— uM*lexp(-uudu
‘ J:’ T(g 2"/
Ue = )
] nf2-1
n —_— exp(-u)du
J:’ T( 5 )2"/2
(2.3-8)
® 2u
v — (Qu)™?ex pl= = X2u)d(2u)
k I( g 2
o - un/tenpt 2 i)
° T(ze

But the integrand in the last denominator is the probability density function of the
chi-square distribution with n degrees of freedom and 2u as the variable, which integrates
to unity, and the integral in the numerator similarly is the expected value of the chi-square
distribution with n degrees of freedom, which is n. Thus (2.3-8) simplifies to

o = 2 (2.3-9)

This means that in this extreme case the variance computed by (2.3-2) is only half as large
as it should be.

Thus v, is too small by a factor that can be anywhere from 0.5 to 1. Since this range
is so small and since variances are seldom known very accurately anyway, it is possible to
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adequately correct for this bias by an empirical formulaa. A way of determining
approximately where we are between these extremes is to examine the minimum value of
Ze}lw? over the search window, denoted by v,. Because this is the quantity which is
averaged to produce v, if the correlation peak is sharp v, is approximately equal to .
But v, tends to become smaller and smaller relative to v, as the correlation peak becomes
broader, because of the statistical fluctuations. By simulating a variety of cases with
pseudo-random numbers, an approximate correction factor based on the ratio v, /v, was
determined. It is applied to the variance estimate as follows:

]

”c
v = (2.3-10)

¢ vm 0.3
1-0.5( - —)
Ye

where v, is the minimum value of Ee’;‘lw",’n over the search window, as defined above.

A weight, or accuracy estimate, must be assigned to the above variance estimate so
that it can be combined with the other sources of information. The exactly correct weight
to use would be difficult to determine. A conservative approximation which is adopted is
to consider v, to have the chi-square distribution with n, degrees of freedom, where n_ is
wfn—2 or 200, whichever is less. (Thus n, is the weight) The reasons for this choice are
that the mean squared differences would have the chi-square distribution with w2 degrees
of freedom at the correct matching point, two degrees of freedom are subtracted to allow for
the two degrees of freedom that are involved in ad justing the position in the image plane,
the averaging over the search window increases the weight somewhat but in a way that is
hard to estimate (because of the duplication of data influencing the average), and the
approximate nature of the correction factor introduces some additional uncertainty, for
which the limit of 200 is included.

A third source of information about the noise in the pictures can be obtained from
their high-frequency content. This produces only an estimate of an upper limit to the
variance, because the high-frequencies may contain true picture information in addition to
noise. However, the high spatial frequencies are better to use for this purpose than any
other frequency band, because picture content usually tends to be concentrated at the lower
frequencies. First, the square of the output of a simple two-dimensional high-pass fiiter is
computed as follows for each picture:

U - [a(x-1,9) + a{x+1,9) + a(x,2%-l) + a(x,y+1) - 4 a(x, yP 211 .

Then U is averaged over the match window in each picture and the results for the two
pictures are added together to form the estimate of the upper limit of v, denoted »,. The
weight assigned to this estimate is n, = 2w, because this is the number of observations
which are averaged to produce the estimate.
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Thus there are three estimates of noise variance, v,, v, and v, with weights n,, n_,
and n_, which result from the a priori values, goodness of fit, and high-frequency content,
respectively. These must be combined to produce an overall estimate of variance », and
must be compared to produce the probability estimate. (Some of the above formulas for
these quantities will be altered slightly in subsequent sections.)

If the estimate of v on the current iteration is less than v, the value of v, does not
matter, since it is only an upper limit. Therefore, in this case the new estimate of v is the
weighted average of v, and v,, as follows:

novo + ncvc
R, + 7,

(2.3-12)

On the other hand, if the current estimate of v is greater than v, all three values are
averaged, as follows:

nv +nuv. +ny '

V= o0 nu c'C (2.3_13>

no+nu+nc

The iterative process for v as described above undergoes linear convergence, and in
some cases it converges rather slowly. Therefore, convergence acceleration is applied to it,
using a one-dimensional special case of the acceleration method described in Appendix A,
which is equivalent to Aitken’s extrapolation (see Acton [1970]).

The probability estimate is derived by comparing the estimate of noise variance
obtained from the goodness of fit (vc) to the other estimates. Since it is assumed here that
each of these estimates has a chi-square distribution, the Snedecor-Fisher F test is the
appropriate way te do this. (See Hogg and Craig [1965]). If the value of v_ on the last
iteration is less than v, the value of v, does not matter, approximately. Therefore, in this
case the quantity computed is the probability that the ratio of the variance of a sample with
n. degrees of freedom to the variance of a sample with n_ degrees of freedom, both from
the same distribution, will exceed vlv, On the other hand, if the final value of v, is
greater than z,, both », and and v, must be considered. However, in this case the
distribution of the combined v, and v values is not chi-square because of the fact that z,
is only an upper limit. As an approximation, the lesser of two F-test probabilities is used,
one as above using v, and the other using 7, instead, with n, degrees of freedom.

24 Brightness and Contrast Adjustment

In many cases changes in the brightness of each point in a scene may occur between
the two pictures of a stereo pair. Some causes are differences in the cameras that took the
two pictures, directional reflectivity of the surfaces, and changes in illumination if the
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pictures were taken at different times. It is assumed here that these changes can be
approximated within the search window of the correlator by a linear function. Thus the
changes can be represented by brightness bias and contrast change (scale factor) between the
two pictures.

In order to allow for change in brightness and contrast between pictures in area
correlation when using ordinary cross correlation, a common approach has been to use the
correlation coefficient as the quantity to be maximized, as in Hannah [1974] The
correlation coefficient is normalized so that it is invariant under a linear transformation of
the brightness values. However, using such a criterion throws away a lot of information
about the pictures unless the brightness and contrast changes are completely unknown,
which is seldom the case. The correlator described here has the ability to incorporate the a
priori knowledge about these changes in the form of the standard deviations °'b and 0, PR
If these are infinity, the changes are completely unknown, and the correlator %is free to
ad just them in order to obtain a good fit, as with the ordinary correlation coefficient. At
the other extreme, if these standard deviations are zero, the changes are constrained
completely, and the correlator accepts only an exact match between the pictures, except for

noise.

The equations derived below include a weight equal to the reciprocal of the variance
for each point, so that they can be used in the general case where the noise variance is not
constant over the picture. If the variance is constant, it can be factored out of the
summations. If the variance ad justment described in Section 2.3 is done, the variance must
be assumed to be constant, and factoring out the variance avoids having to recompute
things as the variance changes during the iterations. (The implemented version makes this
assumption always.) The variance 02 to be used here is the variance in each picture, if the
variances are equal in the two pictures, which is /2. If the variances are not equal, what is
wanted is the the component of variance perpendicular to the line with slope ¢ in a,, q,
space. Letting @ = arctan ¢, we have

0? = 0Zsin?0 + 02 cos? 0 (2.4-1)

(In general, this equation would also include the term -20", sin @ cos 9, but, since we have
assumed that the noise in the two pictures is uncorrelated, 0',, is zero) However, the
eigenvector method described below assumes that 0’| = o, (that is, the amount of noise in
.the two pictures is equal). If they are widely unequal, large departures from optimality may
occur. If this is the case, one of the pictures can be rescaied to make the variances at least
approximately equal. Note that equation (2.4-1) requires the use of ¢ (to obtain @), which
has not been computed yet. In general, this could be solved by iteration, but if the
variances are approximately equal, using ¢, for ¢ here should suffice. (If 0", = 0", exactly, 0

drops out of (2.4-1).)
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First consider O'b and 0, to be infinity. Then at any tentative matching position
X ¥ What is desired *instead of the sum of the squares of the differences in (2.2-4) and
(2.3-2) is a measure of dispersion about a linear fit between the values in a, and a,, taken
over the match windows. This is equivalent to fitting a straight line to points ln two
dimensions, where the errors occur in both coordinates of each point. As discussed by
Duda and Hart [1973], the appropriate method to use in such a case is the eigenvector
method. In the unweighted case, this method minimizes the sum of the squares of the
perpendicular distances from the points to the fitted line, the minimum value achieved is
the smaller eigenvalue of the distribution about its mean, and the direction of the line is the
eigenvector corresponding to the larger eigenvalue. The measure of dispersion that is
desired here is this minimized sum. (Actually, twice this is equivalent to the sum of squares
of differences, because the difference between an a, value and an a, value is J2 times the
distance from the corresponding point to a 45° line through the origin in a,, a, space.)

In order to compute the eigenvaiue desired above, the weighted moments of the
distribution about the mean are first computed, as follows:

TR ;2( ‘% %)2

Sip 7 & 0%("1" n'l' z )( 2y - ,ll a'_—i) (2.4-2)
where

and where the summations are taken over all points in the match window, with a, and a,
aligned according to the current value of x,, and y, (that is, 6,(x+x —x,, y+y,.-9,) is
paired with a,(x,y)). Then the smaller eigenvalue is

5 = ;(s + 5, J(: :")24»1:) (2.4-3)

This eigenvalue replaces Ze}(07+020) in (22-4), so that instead of (22-4) the
following is used to compute w:

w = exp(-%) (2.4-1)

If variance is being adjusted, s is multiplied by the current value of 202 (assumed to be
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constant over the picture), which cancels out the effect of 0 in these equations, to obtain the
value which replaces Ee? in (2.3-2). Thus, instead of (2.3-2),

. 202X ws
. —— 4-5
v, s Tw (2.4-5)

Now consider the effect of the a priori knowledge about brightness bias. This
knowledge can be incorporated into the solution by introducing a fictitious point into the
summations in (2.4-2), which represents a point through which the fitted line would have to

pass if b = b, exactly. The coordinates of this fictitious point are g, = -boc/J‘_ 1+¢? and

a,=b, /m (The value of ¢ to be used here can be ¢, as a reasonable approximation, or
the solution can be iterated using improved computed values of ¢ on each iteration. The
implemented version assumes that b, = 0, in which case a, and a, are both zero for this
fictitious point) In order for this fictitious point to have the proper amount of effect
according to the assumed accuracy of b, it must be weighted by the reciprocal of its
variance. Since the varlance of this fictitious point in each dimension is 0§ ,

n, = L (24-6)

The extra values of ¢, and ¢, are multiplied by n, and added into the summations in
(2.4-2), and n is increased by m, in (2.4-2).

The a priori knowledge about contrast change can be incorporated into the solution
in the foliowing way. Consider the effect of adding two fictitious points to the solution,
each at a distance r from the origin in opposite directions from the origin on a line with
slope ¢, in @, a, space. Let the angle between this line and the a, axis be 8,, so that ¢, =
tan 6. (In the impiemented version c, is assumed to be unity, and thus @ = 45°) Then g,
= + 7 cos 0, and a, = + r sin @ for these points. The a priori accuracy can be expressed in
terms of the standard deviation of the angle,

oy - o'cocos?oo (24-7)

Let 0, be the assumed standard deviation of the fictitious points in each dimension. If
these two fictitious points were the only points in the solution, a',o would represent the
accuracy of the direction of the line connecting them. Since the distance between the points
is 2r, each point contributes (0",/2r)? to the variance of the angle, so that the effect of both
points produces

2
0'0

030 - Er-"’ (2.4-8)
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The weight that each fictitious poidt should have is the reciprocal of its variance:

1
"co = 0'7'3 (24-9)

Solving (2.4-8) for 0'?, and substituting into (2.4-9) produces

1
- 4-10
e 2720'30 @ )

When the two fictitious points are included in the summations in (2.4-2), their contribution
to the outer summations {considering the means to be constant) are

AT i.’nc"r2 cos? 9,
As, = 2ncor2 sin 8, cos 6, (24-11)
ADsyy = 2n¢°r2 sin? 6,
Substituting (2.4-10) into (2.4-11) produces

As,, = E cos’ﬂo

BDsy, = -';l— sin 6, cos 8 (2.(-12)

Note that r has canceled out of {(2.4-12). However, in the inner summations in (2.4-2)
(computing the means) it will not cancel out. Here r will appear in the first power in the
denominator. Therefore, in the limit as r goes to infinity, these terms drop out and
equation (2.4-12) correctly gives the entire effect of the fictitious points. It was considered
above that cr, represented the accuracy of the direction of the a priori line if only the
effect of the fictitious points were considered. However, again in the limit as r goes to
infinity, the effect of the fictitious points interacting with the real points to affect the
direction becomes zero, because the centroid of the fictitious points is constant (at the origin)
and their weight becomes zero, according to ((2.4-10). Therefore, equation (2.4-12) correctly
gives the effect of the a priori contrast knowledge.

The brightness and contrast ad justment can now be summarized as follows. For each

position x,, 9., equation (2.4-2) is used, including the fictitious point for b, with weight
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given by (2.4-6), the results are augmented by (2.4-12) and are then used in (2.4-3), and the
resulting value of s is used in (2.4-4) and (2.4-5).

Although the above computations correct for brightness bias and contrast changes
between the pictures, explicit values for the changes (b and ¢) are not produced. These may
be desirable, however. Values resulting from the application of the correlator to some parts
of the pictures may be used to improve the estimates b, and ¢, given to the correlator when
it is operating on other parts of the pictures. The above computations are done for all
tentative matching positions within the search window, but single values of b and ¢ are
desired, computed from the apparently correct match.

Thus the ad justed values of b and ¢ are computed in the following way. First, the
matching point computed by (2.2-6) is rounded to the nearest pixel. Then the vaiues of
S S and Son computed as described above for this XmIm position (including the
fictitious point and the A terms) are selected. The eigenvector of this distribution
corresponding to the larger eigenvalue determines the scale factor ¢. (The eigenvector
makes an angle @ with the a, axis, and ¢ = tan 0, as previousiy described.) The direction of
_this eigenvector can be found from the following relationship:

St J"n“n)z + 455, (24-13)

2312

¢ =tanf =

Then b is the perpendicular distance from the origin to this eigenvector, where the line
representing the eigenvector is assumed to pass through the mean of the distribution.
Therefore,
a a
2 1
cos 6 D, ch -sinf 3 0—?

n

(24-14)

b =

where the summations include the fictitious point for b, and n similarly includes s,

2.5 Interpolation

The computations described in the previous sections assume that the shift between
the two pictures is always an integer number of pixels. In this section that assumption is
removed, and the effects of noninteger values for x, and y, and how to deal with them are
discussed. First will be discussed how to obtain satisfactory performance from the correlator
in spite of these effects, without any particular attempt to produce subpixel accuracy in the
x, and y, matching position estimates. Then a way of interpolating to produce this subpixel
accuracy will be discussed briefly.



In cases where the correlation peak is broad (caused by a low signal-to-noise ratio),
the smoothing process inherent in the moment computation for x,, 5, 02 , 0'; ,and 0,
cause a reasonable interpolation to be performed if the correct answer lies between pixels.
However, when the correlation peak is sharp (caused by a high signal-to noise ratio), this
will not happen, and the answer wiil tend towards the nearest pixel to the correct best
match. This is not particularly serious insofar as it affects the position estimate, but it can
have a serious effect on the variance estimate v, and thus on the probability estimate also.
This is because the E vector should be much smaller at the correctly interpolated point than
it is at the nearest pixel, because of the sharp peak. Therefore, v, may come out much too
large, causing the probability estimate to be much too small, indicating a bad match,
whereas the match actually is good but lies between pixels. To overcome this deficiency, the
previously described computations are slightly modified.

Because of the tendency for x, and y, to tend towards the nearest pixel, the

covariance matrix is augmented by adding -'!5 to 02 and O’g, (Unity pixel spacing in x and
4 is assumed here, as before.) This is done because the variance of a uniform distribution
with unity width is 1-'5 This in general overestimates the varlance, since it assumes no
inherent interpolation ability in the correlator.

The effect on the variance estimate will now be discussed. Without knowing
something about the nature of the pictures, it is impossible to accurately correct for this
phenomenon. However, a crude approximate correction can be made to v, and its weight
n, can be decreased by a liberal amount to allow for the uncertainty in this estimate.

Consider the various estimates of » which can be obtained from Xe}/w?, or 20%/w2,,
for each position within the search window. The minimum value of this quantity,
previously denoted v, occurs at some particular position within the search window. Now
consider the two such estimates for » obtained at one pixel displacements in the +x direction
from this minimum. Let Az, denote the difference between these two values. Simitarly let
Avy denote the difference between the two values displaced one pixel in the +y directions.
A sort of worst case assumption, which assumes that the true function wanted here is a
V-shaped function in each dimension, leads to the conclusion that the true minimum of the
function is less that v, by (IAvaIAvyI)IZ However, if the corrected weighted-average
value v, from (2.3-10) is appreciably greater than v, the averaging process is doing some
interpolation, and thus there is less need for a correction term. Therefore, the quantity
v.—?,, Is subtracted from this quantity. Furthermore, if 7, is greater than the v estimates at
neighboring pixels, the corresponding values are replaced by v, in the computation of Av_
and Avy, for similar reasons. Since the resulting correction (iAvrl-o-IAvyl)m -V, + VU
represents sort of a worst case, it is divided by 2 to obtain an actual correction (not to be
less than zero), which is subtracted from v, and the uncertainty in this correction is about
the same magnitude. Thus, let

23



? Av
Ay, = max(o. é( lA—’i;-l——’-'-l - Uy + vm)) (2.5-1)
The corrected value of v, is then
v, = max(0, v, - Qv,) (2.5-2)

The weight n, must be ad justed to reflect the uncertainty in the correction. This can
be done by using the fact that the mean of the chi-square distribution with n degrees of
freedom is n and its variance about the mean is 2n. Thus, if it is assumed that the
additional uncertainty in ¥, caused by the uncertainty in this correction has a standard
deviation equal to Ay, the corrected weight can be found from

| Ag
B e— o —
(/] nc 2172

€

(2.5-3)

31' —

The corrected quantities 7, and i, are used in place of v, and n, in the equations in the
previous sections.

If the information in the pictures could actually be interpolated to produce interpixel
values, not only could a better corrected variance and weight be produced than by using the
above crude corrections, but the position estimates x, and y, could perhaps be refined to
subpixel accuracy, with their variances becoming considerably less than the -:-2 values used
above. Ways of doing this will now be discussed.

In order to interpolate, some assumption must be made about the nature of the
pictures. For example, if the pictures consisted of white noise, and they were sampled
without any filtering to produce the digitized versions, there would be no way that any
useful interpolation could be done (other than just setting all interpixel values to zero),
because the interpixel values would be completely independent of the pixel values. At the
other extreme, suppose that any content that the pictures contain at higher spatial
frequencies than -; (the Nyquist frequency) in each dimension has been removed by
filtering before the pictures are sampled. Then in the absence of noise it is possible to
_ reconstruct the unsampled filtered pictures exactly by Fourier interpolation. Ordinarily the
situation is between these extremes. There will be some content above the Nyquist
frequency before sampling, and the sampling process folds this content into the frequencies
below the Nyquist frequency. This process, known as "aliasing”, contaminates these lower
frequencies with this extraneous information, so that when interpolation is done based upon
the information in these lower frequencies, errors are produced. In order to know how to
interpolate the data to keep these errors small, some statistical knowledge about the amount
of aliased content must be available.
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If a certain power spectrum of true picture content could be assumed, the amount of
aliasing could be computed at each frequency, and thus a weighting function of frequency
could be derived, based on the accuracy of each spatial frequency as deduced from its
amount of contamination. Then a Fourier interpolation could be done, but instead of
cutting off precisely at the the Nyquist frequency, the computed frequency components
would be multiplied by the weighting function, causing a gradual cutoff as the Nyquist
frequency is passed. The resuit could then be transformed back to the space domain to
obtain interpolated data. Also, an additional variance component representing the
uncertainty in the interpolation would be computed, as a function of the interpolation
position. (The variance due to noise usually is less for the interpolated points because of
the averaging that occurs in the interpolating process, but the additional variance caused by
the aliased picture content usually causes the total variance to increase.)

An interpolating version of the correlator has been produced based on the above
reasoning. It interpolates a, to a finer sampling interval in both dimensions, with the
option of two different assumptions about the nature of the power spectrum, one of which
produces linear interpolation. Then @, is compared to the interpolated g, at the original
sampling interval as required for (2.2-4) or (2.4-2), with ag augmented for the interpolating
error, but this is done for every position within the search window at the interpolated
sampling interval to produce the summations in (2.2-6) and (2.2-7). Then the approximate
interpolation corrections described above are applied at this interpolated sampling interval
instead of at the original sampling interval. (If the interpolation is done at a fine enough
sampling interval, this last step is not necessary, but it is usually not known beforehand how
fine an interval is needed.)

Although this interpolating version of the correlator can produce greater accuracy in
some cases, it is very slow. It was developed for a special application while the author was
at Lockheed, and it has not been used in any of the other research described in this thesis.
Therefore, it will not be described in further detail here. (The usual version of the
correlator does use the approximate interpolation corrections previously described, however.)

2.6 Color

The description of the correlator in the previous sections assumes that the pictures
are monochromatic, and this is the case in the implemented version of the correlator.
However, most of these computations generalize readily to handle color pictures.

If color pictures are used, then for each pixel the scalar @, or a, is replaced by the
vector A, or A,, with one component for each primary color being used. Of course, it is not
necessary to use three primary colors, as with human vision. In designing a vision system to
perform a particular task, the number of primary colors and the bands of wavelengths to
which they correspond would be chosen according to how the content of typical scenes
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varies at different wavelengths. Thus the 4, and A, vectors might well have more than
three components. (It is not even necessary that all of these components be obtained from
brightness at certain wavelengths of light. Some might come from other information, such
as parameters describing texture obtained at extra high resolution, or sonar data.)

In equation (2.2-4), where the square of a difference ¢] is used with monochromatic
pictures, the sum of the squares of the components of the difference of the two vectors could
be used instead for color pictures, if all components of the vector were equally accurate.
However, in general the noise in each primary color will be different, and thus the square
of the difference of each component must be divided by the variance of that component
individually, and these results summed to replace egl(crfwg) in (22-4). A more general
form to use when the noise in the different primary colors is correlated would be to use the
quadratic form produced from the vector and the inverse of the covariance matrix which
describes the noise. Equation (2.2-4) would then be replaced by

w = exp(-1 3 (4,-4)7(5,+5,)7(4,-4)) (26-1)

where S, and S, are the covariance matrices of the vectors 4, and A,, these quantities are
to be aligned according to the current position within the match window as described in
Section 2.2, and the summation is over ali positions in the match window. (The subscript i
has now been dropped, and the dependence upon position within the match window is now
implicit) However, ordinarily the noise in the different channels is uncorrelated, and thus
§, and §, are diagonal matrices, and (2.6-1) reduces to the simpier form described above.

In the variance estimation, there will now be a separate component of variance to
estimate for each primary color. Equations (2.3-2), (2.3-10), (2.3-11), (2.3-12), and (2.3-13)
can be applied independently for each component. However, a more general form is
possible, as with (2.6-1), in which a complete covariance matrix is estimated. To do this,
" instead of squaring each single component ‘in (2.3-2) and (2.3-11), the outer product of a
vector with itself is taken (that is, the matrix product of the vector times the transpose of
the vector) to produce a square matrix. As stated above, this would seldom be necessary.

In order to obtain the probability estimate, a separate F test could be computed for
each primary color. The product of the resulting probabilities could be used as the resuit.

If brightness bias and contrast change are to be adjusted, there are several
possibilities, depending on exactly what is wanted. If a separate adjustment for each
primary color is wanted, the equations in Section 2.4 can be used separately on each
component. However, if a single ad justment affecting all channels equally is desired, these
computations would have to modified slightly to include this constraint. The most general
linear relationship between the two vectors 4, and A, would be to premultiply one of them
by a square matrix of contrast coefficients and then to add a vector of bias coefficients.
Haow all of these coefficients could be determined is beyond the scope of this thesis, and it is



hard to imagine how such a relationship (including nonzero off-diagonal elements in the
matrix) would be produced by a reasonable vision device.

2.7 Speed

In processing a typical stereo pair of pictures by the technique to be described in
Chapter 4, the correlator is applied thousands of times. More than half of the total
computing time through all of the computations described in this thesis can be spent in the
correlator. Therefore, considerable effort was put into making the correlator efficient.

It might appear that most of the time in the correlator would be spent in computing
the sum of squares of differences needed in (2.2-4) or the sum of products needed in (2.4-2).
(For example, if W, = 8 and w, = 8, there would be 8%=4096 total terms in all of the
summations needed in (2.2-4) over the search window.) If the code for these computations
were written in a straightforward way using nested FOR loops, this would be the case.
(Fourier-transform methods are faster only with large windows) However, a special
method for computing the needed sum of squares of differences developed by Moravec
[1977] is used in the implemented correlator. This utilizes the fact that the pixel brightness
values can be represented by small integers. It does the difference by indexing with a
register and does the squaring by a table lookup. The machine code for this is compiled in
line for the entire match window by the program. Then the main program uses this code
for each position within the search window. The entire inner loop of this code (each term
of the summation) consists of one Move Negative instruction and one fixed-point Add
instruction and requires about one microsecond on the PDP KL10.

When the bias and contrast adjustment is done, a sum of products is needed in
(24-2). Since 2a,a, = al+al-(a,~a,) this is computed from the sum of squares of
differences and two sum of squares. The sum of a? over the match window is constant, and
the sum of ag over the match window is computed quickly for each position within the
search window by the usual moving-average technique of adding new points and
subtracting old points as the match window moves. Alternatively, this latter sum of squares
could be computed by specially compiled code similar to that for the sum of squares of
differences.

Various other techniques are used to speed up the computations. For example, the
expanential function needed in (2.2-4) is computed by a table lookup, and, if the argument
is so large that w will be negligibly small, the computations using w are bypassed for this
position within the search window. Also, in computing the moments according to (2.2-6)
and (2.2-7), symmetry is utilized, so that the number of multiplications is cut almost by a
factor of four.

The actual amount of time used by the correlator depends upon the sizes of the
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search window and match window, the signal-to-noise ratio, whether brightness bias and
contrast are ad justed, whether the variance upper limit from high frequencies is used, and
the accuracy of the a priori variance estimate. If w, = 8 and w,, = 8, the CPU time on the
PDP KL10 ranges from about 14 milliseconds to about 70 milliseconds.
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Chapter 3
STEREQ CAMERA CALIBRATION

In order to do the computations to be described in Chapters 4 and 5, the stereo
camera model (the relative position and orientation of the two cameras which produced the
stereo views) must be known. In some cases this is known beforehand. If it is not, the
information to calibrate the stereo camera model can come from the pictures themselves.
This chapter describes such a self-calibration method. This problem is known as the
relative orientation problem in photogrammetry. (For example, see Schut [1957 and 1959})
However, the data for the ad justment is obtained in a different way here, as described in
Section 3.1, the additional features described in Section 3.2 are used, and the basic
formulation of the problem here is somewhat different from the usual approaches in
photogrammetry, as pointed out in Section 3.3. (Some of these solutions used in
photogrammetry allow the use of many cameras, instead of just two, however, as in Davis
{1967]1) An equivalent problem occurs when a single fixed camera views a moving ob ject
at different times. Such a problem is treated by Ullman [1976), although he considers
mainly the case of three views of only four points. Here, only two views are used, and thus
at least five points are required for a solution if there is no other information.

3.1 Points for Self-Calibration

In order to extract the necessary information from the pictures themselves, some
features or points must be matched between the two pictures. Since the camera model is not
yet known, this requires a two-dimensional search. However, the number of matches
required is not large. It should be at least as great as the number of camera model
parameters being adjusted, and preferably considerabiy greater in order to improve the
accuracy and to detect errors. From 20 to 50 matches scattered over the picture is
reasonable.

The implemented program uses Moravec's interest operator and binary-search
correlator to perform this matching (Moravec {1977 and 1980]). First, the interest operator
is applied to Picture | and finds small features with high information content. It
discriminates against features with low contrast or with primarily one-dimensional
information. Then the binary-search correlator finds the corresponding points in Picture 2.
It uses a coarse-to-fine method, starting with the whole picture and rapidly homing in on
the matching point. However, some of the matches that it makes are incorrect.

These matched points are then refined by the correlator described in Chapter 2.

There are three reasons for this step. The positional accuracy of a match may be improved,
its accuracy can be estimated in order to provide appropriate weight in the camera model
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‘ad justment, and the probability value computed by the correlator can be used to re ject some
of the incorrect matches. Actually, since the interest operator detects only high-contrast
features, the accuracy of the matches is usually very good {limited primarily by the pixel
spacing). Thus usually there is not much improvement to be made in their accuracy (unless
the interpolating version of the correlator is used), and the standard deviations are usually
near the minimum of IAf12 of the pixel spacing. Therefore, the first two reasons are not
important for most points. However, the third reason (rejection of bad points) is quite
useful. The implemented program rejects any point with a probability less than 0.1. This
rejects a few good points (about 10% of them if the probability value is correct), and it still
lets a few bad points through, but by reducing the number of bad points it helps the
camera model ad justment significantly, both in speed and in likelihood of success.

Finally, the image-plane coordinates of the points are corrected for camera distortion
to make them equivalent to those produced by a central projection.

The result for each remaining matched point consists of the image coordinates x, and
9, for the point in Picture 1, the image coordinates x, and ¥, for the point in Picture 2, and
the variances 02 and 0’§, and the covariance 0", of the image coordinates of the point in
Picture 2. (The subscript "2" is dropped from the subscripts of "0 in order to avoid
confusion with other subscripts to come. This should cause no ambiguity, since x, and y,
are considered to be known exactly and thus have no variances and covariances associated

with them.)

3.2 Additional Error

The errors indicated by the accuracy estimates produced by the correlator are
presumably independent for each point. However, there may be other sources of error
which the correlator cannot estimate, and some of these may be correlated between different
points. For example, there may be some residual distortion in the pictures that has not been
corrected. If this is different in the two pictures or if the pair of matching points are in
different portions of the two pictures where this residual distortion is different, an error is
produced. For different point pairs in widely different positions in the pictures, the
residual distortion may be quite different, but, since distortion usually varies slowly across a
picture, the effect on nearby points may be quite similar. These additional errors and their
correlations, if any, must be taken into account in order to produce the correct weights for
the camera model ad justment and the correct error propagation into the results.

One way to obtain the necessary information is from the distortion correction
measurement. By analyzing the residuals of the distortion ad justment, the magnitude of the
errors and how rapidly they vary across the picture can be estimated. Experience with
previous distortion measurements and the variation of distortion with time on the camera
or cameras of the same type may be helpful. Also, the camera model ad justment itself can
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estimate the variance of the additional error (but not the precise way in which it varies
across the picture).

Ideally, what we would like to have is a complete covariance matrix for this
additional error for all of the points. In practice, such complete information usually is not
available. However, if the magnitude of the error is known and the approximate
image-plane distance over which it is highly correlated is known (called here the
"correlation distance”), a reasonable approximation is possible. The implemented program
assumes that the correlation coefficient of the additional error is a Gaussian function of the
distance between the points in the image plane. Thus the covariance of the additional error
for points i and § is assumed to be ¥ exp(-d}’,-l?c’), where vy is the variance of the additional
error, ¢ is the correlation distance, and d;; is the distance between the two points. (This
distance may be different in the two pictures. The average of the two results can be used.)
It is assumed here that the additional error is uncorrelated between x and » and has the
same variance in x and 3. Thus the elements of the covariance matrix for total error

(denoted by a tilde) are assumed to be as follows:
0"3'_ - oii +7

o2 - 02i+7

i 7
a’p’.‘ ) U’.'in (3.2-1)
&’i‘j - 'rexp(-:%), if inf
6","}, - 'yexp(-:%), if inf
Briyy = O i i0f

where { and § denote any two points.

The correlation distance ¢ is considered to be a given quantity. However, the
additional variance 'y can be ad justed by the program according to the method described in
Appendix A. .

The covariance matrix, whether obtained from precise knowledge of the individual
correlations or from (3.2-1), could be used as S;; in Appendix A, which is inverted to
obtain the weight matrix W to be used in (A.1-17). However, in order to save computation
time, the implemented program uses the solution according to (A.1-23), partitioned into the
separate points. Strictly speaking, this would require that the correlations between different
points be zero. However, because of the fact that the effect of a point on the solution varies
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slowly as the point is moved across the picture, and because of the fact that with the
approximation of (32-1) the correlations are negligible for far-apart points and the
additional variance is equal for ali points, the approximation in Section A.2 can be and is
used in the implemented program, and this permits the solution to be partitioned by points.
The specially augmented variances and covariances produced by this approximation will be
used to obtain the weights for the solution.

3.3 Criterion for Adjustment

This section wili describe how the image plane measurements described in the
previous two sections are used to obtain the discrepancies and their weights so that the
ad justment for the camera model parameters can be performed. (The adjustment will be
performed according to the method described in Appendix A, which is basically a weighted
least-squares ad justment with some modifications. Its particular form for this problem will
be outlined in the next section.)

There are many possible ways of formulating the problem, according to what are
defined to be the discrepancies whose weighted sum of squares is to be minimized. Some of
the other methods that have been used are discussed by Schut {1957 and 1959) The
method used here defines the discrepancies as distances in the image plane, closely related to
the actual measured quantities. All of these methods are approximately equivalent as long
as the appropriate partial derivatives relating the observations to the discrepancies are
included in the formulation, according to the method described by Brown [1955 and 1957),
and as long as no points appear to be beyond an infinite distance. (A more readily
accessible description can be found in Mikhail [1976]) However, the method used here
avoids the need to do this, and permits the use of the simpler formulation described in
Appendix A. It also permits the use of points that appear to be beyond infinity. This is
important in some cases, because observation errors may cause a distant point to appear to
be beyond infinity. (The complete method, described in the next section, aiso includes the
features of variance ad justment and automatic editing.)

As formulated in Appendix A, the general solution method requires measurements to
be made directly on quantities that are functions of the parameters. However, this is not
quite the situation that we have. Here the directly observable quantities are x,, y,, x,,
and y,. The method used by Brown mentioned in the previous paragraph can handle such
situations within the general formulation. However, this is not necessary for our purposes
here. We will merely propagate the error estimates of the actual observations into the
quantity that we use as the discrepancy, in order to obtain the correct weights, and will
consider the observations to be measurements directly on the discrepancy on any one
iteration. Since the discrepancy that we will use will be some distance in the Camera 2 film
plane, and since we will consider the measurements to be made in this plane, the
transformation between them is linear and thus this error propagation will be exact,
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although the fact that the propagation depends upon the camera model parameters that are
being ad justed causes a slight departure from optimality.

Consider the point x5y, in the Camera 1 image plane projected as a ray in space
from the Camera 1 center of projection and then consider this ray projected back into the
Camera 2 image plane. The result is a line segment, because a point at an infinite distance
on this ray projects into a specific point in the Camera 2 film plane (unless the ray is
parallel to the film plane). The coordinates of this infinity point (in the Camera 2 film
plane) which defines the end of the line segment are denoted by x,,y,. The direction of
the line segment (away from the infinity point) is given by the direction cosines ¢, and <y
relative to the x and y axes, respectively. (These quantities x,, y,, ¢,, and Cy and their
partial derivatives relative to the camera model parameters are computed from x,, y,, and
the stereo camera model. The details of this computation for the camera model formulation
used in the current work are given in Appendix B.) |

The discrepancy e consists of a component of the distance from the measured point
X,, 9, in the Camera 2 image plane to the nearest point of the line segment defined by x,
Yo» €» and €y If the point x,,y, is beyond the infinity point x,3y, there are two
components of the distance between these two points, and thus there are two observations
for this point (two components of the vector E). Otherwise, ¢ consists of the perpendicular
distance from x,, y, to the line, and there is only one observation for this point.

It remains to define precisely what is meant by "beyond the infinity point.” If the
perpendicular projection onto the line were used, the projected point would be considered to
be beyond the end of the line segment if (x2 - x‘,)cc,r + 02 - yo)cy < 0. However, because of
the nature of the errors in x, and y,, a different projection should be used. If a normal
distribution of errors is assumed, the correct projected point is the tangent point of the line
to an error ellipse about x,,y, This will be discussed further in Chapter 5. Using (5.1-5),
substituting (5.1-3), ignoring the denominator (since it is always positive and only the sign
of the resulting quantity needs to be considered here), and recognizing that total error (as
from (3.2-1)) should be used here produces the quantity (c,ﬁ‘;-cya‘")(xz—xo) +

(cya‘i—cxﬁ'x y)(72'.70)'

IF (e, &2, & Moymx) + (0%, &, X9,-9,) 2 O, then the point x,,y, as projected
according to the above description does not lie beyond the the end of the line segment
defined by x,. y,, ¢,, and ¢,» and the discrepancy ¢ is the perpendicular distance from the
point to the line. Therefore,

¢ = 0= 30y - By = %5k, (3.3-1)

3¢ o, 3%, 8x,

ac,
5 " Oy Ry Tty

where g represents any of the camera model parameters. (The way in which the polarity of
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e is defined does not matter, as long as the polarity of its derivatives is consistent with this.
When the partial derivatives from (3.3-1) are assembled into the P matrix needed for the
solution described in Appendix A, their signs will be changed, because P is defined in
Section A.l as the partial derivatives of F, which appears in the equation for £ with a
minus sign.) The variance of e representing errors in x, and y, is then

05 = 302 - 2,60, +c207 (8.3-2)
‘This equation holds whether the 0”’s represent only the estimates from the correlator, total
error according to (3.2-1) (in which case the symbols should be &), or augmented error
according to (A.2-1) (in which case the symbols should be 8). However, since the
additional term for total error or augmented error will be the same for both 02 and O'§ and
zero for 0., and since c§+c§, = |, the additional variance or augmentation variance can
just be added to 02 from (3.3-2). The reciprocal of the resulting value for augmented
variance will be used for the weight of this point in the adjustment. (This will be made
explicit in the next section.)

On the other hand, if (c,§3-c, &, Xrp-x)) + (¢ FZ-c, &,  Xy,-9,) < O, there are
discrepancies (the two components of the vector £) which are the two components of the
distance from the point x,,, to the end of the line segment (x,,3,). Any two orthogonal
components can be used here; for convenience we wiil use the x and y components.
Therefore,

E = S I
_72 =Jo
(3.3-3)
%, '
3E _ | %
of 9,
RT3

The covariance matrix of E is the same as the covariance matrix of x, and y,, for any of
the three types of error in x, and y,. The weight matrix for this point is the inverse of the
augmented covariance matrix. (Notice that in this case the problem has reduced to the
usual problem discussed in Appendix A. When the signs of the partial derivatives are
changed as mentioned above for insertion into the P matrix, the P matrix is seen to contain
the partial derivatives of x_ and y, with respect to the camera model parameters. Thus the
observations in effect are directly on the quantities x, and y,. This is exactly the actual
situation, since x, and x, can be considered to be observations on Xy and y,, respectively,
when the point appears to be beyond infinity.)



34 Summary of Adjustment

The previous sections in this chapter have described how the data for the stereo
camera model ad justment are obtained and the particular way in which they are used in the
ad justment. Appendix A describes the general methods that are used in the ad justment.
Appendix B describes the way in which various quantities used in the adjustment are
related to the camera model parameters. This section gives a summary of the stereo camera
model ad justment, showing how these pieces tie together and filling in a few details, more
or less as it is currently implemented.

The given quantities are as follows: a priori values of the five camera model
parameters azimuth, elevation, pan, tilt, and roll described in Appendix B, denoted by the
vector G; the covariance matrix of these a priori values, denoted by Sc ; the principal
distances of the two cameras, denoted by f, and f,, described in Appendix B (considered to
be known exactly); the a priori value of the additional variance, denoted by v, the
standard deviation of 1y, denoted by 02 ; the correlation distance of the additional error,
denoted by ¢; the maximum number of pc‘n’ints to edit, denoted by n,; and for each matched
point the values x,, y,, x,, %, o2, 0';. and Oy determined by the correlator, as described
in Section 3.1. The following quantities are to be computed: ad justed values of the five
camera model parameters, denoted by the vector G; the covariance matrix of these ad justed
values, denoted by Sg; and the adjusted vaiue of the additional variance, denoted by ¥.
The steps in the computation are as follows.

1. (Begin edit loop.) Correction factors for correlated errors are computed for each
point { as follows:

k.- = ?exp(-:—f;-.)

dfi\12
K- ? [exp -274)]
derived from (3.2-1), (A.2-1), and the approximation following (A.3-4). (The quantity k; is
the sum of the correlations of the additional error between this point and every point and
will be used in obtaining weights for the main ad justment. The quantity «; is the sum of
the squares of these correlations and will be used in obtaining weights for the variance
ad justment.) After the first time through this step, the above summations are updated by
simply subtracting the terms for the rejected points. If ¢ = 0, then k; = | and x; = 1 for all

points.

2. As initial approximations, G is set equal to G, and # is set equal to v,. Initially,
r; = 1 for all points.
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8. (Begin inner iteration loop.) The a priori values of the parameters are used as
follows:

H = 53
0 G,

C, = H(C, - 6)

4. For each point the quantities X1 Jor Cy» and ¢y and their partial derivatives are
computed as described in Appendix B. (The subscript i is omitted from these and from the
input values ¥, 3,, %,, 3, O% 0% and 0, for each point for simplicity, but all other
quantities that depend on the point carry this subscript.) Then, if [c,(ag,w)—cyaul(xz—xo)
+ {cy(cri-c--y)-c,at =3, 2 0 the following is done for this point:
ﬂl- = |
¢ = 0y oy = (X~ xo)‘y

ox

de¢; ac,, oc,, 9%, o
Fic 355 = 0-dg tm-Ng taw 5w
0’;‘;'_ = G0% - 2,00, 4+ 507
I

O':i + h‘-‘}'

C; = Plug;

H'- = P.TW'-Pi
w - L. 1 ) 1
2 @+ (- 0T+ 2900 + v

X, = @.r:ef

- 2
U'- (lJ.-O’ 0'-

On the other hand, if {c’(a?w)-cyo"r](xz-xo) + [t,(O'iﬁ'f)—C’U’x’sz-jo) < 0 the
following is done for this point:



c‘:xo
P oE; i} 3T
i T 3y,
3C |
W, - o2+ky o, |
2
cr,, Uy**ﬂJ

H = PIWP;

. [ormeit o ]
O'fry : 0';+270'§+x‘72
7, (%, — %)
x.- - [ 1 1 ]ﬂi , #-(,2- ’0)2 = (w“’i + w,z'i)f,',-(xz - x,)z + (wn"' + 0)22")"’.‘(’2 - ’0)2
Y va

02
y = [1 1]8; cr: - 05+ 0002 4 (@) + W 002
y

|
OJ‘- - [l I]ﬂ‘-[|] - w"',-+2w,2’i+a)nj

However, if n; for this point changed from the previous iteration, X; = U; = w; = 0.
-5, The quantities C, H, X, V, and @ are computed by summing over all points

(currently being used) the corresponding quantities with the subscript i, as computed in step
4. For C and H,C_ and H  are included in the summations.
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6. Then
-1
Sc - H
D=H'C

(from A.1-23)), but the elements of D are limited so that their absolute value does not
exceed 0.5 radians (thus limiting wild excursions that may take place on early iterations if
the initial approximation is poor).

7. For each point the following is done. If n; = |,

( 03.PScPl )
02 = 02 + 4 -min(PSHPT, v+ —
v; . i°C
i € 0'3'. + Ry
0-2
3
aﬁi

(from (A.1-22), (A.2-2), and (A.3-2)) If n; = 2, the same thing is done to compute 7. i and
Ty i except that for the former the first element of E; is used instead of e., cri, is used

instead of (Ig_, and the first row of P; is used for P;, and for the latter the second element
]
of E; is used instead of ¢, 0‘§,, is used instead of 0’§_, and the second row of P; is used for
4 ]
P..

8. If the solution has started to converge (indicated by the maximum absolute value
of an element of D being less on some iteration than on the previous iteration), the variance

ad justment is done as follows:

X-v

70 = —w—

1

0'2 -

Ye @

¥ ¥ Y

XU+ == == =
O"n, 07c 0'10
v - T 1 T
W+ == pr il
(J’,'o 07e U‘Vo

(from (A.3-5)), but + is not to be less than zero.

9. If the solution has started to converge (as indicated in step 7), the convergence



acceleration procedure described in Section A.4 is applied to G and D. For this purpose,
the variance v is considered to be a sixth parameter (sixth element of G), scaled by dividing
it by f2 (with its difference from the preceding iteration being a sixth element of D.)
However, if for any point the condition of being beyond infinity changes from the previous
iteration (that is, n; changes), the acceleration procedure is restarted. Whether D has been
changed by the acceleration procedure or not, it is added to G from the previous iteration to

produce the new G.

10. If the greatest absolute value of an element of D (before acceleration) is is less
than 107% radian, and the change in v from the previous iteration is less than 107%(y +
U/w), then go to step i1 (exit from the inner iteration loop). Otherwise, if too many
iterations have occurred, give up. Otherwise, go to step 3. (End inner iteration loop.)

1L If n, = 0, finish successfully. Otherwise, if there is no tentatively re jected polnt
(this is the first time through the edit ioop), go to step 16.

12. For the last point tentatively rejected, the quadratic form of its residuals with the
inverse of their covariance matrix is computed according to (A.5-2). (If n; = 1, this reduces
to the ratio of the square of its residual to the variance of the residual, where the variance
of the residual is computed as in step 7 but with a plus sign instead of the minus sign.) If
the result is greater than 9 if n; = 1 or 16 if n; = 2, go to step 15.

13. If the total number of rejected points equals n,, go to step 17 (exit from the edit
loop).

14. The following F test is computed:

("’c“' Ay+a)? 2('r+a)"’) ?
Paga’ o2 =

where a = U/w, and where p,v(f, "1-"2) is the probability that the ratio of a chi-square
estimate of a variance with n, degrees of freedom to another chi-square estimate of the
same variance with n, degrees of freedom will exceed f. (The above use of this test is a
crude approximation based upon the assumption that the sum of the additional variance
and the input point variance weighted over ali points with weight w; has the chi-square
distribution.) If this test passes (the above inequality is true), go to step 17 (exit from the
edit loop). Otherwise, go to step i6.

15. Reject all of the tentatively rejected points. If the total number of rejected points
equals n,, give up.

16. For each current point, the quadratic form of its residuals with the inverse of
their covariance matrix is computed according to (A.5-1). (If n; = I, this reduces to the
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ratio of the square of its residual to the variance of the residual, where the variance of the
residual is computed as in step 7.) This quadratic form is divided by 9 if n; = 1 or by 16 if
n; = 2. The current point with the largest resulting value is tentatively rejected. Then go
to step 1. (End edit loop.)

17. All tentatively rejected points are reinstated, the solution backs up to the one
computed using these points, and the problem is finished successfully.

Both intuition from the nature of the problem and experience with the program
indicate that there are no other local minima of the total quadratic form of the solution
near the absolute minimum. Therefore, if the initial approximation is near the correct
solution, the solution should converge to it, if it converges at all. However, there is another
minimum in cases where one camera is roughly in front of or in back of the other (azimuth
=~ 0 or n). This local minimum occurs when the front-back positions of the cameras are
reversed, for then most of the points appear to be beyond infinity. Tests could be put into
the program to detect this condition and to change to the other solution, but this has not
been done. If the initial approximation is reasonable, there should be no problem with this

phenomenon.

As mentioned in Section A.l, if the iterative solution converges to the absolute
minimum, it produces the exact weighted least-squares solution. Other properties, such as
the estimates of accuracy of the ad justed parameters, are approximately correct as long as
the problem is approximately linear. This is the case as long as no points are near infinity.
However, if a point x,,¥, is near the infinity point x,,y, (compared to its standard
deviation), a large nonlinearity is introduced. This will cause, among other things, the error
estimates represented by S to be underestimates if the point x,, , lies beyond the infinity
point or overestimates if the point appears to be closer than infinity. Furthermore, this
nonlinearity is caused by a discontinuity. Thus using the second derivatives (as described
in Section A.]1) probably would not help. That is, equation (A.1-19) may be no better than
(A.1-20) in this case. This effect also affects the convergence, especially of Newton’s
method, which uses the second derivatives. This is the reason for restarting the acceleration
convergence procedure when a point moves across an infinity point.
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Chapter 4
STEREO MATCHING

This chapter describes a method of matching points densely over an entire scene, so
that when the distances to these points are computed as described in the next chapter a

dense depth map will be produced.

In Chapter 2 a stereo correlator was discussed which can refine a local tentative
match between a stereo pair of pictures. However, it is necessary to have a means of
deciding where to apply the correlator and to have a decision criterion for deciding which
matches to accept. This could be done independently for each point to be matched.
Another possibility is to use continuity constraints to force a smooth surface to be produced,
with only a very local search used. Some form of region growing as in Hannah [1974]
might be used in the latter case. The approach adopted here lies between these two
extremes. The stereo disparities are allowed to vary in an arbitrary way over the picture,
subject to some mild local continuity constraints discussed later, which eliminate some
incorrect matches that otherwise would be made. Furthermore, by first trying a match with
approximately the same stereo disparity as neighboring points that already have been
matched, the search can be eliminated for many points. The acceptance of matches is
guided by the probability values returned by the correlator and by agreement with
neighboring matches. No claim is made that this approach is optimum for any particular
type of scene, but it seems to work well for the type of scene considered in this research
(outdoor scenes with various ob jects strewn about). (The method of Levine ef al. [1973] has
some features that perhaps should be included in an operational system, such as the use of
an adaptive correlation window size.)

Because the stereo camera model is known at this point, the search that needs to be
performed is only one-dimensional. A point in Picture | corresponds to a ray in space,
which, when projected into Picture 2, becomes a line segment terminating at the point
corresponding to an infinite distance along the ray. Therefore, a search along this line
segment suffices.

Because the approach used here is based upon area correlation, the first step in the
matching process is to divide the master picture (here cailled picture 1) into small areas
equal in size to the match window of the correlator, for each of which a matching area in
the other picture (picture 2) is desired. (It usually is desirable to have these windows to be
ad jacent and nonoverlapping. Since the correlator match window is square, this results in a
square tesselation of Picture i.) These areas must be selected in some order to be matched.

One possibility for ordering areas to be matched would be to start with the points
which were produced by the interest operator and binary-search correlator and were not
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rejected by the camera model solver and then to work outwards in all directions from these
points, since these points are very likely to be correctly matched. However, there may be
regions separated from all of these points by disparity discontinuities or unmatchable
regions, so this method does not alleviate the search procedure from the necessity to be
self-starting. (A similar method that may produce denser starting points is the tie-point
method of Levine, et al. [1973)) The method that actually is used simply starts with a
column at the left edge of the picture and works to the right a column of areas at a time. In
addition to simplicity, this method has the following advantage when, as is customary,
Camera 2 is to the right of Camera I. The line segment in Picture 2 corresponding to a
point in Picture | then is directed to the left from the infinity point. Thus, once a few
columns in Picture | have been matched, if a search is made starting at the infinity point
and proceeding leftward, eventually areas will be encountered in Picture 2 that already have
been matched. If it can be assumed that there are no foreground ob jects that can be seen
around so that the left camera sees some background points to the left of the ob ject and the
right camera sees these same points to the right of the ob ject, then once a sufficient number
(unlikely to be incorrect matches) of previously matched areas have been encountered in
this manner, the search can be terminated, as there is no need to look at closer distances. In

this way considerable time can be saved.

The implemented method allows several other ways of restricting the search, by using
a priori information about the scene. A minimum distance and a maximum distance can be
specified, and the search will occur only on the portion of the line segments corresponding
to this distance range (and within Picture 2, of course). Also, an approximate ground plane
can be specified, and the search will be inhibited for disparities that correspond to points
that are below this plane by more than a specified height. If desired, a match will not be
attempted for any peint in Picture 1 which, if on this plane or both above this plane and at
an infinite distance, would project outside of Picture 2. All of these restrictions save
computation time and tend to prevent incorrect matches, but of course they may also cause
correct matches to be missed if the a priori assumptions are not correct.

‘In areas of low information content, the noise suppression ability of the
high-resolution correlator often allows useful resuits to be obtained. However, if the
information content of the picture in certain areas is too low, the correlator indicates this
fact by producing very large values for the standard deviations of the two position
coordinates. In such a case, it might have been desirable to inhibit the searching to save
computer time, but even if this is not done, the results are still as good as the standard
deviations indicate. (Actually, the correct test to indicate no useful information is to
propagate the match accuracy as indicated by its covariance matrix into the computed stereo
disparity for this point, as described in Chapter 5, and to check the size of the resulting
standard deviation relative to the magnitude of the disparity. Both standard deviations in
the film plane might be large, but if only one eigenvalue of the covariance matrix is large,
an accurate disparity, and hence distance, can still be computed for this point unless the
corresponding eigenvector is almost paralliel to the projected line segment.)
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The implemented version of the method contains a way of inhibiting (if desired) the
search where it is unlikely that useful information will be obtained. It operates as follows.
The standard deviation about the mean of the Picture | data within the current match
window area for which a match might be searched is computed. Then the F test that is
performed in the correlator, as described in Chapter 2 is performed, except that instead of
the variance based upon the residuals that is used in the correlator, this standard deviation
about the mean is_used. This F test gives the probability that the noise level in the data
could have given rise to the observed variation in the data to be matched. If this
probability is low, then there must be considerable variation above the noise level, and thus
the correlator should be able to match this point. If the probability is high, the data may
be lost in the noise, and thus a search for a match can be inhibited. A probability
threshold of 0.1 perhaps is appropriate.

In deciding whether to accept matches as described below, a tolerance is used in
checking the agreement of disparity in ad jacent matched areas. Ideally, the tolerance should
also take into account the accuracy of the difference in the matches as given by the sum of
the two covariance matrices from the correlator (perhaps accepting anything within three
standard deviations in addition to a given tolerance). However, this has not been
implemented, and currently a constant tolerance is used.

When a window-sized area in Picture 1 has been selected for an attempted match, the
first thing to do is to try to avoid a search by seeing if a good match agreeing
approximately with neighboring points already matched can be made. To do this, the three
ad jacent areas in the previous column just to the left (the last column processed) are
inspected. (These are the areas directly to the left and diagonally to the left both up and
down.) If at least two of these have been successfully matched and if their relative
matching positions in Picture 2 all agree within the tolerance described above (or twice this
tolerance when comparing the top and bottom of the three areas), then the correlator is
applied to the area in question, with the search window in Picture 2 centered on the
position corresponding to the average matching position of these two or three neighbors
(suitably displaced according to the shift to the right and up or down from the position of
the neighboring areas in Picture 1). If the probability computed by the correlator is greater
than some threshold (0.1 is used currently), this match is accepted and no search is done.
However, if the computed matching point in Picture 2 has already been matched, the
current match is accepted only if its probability is greater than that of the old match, in
which case the old match is deleted. The tolerance used for checking whether these
matched points in Picture 2 coincide is half of the minimum of the match window width
and the step size in Picture | (which normally are equal).

If the above trial match is not accepted, the search is done in the following manner.

The point at the center of the match window in Picture 1 is corrected for distortion as
described in Chapter | and is projected into a line segment in Picture 2 as described in
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Appendix B. Working from the infinity point towards lesser distances, points are chosen
along this line and are distorted to represent points in the actual picture instead of in a
central projection. Previously successfully matched points within the tolerance described
above are skipped, and the correlator is applied with its search window centered on the
remaining points. A good spacing to use for these points would be half of the search
window width, which would produce sufficient overlap so that the computed matched point
will not be forced to be near the edge of the search window. However, in order to speed up
the program a main step size equal to the search window width is used. But if the
probability computed by the correlator for one of these trials is greater than 0.05 or greater
than half of the greatest probability found so far in this search, then another trial is made a
half step ahead if the computed position was in the front quarter of the search window, or
a half step behind if it was in the back quarter. In this way, if the correct matching
position occurs approximately on the boundary between two successive search windows
(without overlap), it will be found more nearly centered within an overlapping search
window produced in this manner, thus avoiding the loss of accuracy from the truncation at
the edge of the search window.

Of all of the matches produced by the correlator in the above search, the one with
the highest probability is tentatively selected. This is checked for agreement within the
specified disparity tolerance with neighboring matched areas, including all three
neighboring areas in the previous column, which may have accepted matches, and the two
areas directly above and below in this column, which may have an accepted match or
tentative matches produced in this manner. If there is agreement with at least one of these
neighbors, and if of the two matches consisting of this neighbor and the current match
under consideration both probabilities are at least 0.01 and either probability is at least 0.1,
the current match is accepted. Otherwise, this area is left unmatched.

It was originally intended to have the method try further in case no match was
accepted above, by comparing the results from those points in the search for which the
correlator produced less then maximum probability with those from the ad jacent search
(above or below), as mentioned in Gennery [1977). If an ad jacent pair could be found
which agreed closely in disparity and both of which had reasonably high probability, this
pair of matches could be accepted. This additional feature was tried, but using it
considerably increased the number of incorrect matches. Therefore, it was not adopted.
Also, in order to try to reduce the number of incorrect matches, a feature was tried which
accepted the best match in a search only if its probability was at least twice as great as the
second best. But this resuited in the loss of a great number of correct matches in
low-contrast areas, so it too was re jected.

One more refinement in the above method remains to be discussed. Because of
perspective distortion, a match window in one picture will not match exactly the
corresponding match window in the other picture. In many outdoor scenes a large portion
of the points are on the ground, and these points may be very important in finding the
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ground surface, as described in Chapter 6. Also, because the ground makes a large angle
with the camera focal plane in a roughly horizontal camera, areas on the ground often
suffer a large amount of perspective distortion. Furthermore, not only does this distortion
affect the correlator, but it also may cause ad jacent matches (above and below each other) to
disagree by more than the disparity tolerance, unless this tolerance is made very generous.
Therefore, provision has been made for using the correlator both straight and with a
predistorted match window corresponding to the distortion that would occur if the point is
on the a priori approximate ground plane, and for compensating the check of agreement of
neighbors correspondingly for this distortion. Of course, the correlator could include a
general search over distortion, but this would be very time-consuming. Including a special
distortion correction for the ground at a cost of about doubling the computation time is
justified in some cases by the importance of the ground and the large distortion that it may
undergo. (Clark Thompson [1975] also has suggested such a distortion correction. Mori et
al. [1973] use a more elaborate prediction-correction technique to handle general perspective
distortion.) "

, If the ground is a plane, the perspective distortion of the match window between
pictures is a constant skew distortion, for all paints on the ground. Only a special case has
been implemented, in which it is assumed that all angles of the camera model except
azimuth are zero (that is, the two cameras have the same orientation, and the stereo axis
projects into the film plane as a line paraliel to the x axis) and that the ground plane is
parallel to the x axis. In this case the amount of this skew is given by (r sin «, cos 2)/4,
where o, is the azimuth from camera 1 to camera 2 relative to the camera axis, A is the tilt
of the ground relative to the axis, r is the distance between the cameras, and 4 is the height
of camera | above the ground plane. The skew given by this formula is the tangent of the
angie that a straight line on the ground would make-with the y axis when projected into the
camera 1 film plane, if it is parallel to the y axis when projected into the camera 2 film
plane.

Thus the algorithm as described above has been modified so that the following
computations are included, when desired. When the correlator is applied to a portion of the
picture which could be on the a priori ground plane (that is, the point is not above the a
priori horizon in Picture 1), it is applied both with a normal match window and with a
match window which has been distorted into a parallelogram in picture | to correspond to
the square match window in picture 2, according to the skew as computed above. (The
values used within this skewed window are obtained by linear interpolation from the
original picture values, although if the interpolating version of the correlator were used, it
could do this interpolation itself.) In checking for agreement with neighboring areas, the x
coordinates of the points are shifted according to the skew when results from the skewed
window are used, but are used unchanged when the normal window is used. In the
preliminary match to avoid a search (trying a match with approximately the same disparity
as neighbors already matched), the result with the greater probability of the two is used. In
the search along the projected line segment, the two results for each trial position simply
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double the effective number of trials, and the best result is selected as before (based on the
probability and agreement with neighbors).

Figures 4-1 and 4-2 show the results of applying the matching algorithm to the Mars
pictures described in Appendix C. Match windows and search windows were both 8 pixels
by 8 pixels. Each dot superimposed on the left picture (Figure 4-1) is at the center of an
8-by-8 area that was successfully matched. An error ellipse is shown centered on the point
in the right picture (Figure 4-2) to which each of these points was matched. The ellipses
shown represent the three-standard deviation limits. If a normal distribution of position
errors is assumed (actually not a good assumption for this kind of error), about one out of
ninety points would be expected to have the true matching position outside of the ellipse.
Lines connect points in Figure 4-2 which match points forming a vertical column in Figure
4-1. Dashed lines bridge gaps caused by unmatched areas in the left picture. It can be seen
that three obviously incorrect matches were made (in the lower right fourth of the picture),
but the rest appear to be more or less reasonable.

46



Figure 4-1. Points found in left picture.
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Figure 4-2. Matched points in right picture, showing 30 error ellipses, with lines
connecting points corresponding to columns in Figure 4-1.




Chapter 5
DISTANCE COMPUTATION

Once a pair of matching stereo points has been found, it is usually considered to be
fairly trivial to compute the distance to the corresponding point in three-dimensional space,
if the stereo camera model is known, as in Hannah [1974] However, here this process is
complicated by two facts. First, the available information about the accuracy of each point
(obtained from the correlator) implies that the optimum matching point in the film plane in
general is not the point on the projection line (of the Picture 1 point into Picture 2) that is
nearest to the matching point found by the correlator. Computing the stereo disparity
corresponding to the optimum matching point requires the use of the two-by-two
covariance matrix produced by the correlator. (The nearest point is optimum only if this
matrix is a scalar matrix or one of its eigenvectors is perpendicular to the line) Second, it
is desired not only to compute the distance but also to compute its accuracy, by propagating
the accuracy estimates of the matching point and of the camera model into the distance. As
is usually the case, this error propagation computation involves considerably more effort
than the distance computation itself. It is complicated further here by the fact that more
than one type of accuracy estimate may be desired, depending on to what extent the effects
of camera model error are to be included.

5.1 Matching Point

The computations described in the previous chapters have produced, for some point
x,,9, (corrected for distortion) in the Camera 1 image plane, an estimate x, and jy,
(corrected for distortion) of the matching position in the Camera 2 image plane and its
accuracy represented by 07, 07, and 0. The accuracy estimates may contain both a
random component, obtained from the correlator or other information independently for
each point, and a systematic component, which might be obtained from the additional
variance ad justment in the camera model solution or from other information. From the
camera model information, the i:orojection of the Camera | point into the Camera 2 film
plane can be computed as described in Appendix B to produce a line segment represented
by the infinity point x, y, and the direction cosines ¢, and ¢, It is now desired to use this
information to compute the optimum matching position Xp¥p in the Camera 2 image
plane, considering both the estimate x,,y, from the correlator and the projection of x,, ¥,
according to the camera model information.

First consider the camera model to be known exactly, so that there is no uncertainty
in X5, J4: €y and ¢, The relationships are shown in Figure 5-1. The ellipses are contours
of equal probability density from the distribution given by 02, U;. and Oy (including both
random and systematic error), assuming a normal distribution. The quantity V is the same
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Figure 5-1. Determination of optimum matching point, neglecting camera model error.




as the discrepancy used in the camera model adjustment. The quantity £ is the stereo
disparity (defined here as being relative to the infinity point) usually used, as in Hannah
[1974). However, T’ is the quantity used here for the disparity. It is the distance in the
Camera 2 image plane from the infinity point to the tangent point of one of the ellipses and
the projection line of x,,y,. (The prime is used because there may be a correction to be
applied to this quantity when the effects of the uncertain camera model are considered.)

Since ¢, and c, are the cosines of the angles of the projection line with the x and ¥
axes, the following relationships hold:

¢ - cx(xz’xo) + cy(yz',o)
(5.1-1)

U = c,(3,-9) - cy(xz-xo)
Also,

xp = xo + CxT
(5.1-2)

,p = ’o + cy'r

where the prime has been dropped, since (5.1-2) holds for both corrected and uncorrected
values.

Now the value of T’ must be determined. One way to do this is to consider x, and y,
to be observations on the quantities xp and I which are functions of the parameter T
according to (5.1-2). A generalized least-squares solution can be done for 7, with weights
derived from the values Ui, U} and “zy' Since (5.1-2) is linear in 7, equation (A.1-17)
can be used exactly, and no iteration is required. As described in Appendix A, the proper

weight matrix to use is the inverse of the covariance matrix of observations. Thus the
unique elements of the weight matrix are

o2
Xy xy
- 01‘
wy, = EE"’;-_J’U}; (5.1-3)
2
Yy " T
Ty xy
where the variances and covariance include both random and systematic error. Upon
making the appropriate substitutions derived from (5.1-2), equation {A.1-20) becomes
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w w ¢
2 xx “xy|[|"x[\-}
e+ ([ 4] )

xy Yyy| |y

1
- . (5.1-4)
¢:§,,wmr + 2‘z‘ywzy + c;w” -

and equation (A.1-17) becomes

7 e o2 e ¢ Ury Wayll*™%
= Veeslls “y o w _
zy Yyy| P20

Cpll (X% ) + Collyy/ o) + cyw,y(xz—xo) + cyw”(yz—yo)

(5.1-5)
w,, + 2‘x‘y""xy + c";w”

(The subscript "rs” indicates that this estimate of accuracy of 7' includes random and
systematic error from the point x,, y, but does not include camera model error.)

This equation for 7' needs to be in a form more convenient for error propagation.
By using the fact that c+c}, = 1, some algebraic manipulation can transform (5.1-5) into

cxcy(wn—w“) + (ti—c;)m’y
[e.(9.-9.) - ¢ (x.-x Yb.1-6
Rty + 2,00, + Aw $02720) - el %,(B-1-6)

T =y (x-x,) + ‘,(72".'90) +

7 4 ¥y ¥y
Now let
- 2_,2
cj,‘.f:’,(w”r w,,)+ (c; c’)wxy (5.1-7)
Gw,, + 2c,cyw,y + cgw”
Then, by using (5.1-1) and (5.1-7), equation (5.1-6) can be rewritten as
T' = 8+ pU (5.1-8)

These results can be expressed in terms of the variances and covariance instead of
the weights. Substituting (5.1-3) into (5.1-4) and (5.1-7) produces

242 _ g2
o202 - 02,

. om (5.1-9)
rs 242
- €203 - 2,0, 0, + 202

2
n'f

and
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(crz-o',) + (c"’-c’)rr

242 2 2
c,O' 2:,::’,0" €y oy

(5.1-10)

p -
Thus using (5.1-1), (5.1-10), (5.1-8), and (5.1-2) produces the desired matching point.

The accuracy estimate of T' from (5.1-9) can be propagated through (5.1-2) as shown
in the next section to produce the effect of combined random and systematic point error on
the results. However, if only the effect of random error is desired, the value of 0'3 " must
be computed to be used instead. In order to do this, first (5.1-6) is rewritten as follows by
substituting (5.1-7) and rearranging:

(e, - pc’,)(xz - %)+ (cy + P, Xy, = 3, (5.1-11)

Then, since 0 is independent of x, and j,, the error propagation from x, and y2 to T
produces

/:u:y)"’o-2 + e, - y)(cy +PeIO .+ e, + pcz)%;r (5.1-12)

where the subscript "r" denotes that only random error is included. (If both random and
systematic error were included here, substituting (5.1-10) into (5.1-12) and simplifying would
produce (5.1-9). However, this simplification does not occur for the random error, because
P is always computed from the total point error according to (5.1-10).)

Now consider the effect of uncertainty in the camera model, represented by S, the
covariance matrix of the camera model parameters defined in Appendix B. There are two
cases to consider, according to whether the point in question (x. -72) was used in a camera
model ad justment which produced the camera model being used.

If this point was used in determining the camera model, then the values x,, y,, c,,
and ¢, used above take into account the information in this point, as represented by x,, 3,,
o2, Ug, and 0, Thus the matching point X5 ¥p computed above represents the best
compromise between the information in this point and the other information which went

into the camera model determination. Therefore,
T =7’
0%, = 0%, (5.1-13)
03 s Uz ‘T8

However, the fact that there is uncertainty in the camera model solution causes components
of uncertainty in the disparity in addition to that represented by 0'2
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Since both systematic point error and camera model error will affect nearby points in
related ways, causing correlated errors in these points, the component of error which affects
points independently is due to 0'3',, Thus propagating this error from 7T into the final
results will produce what is called here "independent error.”

To compute the total error, the partial derivatives of the the various above quantities
relative to the camera model parameters must be computed, so that by a linear
approximation the accuracy estimates can be propagated. However, because of the different
shapes and orientations that the error eilipses for different points can have, certain changes
in the camera model parameters can cause changes in nearby points that are different but
correlated. These effects occur by the effects of the camera model parameters on the
quantities 0 and U. (The effects of the camera model parameters on & and on X, and Ip
through their functional dependence of X, y,, ¢,, and c, explicitly indicated in (5.1-2)
produce practically the same effect on nearby points.) Combining this type of error (from o
and U) with the random point error produces what is cailed here "relative error,” denoted by
the subscript "rel".

By differentiating (5.1-1), (5.1-2), (5.1-8), and (5.1-10) the desired partial derivatives
can be obtained. These can be expressed as follows in terms of the partial derivatives of
Xgs Jg» €, and ¢, obtained as described in Appendix B:

ot oc, ac,, ox,, 39,
g g Uy ey Ty
v A d¢ )] ox
dp ,
3 ° .
2_g2 2 Oy 2_g? 2)) 6:,
lefo3-09) - 2,0, + 20(c, 0, ,~¢, 0] 3% * le(03-03) + 2,0, + 20(c, 0, ¢, 07 3

202 - 2c.c.0._ + 202

ry “ryqwoyE (5.1-14)
or +pau P
g 9 "o g

ox ox ¢
_P - __2 +¢ B_T + 7T _’.
o og ~ Fog  of
d 9 oc¢
ﬁ = & + ¢ 6_1 + T y
og g  Yog g

where g denotes any one of the camera model parameters defined in Appendix B. The
partial derivatives from the last three equations of (5.1-14) will be used in the error
propagation in the next section.



~If this point was not used in determining the camera model, there is no unequivocally
best thing to do. (The only optimum thing to have done would have been to have included
all of the points in the camera model solution. However, this may have been impractical
because of the time required. For example, after the dense matching of points have been
computed as described in Chapter 4, all of these points could be used in a new camera
model solution. But if the camera model is already known sufficiently accurately, the
additional computing may not be worthwhile) One thing to do would be simply to use the
same solution described above. This has the advantage that the solution for each point is
based on the same camera model, and thus the independent error is mimimum. However, it
may be desired to produce the best compromise between the information in this point and
the information in the camera model (as far as this point is concerned, without considering
any other points). This approach reduces the total error but increases the independent
error, compared to the previous method. Depending on the circumstances, it may either
increase or decrease the relative error. (We are speaking here of the variances, that is the
expected squares of the errors, not the actual values of the errors for a given point) A
compromise is possible which reduces both the relative error and total error compared to
the first method (although it does not reduce the total error as much as the second method)
and is simpler than the second method. This third method includes the effects of changing
the camera model only insofar as it affects the point *pIp but does not consider the effects
of moving the infinity point x,,5, closer to or further from point ¥p Yp (along the
back-prajection line). (Because of correlation between the camera model errors parallel and
perpendicular to this line, shifting the line sideways to improve agreement with the point
x,,y, would cause such movement parallel to the line. Since this movement would be
different for every point, it would make the relative error worse.) Since relative error is
usually the most important error, this third method is used in the implemented program,
and it will now be described.

Consider the quantity U, which is the perpendicular distance from the point x,, y, to
the back-projection line. Two variances of this quantity will be considered. First, O's’rs
includes only the effect of error in the point x,,y, (both random and systematic). It is
shown in Figure 5-1, and its equation can be easily derived from the equation for V in
(5.1-1) to be

2 202 _ 9 292 -
crv,m = cxcry - 2‘z‘y°zy + tyO',r (5.1-15)
Second, 0’3,c includes only the effect of camera model error. It can be computed from the
covariance matrix of camera model error § by using the partial derivatives of U with
respect to the camera model computed according to (5.1-14). If these partial derivatives are

v
assembled into the row matrix 3G then

U [T |
02, - 5= 5(5z (5.1-16)
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Note that U is the amount by which this point disagrees with the camera model.
Thus a compromise position of agreement between these two pieces of information can be
obtained by performing a weighted average of them, with the weights inversely
proportional to these two variances. (This is correct under a linear approximation only,
since the actual variance due to the camera model varies with the position in the image
plane) Therefore, the compromise point is moved from point ¥, 9, by a fraction k of the
distance towards the back-projection line computed from the camera model, and thus it is at
a perpendicular distance of (1-k)V from this line, where

]

ko= ETE?ET (5.1-17)
vc
Shifting the point by the distance &V in the direction perpendicular to the line causes it to
shift by the distance pkU parallel to the line, because of the correlation in the errors in the
point, according to (5.1-8). Also, the back projection line moves a distance (I-k)V towards
the point, so that the compromise point lies on the compromise line. However, as stated
above, in this method we do not want to change the camera model. Instead, the compromise
point will be projected perpendicularly onto the line computed from the given camera
model. Doing this does not affect the stereo disparity or the dlslance. under a linear
approximation.

Therefore, the stereo disparity used is

T = E+hpy
(5.1-18)

T' - (1-k)pV

instead of (5.1-13). The partial derivatives of the disparity with respect to the camera
model parameters are

T ok p
— = +k RY —
%~ % P 5 a 3% 5am19)

ST v 3p
( E‘E )rel kP 55 og +hu 52 6g

instead of the corresponding equations in (5.1-14). (The partial derivatives of & do not
have to be included. Their effects are negligible compared to the other effects.)

The equation for the variance of T due to point error can be derived from the second
form of (5.1-18) in a straightforward way in terms of the variance of T’ (obtained from
(5.1-9) or (5.1-12)), the variance of U {obtained from (5.1-15) or its equivalent for random



error), and the covariance of 7’ and V. (Note that p is not a function of the point x,, 3,
The effect of the point on k is neglected as being negligible.) The equation for the random
covariance can be derived from (5.1-12) and (5.1-1) to be

Oprgr = —(p = pcy)cycri,r + (e, - P‘,)‘,;Ugy,.- - (cy + pc,)cycr” . (cy + pcx)cxa@’.'l-i.’o)
A corresponding equation for the covariance from total point error exists, but substituting
the expression for P from (5.1-10) into it causes it to reduce to zero. Therefore, the
‘variance of disparity from point error in this case (point not used in computing the camera
model) is

o2, = 0%, +(I-k)%%7 - Al-k)0,.,,
' (5.1-21)

o-i,r: = 0'3,.,“ + (l'k)zpzas,n

52 Distance

We now have a point x,, 5, in Picture |, point x,, Jp in Picture 2, and the camera
model which relates the two pictures. It is desired to compute the point in
three-dimensional space corresponding to these points. This will be the point at which the
projections of the two picture points intersect in three-dimensional space. (The projections
are guaranteed to intersect, because ¥ Yp Was forced to be on the back projection of x,,y,
into Picture 2

Let u be the vector from the Camera | origin (center of projection) to point x,, y, in
the image plane (assumed to be in front of the lens, as explained in Appendix B), let v be
the vector from the Camera 2 origin to point X Yp iN the Camera 2 image plane in the
same manner, let r be the vector from the Camera 1 origin to the Camera 2 origin, and let
s be the vector from the Camera 1 origin to the desired point in three-dimensional space.
All of these vectors are coplanar, because of the fact that the two projections intersect, as
stated above. It is desired to compute s; all other of these vectors are known. Furthermore,
let @ be the angle between T and v, let ¢ be the angle between u and v, and let fyand f,
denote the principal distances defined in Appendix B. Figure 5-2, which for simplicity
assumes that the axes of the cameras lie in the plane of these vectors, illustrates these
quantities.

From the law of sines for plane triangles,

rsin @
s = S d (5.2-1)

But the sine of the angle between two vectors is the magnitude of the cross product of the
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Figure 5-2. Triangulation to compute distance (two-dimensional version).



unit vectors in the same directions. Thus (5.2-1) is equivalent to

Irxvi. uy rxvi _
ST kvl " luxvlu (5.2-2)

Since u and s are colinear,

Ir x v|
B eee— 5. -3
s o] u (5.2-3)
‘Because 1, u, and v are coplanar, the two cross products in (5.2-3) produce parallel vectors.
Thus the absolute value operation can be dropped in this equation, and it can be expressed
in terms of the ratio of two vectors, as follows:

s« XV, (5.2-4)
uxv :

Even though the ratio of two vectors is usuaily not defined, in the case of parallel vectors it
is taken to mean the ratio of corresponding components of the two vectors (all of which
have the same ratio).

* All that we need to compute here is the component of s parallel to the principal axis
of Camera I, which we denote z. The other two components in the Camera | coordinate
system can then be easily computed as x,z/f, and y,z/f,. Thus, taking this component of
both sides of (5.2-3) produces

rxv
I = _u XV fl (5-2‘5)

which will be calied the "distance” here, rather than using this term for the slant range s.

The vectors needed in (5.2-5) can be expressed in any particular coordinate system
for computational purposes; the Camera 2 coordinate system is chosen here. The
‘components of these vectors can be computed by using the unit vector 1_ and the rotation
matrix B defined in Appendix B. Thus, in the Camera 2 coordinate system,

X, x

P
r=rBi, u = By, vy, (5.2-6)
fl fz

The partial derivatives of these vectors relative to the camera model parameters are then



KL
p
3 i §
or 1, B du 9B v 3y
¥ "ty x| w o y| 7
1
Lo J

assuming that f, and f, are not included in the camera parameters. (If uncertainty in the
principal distances is to be propagated also, additional partial derivatives reiative to f, and
[, are computed in the obvious way.) The partial derivatives of 1_and B needed above
are obtained as described in A ppendix B.

In order to compute the distance z by (5.2-5), where a ratio of two paraliel vectors is

called for we could use the ratio of the absolute values of the vectors, as in (5.2-3).

However, in order to keep the computations simple, which is especially important when

computing the partial derivatives for the error propagation, the ratio of one of the

components is used. The question then is which component to use. In principle, it could be

any nonzero component. However, in order to avoid numerical loss of significance, a small

component should be avoided. Since the point in the scene always is in front of the image

planes of both cameras, the cross products in (5.2-5) never produce vectors perpendicular to

~the image plane, and the cross product in the numerator is never zero. Therefore, it is
guaranteed that either the x or y components must be significantly large, at least in the

numerator. Thus what is done in the implemented program is to compute both the x and y

components of the numerator, to select whichever is greater in magnitude, and to select the

corresponding component of the denominator. Letting ¢ and ¢ be the components of the

numerator and denominator actually used, letting the subscripts x, 9, and z denote the

components of the vectors, noting that the components of v are Xp Ip and f,, and writing

-out the cross products in terms of the individual components produce the following

relationships. If Ir,f2 - r,ypl > ir,xp - TJ,L

P =TT
(5.2-8)
= ufr-tp
Otherwise,
P - T¥p = r‘fz.
(5.2-9)

g = uxp- u,fo

Then the distance is
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(5.2-10)

In order to do the error propagation, the partial derivatives of p and ¢ relative to the
camera model parameters, and relative to T with the camera model parameters held
constant, need to be computed. These can be obtained by differentiating (5.1-2), (5.2-8),

and (52-9). If Ir.f, - 1,3,1 > Iz, - 1,fh

9
Sg - —Y'Cy
d
a‘? - - ug,
(5.2-11)
3 or, oy
. D - 52 £
R A TR A T
3 ou, du, 3,
A 2O R
Otherwise,
| 3
Sg = Ty
% = Uy
(52-12)
3 Ty axp ar,
gg - -é?xp-}fz}?- - Tg-fz
Y eu, éxp _ au,
a_ = Szxp+uz-3-g— 3?1'2
Also needed are partial derivatives of the distance z, as follows:
o Lo My
oT q o7 q2 AT
(5.2-13)
& N thioy
% ¢ ¥ g &

where the needed partial derivatives of p and ¢ are available from (5.2-11) or (5.2-§2).
The partial derivatives of z relative to the g’s are assembled into the I-by-5 matrix

(It is assumed above that the principal distances are known exactly. Otherwise, additional
partial derivatives relative to f, and f, would be computed and wouid be used as additional

elements in g% , which would be 1-by-7 instead of 1-by-5.)

Then, by using the description of the three different types of error in Section 5.1, and
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by using the linear approximation rule for the propagation of covariance matrices
(premultiplying by the matrix of partial derivatives and postmultiplying by its transpose),
the independent, relative, and total variances of the distance z are

Az \2
2 2
Oxind = 3}') Gf,r

el = (%)2{03,, +(55 rel °C (5 ol (5:2-14)

Az \2 dz 3z \T 22
2 e [ — 2 — —_g?
Oz tot (a'r ) Tres* 56 56 (SG t 50

2
0’2

where the last term for the total variance is for the uncertainty in the inter-camera distance
(assumed to be independent of the other camera model parameters), and where S is the
covariance matrix of the camera model parameters, as previously described.

Note that in (5.2-14) the error propagation from the camera model to the distance is
done in a different way for relative error and total error. The error propagation for
relative error could have been done in the same way as for total error, by defining partial
derivatives (3z/dg) ... However, this would have reduced to the form used above. This
simplification does not occur for total error, because of the additional effects considered in
the partial derivatives of x, Yp» . and ¢ for total error.

The linear approximation for error propagation used in (5.2-14) is very poor when
0, is nearly as great as or greater than z. This condition indicates that the point actually
could be at an infinite distance. (If z from (5.2-10) is negative, the point appears to be
beyond infinity) When the true z is considerably greater than r, it is more accurate to
consider 0,/2? (using the values computed as above) to be the standard deviation of the
errors in I/z (neglecting the fact that the point cannot actually be beyond infinity).
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Chapter 6
GROUND SURFACE FINDER

Once the three-dimensional positions of a large number of points in an outdoor scene
have been determined, it is desired to determine which points are on the ground and which
are on objects above the ground. This chapter discusses means of computing the ground
surface.

6.1 Basic Ground Finder

By taking a sufficiently small portion of the scene the ground can be approximated
by- a simple surface whose equation can be determined. The procedure which has been
implemented assumes in general that the ground surface is a two-dimensional
second-degree polynomial (a paraboloid). However, weights can be given to a priori values
of the polynomial coefficients, to incorporate any existing knowledge about the ground
surface into the solution. For example, the second degree terms can be weighted out of the
solution altogether, so that the ground surface reduces to a plane. It usually is wise to use at
least a small amount of weight on zero values of the second-degree terms in order to
constrain them to reasonably smali values. (The next section discusses how the method
could be changed to handie large areas.)

To determine a ground surface from a given set of data, a set of criteria which define
what is meant by a good ground surface is needed. These include the number of points
within tolerance of the surface {the more the better), the number of points which lie beyond
tolerance below the surface (the fewer the better, since these would be due to errors such as
mismatched points in a stereo pair), and the closeness of the surface coefficients to the a
priori values. Note that the number of points above the surface does not matter (other than
that it detracts from the number within the surface), because many points can be on ob jects
above the ground. A score for any tentative solution is computed based on these criteria,
and the solution with the highest score is assumed to be correct, although a solution with a
lower score could be selected by a higher level procedure using more global criteria. The
scoring function currently used is

n-m k2 6 - ¢ )2
- - - .l_

v n+v-2m 2, ke ; (30". (6‘”
where n is the number of points within tolerance of the surface (these points were used to
determine the surface by a least-squares fit), ¥ is the a priori expected number of points in
the surface, k is the number of points below the surface by more than the tolerance, « is the
a priori approximate maximum number of points below the surface, the ¢; are the
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coefficients of the fitted surface, ¢; are their a priori values, 0; are the standard deviations
of these a priori values, and m is the number of these coefficients which were ad justed.
The numerical value of the score can range from approximately +1 to arbitrarily large
negative numbers. Any positive value is considered to represent a satisfactory fit.

Finding the best solution out of all of the possible solutions is a search problem.
What is needed is a method which will be likely to find the correct solution without

requiring huge amounts of computer time.

One possibility would work as follows. Take all combinations of the points three at a
time for the special case of a plane surface {or six at a time for the more general case), fit
the surface to each combination, see what points lie within tolerance of the resuiting surface,
include these in the solution by a least-squares ad justment, and iterate in this manner until

-a stable set of points is reached for each tentative solution. However, the number of
tentative solutions would be approximately proportional to the cube of the number of points
for the plane case (or the sixth power for the general case). Therefore, this method would
usually be impractical.

The method actually used uses some heuristics to lead the search to the desired
solution. It can be divided into two portions.

First, a least-squares solution is done using all of the points. This fit is saved for
refinement leading to one tentative solution. Then all points below this fit, but not less
than half of the points used in this fit, are selected, and another least-squares fit is done on
these points and saved. This process repeats until there are too few points left. (This
portion of the algorithm drives downward to find the low surfaces, even though there may
a large amount of clutter above them.)

Second, a refinement of each of the above fits is done, rejecting erroneous points and
some clutter, in order to find well-defined surfaces. This refinement process is basically an
editing process as described in Appendix A. However, to remove points one at a time as is
done with the camera model ad justment may be too time consuming because of the large
number of points (many of which may need removing). Therefore, at each step, all points
lying outside of the criterion are rejected, and all other points are included, for the next fit.
However, in order to avoid rejecting too many points at once (which may include the good
points), the standard deviation of the points used in the fit about the fitted surface is
computed to obtain a threshold for rejecting points. This wholesale selection of points is
permissible because the solution does not need to be rechecked after rejecting each point as
is done with the camera model, because the ad justment (as described in this section and in
most of the alternatives in the next section) Is linear. However, the computed standard
deviation will change after the points are rejected. Therefore, instead of using a
three-standard-deviation limit as is done with the camera model, a one-standard deviation
limit is used (but not less than three times the given standard deviation for each point), in



order to avoid rejecting too many points at once. (If a few good points are rejected, they
will be reinstated on later iterations as long as the process converges to the correct solution.)
This process continues until it stabilizes, in which case the score of the result is computed,
or until there are too few points in the solution.

The above algorithm can be summarized as follows:
0. Select all of the given points.
- 1. Save the next fit done according to step 2.
2. Perform a least-squares fit of the surface to the currently selected points.

3. If all current points (and no others) are within tolerance of the fit, save the fit and go to

4. Compute the standard deviation of the current points from the residuals of the fit.

5. Select all points that are within one computed standard deviation or the original
tolerance, whichever is greater.

If n > m (that is, the number of current points is greater than the number of coefficients to
be ad justed), go to 2.

7. Using the last fit saved according to step 1, select all points that are below that fit, but
not less than half of the points used in that fit. {To avoid re Jjecting more than half, a limit
above the fit is increased from zero by an appropriate amount as indicated by a histogram
of the residuals.)

8. If n > m and there is a change in the selected points from the last fit saved according to
step I, goto L

9. Of those fits saved according to step 3, the one with the greatest score is the preferred
solution, with others ranked in order of decreasing score.

In the general case of a paraboloid mentioned above, the height of the ground
surface is

h = a+bx+cy+desexy+fy? (6.1-2)
where x and y are the horizontal coordinates, and @, b, ¢, d, ¢, and f are the coefficients

defining the surface, which are to be determined. Since this equation is linear in these
coefficients, the iterations required for the nonlinear solution in Appendix A are not
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Figure 8-1. Side view of ground fit.



Figure 6-2. Points found by stereo processing, showing heights above reference
plane.
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Figure 6-3. Heights above computed ground plane.




Figure 6-4. Heights above computed ground plane, for points above 5 cm.
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needed, and equation (A.1-23) can be used directly to obtain each fit needed in the above
algorithm, with the following substitutions:

P=[1x9x*x 4%
E = [2] (6.1-3)
Delcbedefl

where z is the vertical coordinate, and where x, y, z, P, and £ are evaluated for each
point used in this fit (corresponding to the subscript i in equation (A.1-23)).

Figure 6-1 shows a ground surface (constrained to be a plane) fit to the data from the
Mars pictures shown in Chapter 4. This is a horizontal view in a direction chosen so that
the plane projects as a line. The vertical scale is exaggerated. Each point that was used in
the final accepted fit is shown as a solid circle. The rejected points are shown as open
circles. The number 1 in the upper left corner indicates that this was the first fit found
according to step 3, the asterisk indicates that this was accepted as the final solution, the
number 0.1503056 is the score for this solution, and the arrow in the upper right corner
indicates the direction of the view in the horizontal plane (in this case about 45° to the left
of the plane perpendicular to the baseline connecting the two cameras).

Figures 6-2 and 6-3 show the same data projected into the left picture in a "before”
and Tafter” presentation. The head of each arrow is at one of the points used
(corresponding to the dots in Figure 4-1), and the base of the arrow is on a reference plane
1.3 meters below the camera in Figure 6-2 or on the computed ground plane in Figure 6-3.
The arrows are perpendicular to the reference plane in either case. The fact that most of
the arrows point down in Figure 6-2 indicates that the ground is below the reference plane.
The fact that most of the arrows in Figure 6-3 are very short where there are no large
rocks indicates that a reasonable fit to the ground was obtained. Figure 6-4 is the same as
Figure 6-3 except that only points at least five centimeters above the computed ground
plane are shown.

6.2 Extension to Large Areas

If it is desired to fit a large ground area, a single paraboloid may not be a reasonable
approximation, and some modification of the method in the previous section is needed.
However, whatever method is used, some assumption about the smoothness of the ground is
needed. Otherwise, the distinction between ground and ob jects disappears without more
information other than the three-dimensional positions of points. Several possible
approaches are discussed in this section. However, none of these have been implemented.



The simplest approach is to divide the area into small sections in a predetermined
manner and to perform the solution of the previous section independently on each section,
either with a plane or paraboloid fit. This will cause discontinuities in the ground to
appear - at the boundaries, but this effect is not troublesome if the only purpose of
computing the ground is for thresholding heights for object detection. However, allowing
these discontinuities to occur means that the constraint of smoothness has been disregarded
at these boundaries, resulting in a less than optimum solution. This can be especially bad if
some of the sections do not have enough points to determine the ground well. A possible
refinement of this method is to take for each section not necessarily the best solution found,
but the one which agrees best with the solutions for neighboring sections, if there are a few
almost equally good solutions.

Some methods will now be discussed which utilize the constraint of smoothness and
by means of a single fit produce a ground surface which varies smoothly but in a more or
less arbitrary way over a large area. Because the surface in one part of the scene is almost
independent of the surface in a distant part of the scene, the part of the algorithm which
drives downward to eliminate clutter (steps |, 2, 3, 7, and 8) cannot be used as part of this
solution. Otherwise, a good solution in one part of the scene might be coupled with a bad
solution in another part. Therefore, with these methods an initial approximation to the
ground should be computed first using the method in the previous paragraph (separate
solutions for predetermined sections) with fairly large sections, and then this solution should
be refined using steps 4, 5, 6, and 9 on all of the data, with one of the methods discussed

below.

One approach is to partition the area as above, but to perform a single solution
which includes continuity constraints at the boundaries. For example, a tesselation into
equilateral triangles can be used, with a separate plane fit in each triangle, but constrained
so that the heights are continuous at the boundaries, whereas the derivatives may be
discontinuous. (This works because three points determine a plane.) The coefficients to be
computed could then be the heights at the corners of the triangles. (These would form the
D vector) The solution is linear in these heights, so apart from a different P matrix, the
same method as in the previous section can be used. However, in order to produce a
smooth surface, a priori weights would be used to minimize the change in slopes at the
boundaries. Thus, the area can be divided into very smail triangles, but this weight causes
a smooth surface to be produced. The change in slope at a boundary is proportional to
h,—h,~h+h, where A, and A, are the heights of the surface at the two vertices on this
boundary, and 4, and A, are the two vertices at the opposite corners of these two triangles
from this boundary. The elements of the P matrix for these a priori observations are then
I, -1, -1, and 1, respectively. Thus the terms of the PTP matrix corresponding to hl and
Ry, h, and hy, h, and k, and k, and 4, are all -1, and the term corresponding to %, and
hyr Ay and Ay and all four diagonat terms are ali 1. These would be multiplied by an
appropriate weight and added into the 4 matrix at the correct positions for these terms, in
order to constrain the change in slope at this boundary to be close to zero. This would be
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done for every boundary. (A approach similar to this method is to represent the ground by
means of splines, discussed by Schuitz [1973))

Suppose that it is desired that the ground surface be smooth in most places but be
allowed to have occasional discontinuites in slope, which would correspond to such things as
banks and cliffs in the scene. This might be accomplished by modifying the above method
as follows. The weights on the zero values in change in slope would be a function of the
change in slope: perhaps a large constant value up to a certain small value of slope and a
small value beyond. However, this causes the problem to be nonlinear, and it might require
an inner loop of iterations in addition to the iterations which determine which points to use.
Furthermore, on early iterations the large weights should be fairly small and the threshold
for changing weights should be fairly high. These would gradually increase and decrease
respectively as the iterations progress. This process would cause the creases in the surface
to occur at approximately the right places. The precise initial values used would determine
at about what size threshold the distinction between discontinuities in the slope of the
ground and ob jects which are above the ground is made. It would also be possible to make
the position of the vertices at which these discontinuites occur (in addition to their heights)
parameters to be adjusted in the solution, but this would introduce even more
nonlinearities. (Note that even without this additional ad justment, which vertices get the
discontinuites is variable, but the solution is limited to the arbitrarily predetermined
position of vertices.) It is not clear how well this would really work.

Another approach is to let the ground surface be the sum of a set of overlapping
two-dimensional Gaussian functions (normal curves). The width (standard deviation) of
these functions would be predetermined according to the desired smoothness of the ground
surface, and the positions of the centers of the functions would be at a set of equally spaced
points covering the area to be fit. The spacing would be sufficiently small so that
insignificant ripple would be produced by the finite spacing. The parameters to be
ad justed would then be the amplitudes of the Gaussian functions. The Gaussian function
is chosen because of its smoothness and the rapidity with which it approaches zero in both
directions. In some rough sense it has the optimum combination of these properties.

In order to keep the amount of computing within reasonable bounds, instead of using
the actual Gaussian function (which extends to infinity in both directions), an
approximation to the Gaussian function obtained by truncating it at a finite span would be
preferred. Three or four standard deviations in each direction is a reasonable choice, since
the value of the function at these points is only 0.011 or 0.00034 of its peak value.
Furthermore, the approximation can be improved by subtracting the vaiue of the Gaussian
function at the truncation point from all of the values, in order to remove the discontinuity
from the approximation function. (This function has been used previously in digital filters,
for similar reasons, by Gennery [1966])

Therefore, the equation for the ground surface would be
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where

(x-x;)% + (3-9;?
202

) - exp(— '-;). if (x—x2 + (-9 < 12

w; - explc

w; = 0, otherwise
where r is the number of standard deviations at which to truncate the Gaussian function.
The quantities x; and y; are the centers of the Gaussian functions and are constant. The
only quantities to ad just are the coefficients ¢;, Thus the problem is linear. The elements
of the P matrix in Appendix A for each data point would just be the w; quantities above.

There should be included in the solution a small amount of weight on the equality of
ad jacent g;'s, so that the surface will continue with a reasonable interpolation through areas
where there are not many points being used to determine the surface. (This is also
desirable to prevent the H matrix from becoming nearly singular if the spacing of the
functions is small compared to 0'.) This is done by adding i on the main diagonal of the H
matrix at the position corresponding to each a; of an ad jacent pair, and -1 at the two
off-diagonal positions corresponding to these two terms, all times the appropriate weight.
This is done for all ad jacent pairs. A large weight should not be used here, for this would
introduce additional smoothing in the computed surface, and, if this is what is wanted, it
would be more efficient to increase the width of the Gaussian functions (0) and their
spacing, and thus to decrease their number.

In order to decide what spacing to use for the ;'s, equation (6.2-1) can be used with
all a; = 1, to see how much variation is produced in the values of £ as a function of x and y
with a given spacing. For example, if r = » and the centers are on a square grid with
spacing 207, the maximum ripple relative to the mean value is about 0.03; with spacing O it
is only about 1072 (With finite values of 7, the former value would not change much unless
7 < 3, but in order to achieve a value as small as the latter would require a larger value of
r.) A ripple of around one percent is probably tolerable unless the heights being fit are
very large, in which case this would represent a large absolute error. In such a case the
mean and perhaps the trend could be removed from the data first before it is used in the
above method in order to reduce the size of the quantities being handled, and then the
corresponding values would be added to the results. (This could be done by using the
single-fit ground finder described in the previous section on the original data))

It should be noticed that in both of the methods described above (plane triangles fit

with smoothness constraints, and overlapping Gaussian functions) the H matrix which must
be computed increases in size with increasing ground area covered, and it thus may be quite
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large. However, in both methods this matrix will be rather sparse. In the Gaussian case
the matrix will be less sparse than in the other case (because the functions overlap), but
because the spacing of the functions can be so large relative to the amount of smoothing
produced, the size of the matrix can be considerably smaller than in the piane triangle case.

Of the two methods, the Gaussian method would appear to be superior because of
the extremely smooth surfaces that can so easily be produced. However, there is no obvious
way of adding the ability to fit discontinuities in slope, as can be done with the other

method.
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Chapter 7
OBJECT FINDER

This chapter describes the use of three-dimensional data for the detection of ob jects
and the measurement of their position, size, and approximate shape. Although the
three-dimensional data could be obtained from a scanning laser rangefinder, the ob ject
detector is designed to be tolerant of errors in this data, such as mistakes produced by
incorrect matches in stereo vision data and poor accuracy of distances from stereo.

7.1 General Description

Many approaches are possible in describing the shapes of objects. At the extreme of
simplicity each ob ject could be represented by a sphere. Since a sphere can be specified by
four parameters, this is economical, and, if the sphere encloses the actual ob ject, it could
suffice for obstacle avoidance, in a conservative way. Furthermore, this crude sort of
information for each object in a large scene containing many objects amounts to fairly
detailed information concerning the whole scene, and thus it would be useful for navigation.
On the other hand, more elaborate descriptions that represent the object in more detail
could be used. One possibility is the use of generalized cylinders or generalized cones, as by
Nevatia and Binford [1977]). (In the simplest case, the generalized cylinder would reduce to
an ordinary cylinder, which can be represented by seven parameters) For man-made
ob jects of regular form or elongated ob jects with well-defined axes, such a representation is
very useful. However, for irregular objects such as rocks, the choice of how many
parameters to use to describe the object and even the choice of direction of the axis of the
generalized cylinder or cone may become almost indeterminate and thus may be greatly
influenced by noise in the data This would make the comparison of two object
descriptions difficult.

A sort of compromise approach is used here, in which objects are represented by
ellipsoids. Since objects can be approximated more closely this way than by spheres, in
obstacle avoidance the vehicle may be able to pass more closely to the objects, and in
navigation the shape information may aid in recognition of a scene. This is done at the
cost of using nine parameters to describe an ellipsoid instead of four for a sphere, but the
convenient mathematical properties of the sphere are mostly retained. The nine parameters
could be the three coordinates of the center, three angles defining the orientation, and the
semi-lengths of the three principal axes to define the size and shape. In this way the size
and shape parameters would be independent of the choice of coordinate systems. However,
for computational convenience the orientation, size, and shape are represented here by the
six unique elements of a symmetrical 3-by-3 matrix (as in equation (7.3-1)), which are
closely related to the second-degree coefficients in the general form of the equation of a
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quadric.

By "object” we do not necessarily mean here an actual physical ob ject, but merely a
portion of the scene that can be reasonably approximated by an ellipsoid. Thus, if we use
as an example a vehicle exploring Mars, an object may be a single rock on the Martian
surface, two or more ad jacent rocks, or merely a bump in the ground. Also, an L-shaped
physical ob ject might be represented as two ob jects. ‘

This ellipsoidal representation should be quite appropriate for representing rocks on
Mars, because rocks probably tend to resemble more nearly ellipsoids than any other simple
shape. However, it could also be used to represent cars in a parking lot or trees in a field,
for example, especially in aerial photographs where the resolution may be poor compared to
the size of the objects, and in other cases where precise ob ject description or recognition is
not necessary but rather an overall description of the scene is desired.

The stereo vision processing or laser rangefinder results in data representing the
three-dimensional position of a large number of points distributed over the scene. The first
step in the processing of this three-dimensional data is to find the ground surface, as
described in Chapter 6. Then points which are above the ground by a sufficient amount
(depending on the computed accuracy of the points, the roughness of the ground, and the
minimum size of ob ject that is of interest) are candidates for points on ob jects.

These above-ground points are clustered to produce preliminary groupings of points
which correspond roughly to objects. An ellipsoid is fit to each cluster by first computing
an initial approximation based upon the moments of the points in the cluster and then
iterating a weighted nonlinear least-squares ad justment to fit the ellipsoids to these points
and to avoid obscuring other points. Then, according to the relative positions of the
ellipsoids and points, clusters can be broken or merged, and the process repeats until the
apparently best segmentation is found. Each of these steps will be described in the
following sections.

The object detection and measurement process as described here uses only
three-dimensional position information. Brightness information is discarded after the
stereo processing. However, a more complete system would use both types of information.
Perhaps an edge detector could be applied to the brightness data in the regions near the
outlines of the ellipsoids in order to refine the boundaries of the ob jects, for example. '

72 Preliminary Clustering
Once the ground surface has been determined, all points that are above this surface

by more than a threshold are clustered to form an initial approximation to the segmentation
of the scene into ob jects. -
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Yarious clustering techniques could be used here. One possibility is a relaxation
method, such as Zucker's [1976). However, at present, the clustering is done by using the
minimal spanning tree of the points. (The minimal spanning tree is the tree connecting all
of the points such that the sum of the edges is minimum.) This is computed by using the
nearest neighbor algorithm, as described in Duda and Hart [1973] (The length of the
edges of the tree is defined here as the three-dimensional Euclidean distance between the
points.) Then the tree is broken at every edge whose length is greater than twice the
average length of the ad jacent edges, as suggested by Duda and Hart [1973) However, a
minimum length for an edge to be broken (related to the resolution of the data) is specified,
so that the method will not be overly sensitive to local fluctuations in the data. Also, a
maximum can be specified, beyond which all edges are broken.

73 Initial Approximations to Ellipsoids

Since each ellipsoid will be fit to a cluster of points by an iterative process, an initial
approximation is needed. A good approximation increases the likelihood of convergence,
decreases the number of iterations required, and can be used as the result in case the
iterations do not converge.  This initial approximation is obtained from the
three-dimensional moments, through the second order, of the points in the cluster.

An ellipsoid can be represented by the following matrix equation:
(r-¢)TW(r-c) = | (7.3-1)

where r is a vector of the three-dimensional rectangular coordinates of any point on the
surface of the ellipsoid, ¢ similarly is the position of the center of the ellipsoid, and W is a
positive-definite symmetrical 3-by-3 matrix. (See, for example, Hohn [1973]) Let M
denote the inverse of W. (The square roots of the eigenvalues of M are the lengths of the
semi-axes of the ellipsoid) The relationship between the computed moments and the
matrices ¢ and M depends on the distribution of pdints over the ellipsoid. If the points are
distributed uniformly over the ellipsoid, the vector ¢ consists of simply the normalized first
moments of the points. The matrix of normalized second moments about c of the points is
—; M if the points are distributed uniformly through the body of the ellipsoid, or % M if the
points are distributed uniformly over the surface of the ellipsoid. If we have viewed the
ob ject from all sides, we might have an approximation to the latter case. However, if we
have viewed it from a single point, we wiil have points distributed nonuniformly over half
of the surface. (Actually slightly less than half will be seen because of perspective. Also, in
stereo vision, both cameras must see each point, so that with a single pair of cameras only
the common area seen from both camera positions will appear. These two effects will be
neglected below, however.)
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We assume here that the ob ject is seen from a single viewpoint by a raster scanning
device which produces points distributed uniformly in the image plane. Such a device
might be a scanning laser rangefinder or an area-based stereo system. Actually, because of
missing points, the distribution will not be uniform. It would be possible to estimate the
actual distribution by computing higher-order moments, but this might be overly sensitive
to randomness in the distribution or an inadequate density of points, so it is not attempted
here. As an approximation, we assume an orthogonal projection instead of a central
projection. Let s denote the vector of normalized first moments (centroid) and M, denote
the matrix of second moments about s obtained with this distribution, and let o denote the

position of the camera.

The relationship connecting s and M, to ¢ and M can be derived by first considering
the case of a sphere of radius 0. A little integration shows that in this case the eigenvalue
of M, corresponding to the eigenvector o-c is T';p"’. the other two eigenvalues are both

-:-p"’, and s is ¢ plus %p times the unit vector in the o-c direction. All three eigenvalues

of M should be p? in this case. An ellipsoid can be considered to be a distorted sphere
(using stretching and skew distortions). Thus the ellipsoid can be considered to be stretched
in the various directions by the amount given by the square roots of the ratios of the above
eigenvalues, but in computing the displacement of the center, instead of 0 the distance from
c towards o to the ellipsoid surface must be used. Thus the displacement of the center is

the vector -f(o~c) divided by the scalar J(o—c)TW(o—c). Since the points represented by ¢,
s, and o are colinear, c can be replaced by s without changing the value of this ratio. Also,
W (=M~") can be replaced by % M:! in this expression, because of the stretching discussed
above. Thus c can be computed from s by transiating by this amount. To compute M, we
can take 4 times M to account for the factor of 4 in two dimensions, but this leaves 14 out
of the factor of 18 by which we need to stretch the moments in the direction toward the
camera. This extra amount can be introduced by adding 14 times the moment produced by
a fictitious point at the intersection of the s-to-o line and the surface of the ellipsoid
corresponding to M, In order to keep the ellipsoid to a reasonable shape when there are
not enough points to determine it well, M as obtained above is averaged with a scalar
matrix whose diagonal elements are 4 (which represents a sphere of radius J#), with the
average weighted so that the sphere represents four additional points in the moment
computation. The value of A is determined so that it is the average of the two components
of the second moments at right angles to o-s, but limited by the average of ali three
components (the three eigenvalues), including.the effect of 14 times the effect of the
fictitious point, as above, as an upper limit, and excluding this effect, as a lower limit. This
avoids putting undue weight on the o-s dimension when the ellipsoid is long in this
direction, since this dimension is less reliable because of the factor of 18 compression.

By combining the above information, the computation of the initial approximation
can be expressed as follows:
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where p is the position of any point in the cluster, n is the number of points in the cluster,
the summations are over these points, and / is the 3-by-3 identity matrix.

14 Iterative Solution for Ellipsoids

The ad justment of the ellipsoids is done by a modified least-squares approach. Each
ellipsoid is adjusted so as to minimize the weighted sum of the squares of two kinds of
discrepancies: the amounts by which the points (usuaily points in the cluster being fit) miss
lying in the surface of the ellipsoid, and the amounts by which the ellipsoid hides any
points as seen from the camera position. (In the latter case, the discrepancies actually
should be considered separately for each camera that sees the point in question. However,
for narrow-angle stereo we use as a reasonable approximation the assumption that the
"camera” is at the midpoint of the stereo baseline) Including the second kind of
discrepancy is useful in helping to determine the size and shape of the object when the
points on the ob ject itself do not contain sufficient information. Also included in the
weighted sum of squares to be minimized are a priori terms which tend to force the
ellipsoid by default to become a sphere near the ground when the points do not constrain it
well.

The first kind of discrepancy above optimally should be defined as the length of the
normal from the point in question to the surface of the ellipsoid. However, computing this



requires solving a sixth-degree equation. Therefore, as an expedient the distance between
the point and the surface along a straight line from the center of the ellipsoid to the point is
used instead. In order to be consistent with this definition, the second kind of discrepancy
is defined as follows. The midpoint of the two intersections of the surface of the ellipsoid
with a line from the camera to the point is first found. Then the discrepancy of the first
kind is computed for this midpoint. (Note that if the main source of departure of the
points from true ellipsoids is error in the measured position of the points, this is not the
proper definition to use for the second kind. The normal distance from the point to the
cone tangent to the ellipsoid with its vertex at the camera would be better. However, we
assume that the major source of departure is the fact that the objects are not really
ellipsoids, and thus the adopted definition is appropriate, because it is a measure of how far
the ellipsoid juts out into the line of sight to the point) Both kinds of discrepancies are
illustrated in Figures 7-1 and 7-2.

Now we must consider exactly for which points which kind of discrepancy is
computed. There are five regions of space to consider, according to whether the point is to
the side of the ellipsoid as seen from the camera (that is, the line through the camera
position and the point does not intersect the ellipsoid), is in front of the ellipsoid as seen
from the camera, is inside the front portion of the ellipsoid (in front of the surface of
midpoints as defined above), is inside the back portion of the eliipsoid, or is behind the
ellipsoid. Also, there are two kinds of points to consider, according to whether or not the
puoint is in the cluster which is assumed to correspond to this object. This produces ten
combinations in all, which are illustrated in Figures 7-1 and 7-2. They divide into four
categories.

First, if the point is not in the cluster and is either in front of the ellipsoid or is to the
side, there is no discrepancy and this point is not included in the computations.

Second, if the point is in the cluster and is either in front, inside the front half, or to
the side, or if the point is not in the cluster and is inside the front half, the first kind of
discrepancy is used.

Third, if the point is not in the cluster and is behind the ellipsoid, or if either kind of
point is inside the back half, the second kind of discrepancy is used.

Fourth, if the point is in the cluster and is behind the the ellipsoid, both kinds of
discrepancies are used, and the point acts as two points in the computations. This is
because there are two separate components of error in this case: the ob ject does not extend
'enough on the side to hide the point, but it apparently bulges out in back (relative to the
ellipsoid) to include the point.

In order to derive the mathematics for dividing space into the above five regions,
consider the equation for the ellipsoid, as stated in (7.3-1), and the equation of a straight
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line through the camera position o }md the point in question p, in parametric form,
(r-0) = u(p-o) (7.4-1)
These can be combined to produce .
(u(p-o+o-c)"Wiu(p-o}+o-c] = | (7.4-2)

the roots of which determine the intersections of the line and ellipsoid. Equation (7.4-2) is
equivalent to

au+Bu+y=0 (74-3)
where
a = (p-o)'W(p-o)
£ = 2Ap-0)TW(o-c)
v = (0-¢)TW(o-c) - |

The roots of equation (7.4-3) in u determine the region of space in which p lies. If the
roots are imaginary (§2-4ay < 0), the point is to the side of the ellipsoid. If the average of
the two roots (-§/2a) is positive, the point is in front of the midpoint surface, if negative, it
is behind the surface. If the roots are real, the point is in front of, behind, or inside the
ellipsoid according to whether both roots are greater than unity, both roots are less than
unity, or unity lies between the roots, respectively. Alternatively, we can use the fact that
the point is outside of the ellipsoid if and only if (p-c)TW(p—c) > 1.

The discrepancy of the first kind is

¢ = Jo-oTp-o1 - ‘ ) (1.4-4)
J(p-c)TW(p-c)

In order to compute the discrepancy of the second kind, the midpoint of the intersections of
the camera-point line with the ellipsoid is first obtained as follows:

b= - 2%(9—0) +0 {7.4-5)

Then the discrepancy of the second kind is
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¢ « Jio—oT(b-o1 - ! (7.4-6)
( J(b—-c)TW(b-c) )

Because there may be erroneous points in the data, points which have large
discrepancies relative to the size of the ellipsoid are given less weight in the solution. The

weighting function used is

(7.4-7)

W =

l
1+ 2(J(r—c)TW(r-c - 12 .o?

tr{W)

where r represents p or b for discrepancies of the first or second kinds, respectively, and o
is the component of standard deviation of measurement errors in p propagated into the
discrepancy. (If these are unknown, 0 can be zero.) Thus the dimensionless quantity to be
minimized (by ad justing ¢ and W) is Zwe?, plus some additional terms for a priori values
yet to be discussed. However, this quantity is minimized only with respect to the effects of ¢
" and W acting through € and not their effects through W.

In order to solve the above nonlinear problem, the Gauss method described in
Appendix A is used. This method is equivalent to using the partial derivatives of the
discrepancies to approximate the nonlinear problem by a linear statistical model, solving the
linear problem, and iterating this process until it converges.

On any one iteration the following is done. The current values of ¢ and W are used
to compute for each point the value of € as defined above and the 1-by-9 matrix P, which
consists of the partial derivatives of € with respect to the three elements of ¢ and the six
unique elements of W. (W is symmetrical) The following summations over all of the
points are computed, in which each point in the first category above is not used, each point
in the second or third categories appears once, and each point in the fourth category
appears twice:

H = H + 3 PTwp
(1.4-8)
C-C,+ 2 PTux

(H, and C_ are used for the a priori values yet to be discussed.) Then the 9-by-1 matrix
of corrections is

D - wH"'C (7.4-9)

where v is a factor used to improve convergence because of the very nonlinear nature of the
problem. (Currently v = 0.5 on early iterations, but v = | after a test indicates that this will
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produce more rapid convergence) The elements of D are subtracted from the
corresponding elements of ¢ and W to obtain the improved approximations for the next
iteration. H~' from the last iteration is the covariance matrix of the ellipsoid parameters,
although it may need to be adjusted by a scale factor according to the size of the residuals
of the final fit, as described in A ppendix A.

Now the a priori values will be discussed. In some cases the points affecting the
ellipsoid will be insufficient in number or insufficiently distributed to determine all
parameters of the ellipsoid very well. It is therefore desirable to have a priori values for
some of the parameters with appropriate weight in the solution to constrain them to
reasonable default values when the points do not contain sufficient information. When
there is ample information in the points, the a priori values will have very little effect
because of their small weight. The a priori values currently used are the ground surface
height directly under c¢ for the vertical component of ¢, with weight 0.1/tr(M), equality for
the diagonal elements of W, with weight tr(M)¥10, and zero for the off-diagonal elements
of W, with weight tr(M)¥10, where M = W-'. (Including tr(M) as shown scales things
correctly so that the solution is invariant under a scale factor change) The effect of the W
terms is to try to force the ellipsoid into a spherical shape. (It would be better to apply the
a priori weights to the principal semi-axes of the ellipsoid, trying to force them to equality,
so that the effect of the a priori values would be independent of the coordinate system
being used. This would require propagating these values into the elements of W on each
iteration, so the implemented program uses the method described here instead.) These a
priori terms are put into the solution in the following way. The diagonal element of H
corresponding to the vertical component of c is 0.1/tr(M), the three diagonal elements
corresponding to the off-diagonal elements of W are each tr(M)¥10, and the 3-by-3
submatrix on the diagonal of H_ in the position corresponding to the diagonal elements of

W consists of —i on its main diagonal and --1 elsewhere multipiied by tr(M)%/10. All other
elements of the 9-by-9 matrix H  are zero. Then

C. = HG (7.4-10)

[ ]

where G is a column matrix of the current values of ¢ and W, arranged as in D, with the
height of the ground directly under the center of the ellipsoid subtracted from the element
of G corresponding to the vertical component of ¢. H  and C, are used in the summations

for H and C as previously shown.

7.5 Breaking and Merging Clusters

Because the preliminary clustering is dependent on local information, it may not
produce the best segmentation based on more global information. Therefore, after ellipsoids
have been fit to all of the preliminary clusters, these clusters may be tentatively broken into
smaller clusters and merged into larger clusters, new ellipsoids are fit to these clusters by the



same process previously described, and a decision on whether to keep or reject each of these
actions is made based on the goodness of fit of the ellipsoids to the points.

In order to decide where to break a cluster, for each edge in the portion of the
original minimal spanning tree which connects this cluster the quantity A(1-a) is computed,

where A is the length of the edge and ¢ is the minimum of J(p-c)TW(p-c) for the two
points connected by the edge. Then the cluster is tentatively broken at the edge for which
this quantity is maximum, of all such edges such that each new cluster formed has at least
four points at least one of which has (p-¢)"W(p-c) > | (that is, it is outside the old
ellipsoid). This process tends to break the cluster at places furthest inside the ellipsoid, but
connecting points that are outside the ellipsoid. If this new clustering is accepted by the
criteria described below, the process repeats on the new clusters.

After the above breaking process is finished, any two clusters are tentatively merged
if (¢’~¢c)TW(c’~¢) < 4 for either cluster, where ¢’ is ¢ for the other cluster, provided that
these two clusters were not previously one cluster before breaking. If there is competition
for the merging, the cluster pair with the minimum vaiue for this quantity is merged first.
If a merger is accepted, further mergers can take place on these clusters by this same

process.

The criteria for accepting two clusters or one after a tentative break or merger are as
follows. If (c¢'~¢)TW(c’~c) < | for either small cluster, where ¢’ is ¢ for the other small
cluster (that is, the center of one ellipsoid is inside the other ellipsoid), the single cluster is
chosen. Otherwise, the following quantity is computed for each of the three ellipsoids:

Zwe2 m

where € and w are the discrepancies and weights from the last iteration, as defined in the
previous section, n is the number of points in the cluster corresponding to this ellipsoid, and
m is the number of points below the height threshold but directly above the ellipsoid. If
the initial approximation is used as the resuit, € and w are obtained from the first iteration,
and the first denominator is n instead of n-3. (The second term, containing m, is included
to penalize solutions which lie mostly below the ground, with the ellipsoid reaching above
the ground in a small area to meet the points in its cluster) Then the two small clusters are
chosen if the sum of their two values of ¢ is less than the value of ¢ for the single cluster.
Otherwise, the single cluster is chosen.

7.6 Example

Figure 7-3 shows the points in the Mars picture previously shown in Figures 6-2 and
6-3, but this time in a nominally vertical orthogonal projection (perpendicular to the
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reference plane). The figure covers an area 1.6 meters by 1.2 meters in the reference plane.
The lower left corner is 0.6 meters to the right of the plane through the left camera and
perpendicular to the baseline connecting the cameras, and it is 2.9 meters in front of the
baseline connecting the cameras. The similar coordinates for the upper right corner are 1.8
meters and 4.5 meters. The symbol for each point represents height in centimeters above
the computed ground plane, with the letters "A”, "B", "C", etc. representing the values 10,
1, 12, etc.

A 5-centimeter height threshold was used for selecting the points to cluster in the
ob ject finder. The minimum distance for breaking the minimal spanning tree to form the
initial clusters was also 5 centimeters, and the maximum distance for connecting points was
20 centimeters. (Using zero and infinity for this minimum and maximum distance
produced an identical clustering in this case.)

Figure 7-4 shows the points that passed the height threshold. These points are
connected to show the minimal spanning trees that were computed. Solid lines connect
points within each initial cluster.

Figure 7-5 shows the ellipsoids that were fit to the initial clusters. Each ellipsoid is
represented by two ellipses. One ellipse is the orthogonal projection of the ellipsoid onto
the reference plane. The other ellipse is the intersection of the ellipsoid with a plane
through the center of the ellipsoid and parallel to the reference plane. (In most cases the
two ellipses almost coincide and thus cannot be distinguished in the figure) Only the
clustered points are shown here, as in Figure 7-4. However, as previously described, any of
the points shown in Figure 7-3 may have been involved in the ad justment of the ellipsoids.
Remember that the fit is done in three dimensions, whereas Figure 7-5 shows a

two-dimensional pro jection.

Figure 7-6 shows in the same way the results of the breaking and merging operations.
The two clusters in the center (corresponding to the large rock in the center of the pictures)
were merged into one, and a new ellipsoid is shown for this cluster. The other clusters were

not changed.

These results were projected into the left picture to produce Figure 7-7. The outline
of the eilipsoids as they would be seen from the left camera are superimposed on the
picture. The lengths of the principal axes of the large ellipsoid in the center are 30.8, 26.2,
and 16.6 centimeters.

Noaotice that the ellipsoid fit to the rock in the upper right corner is much too large.
This is because the only points found on this rock were on its fairly flat face, and no points
were found in the background behind the rock to help to constrain its size, as can be seen
in Figure 6-3. This lack of points was caused by the fact that most of the desired region is
outside of the right picture, as can be seen in Figure 4-2. (In such a case the covariance



Figure 7-3.
centimeters.

Vertical view of points, showing heights above computed ground plane in
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Figure 7-4. Minimal spanning trees connecting points above 5 cm. Solid lines show initial
clusters.



Figure 7-5. Ellipsoids fit to initial clusters.
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Figure 7-6. Ellipsoids fit to final clusters.



Figure 7-7. Ellipsoids fit to final clusters, projected into left picture.
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Figure 7-8. Results using 3-cm height threshold instead of 5 cm.




matrix of the ellipsoid parameters indicates the large uncertainty in its size and shape.)
Figure 7-8 shows the results of processing the data slightly differently. A height

threshold of 3 centimeters instead of 5 centimeters was used. Some of the smaller rocks are
detected in this case.
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Chapter 8
MATCHING OF SCENES

The previous chapter described a means of modelling three-dimensional scenes in
terms of ellipsoidal objects. A method of matching such scene descriptions will now be
described. This method uses the covariance matrices generated by the ob ject finder, which
indicates the accuracy of the ob ject parameters, to determine the goodness of match for each
ob ject match. This is a special case of a more general problem, in which there is a set of
features in each scene, with each feature being represented by a vector of feature
parameters and the covariance matrix of these parameters. The method to be described
applies to this general case, but it will be described in terms of the special case at hand. In
this special case, the vector of feature parameters consists of the parameters describing the
position, size, and shape of an ellipsoid (the ¢ vector and the W matrix in Chapter 7).
There are nine of these parameters in the complete case (three elements of ¢ and six
elements of W). However, it may be desired to eliminate the vertical component of position
(third element of c), because this component is less reliable due to uncertainties in the
vertical position of a roving vehicle, and this is done in the implemented version of the
program, leaving eight parameters actually used. Also, a completely general program would
allow for translations and rotations in three dimensions, whereas the method described
below ailows only translations and rotations in the horizontai plane. This is suitable for a
roving vehicle, since it should be able to obtain an accurate vertical from gravity. (In fact,
with reasonable instrumentation the direction in the horizontal plane should be determined
also, leaving only transiation to determine.)

8.1 Optimum Match

The problem at hand can now be described fully. Given are two scene descriptions.
Scene 1 consists of n objects and Scene 2 consists of n” objects. Each ob ject is described by
a vector X and its covariance matrix §, with primes denoting objects in Scene 2. Also
available for each ob ject is a probability b that this ob ject wiil be present in the other scene,
if the two scenes actualiy refer to the same physical scene. (These probabilities could be
estimated from statistics gathered from experience with the system that produced the data,
and might be a function of the size of the ob ject, since the larger ob jects would be more
likely to be detected in the other scene and would be less likely to be spurious.) Other
general information that is available includes the a priori probability g, that the two scenes
match (that is, refer to the same physical scene), the a priori vaiue of the rotation @  of
Scene 2 relative to Scene | and its standard deviation 0°y , and the a priori value of the

o
scale factor f of Scene 2 relative to Scene | and its standard deviation O X It is desired to
find the translation Ax and Ay of Scene 2 relative to Scene 1, the rotation 8, the scale



factor f, the standard deviations of these quantities, and the probability p that the two
scenes actually match.

The approach used here uses Bayes' theorem, which in general states the following:

n;p;

nb;

?5.' = (8.1-1)

i
where n; is the a priori probability of event i occurring, p; is the probability that the

observed result would occur given that event i occurs, and ¥; is the a posteriori probability
that event i has occurred, given that the observed result has occurred.

For the present purposes, an event will be considered to be the fact that the two
scenes match and the occurrence of a particuiar set of matches between the ob jects in Scene
I and the objects in Scene 2. The above terminology is altered slightly to include the fact
that the scenes actually match in these events, with an extra event being the scenes not
matching. Then Bayes' theorem can be restated as follows:

PomiPy

bo % P + “‘Pn)po

(8.1-2)

P -

where p is the a priori probability that the scenes match, as previously defined, ny is now
the a priori probability that the kth combination of ob ject matches would occur, given that
the scenes match, o is the probability density of the observed set of object parameters
occurring, given that the kth match is correct, p, is the a priori probability density of the
observed set of ob ject parameters, and p is the a posteriori probability of the kth set of
matches being correct. Thus the term pn, is the a priori probability of the kth event, and
the term (i-p ) is the a priori probability of the scenes not matching.

If the combination of ob ject matches for which p; is maximum is found, and if this
value of g is large (near unity), then this combination can be assumed to be correct, and it
can be used to determine the desired parameters describing the translation, rotation, and
scale factor by a process to be described. (It would appear that all combinations of ob ject
matches would have to be used in this computation, but a way of avoiding this will be
described in the next section.) However, the computation of n, and P needed in (8.1-2)
will be described first.

The nj quantities can be found by the following reasoning. The probability that
object i in scene | will be matched to some ob ject in Scene 2 is b;, the probability that it will
be unmatched is 1-b;, and similarly for b; and 1-b; for object j in Scene 2. Thus the
probability of a particular subset of m ob jects from Scene | and m ob jects from Scene 2
being matched, and no others, is the product of these terms over all ob jects, chosen
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according to whether each object is matched or not. However, there are m! ways of
matching a set of m ob jects to another set of m objects. Therefore, this product is divided
by m! to obtain the a priori probability of an individual matching combination. Thus,

1 . ,
me = = 115 T1 -8 I o; IT 01-82). (8.1-9)
FUomeaiem R jem

where fMl s the set of objects that are matched in this combination (containing m ob jects
from each scene).

Now the p, quantities will be considered. They can be obtained from the
discrepancies between object parameters for a particular matching, provided that the
probability distribution of the measurements of these parameters is known. It is assumed
here that these have the Gaussian (normal) distribution.

In order to make the problem less nonlinear, instead of using & and f as the
parameters in the ad justment, the quantities ¢ and s, defined as follows, are used:

¢ = feas @
s = fsin@
(8.1-4)

s
0 = arctan <

f = N

Now the transformation between object parameters in the two scenes for the special
case under consideration can be expressed as follows:

L

c s Offw,, w, w c s 0jr

Ax
Ay

(8.1-5)

Wex wzy Wyx i xx
wxy Wyy oyl = F -5 ¢ 0 Upy Wy wyz -5 ¢ 0
Uy Wyy Wiy 0 0 f]|Wyx Wyy We|[|0 O S

From this a rotation and scale factor matrix R can be derived to be



rf‘cf's 000 0 O
-f5fce 000 0 O
0 0 ¢ 520 25 O
0 0 2 20 -2s5 0
00 002 0 0
0 0 —cs¢s 052 0 0
0 0 000 0 fcfs
0O 0 000 O —f:fc-

(8.1-6)

o O O o °.

-

L

where it is assumed that X = [x y w, Wy Wy Wyy Uyy wy,]T. (The horizontal
components of ¢ are denoted here by x and ¥, and the elements of W are denoted by w with
appropriate subscripts) In other cases using different features than the ob ject descriptions
used here, R would be defined differently. But in any case, it would be used as foliows to
compute a discrepancy vector & and its covariance matrix W for each matching of ob ject i

in Scene | with ob ject f in Scene 2:

'-""-.-J- = RXi—X;-
8.1-7)
\I,ij - RS.-RT'FSJ-

Now the partial derivatives of E; i with respect to the parameters ¢, s, -x’, and -3’
can be obtained from the above equation {by using the fact that f2 = ¢2 + 5?) and are
assembled into the matrix B;; (8 by 4 here). (The derivatives relative to ~x’ and -y’
produce the effects relative to A: and Ay, according to (8.1-5)) Then, using the general
solution in Appendix A produces

;
0} o
Hk = BT ° B + 2 B i
0 "} ijeR s
(8.1-8)
.
o} 0|'(6,-0
Cp = BY i ° o 2LV
0 of | Vof| ijeR

where R is the set of objects making up the kth combination, the first terms contain the a
priori information, and
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3 £
B .| 27 (8.1-9)
5

which consists of the partial derivatives of @ and f with respect to ¢, s, Ax, and Ay,
according to (8.1-4). Then the solution is obtained by replacing the values of ¢, s, Ax, and
Ay by values obtained from the old values, as follows:

'c - ch

* | v mpe (8.1-10)
- + Y -

Ax 0 k ™k

.AyJ .04

HE! is the covariance matrix of [c s Ax Ay]T. Because of the nonlinear terms in (8.1-6)
with respect to ¢ and s, this process may need to be iterated. (Since the problem is linear
with respect to Ax and Ay, these quantities did not have to be included in (8.1-7), and
thus in (8.1-10) their old values are in effect zero.) Note that the nonlinearity with respect
to ¢ and s occurs in R only in the terms involving the w's. When the objects are
considerably smaller than their separation or are nearly spherical, these terms have very
little effect in the solution in (8.1-10). In such a case, if ¢ and s are fairly accurately known,
it would be a reasonable approximation to neglect their variation in B; i and thus only the
terms involving B, in (8.1-8) (containing the a priori information) would have to be
recomputed in the iterations.

Now the probability density for this particular matching combination can be obtained
as follows for use in (8.1-2). First, the residuals are

Vij = Eij- BHRC, (8.1-11)

Then the multivariate normal distribution produces

1 )
p;; = expl- 2 VT ¥, ) (8.1-12)
T ol de(W; ) L

where r is the number of parameters in the feature vector (size of ¥), here assumed to be 8.
If ob ject i is unmatched in this combination, the a priori distribution of parameter values is
used for p,; instead of (8.1-12). Finally, the probability density function for the complete
match is the product of all of the p;; values in this combination times the probability
density functions corresponding to the a priori values, as follows:



oy - ( 0-6,° (¥ )H (8.1-13)

noy 0y * 203 20},

82 Search Procedure

With a large number of objects, it would be impractical to use all combinations in
(8.1-2). However, because of the exponential function in (8.1-12), most of the p; values will
be negligibly small, and these terms can be ignored. The problem is to determine which
combinations will produce significant magnitude in Py, without having to compute them all.

The approach used is to select the ob jects in Scene | one at a time and to tentatively
match these to all ob jects in Scene 2. The a posteriori probability of each of these partial
combinations is computed, and those with negligibly small probability are not pursued
further. In order to have a high likelihood of unambiguous matching, the larger ob jects in
Scene 1 are selected first, although a more complicated ordering using the covariance
matrices also could be devised. This successive matching of features in order to refine a
transformation between scenes is similar in some respects to other scene-matching methods,
for example Price [1978] and Milgram and B jorklund (1979). However, these did not use a
full search, matching features one at a time, and did not use probabilities to prune the
search.

Because, when a tentative partial match is made, it is not known which ob jects in
Scene 2 will remain unmatched, there is no obvious way to use all of the information in
(8.1-3). Instead, n, is computed by the following method for the purposes of the search.
(After the process has used aill of the objects in Scene i, the remaining complete
combinations with significant probability can be used in the full computation described in
the previous section.) The value of n is obtained recursively, as follows:

M, -l
50 = 2 b;
i
M = M, 'H;L if { and § are matched (82-1)

e = e (1-5), if iis not matched
By = By, —b; ifiandjare matched

By = By, if i is not matched
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where k denotes the number of ob jects in Scene 1 that have been selected for matching so
far. In this way a search tree is built up, branching out as different objects in Scene 2
(including no ob ject) are matched with the current object in Scene | at each level. The
values from (8.2-1) can be used in (8.1-2) as before, and the resulting probabilities are used
to prune the search tree.

The criterion used for pruning ideally should not use a constant probability
threshold, but should take into account the fact that, if a large number of nodes have small
probability each but sum to a large probability, there is a good chance that one of them will
turn out to be part of the correct solution. An appropriate method would be to sort by
probability ali of the nodes at a given level in the search and to reject' all of the ones with
smallest probabilities that sum to less than some threshold. The implemented version is
simpler than this (and more tolerant); it rejects any node whose probability times the
number of nodes at this level is less than the threshold. The threshold currently used is
0.001. This also is quite tolerant. However, once about two ob ject matches are included in
a combination, new matches usually do not agree very well uniess they are correct, and thus -
the probability drops rapidly for incorrect combinations.

As the bottom level of the search tree is reached, not all of the available information
will have been used in computing n; by the above method. Thus n; from (8.2-1) will act
as an upper limit to the value that would have been obtained from (8.1-3). This effect
causes less pruning to occur than the optimum computation would produce, but it should
not result in the rejection of good solutions.

At each level of the search, the complete computation according to (8.1-8) and
(8.1-10) can be computed, including the iterations. However, the result from the previous
levei in the search tree can be used as the initial approximation at this level, so that fewer
iterations (perhaps only one) would be needed at each level. Also, as pointed out in section
8.1, under some conditions the variation in the elements of B;; with respect to ¢ and s can
be ignored. In such a case the summations involving Bij in (8.1-8) can be computed
recursively by adding the terms for a new {,j combination to the total accumulated at a
higher level in the search, thus saving time. If the a priori values of ¢ and s were known so
accurately that the variation in B could also be ignored, then the entire computation of Hy
and €, could be done recursively, and it would be possible to reformulate the solution by
using a mathematically equivalent Kalman [1960] recursive estimation technique (called
sequential ad justment by Mikhail [1976]), with slight additional time savings.

It would aiso be desirable to save time by recursively computing the product of Pij;
used to obtain Py in (8.1-13). However, as formulated in section 8.1, the residuals V,- i vary
with the current solution as more combinations are added. It is possible to reformulate
things so that when a new combination is introduced, it is compared to the previously
accumulated solution for the purposes of computing p; ;. When p; ; is defined in this way,
its values-do not change as more combinations are added, but its product with a given set
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of combinations is the same as with the other definition. Thus, its product can be
accumulated recursively. However, this method would involve including the current
estimate of translation in (8.1-7) and doing the entire error propagation from the current
estimates of ¢, s, Ax, and Ay in (8.1-7) for these purposes. This would be rather
complicated and time consuming, so it is not considered further here. However, it is
described in the next section for an approximate method.

In any case, the solution at the bottom level can be used as an initial approximation
for one or more iterations with the full computation described in the previous section, using
those combinations that have not been pruned because of small probability. (However, this
is not done in the implemented version.)

83 Approximations

The computations previously described, especially (8.1-8), would be quite
time-consuming. Therefore, it is desirable to make some time-saving approximations,
especially in the search phase where the computations will be repeated many times. The
approximations that will be considered are mainly those that discard some of the
information about the objects. The fact that such a process does not use ali of the available
information about the objects will result in less effective pruning. Thus, although less
computation has to be done at each node in the search tree, there are more nodes to
compute. (This is similar to the effect of using the approximate value of ny in the previous
section.) If desired, the full computation can be done with the nodes remaining at the
bottom level, so that the approximations affect only the computation time and not the final
result.

The approximation that is made in the search portion of the implemented version is
to use only the position and size of each ob ject and to disregard its shape and orientation.
Also, the size is used only in computing the probability density for a given fit, and not in
ad justing the parameters of the fit. (This latter change usually has little effect, because the
scale factor is determined mainly by the distance between obrjects) The quantity used to
represent size is the trace of the W matrix, denoted here by ¢. (Actually ¢ is inversely
proportionat to the square of a linear dimension of the ellipsoid.) The trace is chosen to
represent size because it is easy to compute from the W matrix and it is invariant under

rotations. Thus,

r-w”+w w

yy+ %

(8.3-1)

02 =02 +02 +02 +2 + +
: Wy Wyy — “xx DyxLyy T el 7 3 WyyWex

Because none of the orientation information about the ob jects is being used, the only
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portion of the X vector in (8.1-7) that will contribute information to the solution in (8.1-8)
is the position information. If only the horizontal position is used, then only the first two
components of X need to be used in (8.1-7).

Thus the nonlinear terms in ¢ and s have been eliminated from R, and B;; is now
independent of these parameters. Therefore, the recursive approach suggested in sectlon 82
can be used in order to save time in the search phase. This invoives updating the old
probabilities when a new match is introduced into the combination. Thus the probability
density of the new match is computed by comparing the new match to the previously
computed solution, instead of examining the residuals of the overali solution as in (8.1-12).
Therefore, for the purposes of computing the probability density only, the discrepancies are
redefined to included the current estimates of translation (Ax and Ay), and the accuracy
estimates of the discrepancies include the current uncertainty in the translation and rotation.

Making the above changes to Z in (8.1-7) and multiplying out the matrices produces
E = xc+ys+ Dx-x'
, (8.3-2)
U=gy-xs+ADy-y
The full error propagation associated with this produces
0F = 027 + %702+ 20,05+ 2090, + 0252+ 5207 + 240 g, + 205, + 03, + 0Z,
0f) = 032 +y%02 - 20, 05 - Y0, + 0257+ X%07+ 0y, - 2T, + OF, + ?'8%_3)

2
Opy = O+ X908 - 02cs ~ %70, + 0Fes + 5%, - 0,8 - x307]
+UAxAy+ xD’cAy-f-yO‘cA’J-)O"Ay xO' +Uxoy

The corresponding quantities for size are

T = — =t
fQ
(8.3-4)
0! 4o
0% = LI }12-&0’2,

Then the probability density is computed as follows, derived from (8.1-12):
20'2 2EUO"‘” Uzﬂ T2 )

£
exp( b 2
om0, /o 02 - v %% 20%
o 0% (8.3-5)

Pij =
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However, if no objects have been matched at previous ievels, no values of Ax and Ay
would have been computed for the above computation, so only the size information would
be used, as follows:

1 72
Pi: ® ————— exp( - — (8.3-6)
Y afzJZT 0" ( 20’3)

where a is the a priori area over which the objects might lie in Scene 1. In any case, the
overall probabiitiy density for the match so far accumulated is the product of these:

o = I pi; (8.3-7)

These values are used in (8.1-2), as before. In the search phase, if the resulting probability
is small, the combination just produced is deleted. Otherwise, a new ad justment for the

parameters is done.

Since the portion of (8.1-7) dealing with W is not used in the parameter ad justment
in this approximation, the ad justment is linear except for the a priori vaiues. The B
matrix is

[x y i O]
B = (8.3-8)
y-x 01 _

The error propagation from the position values according to (8.1-7) is as follows, which
differs from (8.3-3) in that it does not inciude the uncertainty in the parameters being
ad justed (¢, 5, Qx, and Ay}

o'g = 022+ 20‘,,:: + 0’5;2 +03,
07 = 03?-20, 05+ 057+ 03, (8.3-9)
o

. " nycz - 025+ (Tg;: - O'WJ2 + 0 gy

Then the covariance matrix of the observations is

v. |7 % (8.3-10)
Oty 0?2

B and W are used in (8.1-8). Note that B now is not a function of the parameters being
ad justed {c, 5, Ax, and Ay); however, ¥ is a function of ¢ and 5. The effect of ¥ changing
slightly is only to change the weights of the observations slightly. Therefore, as long as ¢
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and s do not change very much, there should be no need to recompute the summations
involving these matrices when iterating. In the search phase, these summations can be
accumulated recursively as more matches are added to the combination. The implemented
program currently does it this way. Therefore, the a priori values 8, and f, must be fairly
accurate, so that ¢ and s will not change very much. (The implemented program also uses
these a priori values in a less optimum way than is described in Section 8.1, and this has
the same result of requiring the a priori values to be fairly accurate.)

Other approximations are possible that use more information than the above but less
than the full information available. One possibility is to use the position, size, and shape of
each ob ject but to ignore its orientation. (If the a priori orientation is completely unknown,
when only one ob ject match exists in a combination this is all the information that is useful
anyway, but as more objects are matched in a search, the orientation information may
become useful) This approximation would be used in a similar manner to the above
approximation, except that there would be three size and shape quantities instead of ¢, with
a 3-by-3 covariance matrix instead of 02 Like f, these quantities affect the probability of a
match, but their effect on the adjustment for ¢, s, &x, and Ay for a particular match is
small and can be ignored.

The size and shape of an ellipsoid are determined by the semi-lengths of its principal
axes. These are equal to the reciprocal of the square roots of the eigenvalues of the W
matrix. The eigenvalues of the W matrix can be found by solving the following equation
for A (see Hohn [1973)):

det(W - A) = 0 8.3-11)

where I is the 3-by-3 identity matrix. Since W is 3-by-3, (8.3-11) is a cubic in A, and the
three roots are the three eigenvalues. The most difficult part is not computing the
eigenvalues themselves, but computing the error propagation from the elements of W to the
eigenvalues. For a linear approximation error propagation it is necessary to compute (either
analyticaly or numerically) the partial derivarives of the eigenvalues with respect to the six
unique elements of W. Then the error propagation is done in the usual way by forming
_ these partial derivatives into a 3-by-6 matrix, premultiplying the 6-by-6 covariance matrix
of the w’s by this matrix, and postmultiplying by its transpose to produce the covariance
matrix of the eigenvalues.

84 Example

The only pictures used to test the scene matcher were the Mars pictures described in
Appendix C. Ideally, different stereo pairs taken under different lighting conditions and
from different directions should have been used to obtain the scene descriptions to be
matched, in order to have a more impressive test. However, the Viking could take pictures
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from only one position, and because of a lack of time pictures taken under different
conditions were not transferred to our computer system. However, in order to simulate the
differences that might occur from these causes, the pictures used were processed in different
ways. The small portions (about 10° by 10°) were processed with 8-by-8 match windows in
the stereo program and with height thresholds of 8, 5 6, and 7 centimeters in the ob ject
finder; the small portions were also processed with 5-by-5 match windows and a
b-centimeter threshold; and the large portions were processed with 8-by-8 match windows
and a 6-centimeter threshold. The resuits were compared to each other successfully by the
scene matcher. One of these matches is shown here.

Figure 8-1 and Figure 8-2 repeat Figures 7-7 and 7-8, except that the objects have
been identified with arbitrary numbers. (These scene descriptions were obtained with
height thresholds of 5 centimeters and 3 centimeters, respectively, in the ob ject finder. The
match window in the stereo processing was 8 pixels wide in both cases.) These two scene
descriptions were given to the scene matcher. The a priori rotation was given as zero with

~a standard deviation of 1%, and the a priori scale factor was given as unity with a standard
deviation of 0.01. (The translation was compietely free to be ad justed.)

Figure 8-3 shows the results of using the data in Figure 8-1 as Scene | and the data
in Figure 8-2 as Scene 2. The search tree is shown. The numbers at the left foliowed by
colons are the object numbers in Scene 1. The other numbers on the same line are the
ob ject numbers in Scene 2 for the objects being matched to this object in Scene I. Zero
means that this object in Scene [ is left unmatched. The numbers just below the Scene 2
ob ject numbers represent the probabilities computed for this match so far. To save space
the negative of the common logarithm of the probability, truncated to an integer, is shown.
~ Below the search tree the final results are shown for the most probable match. Shown are

the pairings of ob jects, the probability, the translation in x and y, the rotation, and the scale
factor. The values after the plus-or-minus signs are the computed standard deviations.
Note that the standard deviation of the scale factor is not much less than the input value of
0.01, which means that the solution was not able to add much information about the scale
factor. (Since the two scenes were both from the same actual scene and same camera
position, the true values of translation and rotation are zero, and the true value of scale

factor is unity.)

Figure 8-4 similarly shows the results of doing the match with the scenes
interchanged, so that the data in Figure 8-2 is now Scene | and the data in Figure 8-1 is
Scene 2. Even though the search tree is quite different, the final results are almost the
same. (The final results would be exactly the same if a complete solution as described in
Section 8.1 were done at the bottom level of the search tree, since the same ob jects were
matched.) Of course, since the scenes have been interchanged, the transiation and rotation
have changed sign and the scale factor has been inverted.
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Figure 8-1. Ellipsoids produced with 5-cm height threshold.
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Figure 8-2. Ellipsoids produced with 3-cm height threshold.
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Figure 8-3. Match of scene in Figure 8-1 to scene in Figure 8-2.
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Appendix A
NONLINEAR PARAMETER ADJUSTMENTS

In several parts of this thesis, problems have been discussed that involved solving for
some parameters by using observed values of some quantities that are nonlinear functions
of these parameters. The observed values may contain occasional mistakes {wild points),
and the accuracy of the remaining values may not be entirely known. For example, in the
stereo camera model solution, measured values of film plane coordinates of some points are
obtained, and it is desired to compute the relative position and orientation of the cameras.
A general method for solving probiems of this type wiil be discussed in this appendix.

A.l1 Basic Method

In this section a method of performing nonlinear generalized least-squares
ad justments will be described. This method uses partial derivatives to linearize the
problem and iterates to achieve the exact solution. It is assumed in this section that the
accuracy of the observations is known and that there are no wild points that should be
removed from the solution.

Very little in this section is original. However, this method apparently is not well
known in Artificial Intelligence circles. Even in circles where the basic method is often
used, some of its properties are not well known. For example, the linearized solution
represented by (A.1-17) is often described (as in Mikhail [1976]) without any apparent
awareness of the effects of the second derivatives. Bard [1974] mentions the second
derivatives but does not cover the related matters dealt with here in the following sections.
For these reasons it is desirable to describe here in a unified manner the method as it is
used in this thesis. Of course, the two references just cited also deal with other aspects of
this problem and similar problems not needed here. Also, more information about the
statistical properties of the linear problem is given by Graybill [1961] Therefore, the
reader who is interested in these matters is urged to consult these references for further

information.

Suppose we have a set of m unknown parameters for which values are desired,
denoted by the vector G (m-by-1 matrix). (In the stereo camera model solution, these would
be the quantities defining the camera calibration.) Suppose further that there are a set of n
quantities (n 2 m) denoted by the vector F, which can be measured with some error and
which are functions of G. Let U denote the measured value of F (containing some error).
(In the stereo camera model solution, the elements of U would be related to the film plane
measurements in a way explained in Section 3.3) Let ¥ be the vector of the n residual
errors in the fit to the observations using a particular set of values for the parameters.
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That is,
U= FG)+V (A.1-1)

with the functional dependence on G explicitly indicated. The problem is to use U to
compute G such that ¥ is minimized in some sense. (The n scalar equations represented by
(A.1-1) are called the condition equations.)

For the criterion of optimization we will minimize the quadratic form
q = VTwy (A.1-2)

where W denotes an n-by-n weight matrix. W should be the inverse of the covariance
matrix of the errors in the observations. This will result in the maximum-likelihood (in the
F space) solution if the errors have the multivariate Gaussian (normal) distribution, and it
will result in the minimum-variance (of the g’s) unbiased solution of all solutions that are
linear functions of the U, for any distribution in linear problems. (Proofs of these
statements can be found in Graybill [196i]) Note that if W is a diagonal matrix
(indicating no correlation between errors in different observations) the quadratic form
reduces to a weighted sum of the squares of the elements of V. Thus the problem as stated
here can be said to be a generalized least-squares ad justment.

Solving (A.i-1) for ¥ and substituting in (A.1-2) produces

g = W-FOIWW - F(G)) (A.1-3)
The problem then is to find G such that ¢ is minimum.

The difficulty in obtaining a solution to the above probiem lies in the fact that F in
(A.1-1) is a nonlinear function, and thus in general there is no closed form solution. One
way of solving the problem is to use some type of general numerical minimization
technique, in which on various iterations new values of G are tried, ¢ is recomputed each
time, and ¢ is driven to a minimum. However, such methods tend to converge rather slowly.
Also, numerical problems may occur if ¢ has a very broad minimum, for round-off errors
may give rise to spurious local minima. Instead of such an approach, to find the minimum
of ¢, we will differentiate (A.1-3) with respect to G, set the result to zero, and solve for G
iteratively. (A numerical value of ¢ then never needs to be computed to obtain G.)

In order to follow the steps of this process, we rewrite (A.1-3) in terms of the elements

of the matrices, as follows (where a particular element of a matrix is represented by the
corresponding lower-case letter with appropriate integer subscripts):

i1



qg= § [y - f(Ghwylu; - £(ON) (A.1-4)

Differentiating this produces

3 o

&g; - -2 § Sg—kwu[u] f{(6) (A.1-5)
Since (A.1-5) is a nonlinear equation, to solve it for G when 3¢/dg, is set to zero, we will
use Newton’s method. To do this, the partial derivatives of ¢/dg; are needed. These are

a2 f, o
3881 2§. 5-' lfag, z Wwij[“; I (A.1-6)

The corrections d; needed to g; are related to the above by

P ..M A1-7
ogpg; 7 3g; ¢ )

(These corrections wouid be exactly correct if F were linear.) We can now revert to matrix
notation, by defining the n-by-m matrix P to be composed of the partial derivatives of the
function F, such that

o

pl - =
iJ EE;

(A.1-8)

and the n-by—mey-m matrix R to be composed of the second derivatives of F, such that

2%y,
ik SE (A.1-9)

Substituting (A.1-5) and (A.1-6) into (A.1-7), using these definitions, and dividing thrdugh
by 2 produces

[PTWP - RTW({U - F)ID = PTW({U - F) (A.1-10)

where F, P, and R are all implicit functions of G. (An approximate value of G used to
obtain F, P, and R in (A.1-10) defines the correction D needed to obtain a more accurate
value.) Notice that R is a strange creature, a three-dimensional matrix. These are not
usually defined in matrix algebra, but the usual definitions can be generalized to handle
them. In particular, a product of the form A = RTWB, where 4, R, W, and B have
respectively two, three, two, and one dimensions, is given by % - z AT ,-b Iz where the
summation is over all values of i and j. (Of the five possible ways of rearranging the three
indices, the transpose of a three-dimensional matrix is defined here as reversing the order

of the three indices.)
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The solution for D can expressed in terms of the matrix inverse as follows:
D = [PTWP - R"W(U - F)I"'"PTW(U - F) (A.1-11)

or equivalently
D = U-(PTWPYRTW({U - F)Y(PTWP)'PTW({U - F) (A.1-12)

where / denotes the identity matrix (in this case m-by-m). D as obtained above using an
approximate value of G would be added to this value of G to obtain a more accurate value,
and this process would repeat until it converged.

The worst part of the above solution is the necessity to compute the partial
derivatives. Often they are difficult to derive analytically and difficult to compute
accurately numerically. In either case they are time-consuming to compute. These
difficulties are usually much worse for the second derivatives R than for the first
derivatives P. Furthermore, there are nm? second derivatives to compute and only nm first
derivatives. Therefore, it is highly desirable to be able to omit the second derivatives from
the computation. We will now consider the effect of neglecting them.

With a reasonable first approximation, and especially on later iterations, the
discrepancies U~F are small. Also, if the function F is reasonably smooth, the second
derivatives R are small. Of course, what is considered small is relative. In this case
smaliness depends on the magnitude of the first derivatives P. If U-F and R are small
enough so that the relative change in P is small when G changes enough to cause F to vary
by amounts on the order of U-F, then the nonlinearities are not having much effect, and
the elements of RTW(U-F) are small compared to the elements of PTWP. Thus a good
approximation in such cases can be obtained by setting R to zero in (A.1-11) or (A.1-12),
which produces

D = (PYWPY'PTW{U - F) (A.1-13)

The use of this approximation is known as the Gauss method, because Gauss originally
used it on ordinary least-squares problems.

It is important to realize that only the second derivatives of F are neglected in the
Gauss method. The second derivatives of ¢ depend not only on these but also on the first
derivatives according to (A.1-6). Under the assumptions in the previous paragraph the
first term on the right of (A.1-6) usually is considerably larger than the second term, and
thus the second derivatives of ¢ will be fairly accurate.

The approximate (Gauss) corrections given by (A.1-13) are just the accurate (Newton)
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corrections given by (A.1-11) or (A.1-12) premultiplied by / - (PTWP)Y'RTW(U-F). The
accurate corrections given by (A.1-11) or (A.1-12) attempt to nullify an error in G which
Newton's method has estimated to be -D, since -D+D = 0. But, if the Gauss method is used
instead, we have in effect —D + (/I-A)D = —AD, so that the vector of errors in G on each
iteration is premultiplied by A = (PTWP)'RTW(U-F), neglecting the higher order effects
neglected in Newton's method. Therefore, using the approximation (A.1-13) cannot effect
the final solution, unless it destroys the convergence. The matrix (PTW P) ' RTW(U-F) will
tend to become constant as the solution convergences, as the discrepancies U-F converge to
the final value of the residuals ¥. Thus the Gauss method changes the quadratic
convergence of Newton's method to linear convergence, if convergence is achieved. If all of
the eigenvalues of (PTW P)'RTW(U-F) have an absolute value less than one, convergence
will be preserved, and the smaller the eigenvalues are, the faster convergence will be. (After
several iterations, the error will tend to decrease by a factor equal to the absolute value of
the largest eigenvalue) From the arguments in the previous paragraph, the eigenvalues
should be small, except when the initial approximation is very wrong. (causing U~F to be
large) or when F is very nonlinear (causing R to be large). Thus, except in these cases, the
solution should converge rapidly. (A way of converting the linear convergence of the Gauss
method into quadratic convergence without computing R will be discussed in a later
section.) Some of these matters are discussed further by Bard [1974].

The solution using (A.1-13) is usually obtained by a different approach (as in Brown
(1955 and 1957] and Mikhail [i1976)). This approach approximates (A.1-1) by a
linearization based on the partial derivatives of F, solves the resulting linear problem, and
iterates this process to obtain the solution to the nonlinear probiem. Thus let G denote an
approximation to G. Then equation (A.I-1) can be approximated as follows:

U = FG)+PGXG-G)+V (A.1-14)

where P is defined by (A.1-8) and its functional dependence on G has been explicitly
indicated. We now define

E « U-F(@G) (A.1-15)
D - G-G,
Then (A.1-14) can be rewritten as
E = PD+V (A.1-16)

Thus we have replaced the nonlinear equation (A.l1-1) by the linear equation (A.1-16), in
which E represents the discrepancy between the observations and their computed values
using the current approximations of the parameters, and D represents the corrections
needed to the parameters. Therefore, we now wish to solve for D in (A.I1-16) so as to
minimize ¢ in (A.1-2). This is a standard problem in linear statistical models. (See, for
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example, Graybiil {1961]) The solution for D is

D = (PTWP)'PTWE (A.1-17)

which is the same as (A.1-13).

The covariance matrix Sg of the errors in the converged values of the parameters G
can be obtained from the covariance matrix S, of the errors in the observations U by the
usual linear approximation of premultiplying by the matrix of partial derivatives of the
transformation and postmultiplying by the transpose of this matrix. In this case the
transformation from U to G in the neighborhood of the converged values is given by
approximately (A.1-13) or more accurately by (A.1-12). (Regardless of which method was
used to produce the converged values of G, the answer is the same. Thus the use of
(A.1-12) will produce a more accurate error propagation than (A.1-13), although (A.1-12) is
still only an approximation in this regard if higher-order terms are considered.)

If the accurate transformation (A.i-12) is used, the matrix of partial derivatives will
contain terms produced when (A.1-12) is differentiated relative to both occurrences of U in
(A.1-12). However, when the derivatives are evaluated at the converged values, the effect
of the first term drops out, since PTW(U-F) is then zero (because D is then zero). Thus we
have

SG =
(- (PTWPY'RTWU-F)IPTWPY'PTWS W P(PTWP) I - (PTWP)'RTW(U-F)I™T
(A.1-18)

IfW = S"}, as it should for the optimum solution, this reduces to

Sg = U-(PTWPY'RTWW - P PTWPY' I - (PTWPY'RTW(U - F)I''T  (A.1-19)

Using the approximation of neglecting the second derivatives, as in (A.1-13), reduces this to
S¢ = (PTwp)y! (A.1-20)

(Remember that (A.1-19) and (A.1-20) are correct only if W is the inverse of the covariance
matrix of the observation errors.)

Note that even though (A.1-19) was derived using the linear approximation for
covariance propagation, it contains the second derivatives of F. An even more accurate
resuit could be obtained by considering second-order effects in the propagation, although
this wouid require knowledge of moments of the error distribution of higher order than the
second. This result would contain squares and cross products of the second derivatives,
whereas they occur to the first power in (A.1-19). Therefore, if the second derivatives are
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small, (A.1-20) and (A.1-19) can be considered the first two members of an infinite
sequence of better approximations, accurate to higher powers of the second derivatives. In
most cases (A.1-20) is quite adequate, since the error estimates usually are not known very
accurately anyway.

It often is desired to know the covariance matrix of the residuals. (It is useful to
compare the magnitude of the residuals to the square roots of the diagonal elements of their
covariance matrix, for editing purposes, as will be described in a Section A.5) For the
approximate {Gauss) case, this can be derived by first obtaining the equation for the
residuals by solving (A.i-16) for ¥, substituting (A.1-17) for D, and factoring out E, to

produce
V = U-PPTWP)Y'PTWIE (A.1-21)

Then, since the covariance matrix of E is the same as that of U, the covariance matrix of V
can be obtained by premultiplying Si; by the coefficient of E (in brackets) in (A.1-21) and
postmultiplying it by the transpose of this coefficient. If W = Sf}, the resulting expression
simplifies to

Sy = Sy- P(PTWP)Y'PT (A.1-22)

Note that by using (A.1-20) the second term in this equation is seen to be the covariance
matrix of the adjusted parameters propagated into the observations; thus it is the
covariance matrix of the adjusted observations. Therefore, (A.1-22) says that the
covariance matrix of the residuals is equal to the covariance matrix of the observations
minus the covariance matrix of the adjusted observations. This may seem appropriate,
because the residuals are the observations minus the ad justed observations. However, this
should be considered a coincidence, because the covariance matrix of the difference or sum
of two vectors is the sum of their covariance matrices, not the difference, if the vectors are
uncorrelated with each other. Here, the particular way in which the observations and the
ad justed observations are correlated produces the above result. Turning this around and
expressing. the observations as the sum of the ad justed observations and the residuals (and
similarly for their covariance matrices) produces the somewhat surprising result that the
residuals are uncorrelated with the adjusted observations. (Remember that these results
holds only in the Gauss approximation and only if the weight matrix is the inverse of the
covariance matrix of the observations.)

In many cases W can be partitioned into a diagonal matrix of matrices. Let each of
these submatrices on the main diagonal of W be denoted by W; In the corresponding
manner E and P are partitioned by rows into E; and P;. (What we have done is to group
the observations into sets so that there is no correlation of errors between members of
different sets.) Then (A.1-17) and (A.1-20) can be rewritten as
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H = 3 PIwp;
i

¢ - 3 PIWE,
' (A.1-29)
D - HiC

S¢ = H!

Note that, if the errors in all of the observations are uncorrelated, W; and E; are l-by-1
matrices, which can be represented as the scalars w; and ¢;, and P; is a | by m matrix.
Furthermore, if all of the w; are equal, they cancel out of the equation for D, and we have
an unweighted solution (ordinary least-squares).

Several other quantities of interest can be derived from the solution. We will present
these for the general partitioned Gauss case, with W, = Sf}. The ad justed value of E; is
1)
P;D. The residuals are

V; ~ E;,-PD (A.1-24)

The quadratic form is

g= 2 VIwy, (A.1-25)

The expected value of ¢ is n—m. If the scale factor of the covariance matrix of observation
errors is unknown, W can be ad justed by the ratio (n~m)/q and S¢ by the ratio g/(n-m).
Otherwise, ¢ can be used as a test on the ad justment; for, if the observation errors have the
Gaussian distribution, then ¢ has the chi-square distribution with n-m degrees of freedom.
~(Proofs of these properties of g can be found in Graybill [1961)) S represents the
covariance matrix of errors in the ad justed parameters. The square roots of the diagonal
elements of S are the standard deviations of the adjusted parameters. The correlation
matrix of the parameters can be obtained from Sc by dividing the i,j element by the
product of the standard deviations of the ith and jth parameters, for all i and j. Other
resuits which follow directly from the results for the unpartitioned case are the covariance
matrix of the ad justed observations PiScP;-" and the covariance matrix of the residuals
SU; - P;SgPl. (Some of these matters are discussed further by Brown (1955 and 19571)

The solution of the nonlinear problem can now be described as follows. An initial
approximation is used to compute the discrepancies £; and the partial derivatives P;.
Then D is computed from (A.1-23) and is added to the current approximation for G to
obtain a better approximation. This process repeats until there is no further appreciable
change in G. Then the final values from the last iteration can be used to obtain Sg, V;,
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¢, and the other derived quantities described above. Of course, for convergence to the
absolute minimum of ¢ rather than convergence to some local minimum or divergence, it is
necessary that the initial approximation be sufficiently close to the true solution. In most
practical problems this is not critical; in fact, often there is only one minimum.

As previously discussed, the above solution for G, when converged, produces the true
generalized least-squares ad justment regardless of the nonlinearity. However, the properties
that the solution for G is minimum-variance and unbiased are only approximate in the
nonlinear case. Also, as previously discussed, S¢ as computed above is only approximately
the covariance matrix of the errors in the final value of G in the nonlinear case. However,
if the amount of nonlinearity over the range of the measurement errors is small, these
results will be fairly accurate.

Often it is desired to have observations directly on the parameters. There are several
possible reasons for this. There may be some a priori information about the parameters
that one wants to combine into the solution. Also, it may be desired to give the initial
approximations a very smaill amount of weight in the solution, so that in case one of the
parameters would otherwise be indeterminate, it will be constrained sufficiently to prevent
the H matrix from being singular and thus to allow a solution for the other parameters to
be obtained. Finally, it may be desired to remove a parameter from the ad justment and to
constrain it to a fixed value. This can be done by assigning a very large weight to the
given value (although it would save computer time to delete this quantity from the
parameters in the program instead). In any of these cases the desired effect can be achieved
by creating an additional m-by-m P; matrix, say P, equal to the identity matrix.
Corresponding to this there is £, equal to the given a priori value of G minus the current
approximation of G, and an m-by-m matrix W, the desired a priori weight matrix. These
are included in the summations for H and C just like any other observations.

A few comments should be made about the numerical aspects of performing the
computations. The H matrix is always non-negative definite; that is, if it is not singular it
is positive definite. The best strategy to use when inverting a positive-definite matrix by
‘an elimination technique is to pivot on the main diagonal. (See Forsythe and Moler [1967])
Therefore, a simple matrix inverter without any pivoting can be used to obtain H~'. H is
also symmetrical; therefore, some computation time can be saved if an inverter which makes
‘use of this fact is used. However, if n is considerably larger than m, much more time is
spent in computing H than in inverting it, so this may be hardly worth the trouble. In
problems where the solution is nearly indeterminate, H will be nearly singular, and much
accuracy can be lost because of numerical roundoff error. In such cases it may be necessary
to use double precision in the computations for H, C, D, and S according to (A.1-23),
including the inversion of H. (If a good inverter is used, there is usually not much point in
having it in double precision unless a double-precision H is available to invert, as
explained by Forsythe and Moler [1967)) However, high precision is not needed in
computing the discrepancies E; and the partial derivatives P, as long as consistent values
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are used throughout the computations for A and C.

A2 Correlated Errors

The solution presented in the previous section allows the observation errors to be
correlated in an arbitrary way, as represented by the covariance matrix S;;. However, in
order to partition the solution correctly according to A.1-23, the errors in the different
groups must be uncorrelated. But because of the great savings of time and storage that the
partitioned solution allows, it sometimes is desirable to approximate the complete solution by
means of the partitioned solution, even though the errors are correlated. This section
describes a way in which this can be done under some circumstances.

It sometimes is the case that the observations are performed at points distributed
throughout some space, with the covariance of different points always being less than the
variance of any point and being negligible for points so far apart that their effects on the
solution are significantly different (that is, have significantly different P; matrices). For
example, in the stereo camera model solution described in Chapter 38, the covariance
between points is caused by the additional errors described in Section 3.2, whose covariance
is a function of the distance between the points in the image plane and is assumed to be
negligible for far-apart points.

In such a case the following approximation can be made. The covariance matrix S,
is partitioned into the covariance matrices §; i of each pair of points i and j. (In the case of
the camera model ad justment, each individual covariance matrix §; j for points i and j is
then 2-by-2.) Then an artificial covariance matrix for each point is computed as follows:

Si = &S " (A2-1)
]

and all §;; are assumed to be zero for if. The results from (A.2-1) are inverted to produce

W for each point.

To see why this approximation works, consider the following extreme case, where the
assumptions apply either to the entire covariance matrix Sy; or to each of its submatrices
partitioned (in the usual way for (A.1-23)) into groups of points with no correlation between
groups. Assume that when the covariance matrix is partitioned further into submatrices
corresponding to the points, all of the these submatrices on the diagonal are equal, all of the
off-diagonal submatrices are equai, and all of the corresponding submatrices of P are equal
(within a given group).

Under the above assumptions, the covariance matrix of each group can be considered
to be made up of submatrices corresponding to the points such that the main-diagonal
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submatrices are A4 + B and the off-diagonal submatrices are B. Then by muliplying the
matrices it is easily verified that the inverse of the covariance matrix of the group of points
contains  A™' - (4+n B)"'BA™! everywhere on the diagonal and -(4+n,B)'BA™!

everywhere off the diagonal, where n,, is the number of points in the group.

Because of the assumption about P, the constant submatrices of P (denoted here by
P,) allow the terms for this group in the summations for H and C in (A.1-23) (or the
corresponding portions of the unpartitioned solution in (A.1-17)) to be factored into
PI(EW,- j)Po and PI(EW'- J-E j)- respectively, where the summations are over all values of {
and §. (The index i here should not be confused with i in (A.1-23), which is for the
higher-level of partitioning, if any.) Thus it can be seen that the group of points is
equivalent to one point which is the weighted average of the points, where the weight
matrix for each group is the sum of the row (or column, since the matrix is symmetrical) of
weight submatrices corresponding to this point. From the previous paragraph the sum of a
row of submatrices of the inverse of the covariance matrix is seen to be
AV~ n (A+n _B)'BA', which simplifies to (A+an)". Under the approximation of
(A 2-1) the artificial covariance matrix for this group consists of submatrices A+n,B on the
diagonal and zero elsewhere. Inverting this and summing over the row produces (A+np8)"
(since there is only one term in the summation). This is equal to the exact result just
produced. Therefore, in this special case the approximation is exact.

For another limiting case in which the approximation is exact, consider the points to
be equally spaced in a Euclidean space of an arbitrary number of dimensions, with the
covariance between a pair of points a function only of the coordinates of one point relative
to the other. Thus, in the nomenclature of time series analysis, the errors are said to be
stationary, and the covariances form the autocovariance function. Summing the
autocovariance according to (A.2-1) over all of the space produces the zero-frequency value
of the Fourier transform of the autocovariance function, which is the power spectrum of the
errors. (See Blackman and Tukey [1958)) Therefore, what we have done is to use the
value of the power spectrum at zero frequency. Grenander [1954]} and Watson [1967] have
shown that the component of correlated errors that affects a least-squares ad justment is the
portion of the power spectrum at the frequencies contained in the P matrix. Since we have
assumed here that the P matrix varies very siowly, the important frequency components are
all near zero frequency. Therefore, using the power spectrum at zero frequency, as the
approximation does, is the correct thing to do in this case.

When the above approximation is used, the ad justed parameters and their covariance
matrix (computed from the solution using the artificial covariance matrix according to
(A.2-1)) are correct within the limitations of the approximation. However, the quadratic
form computed from (A.1-25) using the inverse of the artificial covariance matrix for W
does not agree with that from (A.1-2) and thus does not have the usual properties described
in Section A.l. (Its expected value and degrees of freedom are in general less than n-m.)
The quadratic form computed from (A.1-2) using the true covariance matrix would be
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correct, but it would be time-consuming to compute. It is possible to approximate the actual
distribution of ¢ from (A.I-25) under this approximation, but that will not be discussed
here.

One problem remains. When the covariance matrix of residuals is computed
according to (A.1-22) (or the corresponding partitioned form), the true covariance matrix of
the observations must be used for 5;;, whereas the artificially augmented covariance matrix
was used to obtain the covariance matrix of the adjusted observations. Because the
covariance matrix of residuals is the difference between the two, if for some observation the
variance of the ad justed observation is nearly as large as the variance of the observation,
any error in the former caused by the inaccuracy of the approximation will cause a
relatively large error in the variance of the residual. The main problem occurs when the
conditions of the approximation are not met well, in that the extent of the correlation in
observation space exceeds the extent of the similar P matrices. In this case the variance of '
the ad justed observation will be overestimated, and the computed variance of the residual
can actually become negative. The problem can be avoided by using the fact that a
reasonable upper limit for the variance of an ad justed observation is as follows:

ok Sii
cr,?;i S y+ —jf" (A.2-2)

i

where 0% = P;S-Pl is the computed variance of the adjusted observation, s5;; = Uﬁi is

the variance of the observation, §;; is the augmented variance of the observation according
to (A.2-1), and ¥ is the greatest s;; for i¢j (largest covariance between this observation and

any other). Thus the minimum of 0% ; and the limit from (A.2-2) can be used for O‘ﬁ'i.
[~

and the variance of the residual is then obtained by af,'_ - Gﬁi-oﬁ'i instead of by using
(A.1-22).

A3 Variance Adjustment

The solution in Section A.l assumes that the covariance matrix Sy, is known, so that
it can be inverted to obtain the weight matrix. Often this is not the case, and some
information about it must be obtained from the solution itself. Of course, if nothing at all
is known about Sy, there is not much hope. However, if some information is available
about it, the solution may be able to estimate the rest by utilizing information contained in
the residuals. (An accurate estimate can be obtained only if the number of observations n
is sufficiently greater than the number of parameters m so that there is enough information
in the residuals. If n = m, the residuals are zero.) One example of this was mentioned in
Section A.l, concerning'the well-known use of the quadratic form to ad just the scale factor
of SU. A more elaborate case is discussed in this section, which is used in the implemented
version of the stereo camera model ad justment.
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Suppose that the covariance matrix can be expressed as the sum of two
positive-definite symmetrical matrices, as foliows:

Sy = A+vB (A.3-1)

such that A is known exactly, B is known exactly, and the scale factor v is unknown except
for an a priori value Y, and its variance 0'3’0. (In the camera model ad justment, 4
corresponds to errors estimated by the correlator, y corresponds to the additional error
discussed in Section 3.2, and B is its correlation matrix.)

In order to estimate v, one approach that might be tried is to use the fact that the
expected value of the quadratic form is the number of degrees of freedom of the
ad justment (the number of observations minus the number of parameters), as mentioned in
the previous section. Thus substituting (A.3-1) into (A.1-2) and setting the quadratic form
equal to n-m produces the equation VT(4+yB)W = n-m. This could be solved for 7.
(The residuals would be obtained from a solution using the old value of v, from the
previous iteration.) However, this equation is equivalent to an nth-degree polynomial in #,
and solving it would be very time-consuming. Therefore, a different approach is used.

Let r; be the ratio of the variance of the ith observation to the variance of the ith
residual. Thus

I (A.3-2)

where 0‘3._ is a diagonal element of Sy, obtained from (A.1-22). By definition, 02 is the
3

expected value of v? (since the expected value of ; is zero). Therefore, using the diagonal
elements of (A.3-1) to obtain 07, in (A.3-2) and rearranging produces
3

bi'-')' = T‘- 803 - a‘-'- (A.3—3)

where the symbol £ represents the mathematical expectation operator. Now, »? can be
considered to be an estimate of £} based on one sample. Thus, if the squared residual
(obtained from a solution using the old value of v from the previous iteration) is used in
(A.3-3) in place of its expected value (and r; from the previous iteration is used), (A.3-3)
can be solved for . Of course, one sample of a squared residual does not produce a good
estimate for the variance, but there are n equations (A.3-3), one for each observation in the
ad justment. Thus an ad justment can be done for v with n observations, using (A.3-3) as
the condition equations. These observations will be called “variance observations” to
distinguish them from the observations u; in the main ad justment. (If the covariances were
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used also, there would be = n(n+1) variance observations. However, using this many
observations would be time-consuming and would complicate the analysis below, with little
added benefit, since the main-diagonal elements contain most of the information except in
the case of highly correlated errors. In such a case it may be desirable to perform a rotation
to diagonalize A in order to utilize more fully the available information, but this is not done
in the implemented stereo camera model ad justment.)

Because the variance of the ad justed observations is usually much smaller than the
variance of the observations (assuming that n>>m), r; for most observations is only slightly
greater than 1. Thus its effect usually is only a slight correction, and using the value from
the previous iteration is satisfactory. In any case, when convergence is achieved, the value
will be correct. (In fact, the value of I/r; averaged over all observations is usually close to
(n—m)/n, although when the approximation in Section A.2 is used this value must be
altered. Thus in many cases it is a reasonable approximation to use a constant value of
nf{n-m) for all r;s)

In order to combine the above measurements of v correctly, the covariance matrix of
the variance observations must be known in order to obtain the weight matrix. The
variance observations according to (A.3-3) correspond to the right side of the equation.
Since a;; is known, the covariance matrix of the variance observations is the same as the
covariance matrix of riv}’. As an approximation, it is assumed here that r; is known. Thus,
the covariance of the ith and jth variance observations is r;7 ; times the covariance of v;?
and 7% In general, the variances and covariances of the squares of variables cannot be
- obtained if only the variances and covariances of the variables are known. However, if the
variables have the normal distribution with zero mean, then the variances and covariances
(about the mean) of the squares of the variables are twice the squares of the respective
variances and covariances of the variables. Under this assumption, which is valid if the
original observations have the normal distribution, the covariance of the ith and jth
variance observations is

"l»') = 2r.r -0'2 (A.“)

P

where crfw, is the i, f element of S, which can be obtained by using (A.3-1) and (A.1-22)
L}

from the previous iteration. (When n>>m, a fair approximation for s; j would be 202 .
1)

2(aij+'ybij)2, using the value of < from the previous iteration. This is exact for the
diagonal elements but neglects the correlations that the solution has introduced into the
ad justed observations. This approximation is used in the camera model ad justment, since it
avoids having to compute the entire covariance matrix of residuals) Then these values of
s;; are assembled into the matrix Sy, the covariance matrix of the variance observations.
(To avoid confusion with the symbols U, W, and P in the main adjustment, the Greek
fetters T, Q, and II are used here for the corresponding matrices in the variance
ad justment) Then {} = 53! produces the weight matrix for the variance observations. (It
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might be pointed out here that the covariance matrix of residuals is singular. However, the
matrix composed of the squares of its elements in general is not singular if n is sufficiently
large. Even if it is singular, the method in Section A.2 can recover the needed information
in many cases.)

Then the variance adjustment can be done using (A.1-17). The II matrix
(corresponding to P there) is a column matrix containing the b;; values, and T
(corresponding to both U and E in the main ad justment, since (A.3-3) is linear in v) is a
column matrix containing the values ;v - a;; (Do not confuse the symbol II with the
larger symbol used to denote products.) Then

nar+ Xo

(4]
2

(A.3-5)

where the a priori value ¥, and its weight lltrgo have been introduced in the proper way.
(Since IT and T each have only one column, the matrix products in (A.3-5) produce 1-by-1
matrices, which are equivalent to scalars.) However, because of random fluctuations it is
possible for o from (A.3-5) to be negative. If this happens, it should be set to zero instead.

Because v is used in obtaining the weights to be used for computing v, the above
process is iterative. A complete iterative solution for <y could be done on each iteration of
the main solution. However, this is not necessary. One iteration of the variance ad justment
can be done on each iteration of the main adjustment, and the variance and the main
parameters will converge together. Note that, since the main adjustment has not yet
converged, it is actually the discrepancies instead of the residuals that are used in T in
(A.3-5). This will cause vy to be an overestimate on the early iterations. But as the
discrepancies converge to the residuals, v will converge to the proper value.

Instead of using (A.3-5) as is, it can be partitioned in the same manner as (A.I-17)
was partitioned to obtain (A.1-23), if the appropriate off-diagonal terms of {1 are negligible.
But even if certain off-diagonal terms in the main observation covariance matrix §;; are
zero, they won't be zero in Sq, because of the correlations introduced by the main
ad justment into the residuals. Of course, if the approximation of using twice the squares of
the elements of 3, for the elements of Sy is used, then the variance solution can be
partitioned in the same way as the main solution. In any event, the approximate way of
handling correlated errors described in Section A.2 can be used, and this would allow the
same partitioning to be used in the two solutions.
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A4 Convergence Acceleration

In Section A.l it was pointed out that the solution described there using the Gauss
method undergoes linear convergence. In many cases this is adequate, but sometimes the
convergence is quite siow. This section describes a way of accelerating the convergence of
the Gauss method, which converts it into quadratic convergence. This method is used in
the stereo camera model ad justment. {In the case where there is only one parameter being
ad justed, this method, except for the acceptance test described below, is equivalent to
Aitken's extrapolation, described in Acton [1970])

Let the true (unknown) values of the parameters be represented by the vector G, let
G; represent the current values of the parameters used on iteration i (before the correction),
and let D; represent the corrections computed to the parameters by the Gauss method on
iteration . Then ideally D; = G,—-G;. However, more accurately

D; = AG, -G, : -~ (A4-D)

where A is a constant square matrix. The fact that A differs from the identity matrix
causes the linear convergence. (A4 here corresponds to /-A in the discussion following
(A.1-18)) Even more accurately, (A.4-1) would also contain higher-order terms in G,-G;,
which are neglected here. If A could be computed, it could be used to obtain a more
accurate correction by solving (A.4-1) for G,~G;.

Suppose that two different sets of parameter values (corresponding, say, to iterations i
and j) are used in the solution and the resulting equations (A .4-1) are differenced. The
result is

D;-D; = AG;-G)p (A 4-2)

Everything in this equation is known except A4, but it cannot be solved for A because it
" represents m scalar equations in m? unknowns, where m is the number of parameters.
‘However, if m pairs of values are used to obtain m equations (A .4-2), they can be solved.
Let C be an m-by-m matrix each of whose columns consists of one DD j vector, and let B
be an m-by-m matrix each of whose columns consists of one G j"Gi vector. Then the m
different equations (A.4-2) are all represented by the one equation

C = AB (A.4-3)
In the actual procedure, {D;-D j)ls and (G )-—'G'-)Is are used to form a column of C and B,

respectively, where s is the magnitude of the vector G j—G‘- (square root of the sum of
squares of its elements). Dividing by s in this way normalizes things to avoid numerical

125



problems caused by the rapidly diminishing size of these vectors during convergence, but
the resulting equation (A.4-3) is mathematically equivalent to the above description, since
the same factor is applied to corresponding columns of C and B.

Now let D be the desired more accurate vector of corrections. From (A.4-1) it can be
seen that D; = A7'D;. Equation (A.4-3) can be solved to produce 4™ = BC™\. Substituting
the latter into the former produces

~

D; = BC'D; (A 4-4)
Adding the results of (A.4-4) to G; produces the more accurate values of the parameters.

In order for (A.4-4) to be computed, C must be nonsingular. This requires that all of
its columns (D;-D ; Pairs) be linearly independent, which requires that m+1 different G's be
used to obtain the m pairs used in (A.4-2). Different values of G could be chosen
deliberately to produce linearly independent columns, but this would require m+1 complete
computations of D for each iteration, which would defeat the purpose of the acceleration.
Instead, values of G and D from m+1 successive iterations are used to obtain B and C in

(A .4-3).

Therefore, the procedure starts by going through m normal iterations. Then iteration
m+1| is computed. Values of G and D from iterations | through m are each differenced
against those of iteration m+1 to obtain B and C in (A.4-3). These are used in (A.4-4) to
obtain a more accurate correction for iteration m+l. Then iteration m+2 is computed, and
iterations 2 through m+1 are each differenced against iteration m+2 to obtain an accelerated
iteration m+2. This process repeats in this manner, always comparing iterations i-m
through i-1 to iteration { when correcting iteration i, until the convergence tolerance is
achieved.

A problem remains, however. As the solution converges, the direction of the error
vector G-G, will tend to approach the constant direction given by the eigenvector
corresponding to the largest eigenvalue of /-4, with only its magnitude changing. T his will
result in the columns of B and C becoming nearly proportional to each other, which causes
C to become nearly singular. (Indeed, if by accident the error vector started exactly in this
direction, C would be singular from the start.) But the eigenvalue of C corresponding to the.
eigenvector in this direction will not become zero, and it is this eigenvalue that contains the
information needed to compute D in this case, since D is in this direction also. In general,
those eigenvalues of C that are zero correspond to directions orthogonai to D, and thus do
not matter. Therefore, even though C may be singular, it contains the needed information.
In order to extract this information, some type of generalized inverse might be used instead
of the inverse indicated in (A.4-4).

However, in the implemented procedure the following is done to get around this
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problem. First, if possible, C is inverted in the usual way, and a test is made to determine if
there was excessive loss of significance. If the test is passed, the result is used. However, if
the matrix was singular or the test was failed, a small positive quantity is added to the
diagonal elements of C and another try is made. Adding this quantity to the diagonal
elements increases each eigenvalue by this amount. A large eigenvalue will not be
appreciably affected by this small change, but a zero eigenvalue will no longer be zero. If
ail eigenvalues differ from zero by significant amounts, the matrix can be inverted
accurately. But there may have been a negative eigenvalue which becomes close to zero by
the addition. Therefore, the same test is made on the second try, and if it also fails, another
try is made. The implemented procedure subtracts the same quantity from the diagonal
elements of the original C matrix and tries again. If this doesn't work either, it gives up
and does not accelerate on this iteration. (Using up to m tries with a good matrix inverter
would practically guarantee success, because there are only m eigenvalues) The
implemented procedure does these computations in double precision, and the quantity
added is 1072 Since C has been normalized, this changes its largest eigenvalue by roughly
one part in 0% If eight significant decimal digits were used in the computations, an
appropriate quantity to add or subtract would be 107,

Before the convergence acceleration computed above is accepted on any particular
iteration, one more test needs to be made. If the higher-order terms which were neglected
above are large, applying the acceleration might make things worse instead of better. The
test that is made involves seeing whether the normal or the accelerated solution is more
consistent on two successive iterations. Whichever one was used to produce G on the
previous iteration, the other value of G is remembered. Both values of G are obtained for
this iteration. Then the magnitude of the difference of the G vectors produced by the
normal solution on the two iterations is computed, and the magnitude of the difference of
the G vectors produced by the accelerated solution on the two iterations is computed. For
this iteration, the solution for which this magnitude is less is accepted. If there was no
accelerated solution computed for the previous iteration (because of insufficient iterations or
failure of the matrix inversion), the normal solution is used for this iteration. (Thus the
accelerated solution will never be used until iteration m+2 at the earliest, since the first
accelerated solution isn’t computed until iteration m+1.)

The magnitude of a vector used above is defined as the square root of the sum of the
squares of ‘the elements of the vector. In order for this to be a mearingful representation of
the distance between two solutions, the elements of the vector should be comparable
quantities, with their important effects being the same order of magnitude. If necessary, the
actual parameters in the adjustment should be scaled in order to achieve this condition.
(This is also desirable to avoid numerical loss of significance.)

If the variance ad justment described in Section A.3 is used, the variance estimate vy

can be considered to be one of the parameters for the purposes of convergence acceleration.
Then m here corresponds to m+1 in the main solution. However, the variance must be

127



scaled appropriately, as described in the previous paragraph.

Because the method described here requires at least m+2 iterations in order to
accelerate the convergence, it would not be of much use when the number of parameters is
large. However, when m is small and convergence is slow, it can be quite useful. The
computation time it requires (consisting mostly of an m-by-m matrix inversion) is usually
much less than that of the main solution, so a large cost is not paid for its use, even if it
turns out not to be needed.

A5 Automatic Editing

It was mentioned in Section A.l that the solution there is the maximum-likelihood
solution if the errors have the Gaussian (normal) distribution. However, suppose that the
errors are from two causes. There are small random errors on every observation
approximately normally distributed, called "noise,” and there are occasional very large
errors, called "wild points” The combined distribution for the total error departs greatly
from the normal distribution. It consists of an approximately normal curve added to a
function with a very small amplitude but a large width. The use of the unmodified
solution in Section A.l would result in large errors because of the wild points. Some
nonlinear solution adapted to the actual total error distribution is needed.

One approach would be to assume a particular total error distribution, and derive the
exact maximum-likelihood solution for it.  Compared 1o the ordinary weighted
least-squares solution this would have the effect of giving less weight to the points with
large errors on the current iteration, since they would lie on the further parts of the error
distribution where the curve flattens out instead of following the normal curve. In general
this would be quite complicated, and it would add a great deal of nonlinearity to the
solution, adversely affecting the convergence. (A crude approximation to this sort of thing
is used in the ob ject finder in Chapter 7.)

One reasonable way to approximate the above ideal in many cases can be derived
from the following reasoning. Because the amplitude of the probability distribution of the
wild paints is so small (caused by their infrequence and wide range of values), the total
error distribution curve is very nearly the normal curve for smalil errors (if the noise is
normally distributed). But for some value of error the two probability densities are equal,
and for errors greater than this the normal curve rapidly becomes negligible, resulting in a
flat distribution from there on. Thus the total curve can be approximated by a normal
curve out to some threshold value and by a constant beyond there. The
maximum-likelihood solution that results from this approximation is to use the points with
errors less than the threshold in the usual way and to ignore all other points. Such a
process of rejecting outlying points is called "editing.”
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The correct threshold to use for the editing process depends upon the error
distributions. For example, suppose that the wild points occur 10% of the time and have a
distribution that is 100 times wider than that of the noise. (Both are assmed to be normally
distributed for. convenience, but a uniform distribution for the wild points with a width
100\/2n times the standard deviation of the noise would produce the same resuits.) Then
the height of the wild point distribution at the center is only 1/1000 of that of the noise.
Thus the two distributions become equal when the noise distribution is at 1/1000 of its
peak, since the wild point distribution is practically flat in this region. This occurs at an
error of 3.7 standard deviations for the normal curve, and this would be the correct
threshold in this case. I[n practice the exact wild point distribution is seidom known, but
using a threshold of three standard deviations for one-dimensional data is usuaily
reasonable and is somewhat customary in editing problems. (Cutting the normal curve off
at both sides at three standard deviations results in rejecting only 0.0027 of its area.) The
ratio of the threshold to the standard deviation is denoted here by ¢. {In order to take into
account the fact that the standard deviation is not known exactly, it would be better to use a
thresholid based on Student’s ¢ distribution instead of a constant a priori threshold, but if
the variance estimate is reasonably accurate this will make little difference.)

Of course, the errors are not known. However, after performing an ad justment the

“ residuals are known, and their covariance matrix can be computed from (A.1-22), with the

correction discussed in connection with (A.2-2) imposed when the approximation in Section

A2 is used. Therefore, the editing process used here basically checks to see whether for any

observations the absolute value of the residual is greater than ¢ times the standard
deviation of the residual. Several refinements are needed to this basic process, however.

Some subsets of observations may be so closely related that, if one of the observations
in a subset is wrong because of a wild point, the others probably are wrong also. For
example, in the stereo camera model ad justment, if a point seems to be beyond infinity,
there are two observations associated with this point, as explained in Chapter 3, and the
two observations should be accepted or rejected together because they both came from the
same correlator measurement. The optimum way in which to do this is to compute the
quadratic form of the vector of residuals for this point with the inverse of its covariance
matrix, as follows:

g = V]Isy, - PSGPTIY; (A.5-1)

(sub ject to the limit given by (A.2-2) when the approximation in Section A.2 is used), where
S¢ is the covariance matrix of the ad justed parameters, SU is the covariance matrix of the
observations in this point, P; is the matrix of partial derivatives of the observations in this
point relative to the parameters, and V; is the vector of residuals for this point (observations
minus ad justed observations). The square root of this quadratic form would correspond to
the ratio of the absolute value of a residual to its standard deviation in the case of one
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observation per point. Thus a limit of t? on ¢; would produce a cutoff at the same
probability density value of the normal curve. However, because of the greater number of
dimensions in the space over which the wild points are distributed, their probability density
will be less, and thus the value of the threshold ¢ perhaps shouid be greater than in the
one-dimensional case. (In the implemented stereo camera model ad justment, 7 = 3 in the
one-dimensional case and ¢ = 4 in the two-dimensional case.)

The presence of one wild point may perturb the solution so that it approximately
agrees with another wild point. Therefore, a single check for all wild points cannot be
completed in one step. After one or more points are rejected, the test must be made again
on the remaining points. The most likely candidate for rejection is the observation with the
largest ratio of absolute value of residual to standard deviation of residual, or the point
with the largest quadratic form from (A.5-1) in the muitidimensional generalization.
(However, if 1 is different for different points, this value should be scaled before comparing
by dividing the residual by ¢ or the quadratic form by f2) As implemented in the stereo
camera model ad justment, this point is rejected first if it is beyond the limit. Then the
solution is recomputed and the process repeats until no mare points seem to need re jecting.
Previously rejected points could be retested at each step and reinstated if they are now
within the limit, but this is not done in the camera model ad justment. 'Note that if the basic
problem is nonlinear it must be iterated to convergence on each one of these steps so that
true residuals will be obtained. Therefore, the editing process consists of outer iterations,
each one of which contains the inner iterations of the basic solution.

If the problem is linear and the variance of the observations is known, then the
process of comparing a residual to its standard deviation computed from the solution using
this observation suffices to indicate whether or not this observation should be rejected.
However, if the problem is nonlinear, removing a point from the solution may change
things so much that the decision might be different. Also, if the variance is being ad justed
(as in Section A.3), the presence of this wild point will cause the variance to be
overestimated. Therefore, the residual may be less than ¢ times its overestimated standard
deviation but more than ¢ times its true standard deviation. For these reasons, the point
with the largest ratio compared to ¢ is tentatively rejected regardless of the size of the ratio,
the solution is recomputed (including the variance adjustment) without this point, the
residual and its standard deviation are recomputed, and a definite decision on this point is
made based on the size of the new ratio. The standard deviation of the residual in this last
step must be computed in a different way than usual. Since this observation is not used in
the solution, (A.1-22) cannot be used. There will be no correlation between this unused
observation and the solution, provided that this observation is not correlated with the
observations used in the solution. Therefore, since this residual is the observation minus
the adjusted observation computed from the solution, the variance of the residual is the
sum of the variance of the observation and the variance of the adjusted observation. For
multidimensional observations this generalizes to the sum of the covariance matrices. Thus
the quadratic form which is actually compared to ¢? to determine whether a tentatively
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rejected point should reaily be rejected is computed as follows (using values from the
solution computed without using this point):

g = V]lsy, + PScPIT, (A.5-2)

(The limit given by (A.2-2) can be applied here also, but with an addition instead of a
subtraction it is less important.)

The possibility still remains that the presence of many wild points (all about equally
bad) may cause such an overestimate of the variance that none of them would be re jected.
This possibility can be guarded against in the following way. The computed variance (not
including the a priori estimate) is compared to the a priori variance, and, if the ratio is
large enough to cause some confidence level to be exceeded, the most suspect point on this
outer iteration will not be reinstated yet if it passes the usual test above. Points successively
tentatively rejected in this way are accumulated until they fail the usual test, in which case
they are rejected, or until the confidence level is no longer exceeded or a given limit on the
number of points to remove is reached, in which case they are reinstated. (Thus if the
solution does not reach a set of retained points that indicate that the rejected points are
actually bad, the likelihood is that by chance the confidence level was exceeded with good
data, and the points should be reinstated. An earlier form of the stereo camera model
ad justment reported in Gennery [1977] did not include this last step and thus ran the risk
of once in a while rejecting many good points.) The implemented stereo camera model
ad justment uses an F test for this purpose, with a confidence level of 0.98, although the
presence of the two components of error according to (A.3-1) makes this nonrigorous.

An additional explanation perhaps is in order concerning one matter. Suppose that
there is a wild point with no other points in the same region of observation space and that
the nature of the problem is such that this point thereby forces the solution Into near
agreement with it. (For example, consider the simple case of fitting a linear
one-dimensional function to some data. If most of the points are clustered in a fairly
narrow interval of the independent variable, but there is one point at a distant value of the
independent variable with an erroneous value of the dependent variable, this one wild
point will tilt the straight-line fit so that it nearly passes through this point) This wiid
point will have a very small residual when it is used in the solution, and thus it might
appear that it would not be the prime candidate for rejection. However, in such a case
almost all of the information in the ad justed value of this observation is coming from this
observation itself, and thus the variance of this ad justed observation is nearly as great as
the variance of the observation. Since the variance of the residual is the difference of these
quantities, it will be very small. As a result, it turns out that, even though the residual is
small, its standard deviation is even smaller. Therefore, taking the ratio of these quantities
(or using the more general result from (A.5-1)) identifies this point as the one to be
removed.
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The basic idea of examining the residuals for editing purposes is fairly common.
(See, for example, Davis [1967)) However, the method described above contains some
refinements, such as the use of the F test.
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Appendix B
STEREO CAMERA MODEL

In this appendix the particular set of parameters that constitute the stereo camera
model used in this work is defined, and a method is described for computing the quantities
needed in Chapters 3, 4, and 5 that are functions of these parameters.

The stereo camera model might most reasonably be defined to consist of six
parameters defining the relative position and orientation of the two cameras. Many
different sets of six quantities are possible; those that are used in the present work are
described below. However, the magnitude of the distance between the cameras is sometimes
considered separately (because it cannot be determined by the self-calibration method
described in Chapter 3), leaving five quantities in the camera model proper. In addition, a
scale factor for the pictures, related to the principal distance or focal length, may be
included here (and can be adjusted in the same self-calibration procedure, although it
usually is better ad justed with the distortion calibration for the individual cameras). There
may be separate scale factors for each picture or a single one for both. Therefore, the total
number of parameters considered to constitute the stereo camera model may be five, six,
seven, or eight. The implemented version of the stereo camera model self-calibration
ad justs for only the basic five parameters, although the necessary information is included in
this appendix to enable the principal distances to be included in the ad justment also.

If a full set of six parameters defining the relative position and orientation were to be
considered to constitute the stereo camera model, a reasonable choice for the parameters
might be the three Cartesian components of the vector from Camera I to Camera 2 and
three angles defining the orientation of Camera 2. These all would be expressed in the
Camera | coordinate system, since we are concerned here only with relative (not absolute)
position and orientation. However, since the magnitude of the vector between cameras is
considered separately here, only the direction of the unit vector pointing towards Camera 2
is considered, which can be specified by two quantities. Depending on what two quantities
are chosen, a degeneracy occurs in some position. Here, the direction of the unit vector is
specified by an azimuth angle and an elevation angle, as in Hannah [1974] The
degenerate position then occurs when one camera is directly above the other, a situation not
usually encountered in stereo work and one which can be defined away by rotating the
Camera | coordinate system about its principal axis. These azimuth and elevation angles,
and the pan, tilt, and roll angles (also as in Hannah [1974]) which specify the orientation of
Camera 2 are the five quantities which constitute the stereo camera model that is ad justed
in Chapter 3. However, the two principal distances are also used in the following
computations and could be considered to be camera model parameters. The magnitude of
the vector from Camera | to Camera 2 does not enter into the computations in this
appendix, but is used in the computations in Chapters 4 and 5.
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Definitions of the above quantities and others will now be given. The picture-taking
process in each camera is idealized as a central projection from the real world onto an
image plane perpendicular to the lens axis at a distance f, or f, (for Camera | or Camera 2,
respectively) in front of the center of projection. (The quantity f, or f, is sometimes
referred to as "focal length,” which is not the correct term if the camera is not focused at
infinity. The term “principal distance” is also used, and it will be used here for want of a
better term. The center of projection is often called the "lens center,” which is correct only
in the thin-lens approximation. For thick lenses it is actually the primary principal point.)
Each camera has a Cartesian coordinate system with the origin at the center of projection, x
to the right in the image plane,  up in the image plane, and 2 outwards along the lens axis.
Thus the coordinate system is left-handed. Measured values of x and y for a corresponding
point in the two image planes will have a subscript | or 2 to denote Camera | or 2,
respectively. The azimuth and elevation of the Camera 2 origin relative to the Camera 1
coordinate system are denoted by «, and «, (pasitive to the right from the z axis and up),
respectively. The pan, tilt, and roll of the Camera 2 coordinate system relative to the
Camera | coordinate system are denoted by al. G2. and ﬂs' (positive right, up, and right),
respectively.

If the ray from the Camera | origin through the point x, 3, in the Camera | image
plane is back-projected into the Camera 2 image plane, a line segment is produced. Let x,
and y, denote the Camera 2 image-plane coordinates of the end point of this line segment
(corresponding to a point at an infinite distance on the ray), and let ¢, and ¢, denote the
direction cosines of the line segment (in the direction away fram x_, y,) relative to the x,
and y, axes, respectively. Then the probiem at hand is to use the quantities x, and y, and
the camera model parameters previously defined to compute x,, y,, ¢ . and ¢y Also
needed for the computations in Chapter 5 (and needed in order to compute the above
quantities) are the unit vector 1_ pointing from the Camera | origin to the Camera 2 origin
(in Camera 1 coordinates), and the rotation matrix B for transforming Camera 1
coordinates into Camera 2 coordinates, which are functions of the camera model parameters
only. The partial derivatives of all of these quantities with respect to the camera model
parameters are also needed.

Two vectors that will be needed later are defined as follows:

X, 0
P = N 1: = 0 (B-1)
/i 1

The first step in deriving the needed mathematics consists of defining the rotation
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matrices associated with the angles a, o, al, “2' and ﬂ,- Notice that A and 42 are
defined with the opposite direction of rotation from B, and B, This is because the A's will
be used to rotate a vector whereas the B's will be used to rotate the coordinate system.

[ €os o, 0 sin a, 1 .-sin a 0 cos o ]
dA
A =] 0 | 0 <] o0 0 0
1 da,
H
-sin a, 0 cos o, -cosa, O -sin a,
1 0 0o | [ o 0 0
dA
A2 - 0 cos &, sin a, 3&;2 = 0 -sina, cosa,
i 0 -sin o, cos “2J 0 -cos o, —sin a,
L J
[ cos 61 0 -sin Gl 1 ’-sln Bl 0 —-cos BI -
aB
B, = | O I 0 — | 0 0 0 (B-2)
1 dg,
sing, 0 cos B, | cosB, O -sin @, ]
_ . - 1
| 0 0 0 0 0
dB
B2 = 0 cos B, -sin ﬂz E: - 0 -sin 3, -cos 52
0 sin 32 €os (32 J i 0 cos 62 -sin ﬁ2 J
[ cos ‘35 -sin B, 0 ] iB -—sin 33 —cos ﬂ, 0
B, = | sin ﬂ, ~cos B 0 F: = | cos 53 ~sin 6, 0
0 0 1 J 0 0 0 J

The unit vector pointing from the Camera 1 origin to the Camera 2 origin is just the
unit z vector rotated through the elevation and azimuth angles:

1, = A A1, (B-9)

To convert a vector from being expressed in the Camera | coordinate system to being
expressed in the Camera 2 coordinate system, the coordinate system must be rotated through
the pan, tiit, and roll angles (in addition to being translated). Thus the rotation matrix by
which the vector must be premultiplied is

B = BB,B, (B-4)
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The partial derivatives of 1, and B with respect to the camera model parameters are as
follows:
a1, dA, o1, dA,

-—A1 -A

3, T @l o T AE !

4

dB dB dB (B-5)
oB 1 oB 2 aB s
SN T S S S s

with all others equal to zero.

Now the infinity point x , 5, will be derived. An image point in the Camera 1 image
plane has a three-dimensional position in the Camera 1 coordinate system given by the
vector p = {x, 3, f, JT. Since we are concerned at the moment about the infinity point we
can ignore the transiation between the camera coordinate systems and consider only the
rotation. To express the vector p in a coordinate system aligned with Camera 2 the
coordinate system is rotated by premuitiplying by the B matrix defined above. Let the
resulting vector be denoted by u. Thus

u° = Bp : (B-S)

The projection of the point given by the above vector into the Camera 2 image plane is
given by a vector in the same direction as the above vector but having a z component equal
to f,. Therefore,

Sy
(] uz
(B-7

fu
Y = 71

z

The partial derivatives of u with respect to ,, 8,, and f, can be obtained by replacing B

in (B-6) by the corresponding derivatives of B from (B-5). If the partial derivatives with
~respect to f, are desired, they can be obtained by replacing p by 1, in (B-6), since

Op/3f, = 1,. Equations (B-7) then can be differentiated to obtain the partial derivatives of

x, and y,, as follows:
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(B-8)
ax, u,
h
3%, U,

where g denotes B, 32, B,. or fr (The partial derivatives of X, and ¥, With respect to «,
and a, are zero.)

The point %, y, is the end of the desired line segment. The direction cosines ¢, and
¢, can be found by using the fact that the desired line is the intersection of the Camera 2
image plane with the plane defined by the Camera 2 center of projection and the ray
corresponding to the Camera | image point x,, y,.

Thus we proceed as follows. The ray which corresponds to the image point x,, y, in
the Camera | image plane is given by the direction of the vector p = [x, 3, f‘]'r. in Camera
I coordinates. First we must determine the plane containing this ray and the Camera 2
center of projection. The normal to this plane is given by the direction of the vector cross
product of p and the vector 1, from (B-3) giving the direction of the Camera 2 center of
projection from Camera | center of projection. Therefore, the normal to the desired plane
is p x 1, in Camera | coordinates. To express this normal in Camera 2 coordinates we
must rotate the coordinate system by the pan, tilt, and roll angles. The result is B(p x 1.).
The normal to the Camera 2 image plane in Camera 2 coordinates is 1,. The vector along
the intersection of these two planes is the cross product of the normals to the two planes,
namely 1, x B(p x 1,). This is the desired line which is the projection of the ray into the
Camera 2 image plane, expressed in Camera 2 coordinates, and thus its x and y components
are proportional to the desired direction cosines. Since the vector lies in the Camera 2
image plane, its z component is zero. Thus, if we call this vector v, we have

v =1 xB8px1,) (B-9)

Application of either the right-hand rule or the left-hand rule consistentiy to the above two
cross products will verify that the above vector has the correct polarity, that is, it points
away from x,,y, along the line segment. The direction cosines ¢, and ¢, can now be
computed simply as follows from the results of (B-9):
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v

x
C’ W —
’vz + 02
¥y (B-10)
c, = ”,-

y
’2 2
Ur+ﬂy

The partial derivatives of v with respect to the «'s and f’s can be obtained by
replacing in turn 1_ and B in (B-9) by the corresponding derivatives from (B-5). The
partial derivatives with respect to f, can be obtained by replacing p in (B-9) by 1_,. Then
the partial derivatives of ¢, and ¢ are obtained as follows, where g denotes any of the
parameters («’s, 8's, or fix

h 4

2 av, avy
og (W2 + v;)’l2

5 (B-11)

’ v, -
6, R U
o (22 + v))¥?2

The results are 1_ and B for a given camera model; x,, ¥,, ¢,, and <y for a given
point and a given camera model; and the partial derivatives of these quantities.

The above computations were expressed in terms of matrices and vectors as much as
possible, so that the partial derivatives were easy to obtain. In the implemented computer
program the matrix operations are performed numerically by standard procedures.
Therefore, there is no need to expand these equations to scalar form analyticaily, except in
a few cases where considerable computation time can be saved. In particular, the product of
AA, times 1, reduces to just taking the third column of A A, The cross products are
written out in the code for the program; this reduces the cross product of 1 times another
vector to just picking two appropriate terms of the vector, with an appropriate sign change.
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Appendix C
MARS PICTURES

The Mars pictures used in this research were extracted from a pair of large mosaics
produced by the Viking Lander Imaging Team from pictures taken by the two cameras on
the Viking Lander 1. The pictures form a stereo pair of the Martian landscape in front of
the lander, covering about 173® in azimuth and about 66° in elevation. However, much of
these pictures do not contain corresponding areas in the two pictures because of occlusion
by parts of the lander. Also, the portions in the extreme distance probably would not allow
accurate information to be obtained about small objects such as rocks. A suitable portion
was chosen to test the methods in this thesis, consisting of an area about 16° in elevation by
20° in azimuth in the left picture and 18° in elevation by 28° in azimuth in the right
picture. Smaller portions of these were used to generate the examples in this thesis, each
about 10° by 10° These are shown in Figure C-1.

The brightness value of each pixel in the pictures is represented by an eight-bit
integer. The pixel spacing of the pictures is 0.04° in azimuth and elevation. (Azimuth and
elevation form a spherical coordinate system. Therefore, the central angle subtended by a
one-pixel shift in azimuth is 0.04° times the cosine of the elevation angle) The two
cameras are 0.8187 meters apart. The height of the cameras is 1.3 meters above the
reference plane (nominal ground surface).

The principal noise source in the pictures supposedly is shot noise from the
photodiode sensor. This causes the standard deviation to be proportional to the square root
of the pixel values. In order to produce a constant standard deviation, the square root of
each pixel value was taken and the result was multiplied by 16 to rescale it to be suitable
for an eight-bit picture. The standard deviation of the noise in the resulting pictures was
estimated to be about 3. These modified pictures were used by the programs described in
this thesis. However, to produce the figures shown herein, the original pictures were
changed by a different nonlinear function to enhance their contrast, in order to compensate
partially for the inadequacies of the printing device.

Each picture shown in Figure C-1 is 256 pixels by 256 pixels. The azimuth and
elevation from the left camera to the center of the picture are about 18° and -20°,
respectively, relative to the perpendicular to the camera baseline and relative to the
reference plane. The distances to the points in the scene range from about 3 meters to

about 4.5 meters.

The white blob in the left picture is an out-of-focus part of the lander’s arm, which
was present when this part of the mosaic was taken but was in a different position for other
portions and for the other picture. It represents erroneous data to the stereo program.
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Figure C-1. Stereo pair of Martian surface.

140



BIBLIOGRAPHY

Acton, F.S. [1970) Numerical Methods that Work, Harper & Row.

Agin, G.J, and Binford, T.O. [19731 “Computer Description of Curved Ob jects,”
Proceedings of the Third International Joint Conference on Artificial Intelligence, Stanford,
Calif., August 1973, pp. 629-640.

Arnold, R.D. [1978]1 "Local Context in Matching Edges for Stereo Vision,” Proceedings:
Image Understanding Workshop (Defense Advanced Research Projects Agency), Cambridge,
Mass.,, May 1978 (Science Applications, inc., Report Number SAI-79-749-WA), pp. 65-72.

Bard, Y. (1974) Nonlinear Parameter Estimation, Academic Press.

Baumgart, B.G. [1974). "Geometric Modeling for Computer Vision,” Stanford Artificial
Intelligence Laboratory Memo AIM-249, Stanford University, Oct. 1974.

Blackman, R.B., and Tukey, }W. [1958). The Measurement of Power Spectra, Dover
Publications.

Bolles, R.C. [1976). "Verification Vision within a Programmable Assembly System,”
‘Stanford Artificial Intelligence Laboratory Memo AIM-295, Stanford University, Dec. 1976.

Brown, D.C. [1955] “A Matrix Treatment of the General Problem of Least Squares
Considering Correlated Obseravations”, Report No 937, Ballistic Research Laboratories,
Aberdeen Md., May 1955.

Brown, D.C. [1957). "A Treatment of Analytical Photogrammetry with Emphasis on
Ballistic Camera Applications” (Appendix A, "A Treatment of the General Problem of
Least Squares and the Associated Error Propagation™), RCA Data Reduction Technical
Report No. 39 (AFMTC-TR-57-22), Patrick AFB, Florida, August 1957.

Davis, R.G. [1967). “Advanced Techniques for the Rigorous Analytical Ad justment of
Large Photogrammetric Nets,” Photogrammetria, Vol. 22, pp. 191-205.

Duda, R., and Hart, P. [1973]. Pattern Recognition and Scene Analysis, Wiley.

Forsythe, G.E,, and Moler, CB. [1967). Computer Solution of Linear Algebraic Systems,
Prentice-Hall.

141



Ganapathy, S. [1975]. "Reconstruction of Scenes Containing Polyhedra from Stereo Pairs of
Views," Stanford Artificial Intelligence Laboratory Memo AIM-272, Stanford University,
Dec. 1975.

Gennery, D.B. [1966]. "Direct Digital Filters for General-Purpose Use”, ETR-TR-66-2
(RCA MTP Math Services Technical Report No. 82), Patrick AFB, Florida, Jan. 1966.

Gennery, D.B. [1977]. "A Stereo Vision System for an Autonomous Vehicle,” Proceedings
of the Fifth International Joint Conference on Artificial Intelligence, Cambridge, Mass.,
August 1977, pp. 576-582.

Gennery, DB. [1979]. "Object Detection and Measurement Using Stereo Vision",
Proceedings of the Sixth International Joint Conference on Artificial Intelligence, Tokyo,
August 1979, pp. 320-327.

Graybill, F.A. [1961). An Introduction to Linear Statistical Models, Volume 1, McGraw-Hill
Book Company.

Grenander, U. [1954] "On the Estimation of Regression Coefficients in the Case of an
Autocorrelated Disturbance,” Annals of Mathematical Statitistics, Vol. 25, pp. 252-272.

Hannah, M.]. [1974] “Computer Matching of Areas in Stereo Images,” Stanford Artificial
Inteliigence Laboratory Memo AIM-239, Stanford University, july 1974.

Hanson, AR, and Riseman, E.R. (eds.) [1978]. Computer Vision Systems, Academic Press.

Hogg, R.V, and Craig, A.T. [1965] Introduction to Mathematical Statistics (Second
Edition), The Macmillan Company. .

Hohn, F.E. [1973). Elementary Matrix Algebra (Third Edition), The MacMillan Company.

Kalman, R.E. [1960]. "A New Approach to Linear Filtering and Prediction Problems”,
Journal of Basic Engineering.

Levine, M.D,, O'Handley, D.A, and Yagi, G.M. [1973]. "Computer Determination of Depth
Maps,” Computer Graphics and Image Processing, Vol. 2, pp. 131-150.

Lewis, R.A, and johnston, A.R. [1977) "A Scanning Laser Rangefinder for a Robotic
Vehicle,” Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
Cambridge, Mass., August 1977, pp 762-768.

Marr, D, and Poggio, T. [1976). "Cooperative Computation of Stereo Disparity,” Science,
Vol. 194, pp. 283-287.

142



Mikhail, E.M. (with contributions by F. Ackermann) [i1976) Observations and Least
Squares, IEP (Thomas Y. Crowell Company).

Milgram, D, and Bjorklund, C. [1979). “"Superposition,” Lockheed Missiles and Space
Company internal memo, Palo Alto, Catif.

Moravec, H.P. (1977] "Towards Automatic Visual Obstacle Avoidance,” Proceedings of the
Fifth International [oint Conference on Artificial Intelligence, Cambridge, Mass, August
1977, p. 584.

Moravec, H.P. [1979). "Visual Mapping by a Robot Rover", Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, Tokyo, August 1979, pp. 598-600.

Moravec, H.P. [1980]. "Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover,” Ph.D. Dissertation, Stanford University.

Mori, K., Kidode, M., and Asada, H. [1973]1 "An iterative Prediction and Correction
Method for Automatic Stereocomparison,” Computer Graphics and Image Processing, Vol. 2,
pp. 393-401.

Nevatia, R., and Binford, T.O. [1977] "Description and Recognition of Curved Ob jects,”
Artificial Intelligence, Vol. 8, pp. 77-98.

O’Handley, D.A. [1973]. "Scene Analysis in Support of a Mars Rover,” Computer Graphics
and Image Processing, Vol. 2, pp. 281-297,

Price, K. [1978]  "Symbolic Matching and Analysis with Substantial Changes in
Orientation,” Proceedings: [Image Understanding Workshop, (Defense Advanced Research
Projects Agency), Cambridge, Mass, May 1978 (Science Applications, Inc, Report Number
SAI-79-749-WA), pp. 93-99.

Quam, L.H. [1968]. "Computer Comparison of Pictures,” Stanford Artificial Intelligence
Laboratory Memo 144, Stanford University.

Schultz, M.H. [1973). Spline Analysis, Prentice-Hall.

Schut, G.H. [1957] "An Analysis of Methods and Results in Analytical Aerial
Triangulation,” Photogrammetria, Vol. 14, pp. 16-33.

Schut, GH. [1959] "Remarks on the Theory of Analytical Triangulation,”
Photogrammetria, Vol. 16, pp. 57-66.

143



Shirai, Y. [1978). "Recent Advances in 3-D Scene Analysis,” Proceedings of the Fourth
International Joint Conference on Pattern Recognition, Kyoto, Japan, Nov. 1978.

Sobel, I. [1970). "Camera Models and Machine Perception,” Stanford Artificial Inteiligence
Laboratory Memo AIM-i21, Stanford University.

Thompson, A.M. [1977). "The Navigation System of the JPL Robot,” Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, Cambridge, Mass., August
1977, pp 749-757.

Thompson, C. [1975]. "Depth Perception in Stereo Computer Vision,” Stanford Artificial
Intelligence Laboratory Memo AIM-268, Stanford University, Oct. 1975.

Uliman, S. [1976). "The Interpretation of Structure from Motion,” Artificial Intelligence
Memo 476, Massachusetts Institute of Technology, Oct. 1976.

Watson, G.S. [1967). "Linear Least Squares Regression,” Annals of Mathematical Statistics,
Vol. 38, pp. 1679-1699.

Yakimovsky, Y. and Cunningham, R. [1978] "A System for Extracting Three-Dimensional
Measurements from a Stereo Pair of TV Cameras," Computer Graphics and Image
Processing, Vol. 1, pp. 195-210.

Zucker, SW. [1976] "Relaxation Labelling and the Reduction of Local Ambiguities,”
Proceedings of the Third International foint Conference on Pattern Recognition, San Diego,
Calif., November 1976, pp. 852-861.

144



