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Mechanical procedures for the manipulation of formal proofs have played a central role in
% proof theory for more than fifty years. However, such procedures have not been widely applied
? to computational problems. One reason for this is that work in computer science to do with
formal proof systems has emphasized the use of formal proofs as evidence — as tools for
automatically establishing the truth of propositions. As a consequence of this emphasis, the
problem for mchanizing the construction of proofs has received much attention, whereas the
manipulation of proofs — that is, the conersion of one form of evidence into another — has not.

However, formal proofs can serve purposes other than the presentation of evidence. In
particular, a formal proof of a proposition having the form, “for each x there is a y such that the
relation R holds between x and " provides, under the right conditions, a method for computing

: . ' values of y from values of x. That is, such a proof describes an algorighm 4 where 4 satisfies
' the specification R in the sense that for each x, R(x,A(x)) holds. Thus formal proof systems can
serve as programming languages — languages for the formal description of algorithms. A proof
which describes an algorithm may be “executed™ by use of any of a variety of procedures
developed in proof theory.

A proof differs from more conventional descriptions of the same algorithm in that it
formalizes additional information about the algorithm beyond that formalized in the
conventional description. This information expands the class of transformations on the
algorithm which are amenabel to automation. For example, there is a class of “pruning”
transformations which improve the computational efficiency of a natural deduction proof
regarded as a program by removing unneeded case analyses. These transforations make essential
use of dependency information which finds formal expression in a proof, but not in a
conventional program. Pruning is particularly useful for removing redundancies which arise
when a general purpose algorithm is adapted to a special situation by symbolic execution.

This thesis concerns (1) computational uses of the additional information contained in proofs,
and (2) efficient methods for the representation and transformation of proofs. An extended
lambda-calculus is presented which allows compact expression of the computationally significant
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part of the information contained in proofs. Terms of the calculus preserve dependency data,
but can be efficiently executed by an interpreter of the kind used for lambda-cakulus based
languages such as LISP. The cakulus has been implemented on the Stanford Artificial
Intelligence Laboratory PDP-10 computer. Results of experiments on the use of pruning
transformations in the specialization of a bin-packing algorithm are reported.
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Abstract

Mechanical procedures for the manipulation of formal proofs have played a central role
in proof theory for more than fifty years. Howcver, such procedures have not been widely
applicd to computational problems. One reason for this is that work in computer science to
do with formal proof systems has emphasized the use of formal proofs as evidence - as tools
for automatically establishing the truth of propositions. As a consequence of this emphasis,
the problem of mechanizing the construction of proofs has rcceived much attention, whereas
the manipulation of proofs - that is, the conversion of one form of evidence into another - has
not.

Howecver, formal proofs can serve purposes other than the presentation of evidence. In
particular, a formal proof of a proposition having the form, "for each x there is a y such that
the relation R holds between x and y" provides, under the right conditions, a methnd for
computing values of y from valucs of x. That is, such a proof describes an algorithm A where
A satisfies the specification R in the sense that for each x, R(x,A(x)) holds. Thus formal proof
systems can serve as programming languages - languages for the formal description of
algorithms, A proof which describes an algorithm may be "executed” by use of any of a
varicty of procedures developed in proof theory.

A proof differs from more conventional descriptions of the samc algorithm in that it
formalizes additional information about the algorithm beyond that formalized in the
conventional description. This information cxpands the class of transformations on the
algorithm which arc amenable to automation. For example, there is a class of "pruning"
transformations which improve thc computational cfficiency of a natural deduction proof
regarded as a program by removing unnceded case analyses. These transformations make
essential use of dependency information which finds formal expression in a proof, but not in a
conventional program. Pruning is particularly uscful for removing redundancies which arise
when a gencral purposc algorithm is adapted to a special situation by symbolic execution.

‘This thesis concerns (1) computational uses of the additional information contained in
proofs, and (2) ecfficient methods for the representation and transformation of proofs. An
extended lambda-calculus is presented which allows compact expression of the computationally
significant bart of the information contained in proofs. Terms of the calculus preserve
dependency data, but can be cfficiently executed by an interpreter of the kind used for
lambda-calculus based languages such as LISP. The calculus has been implemented on the
Stanford Artificial Intelligence Laboratory PDP-10 computer. Results of experiments on the
usc of pruning transformations in the specialization of a bin-packing algorithm are reported.
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Chapter 1

Introduction

The most obvious purpose of a proof is to convince - to provide compelling evidence for
the truth of a proposition. A formal proof provides cvidence of a kind that can be
mcchanically recognized, and it is in the capacity of cvidence that formal proofs have most
often been used in computation, as for cxample in automatic theorem proving and in
automatic program verification of the usual kind.

As a conscquence of the emphasis on the use of proofs as evidence, only two of the
various opcrations which pcople commonly perform on informal proofs have played a
significant role in computations involving f-*mal proofs. These opcrations are the
construction of proofs, and the checking or recognition of proofs. Operations which involve
the actual manipulation of existing proofs, as opposed to the manipulation of formulas, are

not much used.

However, mechanical procedures for proof manipulation have played a central role in the
subficld of mathematical logic known as proof theory for more than fifty ycars. This thesis
concerns applications of proof theoretic methods to computational problems. In particular,
our subject matter is the use of formal proofs for the description of algorithms, and the
transforinations on algorithms which are made possible by this mode of description. Thus the
work differs from most work in computer scicnce to do with formal proofs both in the use to
which proofs arc put, and in the emphasis placed on the manipulation - in contrast to the
construction - of proofs.

The manner in which proofs may be uscd to express algorithms is as follows. Suppose

that onc has a proof that an object with given propertics exists, Then the proof can
If
restrictions are made on the forms of inference used, then it is possible to guarantee that the

proof will (in one scnse or another) provide this additional information.

sometimes be used to discover the identity of a particular object with those propertics.

For cxample, a
constructive proof of Ixe(x) always "provides” a value v with @(v) in the sense of indicating a
method for computing v; the computation may or may not be feasible in practice.  However,
the restriction to constructivity is too strong. For one thing, a proof of Ixep(x) may exhibit a
valuc v which satisfics @, but show that @(v) holds by non-constructive methods. Also, if onc
restricts the complexity of ¢ (for cxample, if @ is a quantifier free formula of first order

arithmetic), then any classical proof of Ixeg(x) will provide a realization in the same sense and




by the same formal methods as a constructive proof. (By a "realization” of an cxistential
statement Jxg(x) is meant simply a value which satisfies the predicate ¢.)

If an existence proof is given in a formal way - in a way which makes it suitable for
mechanical manipulation - then onc might hope to mechanize the passage from the proof to
the valuc realizing thc existential statcment. Work in proof theory has shown that the
extraction of realizations from proofs can in fact hc¢ mechanized for a varicty of formal

systems and in a varicty of ways. For cxample, Prawitz’s normalization procedurc may be
used to transform a natural deduction proof of an existential formula into a direct proof of the
same formula which will - under rather gencral conditions - explicitly mention a realization.

Now, if one has a proof of a formula of the form Vx3yep(x.y), the methods from proof

il theory mentioned just above can evidently be used to compute a function f with Vxe(x.f(x)).

To do this, simply apply thc gencral result Vx3yeg(x,y) to the input value, and then use -
normalization (or whatever method one has in hand) to extract a rcalization. Thus a proof of

a formula ¥x3ye(x.y) scrves the role of a program which computes a function satisfying the

"spccification” .

Given that proofs can be used as programs, what is the interest of this fact for computer
scicnce and for practical computing? One answer is as follows.

oA s

H

H -
‘ Existing programming languages are for the most part designed with cconomy of

; expression in mind; a program in such a language formalizes cxactly the information nceded
j

for carrying out the task at hand. A proof, on the other hand, formalizes a great deal of

L]
B

information which is not cssential for the simple cxccution of a computation - such as a
description of the task being performed, a verification of the method, and an account of the
dependencics between  facts involved in the computation.  The additional information

contained in proofs is uscful in the transformation of computing methods - for example in

adapting mcthods to new situations. This should not be surprising, since one expects that the
data rclevant to the transformation of algorithms will be different and more extensive than the

——— gy IR

N data nceded for simple exccution,
1
We shall be concerned with a particular set of transformations on algorithms - called the
. "pruning transformations”. ‘These transtormations remove redundant chunks of computation
! by making usc of a kind of dependency information which does not appear in ordinary
' programs, For the most part, the redundancies removed by pruning arc not to be found in
broofs generated by people. Thus the pruning transformations will not be of much use when
I
51‘ applicd to algorithms as originally presented.  However, proofs which result from automatic .
i processes tend to include such redundancics.
3
¢ 2




For example, suppose that one has an algorithm A(x) which is to be used in a situation
where it is known in advance that all inputs will have a special form given by the term
uyp. . . - ¥g) Then A may be automatically adapted to perform efficiently in this special
situation by symbolically cxecuting the code for A on the term ¢, and then applying
optimizing transformations to the result. (Ershov{1977] and Sandewall{Beckeman, Haraldsson,
Oskarsson, and Sandewall, 1976]. among others, have studicd this method of specialization as
it applics to ordinary programs.) If A is expressed by a proof 1, then the result of
symbolically cxecuting T on the term t will often contain redundancies of the kind removed
by pruning cven if I1 as originally given contained no such redundancies. Thus, the
cffectiveness of automatic specialization can be increased by adding pruning to the arsenal of
optimizations used in the course of specialization.

As they stand, the standard methods of proof theory are not adequate for carrying out the
specialization of algorithms in a feasibly cfficient way. However, we have devised methods for
the exeettion and pruning of proofs which overcome this problem.  ‘I'he methods have been
implemented in a proof manipulation system running on the Stanford Artificial Intelligence
Laboratory PDP-10 computer.  As a preliminary empirical investigation of the uscfulness of
pruning in the specialization of algorithms, expermiments on the specialization of a bin-
packing algorithm have been carried out.

The following topics are treated in this thesis, listed in order of decreasing generality.
(1) the use of proofs for the formalization of algorithms,

(2) optimizing transformations on proofs, in particular, the pruning transformations,
(3) cfficient implementation of opcrations on  proofs,

(4) the usce of pruning in the specialization of algorithms, and

(5) the specialization of a bin-packing algorithm,

The general objective of the work is the development of an improved technology for the
manipulation of algorithms.  The usc of cnriched formal descriptions of algorithms -
specifically, formal proofs - is a means to this cnd.

The contents of the thesis are as follows.  Chapter 2 serves to introduce some material
from prool theory which will be needed in the course of the thesis. In particular, we define
the notion of a natural deduction proof system, and cexplain Prawitz’s normalization procedure.
Also, we present a very simple example of the use of pruning in specializing algorithms, The
example is intended to illustrate the central features of the pruning transformations in a




setting of minimal technical complexity. Chapter 3 describes the methods which we have
devised for the cfficient execution and pruning of proofs. In chapter 4, results of the bin-
packing cxperiments arc reported. Chapter 5 sketches additional uses which might be made
of the proof technology described in chapter 3. There are two appendices, cach of which is
intended primarily for rcaders with an interest in traditional proof theory. ‘The first concerns
the relationship between our methods and the functional and realizability interpretations of
Kleene, Godv:, and Kreiscl. The sccond appendix presents an example which demonstrates
that the fecatures of proof systems which are of interest for traditional proof thcory are
different from those which are most directly relevant to the computational use of proofs.

The remainder of this chapter is devoted to a collection of general remarks about the
work, and to previews of matters which arc discussed in detail later on.

°  Manipulation vs. construction

It should be cmphasized again that the work described in this paper concerns the
automatic manipulation of cxisting proofs, and not the automatic construction of new proofs.
The bin packing proof used in the experiments was devised "by hand”, and was cntered by
hand into the proof checking component of the proof manipulation system. If one is able to
automate, fully or partially, the construction of proofs which describe computational methods,
then so much the better.  But such matters lic outside the scope of this thesis.

° Differences between proofs used to describe computation and proofs used as evidence

It is nccessary to keep computational considerations explicitly in mind when constructing
proofs which arc intended as descriptions of computation. The best proof of a formula
Vx3yp(x,y) according to such standard criteria as brevity, clegance or comprehensibility, will
often embody a very bad algorithm. Conversely, a proof of Vx3ye(x.y) which formalizes a
good algorithm will generally constitute a rather unnatural way of cstablishing the simple truth
of the formula. For the purposes of this thesis, proofs are to be regarded as a means of
formulating algorithmic ideas. In writing a proof to be used for solving a computational
problem, onc follows the same procedure as is used in writing an ordinary program. Namely,
one first devises a reasonable algorithin, and afterwards tormalizes that algorithm (as a proof).
If a proof is given in complete detail, then it includes a jusiification for the correctness of the
algorithin which it formalizes,  As an immediate consequence, formalization ol algorithins by
proofs provides a4 means for the mechanical verification of algorithms.

Hlowever, if on¢ wishes only to implement an algorithm, and not to verify it, then the
proof describing the algorithm need not be fuliy formalized.  In particular, proofs of so-called
"Harrop formulas” can be left out. The Harrop formulas include for example all formulas

RO ¥




which lack occurences of the positive logical symbols V and 3. Any proof of a Harrop
formula may be omitted without destroying the computational uscfulness of a proof in which
that axiom appears.

Such "non-computational” formulas do not cven need to be truc. A proof which uses
incorrect Harrop formulas as axioms can be executed and pruned in the same manncer as a
proof which is valid throughout. However, the funct'on computed by the incorrect proof may
not satisfy the specification embodied in its end-formula.

A formal proof which is constructed for the purposc of describing an algorithm and
which makes frec usc of Harrop formulas as axioms will in general contain only a part of the
information nceded to cstablish the truth of its end-formula. Thus the formal proofs which
will concern us here are not proofs in the ordinary sensc at all; they do not supply - and are
not intended to supply - the cvidence necessary to verify a proposition. We are bending the -
machinery of formal proofs to a different end than that for which it was originally intended,
and so can discard the part of that machinery which is irrclevant to our new purposcs.

° The role of constructive methods

We restrict our attention in this thesis to proofs which are built up using constructively
valid inferences, The particular formal proof system uscd is the natural deduction formulation
of first order logic as originally developed by Gentzen[l1969] and later studied by
Prawitz]1965). ‘1o arrive at the constructive (or "intuitionistic™) variant of natural deduction
from the standard or classical natural deduction system for first order logic , onc simply
removes one of the inference rules, namely the rule which expresses the principle of the
cxcluded middle.

Note for the reader who is unfamiliar with intuitionistic logic: 'The approach to the
foundations of mathematics which is known as "intuitionism” or "constructivism” was
originated by Brouwer. According to this approach, the subject matter of mathematics is not
an external world of mathematical objects, but rather the world of mental constructions carried
out by mathematicians. This point of view leads to a reinterpretation of the meanings of the
logical symbols, and to restrictions on the modes of inference which can be employed.
Heyting and later Gentzen developed formal systems for representing contructive reasoning.
It is not our intention here to give an exposition of intuitionism as a philosophical standpoint;
the interested  reader s referred to van Dalen [1973]

We have chosen to use the the constructive instead of the standard system not because of
any distrust of classical reasoning, nor because non-constructive proofs cannot be used to
describe algorithms,  Indeed, the proofs which we use to describe algorithms will in any case




make use of complicated axioms (as explained in the last scction), and there is no reason
whatever to require that these axioms be constructively valid.  ‘Thus the formulas which
appear in our proofs will not in gencral be constructively valid; it is only the inference rules
used for manipulating those formulas which must be constructive. But further, even proofs
which make cssential usc of non-constructive inferences in connection with non-Harrop
formulas can be executed by mecthods similar to those used for constructive proofs. In
particular, many of the methods of proof theory, including Prawitz's normalization methoc,

apply to classical proofs as well as to constructive proofs, and under certain conditions are

guarantecd to provide the same kind of information. For example, normalization may be
used to exccute any (classical) proof of a formula Vx3ye(x.y) of arithmetic whose matrix ¢ is
quantifier free; a value for y will always be supplicd by normalization when any input value
for x is given. Thus the distinction between a proof which describes an algorithm and a proof
' which does not is quite different from the distinction between a constructive and a non-
: constructive proof.

: However, the process of fleshing out an algorithm into a proof from (possibly complex)
‘ Harrop axioms appears to Icad naturally to a proof in which only constructive inferences are
used. This at lcast is our expericnce so far. So for the moment, there is no need to look at
classical systems, and by the restriction to construclive systems we are able to avoid a certain

amount of tcchnical complication,

® The p-calculus

Traditional prool theory provides two kinds of methods for the exccution of proofs.
; First, there arc the normalization and cut-climination mcthods which carry out the
¢ ’f‘ computation indicated by a proof by transformation of the proof itself,  Sccond, there arc the
" functional and rcalizability interpretations which cextract "code™ of onc kind or another from
'.‘ proofs; it is then the code which is cxccuted, and not the proof itsclf, ﬂ

Fach of these two approaches is inadequate for the purposes which we have in mind here.

-

-

The normalization methods are unsatisfactory because they arc too slow. On the other hand,

o g

the methods which involve extraction of code from proofs retain only the information which is

necded for the computation imunediately at hand; the additional data needed for the pruning

e
.

transformations is lost. ‘This would not be a problem iff we only intended to apply pruning
transformations to proofs .as they are originally given,  lowcever, the use of proofs for the

- .
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specialization of algorithms requires that the additional data be preserved by symbolic

; cxccution.
) : Our solution to these ditficulties involves the use of an cextended A-calculus, which we
{ i\’ . shall refer to as the p-calculus. "The p-calculus is designed to provide expression for just that
4
z 6
;
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information contained in natural deduction proofs which is needed for exccution and for the
pruning operations. P-calculus terms can be extracted from ordinary natural deduction proofs
in a straight-forward manner, and exccuted efficiently by an interpreter of the kind used for
A-calculus based languages such as LISP and SCHEME. Chapter 3 describes the p-calculus in
detail.

Related we+k in computer science

‘The work described in this thesis is related in a general way to work in a varicty of areas
of computer science. In particular, there are clear connections to code optimization, program
synthesis and transformation, and to dependency directed reasoning in the sense of [London
1978] and [Stallman & Sussman 1977]. ‘The relation between the current work and the topics
just mentioned is discussed in chapter 5. In what follows, we give a brief catalog of work
] within computer scicnce which is dircctly concerned with the extraction of information from i
: proofs.

Green [1969) considered the problem of extracting information from resolution proofs.
Bishop[1970], Constablcf1971], and Martin-1.6111979] - among others - have suggested using
constructive proof systems as programming languages.  Goto[1979] has implemented Godel's
Dialectica interpretation for intuitionistic  first-order arithmetic.  ‘Takasu [1978] discusses
computational uses of proofs in the same system by use of Gentzen's [1969]) cut-climination

procedure.  Miglioli and Ornaghi [1980] describe a method for executing sequent calculus
proofs which differs from cut-climination.  In [Manna and Waldinger, 1979], a mcthod for

automatic synthesis of programs is described which involves the simultancous construction of a

natural deduction proof of the goal formula and of a program which realizes that formula (in

At

‘ £ a suitable sense).  Bates [1979] develops a constructive "refinement logic”, and shows how
q programs can be extracted from proofs of this logic. A Prolog program [Kowalski 1974] is a
E collection of axioms in Horn clause form.  An exccution of a Prolog program consists of a
‘A scarch for a proof in a restricted resolution system.  ‘The output is a term extracted from the

. proof. In practice, the output term is constructed during the scarch for the proof. (Sce

chapter 5 for further comments concerning the work of Bates and of Kowalski.)

——————— gy P W— o

It should be cmphasized that the aims of the work described just above differ
i tundamentally from the aims of the work presented in this thesis. In the former, formal

proufs serve as vessels from which computational contents of a standard kind are extracted.
In contrast, our concern is to cxploit the differences between proofs and conventional
descriptions of computation.  Specifically, we will show how new opcrations on algorithms can

be mechanized by making use of the additional information to be found in proofs.
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Chapter 2

Normalization and Pruning of Natural Deduction Proofs

In this chapter, we describe the natural deduction formalism (section 2.1), and the
normalization and pruning operations (sections 2.2, 2.7). A very simple cxample of the use of
pruning in specializing algorithms is given in scction 2.8.  Our presentation of natural h
deduction and of normalization follows standard lines (cg Prawitz[1965]), except in the i
trecatment of "lemmas” (section 2.5). Certain formal details concerning normalization are left
out, and all results are stated without proof.  Also, no treatment of principles of induction is
given until Chapter 3, where normalization and pruning are described in formal detail as they
apply to a computationally efficient representation of natural  deduction  proofs,

2.1 Nat:ral deduction

Systems of natural deduction were originally developed by Gentzen[1969]. 'The notation
uscd here is that of Prawit/[1965]).  The reader is  referred 1o Prawit/]1965]  for a more
discursive presentation of natural deduction and of a normalization procedure for natural
deduction  proofs.

In what follows, we deseribe the natural deduction formalism for intuitionistic first order
logic. The formalism is defined with a first order language 1. as a parameter; the class of
formulas which may appear in a proot is given by 1. It should be noted that natural
deduction difters from other proof systems for intuitionistic first order logic in the kind of
structure which it provides for representing proofs, and not, for example, in the sct of
thcorems which it proves. 1t is possible to translate back and forth between proofs of natural

deduction and proofs of, say. the sequent caleulus in a mechanical way.  The advantages of

natural deduction are the advantages of a good data structure - a data structure which
represents human reasoning in a comparatively direct way, and to which the various
operations in which we are interested can be casily applied.

The notion of a [irst order kanguage is defined in the standard manner, as follows, We
start with (1) an (infinite) list of variable symbols, Viva - e (2) a list of constant symbols
R (1) a list of relation symbaols RI'RZ' c.oaoand (4) a list of  tunction symbols
.6, .. .. The arities of the relation symbols and function symbols are to be specified as
part of the definition of L. “Terms of L. are built up from variable and constant symbols by
means of function application in the standard manner. Fhe sct of formmulas of 1. is defined
by the following inductive clauses. (1) The propositional constant IFAILSE is a  formula.
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@If ¢y, ..., arc terms, and R is a relation synihol of arity n then R(tl, L.at) isa
formula. (3) If P,Q arc formulas, and x is a variable, then (a) PAQ, (b) PVQ, (c) P D Q,
(d) 3IxP are formulas. It is convenient for our purposes to allow universal quantification to
apply to a vector of variables; thus we have (¢) Vx,, . . . x P is a formula for any formula P
and vector of distinct variables x), . .. x,. (Vx,....x P is nor an abbreviation for
Vx, Vx, ... Vx P. We shall sometimes use underlined characters to refer to vectors - for
example x wi' refer to a vector of variables, and t to a vector of terms. We regard negation
as a defincd notion; specifically, TP is to be read as an abbreviation for the formula
P D FALSE. 'The notion of a free occurence of a variable in a formula is defined in the
standard manner,

A natural deduction proof takes the form of a trec whose nodes are labeled by formulas,
by the names of inference rules, and by other information. This tree represents the history of
a logical argument - in particular it records a serics of applications of inference rules which
lcad from the hypotheses of the argument (represented by leaf nodes of the trec) to its
conclusion (represented by the root).

The leaves of a natural deduction proof tree are of two kinds: axioms and assumptions.
The truth of the conclusion of a natural deduction proof will in general depend on the truth
of the formulas which appear as axiom lecaves, but may not depend on the truth of all of the
tormulas which appear as assumption leaves,  The reason for this is that the inference rules
of natural deduction can have the cffect of "discharging assumptions”. For example, consider
the implication introduction rulc:

(A)
B

ADB

‘This rule specifies that ADB can be inferred from B, In addition, the rule indicates that
the set of assumptions upon which ADB depends is to be computed by removing the formula
A from the sct of assumptions on which B depends.  (The appearance of A in parcntheses is
what specifics that the assumption A is to be discharged. ) Informally, the rule states that if B
can be proved using the assumption A, then ADB can be concluded, and this conclusion doces
not depend on A being true. ‘Thus the inference rules of natural deduction operate not just
on end-formulas of the subproofs to which they are applied, but on additional information
contained in those subproofs, namcly, sets of assumptions.

In general, the formula attached to any node in a natural deduction proof tree depends
on some (possibly empty) subcollection of the formulas attached to assumption leaves of the
subtrec rooted at that node.  The members of this subcollection are referred to as the “open

assumptions” of the node. ‘I'he inference rules specify what conclusions may be drawn from

9
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premiscs of a given form, and in addition indicatc how thc open assumptions of the
conclusion arc computed from the open assumptions of the premiscs,

The set of open assumptions of cach node in a proof tree is computed recursively as
follows. First of all, the set of open assumptions of a leaf node is the empty set if the node
is an axiom, and the singleton sct containing the node itself if the node is an assumption. The
sct of open assumptions of any non-leaf node can b computed from open assumptions of its
sons simply by appying thc inference rule associated with that node.

Note that we use the phrase "open assumptions” to refer to a set of nodes on a proof
tree, and not to the sct of formulas attached to those nodes.

Each of the inference rules of natural deduction has the following form;

AD (AY ... (A

P Py ... P

C

In the above, some (or all) of the P; may lack associated appearances of parenthesized
formulas (A;). Thc meaning of such a rule is that a conclusion of form C can be derived
from premisc formulas of forms Py . . . P, ‘The sct of open assumptions of the conclusion is
computed as follows. l.ct S; be the set of open assumptions of premisc Py For cach i,
remove from Si all nodes whose attached formula is A} and call the result Si'. (If there is no
A; associated with P then let Si' = Si') The sct of open assumptions of the conclusion is
just the union of the Si'. ‘ihe A arc called the assumptions discharged by the rule.

Each of the inference rules of natural deduction is devoted to the treatment of a
particular logical symbol or quantifier. Conversely, for cach logical symbol and quantifier,
there is a rule (or pair of rules) which has the cffect of introducing that symbol, and another
rule (or pair of rules) which has the cffect of climinating that symbol.  ‘The rules are
designated by the symbol which they treat, and by their function, whether it be introduction
or climination. For example, the two rules which treat implication are referred to as the "D-
introduction rule” and the "D-climination rule” ("21" and "DE" for short).

‘T'he inference rules of natural deduction are given below. We use the following notation
for substitution: A[\“ll or Alx«t] denotes the result of replacing all occurences of the vaciable
x by the term tin the formula A. I x and t arc vectors of variables of the same length, then
Alx+Y} denotes the result of substituting the terms t for the variables x in parallel.  As usual,
substitution may require that bound variables be renamed.

10
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A-introduction:
A B
AAB

A-elimination:

AAB AAB
A B
V-introduction:
A B
AVEB AVB
V-climination:
A) @B
AVE C C
C
D-introduction:
(A)
B
ADB
D-climination:
A ADB
B
V-introduction:
A
VxA cum}itiun: none of the variables x may appear free in any

assumption on which the premisc A depends.
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Y-climination:
VxA

Alxet] where t is any vector of terms of L

3-introduction:

Apxey]

IxA where t is any tecrm of L

3-elimination:

IxA (/(\1) A

C conditions: the variable x may not appear free in A, nor in C, nor in
any assumption on which the second premise C depends
other than the assumption A.

The above rules are cssentially Prawits’s rules for the intuitionistic predicate calculus.
However, we¢ have left out the FALSIi-elimination rulc:

FALSE-elimination:

FALSE
A

The cffect of this rule can be obtained by the use of axioms of the form FALSE D A for
atomic formulas A. (Any formula can be derived from FALSE by means of such axioms and
the use of introduction rules. For example, AVB with A atomic may be derived from
FALSE by using the axiom IFALSE D A, and then applying V-introduction.) As will be scen
(scction 2.3), we shall allow such "false-climination” axioms to appear in proofs uscd for
computation; in fact, the restriction that the consequent A be atomic may be weakened - A
may be any "Harrop” formula (scction 2.3).

12




r_x T e ———— - A bus TR v:

The classical first order predicate calculus is arrived at by adding the following inference
rule cxpressing the principle of the cxcluded middle (recall that 1A abbreviates A D FALSE).

J-climination;

(A)
FAISE.

A

Notice that frec variables which appear in axioms are in cffect universally quantified; the

same conclusions can be drawn from an axiom A(xj, . . . x;) in which the x; appear frece as
from the axiom Vx; x5 . . . x A(x, . .. X))

0 . ‘The V-introduction and 3-climination inferences bind variables in a proof in the same
i ; sense that the quantifiers V and 3 bind variables in a formula. Specifically, the variables x in -
f [ the above presentation of the V-introduction rule are to be regarded as bound wherever they
' occur in the proof of the premise of the rule. Similarly, the variable x in the 3-inlroauct$9n
l rule is to be regarded as bound in the proof of the rule’s second premise. In both formuias
[ and proofs, a bound variable serves as a local name which is meaningful only inside the scope
of the binding; such bound variables may be renamed at will without changing the meaning
of a formula or proof (as long as conflicts with other variable names arc avoided). A precise
detinition of the notion of a bound variable in a proof will be given in chapter 3.

By a “closed proof” we mean a proof in which no variables occur free, and in which the
end-formula depends on no assumption.  Formulas which are not closed may appear in a
“ closed proof, as long as the free variables in those formulas are bound by onc of the inference

‘ q rules V-introduction and 3-climination.

‘ .

l 3 ‘The lollowing is a simple example of a natural deduction proof, The proof makes use of

X 3 no axioms.  Assumption leaves of the proof tree appear in brackets. The reader can verify

that cach of the assumptions is discharged in the course of the proof. The result is an

Yy assumption free derivation of the predicate caluclus thcorem,

L Vy(PIVQ(y) D Vx(Q(x)V P(x)). 1

P

(. IVy(P()VQ(I (P(0)] Q)]

: VE Vi— Vil

P(x)VQ(x) Q(x)VP(x) Q(x)VP(x}

D p—

: Q(x)VP(x)
: Vx(Q(x)VP(x))
Vy(P(IVQ(Y)) D Vx(QEX)VP®R))

13
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2.2 Normalization

In the course of this thesis we will have occasion to consider several procedures for the
step-by-step reduction of objects to a "normal” form. These "normalization” procedures share
certain general features.  ‘This scction introduces the basic notions and terminology which
apply to nommalization in cach of its various forms.

The two standard normalization procedures which are most dircctly relevant to our
current purposcs are the proof normalization procedure of Prawitz, and the normalization
procedurc for Church's[1941] A-calculus. The methods described in chapter 3 make cssential
use of the closc conncction between these two procedures.

Let 'I' be a class of terms (of whatever kind). A normalization procedure for T is (partly)
given by a collection R of "small" transformations, called "reduction rules”.  The
normalization of a term t consists of repeated application of the reduction rules until no
further application of a rule is possible. 'The result of this process (if it terminates) is called a
"normal form of t", and is designated by |t

More precisely given a term t and a reduction rule r, r may or may not be applicable to t.
If r is applicable to t, it may be applicable in various ways (in the casce of proofs and A-terms,
the reduction rule may be applicable at several places within the proof or term). 'The result of
applying a reduction rule in a particular way to a term t is a maodificd term t'. A term to
which no reduction rule is applicable is said to be in normal form. A pair <I,R> where T is a
sct of terms and R a sct of redution rules on those terms will be referred to as a "reduction
system"”'.

We use the notation t; —t, to signify that t, results from an application of one of the
reduction rules to t. Any procedure for selecting a particular order (and "way™) in which
reductions are to be applied to a term s called a "normalization procedure”.  Thus a
normalization procedure, when applied to any particular term t generates a (possibly infinite)
sequence of terms o, b4, ... where t | is arrived at from ¢ by the application of one of the
reduction rules. A theorem which states that a given normalization procedure always yiclds a
finite sequence of terms t) .G, . . .t where tis in normal form, regardless of the initial
term ,, is referred to as a "normalization theorem”. Other standard terminology concerning
normalization is as  Tollows,

® A system <FR> has the "termination™ property if every sequence of reductions 4, . . . is
finite.

° We use the notation t —=* t' to signify that ' results from t by some finite sequence
(=== . ¢ of applications of reduction rules, A system <I\R> has the "uniquencess

14
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property” if every sequence of reductions of a term to a normal form yields the same result.
‘That is, <I'R> has the uniquencss property if, whenever t =* ¢, and t =* t,, and t, and ¢,
are both normal, then t; = t,.

° A system which has both the termination and the uniqueness properties is said to have
the “strong normalization” property. Evidently, if a system has the strong normalization
property, then the normal form |t of cach term exists and is unique.

Each of the computation procedures to be considered in the course of this thesis takes the
form of a normalization procedure of onc kind or another. Of course, normalization
procedures need not be implemented in a literal minded way. Normalization for A-calculus
based languages can be sped up by using environments instcad of literal substitution for
carrying out A-conversions.  The implemented p-calculus interpreter on which the
cexperiments were carried out makes use of this idea.

2.3 Computing using proof normalization

This section concerns the manner in which proof normalization may be used for
computing, and not the internal workings of the normalization procedure itself.

The usefulness of proof normalization for computational purposcs derives from the special
propertics possessed by proofs which are in normal form. Roughly speaking, the reductions
used in proof normalization have the effect of remaving certain kinds of indirect arguments
from a proof. A normal proot contains none of these indirect forms of argument, and
computationally useful information can be read off a proof which is direct in this sensc.

Evidently, some restriction muast be made on the axioms which appear in a proof if it is
to be of any computational usc. The appropriate restriction for our purposes is that all axioms
be "Harrop formulas”. The Harrop formulas are those which do not contain the positive
logical symbols V and 3 except in the hypotheses of implications. More formally, the class of
Harrop formulas is defined by the following inductive clauses: (4) atomic formulas are Harrop
formulas, (b) if A and B arc Harrop formulas, then so are AAB, VxA, (c) if B is a Harrop
formula, then so is A D B, regardless of the form of A, A proof which contains only Harrop

formulas as axioms will be referred to as a Harrop proof.

(The notion of a Harrop formuta was introduced by Harrop{1960]. Harrop showed that if
A and JIxB(x) are closed formulas, and if A is Harrop, then AD3xB(x) is provable in
intuitionistic  arithmetic  iff IX(ADB(x)) is provable in intuitionistic arithmetic,.  This
generalized the following result of Kreisclf1958): if AB lack occurences of the positive
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conncctives "V" and "3", and if A, IxB(x) are closed, then - again - AD3xB(x) is provable
in intuitionistic arithmetic iff IxX(ADB(x)) is provable in the same system. As it happens, the
examples presented in chapter 4 effectively rely only on Kreisel's result and not on Harrop's
generalization, since all axioms used are intuitionistically equivalent to formulas in which
ncither "V" nor "3I" appear.)

The following properties of normal proofs make it possible to use normalization to “run"
proofs.

(1) Since each of the reduction rules preserves the cnd-formula of the proof to which it is
appliced, the end-formula of the normal form of a proof will always be the same as the end-
formula of the original proof.

(2) A normal, Harrop proof of an cxistential formula 3IxA(x) has the form:

AH
Al ©
IxA(x)

Thus, a normal, Harrop proof of the existence of an object with a certain property
contains a proof that a particular object has that property, and a term denoting that object can
be easily extracted from the proof.

(3) A normal, Harrop proof of a formula of the form AV B has onc of the following forms:

n 1§
A B
AVDB AVD

Now, it is cvident that normalization allows one to pass mechanically from a Harrop
proof of ¥x3yA(x,y) and a term (; to a term t, together with a proof of A(t).t,). To do this,
onc simply applies the thecorem Vx3IyA(x,y) to the value t; (by usc of the V - climination
rule), and normalizes the resulting proof. By (2) above, the output value t, can be extracted
from the next to last step of the normal proof.  Similarly, a closed Harrop proof of
Vx(A(x)VB(x)) provides a uniform way of deciding which of AB holds for any particular
value of x.

16




2.4 Proof normalization

The reduction rules used in Prawitz’s normalization procedure for natural deduction proofs
ar¢ given below. The rules may be applied at any position in a proof tree. ‘That is to say, any
picce of the proof tree which matches the template given on the left hand side of a rule may
be replaced by the appropriate instantiation of the right hand side of the rule, and this
replacement constitutes an  application of the rule.  Notice that cach rule removes -

configuration in which an introduction rule is followed iminediately by an climination rule.

The following notation is used: T[x«t] denotes the result of replacing all free occurences
of the variables x by the terms t in the proof Tl ‘The figure

1
A

i’ : denotes a proof P owhich has A as its cnd-formula.  ‘The figure

I,
[A]
I,

denotes the result of replacing cach open occurence of the assumption A by the proof I,
which has A as its end-formula.  In both the substitution of terms for variables, and the
substitution of proofs for assumptions, it may be nccessary to change the names of variables
bound by the V-introduction and 3J-climination inferences: in this respect, substitution into

proofs is similar to substitution into formulas or into  A-expressions.

A-reduction:

m, I,
A B
ANl— I,
: AAB = A
' A
Ill I'IZ
A B
Al - "z
. AAB => B
B3
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V-reduction:
nl
A [A] [B] Hl
Vi— 1 n, (Al “
AVEB C C = ﬂ2
VE C
C :
m, 4
B (Al [B] I,
VI—— ﬂz H3 [B]
AVB C C = ﬂ3
VE y
C i
D-reduction: t 1
(A) ‘
n2
B I,
I, Jl—— IA]
A A DB = m,
) B
B
Y-reduction:
Il
vl A l'l[[ ]]
xet ;
VxA = Alx et
VE———— = ]
Alxel
J-reduction:
nl
Alx+t] [A] m,
axA C => My[x ey
3k C

The reduction system given by the above reduction rules has the strong normalization
property(Prawitz[1969]).  We have left out the permutation rules, because they are not
necessary  for the execution of proofs.

18




Wprmnges

£

2.5 Proof proccdures

let A = Vxg(x) be a closed non-Harrop formula. Supposc that onc has a mechanical
procedure y which, when given a vector of closed terms t, supplies a closed Harrop proof y(t)
of the formula ¢@(t). Such a procedure will be called a "proof procedure for A”. It turns out
that the availability of such a proof procedure makes it possible to exccute proofs in which A
is stated as a lemma. ‘That is to say, it is not necess:ry for the purposes of proof exccution to
have a particular closed Harrop proof of a non-Harrop universal formula Vxe(x); it is
sufficient to have a method for generating closed Harrop proofs of cach closed instance @) of
P.

We require a proof procedure y for Vxe(x) to supply a proof of ¢(t) only under the
condition that t is closed. Nonctheless, it is convenient to allow a proof procedure to supply
(not necessarily closed) proofs of @) for some vectors t of terms which are not closed, -
depending on circumstances,  ‘Thus we formally define a proof procedure for ¥xe(x) to be a
mechanical procedure y with the following properties. (1) When y is applicd to any vector of
terms (, it rewarns cither the atomic message "FAIL”, or a Harrop proof of ). (2) If tis
composed of closed terms, then y(1) must be a closed proof, and not the message "FAIL".

The use of proot procedures may be integrated into the normalization process by adding
the following rule to the class of reduction rules for proofs given above.

lemma-reduction:

femma: Ve
Vi—o
eV

= ¥V

condition: y is the proof procedure for Ve,
and y(O=FAIL

We shall henceforth use the word "lemma™ as a technical term which denotes  a universal
formula for which a proof procedure has been supplicd. The set of lemmas together with their
associated proof procedures is - like the language [, - a parameter of the definition of the class
of proofs, and of the class of normalization reductions, We assume that the proofs generated

hy proof procedures do not themselves make use of lemimas.

The addition of lemma-reduction to the set of reduction rules docs not interfere with the
strong normalization property,  Also, the various propertics of normal proofs which were given
in section 2.3 continue to hold if we add the restriction that the normal proofs in question be
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closed. Since reductions on proofs pass from closed proofs to closed proofs (scction 2.9), it

follows that closed proofs continuc to have all of the computationally uscful properties
remarked on in scction 2.3.

In the example to be given in section 2.8, only onc lemma is used, namely the lemma Vx
y (x<yVx>y) which states the decidability of numerical inequalitics. ‘I'he proof procedure for
this lemma simply provides the proof

L<y
Vi

L, Vi,
if t, and t, are closed and the formula t;<t, is truc, and the proof

(oL
Vi
(<t V

if t and ty are closed and the formula tl>t2 is true; if 1, or t, contains a free variable, then
"FAIL" is returned.  Proof procedures for formulas of the form Vx(R(x) V TR(x)) with R
atomic play a role in normalization which corresponds to the role played by primitive
predicates in programming languages.

2.6 Reductions on terms of L

Suppose that one has a reduction system <T,R> for the terms of a first order language I..
Then the reductions R can be incorporated into proof normalization simply by by allowing
them to be applied at will to terms which appear in the formulas of proofs. In such a hybrid
reduction system there is little interaction between the reductions on terms and the reductions
on proofs. If both the reduction system for termns and the reduction system for proofs have
the termination property, then so will the hybrid reduction system.  ‘This holds for the

uniquencess property as well, so long as the proof procedures for non-Harrop formulas
commute with term  reductions.

As an example, consider a formulation of first order arithmetic in which terms are built up
from variables, decimal (or binary) notations for natural numbers. and function symbols for
successor, addition and multiplication.  Consider also  the reduction system consisting of  the
single rule which replaces closed numerical terms by decimal notations for their values. In
computing numerical functions by mcans of proof normalization, the usc of this term reduction
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rule allows the addition and multiplication of numbers  to be carried out by cfficient
machinery external to the normalization procedure. In particular, the rule can be implemented
in such a way as to take advantage of the arithmetic hardware possessed by most computers.

Reductions on terms will receive little explicit attention in the rest of this thesis. However,
the presence of a well-behaved reduction system for terms will not affect any of the results
about proof rormalization presented in this chapter or in chapter 3. By "well-bchaved”, we
mean (1) terminating, and (2) valuc-preserving with respect to the model (if any) currently
under consideration Whenever reductions on terms are mentioned, the reader is to assume
that propertics (1) and (2) hold.

2.7 Pruning

The pruning operations are as follows,

m f1, I,
AVB C C = n, if A docs not appear as an
VE C open assumption in 11,
C
n, 1, I,
AVEB C C = n, if B does not appear as an
VE C open assumption in Tl,.
C

There is also a pruning opcration:

n, mn,
AxA C
I => I1, if A docs not appecar as an

C C open assumptioon in 11,

for the J-elimination inference, but it will play no role in the work described in this thesis.
Henceforth when we speak of a "pruning operation” we mecan onc of the two pruning
operations for  V-climination.
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1t should now be clear why the pruning operations arc unlikely to be uscful when applied
to proofs as originally given by pcople. The inferences removed by pruning are redundant,
and one does not expect to find them in proofs which have been constructed in a purposeful
way. However, the example given in the next scction demonstrates that proofs which result
from simple automatic processes may contain such rcdundancies; in particular the process of
specializing a proof by nommalization may introduce redundancics where none had at first
appeared.

The pruning operations may be adjoined to the set of reductions used in normalization.
The resulting reduction system retains the termination property, although the uniqueness
property is lost. ‘This loss of uniqueness is an advantage and not a defect of pruning. Pruning
allows us to reduce proofs to a varicty of cqually satisfactory normal forms, some of which can
be arrived at more quickly than the normal form which results from normalization without
pruning. Thus, by dropping the uniquencess requirement, we gain cfficiency. ‘

28 An cxample

‘The simplest algorithms to which the pruning opcrations arc uscfully applicable are pure
case analysis algorithms - algorithms which can be cxpressed by “plain”  conditional
cxpressions. In what follows, we present a very small case analysis algorithm which is
nonctheless sufficient to illustrate the main points which we wish to make about pruning.
‘These points are: (1) pruning may be used to increase the efficiency of specializations of
algorithms, and (2) conventional descriptions of algorithms do not contain the data necessary
for the improvements in efficiency realizced by pruning.  Consider, then, the following
algorithm - given as a conditional expression - for computing an upper bound for both the
sum and the product of two positive rational numbers x and y:

u(x.y)=if x<l then y+1 clse (if y<1 then x+1 clse 2xy)

We will use the bold faced letter u to  refer both to the algorithm, considered as an
abstract method which can be formalized in various ways, and to the above concrete
conditional term.

Now, suppose that the value .5 is given for y in advance, and that we wish to optimize u
given this additional information. The best we can do, if supplicd only with the conditional
expression as a description of the algorithm, is to symbolically exccute the expression on the
arguments x, .5, The result is:

u(x,.5)=if x<t then LS else x+1
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As will be scen below, the formalization of this upper bound algorithm as a proof allows
u(x,.5) to be automatically simplified, by use of normalization and pruning, to the expression
x+1. The fact that x+1 is an upper bound for both x+.5 and .5x does not depend on x
being less than or cqual to one; this dependency information is contained in the proof, and
allows the automatic removal of the unnccessary case split according to the size of x. Note that
the pruning optimization has the unusual quality that it modifies the function computed by the
expression to which it is applied. However, pruning is guaranteed to preserve the validity ¢
an algorithm for the specification embodied in the end-formula of the proof describing the
H algorithm.  Also note that no transformation on conventional computational descriptions can

have the same effect as pruning. Conventional descriptions contain information only about

the function to be computed, and not about the purpose of the computation, and therefore
. valid transformations on such descriptions must - unlike pruning - preserve cxtensional
meaning.

; The following natural deduction proof formalizes the upper bound algorithm u.  In the
‘ proof and clscwhere W(x,y,z) is used to abbreviate the formula (z 2> x+y) A (z > xy).
} Leaves of the proof tree which are not surrounded by brackets designate axioms or lemmas.
\ Three Harrop axioms ("x<1D¥(xyy+1)", "y <1D¥(x,y,x+1)", and
"ODA(Y>1)D¥(x,y,2xy)") and onc lemma Vx y(x<y V y<x), appcar in the proof. We
assume that the proof procedure described in section 2.5 above has been provided for the
lemma. Also, reduction rules for numerical terms, which will, for example, reduce 2+1 to 3,
arc assumced to be present. (The details of the notation used for rational numbers and of the
reductions which apply to numerical terms arc unimportant for the purposes of the current
discussion.) We will use the capital letter U to designate the proof. '
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[x>1] [y>1]

ANl————
y<1] y<1D¥(x,y,x+1) x1IAYL  (ODA(y>1)D¥(x,y,2xy)
DE SE -
P(x,yx+1)
Vxy(x<yVy<x) W(x,y,2xy)
VE £l k)t
y<lVy>l J2¥(x.y,z) 32¥(x,y,z)
VE
Az¥(x,y,z)
x<L1] x<1D¥(x,y,y+1)
DE
P(xyy+1)
Vxy(x <yVy<x)
VE——M— ar
x<1Vx>1 Az (x.y.7)
VE
Jb(xy,z)

Note that we have neglected to universally quantify the variables x,y so as to arrive at a
proof in the standard V3 form. [n the current simple context it is more convenient for
purposes of exposition to lcave the quantification implicit, and to specify that input values to
the proof viewed as an algorithm be substituted for the free variables. More precisely, in
order to compute an upper bound for the sum and product of two input values v, and v, by

mcans of normalization, v, and v, are first substituted for x,y throughout the proof U, and
then the proof is normalized.

Normalization of simple case analysis proofs such as U makes use only of the V-reduction
rules (section 2.2) and perhaps of proof procedures for lemmas. [In this restricted case,
normalization of proofs corresponds closcly to the exccution of conditional terms by means of
repeated  applications of the reduction  rules:

€0 (if TRUE then t) clse t)) =t
CZ

© (if FALSE then t clse tj) =,
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Ap R . t) = TRUE if R is an atomic relation, t,t, . . . , arc closed
ground terms, and R(t.t, ... t) holds

Ay R(tL, ... t) = FALSE if R is an atomic relation, tt, . . . t are closed
ground terms, and R(t.t, . .. t) does not hold

The two V-reduction rules correspond in their effect to C; and C,, while proof-procedures
for lemmas of the form Vx;.x, . . . x (R(x;.x, . .. x)) V AR(xx; . .. x))) correspond to
the rules A, and Aj.

More specifically, the V-reduction rule takes an V-climination inference
m, n, M,
AVB C C
C

VE

in which the proof 11, of the first premise indicates which onc of A and B is true; degending

on whether it is A or B that holds, cither the sccond "branch™ T1, or the third "branch” T1; of
S the inference is sclected. ‘This corresponds to making use of a binary decision between TRUE
and IFALSE in a conditional expression to sclect a branch of the conditional.

As an example, the reader may wish to carry out the normalization of U when inputs 2
and .5 arc substituted for x and y, respectively.  The normalization of the proof will parallel
the normalization of the term

if 2<1 then S5+1 eclse (if S<I then 241 clse 2(2X.5))

\ T with respect to the reduction rules CC A Ay given above.  The final result of the
“ normatization will be:

1 5<1 D v, S, )
¥(2 5, 3)
I
3HQ, S, 7)

T R———
——

JE

. ——_ s
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‘ ' The valuc returned by this proof is "3".
b
' W In order to specialize the algorithm expressed by U to the case where y is fixed at .5, Sis
? substituted for y throughout the proof, and the result is normalized.  This process yiclds the
Ny following "specialized”  proof:
' ?;
AR
“ ;
A 3
:; } 25
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ST xS1D¥ S, L) 5<1 SLIDW(x, 5, x+1)

DI
Vxy(x<yVy<x) Y(x, .5, 1.5) ¥(x, .5, x+1)
VE——— 1—— El|
E x<1tVviol Az¥(x, .5, z) ¥ (x, .5, 2)

Jev(x, .5, 2)

This proof corresponds to the specialized conditional term, “if x<1 then 1.5 else x+1".
further optimization is applicable to the specialized proof which is not applicable to the
conditional term, namcly pruning. The second minor premise of the V-climination inference
in the specialized proof above does not depend on the assumption x>1, [t is this fact about the
dependency structure of the computation that the proof U, but not the conditional term u,
formalizes, and which allows pruning to take place. ‘The result of applying pruning is:

S<1 SL1ID¥(x, 5, x+1)
W(x, .5, x+1)

Az (x, .5, 2)

D) o

This represents the same algorithim as the conditional term "x+1".

Note that, if comparison is a very cheap operation, and adding is very expensive, then it
might happen that "x+ 1" has an average case cfficiency which is worse than "it x<1 then 1.5
clse x+ 17", ‘This illustrates the gencral point that pruning is not guaranteed to increase
cfficiecncy. However, pruning often  improves the efficiency of an algorithm, and always
reduces its size.  (Size reduction is an important effect of pruning in the experiments on bin-
packing; sec chapter 4)

2.9 Summary: conditions for the computational uscfulness of proofs

In what follows, we cotlect together the various results and conditions which arc relevant
to the uscfulness of proofs for computation, and explicitly describe the relationships between

them. First of all, we have the results about the reduction rules involhved in normalization:

(1a) Syntactic validity of the reduction rules for proofs (given in section 2.4) and of pruning:

cach of these operations yields a well-formed proof when applied to a well-formed proof.

(1b) Preservation of the end-formula: the reduction rules do not modify the end-formula of a
proof.

26
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(1¢) Termination: cvery sequence of applications of reduction rules to a proof terminates.

(1d) Preservation of “closcdness": a reduction rule yiclds a closed proof when applied to a
closed proof.

Sccond there is the result concerning the normal form (scctions 2.3, 2.5):

(2) A normal, closed, Harrop proof of 3IxA has the form,

11
A(D)

IxA(x)

All of the above results arc puarely syntactic in naturc. No mention is made of the
meaning of the formulas which appcar in proofs., However, we have,

(3) The inference rules of natural deduction i-c sound with respeet to the wsual Tarskian
scmantics.

The inference rules are also sound for the intuitionistic notion of validity. As a
conscquence, cach of the remarks made below will continue to hold if the words truth and
validity are taken to refer to the intuitionistic rather than the classical notions.

‘The final result which guarantees the possibility of exccuting proofs of V3 formulas is:
(4 1f 11 is a proof of IxA(x) meeting certain conditions, then the normalization procedure

terminates when applied to T1, and results in a proof having the form,

f
A(t)
31

AxA(x)

where A() is true (in somce intended modcel).

The conditions for the result (4) are: (a) the proof must be closed, (b) all axioms
appearing in the proof must be Harrop formulas, () all axioms appearing in the proof must
be true, and (d) the axioms which appear in proofs generated by proof procedures must be
true.

The proof of result (4) from the various results under (1), (2), (3) above is as follows: If [T is a
proot of IxA(x) wmecting the conditions (a)(d) of (4), then

[

normalization terminates on IT by (l¢),
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° and yiclds a proof in the form,

L1
| A(t)
IxA(x)

by conditions (a)(b) and results (1a),(1b),(1d).(2);

° finally A(t) is true by resuit (3) and conditions (c) anc {d).

We wish to emphasize the degree to which the various results and conditions which come
into the proof of (4) arc independent. In particular, nonc of the results under (1) and (2)
depends in any way on the truth of the axioms which appear in proofs. Thus syntactic and
cemantic  considerations do not intcract and can be cxamined scparately.
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Chapter 3
Efficient Implementation of Operations on Proofs

The normalization and pruning operations described in the last chapter are quite
incfficient if implemented in a literal minded way. The problem is not so much that the
asymplotic cfficiency of an algorithm is degraded if it is formalized as a proof, but rather thar
the clementary operations which are used in normalization are computationally expensive.
IFor example, the substitution of a proof for occurences of an assumption is an cxpensive
opcration, both in time and space.

However, as we will show in this chapter, normalization and pruning can be implemented
in an cfficient manner if an appropriate data structure for proofs is used. Specifically, we
will represent  natural deduction  proofs by terms of an cxtended A-calculus.  The
normalization of such A-caluclus terms can be implemented efficiently by using environments
instead of literal substitutions, as is done in interpreters for A-caleulus based languages such as
L.ISP.

In section 3.1, we describe the connection between the natural deduction formalism and
the typed A-calculus. Emphasis is placed on pure implicational logic, where the connection is
most direct.  In scctions 3.2 - 34 we present a A-calculus based representation for natural
deduction proofs of full predicate logic. Sections 3.5 and 3.6 concern the manner in which
normalization and pruning operations apply to this representation.  In section 3.7 we describe
an additional reduction rule used in the cxperiments of chapter 4 - namely, the permutation
rule for V-elimination. In section 3.8, schematic examples are presented which illustrate the

cffect that pruning can have on the computational efficiency of proofs.

31 Natural deduction and the typed A-calculus

The close structural correspondence between natural deduction proofs and terms of the
typed A-caleulus has been known for some time, and forms the basis for the caleuli of
constructions developed by Scot[1970], Howard[1980], DeBrujin[1970], Martin-1.61{1979)], and
others.  (The calculus which is closest to our own "p-calculus” [section 3.2] is Martin-
Lots[1979] theory of types.) ‘The central idea here is that the sane elementary operations may
be used in (1) constructing and applying general methods of computation, and in (2)
establishing and applying general truths, As an example, consider (a) a term ((x) of the typed
A-caleulus in which (only) the variable x appears free, (b) a proot T1 of a formula B in which

(only) the formula A appears as an open assumption. In both the cases (a) and (b), onc has an

incompletely given construct; t does not denote any particular object, but will do so once a
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; concrete value has been supplied for x and substituted into t; similarly, Tl does not cstablish
; the wruth of B, but will do so when any proof of A is given and substituted for occurences of
the assumption. Thus, in both cases, the incomplete construct in question supplics a gencral ]
method for passing from a value (for the variable x or the assumption A) to a result (of -
{ substitution). Onc may apply the opcration of abstraction to the incomplete construct so as to
]* arrive at a term or proof which describes this general method. 1n case (a) the abstraction is
} written, "Ax..', while in casc (b) thc abstraction is the proof,

!

[f\ll
B

I )
ADB

One also has the converse operation at onc’s disposal, namely, application. If one has a
term t; which describes a general method, and a term t, of the appropriate type, then one
may form the term "t,(t,)", which denotes the result of applying the general method t) 1o the
input t,. Similarly, if onc has a proof [T} of A D B - that is to say, a general method for
getting from proofs of A to proofs of B - and also a particular proof I, of A, then one may
form a proof which denotes the result of applying 1T, to T, ‘That proof is:

nZ I—ll
" A ADB
} b .
| B
| .
: Thus, the constructor "A" which is used in building up A-terms corresponds to the
inference rule DI, while the constructor for application: t,(ty)) corresponds to the inference
rule DE,
.. |
! In both the A-calculus and the formalism of natural deduction proofs, normalization
% i involves applying general methods (as described by abstractions) to given inputs.  Specifically,
. the f-conversion rule for the A-calculus reduces an application ()\x.ll)((,) of an abstraction
i, (Ax.t) to an input t, to the term ty[x«ty]. The corresponding reduction for proofs is just
’ 5, T )
' . implication reduction:
i
\
%
[
J Al
: i,
i B “1
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: ) For natural deduction proofs of pure implicational logic, the correspondence o the typed

A-calculus is exact; any such proof may rewritten as a A-calculus term by (1) replacing
assumptions by variables, (2) replacing cach D-introduction inference by a A-abstraction of

the variable corresponding  to the assumption discharged by the inference, and (3) replacing
D-climinations by applications. This change of notation from proof to  A-caluclus language

results in no loss of information, and furthermore, the  D-reduction operation on proofs is
thereby mapped directly onto the B-conversion operi ion on A-calculus terms. The particulars
of this "change of notation”™ arc as follows.

First we present a formal definition of the typed A-calculus. We start with a collection of
symbols 7,.. .. 7 called the "base types”.  Complex types are built up from the base types
", the inductive definition is: (1) cach 7, is a type; (2)
if 7, p are types then so is "r — p" . The basc types arc intended to denote scts of

71 - - T, by the binary constructor " —

"primitive” objects, while 7 — p is intended to denote the set of mappings from objects of
type 7 to objects of type p. Next, we assume that an infinite set Vo of variables is given for
cach type 7. ‘The clements of V_are called "variables of type 77, V_and Vp are assumed to
be disjoint for distinct types 7 and p. ‘The following inductive clauses define the notion of a

: term of type .

(1) cach variable Vo of type 7 is a term of type 1.

(2) If tis of type 7 and x is a variable of Lpe p then Ax.Uis a term of type p = 7.

(3) It is of type 7 — p and t, is of type 7, then t(y) is a term of type p.

By "purc implicational logic™ is meant the restricted natural deduction system in which
formulas are built up from propositional constants by use of implication alone, and in whose
;* proofs only the DE and DI inferences appear.  The formulas which appear in proofs

correspond to the types of A-terms; a propositional constant P corresponds to a base type T

——

while a formula A 2 B corresponds w a type 7, — T More precisely, we assign to cach

implicational formula A a type 7, according to the following rules. (1} Each propositional
Py constant P is assigned a base type Tp- (2) 16 the formula A has been assigned the type 7,4,
and the formula B has been assigned the type 7, then the formula A D B is assigned the

type 7, — TR
. We now define the map I which rewrites proofs as A-terms.  [Uis assumed to start with
LT . . . . . . .
¥ that variables of appropriate types have been selected for labeling formulas; we assume, that is
‘

to say, that a vnique variable v, of type 7, has been assigned to cach tormula A, T s

.L\‘-‘_ = -

, i detined hy induction on the structure of proofs.  We use the notation I [T = ¢ to indicate
4 that the value of T applied to IT is t.
. .
. '
s
¢ . 3

L
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(1) Base case: It [A] = v,
(That is, [ when applied to a proof which consists simply of an assumption [A] yields the |
variable v, which labels the formula A) ‘
| 2
!
; [/H
B 5
; I J2l——- = Av,. T(IT)
' ADB !
3
n, i,
A ADB
r: b = (TN,
B
For cxample, the proof
. [A] [ADADB)
% DIl
o [A] ADB |
] ok - | J
‘ B ‘
! ] BE— B
' ADRB
Dl —
(ADADB)YDADNE
|
i
when written in A-coleulus notation yields the term
j
i AVia D iy AVa {(VIAD(ADH)](V/\))(VA)}
: ol type (TA"’(’A"'n”f’(’.\_"’n) THADA DB DD}
Notice that, for any prool 1T with endformula A, the type of the A-caluclus notation I'(IT)
for that prool is Ta- Similarly, the types of the subterms of 1'(11) correspond to the
P endformulas of the subproofs from which those subterms arisce,

What we have done so faris to show that natural deduction prools of a restricted system
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can be represented as A-calculus terms, 1t is possible to represent any natural deduction

proof in the samc style, under the condition that appropriate additional contructors are
adjoined to the A-calculus. But before going on to describe the A-calculus formulation of full
predicate calculus, it worthwhile looking more closely at the differences between the proof
notation and the A-calculus notation for proofs of purc implicational logic.

Both pro~fs and A-terms may be regarded as labeled trees:  proof trees are labeled by
formulas and inference rule names, and “"A-trees” by variables (at leaves) and construction
rule names (at interior nodes). From this point of view the difference between proof notation
and A-calulcus notation lics in the choice of information which is explicitly stored on the tree.
In proofs, a formula is stored at every node. In a A-term, the corresponding type information
is associated only with the variables which appear at the leaves of the tree, and must be
computed for other nodes. In proofs, the connection between inference rules and the sets of
assumptions which they discharge must be derived from "type information” (ic formulas on
the tree).  In A-terms, this information is vepresented more explicitly: the discharged

assymptions are labeled by a bound variable,

Suppose that all type information is dropped from a A-term - that the typed variables are
replaced one for one by variables with which no type information is associated.  Then the
resulting untyped A-term represents the "logical structure” of a proof, in the following scnsc.
The underlying tree of the untyped term records a sequence of applications of inference rules
{in X-calculus notation), and also describes the graph of conncetions between inference rules
and the assumptions (represented by variables) which they discharge,  Thus if one were to
take a proof tree, and strip off the formulas which appear on the tree, while retaining a record
of the "logical structure” of the proof, then the result would contain the same information as
an untyped A-expression. (The logical structure of proofs in the current sense is exactly the

structure  preserved by isomorphisms between proofs in the seanse of Statman[1974).)

Now, notice that the normalization reductions of the A-caluclus make no use of type
information; it one wishes to normalize a typed A-calulcus term, one is free to throw away the
types before doing the normalization, and the result will be no different.  Correspondingly,
the sequence of steps taken in the normalization of a proof depends only on the logical
structure” of the proof in the sense of the last paragraph. F'wo proof trees on which different
formulas appear will be subjected to the same sequence of reduction steps by normalization,
so long as the inference rules and the structure of discharges of assumptions on the two trees

are the same.

When  we consider A-calculus notation for arbitrary natural deduction proofs, it will be
scen that once again type information is nol nccessary for normalization.  Furthermore,
untyped terms contain the desired output of computations, and can be subjected to pruning.
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That is to say, the "logical structure” of a proof as cxpressed by an untyped A-term is
sufficient not only to determine the form of the normalization sequence, but also o determine
the output value which is extracted from a normal proof, and to allow pruning to take place.
Thus, for practical purposcs, it is always sufficient to deal with the untyped variants of proofs.

The following remarks summarize the intercst of using a A-calculus based notation for
proofs.

(1) The untyped variunt of the A-calculus notation for a proof contains exactly that

information which is relevant to the execution and pruning of the proof.

(2) An efficient technology exists for normalization of (proofs expressed as) A-calculus

terms.

3.2 The p-calculus

In order to arrive at a notation of the kind discussed in the last section which is adequate
for arbitrary natural deduction proofs, new constructors for the inference rules other than D-
introduction and D-climination arc added to the A-calculus, namely : (1) pairing (for A-
introduction), (2) unpairing (for A-climination), (3) Ol; and Ol, (for V-introduction), (3) OE
(for V-climination), (4) El (for 3J-introduction), and (5) EE (for 3-climination). V-
introduction and V-climination arc treated using the "old™ constructors A-abstraction and
application.  The extended system just described will be referred to as the "p-calculus”.

We will have occasion to deal with both a typed and an untyped variant of the p-calculus.
The relationship between proofs, typed terms, and untyped terms is the same for the p-
caleulus as it is for the "plain” A-calculus. Namely, a typed term of the p-calculus constitutes
a complete representation of a proof, while an untyped term serves to express only that

information in a proof which is nceded for execution and pruning.

The "types™ which will be assigned to terms of the typed p-calculus will not be types in
the ordinary sense; rather, they will be formulas of first order logic. Ihe connection between
formulas and types given in the last section for implicational logic can be extended to the p-
calculus treatment of full first order logic: it is possible to assign  types of the ordinary kind
(ic classes of functions) to arbitrary first order formulas, and to assign lunctions to p-calculus
terms, in such a way that the two assignments are consistent. Specifically, a term of "type” ¢
will denote a function which actually belongs (o the wype assigned to @, However, none of

the results which will concern us here depend on the details of such assignments, or indeed on
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such assignments being possible at all.  The reader will find further information on formulas
as types in Scott[1970], and Howard[1980].

We define the untyped variant of the p-calculus as follows. The starting point for the
definition is (1) an infinitc set V of variables, (2) a first order language L, as described in
section 2.1, (3) the special symbol #, and (4) a sct 1D of "defined symbols™ with associated
aritics. It is assumced that the variables V and the vaviables of 1. are distinct. The variables of
1. arc called "object variables”, while the variables in V are called "proof variables”. The
defined symbols D will be used as labels of proof procedures for lemmas, and in recursive
definitions (scction 3.4) as well, The letters "a, 87, f, g, h” and "x, y, z" will be used to
desighate proof variables, defined symbols, and object variables, respectively. The p-calculus

P, over 1, then, is defined by the following inductive clauses. The phrase "p-term” is taken
to designate an clement of P,

(1) The terms and atomic formulas of 1. arc p-terms (scc scction 2.1).

(2) ‘The proof variables V arc p-terms,

(3) 'The special constant # is a p-term.

(4) The defined symbols D are p-terms.

(4) If (¢, arc p-terms, then so is <t,,t,> [pairing].

(5) If t is a p-terms then so are wl(l), 'nz(t) [unpairing].

(6) If a is a variable, and t is a p-term, then Aa.t is a p-term. [proof-abstraction]

N ir X| Xy ... X oare variables, and t is a p-term, then )\x1 Xy ... Xxpt is a p-term.
[object-abstraction]

(8) If tj.t, arc p-terms then so is t(t)). [Application]
(9 If a is a proof variable, and tt,t; arc p-terms then so is OF(autby.ty)

(10) If a is a proof variable, x an object variable, and L.ty arc p-terms, then Hli(x.u,(l.tz)
is a p-term.
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Notc that, in the case of object variables, we have chosen to introduce A-abstraction of
arbitrary arity as a primitive constructor rather than using "Currying”.  This simplifics the
correspondence between A-abstraction and V-introduction.  Note that )\xl Xy ... X tis not
an abbreviation for Ax; Ax, . . Ax .t

The above dcfinition is given in terms of ordinary syntax suitable for written
presentation.  However, in our discussions of formal operations on terms, we will treat p-
calculus terms as labeled trees, as was done in the discussion of the A-calculus in the last
section.

There are several ways in which one can go about representing terms by labeled trees,
and the details of how this is done are not of any fundamental importance, However, in order
to avoid confusion later, it is worthwhile deciding here on a specific representation. That
representation is as follows. “The relationship between a term and its nmnediate subterms is
coded directly in the structure of the tree - cach node represents a term, and the sons of the
node represent the immediate subterms of that term.  Teal nodes are labeled by atomic
symbols - proof variables, #, and symbols of 1. Fach noo-leat node is labeled by the
constructor used for arriving at the current term from its immeediate subterms, and by the
variables which are bound by that constructor.  "The constructor which appears at the root
node of any term is reterred to as the "main constructor”™ of that term. “The constructors are:
PAIR, APPLY, . T Oll. Ot,. OF, A FLEED In the typed variant of the p-calculus,
nodes may be fabeled by formutas as well, Note that the variables bownd by a coastructor -
for example the "x” in Ax.t or the "o and "x" in EH(x.at.l) - are not regarded as
subterms, but as a part of the information with which nodes of the tree are labeled.

In what follows, the notation "A(B)" for application is used in three different ways, (1)
When A and B oare p-calcalus terms, A(B) denotes the p-term whose main constructor is
APPLY and whose immediate subterms are A and B, (2) When A is a constructor (such as
'”l) and B is a p-term, then A(B) designates the resudt of applying the constructor to the term
B, that is to say, A(B) designates the p-term whose main constructor is A and whose
immediate subterm is B (1) 1 A is an operation on p-terms and B is a p-term, then A(B) will
denote the result of applying A to B. Thus the notation A(B) serves both as an external
syntax for a formal p-tevst whose main constructor is APPLY, and to denote the “actual”
application of an operation to an object. This is an ambiguity of the mention/use kind.

However, in cach of the cases (1)-(3) context is suflicient o resobve the ambiguity.

In defining the typed variant of the p-caleulus, it is most coavenient o proceed by
assigning (ypes (ic formulas)  not o variables, but rather to the nodes of p-terms. In

particular, a fyped p-term is o p-term some oft whose nodes have been fabeled by formulas

according o certain rules. The formula assigned to a given node represents the type of the
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subterm rooted at that node (or, in proof language, the end-formula of the subproof rooted at
the node). We follow traditional terminology, and refer to a typed p-term as a construction.
The words "term” and “p-term” will be used to denote untyped p-terms.

| Before describing the rules by which constructions arc to be built up, we need to define
the notions of bound and free occurences of variables, and of substitution, as they apply to
; constructions.  We uvsc the phrase "labeled p-term” to refer to a p-term to whose nodes
formulas have been assigned in an arbitrary manner (in constrast to a lyped p-ternn or
: construction, whose labeling must follow certain rules).

Let t be an labeled p-term. An occurence of a variable in 1 is an occurence of the variable
either as a leaf of the p-term, or an occurence of the variable in one of the formulas assigned
to the nodes of t. "The notion of a bound occurence of a variable in a labeled p-term is
defined below. ‘The definition follows standard lines, but includes new clauses for the
constructors Eb and OF. (T'he new clauses cxpress the fact that OF and EE, like A, V and 3,
have the effect of binding variables.)

(1) Each occurence of the variable a in t, or t; (but not in t1) is a bound occurence of a
in the terms (a) Ol-i(a.l,.tz,tl), (b) EE(xat ) (©) }\a.tz.

(2) Each occurence of the variable x in 4 is a bound occurence of x in (a) F,I'I(x,a.tl.tz),
and in (b} Ay, if x is among the variables y.

e ——— s = AP m 0™

(2) Each occurence of the variable x in the formula @ is a bound occurence of x in (a)
dxep, and in (b) Vy.@ if x is ainong the variables y.

(4) 1f ¢, is a subterm of t,, cach occurence of a variable in t, which is bound in t; is also
bound in >

Any variable occurence which is not specified as bound by the above three rules is a free
occurence of the variable.

e Ay e PP ——

The clementary operations on terms - notably the renaming of bound variables and
substitution - are defined in exactly the same way for the p-calculus (typcd or untyped) as
they arc for the plin A-calculus. One only has to take the new variable-binding constructors
OF and EE into account in the obvious way.

For example, the definition of e-conversion (renaming of one bound variable) includes
the following clause for OFE: Suppose that the terms tz',(j' result from the terms tty by the
replacement of all {ree occurences of the variable a by the variable 8. Suppose further that g
does not itself oceur free in cither t, or ty. Then one may replace the term OF(a.t;.tyty) by
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the term OF.(u,tl.tZ'.tl’). The other clauses for a-conversion are the standard clause for A, and
two clauses for EE - one for renaming the object variable, and onc for renaming the proof
variable.

: 'The operation of substitution may be defined as follows: in order to substitute the term t,
5 for the variable x in t;, first rename all bound variables which appear in t; in such a way that
' no free variable of 4 has a bound occurence in t,. (This can be donc by a scries of a-
' ; conversions.) ‘Then replace all free occurences of x in t; by t,. "The result of this operation
will be denoted by, "yfx « L,]". Evidently the above definition docs not fully specify the
term which results from substitution because it leaves open the particular choice of variables

which arc used in renaming. However, the result is unigquely defined modulo renaming of
bound variables. We shall henceforth regard as identical terms which differ only in the names
of their bound variables (ic, terms which can be transformed into cach other by means of a-
CONnversions).

The notation ¢ft, 2] designates the result of substituting t, for some occurences Cotyin
) t;- Whenever this notation is used, it is assumed that no bound variable of t; appcars free in
} t;. (Thus, no free variable of an occurence of ty within t; is bound by a constructor of ;)
! As in the case of substitution of wcrms for variables, the substitution of terms for terms
| imolves  changing of bound variable names in t; so as to avoid conflicts with the variables
{ which appear free in ). Finally, t[x«t,] denotes the result of substituting the terms  t, for
1 the variables  x in parallel.
!

We are now in a position to detine the notion of a typed p-term, or construction. A
construction is a labeled p-term which is built up according to the rules given below and
which in addition satisfies the following general restrictions: (1) Every occurence of a proof

i variable in a construction ¢ must be labeled by a formula. (2) Suppose that U is any subterm

of the construction 1, and that « is a proof variable which occurs free in . ‘Then every free

occurence of a in U must be labeled by the same formuda.

The rules for building up constructions given below correspond exactly to the inference

- —— e

\ rules of naturar deduction. The name of the inference rule corresponding to cach rule is
K given in brackets next to the rule. We make use of the notation t1F to indicate a construction
e whose root is labeled by the formula 150 (Other nodes of t1 than the root may be labeled by
ot formulas as well). Most of the rules are given in the notation "t:F | GiF, ool = cF

meaning that if ¢, G, oo Gl are constructions then so - is G

o As a paramcter of the definition given below, we assume that a collection of proof
! ? procedures vy, . . .y, has been given for femmas F)F,, .. F L In the current context - .
. that is to say. in the context of a discussion of  constructions - a proof procedure y for a

R formula Vxl,x2 . xkl-'(xl.x2 cee X)) is o procedure which, when given terms Uty - by of 1.,

~,
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either returns “"FAIL", or clse supplies a construction LF(t,.L, . . . t,), where the construction t
does not itsclf make usc of any lemmas. Further, we requirc that y(t).t, . . . t,) be a closed
construction whenever t,t, . ..t are closcd. Thus a proof procedure in the context of
constructions plays the same role as the proof procedures for natural deduction proofs
discussed in section 2.5. We assume also that names f.f,, . . . f of appropriatc arities from
the set DD of defined symbols (sce page 34) have been assigned as labels of the proof

procedures y,.Y5 . . . Yq

The clauses of the inductive definition of the notion of a construction arc as follows.
Note that we have required that the axioms which appear in constructions be Harrop formulas
(clause 2 below). Henccforward, we will also assume that the proofs which we consider
contain only Harrop axioms, since proofs which do not satisfy this requirement arc not in any
casc of much computational interest.

(1) a:A is a construction for any proof variable a and any formula A [assumption]).
() If F is any Harrop formula, then #:F is a construction. [axiom]

(3) If f labels a proof procedure for the lemma A = Vx,.x, ... x,9, then f:A is a
construction.  [lemma]

@ 1A, B = GL2D>AAB [A-introduction]
(5) (@ GAAB = a,(:A (b)) LAAB = =, ():B [A-climination]
6) (@ A = Ol ():AVE (b) B = OLW):AVB [V-introduction]

(M) Let t;:AVB, 1,:C, t;:C be constructions, and lct a be a proof variablc. Supposc that
free occurences of a in t, arc assigned the formula A, and that frec occurences of a in
ty arc assigned the formula B. Then OF(a.t;.tyt4):C is a construction. [V -climination]

(8) l.et t:B be a construction in which free occurences of the proof variable a are
assigned the formula A, Then (Aa.t):ADB is a construction. [D-introduction]

9 t:ADB, A = t(t)):B  [D-climination]

(10) let A be a construction with the property that no variable of the vector of

variables x appears free in any of the formulas assigned to the free proof variables of t.
Then (Ax.t):VxA is a construction,  [V-introduction]

(1) t:VXA(X) => t(L):Alx«t,] where t, is any vector of terms of L. [V-climination]

L




(12) :Alxey] = EI(t;,0):3xA (3-introduction)

(13) Let t;:3xA, and t,:C be constructions satisfying the following restrictions. (a) Free
occurences of the proof variable a in t, are assigned the formula A. (b) Let F be any
formula which is assigned to a free proof variable of t, other than a. Then x may not
appear free in F. (c) The variable x may not appear freec in C. Then EE(x,a,t,,t,):C is a
construction.  [3-climination]

Notc that, since we do not distinguish between formulas which differ only in the names
of their bound variables, the identity of the variables bound by A and the variables bound by
V in "(Ax.t):VxA" of rule (9) is a matter notational convcnience and not a requirement.
That is to say, for any ncw tuple of variables y, "Ay(tx«y]):VxA" and "(Ax.t):¥xA" are
equivalent labeled p-terms and have cqual standing as well formed constructions. A similar
remark applics to the construction of rule (11).

Arbitrary natural deduction proofs can be r written as constructions by a straight-forward
extension of the methods which apply to proofs of pure implicational logic. Specifically, one
starts out with an assignment of proof variables «, to formulas A. Then the map T from
proofs to constructions is dcfined by induction on the structure of proofs just as it was in
section 3.1. What T does is (1) replace cach assumption [A] by the variable a, assigned to A,
(2) replace axioms by the special constant #, (3) replace lemmas by the defined symbols
which label their proof procedures, (3) replace cach inference rule by the corresponding
constructor, and finally (4) label each nodc of the p-term by the formula which occurs at the
corresponding node of the proof trce. The passage in the other direction is cven more
straight-pforward: to go from a construction to a natural deduction proof one kceps the
formulas and constructors which label the tree, but the proof variables are thrown away. The
clauses of the inductive definition of I"arc given below, using the notation ' IT = (;F to
indicate that the valuc of T' applied to IT is the construction tF.

(1) Basc case: T: [A] = a,:A

(That is, [ when applicd to a proof which consists simply of an assumption [A] yiclds the
construction a,:A.)

(2) Basc casc: I'' A = #:A, wherc A is an axiom.

(T when applicd to a proof which consists of an axiom A yields the construction #:A.)




n‘*"ﬁ"f T T T —— — T T T T T T T T

(3) Basc casc: I': A => f, where A is a lcmma, and where f labels a proof procedure for the
5 formula F. (Evidently, it is possible - by virtue of the cffective character of T itself - to
convert any natural deduction style proof procedure into a construction style proof procedure.)

4)
n
A B
r Al = <T(IT)).r(I,)>:AAB
‘ AAB
, (52)
| n
) AAB
| r: K = # (TD):A
| A
’ (5b)
n
AAB
I AF—— = w(F(I):B
B
(6a)
n
A
r: Vi—— = O1,(F(IM):AVB
AVEB
(6b)
b
r: Vi———ron8 = Ol(I'(M):AVB
AVEB
)
n m 1
AVEB C .
r VE = OE. (), M([M)a,«Bl. K a,+BD:C
where the "new” variable 8 docs not occur .
frce in [(I1,) or in r(11y).
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‘The construction notation U for the upper bound proot U of section 2.8 is given below

as an cxample,

4

= Av, T(T:A D B |
i
j

= (I(T XT(I1,)):B

= Ax.T(M):VxA

= (CUNXY:Alx 1]

= El(e. I(1)): IxA

- EE(x.a, T T(TL)):C

o | |
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OFE(a,l . ESSD{(x,1),
El(y +1,#(a))
e OF(B,LESSIX(y.1),
: El(x +1,#(8)).
ElQ2xy, # (Ka.8>)))): 32¥(x,y,2)

In the abuove presentation of U, only the root node is explicitly labeled by a formula; we

have ncglected to specify the formulas which are attached to the various subterms of the

construction. A complete description of the construction is as follows, where the formula F

which labels cach subterm t is specified using the notation "tF".

OE(a,{ LESSD:Vxy(x <y Vy<)Hx, 1):x <1V L,

El(y + 1.{#:x<1D¥(x.y,y + DHB:x <1 W(x,y,y + 1)):3z¥(x,y,2)
OE(B{LESSD:Vxy(x <yVy<)}y.1):y<1Vy>l,
El(x+ 1L{ #:y<1D¥(x.yx+ DHB:y < D:W(x.y.x + 1)) 323¥(x,y,2),
RIQxy, (# 0O DA DD¥(x,y,2xy))

Ka:{xO1LB AV POTAYI W (x,y, 2xy)))): J7¥(x,y,7)
3.3 Substitution

The effect of the principle of "substitution of equals for equals" can be obtained by the
use of a scheme of Harrop axioms (as was done for FALSE - climination; sce section 2.1).
However, it is more convenient for our purposes to include the fotlowing inference rule which
expresses this principle  directly.

Substitution:

L=t A L=t A
Al o) Alt, o]

On the p-calculus side, a new constructor: SB(t.ty) is added, and the clauses
I, n,

SB——

SB(C(IT,).U(TT)):Alt, Boty]
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I, I,
4=t A
SB——— = SB(T(TT,).I(1N,)):Alt, 2t}
Aly, ]

are added to the definition of the map I' from natural deduction proofs to constructions.

3.4 Recursive constructions

Recursive dcfinitions of functions arc commonly used for describing computational
methods, both in mathematics, and in automatic computation. Most programming languages
allow defintion by recursion, and in purcly applicative languages, such as pure LISP
[McCarthy et al, 1962), the principal constructors used in building up programs are just
function application, and recursive definition.

We too will make use of dcfinition by recursion.  Specifically, we will allow (mu:aally)
recursive definitions of the form:

fl “ 4A,
f2 - tzzA2

wherc the {f;} arc defined symbols, and the {t} are constructions in which f, ... f may
appear, and the {A;} arc universal formulas.  ‘The following restrictions apply: (1) cach
construction t;:A; must be closed, and (2) cach occurence of a defined name f in any ; must
have A; as its attached formula.

Putting the matter more formally, we implement definitions by recursion in the following
way. A paramcter of the dctinition of the class of constructions is the sct of assignments
made to defined symbols.  Until now, those assignments have been proof procedures with
appropriate charactersistics.  Henceforth, we will allow constructions as well as  proof
procedures to be assigned as values of defined symbols, subject (o the restrictions described in
the last paragraph.  Of course, cach defined symbol may be assigned only onc value, whether
a proof procedure or a construction. We will refer to a sct of assignments of constructions
and proof procedures to defined symbols as a "system of definitions” or a "system of
lemmas”.  The system of definitions which is in cffect for the purposes of any particular

discussion will  be referred to as the "current system of definitions™,




If onc switches back from the terminology of constructions to that of natural deduction

proofs, then the “recursive proofs” which correspond to recursive constructions are proofs
which use their own cnd-formulas as lemmas. An example of a computationally useful
recursive proof is as follows.

! Let pred denote the predecessor function on natural numbers (it does not matter what
value is chosen for pred(0)). Then onc formulation of the induction principle for the formula
e(x) is as follows:

IND,,: Vx( {p(0) A Yy (y#0 A g(pred y)) D p(y))} D ¢(x))

The following is a a recursive proof of IND - a proof in which IND itself is used as a
lemma. Wce will nced an abbreviation. lLet H be the formula: '

Vy (y20 A @(pred y)) D (y))
Then INDq, is just Vx(p(0) A H D @(x)). The proof, then, is as follows.

IND@:Vx( p(O)AH D p(x))

VE
. [POAH]  PO)AHDp(pred x) [0 A H)
! DE AE
{ [ A H]  [x#0] @(pred x) H
= AE Al VE
Vxy(x=yVx#y) [x=0] ¢(0) xz0A@(pred x) x#0Ap(pred x) D p(x)
VE— SR DL
. x=0V x#0 p(x) o(x)
, It VE~
’3 @(x) {
’ : Dl

P(MAH D p(x)

Vx(p(0) A H D o)

g -

‘
't
" In the notation of constructions, the above proof of lNI)(p looks like this:
' INI)‘p = MAa.OB(B.EQD(x,0),

o SB(B.m (),

R {(m(a))pred MHCBNDg(pred x))a)>))

where 1'QD is a proof procedure for the formula Vxy(x=yVx#y); EQD rcturns the
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construction, "OI (#:t,=t):t, =,V #4," if t; and "2 are closed terms with t =t, and
"OL(#:#L) =L,V #L" if t and t, are closed terms with t;,#t,.

o

The uscfulness of this construction derives from the fact that the value to which the

lemma IND is applicd is the predecessor of the value to which the theorem [IND is applied.

! The construction may be cxccuted when applied to a particular numeral in the same way that

| a recursively defined function is run: by repcated replacements of the defined name IND by

! its definition. As a conscquence of the fact that the value passed to succesive recursive calls

: to IND is constantly decreasing, this mode of execution will terminate (under the right

F reduction order), yielding a construction in which no reference to IND any longer appears.
The details of this process will be discussed later (scction 3.5).

A somcwhat simpler way of achicving the cffect of induction by the use of recursive
proofs is as follows. Supposc that one has a proof IT; of ¢(0), and a proof I1, of Vy (y#0 A
¢(pred y)) D ¢(y)). Then the following recursive proof P(p of ¥xg(x) is adequate to the
same computational purposcs as is the above proof of IND

v
Po:YA( p(x)
VE—mM n,
(x20]  @(pred x) Vy(y#0 A g(pred y) D ¢(y))
n, Al VE
Vxy(x=yVx=y) [x=0] ¢(0) x#0 Agp(pred x) x20 Ag(pred x) D ¢(x)
i VE SB DE
‘ x=0V x#0 p(x) o(x)
VE
P(x)
Yl——m———
Vxe(x)

The construction notation for P(p is as follows, where 4 is the construction notation for
M, and t, thc construction notation for M,

P‘P = Ax.OE(a,EQD(x,0),
SB(a.t,),
(4 (<P (pred x)))

Supposc that a system S of lemmas has the property that every axiom in sight is truc in a
particular model M. That is to say, we suppose that all the axioms which appear in
constructions of S, and all axioms which appear in the constructions gencrated by proof

procedurces of S, arc truc in M, Note that these conditions are still not sufficient to guarantee
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that constructions built up from lemmas of S will have end-fonmulas which arc truc in M.
The reason for this is that constructions can take the form of circular arguments. Consider,
for cxample, recursively defined construction : "f:VxA « f:V¥xA", which of course provides
no cvidence at all for the truth of VxA. In order to verify the truth of the end-formula of a
construction, or the correctness of the computation described by the construction, it is not
sufficicnt to verify the axioms which are used (directly or indircctly) by the construction. It is
also nccessary o verify the truth of the lemmas s hich are used, even though (recursive)
constructions for those lemmas have been supplicd.

3.5 Operations on constructions

In this scction, the various clementary operations which are involved in the computational
use of constructions arc described. ‘These operations are: (a) the normalization reductions, and -
(b) the pruning operations,  ‘These operations are arrived at by direct translation into
construction notation of the operations on natural deduction proofs given in sections 2.4, 2.7,

A-reduction:

wl(<ll:A.tz:B>:A/\B):A = (A
I w2(<l‘:A,t2:l¥>:A/\l¥):B =

; V-reduction:

Oli(o':.Oll(tl:/\):z\vB.tz:C.tJZC):C = blawy}:C
| ‘ Ol(a. 011 BEAV R, Cy:C).C = t3[a‘-ll]:C
E ‘ I-reduction:

’ {Aa(t:B):ADBH(,:A) (B = Ylaet)]:B

- R

V-reduction:

LA AN VA KL) (A = LlxenlAlx )

J-reduction:

e i

FEE BN G A): 3xA)LC) = (tlx et Diat,):C




Lemma-reduction:
{(E:VXAXDY:Alx ) = Y(O:Alx+

condition: f has been assigned the proof procedure y, and y()=FAILL.
{(f:VxA)D}:Alx ] = U@:Alx«t

condition: t is closcd, and f has becn assigned thc construction .
In addition, a reduction rule for the ncw substitution inference of section 3.3 is nceded:
SB(t,:(ty =t LAl e ] Alx ] = LAk «t]

condition: t, may not contain frec proof variables.

The effect of SB-reduction is to take the construction t, and simply replace the formula
Alx«ty] attached to its root by A[x«t,], and thus dispensing with the SB inference rule.
Evidently, if ty and t, arc distinct terms, then the result of applying SB-reduction to a
construction will be a labcled p-term which is no longer a construction. However, if the
axioms which appear in ¢ arc correct (in some particular model) then t; and t, will denote the
same object in the model, and in this sense the formulas A and A have the same meaning. In
fact, nothing will go wrong if we fail to distinguish between formulas which differ only by
substitution of one term of [. by another which denotes the same object. More formally,
relative to any particular model, we may cxpand the class of constructions to include all of
those labeled p-terms which can be arrived at by substitution of “cquals for cquals” in
formulas. This mars the uniformity of our trcatment in that introduces model-theoretic
considerations into the defintion of the notion of a construction, whercas that notion has been
purcly syntactic until now. However, as we have said, nonc of our results are affected.

The pruning reductions arc as follows:
OE(a,t:AVBt:Cty:C) :C = 4,:C
Condition: a does not appear free in 2,
OF(a,t AV BL,:Ct:C) :C => t;:C

Condition: a does not appear frec in t.
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Note that each of the operations described in this section applics to the untyped part of a
construction indcpendently of the attached formulas, in the following sense. Let t:F be a
construction, and let t':F be the result of applying one of the operations listed above to t:F.
Further, let untyp(r) for any construction r denotc the untyped p-term which forms the
“skeleton” of r - that is to say, untyp(r) is arrived at from r by removing the formulas which
label the nodes of r. Then untyp(t) can be computed from untyp(t) alone. As was
mentioned eca.icr in the context of the typed A-calculus, the consequence of this observation
for computational purposes is that the execution and pruning of a construction may be carried
out by treating only its untyped part; the attached formulas need not be carried around in the
course of the computation. In order to clarify the manner in which the various operations
apply to untyped p-terms, we list those operations below with the type information left out.

A-reduction:
(<L) = 4
7, (<t},1,0) ’ = L

V -reduction:

OE(a, 01 (t)).t,.t5) = Lla«t)
OF(a,01,(t)).t,.49) = Glaet)]
D-reduction:

(At Xty = yla«ty]

V-reduction:

Ax L) = yixey)
3-reduction:

EE(x,a, BI(t L)) = (tlx ey Dact)]
l.emma-reduction:

v = Y(®

condition: t is closed, and f has been assigned the proof procedure y.
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3.6

Y = 40
condition: t is closed, and f has been assigned the construction t'.
SB-reduction:
SB(t, ) - b
condition: t, docs not contain frce proof variables.
Pruning:
OE(a.tl.tz.tQ = L
Condition: a docs not appear free in t,.
OF(avt) .ty 1)) =

Condition: a docs not appear free in t;

Results about constructions

As was cmphasized in section 2.9 in the context of natural deduction proofs, the results

and conditions which arc relevant to the computational use of proof normalization are of

several independent kinds. Specifically, there are results concerning

(1) the syntactic soundness of the normalization reductions,
{2) the scmantic soundness of proofs,
(3) special propertics of proofs in normal form, and finally,

(4) the termination of reduction scquences.

The conditions upon which the results in one catagory depend, and the proofs of those

results, are for the most part unrelated to the conditions and proofs which come up in the
other catagories.  In sections 2.3 and 2.9, results about normalization were stated without proof
as they apply to natural deduction proofs. In this section, we will prove or sketch proofs of

the

corresponding results which apply to  constructions.
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Let R be the sct of all the clementary operations on constructions which were described
in the last scction, We have:

! Proposition 1: Each of the operations of R yields a construction when applied to a
h | construction.

Proposition 2: Each of the operations of R yiclds a closed construction when applied to a
closed construction,

Proposition 3: Each of the opcrations R preserves the end-formula of the construction to
which it is applicd.

The above propositions can be verified by inspection.

Definition: A construction t:F is a valid construction rclative to a model M if the
universa! closure of cach axiom and each lemma which appears in t is true in M

Definition: A system of lemmas is valid relative to M if cach construction which appears
in the system is valid relative to M, and if cach proof proccdure y which appears in the
system returns only valid constructions.

—— ..

Proposition 4 (Soundness): Supposc that t:F is a construction with free proof variables
a; ... a, and free object variables x; . . . x,. Supposc further that tF is valid relative to M.
Let A, ... A, be the formulas which arc attached to the free proof variables a, . . . a
Then  Vxp xy o . o X, C(Ap A Ay L0 0 A) D) is true in M.

n

) . Proof: Induction on the structure of constructions; cach of the rules by which
constructions arc built up preserves soundncss.

.
e

: : Proposition 5: Suppose that (a) t:F is valid relative to M, and (b) the current system of
[ lemmas is valid rclative to M. Then the result of applying any of the operations of section
' 35 to tIF is a valid construction.

-

Proof: Obscrve that, with the exception of the lemma-reduction operation, all opcrations
in R modify thc axioms appearing in constructions only by instantiating free variables which
appcar in thosc axioms. The proposition follows.

Detinition: We classify constructors as cither “introduction constructors” or “climination

,, constructors” according to their correspondence to the introduction rules and climination rules
. i of natural deduction.  The introduction constructors are PAIR, OI;, OI,, A-ABSTRACTION,
| ’ and EL and the climination constructors are w1, #2, OF, APPLY, EE, and SB. (SB
v "climinates” an cquation.)
‘ A' £
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Theorem 3.1: Let t:F be a closed construction in normal form where F is not a Harrop
formula. Then either t:F is a lemma (ic has the form f:F where f is a defined symbol), or the
main constructor of t is an introduction constructor.

Proof: By induction on the structure of proofs. Suppose that t:F is a normal closed
construction where F is not Harrop. Basc case: If t is an "atomic” construction consisting of
onc node, then it must be either (1) an assumption, (2) a Harrop axiom, (3) a lemma fF.
Cases (1) and (2) arc impossible: (1) because t is closed, (2) because is F not a Harrop
formula. Thus case (3) must hold, and so the base of the induction is verified. Furthermore
we have verified that any t:F which is not a lemma (and which satistics the hypothescs of the
thcorem) must have a "main” constructor, whether it be an introduction contructor or an
climination constructor, since t cannot be atomic.  For the induction step, we assume that the
proposition holds for cach sub-construction of t:F, and then derive a contradiction from the
supposition that the main constructor of t is an climination constructor. ‘There are 6 cases to
consider. Suppose that the main constructor of 1 is (1) 7, (2) m,, (3) OFE, (4) APPLY, (5) EE,
(6) SB.  ‘Then tkF has one of the forms (1) & (t:FAG)F (2) #7,(t:GAF):F (3)
OF(at :AVBLIFLIFYE (4) (1:GOF)1,:G):F or (1:VxAXL):Alx<t,] (5) EBE(t:3xA L, FYF
(6) SB(t;.t,):F. In casc (6) t; is closed, and therefore SB reduction can be applicd, contrary to
the hypothesis that t is in normal form. In all other cases, t; is closed and has a non-Harrop
end-formula, so the induction hypothesis applics. Thus t; is cither » lemma, or clse has an
introduction constructor as its main constructor. 1f t; is a lemma, then t must have the form
(L), where t, is closed, and thus lemma-reduction could have been applied, contrary to the
hypothesis that t is normal. If t; has an introduction constructor as its main constructor, then,
by virtue of the form of the end-formula of (,. that main constructor must be (1) PAIR, (2)
PAIR, (3) Ol or OL,, () A-ABSTRACTION. (5) EL But then one of the reduction rules
(1) A-reduction, (2) A-reduction, (3) V-reduction, (4) D-reduction or ¥Y-reduction, (5) 3-
reduction,  can be applied to t, again contrary to the hypothesis that t is in normal form,

Corollary 1: If t:3xA is closed and normal, then t has the form ERUGA e D:3xALIF
in addition, t is valid relative to M, then Alt)) holds in M.

Corollary 2: If CAVB is closed, and normal, then t has one of the forms Ol (t;:A):AVB,
or Olz(tlzll):AVB. If, in addition, t is valid relative to M, then, in the first case, A holds in
M, and in the seccond case B holds in M.

The tollowing corollary of the various results given above establishes the usefulness of
normalization for computational purposes, and the conditions for the partial correctness of a

construction regarded as a computational  description.

Corollary 3: Let 1,:¥Vx3yg(x.y) be a closed construction and let ty be a closed term of L.
Suppose that some sequence  of applications of operations of R to the construction
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t,(t)):3yep(t,y) yields a normal construction t'. ‘Then t has the form El(t,t,):3yg(t,y).
Further, if ¢ is valid relative to a modcl M, and the current system of lemmas is valid relative
to M, then @(tyty) is truc in M.

Corollary 3 shows that normalization constitutes a satisfactory mecans for cxecuting a
construction t,:¥x3ye(x,y) in thc sensc that if one "puts in" a value t, for x, and if
normalization terminates, then a value ty for y comes out. In addition, the corollary shows
that t; regarded as a program is partially correct with respect to the input-output specification
@. under the condition that all lemmas and axioms in sight are true. Thus the verification of
the partial correctness of an algorithm cxpressed by a construction is a matter of establishing
the truth of formulas which appcar explicitly in the construction and in its system of lemmas,
As a consequence, the passage from a construction to its "verfication conditions” is simpler for
constructions than for computational descriptions of a more conventional kind.

We turn now to the question of termination,

Definition: A construction UF has the “termination property” if cvery scquence of
applications of operations in R to t is finite. That is, there is no infinite sequence of terms
t) U . . . such that t; =t and such that t, | arises from { by the application of onc of the
reductions of R,

Theorem 3.2 (Fermination): Supposce that 1} is a recursion-free construction in in the
sense that all defined symbols which appear in t are assigned proof procedures and not
constructions.  ‘Then t has the termination property.

The standard proof of the termination of normalization for the predicate calculus (sec ¢g
Prawitz{1969]) or cquivalently for the typed A-calculus (see ‘Trockstra [1973A)) applics to the
calculus of constructions with only minor technical moditications.  Thercfore, we omit the
proof of theorem 3.2 here.

Evidently, if rccursively defined symbols appear in a construction, the termination
theorem no longer applies. Indeed, there are recursive definitions of a symbol f (such as the
looping definition "f:¥xA « £:¥xA") which have the property that no finite sequence of
reductions of  f{t) where t is closed can Icad to a normal form.

Consider the formulation of first order arithmetic which is arrived at by taking the
members of the schema INI)(p as the only recursive constructions. Even here the termination
property fails. The rcason for this is that one is free to repeatedly apply lemma-reduction to
INDg(t). with t closed, without performing any other reductions, and this process will not
terminate.  However, termination can be guaranteed if an additional restriction is made on
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lemma-reduction as it applies to the induction schema. Namely, we require that if lemma-
reduction is applicd to IND‘P(t) yiclding

t' = Ax.Aa.OE(B8,EQD(x,0),
SB(Bm (a),
{(mfa))pred WHCB.(NDg(pred X)) ()

then t' must be brought immediately into onc of the two forms
Aa(n(a))

or
Aa. ({(my(a))pred OHL<H -(lNDq,(PTCd O)a)>))

(depending on whether the value of t is zero) before any other reductions are applied.  (This
immediate reduction of t' will involve onc application of D-reduction, one application of
lemma-reduction to EQD, one application of V-reduction, and perhpas one application of SB-
reduction.) When this restriction is made, the effect of lemina-reduction together with the
immediately succeeding reduction steps is very much like that of the induction-reduction rule
in the usual formulation of normalization for first order arithemtic (scc Prawitz[1965]). The
restriction results in a system with the strong normalization property - a fact which can be
demonstrated by minor modification of the standard proof of strong normalization for
arithmetic  (Troelstra[1973B]).  Further, theorem 3.1 continucs to apply, since we have
restricted only the order in which reductions may be applicd, and have not thereby modified
the notion ¢f a construction in normal form.

l.caving asidc the special case of arithmetic, the situation is this. Onec may take any
algorithm which is cxpressed by an (ordinary) recursive definition and reformulate it as a
recursive construction; the form of the recursions in the construction will be identical to the
form of the recursions in the original definition. (A concrete example is given in chapter 4.)
If the ordinary recursive definition terminates under some particular order of evaluation (cg
call-by-value or call-by-namc), then so will the recursive construction under a corresponding
reduction order for normalization. We do not propose to investigate here the general question
of the termination of the normalization of recursive constructions. It is sufficient for the
current purposes to observe that the particular reduction order which we use in the
implementation (namely, the call-by-value order) terminates on the particular proof which
concerns us (namcly, the bin-packing proof of chapter 4).
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3.7 Another reduction rule

An additional reduction rule beyond those so far mentioned is used in the normalization

i of the bin-packing proof of chapter 4 - namely, the permutation rule for the V-climination
i inference:
(A] (8]
I, I, I,
AVB CvD CVvD €] (D]
VE fn, 11
CVD E E
VE
E
=
i
L (Al (€] [O] (B] [C] I[D}
I n, n, n, mn, T
. cvD E E CVD E E
‘; m, VE , VE
‘AVDH E E
i VE
L H
N
l .

In construction notation, this is:

D OE(a OB AV BLCVDLC VD) E)E =
OF(B.1,:AVRBOE(a.t,:CV Dt B E) EOE(at:CV D it F):E)E

where it is assumed (without loss of gencerality) that 8 docs not appear
free in either ty or tq.

None of the results concerning constructions given in scction 3.6 is affected by the
addition of this rule.  This is iminediate for all results concerning the propertics of
constructions in normal form, since any construction which is in normat form with respect to
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the reduction system which includes the new permutation rule is a fortiori in normal form

with respect to the reduction system without this rule. ‘The only result which needs checking
is the termination theorem (thcorem 3.2). But, as it happens, standard proofs of this theorem,
f - such as that given in Prawitz[1969], treat reduction systems in which permutation reductions
' are included.

38 Fffects of pruning on cfficiency

To avoid misunderstanding: The principal evidence which we will provide concerning the
wtility of pruning in improving cfficicney is the bin-packing example of chapter 4. But to help
in choosing other examples where pruning is likely to be of use, it is desirable to illustrate the
features on which the behaviour of pruning depends in a simple and abstract setting.  With
this in mind, we make the following formal points by means of schematic examples.

1) Pruning can lcad to a very large increase in the cfficiency of an algorithm which has
L ) il

been  specialized.
(2) Pruning can lead to a very large decrease in the cefficiency of an algorithm,
(3) The inclusion of proofs of Harrop tormulas can improve the cffectiveness of pruning.

Consider, then, the following proof:
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Pl=
N[B(X)l [G(I
[F]  FDCxy.ry) BO)AG(y)  (BIOAG(Y)DC(x,y.r5)
Db DE
C(x.y.r,) Clx.y,ry)
m, P I
VE F(y) VG(y) 32C(x.y.7) 32C(x.y.2)
' 32C(x.y.z)
(AT AX)DC(x.y.r)
1t
Cx.y.ry)
m, El!
AV B(x) 3/2C(x.v.7)
VE )
3/C(x.y.7)
Vxy3/C(x.y.7)

where the "results” t), 1y, 1y are distinet terms of 1. Note that the above schematic proof Py
has the proot” U of section 2.8 as an instance; take A(x) = "x<I", Bx) = "x>1",
By ="y <17 Gy)="vD17, Coy) ="Wxwy.)", rl:"y+1". r2="x +1", r}:"ny". Pl when
written as a construction is:

£ = Ay OF(a ENr. # (o))
OLALENT, # (),
El(ry # (<a SO T0Cixy,7)

where (., are the construction notations for 11, I1,.

Now, consider the result of specializing the construction £ to a particular value for y; say

vory where 1y 18 a closed term of 1. The specialized construction may be written,

,\\.{I(x.ro)} = A\ Ol’(u.l|.|"l(rl.#(a))
OFB.Gly < gl i, # (8)).
I“I(rj,#((4!./3))))):3/.C(x.r0,1.)

Suppose that the normal form of tlyer] is OL(t;) where ty does not contain a fice -
that is to say. suppose that t, when normalized returns the decision that Frg) and not G(ry)
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holds, and also that the proof of this dccision does not use the assumption B(x). Then the
result of normalizing Ax.{flx,ry)} without pruning is,

, (a) AX. OF)(a,tl.El(rl,#(a)),El(rz,#(t3))):EIZC(x,rO,z),
Pruning can be applied to the above expression, yiclding

(b) El(ry,# (l3)): 3 7.C(x,r0,z)

Now, supposc that t; represents an extremcly slow algorithm, so that t, applicd to any
particular argument takes a long time to normalize. 'Then thc passage from (a) to (b)
represents a large increase in efficiency:  the normalization (without pruning) of the
construction (a) on an input r requires that t;[x «r] be normalized, whereas the construction (b)
supplics the output "r,” for all inputs, and so requires no reduction steps at all.

How slow can be t; be? The answer, for all practical purposcs, is, arbitrarily slow, since .
recursive constructions can "run” as slowly as any recursive function. Even if  is a {
recursion-free construction, normalization can still take so long as to be completcely infeasible.
In particular, there is no clementary recursive function in n which bounds the numer of
reduction steps required to normalize non-recursive constructions of size n [Statman 1977].

(In other words, there is no such bouna of the form 21 or of the form 2(2n)' or of the form

n
2(2(2 )), and so on).

So, we have demonstrated point (1) above. Point (2) can be demonstrated using a similar .
schematic cxample.  Consider the following proof.
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[F(y)]  F(y)ICkx.y.ry) [G]  G()IC(x.y.ry)
C(xy.ry) Clx,y.ry)
I, I— el
F(y)VG(y) 32C(x,y,z) 32C(x,y,2)
VE
32C(x,y,2)
[AG)]  AK)DCHy.r)
DE
Clxyr))
n, el
A(x)V B(x) 32C(x.y,z)
VE
32C(x,y,z)
Vi—
Vxy3dzC(x,y,2)

The above proof differs from the first proof P only in that "C(x.y.rj)" no longer depends
upon "B(x)'. The construction notation for P2 is:

g = Axy. OF(a.t,.El(r, #(a))
OE(B.4,.El(r,, #(B)),
El(r,, # (B))):32C(x,y,2)

If pruning is applied to g one gets

Ax y. OK(B.4,.El(r,, #(B)),
El(ry, #(8))):32C(x,y,7)

Now, supposc in this casc that t; is a fast algorithm, that is, that tfx«r] can be
normalized in just a few steps for cach input r. Suppose further that t, is very slow. Then we-
have the following situation: whenever A(x) holds, r; may be immediately returned as the
output, but when B(x) holds a long computation must be undertaken to determine which of
F(y) and G(y) holds. However, the correctness of the "long computation™ does not depend on
whether B(x) holds, Thus we have a fast way (t)) of discriminating between two ways of
computing a satisfactory output, onc of which is very fast (the simple return of r)), and the
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other of which is very slow ("Ax y. OE(B,t,.El(ry, # (8)).EI(r ;. #(B))):32C(x.y,7)"). Further,
the slow way always works. Pruning has the cffect of throwing away the discrimination (t))
and choosing the slow way every time. Evidently, if A(x) holds for many valucs of x, then
pruning degrades the average efficiency of the algorithm. In the extreme case where A(x) d
holds for all x, pruning takes a very fast algorithm and replaces it by a very slow one.

Point (2) has now been demonstrated, and we turn to point (3). As we have scen, all
proofs of Harrop formulas may be omitted without interfering with the possibility of
"running” a proof or construction. However, we will show here that the inclusion of a proof
of a Harrop formula can cxtend the possiblitics for pruning. As a consequence, the inclusion
of proofs of Hatrop formulas can in some cases improve the cffectiveness of pruning in
optimizing algorithins.  We consider a third minor variant of the original schematic proof P

(B {Fyl B (G
Y E—— i Al— —_
BOOAE(@) . (BROAF(Y))DC(ry.ry) BAGLy)  (BOOAG(y))IC(x.y,r3)
JE D
Clxy,ry) C(x.y.ry)
I, jl— 31— —_
v ‘F(y)VG(y) Fz2C(x,y,7) 3:C(x,y,2)
: ) 32C(x,y,2) .
[A(X)) A(x)DC(x.y.ry) .
JE-
C(xv-y‘rl)
‘ 1, 3l
: it AX}V B(x) FeC(x,y,7)
‘ VE
; 32C(x,y,2)
[——
Vxy3zC(x.y,7)

r In this case the change from P is that C(x,y,r,) now appears to depend on both B(x) and

i F(y). ‘The contruction notation for this proof is,
A
'
. h = Axy. OB(at, Elr, . #(a))
4 OE(B.LLI(r,4(Ka B5)),

Ei(ry, # K, f5)))):37C(x.y.7)
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We assume for the current discusion that C is a Harrop formula, Thus
"(B(x)/\l"(y))Z)C(x,y,rz)" is a Harrop formula, and could have been given simply as an axiom. f
Suppose  however that the proof Iy of "(BOOAF(Y)DC(x,y.r))" has the form:

[EG)) [y

AN
ol Myl [B(x)] F(Ay)
Al—o Al
FWAHY) (FOARYNDC(xy.ry))  BROAFWMAIY)  (BIOAFGAIY)IC(x.y.ry)
JE - DI
I,
Hy)VI(Y) Clx.y.1y) Cx.y.ry)
VE
C(x,y,rz)

Thus C(x.y.r,) may or may not actually depend on B(x): if H(y) holds it doesn’t, and if I(y)
holds it does. The construction notation ty for the above proof is,

OE(y.1, # KB y) # (Ka L By>)):Cx.y.ry)

So. h has the form:

ho o= Axy. OF( B, # ()
OB(B.G L, OBy L #(SByd), # (Ka By >,
Bl(ry, # (Ca BN I7C(x,y.2)

Suppose that h s specialized to Ax.h(xry), where () and Firg) hold (according to
)i normalization of t, and ty which yicld ()ll(l4) and Oll(ls) respectively; we assume  that

neither 1y nor tg contains a free).  Then if )\x.h(x.r(,) is normalized without pruning the
following  construction  results.

Ax. OF(at El(r). #(a))
El(r,, # (<L)

Oy SN

e T

Finally, pruning yiclds,

EI(ry # (<tutg?)

Evidently, if the proof Tl for Clx.y.ry) had not been given, there would have been no
; possiblility of applying this fast pruning operation, By the same argument  given above for
. point (1), this pruning can lead to a large increase of cfficiency.




2|

Thus, although proofs of Harrop formulas are not required for the execution of a proof,
they can be used to improve the analysis of dependencics upon which pruning relies.
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Chapter 4

Specialization of a Bin-Packing Algorithm

The experiments described in this chapter demonstrate that prunable redundancies occur
in the "real” computational world. The experiments concern the specialization of the first-fit
backtracking algorithm for one-dimensional bin-packing. This algorithm takes a list 1y of
block sizes and a list I of bin sizes as input.  Fach block and bin is "one-dimensional” in
the sense that its size is given by a single positive number. The algorithm performs a depth-
first scarch for a packing of the blocks into the bins - that is, for an assignment of the blocks
to the bins with the property that the sum of the sizes of the blocks assigned to any given bin
is less than the size of that bin. If such an assignment is found, the algorithm rcturns that
assignment as its result, and otherwise it returns an indication that no packing exists. The
algorithm is referred to as a "first fit" algorithm bcecause, in the course of search, it attempts
to place a block in the first bin in which it fits as its initial try. The bin-packing problem is
well known to be NP-complete [Garey and Johnson, 1979}, and this particular algorithm has a |
worst case running time which is cxponential in the size of the input. However, the problem ,
is tractable for small inputs. It is of intcrest to sce how much the algorithm can be sped up in l
the cases where the inputs are of feasible size.

The bin-packing algorithm was formalized as a natural deduction proof in the first order !
theory of lists and numbers, and an untyped p-calculus term was cxtracted from this proof.
The proof was constructed "by hand”, but the extraction of the p-term from the proof, and all
other phases of the experiments, were carried out automatically by a system of proof
manipulation programs running on the Stanford Attificial Intelligence Laboratory PDP-10
computer.  Scveral experiments were  carricd out, cach of which involved specializing the :
algorithm to handle problems of a particular size and structure. For example, a specialized
algorithm for packing six blocks given in order of descending size into three bins of cqual size !
was derived from the general bin-packing algorithm by the following steps. (1) The p-
calculus term which describes the general algorithm was  executed (normalized without
pruning) on the symbolic inputs L.; = <ij.ij.iyigisig>, 1.y =<nnn>, where the ij and n
arc numeric variables, and where it was assumed further that i1 >iy2> . . . 2ig. ‘The resulting
p-calculus term had the form of a decision tree. (2) The decision tree was subjected to an
optimization involving the climination of case analyses whose outcome was decided by
formulas alrcady assumed on the branch so far taken in the tree. ‘The optimization was
carticd out by usc of the simplex algorithm (all the casc analysis predicates in bin-packing
have the torm of incqualitics between sums).  ‘The process so far could as casity have been
carricd out on an ordinary program as on a proof or p-calculus term. However, at stage (3)
pruning was applied. The question of central interest was this:  what increasc in speed and
reduction in sizec would be obtained by the application of pruning?
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In practice, it was not feasible to carry out steps 1 and 2 scparately, since the decision tree
resulting from stcp 1 would have been extremely large. Instead, normalization and
optimization were applied "in parallel" - the decision tree was optimized in the course of its
construction.

Experiments of the kind just described were carried out for all combinations of numbers
n; of blocks and numbers ny of bins with 2<ny<n;76. In all cascs, pruning turned out to be
a useful optimization. As an example, we consider again the casc where nj=6 and ny=3.
The decision tree which results from steps (1) and (2) has 87 decision nodes and a depth of
14. When pruning is applied, the tree shrinks to 15 dccision nodes with a depth of 8. Thus
more than 4/5 of the decision nodes in the decision tree resulting from steps (1) and (2) are
redundant in the scnse recognized by pruning. If one mecasurcs the running time of a bin-
packing algorithm by the number of comparisons which it makes, then the worst case running
time of the original algorithm on inputs of the special form currently under consideration is
174. 'The worst casc running time of a dccision tree algorithm according to this measure is
simply the depth of the tree. Thus the simplex optimization and pruning taken together
produce a factor of improvement of ncarly 22 in worst case running time (from 174 to 8).

As mcntioned in scction 2.8, pruning may have the cffect of changing the function
computed by a proof. Pruning docs in fact have this cffect in cach of the cxperiments
described in this chapter.  Furthermore, this effect is essential to the success of pruning in
improving cfficiency. For 2<n,<n; <4, the algorithm produced by pruning (in combination
with symbolic execution and the simplex optimization) is both smaller and faster than any
decision trec algorithm which computes the same funclion as the original algorithm. (This is
may be truc for n=5 and n;=6 as wecll, although this has not been checked.) ‘Thus, no
collection of conventional optimizations could have produced specialived algorithms for bin-
packing which arc as efficient as those produced by pruning, since conventional optimizations
prescrve the cxtensional meaning of the programs to which they are applicd.

The following conclusions can be drawn from the experiments. (1) The simplex
optimization with or without pruning yiclds a large speed-up of the algorithm. (2) Pruning
dramatically decreases the size of the specialized decsion tree algorithm, and produces a
moderate improvement in its spced (ie depth).  (3) The improvements produced by pruning
could not have been produced by conventional optimizations,  In the largest experiments
(where nyp=6 and ny>4), it was not feasible to produce a decision tree algorithm at all
without the use of pruning; pruning had to be run in parallel with the simplex optimization
and normalization in order to avoid running out of memory space. ‘Thus in this application,
the main practical cffect of pruning was to make possible the production of fast specialized
algorithms which arc of a rcasonable size. In devising combinatorial algorithms for handling a
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finitc number of cases, speed is not the only problem, since onc can often make use of table
look-up to get a very fast but very large algorithm. What is difficult is to produce an
algorithm which is both small and fast.

In what follows, we describe the experiments in detail.  Section 4.1 concerns the system of
programs used for doing the cxperiments. In scction 4.2, we describe the proof which
implements the bin-packing algorithm. Section 4.3 concerns the reductions on object terme
uscd in normalization.  Section 4.4 gives the results of the experiments.  Conclusions based on
the results are given bricfly in scction 4.5.

4.1 The implementation

The system of programs used for the experiments was written in Macl ISP, and runs on
the Stanford Artificial Intelligence | aboratory PDP-10 computer. The system consists of three
components: (1) a proof checker for natural deduction, (2) a mechanism for extracting
untyped p-calculus terms from proofs, and (3) a normalizer {with pruning) for the p-calculus.
The proof checker is interactive, and allows the user to specify the first-order language in
which a proof is to be given. In these respects, it resembles the FOLL proof checker
[Weyhrauch  1974].

The normalizer, both ia internal design and in function, is very much like interpreters for
A-calculus based languages such as [ISP[McCarthy ¢t al, 1962} and SCHEME[Sussman and
Steele, 1975).  ‘The exceution of a LISP or SCHEME program is essentially a matter of
normalizing a closed A-calculus term which ends up with an object term as its normal form.
In the case of SCHEME, where the static binding convention is obscrved, the interpreter has
exuctly the effect of a A-calculus normalizer when applied to a closed term having a "concrete
value”, whercas in most standard  dialects of LISP (cg 1.ISP 1.6, Macl.ISP, Interl.ISP),
dynamic binding holds sway, leading to a somewhat different behavior than normalization.
In any case, there exists a well developed technology for efficient normalization of some kinds
of A-teems, and this technology is casily adapted to the task of normalization in the p-calculus.

A central clement of this technology is the use of cnvironments for implementing
substitutions. The idea here is  this, An  cnvironment  is an association
JOQDGL) - (k)Y of terms with variable names. I one wishes o cvaluate (or
normalize) a term which is given as the result of tfx«t,] of a substitution, then, instead of
doing the substituion first and the normalization afterwards, one normalizes the term ty in the
environment {(x.tz)}. The normalization of a termi t in an environment ¢ is like normalization
of the usual kind, except that variables which have been assigned values in the environment
are regarded as temporary names for those values. Most reduction rules applied in the course
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of normalizing t do not make usc of the internal structure of the subterm which a temporary
name designates; on occasions when this internal structure is relevant, the value assigned to

the name is looked up. We won't go into further detail about how cnvironments are used;
the rcader who is unfamiliar with these techniques should sce [McCarthy ct al, 1962). .

Our normalizer uses environments in the implementation of V-reduction, D-reduction,
V-reduction, wnd 3-reduction. 'The normalizer resembles traditional interpreters in the
additionat respect that a “call-by-valuc” reduction order is used. ‘T'hat is to say, cxcept for
terms whose main constructor is APPLY, OFE or EE, a term t with immediate subterms
t ...t is normalized by first normalizing cach t. and then applying reductions to the
result.  In the case of (1) APPLY(t .6, .. . 1) . Q) OE(a.t;.t,ty), and (3) EE(x.a 1)), ¢ is
normalized first. If t; has the form (DAv.L (2) Ol (1) or oLy, (3) EI(LE), then (1) ¢, (2) L,
or t;, (3) t, is normalized in the extension of the current environment which associates (1)
I with Vi Vg (2) t with a, (3) x with t and a with t'. If 4 docs not have the
appropriate form to allow a reduction rule to be applied, then ty . . . t, arc normalized in
sequence.

The normalizer is an iterative program in the style of the SCHEME interpreter [Sussman

& Steele 1975]. A collection of (software) switches controls the mode in which the normalizer
operates.  For example, the pruning reductions and the permutation operations can be turned
on and off at will.  Proof procedures (section 2.5) are implemented by calls from the
normalizer to ordinary 1LISP functions. The entire system, including the proof checker, the
extractor, the normalizer, and a top level, constitutes about 900 lines of MaclISP code, and
when compliled occupies 70,000 words 36-bit words of memory. The former figure includes
only the code which was written by the current author specifically for the proof manipulation
system. It does not include the code contained in the two "packages” which were imported
into system. namely a general purpose pretty-printer written by Derek Oppen (see [Oppen,
1979]) and a simplex algorithm written by Greg Nelson. ‘The figure of 70,000 words, however,
measures the total amount by which the size of the proof manipulation system exceeds that of
"barc” Macl ISP,
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4.2 The proof

The bin-packing proof uscd in the experiments is formulated in a first order language 1,
for numbers and lists of numbers. There arc two sorts of variables: variables which range
over non-negative integers, and variables which range over lists of non-negative integers.
(Note that the usc of sorted variables where the sorts are disjoint has no effect whatever on
the treatment of proofs as computational descriptions; in normalization and the extraction of
p-terms, the sort information may be simply ignored.) In what follows, lower case letters are
used for numeric variables, while capital letters are used for variables which range over lists.

‘The function and relation symbols of 1, arc listed below, together with their intended
meanings.  Note that some of the symbols are given as infix opcrators.  Any language
definition supplicd to the proof checker includes information as to which binary function and
relation symbols are to be treated as infix operators by the parser for formulas and terms.
Our usage below dircetly reflects this syntactic part of the formal defintion of 1y,

symbol intended meaning
+ a+m is the sum of n and m.

- n-m is the result of subtracting m (rom n.

< a<m holds if n is less than m.

< n<m holds if n is less than or cqual to m.

Inth Inth{A) is the length of the list A

@ n @ A is the list which results from adding n to the front of A

A:n is the nth element of A (it makes no difference for our purposes
how A:n is defined for n=0 or n > Inth(A))

tl t(A) (read "tail of A™) is the result of removing the first clement
from the list A; the tail of the cmpty list is the empty list.

sct set(A.n,m) is the fist which resalts from replacing the nth clement of
A by m. If 0=0 or n > Inth(A) then sc(Anm) is A.

It is most convenient to think of 1,5 as having just one list constant, namely "<<®" for the
empty list, and infinitely many numeric constant symbols: one for cach number. The numeric
constants (numerals) are represented in a direet fashion in the implementation, namely by
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LISP numbers. The parser and the programs which print out proofs and p-terms use
ordinary decimal notation for numerals.

We will abbreviate a term having the form "t @ t, @ t; @ ...t @ <>" by
"<t1,t2, .ot > Thus G in <ll.t2. .. . t.> denotes the ith clement of the list denoted by
<tty, . .. t,>. The parser and the output programs also usc this notation (in fact, the same
kind of abbreviation is used in the internal representation of terms).  Also, "null(X)” will
scrve as an abbreviation for "X=<>".

We can state the onc-dimensional bin-packing problem in the following way. Suppose
that we have n blocks and m bins. FEach block and each bin has a particular size given by a
positive integer.  let X = <ip, ... ip> be a list of the sizes of the blocks, and let B = <j,
... jq> be a list of the sizes of the bins. An assignment of the blocks X to the bins B will be
represented by a list <k, . . . kp>. where k_ is thc number of the bin to which the mth .
block is assigned.  For example, {2,1,1} represents an assignment of three blocks to two bins,
where the first bleck is assigned to the second bin, and the remaining two blocks are assigned
to the first bin.

Now, an assignment A = <k, ... kp> of blocks X to bins B is legal if cach block of X
is assigned to some bin of B (ic if Inth{A)=Inth(X), and ky, < Inth(B3) for cach m), and if the
! sum of the sizes of the blocks assigned to any one bin is less than or equal to the size of that
1 bin. The one-dimensional bin-packing problem is this: given lists of block sizes X and bin
sizes Y, determine whether there is a legal assignment A of the blocks to the bins, and if there
is, give it ’

The algorithm for bin-packing which is used in the cxperiments is as follows, expressed as
an ordinary definition by mutual recursion.

! pack(X.B) « if null(X) then <> clse packd(X.B.1)

packb(X,.Bn) « if n<Inth{(B) then
( it X:1<B:n then
if pack((X).set(B,n.B:(n - X:1)))=FAIL then
(n @ pack((X).set(B.o,B:(n - X:1))))
[ clse pack(X.B,n+1)
clse FAILL
clse IFAll

5! An informal explanation of the workings of this algorithm is as follows,
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; ' Ihe function pack takes a list of blocks X and bins B and returns cither a legal

assignment of the blocks to the bins, or "FAIL", meaning that there is no packing.  Pack first
cheeks whether there are any blocks (e whether X is null). If not. then the null assignment
will do. Otherwise, the function packd is called with the bound noset to 1. In pacAHX 13,n) it

may be assumed that X is non-cmpty.

The "bounded” packing function packd attempts to tind a packing of the blocks X inte

the bins B subject to a restriction on where the first block in X may be put; namely, the first
block must be assigned to a bin whose index is noor greater. Pachd tirst cheeks whether nis
greater than the leagth of Br if this is the case then no packing which satisties the given
restriction s possible. Otherwise, packh checks whether the first bloek 1its in the a' bin (ic
whether N:1<Bin). I the bloek fus, then an attempt is made (o pack the rest of the blocks
into the space which remains in the s specitically pack((N)LB) is catled, where
B osetBanBin - XY B ditters from B in that the size of the nth bin has been reduced
o reflect the assignment of the first block o that b, Hsuch a packing A ol (X)) into B is
found, then no @ A evidently sutfices as a packing of Xointo B. Finally, it no packing ot tl(X)
mte B is possible, or af Xo1 did not fit into Bincin the tirst place, then packBN B+ 1) is
called. Thus, the end eftect exeeuting pecAONBL D is that the st bloek N:t s placed
suceesnvely i the tiest bin i whach it fits, the second bin in which it s, and so on, until a

placement of NX: s tound which can be extended to a complete packing of Xointo B, or until

no bins are et

Note that there are two identical calls 1o pack in the body of packl This duphication of
oftort could casily have been eliminated by the use of o A-abstraction, but this was not done

tor the sake of simplicity of presentation. Phe duphcation does not appear in the hin-packing

proot,
[Me bin-packing proof has two parts: a "man theorem™ PACK, and a lemma PACKB,
Formally, "PACK™ and "PACKB” are 1o be regarded as detined ssmbols of the language [IPS
. to which recursive™ proots have been assigned according o the rules given in section 3.4,
' Ihese preots correspond closely i stracture o the recunsive detinttions pack and packd; the
\
’

proofs cibody the same analysis of cases, and the same pattern of recursive calls - in short,
the same algorthin - as do pack and pachd Tistings of PACK and PACKR are given below
i the foramr i which ey were printed out by the proot chiecher. e notation used by the

proot checkher s somewhat unusual and wall be explamed shortdy, Bat niest, here s the listing

PR /S Sy

ol PACK,
oY
i
foe
. v P e e e -
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1 NULLIXX) nutl(N)V(lnull(X))
2 AS(null(X)) null(X) 2
3 AX(V Bilegal(€>.<> 1)) VB(legal( <>, <> B))
4 EV(*2) X=<» 2
5 SB(*4.*}(B).2) legal(<€>.X,B) 2
6 EI(<>.*5.3Acgal(A.N.B))  IA(legal(A.X.B)) 2
7 AS(In (X)) Toull(X) 7
8 PACKB(X.B.1X*7) JABEAAXBIMVAOIAMBIAAXBLYY) 7
9 AS(IA(BLAAXB.L) JA(BLAAXB1Y) 9
10 EV(*9) FATegall A X.BYATnull XN A1 (A1) 9
11 AS(legalt A X BYATullQOINA (L KAL)

Legal(ANIACTINUIX DA (1L (A:T)) 11
12 [*1141] legal(A.X.B) 1
13 FIA T2 3Alegal(AX B JATegalt AL X B)) 11
14 EEC*10.*13.A) JAcgal( A" BY) 9
15 OIC T TN (egal (AR FA(legal (AN BRIV 1 AAlegal( A X B))) 9
1 ASCIIAMBE AAXB.DY) AIABL ANNXBD) 1
17 ANCYN BEOIallgN) 13ABEACLXB D= T3ATegal(A a3 X BN BY*7.41)

T3A(lezal(Aad.N.BY) 7.1
18 OIE3AUegal(AX B AATepalt AN BV A legal( ALXBY)) 7.1
19 QFCRFISY) FAdegilA XN BNV AN egal(ANB)) 7
20 OI¢13A(legalt AN BY)) ANl A N BYVITATegal(AX.B)) 2
il OB 1,*20.%19) AAUe2alt AN BNV A3 AUcgall AL X BY))
22 AN B(*2D VX BEIAeeal (AN BV (TIATegalf AX.BDYY)

I'irst we comment on two predicate symbols which appear in the above listing.  The
tormula legal(A N BY holds i A is a legal assignment of the blocks X to the bins B, With a
bit of work, "legal” can be defined from the primitive operators and predicates of 1 which
were given above, but there is no reason to do so here, For the current purposes, "legal” is
treated as primitive. The tormula BEAA N B holds it A is a "legal bounded assignment”
of the Kind that packd might pencrate - that is to say a legal assignment of 3 non-cmpty list X
of blocks te bins B which assigns the first block to a bin whose index s at least n. BLA s

used as a detined predicate; s delinition s

BEAGAN B = legal(ANIDACTWlEOMDA (<A D)

-
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The above listing should be regarded as a "linear” notation for a natural deduction proof
tree of the kind discussed in chapter 2. Each line of the listing designates a node of  the
tree. A dine has four pieces of information associated with it.  Reading from right to left,
these are (1) the line number, (2) a term, (3) a formula, and (4) a list of dependencies. The
line numbers serve simply as unique labels which are used to identify the line in question.
The term indicates the the sequence of inferences by which the current line was arrived at
from previous lines of the proot. The formula is sinply the formula associated with the node
in the proof tree which the line designates: it is the conclusion of the inferences which have
been completed thus tar. Finally, the list ot dependencies is a list of the line numbers of the
assumptions upon which the conclusion of the current line depends.  In the interactive
construction of” a proot, the user types a term of the Kind suitable for the term part (2) of a
proot line: the proof’ cheeker then assigns a new line number and computes the formula and

dependencies of the new  line.

This method of laving out a proot tee in hncar tashion is of course quite standard. ‘The
only unusual aspect of the notation is the manoner in which the appheation ot inference rules
is described. Phis mtormation, as we have said, appears in the torm ot the ternm which is the
second part of every proot step or line: this terme resembles a p-term in several ways, and will
be called a "geterm™. A geterm s baile up trom avioms and assumptions and from references
to previous lines by the application o operators which represent inference rules, An axiom is
s given by a q-ternr of the torm "AN(@)" where ¢ is the formula being asserted as an axiom
(sev Line D, whale an assumption has the form AS(@) see line 1) Reterences to previous
proot steps ke the torm of an asterisk tollowed by the line number of the step. The
operators which represent inference rules are: PAIR tor A-introduction, UNPAIR tor A-
climination, Ol for V-introduction, OF tor V-climination, 11 tor D-introduction,  APPLY for
D-climination and Y-climination, X abstraction tor V-introduction, FLU for J-introduction, and
fnally SBtor substitntion of "right tor left™). The ssntan of g-terms 18 largely borrowed
from the syntaxy which we have been using for p-terms; for cvample "PAIR(ELG)T is written
TGN Qeterms duter frome prerms in the significant aspect that no- proot” variables are
used: o geterme is ne more than a tragment of an ordinary: natural deduction proot” written in

applicative svatax.,

As g simple evample of a g -term, consider the term part of line 19 ot the proot PACK,
wiuch  veads "OBRCER202 1 Ths designates the resutt of apphang V-clinunation to the
premises aepresented by hies 1200 and 12 repectnels. A more complicated example is the
term part of hine 80 Av isuals we use the syt "g(,)” tor APPI \'(ll.(?). APPLY ., in turn is
used to desiznate both the Voclimination and D-chnnmation interence rules. Thus a g-term of
the form W o) dosenates cither an v chmmation or an D-climination rule, under the

condition that t & et aselt an nterence wate name. Now, the term part of line § s

M
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"PACKB(X. B, 1)(*7)". PACKB is the lemma which corresponds to the bounded packing
function “packd”. The endformula of PACKB is

VX B o(Tnuli(X)D IAMLAAXB.1D)YWVAIABLAAXB D))

The formula PACKB(X,B,1) designates the result of an V-climinution with PACKB as
the premise, followed by an D-climination with line 7 as the minor premise.  Thus two
inference rule applications are described by line 8 of the proof. In general, one can record as
many inferences as one desires in a single line of proof by the use of a suitably complicated g-
term; the decision as to how much information is to be included in cach line is a matter of

convenience.

What we have said so far should make at least a rough understanding of the proof PACK
possible.  An informal outline of the proot is as follows. First of all, the proof takes the form
of a case analysis according to whether X is null (see steps 1 and 200, Steps 2 through 6, and
step 20, take care of the case where X ois null. I X is not null, the lemma PACKDB 1 used

(step 8).  Steps 9 through 19 arc devoted to showing that
FAUegalt ALX. BV (I3Alegal( A X.B))
can be derived from
FABLANNBINVAIABI AAXB.D)

This is done by a case analysis (step 19) according to whether 3ABE A(A X B is true.
The outer case analysis of PACK - nanwely the case analysis according to whether N is null - is
retlected dircetly by the conditional expression it null{\) then €2 clse packBX.B.1)" in the
ordinary recursive detintion pack. However, the inner case analysis which has just been
mentioned s necessary only in order to demonstrate that the value returned by packH(X,B.1)
is also a valid output for pack; no counterpart of this case analysis is present in the ordinary

recursive  defintion.

Further information concerning the notation used by the proof checker, and concerning
the proots PACK and PACKB, s given below. None of this information is of any general
significance: our current purpose is to provide the detail necessary for a full step-by-step
understanding of e proots PACK  and PACKB.

° One lemma other than PACKB appears in PACK, namely NUL LD (dine 1), The
“endformula”™ of NULTDY is VX(ulN)V Tnull(X). A proof procedure for NULTD s
supplicd as part ot the normalizer: NUTTD(O returns OF(#) i Cis "<>", and QL #) if ¢

w2

has the form "<y, oL > where 0210 Also, the lemma FTED appears in PACKB. The
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endformula of L'TED is "Vn m(n<mVm<n)"; the proof procedure l.'l‘iil)(ll,lz) returns
OL(#) if t,t, arc numerals with (,<t,, and Ol(#) if tt, arc numerals with t,<t,.

° The operator "EV™ has the effect of removing abbreviations in the endformula of a
proof - that is, of replacing defined predicates by their definitions. Two defined predicate
symbols appcar in PACK, namely "null” and "BL.A". These symbols arc removed by EV in
lines 4 and 10, respectively.  EV should not be thought of as an inference rule, but rather as
part of a facility in the proof checker which allows formulas to be given in an abbreviated
notation; from this point of view, EV has the cffect of changing the external form in which a
formula is presented to the user without changing the formula itself. Evidently, uses of EV
could be dispensed with in any proof simply by replacing all abbreviations by their definitions
throughout the proof. The procedure which extracts p-terms from proofs ignores uscs of EV;
that is to say, the term which is extracted from "EV(T)" is the just the term extracted from
1. Similarly, the operator "EVQ™, which appears in PACKB but not in PACK, is uscd in
conjunction with SB o introduce abbreviations. EVQ is applied to a formula rather than a
e=y", where ¢ is the

proof; EVQ(g) producces a proof step whose "formula™ part is
formula which results from removing the abbreviations from ¢, However, " =4y" should
not be regarded as a formula but rather as another artifact of the abbreviation facility. The
operator SB may be used with "e=y" as its first premise in order to substitute the
abbreviated form ¢ for the expanded form ¢ in the enformula of its sccond premise. EVQ
and SB arc used together in this manner in steps 14 and 15, and steps 28 and 29, of PACKB.
Again, these steps could be removed by replacing all abbreviations by their definitions

throughout the proof.

© ‘There are two variants of the V-introduction inference - one puts the "new” disjunct
on the right, and the other puts it on the left. The corresponding forms of an application of
the "OI” operator arc: (a) OUTLE), and (b) OI(I5IT), where 1T is a proof, and F is a formula
(F is the "new” disjunct). Morc explicitly, Iet us suppose that the endformula of T is A,
Then the endformulas of the proofs which result from the two forms (a) and (b) of Ol will be
AVE, and FVA, respectively.

° An application of the "LI" operator for 3-introduction has the form "EI(t.I1,3xe),
where tis a term of I, TT s a proof, and Ixg is (of course) a formula. It is assumed that the
endformuta of IT has the form @[x «t]; otherwise the proof checker will reject this application

of El. Ixg is the endformula of the resule of the application.

° In PACK and PACKB we make use of the connectives "A™ and "D" as operators of
arhitrary arity. "That is to say, just as we have allowed V" to quantify over not just one, but
arbitranly many variables, we allow formulas of the forms [/\l. Ay A“ D B, and of the
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form [AI/\AZ/\ ..« A}, where cach of these is to be regarded as the result of applying a
single high arity connective "D" or "A" to Ay - .. A, and in the first case B. "The meaning
of [A, Ay .. A, D Blis just (AAAA LA D B). The inference rules which treat A
and D are modificd in a suitable way. Namely, A-introduction now takes as many premises
as desired and produces the conjunction of all the premises as its  couaclusion.
Correspondingly, one nceds a separate variant of A-climination for selecting cach  of the
conjuncts of a high arity conjunction. The g-term notation for A-introduction is
"KM, ... [ For A-elimination, we have “[ITV1]" to select the first conjunct, "[[142]"
to sclect the second, "[[143]" to sclect the third, and so forth. ("{ITVk]" corresponds to "o, "
in the notation which we have been using for p-terms).  D-climination also takes as many
arguments as arc appropriatc to its major premise; in g-term  notation  we  write
"TI,, 1, . .. T1)" to designate the application of J-climination to the the major premise
I, and minor premises M, T1,. .. 1. Tt is assumed here that the endformula of I has the
form [A. A,. .. A D B} where A, Ay .. A are the endformulas of 11, 11, .. T,
respectively. The conclusion of this D-climination inference is B, For an example of the use
of D-climination of arity 2, sce step 17 of PACK. The use of arbitrary arity connectives
constitutes an inessential but convenient extension of notation,

A listing of the proof PACKB is as follows.

1 AS(Tnull(X})) Tuuti(X) 1
2 ' TED(n,Inth(BB)) (n<Inth(B)) V(Inth(B)<n)
3 AS(n<Inth(B})) n<inth(B) 3
4 FTED(X:1,B:n) CILBm))VIBn<(X:1))
5 AS(X:1<(B:n)) X:1<(B:n) 5

o PACK(H(X).set{B.an, Bin—(X:1)))
AAegal( A X)) set(B.n,Bin~ (X: DY)V
(AAJegal{ A UX),set(B.n . B:n —(X: 1N
7 AS(TAegall A (X)) sct(B.n B:in—(X: 1))

FAegal( A U(X).set{B.n Bin— (X: 1)) 7
8 AS(legal( A U(X)set(B.n,B:in - (X:1))))
Jegal( A UX).set(Bn,B:n— (X:1))) 8

9 AX(VA X B n(]Tnull{X),n<Inth(B),X:1<(B:n),

legal(AUCX).set(Ban.Bin = (X: 1))

D legal(n@ A X, B)))
VA X B o([Tnuli(X).n<Inth(B),X: 1 <(B:n),
legal(A X se(Ban Bin—(X: 1))
D legal(n@A X B

10 *YAX.B.n)*1,*3.*5,*8) legal(n@A X, B) 1,358
] AX(Vn A(n (@A) Vo A(n<(nerA:l))
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37 OI(AA(BLA(A,X,B.n)),*36)
| 38 OE(*21,*32,*37)
| 39 OE(*6.*18,*38)
40 AS(B:n<(X:1)
41  PACKB(X,B.n+1)
4
43 AS(TIA(BLA(AX.B.n+ 1))
44 LEMI(X.B.n)(*1,%40,*43)
45 OI(IA(BLA(A.X,B.n)),*44)
46 OF(*42,*32,%45)
47 OE(*4.*39,*46)
;. 48 AS(Inth(B)<n)
’g 49 LEM2(X,B.n)(*48)
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TIA(BLA(AX,B,n+1))
13A(BLA(A X,B,n))

JA(BLA(A X,B,n)) V(TIA(BLA(A.X,B,n)))

JA(BLAAX,B,n)) V(TIA(BIL.A(A.X,B,n))

JA(BLA(AX,B,n))V(IA(BLA(AX,B,n)))

B:n<(X:1)

Tnull(X)D

35

19,35

19,35

1,19

531

JAMBLAAX, B+ 1)VOIABLA(AX,B,n+ 1))
JAMBLAA X, B+ 1)V(OIABLAA X, B.n+ 1))

TIABLAAX.B,n+1))
13A(BLA(A,X,B,n))

JA(BLA(A X, Ban)V(IIA(BLA(AX,B,n)))

JAMBLAA X B)VOIABLAA X, B.n)))

JABLANAX.Bn)VIIABLAAX,B.n)))

Inth(B)<n
TIABLAA X,B,n))

FABLAA X B.n)V(IIABLAA,X,B,n)))

JAMBLAA X B.m)V(IIABLAAX,B.n)))

1

43

1,40,43

1,40,43

1,40

31

43

48

48

1

Anull(X)DIABEAA X, B)V(AIABLA(A X, B.n)))

VX B n(Tnull(X)D

JAMBLAAXBW)VAIABLA(AX,B,n)))
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4.3 Rceduction rules for terms of L0

The following special purpose reduction rules for terms of L, are provided as part of the
normalizer (reductions on object terms were discussed in scction 2.6). We will not belabor the
distinction between numerals and numbers; for example we will allow oursclves to use the
phrase, "the sum of t; and t,", instead of the more precise phrase "the numeral which denotes
the sum of the numbers which t; and t, denote” in the case where t, and t, are numerals.
However, special variables, namely, a,b and ¢, will be used for numecrals.

"a + b" => "¢", where ¢ is the sum of a and b.

"a — b” = "c", where ¢ is the result of the indicated subtraction.
"Inth(<t,t), . . . t>)" = t' where t' is the numeral for n.
Ly, o oL >) = <, oL >

<t .. . p>:a = t, under the condition that 1<a<n.

set(<tyty, . .. 1> ,bty) = t', where onc of the following conditions holds: (a) 1<b<n
and t'is the result of replacing t in <tt,, ...t > by ty, (b)b=0o0rb>n, and t'is
A R & £

For cxample, these reduction rules would have the cffect of reducing the term
"<3,4+5>:2" to the term "9, It is not hard to sce that normalization of any term of L
with respect to these rules will terminate, and that the normalization of any closed term will
yicld cither a numcral, or a term of the form <t1,t2, e Ln>whcre the t; arc numecrals.

44 Results

The resuits of the experiments will be presented in several stages. The p-terms which
were cxtracted from the proofs PACK and PACKB will be given in section 4.4.1. In section
442, the results of the smallest of the cxperiments arc given in full detail, and the simplex
optimizations arc described. Scction 4.4.3 presents the optimized algorithm for packing six
blocks into threc bins. - Iinally, scction 4.44 tabulates the results of the remaining
cxperiments.
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44.1 P-terms

The following p-term was extracted from PACK:
ppack=

AXB
(OE (a2

NULLIXX)

OW(LEI(SB(a2, #(B)),€>))

(OE (a4)
PACKB(X,B,1)(a2)
OI(L.EE (a6 A) a4 El(Ja641].A))
OI(2, # (X,B)(a2,a4))))

‘The notation used for p-terms in the implementation differs in scveral minor ways from
the notation which we have found it convenicnt to use in our exposition of the p-calculus in
chapter 3. (1) In the implementation, we write "OI(1,t)" and "OI(2,t)" instcad of “Ol(t)" and
"OlL()".  (2) As cxplained in the last section, we now allow "pairing” opcrators of cach
positive arity; arbitrarily many terms t, . .. t, can be "tupled” together into the term
<t, ... > Correspondingly, there is a projection operator m, for cach positive integer k.
Instead of writing "o (1) we write "[t4k]". Note that k must be a numeral; [t41], [42], . . .
arc to be regarded as notations for scparate clementary operators of the p-calculus.  ("4" is
not a function symbol!) We remark once more that the use of arbitrary arity tupling instcad
of iterated pairing is no more than a notational convenience.  (3) The order in which
arguments to the opcrator "EI'" appear is reversed; a p-term "LEI(t),t,)" as expressed in the
notation of chapter 3 is written as "El(t,,t,)" in the notation of the implementation. Thus, in
a construction "l{l(tl,tz):Equ)" in the new notation, t; is the construction for @(t,y). and not the
other way around. (4) The numbers which play the role of subscripts to variables appcar
simply to the right of the variable namc rather than to the right and below the variable name.
Thus, we write "il", "i2", "al”, "a2" and so forth, instcad of "i)", "i,", "a", "a,". (The
rcason for this change is that the text of the various p-terms given below was derived directly
from the output of the proof checking system; such output, for practical reasons, docs not
make usc of subscripts. ‘The output was produced in indented form by use of Derek
Oppen'sf1979] pretty-printer.)
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The p-term extracted from PACKB is:
ppackb =

AXBn
(A a2
(OFE (a4)
L'TED(n,Inth(B))
(OF (ab)

LTED(X:1,B:n)

(OE (aB)
PACK(tl(X),sct(B,n,B:n—(X:1)))
Ol(1,

EE (al0 A)
a8
EI(SB(#,
<H(AX.Bn)a2,a4.a6,a10),a2,
#(n,AN),n @ A))
(OE (al2)
PACKB(X,B.n + 1) a2)
oi(1,
FE (al4 A)
all
EI(SB(#,
Jaldil][aldi],
#(0,A: I 144 3)0).A))
OI(2. # (X, B.n){a8,al2)))
(O (al6)
PACKB(X,B,n + 1)}a2)
o,
EE (al8 A)
al6
EI(SB(#,
Jal831)[ar184 2], # (n, A1) ([ 184 3])),
A))
OI1(2, #(X.B.n)Xa2,a6,a106))))
012, #(X,B.n)(a4))))

The system of lemmas ppack and ppackb has the termination property with respect to our
call-by-value normalizer; this can be established by exactly the same kind of argument as
would be used to establish the termination of the ordinary recursive functions pack and packb.

Let t; and t; be closed terms for lists. By thecorem 3.1 of chapter 3, the result of
normalizing  "ppack(t;.ty)" has onc of the two forms, "OKLENLL)", and "Ol2,t)". A
result of the form "()l(l,lil(lj,td))" may be read as the term part of a construction

OI(LEI(3: legal(t t,.4,).0,): IAegal(t, 1, AN): IAUlegal(t, L ANV IAACegal(t, ,A))
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This result indicates that a legal assignment of blocks t; into bins t, docs indeed exist, and
that t, is such an assignment.  If on the other hand the result has the form "Ol(2,t5)", then
b no legal packing is possible,

44.2 Two small experiments

’ As indicated in the introduction to this chapter, the experiments consist of specializing
: ppack to handle inputs of a particular size and structure by mcans of the following steps. (1)

The term "ppack(t).t,)" is normalized. Here ¢ and t, are open tenns having the form of the

special inputs to be treated: namely, €iy. ... 1, >, and €<n,n . >, where Uiy, LT, and

"n" are numeric variables. (2) The normal form of "ppnck(tl‘tz)" is subjected to the
"simplex™ optimization, which makes use of an additional assumption about the structure of
the inputs; in particular, it is assumed that i) 2> i, > iy... 2i. (3) Pruning is applied. ‘The
result of all this is a decision tree algorithm (given by a p-term) for the special task of packing
k blocks into some particular number of bins of cqual size, under the assumption that the
blocks have been given in decrcasing order of size.

13

!

‘ To begin with, we will describe the results of this process for the simplest case which is
' not absolutely trivial, namely the case where t)=<illi2>, and ,=<n.n>. First of all, the

result of normalizing ppack(<€ili2>, <on>) is:
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OF (a7)
L TRD(1.n)
(O (a9)
LTEXiZ.n—il)
OY(LEI(# (a7,a9),<1,13))
(OE (all)
1L TEIXi2.0)
OI(LEI(#(a7.al1),<1,25))
(OE (al3)
1.TED(i1,n)
(OF (al5)
L TED(i2.n)
O LEI(#(al3.al5),€2,1%))
(OF: (al?)
LTEDG 2.0 —i1)
OI(LEI # (a13.a17),€2.2>))
Q2. #(all.a%alS.alT))
012, # (a1 L.a9.al3)))
(OE (a19)
LRI n)
(OF (a21)
I TEI2.0)
ONLEW # (a19.a21),€2,1>))
(OF: (a23)
LTEDG2.n—il)
ONLEN #(19,a23),€2.25))
Ol # (a7.a21,a23))))
012, # (a7.a19)))

This p-term, if written as an ordinary conditional cxpression, would read:

¢ =
it il<n then
it il +i2 <n then <11»
clse
if i2<nthen <1,2»
clse
if il<n then
if R<nthen €2.1»
clse
i i1-+i2 <n then €2.2> clse €»
clse €»
clse
it i1<n then
if i2<nthen <€2,1>
clse
it i1+12 <n then €2,2> clse €
clse €»
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The above conditional expression would also result from normalizing the ordinary
recursive function definition pack on the symbolic inputs <il,i2> and <€n,n» using the
reduction rules mentioned in scction 2.8, and in addition the permutation rule:

if (if ¢ then t, else [3) then t, else tt!5

= if 1, then (if t, then ty elsc (t15) clse (if ty then t4 clse tt!5)

Now, the "simplex optimization” consists of removing "pre-decided” case analyses.
Another transformation is applied at this stage, namely the replacement of occurences of
assumptions when possible by “proofs” of those assumptions from other available information,
This last teansformation improves the cffectiveness of pruning, since it removes apparent but
in fact unnccessary dependencics between the facts involved in the computation.  Since all of
the decision predicates which appear in bin-packing take the form of incqualitics & tween
lincar terms, the simplex algorithm may be used to perform these transformations.

The “simplex transformations” are instances of the following general replacement
transformation on proofs. First of all, we define the set of active assumptions at a node of a
proof tree to be the set of assumptions discharged along the path from the node in question to
the root node of the proof. More formally, a formula A is active at a node N if N lics in
fusing q-term notation]: (1) 1, of OE(H :AVE LT, (2) 11 of OF(M:FVATLIT) (3) 11
of H(AIT), (4) I, of E[".(III.B.\A‘HZ). A replacement transtormation is a transformation
which replaces a subproof I1:A rooted at node N of a proof I1 by another proof [1":A of the
same formula A, subject to the condition that the open assumptions of 11" arc among those
active at N,

The simplex transformations arc replacement transformations of a special kind.  Consider
a subterm of the form "F'TED(.G)" which appears in a bin-packing p-term.  Supposc that
onc of (l_<_(2 or t?.(ll follows trom the active assumptions at the node at which l.'l’lil)(ll.tz)
appears (all of the active assumptions will themselves be linear incqualities).  That is to say,
suppose that the outcome of exceuting TED(LL,) s pre-decided by the lincar inequalitics
which have alrcady been assumed at the cureent node in the decision tree. Then the

invocation of the lemma LTED can be removed in favor of a small proof of "t; <, Vi,KG " by
means of an V-introduction from one or the other of the results ", <t,". or "t,<t,"
Specifically, that proof will have the form
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OUKAX(FFy . .. F, D EMASIEDAS(E) ... AS(E )

where k is either 1 or 2, where F is cither ¢, <t, or (<t;, and where FF,, . .. F are the
various inequalities which are active assumptions at this point in the decision tree, and which
are necded to conclude that Fy holds. This is exactly the replacement which is performed by
the first simplex transformation - except that the replacement is carried out in the language of
untyped poterms; thus the replacing term has the torm Ol(k, #(ay. . . .a))). where the o are
proot variables.

Now, let us consider the second transformation - the dependency removal transformation.
Suppose that an assumiption AS(I"O) in a specialized bin-packing proof follows from other
assumptions which are active at the node where the assumption appears.  Then the various
results which are derived using the assumption have the appearance of depending on that
assumption, but the dependency is in a sense unreal - it could be dispensed with,  1f we wish
to make the best use of pruning, then apparent dependencies of this kind should be
climmnated. So we use the simplex method to replace assumptions AS(Fy) by proofs of those
assumptions from other assumptions which are currently in etfect.  The form of the proofs

with which assumptions ar¢ replaced s
AN(FFy L F L D B IASAT LASE,) L ASTE))

where L0 T aie the formulas needed o establish By To p-term notation, this has the
form #(ayp. .. .)). Note that the formulas which are associated with proot” variables in the
bin-packing p-terms can be determined by finding the OF operator which binds the variable,
and looking at its first argument " TE(E) B the variable in- question appears in- the
second premise to this OF operator then the associated formula is " <", and otherwise it is
R TR

One more picee of information remains to be specified about the simplex transformations.
It may happen that several distinet proofs can be used to replace a single assumption or
"I ED” invocation; the inequality in question might follow from  scyveral difterent subsets of
the the currently active set of assumed incqualities. We have not said how a choice among
several such possibifities s to be made. In fact only one possibility, namely the one generated
by the following algorithin, is considered. Tet FL B, o0 F o bealist ot all the assumptions
active at a given nade in the order of "innermost” to “outermost™; that s, F is the
assumption discharged nearest the current node, while Fis the assumption discharged nearest
the root of the proot. In attemipting to find a minimat subscet of {. ... l’"} trom which a
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formula Fy can be derived, our algorithm proceeds in the following way.  First it checks
(using the simplex method) whether Fy follows from {1 If not then it checks {F.F,h
{F.F,.F;}, and so on, until it finds a least j such that ko follows from {F, .. .Fj}. or until it
is determined that F; does not follow from the entire set b, .. F.}. I the latter case, we
arc done, and return a negative answer. [n the former case, we scan through the set again, in
the order ¥, . . .k in which it is given. For cach clement F, considered, an attempt is made
to remove b, from the set; the attempt is deemed successtul if the reduced set still implies K,
After removing or attempting to remove cach F, in turn, we evidently have a mininimal set of
inequalities with the desired property. 1t is this set which is returned by the algorithm. ‘This
algorithm was the first that came to mind. and, because it produced good results, we did not

try another.

In cach of the simplex transformations, the inequalities i > o dy 2 b 20, are
assumed as “background” information.  That is to say, whenever we used the phrase "I,
follows “rom {1 . . . F }" in the above, we meant "I, follows from {7 . .. .} and
lipg 2> 0 0y 2> g oL 20

Note that the only property of the bin-packing proofs of which simplex transformations
make special use is the fact that the decision predicates have the form of lincar inequalities.
Transtormations of the same kind - namely, replacements of case analyses and replacement of
assumptions - can be applicd (o any proof aader the condition that a decision procedure is
available for the case predicates which appear in the proof. Thus, the special purpose part of

the simplex transformations is just the simplex  algorithin itself,

As mentioned carlier, the simplex algorithm used in the implementation was not written
by the current author. Rather, a "canned” simplex package, written (in Macl 1SP) by Greg

Nelson, was imported into the proof manipulation  system.

The resutt  of applyving the simplex  transformations  to the normal  form of

"pack(€iLi2> &nn>)” given carlier, and then normalizing again s

o
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OF (a25)
LTED(il,n)
(OE (a27)
LTED(i2.0—i1)
OI(1.EI( #(a27).<1.1>))
OI(LEI(#(a25).€1.2>))
Ol #(a25))

Written as an ordinary conditional cxpression, this is: i

¢, = if i1<n then (if i14+i2<n then <11> clse €1.2>) clse FAIL

Note that the first of the two simplex optimizations - namely, the one which removes pre-
decided case analyses - could as casily have been applied the conditional term Cp and the
result would have been ¢, Thus, so far, no use has been made of the additional dependency
information which the p-term contains, but which the conditional term does not. However,
pruning is applicable o p,, yiclding:

Py = OE(a29) LTEDGLR) OILEK# («29).<1,2>)) OI2, # (a29))
Written as a conditional expression, this is:
¢y = if il<n then <12> clse FAIL

Thus p;y tries only one packing, namely <1.2>. If any packing works, then this one
must. This fact is “automatically rcalized” by the dependency analysis involved in pruning.

Note that py computes a different function from that computed by p,. Also note that p,
is the optimal (ic smallest and fastest) conditional expression for computing the function Nl i2
n pack(LiL2> <nan™) with 112020 Thus, it is only by using a transformation (such as
pruning) which modifies the extensional meaning of computational descriptions that we are

able o achieve the improvement which p, represents over Py

As mentioned in the introduction to this chapter, it is not feasible to perform stages (1)

and (1) of the specialization separately for the larger examples. The reason for this is that the
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p-terms which result from stage (1) alone are too large to fit in memory in the current
implementation. ‘Thus the simplex transformations and normalization were run in parallcl; the
normalizer was modified so as to apply the case analysis removal procedure when called upon
to "normalize” an expression of the form "LTED(t;.t))".  Assumption replacement was
implemented in a similar manner.

We now present the results of another small experiment, namely. the experiment in which
pack(<€iLi2i3» <n.n>) is speciatized.  First of all, the worst case running time of the original
version of pack (or equivalently of ppack with our call-by-value normalizer) with i1>i2>13 is
10, where running time is mcasured in number of comparisons.  More precisely, there are
numerals ab.c.d with a2 h>¢ such that the number of comparisons made in the course of the
execution of pack{<Kab.e» <dd>») by a standard call-by-value evaluator for conditional
expressions is 10, and turthermore this is the largest number of comparisons which will be
made in any cxecution of pack applied to an input with this form. The worst case running
times for pack reported here and bedow were computed using a program which searches
through all possible exccution paths (ic sequences of comparisons) of pack when applied to an
input of the special form under consideration:  the length of the longest such path is returned.
The simplex algorithm is used to determine which execution paths are possible, and which are

not.

The  result of  normaliving  and  applying  the  simplex tanstormations to

pack{<iLi23> «<nn>) s




OE (all)
LTED(il,n)
(OE (al3)
LTEDXi2,n—il)
(OE (al5)
LTED(i3,n—il-i2)
OI(LEI( #(al15),€1,1,13))
Ol(1 El(#(al3),€1,1,25)))
(OE(al7)
LTED(i3,n—il)
OI(1,El(#(all,al7),<1,2,1>))
(OE(al9)
LTED(i3,n~i2)
OI(1,.EI(#(all,al19),€1,22>))
OI2, # («19)))
Ol(2, #(all))

Pruning when applied to the above p-term yields

OE (a21)
LTED(il,n)
(OE (a29)
I.TEIXi3,n—i2)
OI(1.El(# (a21,a29),€1,2,2>))
Ol(2, #(x29)))
OI(2, #(a21))

Written as an ordinary conditional expression, this is:

if il < nthen
ifi2+13 < nthen €1,2,2> else FAIL
else FAIL

Note that pruning again yiclds an optimal algorithm for the special casc considered - an
algorithm which computes a diffcrent funticon from that originally computed by pack.
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443 An algorithm for packing six blocks into three bins

The results of the experiment concerning the packing of six blocks into three bins were
described in general terms in the introduction to this chapter. The end product of that
experiment - that is to say, the algorithm produced at the last stage of the three stages of
optimization - is given bclow as an ordinary conditional expression.

if i1 < n then
if i2+i3 < n then
if il+i6 < n then <€1,22331>»
else
if i4+iS+i6 < n then <12273,3,3>
elsc FAIL
else .
if 244 < n then
if i1+i6 < n then <1,2,3,231>»
elsc '
if i3+i5+i6 < n then <1,23233>»
clse FAIL
else
if i3+i4 < n then
if 2+i5 < 'n then
if il+i6 < n then <€1,233.2,1»

clse

if 2+i5+i6 < n then <1,2,3322»
else
if i3+i4+i6 < n then <€1,2,3,3,2,3>

elsc FAIL
else
if 3+i4+i5 < n then
if i6+i2 < n then <€123332»
else
if 3+i4+i5+i6 < n then <1.2,3333,>»
clsc FAIL
clse FAIL

clse FAIL

clse FAIL
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444 Table of other resuits

The following table summarizcs the results of the remaining experiments. Six numbers
arc associated with each experiment. These quantities are:

(1) P. This is the worst case running time of 1.ick applied to inputs of the form under
considcration.

(2) EP. The performance of the general purpose algorithm pack in treating special cases
where the bins are all of the samc sizc is very bad. Onc reason for this is that no use is made
of symmetrics introduced by thc cqual sizes of the bins; cach of various packings which are
cquivalent under renaming of bins is considered separately. It was of interest to compare the -
performace of our optimized special purpose algorithms with the performance of an algorithm

with the samc design as pack, but which takes the symmetrics introduced by cqual bin sizes
into account. That algorithm is as follows:

epack(X,s,k) « epackl(X,<».15sk)
epackl(X.B,nsk) «

if n<Inth(B) then

if X:1<B:n then

{A 2
(if z#FAIL then n @ =z
clse cpackl(X.B.a+ 1 sk)}

(cpack 1(ti(X)sct(B,n,B:(n — X:1)),1,5,k)
clse cpack1(X,B,n+ 1,5,k)

else

if k21 A (X:1<s) then
{A 2. if z#FALL then (Inth(B)+1) @ z

clsc FAIL} (cpackl(t(X),B=<X:1», 15k-1))

clsc FAIL

The algorithm cpack(X,s,k) scarches for a packing of the blocks in the list X into k bins
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each of size s. The subprogram epackl(X,B,n,s,k) scarches for a packing of the blocks X into

a collection of bins described by the inputs B,s, and k. ‘lhe initial elements of this collection

are just the bins whose sizes are given in B, while the remainder of the collection consists of k

bins each of size s. As in packb, the first block X:1 must be placed in a bin whose index is at .
least n. The behavior of epackl resemblces that of packb, except that it keeps track of which

bins are still empty. A block is placed in an empty bin only if the attempt to place it in a

non-empty bin leads to failure. In contrast to packb, epackl attempts at most one placemen.

of any block into an empty bin. The term "B+<X:1®" in cpackl denotes the result of

appending the list "<X:1>" onto the end of the list B.

The number EP rcpresents the worst case running time of epack.

, Note that, even if it had turncd out that thc "hand-optimized” algorithm was more

g efficient than the specialized algorithms which we produce by automatic methods, it would

) not follow that the automatic methods are not of use. An automatic specialization method

i such as the one currently under discussion starts with a gencral algorithm and with a
description of the special form of the inputs to be considered; the output of the method is
then a specialized algorithm which deals with inputs of that spccial form., The most direct
measure of the cffectiveness of the specialization method is given by a comparison of the
output of thc method with the original algorithm, and not with some third algorithm (suéh as
epack) produced by a person to handle inputs of the special form. A separate matter of
interest is to compare human and automatic performance in this regard as we are doing at the

moment.  As it happens, and as will be seen, our automatically specialized algorithms are in
fact faster than the algorithm cpack given above.

Y (3) D is the depth of the decision tree produced by applying normalization and the
simplex transformations to pack(<€il, . . . in>,<n,n, . . .n>). [quivalently, D is the number
of comparisons made along the longest path down the decision trec; that is to say, the
"running time" of the decision tree.

(4) Dp is the depth of the decision tree produced by applying pruning to the tree of (3)
immediatcly above.

(5) S is the size of the decision trec of (3) measured as the number of decision points;

. cquivalently, S is the number of occurences of "L'IHD” in the p-term.
] , .
’ (6) Sp is the size of the pruned decision tree of (4).
» " .
i

2;' 9%
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The effectiveness of pruning is indicated by the differcnces between D and Dp, and between
S and Sp. The table of results is as follows. Occurences of “*" in the tablc indicate that the
relevant dccision trees could not be constructed because of lack of memory space.

nAO0 - W

10

4

4 5

2 2

14 43

6 7

6 10 7 13

4 4 2 2

38 66 260

17 10 11

7277 10 33 11 37

6 12 4 4 2 2

58 174 356 1630

27 27 15 16

17 62 14 87 * * *

12 40 8 15 4 4 2
3
BINS
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4.5 Summary

The results of the experiment show that prunable redundancies can indeed arisc in the
specialization of a simple combinatorial algorithm, and consequently that pruning can be of
use in specialization. It is of course possible that equally good specialized algorithms for the
particular problem treated - namcly, bin-packing - could have been arrived at by a head on
attack. For example, one such attack would involve manipulating the propositional formulas
which result from unwinding the definition of a legal packing as applicd to inputs of restricted
sizc.  However, as has been remarked earlier, the methods by which the specialization was
donc are for the most part completely general in their applicability; the only special property
of the bin-packing problem which was used was the decidability of linear incqualitics. The
machinery of normalization, and pruning, and proof rcplacement may be applicd to any proof
whatever. The experiments should be seen as a first test of the utility of this general
machinery. Our purpose was not to develop fast special purpose bin-packing algorithms, but
to investigatc pruning in a sctting where its cffects could be casily isolated.
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Chapter §

Other Applications

Until now, we have restricted attention to the use of proof manipulation in specializing
algorithms. The purposc of this chapter is to briefly indicate other computational applications
of the proof manipulation technology which has becn described in the course of this thesis,
and at the same time to outline some conncections between our work and other traditions of
work within computer scicnce. Applications to two kinds of computational problems other
than spccialization will be considered, namely, applications to the automatic construction of
proofs (from proof fragments; scction 5.1), and to the analysis of change (scction 5.2).

5.1 Automatic construction of proofs

As emphasized in the introduction to this thesis, most work in computer science to do
with formal proof systems has concerned the automatic construction of proofs, and not their
manipulation. Generally speaking, the aim of such work has been to provide automatic means
for determining the truth values of propositions; a proof of a proposition is constructed in -
order to determine that it is valid. Automatic proof construction (or "automatic deduction™)
in its most pure and ambitious form involves starting with an arbitrary formula of an
expressive language (cg the predicate calculus) as the only input data; the output is cither an
indication that a proof has becen found. or an indication of failure. Other forms of automatic
deduction make use of additional input data beyond the formula to be proved; for example
scts of of "rules” for backward chaining [Shortliffe 1974], or scts of programs which indicate
in explicit algorithmic terms how certain problems are to be reduced to subproblems [Hewitt

1971]. It is traditional within artificial intclligence to rcfer to this additional input data as
"knowledge”.

Nomalization constitutcs, in a certain sense, a mcthod for automatically constructing
proofs; a normal proof of a proposition is automatically constructed from an arbitrary proof
of that same proposition. In this casc, the "additional input data” in the sense of the last
paragraph consists of the original proof. From the point of view of automatic deduction,
normalization is of no usc, since the additional input data with which it starts is alrcady
satisfactory cvidence for the truth of the proposition in question. However, by liberalizing
the requirements which apply to proof procedures and lemmas (scction 2.5) it is possible to
usc the machinery of normalization as developed in chapters 2 and 3 for constructing a
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normal and complete proof of a proposition starting from an incomplete proof of the same
proposition. Under these conditions, the normalization of the incomplete proof includes a
search for evidence for propositions, and thus constitutes a form of automatic deduction in the
traditional sense.

Specifically, let us drop the following rcquirements concerning lemmas: (1) the
requirement that lemmas must be true formulas, (?) the requirement that lemmas may not
appcar in the proofs constructed by proof procedures, and (3) the requirement that a proof
procedurc may not return "FAIL" when applicd to closed arguments. Also, we will now
allow proof procedures to produce proofs which make use of assumptions which are active at
the point where a lemma appcars. (The notion of an active assumption is defined in section
44.2) We rctain the requirement that all axionms be true. As a result of the removal of
requirements 1 - 3, it is now possible to construct incomplete "proofs” of incorrect formulas -
proofs which procced from false lemmas to falsc conclusions. However, the main point here
is that the process of normalization - exactly as described in chapters 2 and 3 - may have the
cffect of removing appearances of lemmas - thus converting an incomplete proof of a formula
whose truth is in doubt into a complete and reliable proof of that same formula.

If normalization is implemented in a call-by-value manner as described in scction 4.1,
then the normalization of an incomplete proof corresponds in a dircct way o proof scarch by
backward-chaining through implications - in other words to s bgoaling”. Specifically, in the
coursc of normalizing a proof Tlig containing lemmas L:Vx¥(x), 1,:Vx¥(x) . . .
L :Vx¥ (%), the proof procedures for some or all of the lemmas arc invoked. (The invocation
of a proof procedure corresponds roughly to an attempt to "match” a subgoal.) When the
proof procedure for, say, L, is called with input t the procedure will cither fail
(corresponding the failure of a subgoal in backward chaining), or return a proof T1, of @(.
In the latter case, I1; is then normalized.  Since 1, may itscif contain lemmas, the
normalization of TI, will in gencral involve further backchaining. If the end result of
normalization is a proof in which no lemmas any longer appear, then the endformula @ has
becn "proved”; this corresponds to a successful scarch for a proof by backward chaining. (In
particular, this corresponds to backward-chaining without backtracking; however, the addition
of backtracking to the mechanism of normalization is a straight-forward matter.)

Let T be an incomplete proof of a universal formula Vxe(x). Then it will often happen
that the normalization of T1 fails to yicld a complete proof of Vxeg(x), but at the same time,
normalization of the proof

v n( )
xp(x
T A

s
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for a particular term t docs yicld a complete proof. This can come about in the following
way. The normalization of I1(t) will in general select a smaller and more specialized sct of
"subgoals” (that is, lemmas for which proof procedures are invoked) than the normalization of
IT; in thcorem proving language, thc normalization of I1 determines the particular set of
subgoals needed to verify cach instance @(t) of the gencral formula Yx¢(x) - different sets of
subgoals will be generated for different instances. The subgoals generated by normalizing
T(t) may be satisfyable even though those generated by normalizing I are not. In this casc,
IT docs not provide cvidence for the truth of the general statement Vxe(x) (indeed, Vxe(x)
may not be true), but does indicate a method for attcmpting to construct evidence for
instances ¢(t) of the gcneral statcment.

In the case where @ is existential, that is, where @(x)=3yy(x,y) for some ¥, a successful
normalization of

v 3"
VE x3yd(x,y)
JyP(x,t)

yields a value for y; thus I1 describes an algorithm for computing a partial function satisfying
the specification . The computation in question involves a mixturce of ordinary computation
(normalization), and proof scarch by backward chaining. In this respect, normalization of
partial proofs resembles the behavior of "pattern matching languages” such as PlannerfHewitt
1971] and its successors, where ordinary computation is mingled with subgoaling. Morc will be
said about this rcsemblance later.,

The correspondence between normalization and familiar kinds of backward chaining is
enhanced if the proof procedures for lemmas proceed by scarching for a "match” between the
lemma to be proved and the endformulas of proofs in a pre-existing data base. For cxample,
suppose that one starts with a data basc {I1, . . . TI;} of incomplete proofs of universal
formulas. Supposc further that all lemmas which appcar in proofs of the data base are V3
formulas.  Finally, supposc that the following uniform proof procedure is supplicd for all
lemmas: the procedure, when given input t for a lemma L:Vx3yy(x,y), scans the data base
{r, .... T} looking for a proof Ij:¥ze(z) such that the formulas ¥(ty) and @(z) unify in
the sensc that there is vector of terms flfply - -« T with nle.ro) = @(ryr, ... rk). If such a

proof TI; is found, then the procedure returns the proof
. n
V[f‘.——vm)@
) e(rry. .. 1)
ENT)

95

bt

O .

xS A
Cond - w




e

-

If no such proof can be found, the procedure returns "FAIL". The similaritics to Planner and
its successors, and also to the "logic programming language” PROIL.OG [Kowalski 1974),
should now be cvident. In particular, the behaviour of both MicroPlanner, and of PROLOG
programs, can be closcly matched by the machinery just described. The proofs {1}
correspond to conscquent thcorems of MicroPlanner, and to the horn clauses of PROLOG.
The value returncd by a successful execution of a PROLOG program corresponds to the
realization wiich may be extracted from a normal proof of an cxistential theorem.

As has been convincingly demonstrated by work with PROLOG, a person who knows in
general terms how backward-chaining works is in practice able to express an arbitrary
algorithm as a sct of implicational formulas; the exccution of the algorithm takes place when a
backward-chaining thcorem prover (cg. the PROIL.OG interpreter) is given those formulas as
axioms, and a goal which cncodes the input to the computation. (One also nceds a
mcchanism for cxtracting an output value from a proof, in PROLOG, this output is
constructed in the course of the scarch for the nroof) It is of course cssential that sets of
implications be constructed with an algorithm explicitly in mind; a set of implicational
formulas which are chosen solely according to the criteria of Tarskian truth and completeness
arc exccedingly unlikely to be of any computational use, regardless of the theorem prover
used. (This is analogous to the obscrvation that a proof of an V3 thcorem which is
constructed soley according to "mathematical” criteria such as validity and clegance is unlikely
to be of much computational use when exccuted by normalization.)  Kowalski[1974] has
discussed the advantages of describing algorithms by scts of tormulas and cxecuting them by
usc of a backward-chaining thcorem prover.  As wc have shown, it is possible to mix
normalization with backward chaining; presumably, this should allow the benefits of the two
forms of computation to be realized simultancously.

We remark on two additional aspects of automatic proof construction using normalization:

(1) Note that what Stalhman and Sussmanf{1977] have called dependency directed
backtracking “comes for free” in normalization with pruning. Supposc that onc wishes to
normalize a proof

(Al (8]

n 0,
AVB € C

VE

C

whose main inference is V-elimination.  Suppose further that C is a Harrop formula, and that
normalization of 1T, does not decide between A and B. (Evidently, the requirement that only
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non-Harrop axioms appear in proofs may be dropped in the case where the endformula is a
Harrop formula; conscquently the normal form of I1; may fail to decide between A and B -
for cxample, Ti; might consist simply of the axiom, "AVB".) Then, in the usual casc, it will
be neccssary to normalize both T1, and ;. However, if the normal form ﬂz' of I, does not
make usc of the assumption A, pruning allows us to produce I'lz' as the end result, and
thereby to dispense with the treatment of T1;. Thus dependency information can be used to
reduce the amount of scarch or "backtracking”, just as it does in the various systems for
“dependency based rcasoning” which have been developed by workers in  Artificial
Intelligence (see London[1978], Doyle[1978], Shrobe[1979]). Also note that in normalization,
dependency directed backtracking docs not rely on "non-hicrarchical contexts” or non-
monotonic inferences.

(2) A complete proof of a formula Vx3ygp(x,y) provides cvidence for the truth of
Vx3ye(x,y), and in addition describes a method for computing a function f with Yxe(x,f(x)). -
As a conscquence, the normalization of an incomplete proof I1:¥x3ye(x,y) consitutes both a
scarch for cvidence, and a scarch for an algorithm with certain propertics; in the terminology
of computer science, normalization can scrve as a method for the synthesis of complete
programs from program fragments. (For comparison with program synthesis for PROLOG
sce [Clark and Sickel, 1977]). Notes: (a) If normalization is implemented as a semi-automatic
procedure - a procedure in which a human user has the option of interactively constructing
proofs of lemmas - then we arrive at a "refincment” method for constructing programs very
much like that developed by Bates[1979).  (b) A single proof transformation, namely pruning,
can have the effect of improving the officiency of a computation at "run-time" (as cxplained
in the last paragragh), or of optimizing an algorithm, dcpending on whether the
transformation is applied in the coursc of computing a value, or to a proof of an V3 formula.

[t is also worth considering the case where normalization of Vx3Jye(x,y) produces a proof
N’ which is not complete. Here, T1" may still be used to compute values of y with @(x.y)
from values of x in the manner described carlier; the computation will not consist of "pure”
normalization, but will involve backward-chaining through lemmas as well. What, then, is the
significance of the passage from I1 to T1"?7 In the scheme for the execution of incomplete
proofs with which we arc currently concerned, the burden of computation is shared between
automatic deduction (perhaps in the form of "malching”), and purc normalization. When
T1:¥x3yeg(x.y) is exccuted, all computation (including both pure normalization and automatic
deduction) which is possible in the abscence of a concrete value for x is carried out. When a
concrete vatlue for x is supplied, the remainder of the computation is performed. Thus the
passage from IT to [1" constitutes a kind of optimization; all work which can be done without
knowing the valuc of x is carried out first, and, as a conscquence, this work does not have to
be repeated each time T is run,
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5.2 Analysis of change

Consider a situation in which one is obliged to solve a scrics of problens P\, P,, . . . Py,
where P, is only "slightly different” from P,. Then it may happcn that the same solution
works for many consccutive problems. It is uscfut in this situation to determine conditions
under which a small change in a problem leaves the correctness of a solution intact; if the
difficulty of cvaluating such conditions is small compared to the cffort involved in
constructing a new solution, then the total cffort nceded for solving Py, P,, . .. P, can be
reduced.

In Artificial Intclligence, the task of determing the effects of small changes is referred to
as the "frame problem” [McCarthy 1969]. The use of proofs as descriptions of algorithms can
provide aid in attacking thc frame problem, in the following way.  Supposc that when a
problem P is solved, one constructs not only a solution S, but also a proof Il that S really is a
solution of P. Then T provides an explicit description of the features of the problem upon
which the success of S depends. If P is changed slightly, one is able to sce, by inspecting the
proof T, whether any feature relevant to the success of S has been modified. Now, if one
uses a proof to describe a method for solving a problem, then the execution (ic normalization)
of the proof when applied to a particular problem yields not only a solution, but also a
specialized proof that the solution is correct; and, as we have said, this proof can be used in
the analysis of change.

This idca is illustrated by the following schematic example.  Consider the problem of of
computing an output value v with @(t.v) when given a vector t = t, . . . t, of inputs.
Suppose that an algorithm for doing the computation is given by a proof T1 of Vx3yep(x.y)
and that the result of exccuting 11(0) is a proof [1" of Jye(ty) which provides v as a value for
y. In the general case, IT° will make use of properties of some but not all of the inputs
t» - - . ty. Supposc then that a "slightly different problem™ is presented - namely the
problem of computing v’ with @(U',v"), wherc the vector t' differs from t in only a few entrics.
If the entrics in which t differs from t do not include any of the entries whose propertics are
mentioned by I1°, then @(t'.v) holds, and the computation does not need to be repealed.

The same kind of analysis of change can be carried out without using proofs.  Suppose.
that, in the above schematic example, the computation of v from t is carricd out by the
exccution of an ordinary program p(x,. . . . x;)) rather than by the normalization of a proof.
Then a trace of the execution of p(ty. . . 1) will indicate which among the values t;, . . . t,
have been used in the computation and which have not, thus providing the same kind of
dependency data as is supplicd by the normal proof 11:3ye(t.y).  Howcever, the normal
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proof IT" in general provides a morc thorough and more uscful analysis of dependencies that
the corresponding program trace. 'To sce how this can come about, compare the execution of
a conditional expression

if n then T clse r

with the normalization of the corresponding proof:

[A) [B]
m m n
AVB C C
VE:
C

Suppose that (1) r, evaluates to "TRUE", (2) the normal form of I1, does not contain the
assumption A, and (3) an input {; appears in r; “ind in [1)) but not in r, (nor in I1,). Then,
in a trace of the exccution of "if r, then 1, clse r;", the outcome will appear to depend on t;,
but the corresponding normal proof will reveal that the correctness of the outcome is

independent of t;.

Thus, in the analysis of change as in the specialization of algorithms, proofs provide
additional data about the dependencics between facts involved in a computation, and this

additional data can be exploited to avoid redundant computation.

a8 i 4 NS e 8

Analysis of change of the kind which we have been discussing - based however on the
use of programs, and not proofs, as descriptions of algorithims - has been used in a number of

settings within computer science.  ‘To take a simple cxample, the conventional program
optimization which is known as code motion [Aho and Ullman 1973] involves analysis of
change in the context of itcrative computation.  In the typical kind of code motion, an

assighment statement v o« t" is moved out of an inner loop when it is determined that the
variables appearing in t do not change in the loop. By using a proof for describing the
computation of the value to be assigned to v, this analysis of change might be improved -
specifically by determination of the conditions under which the correctness of the value
computed depends on variables which change in the loop. A related idea is worked out in a

———— e W a——

paper of Katz{1978] concerning the use of proofs of invariant asscrtions in optimizing iterative

descriptions of computation,

Other examples are provided by constraint systems such as those developed by Stallman
and Sussmanf1977), and Borning [1979), and by “"dependency based reasoning systems” such
as thosc of Shrobe[1979], London[1978] and Doyle]1978]. In these systems, situations - such as
the state of an electiical circuit [Stallman and Sussman 1977] - are represented in such a way
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that the dependencies among the facts and valucs which describe the situation are explicitly
recorded. When the situation changes, or when an assumption about the situation is added or
withdrawn in the course of automatic deduction, the dependency information is used to
determine what aspects of the situation have been affected, and what computation has to be
done to update the representation. For the reasons given above, the use of proofs as
descriptions of algorithms may be cxpected to improve the analysis of dependencies upon
which these systems rely.
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Appendix A

Comparison to Extraction Methods from Proof Theory

Traditional proof theory provides two kinds of methods for the execution of proofs. First
there are the methods which operate by transformation of the proofs themselves. ‘The
normalization procedure of Prawitz[1965) described in chapter 2 belongs to this class, as does
the cut-climination procedure of Gentzen [1969)] for the calculus of sequents.  Second, there
arc methods which involve extracting "programs” of one kind or another from proofs; it is
then the program which is exccuted, and not the proof itself. Examples of methods of the
latter kind arc the recursive realizability interpretation of  Kleene[1945], the Dialectica
interpretation of Godel[1958), and the modified realizability interpretation of Kreiscl[1959] for
analysis.

The normalization method, and the moditicitions to it which we have made in order to
increase cfficiency, have of course been discussed at fzngth in this thesis.  The purposc of this
appendix is to compare the methods which we use to the other family of exccution methods
from proof theory - namcly, the functional and realizability interpretations.  ‘The account
which follows is intended for the reader who is familiar with these interpretations.

In general terms, the situation is this. ‘The "programs” cxtracted by the three
interpretations mentioned above are Gadel numbers of partial recursive functions in the case
of recursive realizability, and  typed A-calculus terms in the other two cases.  As shown by
Mints]1977], the various programs extracted by these interpretations from a proof of
Vx3yg(x,y) all compute the same function as docs normalization. l‘urthermore, the
convertability results of Mints, and the commutativity results of Diller [1979) show that it is
not only the function computed which remains fixed under these interpretations, but also the
form of the computation scquences which arise when the function is applicd to a particular
argument,

The programs cxtracted by the functional and realizability interpretations  mentioned
above resemble the untyped p-terms which we extract from proofs in that both the p-terms
and the programs contain the information in a proof which is relevant to exccution but leave
out most of the rest of the data in the proof. “The interpretitions differ among themselves in
the cfficiency of the programs which they extract, but, in onc case - namely modificd
realizability - the extracted programs are as consise and computationally cfficient as p-terms.
The Dialectica interpretaion also produces "good code”, but to a somewhat lesser extent. In
the case of recursive realizability, cfficiency depends on the pacticular godel numbcering and
interpreter  used.
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For our purposes the differences between p-terms and programs are crucial, since  p-
terms contain the dependency data nceded for pruning, whercas the programs do not. In
order to specialize algorithms by symbolic exccution and pruning as we have done in the bin-
packing cxperiments of chapter 4, we need a form of computational description which meets
both of the following requirements: (1) Symbolic exccution of the description must be
tolcrably efficient. (2) ‘The dependency data nceded by pruning must be present in the
description, and further, this dependency data must be preserved in the course of symbolic

cxccution. Now, nonnalization as described by Prawitz]1965) mcets the second requirement
but not the first, wherecas, from what we have just said, the programs extracted by the
functional and realizability intcrpretations meet the first requircment but not the sccond.
Thus none of the tools from traditional proof theory is adequate for performing the kinds of
manipulations on algorithms which have been the central concern of this thesis, and  for this !
reason it was nccessary to use a new form of computational description - the p-term,

For a more explicit formulation of the relationship between p-terms and the pregrams
extracted by the interpretations, we will need the following notation. et y; be the procedure
which extracts untyped p-terms from proofs, and let y, be the extraction procedure for any
one of the interpretations. The modificd realizability and Dialectica interpretations extract
typed A-calculus terms from proofs; however, it is convenient here to regard the terms
extracted by vy, as terms of the ordinary untyped A-calculus.  ‘This is an incssential
madification, since the type information contained by A-terms is not necded for normalization
and cannot help in pruning.  With this taken into account, there is a procedure y; for
extracting programs from p-terms such that the diagram, .

Y1

v

Y2 Y3

commutces.

Thus, p-terims lic "on the way" from prools to programs. Furthermore, the map Y3 is
many-to-one; there is no way of getting the p-term back from the program extracted from it.

In part (a) of scction A.l, we will describe Yy in gencral terms for the modified
realizability interpretation, and show in part (8) that pruning cannot be used in connection
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with programs produccd by this interprewation.  The treatment of recursive realizability is
csscntially identical.  In scction A.2, the Dialectica interpretation is discussed. ‘The example
which shows that pruning docs not apply for modificd realizability interpretation or for
recursive realizability also works for the Dialectica interpretation.

For the current purposcs, it is convenient to restrict our attention to a theory which,
roughly speaking, represents the intersection of the theories trcated by the various
interpretations - namely, the formulation of arithmetic given in section 3.6. The language of
this theory is just the standard language of arithmetic; the set of available lemmas consists of
the induction schema lNl)‘P. Wc have not said what axioms arc used, and we don’t need
to. since the choice of axioms makes no difference to what we have to say. (Note that the
standard  system for intuitionistic arithemctic arises from one such choice of axiowms.)

Al M ified realizability and recursive realizability
(a) First we describe the map yy which takes a p-term and rewrites it as a modified
realization.  What y, does 1s to replace the special operators Ol, Ol,, OF, EL, EE of the p-

calculus by constructs of the ordinary A-calculus.  Specifically, we use the replacements:

# = ¢ (where ¢ is a constant symbol; a different constant symbol is
assigned to cach occurence of &™)

oL = O

oLy = <A

Ob(a.tytyty) = if m (1)) then Glasa,()) else tlacmy ()]

FlL) = <

EE(xat ) = tlxen (t)acmy(t)]

IND() = {R(m (0. Ay 2({m,()XNHOAM} (x)

In the above, R is a conventional recursion operator, to which the reduction rules
R(t, .0 suce x) = .lz(R(ll.lz)(x))(x)

R(t.LX0) = ¢,

apply.
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The conditional operator “if t; then ¢, clsc ty" is assumed to take the numeral 0 as
TRUE, and the numeral 1 as FALSE. ‘T'he conditional opcrator can of course be defined by
"if t, then t, elsc t; = R(t,Ax y. )", Pairing can also be defined in the typed A-calculus
over arithmctic, but since the types of terms are not available in the current context, we take

pairing and projection as primitive. (T'here is no definable operator in the untyped A-calculus
which has the characteristics of a pairing operator, as shown by  Barendregt[1972).)

‘These replacements preserve the behavior of terms under normalization, as shown by the
propositions (1) - (4) below.

(1) If 1; reduces 1o t, by the application of a single reduction rule of the p-calculus, then
v,(ty) reduces to y,(lz) by the application of a single reduction rule of the A-calculus.

(2) If tis in normal form (for the p-calculus), then yy(t) is also in normal form (for the
A-calculus).

(Nlettbea p-lcfm which has been extracted from a proof (of arithmetic). Then t and
Y1) both have the uniqueness property. By (1), (2) immediately above, wc have |73(1)| =
Yy(i). where || designates the normal form of .

(4) et t be a p-term which has been extracted from a proof in arithmetic all of whose
axioms are truc.  ‘Then there is an assignment of types to the variables and constants of y4(t)
such that the resulting typed A-calculus term realizes the endformula of the proof in the sense
of maoditied realizability,

Thus, from the point of view of cxecution as opposed 1o pruning, there is not much
difference between the term extracted from a proof for modified realizability, and the p-term
which we extract from  proofs.

(B) However, v, destroys the dependencey information which is needed by pruning. The
problem is that in replacing "OF(aty.t,.4)" by "if (1) then Gla o (t))] else tlaeny(t)]",
onc looses track of the use, if any, which is made in t, and t; of the assumption represented
by a.

In what follows, we demonstrate this point in a formal way by cxhibiting a pair of proofs
H and 11 such that (a) yl(yl(ll))=yi(y|(ﬂ')), and (h) pruning can be applied to 11, but not
to 1. Thus the information which distinguishes between proofs which can be pruned and
those which cannot is lost by y,. A fortiori, the data needed to determine the outcome of
pruning operations is not pesent in the ordinary A-terms produced by Yy
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In order to construct T1, IT’, we first need proofs I FAVE, TT:A'VB, [:4(0), ﬂ,‘:u&(O).
M,:¥(0), M :y(1) such that (a) A and A’ are distinct, (b) y,(nl)=yl(n2) (c) the sct of open
assumptions of 11, is {A’}, (d) the set of open assumptions of My is {AA'}L (o) v((My) =
(y(NMy)a « B]) where a is the proof variable assigned to the assumption A, and B the
proof variable assigned to the assumption A, (f) the sct of open assumptions of [1 4+ is {B}, (8)
the set of open assumptions of T is {B}. It is not difficult to construct proofs with these
propertics. For example, we can take A=@V(0=1), A'=pV(1=2), and (using the q-
notation explained in scction 4.2),

M, = "OE(N;:pVB,
OI(OI(AS(9).0=1),B),
Ol(eV(0=1),AS(B)))" .

m,= "OF.("O:(pVB.
OI(OU(AS(9),1 =2),B),
Ol V(1=2)ASB))".

where I, is any proof of @VB. Then, as  desired, vy = y(@,) =
OF(a,y (T1).G1 (Ol (a)).01 (a)). By the requirement (¢) above, N and HJ' must be
identical in form except that uses of the assumption A in ﬂ;' arc replaced by uses of the

assumption A'in M. This can be achicved by a trick similar to the one used for I]l,l'l2
above.
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Now, we takc

nm=
nz "3 n“
A'VB 0) ¥0)

E ns

¥0) W)

nl 3I- 3l
AVB Ixg(x) IxyP(x)
VE

Ixy(x)

[T’ is just the smne as I, except that 1 3' appears in the place of [1;. ‘The p-term notation
for I1 is:

t = OH(a.t ENO,OK(B. .t t)).EI(1,L))

where t; =y, (I1)=v,(I). ; =y (IT). t,=y(I1,). and tg=7y(II). The p-term notation
for U is

U = OKa.t, EIQ0.0E(B.L,.t )ELL))

where 13'=7|(ﬂ3'). The only difference between t and ' is that l3=l;'|ﬂ"ﬂl- As a
consequence, t can be pruned 0 "ENO.OE(B.4 L))", whereas t' cannot.  However, the
difference between t and ¢ s lost in the course of translation from the p-calculus into the A-
calculus; in passing from ty to y4(t;) and from 13' toy 3(13'). a and B arc replaced by the same
term, namcly @ ,(y,(t,)).  Specifically,

y;() = 73('-') =
if "'1(73([1)) then
<0, if m (v,(t)) then vt LB« (v (U else y, (B« (v (4, DD
cise <Ly dlacmy(y ()P

As desired, this example demonstrates that pruning cannot be applied to the A-terms
extracted by the modified realizability interpretation.  The same cxample works in the same
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way for the recursive realizability interpretation, The ohly difference is that "if then clse” and
the pairing operator are regarded as operators not on A-terms but on godel numbers of partial
recursive  functions.

A2 The Dialectica interpretation

The Dialectica interpretation {Godel 1958 extracts somewhat more information from a
proof than cither the rccursive realizability interpretation or the madified realizability
interpretation; conscquently, it requires separate treatment. In part (a), we describe the map
y; from p-terms to Dialectica realizations, and in part (8). we show that pruning is not
applicable to the terms extracted by the Dialectica interpretation,

(a) For cach formula A of arithmetic, the predicate "f Dialectica interprets A" is
expressed by a formula VxD, (fix) in the theory of functionals of finite type over the natural
numbers, where l)A is quantifier free.  (In the standard treatments of the Dialectica
interpretation, the single universal variable x in Vx4 (fix) is replaced by a vector of variables
x. However, it is convenient for our purposes to use a single universal variable which may

range over pairs.)

The ditterence between the moditied realizability  interpretation and  the  Dialectica
interpretation may be summarized as tollows,  In the modified realizability interpretation, a
functional which realizes a formula ADB is required to produce a realization for B whenever
it is supplicd with a reatization of A, In the Dialectica interpretation, a realization for ADB
must provide not only a way of getting from realizations of A to realizations of B, but also,
roughly speaking, a way of getting from refutations of B to refutations of A, Specifically, a
Pialectica realization of ADB is a pair <X.Y> of functionals such that

Viy. (I)A(':Y(<r.)'>)) D I)B(X(D‘y»

holds.  ‘The functional X takes realizations of A onto realizations of B, just as the
corresponding functional for the modificd realizability interpretation docs.  'The role of the
functional Y is this. Suppose that £is proposed as a realization for A but that, in actuality,
does not realize Ao Abo suppose that a functional y is given such that Dy(X(0.y) docs not
hold.  Then y constitutes a refutation of the proposition that X(f) is a sealization of B, What
Y does is o take the refutation y, and the functional £, and produce a (unctional Y(<fy>)

which constitutes a refutation of the proposition that £ is a realization of A.

In the definition given below, it is convenicat to write the realization predicate D in the
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form "Af x.@" . where ¢ is a quantifier free formula; this allows us to cxplicitly indicate
occurences of the variables f,x which represent the arguments to the predicate. ‘The definition
of Dy by induction on the structure of A is as follows.

(1) Base casc. For A atomic, DD A= Afx.A (where fand x arc new variables not appearing
in A)

(2) DAAR = Af x(Dp(r (D7 ,DADg(7 (0,7 (x))

() Dpoyp = Af x((7 (D=0 D Da(a (D (X)) A (7 (D=0 D Dp(my(Da,(x)))
@ D3y p = A x(Dp(mO0ly<m (DD
() Dyya = Af XDARm ()7, (Dy <7, (x)])

6) Dasp = Af x. (DAGr (R).7,0) D Dyl () (x)7x)

The map y; for the Dialectica interpretation yiclds not one but several A-terms when
applicd to a p-term t. Namely, it produces (1) a rcalization X, ang, (2) a term Y, for cach
proof variable a which appears free in t. The term X is  a Dialectica realization for the
endformula of the proof I from which t was cxtracted, while for cach «, the term Yo
computes refutations (in the sense described carlicr) of the open assumption of TT  which
corresponds to the proof variable a.  More precisely, if &), . . . a are the proot variables for

assumptions A, . . . A, in a proof Tl with endformula C, then the formula

Val, . N 8

(DA (€. Ygq () A Dp @Yo () . A D (ag Y () D DRXx)

holds in the theory of functionals of finite type for some assighment of types to the variables
and constants of the Y"‘i and of X. We will designate the realization X which is extracted
from a term t by "X(t)", and the refutation maps Y, by Y (0. Some of the clauses of
the inductive definition of the extraction map y; are as follows. "The remaining clanses have a
similar character; the interested reader should have no trouble working them out for himsclf.

(1) Basc case

X: # =c fwhere ¢ is a new constant symbol]
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@ X: Ol(LY) = <0.X()>
X: 012 = <LX(@D
Y, OILY = AX(Y (O ()}

Yo: Ol = Ax{(Y (0} ()}

() X:OH(at buty) = if m(X(t)) then X(Llawm X else X(t)aem Xt

Yg:O (et bty = if & (X(tp) then Ax(Yg(t (Yo (1)(x) else Ax.(Y gt XY 4 (t:Xx))
(if B appcars free in t; B#a)

Y 5:0F(a,t;,t,,t)) = Yplt,) (if B appcars free in t,; B+a)
B rih 30 )

\ YB:OIE(a,tl,LZ,t3) = YB(t3) (if B appecars frce in ty; B#a)

(if B appears free in more than one of t, t,, t,, then any of the applicable clauses
rbl
for Yﬂ may be used)

Y gt

@ XAat = QAaXAa x.Y (7,x)P

YB:)\a.t = Ax.(YB(t)(wz(x))) (where B#a)
(&) X:Elt,t) = <X

Y Rl = Y ()

(B) Now, to show that pruning is not applicable to the terms extracted by the Dialectica
interpretations, we only nced to verify that the p-terms t and t' of the last section yield the
same term when given to yy. This is straight-forward, since, as we have scen, the Dialectica
interpretation and the modified realizability interpretation behave in the same way so long as
implication ("D") is not involved. In particular, we have,

X = X(t) =
if @ ,(X(t)) then
<0, if = (X(t)) then X(t)[Bem(X(t,)] elsc X(L[B 7, (XD
. clse <1,X(t5)[a0--nz(X(tl))]>
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Appendix B

l; Content and Form in Proof Manipulation - An Example

methods and the aims for which thosc methods were originally devised.  Namely,
normalization, and its predecessor, cut climination, were developed as tools for use in the

! There is a sharp contrast between the uses which we have made of proof manipulation !
i
]
i
H

mathematical analysis of proofs and provability, whercas we have used them here for the
i execution and transformation of algorithins.  With this shift in aims comes a change in the

features of proof systems which are significant. The purpose of this appendix is to illustrate
this change by means of an example. In particular, it will be shown in scction B.1 that the
complexity of the theorems which can be cxpressed and proved in a formal system - if you

like, the "power” or "inferential content™ of the system - is not correlated with the complexity

of the computations which its proofs can describe.  Thus a central feature of proot systems

from the point of view of most of proof theory is demonstrably unrelated to the central
. feature of proof systems for the purposes of computation. In section B.2, the analysis given in
} section B.1 is extended to normalization with pruning. We begin with a brief discussion of
the aims for which prool transformations were developed.

Most work in proof theory has addressed itselt to questions which are formulated in terms

of provability and which do not make direct reterence to proofs themselves or to their

propertics.  Questions and results of this kind have a ceortain generality in that they are
independent of the details of how proofs are represented: the differences between the amiliar )
' proof systems (such as natural deduction, the caleulus of sequents, "Hilbert-style™ systems, and
: so forth) are immaterial from the standpoint of provability - anything that can be proved from
i , given axioms in one systern can also be proved in the others.  Examples of central notions in
! 1 proof theory which refer only to provability are (1) the consistency of a theory, (2) the relative
[ "power” of logical principles, and (3) the "proof theoretic strength” of a theory as measured J
i ; by its ordinal.  Of course, the study of questions to do with provability often requires
l X : investigation of the details of particutar proof systems.  Cut-climination, the ancestor of
\ ‘ normalization, was developed as part of just such an investigation; namely the investigation
: which led Gentzen to his consistency proof tor arithmetic from the principle of (quantificr
; o free) induction on the ordinal €
'
. { However, formal prools can also be studied as mathematical objects whose properties are
: . of interest in their own right.  For example, the strong normalization theorem for natural ‘
deduction [Prawitz 1969] (sec chapter 3). and the theorems of [Mints 1977} about  the
' . 1 relationships between the “programs™ extracted by the various realizability interpretations (see
, ”? appendix A) are of interest primarily for the theory ol proofs (as objects of mathematical .
{ )
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study), and not so much for the theory of provability. “These results have the common effect
of showing that the notion of the computation described by a proof is relatively stable under
changes of technical formulation. 'This should be compared to the stability under change of
formulation of the notion of a computable function; a stability which constitutes the evidence
for Church’s thesis.

Kreisel[1949], and Statman[1974] have cmphasized that a shift in attention from the
theory of provability to the theory proofs leads to a change in the sclection of notions and

distinctions which arc important. As we have said, this appendix is intended to make a
similar point in regard to another view of proofs - namely the view of proofs as computational
descriptions.  The example to be given shortly illustrates the differences between the aims of
’ ‘ computation, and the aims of the theory of provability. An cxample of the conflict between
h the aim  of constructing a smooth theory of proofs, and the aim of making effective
computational usc of proofs, has alrecady been seen.  Namiely, it is essential for the purposes

of the stability results mentioned in the last paragraph that attention be restricted to

transformations which preserve the extensional mcaning of proofs. On the other hand, if onc

1 wishes to maximize the computational efficiency of proofs by means of mechanical

transformations, then one must use transformations - such as pruning - which change
cxtensional behavior; this was shown by the cxamples given in chapter 4, Thus the
sclection of transformations which make for a smooth theory is difterent from the selection
which is best for practical applications. This kind of conflict between the aims of theory and
practice is of course common. In the one case general results are what is wanted, and in the

\ : other uscful techniques - techniques which may or may not have interesting gencral
propertics, but which can be profitably applied by the use of human judgement.

B.1 Normalization in successor arithmetic

- 2 ——
. .-

We proceed now to the example. Let Ty be the the theory which results from
restricting the formulation of arithmetic given in scction 3.6 to the language which has

..._.,_...
I, -

symbols for successor and predecessor as its only function symbols.  Thus the formulas which
i ) O appear in proofs of Ty will contain (@) zero, (b) "predecessor” and "successor”, and (c)
' ' “cquals” as their only constant, function, and relation symbols, repectively.  The lemimas
. which may appear in proofs of 'I'g are those of the scheme INDeg of induction, where ¢ is a
formula of the restricted language.  From the point of view of the sct of provable theorems,
T is cquivalent - modulo a simple translation - to the usual formulation of successor
arithmetic. (Predecessor is included as a primitive function because it simplifics the recursive
proofs of the induction lemmas).  Thus what we have called the "inferential content™ of Ty
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is exceedingly small. Indeed, from the point of view of the theory of provability, T is wholly
trivial; it has an e¢lementary dccision mcthod by quantifier climination and a finitist
consistency proof. Nonctheless, the computational content of Tg, in the sense of the sct of
functions which are computed by proofs of V3 formulas, is just thc samc as that of full
arithmetic. This is shown by the following thcorem.

Theorem: Let f be a function on the natural numbers which is definable in Godel's
system T of primitive rccursive functionals of finite type [Godel 1958]. ‘Then there is a proof
Mg in T of Vx3y(x=y) such that normalization of Il computes the function f.

Proof: We will show how to reverse Kreisel's modified realizability interpretation; a map
I' from terms of the typed A-calculus to proofs of Tg will be described which has the property
that the modified realizability interpertation extracts t from T'(t). The map makes usc of the
correspondence between proofs and A-terms which was explained at the begining of chapter -
3. The end-formula of the proof gotten from a functional £ of type "0—0" will be
Ix(x=x)DIx(x =x); this proof can be casily transformed into a proof of Vx3y(x=y) which,
in the natural sense, computes the same function. The theorem follows since normalization
and muodified rcalizability yicld the same computations. (Scc appendix Al)

First of all, we define a map & from types (of functionals) to formulas by induction on
the structure of types. If 7 is a type, then §(r) will be the end-formula of proofs representing .
functionals of typc 7.

o o
e it e A ™0

(1) Base case: 6: 0 = 3Ix(x=x) |
2) §: r—=p = 6(r)D8(p).

The map T is defined by induction on the structure of terms of the typed A-calculus. For
the base case we nced to define I''s behavior on variables and the constant zero.  let
{xg:xX3X3 . . .} be an enumeration of the variables of type r. Then T assigns the proof: ]

- ———

——— e
-

[B(A=D]

i Al
] 8(r)
!

. to the variable a. The sccond conjunct "i=i" (where i is a numeral) serves to label the
; J assumption "8(T)A(i=1)" among all of the other assumptions "8(7)A(=j)" representing
f variables X; of type 7. Next, T' assigns the proof
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0=0
—
Ix(x =x)

to the constant zcro. The remaining clauses of the inductive defintion are as follows.

(D succ(t)y = succ(x) =succ(x)
T(t) 3l
Ix(x=x) Ix(x=x)
JE
Ix(x =x)
(2) Ax;t = r(t)
8(7)
Dl
(S(PIAI=1)) D 8(r) where 7 is the type of the term t
Ayt = re) T
DE
6(p) where 7—p is the type of t,,

and 7 is the type of t,

(4) R(tty) - The types of .ty will have the forms 7 and 0 — (r — 7), respectively. Let F
be the formula §(r). ‘Then the end-formula of T(t) is F, and the end-formula of [(t,) is
Ix(x=x)D(F 3 F). The proof T(R(t.1,)) uses the induction principle applicd to the formula
e(x) = "(x=x)AF". It will be convenient to use the simpler of the two formulations of
induction for @ given in scction 34, namely, the recursive proof:
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Py:Vx( (1)
VE———
[x#0]  @(pred x)

m, Al

Vxy(x=yVx#y) [x=0] ¢@0) x£0 Ag(pred x)
VE B

-

I,
Vx(x#0 A g(pred x) D ¢(x))
VE

x#0 Ag(pred x) D @(x)

DE
x=0V xz0 p(x) p(x)
VE
P(x)
Vi
Vxe(x)
We mkc I, in the above to be:
()
0=0 I
Al———
(0=0)AF
and n2 is,
[x#£0 A ((pred(x)=pred(x)) A )] pred(x) = pred(x)
AE 3l

(pred(x)=pred(x)) A F

N(3Y)
Ix(x=x) D(F D F)

Ix(x =x)
AL Dk
F FOF
D] 3
X=X i
Al
(x=x) A F
Dl
x#=0 A (pred(x)=pred(x) A 1) D ((x=x) A I)
Vi—

Vx.(x#0 A (pred(x)=pred(x) A 1) D ((x=x) A )
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This completes the inductive definition of T. It is a routine matter to check that

y(F®) ~ ¢

“w_n
~

where v is the modificd realizability interpretation as described in appendix A, and where
represents interconvertability in the A-calculus. Thus for cach function f of type 0—0 which
is definable in Godel's system ‘I, there is a proof IT of 3x(x=x) D Ix(x =x), such that, for all
numerals n, the result of normalizing

n=n
H— Il
Ix(x =x) Ix(x=x) I Ix(x=x)
JE
Ix(x=x)
has the form
My
m=m
al—
Ix(x=x)

where m is the numeral for {n). In order to get a proof I of a formula of the form
Vx3y(y=y) which computes f, simply take

I =
X=X
| n
y(y=y) y(y=y) D y(y=y)
it ,
y(y=y)
Vl———o
Vxy(y=y)

This completes the proof of the thcorem.

The theoren: shows that the proofs of successor arithmetic, despite their limited inferential
content, arc just as computationally expressive as those of full arithmetic. The general reason
for this is evident - namely, the behavior of normalization depends chiefly on the structure of
the applications of induction principles in a proof, and is insensitive to the mathematical

1S
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content of the formulas to which induction is applicd; this is a sensc in which normalization '
' depends on the form rather than the content of proofs.

As an alternative way of cxpressing the significance of the theorem, one might say that it
demonstrates that normalization is a very bad method for treatment of successor arithmetic
proofs. There arc after all computation procedures for proofs in this theory which are more
efficient in the general case than normalization. For example, since all predicates definable
in successor arithmetic arc decidable, one can take a  proof of Vx3ye(x,y) and an input n
and produce an output m with @(n,m) by simple lincar scarch: @(n,0), ¢(n.1), ¢(n2) . .. arc
tested in turn until a number with the desired property is found. In this case, the proof serves
only as a guarantce that the scarch process will terminate.  Thus it may happen that the best

computational results in proof manipulation are gotten by making use not just of the form of
proofs in the way that normalization does, but also of the mathematical content of the
formulas which appear in proofs. (Wce have already seen an example of this; in chapter 4, the

mathemntical content of the bin-packing proofs was used in the simplex transformations.)
Successor arithmetic is an extreme case, since onc does quite well by ignoring the proof
i altogether except in its role as cvidence for the truth its end-formula,

. . - - .
B.2 Pruning in successor arithmetic

In the last scetion we were concerned with normalization without pruning. ‘The question
which we address in this section is: how does the addition of pruning to the set of reduction
rules  used in normalization affect its behavior in the context of successor arithmetic?
. Certainly, pruning can make a large difference in the cumputational efficiency of some proofs.

In particular, cach application of induction in proofs produced by the map I' of the last

section constitutes a redundancy of the kind that pruning removes; in order to verify this, the

reader need only note that pruning is directly applicable to the normal form of Pq7 for any ¢.
. As a conscquence, pruning in this case reduces the complexity of the functions computed by
proofs in a drastic way: the functions computed by pruned proofs are describable by use of
conditional expressions and the successor function alone,

S —— L g - —

! . . . g . . . .
' ' However, it is possible to modify the proots produced by T in such a way that pruning is
) no longer of any use. It tollows that pruning does not reduce the computational complexity -

: of successor arithmetic proofs in the general case.  To start with, consider the clause
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(Dsuce(t) = suce(x) = succ(x)

T'(t) el
Ix(x=x) Ix.(x=x)

Ix(x=x)

in the inductive definition of T, Now, since the assumption "x=x" is not used in the second
premise of the above proof, the pruning rule for 3J-climination given in scction 2.7 is
applicable.  Howcver, we may take T'(succ(t)) to be

x=x1] succ(x ) =succ(x)
SB
succ(x ) =succ(x)
(1) 31
Ix{x=x) Ix(x=x)
IE
Ix.(x=x)

instead, and in this casc pruning is not applicable. By the same kind of trickery, it is possible
to modify P in such a way that pruning is no longer of any use. We will show how this is
done in a moment. but first we wish to draw some general conclusions about pruning.

The use which is made of the assumption "x=x" in the proof above is incssential.
Further, the fact that it is inessential would be immediately recognized by any person who
inspected the proof. (IFor that matter, any person would recognize with cqual case that
"Ixdx=x) D Ix.(x=x)" is a truc formula, and consequently perccive the usclessness of the
elaborate proofs generated by IM)) It follows that an analysis of dependencics which is routine
for a person may of may not lic within the powers of the formal pruning opcrations with
which we have been concerned.  ‘The pruning operations are very sensitive to the formal
details of the proofs to which they are applicd; two proofs which appear to be cssentially
identical to a person may nonctheless behave very differently ander pruning.  Nor is pruning
in any sense universal among formal operations for the removal of redundant parts of proofs,
Onc can invent a varicty of mnechanical transformations on proofs which remove redundancics
of onc kind or another, but which arc uscful in circumstances where pruning fails. 1o take
just one cxample, consider the following operation on proofs of arithmetic:

J




B

———. e

I TT[x «0] .
Jyep yep
= Vi
Vx3Iye Vx3yp

Vi

where the condition for the operation is that x not anpear free in @. This operation, which in
a certain weak scnse is sensitive to the content of proofs, is cffective in reducing the
computational complexity of the proofs produced by the new version of the map T' which we
arc currently constructing - a map which produces proofs to which pruning is not applicable.

Now, in order to complete the definition of the new version of T, we need to modify the
proof I, which appcars as part of the proof Pe given in clause (4) of the definition of T
‘The proof T, appears as part of the proof of the third premise of an V-climination inference
whose first premise reads "x=0 V x#0". However, in the normal form of Pe, no usc is
made of the assumption “x#0" in the proof of the third premise.  ‘The rcason for this is that
no use is made of "x#0" in cstablishing the formula "(x =x)AF" in M, However, in the

following slightly modificd version of I, "x#0" is used, and consequently pruning is no
longer applicable toPe.

[x#£0 A ((pred(x)=pred(x)) A )] pred(x)=pred(x)
AL N I'(ty) ’

(pred(x)=pred(x)) A F Ix(x =x) Ix=x) D(F D)

AL DFE

K FDOF
m, OF

X=X F

Al

H (x=x) A F
. Dl

x#0 A (pred(x)=pred(x) A F) D ((x=x) A F)

! vi
' Vx.(x#0 A (pred(x) =pred(x) A F) D ((x=x) A 1)

where flJ is
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[x#0A((pred(x) = pred(x)) AF)]

i AE
(pred(x) = pred(x)) AF
m, AE
x#0 pred(x) = pred(x)
m, Al
‘ x#0 x#0A (pred(x) = pred(x)) Vx y(x#0Ay=0Apred(x)=pred(y)Dx=y
" Al VE -
x#0Ax#0A(pred(x) =pred(x)) x#=0Ax=0A (pred(x)=pred(x))Dx=x
JE
§ X=x :
and (inally, where 11, is
} [x#0A((pred(x) = pred(x)) AF)]

AE
x=0
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