
August 1981 Report. No. STAN-CS-81-869

Computer Science

Comprehensive Examinations
1978/79 - 1980/81

edited by

Carolyn E. Tajnai

Department of Computer Science

Stanford University
Stanford, CA 94305

Bi
d

by

Fe

aFt

A

4

Computer Science
Comprehensive Examinations

1978/79 - 1280/81

edited by

Carolyn E. Tajnai

Department of Computer Science

Stanford University
Stanford, CA 94305

Wades yi

Abstract

The Stanford Computer Science Comprehensive Examination was conceived Spring Quarter

1971/72 and since then has been given winter and spring quarters each year. The Comp serves

several purposes in the department. There are no course requirements in the Ph.D. and the Ph.D.

Minor programs, and only one (CS293, Computer Laboratory) in the Master's program. Therefore,

the Comp fulfills the breadth and depth requirements. The Ph.D. Minor and Master's student must

pass at the Master's level to be eligible for the degree. For the Ph.D. student it serves as a “Rite of

Passage;” the exam must be passed at the Ph.D. level by the end of six quarters of full-time study

(excluding summers) for the student to continue in the program.

This report is a collection of comprehensive examinations from Winter Quarter 1978/79 through

Spring Quarter 1980181.

Foreword

In November, 1978, Frank Liang published the first collection of Computer Science Department

Comprehensive Examinations, STAN-CS-75-677, and the document proved to be a tremendous success. No

attempt has been made to emulate Frank’s style; this collection is strictly utilitarian.

The comprehensive examination serves several purposes in the department. There are no course

requirements in the Ph.D. and the Ph.D. Minor programs, and only one (CS293, Computer Laboratory) in the

Master’s program. Therefore, the comprehensive fulfills the breadth and depth requirement. The Ph.D.

Minor and Master’s student must pass the exam at the Master’s level to be eligible for the degree. For the

Ph.D. student it serves as a “Rite of Passage;” the exam must be passed at the Ph.D. level by the end of six

quarters of full-time study (excluding summers) for the student to continue in the program.

The written portion is a six-hour examination given winter and spring quarters. Until January, 1979, the

programming portion was a 3-day take-home project given the week after the written portion, and the two

were graded together. At the June 13, 1978, Faculty Meeting it was decided to separate them; the grading

would be independent.

During 1979/80 the Comprehensive Examination Committee became aware of the difficulty of equitably

grading a program written during a high stress, five day period. The following motion was passed at the June

10, 1980, faculty meeting.

Professor (Michael) Genesereth, representing the Comprehensive Examination Committee,
proposed that the following procedure be adopted for the Comprehensive Programming Problem.

“Students in the M.S. and Ph.D. programs (and Ph.D. Minor students who have passed the
written examination) in Computer Science must prepare a programming project of sufficient
complexity and quality to demonstrate competence in computer programming.

This project must be supervised and endorsed by a member of the Computer Science
Department faculty and submitted to the Comprehensive Examination Committee for final
approval. The project must be written at Stanford by the student, working independently.

The project must exhibit the use of sophisticated algorithms and data structures and be well
documented. Programs will be judged on the basis of correctness, efficiency, clarity, and style.
The project may be the result of CS293 work, although it need not be. The project should
represent at least 3 units of work.”

Professor Genesercth made a motion that the proposal be accepted; Professor (Forest) Baskett
seconded the motion, and it was passed.

At the faculty meeting on June 9, 1981, new guidelines Computer Science Department Requirements for the

Comprehensive Programming Project were adopted, for further clarification. See page ix of this report.

For those of you who are preparing to take the exam, lots of good luck.

Carolyn Taj nai

July 1981

fi

Comprehensive Examination Reading List
(Revised August 21, 1981)

ALGORITHMS AND DATA STRUCTURES

Aho, A. V., Hopcroft, J. E., and Ullinan, J. D., The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, Massachusetts, 1974, Chapters 1, 2, 3, 4.1-4.4, 5.1-5.4. Chapter 10.1-10.5 covers some of

the same material as Garey & Johnson (below).

Garey, M. R., and Johnson, D. S., Computers and Intractability, Freeman, San Francisco, 1978, Chapters
1-3.

Knuth, D. E., The Art of Computer Programming, Volume 1, Addison-Wesley, Reading, Massachusetts,

1968, Chapter 2 (except for Section 2.3.4).

ARTIFICIAL INTELLIGENCE

Barr, A.V. and E.A. Feigenbaum (eds.), Handbook of Artificial Intelligence, Volume l., Kaufmann, Stanford,
1981.

Winston, P.H.,Artificial Intelligence, Addison-Wesley, Reading, Massachusetts, 1977, Part I, Chapters 1-9.

HARDWARE SYSTEMS

General:

Mano, M., Computer System Architecture, Prentice-Hall, Englewood Cliffs, New Jersey, 1976, Chapters 1-5,

7,8, 11.1, 11.2, 11.5, and 12; or you may substitute Gschwind, H. W. & McCluskey, E. J., Design of Digital

Computers, Springer-Verlag, New York, 1975, Chapters 2, 3, 5, 6, 7, 8.2, 8.3 (except for 8.3.5.1), 8.4.

Memory Hierarchy:

Matick, R., Computer Storage Systems and Technology, Wiley Intcrscience, Chapter 9.

Strecker, W. D., Cache Memories for PDP-11 Family Computers, 3rd Annual Computer Architecture
Symposium.

Computer Systems:

C. A. C. M. Jan 1978: CRAY-1, pages 63-72; IBM 370, pages 73-96.

Stack Computers:

Stone, H. Introdic tinto Computer Architecture, SRA, 75, Chapter 7.

1/0:

Kraft, G. D. and Toy, W. N., Mini/Microcomputer Ilardware Design, Prentice-Hall, 1979, Chapters 3, 5, 6,

8, 0.

] NUMERICAL ANALYSIS

Atkinson, K. E., An Introduction to Numerical Analysis, Wiley, New York, 1978, Chapters 1-3. Or you may

substitute Conte, S. D., and De Boor, C., [llementary Numerical Analysis: An Algorithmic Approach, 2nd

ed., McGraw-Hill, New York, New York, Chapters 1-2 and 4.1-4.8; or Conte and De Boor, 3rd ed., 1980,

Chapters 1-3.

Forsythe, G. E., Malcolm, M. A., and Moler, C. B., Computer Methods for Mathematical Computations,

Prentice-Hall, 1977, Chapters 2, 4.4, and 4.5.

Forsythe, G. E., and Moler, C. B., Computer Solution of Linear Algebraic Systems, Prentice-Hall, 1967.

SOFTWARE SYSTEMS

Aho, A. V., and Ullman, J. D., Principles of Compiler Design, Wiley, New York, New York, 1975.

Brinch Hansen, P., Operating System Principles, Prentice-Hall, 1973.

Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R., Structured Programming, Academic Press, New York,
New York, 1972.

Graham, R., Principles of Systems Programming, Addison-Wesley, Reading, Massachusetts, 1975.

Stone, H. S., Introduction to Computer Organization and Data Structures, McGraw-Hi& New York, New

York, 1972, Chapters 1-8. Contains basic knowledge about computer organization. Most students should

just skim this.

Watson, R., Timesharing System Design Concepts, McGraw-Hi& 1970, section 2.4, or Denning, P., “Virtual ,
Memory,” Computing Surveys, September, 1970.

THEORY OF COMPUTATION

Hopcroft, J., and Ullman, J., Introductionto Automata Theory, Languages, and Computation, Addison-

Wesley, 1979, Chapters 1-3, 4.1-4.6, 5-7, 8.1-8.5.

Manna, Z.,IntroductiontoMathematical Theory of Computation, McGraw-Hi& 1973, Chapters 1, 2 and

3. Alternative introductions to logic appear in Mendelson, E., Introduction to Mathematical Logie, V a n

Nostrand, Chapters 1-2, or Enderton, H., A Mathematical Introduction to Logic, Academic Press, 1973,

Chapters 1-2.

McCarthy, J., and Talcott,C., LISP: Programming and Proving, (available from Stanford Bookstore) 1980,
Chapters 1-3.

RECOMMENDED COURSES

The Comprehensive Exam is meant generally to cover the material from the following courses: CS 111

(assembly language); 311 (hardware) 137A (numerical analysis); 107, 142, 143, and 246A (systems); 144A,B

(data structures); 156 (theory of computation); and 223 (artifcial intelligence). Since the precise content of

these courses varies somewhat, the actual scope of the Exam will be determined by the references above.

Please note that the reading list includes some material involving structured programming as well as the

history and culture of Computer Science even though it does not correspond to any particular course.

The Exam will also assume a certain mathematical sophistication and a knowledge of programming. The

mathematical sophistication required may include knowledge of techniques such as induction, recursion,

“divide and conquer” (e.g., techniques in sorting algorithms, case arguments, etc.), and will be at the level

of an upper division undergraduate in the mathematical sciences. Proofs of correctness for simple programs

may be required. The programming knowledge required will be an ALGOL-like language (e.g., Pascal), a

knowledge of LISP, and possibly some assembly language. The exam will be “open-book-and-notes.” This

means you are allowed to use any materials you bring with you, plus copies of the above materials which

will be made available. Non-smoking and smoking examination rooms will be scheduled. Copies of previous

exams are available from the department.

PROGRAMMING PROBLEM

Students in the M.S. and Ph.D. programs (and Ph.D. Minor students who have passed the written examina-

tion) in Computer Science must prepare a programming project of sufficient complexity and quality to

demonstrate competence in computer programming.

This project must be supervised and endorsed by a member of the Computer Science Department faculty and

submitted to the Comprehensive Examination Committee for final approval. The project must be written

at Stanford by the student, working independently.

The project must exhibit the use of sophisticated algorithms and data structures and be well documented.

Programs will be judged on the basis of correctness, efficiency, clarity, and style. The project may be the

result of CS 293 work, although it need not be. The project should represent at least 3 units of work.

The text

Kernighan, B. W. and Plauger, P. J., The Elements of Programming Style,
McGraw-Hi& New York, New York, 1974.

discusses some matters of style.

Good luck.

Computer Science Department

Requirements for the Comprehensive Programming Project

This memo specifies the requirements for the Comprehensive Programming Project. It is tended as a

guide to students doing the Project, to Faculty members sunervisine them, and to future Comprehensive

Committees.

The policy on the Project was set by the Faculty in a resolution reproduced below. This memo also details

the present Comprehensive Committee’s interpretation of the resolution, and the manner in which it will be

implemented.

1. Faculty Resolution

As stated in the Charge to the Comprehensive Committee
(<CSD.FILES>COMPCHARGE.DOC), the following resolution was passed at the June 10, 1980
Faculty meeting:

“Students in the M.S. and Ph.D. programs (and Ph.D Minor students, who have passed the
written examination) in Computer Science must prepare a programming project of sufficient
complexity and quality to demonstrate competence in computer programming.

“This project must be supervised and endorsed by a member of the Computer Science
Department faculty and submitted to the Comprehensive Examination Committee for final
approval. The project must be written at Stanford by the student, working independently.

"The project must exhibit the use of sophisticated algorithms and data structures and be well
documcntcd. Programs will be judged on the basis of correctness, efficiency, clarity, and style.

The project may be the result of CS293 work, although it need not be. The project should
represent at least 3 units of work.”

2. Complexity

The project must involve both design of algorithms and data structures, and actual programming.
It should bc such that the design aspect 1s significant. A program that is very long, but consists
only of a large number of trivial algorithms and data structures, is not adequate. Also,
implementation of a program from Someone clse’s design 1s not adequate.

As a guidclinc, a program that correctly and completely solves onc of the Comprehensive
Programming Problems sct between 1972 and 1980 would be considered sufficiently complex.
(Some of these were published in Tech. Report STAN-CS-78-677; the others may be obtained
from Carolyn Tajnai). However, these specific problems arc not acceptable as projects because
full solutions to them have been published.

| ix

3. Quality

Projects will be judged on quality of both code and documentation. The judgement of code will
be based on correctness, clarity, style and efficiency. A program should be easily readable by an
experienced programmer conversant with the language used.

The importance of good documentation cannot be emphasized too strongly. Both internal and
external documentation are essential. Between them, they should clearly and concisely state at
least the following:

a. The purpose of the project: the problem it solves or the service it provides.

b. The architecture of the solution: program structure, major data structures, and the
relationships beween them.

c. Design decisions taken, alternatives considered and the rationale behind the choices made.
Reasons for choosing particular algorithms and data structures should be given.
Clarity/efficiency, space/time and other tradeoffs should be documented and justified.

d. The implementation: how data structures are implemented and details of algorithms used.

e. Details of test runs performed and the results produced. Testing should be sufficient to
demonstrate that the project achieves its stated purpose.

f. Citations and acknowledgements of all literary material used and all advice received from
others (see section 4).

Verbosity should be avoided; 8 to 10 pages of external documentation should normally suffice.

It 1s up to the student in the documentation not only to make clear what was done and how it was
done, but also to give some evidence that the way it was done 1s superior to alternative
possibilities. The documentation should be written for a person having a good general knowledge
of Computer Science and programming, but no specific knowledge of the particular project or
project area.

Copies of projects of adequate complexity and quality may be obtained from Carolyn Tajnai.
Candidates are strongly advised to examine these.

4. Use of Projects Written for Other Purposes

A project written for some other purpose may be submitted as a Comprehensive Project, provided
it 1s written while the author 1s a student at Stanford. In particular the following are acceptable:

a. A course project;

b. A 293 project:

Cc. A project done as part of a Research Assistantship.

However, the evaluation of the project as a Comprehensive Project is entirely independent of any
other evaluation. For example, it 1s conceivable that a course project earning an “A” would be

insufficient to satisfy the requirements of the Comprehensive.

A program that 1s part of a larger program or system 1s acceptable as a Comprehensive Project,

provided:

a. The portion submitted is complex enough by itself to satisfy the requirements given above.

b. The portion submitted can be run and tested. The fact that the state of the rest of the system
prevented running and testing is not acceptable as an excuse.

5. Obtaining Advice

A student may consult the literature or seek advice on aspects of his/her project if necessary.
However, all assistance and sources of formation must be acknowledged in the documentation.

Receiving unacknowledged information or advice constitutes an Honor Code violation.
Receiving and acknowledging an excessive amount of assistance is not a violation, but may lead to
the project being rejected as inadequate. A student in doubt as to how much assistance is
reasonable, should consult the Faculty member supcrvising the project or a member of the
Comprehensive Committee.

If the faculty advisor has any questions related to the suitability of the project he/she should
consult the Comprehensive Committee.

6. Administration

The following procedure should be followed by a student wishing to tuke the Programming

Project:

a. Arrange to do the project under the direction of a Faculty member. Both the student and
Faculty member should ensure that the project satisfies the requirements stated above.

b. On completion of the project to the Faculty member's satisfaction, obtain a Project
Submission Form from Carolyn Tajnai, fill it in and have the Faculty member sign it. The

form states that the project 1s the student’s own work and that, m the opinion of the Faculty

member, it 1s adequate.

X1

c. Hand the signed form and the project to Carolyn Tajnai, who will pass it on to the
domprchensive Committee and eventually communicate the grade to the student. A graded
project may be examined, but not kept, by the student; it will be kept on file for three years
by the Department.

7. Grading

The Committee will grade projects as expeditiously as possible. In particular, it guarantees:

a. To examine a project and give an “immediate response” within ten working days. This
response will be either a grade. if the grade 1s not in doubt, or a statement that the
Committee requires more time to consider the project.

b. To grade any project handed in during the first two weeks of any quarter (including
Summer) in time for graduation at the end of that quarter.

These are minimum performance guarantees; the Committee will always endeavour to better
them.

As with the written Comprehensive Exam, the Programming Project can be passed at the MS or
PHD level. If a project is not considered worth a pass at the level required by the student, it will
be returned with comments, and the student will normally be given the opportunity to improve
and resubmit it. In the case of a project that 1s wholly inadequate or is submitted more than three
times 1n all, however, the Committee may require the student to undertake a completely new
project.

This document was approved by the Faculty of the Department of Computer Science at the June
9, 1981, meeting.

X11

Tableof Contents

Winter Quarter 1978/79

Written Examination. . ©. . © © Li he ee ee ee ee ee ee ee eee ee 1

SOIUtIONS . . . oe ee ee ee ee ee ee 16

Programming Project ©. © © © i i i ee ee ee eee 34

Spring Quarter 1978179
Written Examination. . . . © © © © i th ee ee ee ee ee ee ee eee 37

SOIUtIONS . . oo Le ee eee ee ee ee ee ee ee eee ee ee 49

Programming Project © ©... ee ee ee eee ee 63

Winter Quarter 1979/80

Written Examination. Lo ee ee ee ee ee ee ee 71
SOIUtIONS . LL ee ee ee ee ee ee ee ee eee 88

Programming Project «© + © © i i i i i ee ee eee ee ee... 106

Spring Quarter 1979180
Written Examination. © © © i i i he eh ee ee eee ee ee eee ee 113

Solutions . . . LL ee ee ee ee ee ee ee ee ee ay ese 128

Programming Project © © + © «C0 0 se ee eee ee ee. 149

Winter Quarter 1980181

Written Examination and Solutions ©. C0 0 00 ee ee ee ee 155

Spring Quarter 1980/81
Written Examination and Solutions +. +. cv 4 ee ee eee... 183

Instructionsand Honor Code 215

WINTER 78/79 COMPREHENSIVE EXAMINATION

Theory of Computation

1. Turing (5 points)

(a) Why did A. M. Turing invent the “Turing machine”?

(b) Did he spend more years of his life working with abstract “Turing machines”

or with real computer61 (Give some background information to support your

answer.)

2. Resolution and Unification (7 points)

Prove by resolution that the following set of clauses is unsatisfiable.

P(g(z, w), z, w)

“P(z,y,u)V Py, 2,0) V ~P(z, v,w) V P(y, 2, w)

~P(k(z), z, k(z))

3. Sorted Languages (21 points)

Consider strings over an alphabet {ay, . . ., a,} whose letters are linearly or-
dered: gj <<. a. < am. lf a= 2173. . . z, is a string, let sorted(a) be the string

Tp, Tp, ... Tp, Where p1pa. .. pn is a permutation of {1,2,..., n} and zp, < 25, <
<< Zp,

If L is alanguage over {ai,. . . , Gm}, define new languages a6 follows:

sortedsubset = {a € L | a == sorted(a) };

sorted(L) = {sorted(a) |a@ EL};

unsorted(L) == {a| sorted(a) = sorted(P) for some SE L}.

Prove or disprove the following statements:

(a) If Lis context-free then sortedsubset(L)is context-free,

(b) If L is context-free then sorted(L) is context-free.

(c) If L is context-free then unsorted(L) is context-free.

4. Context sensitive grammar6 (12 pints)

Determine the language generated by the following grammar. (Upper case

letters are nonterminals, lower case letters are terminals, and S is the start symbol.)

S — PABQ BU — VA
PA — PCT BV = VA

TA = BCT PV — PA

TB —BT PA — aX

CB —BC XA — aX

TQ — UQ XB — bX
CU — UB XQ — qq

Hint: Consider the strings derivable from PA"B™Q.

2

5. Program Verification (15 points)

Invent a suitable inductive assertion at point B and prove the following program
partially correct with respect to the given input and output predicates. Generate
and prove all verification conditions.

\

z>1

(2, y) + (true, 2)

B

(<2)Ast

t

z +z A (zmody5 0)

[y—y+1]

C

z = (x is prime)

3

| Artificial Intelligence

1. Theorem proving (5 points)

It ha6 been suggested that work on theorem proving ha6 been shelved tem-

porarily. Supposing thie is correct, what would be the reason for this trend? State
your answer briefly.

2. Production systems (5 points)

Comment briefly on the differences between production system architecture6
when used for (a) psychological model6 of cognitive skill6 (such a6 PSG) and (b)

expert systems (such as MYCIN or AM).

3. Performance (5 points)

Pick ONE of the pairs of program6 listed below and contrast the approaches

used in the two programs of that pair. In light of the superior performance of the

“less intelligent” program, defend the continued use of AI in such problem areas.

(a) HEARSAY - DRAGON

(b) CHESS 4.6 [or 4.5 or 4.7)- CAPS

(c) INTERNIST [Pople’s early version] - MYCIN

4. Choice of Task Domain (9 points)

Order the tasks below by the time it will take to produce commercial robots

to do them. State the general principle6 you use to make the ordering and explain
any exceptions.

Planning a meal

Cooking a meal

Serving a meal

Teaching arithmetic

Teaching soccer

Teaching (about) Shakespeare

- 5. Concepts (9 points)

Briefly define each ofthe following Al concept6 and methods, and give a one
or two sentence description of the conditiona under which it i8 relevant:

actors

alpha-beta technique

British Museum algorithm

goal-directed search

LISP

Simon’6 ant

6. Games (27 points)

Consider the following problem:

You and an opponent are facing 11 stacks of pennies, ofheights 11,10,8,...,1.
You will alternate moves, removing pennies, and each time someone takes the
final penny in a stack his OPPONENT will receive one point. During his turn,
each player must remove three pennies (three from one pile, two from one pile and
one from another, or one each from three separate piles). What should be your
first move? (Assume that your opponent will play perfect&, that you are trying
to maximize the number of points you will receive, and that your program can

have as much time and space as it calls for.)

(a) [10 points] Sketch the body of a recursive program to solve this problem. |
You may omit the details, and use math notation and concepts liberally.

(b) [7 points] Now fill in the details of the above sketch, such as the base steps
of the recursion and the initialization of any necessary variables and data structures.

(c) [2 points] Wha language might be appropriate to implement this program
in (very briefly mention why)?

(d) [4 points] A ssume that, rather than being infallible, your opponents are many
and varied in their skill. How might “intelligence” be inserted into the program

so that it might attain very high scores?

(e) [4 points] How might a software analogue of “caching” be used to improve
the program’s efficiency? (If you prefer, you may answer this question using the
software analogue of any other hardware concept.)

Systems

1. Compiler runtime organization (15 points)

Suppose you are writing an Algol compiler for some machine whose instruction

set you know. Sketch how you would implement run-time display management

on this machine. Where would you store the stack pointer, display pointers, and
other necessary information? What would a stack frame look like?

2. One-pass, multi-pass compilers (5 points)

(a) What are the advantage6 of multi-pass compilers over one-pass compilers?

(b) Describe a way to handle code generation for forward jumps in a one-pass

compiler for the generation of code in-core and for the generation of relocatable
code on a file.

3. Exponentiation (12 points)

(a) [10 points] Pascal is sometimes criticized for lacking an exponentiation
operator. Suppose you intended to add this operator (denoted ss) to the language.
Define precisely the meaning of as#b, where a and b are integer or real expressions.

When will a##b be illegal (undefined)? What will be its type and value when it is

legal? There is no single answer-try to make reasonable choices.

(b) [2 points] Based on your answer above, does the usefulness of the exponen-
tiation operator justify the complexity it entails?

4. Parameter passing (8 points)

Suppose you are given a compiler for an Algol-like language. The language
does not allow to specify in which way parameter6 are to be passed but you know

that the compiler uses the same mechanism for all parameter types. Write one or

more program fragment6 to determine whether parameter passing 1s

— call by value

— call by value result

— call by reference

~— call by name.

Indicate how the answer can be derived from the result of your program.

5. Banker's Algorithm (5 points)

What is the purpose of the Banker's Algorithm? What information does it
require?

6. Synchronization (5 points)

A critical region of a concurrent program may be executed only when no other

critical region 1s being executed. Let us analogously define a serious region, which

allows possibly one other serious region to be executed simultaneously.
Write an Algol-like program implementing this “almost” mutual exclusion for

process # of n processes, each with one serious region. Show formally that your

solution 1s correct in that (a) no more than two processes can execute their serious

regions simultaneously, and (b) if fewer than two processes are in their serious

regions, and other processes are waiting to enter their serious regions, then one

will eventually be allowed to enter.

You may use shared variables, semaphores, critical regions, and conditional

critical regions in your solution.

7. The Class Concept (10 points)

Write a Simula class implementing a bounded stack of integers. It should be

possible to specify the stack limit when individual stacks are created. Provide the

operations push, pop, and test-for-empty-stack, assuming that stack overflow and
underflow never occur. Show how to create and use instances of this class in a

program.

Hardware

| 1. Logic design (33 points)

(a) [5 points] Write the state table of the following circuit:

|

ys a —5 a J a 5 ‘iAll op] foc ||
K | K K K

A | B C D

(b) [8 points] Design a counter with the same state table, minimizing the number
of gates.

(¢) [15 points] Design a synchronous counter with the same state table, using D
flip-flops. |

(d) [2 points] {ve 2advantages of synchronous counters over asynchronous ones.

(e) [3 points] Give three reasons why one combinational circuit may be preferable
to another requiring fewer gates.

2. Logic Technology (7 points)

Briefly describe each of the following logics:

RTL

MOS

ECL

TTL

Schottky

Josephson Junction

ITL

|

3. Architecture (15 points)

(a) [1 point] What is a stack machine?

(b) [1 point] What is a register machine?

(c) [3 points] Whatare each’s advantages over the other?

(d) [10 points] Sketch how you would organize the CPU of a stack machine.
Draw a block diagram showing the major components and their interconnections.

It should be detailed enough to reveal how the stack 1s implemented in terms of

other components.

4. Celebrities (5 points)

Name an accomplishment of each of the following persons:

M. Wilkes

T. Kilbum

S. Cray

G. Amdahl

G. Bell

9

Analysis of Algorithms

1. Tree traversal (24 points)

(a) [15 points] The non-recursive procedure shown below performs an inorder
traversal of a binary tree without using a stack. However, certain key parts of the

procedure have been left out. You are to fill in the blanks by figuring out how the

algorithm works.

The tree 1s represented in the usual manner, with each node having pointers

to its left and right sons. The algorithm work8 by modifying certain pointers in

the tree and later restoring them. When the traversal is completed, the tree has
been returned to its original state.

t « root;

while ¢ £ A do begin
if left(t) = A then begin

visittjt —||
end

else begin

P< left(t),
comment p is a temporary variable used only in this block;

while right(p)£ A and right(p)5% | |
do p « right(p);

if right(p) = A then-begin
comment modify tree link to “remember our place”;

right(p) «— t; t — left(t)
end

else begin
visit(t);
comment {iX up tree iin;

end

end

end;

(b) [9 points] Now modify the above procedure so that it performs a preorder
traversal of the tree. Try to make as few changes as possible.

10

. 2. Data structures (20 points)

For each of the situations described below, you are to design a data structure

to represent the set of values so that the indicated operations can be performed

quickly. You should briefly describe how the operations are to be performed using

your data structure, and estimate the running time.

(a) [8 points] We are given a set of numbers, and we want to perform the following
operations:

(1) Add a number to the set, where this number is known to be larger than

all of the numbers currently in the set.

(2) Delete the smallest number from the set.

(3) Delete the median number from the set. (In other words, if there are n

numbers currently in the set, delete the [n/2] th smallest number.)

For parts (b), (c), and (d), consider the following situation. We have a supply

of jars with specified capacities. We want to perform the following operations:

(1) Add a new jar of a specified capacity to our supply.

‘ (2) Given a volume of liquid, find the smallest jar that can hold this volume.

This jar is then deleted from our supply.

Answer the question for each of the following cases:

(b) [4 points] Jar capacities and liquid volumes are real numbers € (1, 50].

(c) [4 points] Jar capacities are real numbers; liquid volumes are integers €[1, 50].

(d) [4 points] Jar capacities are integers € [1, 50]; liquid volumes are real numbers.

11

3. Register allocation (18 pints)

Consider a hypothetical computer with the following instructions:

ri em load register 4 from memory location m
In + Il om register 1 gets the result of rio m
ri + ri orj register 1 gets the result of rior]

where o 1s a binary operation.

(a) [12 points] Suppose we are given a parenthesized expression involving only
distinct variables (memory locations) and the operator o, for example

| | ((aed)oc)o(do(feof) eg).

We want to determine the minimum number of registers that are needed to compute
the value of this expression.

Since the variables are distinct, you need not worry about common sub-
expressions. You may use commutativity of the operator e, but do not assume

associativity. Also, assume that the computer has an infinite number of registers,

whose contents are initially undefined.

Give a formula for the minimum number of registers required by a given

expression, and explain how the computation should be arranged to achieve this

minimum number. You may introduce any additional notions that are appropriate.

(b) [4 points] Now assume that the machine has only k registers. What is the
length (number of operations) of the shortest expression that cannot be computed
by this machine?

12

Numerical Analysis

1. Stable Algorithms, well-conditioned Problems (21 points)

In numerical computation, it is important to distinguish between an ill-
conditioned problem and an unstable algorithm. In general, a problem 1s ill-

conditioned if a small change in the data defining the problem results in a large

change in the solution. An algorithm is numerically unstable if it introduces large

errors in the computed solutions to problems which are not ill-conditioned. Note
that conditioning 1s a property of the problem itself and that stability 1s a property

of the particular method used to solve the problem. Here 1s a list of common

numerical problems and possible methods for solving them. For each case, choose

one of the following which comes closest to describing the situation. Briefly explain

your conclusions by providing examples, pointing to error analyses, etc.

“Good-good”: Well-conditioned problem and stable algorithm.

" Good-bad” : Well-conditioned problem and unstable algorithm.
‘Bad-good” : Ill-conditioned problem and stable algorithm.

‘Bad-bad”: Ill-conditioned problem and unstable algorithm.

(a) Integration of a smooth function f(z) over [0,1] using Simpson’s rule with
equally spaced points.

(b) Differentiation of the same function using finite differences with equally spaced

points. |

(c) Computation of the roots of f(x) = z°—>5z4=492°— 722+ 2z using Newton's
method. Note that f(x) = x(x = 1)3(z — 2).

(d) Inversion of the matrix

A = 0001 1
1 2

using Gaussian elimination with no pivoting.

(¢) Inversion of the same matrix using Gaussian elimination with partial pivoting.

13

(f) Inversion of the positive definite matrix

A = 1/19 1/18
—\1/18 1/17

using Gaussian elimination with no pivoting.

(2) Inversion of the same positive definite matrix using Gaussian elimination with
complete pivoting.

2. One-sided finite-difference approximation (15 points)

(a) Find coefficients a, 8, and 7 so that

v = af(z) + Bf(z +h) + f(z + 2h)

1s a good approximation to the first derivative f(x). Note that this 1s a ‘one-sided”

approximation because no values of f to the left of x are used. Make whatever

smoothness assumptions you think appropriate.

(b) Obtain an error bound of the form

Y—fiz) < oh"

What are ¢ and k?

(c) How small must h be in order that this formula can be used to compute cos(z)
to four places of accuracy from a table of sin(x)?

3. Decomposition of a Matrix (8 points)

Exercise 9.8 in Forsythe and Moler, Computer Solution of Linear Algebraic
Systems, asks for a proof of the following “theorem”.

Any symmetric, nonsingular matrix A can be expressed as a product

A=LDLT

where L is a lower triangular matrix with positive diagonal elements, LT is its
transpose, and D 1s a diagonal matrix with 41 on the diagonal.

(a) Show by means of a simple counterexample that this “theorem” 1s false.

(b) What additional hypothesis on A would make the statement valid? (A hypoth-
esis less strict than positive definiteness 1s possible.)

14

4. Representation of floating point numbers (8 points)

A new minicomputer, the Avon 9000, has an unorthodox arithmetic unit.
When the following problem 1s executed, the operating system signals a division
by zero. What base might be used for the representation of floating point numbers
in the Avon 9000 firmware?

begin

H:=1.0/2.0
x: =20/3.0 - H
Y: =3.0/50 -H
Ei=(X+X4+X)—H
Fi=(Y4+Y4+Y+Y4+Y)—H
@ = IVE

print §
end

5. p-norm (8 points)

The p-norm of a vector # is defined for 1 £ p < oo by

1

llzll, = (> _l=itP) ?,
‘

(a) What 1s

limpool|z]lp ?

(No proof required.)

(b) What is the purpose of the restriction 1 <p?

(c) What difficulty with floating-point arithmetic might be encountered in a sub
routine or procedure that computes the p-norm of a vector by directly implementing
the definition?

15

3 SOLUTIONS - WINTER 78/79 ° .

Theory of Computation

I. (a) In order to prove that things were uncomputable by algorithms, it was
desirable to have a simple device that could (in principle) compute all computable

things.
(b) He designed ancestors of electronic computers during World War II, as part

of his important code-breaking work, then he was chief architect of the Manchester

| Ferranti machines in the late 40s and early 50s. Thus, by far the greatest part of
his involvement was with concrete machines.

2. Set zt g(Z,W),y «= Z,u« Win the second clause; resolve it with the first
to get P(Z,2,v) V ~P(g(Z,W), , w) V P(W,z,w). Nowset vr Z, w « W and get
P(Z,z,Z)\V P(W,z, W). Finally set z «=z, Z + k(x), W « k(z) and get 8.

3. (a) True, since sortedsubset(L)= LNa]. .. a, and the intersection ofcontext-
free with regular 1s context-free,

(b) False; since L = (abc)* is regular, hence context-free, but sorted(L) ==
{a™"c"™ | n>1} is not context-free.

(c) False, by (a) and (b), since sorted(L) = sortedsubset(unsorted(L)).

4. Let m, n 2>_1. The only derivations from PA"B™Q that don’t lead to dead ends

essentially have the form PA"B™Q — PCTA"1B™Q —* PC(BC)*~TB™Q —*
PC(BC)*—1B™TQ — PC(BC)*~1B™UQ —* Ppn—itmonyg —* |
PBr—l+myBrQ — PBr—2TmyABnQ —* PVAr—1+mpng
PA™T™R™Q or the form PA"B™Q — a XA" ~1B™Q —* a"XB™Q —* a™™XQ —

. a"b™qq.

Thus, the terminal strings are all derived as follows, for some > 1: S —
PABQ —* PA2BQ —* PA’B2Q —* PA’B3Q —* . . . —* PAFwr1BFaQ —*
afe+1bfgq, where Fy denotes the kth Fibonacci number.

5. At point B we have *z> 1 and (y- 1)*<z and z=Vw(2Cw C (v- 1) =
z mod w 5% 0)“. Proof: The first time we get to B this is clearly true. Going
backwards around the loop, before y «—y + I we may assert “z>1land ¥*< =z
and z= Vu2 <w<y= xmodw 50)"; before z+ 2A (xmody 0) we
have “> land y¥* <z and z = Vul2 <w <(u—1)= zmod w 3 0)". All
verification conditions are trivial except we must show that “z > I and (y- 1)2 <
z andz= VYu(2 < w < (y—1) = x mod w 5% 0)" and not “(y* < x) Az" implies
“z=(z is prime)“.

If not, we have one of two cases: (a) z false and x 1s prime. Then there 1s

awsuchthat 2 Sw <y—1<+/7<zandzmedw = 0, sow is a proper
divisor of z; contradiction. (b) z true and z is not prime. Then, since x > I,
we have x == uv for some proper divisors 4 and v, where 2 < u< v << X; In
particular, xmod u == 0. Therefore 2 K u<y—1 is false, 1.e., u 2 vy, and
x == uv > u? > y% contradiction. . . - |

: 16

Artificial Intelligence |

1. (1) The decade-old flurry of excitement over Robinson resolution subsided
when few effective strategies were found for constraining the wmbinatorially ex-

plosive starch it entails. (2) Axiomatization of most problems is quite long and
. difficult, hence AI researchers are simply not able to bring predicate calculus

theorem provers to bear on most of the problems they tackle. (3) Many of the
recent AX “expert reasoning” programs are based around inexact plausible reason-

ing, rather than deduction, and therefore utilize a theorem prover only as one

resource, almost as a subroutine, rather than as the central driving mechanism,

2. (1) Complexity of data structures (one working memory consisting of a linear
string of tokens, vs. a set of specially-tailored structured DS's). (2) Placement

of permanent knowledge (only in rules, vs. distributed between rules and data
structures (the knowledge bases)), (3) Complexity of the rules (just a couple of
simple operations like pattern-matching and writing a token into memory, vs. the
ability to call on arbitrary functions, have side effects, be a meaningful chunk of

knowledge to a domain expert). (4) Complexity of the interpreter (simple rule
selection schemes, such as cyclic scan, vs. the ability to bring knowledge to bear
to choose the best rule to fire next),

3. In all cases, the former program is more driven by tables of low-level knowledge,
while the latter 1s more driven by inferencing off a knowledge base of high-level

information. For example, Dragon uses Markov processes to simulate speech at a
low level, Chess 4.6 has some of its chess information microcoded into the Cyber:.. ‘-

Internist is built around tables of symptom-diseast correlations. The defense of
the Al approach comes by way of the following picture:

pon-AT o AI

cost ¥ |
| o

Yo
¢ -

rs

site of preblews

| 17

| The conventional non-Al approaches (x) such as microcoding can buy you
| a hefty linear factor against the combinatorial explosion, but only a linear fac-

tor. Ultimately, such programs will not be able to be extended except at an

exponentially increasing cost. The current AI programs (0), wallowing LISP be-
hemoths by comparison, arc initially more costly (perform poorer), but ultimately

we expect that they have chipped away at the exponent in the problem, that

eventually (as machines and problems attacked grow) the curves will cross, and

Al programs will perform better, A possible example of this behavior already may

be seen with the Dendral program for enumerating structural isomers of a given

compound: knowledge of each chemical problem constrains the search through the

combinatorial space.

4. The sensorimotor coordination required to walk is far beyond what we can

handle now. Thus soccer, and to a lesser extent serving a meal, are quite along

ways away. Certain limited forms of cooking, those involving very few motions,

will be the first of these to arrive. The more intellectual tasks are certainly bound to

precede all of these physical ones. A great deal of thought has gone into arithmetic,
and is going on even now with CAI efforts. Thus that may be the first out of the

six tasks to be successfully carried out automatically. Planning a meal requires

| so much less real-world knowledge than teaching Shakespeare that it will come

| about much sooner. So our ordering 1s: 1st — teaching arithmetic, 2nd - planning
| a meal, 3rd/4th — cooking a meal, teaching Shakespeare, 5th — serving a meal, 6th

" — teaching soccer.

| 5. “Actors” are modular units of representation, as’developed by Carl Hewitt of
MIT, and function by message-passing, They are appropriate to coordinating a
large network of simple processes.

“af technique” refers to a tree-pruning procedure for cutting down the amount

of nodes necessary to expand when carrying out a minimax search in an AND/OR

tree. By comparing the expected value of a branch against (a) the best value you
| know you can force and (b) the worst value you know you have to settle for, the

program can avoid searching many branches. It 1s usually preferable to a blind

minimax search, and is commonly used for evaluating game trees.

“‘British Museum algorithm” refers to an exhaustive search, and is relevant
only when nothing else 1s available, or for tiny problems. The name comes from

the metaphor of having enough monkeys at typewriters eventually produce all the
works in the British Museum.

“Goal-directed search” refers to the problem-solving strategy of working back-

ward from a goal, setting up relevant subgoals, and choosing the next node to
expand as one that is necessary for achieving the goal or current subgoal. I$ is
generally useful whenever a sense of direction toward the goal 1s possible.

| 18

“Simon’s ant” refers to the behavior of an ant crawling on a beach: it appears
to follow a very complex path, but when we look closer we see that it was really
just avoiding obstructions, that the complexity was in the environment, not in the

performer. The point 1s that simple control mechanisms in a complex environment
can produce very complex behavior.

6. (a) Best (S, par)=

max;;res[par X Best (S with S; Sj Sg decremented by 1, —par)]

where S is the list of pile heights, initially S = (11 109876 54 3 2 1); wristhe

parity, which is 1 when, you play, -1 when your opponent plays; and where we
assume that the maximal, j, k will be bound and available at the end of calling
Best; thus their final value dictates the initial move, and the final value returned

by Best is the score (hopefully positive!) we can expect to obtain against a perfect
opponent.

(b)

S+— (1110987854321)
par «|

Move « (0 0 0)

Best(S, par) =
. Tempscore = (0

VSieS, if 3 < 0 then return — 999999999
else if 4 = 0 then

Tempscore «~ Tempscore — par
Remove S; from S

if 3_.(S;) < 3 then
M={i|S;€ S}
Return Tempscorc — [par X length(S)]

Move + (ijk) maximizing the quantity

Tempscore + [par X Best(S with S;S;5; decremented, — par)]
which maximal quantity 1s Returned as the value for this function.

As above, the value of the top-level call of Best will be the expected final
score, and the value of Move will be the pile-numbers of the piles from which the
three coins should initially be removed.

(¢) Lisp comes to mind, not only because this 1s the Al section of the exam,
but also because of its ability to handle recursion, list deletions, forall/foreach
mappings, etc. In short, translating the (b) program into Lisp would take but a,
small fraction of the time it would take for Basic, Cobol, and other straw men.

19

Systems

1. The following solution works for most general register machines, such as the
PDP-10. More details can be found in Gries, etc.

One register is used for the Stack Pointer; a contiguous block is used for display
registers. All of these registers must be usuable as index registers on your machine.

With a fixed size display it is OK to limit the maximum procedure nesting, say

to seven levels. No display level is needed for top-level global variables, which
art directly accessible. Each display register points to the beginning of the local

variable area of the stack frame for its display level, so that variables on that

level may be accessed. When exiting a procedure, its static and dynamic links are

. found via the display register for the block level of the procedure.

STACK POINTER Fa

oA |Are!

LOCALS To: STATIC LlPhs
NS ill BF Ofawd:TE~reRARNS| OIVARMIC Umi] | LvEL » ~ TR%s ptfuip ovht (ALigYs POI (/Fri Blotk ETANCAREro reviews 3 F oF PRO 6Ram)

Cp FEA ~¥) Ng POINT TO saneLEVEL | TRAE AS TNE

i pe rr srin
Orsay CELL

prion ve

» 5 ITD FRaa€
(DIRS cry
ACESS) ob)

STACK FRAME AK PROCEDURE (ALL

2. There 1s no need for restrictions on the ordering of declarations, since forward
references can be resolved in a later pass. .

The presence of separate passes adds modularity to the compiler, in that each
pass 1s concerned with a small part of compilation rather than every part (syntax
analysis, semantic analysis, code generation, optimization, etc.) at once.

If code generation 1s handled in a separate pass, then only this pass need be
rewritten in order to transport the compiler to another machine.

Optimization 1s facilitated because the compiler can always know, through

information obtained from an earlier pass, whichsubexpressions will be needed_
later, how many registers will be needed later, etc.

20 er

Also, the debugging capabilities in modern Lisp languages make it very easy to

check the partially-complete program, fo change the sign in front of “par” and
try it again, etc., compared to compiled languages (and interpretive ones without
a “break package”).

(d) Modelling the user seems appropriate. We can imagine creating and using

a large knowledge base of models for various types of players (neophyte, mathe-
matician, etc.), and trying to quickly ascertain which “stereotype” our current

player falls into. Each class would have its own special weaknesses which could

be taken advantage of. In addition, a special model could be accreted for each

individual who played the system, and it could thereby know and exploit his own

weaknesses (e.g., laying a trap which a perfect opponent would ignore).

(e) The results of some of the searches may be stored in a place where they

can be accessed when later called for again, so as to avoid Fe-computing them. As a

simple example, consider the situations where after 4 moves, there were 16 distinct

ways to reach the identical state of the piles. It would be a waste to compute n™

where nl! will do. Also, there are isomorphs that arise due to the fact that what
matters is merely the SET of pile heights; thus (1204004559 11) is the same
as (1200005594 11). We can imagine storing the results under the SORTED
list of pile heights, in this case (00001244559 11). After solving this once,
the second time we’d have the program check for such an entry, it would find and

return 1t immediately, without recomputing it.

21 -

Almost the same method 1s used in both cases: references to yet undefined
symbols are kept 1n a linked list. One usually uses the address fields of the jump
instructions to store the link to the previous forward jump to the same address.
When the symbol becomes defined, this list 1s traced and every member of it is
corrected to jump to the newly found address. When compilation is in-core, the
compiler traces the list. When relocatable code 1s produced, the linked list ends
up on the object file (since the links arc in the address fields of the instructions
being generated) followed by a “symbol define” loader command at the proper
place; upon encountering this command, the loader defines the symbol and traces

the linked list, correcting the instructions it previously loaded.

3. Below is one set of choices. There are many possibilities; grading will be

based on the simplicity and consistency of your answer. If your answer does not |
allow static type determination, it will be penalized, for Pascal is strongly typed.
The following solution is that used in Algol 60, modified to allow static type
determination.

a integer, b integer: result type is integer;

b=>0:ass0=1,ass(n + 1) =as(assn)
It is simpler to make even Oss0 = 1 rather than ERROR.

b << 0: a= 0: ERROR;

a =1,—1: ass(—b)
la|=>2:0
(since these possibilities are useless, a better solution 1s

simply ERROR for all b < 0).

a real, b integer: result type is real;

b> 0: Exactly as in previous case

b<< 0: a= 0: ERROR, a5 0: assb=1/(ass(—b))

a real, b real: result type 1s real;

a> 0: assb = ezp(bsin(a))
a=0:b>0:assb= 10.0

b < 0: a*sb= ERROR

a << 0: as+b = ERROR (simpler to call it ERROR whenever a < 0)

The weight of evidence is against the inclusion of exponentiation. It is rarely
used, even in numerical analysis programs. Its rules are complex and hard to
remember, especially because of the many differing choices which can be made.
It adds other possible confusion to users of the language, e.g. what 1s the priority
of ##, and does it associate to the left or to the right? Pascal 1s such a simple
language that the added complexity of this operator would be very noticeable.

22

A contrary answer may receive full credit if it gave an application where
this operator 1s essential, and if the exponcntiation rules it presented are simple

enough. Advocacy of restricted exponentiation, such as integer powers only, may

also receive credit.” However, merely pointing out that exponentiation 1s easy to

implement 1s not sufficient justification. Simplicity of the language 1s more 1mpor-

tant than ease of implementation; general exponentation 1s too complex from the
user’s standpoint. .

4. The following program solves the problem

procedure addl(a); a «a + 1;

procedure foo(a, b);
ze 1;

if a == | then comment name or reference;

if b == 2 then print(“name") else print{“reference”)
else comment value or value - result;

add1 (z);

if ==2 then print{ “value - result”) else print(“value”);
z+ 0;

foo(z, z + 1); |

5. The Banker’s Algorithm was designed by E.W. Dijkstra for deadlock-free

resource management in operating systems. Each process must declare in advance

how many units of each resource it may need in order to run; while running each

process requests requests and releases units of those resources, staying within its

declared limits. If a process makes a request which cannot safely be granted without

allowing the possibility of deadlock, then that process can wait; eventually its

request will be granted. Each process is required to eventually return all of every
resource it has borrowed, assuming its requests are granted in a finite time. The

algorithm gets its name from the idea of making loans to processes, which are
later repaid.

8. The program and correctness proof, using semaphores, is takes from Brinch-
Hansen, Operating Systems Principles, page 95, changing every “1" to a “2". The
following program works for process %, given a global semaphore mutez, initially
2 (the only difference from the critical region case, where the initial value 1s 1):

repeat

wait(mutex);

serious-region-1;

signal(mutex); :

non-serious-region-1i
forever

23

7. Here is a possible answer. Exact adherence to Simula conventions is not re-

quired.

class stack(n); integer n;

begin

integer stackptr;

integer array stackarr{l:n];
procedure push(v); integer v;

begin

stackptr := stackptr+1;

stackarr[stackptr] i= v
end push;

procedure pop(v); integer v;

begin

V :== stackarr[stackptr];
stackptr :== stackptr- 1

end pop;

boolean procedure empty;

begin

empty = stackptr == 0

end empty;

comment initialize stack to be empty;

stackptr = 0
end stack; -

Declarations of stacks:

ref(stack) a,b,c
ref(stack) array sa[1:20]

Creation and imitialization of stack instances:

a :- new stack(5)
b :- new stack(isj)
for i :== 1 step | until 20 do sa[i] :~ new stack(i)

Stack operations:

a.push(23)
b.pop(k)
if sa[i].empty then safi].push(i) else sa[i].pop(j)

24

Hardware

1. (a) This is just a binary up-counter, state table:

a b c d

0 0 0 0

1 0 0 0
0O 1 0 O

1 1T 0 O

0010 :

1 01 0 Co

0 1 1 0

1 1710

0 0 01

1 0 0 1

0 1 0 1

1 1 0 1

0 0 1 1

1 0 [1 1

0 1 1 1

11 |

(b) You should have been able to get ZERO gates, because this 1s the binary
ripple counter.

J Ql T of OF q

lk q ¥ 8 K ks
|

’ E * WN

old J, K whit of oy J

25

(c) Using K-mapping leads to a mess with this problem; you should know how
to make D flip-flops act like T flip-flops as in the solution below:

| q Q | Q

(d) Possible answers: Likelihood of glitching-1s reduced because all flip-flops

. change state at nearly the same instance; they keep the circuit conceptually simple

because only a single clock is used; the counter does not go through “intermediate
states” when counting, because all transitions are simultaneous; the time required

to change states is that of a single flip-flop, no matter how many the counter
contains.

(e) Possible answers: On an IC, the circuit requiring fewer gates often requires

more chip area than another circuit (the rule for ICs is: minimize wires, not gates).
The larger circuit may be faster, since minimizing gates often requires that gates be

cascaded, increasing the delay time. The larger circuit may involve prepackaged

MSI or LSI chips, and thereby be cheaper and simpler than smaller circuits not

taking advantage of prepackaged devices. The larger circuit may be simpler for

humans to understand, debug, etc. (many “structured programming” ideas apply

to hardware too).

26

2. RTL Resistor Transistor Logic = obsolete, slow, high power consumption; used

in early ICs

MOS Metal Oxide Semiconductor - slow, low power, high/very high density,
used for large memories, microprocessors, other LSI

ECL Emitter Coupled Logic - very fast, costly, high power, difficult to design
with, used for cache memories, high performance CPUs

TTL Transistor Transistor Logic - fast, fairly high pow er, cheap, easy to
design with, commonly used in many applications

Schottky A faster, more expensive TTL

Josephson Junction Experimental ultra-fast logic (picosecond switching speeds)
based on superconductivity

IIL Integrated Injection Logic - fast, high density, fairly high power, rarely.
used; in some ways a refinement of RTL

3. (a) What 1s a stack machine? A machine, such as the B8700, in which a stack is

maintained by the hardware. Most instructions take their operands from the stack,

and hence have no address fields. There are no general registers; all computation
1s done on the stack.

(a) What 1s a register machine? A machine, such as the PDP-10, IBM 360, ad
. infinitum, which provides an array of registers for general use. Instructions can

address either registers, memory, or both. Stack manipulation instructions may

be available, but their use 1s optional. :

(¢) What are each’s advantages over the other? Stack machines, by eliminat-

ing registers, also eliminate the thorny problem of register allocation; also, there
are no registers to save and restore around procedure calls. Code generation for
expressions 1s greatly eased, for stack operations always put intermediate results
exactly where needed for continued expression evaluation. By eliminating register
operands, the number of addressing modes 1s reduced, simplifying the instruction
set. Since most instructions lack address fields, code can be very compact.

Register machines are usually faster than stack machines, for they lack the
overhead required to maintain the stack, and they are able to use high speed logic
for the registers (whereas the stack must be kept in slower main memory). Clever
programmers using registers to storeoften-accessed variables can produce programs
which run much faster than possible on stack machines. Register machines are more
appropriate than stack machine6 for the commonly used languages FORTRAN,
BASIC, COBOL.

The main idea 1s that the stack 1s kept in main memory, using a special
register for the stack pointer; other designs are possible.

27

Diagram fev 3(d):

Y Stack yA setionin RA

oe
| |

| | stack |

S ERENSNT :
ENFeRCe STK)

ere. ACTAE

IS Ack LIAIT TE CONTROL
REGIS (ReosTEQ STACK SVTTOm ~pmerepmny.

C——2 OAM Pate

ED coal ATH |

4. M. Wilkes -Invented subroutine libraries; wrote first programming text; built
EDSAC

T. Kilburn - Invented index registers, virtual memory

S. Gray — Designer of the world’s fastest computers: CDC 7600, Cray-1,
Cray-2

G. Amdahl - Major figure in development of IBM 360; later started own

company, marketing a fast and relatively cheap copy of the 370 (called the 470 —
what else?)

G. Eell — Designed PDP-11; co-authored Computer Structures: Readings and
Examples.

28

Algorithms and Data Structures

1. (a) t «root;
while ¢ 5% A do begin

if left(t) = A then begin
Visit(t), t | right(t) |

end

else begin

peleft)
comment [J is a temporary variable used only in this block;

while Tight(p)5% aan d right(p) 5% [t+]
do p = right(p);

if right(p) == A thenb € g1n
comment modify tree link to "remember our place”;

end

else begin

nisit(t);
comment fix up tree link;

right)4]to [gad |
end

end 4

end:

(b) Simply move the visit(t) statement in the last else clause up to the beginning
of the corresponding thea clause.

2. (a) Use a doubly-linked list with the numbers 1n sorted order, and keep pointers
to the first, last, and current median elements of the list. We also need a bit to

remember if the number of elements in the list 1s odd or even in order to update

the median pointer correctly. All operations can then be done in constant time.
(b) Use a binary search tree. All operations take O(log n) time, on the average.

To ensure O(log n) worst-case time, you must use one of the varieties of balanced
trees, such as AVL trees or 2-3 trees.

(¢c) Use an array of size 50, with the ith entry pointing to a sorted list of all
jars with capacities € [i, 1 + 1). Insert takes about 7/100 steps, on the average,
while find-delete takes constant time. For very large n (say n > 2000), it would
be better to use some type of priority queue for each of the sublists. This reduces-

the time to O(log n). -

29

It should be noted that we can also use the method of part (c) for part (b),
and vice-versa.

(d) Use an array of size 50, with the ith entry pointing to the list of all jars
with capacity t. All operations take O(l) time.

3. (a) The minimum number of registers required to compute expression € 1s f(e),
where

f(variable) == 0

flere &) = {reifefla if fla) # f(a)flea) + 1, if f(s) == f (ea):

For example,f (((a 0 b)oc)o(do((eof)og)))==2.
The order in which the operations should be performed to achieve this min-

imum number is recursively defined as follows: For each expression ej © &g, if

fer) = f(ea), then compute the left operand e; first. Otherwise compute the right
operand first.

(b) The shortest expression with f(e)==k< 1 has the form ej oe, where €; and
ez are the shortest with f(e;) = f(ea) =k. Thus by induction on k¥ the minimum
number of operators, g(k), satisfies g(0) = 1, g(k) = 1+ 2g9(k— 1); the solution is
g(k) =28+1 — 1.

30

NUMERICAL ANALYSIS

(la,b) Good-good,bad-good. If the data x, are spaced a distance h apart,

then a perturbation of one value £(x,) by a quantity & will affect
any estimate of the integral of f or the derivative of f at xX, by
O(eh) or O(e/h), respectively. These results are inherent in the

two problems; Simpson's rule and finite differencesdo not introduce

avoidable errors.

(1c) Bad-good, for the problem as a whole. For isolating just the roots

0 and 2, the answer would be good-good. For the three multiplicities

of the root x=1, however, the problem is ill-conditioned: a change

in the coefficients of magnitude O(E) may correspond to a change in

these three roots of magnitude o(e”).

(1d,e) Good-bad,good-good. The inverse of the matrix A = B :| 1s ki MH + o(e). .
This does not change too much when A 1s changed slightly, so the

problem is well-conditioned. Gaussian elimination with partial pivot-

ing solves 1t stably; Gaussian elimination without partial pivoting,

however, 1s unstable because 1t involves a multiplication by 1/e,

which amplifies rounding errors.

(1£,g) Bad-good, bad-good. This matrix is nearly singular, so the problem
is i1ll-conditioned. For positive definite matrices, Gaussian elim-

ination 1s a stable algorithm, even with no pivoting.

(2a) Let us write

« f(x) = f(x)

6 £(x+n) = BLE£(x) + hE! (x) + BE" (x)/2 + . ..]
¥ £(x+2h) = X[£(x) + 2hf'(x) + 26°F"(x) + . ..]

We wish to find values for «, 3 and ¥ so that the sum of these terms
equals Of (x) + 1f'(x) + of"(x) + 0h"), where k is as high as
possible. Since we have three parameters, we can in effect specify

the f(x), f£'(x), and f"(x) coefficients in the sum. These should

be 0, 1, and 0. Thus we must solve

0 1 1 ,(% 0

0 h 2n | |B = | 1 .lL
31

The solution to this system turns out to be («,B,Y) = , 3 ; 2, = :).
NOTE: An alternative approach would be to derive a formula that 1s exact

| for the monomials f(x) = 1, x, and =,

. (2p) A satisfactory, but not completely rigorous, approach would be to apply

the formula derived in part (a) to f(x) = ©. Instead, let us observe
that the f"'(x) term in part (a) will dominate the error. Applying a

mean value theorem, we may write

E(xth) = £(x) + hE'(x) + Bor (x)/2 + KI" (§,)/6
£(x+2h) = F(x) + 2hf' (x) + 2H£(x) + hE (§.)/3,

where § <x,%+h] and § <[x,x+2h]. We now compute
«£(x) + Bf(x+h) + ¥f(x+2h)

2 2

= f'(x) + h £1 (¢,)/3-2n £m (§,)/3.
Assuming that f"'(E) is continuous on [x,x+2h], the latter two terms may

be averaged, yielding
2

fr(x) - Wf (§;)

for some §5e(x,x+2n]. So we have at last
1 2 max

rt _ v fond ne

(2c) sin" (x) | € 1 for all x, so we mayrequire(1l/3) He < 0.00005.I

That is, h << {0.00015 = 0.012

(3a) 01

1 0, , for example.

(3b) For k = 1,...40n=~1, the submatrix formed from the first k rows and columns

of A should be nonsingular.

32

(4) Even S will probably trigger a divide-by-zero message, so the computation
of F is a red herring. The question is, in what base(s) b Wwill-E come }

out exactly 0? The H := 1./2. computation will be exact provided b is a

multiple of 2, and X := 2./3. - H will be exact provided b is a multiple

of 3. So a sufficient answer is b = 6 or any multiple thereof. (Addi-

tional possibilities exist, 1n which the rounding error would cancel in

the computation of E.)

max

52) fell. = se |x]

(5b) For p<3, I I fails to satisfy the triangle inequality, and hence 1s
not a norm.

(5¢) For any p > 1 the quantity z |x, |? may be very large or very small
’ compared to EX or ll _ A direct implementation of the definition

risks unnecessary overflows and underflows.

| 33

Conputer Science Department - Comprehensive Exam Programming Project

Winter 1979 -- Thursday, January 4, 1:00p.m.to Tuesday, January 9, noon.

The object of this problem 1s to prepare an interpreter for the "linear

equation language" described below, This language defines the value of
variables implicitly by means of linear equations, 1nstead of explicitly by

means of assignment statements. Your implementation should be on-line, i.e.,
interactive with the user.

Note. Your interpreter should be written 1n well-structured- esto

understand code. It may be written in any "ALGOL-like" language (including
ALGOL W, SAIL, PASCAL) or in your favorite dialect of LISP. Other languages
may be used but only by special arrangement with the committee.

Here 1s the syntax for the language (which incidentally is c¢allad LEILAD,
for "Linear Equation Language Allowing Nonexplicit Definitions"):

(variable) « A|B| . . . |zlajp} . . . |z (52 variables in all)

(digit) « of1|2|3|%|5]6]7]8]9

(digit string) «(digit)|(digit string) (digit)

(constant) « (digit string)|(digit string). (digit string)

(primary) « (variable) \{constant)|((expression})

(term) « (primary) |(term) (primary) |(term)/ (primary)

(expression) « (term) |+(term)|-(term)|(expression)+(term) |(expression)- (term)

(equation) « (expression) = (expression) | (equation) = (expression)
(print statement) « (expression):

(statement) « (equation){cr)|(print statement)(cr)

Examples :

(variable) X

(digit} 1

(digit string) 14

(constant) 3.14

(primary) X

(term) xy/z

(expression) xy/z - 3.1'1

(equation) xy/z - 3.14 = x = Ww

(print statement) X:

(statement) X: (cr)

Here (cr) stands for the "carriage return" character, All blank spaces

and other characters not appearing in the above syntax are ignored. The

syntax is ambiguous with respect to constants: For exemple,the (term)
3.1k can be regarded either as a (constant} or as (term){(primary)
where the (term) is 3.1 and the (primary) is L . This ambiguity
is resolved by the further rule that a (constant) may not be preceded
or followed by a (digit) .

34

Expressions have thelr normal-meaning in mathematics; for example,

(term) (primary) stands for the value of the (term) times the value of
the (primary) .

Note that each (statement) ends with a (cr) . The user of LELAND,

when prompted, types a (statement) ; the interpreter processes it and
prompts the user for another, repeating this cycle until the user gets tired
and stops the job. If an erroneous statement 1s typed, LELAND gives a
helpful description of the error and stops further evaluation of that

statement; the user Will be prompted to try again as if the offending
statement had not occurred. (Rowever, 1n an equation statement cf the

form&@ = 8 = y where " @d =p " is OK but y is erroneous,tue "a= 8"
equation will be accepted by LELAND.)

Initially all variables have undefined values, but each new equation

'defines one of the variables (perhaps in terms of others). For example,
after the three statements

xty = 2

XY= Z

X.

LELAND will print " 1+ .5z " indicating that the value of x must be one
more than half the value of z , based on the equations given so far. If

the next equation is " 2x= 3z", the interpreter will know that x = 1.5 ,
y = 5, z = 1 .

In order to do this 1n a reasonably simple way, LELAND allows multiplication
only when at least one of the two operands being multiplied has a known value

based on previous equations; similarly, division 1s allowed only when the

value of the divisor is known and non-zero. Thus, LELAFD would complain
1f the three statements above were followed by the equation " xy= z '"; but

"xy = 2 " would be legal 1f either x or y had a known value.

All this 1s accomplished as follows: Inside LELAND, each variable is
considered to be either "independent" or "dependent". Initially all variables
are independent, but each valid equation makes another variable dependent.
Once a variable becomes dependent, it never becomes independent again.
A dependent variable 1s represented internally as a linear combination of
independent variables; in other words,

D = <q + cI + oe. + Cry

where the c's are floating-point constants, the I's are variables that are

currently independent, andD is the dependent variable being represented.
If k= 0, variable D 1s said to be "known".

| The stated restrictions on multiplication and division ensure that ILTLAND
can reduce any new equation @ = 38 to the form

+ = . BIBS = 1 = E=)0 "1 K kt = ©

where the c's are floating-point constants with C 5 £0 forj # 0, and
where the I's are variables that are currently independent. If k =., the

35

equation is either redundant (cy = 0) or inconsistent (cq # 0) , and the
user 1s given an appropriate message. If k>O, a coefficient Cy with
largest absolute value 1s selected and variable Ij changes from independent

to dependent. Its current value will be

and the values of any other dependent variables that currently involve 1s

vill be simplified in accordance with this new value.

For example, after the equation " xty= 2 " above, LELAND will first
obtain

-2+X+y = 0

and then either x or Vy will become dependent. (LELAND is free to decide
which.) Say y becomes dependent, so that y = 2-x; then the second equation
x-y = z will reduce to

—-2+2%x-z = 0 ,

hence x will become dependent and equal to 1+ .,5z . On the other hand,
if IELAND had decided to make x dependent instead of y after the first

equation, the second equation would have reduced to

2-2y~-2 = 0 ,

making y dependentand equal to 1-.5z : This new dependency would also
be reflected in the current value of x , which would change from 2-y to
1+ .5z2

When LELAND forms linear combinations of coefficients, the floating-point
quantity x+y 1s always replaced by zero whenever x+y | < 0.00001 max WEarnab ‘
A similar thing happens in floating-point subtraction. This gets around
problems caused by rounding errors, (For exemple, 3 times 1/3 ion't
exactly 1 in floating-point arithmetic, so LELAND might not otherwise
realize that x 1s known after the equations

Xx= 3z+y+1l

: = -Y/3

have appeared.)

Your job is to implement such a system. Hand in well-documented code,
together with examples of test runs that demonstrate its correct working in
well-chcaen, nontrivial cases. Ee sure to devise a good woy to indicate

syntactic and semantic errors to the user. Your program should be reasonably
efficient in 1ts use of time and space.

36

SPRING 78/79 COMPREHENSIVE EXAMINATION |

Algorithms and Data Structures

1. Searching (24 points)

Mr. J. H. Quick (a student) needs to search an ordered table

All] < AR)< +++ < Aln]

to find the largest j such that A[j] < z; and if z < A[l] he wants j to be zero.
But he doesn’t wish to use binary search, he prefers to use the following scheme
(depending on an integer parameter h):

j= 0;
whilej +h <n and Aj +h) < z do j:i=) +h;
while j+1<nandAj +1] <zdoj:=;+1

Fortunately he is using a compiler that will not compare A[j + A] with z when
the test “7 + h < n" fails; so this program will work, for all positive integers A.
He tried it with A = 10, but he wonders if there is a better value.

(a) Let fi(h, J, n), £(h J, n), A(R, J, n), fulhy Jy), fs(hy J, mn), and fe(h, j, n) be the
] number of times Quick’s program evaluates “3 + h <n","Ap +h] <z2","j i=

JR"YY 1 <n", “Aj +1] <2", and “j i=] + 1", respectively, as a function
of the given positive integers h and n and the final value of j. For example, if
h<nandi=0 we have fi = a= f= f= 1 andf=fg = 0. Express these

six functions in terms of the quantities [j/k], {n/h]}, j mod A, and nmod h.

(b) Given n and h, determine the worst case of the algorithm, assuming that the
total running time is

8

1=l

In other words, determine the value of j that maximizes fh, j, n).

(c) When n == 80, what is the best choice of A, in the sense that the worst case

running time is minimum?

(d) For large n explain how to choose an optimum #4, and give an approximate
. formula for the worst-case running time as a function of n when the best / has

been selected.

37

2. Height and depth in binary trees (20 points)

An extended binary tree is a binary tree in which all nodes are either “internal”

(branch nodes), having two sons, or “external” (leaf nodes), having no sons. At each
node z of an extended binary tree let h(s) be the length of the longest downward

path from x to a leaf, and let d(x) be the length of the shortest downward path
from z to a leaf. Thus, if z is a leaf we have h(x) = d(x) = 0, while if z is a branch

node having sons {(z) and t(x) we have

A(z) = 1+ max(h(i(z)), h(r(z))),
d(x) =1 + min(d(I(x)), d(r(z))).

(a) Draw an extended binary tree having d(root)= 4, where the total number
of nodes is as small as possible.

(b) A height-balanced tree satisifies [h(}{z)) — h(r(z))| < 1 for all branch nodes
z. Prove that h(x) < 2d(x) for all nodes x in a height-balanced tree.

(c) Draw an extended binary tree having h(root) = 7 and with h(x) < 2d(z) for
all nodes x. Your tree should. have the smallest possible total number of nodes
subject to these conditions, (It need not be height-balanced.)

(d) Prove or disprove: In an extended binary tree having h(x) < 2d(z) for all
nodes x, the height of the root is O(log n), where n is the total number of nodes.

3. Algorithm design (16 points)

Suppose we are given a box of a specified capacity and a collection of objects of

various sizes, and we wish to pack the box as fully as possible. More formally, if the

objects have sizes {zj,Zy,.. ., X,}, then we want to find a subset S c{L2,...,n}
such that dies z, 1s as large as possible, but not greater than the capacity cof
the box.

Assuming that the z; are positive integers, design an algorithm to find an

optimal packing. Write your algorithm as a Pidgin-Algol program or in Knuthian

style. Say why you think your algorithm is good, giving estimates of its running
time and memory requirements. To facilitate practical considerations, assume that
¢ < 1000 and n < 100.

Note: Your program must output not only the size of an optimal packing,

but also a subset S of the objects such that S achieves this maximum.

38

Artificial Intelligence

1. Howard Cosell (60 points)

While the social issues raised by automation are important and difficult, few

could dispute the goal of creating an Al program to replace Howard Cosell. This

question deals with the design of such a system: a computer program capable

of following the action of a professional sports event, analyzing it, reporting its
analyses, and leaving no silent moments.

(a) [10 points] Basedon current AX work, what aspects of a sport would you
expect to make this problem more/less difficult? Cite specific aspects of specific AI
programs where appropriate in your discussion. Based on this, select an appropriate

sport that you will consider in the remainder of the problem. (If you truly are

unfamiliar with all professional sports, you may choose the task of commentator
fora live chess match.)

(b) (20 points] What kinds of information could be used by such a program, to

enable or merely to facilitate its operation? For each type, indicate an appropriate

representation (and/or data structure), a rough estimate of the amount of infor-

mation desirable, the difficulty of obtaining it, and its value to the program.

(c) [15 points] Sketch the flow of control through the program, Note how each
type of knowledge mentioned in part (b)above is accessed and used. (If you sup
plied alternatives for representing some type of information in (b), then choose

one of them here.)

(d) [10 points] What are the pros and cons of taking such a knowledge-based
approach? Consider, for example, changing the program to another sport, time

and space costs, debugging the system initially, etc.

(e) [5 points] Assume that you w ere going to spend about two years working on
this project (e.g. as a thesis). Which of the information sources you mentioned in
part (b) (and control structures you sketched in part (¢)) would you include, and
which would you exclude? Explain your choices.

| 39

| Systems

Problem 1. (5 points)

Give some comparative advantages and disadvantages of the following parsing
methods:

precedence

LL

LR

LALR

Problem 2. (5 points)

Given a directed acyclic graph representation of a basic block. program frag-
ment, what limitations must be imposed on the order of code generation?

Problem 3. (5 points)

What is aliasing (when this term is applied to programming languages)? Why
is it considered bad? What additional rules could you add to a language like Pascal
to reduce aliasing?

Problem 4. (10 points)

Dcfine a debugging compiler as one that allows the programmer to change

his program during testing without incurring the trouble or expense of complete
recompilation. Discuss a possible implementation of such a compiler. What types
of changes could you support? What information will you need at run time? How
does your scheme interact with the code optimization parts of the compiler?

| Problem 5. (5 points)

Define binding time. Give an example of early and late binding of some
attribute. What are advantages and disadvantages of early and late binding?

40

Problem 8. (10 points)

Comment on the following proposal for a new program verification system:

“It often happens that one version of an algorithm is easier to prove correct

than another version. Instead of devoting effort to verifying the difficult program,

we should verify the easier program and write a program to show that the two

programs are, in actuality, functionally equivalent. The project is to write a general

purpose program to detect functional equivalence of any two given programs.”

Problem 7. (5 points)

Pascal binds the else clause in if-then-else statements to the most recent then

clause. Write an unambiguous, context-free grammar that enforces this binding
in the state generating rules,

For simplicity, assume that you are dealing only with assignment statement6

and conditional statements. Thus, the problem is to convert the ambiguous BNF
specification

<statement> i= <assignment>| if <expression> then <statement> |
if <expression> then <statement> else <statement>

into an unambiguous grammar.

Problem 8. (5 points)

How is synchronization of concurrent processes normally done in a message
oriented operating system?

Problem 9. (10 points)

Activation record retention 1s a general programming language scheme that

can be used to solve the funarg problem in Lisp and the call by name problem

in Algol. Describe briefly how activation record retention can be used as a major

element in the implementation of an operating system that is based on monitors
-and is procedure oriented.

41

| Numerical Analysis

1. Nonlinear equations (15 points)

(a) Suppose we are given the equation

ef —e °

z—sinhz-4+3=0, sinhx=

and propose to solve it by a method of successive substitution in the following
manner:

29 i= some initial guess

+t)= ginh(z®¥)—3, k=0,12,....

Show that this procedure cannot be expected to converge to a solution of the given
equation.

(b) How might we modify the procedure so as to achieve rapid convergence to a
correct solution, still using a form of successive substitution?

2. Well-conditioned problems; stable algorithms (25 points)

Given as data the coordinates (uj, us) and (vy, vo) of two vectors 4 and v in
the plane, our object 1s to devise a stable algorithm for computing the angle ¢
between u and v.

(a) The angle ¢ can be defined by the formula

UY =u T

Cos i= uh rum =YY(uf + Wi? (v} + vi/2 lullz [ull

from which ¢ might be computed by taking the inverse cosine. We say in general

that a numerical problem 1s well-conditioned if a small change in the data defining

the problem results in only a small change in the solution. Show by means of this
formula that the quantity ¢ 1s well-conditioned as a function of the data uj, ug,

wn, Ww. (Hint: Take the partial derivative of cose with respect to uy, and then from

this compute the partial of ¢ with respect to u;. By symmetry, ug, vj, and vg are

essentially the same.)

42

(b) We say in general that a numerical algorithm is sable if it does not introduce
large errors in the computed solutions to problems which are well-conditioned.

Show that computing ¢ by means of the above formula and the inverse cosine is
nof numerically stable.

(c) An alternative algorithm is the following. First normalize the vectors,

Bom —— fim
© lull [bil

then compute a:=||G— v||z, 8:=||u + ¥]|z . Now, compute

_ |} arctan{a/B), af
P= 1r—2arctan(f/a), a> p.

Why is this algorithm better than the one proposed in (b)?

3. Linear least squares and band matrices (20 points)

The vector x that minimizes ||b—Agz||z satisfies the normal equations AT Az =
ATb. Suppose that A is m Xn, where m >n, and has the property that for
1=1,2,..., m we have

aij#0andaxs£0 = |j—k<w,

for some positive integer w. The matrix A is then said to be a rectangular band
matrix with band width w. (For this concept to be useful we should have w <n.)

(a) Show that ATA isa symmetric band matrix and determine its band width.

(b) Show that ATA is positive semidefinite, and positive definite if A is nonsin-
gular. Assuming ATA is positive definite, what significance will this fact have when
we need to compute the LLT(= LU) decompositon of ATA?

(¢) Ifm >> n and you are given A a row at a time, how would you form ATA?

(d) Estimate the total number of multiplications needed to form ATA and to
compute the lower triangular matrix L in the factorization ATA == LLT, It suffices
to give the leading term.

43

Theory of Computation

1. Decidability (5 points)

Prove that in languages like Algol and Pascal, it is undecidable whether or
not a variable has been assigned a value before it is used,

2. Grammar6 (15 points)

In each of the following three problems, try to give a grammar at the lowest
level in Chomsky's hierarchy (regular, context-free, context-sensitive, recursive).
You need not prove that your grammar is at the lowest possible level.

a) [4 points] Suppose we want to describe a path consisting of straight segments
of length1 inch, each of which is running in a northerly, southerly, easterly, or
westerly direction. Consider the alphabet A = {r,{}, where r means turn right,
| means turn left, followed by a move of inch in the new direction. A string
over A specifies a sequence of right and left turns and corresponding moves. Give
a grammar generating all those strings over A that describe paths ending in the
same direction as they start; e.g. lr and I /{] are elements of this language.

(b) [4 points] Consider the alphabet W = {n, s, e, w}, where the elements denote
a move of 1 inch in a northerly, southerly, easterly, or westerly direction. Give a

grammar over W that decribcs the set of all moves ending in the starting point.
For example, the path

can be described by the strings ne s w, en w s, and several others for other starting

points. Also note that ns is a valid path ending in the starting point.

(c) [7 points] Use t he result of part (b) and specify a grammar for the language
of all closed paths in terms of A = {r,!}, with the meaning of r and / as in part
a). Each path should end in its starting direction, Of course, not all paths in
the language in part (b) have a counterpart in terms of r and /; for example, ns
doesn’t. The path need not be simple; for example, the string rrrrrrrris one
legitimate way to specify a square path.

44

3. Primitive Recursion (10 points)

A function over the non-negative integers is primitive recursive if it can be
defined from 0 (zero), the successor function =-1, and the projection functions
Un(z,...,X,) = zy by function composition and the following recursion schema:

(0, Yl yor Yn) =9g(y1, .) Un)
flz + 1, yi, «oe Yn) = KZ, ut, Yn S(@ Yih Yn)

where g and h are primitive recursive. For example, the addition function plus(z, y)
is primitive recursive since it can be defined as follows:

plus(0, y) = Ui(y), plus(z , 1,y)==plus(z,y) , 1

The Ackerman function

a0,y)=v+ 1
az +1,0)=alz, 1)
a(z + 1, Y + 1) = a(z, az + 1, Y))

is known to be nor primitive recursive. Prove, however, that for any fixed n the

function an(y) = a(n, y) is primitive recursive.

4. NP-Completeness (10 points)

Prove that the following problem is NP-hard:

Given a context-free grammar over the terminal alphabet {zi,.. ., Zn}, does
the language defined by the grammar include a string that contains each letter z;
exactly once?

Hint: Use the fact that the problem of determining the existence of directed
Hamiltonian circuits in a graph is NP-complete.

45

5. Demand paging (20 points)

Consider a program on a virtual machine capable of storing b “pages” of a

fixed size in its high-speed memory, While the program is running it references a
sequence of pages given by the “page trace”

PLp2.--Pn.

Suppose Sj is the set of b pages in high-speed memory just after pj is referenced; we
need py € Sj. If p; & S;—1, a “page fault” occurs; some page g; in Sj—; is “pulled”
and we have S; = S;_1 — {q;} + {pj}, exchanging p, for gj. It is convenient to
assume that the program starts out with a set S of b completely null pages, and
that ¢; = p; when there is no page fault.

It 1s of interest to consider the best possible sequence of page pulls (the sequence

that minimizes the total number of page faults) for a given page trace p1 p2... Pn,

even though it may be impossible actually to achieve this optimum sequence in
practice because it may require knowing the future page requests pj4-1+.. Pn at
the time ¢; must be chosen.

(a) [15 points] Thc purpose of this problem is to give a constructive proof that an
optimum strategy is obtained by the following rule: “When pj; & S;—1, let ¢; be an
element of S;—; that does not appear in {pj+1,.. ,,Pn}, if possible. Otherwise (i.e.
if all elements of Sj—1 occur again), let g; be the element whose first occurrence
in pj41... pn is after all the other pages of Sy;—1 have occurred.”

The proof can be obtained by repeatedly applying the following idea: “Given
a page trace p; pz... Pn and a corresponding sequence of page pulls gi ¢2.. 7. such

that, for some j with p; 7% g;, there is an element ¢ € S;—} and an index k > j such
that ¢ does not appear in py4-1... pk but ¢; = px, then there 1s another sequence of

page pulls 4) ¢5. . . gj, such that ¢}...¢;_; =aq...¢j—1 and ¢; =q and ¢ ¢5...q,
has no more page faults than qi gz... gn."

The required sequence ¢¢5... ¢, can be constructed in the following way:
Let m bc as large as possible such that ¢ does not appear in G41... gm Or In

Pj+41...Pm. Let ry==g¢;, and for j <1 <m let

=p n=¢ ifp=ri_y

q; = ¢q, r;=ri—], otherwise.

Finally if m<nletq,. ,=rm, and let fj=¢ for m+ 1 <i: <n.
Prove that S% = S; — {q} + {n} forj <1 < m and S, = 5; for all {> m.

And prove that the sequence of page pulls ¢} 45... ¢,, leads to no more page faults
than q; qq. . . g, does.

46

(b) [5 points] 0 ne of the page pulling algorithms often used in practice is the so-
called “lcast recently used” rule: If p; & S;—1, the page ¢; that is pulled is a null
page if any null pages are present, otherwise g; is the page whose last occurrence
in py ...py—1 comes before occurrences of all the other pages in S;—i.

Construct a page trace scheme for which this rule leads to about b times as
many page faults as the optimum strategy does.

47

Hardware

Problem 1. (30 points)

Using AND, cR NOT, and XOR gates,

(a) Design a combinational circuit V such that 2 == 1 if and only if at least two
inputs are equal fo 1.

xX

X2 V P=

Xs

Write the Karnaugh map for this function, and write a logical expression for V.

(b) Design a synchronous sequential circuit that will have its output become and
remain equal to 1 only after 3 successive disagreements have occurred between z;
and 2. State what assumptions you make about the clocks you use in your design.

Problem 2. (15 points)

(a) State the conditions that determine the occurrence of an overflow when adding

two 2’s complement numbers.

(b) Give an example of such an addition using 8-bit numbers.

Problem 3. (15 points)

TTL circuits can have three different output configurations. List each of
them, defining their properties and discussing advantages and disadvantages of
each.

48

Solutions to Spring 1070 Comprahonsive Exam

Algorithms and Data Structures

1. (a) Clearly fy = |j/h] and fz = j mod h, since j starts at zero. By Kirchhoff's
law we have fi = f3 4 1 and fy = fz 4 1. Furthermore we have f; = f| except

that fo = fi — 1 when |j/h] = |n/h]; similarly fz = fi except that f5 = fy — 1
when 7 = n.

(b) f = 3 +4 3|j/h)] + 3(j med kh) + (Lj/h] < [n/h)) + (j <n). To maximize
filet |j/h|=|n/h]| —1and j modh = h — 1; except when nmodh =h — | let
J = n. We can also express this as j =|(n + 1)/hlh — 1.

(c)h=9= f(h,, 80) << f(9, 80,80) = 51. (Quick was close.)
(d) In general the worst case running time is 3|n/h| + 3h— (n mod h 5 h- 1).

To minimize g(h) = |n/h]| +h, note that when h < /n we have g(h) < glh—1),
since n/(h — 1)> n/h + 1;and when h => +/n we have g(h) < g(h + 1), since
n/(h + 1) > n/h — 1. Thus the minimum occurs at |\/n] or [\/n]. The worst
case running time is therefore 84/7 4 O(1).

2. (a) The complete binary tree Cy with 16 leaves. (Co has one node, Cp) has
left and right subtree equal to Ch.)

(b) If z is a leaf, /i(x) == 2d(z) = 0. Otherwise by induction on /(x) we have
h(z) = 1 + max(h(i(z)),h(r(=))) < 2 + min(h(i(z)),h(r(z))) < 2 + min(2d (I(z)),
2d(r(z))) = 2d(z).

(c) T7 where Ty, is defined recursively as follows: T) is a single node, T+] has
left subtree Ty and right subtree Cin—1)/2)-

(d) If the tree has depth d then it must contain Cy, so we have n > 24+! — |,
where 7 is the number of nodes. Thus A < 2d < 2(lg(n +1) — 1), so h is O(log n).
(Note we only needed the fact that s(x) < 2d(z) at the root node.)

3. The algorithm given below is a form of “dynamic programming”.

The idea will be to have one array M[0 : c] such that M[j] is 0 if no packing
of size j is possible, otherwise M[;] = k means there is at least one packing of
size j that contains the kth object but not objects k + 1,.. . , n. Furthermore if
Mj] = k then we have 0 52 M[j — zi] < k, i.e. there is a packing of size j — zx
containing only objects from 1,..., k—1.

Al. [Initialize.] Set M[j] — 0 for 1 <j < c, and set M[0] « —1 (this is a slight
kludge to indicate that we can achicve the empty packing). Set m « 0.

A2. [Done constructing M?] (At this point the array M has been set up as specified
above, but using only the first m objects.) If m =n, go to step A4.

A3. [Add new object.] Increase m by 1. Then for ¢ = j = zy, (in decreasing order
of j), ifMj] = 0 and M[j — z,, 7% 0, set M[j] « m. Return to step A2.

Lg

A4. [Output the result.] Find the largest k in the range Q< k < ¢ such that
Mlk] 0. Output this k as the size of an optimal packing. Then repeatedly
output Mk] and decrease k by za, zero or more times, until k = 0.

The algorithm is “good” because although the packing problem is NP-complete,
our algorithm solves it using O(ne) time and O(c) storage. (Why have we not
proved that P = NP?)

Artificial Intelligence

1. Satisfactory answers should relate discussion to some specific work in the {ol-
lowing areas:

Vision (shadows, 3d, motion)
Language (understanding, generation, dialogue)
Signal understanding (multiple knowledge sources, changes over time, expec-

tations, bottom-up vs. top-down processing)

Inference/problem solving (search for explanations, blackboard model, syntax
of possible plays, semantics of plausible plays, common sense reasoning, reason-
ing about intentions a n d beliefs, inexact reasoning, reasoning with incomplete

information, generalization, analogical reasoning, pattern matching, planning to
provide expectations, focus of attention, distributed problem solving, ill-structured
problems)

(a) Important aspects of the sport:
The number of players, number of rules, complexity of interactions among

players, speed of play, duration of play between pauses, amount of interpretation
of actions the commentator must perform, richness of past history of the sport,
availability of compiled statistics on teams, players, situations — these all make
the problem more or less difficult.

It is important to recognize that commenting involves understanding the ac-
tion and relating it to broader contexts, not just reporting what one sees. Stereo
vision and analysis of motion must be recognized as limiting factors in almost
any sport except snail racing, and a couple of references to vision research would
be appropriate here. Pattern matching is obviously complex. The problem also

requires setting up expectations of future actions, using models of events (and
objects) to aid the interpretation, reasoning by analogy, and generalizing from
past observations.

(b) Information:
(1) Static information. .

rules — 1t would appear essential to provide the program with complete

knowledge of the rules for legal play of the game. From the commentator’s point
of view, these rules will be accessed in appropriate situations; thus they should

50

bc indexed according to the situations in which they are potentially relevant;
this suggests that representing them as production rules would be appropriate.

Acquiring this type of knowledge will in most cases be quite straightforward — at

least, until the time comes to actually code the low-level primitives out of which
these are built (e.g. how to test whether the holding was “intentional” or not.)

goals/purposes — The program must be able to relate situations and/or ac-
tions to the player’s goal of winning and subgoals for achieving that. Thus the
program must model the players’ problem-solving abilities. This can be arbitrarily

sophisticated, or as simple as assuming that they all have a particular weak method
driving their actions (such as means-ends analysis).

models of player’ intentions — Closely tied with the preceding would be
modelling the motivations of the players, in an attempt to relate individual ac-
tions to subgoals. This will of course be almost impossible to obtain (or verify)
dynamically; at best, it can be built up over time for each player, with rules which
modify it under certain circumstances.

strategies — The program must be able to recognize actions as instantiations
of strategies and recognize appropriate and inappropriate uses of a strategy. Meta-
rules have been used to represent strategy rules.

statistical data — complete compilations of past performance of individuals,

teams, team units, leagues.

knowledge of standard shapes and configurations of objects -I.e., the program

must be able to recognize things in the world, common states and arrangements

of players on the field, etc. One might employ a frame-based (schematized) rep

resentation for this knowledge,

model of relative importance of objects, usual behavior, intentions; knowledge

of how to synthesize comments based on highly variable sets of events.

library of one-liners and stories — This is easy to obtain, and will add quite

a bit to the “humanness” of the program's output and to its continuous stream

of reportage.

(2) Dynamic information.

snapshot of a scene with stereo information — just to provide basic infor-

mation to the program on what objects (and players) are close to one another.
Necessary for interpreting what is going on at time. Such information would
greatly speed up many of the computations the program will have to perform.

An alternative would be to spend even a bit more time, and compute vectors of

velocity for each moving entity in the scene. This would be represented differently,

say using pointers into a frame-structured corpus. While this kind of knowledge
would seem to be trivial to obtain, Al research has revealed it to be a painful,
difficult task after all.

51

actions that have taken place in this game, and the context in which they
occurred — must have a representation of patterns found in individual scenes.

patterns of actions — generalizations on sets of prior actions. (Could very
quickly pass beyond the state of the art of Al, although there is considerable work

on induction.)

(c) Flow of control:
for each time frame from (start of event - 30 min) to (end of event + 15 min)

input raw tv signal for brief time frame

find individual objects in the scene

identify each object, using expectations generated in previous time frames
plus strong model of allowable positions for individuals

focus on most interesting parts of scene

relate this scene to previous scenes to determine differences

if no differences and pause is expected then generate blather about objects
or patterns that were recently changed. Comments can include reading
from canned histories and books of statistics. If unable, then say “What

do you think of that, Don?”

determine interesting differences, interesting patterns

find plausible explanations of these

generate comments about the differences/patterns and their explanations,
expecially noting rule infractions, scores, unexpected events — comment

immediately on high interest events.

interpret purpose of changes and patterns with respect to known strategies
and desirable subgoals

generate comments on these

get next time frame

Notice that you can be more specific, since you selected a specific sport in (a),

and supplied a specific set of information sources in (b), whereas we have tried to
remain sport-independent.

(d) Pros and cons of knowledge-based approach:
Understanding requires considerable knowledge of the sport. Published rule

book alone is insufficient for generating text for comments. Expertise about in-
teresting changes and patterns, plausible strategies, etc. is clearly required for
interesting commentary. Only by cleanly separating inferential procedures from
the knowledge that is specific to the sport is there any chance of mapping the
program into another sport.

Whole problem is too open-ended to allow capturing sufficient expertise in a
program.

52

Expect that this approach would have a longer initial start-up cost than a
non-Al one, but would achieve expert-level performance ultimately more quickly,
but would run an order of magnitude or three slower.

(e) Two-year project:
Many good problems — any must be sufficiently constrained to allow the

following:

modestly small data structures,

reasonably complete knowledge base,

.avoiding hard problems that have enmeshed good people for years (e.g. you
don’t really intend to implement those auxiliary boxes labelled “natural language
understander”, “speech understander”, “discoverer of patterns”, etc.)

Systems

1. precedence — Advantages: Small tables. Disadvantages: Only parses a small

class of grammars and a small class of languages.
LIL — Advantages: Small tables, parses a bigger class of languages than

precedence. Disadvantages: Only parses a small class of languages and it is difficult

to find the (small) LL grammar for a particular LL language.
LR — Advantages: Parses a large class of grammars and a large class of

languages. Disadvantages: Large tables and those tables are hard to generate.
LALR — Advantages: Parses a large class of grammars and a large class of

languages. Disadvantages: The tables, while not as large as LR tables, are hard
to construct.

2. One must generate code for producing values before using the values and one
must generate code for all uses of a value from a particular type of memory cell
before generating code that stores a new value into that cell (or a class containing
that cell in cases like indexed arrays).

3. Aliasing 1s the situation of having two names for a particular value simul-

taneously active. The most common type of alias 1s an actual parameter that is also

addressable as a more globally named value or two formal parameters that actually

represent the same actual parameter. It 1s considered bad because it allows the

unwary programmer to produce obscure bugs, it allows the unwary code optimizer

to produce obscure bugs, and it requires the wary optimizer to produce cautious
but slow code. In Pascal, variant records without tags are also a major source of

aliasing. One could eliminate them and put additional requirements on the use

of tags in variant records. One could also change ‘VAR’ parameters (reference
parameters) to ‘value-result’ parameters or one could try to construct compilers

that would detect actual aliasing (as opposed to potential aliasing) and issue error
messages.

53

4. The simplest scheme involves providing a simple but complete symbol table to
the debugger and giving the debugger complete value access and change capability

at any point in the control flow as well as the usual manipulations of the control flow
itself. This scheme restricts what the compiler can do in the way of optimizations

such as code motion, strength reduction, storage folding, etc. A more complex

scheme allow6 the compiler to do many of the just mentioned optimizations but

requires that it supply more extensive information in tables to the debugger so
that the debugger can find its way back to variables and points in the control

flow or report that such values are undefined at some point or report that some

points have changed. Still, global optimizations of several important sorts must
be severly constrained. At the current time, this is not much of a limitation since

global optimizations are relatively rare.

5. Binding time is the time at which a name gets associated with a particular

attribute such as a value or type. For example, with call by value parameters, the

binding of the value of the parameter to the formal name of the parameter occurs

at the time of the corresponding procedure call while a call by name parameter
does not get bound to a value until the formal parameter name is actually used.
Another example would be types determined at compile time as in Pascal versus

types determined at run time as in Simula. Early binding usually has the advantage

of efficient implementation and the disadvantage of lack of flexibility while late
binding maintains flexibility and often results in more general and more powerful
programs but with more significant run time overhead.

8. If onc thinks of the assertions to’be verified as another version of the program,
then it is easily scen that the aboue proposal is not a proposal to do a verification
system in a different way. In overly simplistic terms, one could say that the

verification problem is the program equivalence problem.

7. <statement> = <matched statement> |<<unmatched statement>
<matched statement> :== <assignment> | if <expression> then

<matched statement> else <matched statement>

<unmatched statement> := if <expression> then <statement> | if
<expression>> then <matched statement> else <unmatched statement>

8. By the explicit sending and receiving of messages indicating the need for or
the realization of synchronizing conditions. No other operation6 are needed.

9. Activation record retention means the retaining of activation records for in-

stances of a procedure in a non-stack fashion. Thus we can think of all storage,
including activation records, as coming from a heap and having no stack storage

for activation records at all. This is a convenient way to organize activation records
in procedure oriented operating system based on monitors because process forks

Sh

can be implemented simply as the creation of a new chain of activation records

in the heap and monitors can queue and dequeue these activation record chains

(processes) in a nearly obvious and straightforward fashion.

Numerical Analysis

1. (a) The method of successive substitutions has the general form g(F+1) =
(zk), A necessary condition for convergence to a root a is that |¢/(a)| < 1. Here
we have

p(z) =sinhz—3, Q(z) =coshz> 1 |,

so the suggested method cannot converge.

(b) There are an infinite number of ways of rewriting the given equation in
the form z := (z) which will lead to a convergent method. One obvious way is
x :==sinh™!(x + 3), for which

"os
Pla)y=——

V+ +312

This is < 1 for all x, and in the vicinity of the root a ==2.38534... it is about
0.2. A better way to solve this equation would be by Newton’s method,

+1)0 FO—sinhzs®+3
] —coshz®

which might also be considered a form of successive substitution.

2. (a) To find the change in @ when the data is subject to small changes we first
compute

Ocos p) up — uTvw/(uf + uf) ug(vyug — uyvy)
Iu, [lull2 [[vll2 lull 2llvll2

Now observe that vjup — uj, =2||3]| }l]2 sine. Then, using the chain rule for
differentiation, we get

So= I(cosp) —uy
du; sing du lula 2

Since the coordinates occur in complete symmetry similar formulas for the other

derivatives follow immediately. If wc know bounds for the relative perturbations

33

in the data, |Au;| < §|u;| etc., we get for the change in @ the approximate bound

[mug] Jui)Ap < (la — 126< 26.A= ll? + Tole?

This shows that the quantity ¢ is well-conditioned as a function of the coordinates.
(b) If the formula in (a) is used to compute ¢ numerically, rounding errors will

be introduced. If floating-point computation with a relative precision of ¢ is used
then we have

Fe(uTv) — uo] < (luiw| + |uava])2e <[lullafivllz 2¢

This leads to a relative error in cos bounded by 2¢, and

| sin | sin 0]

Thus if ¢ is small, then rounding errors can cause perturbations in ¢ which are
large in absolute value. (It might even happen that the computed cos becomes

| larger than 1!)
(c) The important difference is that here we compute ¢ from

Y= 2arctanr, 0<r<lI.

Rounding errors will occur in the computation of a and f, but these are not

magnified since if 0 < ¥ < n/2 then

d 1

=arctan r)= Tr <l.
| Note that the algorithm given here applies to vectors of arbitrary dimension. For

vectors in the plane there are simpler algorithms which are stable.

3. (a) The elements in the matrix ATA are

T — des

(ATA), = D_ ainsi -
| ==]

If |7 —k| >= w it follows from the properties of A that all terms in this sum are
| zero and therefore

(ATA);#0 = |li—ki<w.

According to the general definition of band width given, it follows that the band
width of ATA is (at most) 2w — 1. (The band width of a symmetrix matrix is
more often defined as the maximum number of non-zero elements within the upper

| triangle in any row. With this definition the band width of ATA would be w.)
(b) For any n-vector £ we have z7 (ATA)z = (Az)T(Az) = ||Az||3. This must

be = 0, with equality only if z= 0 or if A is singular. If A is positive definite, then
the LLT decomposition can be computed stably by a form of Gaussian elimination
without pivoting. Such a decomposition is called a Cholesky decomposition. This

means that the band structure of A7A will not be destroyed by the elimination
process.

(c) Begin by setting ATA := 0. As the i-th row of A is made available, compute
each of the quantities

as,Q5k J < k

where j and k are confined to the nonzero band for row 3%, and add each such

product to (ATA);x and (ATA); (In practice, only the upper or lower triangular
hall of ATA need be maintained, because of symmetry.)

(d) Using the procedure described in (c), we compute ATA in approximately
mw?/2 multiplications. To compute the LLT decomposition by Gaussian elimina-

. tion takes approximately nw?/2 multiplications if w « n, since no pivoting is
required as mentioned in (b). In contrast, if A is a dense matrix (or if you treat it

. as such), these numbers become mn?/2 and n3/8.

Theory of Computation

1. Let py be an arbitrary Algol program, not containing the variable x. Consider

the program pg = begin integer x, y; pi; y « X; end. Clearly, x 1s used without
being assigned a value if and only if the program p; terminates.

2. (a) Have productions: S — rR; | IR3 | ¢, Ry — rRy | IS, Ry — rR3 | Ry,
R3— rS |IRy. Note this is a regular grammar.

(b) The language contains all strings over {n,s, ¢, w} such that the number
of n’s 1s equal to the number to s’s and the number of w’s equal to that of e’s.

The nonempty strings are generated by the context-sensitive grammar with start
symbol Z and productions Z — NS | EW | NSZ | EWZ, XY — YX for all X
andY in{N, SSE, W/}, and E—¢e, N =n, S—s, W —w.

(c) We may assume without loss of generality that the path begins and ends

going north. Replace the last four productions of (b) by NE — rE, NW — IW,
NE— rE | rl, Nw = IW | ir, ES = 1S, EN = IN, SW — rW | rr, Se = IE | ll,
wN — rN, WS = IS.

Note: The languages in (b) and (c) are not context-free, which can be proved by

- considering the intersection of the language with an appropriate regular expression.

57

However, this is beyond the scope of the problem.

3. For fixed n we candefine n + 1 functions a;, 0 <3 <n as follows:

aoly)=y + 1 (the successor function);
a;i+1(0)=a; 1)=041-+_+4...4 1 (repeated a;(1) times);

ai+1(y +1) = aiU3(y: ai1v))).

We can show by induction that ‘a;(y) = a3, y); furthermore all a; are primitive
recursive.

4. We can reduce the directed Hamiltonian circuit problem to the stated problem
as follows. Given a directed graph, consider the vertices as the states of a finite

automaton and the (directed) edges as transitions between the states. Associate
with each vertex a distinct terminal symbol, and label each edge entering that
vertex with this symbol. Choose any vertex as the start vertex, and make that
start vertex the only final state,

The resulting finite automaton accepts a string that contains each terminal
symbol exactly once if and only if the original graph has a directed Hamiltonian
circuit. Because of the correspondence between finite automata and regular gram-

mars, we have in fact shown that the stated problem is NP-hard even for regular
grammars. Moreover, it is in NP (and thus NP-complete) since we can nondeter-
ministically check all n! strings to see if they are in the language.

5. (a) In the construction of the sequence ¢] 45... ¢, for § <1 << m, consider the
case p; = r;—;. Since p; & S;_;, we save a page fault here.

We lose a page fault at time m = 1iff pym+1 = g, but we always gain at

least one page fault the first time ¢; = pi since rx—) == ¢;. If pm41==¢ we have
m =+1>> k, so there is never a net loss.

(b) The periodic page trace ajay.. .ap+16182.. .Gp+1G1a2. . . causes page faults
every time with LRU, but only every bth time with our optimal strategy (after
the first period). Incidentally, such worst-case behavior is not so uncommon; it
occurs during long iterations.

53

Hardware

1. (a) The ti ebb fombinations and Karnaugh map are shown below.

Xa Xz x3 =

o|v]ofjo oo Xi X,

lial] c[elolile
ile) fel
BRE EER
tfo] 1 |!

lJ] oj O10

A logic expression for this circuit is z = zjz9 + mz3 + 737]. A circuit for V is
shown below.

A

Xz

/\e

X3— Z

X 3 -

Xi |

(b) A state diagram for the desired circuit is

/

e e e e

(/ CY (e(v9) (9 (0) (mk
INTIAL CC e’ A e’
STATE —

e’ .

where e = z; @z (DB denotes exclusive-or). This circuit will be designed for clocked
(synchronous) pulse-mode operation. Thus, it is assumed that each clock pulse
is “long enough to cause the appropriate flip-flops to change state”. It is also

assumed that each clock pulse is “short enough so that it is no longer present at

the circuits which generate the flip-flop input signals when the change in flip-flop

outputs has propagated to the input circuitry” (from p. 205 of Introduction to the

Theory of Switching Circuits by E. J. McCluskey). Furthermore, it is assumed
that the signals zi, 29, #3, 2, and e do not change while the clock is active (¢c == 1).

59

The combined state and output table is shown on the left below, where T is
the level-output of the sequential circuit. Since there are four states, at least 2

internal variables are required. Let the state assignments be A = yy5, B=1y 1,_ — yyh, since th 1 only whC = yiyz, and D = y1y5. Note that T = Y1yy, since the output is 1 only when
the circuit is in state D.,

The transition table is shown on the right below,

- C=
¢=1 e

5 €=0 0 e | Yi Y2 C=O oO]
ital=> A FAO), 08,0 A-oco oolloolol) ©

c fo.olla.olb,2 ¢-11 |1t]joo] io] ©
AONNONION - 10 [1oljtofio] |

Using set-reset flip-flops, the encoded excitation table is

C=

VY: €<0 oo © i

ol {r,s Ir,R|S,s|
[Fs [RRs,R
ols,e [s.rls.c]

Sify Ske

By inspection of the excitation table,

S| = cep,BR) = cc, Sg = cey), and Hy; = c(d + Yi).

To implement the initial condition, the reset inputs are changed by ORing in an

initialization pulse INIT. Thus R;= cya + NT, and Rg = ¢(¢/ + yi) + INIT.
The INIT pulse is assumed to be applied before circuit use begins.

The entire circuit is shown at the top of the next page.

60

| A
Sa

TT
Bh

i (ouTpuT)

| OH OI De
|

C INIT

(cle ck) |

2. (a) When adding two 2's complement numbers, overflow occurs if and only if
the signs of the inputs are the same, and the sign of the output is not equal to
the sign of the inputs. Since the sign of a 2's complement number is the most

significant bit (MSB), we have

overflow = MSB(A)MSB(B)MSB(S)' + MSB(A)MSB(B)'MSB(S)

where S is the sum of A and B.

Overflow can also be detected as the exclusive-or of carry-in with carry-out

at the most significant bit of the adder circuit.

(b) 01111111
<-00000001

1000C000

61

3.

TTL outpPuT | SimPLIFIED ADVANTAGES | DISADVANTAGES
CIRCWIT :

ye

Standavy] - | |
ouT Simple Cannot be used

— | for data busses

Open Collector |

i | R can be used | external pullup
—— out Lor data pusses; resistor reguired |

"Wired- and ’ passive putlup
| } | Ioaie Luncdion at | resuldc in lonaer

| out puts; also risetime and poor
useful foc ara fog : fon- out capobility.

| interfacing

Three - Stale | | a. well sudted for extra input pin
(1 ivimped -— data busses needed for enable

, 9, mimpe nee ou be cause oF active Panc tor. ; control
CT pullup ard Ahr Peclure at eralies

(hi hin pedonee) SeENRBLE h 3 re Con resuld in ambiguesa

| sutput £ two putpuls
| “Fight "

62

SPRING 1979 PROGRAMMING PROJECT: CODE GENERATION AND OPTIMIZATION

Due: 12:00 p.m., Tuesday, April 10, 1979
Polya 254

Outline:

Let M be a simple computer that performs arithmetic operations on

integers and has a memory addressed by positive integers. M can perform
only register-register arithmetic operations, and has no jump instructions,
indexing or indirect addressing. The goal is to write a simple code
generator named COP which generates efficient code for M .

Input to COP:

The input to COP consists of triples. Each triple consists of an operator
and two arguments. Triples are numbered consecutivelyfram 1 ; the n-th

triple is said to have triple number Tn . The result of a triple is-a number,
which may be referred to 1n subsequent Triples by using its triple number as an
argument.

Here are the operators available in triples:

Operator Result

: +

arg, t+ arg,

* *

arg, * arg,

/ arg, / arg, (integer division)
= arg, , with side effect of arg, := arg, .

Each argument, arg, Or arg, may be an integer constant, a memory address
An (with n in the range 0 -99), or the triple number Tn of a previous
triple.

For example, the following triples have the same effect as the statement

X = X¥Y + X¥Y¥ + 3 ; given that X and Y are allocated memory locations
0 and 1:

Operator arg, arg,

1 * AO Al

2 * AO Al

3 + T1 T2

L + T5 p

7) = T4 AO

Output of COP:

The output of COP 1s a sequence of instructions for M . M has four

general registers RO , Rl , R2 , R3 and two hundred memory locations (for
data) numbered 0 . ..199 . Belowr and s denote registers, m a memory
address. Read C(x) as "the contents of x". M has the following
instructions:

63

LOAD r,m load register r with C(m)

LOAD1 r,k load register r. with the value k

STORE r,m store C(r) into memory location m

ADD ry S put C(r)+C(s) into register r

SUB ry S put C(r)-C(s) into register r

MULT ry S put C(r)%(s) into register r

DIV ry, S put C(r)/C(s) into register r

For example, the triples could be optimized into:

INSTRUCTION COMMENT

LOAD R0,0 triple 1

LOAD R1,1 triple 1

MULT RO,R1l triple 1

ADD RO,RO triple 3

LOAD] R3,3 triple 4

ADD RO,R1 triple 4

STORE RO,O triple 5

Objective:

Assume that ADD, SUB, MULT, DIV AND LOAD] each take one unit of time

to execute and that LOAD and STORE each take two units. Your optimizer
should try to minimize the time required to run the output code, but the
optimizer should be efficient enough to be practical in a compiler and

should always generate correct code.

Method:

Two techniques you can try are:

(1) Common subexpression elimination
(e.g. (X*Y+2)+(X*¥Y+Z) should lead to only one computation of
(X*Y+2Z).

(2) Constant folding
(e.g. X+14+2 should be converted at compile time to X+3).

Try to make efficient use of M's registers. Your code generator should

be prepared for expressions complex enough to require storing temporary results

in memory, using addresses in the range 100 ... 199 (remember, 0 . . . 99
are reserved for variables),

Possible algorithms are sketched in Aho and Ullman, Principles of Compiler
Design (1977), sections 12.3-12.4 and 15.4-15.6, and Gries, Compiler Construction
for Digital Computers (1971), sections 17.2 and 18.1. Both books are on reserve
in the Math. Sciences Library. However a fully satisfactory program can be

written without referring to books at all.

Do not try to use unusually sophisticated optimizations (e.g., avoid
sections 12.5 and 15.7 of Aho and Ullman). Attempt only what you know you
can finish on time. To get a feel for the problem, you might begin by writing

a code generator that performs no optimization. If you can't get your
optimizer to work, but do get a code generator working, then turn it in.

64

Documentation.

It 1s not sufficient that your program work; the graders must be able

to see that it works. So you must document your program and its output.
Explain which algorithms you used and give references; outline the general

layout of the program; describe how to interpret its output. In the program
itself, use descriptive variable names; use proper indentation; insert
comments where appropriate.

To make the generated code readable, it should include such comments

as "store in temporary variable" or "triple n" (i.e., COP should put these
comments in 1ts output). Also COP should print the number of time units
required to execute the code it generates. If your optimizer produces an

optimized set of triples (rather than going directly to assembly code), 1it
should print these.

Test data for your program will be given out in two sets. The first
set is attached here. The second set will be available after 9:00 a.m. on

Monday, 9 April, in Polya 254, Turn in your source program, associated
documentation and its output from all the test data,

Questions:

If you have questions about the problem (besides how to solve 1it!),
contact

Larry Paulson LP@ SUAI Lg7-Lo71 327-110L
or

Lloyd Trefethen INT@ SUAI Lg -4368 325-5396

65

| * 3 A

) / 5 A3

3 ¥ Al 4
4 + T1 T3

5 T4 vi

6 * TS 3

7 + 6 T6

3 - T7 4

9 . T8 Al

10 x 4 Al

11 / A A3

12 + T10 T11

13 * 4 Al

14 + COTI2 T13

15 / T14)

16 +) Al

17 - T15 T16

18 = T17 A

19 * M AS

20 - A3 A
01 / Al A
22 / T20 vy

23 T19 T22

24 * AS A9

25 * ALO All

26 - T24 T25

7 * 23 T26

28 = T27 A3

66

1 + Al A2 31 - Al3 ALL
2 * 3 A2 32 + 2 + Al

. 3 A3 Ad 33 + Al5 Al6

4 / 5 A3 34 - T30 T32

: 5 + AS Ab 35 * T31 T33

S * Al 4 36 = T3 4 A2

7 AT AS 37 = T29 Ad

8 + T2 TE 38 * A4 AS

9 A9 ALO 39 + Al A?

10 T8 T4 40 - A3 A2

1 + All Al2 41 - A3 Ad

12 * TiO 3 L2 / Al A2

13 Al3 Al4 43 T AS Ab

14 + 6 T12 LL / T40 Tho

15 + Al5 Al6 45 - AT A8

16 T14 4 46 - 738 T44

17 * Tl 13 17 x T39 T41

18 = T16 Al 48 * A8 A9

19 / T5 T7 L9 / TL3 TL5
20 * 4 Al 50 * ALO All

21 / T9 T11 51 - TL7 TL

2] Nn A3 50 - TLS T50

23 * T13 T1> 53 / T35 1

2h + T20 T22 54 * Tho T52

25 T17 T19 55 = T53 Al

26 * 4 Al 56 = TSk A3

27 + T21 T23 57 * 3 L

28 + ToL T26 58 / 8 2

29 / T25 T27 59 / T57 T58

30 / T28 2 60 = T59 AS

67

| REMARKS ON THE GRADING OF THE PROGRAMMING PROJECT

The programs we received varied greatly in sophistication and in the
methods of optimization employed. Most people succeeded in generating
correct code for "COP" and performed at least one kind of optimization,
however.

Grading came down to three broad areas:

(1) Code Generating and Optimizing Algorithms: Many people implemented
DAGs (directed acyclic graphs) or a related technique; a few more did not.
The majority performed some sort of optimizing on the triples themselves
before generating code, often including a reordering of the triples.
Reordering could have a dramatic effect on the efficiency of code generated
for the second assigned input set, but we deemphasized this somewhat and
weighed also less dramatic forms of optimization, such as constant folding
and common subexpression elimination.

Typical "scores" for masters passes were 70/230 COP time units for
the first/second input set, and for Ph.D. passes 62/185 time units. However,
these numbers 1n general counted less than you may have expected in determining

your performance.

(2) Programming Style and Efficiency: The following inelegancies
appeared too often:

- Use of obscure numbers like "4" where a macro like "MULTIPLY"

would have been much clearer.

- Unnecessary string operations.

- Duplication or near-duplication of code.

- Lack of division of major tasks 1nto smaller procedures.

- Lack of comments in code.

- Inefficient use of arrays where linked structures would have been

more appropriate, and/or unnecessary linear searches where hashing
or a better data representation could have saved time. It's all
right to cut corners on a thing like hashing, but if you do, you
should mention in your documentation that there 1s a better
alternative.

Some of these complaints may be controversial. Clarity, however, 1is
a must, and too many of the programs were hard to read.

(3) Documentation: This was the area most often disappointing.
Providing good documentation 1s absolutely essential to doing well on the
programming project. This means:

- Describe your program fairly completely. (Say, at least four pages.)

- Isolate your central data structures and the flow of your program

so that the readers don't have to figure them out.

- Documentation should be organized, not Just five pages of text.

68

- Mention more efficient alternatives that you have chosen not to

implement. If you think that constant folding 1s useless in a
real compiler, then you must say so, so that we know why you
didn't implement it.

In general, too many people seemed to have left tidying up to the
) program and documenting it to an hour or two at the end. An additional

two hours on such "cosmetics" would have given several. such people a

higher grade. We are not just being fussy here -- the programming project
aims to show that you can produce efficient programs 1n an environment
where they have to be understood and modified by other people.

SAMPLE PROGRAM:

As a sample solution we have duplicated one of the best programs that
was turned in, that of Magic Number 4502. This person did use DAGs, and
got excellent results: 55 and 133 COP time units, respectively, for the
two input data sets.

Here are some strengths of this program;

- Excellent optimization techniques, including common subexpression
elimination, reordering of triples, good allocation of registers
based on next use information, and detection of commutativity.

- Clear programming style in most respects, including use of macros
for integer parameters, extensive commenting within the code, and
clear structuring of each procedure.

’ - Fairly clear documentation up front.

Here are some weaknesses:

- A small bug in the treatment of assignment statements made the
first line of code for input set 2 appear before other references
to A5 -- an error. #4502 noticed this error at the last minute
and commented on 1t.

- String variables are used more than necessary.

- The program 1s put together as a sequence of blocks rather than as
a collection of procedures called by a small segment of main
program. This makes the program less readable globally than it
1s locally.

The sample program will not be available for several days, as it 1s being
reproduced at SEL Publications.

69

70

Winter 1979/80 COMPREHENSIVE EXAMINATION

ALGORITHMS AND DATA STRUCTURES

Problem 1. (10 points). -

Write an algorithm in pidgin algol which takes as inputs two sorted

arrays 6 S58 < xn and y{ Yo Yp andanumber Ss The

output will be a pair (i,7) such that Xx; ts =. or a statement that
no such pairs exists. Your algorithm should run in O(n) time.

Problem 2. (20 points),

Consider a rooted tree. Define the weight of a node x to be the

number of nodes in the subtree rooted at x . Let n be the weight of

the root. (N t=: n is the total number of nodes in the tree.) Consider

an edge between a node v and a child of that node, w . (Call the edge

"good" if 2x (weight of w) < weight of v and "bad" otherwise.

| 21

3 Pre. 17

7 4
1 1

1 ; = bad edge6 2
1

p)

1

= good edge

1 1 1 1

(1) (5 points). Prove that at most one of the edges from a node Vv
to its children is bad.

. (2) (5 points). Prove that the path from any leaf to the root contains

at most log, n good edges.
(3) (10 points). The least common ancestor of a pair of nodes X,y

1s defined to be the node of greatest distance from the root which

1s on both the path from x to the root and the path from y to

the root.

71

ALGORITHMS AND DATA STRUCTURES

Find an algorithm which takes as input two nodes x and y and

finds their least common ancestor in time 0(log n) . Describe your

algorithm in English. In order to do this, your algorithm will have

to have some representation of the tree and/or some pre-computed

information about the tree. These two together are ealled the data

structure for the tree. Specify the exact data structure your

algorithm assumes has been given it about the tree. The data structure

should only use O(n) words of memory.

Hint: (1) above implies that a set of connected bad edges must be a

linear sequence. A sequence of bad edges 1s called a bad path. Let

bad paths and good edges play a role in your data structure and

algorithm.

. Problem3. Sorting by Flipping. (15 points),

Given a sequence that 1s a permutation of the numbers 1 through n ,

a flipconsists of selecting a set of contiguous elements at the left end

of the sequence and reversing their order.

Example: Given 34 6 9 8 2 175, we can flip the first four elements

to get

9 6 LL 3 8 2 1 7 5.

(a) (5 points). Prove that any permutation of length n can be arranged

" 1nto sorted order in at most 2n-2 flips.

(b) (10 points). Prove that, for every n , at least n-1 flips are
necessary to sort in the worst case.

Problem 4. (15 points).

An undirected graph 1s called marked if every edge has either a +

or a =- sign. A marked graph 1s balanced 1f the product of signs around

every cycle is positive (i.e., there are an even number of = signs on

every cycle). Give a linear-time test for balance. Your algorithm can

be specified in English but you must give an argument why the program 1is

correct and why 1t requires only linear time.

72

ARTIFICIAL INTELLIGENCE

Problem 1. (10 points).

| (a) What are the three classes of theorem in the PLANNER language?

Describe them briefly, indicating how they are invoked.

(b) To which class or classes is MYCIN's approach most similar?

| (c) Same question but with respect to HEARSAY-II.

Problem 2. (10 points).

| The following constants, function symbols, and relations can be used

| for encoding facts about chess as statements in predicate calculus. They

will be used for both this problem and Problem 3.

| EMPTY (square) —— there 1s no piece on the square

ON(piece, square) -- the indicated piece is on the indicated square

WHITE (piece) -- the piece is white

BLACK(piece) -- the piece is black

ROW(square, integer) -- the square is in the row indicated

COL(square, integer) -- the square is in the column indicated

ISA(object, set) -- the object is a member of the indicated set

SUBSET(setl, set?) —- setl is a subset of set?

<,<,y,>,>,=, + 5y=,31L23... —- their usual interpretations

SQUARE, PIECE, PAWN, ROOK, KNIGHT, BISHOP, QUEEN, KING,

WK, WQ, WB-1, WB-2, WN-1, WN-2, WR-1, WR-3, Wp-1,

BK, BQ, BB-1, BB-2, BN-1, BN-2, BR-1, BR-2, BP-1,

all with the obvious interpretations.

13

ARTIFICIAL INTELLIGENCE

using this vocabulary, encode the location of the black king in

the following board position as a formula in the predicate calculus.

JERE EENE
gE ENEEEE
ol I | | =| | |
s|L | | Jee] | |
JHERREEEEE
spe |]
JENNER EEE

SHEENEEREEE
1 2 3 4 5 6 7 8

(b) Write down the predicate calculus statement asserting that only one

plece may be on a square at a time and that a pilece may be on only

one square.

(e) Write down the conditions under which a white P may be promoted

to queen.

You may ignore the possibility of king in check.

Problem 3. (10 points).

In his thesis and textbook, Winston describes a program able to learn

concepts from sequences of examples and near misses.

(a) Is 1t possible to teach Winston's program the rule about queening

pawns? If so, present a training sequence and indicate what each

example or near miss teaches and what assumptions are necessary.

If not, why not?

(b) Same question for castling.

7h

ARTIFICIAL INTELLIGENCE

x Problem 4. (10 points).

| The following is the Huffman-Clowes label set for labeling line

drawings (taken from Winston).

| Ll 12 L3 4 LS 16

Fl F2 F3 FL 1)

T1 T2 ii) TL

+ + -

i Al A2 AS

(a) Using this label set, produce a labeling of the following drawing.

j C

n |

B H J D

A E

(b) Suppose Waltz's constraint propagation algorithm were used on the

example (still with the Huffman-Clowes label set) and that new nodes

were considered in the alphabetic order shown. What would be the

) label sets for each of the nodes Mediately before H 1s considered?

How about immediately before I ? (You may assume that segments

) AB, BC, CD, DE , and EA are known to be boundaries.)

75

ARTIFICIAL INTELLIGENCE

Problem 5. (10 points).

The following recursive transition network for noun groups 1s taken

from Winston's book.

eet CN

(a determiner (s) noun OmPREPG

Using the chess domain, produce an example of each of the following,

(you need not restrict yourself to the vocabulary of Problems 2 and 3.)

(a) a noun phrase that exercises all the arcs in the network.

(b) a syntactically legal phrase not accepted by the network.

(c) a syntactically illegal phrase accepted by the network.

(d) a syntactically unambiguous noun phrase that is semantically

ambiguous in the-board position of Problem 2.

(e) a syntactieally ambiguous noun phrase that is semantically unambiguous

in the board position of Problem 2,

Problem 6. (10 points).

(a) What's the difference between the branch and bound search method and

the A* algorithm?

(b) Which of the following methods would be most suitable for trying to

find the combination to a safe: branch and bound, hillelimbing,

depth-first search?

(c) Is an alpha-beta search in all cases more efficient than a full

minimax search? If so, why? If not, show a counterexample.

(d) Suppose a one-armed robot were trying to adjust the contrast and

brightness controls on his TV, Using only hillelimbing, is he

guaranteed to find the optimal picture? Explain very briefly.

Problem 7. (0 points).

What are two major goals of AI research?

76

HARDWARE

Problem 1. (15 points).

Suppose we want a component to be attached to a CPU which will be

used to compute reciprocals. The floating point numbers used by our CPU

are normalized with an octal base. That is, the format looks like:

—
1 bit 5 bits 18 bits

where the mantissa has an octal point to its left, and the value represented

1S

sign , § exponent x mantissa .

(a) (3 points). What range of numbers can be represented if the exponent

1s 0 and the sign 1s positive?

The reciprocal machine takes as input some number (to be determined

later) of the leading bits of the mantissa. It uses these bits as an

address into a ROM. The word stored at that location in the ROM is a

fixed point binary number which 1s within = of the reciprocal of the
input, i.e., it has 6 bits to the right of the binary point.

(b) (8 points). What 1s the minimum number of bits of the mantissa that

must be used so that the output of the ROM is within pC of the
exact reciprocal of the original mantissa?

(c) (h points). How many words are there in the table?

Problem 2. Sequential Circuit Design. (20 points).

Design a > bit serial to parallel converter which includes a generated

parity bit output and a data available output. The parity bit is to be a

one if there are an odd number of ones in the received 5 bits and a zero

1f there are an even number of ones. The data available line should be a

one 1f the parallel output lines hold valid data, otherwise it should be

a Zero.

The inputs to your circuit will be a serial input line, a clock line

which has a clock pulse in the middle of each data bit in the serial input

line, and a reset line which sets up the circuit so that the next > bits

received are the ones that will be converted to parallel.

77

HARDWARE

The outputs are the 5 parallel output lines, one line for the

generated parity bit, and one line for the data available signal.

The circuit should use AND, OR, NOT, and XOR gates as well as"

D flip flops which have the set, reset, clock, and D lines as 1nputs

and the Q and Q outputs available. The set, reset, and clock lines

are all negative edge triggered.

The circuit should be able to run continuously, i.e., do not assume

a manual reset before each 5 bits.

Problem 3.(13 points).

Suppose a CPU has 4 memory modules which are interleaved together in

order to provide fast access for the CPU. Assume that the CPU decodes one

instruction per internal cycle and that the following information 1s true

about 1it:

(1) internal cycle = 100ns

(2) 0.62 instruction memory fetches/instruction

(3) 0.78 data memory fetches/instruction

(4) singe instruction interpretation. Note; each interval in the

following time line represents one internal processor cycle. The

time interval for the memory fetches 1s given below.

lk— I fetch—M€-Decode H€ Address Generate {€D fetch—H{é— Execute —y

(5) Combined interleaved memory has an access time =580 ns; cycle

time = 100 ns. Note : the CPU is pipelined and creates memory

requests by anticipation, therefore it does not wait for memory to

respond before issuing the next request. If the CPU were to wait

for memory to respond to each request it would take 580 ns, but

in pipelined operation words came in every 100 ns from memory.

(a) (3 points). The request rate to memory (maximum) is MAPS.

(Million Accesses per Second.

78

| HARDWARE

(b) (10 points). The peak performance of the CPU is MIPS.

(Million Instructions per Second.) If BC (Branch on Condition)

occurs with frequency 0.32, and no "go-ahead-on-branch" strategy

j 1s used by the address anticipation mechanism, the resultant

CPU performance will be MIPS.

(Please show all work.)

Problem 5. (12 points).

(a) (3 points). Explain the operation of a cache briefly.

(b) (3 points). Explain the advantages and disadvantages between

a hard-wired CPU and a micro-coded CPU.

] (c) (6 points). What are some advantages and disadvantages of the
following logic families.

(1) (2 points). TTL

(2) (2 points). CMOS

i (3) (2 points). NMOS

79

NUMERICAL ANALYSIS

Problem 1. (15 points).

One of the quantities which appears in the error bounds for Gaussian

Elimination is the growth factor. For factoring an nxih matrix

A = 8553 5-1,n » this factor is defined as

max 1a t%)
. 1J

max &..T. 1

i,J J

where a ¥) is the element in the (i,j) ~th location at the k-th step
of the elimination process.

Consider the problem of factoring a tridiagonal matrix of the form

yg by

2 Pp
A - . . *

. Phi
Cc a
n n

Show that the following results hold:

(a) If partial pivoting is not used, GG can be aribtrarily large.

(b) For the special case when A 1s also diagonally dominant, G < 2 ,

independent of n , even 1f partial pivoting 1s not used.

Problem 2. (15 points). N
Consider the following two algorithms for computing > x.

1 JJd =

(1) The usual summation algorithm:

s := 0

for] = 1,2,004,N do

§ = s+x. .
J

80

: NUMERICAL ANALYSIS

| (2) The pairwise summation algorithm: |

Define S(i,1) := Xs for 1 = 1,25. .N

S(i+J) := (+ |22]) + s(|] +13) for 1 < J .
Compute S(L,N) = Z Xs by applying the above definitions. For

j=1

example, with N = 8 the pairwise algorithm computes

+ + + + (x +

| [xg +325) + (x5 +3,)] + [(x5+xg) + (x, +xg)]
Assume that the computer arithmetic is such that

£1(x + X,) = x, (1+ €) + x, (1+ €5)
: with

le; | <u for i=1,2.

(a) Show that if §; = 2 x, is computed using the usual summation
| j=1
3 algorithm, then

| £2(8) = 2 x.(1+8,)
| j=1 J
] with

B51 < Nu + Oo(u~) .

(b) For the special case when N 1s a power of 2 , show that 1f
N

| 5, = 2 Xs is computed using the pairwise algorithm, then
| N

£1(s,) = 2 x.(1+7y .
| (8,) = 5(1+7 5)| J =

with

1751 < u log, N+ Ou”) .

Suppose that Newton's method 1s being used to generate a sequence of

approximations X15%55... to a zero x, of a smooth function f(x) given
| an initial "guess" Xy - C

NUMERICAL ANALYSIS

(a) Show that x, -x = -T(x)/£1 (eg) for x,<g <x or x <g<xx.
Using this relation, obtain an estimate of 2p =X | in terms of
x 1 = %,| . Is the quantity |X 0 =X, | usually a good error
estimator to determine the termination of a Newton iteration?

(b) Suppose that we obtain the following behavior of the differences

x07 = %, | and that the estimate established in (a) above is valid.
Set

r, = ENTER NVA x, | ;

n CEE r,
0 .108 -
1 .075 .692
2 .052 .690

4 . 024 .675
5 .016 671
0 011 . 669
7 007 667
8 . 005 667

What 1s the apparent order of convergence? What 1s the apparent rate

of convergence? Recall that if 1% 0q = Xp | / |x - x, |" < Cc. then C is
called the rate of convergence (or asymptotic error constant) and p 1s

the order of convergence. Give a plausible explanation of this behavior

assuming that f 1s infinitely differentiable. How might you increase

the order and/or rate of convergence while still using Newton iteration?

Problem 4. (15 points).

Let £f: R = R be a uniformly Lipschitz continuous function with

Lipschitz constant K (i.e. . |f(x)-£(y)]|< K|x-v| forall x and vy).

Define x = £(x, 1) for n > 0 with Xo given as data. Suppose we

compute y, = f(y, 1) te, for n > 0 with Yo given. ¢, represents
an error introduced at the n-th step and Sole represents an intial error
in measurement, etc. Show that

_ K-1

1%, In| = Kx, To * ve <5 | B=
if K4 1.

82

SY STEMS

| Problem 1. Computer Language Syntax. (10 points).

In some languages (FORTRAN, PL/1l) exponentiation (t+ or **) is right

| associative. A unary minus has lower precedence (binds less tightly) than

exponentiation. Other operations {+-, *J /,), (} bind as expected.

(a) (3 points). Give an example of the effect of right association with

an example.

| (b) (7 points). Write 1n BNF the syntax rules for an expression EXPR for
all the operators mentioned above beginning with the symbol (identifier) .

Problem 2. Paging. (15 points).

(a)(5 points). Describe the difference between a demand paging algorithm

(DPA) that selects the least recently used page 1n the system for

removal and the working set algorithm (WSA).

(b) (5 points). What 1s needed to make DPA work well in a multi-user

i system?

(c) (5 points). What 1s needed to make WSA work well in a multi-user

i system?

Problem 3. Cooperating Processes. (15 points).

1 Monitors, as defined by Brinch-Hansen are available in the computing

system you are using.

Use such monitors to control message buffering among independently scheduled

processes. Sketch the using programs, and write the code of the monitor

prototype itself in sufficient detail to allow implementation without ambiguity.

Problem 4. Computer Languages. (10 points).

A criterion in the design of the PASCAL language was the desire to

avold structures that cannot be fully compiled prior to execution.

(a) (5 points). Why is this a desirable goal?

(b) (5 points). What are some of the liabilities of this design?

83

SYSTEMS

Problem 5. Language System. (10 points).

PASCAL language Systems store NEW records into an area called the

heap. List some (3) alternatives for management of the heap and mention

succinctly problems to be considered with the listed alternatives.

84

THEORY OF COMPUTATION

Problem 1. Logic. (12 points).)

Consider the following proof system for implicational propositional

logic.

AXIOM SCHEMES: t POP

F ((PoP)>Q)DQ

F((Po>Q oR) > (Po (go R))
INFERENCE RULE: + P

F PDQ

Q (MODUS PONENS)

(a) (4 points). Find a truth function interpretation of " oo " for which

the above axioms and rules are sound, but which differs from the

standard truth-function interpretation of "2",

(b) (4 points). Exhibit a formula with "=" as its only connective

which 1s valid for the standard interpretation of "2", but not for

the interpretation given as the answer to part (a).

(c) (4 points). Show that the formula given as the answer to part (b)

1s not provable in the above proof system (thereby showing the

incompleteness of the system for implicational propositional logic).

Be precise!

Problem 2. Automata and Languages. (12 points).

Is the set of decimal representations of positive integers (read from

left to right) divisible

(a) by 2 [2 points]

(b) by 3 [3 points]

(e) by 7 [7 points]

a regular set? Give arguments (but not necessarily machines or grammars)

for your answers.

|

THEORY OF COMPUTATION

Problem >. Program Verification. (12 points).

Consider the following flow-chart program:

1 «0; Jel; al; be~1

| A

if i = OAJ = O then HALT

if |i] > n then a «~ -a

if |J| >m thendb ~ -b
1+1+a

Je=J+tbh

PRINT (1); PRINT (7)

Supply an inductive assertion for point A which 1s sufficient to

demonstrate that the program does not terminate (regardless of the values

of n,m) -- that is, an inductive assertion which implies that

i£0vyi#£o0.

Problem 4. NP-completeness. (12 points).

Let RysRyseees Ry be a list of rectangles with positive integer length
sides. Show that the following problem can be solved in non-deterministic

polynomial time.

"Decide whether rectangles Ry eee Ro can be placed inside Ry in
such a way that

(1) No two Ri; Rao , 143, 1,3 >0 overlap, and
(2) The sides of the R; are parallel to the sides of Ry."

(The rectangles are given by pairs of integers (Ly Jy ’ ip i? pee (dy Jy) ’
in binary notation, wnere i y Jy are the lengths of the sides of Ry 2)

86

THEORY OF COMPUTATION

| Problem J. Decidability. (12 points).

(a) (6 points). Show that there exists a function f on the natural

numbers which grows faster than any recursive function. That is, we

want a function f: N = N such that for all recursive g: N = N ,

dny(m > n) (£f(m) > g(m)) .

(b) (6 points). Show that there exists an infinite set of natural numbers

| which has no infinite recursive subsets. (You may use the result of

: part (a) whether or not you were able to prove it.)

87

SOLUTIONS to Algorithms and Data Structures

: Problem 1.

1-1;

J += nj

while x;+y, £5 and i <n and § > 1 do
if Xi > S then J « J-1

else 1 «itl;

if XH := S then print (i,j);
else print ("no such i and j")

This works because 1f there 1s a pair (13030) such that X- x. = S
0) 0

then the variables i and j 1n the above algorithm have the

property that i < iy and j > Jo . This is easily proved by induction.
Since either i increases or J decreases at each iteration we know

that within 2n iterations 1 = 1, and J = Jo .

If there is no such pair (15935) , then the test X; +X, £5 will
always be satisfied, and the loop will terminate when i =n+l or j = 0 ,

and the correct statement will be printed. This also happens 1n at most

2n 1lterations.

Problem 2.

(1) Suppose two children vq and V, had bad edges to their
parentV . Because these edges are bad, we know that

2x (weight of Vi) > weight of V

2x (weight of Vy) > weight of V .

Adding these equations we get

weight of vy + weight of Vs > weight of V .

But this 1s impossible since the weight of a node 1s at least the sum of

the weight of its children.

(2) Consider a traversal up the tree from any leaf to the root. Each

time we traverse a good edge the weight of the node we are at at least

doubles. When we traverse a bad edge the weight cannot decrease. Since

the leaves have unit weight, the number of time the weight can double is

at most log, n . Therefore there are at most log, n good edges along
any path.

83

: SOLUTIONS to Algorithms and Data Structures

| (3) We distinguish two types of nodes. Type 1: those that are at
the root of a bad path (or not on a bad path at all), and Type 2: those

B that are inside a bad path. Aeach type 1 node we simple store the fact
| that it is a type 1 node, and a pointer to its parent. At each type 2 node
| we store (1) a pointer to the root of the bad path and (2) a level

number which tells the distance from the node to the root of the bad path.

The algorithm traverses to the root from node x and node y |

| following the pointers described in the previous paragraph. The sequence
of nodes traversed are stored in two stacks. At the end, the top of

; both stacks contain the root of the tree. We now pop both stacks in

| unison until they show a different top element. If either of these
elements are type 1, then select the parent of that one. If both of

| them are type 2, then select the one with a lower level number. The

| node selected 1s the least common ancestor of x and y . The running
; time is O(log n) since there are only log, n good edges along any
| path to the root.

Problem 3.

(a) We arrange them in correct order from right to left, first

putting n in place, then n-1 .. then 2 . Element 1 will then

automatically be in place. To getj in place, we first flip it to

the left, then flip it to 1ts proper position. The total number of

flips needed is thus 2(n-1) .

(b) In the permutation 12 3 . ..n the number of adjacent elements

that differ by one 1s n-1 . In the permutation

| 2 468... (= -3%3) 135 oo(a-37%) there are no adjacent
elements differing by one for n >L4. Each flip can change the

adjacency at only one place, therefore each flip can change the number

of adjacent elements differing by one by at most one, and n-1 flips

} are needed to go between the two permutations given above. Q.E.D.

| a9

SOLUTIONS to Algorithms and Data Structures

Problem 4.

Choose a set of edges which are a spanning tree of the graph. Label

the vertices of the spanning tree with 1's and 0's such that the root

is labelled 0 , and opposite ends of a spanning edge are labelled the

same if the edge is + and different if the edge is - . This can be

done 1n linear time with depth-first or breadth-first search. Now check,

that each edge not in the spanning tree has the correct sign property,

i.e., that opposite ends of a + edge are labeled the same and opposite

ends of a - edge are labeled differently. The graph 1s balanced iff

each edge has the correct sign property.

Proof: Consider a balanced graph. Any edge not in the spanning

tree of the graph must have the correct sign property since the cycle

formed by the edge and the spanning tree has an even number of — edges.

To show the converse, note that in a graph with the correct sign property

each cycle must have an even number of transitions from 1 to 0 or

0 to 1 because it starts and ends with the same label. Each such

transition corresponds to a - edge, thus the number of - edges

around any cycle must be even. Q.E.D.

90

SOLUTIONS to Artificial Intelligence

Problem 1.

(a) The three types of PLANNER theorems are consequent theorems

(THCONSE or IF-NEEDED) and two types of antecedent theorems (THANTE or

IF-ADDED and THERASING or IF-REMOVED). All are invoked by pattern

matching. An IF-NEEDED method 1s invoked in backward chaining when

its pattern matches a subgoal. An IF-ADDED method 1s invoked whenever

its pattern matches an assertion placed in the data base. An IF-REMOVED

method 1s invoked whenever its pattern matches an assertion removed from

the data base. |

(b) MYCIN's backward chaining most closely resembles IF-NEEDED

methods.

(c) HEARSAY-IT's knowledge sources most closely resemble IF-ADDED

methods (and possibly IF-NEEDED and IF-REMOVED).

Problem 2.

A variety of formulations are acceptable due to axioms about the

relations involved. The following are just samples.

(a) 3x ON(BK,x) a ROW(x,6) a COL(x,5)

(b) Yo¥qfs ON(p,s) A ON(gs) = p = gq A VOVsYt ON(p;s) A ON(DP,t)= s = t

(c) P e PAWN

A WHITE (P)

A 3s ON(P,s) A ROW(s,T)

A EsFcdt ON(P,s) A COL(s,c) A ROW(%,8) A COL(t,c) A EMPTY (t)

Problem 3.

(a) WP-1 on A7

example WP-1 on BY teaches column unimportant

example WP—-2 on A7 teaches P = WP-1 unnecessary

near miss WB-1 on A7 teaches P e¢ PAWN necessary

near miss BP-1 on A7 teaches y HITE (P) necessary

near miss WP-1 on B6 teaches ROW7 necessary

near miss WP-1 on A7

BR-1 on A8 teaches EMPTY destination necessary

(b) No, because there's no way to encode the constraint that the king and

rook must not have moved. Another example would be the en passant

91

SOLUTIONS to Artificial Intelligence

Problem 4.

(a)

| +

(b) before H before I

A Ll Ll

B Al Al

C Ll Ll

D Al Al

E Ll Il

F A2, A3 A3

G A2, AS AS
H Fl

Problem 5.

(a) The bishop beside the white pawn.

(b) The king pawn (noun modifiers not handled).

(c) Those pawn (number mismatch).

(d) The pawn (which pawn?)

(e) The pawn on the square next to the king (attachment of the second

prepositional phrase).

Problem 6.

(a) The Branch and Bound method does not use heuristic information.

(b) Depth-first search is the only method applicable.

(0) 0-3 search is not always more efficient than exhaustive minimax,

though it's never worse. Consider the following example.

92

SOLUTIONS to Artificial Intelligence

| (d) No, the robot 1s not guaranteed to get the optimal result, since

he may arrive at a ridge or foothill in picture quality space from

which any adjustment degrades the picture.

Problem 7.

Cognitive Simulation and Machine Intelligence.

93

SOLUTIONS to Hardware

| Problem 1.

(a) This question asks for the range of values that the mantissa can

take. If all the bits of the mantissa are O then0 1s represented.

If there 1s at least one 1 1n the mantissa then the range must be

1/8 < range <1 .

(b)

1

b-27" nN 1ces dN Xx

L 7 i
b poh b

We want to find out how close b and b-2" have to be so that

1/b and 1/(b-2"") are within pO of each other,
The number of bits that b and p-o 1 agree 15 the number of

bits needed from the mantissa in order to lookup the reciprocal to an

accuracy of 2°

I 56
bpp”

-b+2 0+ b < 201° - 27)
as

ignore this term, too small

The most critical value ofb is 1/8, since that is where the reciprocal

function has its greatest effect.

7B < 279272)

yh < pTlE

or that n > 12 so use n =13 bits.

(c) There are od words 1n the table since one must use 13 bits

to lookup the answer.

kL

| SOLUTIONS to Hardware

Problem 2.

| RESET .

Ay
-) (- [@® @ ENI——

RESET RESET RESET RESET RESET RESET

Q

4H » D Q D Q D Q D Q D Q =
| set set set set set set

{CK ACK qck 2 | rq CK J | CK 4 CK ¥

CLOCK : |

— |p | I
qCK 4 CK 1CK 1 CK 1 CK

Q Q Q Q QE
SERTAL ,
INPUT D D D D D

em

| -—PARITY BIT

5 parallel output lines

DATA

AVAILABLE

LINE

The bottom row of D-FF's shift in the serial data, one bit for every

clock pulse received. The top row of D-FF's act as a 5 bit circular shift

register with one "1" cycling around along with 4 "0 "'s. When the "1"

reaches the last D-FF 5 clock pulses have gone by so that the bottom D-FF's

must have shifted in 5 data bits.

The first D-FF on the top row is set to a "1" by RESET (all the rest

of the top row is set to " O" by RESET) and it "injects" that "1" into the

circular shift register on the next clock pulse.

95

SOLUTIONS to Hardware

Problem 3.

(a) The request rate to memory 1s

(0.62 instr memory fetch/instr + 0.78 data memory fetches/instr)

* 10 million instr/second (CPU decodes 1 instr per internal cycle

= 100 ns))

7 6
+ 0.78) x 10' = 1hx 10” fetches/sec = 14 MAPS

(b) Peak performance 1s 100 ns/instruction = 10 y 10° instr/sec
= 10 MIPS

Address

f IF Decode , Generate DF | Sxecure ro; —- TT
580n 100ns | 200ns 580ns 200ns

i
: ro
Cm 880ns m— |

' |

normally the next but on a BC the BC

pipelined instruction instruction must wait
should be decoded here until the condition codes

are set by the previous
instruction (i.e., walt

until execution 1s done).

;. The BC instruction causes a loss of 880ns compared to normal

pipelining operation.

The "average" instruction time 1s

0.68 x 100ns (normal) + 0.32 x 980ns (BC instr)

~ 382ns/instr ~ 2.6 MIPS

Problem 4.

(a) The cache 1s a high speed memory between the CPU and main memory. It

uses some algorithm to try to contain words of memory which it anticipates

the CPU will ask for, thereby providing faster access to those words

than main memory can achieve.

(b) A hard-wired CPU 1s generally faster but it 1s more complex to build and,

once built, its operation cannot changed.

A micro-coded CPU is slower, 1s generally simpler to design and build

and has the flexibility of changing its instruction set by changing

the micro-code 1t contains.

36

SOLUTIONS to Hardware

(c) TTL -- high power, fairly fast logic. Is the standard for SSI

and MSI chips.

CMOS -- very low power, rather slow, with very high noise immunity.

NMOS -- low power, moderately fast. Mostly used in LSI chips.

37

SOLUTIONS to Numerical Analysis

Problem 1.

(a) Consider the 2x2 example

El

A = with 0 < e << 1

1 0

with no partial pivoting we get

€ 1

Ald) =
0 -1/e

The growth factor is 1l/e which can be arbitrarily large. This example

can be easily extended to the nxn case.

(b) With no pivoting, after the k-th step of the elimination, A has

become

a by

a bp |

(x) = 3
A - B+ Cl

Crip Pro Peo

(a
n nn

Let O = max{ |a, |5 |b, |» |e; |] . Applying the next step of the elimination
gives :

Dito = Opto o
_ _Kf2

tn = Fke2 TC k+l
“kt+1

Clearly 15) is] <a . Suppose inductively that

(1.1) Crap] < Ey :
Then

(1.2) EOESEo PS LP I LOWE

98

| SOLUTIONS to Numerical Analysis

Hence Ee < 20 and so G< 2 , provided we can show that (1.1)
| eontinues to hold, i1.e., that

Cys | < Ey *

From the diagonal dominance of A , we know that

| Cis | + Pr | < EN .
SO

| Cx+3 |< Gro | - LI |

< lags from (1.2)

Problem 2.

n n
(a) Let 8 = 2, x. and suppose that

qdJ =

f(s. 7) = 2 x. (1+) with p,| < (N-)u + 0(u) .

N N-1
fr = (1+a, + + +Then £(8]) 25 as) (1 €;) x (1 <5) with Jes] < u for

i=1,2. So

N N-1

£2(8;) = = xy (1+ +e) +ae) + x (1+ es) .
Let

Then N
N

fis) = I x;(1+ 8)
j=1

and

BS lay] + leg) + loge
2 2

< (N-L)u+ u + ou”)= Nu + o(u™)

for J = 1,2,...,0-1 and

] By | <u < Nu
which completes the proof by induction.

99

SOLUTIONS to Numerical Analysis

k 2" pds 2 |
(b) Let S, = 2X. , 5S, = UX I and suppose that

| j=1 9 j=1 2°]

k 2
£2(8,) = 2 x.(1+a.)

j=1 9 J

~k 2"
£e(85) = = x, (+a,)

J=1 2+] 2 +]

+=

with |; | < ku + 0(u°) for 1 = 1,2,...,28 + . Then
» > i x

£2(8,) = 2 ox. (L+a)) | (1+ €;) + 2 Xx x (L+ .) | (1+ €,)
j=1 9 J j=1 2°] 0% 5

with {; kK u . Let
k

k k+1
-— o .) = +1 s 00 2 ,7 5 a, + €, + aes for J 2 ’ P

Then Je
+

£1(s; 1 = 2 x. (1+7.)
j=1 9 J

and

Pl <lm + ous 0(u°)
= (k+l)u + 0(u°) :

Problem 3.

a) It follows from the mean value theorem that

—_— — 1

xX, - X = I (8)
* n

for E, € [min XxX, x, » max (XX)] . Since f(x) = 0 we have

- t

(3.1) Xe = X= = f(x) /f (€,)

if £'(g,) £4 0 . Using Newton's method the (n+l) -st iterate is given by

Xopp = X= f(x,)/f! (x)

and consequently

100

SOLUTIONS to Numerical Analysis

| (3 .2) Ko- x = lex)/e (x) |

| Since § is between x, and x, and x ox, , we can expect £1 (x)

to be a good approximation of £'(g,) . From (3.1) and (3.2) we obtain

| Xe =X | = [f(x)/f" (g,) | A 1£(x,)/f" (x) | = 1% 41 = %, | .

Thus x 1% | is usually a good error estimate to use as a termination
| criteria for a Newton iteration.

(b) Utilizing the estimate of (a) above and the table of values

| of r, we see that p = 1 and e¢& 2/3 . Since Newton's method converges
linearly to multiple roots with asymptotic error constant (AEC) (m-1)/m

for roots of multiplicity m , 1t 1s reasonable to conjecture that our

iterates are converging to aroot of multiplicity 3 ((3-1)/3 = 2/3).

| If this is the case and we replace f(x) = 0 by £'(x) = 0 we would

| improve the AEC, it would become 1/2, but the order p will still be
| - one. Using f"(x) = 0 the root becames simple and the convergence

: quadratic, p = 2 .

| Problem 4.
We have

_ +

- ££) ¥ €n-1) “n

| } (n) + (n-1) +, * += £7) + FT (e)) t.%a + fle|) +e

wnere £8) _ fofe. . . of (n occurrences of f) and
_ p(n)

X = £(x,) -
Consequently,

FENE)
Pa -val S10) Tw) | TIE ey

and using Lipschitz continuity
n-1

< K |2n - 75] + max |e.| 2 Kk= 0 YO : d's
J J=0

K'-1

== kK 1x4 = 75 + nex 1 HoT .
101

SOLUTI ONS SYSTEMS

Computer Lanquage Syntax

23 2,3
la. [4**2**3 = 4 = 65536 rather than (47)° = 4096]

Ib. <expr> := <expr> + <term> |<expr> - <term>| <term>

term ::= <term> * <factor> [<term>| <factor> |[<factor>

<factor> ::= <unsfact>|- <unsfact>; don't recurse here!

<unsfact> ::= <base> + <exp>| <base>

<base> ::= (<expr>) | <identifie:

<exp> ::= <factor>; or less fancy:

<exp> ::= <unsfact>

Paging

2a. DPA selects pages fromthe entire real space for removal, WSA manages pages
for 1ndividual user spaces.

2b. Control over total page demand to assure that the residence tine of a page
is sufficient to allow its use, relative to its acquisition cost.

2c. Good estimates of WS's and control over number of users to keep aggregate
memory demand for WS's within real bounds. WS is determined by a tine
wl ndow

Cooperating Processes

3. User ui : FOR EVER

BEGIN

uk = AWAIT(ui, ness);

process;

SEND (ui, uj, ness)
END

Bufferhandler : MON TOR

DECLARE bufferspace, source list, dest list, bufferpointers, state;
PROCESS SEND (ul,u2,m};

bp := acquirebuffer; if bp = null {put ul to sleep; exit);
complete:send sourcelist (bp) := ul; destlist (bp) := u2;

bufferspace (bp) := m
Wakeup (42): wakeup waiting u processes;
Return

END SEND:

PROCESS AWAIT (u,m)
Op := locate buffer-for (u); 1f none {put u to sleep; exit};
m := bufferspace (op);
dest := sourcelist (op);
wasbusy := release-space (op); + IF wasbusy conplete;
return (dest)
end AWAIT;

102

Solutions Syst ens

Cooperating Processes (continued)

I NTERNAL PROCESS ACQUI REBUFFER,;

[f full Estate := busy, return (null)},
else find bp;
return (bp)
END ACQUIRE- BUFFER ;

I NTERNAL PROCESS RELEASESPACE (p)

Mirk p free;

state := not busy;
return (pstate)

END RELEASE SPACE

Initialize: Set bufferpointers, state

END buffer handler .

Computer Lanquages

4a. Little support code at run-time 1s required, and execution can be
more efficient. The former, 1in-turn, reduces machine size requirenents
and inproves conpiler consistency and portability.

4b. Paraneters are inflexible, strings are primtive, arrays cannot be
adjusted, file access 1s limted, garbage is not being collected.

Lanquage System

J i. Heap just grows with every NEW statenent.

Problem can run out of space, unsuitable for major systens.

ii. Heap 1s managed as stack, a DISPOSE function allows popping of the stack.

Problem User has to understand and use the mechanism correctly, can
loose records he 1s still using.

i1i.. Records are linked back to all of their references, dispose checks

all or selected records for safe renoval. Heap space contains a free
list or 1s conpressed as needed.

Problem complex mechanism difficulty in releasing unused circular
ring structures.

iv. (Garbage Collection 1s applied to the heap.
Problem Pointers and record boundaries have to be recognizable,
imposes constraints on code generation and requires extra space. The
lack of a single structure root 1n PASCAL records mmkes circular

structures hard to collect. Conpression is very difficult.

103

SOLUTIONS to Theory of Computation

Problem 1.

(a) | T F (i.e., the standard interpretation of" =").
T T F

F ET

(b) P © (P DP).

(c) Since the axioms and rules are sound for the nonstandard interpretation

for " o", it follows by induction on the length of proofs that every

formula provable 1n the given system 1s valid for the nonstandard

interpretation. Po (PoP) is not valid for the nonstandard

interpretation (take P = F)s and therefore is not -provable,

Problem 2.

The set Se of decimal representations of positive integers divisible

by any positive integer k 1s regular. Proof: Sy 1s recognized by the

following automaton, Ry . Ry has k states Ayr eeer eq There 1s a

transition fram state gq, to state 53 labeled n iff ((i*¥10)+n) mod k = J .
qy 1s the initial state, and the only accepting state. (At each stage,
R,, 1s in state 1 1ff the part of the number read so far is equal

modulo k to i .)

Problem 3.

"i+j is odd, and ja; = 1, and |p| = 1."

Problem Lk.

The problem is in NP, since, if Ry Ry can be placed into Ry

without overlap, then the Rs can be placed in Ry without overlap in such

a way that the coordinates of the lower left hand corners of all of the Rs
are integers. This 1s shown as follows. Suppose that there 1s a legal

placement of the R. in Ry . Consider the leftmost block whose horizontal
coordinate is not an integer. This block can be moved over, without overlap,

to a position with integer horizontal coordinate. Repeat until all blocks

have integer horizontal coordinates. Do the same for vertical coordinates.

104

SOLUTIONS to Theory of Computation

To determine whether there 1s a legal placement of the R; in Ro in
nondeterministic polynomial time, guess orientations. and integer coordinates

for the blocks. Overlap can then be checked in polynomial time.

Problem 5.

(a) Let 8)? Byres be an enumeration of the recursive functions.
Take

f(n) = max (g.(n)) + 1
i

1<n

Then, for each n, Y¥(m > n) (£(m) > g,(m)) :

(b) S = {n | @(£(i) = n)} has the desired property. Suppose R C S

is recursive and infinite. Define g(n) = the n-th member of R when R

is listed in increasing order. Then g(n) 1s a recursive function, but, |

g grows more rapidly than f . Contradiction.

105

Winter 19880 - Comprehensive Programming Proj ect

Display of Mathematical Expressions

The goal of this problem 1s a program that takes as argument
a list structure representation of a mathematical expression in prefix
form and prints it in standard two-dimensional format. For example,
the expression

(plus (expt x 2) (times 2 x y) (expt y 2))

should be displayed as

2 2

X +2XY+Y

The problem is made more difficult by the possibilitythat the
expression cannot fit on a single line. It is okay to “break” an expression
across lines before sum and product operators, provided those operators are
not embedded within exponential expressions or quotients. Consider, for
example, the following expression.

2 3 4

OMEGA TIME MEGA TIME MEGA TIME OMEGA TIME
l +— +—0 --___ "+—

2 6 24 12¢

5 6 T 8

MEGA TIME CNEGA TIME (MEGA TIME CNEGA TIME
EAE IE ——_— | RE |SEER

128 51348 44328 362886:

Obviously, such expressions can be broken at a variety of places. Your
program should choose a display format that minimizes the total number of
breaks subject to the constraint that at least half of every line 1s
utilized (whenever the expression 1s more than a half line long).

In your implementation you may use Interlisp, Maclisp, &1lgol Ww,
Pascal, or Sail. Your efforts will be graded according to the criteria
ot correctness, clarity, efticiency, and documentation.

Inputting Expressions

Expressions are built from integers and alphanumeric identifiers
that begin with alphabetic characters. You need consider only four
operators, viz. addition (plus), multiplication (times), division (quot),
ana exponentiation (expt) .

Expressions should be represented in LISP-like list format. For
example, the tirst expression above would have the following box and
pointer structure.

106

Re ; -— re. . * e—— 1 -,

FC — _ SE —— S—

1 -_

Write functions ADD, MUL, DIV, and PCW that take expressions
as arguments and produce the corresponding list structure. For example,
to create the above expression, one would write the following (in LISP) .

(ADD (POW 'X 2) (MUL 2 'X YY) (PON Y 2))

While DIV and POW are inherently binary operators, you may wish
to write ADD and MUL as n-ary functions. In some languages, it 1s not
possible to define subroutines with an arbitrary number of arguments. If you
select one of these languages, you may write several series of functions
(ADD2, MUL2, ADD3, MUL3, ...) that take the number of arguments indicated
in the name. For example, the PASCAL version of the above expression
would be as follows.

| ADD?3 (POW ("X","2") , MUL3 ("2", “X”, "Yy") POW ("Y","2"))

; | Display Format

Displaying expressions tastefully 1s an art with a large number
of conventions. For the purposes of this problem, your program need
use only the following rules.

1. Sums should be displayed with an infix "+ ". (That’s space, plus,
space.)

2. Products should be displayed with an infix space or "*".

3. Quotients should be displayed as numerator over denominator, with
the quotient bar made of dashes occupying the line between the two.

| The numerator and denominator should be centered within the quotient.

4. Exponential expressions should be displayed with raised exponents,
in which the lowest line of the exponent 1s one above the highest
line of the base (with the exception noted below) .

5. Parentheses should be inserted where necessary to avoid ambiguity, e .g .

2 X

A A 2 2 2 X XX

} (=) A+B (A + B) X (X)
B B

: Note that after a closing parentheses, an exponent is lowered to the
line above the parentheses. Obviously, these are not the only cases
of ambiguity.

107

Breaking Lines

The constraints on breaking expressions across lines are as given
in the introduction. One good approach 1s to put as much on a line as
will fit, then go on to the next line. Unfortunately, this will sometimes
fail to satisfy the half-line requirement, as in the following example.

22 3 3 4 4 55 6 6
CMEGA T CMEGAT CMEGAT MEGA T GMEGA T MEGA T
- Er — CE I ER

R R R R R R

22

CMEGA T + (MEGA T

+ — ———————————————————————————————————

2

R

22 33 4 4 55
MEGAT + MEGA T + (MEGAT + OMEGAT + OMEGAT

tt ————————————————————

R

In such situations it 1s necessary to try a different set of breakpoints.
Just taking a tragment trom the previous line will sometimes work, but the
ettect may propagate. In general, a combinatorial search 1s required. In
implementing an efficient search, you may find dynamic programming techniques
helpful.

There are some expressions for which no display can be generated that
satisfies the given constraints. If the half line constraint cannot be
satisfied, your program should choose a set of breakpoints that minimizes
the total number of lines. If the input contains a fragment that does not
tit on a single line and cannot be broken (e.g. a quotient), you may have your
program do whatever you wish (e.g. print an error message, write quotients
in infix form (A/B) with a breakpoint at the slash, etc.).

Hints

0 You should structure your program into three distinct parts:

1. a “dimensioning” subroutine, which determines the size of
subexpressions and makes a list of possible breakpoints

2. a program that decides which breakpoints to use

3. a program that prints the expression on the terminal

The graders will 1 ook for these three subparts in examining your work.

o This 1s ¢ “data structure intensive” project. Choose good data
structures and document their significance carefully.

o To facilitate testing your program, use a global parameter called
LINELENGTH whose value determines how wide an expression may be.

108

Test Data

Test data for your program will be given in two sets. The
tirst set 1s attached here. The second set will be available after

9:29 a.m. on Monday, January 21, in Jacks 206. Turn in your source
program, associated documentation, and the output from all the test data.

Questions

If you have questions about the problem, you may contact

Rod Brooks RODESAIL 497-1604 856-0979

or

Mike Genesereth GENESERETH@SUMEX 497-3728

109

Winter 198¢- Comprehensive Programming Project

Test Data

1. (SETQ LINELENGTH 40.)
(DISPLAY (DIV (POW (ADD (POW 'X 2) 1) 2) 2))

2 2

(X + 1)

2

2. (DISPLAY (POW 'X (POW 'X 'X)))

x |

X

X

3. (DISPLAY (POW (POW 'X 'X) 'X))

| | X X
(X)-

4. (DISPLAY (POW E (DIV 'OMEGA 2)))

MEGA

2

E

5. (DISPLAY (ADD (PCW 'BASE'EX1)
(POW 'BASE 'EX2)
(POW 'BASE 'EX3)
(POW BASE 'EX4)
(POW 'BASE 'EXPONENT100)
(POW 'BASE 'EXPONENT 208)
(POW 'BASE "EXPONENT 266)
(POW BIGBASESYMBCL 'SUPERBIGEXPUNENT)))

 EXI EX EX
' BASE + BASE + BASE

EX4 EXPONENTI100

| + BASE + BASE

EXPCNENT 200 EXPONENT 20¢ |
i + BASE + BASE

GUPERBIGEXPONENT

| + SUPERBIGBASESYMBOL

110

Winter 1988- Comprehensive Programming Project

Test Data IL

Ll. (SEQ LLNELENGTH 49.)

(DISPLAY (POW (DIV (ADD (POW 'X 4) (POW 'X 3) (PUW 'X 2))
2

2))

4 3 2

X + X +X 2

(————)

2

2. (DISPLAY (DIV 'A (DIV 'B 'C)))

} |
B |

(=) |C

3. (DISPLAY (ACD 'A (ADD 'B 'C) 'D))

| A+ (B+C) +D |
4. (DISPLAY (ADD (POW 'SUPERBIGBASESYMBOL 'SUPERBIGEXPONENT)

(POW 'BASE 'EXPONENT 304d)
(POW 'BASE 'EXPONENT2029)
(PCW 'BASE 'EXPCNENT 19)
(POW 'BASE 'EX4)
(POW 'BASE 'EXJ)
(POW 'BASE 'EX2)
(POW 'BASE 'EX1)))

SUPERBIGEXPONENT

SUPERBIGBASESYMBOL

EXPONENT 300 EXPONENT200
+ BASE + BASE

EXPONENTI100 EX4
+ BASE + BASE

EXJ3 EX2 EX.
+ BASE + BASE + BASE

| 111

5. (DISPLAY (ADD (POW 'BASE 'EXPONENT1)
(POW 'BASE 'EXP1)
(POW 'BASE 'EXP2)
(POW 'BASE 'EXP3)

(PGW BASESYMBOL EXPONENTSYMBOL)
(POW 'BASE 'El) (POW 'BASE 'E2) (POW 'BASE 'E3)
(POW 'BASE 'EXPONENT2)
(POW 'SUPERBIGBASESYMBOL 'SUPERBIGEXPGNENT)))

EXPONENTI EXP1
BASE + BASE

|

EXP2 EXP3 |
+ BASE + BASE |

|
1

EXPONENTSYMBOL El
+ BASESYMBOL + BASE

E2 E3 EXPONENT?

+ BASE + BASE + BASE

SUPERBIGEXPONENT
+ SUPERBIGBASESYMBOL

6. (DISPLAY (DIV (ADD (POW 'E (TIMES 2 'QMEGA))
(POW 'E (TIMES 3 'OMEGA))
(POW 'E (TIMES 4 'Q4EGA))
(POW 'E (TIMES 5 'OMEGA)))

2))

| ERRCR - Expression too wide

7. (DISPLAY (PCW (ADD (PCW 'E (TIMES 2 'QYEGA))
(POW 'E (TIMES 3 'OMEGA))
(POW 'E (TIMES 4 'CMEGA))
(POW 'E (TIMES 5 'OMEGA)))

2))

: ERRCR - Expression too wide |
8. (DISPLAY (POW 'E

(ADD (POW 'E (TIMES 2 'OMEGA))
(POW 'E (TMES 2 'CMEGA))
(POW 'E (TIMES 4 'CMECA))
(POW 'E (TIMES 5 "QMEGA)))))

| ERROR- Expression too wide

112

| Spring 1979/80 Comprehensive Examination

Analysis of Algorithms

Problem 1. [18 points]

| Consider a set of n disjoint line segments lying parallel to the

x-axis. When one stands at (0,-=) and looks toward the segments; some

of them may not be seen. For example, segments 1 and I, cannot be
seen 1n Figure 1 (11 hides behind LULL)

N I Ll

I, — 2s
end) 4

I|

I

Xx

{|

.
e

|

Vy

/B> observer at (0, -»)

(a) [6] Give an algorithm that, for any input set of segments

S . {(ays045¥,) ’ (2505575) $e wd (a sb 3¥.)] » canputes the subset

S' € S of those segments that cannot be seen. Note the triplet

(2:50.37) represents the line segment connecting the points

(b) [6] Give an algorithm that runs in time O(n log n) .

(¢) [6] Suppose the segments do not necessarily lie parallel to the x-axis,

Give an O(n log n) -time algorithm for computing the hidden line segments.

(See Figure 2.)

y

27
IIN
— Ih

X

Figure?

113

Analysis of Algorithms Magic Number

Problem 2. [18 points] |

Let A = 8 85.02 and B = Dy Dye. be two binary strings
of length n . A composition of A and B is a string of length 2n

obtained by merging A, B in any manner. For example 011001 is
a composition of O10 and 101 (the underlined part is 010 and the

rest is 101).

(a) [12] Give a polynomial-time algorithm that determines if C 1s a

composition of A and B , given the input strings A, B and C .

(vb) [6] Make your algorithm run in time 0. (rf)

Problem 3. [24 points]

One of the more bizarre proposed solutions to last fall's 'bicycle

crisis" was to have a row of n "sheds", numbered 1,2,...,n , each of

which could hold one bicycle. Sheds have closed doors, and you cannot

see 1nto one without (temporarily) opening 1ts door. These would be shared

by m > n people, no more than n of which would be at work at one time.

When arriving at work on your bicycle, you would open shed doors according

to some agreed-upon strategy, eventually finding an empty shed (not necessarily

the first empty one encountered), placing your-bicycle there, and closing

the door.

On leaving work, you would open doors until you found your bicycle

(which need not be in the shed you left it in); possibly you would rearrange

some other bicycles, and then you would leave.

Formally, an algorithm consists of a sequence of one or more steps.

A step consists of the following operations for some 1 : So

(1) Open the door of shed 1 .

(2) If you have a bicycle with you, and shed 1 1s empty, you may place

that bicycle in shed 1 .

(3) If you have a bicycle with you, and shed i has a bicycle, you may

exchange bicycles.

(4) If you have no bicycle, and shed 1 has a bicycle, you may take

that bicycle from the shed.

(5) Close the door to shed 1 . -

114

Analysis of Algorithms Magic Number

In operations (2),(3), and (4), the decision whether to manipulate

| bicycles can depend only on whether the bicycle you hold is your own, or

whether the bicycle you see in the shed 1s your own, 1.e., you can recognize

| your own bicycle, but cannot distinguish others.
A poor strategy we could follow 1s for each person, on arriving, to

examine all sheds 1,2,...,n until an empty one 1s found, place his

bicycle there, and remember the number of the shed used, Then, on leaving,

since no one ever moves bicycles, simply go to that shed and remove the

bicycle. This method requires O(n) steps on arrival and O(l) steps

on leaving.

The problem 1s to devise another strategy, to be followed by all

users of the sheds, that requires only o(vn) steps on arriving and
leaving. An informal description of how to choose the sheds 1 on which

steps are performed, together with how the decisions of operations (2)-(4)

] of these steps are made, will be acceptable.

115
;

:

Artificial Intelligence Magic Number

Problem 1. [10 points]

Answer the following questions.

(a) [2] What is the advantage of a semantic network over the "record-oriented"

representations described in data base management research in which each

row represents an entity and each column represents an attribute, 1.e.,

essentially tables.

(b) [2] What is the difference between backward chaining and GPS?

(c) [3] What is meta-planning? State at least two meta-planning heuristics.

(d) [3] Draw a small (and-or) search tree with branching factor of 2

and depth 4 . Assign values to the leaf nodes so that the a-B

search algorithm searches as little as possible.

Problem 2. [10 points] Predicate Calculus.

(a) Encode the following sentences as formulas in the predicate calculus.

(1) [2] "The postman's brown hat is at the cleaner's."

(2) [2] "Everybody loves somebody." (2 meanings)

(3) [2] "There are 23 postmen in Palo Alto."

(b) Find the most general unifier for the following sets of formulas,

where lower case letters signify variables.

(1) [21 P(uv,A) , P(£(x),w,x) , P(£(y),252) .

(2) [2] P(£(x),x) , P(z,£(z)) .

Problem 3. [20 points]

One aspect of quizmanship 1s selecting a problem to work on next. On

many exams you are instructed to look over the problems before starting in

order to help in making this judgment. As ah example, consider how one

might formulate a plan for taking the comprehensive, 1.e., determining which

order to work on the problems. You may assume that students are given point

values for each problem and are told there will be no partial credit.

(a) [5] Arthur, a Master's student, must maximize his overall score and

realizes that choosing the optimal subset of problems to work on 1s a

bin packing problem. Moreover, he 1s not sure he can accurately guess

how long each problem will take; and so he decides to use hillclimbing

to search the tree of possible orderings. What simple measure should

he use in conducting this search? Is the resulting plan optimal?

116

Artificial Intelligence Magic Number

(b) [5] Beatrice is a Ph.D. candidate and must demonstrate minimal
competency of (let's say) 20 points in each area. She decides to use

a two phase approach. In the first stage, she strives for 20 points

in each area using minimal time; then she tries to maximize her

overall score. What formal search method should she use in the first

stage and what are the relevant cost and/or heuristic functions?

(c) [5] Carleton has already passed the exam and 1s taking it again

for the fun of 1t. He boasts that he can always predict precisely

how long it will take him to solve a problem and complains that

Beatrice's two-phase strategy 1s non-optimal. Is he right? If so,

why? If not, show a counterexample.

(a) [5] Suppose we wanted to build a robot able to decide what strategy

to use. What knowledge would the robot have to have?

Problem 4 [20 points]

A particular computer implementation of the Blocks World offers two

commands to the user. PUTON(X,y) gets x onto y so long as x is a

moveable object, yyis a brick or the table, and both have clear tops,

PAINT (x,c) changes x's color to c¢ , provided that x is directly on

the table. Use the following vocabulary in answering the questions below.

BLOCK—- set of all manipulable objects.

BRICK, PYRAMID, WEDGE -- sets of objects with the corresponding shapes.

Bl, B2, P1, P2, WL, W2, TABLE —-- objects.

CLEAR—— one place relation signifying a clear top.

ON -- two place relation, a subset of BLOCK X(BRICKU {TABLE)) .

COLOR -—- function from objects to hues.

RED, GREEN, BLUE, YELLOW —-- hues.

(a) {3] write STRIPS-like prerequisite, add, and delete lists for

PUTON.

(b) [Lk] What sequence of actions would be required to achieve the

goal (AND (ON Bl B2)(COLOR Bl RED)) in the following situation:

blue — sm]

117

Artificial Intelligence Magic Number

| (e) [5] Suppose a robot using the Winston concept formation algorithm

wanted to learn about PUION by looking at examples of 1ts operation.

Show a sequence of block configurations that would teach the robot

the prerequisites of PUTON.

(ad) [5] what could go wrong? Present a legal training sequence that

might give the robot an incorrect model of PUTON's prerequisities..

(e) [4] Suppose the robot used backward chaining and means—-end analysis

to solve problems. Devise a test problem to detect the error produced

by the sequence in part (d).

Hardware System Magic Number

I. Subroutine Linkage Architecture (12)

a. (3) What machine registers are affected by CALL to a subprocedure?

| b. (4) How do you best transmt
i) simple (i.e., single word) paraneters

3 11) conplex (i.e., record or array) parameters

c. (5) Discuss the effect of recursive calls 1n these linkages.

2. High Speed Arithnetic (8)

Discuss how pipelining conplicates the handling of floating point
exceptions (1.e., overflow, underflow, . ..).

J. Floating-Point Representation (15)

The following table contains real numbers and their (octal representations
in an 18-bit floating-point scheme. Describe this particular floating-
point schene.

| -4 615777 1/4 172000

| 3 601777 1/3 172525

-2 603777 : 1/2 174000

| - 1 605777 213 175252

202000 22002121) 377777

2 204000 220212 4) 770000

: 3 206000 2738 002000

4 212000 -2-32 405777

5. Communication Alternatives (95)

Describe the difference between synchronous and asynchronous
: communi cation protocols.

119

Hardware Systems Magic Number _

5. Combinational Circuit Problem (10)

The boolean Fibonacci function f is definded to be TRUE for the

binary inputs X19 Xo X3s Xa corresponding to El, 2, 3, 5, 8, 131
and FALSE otherwise.

a. (5) Give the mniml sum of products expression for Ff.

b. (5) G ve the mniml product of sums expression for f.

6. Circuit (10) |

Sketch a circuit to inplement the following precedence function.

X neans don't care.

I NPUTS OUTPUTS

A B C D PA PB PC PD

HANNEEr
INN
o fof | oloie
o lolol | wlww]
o lololo| ol of wl

120

Numerical Analysis Magic Number

Numerical Analvsis

| 1. (10 points) Gaussian Elimination
| A, (3 points) Suppose A= LU are n X n matrices with L unit
| lower triangular and U upper triangular. Given L and U , how can det(A)

i be obtained?

B. (4 points) How many multiplications and divisions are required to

obtain det(A)by the method of part A ? Include the cost of factoring A .

| Give the leading term.

C. (3 points) How many multiplications are required by the obvious

expansion by cofactors method?

2. (20 points) Sparse Cholesky Factorization

A. (13 points) Suppose A is a symmetric positive definite n X n matrix.

| The rows of A contain leading sequences of zeros; 1n fact

| aj; =O for alll <j<f, <i,

l<i<n.

The numbers f. are known in advance. Give a pseudo-algol procedure for

computing the Cholesky Lh factorization of A which makes as much use as

| J possible of the structure of A .
- B. (3 points) Give a multiplication count for your method.

| C. (4 points) Suggest an appropriate data structure.

121

Numerical Analysis Magic Number

3. (15 points) Nonlinear Equations-. |

Design a subroutine to compute Ve . Assume the computer uses rounded
binary floating point arithmetic witha 24 bit fraction. | |

The routine should use

a rapidly convergent iterative method and stop when the approximation Xx
satisfies

fe

You should consider:

(1) reducing the range of values of C without introducing rounding error;

(11) generating a good initial guess;

(111) estimating the number of iterations required.

The method should use little storage; large tables are prohibited

\

4. (15 points) Polynomial Approximation

(3 points)

A. Let r(x) x0 = 3 x ; =4 . What 1s lz || = sup lr (x) | ?
-l <x<1

(6 points) o

B. Show that if g(x) 1s a polynomial of degree <2 then
3

I=” = qx) Il > flee) II

You may use:

Theorem: if fe C[-1,1] : :ESDCISINS and p(x) is a polynomial of degree 0 such that
f (x) - p(x) achieves its maximum values + max

with successively alternating signs at n + 2 or more points in [-1,1] , then
for any polynomial g(x) of degree <n

lf -pll <ll£-q] .
vo (0 points) Prove the theorem,

122

: Mathematical Theory of Computation Magic Number

Problem1. Recursion Theory. [15 points]

Let x be a real number with 0<x< 1. We say that x is a

"recursive real" if there exists a recursive function f mapping the

non-negative integers into {0,1} which gives a binary expansion for x
1 © - >

(i.e., x= 2 £(1)27"). Question: If x and v , with 0 < x < 1 ,

0<y< l, xty C1 , are recursive, must X*y also be recursive?

: Justify your answer.

Problem 2. Logic. [15 points]

The compactness theorem for the predicate calculus with equality is

as follows:

| Theorem: Let S be an infinite set of sentences of the predicate calculus

with equality. Suppose that every finite subset of S has a model. Then

S has a model.

Use the compactness theorem to show the following: If ¢ 1s a

| sentence of the predicate calculus with equality such that for each number

| n there 1s afinite model of P with more than n elements, then O has
| an infinite model.

(Note: A model for a theory in the predicate calculus with equality

| must interpret the equality relation as identity in the model.)

| Problem 3. Automata and Languages. [15 points]

Let G be a context-free grammar with n productions, each of which

generated by G consists of just one sentence § . Give a tight upper

bound for length of S in terms of n and m . Justify your answer.

Problem 4. NT-completeness. [15 points]

The firehouse problem is: given an undirected graphG , a maximum

distance d , and a number of firehouses k , can you choose k vertices

as firehouses so that every vertex 1s within distance d of at least one

firehouse.

123

Mathematical Theory of Computation Magic Number

(a) 2 1] Prove that the firehouse problem is IV-complete.

(b) [5] Suppose d is fixed instead of being an input parameter.

Is the firehouse problem still NP-complete?

(e)I 51 Suppose k is fixed (but d is variable). Is the firehouse

problem in this version NP-complete?

124

Software Systems Magic Number _

1. Syntax Notation (10) |

a.(5) Wite the syntax definition for FACTOR, given below in
PASCAL diagram form using BNF.

Factor

|

A function identifier { expression } |

EE —
©

b.(5) Discuss briefly the advantages of the two notations.

2. Paging (10)

a. (3) Specify the information needed by a paging systemto decide when
to release or rewrite memory pages to the paging device.

bh. (3) Way are larger pages better than small ones?

c. (4) List four paraneters that affect optimal page size and give
their effect. i

| 125

Software Systems Magic Number

3. Language (11)

A PASCAL record can have variant parts.

a. (1) Way are these variants desirable?

b. (1) What 1s the problem with them?

c. (2) Suggest a solution to overcone the problem

d. (3) You are writing these new PASCAL records out to a file, another

programis to read them What happened to your solution?

e. (4) How would you fix that?

4, Ethernet Communication Protocol (9)

a. (lI) In this protocol, who does error detection and correction?

b.. (4) How is that done? Wite steps in a very high level language
format.

5. Code Generation (6)

Wite in an assembly language [either HP2xxx, DEC10, IBM370, DEC11, or MX]
the code to be generated for the CASE statement in the PASCAL program
given below.

[f no match 1s obtained the case statement should be skipped.

(Do not concern yourself with syntactical details of the language.)

PROGRAM SALARYLIMTS

VAR ED, SAL, BSSAL, MSSAL, OTHERSAL: INTEGER;

BEGIN

CASE ED OF

| : SAL := PHDSAL;

2 : SAL := MSAL;

3 : SAL := BSSAL;

9 : SAL := OTHERSAL

END;

END.

126

| Software System Magic Number

6. Cooperating Processors (10)

a. (5) You have multiple processors sharing memory. A processor
can lock units of nenory.

What are two protocols to prevent deadlock?

b. (5) Wich protocol would be best in a distributed computing
environment, i.e., the processors communicate to storage
via potentially slow communication lines, and why?

7. Binding (8)

Describe the difference in argument binding between ALGOL and LISP.
Show an exanple.

Analysis of Algorithms - Solutions

Problem 1 (a), (b)

There are several possible approaches to this problem. For instance,

1t can be solved by sorting the line segments either by x or by y

co-ordinates. We shall describe a solution that sorts by x co-ordinates

that 1s easily adaptable to part (c).

1. Sort the endpoints of the intervals (both left and right) by x

co-ordinate.

2. Scan through the endpoints in increasing order on x-co-ordinate.

Maintain a balanced tree of line segments having a point with the current

x—-co-ordinate. These segments are ordered in the tree by y-co-ordinate.

(1) To process a left endpoint a, Enter 1 with value Ys in the
tree. If 1 1s the segment in the tree with smallest y-value,

mark 1 visible.

(11) To process a right endpoint b. : Delete 1 from the tree. Mark
visible the segment in the tree with smallest y-value.

After processing all endpoints, the ones marked visible are indeed

visible; the others are not, Same care must be taken to deal with ties

in the x-co-ordinates of endpoints, depending upon how exactly one wishes

to define "visible".

This algorithm requires O(n log n) time for the sorting of 2n

numbers in (i) and O(n log n) time for n insertions and n deletions

in (ii); each tree operation takes O(log n) time using your favorite

balanced tree data structure.

(c) The crucial point 1s that 1f two intervals overlap, then anywhere

along their overlapping part the order of their y co-ordinates stays

fixed, because they don't intersect:

|

[

&—— larger y
|

A smaller y!

128

3 Analysis of Algorithms Solutions

I We use the same tree and operations as in (a) and (b), but
during every insertion and deletion we recompute y co-ordinates of

J segments along the search path. Each such recomputation takes constant
time, and the modified algorithm has an O(n log n) time bound.

Problem 2 (a), (b).

Define s(i,j) for 0<i<n, O<j<n to be true if

C1sCy coy C43 1s a composition of NEP ©IoK and D1sBoseeesDe ,
and false otherwise. We want the value of s(n,n) , We can compute the

values s(1i,J) by using the recurrence

s(0,0) = true

| A double loop iterating over 1 and J 1n increasing order computes

s(i,j) in 0(n°) time.

Problem 3.

Divide the sheds into rn (or fewer) groups, each containing Mal

| bikes. We maintain the property that if any bikes are in a group, they are

| packed into the first sheds of the group. We also make sure that, although

bikes are moved, no bike moves from one group to another.

On arriving: Check the last shed of every group to find a group

| with an empty shed. Check all sheds in the group to find the first empty
one. Put your bike in it. Time: O(n) |

’ On leaving: Check all sheds in the group in which you left your

: bike to find your bike. Remove your bike and replace it by the bike in

. the last filled shed in the group. (If your bike was the last, no

: replacement is necessary.) Time: 0(4n) .

: 129

Artificial Intelligence - Solutions

Problem 1.

(a) A semantic network saves space when the data base is sparse,

i.e., not every relation has a value for every entity.

(b) Backward chaining is a problem solving method in which one chooses

an operation that achieves a goal, then sets up the prerequisites for that

method as subgoals. 'There 1s no constraint on how the operations are chosen.

GPS uses a table of differences to determine which operation to

perform.

(c) Meta-planning is planning applied to the planning process itself.

The following are two typical heuristics.

1. Solve hard problems before easy ones.

2. If you can't prove a claim, try to disprove it.

OPN% % G od 9 4 JS
Problem 2.

(a) 1. Th Hat (h) ABelongs(h, The-Postman) A COLOR(h, BROWN) A LOC(h, Cleaner)

2. Vx dy Loves(x,y)

Ay VX Loves(X,y)

. coe Ca Postman5. 4p, Pos Postman (p,) A A m (Pps)
AP) # Py AP # Ps AO A pl FP

A Dy # Pg A ee.

(b) 1. u/f(a) , v/A 5 WA, x/A , Y/A

2. none

130

Artificial Intelligence =- Solutions

Problem 3.

(a) He should maximize points/ expected time. This isn't optimal

because when he comes near the end, he may choose a problem that requires

more time than he has left. In other words, he must take into account the

amount of time he has remaining.

(b) Branch and Bound 1s most appropriate with time as her cost

function and 20 points on her goal.

(c) He is correct; Beatrice's strategy 1s not optimal for him. He

should maximize points/time subject to the constraint that he gets 20 points

in each area. In minimizing time, Beatrice might choose a problem for which

points/time is not high.

(d) The robot would have to know the goal of the test and the

characteristics of each search method.

Problem%,

(a) prerequisites for PUTON(x,y): CLEAR (x)
CLEAR(y)
Xx€ BLOCK

y € BRICK TABLE

delete list: ON (x,z)
CLEAR(Y)

add list: Clear (z)

ON(%,Y)

(b) PUTON(Pl, TABLE)
PAINT (Bl, Red)

PUTON(Bl, B2)

(c) The following sequence of operations would teach Winston's

program the -prerequisites for PUTON. In each case, assume that the goal

is to put X into Y .

Lo x] Ly
AN

2. XN Tv] generalizes X to manilpulable objects

— ya
5. xX; SYN requires Y to be a block

L. X demonstrates that X need not be

| LY] on the table

| 131

Artificial Intelligence =- Solutions

5. 7 | ~~ demonstrates that Y need not
3
X | g be on the table

0. Li requires that X be clear

2d Y]

7. [1] requires that Y be clear

(d) If 2 differences are introduced at once, the program might

concentrate on the wrong property. For example, suppose examples 1 and 2

were replaced with the following.

SPR Es I 1red —>Y blue —— | X

The program might infer that a block must be red to be moved and might not

realize the restriction on Y .

(e) One could either request it to put a block into a pyramid or

to move a blue block. In the first case the program wouldn't realize that

the situation was impossible; 1n the second 1t would spuriously paint the

block before moving it.

132

Hardware =- Solutions

I. Hardware

a) Needed at CALL:

i. Register to save current instruction counter.
ii. Current instruction counter gets new address.

i11. Parameter values or address must be obtainable (perhaps via i or 11).
iv. General purpose registers have to be saved or protected.

b) i. Single word paraneters are nost efficient using value, or if
- needed, value-result.

11. Large paraneters are best passed by reference, to avoid large moves.

c) To handle recursion a stack 1s needed to handle previous past instruction
counters (a.1) and parameters (b.i). Arguments, otherwise passed by
reference, may have to be stacked 1f arbitrary computation is possible
at intermediate levels.

2. High Speed Arithnetic

In a pipelining machine information about instruction which may cause a
floating point exception has to be carried along until no further failures
are possible. Enough information has to be kept of all instructions to
allow restart = this means mainly that no stores precede earlier floating
point stores.

Sinply flushing the stack on detection of floating point error leads to
problens in error indication to the user and in programmng of adequate
error recovery.

0
3. bit 1: sign bit; if nunber is nonnegative.

1 negative

bits 2-6; exponent + 16; thus the possible binary values 00000 through

11111 = 310 represents exponents 1644 through +15. The base is 4.

bits 7-18: mantissa, a 6 digit base 4 quantity with point between the
first and second quaternary digits. If bit I is 1 the mantissa holds
the 1's complement of the magnitude.

Numbers which cannot be represented exactly (e.g., 1/3, 2/3) are
chopped.

133

Hardware - Solutions

4, Communication Alternatives

In Synchronous Communication transmssion is continuous. Wien no data
are available, IDLE characters are put into the transmssion stream
Clocks are derived fromthe signal.’ Transmssion can proceed at a high
rate because of the stability of transm ssion.

In Asynchronous Communication the transmssion 1s initiated when data
are available. A start bit precedes the data, and at least one stop bit 1s
inserted to account for differences in clock initiation time and clock speed,
prior to transmtting nore data. Mre bits aretransmtted per data
element and transmssion rates tend to be lower.

5. If XgXqXoXy represent a 4 digit binary number between 0 and 15, then

F(Xg2%Xq:%0,%7) hast he given table of values, f is true if XgX3XoXq €
{goaQl, oaig, agil, Qlal, 10040, 1101}

X3Xa

*1%2 00 01 110

00 | 0}0 lo ||

NNN
|

[ote

A mniml sum of products form 1s f = XgXgXqXo FX pX Xo F XXX +X XX

: . PT — - — NE
Since a mniml sum of products for f FX1Xg + XqXg + XoXp + XoXaX, + XqXoXq

Then _ _ _ _

f = (xq+ xq) (x + X43) (x, + xg) (X, + Xg + xq) (X + Xp + X3)

6.

A - 1 PA

B BE EE —) PB

C —> PC

D SE —_—=ak
134

Numerical Analysis = Solutions

5 n

1. a) det(A) = I uss
i=1

b) 23/3

c) > n!

2. a) Observe that the factor L can fit in the nonzero part of A :

2... =0 if F< ff, , 1 <1i<mn .
ij i -_ —

Modify the loop bounds in Cholesky algorithm to avoid operating

on zeros:

for r:= 1 to n

for c:= £, to r-1

& +9 a ;
rc rc

for k:= max (f_,f) to c

| wu - * 2 ;fre re br ck ’

2 = /% ;
rc rc cc

2 =a ;
rr ry

for k: =f to r-1
.= - *L rr’ Yer hk “rk;

_e= sqrt);

b) Define vs = card{i>j | £. 2 jt

for 3 = 1,...,n-1

Ex: A has the structure

X

X X

X X

X xX X X

So that £, = 1 £, = 1, fy = 2, £, = 1 fc = 2 .

Then w, = 2, Ww, = 3 Wa = 2 w, = 1 .

n-1 9
The # of mults =I w, + w,

. J _J

2. c) It 1s reasonable to store only the elements By with

£43 <i and use the same space for L (i.e. overwrite A with

L). These would be stored in a l-dimensional array A , row by row,

in order of increasing column index within the row. An array of n + 1

pointers NROW would be used to show where the rows begin.

Ex: The lower triangle of A :

X

o Ix

X 0X

0 olX X

ox 0 0 X

would be stored

uafalsbaFubaafaFs

NROW(i) = location in A of first element of row i

NROW(m+1) = location of first unused position in A .

136

k: r—
. 3. Subroutine for \/c .

~ 3n
1 I. Express c as ¢c =C xX 2

1 A r— = n
! where 1]<]é]|< 8 . Then ~c = 2 X 2.

f This can be done on a binary computer without introducing roundoff.

II. Use Newton's method to solve the equation f(x) = x -c¢ = 0 .

5 This means, given Xs

j x>- &

: n+l n 2
3x

n

| 1 :
; = 2x + —3 n 2

III. Since |&€|> 1 and |&| < 8 ,

: Take some rough approximation to 3 , by a polynomial or

; piecewise polynomial, to obtain the initial approximation Xs

’ For example, take

Xg = 1.5 withrel. error at most 5
7 nN 3
: 1.25 if ¢ <(1.5)

/ or xX _ 3 with rel. error ¢ .25
; BN 1.75 if ¢€ > (1.5)

X c -

: or 0 = 1.5 + (2-2) with rel. error ¢ .162

4 IV. It was difficult to carefully estimate the number of iterations

. required. With

: e =X - 27
i n n !
5 -33

i and the assumption e, < .25 , 1it can be shown that lec] < 2
(in the absence of round-off error), so 5 iterations would suffice.

; 137

In fact, since

< iL

°nt1 = ®2F' (x) n
n

h ¢ int ZT) it foll thatwhere £¢ in (x, Cc), 1 ollows a

2 2
e

| “n+l| < 2e_| , [2e__, | <2e | .

This 1s because the iterates x remaimndin the interval

[1,10/3 and in that

2f' (x) '— 7°
n

Thus,
2 4 2"

< * ®2le | <]2e | < 2e | <. | 2,
n

2 n
- -(1+2

Bn) <3l2e,| < 27H

whence e <2 .

Since the iteration function does not require subtracting nearly equal

quantities, round-off should be no problem. If full 24 bit accuracy

was required, however, the last Newton step would be done in double

precision.

138

PROGRAM

function cuberoot (c);

real cuberoot, c¢,x,cbar;

integer 1exp;

/* find cbar in[1,8] such that */

/* ¢ = cbar * 8%tiexp

cbar:=c;

iexp:=0;

while (cbar < 1) do

{cbar :=cbar * 8;

ixep:=iexp - 1}

while (cbar > 8) do

{cbar:= cbar /8;

iexp:= iexp + 1}

/* generate initial guess. error< .25 */

if (cbar <27./8.)then x:= 5/4
else x:= 7/4;-

x:= 1/3 * (2*x + cbar/(x*x));

repeat
4 more

times

cuberoot := x * 2Tiexp

end (cuberoot);

4. a) Since r'(x) = 3x2 - 3/4 , local extrema may occur at -1,1
(the endpoints) and at =-1/2,1/2 (the critical points). One

simply computes rt (-1) = r(+1/2) = -1/4, r(-1/2) = r (1) = a
Thus |r||= 1/4 .

b) r attains its maximum with alternating sign at 4 points in [-1,1].

Thus the hypotheses of the theorem are fulfilled with

n = 2, f(x) = x, p(x) = 2x .

139

¢) Suppose |[f=a ll< || =p | , where p,q are polynomials of degree n ,

£f €([-1,1], and f-p achieves its max with alternating sign at

distinct points X13%939 3 X 40 € [-1,1] . Since

[(E-) (x) | < [[£=all < [[£-pll = [(E-p) x],

q(x.) < p(x.) when p(x,) > £(x,), and q(x,) > p(x.) whenJ J J] J J

x.) < f(x.)p(5) (3

(see fig below)
f(x)

ra q(x)
BE a Sa

SS P(x)
" ——

x Xi41

Thus p—gq alternates in sign at the n+2 points {x51 and
therefore has n+l roots in (-1,1) . Thus p-g 3 0 , which

contradicts the hypothesis.

140

Mathematical Theory of Computation: Solutions

1 , Yes. Let xi be the ith bit of Xx, yi the ithe bit of y, and zi the ith bit of z=Xx+ y. We wish to
show that z is recursive if both x and y are recursive. Now, for each i, z; can be computed from Xi

and yi if it is known whether there is a carry from lower order bits. This can be decided by

searching down the strings x and y looking for a pair of zeroes (no carry), or a pair of oncs (carry).

If the search terminates, then fine. Otherwise z is recursive: it is some finite bit string followed by

an infinite string of ones.

More formally, for each i there are two cases to consider.

(1) Xi # Yj for all j > 1.

(2) There is some k>1 such that Xi =yy.

If there is any 1 such that case (1) holds, then z is recursive, since zj = 1 for all >i. So we may

assume that for each i there is some k>i such that xp = yk. But then each z; can be effectively

computed by searching forthefirst k>i with xp =yy; if x= yk = 0 then there is no carry; if

Xg =Y=1 then there is.

Note that although x + y is recursive for any recursive x and recursive y, it is not possible to pass

recursively from indices of Turing machines for x and y to the index of a Turing machine for x+y.

This is because it is impossibe to tell in general which of the cases (1),(2) above holds.

2. For each n, let ¥ be a sentence which says, “there exist at least n distinct objects”. ¥ might
be, for example, "3x 3x, . . AXA <igg<n (EX) Then by the hypotheses of the problem,
every finite subset of the set of sentences S= {p,¥,,¥,,¥,,.. .} has a model. Therefore, by the
compactness theorem, the whole set S has a model: that model will be a model of @, and will have

more than n elements for each n; that is, it will be an infinite model.

3 . Upper bound = m™. Let T be any derivation tree for the scntencc S. Then no non-terminal
symbol of the grammar can appear twice along one path down the tree. If a non-terminal did

appear twice on one branch, the subtree rooted at the upper appearance (assuming the root of T is

at the top) could be replaced by the subtree rooted at the lower appearance, yielding a derivation of

a different sentence, contrary to hypothesis. Since the grammar has n productions, only at most n

distinct non-terminals may appear along any path down the tree. Thus, the depth of T is at most n.

The branching factor is at most m, and so the maximum possible number of leaves which T can

have (= the maximum possible length of S) is m™. This upper bound is achieved by the grammar:

141

Mathematical Theory of Computation - Solutions

S = AA, . | A

Ay => AA, A

A, ta . . . a

where the length of the right hand side of each production is exactly m.

4. (a) The firehouse problem can be solved in NP time by first guessing a placement of the

firchouses and then checking whether that placement has the desired properties (it is easily seen

that the check can be done in deterministic polynomial time). The problem is NP hard because the

vertex-cover problem can be reduced to it, as follows. (Also, the more obscure dominating set

problem [Garey & Johnson pg 190] reduces directly to the firehouse problem by taking d= 1)

Suppose that we wish to know whether a gragh G can be vertex-covered by k vertices. Take G,

and make each of its edges into a triangle by adding a new vertex and two new edges:

For example:
~~

Let G’ bc the graph which results from G by this procedure. I claim that G has a vertex-covering

with k firchouses if and only if G’ has a firehouse covering with k firehouses and with d= 1. The

implication in one direction is trivial: a vertex covering for G is a firehouse covering for G’. For the

converse, suppose that we have a firchousc-covering of G’ with k firchouses. Consider the set of

new vertices which were added to G in order to arrive at G’. If a firehouse sits on any of the new

vertices, then it can be moved to either of the neighboring old verices without destroying the

covering (if either of the neighboring vertices already has a firehouse, the firehouse on the new

vertex can be simply removed). Thus if G’ is firchousc coverable at all, it is firchouse coverable

subject to the restriction that all firchouses sit on old vertices. It is easy to see that a firehouse

cover of G” with d= 1 and all firchouses on old vertices is a vericx cover of G, and so wc are donc.

142

: Mathematical Theory of Computation - Solutions

(Note that although a vertex cover is always a firehouse cover with d=I, the converse is not true.

: For example, the triangle requires only one firehouse, but two vertices are needed for a vertex
} cover.)

(b) Yes, if d is fixed with d=1.

i (¢) No. For each k, there are less than nk possible placements of firchouses on a graph with n
i vertices. Thus all possibilites for a firehouse cover of G can be checked in time polynomial in the

| size of G.

143

SOLUTT ONS

SOFTWARE SYSTEMS - My 1980

I. Syntax Notation

a) <factor> ::= <unsigned constant>]
<variable>|
<function>

(<expression>)|
NOT <factor> |
[set list]

<function> ::= function identifier

function 1dentifier (expression list)

<expression list> ::= cexpression> | {note direction of recursion<expression 1ist>,<expression>
<set list> ::= <null>|

<set specification>|
<set specification>,<set list>

<set specification> ::= <expression>|
<expression>..<expression>

b) The syntax diagrams are easy to follow when writing statements.
Miltiple recursions can be incorporated in one definition chart.
BNF can be analyzed to deduce syntax features of the grammr.
BNF can be processed automatically to generate parsers.
BNF mmkes recursion clear.

Diagrams can be generated from BNF.

2. Paging

a) Basic paging system needs
used, changed, shared, locked-for-I/0 indicators for a page.

[f working set algorithmis used, also needs owner and owner status.
IF LRU is used,time or relative tine since last use.

The changed or dirty bit determmnes release versus rewite,.

b) Less bookkeeping and smaller pagetables,
less overhead, less paging in well-behaved prograns.

c) Disk or drum seek latency and seek
If fast,smaller page size is feasible.

Average user program size relative to real nenory
Number of users relative to real nenory

If many users, smaller page size 1s warranted.
Disk or drum transfer rate

If high,larger pages may be read in.
Expected user program behaviour
Segment sizes in user program

If very random accesses then segments are small,and smaller
page size 1s best

Match of device sector and page size is desirable
Page table limits and cost

[f page table are restricted and costly,large pages are best.

144

| Soft ware Systens Solutions

3. Language

a) Variants are used to describe entities that have alternative

: attribute types,
; Reduces storage

b) Variants cannot be type-checked properly.

c) Enforce the use of tags to indicate which variant 1s in use, perhaps
with case constructs on reading records. [See Algol 68]

d) Types and tags depend on programs, and another reading program
my define record structure differently,

e) Copy record description to file, and check with programs that read file,
| or actually import the record description.

4. Ethernet

a) The sender detects collisions and retransmts.

| b) PROCEDURE TRANSMT (MESSAGE, LENGTH- OF- MESSAGE);
MULTIPLIER = 1

Rl: READ ETHER INTO BUSY;
IF BUSY THEN GOTO RT;
FOR 1 = 1 TO LENGTH OF MESSAGE BEd N:

BIT = MESSAGE(T);-
WRITE AND READ BIT ON ETHER;

{WRITE AND READ SEPARATED BY NET TRANSMT TI MEI

IF BIT # MESSAGE (I)
THEN GOTO TRYAGAI N,;

END;

RETURN;

TRYAGAIN: WRITE JAM ON ETHER {ASSURE FAILURE IS DETECTED BY ALL}
DELAY (RANDOM*MULTIPLIER)
MILTI PLI ER = MILTI PLI ER"2

GO TO RI;

END.

: 145

Soft ware Systens Solutions

5. Code Generation

* CODE FOR GENERAL MACHINE W TH REGISTERS R1, RZ, R3

* Indexes, specified as (R) are added to address

* TABLE SOLUTI ON * FIXED OPT BRANCH SOL' N

LD Al, ED LD Al, ED

Cwvp Al, "1 Cv Al, '3' MDDLE

JLS DONT JLS LOW
cw Al, 'g' JGI' HGH
JGI' CONT LD A2, BSSAL

LD ~~ A2, TAB-1 (Al) IMP DONE
LD ~~ A3, 0(A2) LOW CWP AL, "1
STO A3, SAL DLS DONT

DONT. . . JGI' IS2

TAB ADR PHDSAL 1 LD A2, PHDSAL

ADR MSAL 2 [MP DONE
ADR BSSAL 3 I1S2 LD A2, MBSAL

ADR SAL 4 [MP DONE
ADR SAL 5 HGH CW Al, '¢g
ADR SAL 6 INE DONT

ADR SAL 7 LD A2, OTHERSAL
ADR SAL 8 DONE STD AZ, SAL
ADR OTHERSAL 9 DONT. . .

(8 executed instructions) (7-9 executed instructions)

* DEC-10 M NSI ZE

MOVE R1, ED

MOVE R2, SAL
CAIN RT, 1
MOVE R2, PHDSAL

CAIN Rl, 2

MOVE R2, MBSSAL

CAIN RI, 3

MOVE R2, BSSAL

CAIN R1, ¢
MOVE RZ, OTHERSAL
MDVEM R2, SAL

(11 exec. instr.)

[cain = COMPARE AND

SKIP IF REG. NEQ

I MEDI ATE OPERAND]

146

Soft ware Systens Solutions

6. Cooperating Processes

a) 1. Uninterruptible initial locking of all resources to be used.

| 11. Acquire resources using a globally specified ordering.

iii. Do not assign initial or additional resources if not sufficient
resources are available for process conpletion (Bankers algorithm).

iv. Allow pre-enption of processors.

b) i. Assigns resource with little communication. During acquisition all
other processors are locked out.

ii. Ordering can be made known to all processors, decision making is
distributed.

i11. Is not very suitable, implies central controlling node, although
potentially best storage allocation.

iv. Remote’ processors are not well enough controlled to use preenption.

7) Binding

Wiile variable binding is static in ALGOl and dynamc¢ in LISP,
arguenent binding on call by NAME is dynamc, depending on callers
environment at time of use. LISP NLAMBDA function argunents are
evaluated at time of use, using current environment, unless a
FUNARG1s used in the invocation, referring to a specific point in
the evaluation stack. LISP LAMBDAis simlar to ALGOL CALL-BY- VALUE

ALGOL LI SP

PROC P(A B,C); (DEFUNk (A B ¢)
B= 3; (PROG (SETQ B 5)
PRINT(A B, CO) (PRINTAB C))

END: (PROG
A=2 (SETQ A 2)

B=4 (SETQ B 4)
CALL P(A, B, A+B) (K AB (PLUS A B))

END.)
YI ELDS YI ELDS

2,5,7 256

147

EEE

—

fo

Co

Spring 1980 - Comprehensive Programming Project

Approximation of Integrals

The goal of this project 1s to construct a program which will compute

approximations of integrals of real valued functions over convex regions

of R’ which are bounded by polygons.
This programming problem 1s associated with numerical analysis but it

1s our intention that the numerical analysis aspects of this project are

sufficiently well described here for the project to be completed satisfactorily.

More sophisticated ideas could be used for error estimation, etc., but we

have intentionally kept these as simple as possible. Extended precision

arithmetic will not be necessary. If you have any questions related to

the numerical analysis aspects of the problem, feel free to ask those

members of the exam committee listed at the end of this project description

for clarification. 3 __ Co _ —

The programs will be evaluated based upon the efficiency of the algorithms

constructed and the underlying data structures, the structure and clarity of

the code, and the associated documentation. you will be asked to develop a

heuristic strategy to efficiently implement the basic algorithm to be described.

You should describe the heuristic you use and explain why you find 1t to be

a reasonable approach to the problem.

The program to be developed will be an adaptive quadrature program

based upon a quadrature formula defined on triangles. We assume that we

are developing programs for approximating the integrals of functions which

are very expensive to evaluate. It is Our goal to construct programs which

attempt to minimize the number of function evaluations of the integrand.

In line with this goal we require that the programs never evaluate the

integrand at any point of R° more than once. This also makes the
programming more interesting.

The Quadrature Formula and Error Estimates,

Our basic approach to the approximation of an integral will be to

subdivide the polygonal region into triangular subregions, approximate the

integral over each subregion using a quadrature formula, and finally to

add up these approximations. The program should generate a sequence of

finer and finer triangulations, based upon error estimates, until it

obtains one for which the total-estimated error is sufficiently small.

149

If we label the vertices, midpoints of the sides, and the centroid of

a triangle (2. as |
p)

L .
. 21 :

s 7

6 3

we define our basic quadrature formula which approximates [f as
] Qs

1 = pls) 2
(1) Iq. (£) = ula) REISSJ =

where t, 1s the value of the integrand in the point 1 and wy =27/60 ,

Wy = Wg_ Wy =8/60 and Vg = Wg = Wo = 3/60 . u(Qy) is the area of the
triangle. This formula 1s exact for cubic polynomials and has an error

which 1s om as h «= 0 where h 1s the maximum of the lengths of
the sides of the triangle, 1.e.,

4

Q. 74
J

provided that the integrand, £ , 1s sufficiently smooth. In order to

estimate errors, and to improve our approximations, we will also consider

approximations on 2 obtained by subdividing Qs into four similar
triangles such that the new vertices are the midpoints of the sides of the

original triangle. |
We label these (y p02 { =1,2,3,4 . We can then approximate the
integral of £ over Q, ; using (1) and over Cds by their sun, 1.e., by2

in

I (£) = 2 (£) .
h/2,0, 1-1 0,

We can then estimate the absolute error

I = f =

“1,0, [51h (9J Qs J
J

oy

J J J

150

If our error estimate (2) 1s not good enough we then take the four

| subtriangles just defined and subdivide each of them to estimate the error
a on each of them, etc. This will be our basic refinement procedure.

| For any given integration (there will be several) you will be given

the vertices of the boundary polygon, a definition of the function f(x,y)

to be integrated, and an error tolerance g¢ . You are asked to input an

initial triangulation of the region and the error tolerance. You should

E write a procedure to compute values of f£f . This initial triangulation

should contain as few triangles as possible consistent with the desire that

| the ratios of shortest to longest sides should be close to 1 -- this is
to be interpreted rather loosely, 1.e., 1n spirit.

Samething Else To Do.

We ask that you consider the problem of constructing a program to

compute a good initial triangulation. A good initial triangulation will be

: as above —-- the ratios of shortest to longest sides should be nearly 1 if possible,
Discuss approaches and difficulties associated with this problem and describe

; how you would implement such a program in your writeup. Do not program this
part of the problem.

. Refinement Strategies.

The crucial part of this project 1s to devise a strategy to decide when

and where to refine the triangulation. We now discuss several issues which

you should consider in devising your strategy.

Let Q be the region over which we are to approximate the integral

of a given function f and let Q, , 1 = 1,2,.¢.5m be an initial
; triangulation of Q , i.e., Q= U Q. . We begin by considering

j=1

: the basic strategy of eqgtidistributing the absolute error over the Qs .
We will modify this by changing our strategy twice before we complete the

description of this programming problem. We want to construct an

approximation I(f) such that

) | | £- IO] <e
We define the error per unit area, e¢', by

: . et = ¢/ulQ))

where u(Q) 1s the area of the region Q . 1f we generate a triangulation

i Q = U Q. such that
. j J 151

f- f < eg! .

J

we obtain _

[J £-1()] < «
Q

with

ff) = f .(1) 1(5) = TI, (2)
J J

t in usj . ' =e . be our
We will estimate ¢ pS (3) ing (2) Let 1,0, ,q./ (0)
estimate of ¢' . Note that we must refine q- to compute our error

estimate. Since we must campute In/z a (£f) to estimate the error we might
a

as well use Richardson extrapolation to try to improve our estimate of

the integral on Cy which we finally use. We will use
*

= 161 -Th,q. (Ty nq. = T)/35
J J

as our final approximation on Q, if (3) holds and substitute these
quantities for TI q (£) in (4).—————————————————————— s . ———

hy :
We now discuss the first of our improvements on this strategy. We

may have done much better than e'w(Qy) on some of the regions Ql i.e.,
e) q XK g' for some j . We can take advantage of this by relaxing’ .

J

our error tolerance on the remaining regions. Suppose at the n-th step

in our algorithm we have accepted approximations on the n subregions Q. ,
J

j=1,...,0, and at this step we have estimates of the errors per unit

area e? . We now defirg! b

n n

¥ = ce - 2 el ay) / Q- U Q)n+1 . He Mo 3 .

We now use this for ¢' in (3) for Jj = ntl . To begin we define £(1) =¢' .
Finally, we observe that this strategy could be modified to advantage

for many common situations. We assume that our integrands are only difficult

to approximate over isolated and small subregions of the region Q . We

may encounter a subregion over which the integral 1s very difficult to

approximate —— we are required to make repeated subdivisions. If the

integral 1s easily approximated over the rest of the region we may do

much better (in terms of -"unction evaluations) 1f we require more accuracy

on these "easy" subregions and less on the "difficult" subregions.
152

Accordingly, you can provisionally accept approximations over subregions

but be prepared to go back if you encounter a difficult subregion later,

> Develop an heuristic strategy to use 1n your program which takes advantage

of this.

Output.

For each problem we ask that you output:

(I) the number of initial triangles,

(2) a description of the initial triangulation,

(3) the number of times a triangle is subdivided,

(4) the number of times the integrand is evaluated,

(5) your approximation of the integral,

(6) your estimate of the absolute error.

Problem 1.

Let Q have the vertices

(0,0)) (1,0) 3 (2,1) (1,2) ’ (0,2) ’

f defined by

’ Co 2
f(x,y) = x + xy +y

and

ce = 107.

Problem 2.

Let OQ have the vertices

(0,0) , (1,0) , (1,1) , (0,1)

f be defined by

£(x,y) = &EV)
and

gE = 10°° .

Additional problems will be given out on Monday, 14 April, at 1:00pm.

If you have questions, contact:

) Jim Boyce Jacks 341 7-1658 home 858-1293

Jay Glscher Jacks 450 7-3088 home 321-8643

Joe Oliger Jacks 308 T-3134 home 321-678L

153

Spring 1980 - Comprehensive Programming Project

| Final Set of Problems

: Problem 3.

Let Q have the vertices

(0,0), (1,0), (1,1), (0,1)

f(x,y) be defined by

and use ¢ = 10

Problem k,

Let Q have the vertices

(0,0) , (2,0) , (3,2) , (4,3) , (3,1) , (2,1) , (0,2)

define p(x,y) by

[0 if +70 > 1
0 (x) =

exp([x=+y° 1] 1 if xo Hye < 1

and then define

f(x, y) = p(2x-%, 2y-L4) ;

use eg = 1072

Problem 5.

Let Q have the vertices

(0,0) , (1,0) , (1,1), (0,1)

let p be as above in Problem 4, and define f by

f(x,y) = p(10%,10y) + p(1l0x-5, 10y -15/2) ;

-2
and use £E = 10 .

154

WINTER 1980/81 COMPREHENSIVE EXAMINATION

Numerical Analysis

(Subproblems have equal weight.)

Problem 1. {16 points]. Nonlinear Equations.

The equation sin x = z° has two solutions, x = 0 and x = .87672. The following fixed-point iteration

schemes are proposed for finding the nonzero root.

(a) Tpit = (sinz,)? To = .5
(sin z,, — z2)

b = Ly, — ————M— zg = 1.0(b) ntl = 2 ¢OS Tn — 2Tp) 0

In each case, predict the limit (if any) of the sequence zn, the order of convergence, and , if the convergence

is linear, the asymptotic convergence factor. You may need to know that

cos(.87672) = .63967

sin(.87672) = (.87672)% == .76864

Problem 2. [13 points]. Interpolation.

The function f(z)= In x is tabulated at x =1,2,3,...,100. The table shows four correctly rounded

decimal digits after the decimal point. For what part of the table is linear interpolation sufficiently accurate

to preserve the accuracy of the table?

Problem 3. [21 points]. Linear Systems.

Consider the system of n linear quations in n unknowns

(A + iB)Z + 19) = (€ + id)

where A and B are real n X n matrices, Z,%,8, and d are real n-vectors, and i = vV—1. We have tvo
choices:

1. Solve the system by Gaussian elimination with partial pivoting, using complex arithmetic

throughout.

2. Solve the real linear system
AZ — By =1¢

BZ + Aj =d

(a) Which 1s more efficient in terms of arithmetic operations performed? In terms of space used? Justify

your answers.

(b) Assume that A + tB is Hermitian (i.e. that A = AT and B = —BT) and positive definite (i.e. that
. (2 — 19)T(A + «B)Z + 3) is real and nonnegative for all real n-vectors Zand J, and vanishes only for

Z = y = 0). Reassess your answers to (a) in light of these assumptions.

(c) Solve, by any method you choose,

1 1 1 1 1

1 rt —1 =. 2
z+ 1y) =

ErChua I
1 —: —1 d 1

155

Problem 4. [10 points]. Numerical Stability.

(a) Show that ifA is a nonsingular matrix, § = AZ and §’ = AZ’, then

—f a rd _ 7

7 = lz =I
13) [121]

where n(A) = HANIA 112 is a vector norm, and ||A4}|is the subordinate matrix norm.
(b) It is claimed that if Zis such that ||AZ||= C||Al|||Z|| where C > 4, then relatively small changes in Z

produce relatively small changes in § no matter how large x(A) is. Give a proof or a counterexample.

156

NA Solutions. |

y) 1/2
1. (a) For 0 < x < x* = ,87672, sin x > xi whence (sin x) > x; thus

X=) x*., Convergence 1s linear with asymptotic convergence factor
|

g (x*%) = S cos X*. = 1 .63967 = 365AK¢sin x07 2 87672
(b) This is Newton's method. To see that X —px* quadratically note

2 ' :

that, if f(x) = sin x = x , £ (x*) = cos (x*) - 2x* # 0 and
11

f < 0 everywhere, so f 1s convex and Newton's method converges:

CON; Toxo
11 1 1

2. Interpolation error < f (§) ==< —7
8 8¢ 81

for 1 <x<1+1.

-5

Roundoff error in table entries <5 x 10 .

SO we want

lL 5x 107°
81°

or 1 >50.

3. (a) I. Complex Gaussian elimination:
2

Storage: 2n
1.3 4 3

Work (multiplies): 4 . Fn 7 3 n
1-3 ~13 43

. = + — = —n(adds): 2 (3 m7) + 2(F0) =3

since a complex multiply can be done using 4 real multiplies and

2 real adds, and a complex add uses 2 real adds.

157

NA Solutions (Con't)

II. Real 2n x 2n.

| Storage: (2n)2 = 40’

Work (Mults.) L (2n)°> - 2
: 3 3

(adds) py 3_8 3
| 3 (2n)~ = 3 n

Method I 1s twice as fast and uses half the space.

| (b) Cholesky factorization can be used in either case, This doesn't
change the comparison.

| (c) 1 1 1 1] (1 1 1 1
1 -1 -1 i 1 i -1 -i

] x | = I,
“11 -1 1-1 1 -1 1 -1

! 1 i -1 -i -1 -i -1 i

Therefore the solution 1s

; -

1 -2-1
4 1

=2+i

' ' ' 1
4. (a) Since y -—- y = A (xX = x), ly -yll<lal}]]= --x|],

Also x = Aly, SO | x] |< | 1A” | | ly | E therefore

' -1 '
Hy =3ll <.IIall 11a77] Hx= =|].

1M [1x1]

! t

(b) As before, | ly ~ yl |< lal] |lx -=/].

Divide by | |v} |=—c [[a]] [|x|] to get :

1 1 !

ly. -lyll = x[b<2 |x = xl.
C

| [1x |] 1x1 |x]|

| 158

Software Systems

1. Synchronization and communication (10 points)

A typical message-passing system might be based on two primitives:

e Send (process, message)

o Receive (process, on«swnoe

where Send blocks until the message is queued for the receiver, but does not wait for a

reply. In such a system, a remote procedure call might be implemented using those two

primitives back-to-back -- i.e.:

proc RPC (process, message);
begin

Send (process, message):
Receive (process, message):

end;

What synchronization problems arise with this approach? How might you solve them?

Solution: Assume process PA executes RPC(PB,M1). Assume also that PA has no messages

queued for it when process PB performs a Send(PA, M2). PA will then accept M2 as if it were a

response to its request, M1. In general, this need not be the case. In particuiar, PB's Send may be

part of an attempt by PB to execute RPC!

This problem can only be eliminated by re-defining the semantics of remote-procedure-call: For

exampie, a unique transaction id can be generated for each outgoing call, such that only a reply

containing that transaction id will be accepted as completing the call.

2. Paging (10 points)

Assume that we have a main memory that can hold 3 pages of size 1000 (decimal) words.

The pager can take advantage of the fact that a page has not been modified since placed

in main memory and will not cause a copy of that “clean” page to be sent to disk when

that page is reclaimed. We are given the following reference string:

1000(r), 234(r), 3345(r), 805(w),
2998(r), 3768(r), 1002(w), 5806 (w)

The numbers are word addresses. The (r) means read access, and (w) means write

access. Assume that the main memory is originally empty. Give the sequence of paging

operations that would be performed assuming an LRU page replacement algorithm. Give

your answer in terms of SWAPIN(i) or SWAPQUT(j) whe:e i and j are page numbers.

Solution: To simplify things, change everything to page references:

1(r)SWAPIN(1)
0(r) SWAPIN(O)

3(r) SWAPIN(3)

O(w) nothing

159

2(r) SWAPIN(2) (noneedtoswapoutl)

3(r) nothing
| 1 (w) SWAPOUT(0)

SWAPI N(1)

5(w) SWAPIN(5) (noneedtoswapout?2)

3. Multiprocessing (9 points)

Assume that Progressive Computers Inc. has decided to go from running its programs on

a single machine to a multiprocessor configuration with shared memory. Since their

programs always ran in a multiprogramming environment they expect very few problems

in converting to multiprocessors.

a. (3) Give a short list of feasible benefits they can expect to reap from this change.

Include a brief explanation of each benefit.

| Solution: Increased reliability due to redu.idancy of processors. Increased performance
through parallelism and load sharing. The ability to handle increased complexity due to

; modular decomposition of tasks into subtasks capable of being executed on multipie
processors simultaneously.

b. (3) Given a configuration of exactly two processors, why wiil it be in general

impossible to expect twice the processing power?

Solution: All the synchronization necessary in memory and data base access.

c. (3) Assume they use a simple primitive such as a test-and-set operation to

synchronize processes in a multiprogramming environment. Give the one (possibly

fatal) flaw in the architecture of their synchronizing primitive that would cause it to

work in a multiprogramming environment, but not in a multiprocessing
environment.

Solution: Not locking out the memory bus access to the other processor when aitering a
lock.

4. Parsing (10 points)

Consider the following BNF grammar

<A> = !<C> ?

 = a| ! a

<c>:= a |<C>?a

160

a. (5) Show the parse tree for ala?a?a.

Solution:

A

/7 1

/ 7 \

A A
/ / \ \

B ! C ? B

| “1° |
| / | |

a / |] \ a

/ 1 \
c ? a

a

b. (5) This grammar could not be used for operator precedence parsing because in

some cases ! has greater precedence than ?, and in some cases the reverse is true.

Which case occurs in the sentence of part a? Give a sentence and parse tree
which illustrate the other case.

Solution: In the sentence in part a, ? has higher precedence than |, because a?a must be
reduced to C before ! can be used in a reduction.

In the string ala?ala, ! has higher precedence than ?.

A

//

/ 7] \

A I NA
/ / \ \

B ! C ? B

| | / IN

| 2

a a / 1 \
/ 1 \

B ! a

a

5. Binding time (12 points)

Binding is the association of some attribute with a name. For each point below, give an

example of a programming language that involves binding at that time. Be specific about

the language and what is being bound.

a. (2) compile time

b. (2) link time

161

c. (2) load time

d. (2) block entry

e. (2) procedure call

f. (2) assignment (give an example where some attribute besides value is bound at

assignment)

Solution: {There are many possible answers - these serve as examples.)

a. Compile time -- types in Algol, Pascal, Fortran; array size in Fortran, Pascal.

b. Link time -- procedure, function, or subroutine correspondences in any language with separate

compilation (e.g. Fortran, PL/1); external names in PL/1; COMMON blocks in Fortran.

¢. Load time -- absolute addresses of code for most languages; of variables in Fortran and other

languages with static memory allocation.

d. Block entry -- size of variably-dimensioned arrays in Algol, PL/1.

e. Procedure call -- correspondence between actual and formal parameters (any language that allows

parameters for procedures).

f. Assignment -- type in LISP, SNOBOL, APL.

6. Interpreters (9 points)

LISP is usually implemented by an interpreter rather than a compiler. Give three

characteristics of LISP that are related to this fact (for example, features that would be

harder to implement with a compiler).

Solution:

a. Types of variables are determined (and can be modified) at run time.

b. Data computed by the program can be executed as code.

c. Variables are bound dynamically at procedure-call time.

162

Hardware Systems

1. (12) Bus communication

a. (8) Describe how bus arbitration may be accomplished via a centralized daisy-chain

technique, indicating clearly all the essential control signals required. Illustrate

your answer with a block diagram of a single bus system with 3 devices on the bus.

Solution: Signals in a daisy chain are bus request and bus acknowledge. Whenever a

request occurs the bus devices are given the opportunity to use the bus in chain-order.

> ACE

A TY . -Be re Spr -

-— DSC
A RL INST

BS REQUCST Lawl

Device D; does the following: if bus acknowledge and D, has an outstanding request then
use bus, else send the acknowledge to D; + 1- A request is held high by D, until it receives
an acknowledge.

b. (4) What is meant by fully-interlocked handshaking in bus communication?

lllustrate your answer with a simple timing diagram.

Solution: Fully interlocked handshaking means that both commuicating parties send

acknowledgments.

A typical situation might be:

163

Master Slave

bus request
| CE

: bus acknowledge
eet LL ELL EE EL EE EL IIE ELL EEE LLL TL To)

data

GL

data acknowl edge

ell ea LLL EE EE LE a DELL EL EE LL.

bus release

Ce een tL LESTE EE EEE EERE

bus release acknowledge
a anne LLL LL EEL EE EERE LEE)

2. (10) Logic diagrams

Draw the logic diagram of an exclusive-OR function of two inputs using NAND-gates.

Solution: Exclusive-OR is:

| ARB + AB= ARee AB = (A438)(RK «8d)

NANDiss SE = ™ + B

{— :

2 3
A+%

get Jove

AD ra

A1 x =, =
2 oo AR + A8

| !
’

AS ra

3. (8) TTL logic

164

Describe the following terms with respect to TTL gates:

! a. totem-pole output

1 +1 + |

: Solution: >
i POLL -JP

POT a
] CcOTPOT

| PAJLL- Sonor)

| Yields a faster switching time since pull up/down is through a transistor

b. tri-state output

Solution: Qutput can be in three states: low, high, or off. In the off state the output is free

| to drift if another device on the same line sources or sinks it. Especially useful for busses.

c. fan-out

Solution: Number of loads an output can drive. Each device input may use one or more
loads.

| d. noise margin

Solution: Difference between the highest low output and the lowest high output (o r

switching threshold). It determines the susceptibility to noise.

4. (10) Cache memory

In a cache-memory system, let:

cache access time, t = 100 nsec

main memory access time, T = 1 microsec !

block-size, B = 8 words

main-memory-to-cache connection size, C = 2 words

165

hit-ratio for memory access, H = .9

a. (3) What is the effective memory access-time, if a read-through policy is used?

Solution:

EAT = {cache access time> *<hit rate> + (1-<hit rate>)*{memory access time>

= t*H + (1-H)*T

= 190 nsec

| b. (5) What is the effective memory access-time, if no read-through policy is assumed,

so that the words in a block are fetched strictly sequentially on a miss and then
access from the cache?

Solution: Without read-through the delay is"

EAT = <cache access time>*<hit rate> +

(1-<hit rate>)* (cache fill time> + {cache access time>)

cache-fill-time, F = (block size>/{cache connection size>)*

{memory access time>

= (8/2)*(1000 ns) = 4000 ns

EAT = t=H + (1-H)*(F + 1)

=90ns +.1 « (4000ns + 100 ns) = 500 ns

c. (2) How many comparators are needed if the cache size is 16K words?

Solution: The number of comparators is {cache size>/<{block size> since only one

comparator is need per block:

214/23 = 211 = 2K comparators

5. (20) Computer organization

You are given a machine architecture with the following hardware:

o 16-bit words (all instructions operate on words)

e a hardware stack

e an ALU

28 bytes of memory (byte addressable)

166

| e a single fixed size instruction format

There are two memory access instructions:

e push <addr>

o pop <addr>

which cause data to be moved from memory to/fror. the stack.

There are several address modes:

e absolute address: <addr> is a memory location

o direct: the top of stack contains the location (it is oooonzoe

o indexed: top of stack (it is popped) + <addr>

There are 60 oiher O-address instructions which perform operations on the stack.

a. (4) Give an instruction encoding which minimizes the sizes of instructions in byte
increments.

Solution: Something like the following will work:

CT
?
00 = not push/pop
01 =push

10=pop

If not push/pop, the remaining bits encodes the other instructions. For push/pop there are

2 bits to encode the three addressing modes. If the address mode is 1 or 2 then a byte
follows, otherwise it is unused.

b. (8) Using the following blocks draw a block diagram of the organization showing all

data paths and indicating their sizes and direction of data flow.

ey
ag "SA om ; pm de\ V7 r=
— _ /

Sh >

oe] me AL Ce|
LOR|

Solution:

| {=
=

B

| | [=

} (R |

Co
MDE

{= |

— fe A A
Ic (& | Co

pence Sa —
= 16

LPC

c. (8) Using the notation:

A --> B: description

to describe data flow from A to B, show the fetch, decode, and execution cycle for
the instruction: $s

push indexed y

where y is the offset. The sequence starts with:

PC --> MAR : instruction address to memory

There is no need to show control, but the descriptions can indicate operations that
OCCU.

168

Solution:

PC ==> MAR: instruction address to nenory

MAR ==> nenory: address to nenory

nemory ==> MR: instruction to MDR
MOR --> IR Instruction to IR

stack ==> ALU pop stack into ALU

IR[8:16] ==> ALU: offset part (y) into ALU
ALU ==> MAR: after add send new object address

MAR ==> nmenory: operand address
memory ==> MR: operand value
MOR ==> stack: push the value
PC ==> ALU: send PC to ALU

ALU ==> PC after incrementing by 2

B ARTIFICIAL INTELLIGENCE

1. Searching with Lisp (24 points)

| Consider the following LISP program given, for your convenience, in both LISP external
notation and in MACLISP.

findpath(x, y]« fo 7 [<x>,y, NIL]

fo 1{u, y, path] «
if n u then LOSE

else if au ¢ path then fp1[d u, y, path]
elseif au = y then reversely. path]

| else [Aw:ifw = LOSE then fpi[du,y, pat else w]| [fo1[successors [a ul, y, au. path]

(defun findpath (x y) (fpl (list x) y nil))

(defun fpl (u y path) (cond
((null u) ’lose)
((member (car u) path) (fpl (cdr u) y path))
((equal (car u) y) (reverse (cons y path)))
(t ((lambda (w) (cond

((eq w 'lose) (fpl (cdf u) y path))

| (t w)))
| (fpl (successors (car u)) y (cons (car u) path))))))

The program searches (depth-first) for a path from x to y in a finite directed graph in

which the successors of the node x are given by the function successors. When the

search is successful the value of findpath[x , y] is a list of nodes starting with x and
ending with y such that each node except x is a successor of the preceding node. When

| the search is unsuccessful findpath{x , y] = LOSE.

| Assume that the cost of finding a path is dominated by the cost of computing successors
of x.

| a. (12 points) How is the above algorithm inefficient? Give a simple example of its
inefficiency.

| Solution: Because the program remembers only nodes on the path it is presently
searching it can recompute the successors of a node that can be reached on different

paths. An example is the graph

2

0

Given that successors{A] = (B CD), successors[C] will be computed twice.

b. (12 points) Write a more efficient LISP program to perform depth-first search.

Remember the assumption about costs. You may use external notation or
MACLISP or INTERLISP notation.

Solution:

findpath{x,y]« [Xw. if a w = LOSE then LOSE else reverse w]
[fp1[<x>, y, NIL, NIL]]

fp1{u, y, path, seen] «
if n u then LOSE. seen

else if a ue seen then fp1{du.y, path, seen]
else if a u = y then path

else [Xw. if a w = LOSE then fp1{du,y, path, dwl]]
[fo1 [successors au,y,au . path, au . seen]]

2. Quickies (12 points)

For these questions, a few phrases to indicate your understanding will suffice. (3 points

each)

a. Why does the speech understanding problem require techniques from both Al and

pattern recognition?

Solution:

The input to speech understanding systems is noisy and incomplete. This makes statistical

methods from pattern recognition desirable.

Knowledge sources for speech understanding include models of the semantics and

pragmatics of the utterance, making "knowledge representation” techniques from Al

desirable.

b. What are the basic ways in which RSTRIPS & ABSTRIPS are improvements on
STRIPS?

Solution:

RSTRIPS uses a goal protection system to handle the problem of sub-goal interaction.

ABSTRIPS plans more efficiently than STRIPS by planning hierarchically, putting operator
pre-conditions in order by importance and difficulty.

c. Relate the problems of unification and of simple pattern matching.

Solution:

| Pattern matching is a kind of unification in which one of the formulas has only constants.

d. What are a few of the things which make “story understanding” hard for

computers?

; Solution:

| Story understanding requires real world knowledge, such as physical world relationships
and human goals, which are hard to give to a computer. Related to this is the need for

natural language parsing abilities, including the ability to resolve pronoun references.

3. Constraint Application (9 points)

| Indicate the kinds of prior constraints applied in

e case analysis of sentences;

e blocks-world vision;

e speech understanding;

(three constraints in each area are sufficient for full credit)

Solution:

® case analysis:

o The possible meanings of sentence verbs constrain the cases of noun groups in the

i sentence;

O The case of a noun group constrains the main noun of the group;

f O The preposition of a prepositional phrase constrains the case of the noun group in the
1 phrase;

| 0 Sentence position constrains the case of noun groups;

; O The case of a noun group constrains the cases of the other groups in the sentence;

oO Sentence context constrains noun & verb group meanings;

1 172

i e blocks-world vision:

4 O Line labellings constrain trihedral vertex labellings;

5 © Hlumination and shadows constrain line labellings;

© Knowledge of boundaries constrains line labellings;

e speechunderstanding:

1 O characteristics of speech sounds;

0 consistency in pronunciation;

) O stress and intonation patterns in speech;

: Oo grammatical structure of language;

| © meanings of words and sentences;

O the context of conversation;

4. Representation (15 points)

Consider the following sentences:

Volcanos in the US. are generally dormant.

Mount Saint Helens is the only Volcano in Washington.
Volcanos are mountains.

Mountains are geological features.

Washington is in the US.

| A volcano in Washington erupted recently.

a. (5 points) Express these sentences in a frame-like notation such as the “delineation
units” described by Nilsson.

Solution:

] X | US-volcano

self : (subset-of volcanos)
| location : US

: condition : DORMANT

i Mount-Saint-Helens

self : (only-element-of VinW)

location : (is-in Washington)

x | VinW

self : (element-of volcanos)
location : (is-in Washington)

x | volcano

173

self : (element-of mountain)

j x | mountain
: self : (element-of geological-features)

| Washington
| location : (is-in US)

Volcano-A

1 self : (element-of volcanos)

4 location : (is-in Washington)

: condition : ACTIVE

b. (5 points) Why might units notation be used instead of First Order Logic in some

situations? Why in general might one representation be used instead of another

with equal or greater expressive power?

Solution: Units notation is somewhat more modular than First Order Logic, has a more

1 uniform structure, and is better suited to default reasoning. In general, different
f representations are used when their expressive power is best suited to the application, and

because they may encode more heuristics for deductive operations.

! c. (5 points) Consider the questions

Is Mount Saint-Helens a geological feature in the U.S.?

J Is Mount Saint-Helens dormant?

What kinds of rules are necessary in order to deduce heuristically reasonable

4 answers to these questions from the units you indicated above?

] Solution: Rules that encode the property inheritance characteristics of "element-of"”,
1 "only-element-of"” "subset-of", and the transitivity of "is-in" are necessary.

Rules which handle default reasoning on a hierarchy are necessary, e.g., that override

1 inheritance of the "DORMANT" property by Mount-Saint-Helens with the particular

1 knowledge of its activities in Washington. In this case the "condition" slot is implicitly

3 default, as might be all slots that are not "is-a" links.

174

Algorithms and Data Structures

Problem 1. [20 points]. A mediocrity queue is a data structure that dynamically maintains a set S of numbers

and executes a sequence of instructions Iy,I2,13...,1,,.... Each I; is either one of the following forms:

insert[z] (meaning S «— S U{z})

| delete[z] (meaning S + S — {z})

| getmedia- (return the value of the median of S).

The set S is initially the empty set, and only distinct elements will be kept at any time. The median of S

is the [|S]/2]-th smallest number in S.

(A) [3 points]. Give an implementation of a mediocrity queue such that 2, = O(n), d, = O(n) and

gn = O(1); 1, d,, gn are the respective worst-case costs of executing an insertion, a deletion, and a

getmedian when |S|=n.

(B) [12 points]. Repeat (A) with i, = O(logn), d, = O(logn), and g, = O(log n).

(C)[5 points]. suppose a mediocrity queue is available, such that the total cost of executing any sequence :

ofn instructions is f(n). Give an algorithm that sorts n distinct numbers in time f(3n— 1) + O(n),

by making use of the mediocrity queue.

Remarks. In the solutions to parts (A) and (B), give only a high-level description for standard data

structures, but it should contain enough information to justify the asserted performance. For example,

you can ‘maintain a 2-3 tree under insertions with O(logn) cost per insertion”, but you cannot “maintain

some kind of hash table that has a cost 0(v/n) per insertion”.

Problem 2. {30 points]. Let £;,Z2,..., Zn, m be n+ 1 input real numbers that are all positive and distinct.

(A) [5 points]. Give an O(n log n)-time algorithm for deciding if there exist distinct 3, 7 such that z; +

Tj= Mm.

(B) [lo points]. Give an O(n?)-time algorithm for deciding if there exist distinct ¢, j,k such that

IT, + IT, Tx =m.

(C) [15 points]. Give an O(n? log n)-time algorithm for deciding if there exist distinct ¢, 7, k, £ such that

T+T; Zk Te = mM.

Remark. We are using a random-access computer that can perform infinite-precision real arithmetic. (You

may ignore overflow problems on such machines.)

175

Problem 3.[10 points]. A k-right-biased binary tree is a rooted binary tree such that any path from the
root to a leaf takes right branches at most k times.

(A) [2points]. What is the maximum number of leaves that any 2-right-biased binary tree with height 4

can have?

(B) [8 points]. What is the maximum number of leaves that any 2-right-biased binary tree with height A

can have (h > 0 an integer)?

Remark. We show below a 2-right-biased binary tree with height 3 and 5 leaves. This is not a l-right-biased

binary tree as the =» leaves show.

£0
*

Algorithms and Data Structures

Problem 1.

(A) Perhaps the simplest idea is to store the elements of the queue in a sorted (increasing) array. Insertion

requires time linear in the the size of the queue to move the elements of the array around to make

room for the new element. Deletion requires linear time to move the the elements of the array to fill in

the gap created by the deletion. The site of the insertion or deletion can be found either using a near

scan of the array, or by doing a binary search. To find the median in constant time, it 1s necessary to

keep another variable holding the current size of the queue. It can be updated in constant time during

an insertion or deletion. The median is found by looking in the []S|/2]-th element of the array.

(B) Use your favorite flavor of a balanced search tree, e.g. AVL tree, 2-3 tree, or R-B tree, to maintain

a sorted list with logarithmic insert and delete times. In addition, keep in each node the weight of

the subtree hanging from that node. This will permit you to find the median in logarithmic time by

looking at the weights (and weights of siblings) along a single path from the root.

(B’) This can be improved to a method that still does insertion and deletion in logarithmic time, and finds

the median in constant time. The idea is to keep the median in a specific location, so that it is easy

to End. The elements greater than the median are kept in a balanced search tree and the elements

less than the median are kept in another one. Insertion and deletion require a comparison to see

which tree 1s effected, and the logarithmic time to perform the operation. If the operation changes

the median, the old median is inserted into the appropriate tree as an extreme value, and the new

one 1s deleted from the other tree. Both of these can be done in logarithmic time.

(C) Here is a way to sort n distinct numbers using just 3n— 1 mediocrity queue operations. First, insert

all n numbers into the queue (n insertions). Then, alternately find the median and delete it until you

have found each element as the median once (n getmedians and n— 1 deletions). After an element

is found as the median, it 1s inserted into the right place in an array in constant time. (The first one

goes into the [|S|/2]-th location. Thereafter, alternately the medians of the queue will be the first

clement larger or smaller than the part of the array that has been sorted.)

Problem 2.

(A) The first step is to sort the set {z;}. This takes time O(n logn). Then, for each of the z,, search the

sorted table for the value m — z;. Using binary search does each of the searches in time O(log n) and

the entire step in time O(n log n). After finding the right value in the table, it is necessary to check

that the proposed values of z; and z, are different. This is done (at most) once for each search.

(A’) Once you have the sorted table, it is possible to search it for a pair whose sum is m in time O(n).

i= 1, =

while * <j do

begin

if z; + z, = m then exit loop with success;

if z, +z, < m then1 :=1 +41;

if z;<+z, > m then j=) — 1;

end;

In effect, this program takes the two sets {z;} and {m — z,} both of which are sorted, and merges

them to see if they have an element in common.

Note: Several people said to sort the inputs with an O(n log n) sorting algorithm, e.g. quicksort. While

quicksort does have an average running time of O(n log n), its worst-case running time is O(n?).

(B) First, sort the inputs. Then, for each of the z; use a simple modification of (A’) to see if m — z;

occurs as the product z,z,. The sorting is done once in time O(n log n) (Actually, an O(n?) sort is
sufficient.) Then a linear scan of the table is performed n times for a runtime of O(n?). The little

care needed to make sure the solution uses distinct values at most multiplies the running time by a

constant.

Note: Many prople felt that the products could be generated in order in time O{n?). Unfortunately,
this takes time 0(n? log n).

(C) The important observation in that it takes time O(n? log n) to sort n2 numbers. One solution is first
to sort the set of products {zxZ;: k <{}. Then, perform nr? binary searches of that table looking

for the values =. Each search takes O(logn) time. At most two of the products can have z; or
z, as factors. This means that there 1s O(1) work to see if a there 1s actually a solution after each
successful search.

(C’) Another solution is to sort the sets {== 15% j}and {zxz : k <i}. Check these two sets for a
common element by merging them. ‘A little care is necessary to make sure the values in the solution

are all distinct. When a common value is found. an element of the first set can “collide” with at

most two elements in the set. This means that only O(1) work is needed to for a solution if when a

common value 1s found.

Problem 3.

(A) 11. There are two definitions height that give values that differ by one. Some people count the number

of nodes (including the root) on the longest path in the tree. Others count the number of edges. The

diagram in the question showed which definition to use.

(B) A maximal k-right-biased binary tree d of height A consists of a maximal k-right-biased binary tree

of height 7 — 1 hanging to the left of the root and a maximal k — l-right-biased binary tree of height

h — 1 hanging off to the right. A O-right-biased binary tree consists of a single path with a single

leaf. A maximal I-. .. tree of height h consists of 4 of those O-. . . trees and a 1-.., tree of height

0. Soa maximal 1-... tree has h + 1 leaves. A maximal 2-. . . tree consists of & of those 1-... trees

and a tree of height 0. The total number of leaves is

h(h + 1)
142434 +(h—1)+h+1= — TL

178

Mathematical Theory of Computation

Problem 1. [10 points]. A k-w heel is an undirected graph on k +4 1 vertices vg, vy, . . . , ve—1,ua With edges

{vi, vi+1) mod x} and {u, vi} for 0 <¢< k; yu is called the center. Prove that the following problem is
NP-complete: Given a graph G and positive integer k, determine if G contains a k-wheel.

Vv
0)

v

: A Vv

Vvls
v

p

Figure. A S-wheel.

Problem 2. [25 points]. Let the array A be such that initially

Vi0<i<nDAfl]= 1). (1)
(a) [only 5 points] Write a flow chart type program (i.e. with assignments and go tos), not using multiplica-

tion or any array other than A, that terminates with

Vi(0<i< n DAll=" (2)
ke

i.e. it computes a vector of binomial coefficients. Remember the recurrence relation of Pascal’s triangle

which may be written

n : n—1 | n-—1
= ifs<0Vk>nthenOelse if k =0Vk=nthen 1 else +k - \k—1 kJ) G3)

but it shouldn’t be used directly as a recursive program, because it recomputes the (2) so often that it takes
exponential time.

(b) (20 whole points] Attach sentences of first order logic to each label of your program so partial correctness

as expressed by attaching equation (2) to the exit label can be proved by the method of invariant assertions.

We just want the assertions — not the proof.

Problem 3.[10 points]. M is a machine which takes its input from a papertape-like file (read-only, left-

to-right) and prints an acceptance of certain input tapes. Apart from a finite-state control, its only memory

is a pushdown stack, with the usual operations of push, pop, and test top symbol. An unpoppable internal

state S ofM 1s one in which the stack can never become shorter than it is in S, whatever the input. (In

other words, the current stack symbols will never be popped.) Is there an algorithm tO recognize such states?

(Describe one or show undecidability.)

Problem 4. [15 points]. Let L;;(1 >0,1<j< 2) be the set of languages recognizable by machines with
t counters as the only unbounded memory, and with left-to-right input ifj= 1, two-way input if y = 2.

(Counters can be incremented’ dccremcented, and tested for zero.) What inclusion relations hold among the

L;; s? (State reasons briefly; detailed proofs are not required.)

179

| Solutions - Mathematical Theory of Computation

1. Solution to the “k-wheel” problem.

We reduce the Hamiltonian circuit problem to the k-wheel problem. Given a graph G= (V, E)onn

| vertices, one can clearly construct in polynomial time the graph H =(V', E'), where V’ = V U{w} and
| E' =F U{{w,v}|vEV}. The following result then completes the reduction.

Theorem. G has a Hamiltonian circuit if and onlyif H contains an n-wheel.

Proof.

(A) If G has a Hamiltonian circuit vg,v1,v2, ..., Un—3 then H contains an n-wheel with the set of edges

{{vi,v+1) m o d nh {w,v}]|0<s <n}.
(B) If H contains an n-wheel:

Case 1. wis the center: Clearly, the rest of the wheel gives a Hamiltonian circuit for G.

2

Case 2. Vy w is the center: Let us label the vertices as shown, then vg, vi, vs,...,Un—1,v0 1S a

Hamiltonian circuit for G.

Yall

3 Vv,
: o

Va

| c

Vs Vv
v >
L

This completes the proof of the theorem. oO

Solution to Problem 2.

: Verification question.

Program:

1 := 1;

oloop: if i=n then go to end;
: i = i+l;

j i= i-1

: iloop: if j«l then go to nexti;
aj) = a(j) + a(G=1);
jo=3L

go to iloop;

nexti: go to oloop;
end: return

Assertions: The following sentences apply before execution of the statements

to which they are attached.

. i .

oloop: (Wk) [(0<k<i © a(k)=()) A (i<ksn > a(k)=1)]

iloop: (Wk) (0<k<j o a(k)=(I)) A (§<k<i o> alk) = (0) A (i<ksn 5 a(k)=1) |

end: (Pk) (0<k<n 2 a(k) = (2) (output assertion)

input assertion: (¥k) (0<k<n 5 a(k)=1)

181

3. M 1s a machine which takes its input from a paper tape-like file

: (read only) and prints acceptance of certain data tapes. Apart from
| a finite-state control, its only memory is a pushdown stack, with the usual

operations of push, pop, and test-top-symbol. An unpoppable internal
state S of M is one in which the stack can never become shorter than it

1s in S, whatever the input, Is there an algorithm to test wuch states?

Answer: A given state S of M can be modified into the initial state

of a machine M" that accepts those inputs which make M's stack shorter than
it 1s in S. Standard methods construct a CF grammer for this language.

Equally standard methods test the language for emptiness. (An alternate

method of proof defines the set of unpoppable states recursively, by

a monotone recurrence,)

4, Answer: (i=0) L-to-R and two-way finite state machines recognize
finite-state languages. A one-counter machine recognizes only recursive

sets, while a two-counter machine CL-to-R or not) is universal. An
L-to-R one-counter machine can't recognize

Se TE BE i.3 ,3
{a b= ¢ inva” bY dv: ,

while a two-way one-counter machine can. Therefore,

L L L L L L = .01 = “02 11% “12 21 — "99 everything else

182

Spring 1980/81 COMPREHENSIVE EXAMINATION

ALGORITHMS AND DATA STRUCTURES

Problem 1. [20 points]. We wish to design a data structure that deals with objects, each of which
has a value. Many objects can have the same value. Specifically we wish to support the following

operations:

(1) Creation. Given an array of objects and the size of the array, create a data structure containing

exactly those objects, which supports the operations of deletion and query defined below.

(2) Deletion. Given an index to the array of objects, delete the corresponding object from the

data structure.

(3) Query. Answer the question: “Do all (remaining) objects in the data structure have the same
value?”

The operations of deletion and query are being done in real time. Therefore, the most important

property of this data structure is that the slowest of the operations of deletion and query be as

fast as possible in the worst case. Subject to this constraint, the expected time for the creation

operation should be as fast as possible.

Describe a data structure and the algorithms for implementing the three operations. Estimate the

time required for each operation. Justify any estimates that are not obvious.

For full credit, the time required for the deletion and query must be constant in the worst case, and

the expected time for the creation operation must be O(n), where n is the initial size of the input

array. Partial credit will be awarded for slower solutions. Specifically, if the deletion and query

operations require constant time, but creation requires O(n logn) expected time, three quarters
credit (15 points) will be awarded.

Problem 2. [20 points]. Someone wishes to generate bad binary search trees quickly, given a set of
keys and a distribution of the expected frequency of search keys. There are limits to how bad the

trees can be, however. Specifically, each key must appear in the tree exactly once, and the tree

must have the required order property. That is, that if the tree is traversed in symmetric order

(inorder) the keys are reached in alphabetical order. When searching for a key, the probability

that it is actually in the tree is negligible, and the probability that it is between any adjacent pair

of keys in the tree is known. |

That is, the input consists of n, the number of k¢_s in the tres, the n keys, and an array, freq[0. . n].
If we let keyy denote —oo and let key, denote +o, then freg[i] contains the frequency with
which the sought key will be between key, and key;.;. The tree that is desired will have the
longest external path length, weighted by the entries of freq.

(a) [15 points] Design a polynomial time algorithm to find the tree with the worst possible expected
search under the assumptions above and show that your algorithm works. Make your algorithm

asymptotically as fast as possible. (Hint: you may use without proof the fact that in this tree no

key has two non-null sons.)

(b) [5 points] How fast does your algorithm run? Justify your estimate. Express your answer as
O(f(n)), for some suitable f(n).

183

Problem 3. [20 points]. Let G be an directed graph, with a weight, which may be any integer
(positive, negative or zero), given for each edge. For a given vertex v, we define a zero-cycle to

be a path starting and ending at v, passing through at least one other vertex, such that the sum

of the edge-weights along the cycle is zero. No vertex may appear more than once along such a

cycle (except for the initial vertex which appears only at the beginning and end). For example, in

the graph shown below, v has a zero-cycle, but w does not. Show that the problem of determining

whether G has any zero-cycles is NP-complete.

—2

v Ww

-

i “ALGORITHMS AND DATA STRUCTURES

. Problem 1. We will create a new array of size n, where the element corresponding to each position in the

put array is a pointer to a counter containing the number of instances of that value. There is also a global

counter containing the number of distinct values in the data structure.

| The query operation can be done in constant time by comparing the count of the number of values to 1.

to The deletion operation can also be done in constant time. The link from the deleted object to its value
counter is followed and the value in the value counter is decremented. If this becomes zero, then .the global

E number of values counter 1s decremented.

The creation operation takes expected time that is linear in the size of the original array. If the size of the

array 1s n, we allocate a 2n-cell array to use for hashing the values. Some suitable scheme such as separate

chaining will be used to resolve collisions. We process each element of the array in turn, incrementing its
value cell if it exists, and creating one and incrementing the global number of values cell if it does not. Since

the expected time to find the cell using hashing is constant, the expected running time of this operation is

To do the creation operation in O(n log n) time, we can sort the original array and create an array of pointers
to the new positions of each object; then creating the value cells requires one pass through the sorted array. .

One person found an even better solution, for which creation is linear time even in the worst case. The

objects are put into a doubly linked list, and we create a new array containing pointers to their positions in

this list. A count 1s kept of the number of adjacent pairs (in the linked list) which have different values.

The query operation can still be be done in constant time by comparing this count to O.

The deletion operation is done by deleting the corresponding object from doubly linked list. It is then

possible to update the count by comparing the deleted object with its predecessor and successor, and the

successor with the predecessor.

Problem 2.

(a) This solution uses the paradigm of dynamic programming. The idea is to solve all of the subproblems
in order from smallest to largest. Thus, the answers to the small subproblems are available when we try to

solve any larger subproblem.

In this case, it is first useful to use this technique to find the sum of the frequencies for all possible subtrees

(i.e. keys from 1 to 5). As input we have n, the number of keys, and the array freg[0..n}, with freg{:] equal to
the frequency that the sought key is between key; and key;4;. The keys keyp and key, are —co and co
respectively. We now define the array sumli, 5} to be the sum of freg{k| from 2 to 5. Only the entries with
1 <7 need be computed. The entries are computed in order of increasing j — 1; sums, | is easy to compute,
and if 1 < j then sumls, j] = sums,j — 1] + freq[s].

Armed with this array, we proceed to the main problem. Since in the pessimal tree no node has two non-null

. sons, the root 1s either the largest key or the smallest key. Define the weighted path length of a subtree to

be the expected search time for that subtree times the frequency that the sought key is in that subtree. Here

again we solve all the subproblems.

i Subproblems have two indices. Subproblem [i, 7] means that the sought key is between key[:i— 1} and
) key(s +1] and the given keys are key(:] to key[7] inclusive. Only the problems with ¢ < j are interesting.

Solving a subproblem means determining weather key(:] or key[s] is at the root of the pessimal subtree
for that problem and the weighted search time in that tree. Again the subproblems arc solved in order of

Increasing] —1 and the answers are stored in an array. If j — 1 = 1 then there are only two possibie trees and
’ the answer can be found quickly by exhaustion. Ifj — 1 > 1, then the pessimal tree with key(y] at the root

185

3 has weighted path length equal to the weighted path length of the pessimal subtree for subproblem [z, j- 1]
g plus the frequency that the sought key is between key[i —1] and key[7 + 1]. Similarly, the weighted path
1 length for the tree with key{i] at the root the weighted path length for subproblem [i + 1, 7] plus the same

frequency. Since one of these is the pessimal tree, a comparison will yield the answer to this subproblem.

After we have finished solving problem [1, n], the tree can be recovered. The root is known. The root of the
1 rest of the tree is known. This can be iterated to cause the tree to be returned in any convenient form. The

1 above discussion shows that the algorithm works.

f (b) The algorithm takes O(n?) time. For both the summirg and solving the main problem there are O(n?)
subproblems that must be solved. Each subproblem takes constant time to be solved. Unwinding takes only

O(n) time. Therefore the total time is O(n?).

Problem 3. The problem is clearly in NP, since a non-deterministic machine can find a cycle and verify that

] . its edge-weights add to zero, in time which is polynomial in the number of nodes in the graph. To show that
{ it is NP-complete, we can reduce the partition problem to it as follows: Given a set A=={a;,as2,...,an} Of

] positive integers, there is a set A’ C A such that 2,ear Gi=) 4.ca—as a if and only if the graph

; a as Gn

: —a —a2 Gn)

 - has a zero-cycle. (If you don’t like multiple edges between a pair of vertices, you can add extra vertices to
§ the graph above to get the same effect.)

1 This 1s because every cycle must pass through all the vertices in the graph above. Therefore a cycle is a
1 zero-cycle if and only if the sum of the weights of the positive weighted paths is equal to the absolute value of
1 the sum of the weights of the negative weighted paths. This defines a partition of the set A, and conversely

} any partition of A defines a cycle in the graph. This reduction can be carried out in time which is polynomial

1 Another solution is to start with the problem of finding a directed Hamiltonian cycle, which is known to
3 be NP-complete. Given a directed graph, to see if there 1s a Hamiltonian cycle, first label all of the edges

] with weight 1. Then choose any vertex w, and label all of its incoming edges with —(n — 1), where n is the
] number of nodes in the graph. If there is a zero-cycle, it must contain one of these edges, and hence must
1 also pass through n— 1 of the edges labeled 1. Because of the restriction that no node appears twice on
1 a zero-cycle, this 1s a Hamiltonian cycle in the original graph. Conversely, if the graph has a Hamiltonian
3 cycle, that cycle mill include an cdge leading into v and therefore be a zero-cycle. Therefere, the weighted

; graph will have a zero-cycle if and only if the original graph had a Hamiltonian cycle. This reduction can

] clearly be done in time which is polynomial in n, which proves that the zero-cycle problem 1s NP-complete.

ARTIFICIAL INTELLIGENCE

Problem 1. [Line labelling] The techniques work on the basis of a number of assumptions, such as the

thoroughness of the line finder (no missing or additional lines or intersnrctions). This would be impossible to
achieve for the kinds of objects in the pictures. They are designed to recognize three-dimensional objects

with special properties (e.g. faces are flat and every vertex is a junction of at most three edges) which are

not true of’many natural objects (such as airplanes). Although they would work for flat projections (which

1s what you mostly get from the air) they are not especially useful in that case.

Problem 2. [ATN’s| A straightforward context-free grammar cannot deal with natural language phenomena
such as agreement, and cannot be used to provide a semantically appropriate analysis for cases of “movement”

like ‘Which dog did you say the cat bit?“. By having registers that that can be set and read (and passed

up and down), ATN’s can handle these phenomena. It is interesting to note that there is current work on

extending the idea of context free grammars (via meta-rules of various types) to overcome the difficulties.

Problem 3. [Water witches]

(a) Production rules:

1. If wiggles and grass then stream.

2. If twirls and twitchy then stone.
3. If sand and stone then lake.

4. If jump and stone then lake.

5. If grass then not lake.

6. If wiggle and twirl then sand.

Situation (1) Grass and wiggle:

(Looking for stream (1))

Is the rod wiggling? —- Yes

Are you standing on grass? - Yes

At this point stream is established, but both may be present. If the program is smart it will recognize that

rule 5 can already be used, and will say ‘You are over a stream.” If it is not, it will take the rules in order

trying to establish a lake.

(Looking for lake (3))

(Looking for sand (6))

(Rod 1s wiggling (already established) (6))

Is the rod twirling? - No

(Looking for lake (4))
Is the rod jumping? - No

(Looking for lake (5))

(Grass 1s already established)

so lake 1s eliminated, all search is done and answer is ‘You are standing over a stream.”

Situation (2) No grass, wiggle, twirl and twitch:

(Looking for stream (1))

Is the rod wiggling? - Yes

Are you standing on grass? —- No

(Looking for lake (3))

(Looking for sand (6))

(Rod 1s wiggling (already established))

: Is the rod twirling? — Yes

so it 1s established that there 1s sand . . .

| (Looking for stone (2))
(Rod is twirling (already established))

| Is the rod twitching? — Yes

so it is established that there 1s stone. Answer: “You are standing above a lake.”

| (b) Planning:

Actions:
: Anneal

* Preconditions: none

Delete: Soft, n gnarls

i Add: hard, 0 gnarls
Transmogrify 1

: Preconditions: soft, at least one gnarl
Delete: n gnarls, m branches

Add: n— 1 gnarls, m + 1 branches

Transmogrify 2
Preconditions: hard,, at least one branch

| Delete: n branches

| Add: n— 1 branches

; Clone
Preconditions: none

Delete: n gnarls, hard

Add: 2n gnarls, soft

We have separated out the action of transmogrifying into the two cases depending on hardness. We also

ignore the possibility of applying the operator in cases where it will do nothing.

Initial conditions (2, 1, hard) [gnarls, branches, hardness].

The plan is:
(2,1, hard) 3 (2,0, hard) [transmogrify2]

= (4,0, soft) [clone]

= (3, 1, soft) [transmogrifyl]
= (2,2, soft) [transmogrifyl]

A simple difference driven search (4 la GPS) would not get an answer to this problem, since the solution calls
for making apparently backward movement.

Goal (2,2,?)— have (2,1, hard).

Difference = branches; need to add.

Try Transmogrify 1 — preconditions: needs to be soft.

Try Clone — no preconditions =» (4, 1, soft).
applying Transmogrifyl = (3,2, soft).

Difference = gnarls; need to remove.

Try Anneal — precondition none = (0, 2,hard):

Difference = gnarls; need to add.

Failure — there 1s no way to add gnarls if there are none.

The plan would eventually be found by an exhaustive backtracking or breadth-first search.

| (c) Proof:

] Axioms (using arithmetic in the obvious way):

Since we are always dealing with one rod, we can treat the operations as one-argument functions from

: situations to situations. Similarly, hard and soft can be predicates associated with situations. It wouldn’t
1 harm anything to carry along a variable z standing for the rod, but it isn’t of any use either.

Predicates:

: hard(s), soft(s), gnaris(n, s), branches(n, a).

Operators (functions from situation to situation):

anneal, transmogrify, clone.

Axioms:

Vs soft(s) v hard(s)
Vs =(soft(s)a hard(a))
Vs hard(anneal(3))
Vs gnaris(0, anneal(s))
Vs, nbranches(n,s) D branches(n, anneal(s))
Va soft (a) D aoft(transmogrify(s))

1 Va hard(a) D hard(transmogrify(a))
1 Vs, n, k soft(s) a gnaris(n, s) A n > 0 A branches(k, a)

D gnaris(n — 1, transmogrify(a)) A branches(k + 1, transmogrify(a))
Vs, k soft(s) A gnarls(0, s) A branches(k,s)

Dgnarls(0, transmogrify(s)) A branches(k,transmogrify(s))
Vs, n, k hard(s) A branches(0, s) A gnaris(k, a)

Doranches(0, transmogrify(a)) A gnaris(k, transmogrify(s))
Vs, n, k hard(s) A branches(n,s) An > 0 A gnarls(k,s)

1 D branches(n — 1, transmogrify(s))A gnarls(k, transmogrify(s))
1 Va aoft(clone(s))
: Vs, n gnaris(n, s) DO gnaris(2n, clone(s))
: Vs, n branches(n, s) D branches(n, clone(a))

: To prove: you cannot produce (1, 1, ?) from (1,2, soft). Informally: A soft rod can never decrease its branches
1 without losing all its gnarls forever after.
3 Proof: To decrease branches, it must be hard and then transmogrified.
4 To become hard it must be annealed.

3 If it 1s annealed it loses all its gnarls.
£ There 1s no way to add gnarls to a rod that has none.

] Axioms and proof using stage numbers:
: Predicates:

! hard(a)
soft(s)
gnaris(n, 3)
branches(n, a)
anneal(3)

transmogrify(s)
clone(s)

| 189

where the last three are interpreted as meaning that the named operation was applied to stage $s — 1 in order

to produce stage a. Take stage O as the initial state.

[1]Vs a > 0 D (anneal(s) V transmogrify(s) V clone(s))
— every stage after the initial one comes from some operation —

2]Vs anneal(s) D—(transmogrify(s) V clone(s))
3] Vs transmogrify(s) DO —clone(s)

~~ — only one operation per stage —

[4]Vs3m, nm > 0 A n > 0 A branches(m, a) A gnaris(n, a
— there exist some number of branches and gnarls at each stage —

[5] Vs soft(s) V hard(s)
[6] Vs =(soft(s) A hard(s))
[T]Vs anneal(s) DO hard(s)
[8] Vs anneal(s) DO gnaris(0, a)
[9] Vs, n branches(n, a) A anneal(s + 1) Dbranches(n,s+ 1)

[10] Vs soft(s) A transmogrify(s+ 1) Dsoft(s+ 1)
[11] Vshard(s)Atransmogrify(s + 1) Dhard(s+ 1)
[12] Vs, n, k soft(s) A gnaris(n, a) A n > 0 A branches(k, a) A transmogrify(s+ 1)

Dgnarls(n — 1,34 1) Abranches(k +1,s+ 1)
[13] Vs, nn, k soft(s) A gnaris(0, a) A branches(k, a) Atransmogrify(s+ 1)

Dgnarls(0,3 + 1) A branches(k,s+ 1)
[14] Vs, n, k hard(s) A branches(n, a) A n > 0 A gnaris(k, a) A transmogrify(s + 1)

D branches(n — 1, s+ 1) A gnarls(k,s+ 1)
(15]Vs, n, k hard(s) Abranches(0, a) A gnaris(k, a) A transmogrify(s+ 1)

D Abranches(0,s+ 1) A gnarls(k,s+ 1)
[16] Vs clone(s) D soft(s)
[17] Vs, n, k branches(k, a) Aclone(s + 1) Dbranches(k,s + 1)
[18] Vs, n, k gnaris(n, a) A clone(s+ 1) Dgnaris(2n,3+ 1)

Given branches(2,0)A gnarls(1,0)A soft(0), we want to show that ~3sbranches(l, a) A gnaris(1l, a). Proof by
contradiction: assume the Conclusion.

Let z be any integer 0 < x <s such that branches(m,x — 1) and branches(n,z), where m > n. Such a
stage must exist since branches(2,0) and branches(1, a).

anneal(x) V transmogrify(z) V clone(x). [1]

Taking cases:

anneal(x) A branches(m, x — 1) Dbranches(m, x) [9] — contradiction,

clone(x) A branches(m,x — 1) Dbranches(m, x) [17] — contradiction.

So transmogrify(z).

Lemma 1: =soft(z— 1). Proof by contradiction: assume soft(z— 1).

37 gnarils(y, z — 1), [4]

and j = 0 orj > 0. Assuming soft(z— 1) A j = 0,

soft(z — 1) A gnaris(0,x— 1) Abranches(m, x — 1) Dbranches(m, x) [13] — contradiction.

Assuming aoft(x — 1) Aj > 0,

soft(z — 1) A gnaris(j,x— I) Abranches(m,x — 1) Dbranches(m + I, x), [12]

190

which is a contradiction since branches(n, x) and m > n. Lemma proved.

soft(z— 1) Vhard(z— 1). [5]

Therefore hard(z— 1), by Lemma 1. Since we have soft(0) and hard(z— 1), there must exist 0 < y < z
such that hard(y) and soft(y— 1).

anneal(y) V transmogrify(y) V clone(y). 1]

Taking cases:
clone(y) 2 soft(y) [16] — contradiction,

aoft(y — 1) A transmogrify(y) 2 soft(y) [10] — contradiction.

So anneal y). Therefore
gnaris(0, y). 8]

Lemma 2: gnarls(0,2) for all z> y. Proof by induction.

Induction step: Vk gnaris(0, k) OD gnaris(0,k + 1).

anneal(k + 1) Vtransmogrify(k+ 1) V clone(k+ 1). [1]

Taking cases: oo
anneal(k + 1) D gnarils(0,k + 1), 8]

clone(k + 1) A gnaris(0, k) Dgnarls(0, k + 1), [18]

and for the case transmogrify(k + 1), either hard(k) or soft(k) by [5], so

soft(k) Atransmogrify(k + 1) A gnarls(0, k) DO gnaris(0, k), [13]

if soft(k), otherwise 3jbranches(s, k)by [4], andj = 0 orj > 0:

hard(k) A transmogrify(k+ 1) A gnaris(0, k) A branches(0, k) D gnarls(0, k), [15]

hard(k) A transmogrify(k + 1) A gnaris(0, k) Abranches(y, k) Aj > 0 D gnaris(0, k), [14]

so the inductive step is proved.

Base of induction: gnaris{0, y) by assumption. End of Lemma.

Therefore gnaris(0, a) since s > x > y [Lemma 2], but this contradicts the initial assumption that
gnaris(l,s). Q. E. D.

191

ARTIFICIAL INTELLIGENCE

Problem 1. [10 points]. What major difficulties would you expect in applying line-labelling tech-
niques (Waltz, Huffman, Clewes, etc.) to the problem of analyzing aerial photographs to detect

roads, airports, missile launchers, etc.?

Problem 2. [5 points]. Why are ATN parsers better than ordinary context-free grammars for
natural language understanding?

Problem 3. [three parts, 15 points each]. You have been hired as a consultant by Acme Dowsing

International to help them apply AI to improve the profitability of their water exploration teams.

They have asked your help in several ways.

(a) [15 points] Acme’s expert dowsers have over the years built up a set of’ rules of thumb for
deciding what is causing the rod to dip. Somebody tried to get them to write down their rules,

and produced the following:

o If the rod wiggles and you are standing on a patch of grass, then there is an underground
. stream below.

o If the rod twirls and is twitchy then you are over a buried stone.

e If either you are above a sand formation or the rod jumps, and also you are over a buried
stone, then there is a lake below.

e There is never a lake below a patch of grass.

e Whenever the rod wiggles and twirls you are above a sand formation.

Acme wants to replace its expensive experts with a computer program that will tell what kind

of body of water is causing the dip. Put these rules into a production rule form (of the kind
used by MYCIN, but without certainty factors). Show a dialog that would be produced by a
straightfor- ® ard backward chaining diagnosis program, for each of the following situations. Its

result should be something like “*You are over a lake” or ‘You are over a stream”. The dialog will

include questions asked of a semi-skilled dowser’s helper who manipulates the rod and can answer

questions like “Arc you standing on a patch of grass?” and “Is the rod wiggling?” but who has no

idea about what is underground.

Situation (1): The helper is standing on a patch of grass and the rod wiggles.

Situation (2): The helper is not standing on a patch of grass and the rod wiggles, twirls, and
twitches.

Note: The words used in this problem are intended to be taken as purely formal, and no conclusions

should be made on the basis of their ordinary meanings. For example there is no relationship

between “wiggling” and “twitching” and “jumping”.

192

(b) [15 points] The dowsers have also discovered over the years that in certain situations different
| rods work best, depending on the number of branches and gnarls they have. In the old days they

combed the forest for appropriate rods. Later they learned that there were alchemical methods

for modifying rods, and that they could start with one that wasn’t right and get the one they

wanted. Only the little old rodmakers knew the secrets of producing good rods. The company

wants to decrease its dependence on these rather unpredictable and sassy fellows by automating

the rodmaking process. They have analyzed what the rodmakers are doing and have found that

there are 3 processes obeying the following rules:

e If a rod is annealed it loses all its gnarls and becomes (or remain;) hard.

| o If a rod is transmogrified, then if it is soft one of its gnarls becomes a branch, otherwise one
of its branches falls off.

e If a rod is cloned, then the number of gnarls is doubled and it becomes (or iemains) soft.

| e Whenever an operation would call for removing a branch or gnarl and there are none, the

operation has no effect on the rod at all.

e Anything not mentioned above is assumed to be unchanged by the operation (e.g. annealing

| does not change the number of branches).

| Your job is to create a knowledge base for a STRIPS-like robot planning system which can be

used to generate a sequence of operations to be carried out given a raw rod and a desired form

for the finished product. It should be done in a general enough way that data describing new

rod-modifying processes can be added without reprogramming.

| Show a plan for generating a 2 gnarl, 2 branch rod (any hardness) from a soft, 2 gnarl, 1 branch
| one. Show a trace of what would happen if you tried to generate it with a difference driven planning

system (like GPS).

(¢) [15 points] One of the little old rodmakers has argued for years that he cannot produce a 1
gnarl, 1 branch rod from a 1 gnarl, 2 branch rod using any combination of the known operations.

The boss has had him keep trying, in hopes he is wrong. Represent the operations in predicate

calculus using a situation variable and outline a proof that it is impossible. You do not have to

give the proof in detail.

| 193

HARDWARE SYSTEMS

Problem 1. e.

Problem2. (2) F (0) F (¢) T (d) F (¢) F (f) T

Problem 3. 3. Memory addresses require only 15 bits, so all can have a 0 in the most significant bit. So let’

{ IO addresses be distinguished by having a 1 in the most significant bit. This leaves 15 bits to encode 100 10

port addresses: any 2-out-of-15 code does the job. Each address decoder then has to test the most significant

i bit, and the appropriate two of the remaining bits.

Problem 4. (a) T (b) F (¢) F (d) T

Problem 5. (a) 4 (b) 6 (¢) 2d) 7) 8H) 1,2 (g 1,2,3, 4th) 50 1G 5

Problem 6. (a)

4Nil | |
C
D

InGing|a
EL |
H

JONA—————————————

(b) 256 X 4.

(¢c) 10 AND gates: ABCD’, A’BC’, FGH, E’, BCD, CDE’'H, FGH’, AB'CD, ABEF, A’BC’,
AB'CD'FGH’. (F G is implemented as FGH + FGH’.)

16 inputs per AND gate (each variable and its complement).

4 OR gates (1 for each function).

Problem 7. In horizontal microprogramming, each gate is directly controlled by a singie, separate bit in the

microinstruction. In vertical microprogramming, functions are encoded in one or more fields; each field is

decoded, and the ouput from the decoders goes to the gates. Horizontal microprogramming allows greater
parallelism, but takes more space.

Problem 8. The microprogram control unit uses overlap, so that the next microinstruction is already being

fetched while the current one is being executed. Since the test outcome is not known until the end of the

current microinstruction, the branch must be delayed one microinstruction cycle.

194

E HARDWARE SYSTEMS

. Problem 1. [10 points]. Several fundamental-mode state tables are shown below. Such tables are
used to describe the operation of sequential circuits built from cross-coupled gates or unclocked

flip-flops. In particular, one of these state tables describes the operation of a positive-edge-triggered

| D flip-flop. Which one?

Hint: How to read fundamental-mode state tables: Parenthesized entries indicate stable states. In

table (c) below, suppose that the circuit is in state A with input 01 (i.e. CLK = 0 and D = 1).

Then if the input changes to 11 and then 10, the circuit will traverse the states shown by the
arrows.

(a) CLK, D (b) CLK, D
S 00 O01 11 10 S 00 O01 11 10

A (A) B B (A) 0 A B (A) (A) B 0

B (B) A A (B) 1 B A (B) (B) A 1

| (c) CLK,D (d) CLK, D
S 00 01 11 10 SS 00 01 11 10

} A (4) (A> 5 (4) 0 A (4) B (4 (4 o

F CLK, D (f) CLK, D
S 00 01 11 10 Q S 00 01 11 10 Q

A (A) (A) C B 0 A B Cc 4 4) o

B A A (B) (B) 0 B (B) (B) A A 0

C D D (€C) (€C) 1 C (C) (C) D D 1

D (D) (D) C B 1 D B Cc (OD) (Db) 1

(2) CLK, D (h) CLK, D
S 00 01 11 10 Q S 00 01 11 10 Q

A | 4) (4 ¢ ¢ 0 A | (4 4 ¢ B o
B A A (B) (B) 0 B A A D (B) 0

C D D (CC) (CO) 1 C D D (C) A 1

- D (DY) (OD) B B 1 D (D) (DD) C€ B 1

195

3 Problem 2. [6 points]. In a memory-mapped I/O system, input/output ports are addressed as
; memory locations and may be accessed by any memory-reference instruction. Computers that use

memory-mapped I/O include the PDP-11, VAX-11, 6809, and 68000. In an isolated I/O system,

input/output ports have their own address space and may be only by accessed by special 1/0

instructions. Computers with isolated I/O include the PDP-8, HP21MX, 8080, 8086, 280, 28000,

and MCS-48. Answer TRUE or FALSE to each of the following questions.

(a) With isolated I/O, separate buses must be provided for the memory system and for the I/O

system.

(b) With memory-mapped I/O, memory locations and I/O ports must have the same maximum
access time.

: (c) With a processor designed for isolated I/O, memory-mapped I/O may be used at the discretion
; of the system hardware designer.

(d) With a processor designed for memory-mapped I/O, isolated I/O may be used at the discretion

of the system hardware designer.

(e) Vectored interrupts cannot be provided in a system with isolated I/O.

(f) I/O port addresses in a memory-mapped I/O system may be assigned in disjoint segments of

1 the memory address space.

: Problem 3. [4 points]. A particular computer system with 32K bytes of main memory and 100
I/O ports uses memory-mapped I/O. If the address bus contains 16 lines, what is the minimum

3 number of AND-gate inputs that each I/O interface needs to decode its address? Explain your
4 answer briefly. (Hint: use “m-out-of-n” codes.)

| Problem 4.(8 points]. Two n-bit operands A and B are to be combined by two’s-complement
addition; the bits of each are numbered from O (least significant bit) to n — 1 (sign bit). Let S

denote the sum; let C(n — 1) denote the carry from bit n — 2 into bit n — 1 when A and B are

1 added; and let C(n) denote the carry out of bit » — 1. Indicate whether each of the following

conditions is a valid test for two’s-complement overflow. (The condition must be true if and only
if there 1s overflow.) Answer TRUE or FALSE.

| (a) C(n)# Cln — 1).
3 b) An —1)& B(n— 1) = C(n).

€) An —1)@Bn—1)# Cm).

d) An—)@®B(n—1)= 0and An — 1) 3£ Stn — 1).

| yr Problem 5. [10 points]. Memory hierarchies. Several different types of computer memory are listed
below, followed by certain memory characteristics.

(1) Semiconductor RAM (main memory)

(2) Semiconductor RAM (cache memory)

(3) Erasable Programmable Read-Only Memory (EPROM)

(4) Core memory

(5) Floppy disk

(6) Moving-head (Winchester) disk

(7) Head-per-track disk

(8) None of the above ,

For each characteristic below, list the memory type(s) above which have that characteristic.

(a) Erased by every read operation

(b) Lowest cost per bit

(c) Highest cost per bit

(d) Best for external storage in demand-paging systems

. (e) First type of memory technology used in computersyp y gy p

(f) Volatile :

(g) Random access capability

(h) Longest access latency

(1) Highest storage density (bits per unit area) in storage medium.

) (J) Highest storage density (bits per unit volume) in computer room.

197

| Problem 6. [12 points]. The following four boolean equations describe a 4-output logic function.
Apostrophes (’) denote compiementation.

F1 = AB'CD' + A'BC' + FGH + E' |

F2 = BCD + CDE’H + FGH'

F3 = ABCD 4+ ABEF + FG

F4 = A'BC' + AB'CD'FGH'

(a) [5 points] Draw a circuit diagram for F'1 using only 4-input NAND gates.

(b) [3 points] If the 4-output function is implemented with a read-only memory, what size ROM
is needed?

(¢) [4 points] If the 4-output function is implemented with a programmable logic array, describe
the organization of the PLA by giving:

e [2 points] The number of AND gates (also list the corresponding AND terms from the equations
above for each one),

| e [1 point] The number of inputs per AND gate,

e [1 point] The number of OR gates.

PrahJem. 7.[5 points]. Explain the difference between vertical and horizontal microprogramming.

| Problem 8. [5 points]. In some microprogrammed processors, conditional microprogram branches
take place one microinstruction after the branch microinstruction is executed. For example, the

following microcode implements the machine instruction DJNZ R ,ADDR (Decrement and Jump if

| Not Zero).
Microprogram

Address Instruction

5 Load R

i 6 Decrement R

1 Branchto 11 ifR = 0

1 8 Store R

1 9 Load ADDR
10 Store PC

3 11 Fetch next macro instruction

| In this example, instruction 8 is executed whether the branch is taken or not. Instructions 9 and

10 are executed only if the branch is not taken.

Now the question: Why is the microprogrammed processor designed this way?

198

NUMERICAL ANALYSIS

Problem 1. Let A!) = A. Then the algorithm for computing the Cholesky factorization goes as follows:

Fork =1,2,....,n

fie = 0, 1i=12,...,k— 1
| k

fer = (al)?

fit = aik/ fix i = k+1,...,n
| alr =al¥) — fu fik, j2s= k+l,...,n.

Thus n square roots and n3/6 + O(n?) flops (a combination of a floating multiply followed by a floating add)
are required for computing the Cholesky factor.

(a) If the matrix is 5-diagonal, then

fit=20 when1 < k ori > k + 2.

The above equations show that n square roots, and about 27 divisions and 3n flops are required for computing

the Cholesky factor.

F has only three non-zero diagonals;

0

0

and thus requires at most 3n — 3 words.

(b) The matrix A appears thusly:

GiaTg SL

0

A = .

0

After one step of the Cholesky factorization, the zeros are destroyed, so that n3/6 + O(n?) flops are required
for computing the factorization.

» .

199

(c) We can simplify the problem by permuting A({(n,n—1,...,1)«(1,2,...,n)) so that

0

PAPT =

0.

Now F requires 2n — 1 words; and n square roots, n — 1 divisions, and n — 1 flops are needed to’ compute
the factorization.

Problem 2.

(a) To apply the Aitken procedure for estimating f, we must eliminate kin the Sk term. This can be done

3 by noting that
1 co

Tk4+1 — Zk =P + > ark,

where &, = a,(A\,— 1). Then if we apply the Aitken scheme to

Ye = Tk41 — Zk,

J the extrapolated value will approximate S.

(bh) If |

1 then from yg, y1, ¥2 we can determine 8 since we have three unknowns 8, (, |. Hence if

Tr= a + Pk + a\f,

we can determine G precisely.

1 Problem 3.

(a) Note that

; ‘oe of of,
1 Tn — A=fz,90) — fle, 8)= —=(z, — a)+ (yp —B) +--+,
; oz dy

* . - dg - dg .

4 Hence 5 or
| 1 0\(zi, =a) _ (3 #\(m—a)
1 —- >= 1 Yn+1 —p 0 5a Yn — 8B

| Since

(aD =GD: —a 1 “\a 1)
; 1 o\/% af af

’ 3 3g | \ 9g 3 af 2d ag |’

3 (b) We wish to show
| 17°(A) < (a

when

Since the first rows of J{a,3) and J*(a, B) are the same, we simply need to check the second row of J*(a,8).
Now

dg J of §& 7) 0 3 3 s, ?)8g Of). (9f Sa, 99| |%) 9f) |9f} 199) |%
: dz Oz dy dz Oy oz| |0z dy| |0z dy

dg | (| 3 8

< |% (of| [af) L|ooz |\|0z dy Jy

dg dg
< 19414

The last step follows since ||J(a, 8)|| < 1. Thus |[|J*(a,B)|| <||J(a, B)i| when ||J(e,B)|< 1.

:

|

NUMERICAL ANALYSIS

; Problem 1. Linear systems 20 points]. Let A be a real, symmetric, positive definite matrix. In this
problem, we assume the matrix A is sparse and we wish to investigate means of taking advantage

4 of the structure. We desire to compute the Cholesky factor F of A so that FFT = A. Note that
since A is positive definite it is not necesssary to pivot for numerical stability.

(a) [9 points] Assume that as; = 0 when |j — ¢|2> 3, i.e. 4 is a five diagonal matrix. Describe
) an efficient variant of the Cholesky method for finding F. How much storage does F require? How

many numerical operations does your algorithm require?

(b) [5 points] A ssume that the first row and column of A are non-zero but that a;;= 0 when
12> 2,722, and i ¥ j. How many operations are required to find the factor F and how much
storage is required?

| (¢c) [6 points] Show how to reorder the matrix given in (b) so that the storage and the operations
; are reduced. Give a count of the number of operations after this improvement.

Problem 2. Acceleration [15 points]. Consider a sequence zg,k = 0, 1,. . . which satisfies the
relationship

A (oo)

i 5

zk =a + fk + »_ a,\E,
r=1

: where a, 8, and {a,, \r}®_; are unknown constants with |X\,|< 1 and |[X\;[> [Arg]

(a) [8 points] Given numerical values zg, Z1,Z2, 3, show how to use Aitken acceleration to
determine an approximate value of g.

j (b) [7 points] Under what circumstances will your algorithm yield the exact value of 8 when zy,
] Xi, zg, and z3 are given?

| Problem 3. Non-linear equations [25 points]. We wish to solve the system

] Y = 9(z, y)-

Let us assume that a solution exists, which we denote as x = a,y =f. Consider the following
iteration schemes:

A | I

Tnt+1= [(Zn,Yn) ZTpt1 = f(zn, Un)
Ynt1 =9(Zn, Yn) Yn+1 =9(z7 +1: Yn)

with zg = zg, yo = yg. Let

= _ [ZTn—oC = [Th—
n= (on — 3) = (53 = 5)

i so that

| where J is the Jacobian associated with f and g.

| (a) (15 points] Show that

Give an expression for J* (Q, 8), assuming §» consists of higher-order terms.

(b) [10 points] For a given matrix

3 __ [a b4 &)
we define ||4]| = max(ja|+ |b], |c| + |d}). Show that if ||J(a, B)]| < 1, then [|J*(a,B)[| < [I (e A).

SOFTWARE SYSTEMS

Problem 1.

z =f 1(z);

] while pl(z) do
begin

x i= f2(z);
if not p2(z) then

3 begin

1 while p3(z) do z:= f3(z);
x i= f 1(z)

| end
3 end

] Problem 2.

J (a) The following program assigns true to v if the activation environment is used, and false if the declaration
environment 1s used.

1 begin
boolean v,Z;

! function p;
3 p: ~ x

{ function q(r); function 7;
1 begin

f boolean Zz;

f X == true;

q:=r

end;

Zz := false;

v := q(p)
end

(b) Bleck-structured languages typically use the “declaration environment”. These languagssare usually

compiled, and greater runtime efficiency is obtained by static binding of variable references at compile-time.

LISP, which is usually implemented by an interpreter, provides greater flexibility by delaying binding until
run-time’ and thus uses the “activation environment”.

Problem 3.

(a) Static links are less efficient for resolving non-local references, because (possibly long) chains of pointers

have to be followed; with displays, a single indexed, indirect addressing operation 1s sufficient.

Static links are more convenient and economical to maintain, especially if the langauge permits procedural/

functional parameters or call by name, both of which require context changes that are not simple pushes or

pops of the activation record stack.

1 Co It can be assumed that variable references are much more frequent than the context changes which require
] updates of the static chain/display. This favors displays.

4 However, it can also be assumed that the vast majority of variable references are either local or global to the
entire program. Program global variables can be stored in a separate, static area, and be accessed directly.

1 This favors static links.

f (b) Neither static links nor displays are needed; local variables are in the topmost activation record pointed
1 to by the stack pointer, and, as mentioned in part (a), program globals can be stored in a separate, static
| areca and be addressed directly. So the non-local accesses allowed are particularly efficient.

1 Problem 4.

(a) Because G1 is unambiguous, whereas G2 is ambiguous.

(b) (1) Associativity and precedences of operators (“,” and “”).

(2) There will be fewer states in the generated parser, so generation time, parser size and parsing time Co

! will all be reduced.

Problem 5. The line numbers refer as closely as possible to those of the original program.

i 7. T:=10 + U;

! 9. V:= T;

1 5. repeat
i 7. PQ = PQ — 10;

1 , 9. S:=8S+PO
| 10. until PQ < 10

{| PQ 1s a new temporary’ holding the value that was previously P * Q. Optimizations:

i (a) Substitution of 10 for Q everywhere: constant folding.

1 (b) Elimination of lines 1 and 2: dead variable (redundant store) elimination.
(¢) Elimination of line 3, and replacement of P by R everywhere: copy propagation.

1 (d) Movement of lines 7 and 9 out of the loop: code motion.

(e) Replacement of (Q + U) by T in line 9: common sub-expression elimination,

(f) Replacement of “+” in line 9 by “—” in line 7: reduction in strength.

1 (g) Elimination of P from loop: induction variable elimination.

Problem 6.

(a) Deadlock in monitors can occur in many ways. The most obvious is having a procedure in monitor A

2 call a procedure in monitor B, and vice versa. If one process calls the procedure in A at the same time that

3 another calls the procedure in B, neither call will be able to complete because both monitors are locked.

] Deadlock in a message-passing system would occur if process 1 was waiting to receive a message from process
EE 2, which was itself waiting to receive a message from process 1.

(b) Starvation occurs when some process does not get a resource it wants; for example, because higher-

priority processes monopolize the resource. Deadlock implies that process(es) are permanently blocked, and
4 cannot recover without outside intervention. With starvation, it remains possible that the process will

eventually get the resource and be able to continue.

(c) The following solution "ses an array of semaphores, one per process.

processi: while true do

begin
non-critical section;

P(semi);
| critical section;

V(sem{is + 1 mod 10})
end;

| The required initialization is to have every semaphore except sem[l] equal 0, and sem[l]= 1.

Problem 7. (a) 21, 1000, 6, 6, 6. The'idea here is that a long job (52) keep some short jobs (J3, J4 and J5)
| waiting for a long time under FCFS. T1= 21 is to ensure that J2...J5 are all already in the queue when

the large job (J2) starts.

(b) 21, 100, 100, 50, any. The idea this time is that a short job (J4) keep at least two earlier, longer jobs
(J2 and J3) waiting at least an extra 10 time units under SIN.

(c) 20, 15, 20, 10, 10. Short jobs get high priority; this is one way of implementing SIN. Alternatively:

| I, 1, 1, 1, 1. If the queue never contains more than one job at a time, the scheduling method is immaterial!

(d) 100, 50, 100, 10, 6. The idea here 1s to cause at least 3 preemptions, costing an extra context switch

: cach (note that preemption actually causes two context switches, but at least one 1s always required to
: run the job, whatever the scheduling method). The above jobstream causes 3 as shown below (* indicates

preemption):
Jl— * J2 = * J4— * J5 — J4—=]J2—-J1—J3.

SOFTWARE SYSTEMS

| Problem 1. Structured Programming [8 points]. The following is an adaptation of a program
extract that was actually published (!). Rewrite it in a clearer fashion, by applying the principles

1 of structured programming.

Al: z = f1{z);
| L1: if pl1(z) then
| begin

if p2(z) then go to LI;
B1: if p3(z) then

begin

z = f3(z);
go to Bl

} ’ end
go to Al

end

Problem 2. “Funarg” Problem (10 points]. Consider a block-structured language (e.g. Algol60) that

| allows a formal parameter, say FP, of a function, say F, to be a function name. When FP is used
in an expression within F, the function represented by the corresponding actual parameter, say

| AP, is invoked. There are at least three possible environments in which it could be executed:

(1) The ‘‘activation environment’: the environment at the point of-call of FP in the expression.

(2) The “binding environment”: the environment at the point of call of F, when FP was bound

: to AP.

(3) The “declaration environment”: the environment at the point of declaration of the function

1 represented by AP.

The choice of which environment is actually used in a particular language is a language design

i decision.

(a) [6 points] Write a program extract in some informal high-level notation that would assign a
4 different value to a variable V depending on whether the “activation” or “declaration” environment
; is used.

(b) [4 points] Which of the three environments listed above is commonly used in block-structured
; languages (e.g. Algol60)? In LISP? Are these choices consistent with the philosophies and features

of these languages? Explain briefly (5 lines maximum).

207

Problem 3. Static Links versus Displays [6 points]. Two alternative methods of implementing
references to non-local variables in block-structured languages are “static links” (or “static chains”)

and “displays”.

(a) [4 points] What considerations apply in choosing between these two methods?

(b) [2points] Certain languages (e.g. BCPL and C) allow a procedure to access only local variables
and variables global to the entire program (i.e. declared at the top or program level). How does

this affect the implementation of non-local variable references? .

Problem 4. Parsing [6 points]. The following is a simple grammar for lists of identifiers separated

by commas or semicolons: |
G1: L::= CL| L;CL

CL::=id| CL, id

id stands for an identifier, and can be considered a terminal symbol.

An alternative grammar for the same lists is:

G2: L::=L;L| LL |id

(a) (2 points] Amutomatic parser constructor would normally prefer to deal with G1 than with
G2. Why?

(b) G2 can be used as the basis for automatic parser construction, provided some additional

information is provided.

(1) [2 points] What information is necessary?

(2) [2 points] What are the advantages, if any, of using G2 instead of Gl when constructing an
SLR or LALR parser?

208

| Problem 5. Optimization [10 points], Apply the standard code improvement transformations
| (optimizations) used by optimizing compilers to the following program segment. Show the op-

timized program and identify the optimizations used, stating the type (class) of each. Work entirely

in the source language; do not generate code. You may assume that no two variables are aliases of

each other, and that all variables except P and Q are live on exit. P and Q are dead on exit.

| I. P:=3;
2. Q=P+T;
3. P.-.-R

4, s .-.-0;

5. repeat

6. P.—P—1;

i 7. T:=Q + U;
8. S:=S +4 P*

1 9. Vi=@+U

3 10. until P <1

! Problem 6. Synchronization [10 points].

: (a) [2 points] Give an example of deadlock caused by monitors or message-passing.

(b) {1 point] What is starvation? How does it differ from deadlock?

(c) Suppose we have ten processes (numbered 0 through 9) which occasionally wish to have

! exclusive access to some resource. Any process that is not currently using the resource is allowed
to work as it pleases. A process 1 which requires the critical resource cannot use it unless no other

| process 1s using it and process ((i — 1) mod 10) was the last process to use it.

(1) [6 points] Using semaphores (or arrays of semaphores), monitors, or messages, describe how
the above synchronization may be implemented. Do not write detailed code!

| (2) [1 point] What is the appropriate initialization such that when the system is restarted it
appears that process 0 has just used the resource?

209

Problem 7. Scheduling [10 points]. Consider the following jobstream presented to a scheduler:

Job. Arrival time Processing time required Priority

J1 0 T1 low

J2 5 T2 medium

J3 10 T3 low

J4 15 T4 high
J5 20 TS high.

Arrival times and processing times required are given in the same time units (e.g. milliseconds).

Assume there is an overhead of 0.1 time units involved each time the scheduler changes the job

being run. For each of the following conditions, supply integral values for the processing times T1,
T2, . .., T5, so that the condition is satisfied for the above jobstream:

(a) [3 points] First<come first-served scheduling results in at least twice as large a mean response
ratio as shortest job next scheduling. :

(b) [3 points] Shortest job next scheduling causes the response time of two jobs to be at least 10
time-units longer than they would be under first-come first-served scheduling.

(¢c) [2 points] Non-preemptive priority scheduling is equivalent to shortest job next scheduling for
this jobstream.

(d) [2 points] Preemptive priority scheduling has an overhead of at least 0.3 time units more than
non-preemptive priority scheduling.

Note: Use your intuition about the scheduling methods involved to arrive at suitable processing

times; it should not be necessary to do detailed calculations.

210

|

THEORYOFCOMPUTATION

Problem 1.

(a) The following assertions assume that the domain of all variables is the natural numbers; i.e. relations

such as 0 <x are implicit.

ly :VK.x < kD alg] =0

i £3 :Vk. x < N Dag] =0 |

J ys : Ve.< N Dalk| = (# of pairs (i’, j°) such that foo(s/,7) =r Ad <i)

i ls: Ve.x < N Dak] = (# of pairs (¢/,7") such that foo(i’,j’)) = skA(# <iV({E' =itA7 <j)
: ls: Ve.£< N Das] = (# of pairs (i’, j°) such that foo(s',7)=rAt’ <i)
: £7: Vo. xk < N Das] = (# of pairs (¢,7') such that foo(+,3) = k)

| £3 : (£7 assertion) AVk.k <kDal[s]< 1

done : (£7 assertion) A ((k > N A Vk.a[k]< 1) v(k< N A alk] > 1 AVe.k <k Da[s]< 1).

The assertion at £g is not absolutely necessary since the assertion at £4 can still be proved without it. The

expression (i’ < 1V (= 1A 5 <j) at &5 is a bit tricky. Another important point is that the assertion at
£7 needs to be kept as part of the later assertions, since the partial correctness of the program is a statement

5 about foo, not about the array a.

(b) We need to show that the loops at £5, 24, ¢s, and £g all terminate. The first and the last are easy, since

they can be shown to execute at most N times. The Zs loop terminates because j 1s incremented on each

| pass through the loop, while iremains constant, so by induction we can show that eventually foo(i, j) > N.

Similarly the sequence foo(0, 0), foo(1,0), foo(2,0),... is strictly increasing, so eventually foo(i, 0) > N for
| Some i .

| Problem 2. If both A and B are regular, then so is A (© B. To prove this, let M4 =(Q, ZL, 6, qo, F) be
a DFA accepting A, where @ ={qo,...,q9m} is its set of states, F CQ is the set of final states, and

6: Qx ¥—@& 1s the transition function; and let Mpg = (R, &,n,ry, G) similarly be a DFA accepting
| B. We can construct a non-deterministic finite automaton Mop which accepts A (© B as follows: let

| Mio = (@ X R,Z,v,(90, m0), F X G), where the transition function 7 : @ X R —2%># is defined by

| 1((g:: 75), a) = {(6(q:, a) 73), (gis m(r, 0))} for a€ E.

| Mcp works by simulating a step from either M4 or Mp on each transition, and “remembering” the state
; of the other machine while doing so.

To see that this accepts A (OB, first let w be a string accepted by Maop. If we examine the transi-
tions of Maxp as it accepts w, let a;,..., a, be the input symbols which cause transitions of the form
(qi, 7;) — (6(gi, ak), rj), and let by, ..., b; be the input symbols which cause transitions of the form (g;,7;)—
(q:,n(r;,ax)), then it is clear that ay... a, EA and b,... b,€ B. By appropriately adding null strings, we

! can convert @, ...a,t0z;...Zp and by... 0st0y;... yp so thatw =z, 91... Zn¥yn.

Conversely, if w = z;y;1...Zp,yn €A (O B, then M, accepts z, . .. X,, and Mp accepts ¥1... Yn, and the
sequences of transitions taken by these two machines can be used to construct a sequence of transitions of

Admp which accepts w.

Problem 3. The basic idea is that an autonomous pushdown machine can be made to “count” in binary on

its stack, and terminate when the count reaches a certain point. As an example, take k= 4, and let My be

the machine corresponding to the following diagram:

Start

5)

|

32

Co 0
3

|
34

stop

It is clear that M4 runs for four steps and then halts with the stack restored to its initial condition. We can :

similarly define Ms and Ms. Now, given M;, we can build M;43 as follows:

Start

31

S92)

Sk+41 : :

Pop and test 0 Push 1
Sk4-2

1

Sk4-3 |

| stop

This machine runs for 4 + 2N; steps, where N; is the numbei of steps that M; runs. Thus it is clear (and
can be shown by induction) that N; > 2*/* for i > 4. Therefore, we can let B = 2'/%,

| 212

=» THEORY OF COMPUTATION

p - Problem 1. [20 points]. Let foo(z, j) be a function whose arguments and value are always non-
negative integers, and such that for all z and j,

foo(, j) < foo(i +1, 3)

and foo(i, j) < foo(z,j + 1).

: The following program is intended to find the smallest k in the range 0 < k < N for which
foo(t, j) = foo(s’, j°) = k for two different pairs (i, j) and (i’, j’).

£1: k: =0

] Ly: alk]: =0;
! ki=k +1;

1 if k < N then go to £3;
1 £3 cq = 0;

2, : if foo(z, 0) > N then go to £7;

ls: if foo(i,j) > N then go to Zs;
a[foo(i, 7)] := alfoo(z, j)] + 1;
7:=7] + 1;

go to Is;

= lg: t:=1+ 1;
go to £4;

| ly: k:=0;

pC £3: if k > N then go to done;

if alk] > 1 then go to done;
k =k +1;

go to £3;

] done : ifk > N then print(" LOSE")
else print("The smallest k is", k);

| (a) [15 points] What assertions should be attached to what labels in order that its partial cor-
rectness can be proved by the method of inductive assertions? (Give just the assertions, not the
proof.)

(b) [5 points] What is involved in proving its termination? (Give an informal description; the
proof itself is not required.)

213

Problem 2. [20 points]. Let A and B be languages over an alphabet X, and define the “shuffle” of
A and B to be

AOB = {we |w = 21Y1...Zn¥n}

where each z; and each y; is either a member of ¥ or is the empty string, z1...2,€ A, and

Yy1...-Yn€ B. That is, A (© B is the set of strings that we can get by “shuffling” a string from A

into a string from B. If both A and B are regular sets, is A (O B regular? Give a proof of your
answer.

Problem 3. [20 points]. Consider the set S of autonomous, terminating, pushdown store machines.
“Autonomous” means they have no input. “Terminating” means reaching a designated “terminal”

control state. “Pushdown store” means that the only memory, except for a finite number of control

states, 1s a single pushdown stack, initially empty, over a two-character alphabet, say 0 and 1.

Show that S contains an infinite sequence of machines {M;|t =k, k + 1,...} for some integer
k, where each Mj; hast+ control states and runs for at least B* steps before terminating, for some
constant B > 1, which is independent of i. That is, show that S contains machines whose running

time 1s exponential in the number of control states.

[214

1 Magic Number

. Spr i ng 1980-81 Computer Science Comprehensive Exam
Written Exam ‘

| Saturday, May 9, 1981 (9:00 12r00; 1:30 - 4:30)

READ THIS FIRST

] 1. The exam contains questions drawn from six areas of computer science.
The total possible score is 360 points, 60 in each area. Hint:

3 6 hours equal 360 minutes, this may help you plan your time.

: 2 Please do your best to relax during the lunch break. You may not
i consult any references or colleagues or write drafts of answers

| during thi s period. Just relax.

| 3 Be sure that you have all 16 pages of the Exam. Your answers are to be
| written in blue bobks. Use a separate blue book for each of the six subject

| areas. Write your exam number in the upper right-hand corner of every page
on which you have any solution to any problem. Please write legibly, with

a pen or sharp soft pencil.

Ly Strategic considerations: (a) To pass this exam at the Ph.D. level, you
: should not leave any of the six subject areas completely blank. as there

wi 11 be a minimum competence requirement of roughly 20 points in each area.

The total scores of everybody who passes this minimum requirement will then
: be used to determine whether or not the written exam as a whole is passed.

You should plan your exam-taking strategy accordingly. (b) To pass this

j exam at the Masters” or CS Minor level, simply try to maximize your total

i score.

| 5. Show your work, as partia-1 credit will be given for incomplete answers.

6. This exam is open book: You may use whatever books and notes you have
: already brought with you and any library books provided by the committee.

7. Sign the honor code statement below and turn in this page with your 6 blue
books. This page will be separated from your blue books prior to the grading

3 process.

| 8. The committee suggests that you read over the entire exam quickly once, in
order to help in allocating your time. We also suggest that you refrain

| from panic. GOOD LUCK.

] 9. A committee member will be available to answer questions.

3 in recognition of and in the spirit of the Honor Code, | certify that | have
neither received nor given unpermitted aid on this exam.

a Signed _

