August 1981

Report. No. STAN-CS-81-869

Computer Science
Comprehensive Examinations
1978/79 - 1980/81

cdited by

Carolyn E. Tajnai

Department of Computer Science
Stanford University
Stanford, CA 94305

Computer Science
Comprehensive Examinations
1978/79 - 1280/81

edited by

Carolyn E. Tajnai

Department of Computer Science

Stanford University
Stanford, CA 94305

Abstract

The Stanford Computer Science Comprehensive Examination was conceived Spring Quarter
1971/72 and since then has been given winter and spring quarters each year. The Comp serves
several purposes in the department. There are no course requirements in the Ph.D. and the Ph.D.
Minor programs, and only one (CS293, Computer Laboratory) in the Master's program. Therefore,
the Comp fulfills the breadth and depth requirements. The Ph.D. Minor and Master’s student must
pass at the Master’s level to be eligible for the degree. For the Ph.D. student it serves as a “Rite of
Passage;” the exam must be passed at the Ph.D. level by the end of six quarters of full-time study
(excluding summers) for the student to continue in the program.

This report is a collection of comprehensive examinations from Winter Quarter 1978/79 through
Spring Quarter 1980181.

Foreword

In November, 1978, Frank Liang published the first collection of Computer Science Department
Comprehensive Examinations, STAN-CS-75-677, and the document proved to be a tremendous success. No
attempt has been made to emulate Frank’s style; this collection is strictly utilitarian.

The comprehensive examination serves several purposes in the department. There are no course
requirements in the Ph.D. and the Ph.D. Minor programs, and only one (CS293, Computer Laboratory) in the
Master’s program. Therefore, the comprehensive fulfills the breadth and depth requirement. The Ph.D.
Minor and Master’s student must pass the exam at the Master’s level to be eligible for the degree. For the
Ph.D. student it serves as a “Rite of Passage;” the exam must be passed at the Ph.D. level by the end of six
quarters of full-time study (excluding summers) for the student to continue in the program.

The written portion is a six-hour examination given winter and spring quarters. Until January, 1979, the
programming portion was a 5-day take-home project given the week after the written portion, and the two
were graded together. At the June 13, 1978, Faculty Meeting it was decided to separate them; the grading
would be independent.

During 1979/80 the Comprehensive Examination Committee became aware of the difficulty of equitably
grading a program written during a high stress, five day period. The following motion was passed at the June
10, 1980, faculty meeting.

Professor (Michael) Genesereth, representing the Comprehensive Examination Committee,
proposed that the following procedure be adopted for the Comprehensive Programming Problem.

“Students in the M.S. and Ph.D. programs (and Ph.D. Minor students who have passed the
written examination) in Computer Science must prepare a programming project of sufficient
complexity and quality to demonstrate competence in computer programming.

This project must be supervised and endorsed by a member of the Computer Science
Department faculty and submitted to the Comprehensive Examination Committee for final
approval. The project must be written at Stanford by the student, working independently.

The project must exhibit the use of sophisticated algorithms and data structures and be well
documented. Programs will be judged on the basis of correctness, efficiency, clarity, and style.
The project may be the result of CS293 work, although it need not be. The project should
represent at least 3 units of work.”

Professor Genesercth made a motion that the proposal be accepted; Professor (Forest) Baskett
scconded the motion, and it was passed.

At the faculty meeting on June 9, 1981, new guidelines Computer Science Department Requirements for the
Comprehensive Programming Project were adopted, for further clarification. See page ix of this report.

For those of you who are preparing to take the exam, lots of good luck.

Carolyn Taj nai
July 1981

iif

Comprehensive Examination Reading List
(Revised August 21, 1981)
ALGORITHMS AND DATA STRUCTURES
Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, Massachusetts, 1974, Chapters 1, 2, 3, 4.1-4.4, 5.1-5.4. Chapter 10.1-10.5 covers some of

the same material as Garey & Johnson (below).

Garey, M. R., and Johnson, D. S., Computers and Intractability, Freeman, San Francisco, 1978, Chapters
1-3.

Knuth, D. E., The Art of Computer Programming, Volume 1, Addison-Wesley, Reading, Massachusetts,
1968, Chapter 2 (except for Section 2.3.4).

ARTIFICIAL INTELLIGENCE

Barr, A.V. and E.A. Feigenbaum (eds.), Handbook of Artificial Intelligence, Volume 1., Kaufmann, Stanford,
1981.

Winston, P.H.,Artificial Intelligence, Addison-Wesley, Reading, Massachusetts, 1977, Part I, Chapters 1-9.

HARDWARE SYSTEMS
General:
Mano, M., Computer System Architecture, Prentice-Hall, Englewood Cliffs, New Jersey, 1976, Chapters 1-5,
7,8, 11.1, 11.2, 11.5, and 12; or you may substitute Gschwind, H. W. & McCluskey, E. J., Design of Digital
Computers, Springer-Verlag, New York, 1975, Chapters 2, 3, 5, 6, 7, 8.2, 8.3 (except for 8.3.5.1), 8.4.
Memory Hierarchy:

Matick, R., Computer Storage Systems and Technology, Wiley Intcrscience, Chapter 9.

Strecker, W. D., Cache Memories for PDP-11 Family Computers, 3rd Annual Computer Architecture
Symposium.

Computer Systems:

C. A. C. M. Jan 1978: CRAY-1, pages 63-72; IBM 370, pages 73-96.
Stack Computers:

Stone, H. Introdic tinto Computer Architecture, SRA, 75, Chapter 7.
I/0:

Kraft, G. D. and Toy, W. N., Mini/Microcomputer [lardware Design, Prentice-Hall, 1979, Chapters 3, 5, 6,
8, 9.

NUMERICAL ANALYSIS

Atkinson, K. E., An Introduction to Numerical Analysis, Wiley, New York, 1978, Chapters 1-3. Or you may
substitute Conte, S. D., and De Boor, C., [lementary Numerical Analysis: An Algorithmic Approach, 2nd
ed., McGraw-Hill, New York, New York, Chapters 1-2 and 4.1-4.8; or Conte and De Boor, 3rd ed., 1980,
Chapters 1-3.

Forsythe, G. E., Malcolm, M. A., and Moler, C. B., Computer Methods for Mathematical Computations,
Prentice-Hall, 1977, Chapters 2, 4.4, and 4.5.

Forsythe, G. E., and Moler, C. B., Computer Solution of Linear Algebraic Systems, Prentice-Hall, 1967.

SOFTWARE SYSTEMS
Aho, A. V., and Ullman, J. D., Principles of Compiler Design, Wiley, New York, New York, 1975.
Brinch Hansen, P., Operating System Principles, Prentice-Hall, 1973.

Dahl, O.-J., Dijkstra, E. W., and Hoare, C. A. R., Structured Programming, Academic Press, New York,
New York, 1972.

Graham, R., Principles of Systems Programming, Addison-Wesley, Reading, Méssachu'setts, 1975.

Stone, H. S.,Introduction to Computer Organization and Data Structures, McGraw-Hi& New York, New
York, 1972, Chapters 1-8. Contains basic knowledge about computer organization. Most students should
just skim this.

Watson, R., Timesharing System Design Concepts, McGraw-Hi& 1970, section 2.4, or Denning, P., “Virtual ,
Memory,” Computing Surveys, September, 1970.

THEORY OF COMPUTATION

Hopcroft, J., and Ullman, J., Introductionto Automata Theory, Languages, and Computation, Addison-
Wesley, 1979, Chapters 1-3, 4.1-4.6, 5-7, 8.1-8.5.

Manna, Z.,Introductionto Mathematical Theory of Computation, McGraw-Hi& 1973, Chapters 1, 2 and
3. Alternative introductions to logic appear in Mendelson, E., Introduction to Mathematical Logic, V a n
Nostrand, Chapters 1-2, or Enderton, H., A Mathematical Introduction to Logic, Academic Press, 1973,
Chapters 1-2.

McCarthy, J., and Taleott, C., LISP: Programming and Proving, (available from Stanford Bookstore) 1980,
Chapters 1-3.

RECOMMENDED COURSES

The Comprehensive Exam is meant generally to cover the material from the following courses: CS 111
(assembly language); 311 (hardware) 137A (numerical analysis); 107, 142, 143, and 246A (systems); 144A, B
(data structures); 156 (theory of computation); and 223 (artrfcial intelligence). Since the precise content of
these courses varies somewhat, the actual scope of the Exam will be determined by the references above.
Please note that the reading list includes some material involving structured programming as well as the
history and culture of Computer Science even though it does not correspond to any particular course.

The Exam will also assume a certain mathematical sophistication and a knowledge of programming. The
mathematical sophistication required may include knowledge of techniques such as induction, recursion,
“divide and conquer” (e.g., techniques in sorting algorithms, case arguments, etc.), and will be at the level
of an upper division undergraduate in the mathematical sciences. Proofs of correctness for simple programs
may be required. The programming knowledge required will be an ALGOL-like language (e.g., Pascal), a
knowledge of LISP, and possibly some assembly language. The exam will be “open-book-and-notes.” This
means you are allowed to use any materials you bring with you, plus copies of the above materials which
will be made available. Non-smoking and smoking examination rooms will be scheduled. Copies of previous
exams are available from the department.

PROGRAMMING PROBLEM

Students in the M.S. and Ph.D. programs (and Ph.D. Minor students who have passed the written examina-
tion) in Computer Science must prepare a programming project of sufficient complexity and quality to
demonstrate competence in computer programming.

This project must be supervised and endorsed by a member of the Computer Science Department faculty and
submitted to the Comprehensive Examination Committee for final approval. The project must be written
at Stanford by the student, working independently.

The project must exhibit the use of sophisticated algorithms and data structures and be well documented.
Programs will be judged on the basis of correctness, efficiency, clarity, and style. The project may be the
result of CS 293 work, although it need not be. The project should represent at least 3 units of work.

The text

Kernighan, B. W. and Plauger, P. J., The Elements of Programming Style,
McGraw-Hi& New York, New York, 1974.

discusses some matters of style.

Good luck.

Computer Science Department

Requirements for the Comprehensive Programming Project

This memo specifies the requirements for the Comprehensive Programming Project. It is intended as a
guide to students doing the Project, to Faculty members sunervisine them, and to future Comprehensive

Committees.

The policy on the Project was set by the Faculty in a resolution reproduced below. This memo also details
the present Comprehensive Committee’s interpretation of the resolution, and the manner in which it will be

implemented.

1. Faculty Resolution

As stated in the Charge to the Comprehensive Committee
(<CSD.FILES>COMPCHARGE.DOC), the following resolution was passed at the June 10, 1980
Faculty meeting:

“Students in the M.S. and Ph.D. programs (and Ph.D Minor students, who have passed the
written examination) in Computer Science must prepare a programming project of sufficient
complexity and quality to demonstrate competence in computer programming.

“This project must be supervised and endorsed by a member of the Computer Science
Department faculty and submitted to the Comprehensive Examination Committee for final
approval. The project must be written at Stanford by the student, working independently.

"The project must exhibit the use of sophisticated algorithms and data structures and be well
documentcd. Programs will be judged on the basis of correctness, efficiency, clarity, and style.
The project may be the result of CS293 work, although it need not be. The project should
represent at least 3 units of work.”

2. Complexity

The project must involve both design of algorithms and data structures, and actual programming.
It should bc such that the design aspect is significant. A program that is very long, but consists
only of a large number of trivial algorithms and data structures, is not adequate. Also,
implementation of a program from Someone clse’s design is not adequate.

As a guidclinc, a program that correctly and completely solves onc of the Comprehensive
Programming Problems sctbetween 1972 and 1980 would be considered sufficiently complex.
(Some of these were published in Tech. Report STAN-CS-78-677; the others may be obtained
from Carolyn Tajnai). However, these specific problems arc not acceptable as projects because
full solutions to them have been published.

1X

3. Quality

Projects will be judged on quality of both code and documentation. The judgement of code will
be based on correctness, clarity, style and efficiency. A program should be easily readable by an
experienced programmer conversant with the language used.

The importance of good documentation cannot be emphasized too strongly. Both internal and
external documentation are essential. Between them, they should clearly and concisely state at
least the following:

a. The purpose of the project: the problem it solves or the service it provides.

b. The architecture of the solution: program structure, major data structures, and the
relationships beween them.

c. Design decisions taken, alternatives considered and the rationale behind the choices made.
Reasons for choosing particular algorithms and data structures should be given.
Clarity/efficiency, space/time and other tradeoffs should be documented and justified.

d. The implementation: how data structures are implemented and details of algorithms used.

e. Details of test runs performed and the results produced. Testing should be sufficient to
demonstrate that the project achieves its stated purpose.

f. Citations and acknowledgements of all literary material used and all advice received from
others (see section 4).

Verbosity should be avoided; 8 to 10 pages of external documentation should normally suffice.

It is up to the student in the documentation not only to make clear what was done and how it was
done, but also to give some evidence that the way it was donc is superior to alternative
possibilities. The documentation should be written for a person having a good general knowledge
of Computer Science and programming, but no specific knowledge of the particular project or
project area.

Copics of projects of adequate complexity and quality may be obtained from Carolyn Tajnai.
Candidates are strongly advised to examine these.

4. Use of Projects Written for Other Purposes

A project written for some other purpose may be submitted as a Comprehensive Project, provided
it is written while the author is a student at Stanford. In particular the following are acceptable:

a. A course project;
b. A 293 project:
c. A project done as part of a Research Assistantship.

However, the evaluation of the project as a Comprehensive Project is entirely independent of any
other evaluation. For example, it is conceivable that a course project earning an “A” would be
insufficient to satisfy the requirements of the Comprehensive.

A program that is part of a larger program or system is acceptable as a Comprehensive Project,
provided:

a. The portion submitted is complex enough by itself to satisfy the requirements given above.

b. The portion submitted can be run and tested. The fact that the state of the rest of the system
prevented running and testing is not acceptable as an excuse.

5. Obtaining Advice

A student may consult the literature or seek advice on aspects of his/her project if necessary.
However, all assistance and sources of information must be acknowledged in the documentation.

Receiving unacknowledged information or advice constitutes an Honor Code violation.
Receiving and acknowledging an excessive amount of assistance is not a violation, but may lcad to
the project being rejected as inadequate. A student in doubt as to how much assistance is
reasonable, should consult the Faculty member supcrvising the project or a member of the
Comprehensive Committee.

If the faculty advisor has any questions related to the suitability of the project he/she should
consult the Comprehensive Committee.

6. Administration

The following procedure should be followed by a student wishing to tuke the Programming
Project:

a. Arrange to do the project under the direction of a Faculty member. Both the student and
Faculty member should ensure that thc project satisfies the requirements stated above.

b. On completion of the project to the Faculty member’s satisfaction, obtain a Project
Submission Form from Carolyn Tajnai, fill it in and have the Faculty member sign it. The
form states that the project is the student’s own work and that, in the opinion of the Faculty
member, it is adequate.

X1

c. Hand the signed form and the project to Carolyn Tajnai, who will pass it on to the
domprchensive Committee and eventually communicate the grade to the student. A graded
project may be examined, but not kept, by the student; it will be kept on file for three years
by the Department.

7. Grading

The Committee will grade projects as expeditiously as possible. In particular, it guarantees:

a. To examine a project and give an “immediate response” within ten working days. This
response will be either a grade. if the grade is not in doubt, or a statement that the
Committee requires more time to consider the project.

b. To grade any project handed in during the first two weeks of any quarter (including
Summer) in time for graduation at the end of that quarter.

These are minimum performance guarantees; the Committee will always endeavour to better
them.

As with the written Comprehensive Exam, the Programming Project can be passed at the MS or
PHD Ilevel. If a project is not considered worth a pass at the level required by the student, it will
be returned with comments, and the student will normally be given the opportunity to improve
and resubmit it. In the case of a project that is wholly inadequate or is submitted more than three
times in all, however, the Committece may require the student to undertake a completely new
project.

This document was approved by the Faculty of the Department of Computer Science at the June
9, 1981, meeting.

X1l

Table of Contents

Winter Quarter 1978/79

Written Examination. 000 0 0w e e e e e e e e 1
Solutions. e e e e e e e e 186
ProgrammingProject o000 e e e e 34

Spring Quarter 1978179

Written Examination.« « i 0 e e e e e e e e e e e e e e 37
Solutions. L L e e e e e e e e e e 49
Programming Project e e e e 63
Winter Quarter 1979/80
Written Examination. o000 e e e e e 71
Solutions. e e e e e e e e e e e e e e e 88
Programming Project e e e e e e e e e e e e e e 106
Spring Quarter 1979180
Written Examination. e e e e e e e e e e e e e e e e e ... 13
Solutions. e ... 128
Programming Project o o e e ... 149
Winter Quarter 1980181
Written Examinationand Solutions0 L 0L e e e e 165
Spring Quarter 1980/81
Written Examination and Solutions 0 . e e e e e e ... 183
Instructions and Honor Code 215

x i

WINTER 78/79 COMPREHENSIVE EXAMINATION

Theory of Computation

1. Turing (5 points)
(a) Why did A. M. Turing invent the “Turing machine”?

(b) Did he spend more years of his life working with abstract “Turing machines”
or with real computer61 (Give some background information to support your
answer.)

2. Resolution and Unifieation (7 points)
Prove by resolution that the following set of clauses is unsatisfiable.
P(g(z, w), 2z, w)
~P(z,y,u)V P(y, 2,v)V ~P(z, v, w) V Py, z, w)
~P(k(z), , k(=)

3. Sorted Languages (21 points)

Consider strings over an alphabet {a;, . . ., a,} whose letters are linearly or-
dered: ¢j<.a.<am. [f a= 2123 . . . z, is a string, let sorted(a) be the string
Zp,Zp, ... Tpyy Where p1pz. . . pnis a permutation of {1,2,.. ., n} and zp, < 25, <
< Zp,,.

If L is alanguage over {ai, . . . , @m}, define new languages a6 follows:

sortedsubset = {a € L |a == sorted(a) };
sorted(L) == {sorted(a) |a@ EL};
unsorted(L) == {a | sorted(a) == sorted(P) for some § € L.

Prove or disprove the following statements:
(a) If Lis context-free then sortedsubset(L)is context-free,

(b) IfL is context-free then sorted(L) is context-free.

(c) If L is context-free then unsorted(L) is context-free.

4, Context sensitive grammar6 (12 pints)

Determine the language generated by the following grammar. (Upper case
letters are nonterminals, lower case letters are terminals, and § is the start symbol.)

S — PABQ BU = VA
PA = PCT BV = VA
TA — BCT PV — PA
TB — BT PA —aX
CB — BC XA —aX
TQ—UQ XB — bX
CU—-UB XQ—qq

Hint: Consider the strings derivable from PA"B™Q.

5. Program Verification (15 points)

Invent a suitable inductive assertion at point B and prove the following program
partially correct with respect to the given input and output predicates. Generate
and prove all verification conditions.

Q

A
z>1

9) — (e 2

B

t

X
|22 A (zmody 7 0)

z = (X is prime))

Artificial Intelligence

1. Theorem proving (5 points)

It ha6 been suggested that work on theorem proving ha6 been shelved tem-
porarily. Supposing thie is correct, what would be the reason for this trend? State
your answer briefly.

2. Production systems (5 points)

Comment briefly on the differences between production system architecture6
when used for (a) psychological model6 of cognitive skill6 (such a6 PSG) and (b)
expert systems (such as MYCIN or AM).

3. Performance (5 points)

Pick ONE of the pairs of program6 listed below and contrast the approaches
used in the two programs of that pair. In light of the superior performance of the
“less intelligent” program, defend the continued use of Al in such problem areas.

(a) HEARSAY - DRAGON
(b) CHESS 4.6 [or 4.5 or 4.7)- CAPS
(c) INTERNIST [Pople's early version] - MYCIN

4. Choice of Task Domain (9 points)

Order the tasks below by the time it will take to produce commercial robots
to do them. State the general principle6 you use to make the ordering and explain
any exceptions.

Planning a meal
Cooking a meal
Serving a meal
Teaching arithmetic
Teaching soccer

Teaching (about) Shakespeare

5. Coneepts (9 points)

Briefly define each of the following Al concept6 and methods, and give a one
or two sentence description of the conditiona under which it i8 relevant:

actors

alpha-beta technique
British Museum algorithm
goal-directed search

LISP

Simon’6 ant

6. Games (27 points)

Consider the following problem:

You and an opponent are facing 11 stacks of pennies, of heights 11,10,8,...,1.
You will alternate moves, removing pennies, and each time someone takes the
final penny in a stack his OPPONENT will receive one point. During his turn,
each player must remove three pennies (three from one pile, two from one pile and
one from another, or one each from three separate piles). What should be your
first move? (Assume that your opponent will play perfect&, that you are trying
to maximize the number of points you will receive, and that your program can
have as much time and space as it calls for.)

(a) {10 points] Sketch the body of a recursive program to solve this problem.
You may omit the details, and use math notation and concepts liberally.

(b) [7 points] Now fill in the details of the above sketch, such as the base steps
of the recursion and the initialization of any necessary variables and data structures.

(c) [2 points] Wha language might be appropriate to implement this program
in (very briefly mention why)?
(d) [4 points] A ssume that, rather than being infallible, your opponents are many

and varied in their skill. How might “intelligence” be inserted into the program
so that it might attain very high scores?

(e) [4 points] How might a software analogue of “caching” be used to improve
the program’s efficiency? (If you prefer, you may answer this question using the
software analogue of any other hardware concept.)

Systems

1. Compiler runtime organization (15 points)

Suppose you are writing an Algol compiler for some machine whose instruction
set you know. Sketch how you would implement run-time display management
on this machine. Where would you store the stack pointer, display pointers, and
other necessary information? What would a stack frame look like?

2. One-pass, multi-pass compilers (5 points)

(a) What are the advantage6 of multi-pass compilers over one-pass compilers?

(b) Describe a way to handle code generation for forward jumps in a one-pass
compiler for the generation of code in-core and for the generation of relocatable

code on a file.

3. Exponentiation (12 points)

(a) [10 points] Pascal is sometimes criticized for lacking an exponentiation
operator. Suppose you intended to add this operator (denoted ss) to the language.
Define precisely the meaning of as#b, where a and b are integer or real expressions.
When will a##b be illegal (undefined)? What will be its type and value when it is
legal? There is no single answer-try to make reasonable choices.

(b) [2 points] Based on your answer above, does the usefulness of the exponen-
tiation operator justify the complexity it entails?

4. Parameter passing (8 points)

Suppose you are given a compiler for an Algol-like language. The language
does not allow to specify in which way parameter6 are to be passed but you know
that the compiler uses the same mechanism for all parameter types. Write one or
more program fragment6 to determine whether parameter passing is

— call by value
— call by value result
— call by reference

~— call by name.
Indicate how the answer can be derived from the result of your program.

5. Banker’s Algorithm (5 points)

What is the purpose of the Banker's Algorithm? What information does it
require?

6. Synchronization (5 points)

A critical region of a concurrent program may be executed only when no other
critical region is being executed. Let us analogously define a serious region, which
allows possibly one other serious region to be executed simultaneously.

Write an Algol-like program implementing this “almost” mutual exclusion for
process % of n processes, each with one serious region. Show formally that your
solution is correct in that (a) no more than two processes can execute their serious
regions simultaneously, and (b) if fewer than two processes are in their serious
regions, and other processes are waiting to enter their serious regions, then one
will eventually be allowed to enter.

You may use shared variables, semaphores, critical regions, and conditional

critical regions in your solution.

7. The Class Concept (10 points)

Write a Simula class implementing a bounded stack of integers. It should be
possible to specify the stack limit when individual stacks are created. Provide the
operations push, pop, and test-for-empty-stack, assuming that stack overflow and
underflow never occur. Show how to create and use instances of this class in a
program.

Hardware

1. Logic design (33 points)

(a) [5 points] Write the state table of the following circuit:

. 5 @ J @
I {4p]] |«c
K

it

1

>

4

(b) [8 points] Design a counter with the same state table, minimizing the number
of gates.

(c) [15 points] Design a synchronous counter with the same state table, using D
flip-flops. '
(d) [2 points] f¥ 2advantages of synchronous counters over asynchronous ones.

(e) [3 points] Give three reasons why one combinational circuit may be preferable
to another requiring fewer gates.

2. Logic Technology (7 points)

Briefly describe each of the following logics:
RTL

MOS

ECL

TTL

Schottky

Josephson Junction

ITL

3. Architecture (15 points)

(a) [1 point] What is a stack machine?
(b) [1 point] What is a register machine?
(c) [3 points] Whatare each’s advantages over the other?

(d) [10 points] Sketch how you would organize the CPU of a stack machine.
Draw a block diagram showing the major components and their interconnections.
It should be detailed enough to reveal how the stack is implemented in terms of

other components.

4. Celebrities (5 points)

Name an accomplishment of each of the following persons:
M. Wilkes

T. Kilbum

S. Cray

G. Amdahl

G. Bell

Analysis of Algorithms

1. Tree traversal (24 points)

(a) [15 points] The non-recursive procedure shown below performs an inorder
traversal of a binary tree without using a stack. However, certain key parts of the
procedure have been left out. You are to fill in the blanks by figuring out how the
algorithm works.

The tree is represented in the usual manner, with each node having pointers
to its left and right sons. The algorithm work8 by modifying certain pointers in
the tree and later restoring them. When the traversal is completed, the 7ree has

been returned to its original state.

t « root;
while ¢ £ A do begin
if left(t) = A then begin
visit(t); t — |
end
else begin
P = left(t);
comment p is a temporary variable used only in this block;
while right(p) 7 A and right(p) %
do p «right(p);
if right(p) = A then-begin
comment modify tree link to “remember our place”;

right(p) « 1; t — lefit(t)

end

else begin
visit(t);
comment fix up tree linx;
right(p) «— ;b=

end
end
end;

(b) [9 points] Now modify the above procedure so that it performs a preorder
traversal of the tree. Try to make as few changes as possible.

10

2. Data structures (20 points)

For each of the situations described below, you are to design a data structure
to represent the set of values so that the indicated operations can be performed
quickly. You should briefly describe how the operations are to be performed using
your data structure, and estimate the running time.

(a) [8 points] We are given a set of numbers, and we want to perform the following
operations:

(1) Add a number to the set, where this number i1s known to be larger than
all of the numbers currently in the set.

(2) Delete the smallest number from the set.
(3) Delete the median number from the set. (In other words, if there are n
numbers currently in the set, delete the [n/2] th smallest number.)
For parts (b), (c), and (d), consider the following situation. We have a supply
of jars with specified capacities. We want to perform the following operations:
(1) Add a new jar of a specified capacity to our supply.

(2) Given a volume of liquid, find the smallest jar that can hold this volume.
This jar is then deleted from our supply.

Answer the question for each of the following cases:
(b) [4 points] Jar capacities and liquid volumes are real numbers € (1, 50].
(c) [4 points] Jar capacities are real numbers; liquid volumes are integers € (1, 50].

(d) [4 points] Jar capacities are integers € [1, 50]; liquid volumes are real numbers.

11

3. Register allocation (18 pints)

Consider a hypothetical computer with the following instructions:

ri «n load register 4 from memory location m
rn + r om register 1 gets the result of rio m
ri « ri orj register igets the result of rierj

where o is a binary operation.

(a) [12 points] Suppose we are given a parenthesized expression involving only
distinct variables (memory locations) and the operator o, for example

((aod)oc)o(do((eof)og)).

We want to determine the minimum number of registers that are needed to compute
the value of this expression.

Since the variables are distinct, you need not worry about common sub-
expressions. You may use commutativity of the operator e, but do not assume
associativity. Also, assume that the computer has an infinite number of registers,
whose contents are initially undefined.

Give a formula for the minimum number of registers required by a given
expression, and explain how the computation should be arranged to achieve this
minimum number. You may introduce any additional notions that are appropriate.

(b) [4 points] Now assume that the machine has only & registers. What is the
length (number of operations) of the shortest expression that cannot be computed
by this machine?

12

Numerical Analysis

1. Stable Algorithms, well-conditioned Problems (21 points)

In numerical computation, it is important to distinguish between an ill-
conditioned problem and an unstable algorithm. In general, a problem is ill-
conditioned if a small change in the data defining the problem results in a large
change in the solution. An algorithm is numerically unstable if it introduces large
errors in the computed solutions to problems which are not ill-conditioned. Note
that conditioning is a property of the problem itself and that stability is a property
of the particular method used to solve the problem. Here is a list of common
numerical problems and possible methods for solving them. For each case, choose
one of the following which comes closest to describing the situation. Briefly explain
your conclusions by providing examples, pointing to error analyses, etc.

“Good-good”: Well-conditioned problem and stable algorithm.

" Good-bad” : Well-conditioned problem and unstable algorithm.

‘Bad-good” : Ill-conditioned problem and stable algorithm.

‘Bad-bad”: Ill-conditioned problem and unstable algorithm.

(a) Integration of a smooth function f(z) over [0,1] using Simpson’s rule with
equally spaced points.

(b) Differentiation of the same function using finite differences with equally spaced
points. '

(c) Computation of the roots of f(x) = 2> —>5z*=49z% —T7z24-2z using Newton’s
method. Note that f(x) == x(x = 1)3(z — 2).

(d) Inversion of the matrix

A =(.0001 1)
12

using Gaussian elimination with no pivoting.

(e) Inversion of the same matrix using Gaussian elimination with partial pivoting.

(f) Inversion of the positive definite matrix

(i 19

using Gaussian elimination with no pivoting.

(g) Inversion of the same positive definite matrix using Gaussian elimination with
complete pivoting.

2. One-sided finite-difference approximation (15 points)
(a) Find coefficients @, 8, and 7 so that

Y = af(z) + Bf(z +h) + 7f(z + 2h)

is a good approximation to the first derivative f(x). Note that this is a ‘one-sided”
approximation because no values of f to the left of x are used. Make whatever
smoothness assumptions you think appropriate.

(b) Obtain an error bound of the form
[y — F(z)] < ch*.
What are ¢ and k?

(c) How small must A be in order that this formula can be used to compute cos(z)
to four places of accuracy from a table of sin(x)?

3. Decomposition of a Matrix (8 points)

Exercise 9.8 in Forsythe and Moler, Computer Solution of Linear Algebraic
Systems, asks for a proof of the following “theorem”.
Any symmetric, nonsingular matrix A can be expressed as a product

A=LDLT

where L is a lower triangular matrix with positive diagonal elements, LT is its
transpose, and D is a diagonal matrix with 41 on the diagonal.

(a) Show by means of a simple counterexample that this “theorem” is false.

(b) What additional hypothesis on A would make the statement valid? (A hypoth-
esis less strict than positive definiteness is possible.)

14

4. Representation of floating point numbers (8 points)

A new minicomputer, the Avon 9000, has an unorthodox arithmetic unit.
When the following problem is executed, the operating system signals a division
by zero. What base might be used for the representation of floating point numbers
in the Avon 9000 firmware?

begin
H:=1.0/2.0
x: =2.0/3.0 - H
Y: =3.0/5.0 -H
Ee=X+X+X)—H
Fi=Y+4+Y4+Y+4+Y+4+Y)—H
Q= F/E
print @

end

5. p-norm (8 points)

The p-norm of a vector z is defined for 1 £ p < oo by

lalls = (lail?) .

(a) What 1s
limpoollzflp ?

(No proof required.)
(b) What is the purpose of the restriction 1 <p?

(c) What difficulty with floating-point arithmetic might be encountered in a sub
routine or procedure that computes the p-norm of a vector by directly implementing
the definition?

15

y‘

SOLUTIONS - WINTER 78/79

Theory of Computation

I. (a) In order to prove that things were uncomputable by algorithms, it was
desirable to have a simple device that could (in principle) compute all computable
things.

(b) He designed ancestors of electronic computers during World War II, as part
of his important code-breaking work, then he was chief architect of the Manchester~ -
Ferranti machines in the late 40s and early 50s. Thus, by far the greatest part of
his involvement was with concrete machines.

2. Setztg(Z, W),y «Z,u« W in the second clause; resolve it with the first
to get P(Z,2,v) V ~P(g(Z, W), v, w)V P(W,z,w). Nowset v t Z, w +— W and get
P(Z,z,Z)V P(W,z,W). Finally set z «= z, Z « k(x), W « k(z) and get 8.

3. (a) True, since sortedsubset(L)== LNa} . .. &}, and the intersection of context-
free with regular is context-free.
(b) False; since L = (abc)* is regular, hence context-free, but sorted(L) ==
{a™"c™ | n >1} is not context-free,
(c) False, by (a) and (b), since sorted(L) = sortedsubset(unsorted(L)).

4. Let m, n 2>_1. The only derivations from PA"B™Q that don’t lead to dead ends
essentially have the form PA®B™Q — PCTA™1B™Q —* PC(BC)"~1TB™Q —*
PC(BC)"B™TQ — PC(BC)™1B™UQ —* PBr—i+monyg —*
PBr—ltmyUBrQ — PBr—2tmyABnQ —* PVA—l+mpng
PA™tmB"Q, or the form PA"B™Q — a XA 1B™Q —* a"XB™Q —* a™™XQ —
a"b™qq

Thus, the terminal strings are all derived as follows, for some k> 1: S —
PABQ —* PA2BQ —* PA’B?Q —* PA’B3Q —* . . . —* PAFw+1BPaQ —*
af+1pFxqq, where Fi denotes the kth Fibonacci number.

5. At point B we have “z> 1 and (y- 1)) <z and z=VYw(2C w_C (v- 1) =
z mod w 5% 0)“. Proof: The first time we get to B this is clearly true. Going
backwards around the loop, before y «y =4 I we may assert “z>1and ! < z
and z= Vo2 <w<y= xmodw 5 0)"; before z¢=2A (xmody 5% 0) we
have “z > 1 and y‘z < zand z = VYu2 <w <[y—~1)= zmod w 5% 0)", All
verification conditions are trivial except we must show that z > I and (y- 1)2 <
z and z = Yu(2 < w < (y—1) = x mod w 5% 0)" and not “(y* < x) Az" implies
“z = (z is prime)*.

If not, we have one of two cases: (a) z false and x is prime. Then there is
awsuchthat 2 < w<y—1<+/z2<zand zmedw = 0, so w is a proper
divisor of z; contradiction. (b) z true and z is not prime. Then, since x > I,
we have x == uv for some proper divisors 4 and v, where 2 < u< v < X; in
particular, xmod u == (. Therefore 2 S u<y—1is false, ie, u >y, and
x == uv > u2 > y% contradiction.

16

Artificial Intelligence

1. (1) The decade-old flurry of excitement over Robinson resolution subsided
when few effective strategies were found for constraining the wmbinatorially ex-
plosive starch it entails. (2) Axiomatization of most problems is quite long and

. difficult, hence Al researchers are simply not able to bring predicate calculus
theorem provers to bear on most of the problems they tackle. (3) Many of the
recent AX “expert reasoning” programs are based around inexact plausible reason-
ing, rather than deduction, and therefore utilize a theorem prover only as one
resource, almost as a subroutine, rather than as the central driving mechanism,

2. (1) Complexity of data structures (one working memory consisting of a linear
string of tokens, vs. a set of specially-tailored structured DS's). (2) Placement
of permanent knowledge (only in rules, vs. distributed between rules and data
structures (the knowledge bases)), (3) Complexity of the rules (just a couple of
simple operations like pattern-matching and writing a token into memory, vs. the
ability to call on arbitrary functions, have side effects, be a meaningful chunk of
knowledge to a domain expert). (4) Complexity of the interpreter (simple rule
selection schemes, such as cyclic scan, vs. the ability to bring knowledge to bear
to choose the best rule to fire next),

3. In all cases, the former program is more driven by tables of low-level knowledge,
while the latter is more driven by inferencing off a knowledge base of high-level
information. For example, Dragon uses Markoy processes to simulate speech at a
low level, Chess 4.6 has some of its chess information microcoded into the Cyber:.. ‘-
Internist is built around tables of symptom-diseast correlations. The defense of
the Al approach comes by way of the following picture:

Cesf 1

>

R /4
size of preblem

17

The conventional non-Al approaches (x) such as microcoding can buy you
a hefty linear factor against the combinatorial explosion, but only a linear fac-
tor. Ultimately, such programs will not be able to be extended except at an
exponentially increasing cost. The current Al programs (o), wallowing LISP be-
hemoths by comparison, arc initially more costly (perform poorer), but ultimately
we expect that they have chipped away at the exponent in the problem, that
eventually (as machines and problems attacked grow) the curves will cross, and
Al programs will perform better, A possible example of this behavior already may
be seen with the Dendral program for enumerating structural isomers of a given
compound: knowledge of each chemical problem constrains the search through the

combinatorial space.

4. The sensorimotor coordination required to walk is far beyond what we can
handle now. Thus soccer, and to a lesser extent serving a meal, are quite along
ways away. Certain limited forms of cooking, those involving very few motions,
will be the first of these to arrive. The more intellectual tasks are certainly bound to
precede all of these physical ones. A great deal of thought has gone into arithmetic,
and is going on even now with CAI efforts. Thus that may be the first out of the
six tasks to be successfully carried out automatically. Planning a meal requires
so much less real-world knowledge than teaching Shakespeare that it will come
about much sooner. So our ordering is: Ist - teaching arithmetic, 2nd - planning
a meal, 3rd/4th — cooking a meal, teaching Shakespeare, 5th — serving a meal, 6th
— teaching soccer.

5. “Actors” are modular units of reprcscntqation, as’developed by Carl Hewitt of
MIT, and function by message-passing. They are appropriate to coordinating a
large network of simple processes.

“af technique” refers to a tree-pruning procedure for cutting down the amount
of nodes necessary to expand when carrying out a minimax search in an AND/OR
tree. By comparing the expected value of a branch against (a) the best value you
know you can force and (b) the worst value you know you have to settle for, the
program can avoid searching many branches. It is usually preferable to a blind
minimax search, and is commonly used for evaluating game trees.

“‘British Museum algorithm” refers to an exhaustive search, and is relevant
only when nothing else is available, or for tiny problems. The name comes from
the metaphor of having enough monkeys at typewriters eventually produce all the
works in the British Museum.

“Goal-directed search” refers to the problem-solving strategy of working back-
ward from a goal, setting up relevant subgoals, and choosing the next node to
expand as one that is necessary for achieving the goal or current subgoal. I$ is
generally useful whenever a sense of direction toward the goal is possible.

18

“Simon’s ant” refers to the behavior of an ant crawling on a beach: it appears
to follow a very complex path, but when we Iook closer we see that it was really
just avoiding obstructions, that the complexity was in the environment, not in the
performer. The point is that simple control mechanisms in a complex environment

can produce very complex behavior.

6. (a) Best (S, par) =
max; ; tes[par X Best (S with S; S; Si decremented by 1, —par)]

where S is the list of pile heights, initially S= (11 109876 54 3 2 1); wristhe
parity, which is 1 when, you play, -1 when your opponent plays; and where we
assume that the maximals, j, k& will be bound and available at the end of calling
Best; thus their final value dictates the initial move, and the final value returned
by Best is the score (hopefully positive!) we can expect to obtain against a perfect

opponent.
(b)
S+ (1110987854321)

par « [
Move + (0 0 0)

Best(S, par) =
. Tempscore «= 0
VSieS, if S3 < 0 then return — 999999999
else if 8% =0 then

Tempscore + Tempscore — par
Remove S; from S

if 3°,(S:) < 3 then
M={lSES)
Return Tempscorc — [par X length(S)]

Move + (ijk) maximizing the quantity
Tempscore - [par X Best(S with S;5;S; decremented, — par)]
which maximal quantity is Returned as the value for this function.

As above, the value of the top-level call of Best will be the expected final
score, and the value of Move will be the pile-numbers of the piles from which the
three coins should initially be removed.

(¢) Lisp comes to mind, not only because this is the Al section of the exam,
but also because of its ability to handle recursion, list deletions, forall/foreach
mappings, etc. In short, translating the (b) program into Lisp would take but a,
small fraction of the time it would take for Basic, Cobel, and other straw men.

19

Systems

1. The following solution works for most general register machines, such as the
PDP-10. More details can be found in Gries, etc.

One register is used for the Stack Pointer; a contiguous block is used for display
registers. All of these registers must be usuable as index registers on your machine.
With a fixed size display it is OK to limit the maximum procedure nesting, say
to seven levels. No display level is needed for top-level global variables, which
art directly accessible. Each display register points to the beginning of the local
variable area of the stack frame for its display level, so that variables on that
level may be accessed. When exiting a procedure, its static and dynamic links are

. found via the display register for the block level of the procedure.

d

$STACK FOINTER ——D ,
ﬁﬂ FRAnE e
DIsPLAY ALTivs :
y 'ﬂ BmvN
LocALS 1 e STATIC U\Phs
~ (g_a-—r BF ORawd®
~POXARE 0IVARIC Uni| | LovEL ® H&s pefuip ow
I 2 (ALidpys POIAT / z_% B81oCx STAICRRE
RRAnErER N ro PESYIWS F oF PRO6Ram)
; FreA ~) Ny PO TS sanc
- TRAAE A4S TNE
PARAETLS) R et Irusn
LETEN foderss PIsPAY cElL
OYRARIC LIRK F'M# 7o
STATK LINE

2 (e

STACK FLAmE A& Proceouge (ALl

2. There is no need for restrictions on the ordermg of declarations, since forward
references can be resolved in a later pass. .

The presence of separate passes adds modularity to the compiler, in that each
pass is concerned with a small part of compilation rather than every part (syntax
analysis, semantic analysis, code generation, optimization, etc.) at once.

If code generation is handled in a separate pass, then only this pass need be
rewritten in order to transport the compiler to another machine.

Optimization is facilitated because the compiler can always know, through
information obtained from an earlier pass, which subexpressions will be needed
later, how many registers will be needed later, etc.

20

Also, the debugging capabilities in modern Lisp languages make it very easy to
check the partially-complete program, fo change the sign in front of “par" and
try it again, etc., compared to compiled Ianguages (and interpretive ones without
a ‘“break package”).

(d) Modelling the user seems appropriate. We can imagine creating and using
a large knowledge base of models for various types of players (neophyte, mathe-
matician, etc.), and trying to quickly ascertain which “stereotype” our current
player falls into. Each class would have its own special weaknesses which could
be taken advantage of. In addition, a special model could be accreted for each
individual who played the system, and it could thereby know and exploit his own
weaknesses (e.g., laying a trap which a perfect opponent would ignore).

(e) The results of some of the searches may be stored in a place where they
can be accessed when later called for again, so as to avoid Fe-computing them. As a
simple example, consider the situations where after 4 moves, there were 18 distinct
ways to reach the identical state of the piles. It would be a waste to compute n™
where n! will do. Also, there are isomorphs that arise due to the fact that what
matters is merely the SET of pile heights; thus (1204004559 11) is the same
as (1200005594 11). We can imagine storing the results under the SORTED
list of pile heights, in this case (0000 1244559 11). After solving this once,
the second time we’d have the program check for such an entry, it would find and
return it immediately, without recomputing it.

21

Almost the same method is used in both cases: references to yet undefined
symbols are kept in a linked list. One usually uses the address fields of the jump
instructions to store the link to the previous forward jump to the same address.
When the symbol becomes defined, this list is traced and every member of it is
corrected to jump to the newly found address. When compilation is in-core, the
compiler traces the list. When relocatable code is produced, the linked list ends
up on the object file (since the links arc in the address fields of the instructions
being generated) followed by a “symbol define” loader command at the proper
place; upon encountering this command, the loader defines the symbol and traces
the linked list, correcting the instructions it previously loaded.

3. Below is one set of choices. There are many possibilities; grading will be
based on the simplicity and consistency of your answer. If your answer does not
allow static type determination, it will be penalized, for Pascal is strongly typed.
The following solution is that used in Algol 60, modified to allow static type
determination.

a integer, b integer: result type is integer;
b>0:ass0=1,ass(n + 1) =as(assn)
It is simpler to make even Oss0 = 1 rather than ERROR.

b < 0: a = 0: ERROR;
a=1,—1: ass(—D)
la|=>2:0
(since these possibilities are useless, a better solution is
simply ERROR for all b < 0).

a real, b integer: result type is real;
b > 0: Exactly as in previous case
b << 0: a = 0: ERROR, a5£ 0: assb=1/(ass(—b))

a real, b real: result type is real;
a > 0. assb = ezp(bsin(a))
a=0:b>0:assb= 0.0
b < 0: a*sb= ERROR
a < 0: axsb = ERROR (simpler to call it ERROR whenever a < 0)

The weight of evidence is against the inclusion of exponentiation. It is rarely
used, even in numerical analysis programs. Its rules are complex and hard to
remember, especially because of the many differing choices which can be made.
It adds other possible confusion to users of the language, e.g. what is the priority
of ##, and does it associate to the left or to the right? Pascal is such a simple
language that the added complexity of this operator would be very noticeable.

22

A contrary answer may receive full credit if it gave an application where
this operator is essential, and if the exponcntiation rules it presented are simple
enough. Advocacy of restricted exponentiation, such as integer powers only, may
also receive credit.” However, merely pointing out that exponentiation is easy to
implement is not sufficient justification. Simplicity of the language is more impor-
tant than ease of implementation; general exponentation is too complex from the
user’s standpoint. .

4. The following program solves the problem
procedure addl(a);a «a + 1;

procedure foo(a, b);
ze1;
if @ = 1 then comment name or reference; _
if b == 2 then print(“name") else print(“reference”)
else comment value or value - result;
addl (z);
if £ =2 then print(“value - result”) else print(“value”);
z+0;
foo(z, z + 1);

5. The Banker’s Algorithm was designed by E.W. Dijkstra for deadlock-free
resource management in operating systems. Each process must declare in advance
how many units of each resource it may need in order to run; while running each
process requests requests and releases units of those resources, staying within its
declared limits. If a process makes a request which cannot safely be granted without
allowing the possibility of deadlock, then that process can wait; eventually its
request will be granted. Each process is required to eventually return all of every
resource it has borrowed, assuming its requests are granted in a finite time. The
algorithm gets its name from the idea of making loans to processes, which are
later repaid.

8. The program and correctness proof, using semaphores, is take# from Brinch-
Hansen, Operating Systems Principles, page 95, changing every “1" to a “2". The
following program works for process %, given a global semaphore mutez, initially
2 (the only difference from the critical region case, where the initial value is 1):

repeat
wait(mutex);
serious-region-i;
signal(mutex);
non-serious-region-i
forever

23

7. Here is a possible answer. Exact adherence to Simula conventions is not re-
quired.
class stack(n); integer n;
begin
integer stackptr;
integer array stackarr[l:n];
procedure push(v); integer v;
begin
stackptr := stackptr+1;
stackarr[stackptr] := v
end push;
procedure pop(v); integer v;
begin
V ;== stackarr[stackptr);
stackptr :== stackptr- 1
end pop;
boolean procedure empty;
begin
empty := stackptr == (
end empty;
comment initialize stack to be empty;
stackptr = 0
end stack; -

Declarations of stacks:

ref(stack) a,b,c

ref(stack) array sa[1:20]

Creation and initialization of stack instances:

a = new stack(5)
b :- new stack(isj)
for i :== 1 step | until 20 do sa[i] :» new stack(i)

Stack operations:

a.push(23)

b.pop(k)
if sa[i].empty then sa[i].push(i) else sa[i].pop(j)

24

Hardware

1. (a) This is just a binary up-counter, state table:

a b c d
0O 0 0 0
1 0 0 0
O 1 0 O
1 1 0 O
0010
1 01 0
1 1 0
1110
0 001
1 0 0 1
01 0 1
1 1 0 1
0 0 1 1
1 0 1 1
0O 1 1 1
1 1 1

(b) You should have been able to get ZERO gates, because this is the binary
ripple counter.

T Q| ol | Q] T 9

o
4, —b A PB C >D
s ks AK'ﬁ/k‘&

o J, K it o legjc)"

25

(c) Using K-mapping leads to a mess with this problem; you should know how
to make D flip-flops act like T flip-flops as in the solution below:

5 g b Q o o @
ck p j dpR 733@ AbD |~
8 Q ‘ <} s

(d) Possible answers: Likelihood of glitching-is reduced because all flip-flops
change state at nearly the same instance; they keep the circuit conceptually simple
because only a single clock is used; the counter does not go through “intermediate
states” when counting, because all transitions are simultaneous; the time required
to change states is that of a single flip-flop, no matter how many the counter
contains.

(e) Possible answers: On an IC, the circuit requiring fewer gates often requires
more chip area than another circuit (the rule for ICs is: minimize wires, not gates).
The larger circuit may be faster, since minimizing gates often requires that gates be
cascaded, increasing the delay time. The larger circuit may involve prepackaged
MSI or LSI chips, and thereby be cheaper and simpler than smaller circuits not
taking advantage of prepackaged devices. The larger circuit may be simpler for
humans to understand, debug, etc. (many “structured programming” ideas apply
to hardware too).

26

2. RTL Resistor Transistor Logic - obsolete, slow, high power consumption; used
in early ICs
MOS Metal Oxide Semiconductor - slow, low power, high/very high density,
used for large memories, microprocessors, other LSI
ECL Emitter Coupled Logic - very fast, costly, high power, difficult to design
with, used for cache memories, high performance CPUs

TTL Transistor Transistor Logic - fast, fairly high pow er, cheap, easy to
design with, commonly used in many applications

Schottky A faster, more expensive TTL

Josephson Junetion Experimental ultra-fast logic (picosecond switching speeds)
based on superconductivity

IIL Integrated Injection Logic - fast, high density, fairly high power, rarely.
used; in some ways a refinement of RTL

3. (a) What is a stack machine? A machine, such as the B8700, in which a stack is
maintained by the hardware. Most instructions take their operands from the stack,
and hence have no address fields. There are no general registers; all computation
is done on the stack.

(a) What is a register machine? A machine, such as the PDP-10, IBM 360, ad
infinitum, which provides an array of registers for general use. Instructions can
address either registers, memory, or both. Stack manipulation instructions may
be available, but their use is optional.

(c) What are each’s advantages over the other? Stack machines, by eliminat-
ing registers, also eliminate the thorny problem of register allocation; also, there
are no registers to save and restore around procedure calls. Code generation for
expressions 1s greatly eased, for stack operations always put intermediate results
exactly where needed for continued expression evaluation. By eliminating register
operands, the number of addressing modes is reduced, simplifying the instruction
set. Since most instructions lack address fields, code can be very compact.

Register machines are usually faster than stack machines, for they lack the
overhead required to maintain the stack, and they are able to use high speed logic
for the registers (whereas the stack must be kept in slower main memory). Clever
programmers using registers to storeoften-accessed variables can produce programs
which run much faster than possible on stack machines. Register machines are more
appropriate than stack machine6 for the commonly used languages FORTRAN,
BASIC, COBOL.

The main idea is that the stack is kept in main memory, using a special
register for the stack pointer; other designs are possible.

27

Dia Lov (d):
fajram o 3 Stack orsami setion

n RA
AU [RAM | e]
. STACK
Amn.ur Stacs cowms
D EQENNT : e .
ENrence STKE
- @ Slaming)
e, AT
‘ [srack ron] . s
. ISTACK Peiv
STACK LIAIT -
P CONTROL,
PEGISTER| reusme s serromm
- T
D oAm |

E—D coarm GTH

4. M. Wilkes -Invented subroutine libraries; wrote first programming text; built

EDSAC
T. Kilburn — Invented index registers, virtual memory
S. Gray - Designer of the world’s fastest computers: CDC 7600, Cray-1,

Cray-2
G. Amdahl - Major figure in development of IBM 360; later started own

company, marketing a fast and relatively cheap copy of the 370 (called the 470 —

what else?)
G. Eell -~ Designed PDP-11; co-authored Computer Structures: Readings and

Examples.

28

Algorithms and Data Structures

1. (a) t «root;
while ¢ 74 A do begin
If left(t) = A then begin
VISit(t); t «| right(t)

end
else begin
o peleft(t);
comment D is a temporary variable used only in this block;
white Tsght(p) 58 aan d righi(p) 7 ¢
d o p+ right(p);
if right(p) == A thenb e gin
comment modify tree link to "remember our place”;
right(p) & ; + «=left(t)
end
else begin
visit(t);
comment fix up tree link;
right(p) — A j te=| right(t)

end
end 4
end;

(b) Simply move the visit(t) statement in the last else clause up to the beginning
of the corresponding then clause.

2. (a) Use a doubly-linked list with the numbers in sorted order, and keep pointers
to the first, last, and current median elements of the list. We also need a bit to
remember if the number of elements in the list is odd or even in order to update
the median pointer correctly. All operations can then be done in constant time.

(b) Use a binary search tree. All operations take O(log n) time, on the average.
To ensure O(log n) worst-case time, you must use one of the varieties of balanced
trees, such as AVL trees or 2-3 trees.

(c) Use an array of size 50, with the ith entry pointing to a sorted list of all
jars with capacities € [i, 1 + 1). Insert takes about n/100 steps, on the average,
while find-delete takes constant time. For very large n (say n > 2000), it would
be better to use some type of priority queue for each of the sublists. This reduces-
the time to O(log n).

29

It should be noted that we can also use the method of part (c) for part (b),
and vice-versa.

(d) Use an array of size 50, with the ith entry pointing to the list of all jars
with capacity 3. All operations take O(l) time.

3. (a) The minimum number of registers required to compute expression € is f(e),

where
f(variable) =0

_ [max(fla), r(@))y if fla) # 1 ()i
flere @) {f(c1)+ i,f i?f(:;=}[(m)-

For example, f (((a 0o b)oc)o(do((eof)og)))==2.

The order in which the operations should be performed to achieve this min-
imum number is recursively defined as follows: For each expression ey o e, if
f(e1) = f(e2), then compute the left operand e; first. Otherwise compute the right
operand first.

(b) The shortest expression with f(e) ==k 1 has the form e o €3, where €; and
ez are the shortest with f(e;) = f(e3) = k. Thus by induction on & the minimum
number of operators, g(k), satisfies g(0) =1, g(k) = 1+ 2g(k — 1); the solution is
g(k) = 2%+1 — 1.

30

NUMERICAL ANALYSIS

(1a,b)

(1c)

(1d,e)

(1£,8)

(2a)

Good-good,bad-good. If the data x, are spaced a distance h apart,

then a perturbation of one value f(xi) by a quantity & will affect

any estimate of the integral of f or the derivative of f at X by
O(eh) or 0(e/h), respectively. These results are inherent in the
two problems; Simpson's rule and finite differencesdo not introduce
avoidable errors.

Bad-good, for the problem as a whole. For isolating just the roots

0 and 2, the answer would be good-good. For the three multiplicities
of the root x=1, however, the problem is ill-conditioned: a change

in the coefficients of magnitude O(E) may correspond to a change in
these three roots of magnitude 0(£b). :
Good-bad,good-good. The inverse of the matrix A = Ei g] is .i _é] + o(e).

This does not change too much when A is changed slightly, so the
problem is well-conditioned. Gaussian elimination with partial pivot-
ing solves it stably; Gaussian elimination without partial pivoting,
however, is unstable because it involves a multiplication by L@,
which amplifies rounding errors.

Bad-good, bad-good. This matrix 15 nearly singular, so the problem

is ill-conditioned. For positive definite matrices, Gaussian elim-

ination is a stable algorithm, even with no pivoting.

Let us write
« f(x) = «f(x)
8 £(x+h) = B[£(x) + hE'(x) + KOE"(x)/2 + . ..]
¥ £(x+#2h) = X[£(x) + 2hf'(x) + 2028 (x) + . ..]
We wish to find values for d,% and ¥ so that the sum of these terms
equals Of (x) + 1f'(x) + o&f"(x) + O(hk), where k is as high as
possible. Since we have three parameters, we can in effect specify
the f(x), £'(x), and f"(x) coefficients in the sum. These should
be 0, 1, and 0. Thus we must solve
0 1 1 [« 0
0 h 2n ||f =
0 B3/2 2n| | ¥

31

(2b)

(2c)

(3a)

(3b)

The solution to this system turns out to be («,8,Y) = % (-% , 2, - %).
NOTE: An alternative approach would be to derive a formula that is exact

for the monomials f(x) = 1, x, and x2.

A satisfactory, but not completely rigorous, approach would be to apply
the formula derived in part (a) to f(x) = Jé Instead, let us observe
that the £"'(x) term in part (a) will dominate the error. Applying a
mean value theorem, we may write

flx+h) = £(x) + BEV(x) + B (x)/2 + O£ (§,)/6

f(x+2h) = f£(x) + 2hf' (x) + 207 (x) + lHPI""‘(G.Q)/B,
where £ :[.x x+h] and Eze[x x+2h], We now compute

a(f(x) + Bf(x+h) + Xf(x+2h)

= £'(x) + hef*"(g)/3-2n f"'($ /3.
Assuming that f"'(§) is continuous on [x,x+2h], the latter two terms may
be averaged, yielding

£ (x) - B (£))
for some 53€[x,x+2h].4 So we have at last
yt - £ (x), € l 25€[x x+21.l] (E)I
2

sin™ (x) | < 1 for all x, so we may require(1/3) h° < 0.00005.

~
1
That is, h g V0.000lS = 0.012

01
1 01 , for example.

For k = 1,...,0n=1, the submatrix formed from the first k rows and columns

of A should be nonsingular.

32

(&) Even g will probably trigger a divide-by-zero message, so the computation
of F is a red herring. The question is, in what base(s) b will-E come
out exactly 0O? The H := l./2. computation will be exact provided b is a
multiple of 2, and X := 2./3. = H will be exactprovided b is a multiple
of 3. So a sufficient answer is g_:_é or any multiple thereof. (Addi- .
tional possibilities exist, in which the rounding error would cancel in

the computation of E.)

Ga) [l = e x|

(5b) For p<1, " llp fails to satisfy the triangle inequality, and hence is

not a norm.

(5¢) For any p > 1 the quantity :§ lxi‘P may be very large or very small
compared to Ixil or “x"p . A direct implementation of the definition

risks unnecessary overflows and underflows.

33

Conputer Science Department - Comprehensive Exam Programming Project
Winter 1979 -- Thursday, January 4, 1:00p.m. to Tuesday, January 9, noon.
The object of this problem is to prepare an interpreter for the "linear
equation language" described below, This language defines the value of
variables implicitly by means of linear equations, instead of explicitly by

means of assignment statements. Your implementation should be on-line, i.e.,
interactive with the user.

Note. Your interpreter should be written in well-structured- eyt
understand code. It may be written in any "ALGOL-like" language (including
ALGOL W, SAIL, PASCAL) or in your favorite dialect of LISP. Other languages
may be used but only by special arrangement with the committee.

Here is the syntax for the language (vhich incidentally is c¢allad LILAID,
for "Linear Equation Language Allowing Nonexplicit Definitions"):
(variable) «~ A|B| . . . \Z‘a\b\ e (52 variables in all)
(digit) « of1]|2|3|%|5|6]7|8|9
(digit string) « (digit)|(digit string) (digit)
(constant) « (digit string)l(digit string) . (digit string)
(primary) «~ (variable)\{constant})|({expression))
(term) « (primary)|(term){primary) |(term)/(primary)
(expression) « (term)|+(term)|-(term)|(expression)+(term) |(expression)-(term)
(equation) « (expression) = (e}@ression)l(equation) = (expression)
(print statement) ~ (expression):

(statement) « (equation){cr) l (print statement)(cr)

Examples :
(variable) X
(digit} 1
(digit string) 14
(constant) 3.14
(primary) X
(term) xy/z
(expression) xy/z - 3.1'1
(equation) xy/z - 3.14 = x = w
(print statement) X:
(statement) X: (cr)
Here (cr) stands for the "carriage return" character, All blank spaces

and other characters not appearing in the above syntax are ignored. The
syntax is ambiguous with respect to constants: For example, the (term)
%3.14 can be regarded either as a (constant} or as (term){primavy)
where the (term) is 3.1 and the (primary) is L . This ambiguity
is resolved by the further rule that a (constant) may not be preceded
or followed by a (digit)

34

Expressions have their normal-meaning in mathematics; for example,
{(term){primery) stands for the value of the (term) times the value of
the (primary)

Note that each (statement) ends with a (cr) . The user of LELAND,
when prompted, types a (statement) ; the interpreter processes it and
prompts the user for another, repeating this cycle until the user gets tired
and stops the job. If an erroneous statement is typed, LELAND gives a
helpful description of the error and stops further evaluation of that
statement; the user Will be prompted to try again as if the offending
statement had not occurred. (Rowever, 1in an equation statement cf the
form @ =8 = y where " @ =8 " is OK but y is erroneous, tne "<& =8 '
equation will be accepted by LELAND.)

Initially all variables have undefined values, but each new equation
'defines one of the variables (perhaps in terms of others). For example,
after the three statements

Xty = 2

1

X-y = Z

X:
LELAND will print " 1+ .5z " indicating that the value of x must be one
more than half the value of z , based on the equations given so far. If

the next equation is " 2x = 3z ", the interpreter will know that x = 1.5
y=.5,Z=l.

14

In order to do this in a reasonably simple way, LELAND allows multiplication
only when at least one of the two operands being multiplied has a known value
based on previous equations; similarly, division is allowed only when the
value of the divisor is known and non-zero. Thus, LELAFD would complain
if the three statements above were followed by the equation " xy = z "; but
" xy = 2 " would be legal if either x or y had a known value.

All this is accomplished as follows: Inside LELAND, each variable is
considered to be either "independent" or "dependent". Initially all variables
are independent, but each valid equation makes another variable dependent.
Once a variable becomes dependent, it never becomes independent again.

A dependent variable is represented internally as a linear combination of
independent variables; in other words,

D = cO + clIl + .. + cka

where the c's are floating-point constants, the I's are variables that are

currently independent, and D is the dependent variable being represented.
If k= 0, variable D is said to be "known".

The stated restrictions on multiplication and division ensure that LILAND
can reduce any new equation @ =8 to the form

CREFCEIRIEIEE R

where the c's are floating-point constants with C5 £ 0 for j # 0, and

where the I's are variables that are currently independent. If k =., the

35

equation is either redundant (c0 = 0) or inconsistent (co# 0) , and the
user is given an appropriate message. If k>0, a coefficient c:' with

largest absolute value is selected and variable Ij changes from independent
to dependent. Its current value will be

lj = "CO/CJ- + Zl# i (-Ci/cj):[i 3
and the values of any other dependent variables that currently involve I;

J
will be simplified in accordance with this new value.

For example, after the equation " xty = 2 " above, LELAND will first
obtain
-2+x+y = 0

and then either x or y will become dependent. (IELAND is free to decide

which.) Say y becomes dependent, so that y = 2-x ; then the second equation
x-y = z will reduce to

-2+2x-z = 0 ,

hence x will become dependent and equal to 1+ .,5z . On the other hand,
if FELAND had decided to make X dependent instead of y after the first
equation, the second equation would have reduced to

2-2y~2z2 = 0 ,

making vy dependent and equal to 1- .5z . This new dependency would also
be reflected in the current value of X , vhich would change from 2-y to
1+ .52 .

When IELAND forms linear combinations of coefficients, the floating-point
quantity x+y is always replaced by zero whenever |xty | < 0.00001 max (|x7, ¥ |)
A similar thing havpens in floating-point subtraction. This gets sround
problems caused by rounding errors, (For example, 3 times 1/5 isn't
exactly 1 in floating-point arithmetic, so LELAND might not otherwise
realize that x 1s known after the equations

X = 3z+y+1
. = -Y/3
have appeared.)

Your job is to implement such a system. Hand in well-documented code,
together with examples of test runs that demonstrate its correct working in
well-chczen, nontrivial cases. Ee sure to devise a good way to indicate

syntactic and semantic errors to the user. Your program should be reasonably
efficient in its use of time and space.

36

SPRING 78/79 COMPREHENSIVE EXAMINATION
Algorithms and Data Structures

1. Searching (24 points)
Mr. J. H. Quick (a student) needs to search an ordered table

Alll < A2 <+ < Aln]

to find the largest j such that A[j] < z; and if z < A[l] he wants j to be zero.
But he doesn’t wish to use binary search, he prefers to use the following scheme
(depending on an integer parameter h):

ji=0; _
while j +h <nand A[j+h] <z doji=7+h;
while j+1<nandAj+1<zdoji=7+4+ 1

Fortunately he is using 8 compiler that will not compare A[j + A} with £ when
the test *j -+ h < n" fails; so this program will work, for all positive integers h.
He tried it with A = 10, but he wonders if there is a better value.

(a) Let filh, 5, n), flhy 7, 1), SRy 5, ™ Sl 5 n), ik, 7, n), and fo(h, 7, n) be the
number of times Quick’s program evaluates “j + h < n","A[j + h] < 2",%j 1=
J+R", Y41 <n", "Alj+1] < 2", and *j i= j -+ 1", respectively, as a function
of the given positive integers A and n and the final value of j. For example, if
h<nandi=0 we have fi = fa=fi=fs= 1 and 5= fo= 0. Express these
six functions in terms of the quantities |j/h},[n/A}, j mod &, and nmod h.

(b) Given n and h, determine the worst case of the algorithm, assuming that the
total running time is

8
fhgin) =14 flh 7, n).
1=l
In other words, determine the value of j that maximizes f(h, j,).

(¢) When n = 80, what is the best choice of A, in the sense that the worst case
running time is minimum?

(d) For large n explain how to choose an optimum #, and give an approximate
formula for the worst-case running time as a function of n when the best 4 has
been selected.

37

2. Height and depth in binary trees (20 points)

An extended binary tree is a binary tree in which all nodes are either “internal”
(branch nodes), having two sons, or “external” (leaf nodes), having no sons. At each
node z of an extended binary tree let h(s) be the length of the longest downward
path from x to a leaf, and let d(x) be the length of the shortest downward path
from z to a leaf. Thus, if z is a leaf we have h(x) = d(x) = 0, while if z is a branch
node having sons {(z) and t(x) we have

h(z) = 14 max(h(i(z)), h(r(=)),
d(x) = 1+ min(d(1(x)), d(r())).

(a) Draw an extended binary tree having d(root) =4, where the total number
of nodes is as small as possible.

(b) A height-balanced tree satisifies [h(l(z)) — h(r(z))| < 1 for all branch nodes
z. Prove that /1(x) < 2d(x) for all nodes x in a height-balanced tree.

(¢) Draw an extended binary tree having h(root) =T and with h(x) < 2d(z) for
all nodes x. Your tree should. have the smallest possible total number of nodes
subject to these conditions, (It need not be height-balanced.)

(d) Prove or disprove: In an extended binary tree having h(x) < 2d(z) for all
nodes x, the height of the root is O(log n), where 7 is the total number of nodes.

3. Algorithm design (168 points)

Suppose we are given a box of a specified capacity and a collection of objects of
various sizes, and we wish to pack the box as fully as possible. More formally, if the
objects have sizes {z1, z3,. . ., X,}, then we want to find a subset S C {1,2,.. ., n}
such that Zies z; is as large as possible, but not greater than the capacity ¢ of
the box.

Assuming that the z; are positive integers, design an algorithm to find an
optimal packing. Write your algorithm as a Pidgin-Algol program or in Knuthian
style. Say why you think your algorithm is good, giving estimates of its running
time and memory requirements. To facilitate practical considerations, assume that
¢ < 1000 and n < 100.

Note: Your program must output not only the size of an optimal packing,
but also a subset S of the objects such that S achieves this maximum.

38

Artificial Intelligence

1. Howard Cosell (60 points)

While the social issues raised by automation are important and difficult, few
could dispute the goal of creating an Al program to replace Howard Cosell. This
question deals with the design of such a system: a computer program capable
of following the action of a professional sports event, analyzing it, reporting its
analyses, and leaving no silent moments.

(a) {10 points] Basedon current AX work, what aspects of a sport would you
expect to make this problem more/less difficult? Cite specific aspects of specific Al
programs where appropriate in your discussion. Based on this, select an appropriate
sport that you will consider in the remainder of the problem. (If you truly are
unfamiliar with all professional sports, you may choose the task of commentator
for a live chess match.)

(b) (20 points] What kinds of information could be used by such a program, to
enable or merely to facilitate its operation? For each type, indicate an appropriate
representation (and/or data structure), a rough estimate of the amount of infor-
mation desirable, the difficulty of obtaining it, and its value to the program.

(c) [15 points] Sketch the flow of control through the program, Note how each
type of knowledge mentioned in part (b)above is accessed and used. (If you sup
plied alternatives for representing some type of information in (b), then choose
one of them here.)

(d) {10 points] What are the pros and cons of taking such a knowledge-based
approach? Consider, for example, changing the program to another sport, time
and space costs, debugging the system initially, etc.

(e) [5 points] Assume that you w ere going to spend about two years working on
this project (e.g. as a thesis). Which of the information sources you mentioned in
part (b) (and control structures you sketched in part (c)) would you include, and
which would you exclude? Explain your choices.

39

Systems

Problem 1. (5 points)

Give some comparative advantages and disadvantages of the following parsing
methods:

precedence
LL

LR

LALR

Problem 2. (5 points)

Given a directed acyclic graph representation of a basic block. program frag-
ment, what limitations must be imposed on the order of code generation?

Problem 3. (5 points)

What is aliasing (when this term is applied to programming languages)? Why
is it considered bad? What additional rules could you add to a language like Pascal
to reduce aliasing?

Problem 4. (10 points)

Dcfine a dcbugging compiler as one that allows the programmer to change
his program during testing without incurring the trouble or expense of complete
recompilation. Discuss a possible implementation of such a compiler. What types
of changes could you support? What information will you need at run time? How
does your scheme interact with the code optimization parts of the compiler?

Problem 5. (5 points)

Define binding time. Give an example of early and late binding of some
attribute. What are advantages and disadvantages of early and late binding?

40

Problem 8. (10 points)

Comment on the following proposal for a new program verification system:

“It often happens that one version of an algorithm is easier to prove correct
than another version. Instead of devoting effort to verifying the difficult program,
we should verify the easier program and write a program to show that the two
programs are, in actuality, functionally equivalent. The project is to write a general
purpose program to detect functional equivalence of any two given programs.”

Problem 7. (5 points)

Pascal binds the else clause in if-then-else statements to the most recent then
clause. Write an unambiguous, context-free grammar that enforces this binding
in the state generating rules,

For simplicity, assume that you are dealing only with assignment statement6
and conditional statements. Thus, the problem is to convert the ambiguous BNF
specification

<statement>> :i= <assignment>>| if <expression> then <statement> |
if <expression> then <statement> else <statement>

into an unambiguous grammar.

Problem 8. (5 points)

How is synchronization of concurrent processes normally done in a message
oriented operating system?

Problem 9. (10 points)

Activation record retention is a general programming language scheme that
can be used to solve the funarg problem in Lisp and the call by name problem
in Algol. Describe briefly how activation record retention can be used as a major
element in the implementation of an operating system that is based on monitors

-and is procedure oriented.

41

Numerical Analysis

1. Nonlinear equations (15 points)

(a) Suppose we are given the equation

ee—e *

z—sinhz4+3=0, sinhx = 5

and propose to solve it by a method of successive substitution in the following
manner:
29 1= some initial guess

g0 i =sinh(z®) =3, k=0,1,2,....

Show that this procedure cannot be expected to converge to a solution of the given
equation.

(b) How might we modify the procedure so as to achieve rapid convergence to a
correct solution, still using a form of successive substitution?

2. Well-conditioned problems; stable algorithms (25 points)

Given as data the coordinates (uj,ug) and (v, ¥) of two vectors 4 and v in
the plane, our object is to devise a stable algorithm for computing the angle ¢
between u and v.

(a) The angle ¢ can be defined by the formula

uv +u T
cosp 1= +uavy __uv

(W + @) @} + o2 [luflz ol

from which ¢ might be computed by taking the inverse cosine. We say in general
that a numerical problem is well-conditioned if a small change in the data defining
the problem results in only a small change in the solution. Show by means of this
formula that the quantity ¢ is well-conditioned as a function of the data u, ug,
v, w. (Hint: Take the partial derivative of cos¢ with respect to 43, and then from
this compute the partial of ¢ with respect to u;. By symmetry, ug, v;, and vy are
essentially the same.)

42

(b) Wesay in general that a numerical algorithm is stable if it does not introduce
large errors in the computed solutions to problems which are well-conditioned.
Show that computing ¢ by means of the above formula and the inverse cosine is
nof numerically stable.

(c) An alternative algorithm is the following. First normalize the vectors,

G, D=
© il [bll> -
then compute @:=||G— ?||2, 8:=||4 + ¥|]z . Now, compute
.__J} arctan(a/B), a<p
P = 1r—2arctan(f/a), a> 4.

Why is this algorithm better than the one proposed in (b)?

3. Linear least squares and band matrices (20 points)

The vector x that minimizes ||b—Az]||z satisfies the normal equations ATAz =
ATb. Suppose that A is m X n, where m >n, and has the property that for
1=1,2,...,m we have

a;jséOanda;k#O = |j—k|<w,
for some positive integer w. The matrix A is then said to be a rectangular band
matrix with band width w. (For this concept to be useful we should have w < n.)

(a) Show that ATAisa symmetric band matrix and determine its band width.

(b) Show that ATA is positive semidefinite, and positive definite if A is nonsin-
gular. Assuming ATA is positive definite, what significance will this fact have when
we need to compute the LL7 (== LU) decompositon of ATA?

(¢) If m>>nand you are given A a row at a time, how would you form ATA?

(d) Estimate the total number of multiplications needed to form ATA and to
compute the lower triangular matrix L in the factorization ATA == LLT. It suffices
to give the leading term.

43

Theory of Computation

1. Decidability (5 points)

Prove that in languages like Algol and Pascal, it is undecidable whether or
not a variable has been assigned a value before it is used,

2. Grammar6 (15 points)

In each of the following three problems, try to give ¢ grammar at the lowest
level in Chomsky's hierarchy (regular, context-free, context-sensitive, recursive).
You necd not prove that your grammar is at the lowest possible level.

a) [4 points] Suppose we want to describe a path consisting of straight segments
of length 1 inch, each of which is running in a northerly, southerly, easterly, or
westerly direction. Consider the alphabet A == {r,{}, where r means turn right,
| means turn left, followed by a move of 1inch in the new direction. A string
over A specifies a sequence of right and left turns and corresponding moves. Give
a grammar generating all those strings over A that describe paths ending in the
same direction as they start; e.g. /7 and I/l are elements of this language.

(b) [4 points] Consider the alphabet W = {n, s, e, w}, where the elements denote
a move of 1 inch ina northerly, southerly, easterly, or westerly direction. Give a
grammar over W that decribcs the set of all moves ending in the starting point.
For example, the path

can be described by the strings ne s w, en w §, and several others for other starting
points. Also note that ns is a valid path ending in the starting point.

(¢) [7 points] Use t he result of part (b) and specify a grammar for the language
of all closed paths in terms of A = {r,/}, with the meaning of r and / as in part
@). Each pathshould end in its starting direction, Of course, not all paths in
the language in part (b) have a counterpart in terms of 7 and /; for example, ns
doesn’t. The path need not be simple; for example, the string rrrrrrrris one
legitimate way to specify a square path.

44

3. Primitive Recursion (10 points)

A function over the non-negative integers is primitive recursive if it can be
defined from O (zero), the successor function =1, and the projection functions
Un(zy,...,Xx,) = Zm by function composition and the following recursion schema:

SO Y1y Yn)=9(Y1s-+ ., Yn)
f(z+lyyh...)yn)=h(xsyl’~.-:ymf(xiyh--.’yn))

where g and A are primitive recursive. For example, the addition function plus(z, y)
is primitive recursive since it can be defined as follows:

plus(0, y) =Ul(y), plus(z ; 1,y) = plus(z, y) . 1
The Ackerman function
a’(o’ y) =y, 1

a(z +1,0)=a(z, 1)
a(“ + 1’ Y + 1) = a(x: a(z + 1’ y))

is known to be nor primitive recursive. Prove, however, that for any fixed n the
function an(y) = a(n, y) is primitive recursive.

4. NP-Completeness (10 points)

Prove that the following problem is NP-hard:

Given a context-free grammar over the terminal alphabet {zj,.. ., Zn}, does
the language defined by the grammar include a string that contains each letter z;
exactly once?

Hint: Use the fact that the problem of determining the existence of directed
Hamiltonian circuits in a graph is NP-complete.

45

5. Demand paging (20 points)

Consider a program on a virtual machine capable of storing b “pages” of a
fixed size in its high-speed memory, While the program is running it references a
sequence of pages given by the “page trace”

PLP2:+ P

Suppose Sj is the set of b pages in high-speed memory just after p; is referenced; we
need p; € Sj. If p; & S;—1, a “page fault” occurs; some page g in Sj—1 is “pulled”
and we have S; = S;—; — {¢;} + {p;}, exchanging p; for g;. It is convenient to
assume that the program starts out with a set S of b completely null pages, and
that g; = p,; when there is no page fault.

It is of interest to consider the best possible sequence of page pulls (the sequence
that minimizes the total number of page faults) for a given page trace pi1p2... Pn,
even though it may be impossible actually to achieve this optimum sequence in
practice because it may require knowing the future page requests pj41.+. Pn at
the time ¢; must be chosen.

(a) [15 points] Thc purpose of this problem is to give a constructive proof that an
optimum strategy is obtained by the following rule: “When p; & S;j—1, let g; be an
element of Sj—; that does not appear in {pj+1,. . ,,Pn}, if possible. Otherwise (i.e.,
if all elements of S;—1 occur again), let ¢; be the element whose first occurrence
in pj41...pn is after all the other pages of S;—1 have occurred.”

The proof can be obtained by repeatedly applying the following idea: “Given
a page trace p; p2... pn and a corresponding sequence of page pulls ;2. . <., such
that, for some j with p; £ g;, there is an element ¢ € S;j—1 and an index & > 7 such
that ¢ does not appear in pj41... pk but ¢; = px, then there is another sequence of
page pulls ¢} g5 . . ¢}, such that ¢}...¢;_; =q...¢j—1 and ¢; =g and ¢ ¢}...q),
has no more page faults than g1 q2... gn."

The required sequence ¢} ¢4 .. . ¢, can be constructed in the following way:
Let m bc as large as possible such that ¢ does not appear in ¢j=+1. . . gm or in
Pi+1.+.Pm. Let ry=g¢;, and for j <i<m let

@i=p, n=4aq, if py=ri—1;
CIJ.- =gq, r;=Tr;—], otherwise.

Finally if m <nlet g, ="rm, and let ¢;=g¢; for m 4+ 1 <i < n.

Prove that S} = 8; — {¢} + {r:} for j <1< m and S, =S; for all + > m.
And prove that the sequence of page pulls ¢} ¢3. .. ¢, leads to no more page faults
than ¢ ¢. .. g, does.

46

(b) [5 points] 0 ne of the page pulling algorithms often used in practice is the so-
called “lcast recently used” rule: If p; & S;—, the page ¢; that is pulled is a null
page if any null pages are present, otherwise g; is the page whose last occurrence
in p; . ..p;j—1 comes before occurrences of all the other pages in Sj—i.

Construct a page trace scheme for which this rule leads to about b times as
many page faults as the optimum strategy does.

47

Hardware

Problem 1. (30 points)
Using AND R NOT, and XOR gates,

(a) Design a combinational circuit V such that z== 1 if and only if at least two
inputs are equal to l.

x, —t
;™1 V —2z2

X3—

Write the Karnaugh map for this function, and write a logical expression for V.

(b) Design a synchronous sequential circuit that will have its output become and
remain equal to 1 only after 3 successive disagreements have occurred between z;
and z. State what assumptions you make about the clocks you use in your design.

Problem 2. (15 points)

(a) State the conditions that determine the occurrence of an overflow when adding
two 2’s complement numbers.

(b) Givean example of such an addition using 8-bit numbers.

Problem 3. (15 points)

TTL circuits can have three different output configurations. List each of
them, defining their properties and discussing advantages and disadvantages of
each.

48

Solutions to Spring 1070 Comprahonsive Exam

Algorithms and Data Séructures

1. (a) Clearly fs = |j/h] and fz = jy modh, since j starts at zero. By Kirchhoff's
law we have fi = f3 4 1 and fy = fz + 1. Furthermore we have f; = fj except
that o = fi — 1 when |j/h| = |n/h]; similarly f5 = f; except that 5= f; — 1
when j = n.

(b) f =3+ 3|j/h] + 3(j mod k) + (Lj/h] < |n/h]) + (j < n). To maximize
fylet|j/h|=|n/h] —1and j modh = h — 1; except when nmodh =h — | let
J = n. We can also express this as j =|(n + 1)/hlh — 1.

(c)h=9= f(h,, 80)< f(9,80,80) = 51. (Quick was close.)

(d) In general the worst case running time is 3|_n/y_+ 3h— (n mod h 7 h- 1).
To minimize g(h) =|n/h|+h, note that when h < /n we have g(h) < g(h—1),
since n/(h — 1)> n/h + 1;and when h =>+/n we have g(h) < g(h + 1), since
n/(h + 1) > n/h — 1. Thus the minimum occurs at [\/n} or [\/n]. The worst
case running time is therefore 81/% 4 O(1).

2. (a) The complete binary tree Cy with 16 leaves. (Cp has one node, Cp-1 has
left and right subtree equal to Ch,.)

(b) If zis a leaf, 1(x) = 2d(z) = 0. Otherwise by induction on /(x) we have
h(z) = 1 4 max(h({i(z)),4(r(z))) < 2 + min(h(i(z)), h(r(z))) < 2 + min(2d(i()),
2d(r(z))) = 2d(z).

(c) T7 where T, is defined recursively as follows: T} is a single node, T+ has
left subtree T, and right subtree Cj(n—1)/2)-

(d) If the tree has depth d then it must contain Cy, so we have n 2_2‘“‘1 —1,
where 7 is the number of nodes. Thus h < 2d < 2(lg(n 4+ 1) — 1), so h is O(log n).
(Note we only needed the fact that h(x) < 2d(z) at the root node.)

3. The algorithm given below is a form of “dynamic programming”.
The idea will be to have one array M[0 : ¢] such that M|[j] is 0 if no packing
of size j is possible, otherwise M[j] = k means there is at least one packing of

size j that contains the kth object but not objects k - 1,. . . , n. Furthermore if
M{[j] = k then we have 0 3¢ M[j — z] < k, i.e. there is a packing of size j — z
containing only objects from 1,. .., k—1.

Al. [Initialize.] Set M[j] — 0 for | <j < c, and set M[0] « —1(this is a slight
kludge to indicate that we can achicve the empty packing). Set m « 0.

A2. [Done constructing M?] (At this point the array M has been set up as specified
above, but using only the first m objects.) If m = n, go to step A4.

A3. [Add new object.] Increase m by 1. Then for ¢ 2> j = zm, (in decreasing order
of j), if M[j]=0 and M[j — z,4) 5% 0, set M[j] « m. Return to step A2.

L9

A4. [Output the result.] Find the largest k in the range 0 < k < ¢ such that
M[k] 0. Output this k as the size of an optimal packing. Then repeatedly
output M[k] and decrease k by Tk}, Zero or more times, until k = 0.

The algorithm is “good” because although the packing problem is NP-complete,
our algorithm solves it using O(n¢) time and O(c) storage. (Why have we not
proved that P = NP?)

Artificial Intelligence

1. Satisfactory answers should relate discussion to some specific work in the {ol-
lowing areas:

Vision (shadows, 3d, motion)

Language (understanding, generation, dialogue)

Signal understanding (multiple knowledge sources, changes over time, expec-
tations, bottom-up vs. top-down processing)

Inference/problem solving (search for explanations, blackboard model, syntax
of possible plays, semantics of plausible plays, common sense reasoning, reason-
ing about intentions a n d beliefs, inexact reasoning, reasoning with incomplete
information, generalization, analogical reasoning, pattern matching, planning to
provide expectations, focus of attention, distributed problem solving, ill-structured
problems)

(a) Important aspects of the sport:

The number of players, number of rules, complexity of interactions among
players, speed of play, duration of play between pauses, amount of interpretation
of actions the commentator must perform, richness of past history of the sport,
availability of compiled statistics on teams, players, situations — these all make
the problem more or less difficult.

It is important to recognize that commenting involves understanding the ac-
tion and relating it to broader contexts, not just reporting what one sees. Stereo
vision and analysis of motion must be recognized as limiting factors in almost
any sport except snail racing, and a couple of references to vision research would
be appropriate here. Pattern matching is obviously complex. The problem also
requires setting up expectations of future actions, using models of events (and
objects) to aid the interpretation, reasoning by analogy, and generalizing from
past observations.

(b) Information:
(1) Static information. .

rules — it would appear essential to provide the program with complete
knowledge of the rules for legal play of the game. From the commentator’s point
of view, these rules will be accessed in appropriate situations; thus they should

50

bc indexed according to the situations in which they are potentially relevant;
this suggests that representing them as production rules would be appropriate.
Acquiring this type of knowledge will in most cases be quite straightforward — at
least, until the time comes to actually code the low-level primitives out of which
these are built (e.g. how to test whether the holding was “intentional” or not.)

goals/purposes — The program must be able to relate situations and/or ac-
tions to the player’s goal of winning and subgoals for achieving that. Thus the
program must model the players’ problem-solving abilities. This can be arbitrarily
sophisticated, or as simple as assuming that they all have a particular weak method
driving their actions (such as means-ends analysis).

models of player’ intentions — Closely tied with the preceding would be
modelling the motivations of the players, in an attempt to relate individual ac-
tions to subgoals. This will of course be almost impossible to obtain (or verify)
dynamically; at best, it can be built up over time for each player, with rules which
modify it under certain circumstances.

strategies — The program must be able to recognize actions as instantiations
of strategies and recognize appropriate and inappropriate uses of a strategy. Meta-
rules have been used to represent strategy rules.

statistical data — complete compilations of past performance of individuals,
teams, team units, lcagues.

knowledge of standard shapes and configurations of objects -l.e., the program
must be able to recognize things in the world, common states and arrangements
of players on the field, etc. One might employ a frame-based (schematized) rep
resentation for this knowledge,

model of relative importance of objects, usual behavior, intentions; knowledge
of how to synthesize comments based on highly variable sets of events.

library of one-liners and stories — This is easy to obtain, and will add quite
a bit to the “humanness” of the program's output and to its continuous stream
of reportage.

(2) Dynamic information.

snapshot of a scene with stereo information — just to provide basic infor-
mation to the program on what objects (and players) are close to one another.
Necessary for interpreting what is going on at timet. Such information would
greatly speed up many of the computations the program will have to perform.
An alternative would be to spend even a bit more time, and compute vectors of
velocity for each moving entity in the scene. This would be represented differently,
say using pointers into a frame-structured corpus. While this kind of knowledge
would seem to be trivial to obtain, Al research has revealed it to be a painful,
difficult task after all.

51

actions that have taken place in this game, and the context in which they
occurred — must have a representation of patterns found in individual scenes.

patterns of actions — generalizations on sets of prior actions. (Could very
quickly pass beyond the state of the art of Al although there is considerable work
on induction.)

(c) Flow of control:
for each time frame from (start of event - 30 min) to (end of event - 15 min)
input raw tv signal for brief time frame
find individual objects in the scene
identily each object, using expectations generated in previous time frames
plus strong model of allowable positions for individuals
focus on most interesting parts of scene
relate this scene to previous scenes to determine differences
if no differences and pause is expected then generate blather about objects
or patterns that were recently changed. Comments can include reading
from canned histories and books of statistics. If unable, then say “What
do you think of that, Don?”
determine interesting differences, interesting patterns
find plausible explanations of these
generate comments about the differences/patterns and their explanations,
expecially noting rule infractions, scores, unexpected events — comment
immediately on high interest events.
interpret purpose of changes and patterns with respect to known strategies
and desirable subgoals
generate comments on these
get next time frame

Notice that you can be more specific, since you selected a specific sport in (a),
and supplied a specific set of information sources in (b), whereas we have tried to
remain sport-independent.

(d) Pros and cons of knowledge-based approach:

Understanding requires considerable knowledge of the sport. Published rule
book alone is insufficient for generating text for comments. Expertise about in-
teresting changes and patterns, plausible strategies, etc. is clearly required for
interesting commentary. Only by cleanly separating inferential procedures from
the knowledge that is specific to the sport is there any chance of mapping the
program into another sport.

Whole problem is too open-ended to allow capturing sufficient expertise in a
program.

52

Expect that this approach would have a longer initial start-up cost than a
non-Al one, but would achieve expert-level performance ultimately more quickly,
but would run an order of magnitude or three slower.

(e) Two-year project:

Many good problems — any must be sufficiently constrained to allow the
following:

modestly small data structures,

reasonably complete knowledge base,

.avoiding hard problems that have enmeshed good people for years (e.g. you
don’t really intend to implement those auxiliary boxes labelled “natural language
understander”, “speech understander”, “discoverer of patterns”, etc.)

Systems

1. precedence — Advantages: Small tables. Disadvantages: Only parses a small
class of grammars and a small class of languages.

LL — Advantages: Small tables, parses a bigger class of languages than
precedence. Disadvantages: Only parses a small class of languages and it is difficult
to find the (small) LL grammar for a particular LL language.

LR — Advantages: Parses a large class of grammars and a large class of
languages. Disadvantages: Large tables and those tables are hard to generate.

LALR — Advantages: Parses a large class of grammars and a large class of
languages. Disadvantages: The tables, while not aslarge as LR tables, are hard
to construct.

2. One must generate code for producing values before using the values and one
must generate code for all uses of a value from a particular type of memory cell
before generating code that stores a new value into that cell (or a class containing
that cell in cases like indexed arrays).

3. Aliasing is the situation of having two names for a particular value simul-
taneously active. The most common type of alias is an actual parameter that is also
addressable as a more globally named value or two formal parameters that actually
represent the same actual parameter. It is considered bad because it allows the
unwary programmer to produce obscure bugs, it allows the unwary code optimizer
to produce obscure bugs, and it requires the wary optimizer to produce cautious
but slow code. In Pascal, variant records without tags are also a major source of
aliasing. One could eliminate them and put additional requirements on the use
of tags in variant records. One could also change ‘VAR’ parameters (reference
parameters) to ‘value-result’ parameters or one could try to construct compilers
that would detect actual aliasing (as opposed to potential aliasing) and issue error
messages.

53

4. The simplest scheme involves providing a simple but complete symbol table to
the debugger and giving the debugger complete value access and change capability
at any point in the control flow as well as the usual manipulations of the control flow
itself. This scheme restricts what the compiler can do in the way of optimizations
such as code motion, strength reduction, storage folding, etc. A more complex
scheme allow6 the compiler to do many of the just mentioned optimizations but
requires that it supply more extensive information in tables to the debugger so
that the debugger can find its way back to variables and points in the control
flow or report that such values are undefined at some point or report that some
points have changed. Still, global optimizations of several important sorts must
be severly constrained. At the current time, this is not much of a limitation since
global optimizations are relatively rare.

5. Binding time is the time at which a name gets associated with a particular
attribute such as a value or type. For example, with call by value parameters, the
binding of the value of the parameter to the formal name of the parameter occurs
at the time of the corresponding procedure call while a call by name parameter
does not get bound to a value until the formal parameter name is actually used.
Another example would be types determined at compile time as in Pascal versus
types determined at run time as in Simula. Early binding usually has the advantage
of efficient implementation and the disadvantage of lack of flexibility while late
binding maintains flexibility and often results in more general and more powerful
programs but with more significant run time overhead.

8. If onc thinks of the assertions to’be verified as another version of the program,
then it is easily seen that the aboue proposal is not a proposal to do a verification
system in a different way. In overly simplistic terms, one could say that the
verification problem is the program equivalence problem.

7. <statement> = <matched statement> |<<unmatched statement>
<matched statement> :== <assignment> | if <expression> then
<matched statement> else <matched statement>
<unmatched statement> = if <expression> then <statement> | if

<expression>> then <matched statement> else <unmatched statement>

8. By the explicit sending and receiving of messages indicating the need for or
the realization of synchronizing conditions. No other operation6 are needed.

9. Activation record retention means the retaining of activation records for in-
stances of a procedure in a non-stack fashion. Thus we can think of all storage,
including activation records, as coming from a heap and having no stack storage
for activation records at all. This is a convenient way to organize activation records
in procedure oriented operating system based on monitors because process forks

Sk

can be implemented simply as the creation of a new chain of activation records
in the heap and monitors can queue and dequeue these activation record chains
(processes) in a nearly obvious and straightforward fashion.

Numerical Analysis

1. (a) The method of successive substitutions has the general form gkt1) =
©(z®). A necessary condition for convergence to a root a is that |¢/(a)| < 1. Here
we have

p(z) =sinhz —3, ¢/(z) =coshz > 1 ,

so the suggested method cannot converge.

(b) There are an infinite number of ways of rewriting the given equation in
the form z := (z) which will lead to a convergent method. One obvious way is
x :==sinh ™} (x + 3), for which

I

¢le)y= :

V1t (z+3)?

Thisis < 1 for all x, and in the vicinity of the root a ==2.38534... it is about
0.2. A better way to solve this equation would be by Newton’s method,

SO o () 2(F) — sinh 70 4 3
) 1 — cosh z(*)
which might also be considered a form of successive substitution.

2. (a) To find the change in @ when the data is subject to small changes we first
compute

Oecos o) _ w— uTou/(uf + u)) _ up(viug — wivg)
Guy llullz lfvll2 lullz 3llvll2

Now observe that vjug — ujw, =a||d| |Vl|2 sin@. Then, using the chain rule for
differentiation, we get

E—

sinp dur luflz?’

8 _ —1 Ofcosp) —uy
duy

Since the coordinates occur in complete symmetry similar formulas for the other
derivatives follow immediately. If wc know bounds for the relative perturbations

55

in the data, |Au;| < §|uy| etc., we get for the change in ¢ the approximate bound

|1 242 lvxvzl)
201 < ([+ o <0

This shows that the quantity ¢ is well-conditioned as a function of the coordinates.

(b) If the formula in (a) is used to compute ¢ numerically, rounding errors will
be introduced. If floating-point computation with a relative precision of ¢ is used
then we have

|76(u"v) — uTo| < (Juiw] + |uzval)2e <|lullallvllz 2.

This leads to a relative error in cosg bounded by 2¢, and

|A(cos)| < 2¢

A —
A} ~ |sing] — |sing)|

Thus if ¢ is small, then rounding errors can cause perturbations in ¢ which are
large in absolute value. (It might even happen that the computed cos ¢ becomes
larger than 1!)

(c) The important difference is that here we compute ¢ from

Y=2arctanr, 0<r<l1.

Rounding errors will occur in the computation of a and B, but these are not
magnified since if 0 < ¢ < n/2 then

1
1+r2s1'

Note that the algorithm given here applies to vectors of arbitrary dimension. For
vectors in the plane there are simpler algorithms which are stable.

-‘-1-(arctan r) =

dr

3. (a) The elements in the matrix AT A are

m

(ATA) e Z Gikdij -

=l

If | — k| = w it follows from the properties of A that all terms in this sum are

zero and therefore
(ATA),, #0 = li—k<w.

55

According to the general definition of band width given, it follows that the band
width of ATA is (at most) 2w — 1. (The band width of a symmetrix matrix is
more often defined as the maximum number of non-zero elements within the upper
triangle in any row. With this definition the band width of ATA would be w.)

(b) For any n-vector z we have z7 (ATA)z = (Az)T(Az) = ||Az||2. This must
be = 0, with equality only if z = 0 or if A is singular. If A is positive definite, then
the LL” decomposition can be computed stably by a form of Gaussian elimination
without pivoting. Such a decomposition is called a Cholesky decomposition. This
means that the band structure of ATA will not be destroyed by the elimination
process.

(c) Begin by setting ATA := 0. As the i-th row of A is made available, compute
each of the quantities

aigik, J<k

where 7 and k are confined to the nonzero band for row %, and add each such
product to (ATA);x and (ATA)kj. (In practice, only the upper or lower triangular
half of ATA need be maintained, because of symmetry.)

(d) Using the procedure described in (c), we compute ATA in approximately
mw? /2 multiplications. To compute the LLT decomposition by Gaussian elimina-
tion takes approximately nw?/2 multiplications if w <« n, since no pivoting is
required as mentioned in (b). In contrast, if A is a dense matrix (or if you treat it
as such), these numbers become mn?/2 and n3/8.

Theory of Computation

1. Let p; be an arbitrary Algol program, not containing the variable x. Consider
the program pg = begin integer x, y; p1; y « X; end. Clearly, x is used without
being assigned a value if and only if the program p; terminates.

2. (a) Have productions: S — rR; | IR3 | ¢, Ry — rRa | IS, Ry — rR3 | IR,
Rj3— rS|IR;y. Note this is a regular grammar.

(b) The language contains all strings over {n, s, ¢, w} such that the number
of n’s is equal to the number to s’s and the number of w’s equal to that of e’s.
The nonempty strings are generated by the context-sensitive grammar with start
symbol Z and productions Z — NS | EW | NSZ | EWZ, XY — YX for all X
andY in{N, SSE, W), and E—¢, N —=n, S =5, W —w.

(c) We may assume without loss of generality that the path begins and ends
going north. Replace the last four productions of (b) by NE = rE, NW — W,
NE-—»rElrl NW—»IW|lr,ES—>rS EN = IN,SW — W |rr,Se = IE | Il
WN — rN, WS — IS.

Note: The languages in (b) and (c) are not context-free, which can be proved by
considering the intersection of the language with an appropriate regular expression.

57

However, this is beyond the scope of the problem.

3. For fixed n we candefine n + 1 functions a;, 0 <3 <n as follows:

aoly)=y—+1 (the successor function);
a;+1(0)=a; 1)=041+4_+..-4 1 (repeated a;(1) times);
ai+1(y + 1) = a;U5(y, ai+1(y))):

We can show by induction that ‘a;(y) = a(3, y); furthermore all a; are primitive
recursive.

4. We can reduce the directed Hamiltonian circuit problem to the stated problem
as follows. Given a directed graph, consider the vertices as the states of a finite
automaton and the (directed) edges as transitions between the states. Associate
with each vertex g distinct terminal symbol, and label each edge entering that
vertex with this symbol. Choose any vertex as the start vertex, and make that
start vertex the only final state,

The resulting finite automaton accepts a string that contains each terminal
symbol exactly once if and only if the original graph has a directed Hamiltonian
circuit. Because of the correspondence between finite automata and regular gram-
mars, we have in fact shown that the stated problem is NP-hard even for regular
grammars. Moreover, it is in NP (and thus NP-complete) since we can nondeter-
ministically check all n!strings to see if they are in the language.

5. (a) In the construction of the sequence ¢} ¢5... ¢, for j <1< m, consider the
case p; = r;—;. Since p; &€ S;_;, we save a page fault here.

We lose a page fault at time m = 1iff pm41== g, but we always gain at
least one page fault the first time g; = py since rx—) = ¢;. If pm+1 == g we have
m =+ 1>> k, sothereis never a net loss.

(b) The periodic page trace ajas. . .a5+1a1a3. . .Gp418132. . . causes page faults
every time with LRU, but only every bth time with our optimal strategy (after
the first period). Incidentally, such worst-case behavior is 7ot so uncommon; it
occurs during long iterations.

53

Hardware

1.(a) The t ebb fombinations and Karnaugh map are shown below.

X Xz x3 &

o|vjo}o X; Xz

AHNE oc e i o
ol1|o]o v ‘letolifo

o1 3

] 11 O | [|
O O O O

tjol 1!

!1Joj O10O

A logic expression for this circuit is 2 = zjz; 4+ 213 + z37). A circuit for V is

shown below.
X —
X
e X—— |
X3— D@—“ z
x 3 -F
-

(b) A state diagram for the desired circuit is

e e
ofelo>N
A e’

e/

INITIAL
STATE

where e = z; @z (P denotes exclusive-or). This circuit will be designed for clocked
(synchronous) pulse-mode operation. Thus, it is assumed that each clock pulse
is “long enough to cause the appropriate flip-flops to change state”. It is also
assumed that each clock pulseis “short enough so that it is no longer present at
the circuits which generate the flip-flop input signals when the change in flip-flop
outputs has propagated to the input circuitry” (from p. 205 of Introduction to the
Theory of Switching Circuits by E. J. McCluskey). Furthermore, it is assumed
that the signals zj, z3, 73, 2, and e do not change while the clock is active (c == 1).

59

The combined state and output table is shown on the lelt below, where T'is
the level-output of the sequential circuit. Since there are four states, at least 2
internal variables are required. Let the state a331gnments be A = y’ vh, B= v\,
C = yiyp, and D = y1¥h. Note that T = y1y3, since the output sl only w wh
the circuit is instate D.

The transition table is shown on the right below,

¢=1 Cél
S o o, e, yiy2 €0 o I .
wital > A FROTE,0[B,0 A-o00 {00l oo o]
stete g 1HoflA0lc 0 B-ot|olfoo]11} ©
¢ [9.0}lA.01D,0 -\l [M1jjoojtlof O
LEDORION! p-10l1oflve ol !
ST = YN T

Using set-reset flip-flops, the encoded excitation table is

=1

Y‘L{Z C:‘O (o) '
00 r\r r)r r\s

ol {r.s tr,RIS,s
Lss RRSJ{

|10 SY‘hs ris.,r

SR, SR,

N

By inspection of the excitation table,

Sy = ceyy, Ry = cdyy, Sy = cey}, and Ry = c(¢ + u1)-
To implcment the initial condition, the reset inputs are changed by ORingin an
initialization pulse INIT. Thus R;=ce'yu + NT, and Ry = c(¢' + 1)+ INIT.

The INIT pulse is assumed to be applied before circuit use begins.
The entire circuit is shown at the top of the next page.

60

L L e
¥y ——f V =
S S

B N

5%

RIY' j
T

(ouTpuT)
R
[) D

{
[
{l
it
@U

\
"

C
O
L=
S

g

C INT
(clock)

2. (a) When adding two 2's complement numbers, overflow occurs il and only if
the signs of the inputs are the same, and the sign of the output is not equal to
the sign of the inputs. Since the sign of a 2's complement number is the most
significant bit (MSB), we have

overflow = MSB(A)MSB(B)MSB(S)' + MSB(A)'MSB(B)'MSB(S)

where S is the sum of A and B.
Overflow can also be detected as the exclusive-or of carry-in with carry-out
at the most significant bit of the adder circuit.

(b) 01111111

--00000001
10000000

61

TTL outprPuT | StmPLIFIED ADVANTAGES | DISADVANTAGES

cCIRcwT
Ycc

Standavg] -
S'mf)lf— carnat be used

ouT
for data busses

Open Coflector |
pen Collects ,‘f% con be used | external pullup

- ouT for data pusses; | resisfor reguired
“wired-and” passive Pu”u/l

i | Ioaie Lunedion at | resuldc in lonaer
[e

outputs; also risetime and peer
useful foc cma/0j N Pan- out caPaL.‘li‘f/,

infenpacinj .

Vcc

well suited for extra 'm,mf !pfrx
dota busses - needed for enable
oul|l because o-Fadfve ;eunc'_h'on.’ control
Fu“u/? and +hird ’
(kij}\—im(fedonce
state

Thiee - State |
(1,0, hQ-fmfeafarce

feilure at enaliles
con resuld in ambigues
Ou.'f’ru‘f’ H‘: fwo Du’ffu‘fs
“Fight "

62

SPRING 1979 PROGRAMMING PROJECT: CODE GENERATION AND OPTIMIZATION

Due: 12:00 p.m., Tuesday, April 10, 1979
Polya 254
Outline:

Let M be a simple computer that performs arithmetic operations on
integers and has a memory addressed by positive integers. M can perform
only register-register arithmetic operations, and has no jump instructions,
indexing or indirect addressing. The goal is to write a simple code
generator named COP which generates efficient code for M

Input to COP:

The input to COP consists of triples. Each triple consists of an operator
and two arguments. Triples are numbered consecutively fram 1 ; the n-th
triple is said to have triple number Tn . The result of a triple is-a number,
which may be referred to in subsequent Triples by using its triple number as an
argument.

Here are the operators available in triples:

Operator Result
t arg1 + arg2
arg, - arg2

a.rgl * arg2
arg, / arg, (integer division)

~ *

argl , with side effect of arg2 = arg,

Each argument, arg, or arg2 may be an integer constant, a memory address
An (with n in the range 0 -99), or the triple number Tn of a previous
triple.

For example, the following triples have the same effect as the statement

X = X*¥Y + X¥Y + 3 ; given that X and Y are allocated memory locations
0 and 1:

Operator argl arg2
1 * AO Al
2 * AO Al
3 + T1 12
b + T3 3
p) = T4 AO

Output of COP:

The output of COP is a sequence of instructions for M . M has four
general registers RO , Rl , R2 , R3 and two hundred memory locations (for

data) numbered 0 . ..199 . Below r and s denote registers, m a memory
address. Read C(x) as "the contents of x ". M has the following
instructions:

oN
w

LOAD r,m load register r with C(m)

LOAD1 r,k load register r. with the value k
STORE r,m store C(r) into memory location m
ADD ry s put C(r)+C(s) into register r

SUB Ty S put C(r)-C(s) into register r
MULT Ty S put C(r)%(s) into register r

DIV T, s put C(r)/c(s) into register r

For example, the triples could be optimized into:

INSTRUCTION COMMENT
LOAD R0,0 triple 1
LOAD R1,1 triple 1
MULT RO,R1 triple 1
ADD RO,RO triple 3
LOAD1 RL,3 triple 4
ADD RO,R1 triple 4
STORE RO, 0 triple 5

Objective:

Assume that ADD, SUB, MULT, DIV AND LOAD1 each take one unit of time
to execute and that LOAD and STORE each take two units. Your optimizer
should try to minimize the time required to run the output code, but the
optimizer should be efficient enough to be practical in a compiler and
should always generate correct code.

Method:
Two techniques you can try are:

(1) Common subexpression elimination
(e.g. (X*{+Z)+(X*Y+Z) should lead to only one computation of
(X*¥{+2Z).

(2) Constant folding
(e.g. X+1+2 should be converted at compile time to X+3).

Try to make efficient use of M's registers. Your code generator should
be prepared for expressions complex enough to require storing temporary results
in memory, using addresses in the range 100 .., 199 (remember, 0 . . . 99
are reserved for variables).

Possible algorithms are sketched in Aho and Ullman, Principles of Compiler
Design (1977), sections 12.3-12,4 and 15.4-15.6, and Gries, Compiler Construction
for Digital Computers (1971), sections 17.2 and 18.1. Both books are on reserve
in the Math. Sciences Library. However a fully satisfactory program can be
written without referring to books at all.

Do not try to use unusually sophisticated optimizations (e.g., avoid
sections 12.5 and 15.7 of Aho and Ullman). Attempt only what you know you
can finish on time. To get a feel for the problem, you might begin by writing

a code generator that performs no optimization. If you can't get your
optimizer to work, but do get a code generator working, then turn it in.

64

Documentation.

It is not sufficient that your program work; the graders must be able
to see that it works. So you must document your program and its output.
Explain which algorithms you used and give references; outline the general
layout of the program; describe how to interpret its output. 1In the program
itself, use descriptive variable names; use proper indentation; insert
comments where appropriate.

To make the generated code readable, it should include such comments
as "store in temporary variable" or "triple n" (i.e., COP should put these
comments in its output). Also COP should print the number of time units
required to execute the code it generates. If your optimizer produces an
optimized set of triples (rather than going directly to assembly code), it
should print these.

Test data for your program will be given out in two sets. The first
set is attached here. The second set will be available after 9:00 a.m. on
Monday, 9 April, in Polya 254, Turn in your source program, associated
documentation and its output from all the test data,

Questions:
If you have questions about the problem (besides how to solve it!),
contact

Larry Paulson LP® SUAI Lg7-L971 327-110L
or
Lloyd Trefethen INT@ SUAI 497 -4368 325-5396

65

O o o0 N N o B W o —

[O U ORI NC U NG Y YN SO U S-S NG Sy N
S B N NG I e I =T R B A I N VS e

*

+ 4+~

* 4+ S~ *

+

+

T
T4
TS

T7
T8

T10

T12
T14

T15
T17

T20
T19

A8
Al0
T24
T23
T27

66

T3
T2

T6

T21
T22

Al
T25
T26

42988 < Y o3dgsdd2 g i
o~ o0 N N < N W [co S n\ n N Lo
dDdEDYId ISl EdE LR 3Ry LB R
SR ERRzonw SERB 22352 83384 5 2
[ee] (Ta N T o) LO N\
TR EERE TR Rd R i E R E YR E L o 28
L L T || ¥ 4+~ o+ 1k ok N~ kb0 ~_ % ok~ ~_ i
— N o ¥ 0 ©W ~ O o6 o A N oo g 0 W ~ oo O o d N oo < N O >~ o0 OO
M M o O o O 0O O O 9 < 4O 4o T T 40 00 0w NN 0
g 9 = 2w 3 =9 S99 dpo2d o983 .385
N Xe) < o o N
I T 28I e B d s OLBEEdE RS E DO DS
O NN n < o) N O o~ — g »n O
298m1 — o~ N O o~ N ™ Q
D 2RI EDRR HE oL EoEBEEBR2 D Es B R OY
+ % ~ + + + + ok + + oo >~ ok~~~ * + ¥+ 4+ S~ >~
0um54567890123u567890
— N M T N O [~ 00O O ~ 4 4 4 = 4 N N N NN NN NN NN
_

67

REMARKS ON THE GRADING OF THE PROGRAMMING PROJECT

The programs we received varied greatly in sophistication and in the
methods of optimization employed. Most people succeeded in generating

correct code for "COP" and performed at least one kind of optimization,
however.

Grading came down to three broad areas:

(1) Code Generating and Optimizing Algorithms: Many people implemented
DAGs (directed acyclic graphs) or a related technique; a few more did not.
The majority performed some sort of optimizing on the triples themselves
before generating code, often including a reordering of the triples.
Reordering could have a dramatic effect on the efficiency of code generated
for the second assigned input set, but we deemphasized this somewhat and

weighed also less dramatic forms of optimization, such as constant folding
and common subexpression elimination.

Typical "scores" for masters passes were T0/230 COP time units for
the first/second input set, and for Ph.D. passes 62/185 time units. However,

these numbers in general counted less than you may have expected in determining
your performance.

(2) Programming Style and Efficiency: The following inelegancies
appeared too often:

Use of obscure numbers like "4 " where a macro like "MULTIPLY"
would have been much clearer.

Unnecessary string operations.

Duplication or near-duplication of code.

Lack of division of major tasks into smaller procedures.

Lack of comments in code.

Inefficient use of arrays where linked structures would have been
more appropriate, and/or unnecessary linear searches where hashing
or a better data representation could have saved time. It's all
right to cut corners on a thing like hashing, but if you do, you

should mention in your documentation that there is a better
alternative.

Some of these complaints may be controversial. Clarity, however, is
a must, and too many of the programs were hard to read.

(3) Documentation: This was the area most often disappointing.

Providing good documentation is absolutely essential to doing well on the
programming project. This means:

- Describe your program fairly completely. (Say, at least four pages.)

- Isolate your central data structures and the flow of your program
so that the readers don't have to figure them out.

- Documentation should be organized, not just five pages of text.

68

- Mention more efficient alternatives that you have chosen not to
implement. If you think that constant folding is useless in a
~eal compiler, then you must say so, so that we know why you
didn't implement it.

In general, too many people seemed to have left tidying up to the
program and documenting it to an hour or two at the end. An additional
two hours on such "cosmetics" would have given several. such people a
higher grade. We are not just being fussy here -- the programming project
aims to show that you can produce efficient programs in an environment
where they have to be understood and modified by other people.

SAMPLE PROGRAM:

As a sample solution we have duplicated one of the best programs that
was turned in, that of Magic Number 14502. This person did use DAGs, and
got excellent results: 55 and 133 COP time units, respectively, for the
two input data sets.

Here are some strengths of this program;

- Excellent optimization techniques, including common subexpression
elimination, reordering of triples, good allocation of registers
based on next use information, and detection of commutativity.

- Clear programming style in most respects, including use of macros
for integer parameters, extensive commenting within the code, and
clear structuring of each procedure.

- Fairly clear documentation up front.

Here are some weaknesses:

- A small bug in the treatment of assignment statements made the
first line of code for input set 2 appear before other references
to A5 -- an error. #4502 noticed this error at the last minute
and commented on it.

- String variables are used more than necessary.

- The program is put together as a sequence of blocks rather than as
a collection of procedures called by a small segment of main
program. This makes the program less readable globally than it
is locally.

The sample program will not be available for several days, as it is being
reproduced at SEL Publications.

69

Winter 1979/80 COMPREHENSIVE EXAMINATION
ALGORITHMS AND DATA STRUCTURES

Problem 1. (10 points).
Write an algorithm in pidgin algol which takes as inputs two sorted
X . . . < LN] .
arrays X < 5 < < xn and Y1 < Y5 Yy andanumber s The
output will be a pair (ih}) such that xi+3Yj =. or a statement that

no such pairs exists. Your algorithm should run in O(n) time.

Problem 2. (20 points),

Consider a rooted tree. Define the weight of a node x to be the
number of nodes in the subtree rooted at X . T[et n be the weight of
the root. (N t2: n is the total number of nodes in the tree.) Consider
an edge between a node v and a child of that node, w . (Call the edge
"good" if 2x (weight of w) < weight of v and "bad" otherwise.

bad edge

WAL
H

good edge

(1) (5 points). Prove that at most one of the edges from a node v
to its children is bad.

(2) (5 points). Prove that the path from any leaf to the root contains
at most log2 n good edges.

(3) (10 points). The least common ancestor of a pair of nodes x,y
is defined to be the node of greatest distance from the root which
is on both the path from x to the root and the path from y to
the root.

71

ALGORITHMS AND DATA STRUCTURES

Find an algorithm which takes as input two nodes x and y and
finds their least common ancestor in time 0(log n) . Describe your
algorithm in English. In order to do this, your algorithm will have
to have some representation of the tree and/or some pre-computed
information about the tree. These two together are ealled the data
structure for the tree. Specify the exact data structure your
algorithm assumes has been given it about the tree. The data structure

should only use 0(n) words of memory.

Hint: (1) above implies that a set of connected bad edges must be a
linear sequence. A sequence of bad edges is called a bad path. Let
bad paths and good edges play a role in your data structure and

algorithm.

. Problem 3. Sorting by Flipping. (15 points),
Given a sequence that is a permutation of the numbers 1 through n ,
a flip consists of selecting a set of contiguous elements at the left end

of the sequence and reversing their order.

Example: Given 34 6 9 8 2 1 75, we can flip the first four elements
to get

9 6 4+ 3 8 2 1 7 5,

(a) (5 points). Prove that any permutation of length n can be arranged

into sorted order in at most 2n-2 flips.
(b) (10 points). Prove that, for every n , at least n-1 flips are

necessary to sort in the worst case.

Problem 4. (15 points).

An undirected graph is called marked if every edge has either a +
or a =~ sign. A marked graph is balanced if the product of signs around
every cycle is positive (i.e., there are an even number of - signs on
every cycle). Give a linear-time test for balance. Your algorithm can
be specified in English but you must give an argument why the program is

correct and why it requires only linear time.

72

ARTIFICIAL INTELLIGENCE

Problem 1. (10 points).

(a) What are the three classes of theorem in the PLANNER language?
Describe them briefly, indicating how they are invoked.
(b) To which class or classes is MYCIN's approach most similar?

(c) Same question but with respect to HEARSAY-II.

Problem 2. (10 points).

The following constants, function symbols, and relations can be used
for encoding facts about chess as statements in predicate calculus. They
will be used for both this problem and Problem 3.

EMPTY (square) -- there is no piece on the square

ON(piece, square) -- the indicated piece is on the indicated square
WHITE(piece) -- the piece is white

BLACK(piece) -- the piece is black

ROW(square, integer) -- the square is in the row indicated

COL(square, integer) -- the square is in the column indicated
ISA(object, set) -- the object is a member of the indicated set
SUBSET(setl, set2) —— setl is a subset of set2

<,<,>,>,=, + 5y -,L23,... - their usual interpretations

SQUARE, PIECE, PAWN, ROOK, KNIGHT, BISHOP, QUEEN, KING,
WK, WQ, WB-1, WB-2, WN-1, WN-2, WR-1, WR-3, WP-1,
BK, BQ, BB-1, BB-2, BN-1, BN-2, BR-1, BR-2, BP-1,

all with the obvious interpretations.

73

ARTTFICIAL INTELLIGENCE

using this vocabulary, encode the location of the black king in

the following board position as a formula in the predicate calculus.

8

7

6 BK

> BP

L WP | WH
3

2

1

123 L5 6 7 8
(b) Write down the predicate calculus statement asserting that only one
piece may be on a square at a time and that a piece may be on only
one square.

(ec) Write down the conditions under which a white P may be promoted

to queen.

You may ignore the possibility of king in check.

Problem 3. (10 points).
In his thesis and textbook, Winston describes a program able to learn

concepts from sequences of examples and near misses.

(a) Is it possible to teach Winston's program the rule about queening
pawns? If so, present a training sequence and indicate what each
example or near miss teaches and what assumptions are necessary.

If not, why not?

(b) Same question for castling.

74

ARTIFICIAL INTELLIGENCE

Problem 4. (10 points).

The following is the Huffman-Clowes label set for labeling line

drawings (taken from Winston).

S & N L7 N A K = A
3 Ih 15 6

Yy v
TTTT
Salcalch

(a) Using this label set, produce a labeling of the following drawing.

C

(b) Suppose Waltz's constraint propagation algorithm were used on the
example (still with the Huffman-Clowes label set) and that new nodes
were considered in the alphabetic order shown. What would be the
label sets for each of the nodes Mediately before H is considered?
How about immediately before I ? (You may assume that segments

AB, BC, CD, DE , and EA are known to be boundaries.)

75

ARTIFICIAL INTELLIGENCE

Problem 5. (10 points).

The following recursive transition network for noun groups is taken

from Winston's book.

adjective

determiner |
St P

Using the chess domain, produce an example of each of the following,

PREPG

(you need not restrict yourself to the vocabulary of Problems 2 and 3.)

(a) a noun phrase that exercises all the arcs in the network.

(p) e syntactically legal phrase not accepted by the network.

(c) a syntactically illegal phrase accepted by the network.

(&) a syntactically unambiguous noun phrase that is semantically
ambiguous in the-board position of Problem 2.

(e) a syntactieally ambiguous noun phrase that is semantically unambiguous

in the board position of Problem 2,

Problem 6. (10 points).

(a) What's the difference between the branch and bound search method and
the A* algorithm?

(b) Which of the following methods would be most suitable for trying to
find the combination to a safe: Dbranch and bound, hillclimbing,
depth-first search?

(c) Is an alpha-beta search in all cases more efficient than a full
minimax search? 1If so, why? If not, show a counterexample.

(d) Suppose a one-armed robot were trying to adjust the contrast and
brightness controls on his TV. Using only hillelimbing, is he

guaranteed to find the optimal picture? Explain very briefly.

Problem 7. (0 points).

What are two major goals of AI research?

76

HARDWARE

Problem 1. (15 points).
Suppose we want a component to be attached to a CPU which will be
used to compute reciprocals. The floating point numbers used by our CPU

are normalized with an octal base. That is, the format looks like:

sign exponent mantissa
— - —~—— o —— _
1 bit 5 bits 18 bits

where the mantissa has an octal point to its left, and the value represented

is
exponent

sign x8 x mantissa .

(a) (3 points). What range of numbers can be represented if the exponent

is 0 and the sign is positive?

The reciprocal machine takes as input some number (to be determined
later) of the leading bits of the mantissa. It uses these bits as an
address into a ROM. The word stored at that location in the ROM is a
fixed point binary number which is within 2-7 of the reciprocal of the

input, i.e., it has 6 bits to the right of the binary point.

(b) (8 points). What is the minimum number of bits of the mantissa that
must be used so that the output of the ROM is within 2-6 of the

exact reciprocal of the original mantissa?

(c) (4 points). How many words are there in the table?

Problem 2. Sequential Circuit Design. (20 points).

Design a 5 bit serial to parallel converter which includes a generated
parity bit output and a data available output. The parity bit is to be a
one if there are an odd number of ones in the received 3 bits and a zero
if there are an even number of ones. The data available line should be a
one if the parallel output lines hold valid data, otherwise it should be
a zero.

The inputs to your circuit will be a serial input line, a clock line
which has a clock pulse in the middle of each data bit in the serial input
line, and a reset line which sets up the circuit so that the next 5 bits

received are the ones that will be converted to parallel.

77

HARDWARE

The outputs are the 5 parallel output lines, one line forithe
generated parity bit, and one line for the data available signal.

The circuit should use AND, OR, NOT, and XOR gates as well as"
D flip flops which have the set, reset, clock,

and D lines as inputs
and the Q and Q outputs available.

The set, reset, and clock lines
are all negative edge triggered.

The circuit should be able to run continuously, i.e., do not assume
a manual reset before each 5 bits.

Problem 3.(13 points).

Suppose a CPU has 4 memory modules which are interleaved together in
order to provide fast access for the CPU. Assume that the CPU decodes one

instruction per internal cycle and that the following information is true
about it:

(1) 4internal cycle = 100ns

(
(4

)
(2) 0.62 instruction memory fetches/instruction
3) 0.78 data memory fetches/instruction

) singe instruction interpretation. Note; each interval in the
following time line represents one internal processor cycle. The

time interval for the memory fetches is given below.

k— 1 fetch—{€¢-Decode)€ Address Generate >{€D fetch—>|€é— Execute ——3|

L [da [1 x 1 {7 [l { 3
! 7 1 T 1 T) L) T 1

(5) Combined interleaved memory has an access time =580 ns; cycle

time = 100 ns. Note : the CPU is pipelined and creates memory

requests by anticipation, therefore it does not wait for memory to
respond before issuing the next request. If the CPU were to wait
for memory to respond to each request it would take 580 ns, but

in pipelined operation words come in every 100 ns from memory.

(a) (3 points). The request rate to memory (maximum) is MAPS.

(Million Accesses per Second.

78

HARDWARE

(b) (10 points). The peak performance of the CPU is __ MIPS.
(Million Instructions per Second.) If BC (Branch on Condition)
occurs with frequency 0.32, and no "go-ahead-on-branch" strategy
is used by the address anticipation mechanism, the resultant
CPU performance will be MIPS.

(Please show all work.)

Problem 5. (12 points).

(a) (3 points). Explain the operation of a cache briefly.

(b) (3 points). Explain the advantages and disadvantages between
a hard-wired CPU and a micro-coded CPU.

(c) (6 points). What are some advantages and disadvantages of the
following logic families.
(1) (2 points). TTL
(2) (2 points). CMOS
(3) (2 points). NMOS

79

NUMERICAL ANALYSIS

Problem l. (15 points).
One of the quantities which appears in the error bounds for Gaussian

Elimination is the growth factor. For factoring an nxnh matrix
this factor is defined as

A=f{as5ds 520,00

max ‘ag#) |
R ij
G 1, J,k
=T
L3 M

where aéj) is the element in the (i,j) -th location at the k-th step

of the elimination process.
Consider the problem of factoring a tridiagonal matrix of the form

-
a, by
¢, 2y by
A = . . %
. bn-l
(o] a -
L n ‘n

Show that the following results hold:

(a) If partial pivoting is not used, G can be aribtrarily large.
(b) For the special case when A is also diagonally dominant, G < 2,

independent of n , even if partial pivoting is not used.

Problem 2. (15 points). N
Consider the following two algorithms for computing S ox. s
. J

j=1

(1) The usual summation algorithm:

s := 0
for j = 1’2)000,N dO
s = s+x.

5

80

NUMERICAL ANALYSIS

(2) The pairwise summation algorithm:

Define S(i,i) := x5 for i = 1,2y,. .4N
i+ i+)
S(is3) := S(i, ,__1_21) + s(L%J +l,j) for i < j
N
Compute S(L,N) = 2 xj by applying the above definitions. For
j=1

example, with N = 8 the pairwise algorithm computes

[(x +%5) + (X +x)] + [(x5+xg) + (x;+x5)]
Assume that the computer arithmetic is such that
fz(x‘L+ x2) = xl(l+ el) + x2(1+ €2)

with
le;] <u for i=1,2.

X. 1s computed using the usual summation

(a) Show that if 8, =
1

"nM=

J
algorithm, then
£2(8

)=
J

N
=lxj(l+BJ-)
with

\ej\< Nu + O(u2)

(b) For the special case when N is a power of 2 , show that if

N
S, = 2, X. 1s computed using the pairwise algorithm, then

N
) x.(1+y .)
2 j=19 J

with
2
\73.‘ < ulog2N+O(u) .

Problem 3. (15 points).
Suppose that Newton's method is being used to generate a sequence of

approximations X1sX55... to a zero x,- of a smooth function f(x) given

an initial "guess" Xy - -

81

NUMERICAL ANATLYSIS

(a) Show that x -x = -f(xn)/f'(gn) for x, < g <x or x <E <xf.
Using this relation, obtain an estimate of |x*-xnl in terms of
\xn+l-xnl . Is the quantity lxn+l'xnl usually a good error

estimator to determine the termination of a Newton iteration?

(b) Suppose that we obtain the following behavior of the differences

|xn+l-xnl and that the estimate established in (a) above is valid.
Set
r, = |xn+l-xn|/ |xn- xn_:l_ .

n Ix‘n+l'xn| Tn
0 1108 -
1 .075 692
2 .052 .690
3 0035 0681
4 .02k .675
5 .016 671
6 .011 .669
7 .007 667
8 .005 667

What is the apparent order of convergence? What is the apparent rate
. P)

of convergence? Recall that 1if ‘xn+l-x*|/ |Xn-x*l < ¢ . then C is
called the rate of convergence (or asymptotic error constant) and p is
the order of convergence. Give a plausible explanation of this behavior
assuming that f is infinitely differentiable. How might you increase

the order and/or rate of convergence while still using Newton iteration?

Problem L4, (15 points).

Let f: R = R be a uniformly Lipschitz continuous function with
Lipschitz constant K (i.e. . |f(x)-£(y)]< K|x-y|forall x and y).
Define x = f(xn l). for n > 0 with Xy given as data. Suppose we
compute Y, = f(y‘n l)+en for n > 0 with Yq given. €, represents
an error introduced at the n-th step and Xy-¥, represents an intial error

in measurement, etc. Show that

X" X, - + K -
n ynl < Kn‘ 0 yO| mjx \Aej'l K-ll,

if K4 1.

82

SYSTEMS

Problem 1. Computer Language Syntax. (10 points).

In some languages (FORTRAN, PL/1) exponentiation (t or **) is right

associative. A unary minus has lower precedence (binds less tightly) than

exponentiation. Other operations {+-, *J /,), (} bind as expected.

(a) (3 points). Give an example of the effect of right association with
an example.

(b) (7 points). Write in BNF the syntax rules for an expression EXPR for

all the operators mentioned above beginning with the symbol (identifier)

Problem 2. Paging. (15 points).

(@) (5 points). Describe the difference between a demand paging algorithm
(DPA) that selects the least recently used page in the system for

removal and the working set algorithm (WSA).

(b) (5 points). What is needed to make DPA work well in a multi-user
system?

(c) (5 points). What is needed to make WSA work well in a multi-user
system?

Problem 3. Cooperating Processes. (15 points).

Monitors, as defined by Brinch-Hansen are available in the computing
system you are using.

Use such monitors to control message buffering among independently scheduled
processes. Sketch the using programs, and write the code of the monitor

prototype itself in sufficient detail to allow implementation without ambiguity.

Problem 4. Computer Languages. (10 points).

A criterion in the design of the PASCAL language was the desire to

avoid structures that cannot be fully compiled prior to execution.
(a) (5 points). Why is this a desirable goal?

(b) (5 points). What are some of the liabilities of this design?

83

SYSTEMS

Problem 5. Language System. (10 points).

PASCAL language Systems store NEW records into an area called the
heap. List some (3) alternatives for management of the heap and mention

succinctly problems to be considered with the listed alternatives.

84

THEORY OF COMPUTATION

Problem 1. Logic. (12 points).

Consider the following proof system for implicational propositional
logic.
AXIOM SCHEMES: t POP
F ((PoP)> Q) oQq
F((PoQ >R)> (P> (@2 R))
INFERENCE RULE: + P

FPDQ
Q (MODUS PONENS)
(a) (4 points). Find a truth function interpretation of " o " for which

the above axioms and rules are sound, but which differs from the

standard truth-function interpretation of "o,
(b) (4 points). Exhibit a formula with "o" as its only connective

which is valid for the standard interpretation of "o>", but not for

the interpretation given as the answer to part (a).

(c) (4 points). Show that the formula given as the answer to part (b)
is not provable in the above proof system (thereby showing the

incompleteness of the system for implicational propositional logic).

Be precise!

Problem 2. Automata and Languages. (12 points).

Is the set of decimal representations of positive integers (read from
left to right) divisible
(a) vy 2 [2 points]

(b) by 3 (3 points]
(¢) by 7 [7 points]

a regular set? Give arguments (but not necessarily machines or grammars)

for your answers.

85

THEORY OF COMPUTATION

Problem 3. Program Verification. (12 points).

Consider the following flow-chart program:

INPUT n,m

L

ie0;Jje-l;ae~l;be~1

RA

if i = OAJ = O then HAILT

Ndo

if [1| >0 then a « -a

if |J| >m then b ~ -1
i+i+a

Je=J+b

PRINT (i); PRINT (j)

I}

Supply an inductive assertion for point A which is sufficient to
demonstrate that the program does not terminate (regardless of the values

of n,m) -- that is, an inductive assertion which implies that

ifdovi£o.

Problem 4. NP-completeness. (12 points).

Let RO,Rl,...,Rn be a list of rectangles with positive integer length

sides. Show that the following problem can be solved in non-deterministic

polynomial time.
"Decide whether rectangles Rl"'Rn can be placed inside Ro in

such a way that

(1) No two Ri,-R_.J, i43, 1,3 >0 overlap, and

(2) The sides of the Ri are parallel to the sides of Ro."
(The rectangles are given by pairs of integers (io,qj), Apdd oo 1y)

in binary notation, where ik ,jk are the lengths of the sides of Rk)

86

THEORY OF COMPUTATION

Problem 5. Decidability. (12 points).

(@) (6 points). Show that there exists a function f on the natural
numbers which grows faster than any recursive function. That is, we
want a function f: N = N such that for all recursive g: N - N ,

doy(m > n) (f(m) > g(m)) .

(b) (6 points). Show that there exists an infinite set of natural numbers
which has no infinite recursive subsets. (You may use the result of

part (a) whether or not you were able to prove it.)

87

SOLUTIONS to Algorithms and Data Structures

Problem 1.

i -1;
J e mn
while xi+yj% Sand i < n and j > 1 do

Lf xj#y5 > S then § v j-1
else 1 « i+l
if xi+yj := S then print (i,j3);

else print ("no such i and j")

This works because if there is a pair (io,jo) such that >§b +§6 =S
then the variables i and j 1in the above algorithm have the
property that i < iO and J > jo . This is easily proved by induction.
Since either i increases or j decreases at each iteration we know
that within 2n iterations i = io and j = jo

If there is no such pair ﬁo,jo), then the test Xi+J% # S will
always be satisfied, and the loop will terminate when i = ntl or j =0 ,
and the correct statement will be printed. This also happens in at most

2n iterations.

Problem 2.

(1) Suppose two children Vi and V2 had bad edges to their

parent V . Because these edges are bad, we know that

2x (weight of V,) > weight of V

1)
2x (weight of Vé) > weight of V

Adding these equations we get

weight of Vl + weight of V2 > weight of V

But this is impossible since the weight of a node is at least the sum of

the weight of its children.

(2) Consider a traversal up the tree from any leaf to the root. Each
time we traverse a good edge the weight of the node we are at at least
doubles. When we traverse a bad edge the weight cannot decrease. Since
the leaves have unit weight, the number of time the weight can double is
at most log2 n . Therefore there are at most log2 n good edges along

any path.

88

SOLUTIONS to Algorithms and Data Structures

(3) We distinguish two types of nodes. Type 1: those that are at
the root of a bad path (or not on a bad path at all), and Type 2: those
that are ins;de a bad path. Aeach type 1 node we simple store the fact
that it is a type 1 node, and a pointer to its parent. At each type 2 node
we store (1) a pointer to the root of the bad path and (2) a level
number which tells the distance from the node to the root of the bad path.

The algorithm traverses to the root from node x and node y .
following the pointers described in the previous paragraph. The sequence
of nodes traversed are stored in two stacks. At the end, the top of
both stacks contain the root of the tree. We now pop both stacks in
unison until they show a different top element. If either of these
elements are type 1, then select the parent of that one. If both of
them are type 2, then select the one with a lower level number. The
node selected is the least common ancestor of x and y . The running
time is O(log n) since there are only log
path to the root.

5 n good edges along any

Problem 3.

(a) We arrange them in correct order from right to left, first
putting n in place, then n-1 .. then 2 . Element 1 will then
automatically be in place. To get j 1in place, we first flip it to
the left, then flip it to its proper position. The total number of
flips needed is thus 2(n-1) .

(b) In the permutation 12 3 . ..n the number of adjacent elements

that differ by one is n-1 . In the permutation
2L468..,. (n-%—f%‘-) 135 ...(n--’é‘-;%) there are no adjacent

elements differing by one for n >4, Each flip can change the
adjacency at only one place, therefore each flip can change the number
of adjacent elements differing by one by at most one, and n-1 flips

are needed to go between the two permutations given above. Q.E.D.

89

SOLUTIONS to Algorithms and Data Structures

Problem 4.

Choose a set of edges which are a spanning tree of the graph. Label
the vertices of the spanning tree with 1's and O's such that the root
is labelled 0 , and opposite ends of a spanning edge are labelled the
same if the edge is + and different if the edge is - . This can be
done in linear time with depth-first or breadth-first search. Now check,
that each edge not in the spanning tree has the correct sign property,
i.e., that opposite ends of a + edge are labeled the same and opposite
ends of a - edge are labeled differently. The graph is balanced iff
each edge has the correct sign property.

Proof: Consider a balanced graph. Any edge not in the spanning
tree of the graph must have the correct sign property since the cycle
formed by the edge and the spanning tree has an even number of — edges.
To show the converse, note that in a graph with the correct sign property
each cycle must have an even number of transitions from 1 to 0 or
0 to 1 because it starts and ends with the same label. Each such
transition corresponds to a - edge, thus the number of - edges

around any cycle must be even. Q.E.D.

90

SOLUTIONS to Artificial Intelligence

Problem 1.

(a) The three types of PLANNER theorems are consequent theorems
(THCONSE or IF-NEEDED) and two types of antecedent theorems (THANTE or
IF-ADDED and THERASING or IF-REMOVED). All are invoked by pattern
matching. An IF-NEEDED method is invoked in backward chaining when
its pattern matches a subgoal. An IF-ADDED method is invoked whenever
its pattern matches an assertion placed in the data base. An IF-REMOVED
method is invoked whenever its pattern matches an assertion removed from
the data base. ‘

(b) MYCIN's backward chaining most closely resembles IF-NEEDED

methods.

(c) HEARSAY-II's knowledge sources most closely resemble IF-ADDED
methods (and possibly IF-NEEDED and IF-REMOVED).

Problem 2.
A variety of formulations are acceptable due to axioms about the

relations involved. The following are just samples.
(a) dx ON(BK,x) a ROW(x,6) a COL(x,5)
(b) ¥p¥q¥s ON(p,s) A ON(gs) = p = g A VPysyt ON(pys) A ON(p,t) = s = t

(c) P e PAWN
A WHITE (P)
A ds ON(P,s) A ROW(s,T)
A IsHdcdt ON(P,s) A COL(s,c) A ROW(t,8) A COL(t,c) A EMPTY(t)

Problem 3.

(a) WP-1 on A7
example WP-1 on BY teaches column unimportant
example WP-2 on A7 teaches P = WP-1 unnecessary
near miss WB-1 on A7 teaches P € PAWN necessary
near miss BP-1 on A7 teaches yHITE (P) necessary
near miss WP-1 on B6 teaches ROW 7 necessary
near miss WP-1 on A7
BR-1 on A8 teaches EMPTY destination necessary
(b) No, because there's no way to encode the constraint that the king and

rook must not have moved. Another example would be the en passant

91

SOLUTIONS to Artificial Intelligence

Problem 4.
(a)
(b) before H before I
A 1 1
B Al Al
C 1 1
D Al Al
E 1 11
F A2, A3 A3
G A2, A3 A3
H F1
Problem 5.
(a) The bishop beside the white pawn.
(b) The king pawn (noun modifiers not handled).
(c) Those pawn (number mismatch).
(d) The pawn (which pawn?)
(e) The pawn on the square next to the king (attachment of the second
prepositional phrase).
Problem 6.

(a) The Branch and Bound method does not use heuristic information.

(b) Depth-first search is the only method applicable.

(C) a-p search is not always more efficient than exhaustive minimax,
though it's never worse. Consider the following example.

SOLUTIONS to Artificial Intelligence

(d) No, the robot is not guaranteed to get the optimal result, since
he may arrive at a ridge or foothill in picture quality space from

which any adjustment degrades the picture.

Problem 7.

Cognitive Simulation and Machine Intelligence.

93

SOLUTIONS to Hardware

Problem 1.

(a) This question asks for the range of values that the mantissa can
take. If all the bits of the mantissa are O then 0 1is represented.
If there is at least one 1 in the mantissa then the range must be

1/8 < range <1

()
1
-
b-2 Ny 1
[} -~ =
e AN\ X
b LI
p_o "B b

We want to find out how close b and b-2™" have to be so that
1/b and l/(b—2-n) are within :2'6 of each other,

The number of bits that b and b-2"" agree is the number of
bits needed from the mantissa in order to lookup the reciprocal to an

=6
accuracy of 2 .

D SR
b pp™

- -6 -
b+ 2P 4 b <2 (% -2)
- -6 =6 -
#2272 L 2T
ignore this term, too small
The most critical value of b is 1/8, since that is where the reciprocal
function has its greatest effect.
) < 27 82F)
12

2

2R < 2T

or that n > 12 so use n =13 bits.

(¢) There are 215 words in the table since one must use 13 bits

to lookup the answer.
9L

SOLUTIONS to Hardware

Problem 2.
-LRESET
£ L o —o 2
RESET RESET RESET RESET
D
set
CK
|24
CLOCK
CK -4 CK
SERIAL A Vo
INPUT D &~ D

(=

PARITY BIT

The bottom row of D-FF's shift in the serial data,

clock pulse received.

register with one "1" cycling around along with ¥ "0 "'s,

5 parallel output lines

DATA

AVAILABLE

LINE

one bit for every

The top row of D-FF's act as a 5 bit circular shift

When the "1 "

reaches the last D-FF 5 clock pulses have gone by so that the bottom D-FF's

must have shifted in 5 data bits.
The first D-FF on the top row is set to a "1" by RESET (all the rest
of the top row is set to " O" by RESET)

circular shift register

95

on the next clock pulse.

and it "injects" that "L1" into the

SOLUTIONS to Hardware

Problem 3.
(a) The request rate to memory is

(0.62 instr memory fetch/instr + 0.78 data memory fetches/instr)
* 10 million instr/second (CPU decodes 1 instr per internal cycle
= 100 ns))

+ 0.78) x 107 = 1h><1o6 fetches/sec = 14 MAPS

(b) Peak performance is 100 ns/instruction lO)(106 instr/sec

= 10 MIPS
Address
} IF ‘Decode ‘Geneﬁate DF ‘execute P
! 1l : I : J]‘ [T
580n 100ns | 200ns 580ns 200ns |
i
I . (I
> > 1)
[. -
normally the next but on a BC the BC
pipelined instruction instruction must wait
should be decoded here until the condition codes

are set by the previous
instruction (i.e., wait
until execution is done).
;. The BC instruction causes a loss of 880ns compared to normal

pipelining operation.

The "average" instruction time is
0.68 x 100ns (normal) + 0.32 x 980ns (BC instr)
~ 38gns/instr ~ 2.6 MIPS

Problem 4.

(a) The cache is a high speed memory between the CPU and main memory. It
uses some algorithm to try to contain words of memory which it anticipates
the CPU will ask for, thereby providing faster access to those words
than main memory can achieve.

(b) A hard-wired CPU is generally faster but it is more complex to build and,
once built, its operation cannot changed.
A micro-coded CPU is slower, is generally simpler to design and build
and has the flexibility of changing its instruction set by changing

the micro-code it contains.

96

SOLUTIONS to Hardware

(c) TTL -- high power, fairly fast logic. Is the standard for SSI
and MSI chips.
CMOS -- wvery low power, rather slow, with very high noise immunity.
NMOS -- low power, moderately fast. Mostly used in LSI chips.

37

SOLUTIONS to Numerical Analysis

Problem 1.

(a) Consider the 2x2 example

E
A = with 0 < e << 1
10
with no partial pivoting we get
€ 1
A(l) =
0 -1/e

The growth factor is 1/e which can be arbitrarily large. This example

can be easily extended to the nxn case.

(b) With no pivoting, after the k-th step of the elimination, A has

become _
al bl
8 P
(k) ;
A = el P
Crep Ppr2 k2
(a
n °n
-
Let @ = max{‘ai\,lbi\,‘ci\} . Applying the next step of the elimination
gives b
Pkip = Pmre
k+2 5
Serp = k2 T2 k+1
fk+l
Clearly \kae\ <a . Suppose inductively that
(1.1) lekenl S 1B
Then
(1.2) N R N L o B S L LS Y

98

SOLUTIONS to Numerical Analysis

Hence |5k+2\ < 2@ and so G < 2 , provided we can show that (1.1)

eontinues to hold, i.e., that

\ck+5l S la'k+2‘ ¢
From the diagonal dominance of A , we know that

\ck+5 |+ \bk+l\ < |ak+2l .

s0
l ck+5] < | a'k+2 I - lbk-i-]_ \
< el from (1.2)
Problem 2.
n n
(a) Let 8, = 2, x. and suppose that
.1
Jd=
N-1 N-1 o
(s,) = Z x.(l+ay) with p.] < (N-1)u + O(uw")
1 52173 J 3
SN N-1
Then fi(l) = j%;lxj(li-aj) (l*—el) + xN(l+-e2) with [e;] < u for
i= l, 2 . So
N N-1
£2(sy) = j?l xj(l+aj+el+ajel) tx(l+ey)
Let
BJ = O, + €1 + a.el for j = l,gjoo.’N-l
6N = 62 .
Then N
fz(sﬁ) = x.(1+ B.)
=19 J
and

lBj\ < ‘aj\ + lel\ + \ajel\
< (N-L)u + u + o(ug) = Nu + o(ug)

for 3 = 1,2,...,N-1 and
< < 1
\6N\ u < Iu

which completes the proof by induction.

99

SOLUTIONS to Numerical Analysis

k k
k2 ~x 2
(b) Let S, = 2 X, S, = 2 x k and suppose that
j=l J J:l 2 +j
k 2k
fl(Sz) = 2 x.(1+a))
j=1 9
~k 2k
£4(5)) = L ox, (ra,)
j=1 2% 2+]
+
with o | <l + 0(u®) for i = 1,2,...,25 Then
k+1 2k 1 2k
f/z(s2) = 2 ox.(1+a.) [(1+ el) + 2 X (L+a x) (1+ e2)
j=1 ¢ J =1 2% 2543
with ¢; K u . Let
. . k
7J' = aJ. + € + O:J.el for j = 152544452
. k k+1
= =2 +1y...52
73. = Otj + €2 + aj€2 for J 2 9)
Then 2k+l
+
fl(Slg l) = 2 x.(1+7.)
j=1 4 J
and
Pil<m +u o+ 0(u?)
- (+L)u + 0(wd)
Problem 3.
a) It follows from the mean value theorem that
f(X*) - f(Xn)
— 1
X, - X = T (gn)
* n
for § e [min X, x ,ma.x(x*,xn)] . Since f(x,) = 0 we have
—_ 1
(3.1) Xy - X = - f(xn) /£ (g.)
if f'(gn) # 0 . Using Newton's method the (n+l) -st iterate is given by
Xoyp = % - f(xn)/f' (xn)

and consequently

100

SOLUTIONS to Numerical Analysis

(3 .2) Koap -l = leG)/e(x) | -

Since gn is between X and x, and X =~ X, , we can expect f'(xn)

to be a good approximation of f'(gn) . From (3.1) and (3.2) we obtain
|x*-xn\ = |f(xn)/f'(§n)| ~ |f(xn)/f‘(xn) | = |xn+l-xn| .

Thus ‘xn+l"xn|

criteria for a Newton iteration.

is usually a good error estimate to use as a termination

(b) Utilizing the estimate of (a) above and the table of values
of r we see that p = 1 and e~ 2/3 . Since Newton's method converges
linearly to multiple roots with asymptotic error constant (AEC) (m-1)/m
for roots of multiplicity m , it is reasonable to conjecture that our
iterates are converging to aroot of multiplicity 3 ((3-1)/3 = 2/3).
If this is the case and we replace f(x) = 0 by £'(x) = 0 we would
improve the AEC, it would become 1/2 , but the order p will still be
one. Using f"(x) = 0 the root becames simple and the convergence

quadratic, p = 2

Problem 4.

We have

=
|

= f(yn_l) + en

£(2(y,) *e) *e

n

f(n)(yo) + f(n-l)(el) t.*a + fle)+ e

—l) n
where fﬁw =fofe. . .o f (n occurrences of f) and

X = f(n)(xo).

n

Consequently,
5 1 2(8)
‘Xn-ynl S\f‘n(xo) -fn(yo)J\ZOZ\f <€n_j)‘

and using Lipschitz continuity

n-1 .
X - max |e. K
@ owol + gl

IN

K ‘XO"yOl + m?x |€j‘Kn-l?F3T .

Il

101

SOLUTT ONS SYSTEMS

Conputer Lanquage Syntax

la. [4**%2**3 = 423 = 65536 rather than (_,4‘2)3 = 4096]

Ib. <expr> := <expr> + <term> |<expr> - <term> | <term>
<termd ::= <term> * <factor> [<term>| <factor> |<factor>
<factor> ::= <unsfact>|- <unsfact>; don't recurse here!
<unsfact> ::= <base> + <exp>| <base>
<base> ::= (<expr>) | <identifie~>
<exp> ::= <factor>; or less fancy:
<exp> ::= <unsfact>

Paging
2a. DPA selects pages from the entire real space for removal, WSA manages pages
for individual user spaces.

2b. Control over total page demand to assure that the residence time of a page
is sufficient to allow its use, relative to its acquisition cost.

2c. Good estimates of WS's and control over number of users to keep aggregate
menory demand for WS's within real bounds. WS is determned by a tine
wi ndow

Cooperating Processes

3. User ui : FOR EVER

BEG N
uk = AWAIT (ui, ness);
process;
SEND (ui, uj, ness)
END

Bufferhandler : MON TOR
DECLARE bufferspace, source list, dest list, bufferpointers, state;
PROCESS SEND (ul,u2,m);
bp := acquirebuffer; if bp = null {put ul to sleep; exit);
complete:send sourcelist (bp) := ul; destlist (bp) := u2;
bufferspace (bp) := m
Wakeup u2);uakeup waiting u processes;
Return
END SEND:

PROCESS AWAIT (u,m)
0p := locate buffer-for (u); if none {put u to sleep; exit};
m := bufferspace (op);
dest := sourcelist (Op);
wasbusy := release-space (op); = IF wasbusy conplete;
return (dest)
end AWAIT;

102

Solutions Systens

Cooperating Processes (continued)

INTERNAL PROCESS ACQUI REBUFFER;

If full Estate := busy, return (null)},
else find bp;

return (bp)

END ACQUI RE- BUFFER ;

I NTERNAL PROCESS RELEASESPACE (p)
Mirk p free;
state := not busy;
return (pstate)
END RELEASE SPACE

Initialize: Set bufferpointers, state

END buffer handler .

Conmputer Lanquages

4a. Little support code at run-time is required, and execution can be
nore efficient. The former, in-turn, reduces machine size requirenents
and inproves compiler consistency and portability.

4b. Paraneters are inflexible, strings are primtive, arrays cannot be
adjusted, file access is limted, garbage is not being collected.

'Language System

5 i. Heap just grows with every NEWstatenent.
Problem can run out of space, unsuitable for mmjor systens.

ii. Heap is managed as stack, a DISPOSE function allows popping of the stack.
Problem User has to understand and use the mechanism correctly, can
loose records he is still using.

iii.. Records are linked back to all of their references, dispose checks
all or selected records for safe removal. Heap space contains a free
list or is conpressed as needed.

Problem complex mechanism difficulty in releasing unused circular
ring structures.

iv. Garbage Collection is applied to the heap.
Problem Pointers and record boundaries have to be recognizable,
inmposes constraints on code generation and requires extra space. The
lack of a single structure root in PASCAL records mmkes circular
structures hard to collect. Conpression is very difficult

103

SOLUTIONS to Theory of Computation

Problem 1.

(a) | T F (i.e., the standard interpretation of "= ").
T T F
F] F T

(b) P o (P DP).

(c) Since the axioms and rules are sound for the nonstandard interpretation
for "o ", it follows by induction on the length of proofs that every
formula provable in the given system is valid for the nonstandard
interpretation. P o (P o P) is not valid for the nonstandard

interpretation (take P = F)s and therefore is not -provable,

Problem 2.

The set Sk of decimal representations of positive integers divisible

by any positive integer k is regular. Proof: Sk

following automaton, Rk . Rk has k states %Y""qk-l . There is a

is recognized by the

transition fram state qito state qj ; labeled n iff ((i*10)+n) mod k = j
qy 1s the initial state, and the only accepting state. (At each stage
R, 1s in state i 1iff the part of the number read so far is equal

modulo k to i .)

Problem 3.

"i+Jj 1is odd, and ja; =1, and |p| =1 ."
Problem k.

The problem is in NP, since, if Rl' ..Rn can be placed into Ro
without overlap, then the Ri can be placed in RO without overlap in such

a way that the coordinates of the lower left hand corners of all of the Ri
are integers. This is shown as follows. Suppose that there is a legal
placement of the %. in RO . Consider the leftmost block whose horizontal
coordinate is not an integer. This block can be moved over, without overlap,
to a position with integer horizontal coordinate. Repeat until all blocks

have integer horizontal coordinates. Do the same for vertical coordinates.

104

SOLUTIONS to Theory of Camputation

To determine whether there is a legal placement of the Ri in RO in
nondeterministic polynomial time, guess orientations. and integer coordinates

for the blocks. Overlap can then be checked in polynomial time.

Problem 5.

(a) ILet go,gl,... be an enumeration of the recursive functions.
Take
f(n) = max (g.(n)) + 1
. i
i<n

Then, for each n, ¥(m > n) (£(m) > 8n(m))

(b) S = {n | @(£(1) = n)} has the desired property. Suppose R C S
is recursive and infinite. Define g(n) = the n-th member of R when R
is listed in increasing order. Then g(n) is a recursive function, but,

g grows more rapidly than f . Contradiction.

105

Winter 1980 - Comprehensive Programming Project
Display of Mathematical Expressions

The goal of this problem is a program that takes as argument
a list structure representation of a mathematical expression in prefix
form and prints it in standard two-dimensional format. For example,
the expression

(plus (expt x 2) (times 2 x y) (expt y 2))
should be displayed as

2 2
X +2XY+Y

The problem is made more difficult by the possibility that the
expression cannot fit on a single line. It is okay to “break” an expression
across lines before sum and product operators, provided those operators are
not embedded within exponential expressions or quotients. Consider, for
example, the following expression.

2 3 4
OMEGA TIME MEGA TIME (MEGA TIME QMEGA TIME
14— —— 4 — 4+ --___ 1+ —_—
2 6 24 12¢
5 6 7 8
MEGA TIME CNEGA TIME (MEGA TIME CNEGA TIME
+-W-P - e g M- M-y
12¢ 51348 46320 362886:

Obviously, such expressions can be broken at a variety of places. Your
program should choose a display format that minimizes the total number of
breaks subject to the constraint that at least half of every line is
utilized (whenever the expression is more than a half line long).

In your implementation you may use Interlisp, Maclisp, Algol W,
Pascal, or Sail. Your efforts will be graded according to the criteria
ot correctness, clarity,efticiency, and documentation.

Inputting Expressions

Expressions are built from integers and alphanumeric identitiers
that begin with alphzbetic characters. You need consider only four
operators, viz. addition (plus), multiplication (times), division (quot),
ana exponentiation (expt) .

Expressions should be represented in LISP-like list format. For

example, the tirst expression above would have the following box and
pointer structure.

106

- - . e -
fplust — 1) . ¢ L} . | —-—}-, : l‘\‘\g

SR S)
‘expt ! — Y -' —2 N\
' ' - L - -

. .
' time‘s-] _— 2 x4 - Y

‘: expt;' - i' :‘-I-_ X ’ '_-;"4 2 i‘\\

Write functions ADD, MUL, DIV, and PCW that take expressions
as arguments and produce the corresponding list structure. For example,
to create the above expression, one would write the following (in LISP) .

(ADD (POW 'X 2) (MUL 2 'X °Y) (PON Y 2))

While DIV and POW are inherently binary operators, you may wish
to write ADD and MUL as n-ary functions. In some languages, it is not
possible to define subroutines with an arbitrary number of arguments. If you
select one of these languages, you may write several series of functions
(ADD2, MUL2, ADD3, MUL3, ...) that take the number of arguments indicated
in the name. For example, the PASCAL version of the above expression
would be as follows.

ADD3 (POW (uxn' Il2ll) ’ MUL3 (nzu’ “X”, "Y") , m(uY"’IIZlI))
Display Format

Displaying expressions tastefully is an art with a large number
of conventions. For the purposes of this problem, your program need
use only the following rules.

1. Sums should be displeyed with an infix “+ ". (That’s space, plus,
space.)

2. Products should be displayed with an infix space or "*".

3. Quotients should be displayed as numerator over denominator, with
the quotient bar made of dashes occupying the line between the two.
The numerator and denominator should be centered within the quotient.

4. Exponential expressions should be displayed with raised exponents,
in which the lowest line of the exponent is one above the highest
line of the base (with the exception noted below) .

5. Parentheses should be inserted where necessary to avoid ambiguity, e .g .

2 X
A A2 2 2 X X X
(=) A+B (A + B) X (X)
B B

Note that after a closing parentheses, an exponent is lowered to the
line above the parentheses. Obviously, these are not the only cases
of ambiguity.

107

Breaking Lines

The constraints on breaking expressions across lines are as given
in the introduction. One good approach is to put as much on a line as
will fit, then go on to the next line. Unfortunately, this will sometimes
fail to satisfy the half-line requirement, as in the following example.

22 33 44 55 66
CMEGA T CMEGAT CMEGAT MEGA T CMEGA T MEGA T
- -+ + T - - - - -
R R R R R R
22
OMEGA T + QMEGA T
+ -
2
R

22 33 4 4 55
MEGA T+ (MEGA T + QMEGAT + (MEGA T + OMEGA T
o .

R

In such situations it is necessary to try a different set of breakpoints.
Just taking a tragment trom the previous line will sometimes work, but the
ettect may propagate. In general, a combinatorial search is required. In
implementing an efficient search, you may find dynamic programming techniques
helpful.

There are some expressions for which no display can be generated that
satisfies the given constraints. If the half line constraint cannot be
satisfied, your program should choose a set of breakpoints that minimizes
the total number of lines. If the input contains a fragment that does not
fit on a single line and cannot be broken (e.g. a quotient), you may have your
program do whatever you wish (e.g. print an error message, write quotients
in infix form (A/B) with a breakpoint at the slash, etc.).

Hints
0 You should structure your program into three distinct parts:

1. a “dimensioning” subroutine, which determines the size of
subexpressions and makes a list of possible breakpoints

2. a program that decides which breakpoints to use
3. a program that prints the expression on the terminal
The graders will 100k for these three subparts in examining your work.

o This is & “data structure intensive” project. Choose good data
structures and document their significance carefully.

o To facilitate testing your program, use a global parameter called
LINELENGTH whose value determines how wide an expression may be.

108

Test Data

Test data for your program will be given in two sets. The
tirst set is attached here. The second set will be available after
9:2¥0 a.m. on Monday, January 21, in Jacks 206. Turn in your source
program, associated documentation, and the output from all the test data.

Questions

If you have questions about the problem, you may contact

Rod Brooks RODESAIL 49/-1604 856-0979

or

Mike Genesereth GENESERETH@SUMEX 497-37/28

109

Winter 198¢ - Comprehensive Programming Project
Test Data I

1. (SETQ LINELENGTH 40.)
(DISPLAY (DIV (POW (ADD (POW 'X 2) 1) 2) 2))

2 2
X + 1) ‘

2

2. (DISPLAY (POW 'X (POW X 'X)))

X

X

: |
3. (DISPLAY (POW (POW X 'X) 'X))

X X
X)

4. (DISPLAY (POW 'E (DIV 'OMEGA 2)))

5. (DISPLAY (ADD (POW 'BASE'EX1)

(POW 'BASE 'EX2)

(POW 'BASE 'EX3)

(POW 'BASE 'EX4)

(Pow 'BASE 'EXPONENT100)

(POW 'BASE 'EXPONENT 200)

(POW 'BASE 'EXPONENTZ(6)

(POW 'BIGBASESYMBCL 'SUPERBIGEXPUNENT)))

b ExL EX2 EX3

1 BASE + BASE + BASE

EX4 EXPONENTI100
| + BASE + BASE

EXPCNENT 200 EXPCNENT20¢
i + BASE + BASE

. SUPERBIGEXPONENT
| + SUPERBIGBASESYMBOL

110

Winter 198y - Comprehensive Programming Project
Test Data Il

1. (SE1Q LLNELENGTH 49.)
(DISPLAY (POW (DIV (ADD (PUW 'X 4) (PUW 'X 3) (PLW "X 2))
2

2))

2. (DISPLAY (DIV 'A (DIV 'B 'C)))
A

B
=)
C

3. (DISPLAY (ADD 'A (ADD 'B 'C) 'D))

A+ (B+C)+D

4. (DISPLAY (ADD (POW 'SUPERBIGBASESYMBOL 'SUPERBIGEXPONENT)

(POW 'BASE 'EXPONENT30d)

(POW 'BASE 'EXPONENT220)

(PCW 'BASE 'EXPCNENT L¥)

(POW 'BASE 'EX4)

(POW 'BASE 'EXJ)

(POW 'BASE 'EX2)

(POW 'BASE 'EXl)))

SUPERBIGEXPONENT
SUPERBIGBASESYMBOL

EXPONENT 390 EXPONENT200
+ BASE + BASE

EXPONENTI00 EX4
+ BASE + BASE

EX3 EX2 EX1
+ BASE + BASE + BASE

111

5. (DISPLAY (ADD (POW 'BASE 'EXPONENT1)
(POW 'BASE 'EXP1)
(POW 'BASE 'EXP2)
(POW 'BASE 'EXP3)
(PoW 'BASESYMBOL 'EXPONENTSYMBOL)
(POW 'BASE 'El) (POW 'BASE 'E2) (POW 'BASE 'E3)
(POW 'BASE 'EXPONENT?2)
(POW 'SUPERBIGBASESYMBOL 'SUPERBIGEXPGNENT)))

EXPONENTI EXP1
BASE + BASE

EXP2 EXP3
+ BASE + BASE

EXPONENTSYMBOL El
+ BASESYMBOL + BASE

E2 E3 EXPONENT2
+ BASE + BASE + BASE

SUPERBIGEXPONENT

+ SUPERBIGBASESYMBOL

6. (DISPLAY (DIV (ADD (POW 'E (TIMES 2 'GMEGA))
(POW 'E (TIMES 3 'OMEGA))
(POW 'E (TIMES 4 'GMEGA))
(POW 'E (TIMES 5 'OMEGA)))

2))
| ERROR - Expression too wide .

7. (DISPLAY (PoW (ADD (PcWw 'E (TIMES 2 'QUEGA))
(POW 'E (TIMES 3 'OMEGA))
(POW 'E (TIMES 4 'CMEGA))
(POW 'E (TIMES 5 'OMEGA)))

2))

‘ ERRCR - Expression too wide I

8. (DISPLAY (POW 'E
(ADD (POW 'E (TIMES 2 'OMEGA))
(POW 'E (TMES 2 'QGMEGA))
(POW 'E (TIMES 4 'CMEGA))
(POW 'E (TIMES 5 'QMEGA)))))

| ERROR- Expression too wide

112

Spring 1979/80 Comprehensive Examination

Analysis of Algorithms
Problem 1. [18 points]

Consider a set of n disjoint line segments lying parallel to the
x-axis. When one stands at (0,-=) and looks toward the segments; some
of them may not be seen. For example, segments Il and 15 cannot be

seen in Figure 1 (11 hides behind IQUIB) .

'2_‘ ‘T‘
—_— L
I3
;x

p
/8> observer at (0, -o)

(a) [6] Give an algorithm that, for any input set of segments
S . {(alybISY:‘_)) (a2’b2;y2) P (an’bn;yn)} » canputes the subset
S' <€ S8 of those segments that cannot be seen. Note the triplet

(ai,bi;yi) represents the line segment connecting the points

(al,yl) and (bl’yi) 4
(b) [6] Give an algorithm that runs in time O(n log n)

(¢) [6] Suppose the segments do not necessarily lie parallel to the x-axis,

Give an O(n log n) -time algorithm for computing the hidden line segments.
(See Figure 2.)

> <
&
ol

Figure?

113

Analysis of Algorithms Magic Number

Problem 2. [18 points]

Let A = aj85...2, and B = blbe"’bn be two binary strings
of length n . A composition of A and B is a string of length 2n
obtained by merging A, B in any manner. For example 011001 is

a composition of 010 and 101 (the underlined part is 010 and the
rest is 101).

(a) [12] Give a polynomial-time algorithm that determines if ¢ is a
composition of A and B , given the input strings A, B and C

(v) [6] Make your algerithm run in time O.(%)

Problem 3. [2L4 points]

One of the more bizarre proposed solutions to last fall's 'bicycle
crisis™ was to have a row of n '"sheds", numbered 1,2,...,n , each of
which could hold one bicycle. Sheds have closed doors, and you cannot
see into one without (temporarily) opening its door. These would be shared
by m > n people, no more than n of which would be at work at one time.
When arriving at work on your bicycle, you would open shed doors according
to some agreed-upon strategy, eventually finding an empty shed (not necessarily
the first empty one encountered), placing your-bicycle there, and closing
the door.

On leaving work, you would open doors until you found your bicycle
(which need not be in the shed you left it in); possibly you would rearrange

some other bicycles, and then you would leave.

Formally, an algorithm consists of a sequence of one or more steps.

A step consists of the following operations for some 1

(1) Open the door of shed i

(2) If you have a bicycle with you, and shed i is empty, you may place
that bicycle in shed 1

(3) If you have a bicycle with you, and shed i has a bicycle, you may
exchange bicycles.

(4) If you have no bicycle, and shed i has a bicycle, you may take
that bicycle from the shed.

(5) Close the door to shed i

114

Analysis of Algorithms Magic Number

In operations (2),(3), and (4), the decision whether to manipulate
bicycles can depend only on whether the bicycle you hold is your own, or
whether the bicycle you see in the shed is your own, i.e., you can recognize
your own bicycle, but cannot distinguish others.

A poor strategy we could follow is for each person, on arriving, to
examine all sheds 1,25...,0n until an empty one is found, place his
bicycle there, and remember the number of the shed used, Then, on leaving,
since no one ever moves bicycles, simply go to that shed and remove the
bicycle. This method requires O(n) steps on arrival and O(l) steps
on leaving.

The problem is to devise another strategy, to be followed by all
users of the sheds, that requires only O(VE.) steps on arriving and
leaving. An informal description of how to choose the sheds i on which
steps are performed, together with how the decisions of operations (2)=(L)

of these steps are made, will be acceptable.

115

Artificial Intelligence Magic Number

Problem 1. [10 points]

Answer the following questions.

(a) [2] What is the advantage of a semantic network over the "record-oriented"
representations described in data base management research in which each
row represents an entity and each column represents an attribute, i.e.,
essentially tables.

(b) [2] What is the difference between backward chaining and GPS?

(c) [3] Wwhat is meta-planning? State at least two meta-planning heuristics.

(d) [3] Draw a smell (and-or) search tree with branching factor of 2
and depth 4 . Assign values to the leaf nodes so that the a-8

search algorithm searches as little as possible.

Problem 2. [10 points] Predicate Calculus.

(a) Encode the following sentences as formulas in the predicate calculus.
(1) [2] "The postman's brown hat is at the cleaner's."
(2) [2] "Bverybody loves somebody." (2 meanings)
(3) [2] T"here are 23 postmen in Palo Alto."

(b) Find the most general unifier for the following sets of formulas,

where lower case letters signify variables.
(1) [21 P(u,v,A) , P(£(x),w,x) , P(£(y),2,2)
(2) [2] P(£(x),x) , P(z,£(z))

Problem 3. [20 points]

One aspect of quizmanship is selecting a problem to work on next. On
many exams you are instructed to look over the problems before starting in
order to help in making this judgment. As ah example, consider how one
might formulate a plan for taking the comprehensive, i.e., determining which
order to work on the problems. You may assume that students are given point

values for each problem and are told there will be no partial credit.

(a) [5] Arthur, a Master's student, must maximize his overall score and
realizes that choosing the optimal subset of problems to work on is a
bin packing problem. Moreover, he is not sure he can accurately guess
how long each problem will take; and so he decides to use hillclimbing
to search the tree of possible orderings. What simple measure should

he use in conducting this search? Is the resulting plan optimal?

116

Artificial Intelligence Magic Number

(b) [5] Beatricg is a Ph.D. candidate and must demonstrate minimal
competency of (let's say) 20 points in each area. ghe decides to use
a two phase approach. 1In the first stage, she strives for 20 points
in each area using minimal time; then she tries to maximize her
overall score. What formal search method should she use in the first

stage and what are the relevant cost and/or heuristic functions?

(c) [5] Carleton has already passed the exam and is taking it again
for the fun of it. He boasts that he can always predict precisely
how long it will take him to solve a problem and complains that
Beatrice's two-phase strategy is non-optimal. Is he right? If so,

why? If not, show a counterexample.

(a) [5] Suppose we wanted to build a robot able to decide what strategy

to use. What knowledge would the robot have to have?

Problem 4 [20 points]

A particular computer implementation of the Blocks World offers two
commands to the user. PUTON(x,y) gets x onto y so long as x is a
moveable object, ¥y i1s a brick or the table, and both have clear tops,
PATINT(x,c) changes x's color to ¢ , provided that x is directly on

the table. Use the following vocabulary in answering the questions below.

BLOCK —- set of all manipulable objects.

BRICK, PYRAMID, WEDGE -- sets of objects with the corresponding shapes.
Bl, B2, P1, P2, W1, W2, TABLE —-- objects.

CLEAR —-- one place relation signifying a clear top.

ON -- two place relation, a subset of BLOCK X(BRICKU {TABLE))

COLOR -- function from objects to hues.

RED, GREEN, BLUE, YELLOW —-- hues.

(a) {3] write STRIPS-like prerequisite, add, and delete lists for
PUTON.

(b) [4] what sequence of actions would be required to achieve the
goal (AND (ON Bl B2)(COLOR Bl RED)) in the following situation:

blue — s {BL| B2

117

Artificial Intelligence Magic Number

(e) [5] Suppose a robot using the Winston concept formation algorithm
wanted to learn about PUTON by looking at examples of its operation.

Show a sequence of block configurations that would teach the robot

the prerequisites of PUTON.

(a) [5] Wnat could go wrong? Present a legal training sequence that

might give the robot an incorrect model of PUTON's prerequisities..

(e) [L] Suppose the robot used backward chaining and means-end analysis
to solve problems. Devise a test problem to detect the error produced

by the sequence in part (d).

118

Hardware System Magic Number

. Subroutine Linkage Architecture (12)

a. (3) Vhat machine registers are affected by CALL to a subprocedure?
b. (4) How do you best transmt

i) sinple (i.e., single word) paraneters
ii) conplex (i.e., record or array) parameters

c. (5) Discuss the effect of recursive calls in these linkages.

2. High Speed Arithnetic (8)

Discuss how pipelining conplicates the handling of floating point
exceptions (i.e., overflow, underflow, . ..).

3. Floating-Point Representation (15)

The following table contains real nunmbers and their (octal representations
in an 18-bit floating-point scheme. Describe this particular floating-
point schene.

-4 615777 1/4 172000
-3 601777 1/3 172525
-2 603777 . 1/2 174000
-1 605777 213 175252
1 202000 220(212-1) 3777717
2 204000 -220(-212-1) 770000
3 206000 2-32 002000
4 212000 -2-32 405777

5. Communication Alternatives (5)

Describe the difference between synchronous and asynchronous
communi cation protocols.

119

Hardware Systems Magic Number

5. Combinational Circuit Problem (10)

The boolean Fibonacci function f is definded to be TRUE for the
binary inputs Xy, xz, X3, X4 corresponding to El, 2, 3, 5, 8§, 131
and FALSE otherwise.

a. (5) Give the mniml sum of products expression for Ff.

b. (5) Give the mnimal product of sums expression for f.

6. Circuit (10)
Sketch a circuit to inplenent the following precedence function.

X neans don't care.

INPUTS. OUTPUTS
A B C D PA PB PC PD
I X X | x | 0 0 0
0 | X X 0 | 0 0
0 10 | X 0 0 | 0
0 0 0 |1 0 0 0 |
0 0 010 0 0 0 0

120

Numerical Analysis Magic Number

Numerical Analvsis

1. (10 points) Gaussian Elimination

A. (3 points) Suppose A = LU are n X n matrices with L unit

lower triangular and U upper triangular. Given L and U , how can det(A)

be obtained?

B. (4 points) How many multiplications and divisions are required to
obtain det(A) by the method of part A ? Include the cost of factoring A

Give the leading term.

c. (3 points) How many multiplications are required by the obvious

expansion by cofactors method?

2. (20 points) Sparse Cholesky Factorization

A. (13 points) Suppose A is a symmetric positive definite n X n matrix.

The rows of A contain leading sequences of zeros; in fact

aij-o for alllij<fif_i’

l1<i<n.

The numbers fi are known in advance. Give a pseudo-algol procedure for

computing the Cholesky (LLT) factorization of A which makes as much use as

possible of the structure of A

- B. (3 points) Give a multiplication count for your method.

C. (4 points) Suggest an appropriate data structure.

121

Numerical Analysis Magic Number

3. (15 points) Nonlinear Equations-.

Design a subroutine to compute 3 €@ . Assume the computer uses rounded
binary floating point arithmetic with a 24 bit fraction. o
The routine should use

a rapidly convergent iterative method and stop when the approximation x
satisfies

x-;'%_<2-zo
% -

You should consider:

(1) reducing the range of values of C without introducing rounding error;

(ii) generating a good initial guess;
(iii) estimating the number of iterations required.

The method should use little storage; large tables are prohibited

[(15 points) Polynomial Approximation

(3 points)

A, Let r(x) =x° - sup [tx)| 2

-1 <x<1

X | What is ||r ||

S)w

(6 points)

B. Show that if g(x) is a polynomial of degree < 2 then

1= - qG) Il > [lrex) |

You may use:
Theorem: if fe C[-1,1] . .
_ and p(x) is a polynomial of degree 0 such that

f (x) - p(x) achieves its maximum values + max
— _l<x<1 1E@® - px]

with successively alternating signs at n + 2 or more points in [-1,1] , then

for any polynomial g(x) of degree < n

e -pll <ll£-q]

»« (6 points) Prove the theorem,

122

Mathematical Theory of Computation Magic Number

Problem 1. Recursion Theory. [15 points]

Let x be a real number with 0 <x< 1. We say that x is a
"recursive real" if there exists a recursive function f mapping the

non-negative integers into {O,l} which gives a binary expansion for x
®

(i.e., x = z f(i)2-l-). Question: If x and yv , with 0 < x < 1,
i=0
0<y<1l, xtyC1l, are recursive, must x+ty also be recursive?

Justify your answer.

Problem 2. ZLogic. [15 points]

The compactness theorem for the predicate calculus with equality is

as follows:

Theorem: Let S be an infinite set of sentences of the predicate calculus

with equality. Suppose that every finite subset of S has a model. Then

S has a model.

Use the compactness theorem to show the following: If ¢ is a
sentence of the predicate calculus with equality such that for each number
n there is afinite model of ¢ with more than n elements, then ¢ has
an infinite model.

(Note: A model for a theory in the predicate calculus with equality

must interpret the equality relation as identity in the model.)

Problem 3. Automata and Languages. (15 points]

Let G be a context-free grammar with n productions, each of which
has at most m letters on its right hand side. Suppose that the language
generated by G consists of just one sentence § . Give a tight upper

bound for length of S in terms of n and m . Justify your answer.

Problem 4. NT-completeness. [15 points]

The firehouse problem is: given an undirected graph G , a maximum
distance d , and a number of firehouses k , can you choose k vertices
as firehouses so that every vertex is within distance d of at least one

firehouse.

123

Mathematical Theory of Computation Magic Number

(a)[21 Prove that the firehouse problem is IV-complete.

(b) [5'] Suppose d is fixed instead of being an input parameter.
Is the firehouse problem still NP-complete?

()L 51 Suppose k is fixed (but d is variable).

problem in this version NP-complete?

Is the firehouse

124

Software Systems Magic Number

1. Syntax Notation (10)

a.(5) Wite the syntax definition for FACTOR, given below in
PASCAL diagram form using BNF.

Factor
1 unsigned constant

>~ variab I% |

. L - .
function identifier *——m———— expression ———m

\/ expression

A 0\ . N\
\(_J expression \u A
- f\r:t/ —| factor 4

expression 1 O expression

b.(5) Discuss briefly the advantages of the two notations.

2. Paging (10)

a. (3) Specify the information needed by a paging system to decide when
to release or rewrite nenory pages to the paging device.

h. (3) Why are larger pages better than small ones?

c. (4) List four paraneters that affect optimml page size and give
their effect. .

125

Software Systems Magic Number

3 Language (11)

A PASCAL record can have variant parts.

a. (1) Wy are these variants desirable?

b. (1) What is the problem with then?

c. (2) Suggest a solution to overcone the problem

d. (3) You are witing these new PASCAL records out to a file, another
programis to read them Wiat happened to your solution?

e. (4) How would you fix that?

4, Ethernet Communication Protocol (5)

a. (1) In this protocol, who does error detection and correction?

b.. (4) How is that done? Wite steps in a very high level language
formt.

5. Code Generation (6)

Wite in an assenbly language [either HP2xxx, DEC10, IBM370, DEC11, or MX]
the code to be generated for the CASE statenent in the PASCAL program
given below.

I[f no match is obtained the case statement should be skipped.

(Do not concern yourself with syntactical details of the language.)

PROGRAM SALARYLIM TS
VAR ED, SAL, BSSAL, MSAL, OTHERSAL : INTEGER;

BEGI N
CASE ED OF
I+ SAL := PHDSAL;
2 SAL := MSAL;
3 : SAL := BSSAL;
9 SAL := OTHERSAL
END;
END.

126

Sortware System Magic Number

6. Cooperating Processors (10)

a. (5) You have multiple processors sharing menory. A processor
can lock units of nenory.

Wiat are two protocols to prevent deadlock?
b. (5) Wiich protocol would be best in a distributed conputing

environnent, i.e., the processors communicate to storage
via potentially slow commnication lines, and why?

7. Binding (8)

Describe the difference in argunent binding between ALGOL and LISP.
Show an exanple.

127

Analysis of Algorithms - Solutions

Problem 1 (a), (b)

There are several possible approaches to this problem. For instance,
it can be solved by sorting the line segments either by x or by y
co-ordinates. We shall describe a solution that sorts by x co-ordinates

that is easily adaptable to part (c).

1. Sort the endpoints of the intervals (both left and right) by x

co-ordinate.

2. Scan through the endpoints in increasing order on x-co-ordinate.
Maintain a balanced tree of line segments having a point with the current

x-co-ordinate. These segments are ordered in the tree by y-co-ordinate.

(1) To process a left endpoint a; Enter i with value s in the
tree. If i1 is the segment in the tree with smallest y-value,
mark i wvisible.

(ii) To process a right endpoint bi : Delete i from the tree. Mark

visible the segment in the tree with smallest y-value.

After processing all endpoints, the ones marked visible are indeed
visible; the others are not. Same care must be taken to deal with ties
in the x-co-ordinates of endpoints, depending upon how exactly one wishes
to define "visible".

This algorithm requires O(n log n) time for the sorting of 2n
numbers in (i) and O(n log n) time for n insertions and n deletions
in (ii); each tree operation takes 0(log n) time using your favorite

balanced tree data structure.

(c) The crucial point is that if two intervals overlap, then anywhere
along their overlapping part the order of their y co-ordinates stays

fixed, because they don't intersect:

|
]
| &—— larger y
|
|

\.(—— smaller y
!

|

128

Analysis of Algorithms Solutions

We use the same tree and operations as in (a) and (b), but
during every insertion and deletion we recompute y co-ordinates of
segments along the search path. Each such recomputation takes constant

time, and the modified algorithm has an O(n log n) time bound.

Problem 2 (a), (b).
Define s (i, j) for C_)_< i_<n, g<j_<n to be true if
; Lt 0
143 is a composition of ay%h,. ©\9X and bl’bz""’bﬁ ,
and false otherwise. We want the value of s(n,n) , We can compute the

Cl,C2,..o;C

values s(i,j) by using the recurrence
s(0,0) = true

s(i,J) = (S(i)J-l) and ci+j = bJ) or
(s(i-1,3) and ¢y 4= ay) -

A double loop iterating over 1 and j in increasing order computes

s(i,J) in O(ng) time.

Problem 3.

Divide the sheds into [vVnl (or fewer) groups, each containing Ma
bikes. We maintain the property that if any bikes are in a group, they are
packed into the first sheds of the group. We also make sure that, although

bikes are moved, no bike moves from one group to another.

On arriving: Check the last shed of every group to find a group
with an empty shed. Check all sheds in the group to find the first empty
one. Put your bike in it. Time: O0(vm) .

On leaving: Check all sheds in the group in which you left your
bike to find your bike. Remove your bike and replace it by the bike in
the last filled shed in the group. (If your bike was the last, no

replacement is necessary.) Time: O(VE) .

129

Artificial Intelligence - Solutions

Problem 1.
(a) A semantic network saves space when the data base is sparse,

i.e., not every relation has a value for every entity.

(b) Backward chaining is a problem solving method in which one chooses
an operation that achieves a goal, then sets up the prerequisites for that
method as subgoals. 'There is no constraint on how the operations are chosen.

GPS uses a table of differences to determine which operation to

perform.

(c) Meta-planning is planning applied to the planning process itself.
The following are two typical heuristics.
1. Solve hard problems before easy ones.

2. If you can't prove a claim, try to disprove it.

Problem 2.

(a) 1. h Hat(h) A Belongs(h, The-Postman) A COLOR (h, BROWN) A LOC(h, Cleaner)

2. ¥x Zy Loves(x,y)
Ty VX Loves(x,y)

3. dp Postman(pl) A ... A Postman(

Poz)
AP # P, AP £ P5 A0 A pl FP

l...PQB

Ap_o%%/\-..

() 1. u/f() , v/A »w/A, x/A , Y/A

2. none

130

Artificial Intelligence - Solutions

Problem 3.

(a) He should maximize points/ expected time. This isn't optimal
because when he comes near the end, he may choose a problem that requires
more time than he has left. In other words, he must take into account the

amount of time he has remaining.

(b) Branch and Bound is most appropriate with time as her cost

function and 20 points on her goal.

(c) He is correct; Beatrice's strategy is not optimal for him. He
should maximize points/time subject to the constraint that he gets 20 points
in each area. In minimizing time, Beatrice might choose a problem for which

points/time is not high.

(d) The robot would have to know the goal of the test and the

characteristics of each search method.

Problem k.,

(a) prerequisites for PUTON(x,y): CLEAR (x)
CLEAR(Y)
X e BLOCK
y € BRICK |y TABLE

delete list: ON(x,2)
CLEAR(y)

add list: Clear(z)
ON(%,¥)

(b) PUTON(Pl, TABLE)
PAINT (B1, Red)
PUTON(BL, B2)
(c) The following sequence of operations would teach Winston's
program the -prerequisites for PUTON. In each case, assume that the goal

is to put X into Y

2. {QE :i] generalizes X to manipulable objects
= A .

3. x5 25N requires Y to be a block

L, LXJ demonstrates that X need not be
[;] LX] on the table

131

Artificial Intelligence - Solutions

l

5. Lz_ demonstrates that Y need not
]
L%J 3~ be on the table

6. Lo requires that X be clear

requires that Y be clear

i

<0 fed

(d) If 2 differences are introduced at once, the program might
concentrate on the wrong property. For example, suppose examples 1 and 2

were replaced with the following.

- red —> /EJ D = blue__a_Ej

The program might infer that a block must be red to be moved and might not

realize the restriction on Y .

(e) One could either request it to put a block into a pyramid or
to move a blue block. In the first case the program wouldn't realize that
the situation was impossible; in the second it would spuriously paint the

block before moving it.

132

Hardware - Solutions

Hardware
a) Needed at CALL:

i. Register to save current instruction counter.
ii. Current instruction counter gets new address.
iii. Paraneter values or address must be obtainable (perhaps via i or ii).
iv. General purpose registers have to be saved or protected.

b) i. Single word paraneters are nost efficient using value, or if
. needed, value-result.
ii. Large paraneters are best passed by reference, to avoid large noves

c) To handle recursion a stack is needed to handle previous past instruction
counters (a.i) and parameters (b.i). Argunents, otherwise passed by
reference, may have to be stacked if arbitrary conmputation is possible
at internediate levels.

Hi ¢h Speed Arithnetic

In a pipelining machine information about instruction which may cause a
floating point exception has to be carried along until no further failures
are possible. Enough informmtion has to be kept of all instructions to
allow restart = this means mainly that no stores precede earlier floating
point stores.

Sinply flushing the stack on detection of floating point error leads to
problenms in error indication to the user and in programmng of adequate
error recovery.

. 0 . i
bit 1: sign bit; if nunber s honpegative.
1 negative

bits 2-6; exponent + 16; thus the possible binary values 00000 through
11111 = 3110 represents exponents -1610 through +15. The base is 4.

bits 7-18: mmntissa, a 6 digit base 4 quantity with point between the
first and second quaternary digits. If bit 1 is 1 the mantissa holds

the 1's conplenent of the mmgnitude.

Nunbers which cannot be represented exactly (e.g., 1/3, 2/3) are
chopped.

133

Hardware - Solutions

Communication Alternatives

In Synchronous Communication transmission is continuous. Wien no data
are available, IDLE characters are put into the transmssion stream
Clocks are derived fromthe signal.' Transmssion can proceed at a high
rate because of the stability of transm ssion.

In Asynchronous Communication the transmssion is initiated when data

are available. A start bit precedes the data, and at least one stop bit is
inserted to account for differences in clock initiation tine and clock speed,
prior to transmtting nore data. Mre bits aretransmtted per data

element and transmssion rates tend to be lower.

If XgXqXoXy represent a 4 digit binary number between 0 and 15, then
f(vx4,x3,x2,x]) has the given table of values, f is true if XgX3XoX, €
{goa1, oQig, Go11, 0101, 1000, 1101}

wﬂ'
X1%2 00 01 , 11 10

00 | O }O ?0 1

01 1 |1 I 0

nolifo o | o

10 1 {0 'O 0

A mniml sum of products form is f =x3x4x]x2+x4x1x2+x3x1xx+x]x3x4

. . PR = = -
Since a mniml sum of products for f FXqXg + XqXg + XoXg o+ XpXaXp + XqXoXq

Then o _
f = (x]+ x4)(x] + x3)(x2 + x4)(x2 + Xq 4 x4)(x] + Xo + x3)
A ! PA
B | A — »s
C 1

134

Numerical Analysis = Solutions

b) n3/3

c) >n!

2. a) Observe that the factor L can fit in the nonzero part of A
L, =0 if j < f, , 1 <i<n
1] i - -

Modify the loop bounds in Cholesky algorithm to avoid operating

on Zeros:

for r:= 1 to n

for c:= f_ to r-1
T
£ euoa ;
rc rc

fir_ k:= max(fr,fc) to ¢
o W - * .
Qrc' Qrc Qrk zck ’

L_!Z'rc =Qrcmcc '

.= - *
L Q'rr' Q'rr Qrk lrk

er. = sqrt (Jer) $

b) Define wj = card{i>j | £, 2 il

for 3 = 1,...,n-1
Ex: A has the structure

X

135

So that £, =1, £, =1, £, =2, £, =1, f_ = 2

1 2 3 4 5

Then wl = 2, w2 = 3, w3 = 2, w4 =1

n-1 2
The # of mults =1I w, + w,

. _ J _J

J—l 2
c) It is reasonable to store only the elements a.l.J with
figj <i and use the same space for L (i.e. overwrite A with

L). These would be stored in a l-dimensional array A , row by row,
in order of increasing column index within the row. An array of n + 1
pointers NROW would be used to show where the rows begin.

Ex: The lower triangle of A

(o1 b:9

0 0O|X X

O|X 0 0 X

would be stored

A13111222|231(232(233 (243 [Pa4 (352|253 |254 (255
NROW [1| 2 3 6] 8 12
NROW(i) = location in A of first element of row i

NROW(mt+l) = location of first unused position in A

136

3. Subroutine for 3\{/—c .
3n

I. Express c as ¢ = €& x 2
~ .éf'" .@7‘ n
where 1]i]c[< 8 . Then Tc = Tc x2
This can be done on a binary computer without introducing roundoff.

3

II. Use Newton's method to solve the equation f(x) = x - e =0

This means, given xo,

x- &

X = X - L

+1

a2} n 3X

1 e

= H2x + =
3{ X 2}

X

n

111. Since |&] > 1 and |&] < 8 ,

1< | ¥e <2
Take some rough approximation to q’f’\ , by a polynomial or
piecewise polynomial, to obtain the initial approximation X,

For example, take

Xg = 1.5 withrel. error at most .5
1.25 if & < (1.5) 3
or Xy _ 3 with rel. error ¢ .25
- 1.75 if & > (1.5)
or * - 1.5 + (z—c]i-—g with rel. error ¢ .162

IV. It was difficult to carefully estimate the number of iterations
required. With

€
n n !

. -33
and the assumption]eol < .25 , it can be shown that |e5| <2

(in the absence of round-off error), so 5 iterations would suffice.

137

In fact, since

f" (g)

€he1 S C2FT) n

. 3= .
where £¢ int (xn, ‘\/:), it follows that

2
|®n41| < 2]e |2 12e_.. |
o — n' °’ n+l' — n

This is because the iterates xn remains in the interval

[1,10/3 and in that

|L(_€)_| <2.

Thus,

2|en|—<-12en-lI - 11—2| = 0|

n

2 n
e 1 - -(1+27)
I'n| £5l2e,] <2

whence e i2_33 .

5

Since the iteration function does not require subtracting nearly equal
quantities, round-off should be no problem. If full 24 bit accuracy
was required, however, the last Newton step would be done in double

precision.

138

PROGRAM

function cuberoot (c);
real cuberoot, c,x,cbar;
integer iexp;
/* find cbar in[1,8] such that */
/* ¢ = cbar * 8%tiexp

cbar:=c;
iexp:=0;
while (cbar < 1) do
{cbar :=cbar * 8;
ixep:=iexp - 1}
while (cbar > 8) do
{cbar:= cbar /8;
iexp:= iexp + 1}
/* generate initial guess. error_< .25 */
if (cbar < 27./8.) then x:= 5/4
else =x:= 7/4; -
x:= 1/3 * (2*x + cbar/(x*x));

repeat
4 more
times

cuberoot := x * 2Tiexp

end (cuberoot) ;

4. a) Since r'(x) = 3x2 - 3/4 , local extrema may occur at -1,1
(the endpoints) and at -1/2,1/2 (the critical points). One
simply computes r (-1) = r(+1/2) = -1/4, r(-1/2) = r(1) = %‘.
Thus ||z]|= 1/4

b) r attains its maximum with alternating sign at 4 points in [-1,1] .

Thus the hypotheses of the theorem are fulfilled with
3 3

n =2, f(x) =x", p(x) = ZX .

139

c) Suppose ||[f-q¢ |l < || ¢=p | , where p,q are polynomials of degree n ,

£ {([_1,1], and f-p achieves its max with alternating sign at

distinct points xl’XZ””Xn+2é [-1,1] . Since

| (E-) x| < [le-all < fle-pll = [(E-p) =]

q(xj) < p(xj) when p(xj) > f(xj), and q(xj) > P(xj) when

p(xj) < f(xj)

(see fig below)

Xj xj +1

Thus p-q alternates 1in sign at the n+2 points {Xj}, and
therefore has n+l roots in (-1,1) . Thus p-g 3 0 , which

contradicts the hypothesis.

140

Mathematical Theory of Computation: Solutions

1 , Yes. Let xi be the ith bit of x, yi the ithe bit of y, and zi the ith bit of z=x+ y. We wish to
show that z is recursive if both x and y are recursive. Now, for each i, z; can be computed from Xi
and yi if it is known whether there is a carry from lower order bits. This can be decided by
searching down the strings x and y looking for a pair of zeroes (no carry), or a pair of oncs (carry).
If the search terminates, then finc. Otherwise z is recursive: it is some finite bit string followed by
an infinite string of ones.

More formally, for each i there are two cases to consider.

(1) xj##yj for all j > i

(2) There is some k>i such that Xy =yy.

If there is any i such that case (1) holds, then z is recursive, since zj = 1 for all j>i. So we may
assume that for each i there is some k>i such that xy = yk. But then each z; can be effectively
computed by searching forthefirst k>i with xg =y if xg = yk = 0 then there is no carry; if
xg=yx=1 then there is.

Note that although x + y is recursive for any recursive X and recursive y, it is not possible to pass
recursively from indices of Turing machines for x and y to the index of a Turing machine for x+y.
This is because it is impossibe to tell in general which of the cases (1),(2) above holds.

2.. For each n, let ¥ be a sentence which says, “there exist at least n distinct objects”. ‘¥ might
be, for example, "3x 3x, .. 'Hxn(Angan(xi:’txj))"‘ Then by the hypotheses of the problem,
every finite subset of the sct of sentences S= {(p,\I'l,\I'z,‘I'3, .. .} has a model. Therefore, by the
compactness theorem, thc whole sct S has a model: that model will be a model of ¢, and will have
more than n elements for each n; that is, it will be an infinite model.

3 . Upper bound = m™. Let T be any derivation tree for the scntencc S. Then no non-terminal
symbol of the grammar can appear twice along one path down the tree. If a non-terminal did
appear twice on one branch, the subtree rooted at the upper appearance (assuming the root of T is
at the top) could be replaced by the subtree rooted at the lower appearance, yiclding a derivation of
a different scntence, contrary to hypothesis. Sincethe grammar has n productions, only at most n
distinct non-terminals may appear along any path down the tree. Thus, the depth of T is at most n.
The branching factor is at most m, and so the maximum possible number of leaves which T can

n

have (= thc maximum possible length of S) is m™. This upper bound is achieved by the grammar:

141

Mathematical Theory of Computation - Solutions

S — A2A2 .. A,
A, —>A3A3 .. A,
A3 —>A4A4 .. LA,
A «aa . . . a

n

where the length of the right hand side of each production is exactly m.

4. (a) The firehouse problem can be solved in NP time by first guessing a placement of the
firehouses and then checking whether that placement has the desired properties (it is easily seen
that the check can be done in deterministic polynomial time). The problem is NP hard because the
vertex-cover problem can be reduced to it, as follows. (Also, the more obscure dominating set
problem [Garey & Johnson pg 190] reduces directly to the firehouse problem by taking d= 1)

Suppose that we wish to know whether a gragh G can be vertex-covered by k vertices. Take G,

and make each of its edges into a triangle by adding a new vertex and two new edges:

—_— — ._(__‘L

For example:

] —

Let G’ be the graph which results from G by this procedure. I claim that G has a vertex-covering

with k firchouses if and only if G’ has a firehouse covering with k firehouses and with d= 1. The
implication in one dircction is trivial: a vertex covering for G is a firehouse covering for G’. For the
converse, suppose that -wehave a firchousc-covering of G’ with k firchouses. Consider the set of
new vertices which were added to G in order to arrive at G’. If a firehouse sits on any of the new
vertices, then it can be moved to either of the neighboring old verices without destroying the
covering (if either of the neighboring vertices already has a firehouse, the firehouse on the new
vertex can be simply removed). Thus if G’ is firchousc coverable at all, it is firchouse coverable
subject to the restriction that all firchouses sit on old vertices. It is easy to see that a firchouse

cover of G’ with d= 1 and all firchouscs on old vertices is a vertcx cover of G, and so wc are donc.

142

Mathematical Theory of Computation - Solutions

(Note that although a vertex cover is always a firchouse cover with d=l, the converse is not true.

For example, the triangle requires only one firehouse, but two vertices are needed for a vertex
cover.)

l (b) Yes, if d is fixed with d=1.

(¢) No. For each k, there are less than nk

possible placements of firchouses on a graph with n
vertices. Thus all possibilites for a firehouse cover of G can be checked in time polynomial in the

size of G.

143

SOLUTT ONS

SOFTWARE SYSTEMS - My 1980

L.

Syntax Notation

a) <factor> ::= <unsigned constant>|
<variable>|
<function>
(<expression>)|
NOT <factor>

[set list]
<function> ::= function identifier
function identifier (expression list)
<expression list> ::= <expression>l {note direction of recursion
<expression list>,<expression>

<set list> ::= <null>|
<set specification> |
<set specification>,<set list>
<set specification> ::= <expression>|
<expression>..<expression>

b) The syntax diagrams are easy to follow when witing statenents.
Miltiple recursions can be incorporated in one definition chart.
BNF can be analyzed to deduce syntax features of the grammr.
BNF can be processed autommtically to generate parsers
BNF mnkes recursion clear.
Diagrams can be generated from BNF.

Paging

a) Basic paging system needs
used, changed, shared, locked-for-I/0 indicators for a page
If working set algorithmis used, also needs owner and owner status.
IF LRU is used,tinme or relative time since last use.
The changed or dirty bit determnes release versus rewrite.

b) Less bookkeeping and smller pagetables,
less overhead, less paging in well-behaved prograns.

c) Disk or drum seek latency and seek
If fast,smaller page size is feasible.
Average user program size relative to real nenory
Nunber of users relative to real nenory
If many users, smller page size is warranted.
Disk or drum transfer rate
If high,larger pages may be read in.
Expected user program behaviour
Segnent sizes in user program
If very random accesses then segments are small,and smaller
page size is best
Match of device sector and page size is desirable
Page table 1limits and cost
If page table are restricted and costly,large pages are best.

144

Software Systems Solutions

3. Language

a) Variants are used to describe entities that have alternative
attribute types,
Reduces storage

b) Variants cannot be type-checked properly

c) Enforce the use of tags to indicate which variant is in use, perhaps
with case constructs on reading records. [See Algol 68]

d) Types and tags depend on programs, and another reading program
my define record structure differently,

e) Copy record description to file, and check with prograns that read file,
or actually import the record description.

4. Ethernet

a) The sender detects collisions and retransmits

b) PROCEDURE TRANSM T (MESSAGE, LENGTH-OF- MESSAGE);
MILTIPLIER = 1
R1: READ ETHER INTO BUSY;
IF BUSY THEN GOT0 R1;
FOR T = 1 TO LENGTH OF MESSAGE BEGI N
BIT = MESSAGE(T): -
WITE AND READ BIT ON ETHER;
{WRITE AND READ SEPARATED BY NET TRANSM T TI ME1
IF BIT # MESSAGE (I)
THEN GOT0 TRYAGAI N,
END;
RETURN,;
TRYAGAIN. WRITE JAM ON ETHER {ASSURE FAILURE IS DETECTED BY ALL}
pELAY (RANDOM*MULTIPLIER)
MITIPLIER = MILTIPLIER"2
GO TO R1;

END.

145

Software Systems Solutions

5. Code Generation

* CODE FOR GENERAL MACHINE W TH REG STERS R1, R2, R3

* Indexes, specified as (R) are added to address

* TABLE SOLUTI ON * FIXED OPT BRANCH SOL' N

LD Al, ED LD Al, ED
cvwe A, ' 1 CvP A, '3 MDDLE
JLS DONT JLS LOW
cwe A, ‘g JGI HIGH
JGI' CONT LD A2, BSSAL
LD A2, TAB-1 (A1) JVMP DONE
LD A3, 0(A2) LOW CVP AL, ' 1
STO A3, SAL DLS DONT

DONT . . . JGT 152

TAB ADR PHDSAL 1 LD A2, PHDSAL
ADR MSSAL 2 1w DONE
ADR BSSAL 3 152 LD A2, MBSAL
ADR SAL 4 1w DONE
ADR SAL 5 HGH CW A, 'g
ADR SAL 6 INE DONT
ADR SAL 7 LD A2, OTHERSAL
ADR SAL 8 DONE STD A2, SAL
ADR OTHERSAL 9 DONT . . .

(8 executed instructions) (7-9 executed instructions)

* DEC-10 M NSIZE
MDVE R1, ED

MDVE R2, SAL
CAIN R1, 1

MOVE R2, PHDSAL
CAIN RI, 2

MOVE R2, MSSAL
CAIN R, 3

MDOVE RZ2, BSSAL
CAIN R1, ¢

MOVE R2, OTHERSAL
MOVEM R2, SAL

(11 exec. instr.)
[caiNn = COMPARE AND

SKIP IF REG. NEQ
I MVEDI ATE OPERAND]

146

Software Systenms Solutions

0. Cooperating Processes

i. Uninterruptible initial locking of all resources to be used.
ii. Acquire resources using a globally specified ordering.
iii. Do not assign initial or additional resources if not sufficient

resources are available for process conpletion (Bankers algorithm.

iv. Allow pre-enption of processors.

b) i Assigns resource with little communication. During acquisition all
other processors are locked out.
ii. Ordering can be made known to all processors, decision making is
distributed.
iii Is not very suitable, imnplies central controlling node, although
potentially best storage allocation.
iv. Remote'processors are not well enough controlled to use preenption.
7) Binding

VWhile variable binding is static in ALGOl and dynamic in LISP,
arguenent binding on call by NAME is dynamic, depending on callers
environnment at time of use. LISP NLAMBDA function argunents are
evaluated at time of use, using current environment, unless a
FUNARG is used in the invocation, referring to a specific point in
the evaluation stack. LISP LAMBDA is simlar to ALGOL CALL-BY- VALUE

ALGOL LI SP
PROC P(A B, O); (DEFUN x (A B ¢)
B= 5; (PROG (SETQ B 5)
PRINT(A B, O) (pRINT A B C))
END; (PROG
A=2 (SETQ A 2)
B=4 (SETQ B 4)
CALL P(A B, A+B) (K AB (PLUS A B))
END.)
YI ELDS Y1 ELDS
2,5,7 256

147

8%l

Spring 1980 - Comprehensive Programming Project
Approximation of Integrals

The goal of this project is to construct a program which will compute
approximations of integrals of real valued functions over convex regions
of lRZ which are bounded by polygons.

This programming problem is associated with numerical analysis but it
is our intention that the numerical analysis aspects of this project are
sufficiently well described here for the project to be completed satisfactorily.
More sophisticated ideas could be used for error estimation, etc., but we
have intentionally kept these as simple as possible. Extended precision
arithmetic will not be necessary. If you have any questions related to
the numerical analysis aspects of the problem, feel free to ask those
members of the exam committee listed at the end of this project description

for clarification.

The programs will be evaluated based upon fhe efficiency of the algorithms
constructed and the underlying data structures, the structure and clarity of
the code, and the associated documentation. vyou will be asked to develop a
heuristic strategy to efficiently implement the basic algorithm to be described.
You should describe the heuristic you use and explain why you find it to be
a reasonable approach to the problem.

The program to be developed will be an adaptive quadrature program
based upon a quadrature formula defined on triangles. We assume that we
are developing programs for approximating the integrals of functions which
are very expensive to evaluate. It is Our goal to construct programs which
attempt to minimize the number of function evaluations of the integrand.

In line with this goal we require that the programs never evaluate the

integrand at any point of Re more than once. This also makes the

programming more interesting.
The Quadrature Formula and Error Estimates,

Our basic approach to the approximation of an integral will be to
subdivide the polygonal region into triangular subregions, apvroximate the
integral over each subregion using a quadrature formula, and finally to
add up these approximations. The program should generate a sequence of
finer and finer triangulations, based upon error estimates, until it

obtains one for which the total-estimated error is sufficiently small.

149

If we label the vertices, midpoints of the sides, and the centroid of

a triangle %, as

we define our basic quadrature formula which approximates f fas
Q

7 .

: J
(1) Ih’Qj (£) = w(Qy) zz;,lwzfl
where f! is the value of the integrand in the point 1 and Wy =27/60 ,
Wy = Wg_ W) =8/60 and Vg = Wg = W = 3/60 . M(Qj) is the area of the

triangle. This formula is exact for cubic polynomials and has an error
which is 0(h) as h = 0 where h is the maximum of the lengths of
the sides of the triangle, i.e.,
L
f- f) = ok
j‘ Ih,g..() () 2

3

provided that the integrand, £ , is sufficiently smooth. In order to
estimate errors, and to improve our approximations, we will also consider
approximations on Q. obtained by subdividing’(G into four similar
triangles such that the new vertices are the midpoints of the sides of the

original triangle.

We label these Qj)’

integral of £ over Q.

£ =1,2,3,4 . We can then approximate the
using (1) and over Qj by their sun, i.e., by

Js L
L

I () = 2 (£) .

h/g)Qj Z‘:l Ih)Qj,z
We can then estimate the absolute error

E’h,Q. = |J‘ - -Ih,Q.(f)l

J QJ- J

by

150

If our error estimate (2) is not good enough we then take the four
subtriangles just defined and subdivide each of them to estimate the error

on each of them, etc. This will be our basic refinement procedure.

@
X moe e

For any given integration (there will be several) you will be given
the vertices of the boundary polygon, a definition of the function f(x,y)
to be integrated, and an error tolerance g . You are asked to input an
initial triangulation of the region and the error tolerance. You should
write a procedure to compute values of £ . This initial triangulation
should contain as few triangles as possible consistent with the desire that
the ratios of shortest to longest sides should be close to 1 -- this is

to be interpreted rather loosely, i.e., in spirit.

Samething Else To Do.

We ask that you consider the problem of constructing a program to
compute a good initial triangulation. A good initial triangulation will be
as above —- the ratios of shortest to longest sides should be nearly 1 if possible,

Discuss approaches and difficulties associated with this problem and describe

how you would implement such a program in your writeup. Do not program this

part of the problem.

- Refinement Strategies.

The crucial part of this project is to devise a strategy to decide when
and where to refine the triangulation. We now discuss several issues which
you should consider in devising your strategy.

Let Q be the region over which we are to approximate the integral

of a given function £ and let Qj ; J=1,2y44.5m be an initial
m
triangulation of Q@ , i.e., Q= U Q. . We begin by considering

the basic strategy of eqtidistributing the absolute error over the Qj.
We will modify this by changing our strategy twice before we complete the
description of this programming problem. We want to construct an

approximation IQ(f) such that

-)] <
\ QE f IQ()l < e
We define the error per unit area, e', by
. ! = E/H(Q)

where u(Q) 1is the area of the region @ . 1if we generate a triangulation

Q= UQ, such that
i 9 131

f- (Y| < e u(Q.)
(3) U;zj ™,0, | < e uloy

we obtain .
|J;)f-IQ(f)| < ¢

with

(1) () = %Ih,nj(f) .

i i L i . ! = e .) be our
We will estimate &' in(3) using (2). ILet eh’Qf h,%4/u(03) €
estimate of ¢' . Note that we must refine 9:to compute our error

estimate. Since we must campute Ih/2 Q (f) to estimate the error we might
A A

as well use Richardson extrapolation to try to improve our estimate of

the integral on Qj which we finally use. We will use
*
= (16 -

as our final approximation on Qg Af (3) holds and substitute these
quantities for I, a (£) in (B).
3] . —
J :
We now discuss the first of our improvements on this strategy. We

may have done much better than

s'pﬁ%) on some of the regions Q.., i.e.,
eﬁ Q K ¢' for some j . We can take advantage of this by relaxing
) .
J

our error tolerance on the remaining regions. Suppose at the n-th step

in our algorithm we have accepted approximations on the n subregions Q. ,
Y

j=1,. .40, and at this step we have estimates of the errors per unit

area e? . W defireg! b
] e now e 1@(1) y

n n
f(nl) = (E) El 3 ““’:ﬂ)/“(“ T,00 %) '

We now use this for ¢' in (3) for j = n+l To begin we define gil) =g’
Finally, we observe that this strategy could be modified to advantage
for many common situations. We assume that our integrands are only difficult
to approximate over isolated and small subregions of the region Q . We

may encounter a subregion over which the integral is very difficult to
approximate —- we are required to make repeated subdivisions. If the
integral is easily approximated over the rest of the region we may do

much better (in terms of -"unction evaluations) if we require more accuracy

on these "easy" subregions and less on the "difficult" subregions.
152

Accordingly, you can provisionally accept approximations over subregions
but be prepared to go back if you encounter a difficult subregion later,
Develop an heuristic strategy to use in your program which takes advantage
of this.

OQutput.
For each problem we ask that you output:

(I) the number of initial triangles,
(2) a description of the initial triangulation,

3) the number of times a triangle is subdivided,
L

(3)

(L) the number of times the integrand is evaluated,
(5) your approximation of the integral,
(6)

6) your estimate of the absolute error.

Problem 1.
Let Q have the vertices
(0,0) , (1,0) , (2,1) »(L,2) , (0,2) ;
f defined by
£(x,y) = X2 + Xy +y

and

g = 10'4

Problem 2.

Let Q have the vertices
(0,0) , (1,0) , (,1) , (0,1)
f be defined by

£(x,y) = & X*V)

and

Additional problems will be given out on Monday, 14 April, at 1:00pm.

If you have questions, contact:

Jim Boyce Jacks 341 7-1658 home 858-1293
Jay Gischer Jacks 450 7-3088 home 321-8643
Joe Oliger Jacks 308 7-313L home 321-678L

153

Spring 1980 - Comprehensive Programming Project

Final Set of Problems

Problem 3.
Let Q have the vertices
(0,0), (1,0), (1,1), (0,1) 3
f(x,y) be defined by
f(x,y) = ‘\x—yll/z ;

and use ¢ = lO_2

Problem L,
Let Q have the vertices
(0,0) 5 (2,0) , (4,2) , (1,3) , (3,1) , (254) 4, (052) ;
define p(x,y) by
0 if x2+y2 >1
Q(X’Y) =
exp([x°+7° -1]71) if x°+y° < 1
and then define
f(x, y) = p(2x-k, 2y-k) ;

use g = lO_2

Problem 5.
Let Q have the vertices
(O:O)) (l,O)) (l)l) s (O’l) i
let p be as above in Problem 4, and define f by

f(x,y) = p(10x,10y) + o(10x-5, 10y -15/2) ;

and use ¢ = 1072

154

WINTER 1980/81 COMPREHENSIVE EXAMINATION

Numerical Analysis
(Subproblems have equal weight.)

Problem 1. [16 points]. Nonlinear Equations.
The equation sin x = z2 has two solutions, x = 0 and x = .87672. The following fixed-point iteration
schemes are proposed for finding the nonzero root.

(a) Tngy = (sinz,)} zZo = .5

(sin z, — z2)

(®) ZTng1=Tn — zo = 1.0

€08 T n — 2%,)
In each case, predict the limit (if any) of the sequence z,, the order of convergence, and , if the convergence
is linear, the asymptotic convergence factor. You may need to know that

cos(.87672) = .63967
sin(.87672) = (.87672)? = .76864

Problem 2. [13 points]. Interpolation.
The function f(z)= In x is tabulated at x =1,2,3,...,100. The table shows four correctly rounded
decimal digits after the decimal point. For what part of the table is linear interpolation sufficiently accurate
to preserve the accuracy of the table?

Problem 3. [21 points]. Linear Systems.
Consider the system of n linear quations in n unknowns

(A + iB)(Z + 1) = (€ + id)

where A and B are real n X n matrices, Z,3,¢, and d are real n-vectors, and i = v—1. We have two
choices:
1. Solve the system by Gaussian elimination with partial pivoting, using complex arithmetic
throughout.

2. Solve the real linear system
AZ — By =2

Bz +Aj=d
(a) Which is more efficient in terms of arithmetic operations performed? In terms of space used? Justify
your answers.
(b) Assume that A +1Bis Hermitian (i.e. that A = AT and B =—BT) and positive definite (i.e. that
(z — 9)T(A + «B)(Z +) is real and nonnegative for all real n-vectors Z and ¥, and vanishes only for
Z = § = (). Reassess your answers to (a) in light of these assumptions.
(c) Solve, by any method you choose,

1 1 1 1 1
1 1 —1 —,_ 12
1 —1 1 —1 (2+19) = 3
1 —: -1 1 1

155

Problem 4. [10 points]. Numerical Stability.
(a) Show that if A is a nonsingular matrix, § = AZ and §’ = A%, then

<l =1
- {Ef

13" — 3l

I3l
where n(A) = ||A||||A"1”,H§:'|| is a vector norm, and ||A||is the subordinate matrix norm.

(b) It is claimed that if Zis such that ||AZ|| = C||A||||Z|| where C > &, then relatively small changes in 2
produce relatively small changes in § no matter how large x(A) is. Give a proof or a counterexample.

156

NA Solutions.

1/2

1. (a) For 0 < x < x* = .87672, sin x > x% whence (sin x) > x; thus

xia»x*. Convergence is linear with asymptotic convergence factor

]

g (x*) = 1 cos x* . =1 ,63967 = 365
tsin x0% 27 87672
(b) This is Newton's method. To see that xﬁ—}x* quadratically note
2] .

that, if f(x) = sin x - x , £ (x*) = cos (x*) - 2x* # 0 and

1t
f < 0 everywhere, so f is convex and Newton's method converges:

! 1 1
2. Interpolation error < f (§) = 5 <=7
81

8 8¢

for 1 < x <1+ 1.

Roundoff error in table entries <5 x 10

So we want

1l <5%107°

81
or i > 50.
3. (a) I. Complex Gaussian elimination:
Storage: 2n

. , 1.3 4 3

Work (multiplies): 4 . 65 n F 3 n
1-3 13 43
: = = = =1

(adds) : 2(3n)+2(3n) 3

since a complex multiply can be done using 4 real multiplies and

2 real adds, and a complex add uses 2 real adds.

157

NA Solutions (Con't)

II. Real 2n x 2n.

Storage: (Zn)2 = 4n2
Work (Mults.) l-(2n)3 = §-n3
3 3
(adds) 1l 3 - 8 3
3 (2n) 3 D

Method I is twice as fast and uses half the space.

(b) Cholesky factorization can be used in either case, This doesn't

change the comparison.

() 1 1 1 17 1 1 1 1
1 -1 -1 1 1 i -1 -i
1 = I
401 101 a1 1 -1 1 -1
1 i -1 -i -1 -i -1 i l

Therefore the solution 1is

7
l -2-1
4 1
-2+i
' ' 1 1
4. (a) Since y -y =A & - |ly -yll<aldll= --x[].
Also x = A Yy, s | [x|]< 1A] |ly]]; therefore
' -1 '
Uy =sll <1l Ha7] Hx - x[].
Il x|
] t
(b) As before, ||y -yl | < {lal]]lx -x|].
pivide by | |y} | =c [|a]] ||x|] to get
1 1
vy -lyll = xlt<2 Ilx = «ll.
C
B3 x| | Ix]]

158

Software Systems
1. Synchronization and communication (10 points)

A typical message-passing system might be based on two primitives:

e Send (process, message)
o Receive (process, on+swno

where Send blocks until the message is queued for the receiver, but does not wait for a
reply. In such a system, a remote procedure call might be implemented using those two
primitives back-to-back -- i.e.:

proc RPC (process, message);
begin
Send (process, message):
Receive (process, message):
end;

What synchronization problems arise with this approach? How might you solve them?

Solution: Assume process PA executes RPC(PB,M1). Assume also that PA has no messages
queued for it when process PB performs a Send(PA, M2). PA will then accept M2 as if it were a
response to its request, M1. In general, this need not be the case. In particuiar, PB's Send may be
part of an attempt by PB to execute RPC!

This problem can only be eliminated by re-defining the semantics of remote-procedure-call: For
example, a unique transaction id can be generated for each outgoing call, such that only a reply
containing that transaction id will be accepted as completing the call.

2. Paging (10 points)

Assume that we have a main memory that can hold 3 pages of size 1000 (decimal) words.
The pager can take advantage of the fact that a page has not been modified since placed
in main memory and will not cause a copy of that “clean” page to be sent to disk when
that page is reclaimed. We are given the following reference string:

1000(r), 234(r), 3345(r), 805(w),
2998(r), 3768(r), 1002(w), 5806(w)

The numbers are word addresses. The (r) means read access, and (w) means write
access. Assume that the main memory is originally empty. Give the sequence of paging
operations that would be performed assuming an LRU page replacement algorithm. Give
your answer in terms of SWAPIN(i) or SWAPQOUT (j) whe:e i and j are page numbers.

Solution: To simplify things, change everything to page references:

1(r)SWAPIN(1)
0(r) SWAPIN(O)
3(r) SWAPIN(3)
O(w) nothing

159

2(r) SWAPIN(2) (noneedtoswapoutl)
3(r) nothing
1(w) SWAPOUT(0)
SWAPIN(1)
5(w) SWAPIN(5) (noneedtoswapout?)

3. Multiproces<ing (9 points)

Assume that Progressive Computers Inc. has decided to go from running its programs on
a single machine to a multiprocessor configuration with shared memory. Since their
programs always ran in a multiprogramming environment they expect very few problems
in converting to multiprocessors.

a. (3) Give a short list of feasible benefits they can expect to reap from this change.
Include a brief explanation of each benefit.

Solution: Increased reliability due to redu.idancy of processors. Increased performance
through parallelism and load sharing. The ability to handle increased complexity due to
modular decomposition of tasks into subtasks capable of being executed on multiple
processors simultaneously.

b. (3) Given a configuration of exactly two processors, why wiil it be in general
impossible to expect twice the processing power?

Solution: All the synchronization necessary in memory and data base access.

c. (3) Assume they use a simple primitive such as a test-and-set operation to
synchronize processes in a multiprogramming environment. Give the one (possibly
fatal) flaw in the architecture of their synchronizing primitive that would cause it to
work in a multiprogramming environment, but not in a multiprocessing
environment.

Solution: Not locking out the memory bus access to the other processor when altering a
lock.

4. Parsing (10 points)

Consider the following BNF grammar

<A> = !<C>?7
 1= a| ! a
<c>:i= a |<C>?a

160

a. (5) Show the parse tree for ala?a?a.

Solution:

N —— @

b. (5) This grammar could not be used for operator precedence parsing because in
some cases ! has greater precedence than ?, and in some cases the reverse is true.

Which case occurs in the sentence of part a? Give a sentence and parse tree
which illustrate the other case.

Solution: In the sentence in part a, ? has higher precedence than !, because a?a must be
reduced to C before ! can be used in a reduction.

In the string ala?ala, ! has higher precedence than ?.

A
/7]
VA \

/71NN

/ / I

! c ?
I
|
a

» —— @

5. Binding time (12 points)
Binding is the association of some attribute with a name. For each point below, give an
example of a programming language that involves binding at that time. Be specific about
the language and what is being bound.

a. (2) compile time

b. (2) link time

. (2) load time
d. (2) block entry
e. (2) procedure call

f. (2) assignment (give an example where some attribute besides value is bound at
assignment)

Solution: (There are many possible answers - these serve as examples.)

a. Compile time -- types in Algol, Pascal, Fortran; array size in Fortran, Pascal.

b. Link time -- procedure, function, or subroutine correspondences in any language with separate
compilation (e.g. Fortran, PL/1); external names in PL/1; COMMON biocks in Fortran.

c. Load time -- absolute addresses of code for most languages; of variables in Fortran and other
languages with static memory allocation.

d. Block entry -- size of variably-dimensioned arrays in Algol, PL/1.

e. Procedure call -- correspondence between actual and formal parameters (any language that allows
parameters for procedures).

f. Assignment -- type in LISP, SNOBOL, APL.

6. Interpreters (9 points)

LISP is usually implemented by an interpreter rather than a compiler. Give three
characteristics of LISP that are related to this fact (for example, features that would be
harder to implement with a compiler).

Solution:
a. Types of variables are determined (and can be modified) at run time.
b. Data computed by the program can be executed as code.

c. Variables are bound dynamically at procedure-call time.

162

Hardware Systems

1. (12) Bus communication

a. (8) Describe how bus arbitration may be accomplished via a centralized daisy-chain
technique, indicating clearly all the essential control signals required. lllustrate
your answer with a block diagram of a single bus system with 3 devices on the bus.

Solution: Signals in a daisy chain are bus request and bus acknowledge. Whenever a
request occurs the bus devices are given the opportunity to use the bus in chain-order.

3% Aok

D, &= D, \ius b8y D

-— DS
AR RSQIST

A0S REQUCST L

Device D.; does the following: if bus acknowledge and Di has an outstanding request then
use bus, else send the acknowledge to Di +1- Arequestis held high by Di until it receives
an acknowledge.

b. (4) What is meant by fully-interlocked handshaking in bus communication?
lllustrate your answer with a simple timing diagram.

Solution: Fully interlocked handshaking means that both commuicating parties send
acknowledgments.

A typical situation might be:

163

Master Slave

bus request

(mmmecccncccccccaaa ————
bus acknowledge
S _——)
data
(-——-- -—-- -
data acknow edge
>
bus release
<
b us release acknowledge
>

2. (10) Logic diagrams

Draw the logic diagram of an exclusive-OR function of two inputs using NAND-gates.

Solution: Exclusive-OR is:

AR+ AB = RB e AE = (A4B)e(Rr8)

NANDis AE = ™+ B

f N AR E R
P\-‘-L._ x S — -
5 J-—Db—— AT + 88

]

—d y

3. (8) TTL logic

164

Describe the following terms with respect to TTL gates:

a. totem-pole output

Solution:

INROT

Yields a faster switching time since puill up/down is through a transistor

b. tri-state output

Solution: Qutput can ke in three states: low, high, or off. In the off state the output is free
to drift if another device on the same line sources or sinks it. Especially useful for busses.

c. fan-out

Solution: Number of loads an output can drive. Each device input may use one or more
loads.

d. noise margin

Solution: Difference between the highest low output and the lowest high output (o r
switching threshold). It determines the susceptibility to noise.

4. (10) Cache memory

In a cache-memory system, let:

cache access time, t = 100 nsec

main memory access time, T = 1 microsec
block-size, B = 8 words

main-memory-to-cache connection size, C = 2 words

165

hit-ratio for memory access, H = .9

a. (3) What is the effective memory access-time, if a read-through policy is used?

Solution:

EAT = {cache access time> *<hit rate> + (1-<hit rate>)*<{memory access time>
=t*H + (1-H)*'T
=100 « 9+.1 . 1000

190 nsec

b. (5) What is the effective memory access-time, if no read-through policy is assumed,

so that the words in a block are fetched strictly sequentially on a miss and then
access from the cache?

Solution: Without read-through the delay is-

EAT = <cache access time>*<hit rate> +
(1-<hit rate>)*(<cache fill time> + <cache access time>)

cache-fill-time, F = (<block size>/{cache connection size>)*
<{memory access time>
= (8/2)*(1000 ns) = 4000 ns

EAT = t*H + (1-H)*(F + ¢)
=90ns +.1 « (4000ns + 100 ns) = 500 ns

. (2) How many comparators are needed if the cache size is 16K words?

Solution: The number of comparators is <{cache size>/<{block size> since only one
comparator is need per block:

21"'/23 = 211 = 2K comparators

5. (20) Computer organization
You are given a machine architecture with the following hardware:
« 16-bit words (all instructions operate on words)
¢ a hardware stack

e an ALU

o 28 bytes of memory (byte addressable)

166

e a single fixed size instruction format
There are two memory access instructions:
® push <addr>
¢ pop <addr>
which cause data to be moved from memory to/frorn. the stack.
There are several address modes:
e absolute address: <addr> is a memory location
o direct: the top of stack contains the location (it is oooamnzo
« indexed: top of stack (it is popped) + <addr>

There are 60 oiher O-address instructions which perform operations on the stack.

a. (4) Give an instruction encoding which minimizes the sizes of instructions in byte
increments.

Solution: Something like the following will work:
. —
00 = not push/pop

01 =push
10=pop

If not push/pop, the remaining bits encodes the other instructions. For push/pop there are
2 bits to encode the three addressing modes. |If the address mode is 1 or 2 then a byte
follows, otherwise it is unused.

b. (8) Using the following blocks draw a block diagram of the organization showing all
data paths and indicating their sizes and direction of data flow.

§ { ™
'\V\&"\?«lﬂ‘ i T ~7 P |

SRR

e’]
LR

Solution:

prency

c. (8) Using the notation:
A --> B: description

to describe data flow from A to B, show the fetch, decode, and execution cycle for
the instruction: DR

push indexed y
where y is the offset. The sequence starts with:
PC --> MAR : instruction address to memory

There is no need to show control, but the descriptions can indicate operations that
occur.

168

Solution:

PC ==> MAR: instruction address to nenory
MAR ==> nenory: address to nenory

memory ==<> MR instruction to MDR

MDR --> IR Instruction to IR

stack ==> ALU pop stack into ALU

IR[8:16] --> ALU: offset part (y) into ALU

ALU ==> MAR: after add send new object address
MAR ==> nenory: operand address

memory ==> MR: operand value

MDR ==> stack: push the value

PC ==> ALU send PC to ALU

ALU ==> PC

after

increnenting by 2

ARTIFICIAL INTELLIGENCE

1. Searching with Lisp (24 points)

Consider the following LISP program given, for your convenience, in both LISP external
notation and in MACLISP.

findpath(x, y] < fo 7 [<x>,y, NIL]

fpo 1{u, v, path] «
if n u then LOSE
else it au ¢ path then fp1[d u, y, path]
elseif au = y then reversely . path]
else [Aw: ifw = LOSE then fp1[d u, y, path]] else w]
[fo1[successors [aul, y, au. path]

(defun findpath (x y) (fpl (list x) y nil))

(defun fpl (u y path) (cond
((nu1l u) "lose)
((member (car u) path) (fpl (cdr u) y path))
((equal (car u) y) (reverse (cons y path)))
(t ((1ambda (w) (cond
((eq w ’lose) (fpl (cdrf u) y path))

(t w)))
(fpl (successors (car u)) y (cons (car u) path))))))

The program searches (depth-first) for a path from x to y in a finite directed graph in
which the successors of the node x are given by the function successors. When the
search is successful the value of findpath[x , y] is a list of nodes starting with x and
ending with y such that each node except x is a successor of the preceding node. When
the search is unsuccessful findpath[x , y] = LOSE.

Assume that the cost of finding a path is dominated by the cost of computing successors
of x.

a. (12 points) How is the above algorithm inefficient? Give a simple example of its
inefficiency.

Solution: Because the program remembers only nodes on the path it is presently
searching it can recompute the successors of a node that can be reached on different
paths. An example is the graph

B
o—“""‘-—,-E

A C

O

Given that successors[A] = (B C D), successors[C} will be computed twice.

b. (12 points) Write a more efficient LISP program to perform depth-first search.
Remember the assumption about costs. You may use external notation or
MACLISP or INTERLISP notation.

Solution:

findpath{x,y]« [Xw. if a w = LOSE then LOSE else reverse w]
[fp1[<x>, y, NIL, NIL]]

fp1{u, y, path, seen] «
if n u then LOSE. seen
else if a ue seen then fp1{du.y, path, seen]
else if a u =y then path
else [Xw. if a w = LOSE then fp1[{du,y, path, dw]]
[fo1 [successors au,y,au . path, au . seen]]

2. Quickies (12 points)

For these questions, a few phrases to indicate your understanding will suffice. (3 points
each)

a. Why does the speech understanding problem require techniques from both Al and
pattern recognition?

Solution:

The input to speech understanding systems is noisy and incomplete. This makes statistical
methods from pattern recognition desirable.

Knowledge sources for speech understanding include models of the semantics and

pragmatics of the utterance, making "knowledge representation” techniques from Al
desirable.

b. What are the basic ways in which RSTRIPS & ABSTRIPS are improvements on
STRIPS?

Solution:

RSTRIPS uses a goal protection system to handle the problem of sub-goal interaction.

ABSTRIPS plans more efficiently than STRIPS by planning hierarchically, putting operator
pre-conditions in order by importance and difficuity.

c. Relate the problems of unification and of simple pattern matching.

Solution:

Pattern matching is a kind of unification in which one of the formulas has only constants.

d. What are a few of the things which make “story understanding” hard for
computers?

Solution:
Story understanding requires real world knowledge, such as physical world relationships

and human goals, which are hard to give to a computer. Related to this is the need for
natural language parsing abilities, including the ability to resolve pronoun references.

3. Constraint Application (9 points)

Indicate the kinds of prior constraints applied in

e case analysis of sentences;
o blocks-world vision;
e speech understanding;

(three constraints in each area are sufficient for full credit)

Solution:

® case analysis:

o The possible meanings of sentence verbs constrain the cases of noun groups in the
sentence,

O The case of a noun group constrains the main noun of the group;

O The preposition of a prepositional phrase constrains the case of the noun group in the
phrase;

0 Sentence position constrains the case of noun groups;
o The case of a noun group constrains the cases of the other groups in the sentence;

0O Sentence context constrains noun & verb group meanings;

172

e blocks-world vision:
O Line labellings constrain trihedral vertex labeilings;
o llumination and shadows constrain line labellings;
© Knowledge of boundaries constrains line labellings;
e speechunderstanding:

O characteristics of speech sounds;

0 consistency in pronunciation;

O stress and intonation patterns in speech;
o grammatical structure of language;

© meanings of words and sentences;

o the context of conversation;

4. Representation (15 points)

Consider the following sentences:

Volcanos in the US. are generally dormant.

Mount Saint Helens is the only Volcano in Washington.
Volcanos are mountains.

Mountains are geological features.

Washington is in the US.

A volcano in Washington erupted recently.

a. (5 points) Express these sentences in a frame-like notation such as the “delineation
units” described by Nilsson.

Solution:

x | US-volcano
self : (subset-of volcanos)
location : US
condition : DORMANT

Mount-Saint-Helens
self : (only-element-of VinW)
location : (is-in Washington)

x | VinW
self : (element-of volcanos)
location : (is-in Washington)

x | volcano

173

self : (element-of mountain)

x | mountain
self : (element-of geological-features)

Washington
location : (is-in US)

Volcano-A
self : (element-of volcanos)
location : (is-in Washington)
condition : ACTIVE

b. (5 points) Why might units notation be used instead of First Order Logic in some
situations? Why in general might one representation be used instead of another
with equal or greater expressive power?

Solution: Units notation is somewhat more modular than First Order Logic, has a more
uniform structure, and is better suited to default reasoning. In general, different
representations are used when their expressive power is best suited to the application, and
because they may encode more heuristics for deductive operations.

c. (5 points) Consider the questions

Is Mount Saint-Helens a geological feature in the U.S.?
Is Mount Saint-Helens dormant?

What kinds of rules are necessary in order to deduce heuristically reasonable
answers to these questions from the units you indicated above?

Solution: Rules that encode the property inheritance characteristics of "element-of”,
"only-element-of” "subset-of", and the transitivity of "is-in" are necessary.

Rules which handle defauit reasoning on a hierarchy are necessary, e.g., that override
inheritance of the "DORMANT" property by Mount-Saint-Helens with the particular
knowledge of its activities in Washington. In this case the "condition” slot is implicitly
default, as might be all slots that are not "is-a" links.

174

Algorithms and Data Structures

Problem 1. [20 points]. A mediocrity queue is a data structure that dynamically maintains a set S of numbers
and executes a sequence of instructions I1,fs,13...,1,,.... Each I;is either one of the following forms:
insert(z] (meaning S «~ S U{z})
delete[z] (meaning S «— S —{z})
getmedia- (return the value of the median of S).

The set S is initially the empty set, and only distinct elements will be kept at any time. The median of S

is the [|S|/2]-th smallest number in S.

(A) [3 points]. Give an implementation of a mediocrity queue such that 2, = O(n), d, = O(n) and
gn = O(1); 1n, d,, gn are the respective worst-case costs of executing an insertion, a deletion, and a
getmedian when |S|=n.

(B) [12 points]. Repeat (A) with i, ==0(logn), d, = O(logn), and g, = O(logn).

(C)[5 points]. suppose a mediocrity queue is available, such that the total cost of executing any sequence
of n instructions is f(n). Give an algorithm that sorts n distinct numbers in time f(3n— 1) + O(n),
by making use of the mediocrity queue.

Remarks. In the solutions to parts (A) and (B), give only a high-level description for standard data
structures, but it should contain enough information to justify the asserted performance. For example,
you can “maintain a 2-3 tree under insertions with O(logn) cost per insertion”, but you cannot “maintain
some kind of hash table that has a cost 0(v/n) per insertion”.

Problem 2. {30 points]. Let Z, %2, ..., %n, m be n4 1 input real numbers that are all positive and distinct.

(A) [5 points]. Give an O(nlog n)-time algorithm for deciding if there exist distinct ¢, 5 such that z; +
;= m.

(B) [lo points]. Give an O(n?)-time algorithm for deciding if there exist distinct %, 7,k such that
Z; + T, - T = m.

(C) [15 points]. Give an O(n? log n)-time algorithm for deciding if there exist distinct 17, 7, k, £ such that
Ii—*—.IJ"Ik'Ig: m.

Remark. We are using a random-access computer that can perform infinite-precision real arithmetic. (You

may ignore overflow problems on such machines.)

175

Problem 3.(10 points]. A k-right-biased binary tree is a rooted binary tree such that any path from the

root to a leaf takes right branches at most k times.
(A) [2points]. What is the maximum number of leaves that any 2-right-biased binary tree with height 4

can have?
(B) [8 points]. What is the maximum number of leaves that any 2-right-biased binary tree with height h

can have (A > 0 an integer)?
Remark. We show below a 2-right-biased binary tree with height 3 and 5 leaves. This is not a l-right-biased

binary tree as the * leaves show.

Algorithms and Data Structures

Problem 1.

(A)

(B)

(B)

(©)

Perhaps the simplest idea is to store the elements of the queue in a sorted (increasing) array. Insertion
requires time linear in the the size of the queue to move the elements of the array around to make
room for the new element. Deletion requires linear time to move the the elements of the array to fill in
the gap created by the deletion. The site of the insertion or deletion can be found either using a ¥near
scan of the array, or by doing a binary search. To find the median in constant time, it is necessary to
keep another variable holding the current size of the queue. It can be updated in constant time during
an insertion or deletion. The median is found by looking in the [|S|/2]-th element of the array.
Use your favorite flavor of a balanced search tree, e.g. AVL tree, 2-3 tree, or R-B tree, to maintain
a sorted list with logarithmic insert and delete times. In addition, keep in each node the weight of
the subtree hanging from that node. This will permit you to find the median in logarithmic time by
looking at the weights (and weights of siblings) along a single path from the root.

This can be improved to a method that still does insertion and deletion in logarithmic time, and finds
the median in constant time. The idea is to keep the median in a specific location, so that it is easy
to End. The elements greater than the median are kept in a balanced search tree and the elements
less than the median are kept in another one. Insertion and deletion require a comparison to see
which tree is effected, and the logarithmic time to perform the operation. If the operation changes
the median, the old median is inserted into the appropriate tree as an extreme value, and the new
one is deleted from the other tree. Both of these can be done in logarithmic time.

Here is a way to sort n distinct numbers using just 3n — 1 mediocrity queue operations. First, insert
all n numbers into the queue (n insertions). Then, alternately find the median and deiete it until you
have found each element as the median once (n getmedians and n— 1 deletions). After an element
is found as the median, it is inserted into the right place in an array in constant time. (The first one
goes into the []S|/2]-th location. Thereafter, alternately the medians of the queue will be the first
element larger or smaller than the part of the array that has been sorted.)

Problem 2.

(A)

(a)

The first step is to sort the set {z;}. This takes time O(n logn). Then, for each of the z;, search the
sorted table for the value m —z;. Using binary search does each of the searches in time O(log n) and
the entire step in time O(n log n). After finding the right value in the table, it is necessary to check
that the proposed values of z;and z, are different. This is done (at most) once for each search.
Once you have the sorted table, it is possible to search it for a pair whose sum is m in time O(n).
1= 1;
j = n’.
while ¢ < j do

begin

if z; 4+ z, = m then exit loop with success;

if z; 4z, < m then {:=1+41;

if z;+2z, > m then j:=j— 1;

end;
In effect, this program takes the two sets {z;} and {m — z,} both of which are sorted, and merges
them to see if they have an element in common.

(B)

(C)

(€)

Note: Several people said to sort the inputs with an O(n log n) sorting algorithm, e.g. quicksort. While
quicksort does have an average running time of O(n log n), its worst-case running time is O(n?).

First, sort the inputs. Then, for each of the z; use a simple modification of (A’) to see if m —z;
occurs as the product z,z,. The sorting is done once in time O(n log n) (Actually, an O(n?)sort is
sufficient.) Then a linear scan of the table is performed n times for a runtime of O(n?). The little
care needed to make sure the solution uses distinct values at most multiplies the running time by a

constant.

Note: Many pople felt that the products could be generated in order in time O{rn?). Unfortunately,
this takes time 0(n?log n).

The important observation in that it takes time O(n?log 7) to sort n2 numbers. One solution is first
to sort the set of products {ZxZi: k < !}. Then, perform n? binary searches of that table looking
for the values m;z‘. Each search takes O(log n) time. At most two of the products can have z; or

z;as factors. This means that there is O(1) work to see if a there is actually a solution after each

successful search.

Another solution is to sort the sets {m,—’.z‘ ;5% j}and {zkzi -k <1}. Check these two sets for a
common element by merging them. ‘A little care is necessary to make sure the values in the solution
are all distinct. When a common value is found. an element of the first set can “collide” with at
most two elements in the set. This means that only O(1) work is needed to for a solution if when a

common value is found.

Problem 3.

(A)

(B)

11. There are two definitions height that give values that differ by one. Some people count the number
of nodes (including the root) on the longest path in the tree. Others count the number of edges. The
diagram in the question showed which definition to use.

A maximal k-right-biased binary tree d of height A consists of a maximal k-right-biased binary tree
of height 7 — 1 hanging to the left of the root and a maximal k — l-right-biased binary tree of height
h — 1 hanging off to the right. A O-right-biased binary tree consists of a single path with a single
leaf. A maximal 1-. .. tree of height A consists of & of those O-. . . trees and a 1-.., tree of height
0. Soa maximal 1-... tree has &+ 1 leaves. A maximal 2-. . . tree consists of & of those 1-.. . trees
and a tree of height 0. The total number of leaves is

h(h 4+ 1)

L4243+ 4 (h—D+h+l==" 1,

178

Mathematical Theory of Computation

Problem 1. [10 points]. A k-wheel is an undirected graph on k = 1 vertices vg, vy, . . ., vg—1, uawith edges

{vi V(i-+1) mod x} and {u,v} for 0 <¢¥< k; y is called the center. Prove that the following problem is
NP-complete: Given a graph G and positive integer k, determine if G contains a k-wheel.

Yo
1
-,
V2
3

Figure. A S-wheel.

Problem 2. [25 points]. Let the array A be such that initially
Vi(0<i<n DAl]=1). 1)

(a) [only 5 points] Write a flow chart type program (i.e. with assignments and go tos), not using multiplica-
tion or any array other than A, that terminates with

n
Vi(0 <1 < | =
1.(0<+< n D A[] P (2)
i.e. it computes a vector of binomial coefficients. Remember the recurrence relation of Pascal’s triangle

which may be written

™ =if¥<0Vk>nthen Oelse if k =0V k =nthen 1 else n—1 + n—1
k - k=1 k) (3)

but it shouldn’t be used directly as a recursive program, because it recomputes the (i) so often that it takes
exponential time.

(b) (20 whole points] Attach sentences of first order logic to each label of your program so partial correctness
as expressed by attaching equation (2) to the exit label can be proved by the method of invariant assertions.

We just want the assertions — not the proof.

Problem 3.{10 points]. M is a machine which takes its input from a papertape-like file (read-only, left-
to-right) and prints an acceptance of certain input tapes. Apart from a finite-state control, its only memory
is a pushdown stack, with the usual operations of push, pop, and test top symbol. An unpoppable internal
state S of M is one in which the stack can never become shorter than it is in S, whatever the input. (In
other words, the current stack symbols will never be popped.) Is there an algorithm 10 recognize such states?

(Describe one or show undecidability.)

Problem 4. [15 points]. Let L;;(+ >0,1<j< 2) be the set of languages recognizable by machines with
t counters as the only unbounded memory, and with left-to-right input if j = 1, two-way input if y =2.
(Counters can be incremented’ dccremcented, and tested for zero.) What inclusion relations hold among the
Li; s? (State reasons briefly; detailed proofs are not required.)

179

Solutions - Mathematical Theory of Computation

1. Solution to the “k-wheel” problem.
We reduce the Hamiltonian circuit problem to the k-wheel problem. Given a graph G= (V, E)onn

vertices, one can clearly construct in polynomial time the graph H = (V', E'), where V' =V y{w} and
E'=EyU{{w,v}|vEV}. The following result then completes the reduction.

Theorem. G has a Hamiltonian circuit if and omly if H contains an n-wheel.

Proof.
(A) If G has a Hamiltonian circuit vg, vy, Ve, ..
{viv+1)m 0 a n}y {w, v} |0< <N}

(B) If Hcontains an n-wheel:
Case 1. w is the center: Clearly, the rest of the wheel gives a Hamiltonian circuit for G.

., Un—1 then H contains an n-wheel with the set of edges

Case 2. Vy= w is the center: Let us label the vertices as shown, then vy, v1,va,...,Vn—1,v 1S a

Hamiltonian circuit for G.

This completes the proof of the theorem. o

Solution to Problem 2.

Verification question.

Program:
i:=1;
oloop: if i=n then go to end;
i 1= i+l
j = 1i-1

iloop: if j«l then go to nexti;
a(i) = a(j) + a@G-1);
j =31
go to iloop;
nexti: go to oloop;
end: return

Assertions: The following sentences apply before execution of the statements
to which they are attached.

oloop: (V) [(0<k<i > a(k)=()) A (i<k<n 3 a(k)=1)]

iloop: (¥k)[(0<k<j o a(k)=(i1:1)) ~(§<k<i 5 a(k) = (i)) A (i<k<n 5 a(k)=1)]
end: (¥k)(0<k<n D a(k) = (E)) (output assertion)

input assertion: (¥k)(0<k<n o5 a(k)=1)

181

3, M is a machine which takes its input from a paper tape-like file

(read only) and prints acceptance of certain data tapes. Apart from

a finite-state control, its only memory is a pushdown stack, with the usual
operations of push, pop, and test-top-symbol. An unpoppable internal

state S of M is one in which the stack can never become shorter than it

is in S, whatever the input, Is there an algorithm to test wuch states?

Answer: A given state S of M can be modified into the initial state

of a machine M" that accepts those inputs which make M's stack shorter than
it is in S. Standard methods construct a CF grammer for this language.
Equally standard methods test the language for emptiness. (An alternate
method of proof defines the set of unpoppable states recursively, by

a monotone recurrence,)

4, Answer: (i=0) L-to-R and two-way finite state machines recognize
finite-state languages. A one-counter machine recognizes only recursive
sets, while a two-counter machine CL-to-R or neot) is universal. An
L-to-R one-counter machine can't recognize

iai B cign ;al b7 dJ; ,
while a two-way one-counter machine can. Therefore,
L01 _ LO2 L11 < L12 L21 _ L22 = everything else .

182

Spring 1980/81 COMPREHENSIVE EXAMINATION

ALGORITHMS AND DATA STRUCTURES

Problem 1. [20 points]. We wish to design a data structure that deals with objects, each of which
has a value. Many objects can have the same value. Specifically we wish to support the following
operations:

(1) Creation. Given an array of objects and the size of the array, create a data structure containing
exactly those objects, which supports the operations of deletion and query defined below.

(2) Deletion. Given an index to the array of objects, delete the corresponding object from the
data structure.

(3) Query. Answer the question: “Do all (remaining) objects in the data structure have the same
value?”

The operations of deletion and query are being done in real time. Therefore, the most important
property of this data structure is that the slowest of the operations of deletion and query be as
fast as possible in the worst case. Subject to this constraint, the expected time for the creation
operation should be as fast as possible.

Describe a data structure and the algorithms for implementing the three operations. Estimate the
time required for each operation. Justify any estimates that are not obvious.

For full credit, the time required for the deletion and query must be constant in the worst case, and
the expected time for the creation operation must be O(n), where n is the initial size of the input
array. Partial credit will be awarded for slower solutions. Specifically, if the deletion and query
operations require constant time, but creation requires O(n logn) expected time, three quarters
credit (15 points) will be awarded.

Problem 2. [20 points]. Someone wishes to generate bad binary search trees quickly, given a set of
keys and a distribution of the expected frequency of search keys. There are limits to how bad the
trees can be, however. Specifically, each key must appear in the tree exactly once, and the tree
must have the required order property. That is, that if the tree is traversed in symmetric order
(inorder) the keys are reached in alphabetical order. When searching for a key, the probability
that it is actually in the tree is negligible, and the probability that it is between any adjacent pair
of keys in the tree is known.

That is, the input consists of n, the number of k¢ s in the tree, the n keys, and an array, freq[0 . . n].
If we let keyy denote —oo and let keyn; denote 4oo, then freg(z] contains the frequency with
which the sought key will be between key, and key,;.,. The tree that is desired will have the
longest external path length, weighted by the entries of freq.

(a) [15 points] Design a polynomial time algorithm to find the tree with the worst possible expected
search under the assumptions above and show that your algorithm works. Make your algorithm
asymptotically as fast as possible. (Hint: you may use without proof the fact that in this tree no
key has two non-null sons.)

(b) [5 points] How fast does your algorithm run? Justify your estimate. Express your answer as
O(f(n)), for some suitable f(n).

183

Problem 3. [20 points]. Let G be an directed graph, with a weight, which may be any integer
(positive, negative or zero), given for each edge. For a given vertex v, we define a zero-cycle to
be a path starting and ending at v, passing through at least one other vertex, such that the sum
of the edge-weights along the cycle is zero. No vertex may appear more than once along such a
cycle (except for the initial vertex which appears only at the beginning and end). For example, in
the graph shown below, v has a zero-cycle, but w does not. Show that the problem of determining
whether G has any zero-cycles is NP-complete.

ALGORITHMS AND DATA STRUCTURES

Problem 1. We will create a new array of size n, where the element corresponding to each position in the
input array is a pointer to a counter containing the number of instances of that value. There is also a global
counter containing the number of distinct values in the data structure.

The query operation can be done in constant time by comparing the count of the number of values to 1.

The deletion operation can also be done in constant time. The link from the deleted object to its value
counter is followed and the value in the value counter is decremented. If this becomes zero, then .the global
number of values counter is decremented.

The creation operation takes expected time that is linear in the size of the original array. If the size of the
array is n, we allocate a 2n-cell array to use for hashing the values. Some suitable scheme such as separate
chaining will be used to resolve collisions. We process each element of the array in turn, incrementing its
value cell if it exists, and creating one and incrementing the global number of values cell if it does not. Since
the expected time to find the cell using hashing is constant, the expected running time of this operation is

O(n).

To do the creation operation in O(n log n) time, we can sort the original array and create an array of pointers
to the new positions of each object; then creating the value cells requires one pass through the sorted array. .

One person found an even better solution, for which creation is linear time even in the worst -case. The
objects are put into a doubly linked list, and we create a new array containing pointers to their positions in
this list. A count is kept of the number of adjacent pairs (in the linked list) which have different values.

The query operation can still be be done in constant time by comparing this count to 0.

The deletion operation is done by deleting the corresponding object from doubly linked list. It is then
possible to update the count by comparing the deleted object with its predecessor and successor, and the
successor with the predecessor.

Problem 2.

(a) This solution uses the paradigm of dynamic programming. The idea is to solve all of the subproblems
in order from smallest to largest. Thus, the answers to the small subproblems are available when we try to
solve any larger subproblem.

In this case, it is first useful to use this technique to find the sum of the frequencies for all possible subtrees
(i.e. keys from 7 to 7). As input we have n, the number of keys, and the array freq[0..n], with freg[:] equal to
the frequency that the sought key is between key, and key;4,. The keys keyy and key,; are —oo and oo
respectively. We now define the array sumli, j} to be the sum of freg{k] from 7 to 5. Only the entries with
i< 7 need be computed. The entries are computed in order of increasing 7 —7;sumls,] is easy to compute,
and if ¢ < j then sumli, j] = sumli, j — 1] + freq(y].

Armed with this array, we proceed to the main problem. Since in the pessimal tree no node has two non-null
sons, the root is either the largest key or the smallest key. Define the weighted path length of a subtree to
be the expected search time for that subtree times the frequency that the sought key is in that subtree. Here
again we solve all the subproblems.

Subproblems have two indices. Subproblem [i, j] means that the sought key is between key[i — 1] and
key(s +1] and the given keys are key{i] to key(s] inclusive. Only the problems with ¢ < j are interesting.
Solving a subproblem means determining weather key[:] or key[s] is at the root of the pessimal subtree
for that problem and the weighted search time in that tree. Again the subproblems arc solved in order of
increasing j —¢ and the answers are stored in an array. If j —i= 1 then there are only two possibie trees and
the answer can be found quickly by exhaustion. If j — 1 > 1, then the pessimal tree with key{;] at the root

185

has weighted path length equal to the weighted path length of the pessimal subtree for subproblem [z, j- 1]
plus the frequency that the sought key is between key[i —1] and key(s +1]. Similarly, the weighted path
length for the tree with key[s] at the root the weighted path length for subproblem [z + 1, 5] plus the same
frequency. Since one of these is the pessimal tree, a comparison will yield the answer to this subproblem.

After we have finished solving problem 1, n], the tree can be recovered. The root is known. The root of the
rest of the tree is known. This can be iterated to cause the tree to be returned in any convenient form. The
above discussion shows that the algorithm works.

(b) The algorithm takes O(n?) time. For both the summirg and solving the main problem there are O(n?)
subproblems that must be solved. Each subproblem takes constant time to be solved. Unwinding takes only
O(n) time. Therefore the total time is O(n?).

Problem 3. The problem is clearly in N P, since a non-deterministic machine can find a cycle and verify that
. its edge-weights add to zero, in time which is polynomial in the number of nodes in the graph. To show that
it is NP-complete, we can reduce the partition problem to it as follows: Given a set A={a,as,...,an} of
positive integers, there is a set A’ C A such that 3-,, ¢4 8i = 2_,.ca—a 3 if and only if the graph

a1 a2 Gn
(—a —a2 © —Gn)
0
hasa zero-cycle. (If you don’t like multiple edges between a pair of vertices, you can add extra vertices to
the graph above to get the same effect.)

This is because every cycle must pass through all the vertices in the graph above. Therefore a cycle is a
zero-cycle if and only if the sum of the weights of the positive weighted paths is equal to the absolute value of
the sum of the weights of the negative weighted paths. This defines a partition of the set A, and conversely
any partition of A defines a cycle in the graph. This reduction can be carried out in time which is polynomial
in n.

Another solution is to start with the problem of finding a directed Hamiltonian cycle, which is known to
be NP-complete. Given a directed graph, to see if there is a Hamiltonian cycle, first label all of the edges
with weight 1. Then choose any vertex v, and label all of its incoming edges with —(n —1), where 7 is the
number of nodes in the graph. If there is a zero-cycle, it must contain one of these edges, and hence must
also pass through n— 1 of the edges labeled 1. Because of the restriction that no node appears twice on
a zero-cycle, this is a Hamiltonian cycle in the original graph. Conversely, if the graph has a Hamiltonian
cycle, that cycle mill include an edge leading into v and therefore be a zero-cycle. Therefere, the weighted
graph will have a zero-cycle if and only if the original graph had a Hamiltonian cycle. This reduction can
clearly be done in time which is polynomial in n, which proves that the zero-cycle problem is NP-complete.

ARTIFICIAL INTELLIGENCE

Problem 1. [Line labelling] The techniques work on the basis of a number of assumptions, such as the
thoroughness of the line finder (no missing or additional lines or intersnctions). This would be impossible to
achieve for the kinds of objects in the pictures. They are designed to recognize three-dimensional objects
with special properties (e.g. faces are flat and every vertex is a junction of at most three edges) which are
not true of’many natural objects (such as airplanes). Although they would work for flat projections (which
is what you mostly get from the air) they are not especially useful in that case.

Problem 2. [ATN’s] A straightforward context-free grammar cannot deal with natural language phenomena
such as agreement, and cannot be used to provide a semantically appropriate analysis for cases of “movement”
like ‘Which dog did you say the cat bit?. By having registers that that can be set and read (and passed
up and down), ATN’s can handle these phenomena. It is interesting to note that there is current work on
extending the idea of context free grammars (via meta-rules of various types) to overcome the difficulties.

Problem 3. [Water witches]

(a) Production rules:
1. If wiggles and grass then stream.
2. If twirls and twitchy then stone.
3. If sand and stone then lake.
4. If jump and stone then lake.
5. If grass then not lake.
6. If wiggle and twirl then sand.

Situation (1) Grass and wiggle:
(Looking for stream (1))

Is the rod wiggling? - Yes

Are you standing on grass? - Yes

At this point stream is established, but both may be present. If the program is smart it will recognize that
rule 5 can already be used, and will say ‘You are over a stream.” If it is not, it will take the rules in order
trying to establish a lake.
(Looking for lake (3))
(Looking for sand (6))
(Rod is wiggling (already established) (6))
Is the rod twirling? - No
(Looking for lake (4))
Is the rod jumping? - No
(Looking for lake (5))
(Grass is already established)

so lake is eliminated, all search is done and answer is ‘You are standing over a stream.”

Situation (2) No grass, wiggle, twirl and twitch:
(Looking for stream (1))
Is the rod wiggling? - Yes
Are you standing on grass? — No
(Looking for lake (3))
(Looking for sand (6))
(Rod is wiggling (already established))

Is the rod twirling? - Yes

so it is established that there is sand . . .
(Looking for stone (2))
(Rod is twirling (already established))
Is the rod twitching? - Yes

so it is established that there is stone. Answer: “You are standing above a lake.”

(b) Planning:

Actions:
Anneal
" Preconditions: none
Delete: Soft, n gnarls
Add: hard, 0 gnarls
Transmogrify 1
Preconditions: soft, at least one gnarl
Delete: n gnarls, m branches
Add: n— 1 gnarls, m + 1 branches
Transmogrify 2
Preconditions: hard,, at least one branch
Delete: n branches
Add: n— 1 branches
Clone
Preconditions: none
Delete: n gnarls, hard
Add: 2n gnarls, soft

We have separated out the action of transmogrifying into the two cases depending on hardness. We also
ignore the possibility of applying the operator in cases where it will do nothing.

Initial conditions (2,1,ha'rd) [gnarls, branches, hardness].

The plan is:
(2,1, hard) 3 (2,0, hard) [transmogrify2]
= (4,0, soft) [clone]
= (3, 1, soft) [transmogrifyl]
= (2,2, soft) [transmogrifyl]

A simple difference driven search (a la GPS) would not get an answer to this problem, since the solution calls
for making apparently backward movement.

Goal (2,2,?)— have (2,1, hard).

Difference = branches; need to add.
Try Transmogrify 1 — preconditions: needs to be soft.
Try Clone — no preconditions =»(4, 1, soft).
applying Transmogrifyl = (3,2, soft).

Difference = gnarls; need to remove.

Try Anneal — precondition none = (0, 2,hard):
Difference = gnarls; need to add.

Failure — there is no way to add gnarls if there are none.

The plan would eventually be found by an exhaustive backtracking or breadth-first search.

(¢) Proof:
Axioms (using arithmetic in the obvious way):

Since we are always dealing with one rod, we can treat the operations as one-argument functions from
situations to situations. Similarly, hard and soft can be predicates associated with situations. It wouldn’t
harm anything to carry along a variable z standing for the rod, but it isn’t of any use either.

Predicates:
hard(s), soft(s), gnaris(n, s), branches(n, a).

Operators (functions from situation to situation):

anneal, transmogrify, clone.

Axioms:

Vs soft(s) v hard(s)
Vs =(soft(s) a hard(a))
Vs hard(anneal(s))
Vs gnaris(0, anneal(s))
Vs, nbranches(n, s) D branches(n, anneal(s))
Va soft (a) D aoft(transmogrify(s))
Va hard(a) D hard(transmogrify(a))
Vs, n, k soft(s) A gnaris(n, s) A n > 0 A branches(k, a)
D gnaris(n — 1, transmogrify(a)) A branches(k + 1, transmogrify(a))
Vs, k soft(s) A gnaris(0,s) A branches(k, s)
Dgnaris(0, transmogrify(s)) A branches(k,transmogrify(s))
Vs, n, k hard(s) A branches(0, s) A gnaris(k, a)
Doranches(0, transmogrify(a)) A gnaris(k, transmogrify(s))
Vs, n, k hard(s) A branches(n,s) An > 0 A gnaris(k, s)
D branches(n — 1, transmogrify(s)) A gnaris(k, transmogrify(s))
Va aoft(clone(s))
Vs, n gnaris(n, s) D gnaris(2n, clone(s))
Vs, n branches(n, s) Dbranches(n, clone(a))

To prove: you cannot produce (1, 1, ?) from (1,2, soft). Informally: A soft rod can never decrease its branches
without losing all its gnarls forever after.
Proof: To decrease branches, it must be hard and then transmogrified.

To become hard it must be annealed.

If it is annealed it loses all its gnarls.

There is no way to add gnarls to a rod that has none.

Axioms and proof using stage numbers:

Predicates:

hard(a)

soft(s)

gnarls(n, 3)
branches(n, a)
anneal(3)
transmogrify(s)
clone(s)

189

where the last three are interpreted as meaning that the named operation was applied to stage s — 1 in order
to produce stage a. Take stage O as the initial state.

[1]Vs a > 0D (anneal(s) V transmogrify(s) V clone(s))
— every stage after the initial one comes from some operation —
[2]Vs anneal(s) D (transmogrify(s) V clone(s))
[3] Vs transmogrify(s) D —clone(s)
~ — only one operation per stage —
[4]Vs3m, n m > 0 A n 20 A branches(m, a) A gnaris(n, a)
— there exist some number of branches and gnarls at each stage —
(5] Vs soft(s) V hard(s)
(6] Vs ~(soft(s) A hard(s))
[7)Vs anneal(s) D hard(s)
[8]Vs anneal(s) D gnaris(0, a)
[9] Vs, n branches(n, a) A anneal(s + 1) Dbranches(n,s+ 1)
(10] Vs soft(s) A transmogrify(s+ 1) Dsoft(s+ 1)
[11] Vshard(s)Atransmogrify(s + 1) Dhard(s+ 1)
(12] Vs, n, k soft(s) A gnaris(n, a) A n > 0 A branches(k, a) A transmogrify(s+ 1)
Dgnaris(n — 1, s4 1) Abranches(k +1,s+ 1)
[13] Vs, n, k soft(s) A gnaris(0, a) A branches(k, a) Atransmogrify(s + 1)
Dgnaris(0,s + 1) A branches(k,s+ 1)
(14] Vs, n, k hard(s) A branches(n, a) A n > 0 A gnaris(k, a) A transmogrify(s + 1)
D branches(n — 1, s+ 1) A gnarls(k,s+ 1)
[15]Vs, n, k hard(s) Abranches(0, a) A gnaris(k, a) A transmogrify(s+ 1)
D Abranches(0,s+ 1) A gnarls(k,s+ 1)
(16] Vs clone(s) D soft(s)
(17| Vs, n, k branches(k, a) Aclone(s + 1) Dbranches(k,s + 1)
(18] Vs, n, k gnaris(n, a) A clone(s+ 1) Dgnaris(2n,s+ 1)

Given branches(2,0) A gnarls(1,0) A soft(0), we want to show that =3sbranches(l, a) A gnaris(1, a). Proof by
contradiction: assume the Conclusion.

Let z be any integer 0 < x <s such that branches(m,x — 1) and branches(n,z), where m > n. Such a
stage must exist since branches(2,0) and branches(l, a).

anneal(x) V transmogrify(z) V clone(x). [1]
Taking cases:
anneal(x) Abranches(m,x — 1) D branches(m, x) [9] — contradiction,
clone(x) A branches(m,x — 1) Dbranches(m, x) [17] — contradiction.

So transmogrify(z).

Lemma 1: =soft(z— 1). Proof by contradiction: assume soft(z— I).
37 gnaris(y,z — 1), (4]
and y =0 or j > 0. Assuming soft(z— 1) Aj=0,
soft(z — 1) A gnaris(0,x — 1) Abranches(m,x — 1) Dbranches(m, x) [13] — contradiction.
Assuming aoft(x — 1) Aj > 0,

soft(z — 1) A gnaris(j,x — 1) Abranches(m,x — 1) Dbranches(m + 1, x), (12]

190

which is a contradiction since branches(n, x) and m > n. Lemma proved.

softf(z— 1) Vhardz— 1). [5]
Therefore hard(z — 1), by Lemma 1. Since we have soft(0) and hard(z —1), there must exist 0 < y < z
such that hard(y) and soft(y— 1).
anneal(y) V transmogrify(y) V clone(y). (1]

Taking cases:
clone(y) D soft(y) [16] — contradiction,

aoft(y — 1) A transmogrify(y) D soft(y) [10] — contradiction.
So anneal(y). Therefore
gnaris(0,y). (8]
Lemma 2: gnarls(0, z) for all z> y. Proof by induction.
Induction step: Vk gnaris(0, k) D gnaris{0, k + 1).

anneal(k + 1) Vtransmogrify(k+ 1) V clone(k+ 1). (1]

Taking cases: oo
anneal(k + 1) D gnarls(0, k + 1), 8]

clone(k + 1) A gnaris(0, k) Dgnaris(0, k + 1), (18]
and for the case transmogrify(k + 1), either hard(k) or soft(k) by (5], so

soft(k) Atransmogrify(k + 1) A gnarls(0, k) D gnaris(0, k), (13]
if soft(k), otherwise 37 branches(s, k) by [4], and j = 0 or j > O:

hard(k) A transmogrify(k+ 1) A gnaris(0, k) A branches(0, k) D gnarls(0, k), (15]
hard(k) A transmogrify(k + 1) A gnarls(0, k) Abranches(y, k) A j > 0 D gnarls(0, k), [14]
so the inductive step is proved.
Base of induction: gnaris(0,y) by assumption. End of Lemma.

Therefore gnaris(0, a) since s > x > y [Lemma 2], but this contradicts the initial assumption that
gnaris(1,s). Q. E. D.

191

ARTIFICIAL INTELLIGENCE

Problem 1. [10 points]. What major difficulties would you expect in applying line-labelling tech-
niques (Waltz, Huffman, Clewes, etc.) to the problem of analyzing aerial photographs to detect
roads, airports, missile launchers, etc.?

Problem 2. [5 points]. Why are ATN parsers better than ordinary context-free grammars for
natural language understanding?

Problem 3. [three parts, 15 points each]. You have been hired as a consultant by Acme Dowsing
International to help them apply Al to improve the profitability of their water exploration teams.
They have asked your help in several ways.

(@) [15 points] Acme’s expert dowsers have over the years built up a set of rules of thumb for
deciding what is causing the rod to dip. Somebody tried to get them to write down their rules,
and produced the following:

o If the rod wiggles and you are standing on a patch of grass, then there is an underground
. stream below. :

o If the rod twirls and is twitchy then you are over a buried stone.

o If either you are above a sand formation or the rod jumps, and also you are over a buried
stone, then there is a lake below.

o There is never a lake below a patch of grass.
e Whenever the rod wiggles and twirls you are above a sand formation.

Acme wants to replace its expensive experts with a computer program that will tell what kind
of body of water is causing the dip. Put these rules into a production rule form (of the kind
used by MYCIN, but without certainty factors). Show a dialog that would be produced by a
straightfor- ® ard backward chaining diagnosis program, for each of the following situations. Its
result should be something like ““You are over a lake” or “You are over a stream”. The dialog will
include questions asked of a semi-skilled dowser’s helper who manipulates the rod and can answer
questions like “Arc you standing on a patch of grass?” and “Is the rod wiggling?” but who has no
idea about what is underground.

Situation (1): The helper is standing on a patch of grass and the rod wiggles.

Situation (2): The helper is not standing on a patch of grass and the rod wiggles, twirls, and
twitches.

Note: The words used in this problem are intended to be taken as purely formal, and no conclusions
should be made on the basis of their ordinary meanings. For example there is no relationship
between “wiggling” and “twitching” and “jumping”.

192

(b) {15 points] The dowsers have also discovered over the years that in certain situations different
rods work best, depending on the number of branches and gnarls they have. In the old days they
combed the forest for appropriate rods. Later they learned that there were alchemical methods
for modifying rods, and that they could start with one that wasn’t right and get the one they
wanted. Only the little old rodmakers knew the secrets of producing good rods. The company
wants to decrease its dependence on these rather unpredictable and sassy fellows by automating
the rodmaking process. They have analyzed what the rodmakers are doing and have found that
there are 3 processes obeying the following rules:

e If a rod is annealed it loses all its gnarls and becomes (or remain;) hard.

o If a rod is transmogrified, then if it is soft one of its gnarls becomes a branch, otherwise one
of its branches falls off.

e If a rod is cloned, then the number of gnarls is doubled and it becomes (or iemains) soft.

e Whenever an operation would call for removing a branch or gnarl and there are none, the
operation has no effect on the rod at all.

e Anything not mentioned above is assumed to be unchanged by the operation (e.g. annealing
does not change the number of branches).

Your job is to create a knowledge base for a STRIPS-like robot planning system which can be
used to generate a sequence of operations to be carried out given a raw rod and a desired form
for the finished product. It should be done in a general enough way that data describing new
rod-modifying processes can be added without reprogramming.

Show a plan for generating a 2 gnarl, 2 branch rod (any hardness) from a soft, 2 gnarl, 1 branch
one. Show a trace of what would happen if you tried to generate it with a difference driven planning
system (like GPS).

(¢) [15 points] One of the little old rodmakers has argued for years that he cannot produce a 1
gnarl, 1 branch rod from a 1 gnarl, 2 branch rod using any combination of the known operations.
The boss has had him keep trying, in hopes he is wrong. Represent the operations in predicate
calculus using a situation variable and outline a proof that it is impossible. You do not have to
give the proof in detail.

193

HARDWARE SYSTEMS

Problem 1. e.

Problem 2. (@) F) F(¢) T F () F () T

Problem 3. 3. Memory addresses require only 15 bits, so all can have a 0 in the most significant bit. So let’
IO addresses be distinguished by having a 1 in the most significant bit. This leaves 15 bits to encode 100 IO
port addresses: any 2-out-of-15 code does the job. Each address decoder then has to test the most significant
bit, and the appropriate two of the remaining bits.

Problem 4. (@) T (b) F (¢) F (d) T

Problem 5. () 4 (b)) 6 (©) 2 () 7 () 8 () 1,2 (2 1,2, 3,4 (M) 5@ 1 ()5

Problem 6. (a)

b 9 o
(o)
D a®,
——O"\

. —C | O— F1
1 et
I)0___
G
H
o}

(b) 256 X 4.

(¢) 10 AND gates: AB’CD’, A’BC’, FGH, E’, BCD, CDE’H, FGH’, AB'CD, ABEF, A’BC’,
AB'CD'FGH’. (F G is implemented as FGH + FGH'.)

16 inputs per AND gate (each variable and its complement).

4 OR gates (1 for each function).

Problem 7. In horizontal microprogramming, each gate is directly controlled by a singie, separate bit in the
microinstruction. In vertical microprogramming, functions are encoded in one or more fields; each field is
decoded, and the ouput from the decoders goes to the gates. Horizontal microprogramming allows greater
parallelism, but takes more space.

Problem 8. The microprogram control unit uses overlap, so that the next microinstruction is already being
fetched while the current one is being executed. Since the test outcome is not known until the end of the
current microinstruction, the branch must be delayed one microinstruction cycle.

194

HARDWARE SYSTEMS

Problem 1. [10 points]. Several fundamental-mode state tables are shown below. Such tables are
used to describe the operation of sequential circuits built from cross-coupled gates or unclocked
flip-flops. In particular, one of these state tables describes the operation of a positive-edge-triggered
D flip-flop. Which one?

Hint: How to read fundamental-mode state tables: Parenthesized entries indicate stable states. In
table (c) below, suppose that the circuit is in state A with input 01 (ie. CLK =0 and D = 1).
Then if the input changes to 11 and then 10, the circuit will traverse the states shown by the
arrows.

(a) CLK, D (b) CLK, D
S 00 01 11 10 Q S 00 01 11 10 @
4 | (4 B B (4 o A . B (4 (4 B 0
B | B 4 A (B) 1 B | A (B (B) A 1
(c) CLK,D (d) CLK, D
S 00 01 11 10 Q S 00 01 11 10 ' Q
A @ W @ o A i (4 B (4 4 o
B | (B) (B) (B—A 1 B| 4 (B (B (B 1
¢ CLK, D (f) CLK, D
S 00 01 11 10 Q S 00 01 11 10 Q
A |l @ @ ¢ B o A B C (4 (4 o
B A A (B (B o B | B (B 4 A4 o
¢ D D (C) (€ 1 c | © © p D 1
p | D O ¢ B 1 D B C (D) (D) 1
(2) CLK, D (h) CLK, D
S 00 01 11 10 Q S 00 01 11 10
A (4 (4 C C o0 Al 4 @ ¢ B o
B A A (B (B 0 B | 4 A D (B o0
C D D (€) (€) 1 c D D () A 1
p | (D (O B B 1 p | (® (O ¢ B 1

195

.

Problem 2. [6 points]. In a memory-mapped I/O system, input/output ports are addressed as
memory locations and may be accessed by any memory-reference instruction. Computers that use
memory-mapped I/O include the PDP-11, VAX-11, 6809, and 68000. In an isolated I/O system,
input/output ports have their own address space and may be only by accessed by special I/O
instructions. Computers with isolated I/O include the PDP-8, HP21MX, 8080, 8086, 280, 28000,
and MCS-48. Answer TRUE or FALSE to each of the following questions.

(a) With isolated I/O, separate buses must be provided for the memory system and for the 1/O
system.

(b) With memory-mapped I/O, memory locations and I/O ports must have the same maximum
access time.

(c) With a processor designed for isolated 1/O, memory-mapped I/O may be used at the discretion
of the system hardware designer.

(d) With a processor designed for memory-mapped I/O, isolated /O may be used at the discretion
of the system hardware designer.

(e) Vectored interrupts cannot be provided in a system with isolated I/O.

(f) I/O port addresses in a memory-mapped I/O system may be assigned in disjoint segments of
the memory address space.

Problem 3. [4 points]. A particular computer system with 32K bytes of main memory and 100
I/O ports uses memory-mapped 1/0O. If the address bus contains 16 lines, what is the minimum
number of AND-gate inputs that each I/O interface needs to decode its address? Explain your
answer briefly. (Hint: use “m-out-of-n” codes.)

Problem 4.[8 points]. Two n-bit operands A and B are to be combined by two’s-complement
addition; the bits of each are numbered from O (least significant bit) to n — 1 (sign bit). Let S
denote the sum; let C(n — 1) denote the carry from bit » — 2 into bit n — 1 when A and B are
added; and let C(n) denote the carry out of bit n— 1. Indicate whether each of the following
conditions is a valid test for two’s-complement overflow. (The condition must be true if and only
if there is overflow.) Answer TRUE or FALSE.

(a) C(n)# C(n —1).

() A(n — 1)@ B(n— 1) = C(n).

(c) Amn — 1) B(n—1)7# C@n).

(d) An—1)@B(n—1)= 0and An — 1) % S —).

Problem 5. {10 points]. Memory hierarchies. Several different types of computer memory are listed
below, followed by certain memory characteristics.

(1) Semiconductor RAM (main memory)
(2) Semiconductor RAM (cache memory)
(3) FErasable Programmable Read-Only Memory (EPROM)
(4) Core memory
(5) Floppy disk
(6) Moving-head (Winchester) disk
(7) Head-per-track disk
(8) None of the above ’
For each characteristic below, list the memory type(s) above which have that characteristic.
(a) Erased by every read operation
(b) Lowest cost per bit
(c) Highest cost per bit
(d) Best for external storage in demand-paging systems
- (e) First type of memory technology used in computers
{f) Volatile
(g) Random access capability
(h) Longest access latency

(i) Highest storage density (bits per unit area) in storage medium.

(j) Highest storage density (bits per unit volume) in computer room.

197

Problem 6. [12 points]. The following four boolean equations describe a 4-output logic function.
Apostrophes (') denote compiementation.

F1 = AB'CD'+ A'BC' + FGH + E'

F2 = BCD + CDE'H + FGH'
F3 = AB'CD + ABEF + FG
F4 = A'BC' + AB'CD'FGH’

(a) [5 points] Draw a circuit diagram for F'1 using only 4-input NAND gates.

(b) (3 points] If the 4-output function is implemented with a read-only memory, what sizz ROM
is needed?

(¢) [4 points] If the 4-output function is implemented with a programmable logic array, describe
the organization of the PLA by giving:

e [2 points] The number of AND gates (also list the corresponding AND terms from the equations
above for each one),

e [1 point] The number of inputs per AND gate,
e (1 point] The number of OR gates.

Publem. 7.[5 points]. Explain the difference between vertical and horizontal microprogramming.

Problem 8. [5 points]. In some microprogrammed processors, conditional microprogram branches
take place one microinstruction after the branch microinstruction is executed. For example, the
following microcode implements the machine instruction DJNZ R ,ADDR (Decrement and Jump if

Not Zero).
Microprogram
Address Instruction

Load R

Decrement R

Branchto 11ifR = 0

Store R

Load ADDR

Store PC

Fetch next macro instruction

— O W o0 —1 O\

—_

In this example, instruction 8 is executed whether the branch is taken or not. Instructions 9 and
10 are executed only if the branch is not taken.

Now the question: Why is the microprogrammed processor designed this way?

198

NUMERICAL ANALYSIS

Problem 1. Let A®) = A. Then the algorithm for computing the Cholesky factorization goes as follows:

Fork =1,2,...,n

fie=0, i=1,2,...,k—1

fui = (2

fik = aik/ frk, i = k+1,...,n

a£f+l) =°$_’;)_fikfjk: j2i= k+l,..., n.

Thus n square roots and n®/6 + O(n?)fops (a combination of a floating multiply followed by a floating add)
are required for computing the Cholesky factor.

(a) If the matrix is 5-diagonal, then
fie=0 wheni<kori>k + 2.

The above equations show that n square roots, and about 2n divisions and 3n flops are required for computing
the Cholesky factor.

F has only three non-zero diagonals;

0

and thus requires at most 3n — 3 words.

(b) The matrix A appears thusly:

\ 0

After one step of the Cholesky factorization, the zeros are destroyed, so that n®/6 + O(n?) flops are required
for computing the factorization.

199

(c) We can simplify the problem by permuting A ((n,n—1,...,1)+«(1,2,...,n)) so that

0 .

PAPT =

Now F requires 2n — 1 words; and n square roots, n — 1 divisions, and n — 1 flops are needed to’ compute
the factorization.

Problem 2.

(a) To apply the Aitken procedure for estimating 8, we must eliminate k in the Sk term. This can be done
by noting that

oo
§ :- k

Thk+1 —zk———-‘ﬂ + a,)\,,
k==1

where &, = a,(\, — 1). Then if we apply the Aitken scheme to
Yk = Tk41 — Tk,

the extrapolated value will approximate f.

b) I :
Y = H+ &le)

then from yg,¥1, y2 we can determine B since we have three unknowns 3, &y, \;. Hence if
Tk = a + Bk + o)},

we can determine 8 precisely.

Problem 3.
(a) Note that

af

- - - af l- -

Tnypy — = f(zn’yn)_f(afﬁ) = g(zn—a)+ a(yn—ﬂ)-‘}_l

. . - a . 3 .

Yn+t1 —B= g(xn+ll yn) - g(alﬁ) = a_i(xn+l - a)+ 'a_z(yn _'B) + -
Hence ,

L 0z —a) gé % I, —a i
-5 Y —8) \0 EN\y—-8 '

Since

(297=(C 9

1
2 Mo 2)7\2 g %ary

(b) We wish to show
(e, B)| < | (e, B

when
1V (e, B < 1.
Since the first rows of J(a,3) and J*(a, B) are the same, we simply need to check the second row of J*(a, B).
Now
o9 of) |of 99 09\ |99 |0f} |9f} 99] |%
dz Oz dy 0z dy|~ |0z| |0z| |dy| |oz dy
dg|(|8f of 99
< |Z|[IZL °l e A
~ |0z (oz +‘8y)+ dy
99 99
<& A
= |0z +~‘6y

The last step follows since ||J(a, B)|| < 1. Thus ||J*(a, B)|| <||J (e, B)| when ||J(a,B)|| < 1.

NUMERICAL ANALYSIS

Problem 1. Linear systems [20 points]. Let A be a real, symmetric, positive definite matrix. In this
problem, we assume the matrix A is sparse and we wish to investigate means of taking advantage
of the structure. We desire to compute the Cholesky factor F of A so that FFT = 4. Note that
since A is positive definite it is not necesssary to pivot for numerical stability.

(a) [9 points] Assume that a;; = 0 when [j — #|2> 3, ie. A is a five diagonal matrix. Describe
an efficient variant of the Cholesky method for finding F. How much storage does F require? How
many numerical operations does your algorithm require?

(b) [5 points] A ssume that the first row and column of A are non-zero but that a;; = 0 when

©>2,j>2,and i # j. How many operations are required to find the factor F and how much
storage is required?

©) [6 points] Show how to reorder the matrix given in (b) so that the storage and the operations
are reduced. Give a count of the number of operations after this improvement.

Problem 2. Acceleration [15 points]. Consider a sequence Zg,k = 0, 1,. . . which satisfies the
relationship

oo
T = o + fk + Zarxf,
r==1

where @, 8, and {a,, A}, are unknown constants with |\,|< 1 and |A\r[> [Nrp1]-

(a) [8 points] Given numerical values zg,Zy,Z2, T3, show how to use Aitken acceleration to
determine an approximate value of B.

(b) [7 points] Under what circumstances will your algorithm yield the exact value of § when zg,
xi, z9, and z3 are given?

Problem 3. Non-linear equations [25 points]. We wish to solve the system

T = f(zi y),

Y = g(z, y)-
Let us assume that a solution exists, which we denote as x = a,y = . Consider the following
iteration schemes:

I I

Znt1= f(Zn,¥n) I;;-{-l = f(z:u y:.) .
Yn+1 =04(2s, Yn) Yn+1 =.g(z;+1,y,’,)

with zg = T3, yo = Y- Let
PR In—Q 3= I, —a
T \Un—B) » \yn—28)

' ZZ.,._"_I = J(a; ﬁ) aﬂ + 3"‘3)

where J is the Jacobian associated with f and g.

so that

(a) (15 points] Show that .
;-f-l = J¥e, B) E; + 3,‘,.
Give an expression for J* (Q, 3), assuming 3; consists of higher-order terms.
(b) [10 points] For a given matrix
b
; A=1[2
| (¢ 2

we define (||| = max(la| 4[5, |c| +|d]). Show that if [|J(a, A)]| < 1, then |J*(a, A)]| < ||/ (e, B)]I.

SOFTWARE SYSTEMS

Problem 1.
z = f l(z);
while pi(z) do
begin
x == f2(z);
if not p2(z) then
begin
while p3(z) do z:= f3(z);
x == f 1(z)
end
end

Problem 2.

(a) The following program assigns true to v if the activation environment is used, and false if the declaration

environment is used. i
begin

boolean v,Z;

function p;
pP: -z

function q(r); function r;

begin
boolean z;
X = true;
q:=r
end;
z := false;
v = g(p)

end

(b) Bleck-structured languages typically use the “declaration environment”. Theselanguagessare usually
compiled, and greater runtime efficiency is obtained by static binding of variable references at compile-time.
LISP, which is usually implemented by an interpreter, provides greater flexibility by delaying binding until
run-time’ and thus uses the “activation environment”.

Problem 3.

(a) Static links are less efficient for resolving non-local references, because (possibly long) chains of pointers
have to be followed; with displays, a single indexed, indirect addressing operation is sufficient.

Static links are more convenient and economical to maintain, especially if the langauge permits procedural/
functional parameters or call by name, both of which require context changes that are not simple pushes or
pops of the activation record stack.

It can be assumed that variable references are much more frequent than the context changes which require
updates of the static chain/display. This favors displays.

However, it can also be assumed that the vast majority of variable references are either local or global to the
entire program. Program global variables can be stored in a separate, static area, and be accessed directly.
This favors static links.

(b) Neither static links nor displays are needed; local variables are in the topmost activation record pointed
to by the stack pointer, and, as mentioned in part (a), program globals can be stored in a separate, static
area and be addressed directly. So the non-local accesses allowed are particularly efficient.

Problem 4.
(a) Because G1 is unambiguous, whereas G2 is ambiguous.
(b) (1) Associativity and precedences of operators (“,” and %”).

(2) There will be fewer states in the generated parser, so generation time, parser size and parsing time
will all be reduced.

Problem 5. The line numbers refer as closely as possible to those of the original program.

4. s =0 ;
7. T:=10+U;
9. V:=T;
PQ =R * 10;
5. repeat ’
7. PQ := PO — 10;
9. S:=8S+PQ
10. until PQ < 10

PQ is a new temporary’ holding the value that was previously P * Q. Optimizations:
(a) Substitution of 10 for Q everywhere: constant folding.

(b) Elimination of lines 1 and 2: dead variable (redundant store) elimination.

(c) Elimination of line 3, and replacement of P by R everywhere: copy propagation.
(d) Movement of lines 7 and 9 out of the loop: code motion.

(e) Replacement of (Q + U) by T in line 9: common sub-expression elimination.

”

(f) Replacement of “x” in line 9 by “—” in line 7: reduction in strength.

(g) Elimination of P from loop: induction variable elimination.

Problem 6.

(a) Deadlock in monitors can occur in many ways. The most obvious is having a procedure in monitor A
call a procedure in monitor B, and vice versa. If one process calls the procedure in A at the same time that
another calls the procedure in B, neither call will be able to complete because both monitors are locked.

Deadlock in a message-passing system would occur if process 1 was waiting to receive a message from process
2, which was itself waiting to receive a message from process 1.

(b) Starvation occurs when some process does not get a resource it wants; for example, because higher-
priority processes monopolize the resource. Deadlock implies that process(es) are permanently blocked, and
cannot recover without outside intervention. With starvation, it remains possible that the process will
eventually get the resource and be able to continue.

(c) The following solution nses an array of semaphores, one per process.

processi: while true do
begin
non-critical section;
P(sem[s]);
critical section;
V(sems + 1 mod 10])

end;

The required initialization is to have every semaphore except sem[l] equal 0, and sem([l]= 1.

Problem 7. (a) 21, 1000, 6, 6, 6. The"idea here is that a long job (52) keep some short jobs (J3, J4 and J5)
waiting for a long time under FCFS. T1= 21 is to ensure that J2...J5 are all already in the queue when
the large job (J2) starts.

(b) 21, 100, 100, 50, any. The idea this time is that a short job (J4) keep at least two earlier, longer jobs
(J2 and J3) waiting at least an extra 10 time units under SJN.

(c) 20, 15, 20, 10, 10. Short jobs get high priority; this is one way of implementing SIN. Alternatively:
1, 1, 1, 1, 1. If the queue never contains more than one job at a time, the scheduling method is immaterial!

(d) 100, 50, 100, 10, 6. The idea here is to cause at least 3 preemptions, costing an extra context switch
each (note that preemption actually causes two context switches, but at least one is always required to
run the job, whatever the scheduling method). The above jobstream causes 3 as shown below (* indicates
preemption):

Jl— *J2 = * J4— * J5 —J4d —J2—J1—J3.

SOFTWARE SYSTEMS

Problem 1. Structured Programming (8 points]. The following is an adaptation of a program
extract that was actually published (!). Rewrite it in a clearer fashion, by applying the principles
of structured programming.

Al: z = fi(z);
L1: if p1(z) then
begin
z .= f2(z);

if p2(z) then go to L1;
B1: if p3(z) then

begin
z = f3(z);
go to Bl
’ end
go to Al

end

Problem 2. “Funarg” Problem (10 points]. Consider a block-structured language (e.g. Algol60) that
allows a formal parameter, say FP, of a function, say F, to be a function name. When FP is used
in an expression within F, the function represented by the corresponding actual parameter, say
AP, is invoked. There are at least three possible environments in which it could be executed:

(1) The “activation environment”: the environment at the point of-call of FP in the expression.

(2) The “binding environment”: the environment at the point of call of F, when FP was bound
to AP.

(3) The “declaration environment”: the environment at the point of declaration of the function
represented by AP.

The choice of which environment is actually used in a particular language is a language design
decision.

(a) [6 points] Write a program extract in some informal high-level notation that would assign a
different value to a variable V depending on whether the “activation” or “declaration” environment
is used.

(b) [4 points] Which of the three environments listed above is commonly used in block-structured
languages (e.g. Algol60)? In LISP? Are these choices consistent with the philosophies and features
of these languages? Explain briefly (5 lines maximum).

207

Problem 3. Static Links versus Displays [6 points]. Two alternative methods of implementing
references to non-local variables in block-structured languages are “static links” (or “static chains”)
and “displays”.

(a) [4 points] What considerations apply in choosing between these two methods?

(b) [2points] Certain languages (e.g. BCPL and C) allow a procedure to access only local variables
and variables global to the entire program (i.e. declared at the top or program level). How does
this affect the implementation of non-local variable references? .

Problem 4. Parsing [6 points]. The following is a simple grammar for lists of identifiers separated
by commas or semicolons:
Gl: L::= CL| L;CL
CL::=id| CL, id

id stands for an identifier, and can be considered a terminal symbol.

An alternative grammar for the same lists is:

G2: L::=L;L|LL|id
(a) (2 points] Amutomatic parser constructor would normally prefer to deal with G1 than with
G2. Why?

(b) G2 can be used as the basis for automatic parser construction, provided some additional
information is provided.

(1) [2 points] What information is necessary?

(2) [2 points] What are the advantages, if any, of using G2 instead of Gl wrhen constructing an
SLR or LALR parser?

208

Problem 5. Optimization {10 points], Apply the standard code improvement transformations
(optimizations) used by optimizing compilers to the following program segment. Show the op-
timized program and identify the optimizations used, stating the type (class) of each. Work entirely
in the source language; do not generate code. You may assume that no two variables are aliases of
each other, and that all variables except P and Q are live on exit. P and Q are dead on exit.

1. P:=3;

2. Q:=P+T;

3. P .-.-R;

4. s .-.-0;

5. repeat

6. P.—P—1;

7. T:=Q+ U,;

8. §:=8+4+Px*Q;
9. Vi=@Q+U

10. until P <1

Problem 6. Synchronization (10 points].
(a) [2 points] Give an example of deadlock caused by monitors or message-passing.
(b) [1 point] What is starvation? How does it differ from deadlock?

(c) Suppose we have ten processes (numbered O through 9) which occasionally wish to have
exclusive access to some resource. Any process that is not currently using the resource is allowed
to work as it pleases. A process i which requires the critical resource cannot use it unless no other
process is using it and process ((i — 1) mod 10) was the last process to use it.

(1) [6 points] Using semaphores (or arrays of semaphores), monitors, or messages, describe how
the above synchronization may be implemented. Do not write detailed code!

(2) (1 point] What is the appropriate initialization such that when the system is restarted it
appears that process 0 has just used the resource?

209

Problem 7. Scheduling {10 points]. Consider the following jobstream presented to a scheduler:

Job. Arrival time Processing time required Priority

J1 0 T1 low
J2 5 T2 medium
J3 10 T3 low
J4 15 T4 high
J5 20 TS high.

Arrival times and processing times required are given in the same time units (e.g. milliseconds).

Assume there is an overhead of 0.1 time units involved each time the scheduler changes the job
being run. For each of the following conditions, supply integral values for the processing times T1,
T2, ..., TS5, so that the condition is satisfied for the above jobstream:

(a) [3 points] First<ome first-served scheduling results in at least twice as large a mean response
ratio as shortest job next scheduling.

(b) [3 points] Shortest job next scheduling causes the response time of two jobs to be at least 10
time-units longer than they would be under first-come first-served scheduling.

(¢) [2 points] Non-preemptive priority scheduling is equivalent to shortest job next scheduling for
this jobstream.

(d) [2 points] Preemptive priority scheduling has an overhead of at least 0.3 time units more than
non-preemptive priority scheduling.

Note: Use your intuition about the scheduling methods involved to arrive at suitable processing
times; it should not be necessary to do detailed calculations.

210

THEORYOFCOMPUTATION

Problem 1.

(a) The following assertions assume that the domain of all variables is the natural numbers; i.e. relations
such as 0 <« are implicit.

£ :Vx.k < kDal]=0

£3:V¥e.6 < N Dalg]=0

£y :Ve. 6 < N Dalk] = (# of pairs (i’, j°) such that foo(s,7")=xr At < i)

& :Vx.x < N Dafk] = (# of pairs (¢,57) such that foo(i’j’) = k A(¥ <iV({i'=tA5 <j))
& :Vx.xc < N Dalx] = (# of pairs (i, j°) such that foo(i',5") =k At < i)

£ : V. < N Dalk] = (# of pairs (¢,5") such that foo(i, ') = «)

g : (&7 assertion) AVk.x < k Da[x]< 1

done : (¢7 assertion) A ((k > N A Vx.a[e]|< 1) v (k< N A alk] > 1 AVe.& <k Da[x]< 1) .

The assertion at £g is not absolutely necessary since the assertion at ¢4 can still be proved without it. The
expression (i’ < 1V (= ¢t A5’ <j)) at &5 is a bit tricky. Another important point is that the assertion at
£; needs to be kept as part of the later assertions, since the partial correctness of the program is a statement
about foo, not about the array a.

(b) We need to show that the loops at &s,£4,%s, and £ all terminate. The first and the last are easy, since
they can be shown to execute at most N times. The &5 loop terminates because j is incremented on each
pass through the loop, while iremains constant, so by induction we can show that eventually foo(i, j) > N.
Similarly the sequence foo(0, 0), foo(1,0), foo(2,0), ... is strictly increasing, so eventually foo(i, 0) > N for
some i .

Problem 2. If both A and B are regular, then so is A (O B. To prove this, let M4 =(Q, %, 8, qo, F') be
a DFA accepting A, where @ ={qo,...,qm} is its set of states, F C @ is the set of final states, and
6 :@x EL—@ is the transition function; and let Mg = (R, L,n,7, G) similarly be a DFA accepting
B. We can construct a non-deterministic finite automaton M ,cp which accepts A © B as follows: let
Maos = (@ X R,Z,7,(q0,70), F X G), where the transition function 7 : @ X R =22 is defined by

(gi, ;). @) = {(6(gi, @), 75), (9, n(75,a))} fora€ L.

M.z B works by simulating a step from either M,y or Mp on each transition, and “remembering” the state
of the other machine while doing so.

To see that this accepts A (OB, first let w be a string accepted by Maop. If we examine the transi-
tions of Macp as it accepts w, let ay,.. ., a, be the input symbols which cause transitions of the form
(qi,7;) — (6(g:, ak),r;), and let by, ..., b, be the input symbols which cause transitions of the form (g;,7;)—
(giyn(rj,ax)), then it is clear that @,...a, €A and b, ... b€ B. By appropriately adding null strings, we
can convert @y ...a,t0Zy...Zoand by ... b toy; ...y SO that w =219y ... ZrYn-

Conversely, if W = z1y1...2Z,yn €A O B, then M, accepts z; . . . X,, and Mp accepts ¥1...Yn, and the
sequences of transitions taken by these two machines can be used to construct a sequence of transitions of
A4y p which accepts w.

Problem 3. The basic idea is that an autonomous pushdown machine can be made to “count” in binary on
its stack, and terminate when the count reaches a certain point. As an example, take k= 4, and let M, be

the machine corresponding to the following diagram:

Start

Y
[Push 0 |

392]

I Pop and test }——-Q—:,:—’(Push 1

1
S4

stop

It is clear that M4 runs for four steps and then halts with the stack restored to its initial condition. We can
similarly define Ms and Ms. Now, given M;, we can build M;43 as follows:

Start

X

l Push 0 I

32

M;

Sk+4+1 ¢

Pop and test I——O—skv;—{ Push 1
+

1

Sk43

stop

This machine runs for 4 + 2N; steps, where N; is the numbei of steps that M; runs. Thus it is clear (and
can be shown by induction) that N; > 2*/* for i > 4. Therefore, we can let B = 2'/%,

212

- - THEORY OF COMPUTATION

- Problem 1. {20 points]. Let foo(s, j) be a function whose arguments and value are always non-
negative integers, and such that for all 7 and j,

foo(t, j) < foo(i + 1, 7)
and foo(z, j) < foo(%, j +1).

The following program is intended to find the smallest k in the range 0 < k < N for which
foo(i, j) = foo(s’,) = k for two different pairs (i, j) and (’, j).

£L1: k: =0

£y alk]:=0;
ki=k +1;
if k < N then go to £3;

£3: 1:=0;

£y : if foo(i, 0) > N then go to £7;
3:°0;

L5 : if foo(i, j) > N then go to £g;
a(foo(z, 7)] := alfoo(s, j)] + 1;

=]+ 1

go to £s;
lg: t1:=1+1;

g0 to £4;
Lr: k:i=0;

£g: if k£ > N then go to done;
if alk] > 1 then go to done;
k=k +1;
2o to £g;
done : ifk > N then print(* LOSE")
else print(*"The smallest k is ", k);

(@) [15 points] What assertions should be attached to what labels in order that its partial cor-
rectness can be proved by the method of inductive assertions? (Give just the assertions, not the
proof.)

(b) [5 points] What is involved in proving its termination? (Give an informal description; the
proof itself is not required.)

213

Problem 2. [20 points]. Let A and B be languages over an alphabet X, and define the “shuffle” of
A and B to be
AOB ={wE€Z*|w = T1Y1...Ta¥n}s

where each z, and each y; is either a member of ¥ or is the empty string, z1...z, € A, and
Y1...-Yn € B. That is, A (O B is the set of strings that we can get by “shuffling” a string from A
into a string from B. If both A and B are regular sets, is A O B regular? Give a proof of your
answer.

Problem 3. [20 points]. Consider the set S of autonomous, terminating, pushdown store machines.
“Autonomous” means they have no input. “Terminating” means reaching a designated “terminal”
control state. “Pushdown store” means that the only memory, except for a finite number of control
states, is a single pushdown stack, initially empty, over a two-character alphabet, say O and 1.

Show that S contains an infinite sequence of machines {M;|i=k, k + 1,...} for some integer
k, where each M; has control states and runs for at least B* steps before terminating, for some
constant B > 1, which is independent of ¢. That is, show that S contains machines whose running
time is exponential in the number of control states.

214

|

Magic Number

Spr i ng 1980-81 Computer Science Comprehensive Exam

Written Exam g
Saturday, May 9, 1981 (9:00 12r00; 1:30 - L:30)

READ THIS FIRST

9.

The exam contains questions drawn from six areas of computer science.
The total possible score is 360 points, 60 in each area. Hint:
6 hours equal 360 minutes, this may help you plan your time.

Please do your best to relax during the lunch break. You may not
consult any references or colleagues or write drafts of answers
during thi s period. Just relax.

Be sure that you have all 16 pages of the Exam. Your answers are to be
written in blue bobks. Use a separate blue book for each of the six subject
areas. Write your exam number in the upper right-hand corner of every page
on which you have any solution to any problem. Please write legibly, with

a pen or sharp soft pencil.

Strategic considerations: (a) To pass this exam at the Ph.D. level, you
should not leave any of the six subject areas completely blank. as there

wi 11 be a minimum competence requirement of roughly 20 points in each area.
The total scores of everybody who passes this minimum requirement will then
be used to determine whether or not the written exam as a whole is passed.
You should plan your exam-taking strategy accordingly. (b) To pass this
exam at the Masters” or CS Minor level, simply try to maximize your_total
score.

Show your work, as partia-1 credit will be given for incomplete answers.

This exam is open book: You may use whatever books and notes you have
already brought with you and any library books provided by the committee.

Sign the honor code statement below and turn in this page with your 6 blue
books. This page will be separated from your blue books prior to the grading
process.

The committee suggests that you read over the entire exam quickly once, in
order to help in allocating your time. We also suggest that you refrain
from panic. GOOD LUCK.

A committee member will be available to answer questions.

in recognition of and in the spirit of the Honor Code, | certify that I have

neither received nor given unpermitted aid on this exam.

Signed

