
August 1983 | Report No. STAN-CS-83-977

| Word Hy-phen-a-tion by Com-put-er

. by

| Franklin Mark Liang

Depariment of Computer Science . |

gt Stanford University
- Stanford,CA 94305

J | 3 - 3 21 Eri E | :

ae ~ WORD HY-PHEN-A-TION BY COM-PUT-ER

; | | | Franklin Mark Liang
Department of Computer Science

i il Stanford University
Stanford, California 94305 :

‘ | Abstract |

| This thesis describes research leading to an improved word hyphenation algo-
rithm for the TEX82 typesetting system. Hyphenation is viewed primarily as a data

compression problem, where we are given a dictionary of words with allowable divi-

sion points, and try to devise methods that take advantage of the large amount of

redundancy present. : ;

The new hyphenation algorithm is based on the idea of hyphenating and in-

hibiting patterns. These are simply strings of letters that, when they match in a

| word, give us information about hyphcnation at some point in the pattern. For

example, ‘-tion’ and ‘c-c’ are good hyphenating patterns. An important feature of

this method is that a suitable set of patterns can be extracted automatical’y; from

the dictionary.

In order to represent the set ofpatterns in a compact form that is also reasonably

efficient for searching, the author has developed a new data structure called a packed

trie. This data structure allows the very fast search times characteristic of indexed
tries, but in many cases it entirely eliminates the wasted space for null links usually
present in such tries. We demonstrate the versatility and practical advantages of |

this data structure by using a variant of it as the critical component of the program

that generates the patterns from the dictionary.

The resulting hyphenation algorithm uses about 4500 patterns that compile

into a packed trie occupying 25K bytes of storage. These patterns find 89% of the

hyphens in a pocket dictionary word list, with essentially no error. By comparison,

the uncompressed dictionary occupies over 500K bytes. |

This research was supported in part by the National Science Foundation under grants IST-82-

01926 and MSC-83-00984, and by the System Development Foundation. ‘TEX’ is a trademark

. of the American Mathematical Society.

| WORD HY-PHEN-A-TION |

EL | ~~ BY COM-PUT-ER |

| 3 A DISSERTATION |

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
| AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

LV PARTIAL FULFILLMENT OF THE REQUIREMENTS

| | FOR THE DEGREE OF a
. DOCTOR OF PHILOSOPHY

by

| Franklin Mark Liang |

| June 19083

: ©Copyright 1983 |

oT Franklin Mark Liang

yr a a Acknowledgments

I am greatly indebted to my adviser, Donald Knuth, for creating the research

- environment that made this work possible. When I began work on the TEX project

as a summer job, I would not have predicted that computer typesetting would
become such an active area of computer science research. Prof. Knuth's foresight

was to recognize that there were a number of fascinating problems in the field

waiting to be explored, and his pioneering efforts have stimulated many others to

think about these problems.
I am also grateful to the Stanford Computer Science Department for providing

the facilities and the community that have formed the major part of my life for the

past several years,

I thank my readers, Luis Trabb Pardo and John Gill, as well as Leo Guibas

who served on my orals committee on short notice.

In addition, thanks to David Fuchs and Tom Pressburger for helpful advice

and encouragement.

Finally, this thesis is dedicated to my parents, for whom the experience of

pursuing a graduate degree has been perhaps even more traumatic than it was for

myself.

SPR ity ~~ Table of contents |

Introduction . + + vv vv bh hea eee aaa eas 1
Examples00000 ives 2
TeX and hyphenation «ov vv vo veo 3
Time magazine algorithm . , + «+ «+ + + «+ os ¢ «+ +s «+. 4
Patterns . . « ©. & 4 +. t +s os so 5 so 8s 8 % 8 = 8 2 se ss se we see b

; Overview of thesis EL EEE EE ETE ETT

The dictionary problem .. + 2 + + vv +3 # 5 3 s s ss vw was ve 8
DAXBITUCIULEn iv 5. 0 4 "s-vF0 ww 48 S 5 3 sb 4m ww wwe I

Superimposed coding + « «vt 0 0 0 ees ee eee. 10

Tries a win mi te Ia hrs mci re ar ah ne mmvl role: Liv Penspmees deiing wily ole maiil

. Packed tried uw vv « s sv sv ass sss saa mmmwne os sls
Sul Compression . « + + sw vs. 3 s ss sv sw wwwwmws ls
Derived forma “wu anf vm 2s 5 TEA mS SEE BE Ge eS

Spelling checkers L] L] ¥ » L] L] L] 1] [] L] Ll L] Ll L Ll Ld L] LJ Ll L] L L 2 L L] 19

Related work « o « «vo vo wins # 3 v 5 #000 www wens ol

Hyphenation L] L] L] ; L] L] LE] Ll L] L] Ld L] L] L] L] 1] L] J L 1] L] []] [] []] L] L] L] 23
Finite-state machines withoutput + +. + + ++ +. . 23

| Minimizationwith don’tecares +. cv ov ov. . 24

Patternmatchingcv. ..28

Pattern generation . . + o o vs os 5.6 os 6 00 sw ov ss s+ 54 629

| Bemristies .. i’: ous o nn is sd sss masmes sass siado

Collecting pattern statistics + « « + vv + vv vo os «+ «31
Dynamic packed tries . «cu 5 « « oo vo vo 0.0 3 5 5 « + +5 wis 53

Fxperimental results “. «vo 6 3 ¢ vo wo ww a 5 os ow v & via» wd

BXamples . o. i iv dv ns ss venue wb own Few eel

Historyand ConcluBlon . ov .ov vs ¢ ¢ ds a0 0s 0 8 5s 2 so www in +30

| APendi: ove 3 sd wn Amma Es EE mm men od

The PATGEN PrOEIam . + + + + + + « « + 2 o so os oo + + oo + + 45

~ Listofpatterns ,00000

" METOTONCES + ois ie oes vas sw mews a wean www ue BD |

"Chapter? ~~ :

| Introduction

~ The work described in this thesis was inspired by the need for a word hyphen-

ation routine as part of Don Knuth’s TEX typesetting system [1]. This system was
initially designed in order to typeset Prof. Knuth's seven-volume series of books,

The Art of Computer Programming, when he became dissatisfied with the qual-

ity of computer typesetting done by his publisher. Since Prof. Knuth's books were

to be a definitive treatise on computer science, he could not bear to see his schol-
arly work presented in an inferior manner, when the degradation was entirely due

to the fact that the material had been typeset by a computer!

Since then, TEX (also known as Tau Epsilon Chi, a system for technical text)
has gained wide popularity, and it is being adopted by the American Mathematical

Society, the world’s largest publisher of mathematical literature, for use in its jour-

nals. TEX is distinctive among other systems for word processing/document prepa-
ration in its emphasis on the highest quality output, especially for technical mate-

rial,

One necessary component of the system is a computer-based algorithm for hy-

phenating English words. This is part of the paragraph justification routine, and it

| is intended to eliminate the need for the user to specify word division points explic-

itly when they are necessary for good paragraph layout. Hyphenation occurs rela-

tively infrequently in most book-format printing, but it becomes rather critical in

narrow-column formats such as newspaper printing. Insufficient attention paid to

this aspect of layout results in Jarge expanses of unsightly white space, or (even

worse) in words split at inappropriate points, e.g. new-spaper.

Hyphenation algorithms for existing typesetting systems are usually either rule-

based or dictionary-based. Rule-based algorithms rely on a set of division rules such

as given for English in the preface of Webster’s Unabridged Dictionary [2]. These in-
_ clude recognition of common prefixes and sullixes, splitting between double conso-

nants, and other more specialized rules. Some of the “rules” are not particularly

| 2 INTRODUCTION |

amenable to computer implementation;.e.g. “split between the elements of a com-

~~ pound word". Rule-based schemes are inevitably subject to error, and they rarely

. cover all possible cases. In addition, the task of finding a suitable set of rules in the

first place can be a difficult and lengthy project. |

- Dictionary-based routines simply store an entire word list along with the allow-

| able division points. The obvious disadvantage of this method is the excessive stor-

age required, as well as the slowing down of the justification process when the hy-

phenation routine needs to access a part of the dictionary on secondary store.

Examples

To demonstrate the importance of hyphenation, consider Figure 1, which shows

a paragraph set in three different ways by TEX. The frst example uses TEX's nor-

mal paragraph justification parameters, but with the hyplenation routine turned

off. Because the line width in this example is rather narrow, TEX is unable to find

an acceptable way of justifying the paragraph, resulting in the phenomenon known
as an “overfull box”.

One way 0 fix this problem is to increase the “stretchability” of the spaces be-

tween words, as shown in the second example. (TEX users: This was done by in-

creasing the stretch component of spaceskip to .5em.) The right margin is now

straight, as desired, but the overall spacing is somewhat loose.

In the third example, the hyphenation routine is turned on, and everything is

~ beantiful.

In olden times when wishin In olden times when wishing In olden times when wish-
Lill helped one, there lived a kin still helped one, there lived a ing still helped one, there lived
hose daughters were all beautihjl, king whose daughters were all a king whose daughters were all
ut the youngest was so beautilu beautiful, but the youngest was beautiful, but the youngest was
hat the sun itself, which has sce go beautiful that the sun itsell, 80 beautiful that the sun itself,
o much, was astonished whenev which has seen so much, was which has seen s0 much, was as-
t shone in her face. Close b astonished whenever it shone in tonished whenever it shone in her

he king's castle lay a great dar her luce. Close by the king's face. Close by Lhe king's castle
orest, and under an old lime-tre castle lay a great dark f[crest, lay a great dark forest, and un-
n the forest wasa well, and whe and under £1 old line tree in der an old lime-tree in Lhe forest
he day wns very warm, the king’ the forest was a well, and when was a well, and when the day was
hild went out into the forest an the day was very warm, the very warm, the king's child went

at down by the side of the con king's child went out into the oul into the forest and sat down
ountain, and when she was bore forest and sat down by the side by the side of the cool fountain,
he Look a golden ball, and thre of the cool fountain, and when and when she was bored she took
t up on high and eaught it, an she was bored she took a golden i golden ball, and threw it up on
his hall was her favorite plaything. ball, and Lhrew it up on high high and eaught it, and this ball

: and caught it, and Lhis ball was was her favorite plaything.
her favorite plaything.

Figure 1. A typical paragraph with and without hyphenation. |

INTRODUCTION | 3

= blag sel-fadjoint as-so-ciate as-so-ci-ate |
| ~ Pit-tsburgh prog-ress pro-gress

| clearin-ghouse rec-ord ~ re-cord
fun-draising a-rith me-tic ar-ith-met-ic

| | ho-meowners eve-ning even-ing aE

| playw-right pe-ri-od-ic ~~ per-i-o-dic

algori-thm |

wvalkth-rough in-de-pen-dent in-de-yend-ent

' | Re-agan tri-bune trib-une

| Figure 2. Difficult hyphenationa.

However, life is not always so simple. Figure 2 shows that hyphenation can be

difficult, The first column shows erroneous hyphenations made by various typeset-

ting systems (which shall remain nameless). The next group of cxamples are words
that hyphenate differently depending on how they are used. This happens most

commonly with words that can serve as both nouns and verbs. The last two ex-

amples show that different dictionaries do not always agree on hyphenaon (in this
case Webster's vs. American Heritage).

TEX and hyphenation

The original TEX hyphenation algorithm was designed by Prof. Knuth and

| the author in the summer of 1977. It is essentially a rule-based algorithm, with
three main types of rules: (1) suffix removal, (2) prefix removal, and (3) vowel-
consonant-consonant-vowel (vcev) breaking. The latter rule states that when the
pattern ‘vowel-consonant-consonant-vowel’ appears in a word, we can in most cases

| split between the consonants, There are also many special case rules; for example,
“break vowel-q” or “break after ck”. Finally a small exception dictionary (about

300 words) is used to handle particularly objectionable errors made by the above

rules, and to hyphenate certain common words (e.g. pro-gram) that are not split by

the rules. The complete algorithm is described in Appendix H of the old TEX man-
ual,

In practice, the above algorithm has served quite well. Although it does not

find all possible division points in a word, it very rarely makes an error. Tests on a

pocket dictionary word list indicate that about 40% of the allowable hyphen points

are found, with 1% error (relative to the total number of hyphen points). The al-
~ gorithm requires 4K 36-bit words of code, including the exception dictionary.

4 INTRODUCTION |

ve ~The goal of the present research was to develop a better hyphenation algo-

| rithm. By “better” we mean finding more hyphens, with little or no error, and us-
ing as little additional space as possible. Recall that one way to perform hyphen-

_ ation is to simply store the entire dictionary. Thus we can view our task as a data

compression problem. Since there is a good deal of redundancy in English, we can

hope for substantial improvement over the straightforward representation.

Another goal was to automate the design of the algorithm as much as pos-

sible. The original TEX algorithm was developed mostly by hand, with a good

deal of trial and error. Extending such a rule-based scheme to find the remain-
ing hyphens seems very difficult. Furthermore such an effort must be repeated for

each new language. The former approach can be a problem even for English, be-

cause pronunciation (and thus hyphenation) tends to change over time, and be-
cause different types of publication may call for different sets of admissible hy-

phens, ;

Time magazine algorithm |
A number of approaches were considered, including methods that have been dis-

cussed in the literature or implemented in existing typesetting systems. One of the

methods studied was the so-called Time magazine algorithm, which is table-based

rather than rule-based.

The idea is to look at four letters surrounding each possible 'reakpoint, namely

two letters preceding and two letters following the given point. However we do not
want to store a table of 26% = 456,976 entries representing all possible four-letter

combinations. (In practice only about 15% of these four-letter combinations actu-
ally occur in English words, but it is not immediately obvious how to take advan-

tage of this.)
| Instead, the method uses three tables of size 262, corresponding to the two let-

ters preceding, surrounding, and following a potential hyphen point. That is, if

the letter pattern wx-yz occurs in a word, we look up three values correspond-

ing to the letter pairs wx, xy, and yz, and use these values to determine if we can

split the pattern. | |
What should the three tables contain? In the Tiiae algorithm the table values

were the probabilities that a hyphen could occur after, between, or before two given
© letters, respectively. The probability that the pattern wx-yz can be split is then es-

timated as the product of these three values (as if the probabilities were indepen-

“dent, which they aren’t). Finally the estimated value is compared against a thresh-
. old to determine hyphenation. Figure 3 shows an example of hyphenation proba-

bilities computed by this method. |

INTRODUCTION b

SUPERCALIFRAGILISTICEXPIALIDOCIOUS

Figure 8. Hyphenation probabilities. |

The advantage of this table-based approach is that the tables can be gen-

erated automatically from the dictionary. However, some experiments with the

method yiclded discouraging results. One estimate is 40% of the hyphens found,
with 8% error. Thus a large exception dictionary would be required for good per- :
formance.

The reason for the limited performance of the above scheme is that just four let-

ters of context surrounding the potential break point are not enough in many cases.

In an extreme example, we might have to look as many as 10 letters ahead in or-

der to determine hyphenation, e.g. dem-on-stra-tion vs. de-mon-stra-tive.

So a more powerful method is needed. o

Patterns

A good deal of experimentation led the author to a more powerful method

based on the idea of hyphenation patterns. These are simply strings of letters that,

when they match in a word, will tell us how to hyphenate at some point in the pat-

tern. For example, the pattern ‘tion’ might tell us that we can hyphenate be-

fore the ‘t’. Or when the pattern ‘cc’ appears in a word, we can usually hy-

phenate between the ¢’s. Here are some more examples of good hyphenating pat-
terns:

.in-d .in-8 .in-t .un-d b-s -cia con-s con-t e-ly er-l er-m

ex- -ful it-t i-ty -less l-ly -ment n-co -ness n-f n-1 n-ai

n-v om-m -sjon s-ly s-nes ti-ca x-p |

(The character ‘.' matches the beginning or end of a word.) -

6 INTRODUCTION

Patterns have many advantages. They arc a general form of “hyphenation rule”

that can include prefix, suffix, and other rules as special cases. Patterns can even de-

scribe an exception dictionary, namely by using entire words as patterns. (Actu-
ally, patterns are often more concise than an exception dictionary because a sin-

gle pattern can handle several variant forms of a word; e.g. pro-gram, pro-grams,

and pro-grammed.)
More importantly, the pattern matching approach has proven very effective. An

appropriate set of patterns captures very concisely the information needed to per-
form hyphenation. Yet the pattern rules are of simple enough form that they can

be generated automatically from the dictionary.
When looking for good hyphenating patterns, we soon discover that almost all

. of them have some exceptions. Although -tion is a very “safe” pattern, it fails on
the word cat-ion. Most other cases are less clear-cut; for example, the common pat-

tern n-t can be hyphenated about J percent of the time. It definitely seems worth-

while to use such patterns, provided that we can deal with the exceptious in some
manner.

After choosivLg a set of hyphenating patterns, we may end up with thousands |
of exceptions. Thee could be listed in an exception dictionary, but we soon no-

tice there are many similarities among the exceptions. For exainple, in the orig-

inal TEX algorithm we found that the vowel-consonant-consonant-vowel rule re-

sulted in hundreds «f errors of the form X-Yer or X-Yers, for certain consonant
pairsXY, so we put in a new rule to prevent .those errors.

Thus, thers may be “rules” that can handle large classes of exceptions. To take

advar.iage of this, patterns come to the rescue again; but this time they are inhibit-*

irg patterns, because they show where hyphens should not be placed. Some good ex-

amples of inhibiting patterns are: b=1y (don't break between b and 1y), be=, =cing,

io=n, i=tin, =18, nn=, ns=t, n=ted, =pt, ti=al, =tly, =ts, and tt=.

As it turns out, this approach is worth pursuing further. That is, after ap-

plving hypbenating and inhibiting patterns as discussed above, we might have an-

other set of hyphenaiing patterns, then another set of inhibiting patterns, and

go on. We can think of cach level of patterns as being “exceptions to the ex-

ceptions” of the previous level. The current TEX82 algorithm uses five alternat-

ing levels of hyphenating and inhibiting patterns. The reasons for this will be ex-

plained in Chapter 4.

The idea of patterns is the basis of the new TEX hyphcnation algorithm, and

it was the inspiration for much of the intermediate investigation, that will be de-
scribed. | |

| INTRODUCTION | 1

Overview of thesis

In developing the pattern scheme, two main questions arose: (1) How can we
represent the set of hyphenation patterns in a compact form that is also reason-

ably elficicnt for searching? (2) Given a hyphenated word list, how can we gener-
ate a suitable set of patterns?

To solve these problems, the author has developed a new data structure called

a packed trie. This data structure aliows the very fast search times characteris-

tic of indexed tries, but in many cases it entirely eliminates the wasted space for

null links usually present in such tries.

We will demonstrate the versatility and practical advantages of this data struc-

ture "y using it not only to represent the hyphenation patterns in the final algo-

rithm, but also 43 the critical component of the program that generates the pat-
terns from the dictionary. Packed tries have many other potential applications, in-

cluding identifier lookup, spelling checking, and lexicographic sorting. |

Chapter 2 considers the simpler problem of recognizing, rather than hyphenat-

ing, a set of words such as a dictionary, and uses this problem to motivate and ex-

plain the advantages of the packed trie data structure. We also point out the close re-

lationship between tries and finite-state machines.

Chapter 3 discusses ways of applying these ideas to hyphenation. After con-

sidering various approaches, including minimization with don’t cares, we return to

the idca of patterns. -

Chapter 4 discusses the heuristic method used to select patterns, introduces dy-

namic packed tries, and describes some experiments with the pattern generation pro-«

gram.

Chapter 5 gives a brief history, and mentions ideas for future research,

Finally, the appendix contains the WEB [3] listing of the portable pattern gen-
eration program PATGEN, as well as the set of patterns currently used by TX82.

Note: The present chapter has been typeset by giving unusual instructions to

TEX so that it hyphenates words much more often than usual; therefore the reader
can sce numerous examples of word breaks that were discovered by the new algo-

rithm.

; J

Chapter 2 de |

The dictionary problem

In this chapter we consider the problem of recognizing a set of words over an

alphabet. To be more precise, an alphabet is a set of characters or symbols, for

example the lowers A through Z, or the ASCII character set. A word is a sequence

of characters from the alphabet. Given a set of words, our problem is to design a

data structure that will allow us to determine efficiently whether or not some word

is in the set.

In particular, we will use spelling checking as an example throughout this

chapter. This is a topic of interest in its own right, but we discuss it here because |
the pattern matching techniques we propose will turn out to be very useful in our
hyphenation algorithm.

Our problem is a special case of the general set recognition problem, because the

elements of our set have the additional structure of being variable-length sequences

of symbols from a finite alphabet. This naturally suggests methods based on a

character-by-character examination of the key, rather than methods that operate
on the entire key at once. Also, the redundancy present in natural languages such as

| English suggests additional opportunities for compression of the set representation.
| We will be especially interested in space minimization. Most data structures for

set 1epresentation, including the one we propose, are reasonably fast for searching.

That is, a search for a key doesn’t take much more time than is needed to examine

the key itself. However, most of these algorithms assume that everything is “in

core”, that is, in the primary memory of the computer. In many situations, such

as our spelling checking example, this is not [easible. Since secondary memory

access times are typically much longer, it is worthwhile to try compressing the data

structure as much as possible.

In addition to determining whether a given word is in the set, there are other
operations we might wish to perform on the set representation. The most basic are

insertion and deletion of words from the set. More complicated operations include

performing the union of two scts, partitioning a set according to some criterion,

8

| THE DICTIONARY PROBLEM 0

| determining which of several sets an element is a member of, or operations based

© on an ordering or other auxiliary information associated with the keys in the set.
For the data structures we consider, we will pay some attention to methods for

~ insertion and deletion, but we shall not discuss the more complicated operations.

We first survey some known methods for set representation, and then propose

a new data structure called a “packed trie”.

Data structures

Methods for set representation include the following: sequential lists, sorted

lists, binary search trees, balanced trees, hashing, superimposed coding, bit vec-

tors, and digital search trees (also known as tries). Good discussions of these data

structures can be found in a number of texts, including Knuth [4], Standish [5], and
AHU [6]. Below we make a few remarks about each of these representations.

A sequential list is the most straightforward representation. It requires both

space and search time proportional to the number of characters in the dictionary.

A sorted list assumes an ordering on the keys, such as alphabetical order.

Binary search allows the search time to be reduced to the logarithm of the size of

the dictionary, but space is not reduced. BS
A binary search tree also allows search in logarithmic time. This can be thought

of as a more flexible version of a sorted list that can be optimized in various ways.

For example if the probabilities of searching for different keys in the tree are known,

then the tree can be adapted to improve the expected search time. Search trees

can also handle insertions and deletions easily, although an unfavorable sequence of

such operations may degrade the performance of the tree.

Balanced tree schemes (including AVL trees, 2-3 trees, and B-trees) correct

the above-mentioned problem, so that insertions, deletions, and searches can all

be performed in logarithmic time in the worst case. Variants of trees have other

nice properties, too; they allow merging and splitting of sets, and priority queue

operations. B-trees are well-suited to large applications, because they are designed

to minimize the number of secondary memory accesses required to perform a search.

However, space utilization is not improved by any of these tree schemes, and in fact

it is usually increased because of the need for extra pointers.

Hashing is an essentially different approach to the problem. Here a suitable

randomizing function is used to compute the location at which a key is stored.

~ Hashing methods are very fast on the average, although the worst case is linear;

fortunately this worst case almost never happens,

An interesting variant of hashing, called superimposed coding, was proposed

~~ by Bloom [7] (see also [4, §6.5], [8]), and at last provides for reduction in space,

10 TIE DICTIONARY PROBLEM |

~~ although at the expense of allowing some error. Since this method is perhaps less

. well known we give a description of it here.

Superimposed coding |

| The idea is as follows. We use a single large bit array, initialized to seros, plus

a suitable set of d different hash functions. To represent a word, we use the hash

functions to compute d bit positions in the large array of bits, and set these bits to
ones. We do this for each word in the set. Note that some bits may be set by more

~ than one word.

Fo test if a word is in the set, we compute the d bit positions asso.iated with

| the word as above, and check to see if they are all ones in the array. If any of
them are zero, the word cannot be in the set, so we reject it. Otherwise if all of

the bits are ones, we accept the word. However, some words not in the set might

be erroneously accepted, if they happen to hash into bits that are all “covered” by

words in the set.

It can be shown [7] that the above scheme makes the best use of space when the
density of bits in the array, after all the words have been inserted, is approximately
one-half. In this case the probability that a word not in the set is erroneously

accepted is 279, For example if each word is hashed into 4 bit positions, the error

probability is 1/16. The required size of the bit array is approximately ndlge,

where n is the number of items in the set, and lge =~ 1.44,

In fact Bloom specifically discusses automatic hyphenation as an application

for his scheme! The scenario is as follows. Suppose we have a relatively compact

routine for hyphenation that works correctly for-90 percent of the words in a large

dictionary, but it is in error or fails to hyphenate the other 10 percent. We would

| then like some way to test if a word belongs to the 10 percent, but we do not have

room to store all of these words in main memory. If we instead use the superimposed

coding scheme to test for these words, the space required can be much reduced. For

example with d = 4 we only need about 6 bits per werd. The penalty is that some

words will be erroncously identified as being in the 10 percent. However, this is

acceptable because usually the test word will be rejected and we can then be sure

that it is not one of the exceptions. (Either it is in the other 90 percent or it is not

in the dictionary at all.) In the comparatively rare case that the word is accepted,
we can go to secondary store, to check explicitly if the word is one of the exceptions.

The above technique is actually used in some commercial hyphenation routines.

For now, however, TitX will not have an external dictionary. Instead we will require

. that our hyphenation routine be essentially free of error (although it may not achieve

complete hyphenation).

THE DICTIONARY PROBLEM 11

An extreme case of superimposed coding should also be mentioned, namely the
bit-vector representation of a set. (Imagine that each word is associated with a single

bit position, and one bit is allocated for each possible word.) This representation is
“often very convenient, because it allows set intersection and union to be performed

by simple logical operations. But it also requires space proportional to the size of

| the universe of the set, which is impractical for words longer than three or four
characters,

Tries

The final class of data structures we will consider are the digital search trees,
first described by de la Briandais [0] and Fredkin [10]. Fredkin also introduced the
term “trie” for this class of trees. (The term was derived from the word retrieval,

although it is now pronounced “try”.)
Tries are distinct from the other data structures discussed so far because they

explicitly assume that the keys are a sequence of values over some (finite) alphabet,
rather than a single indivisible entity. Thus tries are particularly well-suited for

handling variable-length keys. Also, when appropriately implemented, tries can

provide compression of the set represented, because common prefixes of words are

combined together; words with the same prefix follow the same search path in the
trie.

A trie can be thought of as an m-ary tree, where m is the number of characters

in the alphabet. A search is performed by examining the key one character at a

time and using an m-way branch to follow the appropriate path in the trie, starting

at the root. , |

We will use the set of 31 most common English words, shown below, to illustrate |

different ways of implementing a trie.

A FOR IN THE

AND FROM IS THIS
ARE HAD IT TO
AS HAVE NOT WAS

AT HE OF WHICH
BE HER ON WITH

BUT HIS OR YOU
BY I THAT

Figure J. The 31 most common English words.

12 THE DICTIONARY PROBLEM

| O

Ry

| 5) &
3) @ |
0

© ©

0) |
ORomo
ORO

D ©

: Oo |

| QQ B® &

Nn @
ORO

sr 0 © |

RB) (T |
(H

OO
| O Eg) @

A) @

5 & ©

OOo
OWMOWMO

| ©» ® ©

Figure 5, Linked trie for the 51 most common English words. |

is THE DICTIONARY PROBLEM oo 13

| ~ Tigure 5 shows a linked trie representing this set of words. In a linked trie,
the m-way branch is performed using a sequential series of comparisons. Thus in

Figure 5 each node represents a yes-no test against a particular character. There

‘are two link fields indicating the next node to take depending on the ouicome of

the test. On a ‘yes’ answer, we also move to the next character of the key. The

underlined characters are terminal nodes, indicated by an extra bit in the node. If

the word ends when we are at a terminal node, then the word is in the set.

Note that we do not have to actually store the keys in the trie, because each

nede implicitly represents a prefix of a word, namely the sequence of characters
leading to that node.

A linked trie is somewhat slow because of the sequential testing required for

each character of the key. The number of comparisons per character can be as large

as m, the size of the alphabet. In addition, the two link fields per node are somewhat

g wasteful of space. (Under certain circumstances, it is possible to eliminate one of

these two links. We will explain this later.)

In an indezed trie, the m-way branch is performed using an array of size m.

The elements of the array are pointers indicating the next family of the trie to

go to when the given character is scanned, where a “family” corresponds to the

group of nodes in a linked trie for testing a particular character of the key. When

performing a search in an indexed trie, the appropriate pointer can be accessed by

simply indexing from the base of the array. Thus search will be quite fast.

But indexed tries typically waste a lot of space, because most of the arrays have

only a few “valid” pointers (for words in the trie), with the rest of the links being
null. This is especially common near the bottom of the trie. Figure 6 shows an
indexed trie for the set of 31 common words. This representation requires 26x 32 =

832 array locations, compared to 59 nodes for the linked trie.

Various methods have been proposed to remedy the disadvantages of linked

and indexed tries. Trabb Pardo [11] describes and analyzes the space requirements
of some simple variants of binary tries. Knuth [4, ex. 6.3-20] analyzes a composite
method where an indexed trie is used for the first few levels of the trie, switching to

sequential search when only a few keys remain in a subtrie. Mchlhorn [12] suggests
using a Linary search tree to represent each family of a trie. This requires storage

proportional to the number of “valid” links, as in a linked trie, but allows each

character of the key to be processed in at most logm comparisons. Maly [13] has
proposed a “compressed trie” that uses an implicit representation to eliminate links

entirely. Each level of the trie is represented by a bit array, where the bits indicate

whether or not some word in the sel passes through the node corresponding to

14 THE DICTIONARY PROBLEM

ABCDEFGRIJKLMNOPQRSTUYVVYXY?Z

ELL pe Lhe
cf TUT TPL PT TTT ds [| Jajofof JFF]
AENEAN EEEEEEEEEEE EEE
JEREEEEEEEEEEEEEENEEEEEEE
s(| [TJof [TTL TT TPIT P11 f (er 11] fof]
JEEEEEEEEEEEEEEEEEENIEEEEEN
SENEEEEEEEEEEENIEEDOEEENEEEE

| sl | [IIT { rllriririleli fl il]
JEREEEEEEEEEEENUEEEEEEEEEEE

EEAEEEEEEEEEEEEEEEEEEEEEEEEN
1002) | | pa) | | Jes] | [LLL PPLE FEE
22 fleTITLEbp jsp]
sl | | { (ott LL t 44 Ltt.ty tii? ll]

cowl TPITrr rrr ldel PPT TEFL
6 JLTPPTrl il irdel PIil 1
eo (| |[LLLProl [Jlojef | Jf]

eH |of | LITT Pryrtlfel PFgrl
o | | ll (Jol JJ] 1 [Jef flef [1] 111
20 | | {J pd dlr jel rp bl)
20/221 | | fof | [p28 | | fl J pFLPL]
22 | [| [LPP l rr birt Fr IT

MERA A AAI A A,24 125] | | | | | fel | | | | 1 [[[1 [TF P11]
| | [1 rr ri rt rrr itty fof lrrryl
26 | | (| [fr J PPE PPP r

ER
28 | | [[11{Jef [J |] EEREENRRAN20 | | LL TLL PPT p rif tfso [JF

Wj EREERRR IAEA EE SEEN AN RR ERENse {LPP eefry]
s2 | [| [LIP PIT V IPI TI TP] ife] {11

Figure 6. Indczed trie for the 81 most common English words.

| Wa TIE DICTIONARY PROBLEM 15

that bit. In addition each family contains a field indicating the number of nonsero

bits in the array for all nodes to the left of the current family, so that we can find
| the desired family on the next level. The storage required for each family is thus

‘reduced to m+log n bits, where n is the tota! number of keys. However, compressed

tries cannot handle insertions and deletions easily, nor do they retain the speed of

indexed tries. =

~~ Packed tries

Our idea is to use an indexed trie, but to save the space for null links by

packing the different families of the trie into a single large array, so that links from

one family may occupy space normally reserved for links for other families that

happen to be null. An example of this is illustrated below.

[A] Jel Je] |
= [aJejc[rle]

eT [i]

(In the following, we will sometimes refer to families of the indexed trie as
states, and pointers as transitions. This is by analogy with the terminology for

finite-state machines.)

When performing a search in the trie, we need a way to check if an indexed

pointer actually corresponds to the current family, or if it belongs to some other

family that just happens to be packed in the same location. This is done by ad-

ditionally storing the character indexing a transition along with that transition,

Thus a transition belongs to a state only if its character matches the character we

are indexing on. This test always works if one additional requirement is satisfied,

namely that different states may not be packed at the same base location.

The trie can be packed using a first-fit method. That is, we pack the states

one at a time, putting each state into the lowest-indexed location in which it will

fit (not overlapping any previously packed transitions, nor at an already occupied

base location). On numerous examples based on typical word lists, this heuristic

works extremely well. In fact, nearly all of the holes in the trie are often filled by
transitions from cther states.

Figure 7 shows the result when the indexed trie of Figure 6 is packed into

a single array using the first-fit method. (Actnally we have used an additional

compression technique called suffix compression before packing the trie; this will be

- explained in the next section.) The resulting trie fits into just 60 locations. Note

16 | THE DICTIONARY PROBLEM |

01 2 3 4 5 6 7 8 9

oo |[Asg[Bi1] | [bof 3JEOJH30|123

10 [c5] |[Ho[N25[032[E0] [012K 0

20_[Ea[ra]ntae] overs as ofr oo 6

so [0]n20]v alo os olezaly oli ol o[Tie

co [0 almeals olz o[1 7s ai olks[o [EO

so [olv loss [rise [es[r 5] | [uo

Figure 7. Packed trie for the 81 most common English words.

that the packed trie is a single large array; the rows in the figure should be viewed

as one long row.

As an example, here's what happens when we search for the word HAVE in the

packed trie. We associate the values 1 through 26 with the letters A through Z.

The root of the trie is packed at location 0, so we begin by looking at location 8

corresponding to the letter H. Since ‘H30’ is stored there, this is a valid transition

and we then go to location 30. Indexing by the letter A, we look in location 31,

which tells us to go to 29. Now indexing by V gets location 51, which points to 2.

Finally indexing by E gets location 7, which is underlined, indicating that the word
HAVE is indeed in the set,

Suffix compression

A big advantage of the trie data structure is that common prefixes of words

are combined automatically into common paths in the trie. This provides a good

deal of compression. To save more space, we can try to take advantage of common
suffixes.

TIIE DICTIONARY PROBLEM 17

| One way of doing this is to construct a trie in the usual manner, and then merge
common subtries together, starting from the leaves (lieves) and working upward.

We call this process suffiz compression. |
| For example, in the linked trie of Figure 5 the terminal nodes for the words

HIS and THIS, both of which test for the letter S and have no successors, can be

combined into a single node. That is, we can let their parent nodes both point

to the same node; this does not change the set of words accepted by the trie. It

turns out that we can then combine the parent nodes, since both of them test for I

| and-go to the 8 node if successful, otherwise stop (no left successor). However, the
grandparent nodes (which are actually siblings of the I nodes) cannot be combined

even though they both test for E, because one of them goes to a terminal R node

upon success, while the other has no right successor.

With a larger set of words, a great deal of merging can be possible. Clearly all

leaf nodes (nodes with no successors) that test the same character can be combined
together. This alone saves a number of nodes equal to the number of words in the

’ dictionary, minus the number of words that are prefixes of other words, plus at most

26. In addition, as we might expect, longer suffixes such as -1y, -ing, or -tion can

frequently be combined.

The suffix compression process may sound complicated, but actually it can

be described by a simple recursive algorithm. For each node of the trie, we first
compress each of its subtries, then determine if the node can be merged with some

other node. In effect, we traverse the trie in depth-first order, checking each node

to see if it is equivalent to any previously scen node. A hash table can be used to

identify equivalent nodes, based on their (merged) transitions.

The identification of nodes is somewhat casier using a binary tree representation

of the trie, rather than an m-ary representation, because each node will then have

just two link fields in addition to the character and output bit. Thus it will be

convenient to use a tinked trie when performing suffix compression. The linked

representation is also more convenient for constructing the trie in the first place,

because of the ease of performing insertions, |

After applying suffix compression, the trie can be converted to an indexed

«rie and packed as described previously. (We should remark that performing suffix
compression on a linked trie can yield some additiona' ~ompression, because trie

families can be partially merged. However such compression is lost when the trie is

converted to indexed form.)

| The author has performed numerous experiments with the above ideas. The re-

sults for some representative word lists are shown in Table 1 below. The last three

18 THE DICTIONARY PROBLEM

columns show the number of nodes in the linked, suffix-compressed, and packed

© tries, respectively. Each transition of the packed trie consists of a pointer, a char-

| acter, and a bit indicating if this is an accepting transition.

word list words characters linked compressed packed

pascal 35 145 125 104 120

murray 2720 19,144 8039 4272 4285

pocket 31,036 247,612 92,339 38,619 38,638

. unabrd 235,545 2,256,805 759,045 ee —

Table 1. Suffiz-compreased pucked tries,

The algorithms for building a linked trie, suffix compression, and first-fit pack-

ing are used in TEX82 to preprocess the set of hyphenation patterns into a packed

trie used by the hyphenation routine. A WEB description of these algorithms can be

found in [14]. |

Derived forms

Most dictionaries do not list the most common derived forms of words, namely

regular plurals of nouns and verbs (-s forms), participles and gerunds of verbs (-ed

and -ing forms), and comparatives and superlatives of adjectives (-er and -est).
This makes sense, because a user of the dictionary can easily determine when a word

possesses one of these regular forms. However, if we use the word list from a typical

dictionary for spelling checking, we will be faced with the problem of determining
when a word is one of these derived forms.

Some spelling checkers deal with this problem by attempting to recognize af-

fixes. This is done not only for the derived forms mentioned above but other com-

mon variant forms as well, with the purpose of reducing the number of words that

have to be stored in the dictionary. A set of logical rules is used to determine when

certain prefixes and suffixes can be stripped from the word under consideration.

However such rules can be quite complicated, and they inevitably make errors.

The situation is not unlike that of finding rules for hyphenation, which should

not be surprising, since aflix recognition is an important part of any rule-based

hyphenation algorithm. This problem has been studied in some detail in a series of

papers by Resnikoff and Dolby [15].
Since affix recognition is difficult, it is preferable to base a spelling checker on

a complete word list, including all derived forms. However, a lot of additional space

+ will be required to store all of these forms, even though much of the added data is

THE DICTIONARY PROBLEM 19

redundant. We might hope that some appropriate method could provide substan-

tial compression of the expanded word list. It turns out that suffix-compressed tries

handle this quite well. When derived forins were added to our pocket dictionary

word list, it increased in size to 40,858 words and 404,946 characters, but the result-

ing packed trie only increased to 46,553 transitions (compare the pocket dictionary

statistics in Table 1).
~Hyphenation programs also need to deal with the problem of derived forms.

| In our pattern-matching approach, we intend to extract the hyphenation rules au-

tomatically from the dictionary. Thus it is again preferable for our word list to
include all derived forms.

The creation of such an expanded word list required a good deal of work.

The author had access to a computer-readable copy of Webster's Pocket Dictionary

[16], including parts of speech and definitions. This made it feasible to identify
nouns, verbs, etc., and to generate the appropriate derived forms mechanically.

Unfortunately the resulting word lists required extensive editing to eliminate many

never-used or somewhat nonsensical derived forms, e.g. ‘informations’.

Spelling checkers

Computer-based word processing systems nave recently come into widespread ;

use. As a result there has been a surge of interest in programs for automatic spelling

checking and correction. Here we will consider the dictionary representations used

by some existing spelling checkers. a

One of the carliest programs, designed for a large timesharing computer, was

the DEC-10 SPELL program written by Ralph Gorin [17]. It uses a 12,000 word
dictionary stored in main memory. A simple hash function assigns a unique ‘bucket’

to each word depending on its length and the first two characters. Words in the

same bucket are listed sequentially. The number of words in each bucket is relatively

small (typically 5 to 50 words), so this representation is fairly efficient for searching.

In addition, the buckets provide convenient access to groups of similar words; this

is useful when the program tries to correct spelling errors.

The dictionary used by SPELL does not contain derived forms. Instead some

simple alfix stripping rules are normally used; the author of the program notes that

these are “error-prone”.

Another spelling checker is described by James L. Peterson [18]. His program

uses three separate dictionaries: (1) a small list of 258 cominon English words, (2)

a dynamic ‘cache’ of about 1000 document-specific words, and (3) a large, compre-

hensive dictionary, stored on disk. The list of common words (which is static) is

represented using a suffix-compressed linked trie. The dynamic cache is maintained

20 THE DICTIONARY PROBLEM |

using a hash table. Both of these dictionaries are kept in main memory for speed.

The disk dictionary uses an in-core index, so that at most one disk access is required

per search.

Robert Nix [19] describes a spelling checker based on the superimposed coding
method. He reports that this method allows the dictionary from the SPELL pro-

gram to be compressed to just 20 percent of its original size, while allowing 0.1%
chance of error.

A considerably different approach to spelling checking was taken by the TYPO
program developed at Bell Labs [20]. This program uses digram and trigramn fre-
quencies to identily “improbable” words. After processing a document, the words

are listed in order of decreasing improbability for the user to peruse. (Words ap-
pearing in a list of 2726 common technical words are not shown.) The authors

report that this format is “psychologically rewarding”, because many errors are

found at the beginning, inducing the user to continue scanning the list until errors
become rare. |

In addition to the above, there have recently been a number of spelling checkers

developed for the “personal computer” market. Because these programs run on

small microprocessor-based systems, it is especially important to reduce the size of

the dictionary. Standard techniques include hash coding (allowing some error), in-

core cacnes of common words, and special codes for common prefixes and suffixes.

One program first constructs a sorted list of all words in the document, and then

compares this list with the dictionary in a single sequential pass. The dictionary

can then be stored in a compact form suited for sequential scanning, where cach

word is represented by its difference from the previous word. i

Besides simply detecting when words are not in a dictionary, the design of a

practical spelling checker involves a number of other issues. For example many

spelling checkers also try to perform spelling correction. This is usually done by

searching the dictionary for words similar to the misspelled word. Errors and sug-

gested replacenients can be presented in an interactive fashion, allowing the user to

sce the context from the document and make the necessary changes. The contents

of the dictionary are of course very important, and each user may want to modify

the word list to match his or her own vocabulary. Finally, a plain spelling checker

cannot detect problems such as incorrect word usage or mistakes in grammar; a

more sophisticated program performing syntactic and perhaps semantic analysis of

the text would be necessary.

THE DICTIONARY PROBLEM 21

Conclusion and related ideas

The dictionary problem is a fundamental problem of computer science, and

it has many applications besides spelling checking. Most data structures for this

problem consider the elements of the set as atomic entities, fitting into a single com-

puter word. However in many applications, particularly word processing, the keys

are actually variable-length strings of characters. Most of the standard techniques

are sornewhat awkward when dealing with variable length keys. Only the trie data
structure is well-suited for this situation.

We have proposed a variant of tries that we call a packed trie. Search in a

packed trie is performed by indexing, and it is therefore very fast. The first-fit

packing technique usually produces a fairly compact representation as well.

We have not discussed how to perform dynamic insertions and deletions with a

packed trie. In Chapter 4 we discuss a way to handle this problem, when no suffix

compression is used, by repacking states when necessary. |
The idea of suffix compression is not new. As mentioned, Peterson’s spelling

checker uses this idea also. But in fact, if we view our trie as a finite-state machine,

suffix compression is equivalent to the well-known idea of state minimization. In

our case the machine is acyclic, that is, it has no loops. |

Suffix compression is also closely related to the cominon subexpression problem

from compiler theory. In particular, it can be considered a special case of a problem

called acyclic congruence closure, which has been studied by Downey, Sethi, and
Tarjan [21]. They give a lincar-time algorithm for suffix compression that does not
use hashing, but it is somewhat complicated to implement and requires additional
data structures. R

The idea for the first-fit packing method was inspired by the paper “Storing a

sparse table” by Tarjan and Yao [22]. The technique has been used for compressing

parsing tables, as discussed by Zeigler [23] (sce also [24]). However, our packed
trie implementation differs somewhat from the applications discussed in the above

references, because of our emphasis on space minimization. In particular, the idea

of storing the character that indexes a transition, along with that transition, seems

to be new. This has an advantage over other techniques for distinguishing states,

such as the use of back pointers, because the character requires fewer bits.

The paper by Tarjan and Yao also contains an interesting theorem character-

izing the performance of the first-fit packing method. They consider a modification

suggested by Zeigler, where the states are first sorted into decreasing order based
on the number of non-null transitions in cach state. The idea is that small states,
which can be packed more easily, will be saved to the end. They prove that if the

22 TILE DICTIONARY PRODLEM

distribution of transitions among states satisfies a “harmonic decay” condition, then

essentially all of the holes in the first-fit packing will be filled.

More precisely, let n(l) be the total number of non-null transitions in states with
more than { transitions, for [> 0. If the harmonic decay property n(l) < n/(l + 1)

is satisfied, then the first-fit-decreasing packing satisfies 0 < b(¢) < n for all 2, where

n = n(0) is the total number of transitions and b(t) is the base location at which

the 1th state is packed.
| The above theorem does not take into account our additional restriction that

no two states may be packed at the same base location. When the proof is modified

to include this restriction, the bound goes up by a factor of two. However in practice
we scem to be able to do much better.

The main reason for the good performance of the first-fit packing scheme is

the fact that there are usually enough single-transition states to fill in the holes

created by larger states. It is not really necessary to sort the states by number of

transitions; any packing order that distributes large and small states fairly evenly

will work well. We have found it convenicnt simply to use the order obtained by

traversing the linked trie.

Improvements on the algorithms discussed in this chapter are possible in certain |

cases. If we store a linked trie in uo specific traversal order, we can eliminate one

of the link fields. For example, if we list the nodes of the trie in preorder, the left

successor of a node will always appear inmediately after that node. An extra bit is

used to indicate that a node has no left successor. Of course this technique works

for other types of trees as well. : ’

If the word list is already sorted, linked trie insertion can be performed with

only a small portion of the trie in memory at any time, namely the portion along

the current insertion path. This can be a great advantage if we are are processing

a large dictionary and cannot store the entire linked trie in memory.

Chapter 8 |

Hyphenation

" Let us now try to apply the ideas of the previous chapter to the problem of
hyphenation. TEX82 will use the pattern matching method described in Chapter 1,

but we shall first discuss some related approaches that were considered.

Finite-state machines with output

We can modify our trie-based dictionary representation to perform hyphenation

by changing the output of the trie (or finite-state machine) to a multiple-valued

’ output indicating how the word can be hyphenated, instead of just a binary yes-no

output indicating whether or not the word is in the dictionary. That is, instead of
associating a single bit with each trie transition, we would have a larger “output”

field indicating the hyphenation “action” to be taken on this transition. Thus on

recognizing the word hy-phen-a-tion, the output would say “you can hyphenate

this word after the second, sixth, or seventh letters”.

To represent the hyphenation output, we could simply list the hyphen positions,

or we could use a bit vector indicating the allowable hyphen points. Since there

are only a few hundred different outputs and most of them occur many times, we

can save some space by assigning each output a unique code and storing the actual

hyphen positions in a separate table.

To conveniently handle the variable number of hyphen positions in outputs,

we will use a linked representation that allows different outputs to share common

portions of their output lists, This is implemented using a hash table containing

pairs of the form (output, nezt), where output is a hyphenation position and nezt
is a (possibly null) pointer to another entry in the table. To add a new output list

to the table, we hash each of its outputs in turn, making each output point to the

previous one. Interestingly, this process is quite similar to suffix compression. |

| The trie with hyphenation output can be suffix-compressed and packed in the
same manner as discussed in Chapter 2. Because of the greater variety of out-

puts more of the subtries will be distinct, and there is somewhat less compression.

23 |

24 | HYPIIENATION

| From our pocket dictionary (with hyphens), for example, we obtained a packed trie
: occupying 51,699 locations.

We can improve things slightly by “pushing outputs forward”. That is, we can

output partial hyphenations as soon as possible instead of waiting until the end of

the word. This allows some additional suffix compression.

For example, upon scanning the letters hyph at the beginning of a word, we

can already say “hyphenate after the second letter” because this is allowed for all

words beginning with those letters. Note we could not say this after scanning j. at

hyp, because of words like hyp-not-ic. Upon further scanning ena, we can say

“hyphenate after the sixth letter”.

When implementing this idea, we run into a small problem. There are quite

a few words that are prefixes of other words, but hyphenate differently on the

letters they have in common, e.g. ca-ret and care-tak-er, or as-pi-rin and as-

pir-ing. To avoid losing hyphenation output, we could have a separate output

whenever an end-of-word bit appears, but a simpler method is to append an erd-of-

. word character to each word before inserting it into the trie. This increases the size

of the linked trie considerably, but suffix compression merges most of these nodes

together.

With the above modifications, the packed trie for the pocket dictionary was

reduced to 44,128 transitions.

Although we have obtained substantial compression of the dictionary, the result

is still too large for our purposes. The problem is that as long as we insist that

only words in the dictionary be hyphenated, we cannot hopeto reduce the space

required to below that needed for spelling checking alone. So we must give up this
restriction.

For example, we could eliminate the end-of-word bit. Then after pushing out-

puts forward, we can prune branches of the trie for which there is no further output.

This would reduce the pocket dictionary trie to 35,429 transitions.

Minimization with don’t cares

In this section: we describe a more drastic approach to compression that takes

advantage of situations where we “don’t care” what the algorithm does.

As previously noted, most of the states in an indexed trie are quite sparse;

that is, only a few of the characters have explicit transitions. Since the missing

transitions are never accessed by words in our dictionary, we can allow them to be

filled by arbitrary transitions.

HYPHENATION 25

* This should not be confused with the overlapping of states that may occur in
the trie-packing process. Instead, we mean that the added transitions will actually

become part of the state.

There are two ways in which this might allow us to save more space in the min-

imization process. First, states no longer have to be identical in order to be merged;

they only have to agree on those characters where both (or all) have explicit transi-

tions. Second, the merging of non-equivalent states may allow further merging that

was not previously possible, because some transitions have now become equivalent.

For example, consider again the trie of Figure 5. When discussing suffix com-
pression, we noted that the terminal S nodes for the words HIS and THIS could be

merged together, but that the parent chains, each containing transitions for A, E,

and I, could not be completely merged. However, in minimization with don’t cares

these two states can be merged. Note that such a merge will require that the DV

state below the first A be merged with the T below the second A; this can be done

because those states have no overlapping transitions.

. As another example, notice that if the word AN were added to our vocabulary,

then the NRST chain succeeding the root A node could be merged with the NST chain

below the initial I node. (Actually, it doesn’t make much sense to do minimization

with don’t cares on a trie used to recognize words in a dictionary, but we will ignore

that objection for the purposes of this example.)
Unfortunately, trie minimization with don’t cares seems more complicated than

the suflix-compression process of Chapter 2. The problem is that states can be

merged in more than one way. That is, the collection of mergeable states no longer
forms an equivalence relation, as in regular finite-state minimization. In fact, we

can sometimes obtain additional compression by allowing the same state to appear

more than once. Another complication is that don’t care merges can introduce

loops into our trie,

Thus it seems that finding the minimum size trie will be difficult. Pfleeger

[25] has shown this problem to be NP-complete, by transformation from graph
coloring; however, his construction requires the number of transitions per state to

be unbounded. It may be possible to remove this requirement, but we have not

proved this.
So in order to experiment with trie minimization with don't cares, we have

made some simplifications. We start by performing suffix compression in the usual

manner. We then go through the states in a bottom-up order, checking each to

see if it can be merged with any previous state by taking advantage of don't cares.

Note that such merges may require further merges among states already seen.

20 HYPHENATION |

We only try merges that actually save space, that is, where explicit transitions

| are merged. Otherwise, states with only a few transitions are very likely to be

mergeable, but such merges may constrain us unnecessarily at a later stage of the

minimization. In addition, we will not consider having multiple copies of states.

Even this simplified algorithm can be quite time consuming, so we did not try it

| on our pocket dictionary. On a list of 2726 technical words, don’t care minimization
reduced the number of states in the suflix-compressed, output-pruned trie from

1685 to just 283, while the number of transitions was reduced from 3627 to 2427.

However, because the resulting states were larger, the first-fit packing performed

rather poorly, producing a packed trie with 3408 transitions. So in this case don't

care minimization yielded an additional compression of less than 10 percent.

Also, the behavior of the resulting hyphenation algorithm on words not in the

dictionary became rather unpredictable. Once a word leaves the “known” paths of

the packed trie, strange things might happen!
We can get even wilder effects by carrying the don’t care assumption one step

. further, and eliminating the character field from the packed trie altogether (leaving

just the output and trie link). Words in the dictionary will always index the correct
transitions, but on other words we now have no way of telling when we have reached
an invalid trie transition,

It turns out that the problem of state minimization with don’t cares was studied

in the 1960s by electrical engineers, who called it “minimization of incompletely

specified sequential machines” (sce e.g. [26]). However, typical instances of the
problem involved machines with only a few states, rather than thousands as in

our case, so it was often possible to find a minimized machine by hand. Also, the

emphasis was on minimizing the number of states of the machine, rather than the
number of state transitions.

In ordinary finite-state minimization, these are equivalent, but don’t care min-

imization can actually introduce extra transitions, for example when states are

duplicated. In the old days, finite-state machines were implemented using combina-

tional logic, so the most important consideration was to reduce the number of states.

In our trie representation, however, the space used is proportional to the number

of transitions. Furthermore, finite-state machines are now often implemented using

PLA’s (programmed logic arrays), for which the number of transitions is also the

best measure of space.

Pattern matching

: Since trie minimization with don’t cares still doesn’t provide sufficient compres-

sion, and since it lead* to unpredictable behavior on words not in the dictionary,

5 HYPHENATION 27

we need a different approach. It seems ~xpensive to insist on complete hyphenation

of the dictionary, so we will give up this requirement. We could allow some errors;

or to be safer, we could allow some hyphens to be missed.

| We now return to the pattern matching apprcach described in Chapter 1. Some
further arguments as to why this method seems advantageous are given below. We

should first reassure the reader that all the discussion so far has not been in vain,

because a packed trie will be an ideal data structure for representing the patterns

in the final hyphenation algorithm. Here the outputs will include the hyphenation

level as well as the intercharacter position.

Hyphenating and inhibiting patterns allow considerable flexibility in the per-

formance of the resulting algorithm. For example, we could allow a certain amount

of error by using patterns that aren't always safe (but that presumably do find

many correct hyphens).
We can also restrict ourselves to partial hyphenation in a natural way. That

is, it turns out that a relatively small number of patterns will get a large fraction of

the hyphens in the dictionary. The remaining hyphens become harder and harder

to find, as we are left with mostly exceptional casés. Thus we can choose the most

effective patierns first, taking more and more specialized patterns until we run out

of space.

In addition, patterns perform quite well on words not in the dictionary, if those

words follow “normal” pronunciation rules, |

Patterns are “context-free”; that is, they can apply anywhere in a word. This

seems to be an important advantage. In the trie-based approach discussed earlier

in this chapter, a word is always scanned from beginning to end and each state of

the trie ‘remembers’ the entire prefix of the word scanned so far, even if the letters

scanned near the beginning no longer affect the hyphenation of the word. Suffix

compression eliminates some of this unnecessary state information, by combining

states that are identical with respect to future hyphenation. Minimization with

don’t cares takes this further, allowing ‘similar’ states to be combined as long as

they behave identically on all characters that they have in common.

However, we have seen that it is difficult to guide the minimization with don’t

cares to achieve these reductions. Patterns embody such don’t care situations nat-

urally (if we can find a good way of selecting the patterns).
The context-free nature of patterns helps in another way, as explained below.

Recall that we will use a packed trie to represent the patterns. To find all patterns

: that match in a given word, we perform a search starting at each letter of the word.

Thus after completing a search starting from some letter position, we may have to

28 HYPHENATION i

| back up in the word to start the next search. By contrast, our original trio-based
approach works with no backup. |

| Suppose we wanted to convert the pattern trie into a finite-state recognizer

that works with no backup. This can be done in two stages. We first add “failure

links” to each state that tell which state to go to if there is no explicit transition

for the current character of the word. The failure state is the state in the trie that

we would have reached, if we had started the search one letter later in the word.

| Next, we can convert the failure-link machine into a true finite-state machine

by-filling in the missing transitions of each state with those of its failure state. (For

more details of this process, see [27], [28].)
However, the above state merging will introduce a lot of additional transitions.

Even using failure links requires one additional pointer per state. Thus by perform-

ing pattern matching with backup, we seem to save a good deal of space. And in

practice, long backups rarely occur.

Finally, the idea of inhibiting patterns seems to be very useful. Such patterns |: extend the power of a finite-state machine, somewhat like adding the “not” operator

to regular expressions.

s Chapter | Hn | Fs |

- Pattern generation

We now discuss how to choose a suitable set of patterns for hyphenation. In or-

der to decide which patterns are “good”, we must first specify the desired properties

of the resulting hyphenation ..gorithm. |
We obviously want to maximize the number of hyphens found, minimize the

error, and minimize the space required by our algorithm. For example, we could try

to maximize some (say linear) function of the above three quantities, or we could
: hold one or two of the quantities constant and optimize the others.

For T}iX82, we wanted a hyphenation algorithri meeting the following require-

ments, The algorithm should use only a moderate amount of space (20-30K bytes),

including any exception dictionary; and it should find as many hyphens as possible,

while making little or no error. This is similar to the specifications for the original

TEX algorithm, except that we now hope to find substantially more hyphens.

Of course, the results will depend on the word list used. We decided to base

the algorithm on our copy of Webster's Pocket Dictionary, mainly because this was

the only word list we had that included all derived forms.

We also thought that a larger dictionary would contain many rare or specialized

"words that we might not want to worry about. In p- ticular, we did not want such

infrequent words to affect the choice of patterns, because we hoped to obtain a set

of patterns embodying many of the “usual” rules for hyphenation.

In developing the TiX82 algorithm, however, the word list was tuned up con-

siderably. A few thousand common words were weighted more heavily so that they

would be more likely to be hyphenated. In fact, the current algorithm guarantees

complete hyphenation of the 676 most common English words (according to [29]),

‘as well as a short list of common technical words (e.g. al-go-rithnm).
In addition, over 1000 “exception” words have been added to the dictionary,

to ensure that they would not be incorrectly hyphenated. Most of these were found

by testing the algorithm (based on the initial word list) against a larger dictionary
"obtained from a publisher, containing about 115,000 entries. This produced about

29

30 PATTERN GENERATION

| 10,000 errors on words not in the pocket dictionary. Most of these were specialized

technical terms that we decided not to worry about, but a few hundred were em-

barrassing enough that we decided to add them to the word list. These included

compound words (camp-fire), proper names (Af-ghan-i-stan), and new words
(bio-rhythm) that probably did not exist in 1966, when our pocket dictionary was
originally put online.

After the word list was augmented, a new set of patterns was generated, and

a new list of exceptions was found and added to the list. Fortunately this process

seemed to converge after a few iterations.

Heurlstics

The selection of patterns in an ‘optimal’ way seems very difficult. The problem

is that ceveral patterns may apply to a particular hyphen point, including both

hyphenating and inhibiting patterns, Thus complicated interactions can arise if

we try to determine, say, the minimum set of patterns finding a given number of

hyphens. (The situation is somewhat analogous to a set cover problem.)
. Instead, we will select patterns in a series of “passes” through the word list.

In each pass we take into account only the effects of patterns chosen in previous

passes. Thus we sidestep the problem of interactions mentioned above.

In addition, we will define a measure of pattern “efficiency” so that we can use

agreedy approach in each pass, selecting the most efficient patterns.
— Patterns will be selected one level at a time, starting with a level of hyphenating

patterns. Patterns at each level will be selected in order of increasing pattern length.
Furthermore patterns of a given length applying to different intercharacter

positions (for example -tio and t-io) will be selected in separate passes through
the dictionary. Thus the patterns of length n at a given level will be chosen in n+1

passes through the dictionary.

At first we did not do this, but selected all patterns of a given length (at a

given level) in a single pass, to save time. However, we found that this resulted in

considerable duplication of effort, as many hyphens were covered by two or more

patterns. By considering different intercharacter positions in separate passes, there

is never any overlap among the patterns selected in a single pass.

In each pass, we collect statistics on all patterns appearing in the dictionary,

counting the number of times we could hyphenate at a particular point in the

pattern, and the number of times we could not.

For example, the pattern tio appears 1793 times in the pocket dictionary, and

~ In 1773 cases we can hyphenate the word before the t, while in 20 cases we can

PATTERN GENERATION 31

| not. (We only count instances where the hyphen position occurs at least two letters
+ from either edge of the word.)

These counts are used to determine the efficiency rating of patterns. For exam.

* ple if we are considering only “safe” patterns, that is, paiterns that can always be

hyphenated at a particular position, then a reasonable rating is simply the number

of hyphens found. We could then decide to take, say, all patterns finding at least a

given number of hyphens.

However, most of the patterns we use will make some error. How should these

patterns be evaluated? In the worst case, errors can be handled by simply listing

them in an exception dictionary. Assuming that one unit of space is required to

represent each pattern as well as each exception, the “efficiency” of a pattern could

be defined as eff = good/(1 + bad) where good is the number of hyphens correctly
found and bad is the number of errors made.

(The space used by the final algorithm really depends on how much compression

is produced by the packed trie used to represent the patterns, but since it is hard to

‘ predict the exact number of transitions required, we just use the number of patterns

as an approximate measure of size.)

By using inhibiting patterns, however, we can often do better than listing the

exceptions individually. The quantity bad in the above formula should then be

devalued a bit depending on how effective patterns at the next level are. So a

better formula might be
good

b= 1 bod /badef” |
where bad_e[f is the esiimated efficiency of patterns at the next level (inhibiting
errors at the current level).

Note that it may be diflicult to determine the efficiency at the next level, when

we are still deciding what patterns to take at the current level! We will use a pattern

selection criterion of the form eff > thresh, but we cannot predict exactly how many

patterns will be chosen and what their overall nerformance will be. The best we

can do is use reasonable estimates based on previous runs of the pattern generation

program. Some statistics from trial runs of this program are presented later in this

chapter.

Collecting pattern statistics

So the main task of the pattern generation process is to collect count statistics

about patterns in the dictionary. Because of time and space limitations this becomes

an interesting data structure exercise.

32 PATTERN CENERATION

ee For short (length 2 and 3) patterns, we can simply use a table of size 262 or 26°,
respectively, to hold the counts during a pass through the dictionary. For longer

patterns, this is impractical.

Here's the first approach we used for longer patterns. In a pass through the

dictionary, every occurrence of a pattern is written out to a file, along with an indi-

cation of whether or not a hyphen was allowed at the position under consideration.
The file of patterns is sorted to bring identical patterns together, and then a pass

is made through the sorted list to compile the count statistics for each pattern.

| This approach makes it feasible to collect statistics for longer length patterns,
and was used to conduct our initial experiments with pattern generation. However

it is still quite time and space consuming, especially when sorting the large lists of

patterns. Note that an external sorting algorithm is usually necessary.

Since only a fraction of the possible patterns of a particular length actually

occur in the dictirnary, we could instead store them in a hash tablz or one of the

other data structures discussed in Chapter 2. It turns out that a modification of
’ our packed trie data structure is well-suited to this task, The advantages of the

packed trie are very fast lookup, compactness, and graceful handling of variable

length patterns.

Combined with some judicious “pruning” of the patterns that are considered,

the memory requirements are much reduced, allowing the entire pattern selection

process to be carried out “in core” on our PDP-10 computer,

‘By “pruning” patterns we mean the following. If a pattern contains a shorter
pattern at the same level that has already been chosen, the longer pattern obviously

need not be considered, so we do not have to count its occurrences. Similarly, if

a pattern appears so few times in the dictionary thzt under the current selection

criterion it can never be chosen, then we can mark the pattern as “hopeless” so

that any longer patterns at this level containing it need not be considered.

Pruning greatly reduces the number of patterns that must be considered, es-

pecially at longer lengths.

Dynamic packed tries

Unlike the static dictionary problem considered in Chapter 2, the set of patterns

to be represented is not known in advance. In order to use a packed trie for storing _
the patterns being considered in a pass through the dictionary, we nced some way

to dynamically insert new patterns into the trie.

For any pattern, we start by performing a search in the packed trie as usual,

following existing links until reaching a state where a new trie transition must be

PATTERN GENERATION 33

added. If we are lucky, the location nceded by the new transition will still be empty

in the packed trie, otherwise we will have to do some repacking.

Note that we will not be using suffix compression, because this complicates

things considerably. We would need back pointers or reference counts to determine

what nodes need to be unmerged, and we would need a hash table or other auxiliary

information in order to remerge the newly added nodes. Furthermore, suffix merging

does not produce a great deal of compression on the relatively short patterns we

willbe dealing with.
The simplest way of resolving the packing conflict caused by the addition of a

new transition is to just repack the changed state (and update the link of its parent

state). To maintain good space utilization, we should try to fit the modified state
among the holes in the trie. This can be done by maintaining a dynamic list of

unoccupied cells in the trie, and using a first-fit search.

However, repacking turns out to be rather expensive for large states that are

unlikely to fit into the holes in the trie, unless the array is very sparse. We can

avoid this by packing such states into the free space immediately to the right of

the occupied locations. The size threshold for attempting a first-fit packing can be

adjusted depending on the density of the array, how much time we are willing to

spend on insertions, or how close we are to running out of room.

After adding the critical transition as discussed above, we may need to add

some more trie nodes for the remaining characters of the new pattern. These new

states contain just a single transition, so they should be easy to fit into the trie.

The pattern generation program uses a second packed trie to store the set of

patterns selected so far. Recall that, before collecting statistics about the patterns

in each word, we must first hyphenate the word according to the patterns chosen in

previous passes. This is done not only to determine the current partial hyphenation,

but also to identify pruned patterns that need not be considered. Once again, the

advantages of the packed trie are compactness and very fast “hyphenation”.

At the end of a pass, we need to add new patterns, including “hopeless” pat-

terns, to the trie. Thus it will be convenient to use a dynamic packed trie here as

well. At the end of a level, we probably want to delete hopeless patterns from the

trie in order to recover their space, if we are going to generate more levels. This

turns out to be relatively easy; we just remove the appropriate output and return

any freed nodes to the available list.

Below we give some statistics that will give an idea of how well a dynamic

packed trie performs. We took the current set of 4447 hyphenation patterns, ran-
domized them, and then inserted them one-by-one into a dynamic packed trie.

34 PATTERN GENERATION

(Note that in the situations described above, there will actually be many searches

per insertion, so we can afford some extra effort when performing insertions.) The
patterns occupy 7214 trie nodes, but the packed trie will use more locations, de-

pending on the setting of the first-fit packing threshold. The columns of the table

show, respectively, the maximum state size for which a first-fit packing is attempted,

the number of states packed, the number of locations tried by the first-fit procedure

(this dominates the running time), the number of states repacked, and the number
of locations used in the final packed trie.

thresh pack first fit unpack trie_max

00 6113 877,301 2781 0671

13 6060 761,228 2728 0458

jy 6074 559,835 2742 9606

7 6027 359,537 2695 0606

0 08063 147,468 2531 10,366

4 5746 63,181 2414 11,209

3 5863 33,820 2231 13,296

2 5242 19,885 1910 15,009

| 1 4847 8056 1515 16,536 |

0 4577 6073 1245 18,628

Table 2. Dynamic packed trie statistics.

Experimental results

We now give some results from trial runs of the pattern generation program,®

and explain how the current TjiX82 patterns were generated. As mentioned earlier,

the development of these patterns involved some augmentation of the word list.

The results described here are based on the latest version of the dictionary.

~ At each level, the selection of patterns is controlled by three parameters called

good_wt, bad wt, and thresh. If a pattern can be hyphenated good times at a partic-

ular position, but makes bad crrors, then it will be sclected if

good » yood_wt — bad » bad_wt > thresh.

Note that the efficiency formula given carlier in this chapter can be converted into
the above form.

We can first try using only safe patterns, that is, patterns that can always be

hyphenated at a particular position. The table below shows the results whea all

safe patterns finding at least a given number of hyphens are chosen. Note that

I

\ \)a .
| | i PATTERN GENERATION 35

parameters patterns hypliens percent

1 00 40 401 31,083 35.2%

10020 1024 45,310. 51.3%

10010 2272 58,580 66.3% |

lood 4603 70,014 79.2%

1003 7052 76,236 86.2% |

g 1002 10,456 83,450 94.4%
| lool 16,336 87,271 98.7%

Table 8. Safe hyphenating patterns.

an infinite bad_wt ensures that only safe patterns are chosen. The table shows the

number of patterns obtained, and the number and percentage of hyphens found.

We sce that, roughly speaking, halving the threshold doubles the number of

patterns, but only increases the percentage of hyphens by a constant amount. The
last 20 percent or so of hyphens become quite expensive to find.

(In order to save computer time, we have only considered patterns of length

6 or less in obtaining the above statistics, so the figures do not quite represent all

patterns above a given threshold. In particular, the patterns at threshold 1 do not

find 100% of the hyphens, although cven with indefinitely long patterns there would

still be a few hyphens that would not be found, such as re-cord.)

The space required to represent patterns in the final algorithin is slightly more

than one trie transition per pattern. Each transition occupies 4 bytes (1 byte each

for character and output, plus 2 bytes for trie link). The output table requires

an additional 3 bytes per entry (hyphenation position, value, and next output),
but there are only a few hundred outputs. Thus to stay within the desired space

limitations for TEX82, we can usc at most about 5000 patterns.

We next try using two levels of patterns, to sce if the idea of inhibiting patterns

actually pays ofl. The results are shown below, where in each case the initial level

of hyphenating patterns is followed by a level of inhibiting patterns that remove

nearly all of the error.

The last set of patterns achieves 86.7% hyphenation using 4696 patterns. By

contrast, the 1 co 3 patterns from the previous table achieves 86.2% with 7052

patterns. So inhibiting patterns do help. In addition, notice that we have only used

“safe” inhibiting patterns above; this means that none of the good hyphens are lost.

We can do better by using patterns that also inhibit some correct hyphens.

After a good deal of further experimentation, we decided to use five levels

of patterns in the current TjzX82 algorithm. The reason for this is as follows. In

36 PATTERN GENERATION

parameters patterns hyphens percent

12020 816 51,359 505 58.1% 0.6%
~ lool 315 0 463. 58.1% 0.1%

110 10 1510 64,803 1694 73.5% 1.9% |
~ lool 824 0 1531 73.5% 0.2%

~ 155 2573 76,632 5254 86.7% 59%
- lool 2123 0 4826 86.7% 0.5%

Table 4. Two levels of patterns.

addition to finding a high percentage of hyphens, we also wanted a certain amount of

guaranteed behavior. That is, we wanted to make essentially no errors on words in

the dictionary, and also to ensure complete hyphenation of certain common words.

To accomplish this, we use a final level of safe hyphenating patterns, with

the threshold set as low as feasible (in our case 4). If we then weight the list of

important words by a factor of at least 4, the patterns obtained will hyphenate

them completely (except when a word can be hyphenated in two different ways).
To guarantee no error, the level of inhibiting patterns immediately preceding

the final level should have a threshold of 1 so that even patterns applying to a single

word will be chosen. Note these do not need to be “safe” inhibiting patterns, since

the final level will pick up all hyphens that should be found.

The problem is, if there are too many errors remaining before the last inhibiting

level, we will need too many patterns to handle them. If we use three levels in all,

then the initial level of hyphenating patterns can allow just a small amount of error.

However, we would like to take advantage of the high efficiency of hyphenating

patterns that allow a greater percentage of error. So instead, we will use an initial

level of hyphenating patterns with relatively high threshold and allowing consider-

able error, followed by a ‘coarse’ level of inhibiting patterns removing most of the

initial error. The third level will consist of relatively safe hyphenating patterns with

a somewhat lower threshold than the first level, and the last two levels will be as

described above.

The above somewhat vague considerations do not specify the exact pattern

selection parameters that should be used for each pass, especially the first three

passes. These were only chosen after much trial and error, which would take too long

to describe here. We do not have any theoretical justification for these parameters;

they just seem to work well.

The table below shows the parameters used to generate the current set of TjpX82

patterns, and the results obtained. For levels 2 and 4, the numbers in the “hyphens”

Hews

& qf PATTERN GENERATION 37
level Stameters patterns hyphens percent |

| 1 1220 (4) 458 67,604 14,156 76.6% 16.0%
2 218 (4) 500 7407 11,042 68.2% 2.5%

| 3 147 (5) 085 13,108 551 83.2% 3.1%
4 321(6) 1647 1010 2730 82.0% 0.0%
5 1oo4(8) 1320 6428 0 80.3% 0.0%

Table 5. Current TpX82 patterns.

column show the number of gnod and bad hyphens inhibited, respectively. The

numbers in parentheses indicate the maximum length of patterns chosen at that
level.

A total of 4919 patterns (actually only 4447 because some patterns appear more

than once) were obtained, compiling into a suffix-compressed packed trie occupying
5943 locations, with 181 outputs. As shown in the table, the resulting algorithm

finds 89.3% of the hyphens in the dictionary. This improves on the one and two

level examples discussed above. The patterns were generated in 109 passes through

the dictionary, requiring about 1 hour of CPU time.

Examples

The complete list of hyphenation patterns currently used by TEX82 appears in

the appendix. The digits appearing between the letters of a pattern indicate the

hyphenation level, as discussed above.

Below we give some examples of the patterns in action. For each of the following

words, we show the patterns that apply, the resulting hyphenation values, and the
hyphenation obtained. Note that if more than one hyphenation value is specified for

a given intercharacter position, then the higher value takes priority, in accordance

with our level scheme. If the final value is odd, the position is an allowable hyphen
point,

computer 4mip pu2t bpute put3er godmbpu2t3er com-put-er

algorithm lig4 1lgo3 igo 2ith 4hm aligd4o3r2it4hm al-go-rithm

hyphenation hy3ph he2n hena4 henbat ina n2at 1tio 2io

hy3phe2n5a4t2ion hy-phen-ation

concatenation o2n onic ica ina n2at 1tio 2io

co2nicatein2ait2ion con-cate-na-tion

mathematics math3 athbem th2e ima atiic 4cs

mathSeimatii4dcs math-e-mat-ics

38 PATTERN GENERATION

typesetting type3 els2e 4t3t2 2tiin type3s2e4t3t2ing

type-set-ting

| program pr2 1igr pr2oigram pro-gram

supercalifragilisticexpialidocious

| uipe ric ica alii agii gild il11i il4iet isiti st2i sitlc

lexp x3p pi3a 2iia i12al 2id 1do ici 2io 2us |

suipericaliifragiil4isit2iclex3p2i3al2iidoic2io2us

su-per-cal-ifrag-ilis-tic-ex-pi-ali-do-cious

~ Below, we show a few interesting patterns. The reader may like to try figuring

out what words they apply to. (The answers appear in the Appendix.)

ain5o hach4 n3uin bspail

aybal hbelo nyp4 4tarc

earbk it4fr o5ables 4todo :

e2mel 16o0go orewd uirdm

And finally, the following patterns deserve mention:

3tex fondt highb

Chapter § ~ 2 |

History and Conclusion

~The invention of the alphabet was one of the greatest advances in the history

of civilization. However, the ancient Phoenicians probably did not anticipate the

fact that, centuries later, the problem of word hyphenation would become a major

headache for computer typesectters all over the world.

Most cultures have evolved a linear style of communication, whereby a train

of thought is converted into a sequence of symbols, which are then laid out in neat

rows on a page and shipped off to a laser printer.

| The trouble was, as civilization progressed and words got longer and longer,
it became occasionally necessary to split them across lines. At first hyphens were

inserted at arbitrary places, but in order to avoid distracting breaks such as the-

rapist, it was soon found preferable to divide words at syllable boundaries.

Modern practice is somewhat stricter, avoiding hyphenations that might cause

the reader to pronounce a word incorrectly (e.g. considera-tion) or where a single

letter is split from a component of a compound word (e.g. cardi-ovascular).
The first book on typesetting, Joseph Moxon’s Mechanick Ezercises (1683),

mentions the need for hyphenation but does not give any rules for it. A few dictio-

naries had appeared by this time, but were usually just word lists. Eventually they

began to show syllable divisions to aid in pronunciation, as well as hyphenation.
With the advent of computer typesetting, interest in the problem was renewed.

Hyphenation is the ‘H’ of ‘H & J’ (hyphenation and justification), which are the
; basic functions provided by any typesctting system. The need for automatic hy-

phenation presented a new and challenging problem to carly systems designers.

Probably the first work on this problem, as we!l as many other aspects of com-

puter typesetting, was done in the early 1950s by a French group led by G. D.

Balfour. They developed a hyphenation algorithm for French, which was later

adapted to English [U.S. Patent 2,762,485 (1955).
Their method is quite simple. Ilyphenations are allowed anywhere in a word

except among the following letter combinations: before two consonants, two vawels,

| 39 |

40 HISTORY AND CONCLUSION

or x; between two vowels, consoniant-h, e-x, or s-s; after two consonants where the

first is not 1, m, n, r, or 8; or after ¢, §, q, v, consonant-w, mm, 1r, nb, nf, nl, nm,

nn, or nr,

We tested this method on our pocket dictionary, and it found nearly 70 percent

of the hyphens, but also about an equal amount of incorrect hyphens! Viewed in

| another way, about 65% of the erroneous hyphen positions are successfully inhibited,
along with 30% of the correct hyphens. It turns out that a simple algorithm like

this one works quite well in French; however for English this is not the case.

Other early work on automatic hyphenation is described in the proceedings of

various conferences on computer typesetting (e.g. [30]). A good summary appears
in [31], from which the quotes in the following paragraphs were taken.

At the Los Angeles Times, a sophisticated logical routine was developed based

on the grammatical rules given in Webster’s, carefully refined and adapted for com-

puter implementation. Words were analyzed into vowel and consonant patterns

which were classified into one of four types, and rules governing each type applied.

’ Prefix, suffix, and other special case rules were also used. The results were report-

edly “85-95 percent accurate”, while the hyphenation logic occupies “only 5,000

positions of the 20,000 positions of the computer's magnetic core memory, less

space than would be required to store 500 8-letter words averaging two hyphens per
word.”

Perry Publications in Florida developed a dictionary look-up method, along

with their own dictionary. An in-core table mapped each word, depending on its
first two letters, into a particular block of words on tape. For speed, the dictionary

was divided between four tape units, and “since the RCA 301 can search tape in
both directions,” each tape drive maintained a “homing position” at the middle of

the tape, with the most frequently searched blocks placed closest to the homing

positions,

In addition, they observed that many words could be hyphenated after the 3rd,

5th, or 7th letters. So they removed all such words from the dictionary (saving some

space), and if a word was not found in the dictionary, it was hyphenated after the
3rd, 5th, or Tth letter.

A hybrid approach was developed at the Oklahoma Publishing Company. First

some logical analysis was used to determine the number of syllables, and to check
if certain suffix and special case rules could be applied. Next the probability of

 hyphenation at each position in the word was estimated using three probability

tables, and the most probable breakpoints were identified. (This seems to be the

| origin of the Time magazine algorithm described in Chapter 1.) An exception

HISTORY AND CONCLUSION 41

dictionary handles the remaining cases; however there was some difference of opinion
as to the size of the dictionary required to obtain satisfactory results.

| Many other projects to develop hyphenation algorithms have remained pro-
~ prietary or were never published. For example, IBM alone worked on “over 35

approaches to the simple problem of grammatical word division and hyphenation”.

| By now, we might have hoped that an “industry standard” hyphenation algo-

rithm would exist. Indeed Berg's survey of computerized typesetting [32] contains
a description of what could be considered a “generic” rule-based hyphenation algo-

rithm (he doesn’t say where it comes from). However, we have seen that any logical
| routine must stop short of complete hyphenation, because of the generally illogical

basis of English word division.

The trend in modern systems has been toward the hybrid approach, where a

logical routine is supplemented by an extensive exception dictionary. Thus the in-

core algorithm serves to reduce the size of the dictionary, as well as the frequency

of accessing it, as much as possible.

) A number of hyphenation algorithms have also appeared in the computer sci-
ence literature. A very simpie algorithm is described by Rich and Stone [33]. The
two parts of the word must include a vowel, not counting a final e, es or ed. The

new line cannot begin with a vowel or double consonant. No break is made between

the letter pairs sh, gh, p, ch, th, wh, gr, pr, cr, tr, vr, br, fr, dr, vowel-r, vowel-n,

or om. On our pocket dictionary, this method found about 70% of the hyphens with

45% error.

The algorithm used in the Bell Labs document compiler Roff is described by

Wagner [34]. It uses suffix stripping, followed by digram analysis carried out in a
back to front manner. In addition a more complicated scheme is described using four

classes of digrams combined with an attempt to identify accented and nonaccented

syllables, but this seemed to introduce too many errors. A version of the algorithm is

described in [35]; interestingly, this reference uses the terms “hyphenating pattern”
(referring to a Snobol string-matching pattern) as well as “inhibiting suffix”.

Ocker [30], in a master’s thesis, describes another algorithm based on the rules
in Webster's dictionary. It includes recognition of prefixes, suflixes, and special

letter combinations that help in determining accentuation, followed by an analysis

of the “liquidity” of letter pairs to find the character pair corresponding to the

greatest interruption of spoken sound.

| Moitra et al [37] use an exception table, prefixes, suffixes, and a probabilistic
break-value table, In addition they extend the usual notion of affixes to any letter

42 HISTORY AND CONCLUSION

© pattern that helps in hyphenation, including ‘root words’ (e.g. 1ine, pot) intended
. to handle compound words. |

Patterns as paradigm

| Our pattern matching approach to hyphenation is interesting for a number

of reasons. It has proved to be very effective and also very appropriate for the

problem. In addition, since the patterns are generated from the dictionary, it is

easy to accommodate changes to the word list, as our hyphenation preferences

change or as new words are added. More significantly, the pattern scheme can be

readily applied to different languages, if we have a hyphenated word list for the

language.

The effectiveness of pattern matching suggests that this paradigm may be use-

ful in other applications as well. Indeed more general pattern matching systems

and the related notions of production systems and augmented transition networks

(ATN's) are often used in artificial intelligence applications, especially natural Jan-
guage processing. While Al programs try to understand sentences by analyzing

‘ word patterns, we try to hyphenate words by analyzing letter patterns.

One simple extension of patterns that we have not considered is the idea of

character groups such as vowels and consonants, as used by nearly all other algo-

rithmic approaches to hyphenation. This may seem like a serious omission, because

a potentially useful meta-pattern like ‘vowel-consonant-consonant-vowel' would then

expand to 6 X 20 x 20 x 6 = 14400 patterns. However, it turns out that a suffix-

compressed trie will reduce this to just 6 + 20 + 20 + 6 = 52 trie nodes. So our

methods can take some advantage of such “meta-patterns”.

In addition, the use of inhibiting as well as hyphenating patterns seems quite

powerful, These can be thought of as rules and exceptions, which is another common

Al paradigm,

Concerning related work in Al, we must especially mention the Meta-DENDRAL

program [38], which is designed to infer automatically rules for mass-spectrometry.
An example of such a rule is N—C—C—C — N—C « C—C, which says that if the

molecular substructure on the left side is present, then a bond fragmentation may

occur as indicated on the right side. Meta-DENDRAL analyzes a set of mass-spectral

data points and tries to infer a set of fragmentation rules that can correctly predict

the spectra of new molecules. The inference process starts with some fairly general
rules and then refines them as necessary, using the experimental data as positive or
negative evidence for the correctness of a rule.

HISTORY AND CONCLUSION | 43

The fragmentation rules can in general be considerably more complicated than
our simple pattern rules for hyphenation. The molecular “pattern” can be a tree-

like or even cyclic structure, and there may be multiple fragmentations, possibly

"involving “migration” of a few atoms from one fragment to another, Furthermore,

there are usually extra constraints on the form of rules, both to constrain the

search and to make it more likely that meaningful or “interesting” rules will be

generated, Still, there are some striking similarities between these ideas and our

pattern-matching approach to hyphenation.

Packed tries

Finally, the idea of packed tries deserves further investigation. An indexed

trie can be viewed as a finite-state machine, where state transitions are performed

by address calculation based on the current state and input character. This is

extremely fast on most computers.

However indexing usually incurs’a substantial space penalty because of space

reserved for pointers that are not used. Our packing technique, using the idea of

storing the index character to distinguish transitions belonging to different states,

combines the best features of both the linked and indexed representations, namely

space and speed. We believe this is a fundamental idea.

There are various issues to be explored here. Some analysis of different packing

methods would be interesting, especially for the handling of dynamic updates to a

packed trie. |

Our hyphenation trie extends a finite-state machine with its hyphenation “ac-

tions”. It would be interesting to consider other applications that can be handled by

extending the basic finite-state framework, while maintaining as much of its speed

as possible.

Another possibly interesting question concerns the size of the character and

pointer fields in trie transitions, In our hyphenation trie half of the space is occupied

by the pointers, while in our spelling checking examples from one-half to three-

fourths of the space is used for pointers, depending on the size of the dictionary.

In the latter case it might be better to use a larger “character” size in the trie, in

order to get a better balance between pointers and data.

When performing a search in a packed trie, following links will likely make us

jump around in the trie in a somewhat random manner. This can be a disadvantage,

both because of the need for large pointers, and also because of the lack of locality,

“which could degrade performance in a virtual memory environment. There are
. probably ways to iinprove on this. For example, Fredkin [10] proposes an interesting

‘n-dimensional binary trie’ idea for reducing pointer size.

Mu HISTORY AND CONCLUSION

~~~ We have presented packed tries as a solution to the set representation problem,
with special emphasis on data compression. It would be interesting to compare our

results with other compression techniques, such as Huffman coding. Also, perhaps

“one could estimate the amount of information present in a hyphenated word list, as

a lower bound on the size of any hyphenation algorithm,

Finally, our view of finite-state machines has been based on the underlying

assumption of a computer with random-access memory. Addressing by indexing

seems to provide power not available in some other models of computation, such

as pointer machine, or comparison-based models. On the other hand, a ‘VLSI’ or

other hardware model (such as programmed logic arrays) can provide even greater
power, eliminating the need for our perhaps contrived packing technique. But then

other communication issues will be raised.

IT all problems of hyphenation have not been solved,
8t least some progress has been made since that night,

when according to legend, an RCA Marketing Manager

recelved a phone call from a disturbed customer.

His 301 had Just hyphenated "God".

| — Paul E. Justus (1972)



TEX82 hyphenation patterns

.achd .ends .moSre ,underS agedo a2n . apoch asitr avider

.addder .aqbuibt ,mubta .unle dagen anSage apbola asurba avdig
aft .ordri .mutabb .unSk agli analy aporbi alta avboc
.al3t 088 nide .anbo dagdl adnar aposit at3abl alvor
.am5at .eul .0d2 .un8u agin an3arc-  apsbes atBac Savay
.anbc .ayeb .0ddb .up3 a2go anardi adpu at3aloe awdi
.angd fesl .ofbte ured Sagog = alnati aqueb atbap avdly
.anifm .forbmer .orbate .usba agdoni 4and 2a2r atebe seed
.antd E22 .ordc .vendde  abguer andeds ardact atbech axdie
.andte ge? .orid .vebra agbul an3dis abrade atlego axdid
.antibs .gendtd .or3t .wilbi adgy anidl arbadis  at3en. aybal
.arbe .gebog .083 yed a3ha anddow ardal atdera ayed
.arétie .Ei5a .ondtl dab. adhe abnee abrameta aterbn aysd
.ardty .gi4d .0th3 abbal ahdl a3nen arandg abterna azider
anc .godr .out3 abban a3ho anSest. araldp at3est azzbi
.anlp +handb4 pudbal abel ai2 a3neu ardat atbev Eba.
.asle ~hanbk .pebte abberd abia 2ang abratieo  4ath badbger
.asterb hel .pebtit  abiba adic. angble arbativ  athbem badge
.atonb .herobi pide ab5it5ab aibly anigl abrau abthen balla
.auld +hesd .plobn ab5lat adidn adniic arSavd atdho banbdag

: .avdi .hetl pi2t abbobliz ainbin a3nies arawd athGom bande
.awnd -hi3b predm 4abr ainbo an3i3f arbald dati. ban3i
.badg . .hi3er rade abbrog aitben andime ardchan  abtia barbib

. .babna honbey .randt ab3ul ai} abnimi arbdine  atbibb barida
.basde .hon3o .ratiolna adcar aklien aSnine arddr atlic basdsi
.berd +hovb Teel acbard alSab an3io arbeas at3it ibat

.bebra ' .iddl .rebmit  acharo al3ad a3nip a3ree ationBar bad:

.be3sm .idold res? aSceou adlar an3ish ar3ent at3itu 2bib

.beSate im3m .rebstat acler 4aldi an3it abress adtog b2be

.bri2 Ambpin xldg aSchet 2ale a3nin ardfi aZtom b3ber

.butdti ini .rit5u da2ci al3end andkli ardfl atSomiz  bbidna

.camdpe .in3ci .rodq alcle adlentdi Sanniz arii adtop 4bild

.canbc .ine2 .ros5t acliin ableSo anod ar5ial adtos dbe.

.capabb An2k .rowbd a3cio alii anSot ar3ian altr beakd

.carbol «in3s rudd ac5rob aldia. anothS adriet atbrop beat3
cadt +irbr .scile actbif alide anZsa ardim atdsk dbel2d

.cedla isdd .pelt5 ac3ul alSlev andsco arSinat  atdtag belda

.chd Julr sells acdum 4allic andsn ar3io atte be3de

.chillBi .ladcy .5e2n a2d 4alm an2sp ar2iz atdth beddi
ci2 ladnm .s05rie  adddin-  aSlog. ans3po ar2mi aZtu be gl
.cithr .latSer .sh2 adSer, adly. andst arbobd at5ua bebgu
.co3e .latht - ,ei2 2adi 4alys andsur abroni atbue ibel
.codr .le2 .singd addia S5aSlyst  antald a3roo at3ul belli
.coi5ner ,legbe td ad3ica balyt. andtie arp at3ura be3lo
.dedmoi .lend .stabbl adider Salyz 4anto ar3q a2ty 4bebn
.de30 .leph BYy2 addio 4ama an2tr arred audb bebnig
.dedra lev] tad addit am5ab andtw ardsa aughl bebnu
.de3ri 1idg te2 abdiu am3ag an3ua ar2sh au3gu 4besd
.desdc .1igBa .tenban addle amaSra an3ul das. audl2 beldsp
.dictiof .li2n .th2 ad3cw am5asc aSnur asdab aunbd beSstr

.dodt .1180 £12 adSran admatis dao as3ant audr Jbet

dude «114t 114 addsu admSato  apard ashid aubsib betbis
dumb .mag5ab tim508  4adu ambera apbat asia. avtben bebtr
.earthb .malbo tingd adduc am3ic apSere a3eib suith beldtw
.eandi .manba .tinbk adbum ambit adpher adsic alva belw
.ebd .marbti .tonda aedr amS5ily daphi Fabsidt  av3ag bebyo
.eerd .me2 .todp  aeride amiin adpilla  ask3i abvan 2bt

.0g2 .mer3c .top5i a2f amidno apSillar asdl avedno 4b3h

.el5d .meSter .toubs affd amo ap3in adsoc aviera bi2b
© .el3em mini .tribbut adgab abmon ap3ita as5ph avSera bidd

.enam3 .mist5i .unia agadn amorbi adpitu asdsh avbery 3ble
- .en3g .mon3e .un3ce agSell ampSen a2pl as3ten avid bien

J v J v v y ‘ 7 ;

74



TEX82 HYPHENATION PATTERNS 15

bider bbute 3cheni co3pa 4daf d2gy Edren edben efild
2b3it biv chbene cop3ic 2dag dih2 drid4d edbit e3fine
ibil 4bbw ch3er, codpl da2m2 Bdi. drild e3br ef6ibnite
bi3liz Eby. ch3ers dcorb dan3g 'd44i3a drodp edcad Jefit
binabr4 bysd dchilin coro3a dardb diabb ddrow ecanbe eforbes
bindd ica chine. cosde darks didcam bdrupli eccab edfuse.
bibnet cab3in chbiness covl ddary ddice ddry eice {egal
bidogr calbl BEchini coved 3dat 3dict 2d1s2 ecfossa  egerd
bibou cachd Bchio cowba ddativ 3did dsdp ecii eghib
bi2t “cabden 3chit cozbe ddato 6di3en disw elcid egdic
3bi3dtio  4dcagd chi2z cobzi Edavd diif disy ecbificat egSing
bidtr 2cbah 3cho2 cig davbe di3ge d2th ecbifie  ebgith
3bitbua caldlat chided crasbt Eday didlato ida ecbify eghn
bbitsz caldla lei berat. dib diin diunia eciim edgo.
bi} callbia Bcia Beratic  dbc 1dina duc ecidt edgos

bkd dcalo ci2afb cre3at didd4 dine. diuca eScite egiul
b212 canbd ciabr Scred ade. bdini ducber eiclam eSgur
blathb cande cibe dc3reta death dibniz 4duct. edclus Fegy
bdle. ~ candic dcier credy debbit 1dio ddnucts e2col elhd
blend canbis beifie, cri2 dedbon diobg dubel eicomm eherd
Eblesp can3iz decid cribd decand didpl dudg edcompe  ei2
L3lis candty cidla cdrin dodcil dir2 d3ule edconc ebic
bile canyd 2114 crisd deScom diire dumibe elcor eibd
blundt cabper 2cim Beriti 2died dirt5i dudn eclora eigl

dbim carbom 2cin crodpl 4doo. dis! 4dup ecobro eibgl
4b3n castSer cdina cropbo de54i? Edisi dudpe elcr edimd
bnebg casbtig 3cinat crosde delide ddisdt div edcrem e3inf
3bod dcasy cindem crudd dolbiSq  d2iti diw ecdtan eling
bod34 cadth cling dc3s2 deSlo 1dilv d2y ecite eSinst
bode dcativ ching. 2cit ddcn dl} dyn elcu eirdd
bolSic cavbal bcino ctadb Gdom. d5k2 dydse edcul eitle
bomdbi cdc ciond ctbang 3demic 4d5la dysbp ec3ula ei3th
bonda cchab dcipe cbtant dembic. 3dle. eladd 202da ebity
bonbat ccida cidph cite deSmil 3dled edact 4ed3d ol)
boo ccompab  dcipic c3ter dedmons 3dles. ead] eddler edjud
Ebor. ccond dcista cdticu demorb 4dless esadbie ededs ejbudi
dbiora ccoudt dcisti ctim3i iden 2d3lo sadge dedi ekidn

borbd 2¢ce. aciit ctudr dednar 4db1lu eabger eldia okdla
Ebore dced. citiis city dedno 2dly eadl ed3ib ella
6buri dceden Bein cudb dentibf dim ealber . eddica edla.

Etosd Scel ckl cdut dednu 4dind exldon eddim edlac

bSota Bcel. ck3i cdui delp ido eamder ediit elandd

bothB Scell icdld cubity de3dpa 3do. e5and edibs elbativ
bodto icen dclar Beuli depid dobde ear3a dedo edlavw
bound3 Scenc cblaratio culdtis  deZpu bdoe sardc eddol elaxad
4bp 2cende Bclare Scultu d3eq 2d6of earbes  edon2 e3lea
dbrit dceni cledn cuZma dderh ddog eardic eddri elSebra
brothd cent dclic c3ume Ederm dodla eardil eddul belec

2bbe2 cep climd cudmi dernbiz  dolid earbk edbule edled
beord cebram clyd 3cun derbs doSlor earlt eelc el3ega
abt dcesa cbn cudpi des2 dom5iz eartle eed3i e5len
btdl cessed ico cubpy d2es. do3nat eabsp oelf edlier
bdto cesbsibbd cobag curbadb  delsc donid elass eeldi elles
b3tr cesbt coed cubria dels5o dooldd eastd eedly el2f
bufdfer cetd dcog icus des3ti dopdp ealt soln el24
budga cbedta codgr cussdi dedstr ddor eatben eedna ellibe
buldli cevd cold Scdut dodsn 3dos eath3i eedpl edlbic.
bumid ach codine cudtie deit 4d5out ebatif eolsd el3ica
budn dch. colbi dcButiv dello dodv edadtu eestd e3lirr

buntdi 4chlab Bcolo dcutr delr Sdox ealv eedty elbigib
bulre Bchanie col3or icy dev3il dip eaviea eSex eblin
busbie chSabnis comSer ced ddey ldr eavhi elf edll3ing
bussde che conda 1d2a = ddif dragSom  eavSe eiflere ellie
Ebust cheapd cdone Ha. diga ddrai eld leff ellis
4buta dched conldg 2d3ady dizedt dred eibel. elilic elSish
Jbatie cheble conbt dachd dgii dreaSr edbels Sefici e3livd

J J Vv J Vv / v/ 4
Vv :

[166



76 TX82 HYPIIENATION PATTERNS

della e3ny. er3ine 4es2to ifa flind 4geno godni lhead
eldlad den3z eirio e3ston fa3bl flo3re  4geny Bgoo Shear
ellod eSof dorit 2estr fab3r £21y6 igeo gobriz hedcan
eSloc 002g erdiu ebstro fadce iin gedom gorbou hbecat
elbog edoid eridy estruch  4dfag 4in gdery bgos. hded
el3op. edol edriva e2sur faind ifo Bgesi gorvi hebdob
el2sh eop3ar er3md esburr fallbe fon gethb g3p he3141
eldta elor erdnis esdvw 4fadma fondde dgeto igr heldlis
e5lud ~ eo3re dernit etadd fambim fondt gedty 4grada heldly
elbug eobrol Gernisz etendd bfar folr gedry gérai hbelo

- edmac eond er3no e3teo farbth fobrat dgiga gran2 hemdp

edmag edot Zero ethod3 fadta forbay gE2ge graph.  he2n
ebman eodto erbob etiic fa3the forebt g3ger gbrapher henad
embana ebout ebroc ebtide 4fato fordi gglub Bgraphic henbat
embb ebow erodr etind faulth fortba ggod dgraphy  heobr
eime e2Zpa eriou etidno 4156b fosb gh3in 4gray hepb

i eZmel e3pai eris ebtir 41d 416p ghbout gredn hdera
edmet epbane er3set eStitio die. fradt ghdto gress. heraldp
em3ica eSpel ert3er etbitiv  feasd {brea Bgl. dgrit herdba
emide edpent fortl 4etn feathd fresbe igida géro hereba
em5igra epbetitio erdtw etSona fe4b iri2 giabr grufd h3ern
emiin2 ephed deru edtra 4feca fril4 glic gs2 hGerou
embine edpli erudt e3tro Bfect frolb bgicia ghste h3ery
em3i3ni  elpo berwau . etlric 2fed 213s géico gth3 hies
edmis edprec elsda etSrit fe3li 21 glenb guda he2sbp
em5ish .epbreca  edsage. et3rog fedmo fdto Ggies. 3guard hedt
ebmiss edpred edsages etSros fen2d f2vy gild 2gue hetded
em3iz ep3reh esc et3ua fendbe 3fu g3imen Eguibt houd
Eemniz e3pro e2sca etbym ferl fubel 3gdin. 3gun hif
emodg edprob esbcan etbz Blerr 4fug ginbge Sgue hih
emonife  epdsh edscr dou fevd fudmin Egdine dguidt hiban
em3pi ep5tibb esbcu e5un 4111 fubne bglo gw hidco
edmul edput elise e3up files fulri Sgir igy highb
emSula epbuta e2sec eudro fille fusid girdl 2gby3n h4112
omu3n elq esbecr eusd f61in. fusds g3isl gybra himerd
e3my equill esbenc euted f2161is 4futa - gidu h3ab4l hdina
enbamo edq3uils edsert. eutibl 141ly ity bgiv hachd hionde "
ednant eria edserts  eubtr 121y iga 3gis haedm = hidp
enchier  eradd edserva  evalph 41h gald gl2 haedt hirdl
en3ddic 4derand 4esh elvas 114 bgal. glad hbagu hi3ro
eSnea er3ar e3sha evbhast 1i3a 3gali gladbi ha3la hirdp
ebnee derati. eshben ebvea 213ic. gadlo Gglas hala3m hirdr
endenm 2erb elsi eviell 413ical 2gan igle haim his3el
enbaro erdbl e2sic eveldo f3ican gabmet glidd handci hisdse
enbesi er3ch e2sid ebveng d4ficate gbamo g3lig handcy hithber
enbest erdche esbiden  evendi fiicen ganbis 3glo Shand. hilv

endetr 2ere. esbigna  evier fi3cer gadniz glo3r handg 4hk
e3new edreal e2sbim eSverb ficdi ganibza gin hangber  4hil4
enbice erebco esdidn elvi bficia 4gano gdmy hangbo hland
ebnie eredin esisdte ev3id bficie garbnd gnda h6abniz  h2le
ebnil erbel. esidu evidl fics gassd gdna. handk hlodri
e3nio er3enmo ebskin edvin fi3cu gath3 gnetdt handte 4him
endish erbena esdmi evidy fibdel dgativy gin hap3dl hmot4
endit erbence  elsol ebvoc fightb dgaz g2nin hapbt 2hin
vbnin dsrene esdolu ebvu £1154 g3b ginio ha3ran hb5odis
Beniz erdent e2s0n . eolwa £111564n  gdd gino habras hGods
denn eredq esSona edvag dfily 2ge. gdnon ~~ har2d hodg
deno erbess elesp ebvee 2fin 2ged igo hard3e hoged
enodg nr3est es3per e3wh biina geozd 3go. hardle holbar
ednos eretd esSpira . ewilS - fin2db geldin gobs harpben  3holde
endov erih esdpre ew3ing fi2ne geb'is 6goe ~~ harbter hodma
endsw erii ess odwit f1in3g ge5liz 3gdodg hasbs homed
entSage  elriad esdsidd lexp findn dgely godis haund honda
denthes Berick estand Beyc fisdti igen gona Ghaz hoSny
endua edrien esdtig Beye. 1412 gednat 4g3o3na  hazda 3heod
enbuf erider esbtim oysd f5less gebniz gondob hib * hoond

: [76°



TiX82 HYPHENATION PATTERNS 7

horbat 4iceo ig3in dingu irdmin it3uat+ © kim 3less 131eg
hobris dich igdit 2ini irodg i6tud k5nes Eless. 131el
hort3e 2ici i4gdl ibni. Biron. it3ul ikZno 15eva 13ledn
hobru i6cid i2go idnia irbul ditz. _ kobr levder. 13ledt
horde icbina igor in3io 24s. iin kowhd levdera 1124
hobsen 12cip igbot iniis isbag 2iv k3ou levders  121ind
hosip ic3ipa ibgre ibnite. is3ar iv3ell krobn ley 1651ina
1hous , idely igubi finitie  isasb iv3en. 4kisd 4leye 1140
housed 12cboc igiur indity 2isic idvier. kdsc 211 1loquib
hovbel dilcr 13h 4ink is3ch idvers. kesdl 16fr 1l50ut
4hbp Bicra 41644 4inl dise ivbil. kdsy 411gd 165low
dhrd idery 13) 2inn is3er ivbio kbt 16ga 2lm
hreob icdte dik 2iino Sisf iviit kiw lgar3 15met
hrobniz  ictu2 illa i4nodc isEhan ibvore lab3ic l4ges 1m3ing
hro3po ic4t3ua 113a4b inods in3hon iv3odro l4abo 1go3 ldmod
4his2 ic3ula i4lade idnot ishbop i4v3ot lacid 213h 1mond
hdsh icdum i216am 2ins 1831b 415w l4ade lidag 211n3
hdtar icbuo ilabra "in3se isidd ixdo la3dy liSam dle.

htien i3cur i3leg insurba i6sis diy lagdn liarBiz  lobSal
ht5es 21d iller 2int. isbitiv  dizar lam3o lidas lodci

hity id4dai ilevd 2indth 4isdk izid 3land lidato dlof
hudg id5anc i162 inlu island Eizont lauddl 1i5bi Slogie
hudmin id5d i114 ibnue diccs 5ja lanbet blicio 160go
hunbke ide3al 113ia 4iny i2s0 jacdq landte lidcor 3logu
hundt ideds 1121b 210 isoSmer jadp lardg 4lice lom3er
hus3t4d =~ 42di 11340 dio. isip 1je lar3i dlict. Elong
hudt id6ian il4ist fogod 1s2pi jerbs lasde l4icu - londi
hiw ididar  241it io2gr isdpy 4jesti@  labtan 13icy 1303nis
hdwart i6die 112iz ilol 4isls 4jesty 4lateld 134da loodb
hydpe id3ie i116ab fodm isdsal jowd dlativ lidSer lope.
hy3ph 1dib 2 4iln ion3at issend jodp dlav 3lidi lop3i
hye idiit il30q iondery isdses judg ladvda 1i13er 130pm
21a id6iu il4vy ion3i isdta, Ska. 211b 14412¢ lorad
12al i3dle i16ur iobph isite k3ab 1bind 11411 lodrato
iamd iddom il3v ior3i islti kGag 4l1c2 Eligate  lobrie
iambete  id3ow idmag idos istdly kaisd lced 3ligh lorbon
i2an iddr = im3age iobth 4istral kald 13ci lidgra Glos. .
4ianc 12du imabry ibotdi i2su kid 21d 3lik losbet
ian3i id5uo imentabr iodte isbus k2ed - 12de 414141 Glosophis
4iandt 2ied {imet idour dita. 1kee lddere  - limdbl Elosophy
iabpe iedde imid 2ip itadbi kedg ldderdi 1im34 losdt
iased Giebga im5ida iped idtag ke514 1di4 lidmo lodta
idativy ieldd imible iphrasd 4itabm k3endd 1d51s l4imdp lounbd
fadtric  ienbad i6mini ip3i i3tan kier 13dr l4ina 2lout
idatu iende 4imit ipdic i3tat kesd l4dri 1l4ine dlov
ibed i6enn imdni ipdred 2ite k3est. le2a 1in3ea alp
ib3era i3enti i3mon ip3ul itera kedty ledbi 1in34 1pabb
ibbert iler. 12ma i3qua ibteri k3f lefts linkS5er  13pha
ibbia i3esc im3ula iq5uef ities khd Gleg. 116og 16phi
ib3in ilest 2in. iq3uid 2ith kii Elegg 414iq 1pbing
ibbit. i3et i4n3au iq3uidt  iiti Eki. ledmat lisdp 13pit
ib6ite di. 4inav dir 4itia bk2ic lemSatic 11it 14pl
i1bl ifbero inceld iira 4i2tic kiill 4len. 121i¢. 16pr
ib314 ifi5en in3cer iradb it3ica kilos 3lenc 6litica  4lir

i6bo itdtr 4ind idrac BiStick  kdim Elene. 16i5tices 211s2

iibr dific, inbdling irdbe it3ig kdin. ilent livier 14sc
i2bbri 13fie 2ine iredde it5i11 kindde le3ph liiz 1240
i{6bun 1311 idnee idref i2tim kS5iness ledpr 41] l4sie
4icanm dift inerdar i4reld 2itio kindg lerabb 1ka3 dlt
Bicap 2ig iBness idres ditis kidp lerde 13kal -  1tSag
dicar iga5b dinga irbgi i4tism kisd 3lerg - lkadt 1taneb
idcar. iglera dinge irii i2t505m k5ish 3l4eri 111 lite
idcara ight3i inbgen iribde diton kk4 l4ero l4law ltend |
icaeb © 4igh dingi irdis i4tram kil les2 121e lterad

“idcay 13gib inBgling iri3tu itSry 4kley lebsco 15lea  1th3}
iceud ig3il dingo Bi5r2iz ditt dkly flesq  13lec 16ties.

v oS J V/ 4 4 J v/

2354



:

78 TEX82 HYPIIENATION PATTERNS

1tisd ime. minin nbact nedpo nk3in nti2f 02114 ol3ume
litr 2med mndo nagber.  ne2q nikl ndtine ofbite ol3un
14n2 dmed. imo nak4 nier 4nil nit3ing ofitdt oblus
ltur3a bmedia dmocr nadli nerabb nbm ntidp o2gbabr  ol2rv
1uba me3die bmocratiz nablia nderar nmed  - ntrolbli ogbativ o2ly
ludbr mbebdy mo2d1 4nalt n2ere nmo t4 ntds odgato ombah
luchd me2g modgo nabmit nderbi dnin2 ntulme oige omabl
ludci melbon mois2 n2an nerdr nned ~ nuia obgene omSatis
lu3en meldt moibse nancid ines nnidal nudd obgeo om2be
lufd me2m 4mok nandit 2nes. nnidv nuSen odger omdbl
lubid memiod mo5lest  nank4 4nesp nob4l nufdfe o3gle oZme

lodma imen rodme nar3c Znest no3ble n3uin loigis om3ena
Glumi menda monbet dnare dnesw nbocl Snu3dit og3it omSerse
16umn. menbac monbge nar3i netic 4ndo2d ndum odgl odmet
Glumnia  mendde moni3a nardl nedv 3noe nuime o5g2ly ombetry
1ulo 4mene mondism  nbarm nbeve dnog nbumi 3ogniz o3mia
luoldr mond i mondist  ndas nedw noged 3nudn odgro omic.
41lup mensd = mo3niz nasdc n3f noisbi n3uo ogubi cem3ica
lussd mensub monold nasbti ndgab nobl4d nudtr logy obmid

lus3te ment mo3ny. nZat n3gel nologies niv2 20gyn omiin
1lut mend te molr nadtal ngednde 3nomic nivd olh2 oSmini

16ven mebon 4mora. natobmiz nbgere nbobmiz nymd chabb ommend
16vetd mnSersa mos2 n2au n3geri nodmo nypé oi2 omodge
211w Zmes mobsey . mnauldse ngbha no3my 4nz oic3es odmon
ily Smesti mo3sp 3naut n3gib nodn n3za oidder om3pi
41lya medta moth3 navde nglin nondag 40a oiffd omprob
41yb met3al mbouf 4nib4 nSgit nonbi oad3 oigd oZn

lybme melte mous ncar5s n4gla nSoniz o5ables  oiblet onia
ly3no me5thi no2y ndces. ngovd 4nop oard3 o3ing ondac
2lysd °° mdetr Amip n3cha ngssh BnopS5obli oasde ointber o3nan
1Eyse Bbmetric mparab n5cheo nigu norbab ocastbe obism onic
ima mebtrie = mpabrab  nbchil ndgum nodrary  oatbhbi oibson Joncil
2mab meltry mparbi n3chis n2gy 4nosc ob3a3b oistben 2ond
maZca medy = m3pet nclin 4nih4 nosde obbar oi3ter onbdo
mabchine dmif mphasd ncdit nhad nos5t obedl obj o3nen
madel 2mh m2pi ncourba  nhab3 nobta oibi 20k onbest
eaghin bmi. mpida nicr nhed inou o2bin o3ken ondgu
Emagn mi3a mpbies nicu 3ndia 3noun obSing okbie oniic
2mah midda mdplin nddai ni3an nov3eld odbr olla odnioe
waidb middg mbpir n5dan nidap nowld ob3ul odlan oniis
dmald migd mpbis nide nidta nipd olce olassd obniu »
madlig Smilin mpo3ri nd5est. nidol npid ochd ol2d ondkey
ma5lin m5i6lie mposbite ndidd nidd nprede  o3chet oldie ondodi
maldli mdill mipous nbd2it nibdi niq ocif3 ol3er ondomy
maldty minda mpovh nidit nider nir odcil o3lesc onds
Emania mind mpdtr nddiz ni2fti nrud odclam o3let onspid
manbis m5ines m2py nbduc nibficat 2nls2 odcod oldfi onspirba
man3iz miingl dm3r ndudr nbigr nebab oc3rac 012i onsud
4map minbgli  dmils2 nd2we nikd nsatid ocbratiz o3lia onten4
madrine. mSingly  mdsh Z2ne. niim nedc ocred o3lice on3tdi
mabriz mindt m5si ndear nidmiz n2se bocrit olbid. ontifbh

marily mdinu dnt ne2b niin nds3es octorba 031141 onbum
marly miotd imu neb3u nine. neidi oc3ula ob111 onvab

mabsce n2is maulabrd  nelc nindg neigd obcure ol3ing 002
masde misder. mult bneck nido n2sl od5ded oblio oodbe

masit misbl multid 2ned nis. ne3m od3ic oblis. oodbi

Smate misdti Imum nedgat nisdta ndsoc odido ol3ish oodk
math3 mSistry  mun2 negbativ n2it nedpe 02dod oblite oopdi
ma3tis dnith 4mup Enege ndith nbspi odor3 o6litio  o3ord
dmatiza  w2isz mudu -  nedla 3nitio netabbl odbuct., oblivy oosth
dnmld dmk dow nelbiz n3itor nit odSucts  ollide oZpa
mbadth dmll ina neSmi nidtr ntadb odel olbogiz opebd
mbbil mim 2nia2b nedmo nij nterds obeng olodr opler
mdb3ing  mmabry ndabu - inen dnk2 nt24 oder olb5pl opera
mbidy 4nln 4nac. 4nene nSkero n5tib oedta. ol2t doperag
dmbc mnda nade 3neo n3ket ntider o3ev ol3ub 20ph

f i +

234%



TiX82 HYPIIENATION PATTERNS 4)

oSphan odtes peardl pind4 proit rbdo reviolu  riviet rEpeat
. obpher doth pele pdino 2pie2 ric redvh rivii rpber.

~ op3ing  othSesi 2pZed = 3pilo  p2se r2ce rit r3} r3pet

odpit oth3i4 Spede piond pedh rcend rC4h Tod r3ket rpdhd
oSpon ot3ic. 3pedi p3ith pisid r3cha® rity rkile rp3ing
odposi ot5ica pediad piStha 2pit rchier rg? rkdlin r3po
olpr o3tice = peddic piZtu pt5add rdcidd rgler ril rird

| opin o3tif plee 2p3k2 pate rcdit ~~ r3get rled rrede
opyb o3tis peedd 1p212 p2th = rcus3 rigic riled rredf
olq otobs pekd Splan ptism rddal rgidn rdlig rdreo
oira ou pedla plas5t ptudr rd2i rgding rdlie rrodst
obra. ou3bl pelide pli3a pity rdida rbgis rlbish rrido
odriag ouchbi pednan pliber pub3 rdider rbgit rilod rridv
orSaliz  oubet pdenc dplig pued rdind rigl rim rrond
orbange  oudl pendth plidn pufd rd3ing rgodn resale rrosd
oreda ouncber  pebon ploid pulle 2re. r3gu rime rrysd
obreal oun2d pdera. pludm pudn reial rhd rimen dred
orSei oubv peraSbl  plumid pun re3an drh. rabers risa
oreSsh ovden plerag dpim purdr rebarr drhal reading reabtd
orbest, overdne  pderi 2p3n Epun Sreay risa rdning. rede
orev4 . over3s peribst pode put redavw riadb rdmnio r2se
ordgu ovdert perdmal  5peod. Epute rbebrat  ridag rimit r3sec
dobria o3vis permeb poben putler recboll rdib rdny reedcr
or3ica ovitid pdern po3et5 pultr recbompe rib3a rdnar raber.
o5ril o5vdol per3o Bpodg putdited redcre ricbas r3nel redes
oriin owdder perdti poin2 putdtin  2r2ed rdice riner raebvl

. oirio ov3el pebru Bpoint piv reide drici rSnet rish
or3ity owbest periv poly5t qu2 re3dis bricid r3ney rbsha
o3rin ~~ owii pet podni quaby red5it ridcie rénic risi
orZmi ownbi peSten podp 2que, redfac rdico rinisd rdeidd
ornZe odvo peStiz ipdor quer re2fe ridber rinit rsond
obSrof oyla 4pf podry Squet reSfer. ridenc r3niv risp
or3oug ipa dpg © 1pos 2rab re3fi riSent rnod rBavw
orSpe padca dph. posis ra3bil redfly rifer rdaon rtachd
3orrh padce phar5i paot rachde reg3is riSet rine rdtag
ordse pact phe3no podta rbacl reSit rigban robsl r3teb

orasSen pdad phder Epoun raf5f4 reili brigi r2oc rtendd
orstd pagan phdes, pip raft re5lu ril3iz rodcr - rtebo
or3thi  plagat phiic ppaSra raj. rdendta  Briman rode ritd
or3thy pdai Sphie p2pe radlo rendte rim51 roife rtbib
ordty paind ph5ing piped ram3et relo Srimo ro5f1il rtidd
ofrum pal Sphisti  p5pel r2ami roSpin rimdpe rok2 rdtier
olry panda 3phiz p3pen rane5o redposl r2ina robker r3tig
os3al panSel ph2l p3per randge reipu Srina. brole. rtilsi
os2c pandty 3phob p3pet rdani rierd rindd ronbete rtil4l
osdce pa3ny 3phone ppoSeite rabno rderi rinde romdi rdtily
o3scop palp bphoni pr2 rapler rerod rindg romip rdtist
doscopl  padpu phodr prayde Sraphy rebru rile rondal rdtiv
oSscr paraSbl  Aphs Spreci rarbc rdes. briph ° ronde ratri
osdide parSage  ph3t prebco rared redspi riphbe robfndis  rtrophd
osS5itiv  parbdi Sphu predem rarSef ress5ib  ri2pl rondta rtdsh
os3ito 3pare iphy prefSac  4raril rest rip5lic iroom ruda
os3ity parbel pida predla r2as reSstal rdiq Groot rudedl
osidu pladri piand predr rationd  reldstr r2is rodpel ruden
osdl pardis pidcie pirese raudt redter rdis. rop3ic rudgl
olso paste pldcy 3press raSval redtidz risdc rordi rudin
osdpa pabter pdid preSten raviel redtri r3ish robro rum3pl
osdpo Spathiec  pbida preldv rabzie reu2 risdp rosSper ruin
os2ta paSthy pidde Spride rib reSuti ri3taSh rosis runkb
oSstati  padtric  bpidi prindt3 réhad  rev2 rbited. rodthe rundty
osb5tll pavd 3plec pride 14bag redval ritber, rodty - rbusc
osbtit 3pay pi3en pris3o rbi2 revel ritbers rodva rutibn

"  odtan 4pib pidgrap  piroca rbidf rbevber. rit3ic rovbol rvie
oteledg  pd4 pi3le profbit  r2bin reSvers  ri2tu roxb rveldi
ot3er. {pe. pi2n prodl rbbine rebvert  ritbur rip r3ven
otSers Jpeda péin, prosde rbSing.  reSvil rivbel rdpea rvber.
J J Wi v J Td Vv J v4

| 35¢3
»



80 Ti:X82 HYPHENATION PATTERNS

- rBvest sBened 2¢in s2tag talsi 2e1¢ t5leo dtafd ugbin
r3vey senbg 53ma s2tal dtalk tig {tim btudi 2uil

~~ r3vic sbenin smalll stamdi taldlis 2th. teed Stum uilbis
rvidv 4sentd  sman$ Sstand tablog thand 2tin2 tudnis uidn
ri3vo ~ 4mentl smeld sdtadp taSmo th2e ito at3up. uling
riv sop3al sbmen Estat. tandde 4thea to3b ture uirdm
ryde deler. Bsmith sdted tantal thieas tobcrat  Sturi uitad
Erynge sderl smol5d4  stern5i taSper thebat 4todo turdis uivd
ry3t serdo sind ebtero tabpl thelis 2tof turbo uivder,
sa2 4servo iso stelv tarda Sthet to2gr tubry ub)
2siab rleds sodce stewba dtarc thbic. tobic Stus duk
Bsack sebsh softd s3the dtare thbica to2ma ity uila

 sac3ri sesbt sodlab st2i tadriz 4thil tomdb twd ulabb

s3act Esobum #013842 pdti. tasde Bthink to3my dtiva ublati
Beal bsev so3lic sbtia tabsy 4thl tondali twisd ulchd
salard sevien Ssolv seltic dtatic thbode toSnat dtwo Bulche
salim sewdi Ssom Sstick tadtur Ethodie  4tono ity ul3der
sable Gaex 3sdon. sdtie taund 4thoo dtony itya ulde
saldt 4831 sonad s3tit tavd thorbit  to2ra atyl uilen

Ssanc 283g sondg st3ing 2tav thobriz  todrie typed uldgi
pandde e2h edop Getir taxdis 2the torbis ty5ph ul2i
slaf 2h, Gsophiec  sitle 2t1b itia tos? {tz ublia
sabta shier sSophiz  Bstock dtc tidad Stour tzde ulding
Gsadtie  Eshev sbophy stom3a tdch tidato dtout duad ulbish
sat3u shiin sorbc Estone tchbet 2ti2b toSwar uacd uldlar

saud shiio sorbd sdtop quid dtick dtip uabna uldlidh
; saSvor  3ship dsov Sstore ite. tdico itra uandi uldlis

Saaw shivh sobvi stdr teaddd tdiciu tradh uarbant  4uldm

485b shod 2spa sdtrad {teat btidi trabch uar2d uildo
scandts  sh50ld Espai Bstratu  teced tien tracid uar3i duls
scadp shoal spadn sdtray tect tif2 tracdit uvardt ulsbes
scavh shord spendd sdtrid 2tied tibly tracdte  ulat uliti
sdced shortb 2s5peo dstry tebdl 2tig trasd uavd ultral
ducel dshy 2sper dstiw ites Stigu traSvem  ubde dultu
sdces sildb #2phe s2ty tegd tillbin  travbesS udbel uldlu
sch2 s5ice 3spher leu teSger itim treb? udber ulbul
sdcho dside. sphob sulal teSgi 4timp tredm udbere ulbv
3sdcie Esides spild sudb3 3tel. timSul trembi ulbdi umbab
Escindd  bsidi sp5ing su2g3 telid 2tlin Stria udbbing umdbi
scleb sibdiz 4spio suSis Gtels t2ina tribces . udble. undbly
sdcli 4signa sdply suitd teZma2 3tine, tricia  ulca uimi
scofd eilde sdpon sdul tem3at 3tini 4trice uci4b uém3ing
4scopy dsily spord sulm 3tenan 1tio 2trim ucdit umorbo
scour5a  2slin dspot sum3i 3tenc tiSoe¢ tridv ucle3d um2p
sicu ~ s2ina squal4l  =su2n 3tend tionSee  trobmi ulcr unatd
4s5d Esine. sir su2r 4tenes 5tiq tronbi udcu une
4se. ~ #3ing 200 dav itent ti3sa dtrony udcy under

seda isio sisa sw2 tendtag 3tise troS5phe  udbd uini
soasd sion ssasd dswo 1teo tisdm tro3sp udder undim
seaSw sionba e285¢ sdy tedp ti5so tro3v udSest u2nin
se2c3o0 si2r s3sel dsyc teSpe tisdp truSi udevd unbish
3sect sirba sSseng 3syl ter3c Stistica trusd uldic univ
dnded leis sdsern, syndo Ster3d ti3tl dtis2 udlied un3ed
seddde sitio sbset sySrin iteri tidu tdsc ud3ies undow
s5edl Sein sisi lta terSies itiv tshd udSis unt3ab

seg 1siv sdsle Sta. ter3is tivda tdcw ubdit undter.
sogdr Esiz sider 2tab teribza  1tiz 4t3t2 uddon unites
S5ael sk2 ssbily tables  bGternit  ti3za tites uddei unud
seile ~~ 4ske sdsl Staboliz terbv ti3zen tbto uddu unby

bselfl slket ssdll dtaci dtos. 2tl ttud udene unbz
Eselvy skb5ine sdsn ta5do 4tess t6la itu uensd udors
{seme skbing sspendd  4tafd tess. tland tula uendite ubos

. sedmol e112 ss2t taiblo tethbe tle. tudar uerdil uioun

sen5at s3lat ssurba ta2l 3teu 3tled tudbi Jufa ulpe
. 4senc s2le ssbw tabla tex 3tles. tud2 uidfl uperbs

sendd sliths 2st. talben {toy thlet. dtue ugh3en ubpia

y J J NV Vv JS / Vv Vv
4137

Co»



\ X82 1IYPHENATION PATTERNS 81

upding utobmatic dving w5p y5lu
. u3dpl uSton ~ viell wrad ymbols » :
© up3p ud ton v3lodr wrid yzed

upports uted vilou writad yupad .
uptbidb udu vidp wish yn3chr
uptud wud ° vibro wedl yn5d
ulra uiv2 visdit vsdpe ynbg : :
dura. uxul video wait ynbic
udrag uzde videu dvt bynx
udras ~ 1lva dviti wd yiod 5 :
urdbe . bra, vitdr xia yobd
urcd ~~ 2viadd dvivy xacbe ydobg
urid vacbil viv xdago youd :
urefat  vacdu bvo. xand yobnet : :
urdfer vagd void .  =xdap ydons |
urdfir vadge Svok xasb ydos ;
wirif =: vablie vodla x3c2 yéped |

, uridfic valbo - vbole xie yperb
uriin valiu - Gvolt xedcuto yp
udrio vabmo Svoly x2ed y3po .

~~ ulrit vabniz vorS54i = xerdl y4poe
urdis vabpi vorbab zebro ypita
or2l - varbied  vorld x1h ybpu :
ur1bing, Svat ~~ vodry _° xhi2 yrabm :
urdno dve. volta xhilB yrb5ia -
arosd =~ dved ~ 4votee  xhud y3ro
urdpe veg3 dvvd x31 yrir x
urdpi viel. vidy - xiba yale Cl :
ursber  vel3ll whabl xibc y3s2e |
urbtes vedlo 2vac xi5d4 ys3ica
ur3the viely wvaSger xdinme yo3io |
urtid ven3om vag5o xibmiz 3ysis
urdtie vEenue waith x30 ydso :
udru vderd w5al. © xdod youd
2us . Bvere, wand x3p yelt = ;
ubsad vierel vardt xpandd ys3ta
uSsan , vieren wvasdt  xpectoS  ysurd,
usdap verSenc  walte xpe3d y3thin | .
usc? ~ wylderes wabver xit2 ytiic
us3ci verdie vib C0 x3td yiv :
use5a vermi4n weabrie xin zal
ubsia = 3verse veath3 xu3a z5a2b
ulsic verith weddn xx4 © zar?
usdlin vdels veot3 y5ac 41d
uslp dves. veeS5Y 3yard 2In
usSsl vesdta . weldl ySat ze4dn
usStere ~~vedte wier yib zedp
usitr vet3er wost3 yle zier
usu vedty wiley Y2ce zedro
usurd viball whid ycSer .. zotd
utadb Evian wi2 y3ch 2111
uldtat Eride. wil2 ychie 2411 |
dute. . Brided willSin  ycomd zdis ;

-~ 4utel dv3iden windde . ycotd 521
4uten Evides windg yid dza
utendi Svidi wird y5ee 1z0
44121 ° - v3it dwise yler zodm
ut481iz  wvibgn -  with3 ydert zobol
uitine vikd vizb yond ated
ut3ing  2vil wik yet 42122
utionSa  Svilit wldes  y5gi zdzy
udtis v3i3liz vl3in 4y3h

" Bubtiz viin vino ~~ yil
udtil 4vidna iwo2 y3la

© utSof v2ine woml yllaSbl

vite vin5d woven y3lo



| | Answers

moun-tain-ous vil-lain-ous |

| be-tray-al de-fray-al por-tray-al

hear-ken

ex-treme-ly su-preme-ly :
tooth-aches

bach-e-lor ech-e-lon

ritt-raft

anal-o-gous ho-mol-o-gous

gen-u-ine

any-place

co-a-lesce

fore-warn fore-word i
de-spair |

’ ant-arc-tic corn-starch

mast-odon BN

squirmed

82 |

,



~~ References |

[1] Knuth, Donald E. TEX and METAFONT, New Directions in Typesetting. Digital
Press, 1979,

[2] Webster's Third New International Dictionary. G. & C. Merriam, 1061.

[3] Knuth, Donald E. The WEB System of Structured Documentation. Preprint,
Stanford Computer Science Dept., September 1982.

[4] Knuth, Donald E. The Art of Computer Programming, Vol. 3, Sorting and
Searching. Addison-Wesley, 1973.

[5] Standish, T. A. Data Structure Techniques. Addison-Wesley, 1980.

[6] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. Algorithms and Data Structures.
Addison-Wesley, 1082.

[7] Bloom, B. Space/time tradeoffs in hash coding with allowable errors. CACM
. 13, July 1970, 422-436.

[8] Carter, L., Floyd, R., Gill, J., Markowsky, G., and Wegman, M. Exact and
approximate membership testers. Proc. 10th ACM SIGACT Symp., 1978, 59-
65.

[0] de la Briandais, Rene. File searching using variable length keys. Proc. Western
Joint Computer Conf. i5, 1959, 295-298.

[10] Fredkin, Edward. Trie memory. CACM 3, Sept. 1960, 490-500.
[11] Trabb Pardo, Luis. Set representation and set intersection. Ph.D. thesis, Stan.

ford Computer Science Dept., December 1078.

[12] Mehlhorn, Kurt. Dynamic binary search. SIAM J. Computing 8, May 1979,
175-198.

[13] Maly, Kurt. Compressed tries. CACM 19, July 1976, 409-415.

(14] Knuth, Donald E. TEX82. Preprint, Stanford Computer Science Dept., Septem-
ber 1982.

[15] Resnikoff, H. L. and Dolby, J. L. The nature of affixing in written English.
Mechanical Translation 8, 1965, 84-89. Part II, June 1966, 23-33.

[16] The Merriam-Webster Pocket Dictionary. G. & C. Merriam, 1974.

(17] Gorin, Ralph. SPELL.REG[UP,DOC] at SU-AL.

[18] Peterson, James L. Computer programs for detecting and correcting spelling
errors, CACM 23, Dec. 1980, 673-687.

83



84 REFERENCES J

[19] Nix, Robert, Experience with a space-efficient way to store a dictionary, CACM
24, May 1081, 207-298.

[20] Morris, Robert and Cherry, Lorinda L. Computer detection of typographical
| errors, IEEE Trans. Prof. Comm. PC-18, March 1975, 54-64.

[21] Downey, P., Sethi, R., and Tarjan, R. Variations on the common subexpression
problem. JACM 27, Oct. 1980, 758-771.

[22] Tarjan, R. E. and Yao, A. Storing a sparse table. CACM22, Nov. 1979, 606-611,

[23] Zeigler, S. F. Smaller faster table driven parser. Unpublished manuscript, Madi-
son Academic Computing Center, U. of Wisconsin, 1977.

[24] Aho, Alfred V. and Ullman, Jeffrey D. Principles of Compiler Design, sections
3.8 and 6.8. Addison-Wesley, 1977.

[25] Pfleeger, Charles P, State reduction in incompletely specified finite-state ma-
chines. IEEE Trans. Computers C-22, Dec. 1973, 1099-1102.

[26] Kohavi, Zvi. Switching and Finite Automata Theory, section 10-4, McGraw-
Hill, 1970. .

[27] Knuth, D. E., Morris, J. H., an1 Pratt, V. R. Fast pattern matching in string.
SIAM J. Computing 6, June 1977, 323-350.

[28] Aho, A. V. In R. V. Book (ed.), Formal Language Theory: Perspectives and

Open Problems. Academic Press, 1980. |

[29] Kucera, Henry and Francis, W. Nelson. Computational Analysis ofPresent-Day

American English. Brown University Press, 1967.

[30] Research and Engineering Council of the Graphic Arts Industry. Proceedings of
the 13th Annual Conference, 1963.

[31] Stevens, M. E. and Little, J. L. Automatic Typographic-Quality Typesetting
Techniques: A State-of-the-Art Review. National Bureau of Standards, 1967.

[32] Berg, N. Edward. Electronic Composition, A Guide to the Revolution in Type-
setting. Graphical Arts Technical Foundation, 1975.

[33] Rich, R. P. and Stone, A. G. Mcthod for hyphenating at the end of a printed
line. CACM 8, July 1965, 444-445.

[34] Wagner, M. R. The search for a simple hyphenation scheme. Bell Laboratories
Technical Memorandum MM-71-1371-8.

135) Gimpel, James F. Algorithms in Snobol 4. Wiley-Interscience, 1978,



REFERENCES | 85

[36] Ocker, Wolfgang A. A program to hyphenate English words. IEEE Trans, Prof.
| Comm. PC-18, June 1975, 78-84. a

[37] Moitra, A., Mudur, S, P., and Narwekar, A. W. Design and analysis of a hy-
phenation procedure. Software Prac. Exper. 9, 1979, 325-337.

[38] Lindsay, R., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J. DENDRAL,.
McGraw-Hill, 1980.


