August 1983 7 Report No. STAN-CS-83-977

Word Hy-phen-a-tion by Com-put-'er

Franklin Mark Liang

Depariment of Computer Science

Stanford University
- Stanford, CA 94305

. WORD HY-PHEN-A-TION BY COM-PUT-ER

Franklin Mark Liang
Department of Computer Science
Stanford University
Stanford, California 94305

Abstraet

This thesis describes research leading to an improved word hyphenation algo-
rithm for the TEX82 typesetting system. Hyphenation is viewed primarily as a data
compression problem, where we are given a dictionary of words with allowable divi-
sion points, and try to devise methods that take advantage of the large amount of
redundancy present.

The new hyphenation algorithm is based on the ldea of hyphenating and in-
hibiting patterns. These are simply strings of letters that, when they match in a
word, give us information about hyphenation at some point in the pattern. For
example, ‘~-tion’ and ‘c-c’ are good hyphenating patterns. An important feature of
this method is that a suitable set of patterns can be extracted automatical’y from
the dictionary.

In order to represent the set of patterns in a compact form that is also reasonably
efficient for searching, the author has developed a new data structure called a packed
trie. This data structure allows the very fast search times characteristic of indexed
tries, but in many cases it entirely eliminates the wasted space for null links usually
present in such tries. We demonstrate the versatility and practical advantages of
this data structure by using a variant of it as the critical component of the program
that generates the patterns from the dictionary. -

The resulting hyphenation algorithm uses about 4500 patterns that compile
into a packed trie occupying 25K bytes of storage. These patterns find 89% of the
hyphens in a pocket dictionary word list, with essentially no error. By comparison,
the uncompressed dictionary occupies over 500K bytes.

This research was supported in part by the National Science Foundation under grants IST-82-
01926 and MSC-88-00984, and by the System Development Foundation. ‘TgX’is a trademark
. of the American Mathematical Society.

WORD HY-PHEN-A-TION
BY COM-PUT-ER

A DISSERTATION
SUBMlTTEﬁ TO T!;I.E D?PARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
LV PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

by
Franklin Mark Liang

June 1983

. © Copyright 1983 |

by
Franklin Mark Liang

g8

Acknowledgments

I am greatly indebted to my adviser, Donald Knuth, for creating the research

© eavironment that made this work possible. When I began work on the TEX project

as a summer job, I would not have predicted that computer typesetting would

become such an active area of computer science research. Prof. Knuth's foresight

was to recognize that there were a number of fascinating problems in the field

waiting to be explored, and his pioneering efforts have stimulated many others to
think about these problems.

Tam also grateful to the Stanford Computer Science Department for providing
the facilities and the community that have formed the major part of my life for the
past several years,

I thank my readers, Luis Trabb Pardo and John Gill, as well as Leo Guibas
who served on my orals committee on short notice.

In addition, thanks to David Fuchs and Tom Pressburger for helpful advice
and encouragement,

Finally, this thesis is dedicated to my parents, for whom the experience of
pursuing a graduate degree has beea perhaps even more traumatic than it was for
myself.

Table of contents

Introductlon « < s ¢ o .06 06 s v b 6 0 e I S T |
Examples o ¢ ¢ 00060000 o s ss e e s B
TEX and hyphenation it isas e e s %
Time magazine algorithm 5 %8 oo ws a3 s %
Patterdd « « v o v 5 w's & & e T A TR R
Overviewof thesis TR EEEE T I

The dictionary problem R L F L I

Pataslrmebeted s 5. 0.5 % dscsinis s is s s smnmemmwiwen 9
Superimposedcoding ¢ . 0 b 0 e v b e e e e10
TR & o v 9w s e B 6 W N 5w e e R e e e e s
POl BIa0 o 56 s s oo o i wE 5 8 0§ R E e e e w28
BalBEComprasion . : « o5 5 65 F v s e R e e e I8
Dotived Sorml o s vin o ' m s AT AR b S B EE e a5l
Spellingchecksrs: . . &» o v s 4 5 ¢ p & ¢ 60 w00 000 5 ¢ o 39
Related'Work « ¢ s o70'v 0 o 4 6 5 & & 5§96 0 @ @ @ @e s o o 8

Hyphenation . . L .. lllllll . . . L 23
Finite-state machines with output e (g B B . % 2 a e B
Minimization with don’tcares R R e . o 24
Patternmatching e e e e e 26

Pattern generation Y EEE FF IR R, ..
Houwrlsties . i ¢ o o002 545 20670 s e s ea s is s el
Collecting pattern statistics e |
Dynamic packed teles . . v 5 « « v o o0 0 0.0 2 6 s ¢ 5 50 w0 32
Expeimentalves@lts "o o o 6 s ¢ v v e wien 8 6 o0 v 6 §ie e 34
Examples F R LR R R R Y s 37

Historyand Conclusion+ o+ .. T L EE 39

Appendbe: ., . 0 v b 4e v w8 b e R s s B G kB ow s 45
The PATGEN program . , e o sl s ched RS vooow w xildD
List Or pattem’ . . u. lllllll I R R L D I I Ta 8 e s 74

T References i v e e e e e u Ersten B RN e & 5 (o 8 83

Chapter 1 :

Introduction

= The work described in this thesis was inspired by the need for a word hyphen-
ation routine as part of Don Knuth’s TiX typesetting system [1]. This system was
initially designed in order to typeset Prof. Knuth's seven-volume series of books,
The Art of Computer Programming, when he became dissatisfied with the qual-
ity of computer typesetting done by his publisher. Since Prof. Knuth’s books were
to be a definitive treatise on computer science, he could not bear to see his schol-
arly work presented in an inferior manner, when the degradation was entirely due
to the fact that the material had been typeset by a computer!

Since then, TEX (also known as Tau Epsilon Chi, a system for technical text)
has gained wide popularity, and it is being adopted by the American Mathematical
Society, the world’s largest publisher of mathematical literature, for use in its jour-
nals. TEX is distinctive among other systems for word processing/document prepa-
ration in its emphasis on the highest quality output, especially for technical mate-
rial, _ :

One necessary component of the system is a computer-based algorithm for hy-
phenating English words. This is part of the paragraph justification routine, and it
is intended to eliminate the need for the user to specify word division points explic-
itly when they are necessary for good paragraph layout. Hyphenation occurs rela-
tively infrequently in most book-format printing, but it becomes rather critical in
narrow-column formats such as newspaper printing. Insufficient attention paid to
this aspect of layout results in Jarge expanses of unsightly white space, or (even
worse) in words split at inappropriate points, e.g. new-spaper.

Hyphenation algorithms for existing typesetting systems are usually either rule-
based or dictionary-based. Rule-based algorithms rely on a set of division rules such
as given for English in the preface of Webster’s Unabridged Dictionary [2]. These in-
. clude recognition of common prefixes and suflixes, splitting between double conso-
nants, and other more specialized rules. Some of the “rules” are not particularly

2 INTRODUCTION

amenable to computer implementation;.e.g. “splxt between the elements of a com-
pound word”. Rule-based schemes are inevitably subject to error, and they rarely
cover all possible cases. In addition, the task of finding a suitable set of mles in the
first place can be a difficult and lengthy project.

Dictionary-based routines siniply store an entire word list along with the allow-
able division points. The obvious disadvantage of this method is the excessive stor-
age required, as well as the slowing down of the justification process when the hy-
phenation routine needs to access a part of the dictionary on secondary store.

Examples

To demonstrate the importance of hyphenation, consider Figure 1, which shows
a paragraph set in three different ways by TEX. The Srst example uses TEX's nor-
mal paragraph justification parameters, but with the hyplienation routine turned
off. Because the line width in this example is rather narrow, TgX is unable to find
an acceptable way of justifying the paragraph, resulting in the phenomenon known
as an “overfull box”.

One way %o fix this problem is to increase the “stretchability” of the spaces be-
tween words, as shown in the second example. (TEX users: This was done by in-
creasing the stretch component of spaceskip to .5em.) The right margin is now
straight, as desired, but the overall spacing is somewhat loose,

In the third example, the hyphenation routine is turned on, and everything is

beautiful.

In olden times when wishin

till helped one, there lived a kin
hose daughters were all beautifl,
ut the youngest was so beautifu
hat the sun itsell, which has sce
o much, was astonished whenev
t shone in her face. Close b
he king's castle lay a great dar
orest, and under an old lime-tre
n the forest was a well, and whe
he day wns very warm, the king
hild went out into the forest an
at down by the side of the con
ountain, and when she was bore,
he took a golden ball, and thre
t up on high and caught it, an

his hall was her favorite plaything.

In olden times when wishing
still helped one, there lived &
king whose daughters were all
beautiful, but the youngest was
g0 beautiful that the sun lmlf
which has scen so much, was
astonished whenever it shone in
her fuce. Close by the king's
castle lay a great dark fcrest,
and under £ old lime-tree in
the forest was a well, and when
the day was very warm, the
king's child went out into the
forest and sat down by the side
of the cool fountain, and when
she was bored she took a golden
ball, and threw it up on high
and caught it, and this ball was
her favorite plaything.

In olden times when wish-
ing atill helped one, there lived
a king whose daughters were all
beautiful, but the youngest was
80 beautiful that the sun itself,
which has seen 50 much, was as-
tonished whenever it shone in her
face. Close by the king's castle
lay a great dark forest, and un-
der an old lime-tree in the forest
was a well, and when the day was
very warm, the king's child went
out into the forest and sat down
by the side of the cool fountain,
and when she was bored she took
& golden ball, and threw it up on
high and eaught it, and this ball
was her lavorite plaything.

Figure 1. A typical paragraph with and without hyphenation.

INTRODUCTION

sel-fadjoint as-so-ciate as-so-ci-ate
Pit-tsburgh prog-ress pro-gress
clearin-ghouse rec-ord . re-cord
fun-draising a-rith-me-tic ar-ith-met-ic
ho-meowners eve-ning even-ing
playw-right pe-ri-od-ic per-i-o-dic
algori-thm

wvalkth-rough in-de-pen-dent in-de-yend-ent
Re-agan tri-bune trib-une

Figure 2. Difficult hyphenations.

However, life is not always so simple. Figure 2 shows that hyphenation can be
difficult. The first column shows erroneous hyphenations made by various typeset-
ting systems (which shall remain nameless). The next group of cxamples are words
that hyphenate differently depending on how they are used. This happens most
commonly with words that can serve as both nouns and verbs. The last two ex-
amples show that different dictionaries do not a!wa-);a agree on hyphenaiion (in this
case Webster's vs. American Heritage).

TgX and hyphenation

The original TEX hyphenation algorithm was designed by Prof. Knuth and
the author in the summer of 1977. It is essentially a rule-based algorithm, with
three main types of rules: (1) suffix removal, (2) prefix removal, and (3) vowel-
consonant-consonant-vowel (vcev) breaking. The latter rule states that when the
pattern ‘vowel-consonant-consonant-vowel’ appears in a word, we can in most cases
split between the consonants, There are also many special case rules; for example,
“break vowel-q” or “break after ck”. Finally a small exception dictionary (about
300 words) is used to handle particularly objectionable errors made by the above
rules, and to hyphenate certain common words (e.g. pro-gram) that are not split by
the rules. The complete algorithm is described in Appendix H of the old TEX man-
ual,

In practice, the above algorithm has served quite well. Although it does not
find all possible division points in a word, it very rarely makes an error. Tests on a
pocket dictionary word list indicate that about 40% of the allowable hyphen points
are found, with 1% error (relative to the total number of hyphen points). The al-
- gorithm requires 4K 36-bit words of code, including the exception dictionary.

4 ol o INTRODUCTION

The goal of the present research was to develop a better hyphenation algo-
rithm. By “better” we mean finding more hyphens, with little or no error, and us-
ing as little additional space as possible. Recall that one way to perform hyphen-

. ation is to simply store the entire dictionary. Thus we can view our task as a data
compression problem. Since there is a good deal of redundancy in English, we can
hope for substantial improvement over the straightforward representation.

Another goal was to automate the design of the algorithm as much as pos-
sible. The coriginal TEX algorithm was developed mostly by hand, with a good
deal of trial and error. Extending such a rule-based scheme to find the remain-
ing hyphens seems very difficult. Furthermore such an effort must be repeated for
each new language. The former approach can be a problem even for English, be-
cause pronunciation (and thus hyphenation) tends to change over time, and be-
cause different types of publication may call for different sets of admissible hy-
phens,

Time magazine algorithm '

A number of approaches were considered, including methods that have been dis-
cussed in the literature or implemented in existing typesetting systems. One of the
methods studied was the so-called Time magazine algorithm, which is table-based
rather than rule-based.

The idea is to look at four letters surrounding each possible "reakpoint, namely
two letters preceding and two letters following the given point. However we do not
want to store a table of 264 = 456,976 entries representing all possible four-letter
combinations. (In practice only about 15% of these four-letter combinations actu-
ally occur in English words, but it is not immediately obvious how to take advan-
tage of this.)

Instead, the method uses three tables of size 262, corresponding to the two let-
ters preceding, surrounding, and following a potential hyphen point. That is, if
the letter pattern wx-yz occurs in a word, we look up three values correspond-
ing to the letter pairs wx, xy, and yz, and use these values to determine if we can
split the pattern. _

What should the three tables contain? In the Tiae algorithm the table values
were the probabilities that a hyphen could occur after, between, or before two given
letters, respectively. The probability that the pattern wx-yz can be split is then es-
timated as the product of these three values (as if the probabilities were indepen-

" dent, which they aren’t). Finally the estimated value is compared against a thresh-
old to determine hyphenation. Figure 3 shows an example of hyphenation proba-
bilities computed by this method.

INTRODUCTION 5

[.I.llll..l. Illlcl'l

SUPERCALIFRAGILISTICEXPIALIDOCIOUS

Figure 8. Hyphenation probabilities.

The advantage of this table-based approach is that the tables can be gen-
erated automatically from the dictionary. However, some experiments with the
method yiclded discouraging rcsults. One cstimate is 40% of the hyphens found,
with 8% error. Thus a large exception dictionary would be required for good per-
formance.

The reason for the limited performance of the above scheme is that just four let-
ters of context surrounding the potential break point are not enough in many cases.
In an extreme example, we might have to look as many as 10 letters ahead in or-
der to determine hyphenation, e.g. dem-on-stra-tion vs. de-mon-stra-tive.

So a more powerful method is necded. -

Patterns

A good deal of experimentation led the author to a more powerful method
based on the idea of hyphenation patterns. These are simply strings of letters that,
when they match in a word, will tell us how to hyphenate at some point in the pat-
tern. For example, the pattern ‘tion’ might tell us that we can hyphenate be-
fore the ‘t’. Or when the pattern ‘cc’ appears in a word, we can usually hy-
phenate between the c's. Here are some more examples of good hyphenating pat-
terns:

.in-d .in-8 .in-t .un-d b-s -cia con-s con-t e-ly er-1 er-m

ex- -ful it-t i-ty -less l-ly -ment n-co -ness n-f n-l1 n-si

n-v om-m -sjon s-ly s-nes ti-ca x-p

(The character *." matches the beginning or end of a word.) -

6 INTRODUCTION

Patterns have many advantages. They arc a general form of “hyphenation rule”
that can include prefix, suffix, and other rules as special cases. Patterns can even de-
scribe an exception dictionary, namely by using entire words as patterns. (Actu-
ally, patterns are often more concise than an exception dictionary because a sin-
gle pattern can handle several variant forms of a word; e.g. pro-gram, pro-grams,
and pro-grammed.) .

More importantly, the pattern matching approach has proven very effective. An
appropriate set of patterns captures very concisely the information needed to per-
form hyphenation. Yet the pattern rules are of simple enough form that they can
be generated automatically from the dictionary.

When looking for good hyphenating patterns, we soon discover that almost all
of them have some exceptions. Although -tion is a very “safe” pattern, it fails on
the word cat-ion. Most other cases are less clear-cut; for example, the common pai-
tern n-t can be hyphenated about 85 percent of the time. I¢ definitely seems worth-
while to use such pattefns, provided that we can deal with the exceptious in some
manner.

After choosing a set of hyphenating patterns, we may end up with thousands
of exceptions. Thee could be listed in an exception dictionary, but we soon no-
tice there are many similarities among the exceptions. For example, in the orig-
inal TEX algorithm we found that the vowel-consonant-consonant-vowel rule re-
sulted in hundreds of errors of the form X-Yer or X-Yers, for certain consonant
pairs XY, so we put in a new rule to prevent.those errors.

Thus, therc may be “rules” that can handle large classes of exceptions. To take
advaniage of this, patterns come to the rescue again; but this time they are inhibit-*
irg patterns, because they show where hyphens should not be placed, Some good ex-
amples of inhibiting patterns are: b=1y (don’t break between b and 1y), bs=, =cing,
io=n, i=tin, =18, nn=, ns=t, n=ted, =pt, ti=al, =tly, =ts, and tt=.

As it turns out, this approach is worth pursuing further. That is, after ap-
plving hypbenating and inhibiting patterns as discussed above, we might have an-
other set of hyphenaiing patterns, then another set of inhibiting patterns, and
gso on. We can think of cach level of patterns as being “exceptions to the ex-
ceptions” of the previous level. The current TEX82 algorithm uses five alternat-
ing levels of hyphenating and inhibiting patterns. The reasons for this will be ex-
plained in Chapter 4.

The idea of patterns is the basis of the new TEX hyphcnation algorithm, and
it was the inspiration for much of the intermediate investigation, that will be de-

scribed.

INTRODUCTION 7

Overview of thesis

In developing the pattern scheme, two main questions arose: (1) How can we
represent the set of hyphenation patterns in a compact form that is also reason-
ably efficicnt for searching? (2) Given a hyphenated word list, how can we gener-
ate a suitabie set of patterns?

To solve these problems, the author has developed a new data structure called
a patked trie. This data structure aliows the very fast search times characteris-
tic of indexed tries, but in many cases it entirely eliminates the wasted space for
null links usually present in such tries.

We will demonstrate the versatility and practical advantages of this data struc-
turc "1y using it not only to represent the hyphenation patterns in the final algo-
rithm, but also 43 the critical coniponcnt of the program that generates the pat-
terns from the dictionary. Packed tries have many other potential applications, in-
cluding identifier lookup, spelling checking, and lexicographic sorting.

Chapter 2 considers the simpler problem of recognizing, rather than hyphenat-
ing, a set of words such as a dictionary, and uses this problem to motivate and ex-
plain the advantages of the packed trie data structure. We also point out the close re-
lationship between tries and finite-state machines.

Chapter 3 discusses ways of applying these ideas to hyphenation. After con-
sidering various approaches, including minimization with don’t cares, we return to
the idea of patterns. -

Chapter 4 discusses the heuristic method used to select patterns, introduces dy-
namic packed tries, and describes some experiments with the pattern generation pro-«
gram,

Chapter 5 gives a bricf history, and mentions ideas for future rescarch.

Finally, the appendix contains the WEB [3] listing of the portable pattern gen-
eration program PATGEN, as well as the set of patterns currently used by TX82.

Note: The present chapter has been typeset by giving unusual instructions to
TgX so that it hyphenates words much more often than usual; therefore the reader
can see numerous examples of word breaks that were discovered by the new algo-

rithm.

Chapter 2

The dictionary problem

In this chapter we consider the problem of recognizing a set of words over au
alphabet. To be more precise, an alphabet is a set of characters or symbols, for
example the l.uwers A through Z, or the ASCII character set. A word is a sequence
of characters from the alphabet. Given a set of words, our problem is to design a
data structure that will allow us to determine cfficiently whether or not some word
is in the set.

In particular, we will usc spellinz checking as an example throughout this
chapter. This is a topic of interest in its own right, but we discuss it here because
the pattern matching techniques we propose will turn out to be very useful in our
hyphenation algorithm.

Our problem is a special case of the gencral set recognition problem, because the
elements of our set have the additional structure of being variable-length sequences
of symbols from a finite alphabet. This naturally suggests methods based on a
character-by-character examination of the key, rather than methods that operate
on the entire key at once. Also, the redundancy present in natural languages such as
English suggests additional opportunities for compression of the sct representation.

We will be especially interested in space minimization. Most data structures for
set 1epresentation, including the one we propose, are reasonably fast for searching.
That is, a search for a key doesn’t take much more time than is needed to examine
the key itself. However, most of these algorithms assume that everything is “in
core”, that is, in the primary memory of the computer. In many situations, such
as our spelling checking example, this is not feasible. Since secondary memory
access times are typically much longer, it is worthwhile to try compressing the data
structure as much as possible.

In addition to determining whether a given word is in the set, there are other
operations we might wish to perform on the sct representation. The most basic are
insertion and deletion of words from the set. More complicated operations include
performing the union of two scts, partitioning a set according to some criterion,

THE DICTIONARY PROBLEM 9

determining which of several sets an element is a member of, or operations based
on an ordering or other auxiliary information associated with the keys in the set.
For the data structures we consider, we will pay some attention to methods for
insertion and deletion, but we shall not discuss the more complicated operations.

We first survey some known methods for set representation, and then propose
a new data structure called a “packed trie”.

Data structures

Methods for set representation include the following: sequential lists, sorted
lists, binary search trees, balanced trees, hashing, superimposed coding, bit vec-
tors, and digital search trees (also known as tries). Good discussions of these data
structures can be found in a number of texts, including Knuth [4], Standish [5], and
AHU [6]. Below we make a few remarks about each of these representations.

A sequential list is the most straightforward representation. It requires both
space and search time proportional to the number of characters in the dictionary.

A sorted list assumes an ordering on the keys, such as alphabetical order.
Binary search allows the search time to be reduced to the logarithm of the size of
the dictionary, but space is not reduced. o

A binary search tree also allows search in logarithmic time. This can be thought
of as a more flexible version of a sorted list that can be optimized in various ways.
For example if the probabilities of searching for different keys in the tree are known,
then the tree can be adapted to improve the expected search time. Search trees
can also handle insertions and deletions easily, although an unfavorable sequence of
such operations may degrade the performance of the tree.

Balanced tree schemes (including AVL trees, 2-3 trees, and B-trees) correct
the above-mentioned problem, so that insertions, deletions, and searches can all
be performed in logarithmic time in the worst case. Variants of trees have other
nice properties, too; they allow merging and splitting of sets, and priority queue
operations. B-trees are well-suited to large applications, because they are designed
to minimize the number of secondary memory accesses required to perform a search.
However, space utilization is not improved by any of these tree schemes, and in fact
it is usually increased because of the need for extra pointers.

Hashing is an essentially different approach to the problem. Here a suitable
randomizing function is used to compute the location at which a key is stored.
Hashing methods are very fast on the average, although the worst case is linear;
fortunately this worst case almost never happens.

An interesting variant of hashing, called superimposed coding, was proposed
by Bloom [7] (see also [4, §6.5], [8]), and at last provides for reduction in space,

10 TIIE DICTIONARY PROBLEM

although at the expense of allowing some error. Since this method is perhaps less
well known we give a description of it here.

Superimposed coding

The idea is as follows. We use a single large bit array, initialized to seros, plus
a suitable set of d different hash functions. To represent a word, we use the hash
functions to compute d bit positions in the large array of bits, and set these bits to
ones. We do this for each word in the set. Note that some bits may be set by more
~ than one word.

Fo test if a word is in the set, we compute the d bit positions asso.iated with
the word as above, and check to see if they are all ones in the array, If any of
them are zero, the word cannot be in the set, so we reject it. Otherwise if all of
the bits are ones, we accept the word. However, some words not in the set might
be erroneously accepted, if they happen to hash into bits that are all “covered” by
words in the set. ';

It can be shown [7] that the above rscheme makes the best use of space when the
density of bits in the array, after all the words have been inserted, is approximately
one-half. In this case the probability that a word not in the set is erroneously
accepted is 279, For example if each word is hashed into 4 bit positions, the error
probability is 1/16. The required size of the bit array is approximately ndlge,
where n is the number of items in the set, and lge =~ 1.44,

In fact Bloom specifically discusses automatic hyphenation as an application
for his scheme! The scenario is as follows. Suppose we have a relatively compact
routine for hyphenation that works correctly for-90 percent of the words in a large
dictionary, but it is in error or fails to hyphenate the other 10 percent. We would
then like some way to test if a word belongs to the 10 percent, but we do not have
room to store all of these words in main memory. If we instead use the superimposed
coding scheme to test for these words, the space required can be much reduced. For
example with d = 4 we only need about 6 bits per wcrd. The penalty is that some
words will be erroncously identified as being in the 10 percent. However, this is
acceptable because usually the test word will be rejected and we can then be sure
that it is not one of the exceptions. (Either it is in the other 90 percent or it is not
in the dictionary at all.) In the comparatively rare case that the word is accepted,
we can go to secondary store, to check explicitly if the word is one of the exceptions.

The above technique is actually used in some commercial hyphenation routines.
For now, however, TiX will not have an external dictionary. Instead we will require
that our hyphenation routine be essentially free of error (although it may not achieve
. complete hyphenation).

THE DICTIONARY PROBLEM 11

An extreme case of superimposed coding should also be mentioned, namely the
bit-vector representation of a set. (Imagine that each word is associated with a single
bit position, and one bit is allocated for each possible word.) This representation is

~often very convenient, because it allows set intersection and union to be performed
by simple logica! operations. But it also requires space proportional to the size of
the universe of the set, which is impractical for words longer than three or four

characters,

Tries
_The final class of data structures we will consider are the digital search trees,

first described by de la Briandais [9] and Fredkin [10]. Fredkin also introduced the
term “trie” for this class of trees. (The term was derived from the word retrieval,
although it is now pronounced “try”.)

Tries are distinct from the other data structures discussed so far because they
explicitly assume that the keys are a sequence of values over some (finite) alphabet,
rather than a single indivisible entity. Thus tries are particularly well-suited for
handling variable-length keys. Also, when appropriately implemented, tries can
provide compression of the set represented, because common prefixes of words are
combined together; words with the same prefix follow the same search path in the
trie.

A trie can be thought of as an m-ary tree, where m is the number of characters
in the alphabet. A scarch is performed by examining the key one character at a
time and using an m-way branch to follow the appropriate path in the trie, starting
at the root. : '

We will use the set of 31 most common English words, shown below, to illustrate

different ways of implementing a trie.

A FOR IN THE

~ AND FROM IS THIS
ARE HAD IT TO
AS HAVE NOT WAS
AT HE OF WHICH
BE HER ON WITH
BUT HIS OR YOU
BY I THAT

Figure 4. The 81 most common English words.

12

THE DICTIONARY PROBLEM

~
- A B
6 @
)
/[
| @ ©
Oy
® ® ®
OO
D ®
E @
I O ® ®
D ©
Q
W @
O
D ©

Figure 5. Linked trie for the 31 most common English words.

THE DICTIONARY PROBLEM . 13

Figure 5 shows a linked trie representing this set of words. In a linked Ha,
the m-way branch is performed using a sequential series of comparisons. Thus in
Figure 5 each node represents a yes-no test against a particular character. There

.are two link fields indicating the next node to take depending on the ouicome of

the test. On a ‘yes’ answar, we also move to the next character of the key. The
underlined characters are terminal nodes, indicated by an extra bit in the node. If
the word ends when we are at a terminal node, then the word is in the set,

Note that we do not have to actually store the keys in the trie, because each
node implicitly represents a prefix of a word, namely the sequence of characters
leading to that node.

A linked trie is somewhat slow because of the sequential testing required for
each character of the key. The number of comparisons per character can be as large
as m, the size of the alphabet. In addition, the two link fields per node are somewhat
wasteful of space. (Under certain circumstances, it is possible to eliminate one of
these two links, We will explain this later.)

In an indezed trie, the m-way branch is performed using an array of size m.
The elements of the array are pointers indicating the next family of the trie to
go to when the given character is scanned, where a “family” corresponds to the
group of nodes in a linked trie for testing a particular character of the key. When
performing a search in an indexed trie, the appropriate pointer can be accessed by
simply indexing from the base of the array. Thus search will be quite fast.

But indexed tries typically waste a lot of space, because most of the arrays have
only a few “valid” pointers (for words in the trie), with the rest of the links being
null. This is especially common near the bottom of the trie. Figure 6 shows an
indexed trie for the set of 31 common words. This representation requires 26 x 32 =
832 array locations, compared to 59 nodes for the linked trie.

Various methods have been proposed to remedy the disadvantages of linked
and indexed tries. Trabb Pardo [11] describes and analyzes the space requirements
of some simple variants of binary tries. Knuth [4, ex. 6.3-20] analyzes a composite
method where an indexed trie is used for the first few levels of the trie, switching to
sequential search when only a few keys remain in a subtrie. Mehlhorn [12] suggests
using a Linary search tree to represent each family of a trie. This requires storage
proportional to the number of “valid” links, as in a linked trie, but allows each
character of the key to be processed in at most logm comparisons. Maly [13] has

-proposed a “compressed trie” that uses an implicit representation to eliminate links
entirely. Each level of the trie is represented by a bit array, where the bits indicate
whether or not some word in the sel passes through the node corresponding to

14

O 0 O AW N e

W W WA NN BN NN DNNN-RN = = e
Muoomqom.bmun_oomqamzas::s

THE DICTIONARY PROBLEM

ABCDEFGRIJKLMNOPQRSTUYVYXYS?Z2
2[5 7] 1116 1719] | 20 24] [a1
3 4/0(0
0
0
0 6 0
0
8)
0
10
0
12 14 16
0 13
0
0
0
0 0|0
18
0
0 0 0
21 0
22 0 23
0
il
25 26]29
0
27
28
: 1
30
0
32
0

Figure d'.. Indezed trie for the 81 most common English words.

TIE DICTIONARY PROBLEM 15

that bit, In addition each family contains a field indicating the number of nonsero
bits in the array for all nodes to the left of the current family, so that we can find
the desired family on the next level. The storage required for each family is thus
‘reduced to m+log n bits, where n is the tota! number of keys. However, compressed
tries cannot handle insertions and deletions easily, nor do they retain the speed of

indexed tries.

Packed tries
Our idea is to use an indexed trie, but to save the space for null links by

packing the different families of the trie into a single large array, so that links from
one family may occupy space normally reserved for links for other families that
happen to be null. An example of this is illustrated below.

(Al [e] [e]
le] [z]

(In the following, we will sometimes refer t6 families of the indexed trie as
states, and pointers as fransitions. This is by analogy with the terminology for
finite-state machines.)

When performing a search in the trie, we need a way to check if an indexed
pointer actually corresponds to the current family, or if it belongs to some other
family that just happens to be packed in the same location. This is done by ad-
ditionally storing the character indexing a transition along with that transition.
Thus a transition belongs to a state only if its character matches the character we
are indexing on. This test always works if one additional requirement is satisfied,
namely that different states may not be packed at the same base location.

The trie can be packed using a first-fit method. That is, we pack the states
one at a time, putting each state into the lowest-indexed location in which it will
fit (not overlapping any previously packed transitions, nor at an already occupied
base location). On numerous examples based on typical word lists, this heuristic
works extremely well. In fact, nearly all of the holes in the trie are often filled by

= [afcclrlE]

transitions from cther states.

Figure 7 shows the result when the indexed trie of Figure 6 is packed into
a single array using the first-fit method. (Actnally we have used an additional
compression technique called suffix compression before packing the trie; this will be
explained in the next section.) The resulting trie fits into just 60 locations. Note

16 X THE DICTIONARY PROBLEM

0:0.1"2 8-4 5 B T 8 9
00 A 8(B11 D O|F 3|E_0|H30(I23

10 |[C 6 H O(N25|032|E_O 012|M O
20,. T33(R14|N 1|W46|T _0|Y37|R 2(S O|T 0|0 6
30 (R 0(A29|U 4|D 0(S O(E12|Y O(N O(F O|I15
40 [0 4]|H44|S O/T O|I 7|A 4|N OfA15|0 O|E O]
50 |R_O Uo

V 2|038|I15(H35|I36|T 5

Figure 7. Packed trie for the 31 most common English words.

that the packed trie is a single large array; the rows in the figure should be viewed
as one long row. -

As an example, here's what happens when we search for the word HAVE in the
packed trie. We associate the values 1 through 26 with the letters A through Z.
The root of the trie is packed at location 0, so we begin by looking at location 8
corresponding to the letter H, Since ‘H30’ is stored there, this is a valid transition
and we then go to location 30. Indexing by the letter A, we look in location 31,
which tells us to go to 29. Now indexing by V gets location 51, which points to 2.
Finally indexing by E gets location 7, which is underlined, indicating that the word
HAVE is indeed in the set,

Suffix compression

A big advantage of the trie data structure is that common prefixes of words
are combined automatically into common paths in the trie. This provides a good
dzal of compression. To save more space, we can try to take advantage of common
suffixes.

TIE DICTIONARY PROBLEM 17

One way of doing this is to construct a trie in the usual manner, and then merge
common subtries together, starting from the leaves (heveu) and working upward.
We call this process suffiz compression.

For example, in the linked trie of Figure 5 the terminal nodes for the words
HIS and THIS, both of which test for the letter S and have no successors, can be
combined into a single node. That is, we can let their parent nodes both point
to the same node; this does not change the set of words accepted by the trie. It
turns out that we can then combine the parent nodes, since both of them test for I
and-go to the 8 node if successful, otherwise stop (no left successor). However, the
grandparent nodes (which are actually siblings of the I nodes) cannot be combined
even though they both test for E, because one of them goes to a terminal R node
upon success, while the other has no right successor.

With a larger set of words, a great deal of merging can be possible. Clearly all
leaf nodes (nodes with no successors) that test the same character can be combined
together. This alone saves a number of nodes equal to the number of words in the
dictionary, minus the number of words that are prefixes of other words, plus at most
26. In addition, as we might expect, longer suffixes such as -1y, -ing, or -tion can
frequently be combined.

The suffix compression process may sound complicated, but actually it can
be described by a simple recursive algorithm. For each node of the trie, we first
compress each of its subtries, then determine if the node can be merged with some
other node. In effect, we traverse the trie in depth-first order, checking each node
to see if it is equivalent to any previously seen node. A hash table can be used to
identify equivalent nodes, based on their (merged) transitions.

The identification of nodes is somewhat casicr using a binary tree representation
of the trie, rather than an m-ary representation, because each node will then have
just two link ficlds in addition to the character and output bit. Thus it will be
convenient to use a tinked trie when performing suffix compression. The linked
representation is also more convenient for constructing the trie in the first place,
because of the ease of performing insertions. _

After applying suffix compression, the trie can be converted to an indexed
irie and packed as described previously. (We should remark that performing suffix
compression on a linked trie can yield some additiona' ~ompression, because trie
families can be partially merged. However such compression is lost when the trie is
converted to indexed form.)

The author has performed numerous experiments with the ahove ideas. The re-
sults for some representative word lists are shown in Table 1 below. The last three

18 THE DICTIONARY PROBLEM

columns show the number of nodes in the linked, suffix-compressed, and packed
tries, respectively. Each transition of the packed trie consists of a pointer, a char-
acter, and a bit indicating if this is an accepting transition.

word list words characters linked compressed packed

pascal 35 145 125 104 120
murray 2720 19,144 8039 4272 4285
pocket 31,036 247,612 92,339 38,619 38,638
unabrd 235,545 2,250,805 759,045 — —

Table 1. Suffiz-compreased pucked tries.

The algorithms for building a linked trie, suffix compression, and first-fit pack-
ing are used in TEX82 to preprocess the set of hyphenation patterns into a packed
trie used by the hyphenation routine. A WEB description of these algorithms can be
found in [14],

Derived forms

Most dictionaries do not list the most common derived forms of words, namely
regular plurals of nouns and verbs (-8 forms), participles and gerunds of verbs (-ed
and -ing forms), and comparatives and superlatives of adjectives (-er and -est).
This makes sense, because a user of the dictionary can easily determine when a word
possesses one of these regular forms. However, if we use the word list from a typical
dictionary for spelling checking, we will be faced with the problem of determining
when a word is one of these derived forms.

Some spelling checkers deal with this problem by attempting to recognize af-
fixes. This is done not only for the derived forms mentioned above but other com-
mon variant forms as well, with the purpose of reducing the number of words that
have to be stored in the dictionary. A set of logical rules is used to determine when
certain prefixes and suflixes can be stripped from the word under consideration.

However such rules can be quite complicated, and they inevitably make errors.
The situation is not unlike that of finding rules for hyphenation, which should
not be surprising, since aflix recognition is an important part of any rule-based
hyphenation algorithm. This problem has been studied iu some detail in a series of
papers by Resnikoff and Dolby [15].

Since affix recognition is diflicult, it is preferable to base a spelling checker on
a complete werd list, including all derived forms. However, a lot of additional space
will be required to store all of these forms, even though much of the added data is

THE DICTIONARY PROBLEM - 19

redundant. We might hope that some appropriate method could provide substan-
tial compression of the expanded word list. It turns out that suffix-compressed tries
handle this quite well. When derived forins were added to our pocket dictionary
word list, it increased in size to 49,858 words and 404,946 characters, but the result-
ing packed trie only increased to 46,553 transitions (compare the pocket dictionary
statistics in Table 1).

~Hyphenation programs also need to deal with the problem of derived forms.
In our pattern-matching approach, we intend to extract the hyphenation rules au-
tomatically from the dictionary. Thus it is again preferable for our word list to
include all derived forms.

The creation of such an expanded word list required a good deal of work.
The author had access to a computer-readable copy of Webster’s Pocket Dictionary
[16], including parts of speech and definitions. This made it feasible to identify
nouns, verbs, etc., and to generate the appropriate derived forms mechanically.
Unfortunately the resulting word lists required extensive editing to eliminate many
never-used or somewhat nonscnsical derived forms, e.g. ‘informationa’.

Spelling checkers

Computer-based word processing system:s nave recently come into widespread
use. As a result there has been a surge of interest in programs for automatic spelling
checking and correction. Here we will consider the dictionary representations used
by some existing spelling checkers.

One of the carliest programs, designed for a large timesharing computer, was
the DEC-10 SPELL program written by Ralph Gorin [17]. It uses a 12,000 word
dictionary stored in main memory. A simple hash function assigns a unique ‘bucket’
to each word depending on its length and the first two characters. Words in the
same bucket are listed sequentially. The number of words in cach bucket is relatively
small (typically 5 to 50 words), so this representation is fairly efficient for searching.
In addition, the buckets provide convenicnt access to groups of similar words; this
is useful when the program tries to correct spelling errors.

The dictionary used by SPELL does not contain derived forms. Instead some
simple alfix stripping rules are normally used; the author of the program notes that
these are “error-prone”.

Another spelling checker is described by James L. Peterson [18]. His program
uses three separate dictionaries: (1) a small list of 258 common English words, (2)
a dynamic ‘cache’ of about 1000 document-specific words, and (3) a large, compre-
hensive dictionary, stored on disk. The list of common words (which is static) is
represcnted using a suflix-compressed linked trie. The dynamic cache is maintained

20 THE DICTIONARY PROBLEM

using a hash table. Both of these dictionaries are kept in main memory for speed.
The disk dictionary uses an in-core index, so that at most one disk access is required
per search.

Robert Nix [19] describes a spelling checker based on the superimposed coding
method. He reports that this method allows the dictionary from the SPELL pro-
gram to be compressed to just 20 percent of its original size, while allowing 0.1%
chance of error.

A considerably different approach to spelling checking was taken by the TYPO
program developed at Bell Labs [20]. This program uses digram and trigram fre-
quencies to identily “improbable” words. After processing a document, the words
are listed in order of decreasing improbability for the user to peruse. (Words ap-
pearing in a list of 2726 common technical words are not shown.) The authors
report that this format is “psychologically rewarding”, because many errors are
found at the beginning, inducing the user to continue scanning the list until errors
become rare. .

In addition to the above, there have recently been a number of spelling checkers
developed for the “personal computer” market. Decause these programs run on
small microprocessor-based systems, it is especially important to reduce the size of
the dictionary. Standard techniques include hash coding (allowing some error), in-
core caches of common words, and special codes for common prefixes and suffixes.
One program first constructs a sorted list of all words in the document, and then
compares this list with the dictionary in a single sequential pass. The dictionary
can then be stored in a compact form suited for sequential scanning, where each
word is represented by its diffcrence from the previous word.

Besides simply detecting when words are not in a dictionary, the design of a
practical spelling checker involves a number of other issues. For cxample many
spelling checkers also try to perform spelling correction. This is usually done by
searching the dictionary for words similar to the misspelled word. Errors and sug-
gested replacements can be presented in an interactive fashion, allowing the user to
sce the context from the document and make the necessary changes. The contents
of the dictionary are of course very important, and each user may want to modifly
the word list to match his or her own vocabulary. Finally, a plain spelling checker
cannot detect problems such as incorrect word usage or mistakes in grammar; a
more sophisticated program performing syntactic and perhaps semantic analysis of
the text would be necessary.

THE DICTIONARY PROBLEM . 21

Conclusion and related ideas

The dictionary problem is a fundamental problem of computer science, and
it has many applications besides spelling checking. Most data structures for this
problem consider the clements of the set as atomic entities, fitting into a single com-
puter word. However in many applications, particularly word processing, the keys
are actually variable-length strings of characters. Most of the standard techniques
are somcewhat awkward when dealing with variable length keys. Only the trie data
structure is well-suited for this situation.

We have proposed a variant of tries that we call a packed trie. Search in a
packed trie is performed by indexing, and it is therefore very fast. The first-fit
packing technique usually produces a fairly compact representation as well.

We have not discussed how to perform dynamic insertions and deletions with a
packed trie. In Chapter 4 we discuss a way to handle this problem, when no suffix
compression is used, by repacking states when necessary.

The idea of suffix compression is not new. As mentioned, Peterson’s spelling
checker uses this idea also. But in fact, if we view our trie as a finite-state machine,
suffix compression is equivalent to the well-known idea of state minimization. In
our case the machine is acyclic, that is, it has no loops. ;

Suffix compression is also closcly related to the common subexpression problem
from compiler theory. In particular, it can be considered a special case of a problem
called acyclic congruence closure, which has been studied by Downey, Sethi, and
Tarjan [21]. They give a lincar-time algorithm for suffix compression that does not
usc hashing, but it is somewhat complicated to implement and requires additional
data structures, 8

The idea for the first-fit packing method was inspired by the paper “Storing a
sparse table” by Tarjan and Yao [22]. The technique has been used for compressing
parsing tables, as discussed by Zeigler (23] (sce also [24]). However, our packed
trie implementation differs somewhat from the applications discussed in the above
references, because of our emphasis on space minimization. In particular, the idea
of storing the character that indexes a transition, along with that transition, sccms
to be new. This has an advantage over other techniques for distinguishing states,
such as the use of back pointers, because the character requires fewer bits.

The paper by Tarjan and Yao also contains an interesting theorem character-
izing the performance of the first-fit packing method. They consider a modification
suggested by Zeigler, where the states are first sorted into decreasing order based
on the number of non-null transitions in cach state. The idea is that small states,
which can be packed more casily, will be saved to the end. They prove that if the

22 TILE DICTIONARY PROBLEM

distribution of transitions among states satisfies a “harmonic decay” condition, then
essentially all of the holes in the first-fit packing will be filled.

More precisely, let n({) be the total number of non-null transitions in states with
more than [transitions, for [> 0. If the harmonic decay property n(l) < n/(l + 1)
is satisfied, then the first-fit-decreasing packing satisfies 0 < b(¢) < n for all #, where
n = n(0) is the total number of transitions and b(s) is the base location at which
theﬂith state is packed.

The above theorem does not take into account our additional restriction that
no two states may be packed at the same base location. When the proof is modified
to include this restriction, the bound goes up by a factor of two. However in practice
we scem to be able to do much better.

The main reason for the good performance of the first-fit packing scheme is
the fact that there are usually enough single-transition states to fill in the holes
created by larger states. It is not recally necessary to sort the states by number of
transitions; any packing order that distributes large and small states fairly evenly
will work well. We have found it convenicnt simply to use the order obtained by
traversing ‘he linked trie.

Improvements on the algorithms discussed in this chapter are possible in certain
cases. If we store a linked trie in o specific traversal order, we can eliminate one
of the link fields. For example, if we list the nodes of the trie in preorder, the left
successor of a node will always appear inmediately after that node. An extra bit is
used to indicate that a node has no left successor. Of course this technique works
for other types of trees as well. &

If the word list is already sorted, linked trie insertion can be performed with
only a small portion of the tric in memory at any time, namely the portion along
the current insertion path. This can be a great advantage if we are are processing
a large dictionary and cannot store the entire linked trie in memory.

Chapter 8

Hyphenation

" Let us now try to apply the ideas of the previous chapter to the problem of
hyphenation, TEX82 will use the pattern matching method described in Chapter 1,
but we shall first discuss some related approaches that were considered.

Finite-state machines with output

We can modify our trie-based dictionary representation to perform hyphenation
by changing the output of the trie (or finite-state machine) to a multiple-valued
output indicating how the word can be hyphenated, instead of just a binary yes-no
output indicating whether or not the word is in the dictionary. That is, instead of
associating a single bit with each trie transition, we would have a larger “output”
field indicating the hyphenation “action” to be taken on this transition. Thus on
recognizing the word hy-phen-a-tion, the output would say “you can hyphenate
this word after the second, sixth, or seventh letters”.

To represent the hyphenation output, we could simply list the hyphen positions,
or we could use a bit vector indicating the allowable hyphen points. Since there
are only a few hundred different outputs and most of them occur many times, we
can save some space by assigning each output a unique code and storing the actual
hyphen positions in a separate table.

To conveniently handle the variable number of hyphen positions in outputs,
we will use a linked representation that allows different outputs to share common
portions of their output lists. This is implemented using a hash table containing
pairs of the form (output, nezt), where output is a hyphenation position and nezt
is a (possibly null) pointer to another entry in the table. To add a new output list
to the table, we hash ecach of its outputs in turn, making each output point to the
previous one. Interestingly, this process is quite similar to suffix compression. '

The trie with hyphenation output can be suffix-compressed and packed in the
same manner as discussed in Chapter 2. Because of the greater variety of out-
puts more of the subtries will be distinct, and there is somewhat less compression.

23

24 . : HYPIIENATION

From our pocket dictionary (with hyphens), for example, we obtained a packed trie
occupying 51,699 locations.

We can improve things slightly by “pushing outputs forward”. That is, we can
output partial hyphenations as soon as possible instead of waiting until the end of
the word. This allows some additional suffix compression.

For example, upon scanning the letters hyph at the beginning of a word, we
can already say “hyphenate after the second letter” because this is allowed for all
words beginning with those letters. Note we could not say this after scanning j. at
hyp, because of words like hyp-not-ic. Upon further scanning ena, we can say
“hyphenate after the sixth letter”.

When implementing this idea, we run into a small problem. There are quite
a few words that are prefixes of other words, but hyphenate differently on the
letters they have in common, e.g. ca-ret and care-tak-er, or as-pi-rin and as-
pir-ing. To avoid losing hyphenation output, we could have a separate output
whenever an end-of-word bit appears, but a simpler method is to append an erd-of-
word character to each word before inserting it into the trie., This increases the size
of the linked trie considerably, but suffix compression merges most of these nodes
together.

With the above modifications, the packed trie for the pocket dictionary was
reduced to 44,128 transitions.

Although we have obtained substantial compression of the dictionary, the result
is still too large for our purposes. The problem is that as long as we insist that
only words in the dictionary be hyphcnated, we cannot hope to reduce the space
required to below that needed for spelling checking alone. So we must give up this
restriction.

For example, we could eliminate the end-of-word bit. Then after pushing out-
puts forward, we can prune branches of the trie for which there is no further output.
This would reduce the pocket dictionary trie to 35,429 transitions.

Minimization with don’t cares

In this section: we describe a more drastic approach to compression that takes
advantage of situations where we “don’t care” what the algorithm does.

As previously noted, most of the states in an indexed trie are quite sparse;
that is, only a few of the characters have explicit transitions. Since the missing
transitions are never accessed by words in our dictionary, we can allow them to be
filled by arbitrary transitions.

HYPHENATION 25

This should not be confused with the overlapping of states that may occur in
the trie-packing process. Instead, we mean that the added transitions will actually
become part of the state,

There are two ways in which this might allow us to save more space in the min-
imization process. First, states no longer have to be identical in order to be merged;
they only have to agree on those characters where both (or all) have explicit transi-
tions. Second, the merging of non-equivalent states may allow further merging that
was not previously possible, because some transitions have now become equivalent.

For example, consider again the trie of Figure 5. When discussing suffix com-
pression, we noted that the terminal S nodes for the words HIS and THIS could be
merged together, but that the parent chains, each containing transitions for A, E,
and I, could not be completely merged. However, in minimization with don’t cares
these two states can be merged. Note that such a merge will require that the DV
state below the first A be merged with the T below the second A; this can be done
because those states have no overlapping transitions,

As another example, notice that if the word AN were added to our vocabulary,
then the NRST chain succeeding the root A node could be merged with the NST chain
below the initial I node. (Actually, it doesn’t make much sense to do minimization
with don’t cares on a trie used to recognize words in a dictionary, but we will ignore
that objection for the purposes of this example.)

Unfortunately, trie minimization with don’t cares seems more complicated than
the suffix-compression process of Chapter 2. The problem is that states can be
merged in more than one way. That is, the collection of mergeable states no longer
forms an equivalence relation, as in regular finite-state minimization. In fact, we
can sometimes obtain additional compression by allowing the same state to appear
more than once. Another complication is that don’t care merges can introduce
loops into our trie.

Thus it seems that finding the minimum size trie will be difficult. Pfleeger
[25] has shown this problem to be NP-complete, by transformation from graph
coloring; however, his construction requires the number of transitions per state to
be unbounded. It may be possible to remove this requirement, but we have not
proved this.

So in order to experiment with trie minimization with don’t cares, we have
made some simplifications. We start by performing suffix compression in the usual
manner. We then go through the states in a bottom-up order, checking each to
see if it can be merged witk any previous state by taking advantage of don't cares.
Note that such merges may require further merges among states already seen.

26 HYPHENATION

We only try merges that actually save space, that is, where explicit transitions
are merged. Otherwise, states with only a few transitions are very likely to be
mergeable, but such merges may constrain us unnecessarily at a later stage of the
. minimization. In addition, we will not consider having multiple copies of states.

Even this simplified algorithm can be quite time consuming, so we did not try it
on our pocket dictionary. On a list of 2726 technical words, don’t care minimization
reduced the number of states in the suflix-compressed, output-pruned trie from
1685 to just 283, while the number of transitions was reduced from 3627 to 2427.
However, because the resulting states were larger, the first-fit packing performed
rather poorly, producing a packed trie with 3408 transitions. So in this case don't
care minimization yielded an additional compression of less than 10 percent.

Also, the behavior of the resulting hyphenation algorithm on words not in the
dictionary became rather unpredictable. Once a word leaves the “known” paths of
the packed ‘trie, strange things might happen!

We can get even wilder effects by carrying the don't care assumption one step
further, and eliminating the character field from the packed trie altogether (leaving
just the output and trie link). Words in the dictionary will always index the correct
transitions, but on other words we now have no way of telling when we have reached
an invalid trie transition.

It turns out that the problem of state minimization with don’t cares was studied
in the 1960s by electrical engineers, who called it “minimization of incompletely
specified sequential machines” (sce e.g. [26]). However, typical instances of the
problem involved machines with only a few states, rather than thousands as in
our case, so it was often possible to find a minimized machine by hand. Also, the
emphasis was on minimizing the number of states of the machine, rather than the
number of state transitions.

In ordinary finite-state minimization, these are equivalent, but don’t care min-
imization can actually introduce extra transitions, for example when states are
duplicated. In the old days, finite-state machines were implemented using combina-
tional logic, so the most important consideration was to reduce the number of states.
In our trie representation, however, the space used is proportional to the number
of transitions. Furthermore, finite-state machines are now often implemented using
PLA’s (programmed logic arrays), for which the number of transitions is also the

best measure of space.

Pattern matching
Since trie minimization with don’t cares still doesn’t provide sufficient compres-

sion, and since it lead - to unpredictable behavior on words not in the dictionary,

HYPHENATION 27

we need a different approach. It seems ~xpensive to insist on complete hyphenation
of the dictionary, so we will give up this requirement. We could allow some errors;
or to be safer, we could allow some hyphens to be missed.

We now return to the pattern matching apprcach described in Chapter 1. Some
further arguments as to why this method seems advantageous are given below. We
should first reassure the reader that all the discussion so far has not been in vain,
because a packed trie will be an ideal data structure for representing the patterns
in the final hyphenation algorithm. Here the outputs will include the hyphenation
level as well as the intercharacter position.

Hyphenating and inhibiting patterns allow considerable flexibility in the per-
formance of the resulting algorithm. For example, we could allow a certain amount
of error by using patterns that aren't always safe (but that presumably do find
many correct hyphens).

We can also restrict ourselves to partial hyphenation in a natural way. That
is, it turns out that a relatively small number of patterns will get a large fraction of
the hyphens in the dictionary. The remaining hyphens become harder and harder
to find, as we are left with mostly exceptional casés. Thus we can choose the most
effective patlerns first, taking more and more specialized patterns until we run out
of space.

In addition, patterns perform quite well on words not in the dictionary, if those
words follow “normal” pronunciation rules.

Patterns are “context-free”; that is, they can apply anywhere in a word. This
seems to be an important advantage. In the trie-based approach discussed earlier
in this chapter, a word is always scanned from beginning to end and each state of
the trie ‘remembers’ the entire prefix of the word scanned so far, even if the letters
scanned near the beginning no longer affect the hyphenation of the word. Suffix
compression eliminates some of this unnecessary state information, by combining
states that are identical with respect to future hyphenation. Minimization with
don’t cares takes this further, allowing ‘similar’ states to be combined as long as
they behave identically on all characters that they have in common.

However, we have seen that it is difficult to guide the minimization with don’t
cares to achieve these reductions. Patterns embody such don’t care situations nat-
urally (if we can find a good way of selecting the patterns).

The context-free nature of patterns helps in another way, as explained below.
Recall that we will use a packed trie to represent the patterns. To find all patterns
that match in a given word, we perform a search starting at each letter of the word.
Thus after completing a search starting from some letter position, we may have to

28 IIYPHENATION

back up in the word to start the next search. By contrast, our original trie-based
approach works with no backup. |

Suppose we wanted to convert the pattern trie into a finite-state recognizer
that works with no backup. This can be done in two stages. We first add “failure
links” to each state that tell which state to go to if there is no explicit transition
for the current character of the word. The failure state is the state in the trie that
we would have reached, if we had started the search one letter later in the word.

Next, we can convert the failure-link machine into a true finite-state machine
by-filling in the missing transitions of each state with those of its failure state. (For
more details of this process, see [27], [28].)

However, the above state merging will introduce a lot of additional transitions,
Even using failure links requires one additional pointer per state. Thus by perform-
ing pattern matching with backup, we seem to save a good deal of space. And in
practice,’long backups rarely occur.

Finally, the idea of inhibiting patterns seems to be very useful. Such patterns
extend the power of a finite-state machine, somewhat like adding the “not” operator
to regular expressions.

Chapter 4

Pattern generation

We now discuss how to choose a suitable set of patterns for hyphenation. In or-
der to decide which patterns are “good”, we must first specify the desired properties
of the resulting hyphenation u.igorithm.

We obviously want to maximize the number of hyphens found, minimize the
error, and minimize the space required by our algorithm. For example, we could try
to maximize some (say linear) function of the above three quantities, or we could
hold one or two of the quantities constant and optimize the others.

For T}iX82, we wanted a hyphenation algorithri meeting the following require-
ments. The algorithm should use only a moderate amount of space (20-30K bytes),
including any exception dictionary; and it should find as many hyphens as possible,
while making little or no error. This is similar to the specifications for the original
TEX algorithm, except that we now hope to find substantially more hyphens.

Of course, the results will depend on the word list used. We decided to base
the algorithm on our copy of Webster’s Pocket Dictionary, mainly because this was
the only word list we had that included all derived forms.

We also thought that a larger dictionary would contain many rare or specialized
words that we might not want to worry about. In p- ticular, we did not want such
infrequent words to affect the choice of patterns, because we hoped to obtain a set
of patterns embodying many of the “usual” rules for hyphenation.

In developing the T7X82 algorithm, however, the word list was tuned up con-
siderably. A few thousand common words were weighted more heavily so that they
would be more likely to be hyphenated. In fact, the current algorithm guarantees
complete hyphenation of the 676 most common English words (according to [29]),
‘as well as a short list of common technical words (e.g. al-go-rithm).

In addition, over 1000 “exception” words have been added to the dictionary,
to ensure that they would not be incorrectly hyphenated. Most of these were found
by testing the algorithm (based on the initial word list) against a larger dictionary
obtained from a publisher, containing about 115,000 entries. This produced about

29

30 PATTERN GENERATION

10,000 errors on words not in the pocket dictionary. Most of these were specialized
technical terms that we decided not to worry about, but a few hundred were em-
barrassing enough that we decided to add them to the word list. These included
compound words (camp-fire), proper names (Af-ghan-i-stan), and new words
(bio-rhythm) that probably did not exist in 1966, when our pocket dictionary was
originally put online.

After the word list was augmented, a new set of patterns was generated, and
a new list of exceptions was found and added to the list. Fortunately this process
seemed to converge after a few iterations.

Heurlstlcs

The selection of patterns in an ‘optimal’ way seems very difficult. The problem
is that ceveral patterns may apply to a particular hyphen point, including both
hyphenating and inhibiting patterns. Thus complicated interactions can arise if
we try to determine, say, the minimum set of patterns finding a given number of
hyphens. (The situation is somewhat analogous to a set cover problem.)

e Instead, we will select patterns in a series of “passes” through the word list.
In each pass we take into account only the effects of patterns chosen in previous
passes. Thus we sidestep the problem of interactions mentioned above.

In addition, we will define a measure of pattern “efficiency” so that we can use
a greedy approach in each pass, selecting the most efficient patterns.

s Patterns will be selected one level at a time, starting with a level of hyphenating
patterns. Patterns at each level will be selected in order of increasing pattern length.

Furthermore patterns of a given length applying to different intercharacter
positions (for example -tio and t-ic) will be selected in separate passes through
the dictionary. Thus the patterns of length n at a given level will be chosen in n+1
passes through the dictionary.

At first we did not do this, but selected all patterns of a given length (at a
given level) in a single pass, to save time. However, we found that this resulted in
considerable duplication of effort, as many hyphens were covered by two or more
patterns. By considering different intercharacter positions in separate passes, there
is never any overlap among the patterns selected in a single pass.

In each pass, we collect statistics on all patterns appearing in the dictionary,
counting the number of times we could hyphenate at a particular point in the
pattern, and the number of times we could not.

For example, the pattern tio appears 1793 times in the pocket dictionary, and
in 1773 cases we can hyphenate the word before the t, while in 20 cases we can

PATTERN GENERATION 31

not. (We only count instances where the hyphen position occurs at least two letters
from either edge of the word.)

These counts are used to determine the efficiency rating of patterns. For exam-
© ple if we are considering only “safe” patterns, that is, paiterns that can always be
hyphenated at a particular position, then a reasonable rating is simply the number
of hyphens found. We could then decide to take, say, all patterns finding at least a
given number of hyphens.

However, most of the patterns we use will make some error. How should these
patterns be evaluated? In the worst case, errors can be handled by simply listing
them in an exception dictionary. Assuming that one unit of space is required to
represent each pattern as well as each exception, the “efficiency” of a pattern could
be defined as eff = good/(1 + bad) where good is the number of hyphens correctly
found and bad is the number of errors made.

(The space used by the final algorithm really depends on how much compression
is produced by the packed trie used to represent the patterns, but since it is hard to
predict the exact number of transitions required, we just use the number of patterns
as an approximate measure of size.)

By using inhibiting patterns, however, we can often do better than listing the
exceptions individually. The quantity bad in the above formula should then be
devalued a bit depending on how eflective patterns at the next level are. So a

better formula might be
good

" 1+ bad/bad_eff’

where bad_eff is the estimated efficiency of patterns at the next level (inhibiting
errors at the current level).

Note that it may be difficult to determine the efficiency at the next level, when
we are still deciding what patterns to take at the current level! We will use a pattern
selection criterion of the form eff > thresh, but we cannot predict exactly how many
patterns will be chosen and what their overall performance will be. The best we

eff

can do is use reasonable estimates based on previous runs of the pattern generation
program. Some statistics from trial runs of this program are presented later in this
chapter.
Collecting pattern statistics

So the main task of the pattern generation process is to collect count statistics
about patterns in the dictionary. Because of time and space limitations this becomes

an interesting data structure exercise.

32 PATTERN GENERATION

For short (length 2 and 3) patterns, we can simply use a table of size 262 or 26%,
respectively, to hold the counts during a pass through the dictionary. For longer
patterns, this is impractical.

Here's the first approach we used for longer patterns. In a pass through the
dictionary, every occurrence of a pattern is written out to a file, along with an indi-
cation of whether or not a hyphen was allowed at the position under consideration.
The file of patterns is sorted to bring identical patterns together, and then a pass
is made through the sorted list to compile the count statistics for each pattern.

This approach makes it feasible to collect statistics for longer length patterns,
and was used to conduct our initial experiments with pattern generation. However
it is still quite time and space consuming, especially when sorting the large lists of
patterns. Note that an external sorting algorithm is usunally necessary.

Since only a fraction of the possible patterns of a particular length actually
occur in the dictionary, we could instead store them in a hash tablz or one of the
other data structures discussed in Chapter 2. It turns out that a modification of
our packed trie data structure is well-suited to this task. The advantages of the
packed trie are very fast lookup, compactness, and graceful handling of variable
length patterns.

Combined with some judicious “pruning” of the patterns that are considered,
the memory requirements are much reduced, allowing the entire pattern selection
process to be carried out “in core” on our PDP-10 computer.

By “pruning” patterns we mean the following. If a pattern contains a shorter
pattern at the same level that has already been chosen, the longer pattern obviously
need not be considered, so we do not have to count its occurrences. Similarly, if
a pattern appears so few times in the diciionary thzt under the current selection
criterion it can never be chosen, then we can mark the pattern as “hopeless” so
that any longer patterns at this level containing it need not be considered.

Pruning greatly reduces the number of patterns that must be considered, es-
pecially at longer lengths,

Dynamic packed tries

Unlike the static dictionary problem considered in Chapter 2, the set of patterns
to be represented is not known in advance. In order to use a packed trie for storing _
the patterns being considered in a pass through the dictionary, we need some way
to dynamically insert new patterns into the trie.

For any pattern, we start by performing a search in the packed trie as usual,
following existing links until reaching a state where a new trie transition must be

PATTERN GENERATION i 33

added. If we are lucky, the location nceded by the new transition will still be empty
in the packed trie, otherwise we will have to do some repacking.

Note that we will not be using suffix compression, because this complicates
things considerably. We would need back pointers or reference counts to determine
what nodes need to be unmerged, and we wouid need a hash table or other auxiliary
information in order to remerge the newly added nodes. Furthermore, suffix merging
does not produce a great deal of compression on the relatively short patterns we
will be dealing with.

The simplest way of resolving the packing conflict caused by the addition of a
new transition is to just repack the changed state (and update the link of its parent
state). To maintain good space utilization, we should try to fit the modified state
among the holes in the trie. This can be done by maintaining a dynamic list of
unoccupied cells in the trie, and using a first-fit search.

However, repacking turns out to be rather expensive for large states that are
unlikely to fit into the holes in the trie, unless the array is very sparse. We can
avoid this by packing such states into the frec space immediately to the right of
the occupied locations. The size threshold for attempting a first-fit packing can be
adjusted depending on the density of the array, how much time we are willing to
spend on insertions, or how close we are to running out of room.

After adding the critical transition as discussed above, we may need to add
some more trie nodes for the remaining characters of the new pattern. These new
states contain just a single transition, so they should be easy to fit into the trie.

The pattern generation program uses a second packed trie to store the set of
patterns selected so far. Recall that, before collecting statistics about the patterns
in each word, we must first hyphenate the word according to the patterns chosen in
previous passes. This is done not only to determine the current partial hyphenation,
but also to identify pruned patterns that need not be considered. Once again, the
advantages of the packed trie are compactness and very fast “hyphenation”.

At the end of a pass, we need to add new patterns, including “hopeless” pat-
terns, to the trie. Thus it will be convenient to use a dynamic packed trie here as
well. At the end of a level, we probably want to delete hopeless patterns from the
trie in order to recover their space, if we are going to generate more levels. This
turns out to be relatively easy; we just remove the appropriate output and return
any freed nodes to the available list.

Below we give some statistics that will give an idea of how well a dynamic
packed trie performs. We took the current sct of 4447 hyphenation patterns, ran-
domized them, and then inserted them one-by-one into a dynamic packed trie.

34 PATTERN GENERATION

(Note that in the situations described above, there will actually be many searches
per insertion, so we can afford some extra cffort when performing insertions.) The
patterns occupy 7214 trie nodes, but the packed trie will use more locations, de-
pending on the setting of the first-fit packing threshold. The columns of the table
show, respectively, the maximum state size for which a first-fit packing is attempted,
the number of states packed, the number of locations tried by the first-fit procedure
(this dominates the running time), the number of states repacked, and the number
of locations used in the final packed trie.

thresh pack firstfit wunpack trie_max |
00 6113 877,301 2781 9671

13 G060 761,228 2728 9458
9 6074 559,835 2742 9606
7 6027 359,537 2695 9606
5 5863 147,468 . 2531 10,366
4 5746 63,181 2414 11,209
3 5563 33,826 2231 13,296
2 5242 10,885 1910 15,009
1 4847 8056 1515 16,536
0 4577 6073 1245 18,628

Table 2. Dynamic packed tric statisticas.

Experimental results :

We now give some results from trial runs of the pattern generation program,*®
and explain how the current T[;X82 patterns were generated. As mentioned earlier,
the development of these patterns involved some augmentation of the word list.
The results described here are based on the latest version of the dictionary.

At each level, the selection of patterns is controlled by three parameters called
good_wt, bad_wt, and thresh. If a pattern can be hyphenated good times at a partic-
ular position, but makes bad crrors, then it will be sclected if

good » good_wt — bad » bad_wt > thresh.

Note that the efficiency formula given carlicr in this chapter can be converted into
the above form.

We can first try using only safe patterns, that is, patterns that can always be
hyphenated at a particular position. The table below shows the results whea all
safe patterns finding at least a given number of hyphens are chosen. Note that

-

\ VS('} ?-,\"\‘U :

a_ff w@.’ ATTERN GENERATION : 35
parameters patierns hyphens percent

1 00 40 401 31,083 35.2%

10020 1024 45,310. . 51.3%

10010 2272 58,580 66.3%

loob 4603 70,014 . 79.2%

loo3 7052 76,236 86.2%

loo2 10,456 83,450 94.4%
lool 16,336 87,271 98.7%

Table 8. Safe hyphenating patterns.

an infinite bad_wt ensures that only safe patterns are chosen. The table shows the
number of patterns obtained, and the number and percentage of hyphens found.

We sce that, roughly speaking, halving the threshold doubles the number of
patterns, but only increases the percentage of hyphens by a constant amount. The
last 20 percent or so of hyphens become quite expensive to find.

(In order to save computer time, we have only considered patterns of length
6 or less in obtaining the above statistics, so the figures do not quite represent all
patterns above a given threshold. In particular, the patterns at threshold 1 do not
find 100% of the hyphens, although cven with indcfinitely long patterns there would
still be a few hyphens that would not be found, such as re-cord.)

The space required to represent patterns in the final algorithin is slightly more
than one trie transition per pattern. Each transition occupies 4 bytes (1 byte each
for character and output, plus 2 bytes for trie link). The output table requires
an additional 3 bytes per entry (hyphenation position, value, and next output):
but there are only a few hundred outputs. Thus to stay within the desired space
limitations for TEX82, we can use at most about 5000 patterns.

We next try using two levels of patterns, to sece if the idea of inhibiting patterns
actually pays off. The results are shown below, where in each case the initial level
of hyphenating patterns is followed by a level of inhibiting patterns that remove
nearly all of the error.

The last set of patterns achicves 86.7% hyphenation using 4696 patterns. By
contrast, the 1 oo 3 patterns from the previous table achieves 86.2% with 7052
patterns. So inhibiting patterns do help. In addition, notice that we have only used
“gafe” inhibiting patterns above; this means that none of the good hyphens are lost.
We can do better by using patterns that also inhibit some correct Lyphens.

After a good deal of further experimentation, we decided to use five levels
of patterns in the current Tj7X82 algorithm. The reason for this is as follows. In

36 : PATTERN GENERATION

parameters patterns hyphens percent
12020 816 51,359 505 58.1% 0.6%
lool 315 0 463 58.1% 0.1%
11010 1510 64,893 1694 73.5% 1.9%
loo1l 824 0 1531 73.5% 0.2%
155 2573 76,632 5254 86.7% 5.9%
- lool 2123 0 4826 86.7% 0.5%

Table 4. Two levels of patternas.

addition to finding a high percentage of hyphens, we also wanted a certain amount of
guaranteed behavior. That is, we wanted to make essentially no errors on words in
the dictionary, and also to ensure complete hyphenation of certain common words.

To accomplish this, we use a final level of safe hyphenating patterns, with
the threshold set as low as feasible (in our case 4). If we then weight the list of
important words by a factor of at least 4, the patterns obtained will hyphenate
them completely (except when a word can be hyphenated in two different ways).

To guarantee no error, the level of inhibiting patterns immediately preceding
the final level should have a threshold of 1 so that even patterns applying to a single
word will be chosen. Note these do not need to be “safe” inhibiting patterns, since
the final level will pick up all hyphens that should be found.

The problem is, if there are too many errors remaining before the last inhibiting
level, we will need too many patterns to handle them. If we use three levels in all,
then the initial level of hyphenating patterns can allow just a small amount of error.

However, we would like to take advantage of the high efficiency of hyphenating
patterns that allow a greater percentage of error. So instead, we will use an initial
level of hyphenating patterns with relatively high threshold and allowing consider-
able error, followed by a ‘coarse’ level of inhibiting patterns removing most of the
initial error. The third level will consist of relatively safe hyphenating patterns with
a somewhat lower threshold than the first level, and the last two levels will be as
described above.

The above somewhat vague considerations do not specify the exact pattern
selection parameters that should be used for each pass, especially the first three
passes. These were only chosen after much trial and error, which would take too long
to describe here. We do not have any theoretical justification for these parameters;
they just seem to work well.

The table below shows the parameters used to generate the current set of TX82
patterns, and the results obtained. For levels 2 and 4, the numbers in the “hyphens”

b m
4" ”Tﬂi;TEnN GENERATION 37
~ level ;meeters patterns hyphens percent

1 1220 (4) 458 67,604 14,156 76.86% 16.0%

2 . 218(4) 509 7407 11,042 68.2% 2.5%

3 147(5) 085 13,108 551 83.2% 3.1%
4 321(6) 1647 1010 2730 82.0% 0.0%
5

loo4(8) 1320 6428 0 89.3% 0.0%

Table 5. Current TpX82 patterns,

column show the number of gnod and bad hyphens inhibited, respectively. The
numbers in parentheses indicate the maximum length of patterns chosen at that
level.

A total of 4919 patterns (actually only 4447 because some patterns appear more
than once) were obtained, compiling into a suffix-compressed packed trie occupying
59043 locations, with 181 outputs. As shown in the table, the resulting algorithm
finds 89.3% of the hyphens in the dictionary. This improves on the one and two
level examples discussed above. The patterns were generated in 109 passes through
the dictionary, requiring about 1 hour of CPU time.

Examples

The complete list of hyphenation patterns currently used by TEX82 appears in
the appendix. The digits appearing between the letters of a pattern indicate the
hyphenation level, as discussed above.

Below we give some examples of the patterns in action. For each of the following
words, we show the patterns that apply, the resulting hyphenation values, and the
hyphenation obtained. Note that if more than one hyphenation value is specified for
a given intercharacter position, then the higher value takes priority, in accordance
with our level scheme. If the final value is odd, the position is an allowable hyphen
point.

computer 4mip pu2t 5Spute put3er go4mbSpu2t3er com-put-er
algorithm 11g4 lgo3 igo 2ith 4hm aligdo3r2it4hm al-go-rithm

hyphenation hy3ph he2n hena4 henSat 1na n2at itio 2io
hy3phe2n5a4t2ion hy-phen-ation

concatenation o2n onlc ica ina n2at itio 2io
co2nicatein2ait2ion con-cate-na-tion

mathematics math3 athbem th2e ima atiic 4cs
mathSeimatiidcs math-e-mat-ics

38 PATTERN GENERATION

typesetting type3 els2e 4t3t2 2tiin type3s2e4t3t2ing
type-set-ting

program pr2 igr pr2oigram pro-gram

supercalifragilisticexpialidocious
ulpe ric ica alii agii gil4 il1i il4iet isiti st2i sitic
lexp x3p pi3a 2iia i2al 2id 1do ici 2io 2us
sulpericaliifragi1il4isit2iciex3p2i3al2iidoic2io2us
su-per-cal-ifrag-ilis-tic-ex-pi-ali-do-cious

~Below, we show a few interesting patterns, The reader may like to try figuring
out what words they apply to. (The answers appear in the Appendix.)

ainbo hach4 n3uin Bspail

aybal hbelo nyp4 4tarc
earbk itafr o5ables 4todo
e2mel 16ogo orewd uirdm

And finally, the following patterns deserve meﬁtion:

3tex fondt highb

Chapter 5§

History and Conclusion

The invention of the alphabet was one of the greatest advances in the history
of civilization. However, the ancient Phoenicians probably did not anticipate the
fact that, centuries later, the problem of word hyphenation would become a major
headache for computer typesctters all over the world.

Most cultures have evolved a linear style of communication, whereby a train
of thought is converted into a sequence of symbols, which are then laid out in neat
rows on a page and shipped off to a laser printer.

The trouble was, as civilization progressed and words got longer and longer,
it became occasionally necessary to split them across lines. At first hyphens were
inserted at arbitrary places, but in order to avoid distracting breaks such as the-
rapist, it was soon found preferable to divide words at syllable boundaries.

Modern practice is somewhat stricter, avoiding hyphenations that might cause
the reader to pronounce a word incorrectly (e.g. considera-tion) or where a single
letter is split from a component of a compound word (e.g. cardi-ovascular).

The first book on typesetting, Joseph Moxon's Mechanick Ezercisea (1683),
mentions the need for hyphenation but does not give any rules for it. A few dictio-
naries had appeared by this time, but were usunally just word lists. Eventually they
began to show syllable divisions to aid in pronunciation, as well as hyphenation.

With the advent of computer typesetting, interest in the problem was rencwed.
Hyphenation is the ‘H’ of ‘H & J' (hyphenation and justification), which are the
basic functions pravided by any typesctting system. The need for automatic hy-
phenation presented a new and challenging problem to carly systems designers.

Probably the first work on this problem, as well as many other aspects of com-
puter typesetting, was done in the early 1950s by a French group led by G. D.
Bafour. They developed a hyphenation algorithm for French, which was later
adapted to English [U.S. Patent 2,762,485 (1955)].

Their method is quite simple. Ilyphenations are allewed anywhere in a word
except among the following letter combinations: before two consonants, two vawels,

39

40 HISTORY AND CONCLUSION

or x; between two vowels, consonant-h, e-r, or e-s; after two consonants where the
first is not 1, m, n, r, or s; or after ¢, j, q, v, consonant-w, mm, 1r, nb, nf, n1, nm,
nn, or nr, .

We tested this method on our pocket dictionary, and it found nearly 70 percent
of the hyphens, but also about an equal amount of incorrect hyphens! Viewed in
another way, about 65% of the erroneous hyphen positions are successfully inhibited,
along with 30% of the correct hyphens. It turns out that a simple algorithm like
this one works quite well in French; however for English this is not the case.

Other early work on automatic hyphenation is descrihed in the proceedings of
various conferences on computer typesetting (e.g. [30]). A good summary appears
in [31], from which the quotes in the following paragraphs were taken.

At the Los Angeles Times, a sophisticated logical routine was developed based
on the grammatical rules given in Webster’s, carefully refined and adapted for com-
puter implementation. Words were analyzed into vowel and consonant patterns
which were classified into one of four types, and rules governing each type applied.
Prefix, suffix, and other special case rules were also used. The results were report-
edly “85-95 percent accurate”, while the hyphenation logic occupies “only 5,000
positions of the 20,000 positions of the computer’s magnetic core memory, less
space than would be required to store 500 8-letter words averaging two hyphens per
word.”

Perry Publications in Florida developed a dictionary look-up method, along
with their own dictionary. An in-core table mapped each word, depending on its
first two letters, into a particular block of words on tape. For speed, the dictionary
was divided between four tape units, and “since the RCA 301 can search tape in
both directions,” cach tape drive maintained a “homing position” at the middle of
the tape, with the most frequently searched blocks placed closest to the homing
positions,

In addition, they observed that many words could be hyphenated after the 3rd,
5th, or 7th letters. So they removed all such words from the dictionary (saving some
space), and if a word was not found in the dictionary, it was hyphenated after the
3rd, 5th, or Tth letter.

A hybrid approach was developed at the Oklahoma Publishing Company. First
some logical analysis was used to determine the number of syllables, Hp,nd to check
if certain suffix and special case rules could be applied. Next the p}obability of
hyphenation at each position in the word was estimated using three probability
tables, and the most probable breakpoints were identified. (This scems to be the
origin of the Time magazine algorithm described in Chapter 1.) An exception

HISTORY AND CONCLUSION 41

dictionary handles the remaining cases; however there was some difference of opinion
as to the size of the dictionary required to obtain satisfactory results.

Many other projects to develop hyphenation algorithms have remained pro-
prietary or were never published. For example, IBM alone worked on “over 35
approaches to the simple problem of grammatical word division and hyphenation”.

By now, we might have hoped that an “industry standard” hyphenation algo-
rithm would exist. Indeed Berg's survey of computerized typesetting [32] contains
a description of what could be considered a “generic” rule-based hyphenation algo-
rithm (he doesn’t say where it comes from). However, we have seen that any logical
routine must stop short of complete hyphenation, because of the generally illogical
basis of English word division.

The trend in modern systems has been toward the hybrid approach, where a
logical routine is supplemented by an extensive exception dictionary. Thus the in-
core algorithm serves to reduce the size of the dictionary, as well as the frequency
of accessing it, as much as possible.

A number of hyphenation algorithms have also appeared in the computer sci-
ence literature. A very simpie algorithm is described by Rich and Stone [33]. The
two parts of the word must include a vowel, not counting a final e, es or ed. The
new line cannot begin with a vowel or double consonant. No break is made betwecen
the letter pairs sh, gh, p, ch, th, wh, gr, pr, cr, tr, wr, br, fr, dr, vowel-r, vowel-n,
or om. On our pocket dictionary, this method found about 70% of the hyphens with
45% error,

The algorithm used in the Bell Labs document compiler Roff is' described by
Wagner [34]. It uses suflix stripping, followed by digram analysis carried out in a
back to front manner. In addition a more complicated scheme is described using four
classes of digrams combined with an attempt to identily accented and nonaccented
syllables, but this seemed to introduce too many errors. A version of the algorithm is
described in [35); interestingly, this reference uses the terms “hyphenating pattern”
(referring to a Snobol string-matching pattern) as well as “inhibiting suffix”.

Ocker [36], in a master’s thesis, describes another algorithm based on the rules
in Webster's dictionary. It includes recognition of prefixes, suflixes, and special
letter combinations that help in determining accentuation, followed by an analysis
of the “liquidity” of letter pairs to find the character pair corresponding to the
greatest interruption of spoken sound.

Moitra et al [37] use an exception table, prefixes, suffixes, and a probabilistic
break-value table, In addition they extend the usual notion of affixes to any letter

42 : HISTORY AND CONCLUSION

pattern that helps in hyphenation, including ‘root words’ (e.g. 1ine, pot) intended
to handle compound words.

Patterns as paradigm

Our pattern matching approach to hyphenation is interesting for a number
of reasons. It has proved to be very effective and also very appropriate for the
problem. In addition, since the patterns are generated from the dictionary, it is
easy to accommodate changes to the word list, as our hyphenation preferences
change or as new words are added. More significantly, the pattern scheme can be
readily applied to different languages, if we have a hyphenated word list for the
language.

The effectiveness of pattern matching suggests that this paradigm may be use-
ful in other applications as well. Indeed more general pattern matching systems
and the related notions of production systems and augmented transition networks
(ATN’s) are often used in artificial intelligence applications, especially natural lan-
guage processing. While Al programs try to understand sentences by analyzing
word patterns, we try to hyphenate words by analyzing letter patterns.

One simple extension of patterns that we have not considered is the idea of
character groups such as vowels and consonants, as used by nearly all other algo-
rithmic approaches to hyphenation. This may seem like a serious omissioa, because
a potentially useful meta-pattern like ‘vowel-consonant-consonant-vowel’ would then
expand to 6 x 20 x 20 x 6 = 14400 patterns. However, it turns out that a suffix-
compressed trie will reduce this to just 6 -+ 20 + 20 + 6 = 52 trie nodes. So our
methods can take some advantage of such “meta-patterns”.

In addition, the use of inhibiting as well as hyphenating patterns seems quite
powerful, These can be thought of as rules and exceptions, which is another common
Al paradigm,

Concerning related work in Al, we must especially mention the Meta-DENDRAL
program (38|, which is designed to infer automatically rules for mass-spectrometry.
An example of such a rule is N—C—C—C — N—C % C—C, which says that if the
molecular substructure on the left side is present, then a bond fragmentation may
occur as indicated on the right side. Meta-DENDRAL analyzes a set of mass-spectral
data points and tries to infer a set of fragmentation rules that can correctly predict
the spectra of new molecules. The inference process starts with some fairly general
rules and then refines them as necessary, using the experimental data as posl;tiva or

negative evidence for the correctness of a rule.

HISTORY AND CONCLUSION ' 43

The fragmentation rules can in general be considerably more complicated than
our simple pattern rules for hyphenation. The molecular “pattern” can be a tree-
like or even cyclic structure, and there may be multiple fragmentations, possibly

* involving “migration” of a few atoms from one fragment to another. Furthermore,
there are usually extra constraints on the form of rules, both to constrain the
search and to make it more likely that meaningful or “interesting” rules will be
generated. Still, there are some striking similarities between these ideas and our
pattern-matching approach to hyphenation.

Packed tries

Finally, the idea of packed tries deserves further investigation. An indexed
trie can be viewed as a finite-state machine, where state transitions are performed
by address calculation based on the current state and input character. This is
extremely fast on most computers.

However indexing usually incurs’a substantial space penalty because of space
reserved for pointers that are not used. Our packing technique, using the idea of
storing the index character to distinguish transitions belonging to different states,
combines the best features of both the linked and indexed representations, namely
space and speed. We believe this is a fundamental idea.

There are various issues to be explored here. Some analysis of different packing
methods would be interesting, especially for the handling of dynamic updates to a
packed trie. '

Our hyphenation trie extends a finite-state machine with its hyphenation “ac-
tions”. It would be interesting to consider other applications that can be handled by
extending the basic finite-state framework, while maintaining as much of its speed
as possible.

Another possibly interesting question concerns the size of the character and
pointer fields in trie transitions, In our hyphenation trie half of the space is occupied
by the pointers, while in our spelling checking examples from one-half to three-
fourths of the space is used for pointers, depending on the size of the dictionary.
In the latter case it might be better to use a larger “character” size in the trie, in
order to get a better balance between pointers and data.

When performing a search in a packed trie, following links will likely make us
jump around in the trie in a somewhat random manner. This can be a disadvantage,
both because of the nced for large pointers, and also because of the lack of locality,
which could degrade performance in a virtual memory environment. There are
probably ways to improve on this. For example, Fredkin [10] proposes an interesting
‘n-dimensional binary trie’ idea for reducing pointer size.

44 HISTORY AND CONCLUSION

We have presented packed tries as a solution to the set representation problem,
with special emphasis on data compression. It would be interesting to compare our
results with other compression techniques, such as Huffman coding. Also, perhaps

_one could estimate the amount of information present in a hyphenated word list, as
a lower bound on the size of any hyphenation algorithm,

Finally, our view of finite-state machines has been based on the underlying
assumption of a computer with random-access memory. Addressing by indexing
seems to provide power not available in some other models of computation, such
as peinter machine, or comparisor-based models. On the other hand, a ‘VLSI’ or
other hardware model (such as programmed logic arrays) can provide even greater
power, eliminating the need for our perhaps contrived packing technique. But then
other communication issues will be raised.

If all problems of hyphenation have not been solved,

8t least some progress has been made since that night,
when according to legend, an RCA Marketing Manager
recelved a phone call from @ disturbed customer.

His 301 had Just hyphenated “God”.

— Paul E. Justus (1972)

+achd
addder
afit
.al8t
.anSat
.anbc
.angd
.anifm
.ant4d
.andte
.antibs
.arbe
.arétie
.ardty
.asdc
.anlp
Jansle
.asterb
.atonb
Jauld
avdi
.awnd
.badg
.babna
.basde
Jberd
.bebra
.belSsm
beSsto
bri2
Jbutdti
.camdpe
.canbc
.capabb
.carbol
cadt
3“41.
.chd
+chillsi
42
.citbr
.co3e
.codr
.coi 5ner
.dedmoi
.del30
.de3ra
.delri
.desdc
.dictiob
.dodt
.dude
.dumbB
.earthb
.eandi
.ebd
.oerd
.eg2
.el5d
.el3em
.enam3
.en3g

J

+onds
.eqbuibt
Jordri
088
.oul
oyeb
Jesld
Jorbmer
ga2
.gel
.gendtd
+gobog
.giba
gldd
godr
Jhandbi
+hanbk
Jhe2
Jherobi
Jhesd
Jhetd
+hidb
Jhiler
.honbey
Jhon3o
Jhovb
Jid4l
.idold
imdm
Ambpin
Ani
+in3ci
dne2
Ain2k
«in3s
+Arbr
Asdd
+juldr
dadcy
Jadm
JlatbSer
.lathb
.de2
.legbe
.lend
.lepb
Jdevl
Jdg
+1igha
+112n
L1430
44t
.mag5ab
.malbo
.manba
.marbti
me2
.mer3c
.neSter
misl
.mist5i
.mon3e
v

TEX82 hyphenation patterns .

.moSro
mubta
Jmutabd
nide
.0d2
Joddb
of5te
.orbato
.or3c
orid
orst
o83
Jondtl
.oth3
.out3
pudbal
.pebte
Jpebtit
plde
plobn
Jpi2e
predm
radc
.randt
.satioSna
.Tee2
Jrebmit
res2
.rebstat
xidg
JTitbu
Jrodq
.ros5t
Jrowbd
Jrudd
.scile
.sel1b
.sellb
.se2n
.sebrie
.sh2

- .0i2

.singd
atd
.stabbl
8y2
Jtad
Ste2
Jtenban
.th2
ti2
4114
timS08
Jtingd
Jtinbk
.tonda
.todp
.top5i
.toubs
tribbut
,unia
.undce
v

Junderb
Jnle
.anSk
Janbo
~ansu
.up3
Jared
~usba
.vendde
.vebra
Jwilbi
Jyed
dadb.
abbal
abban
abe2
abSerd
abiba
ab5it5ab
ab5lat
abbobliz
4abr
abbrog
ab3ul
adcar
acSard
acbaro
aSceou
acler
aSchet
4a2ci
adcle
aclin
alcio
acSrodb
act5if
ac3ul
acdum
a2d
adddin -
adSer.
2adi
aSdia
ad3ica
adider
al3dio
aldit
abdiu
addle
ad3cw
adSran
addsu
4adu
adduc
adbum
aedr
aeride
a2f
atfd
adgab
agaidn
agbell

v

agedo
4dageu
agii
4agdl
agin
a2go
Sagog
agloni
abguer
agbul
adgy
a3ha
adhe
ahdl
aSho
ai2
abia
adic,
aibly
adidn
ainbin
ainbo
aitben
alj
aklen
albadb
all3ad
adlar
4aldi
2ale
al3end
adlentd
aSlebo
alii
aldia.
alide
alSlev
4allic
4alm
ablog.
adly.
4alys
5aSlyst
balyt.
Salyz
4ama
ambab
am3ag
amaSra
amSasc
admatie
admbato
ambera
an3ic
ambif
am5ily
amiin
amidno
almo
abmon
amorbi
ampSen
v

74

a2n :
anSage
Samaly
adnar
andare -
anardi
aSnati
4and
andeds
an3dis
anidl
anddow
abnee
adnen
anbest.,
adneu
2ang
angbie
anigl
adniic
adnies
an3i3f
andime
abnimi
aSnine
an3io
a3nip
an3ish
andit
adnin
andkli
Sanniz
anod
anbot
anothSb
an2sa
andsco
andsn
an2sp
ans3po
andst
andsur
antald
andtie
4anto
an2tr
andtw
an3ua
an3ul
abnur
4da0
apard
apbat
apSero
adpher
4aphi
adpilla
apbillar
ap3in
ap3ita
adpitu
a2pl

apocB
apbola
aporsi
aposit
apsbes
adpu
aquel
2a2r
ar3act
abrade
arbadie
arSal
abramete
arandg
aradp
ardat
abratio
arbativ
abrau
arbavd
aravd
arbald
ardchan
arbdine
arddr
arbeas
adree
ardent
abress
ardfi
ardfl
arii
arbfial
ar3ian
adriet
ardim
arSinat
ar3io
ar2iz
ar2mi
arbobd
abroni
a3roo
ar2p
ar3q
arred
ardsa
ar2sh
das.
asdad
as3ant
ashid
absia.
adeib
adeic
babsidt
ask3i
asdl
adsoc
as5ph
asdsh
as3ten

asity
asurba
alta
at3abl
atBac
at3alo
atbap
atebe
atbech
atlego
at3en.
at3era
aterbn
abterna
atSest
atbev
4ath
athbem
abthen
atdho
athSom
4atd,
abtia
at5i6b
atiic
at3it
ationBar
at3ite
adtog
a2tom
atbomisx
adtop
adtos
altr
atbrop
atdsk
atdtag
atbte
atdth
a2tu
atbua
atSue
at3ul
at3ura
aZty
audd
augh3
au3gu
audl2
aunbd
audr
aubsib
avtben
uuith
alva
aviag
abvan
avedno,
av3era
avbern
avbery
avii

=

avider
aviig
avboc
alvor
Savay
awdi
avdly
awsd
axdiec
axdid
ayBal
ayed
aysd
azider
azzbi
Gba.
badbger
badge
balia
banbdag
bande
ban3i
barbib
barida
basdsi
1bat
badz
2b1d
b2be
b3ber
bbidna
4bid
dbe.
beakd
beat3
4be2d
beldda
be3de
beddi
beugl
bebgu
ibel
belld
be3lo
4bebn
bebnig
bebnu
4besd
beldap
beSstr
3bet
betbiz
bebtr
beltw
beldw
bebyo
2bt
4b3h
bi2b
bidd
3bie
biben

/

TEX82 HYPHENATION PATTERNS

bider
2b3it
1bil
bi3liz
binabrd
bindd
bibnet
bilogr
bibou
bi2t
3bi3tio
bi3tr
3bitbua
bbits
bij
bkd
b212
blathbs
bdle.
blend
Eblesp
L3lis
bdlo
blundt
4bim
4b3n
bnebg
3bod
bod34
bode
bol3ic
bomdbi
bonda
bonbat
8boo
Bbor.
dblora
borbd
Ebore
bbori
Etosd
bbota
bothBs
bodto
bound$
4bp
4brit
brothd
2b5e2
beord
bt
btdl
bdto
bitr
bufdfer
budga
budli
bumid
budn
buntddi
bulre
busbie
bussde
Sbust
4bsta
3butio

v

bbute
biv
4bbw
Bby.
bysd
ica
cab3din
calbl
cach4
“cabden
deagd
2cbah
callat
caldla
callbia
dcalo
canbd
cande

© candic

canbis
can3iz
candty
canyd
cabper
carbom
castber
casbtig
dcasy
cadth
dcatiy
cavbal
clic
cchab
ccida
ccompab
ccond
ccoudt
2ce.
dced.
dceden
Scel
Bcel.
Scell
icen
Scenc
2cende
dceni
dcent
Scep
cobram
dcesa
Scessi
cesbuibh
cesbt
cetd
cbedta
covd
2ch
dch.
4chlad
Bchanie
chbabnie
che2
cheapd
dched
cheble

v

3cheni
chbene
ch3er,
ch3ers
4chiin
b6chine.
chbiness
Bchini
5chio
3chit
chi2z
3cho2
chdti
ici
Bcia
ci2ahfb
ciabr
cibc
dcier
beific.
dcid
cidla
qcild
2cin
2cin
cdina
3cinat
cindem
cling
cbing.
Bcino
ciond
dcipe
ci3ph
dcipic
dcista
dcistd
2ciit
cit3is
Beix
ckl
ck3i
1cdld
dclar
cBblaratio
bclare
cledn
dclic
climd
clyd
cbn
ico
cobag
coeld
dcog
codgr
coid
codine
colbi
Bcolo
coldor
comSer
conda
cdone

conlg
conbt

v

co3pa
copdic
codpl
4corb
coro3n
cosde
covl
coved
cowba
cozbe
cobzi
clq
crasbt
berat.
Beratic
cre3at
Scred
dc3reta
credy
cri2
cribt
cdrin
crisd
Beritd
crodpl
cropbo
crosde
crudd
4c3s2
2cit
ctaddb
ctbang
cbtant
c2te
c3ter
cdticu
ctim3di
ctudr
cdtw
cudb
cdut
cdui
cubity
beuli
culdtie
Scultu
cu2ma
clume
cudmi
Scun
cudpi
cubpy
curbaddb
cubris
icus
cussdi
Scdut
cudtie
dcbutiy
dcutr
icy
czed
1d2a
Ha.
2d43ady
dachd

v

4daf
2dag
da2m2
dan3g
dardb
darkb
4dary
3dat
ddativ
ddato
Bdavd
davbe
bday
dib
dbc
did4
2de.
deatb
debbit.
dodbon
decand
dodcil
deScom
2died
4doo.
deb4i?
delide
dolbisSq
de5lo
ddcm
bdea.
3denic
dembic,
debnil
dedmons
demorb
iden
dednar
dedno
dentibf
dednu
delp
de3pa
depid
de2pu
d3eq
dderh
Ederm
dernbiz
derbs
des2
d2es.
delsc
de2s50
des3ti
dedstr
dodsu
deit
de2to
dely
dev3il
ddey
441t
diga
digedt
dgii
v

d2gy
dih2
Bdi.
‘d4i3a
diabb
didcam
ddice
3dict
3did
5di3en
diif
di3ge
didlato
diin
1dina
3dine.
bdini
dibniz
idio
diobg
didpl
dir2
diire
dirt5i
dist
bdisi
ddisdt
d2iti
1dily
d1]
d5k2
4d5la
3dle.
Jdled
3dles.
4dloss
2d3lo
4dblu
2dly
dim
4dind
ido
3do.
dobde
bdoe
2d6ot
ddog
dodla
dolid
doBlor
dombSiz
do3nat
doni4
doo3d
dopdp
ddor
3dos
4dSout
dodvy
Sdox
dip
1dr
dragSon
ddrai
dred
dreaSr

v

Bdren
dridd
drild
drodp
ddrow
bdrupli
ddry
2d1s2
dsdp
disw
ddsy
d2th
idu
diula
du2c
diuca
ducber
4duct.
ddnucts
dubel
dudg
d3ule
dumdbe
dudn
4dup
dudpe
div
diw
d2y
bdyn
dydse
dysbp
eladd
edact
endl
eadbie
sadge
eabger
eadl
ealber
exl3on
eam3er
ebSand
ear3a
eardc
earbes
eardic
eardil
earbk
earlt
eartle
eabsp
CRET T
eastd
ealt
eatben
eath3i
ebatif
edadtu
ealv
eavien
eavhi
eavio
eld
eidel.
edbels

.

edben
edbit
edbr
edcad
ecanbec
eccab
elce
ecbossa
ec2i
edcid
echificat
ecbifie
ecbity
ec3im
ecidt
eScite
edclam
edclus
elcol
elcomm
edcompe
edcone
el2cor
eclora
ecobro
elcr
elcrem
ecdtan
ecite
elcu
edcul
oc3ula
202da
4od3d
eddler
ededs
dedi
eldia
ed3ib
eddica
eddim
ediit
edibs
dedo
eddol
edon2
eddri
eddul
edbule
selc
eeddi
eoll
eoldl
eedly
eelnm
esedna
eedpl
eolsd
eentd
eodty
ebex

eif

edf3ere
leff
elfic
Belici
v

75

ofild
e3tine

-fSlSnib‘l

Sefit
eforbes
edfuse,
degal
egord
egbib
egdic
egbing
eobgith
eghn
edgo.
elgos
eglul
ebgur
Begy
elhd
eherd
oi2
ebic
eibd
eig?
eibgl
e3ind
e3int
eling
eSinet
eirdd
eitle
eilth
ebity
ol)
edjud
ejbudi
ekidn
ekdla
ella
edla.
edlnc
elandd
elbativ
edlavw
elaxzad
ellea
elbebra
Belec
edled
ellega
e5len
edlier
elles
el2¢
ol24
e3libe
edlbic.
eldica
e3lirr
elbigib
eblim
edl3ing
e3lio
e2lis
elS5ish
e3livd

v

(166

76

4ella
eldlad
ellod
ebloc
elbog
el3op.
el2sh
eldta
eblud
elbug
edmac
edmag
ebman
embana
enbb
eime
e2mel
edmet
em3ica
emide
emSigra
emiin2
embine
em3i3ni
edmin
emSish
obmiss
em3iz
bemniz
emodg
emonibo
em3pi
edmul
emSula
omudn
e3my
enbamo
ednant
enchder
enddic
ebnea
ebnee
endenm
enbaro
enbesi
enbest
endetr
e3new
enbice
ebnie
ebnil
e3nio
en3ish
endit
vbniu
beniz
denn
deno
enodg
ednos
endov
endsw
entbage
denthes
endua
enbuf

Vv

e3ny.
4en3z
eSof
e02g
edoid
e3ol
eop3ar
elor
eoldre
eobrol
eosd
edot
eodto
ebout
ebow
eZpa
edpai
epbanc
e5pel
edpent
epSetitio
ephed .
edpli
eipo
edprec

.epbreca

edpred
ep3reh
e3pro
edprob
epish
epbtibh
edput
epbuta
elq
equisl
edq3uils
eria
eradd
4erand
er3ar
deratd.
2erb
erdbl
er3ch
erdche
2ere.
edreal
erebco
eredin
erbel.
erdemo
erbena
erbence
4srene
erdent
eredq
erbess
ar3est
eretd
erih
erii
eiriad
Berick
edrien
erider

Vv

er3dine
eirio
derit
erdin
eridy
edriva
er3md
erdnis
dernit
bernis
er3no
2ero
erbob
ebroc
erodr
eriou
oris
er3set
ert3er
dortl
erdtw
deru
erudt

berwau

oleda
edsage.
edsages
es2c
e2sca
esbScan
edscr
esbcu
elis2e
e2sec
esbecr
esbeuc
edgert.
edsorts
edserva
4desh
edsha
eshben
elsd
e2sic
e2sid
esbiden
esbigna
o2sbinm
esdidn
esisdte
eeidu
ebskin
esdmi
e2s0l
esdolu
e2s0n
esbona
elep
esdper

esbpira .

esdpre
2ess
esdsidd
estand
esdtig
esbtim

v

4e82to
e3ston
2estr
ebstro
estruch
e2sur
esburr
esdw
etadd
etendd
e3teo
ethod3
etlic
ebtide
etind
etidno
ebtir
ebtitio
etbitiv
4etn
etSona
e3tra
e3tro
et3ric
etSrit
et3rog
etSros
et3ua
etbym
etbz
4ou
ebun
e3up
eudro
eund
euted
eutibl
eubtr
eva2ph
e2vas
evbast
ebvea
ev3ell
eveldo
ebveng
evendi
evier
eSverb
elvi
ev3id
evidl
edvin
evidy
ebvoc
ebvu

. eolwa

edwag
ebvee
e3wh

evilh

evding

odwit
lexp
beyc
Boye.
oysd
v

1fa
fa3bl
{ab3r
fadce
41ag
faind
fallbe
4fadma
fambin
bfar
farbth
fa3ta
fadthe
4fato
faulth
416b
41d
4fe.
feasd
feathd
{e04d
4foca
6fect
2ted
fe3l4
fedmo
fon2d
fendbe
feri
blerr
fevd
4211
f4len
f41ie
161in.
1216is
1411y
t2ty
4th
114
tisa
213ic.
413ical
f3ican
dficate
f3icen
fi3cer
ficdi
bficia
bficie
4fice
fi3cu
fibdel
fightb
11154
£11154n
Atily
2fin
btina
fin2d56
fi2ne
11in3g
findn
fisdti
1412
15less

flind
flodre
121y6
4im
4in
ifo
bfon
fondde
fondt
fo2r
fobrat
forbay
forebt
fordi
fortba
fosb
416p
fradt
{brea
fresbe
iri2
1ril4
1rolb
2138
21t
14to
12ty
3fu
fubel
4tug
fudmin
fubne
fulri
fusid
fusde
4futa
ity
iga
gatd
bgal.
3gali
gadlo
2gan
gabmet
ghamo
ganbis
gadniz
ganibza
4gano
garbnd
gased
gathd
dgativ
dgaz
g3b
gdd
2ge.
2ged
geozd
geldin
geb'is
go5liz
4gely
igen
gednat
gebniz

v

TX82 HYPHENATION PATTERNS

4geno

" 4geny

1geo
gedom
gdery
bgesi
gethb
4geto
gedty
gedr
4gig2
g2ge
gdger
gglub
ggod
gh3in
ghbout

godni
bgoo
gobriz
gorbou
bgos.
govi
83p
igr
4grada
girai
gran2
bgraph.
gbrapher
bgraphic
Agraphy
dgray
gredn
dgress.
dgrit
géro
gruf4
ge2
ghste
gthd
guda
3guard
2gue
Bguibt
3gun
Sgue
dgudt
83w
gy
2gby3n
gybra
h3ab4l
hachd
haednm
haedt
hbagu
ha3la
hala3m
haim
handci
handcy
Shand.,
handg
hangber
hangbo
hbabniz
handk
handte
hap3l
hapbt
ha3ran
habras
har2d
hard3e
hardle
harpben
harbter
hasbs
haund
Ghaz
hazda
hid

v

thead
3hear
hedcan
hbecat
hded
hebdob
he314i
heldlis
heldly
hbelo
hemdp
he2n
henad
henbat
heobr
hepb
hdera
heradp
herdba
hereba
h3ern
hberou
hlery
hies
he2sbp
hedt
hetded
houd
hit
hih
hiban
hidco
highb
h4112
himord
hdina
hionde
hidp
hirdl
hil3ro
hirdp
hirdr
his3el
hisde
hithBer
hiav
4hk
4hild4
hland
h2le
hlo3ri
4him
hmet4
2hin
hbodis
hbode
hodg
hoged
holbar
3holde
hodma
home3d
honda
hobny
Sheod

" hoond

v
[76°

TiX82 HYPHENATION PATTERNS

horbat
hobris
hort3e
hobru
hosde
hobsen
hosip
ithous
house3
hovbel
4h5p
4hré
hreob
hrobnis
hro3po
4his2
hdsh
hdtar
htien
ht5es
hity
hudg
hudmin
hunbke
hundt

hus3td

hudt
hiw
hdwart
hy3pe
hy3ph
hy2e
21i1a
12al
iamd
iamSete
i2an
4ianc
ian3i
4iandt
iabpe
iassd
idativ
iadtrie
idatu
ibed
ib3era
ibbert
ib6ia
ib3in
ibbit.
ib6ite
i1bl
ib314
i6bo
iibr
i2bbri
i6bun
4ican
Bicap
4icar
idcar.
idcara
icash
" idcay
iccud

v

4iceo
dich
2ici
i6cid
icbina
i2cip
ic3ipa
idcly
12cboc
ditcr
bicra
idcry
icdte
ictu2
icdt3ua
ic3ula
icd4um
icbuo
i3cur
24d
iddai
id5anc
idbd
ide3al
ideds
12d4
idbian
ididar
i6die
1d3io
1dib 2
idiit
id6iu
i3dle
iddom
id3ow
iddr
12du
idBuo
2ied
iedde
biebga
ieldd
ienbad
iende
i5enn
i8enti
iler.
i3esc
ilest
i8et
4i1.
itbero
iftben
ifdtr
4ific,
13fie
1311
dife
2ig
igaSbh
iglora
ight3i

© 4igd

13gid
igiil

v

ig3in
igdit
i4gdl
i2go
ig3or
igbot
ibgre
igubi
igiur
13h
41644
13§
4ik
illa
113a4d
i4lade
1216am
ilabra
i3leg
iller
ilevd
116¢
1114
113ia
i1121b
11340
1l4ist
2i1it
1124z
i11bab
4iln
1130q
1l4vy
ilbur
il3v
idmag
im3age
imabry
imentabr
4imet
imid
imbida
imible
i6mini
4imit
imdni
i3mon
12ma
im3ula
2in.
i4n8au
4inav
inceld
in3cer
4ind
inbdling
2ine
i3nee
inerdar
ibness
4inga
4dinge
inbgen
4ingi
inbgling
dingo

J

4ingu
2ini

i6ni.
i4nia
in8io
iniis
ibnite.
finitie
indity
4ink
4inl
2inn
2iino
i4nodc
inode
idnot
2ins *

*in3se

insurba
2int.
2in4th
iniu
ibnus
4iny
210
4io0.
iogod
io2gr
ilol
fodm
ion3at
iondery
ion3i
iobph
ior3i
idos
io6th
ib6otdi
iodto
idour
2ip
iped
iphrasd
ip3i
ipdic
ipdred
ip3ul
13qua
iqbuet
iqiuid
iq3uide
dir
iira
iradd
idrac
irdbe
iredde
i4ret
i4reld
idres
irbgi
irid
iribde
irdis
iri3tu
bi5r2iz

irdmin
irodg
biron.
irbul
2is.,
isbag
isdar
isanbh
2isic
is3ch
dise
is3er
Sist
isbhan
in3hon
ishbop
1831b
isidd
i6sis
isbitiv
disdk
island
dicce
i2s0
iso5mer
islp
is2pi
isdpy
4isls
isdsal
issend
isdses
isdta.
isite
isiti
istdly
4istral
i2su
isbus
dita.
itadbi
idtag
4itabm
i3tan
i3tat
2ite
it3era
ibteri
itdes
2ith
1164
4itia
4i2tic
it3ica
biStick
it3ig
1t5i11
i2tim
2itio
4itis
i4tism
i2t505m
diton
l4tram
itSry
4itt

v

it3uat -« -

i6tud
it3ul
4itz.
ilua
2iv
iv3ell
iv3en.
idv3er.
idvers.
ivbil.
ivbio
iviit
ibvore
iv3odro
i4v3ot
416w
ixdo
41y
4izar
izid
bizont
5ja
jacdq
Jadp
ije
jerbs
4jestic
4jesty
jowd
Jodp
bjudg
Ska.
k3ab
kbag
kaisd
kald
kib
k2ed
1kee
kedg
keb514
k3endd
kier
kesd
k3est.
kedty
k3t
kh4
kii
bki.
bk2ic
kdill
kilob
kdim
kdin.
kindde
kb5iness
kindg
kidp
kisd
k5ish
kk4
kil
4kley
4kly
v

kim
kbnes
ikZno
kobr
kowshd
k3ou
krobn
4k1s2
kdsc
ksdl
kdsy
kbt
kiw
lab3ic
l4abo
lacid
l4ade
laddy
lagdn
lam3o
3land
lauddl
lanbet
landte
lardg
lar3i
lasde
labtan
4lateli
4lativ
dlav
ladvda
211b
1bind
411c2
lced
13ci
21d

-+ 12de

lddere
ldderi
1di4
1d51s
13dr
l4dri
le2a
ledbi
lefth
bleg.
Blegg
ledmat
lemSatic
4len.
3lenc
5lene.
1lent
le3ph
ledpr
lerabb
lerde
3lerg -
3l4eri
ldero
les2
lebsco
Elesq

v

3less
Eless.
13eva
levder.
levdera
levders
3ley
4{leye
211
168r
411gd
15ga
lgars
l4ges
1go8
213h
lidag
liZam
liarbis
lidas
lidato
14504
blicio
lidcor
4lics
dlict.
l4icu
13icy
13ida
1lid5er
81id4
1i13er
14412¢
11421
Gligate
3ligh
lidgra
31ik -
414141

« 1imdbl

1im34
1lidmo
l4indp
14ina
114ine
1in3ea
1in34
linkSer
146og
41l4iq
liedp
114t
12i¢.
5litica
1645tics
1iv3er
liisz
41j
1ka3
13kal
lkadt
111
ldlaw
121e
151ea
13lec

S

7

131eg
181el
13ledn
131edt
1124
121ind
151ina
1140
1loquib
1lbout
15low
2lm
16met
1m3ing
ldmod
1mond
211n2
Slo.
lobBal
lodci
4lof
8logic
160go
3logu
lom3er
Elong
londdi
1303nis
loodb
Blope.
lop3i
130pm
lorad
lodrato
lobrie
lorbou
Blos. »
losbet
6losophis
BElosophy
losdt
lodta
lounbd
2]lout
4lov
alp
1pabb
13pha
16phi
1pbing
13pie
14pl
16pr
411r
21162
dsc
1200
14sie
41
1tSag
1tanes
lite
ltend
1terad
1th3i
16ties.
Vv

235¢

78

1tind
1itr
1¢n2
ltur3a
1uba
luldbr
luchd
ludci
lu3en
luf4
1ubid
1u4!3
Glumi
15umn.
Blumnia
lu3o
luodr
41lup
lussd
lus3te
1lut
16ven
16vetd
211w
11y
4lya
41yd
lybme
ly3no
21yed
1Eyse
ima
Zmab
ma2ca
mabchine
madel
zaghin
bmagn
2mah
raidb
dmald
padlig
ma5lin
maldli
maldty
Emania
manbis
man3iz
4map
masrine.
mabriz
mardly
mardrv
mabuce
masde
masit
Smate
math3
ma3tis
{matiza
4mid
nbadth
mbbil
mdb3ing
mbidv
4dmbe

v

ime.
2med
dmed.
bmedia
meddie
mbeSdy
me2g
melbon
meldt
me2m
memiod
imen
menda
menbac
mendde
4mene
mondi
menad
mensub
Sment
mendte
mebon
mbersa
2mes
Smesti
medta
met3al
melte
me5thi
mietr
bmetric

mebtrie

meltry
medy
dmif
2mh
bmi.
nida
midda
middg
migd
Smilia
mbi5lie
mdill
minda
Smind
mGines
mdingl
minbgli
m5ingly
mindt
mdinu
riotd
n2is
misder.
misbl
misdti
mSistry
dnith
w2iz
dmk
4mll
rin
mmabry
4min

e

ndnin
mndo
imo
4mocr
bmocratiz
mo2di
modgo
mois2
moibse
4mok
mo5lest
ro3me
monbet
monbge
monida
mondism
mondist
mo3niz
monold
mo3ny.
molr
dmora.
mos2
mobsey .
mo3sp
moth3
mbouf
3mous
mo2v
4dmlp
mparab
mpa5rab
mparbi
m3pet
mphasd
n2pi
mpida
mpbies
mdplin
mbpir
mpbis
mpo3ri
mposbite
mipous
mpovh
mpdtr
m2py
4m3r
imis2
nish
m5ed
4mt

imu
mulabrd
bmult
multid
Imum
mun2
4dmup
mudu
dmw

ina
2nia2b
ndabu -
4nac.

na:;,

nbact
nagber.
nak4
nadli
nablia
4nalt
nabmit
n2an
nancid
nandit
nank4
nar3c
4nare
nar3di
nardl
nbarm
ndas
nasdc
nasbti
nZat
na3dtal
natobmiz
n2au
naudse
3naut
navde
4nib4
nears
ndces.
n3cha
nScheo
nbchil
n3chis
nciin
ncdit
ncourba
nlcr
nicu
nddai
n5dan
nide
nd5est.
ndidb
nbd2it
nidit
n3diz
nbdue
ndudr
nd2we
2ne.
n3ear
nezb
nebdu
ne2c
bneck
2ned
nedgat
negbativ
Bnege
nedla
nelbiz
neSmi
nedmo
inen
4nene
3neo

i

1oy

nedpo
ne2q
nier
nerabb
nderar
n2ere
nderbi
nerdr
ines
Znes.
4nesp
2nest
4nesw
3netic
nadvy
nbeve
nedw
nit
ndgab
n3gel
ngednde
nbgere
n3geri
ngbha
n3gidb
nglin
nSgit
ndgla
ngov4
ng&sh
nigu
ndgum
n2gy
4nihd
nhad
nhab3
nhe4
3ndia
nidan
nidap
ni3ba
nidol
nidd
nibdi
nider
ni2fi
nibficat
nbigr
nikd
niim
nidmiz
niin
bEnine.
nindg
nido
bnis.
nisdta
n2it
ndith
3nitio
niitor
nidtr
nl]\
4nk2
nSkero
n3ket

o

nk3in
nikl
4nil
nbm
nmed
nmot-4
4nin2
nned
nnilal
nnidv
nob4l
no3ble
nbocl
4n3o2d
3noe
4nog
noged
nolsbi
nobl4i
bnologie
3nomic
nSobmiz
nodmo
nodmy
nodn
nondag
nonbi
nSoniz
4nop
Enop5o0514
norbab
nodrary
4nosc
nosde
nosbt
nobta
inou
3noun
nov3eld
nowld
nipd
npid
npredc
niq
nir
nrud
2n1s2
nebab
neatid
nedc
n2se
nds3es
neidi
neigd
n2sl
ne3m
ndsoc
nedpe
nbspi
nstabbl
nit
ntadb
nterds
nt24
n5tib
ntider

v

T;X82 HYPIIENATION PATTERNS

nti2f
n3tine
ndt3ing
ntidp
ntrolbli
ntde
ntudme
nula

" nudd

nuSen
nufdfe
n3uin
3nudit
ndum
nuime
nbumi
3nudn
n3no
nudtr
niv2
niwd
nymé4
nypé
4nz
niza
4oa
oad3
o5a5les
oard3
oasde
oastbe
oathi
ob3adb
obbar
obedl
olbi
o2bin
obbing
o3br
ob3ul
olice
ochd

. o3chet

ocif3d
odcil
odclam
odcod
ocdrac
ocbratis
ocred
bocrit
octorba
oc3ula
obcure
od5ded
od3ic
odido
o02dod
odor3
odbuct.
od5Sucts
odel
obeng
oder
oedta.
odev

4

N

0211
ofbite
ofitdt
02gbabr
ogbatiy
odgato
olge
obgene
obgeo
odger
o3gle
loigis
og3it
odgl
oSg2ly
3ogniz
odgro
ogubi
logy
2ogyn
olh2
ohabb
oi2
oic3es
oi3der
oiffd
oigd
oiblet
o3ing
ointber
obiem
oibson
oistben
oi3ter
ob§
20k
o3ken
okbie
olla
odlan
olassd
ol2d
oldie
ol3er
o3lesc
odlet
oldfd
ol2i
o3lia
o3lice
olbid.
03114t
oblil
ol3ing
oblio
oblis.
ol3ish
oblite
o5litio
obliv
ollide
olbogiz
olodr
olbpl
ol2t
ol3ub

ol3unme
ol3un
oblus
ol2vy
o2ly
ombah
omabl
ombatis
omZbe
omdbl
o2me
om3ena
omSerse
odmet
onbetry
odmia
omdic,
om3ica
obmid
omiin
obmini
Fommend
omodge
odmon
om3pi
omprob
oZn
onia
ondac
odnan
onic
3oncil
2ond
onbdo
o3nen
onbest
ondgu
onlic
odnio
oniis
obnin »
on3key
ondodi
ondomy
onds
onspid
onspirba
onsud
ontend
on3tdi
ontifh
onbum
onvab
002
oodbe
oodbi
oodk
oop3i
odord
oosth
oZpa
opebd
opler
3opera
4operag
Zoph

v

234%

TeX82 HYPHIENATION PATTERNS

oSphan
o5pher
op3ing
odpit
obpon
odposi
olpr
opin
opyb
olq
oira
obra.
odr3ag
orbalis
orbangs
oreda
obreal
ordei
oreSsh
orbest,
orewd
ordgu
4obria
or3ica
o5ril
oriin
oirio
or3ity
olrin
or2mi
ornZe
oSrof
or3oug
orbpe
Sorrh
ordse
orsSen
orstd
or3thi
or3thy
ordty
ofrum
oiry
os3al
os2¢
osdce
o3scop
4oscopi
oSscr
osdide
osSitiv
os3ito
os3ity
osidu
osdl
0280
osdpa
os4po
os2ta
oSstati
osbtil
osbtit
odtan
oteledg
otder.
otSers

odtes
doth
othSesi
oth3id
ot3ic.
ot5ica
o3tice
o3tit
o3tis
otobs
ou2
ou3bl
ouchbi
oubet
oudl
ouncBer
oun2d
oubv
ovden
overdne

. overds

ovdert
o3vis

ovitid
o5vdol
owdder
ow3del

owbest

~ owli

ownbi
odwo
oyla
ipa
padca
padce
pacidt
pdad
Spagan
p3agat
piai
paind
pdal
panda
pan3el
pandty
pa3ny
palp
padpu
paraSbl
parSage
parbdi
3pare
parbel
pdadri
pardis
palte
pabter
Spathie
pabthy
padtric
pavd
3pay
4pid
pdd
4pe.
3peda

v

peardl
pe2c
2pled
Spede
3pedi
pediad
peddic
plee
peedd
pekd
pedla
pelide
pednan
plenc
pendth
pebon
plera.
pera5bl
plerag
pderi
peribst
perdmal
permeb
pdern
per3o
perdti
pebru
periv
pe2t
peSten
peStiz
4pt
4pg
4ph.
phar54
phe3no
phder
phdes.
phiic
Sphie
ph5ing
Gphisti
3phiz
ph2l
3phod
Sphone
Ephoni
phodr
dphs
ph3t
Sphu
iphy
pisa
piand
pidcie
pidcy
piid
pbida
pilde
bpidi
3piec
pi3en
pidgrap
pidle
pi2n
péin.

v

pindd
péino
3pile
piond
p3ith
piStha
pi2tu
2p3k2
1p212
Splan
plasSt
plisa
pliber
4plig
plidn
ploid
pludm
pluméb
dpim
2p3n
podc
5pod.
poben
poSets
Epodg
poin2
Bpoint
poly5t
podni
podp
ipdor
podry
ipos
posis
paot
podta
Spoun
4pip
ppaSra
p2pe
piped
p5pel
p3pen
p3per
p3pet
ppoSsite
pr2
prayde
Spreci
prebco
predem
yreibac
predla
pre3r
pirese
Spress
preSten
predv
Spride
prindt3
prids
pris3e
p3roca
profbit
pro3l
prosde
v

proit
2pis2
p2ss
psdh
pisid
2pit
ptSadh
p2te
pP2th
ptism
ptudr
pity
pub3
pued
pufd
pulle
pudn
pu2n
purdr
Epus
puzt
Epute
putler
pultr
putdted
putdtin
piv
qu2
quaby
2que.
3quer
Squet
2rab
ra3bi
rachde
rbacl
raf5f£4
rafit
T2ajl
radlo
ram3et
r2ami
raneSo
ranige
r4ani
raSno
rap3er
Sraphy
rarSc
rared
rarSef
4raril
r2as
rationd
raudt
raSvai
rav3el
rabzie
rib
réhad
14bag
rbi2
rbidf
r2bin
rSbine
rb5ing.

/

rbdo
rie
r2ce
rcend
Fachat
rchier
rdcidd
rcdit
rcusl
rddal
rd2i
rdida
rdider
rdind
rd3ing
2re.
relal
re3an
rebarr
Sreav
redavy
rbebrat
recboll
recbompe
reidcre
2r2ed
reide
re3dis
red5it
redfac
re2fe
reSfer.
re3fi
redly
reg3is
reSit
reili
re5lu
rdendta
rendte
reio
roSpin
redposi
relpu
rlerd
rderi
rerod
reSru
rdes.
redspi
ress5ib
res2t
reSstal
re3str
redter
redtidz
re3tri
reu2
rebuti
rev2
redval
rev3el
r5evSer.
rebvers
reSverd
re5vil

o

reviolu
redvh
rig
riud
rity
rg2
rgler
r3get
rigic
rgidn
rgding
rbgis
rbgit
rigl
rgodn
r3gu
rhd
4rh.
4rhal
risa
riadd
ridag
rdid
ribsa
ricbas
rdice
4rici
bricid
ridcie
rdico
ridber
ridenc
riSent
rifer
riSet
rigban
Srigi
rilsiz
Briman
rim51
3rimo
rimdpe
r2ina
Srina.
rindd
rinde
rindg
rito
Briph
riphbe
rizpl
rip5liec
rdiq
r2is
rdis.
risdc
r3ish
risdp
ri3talh
rbited.
ritber.
ritSers
rit3ic
ri2tu
ritSur
rivbel

A

riviet
rivdi
r3j
r3ket
rkile
rkdlin
ril
rled
raled
rdlig
rdlie
rl6ish
r3lod
ris
reabe
rZme
rSmen
rabers
rading
l'llh'-
rdnio
rinit
riny
rdnar
r3nel
rdner
rSnet
r3ney
rénic
rinisd
r3nit
r3niv
rnod
rdaon
r3nu
robsl
r2oc
roScr -
rode
roife
robfil
rok2
robker
Brole.
ronbete
romdi
romdp
rondal
ronde
roSndis
rondta
iroom
broot
ro3pel
rop3ic
rordi
robro
rosSper
rosds
rodthe
rodty -
rodva
rovbol
roxb
rip
rdpea

v

)

ripeat
rpber.
r3pet
rpdhd
rp3ing
r3po
rird
rrede
rredf
rdreo
rredst
rrido
rridv
rrond
rrosd
rrysd
4rel
risa
reabti
rade
rise
risec
reedcr
raber.
rsdes
raebvl
rish
rbsha
risi
rdsidd
rsond
risp
rBsvw
rtachd
rdtag
r3ted
rtendd
rtebo
ritd
rt5ib
rtidd
rdtier
r3tig
rtilsi
reil4l
rdtily
rdtist
rdtiv
r3tri
rtrophd
rtdsh
rulda
ruledl
rulen
rudgl
rudin
rum3pl
ruZa
runkb
runity
rbusc
rutiba
rvde
rveldi
r3ven
rvSer.
v

35¢3

rEvest
rivey
r3vic
rvidy
r3vo
riv
ryde
brynge
ry3t
sa2
2s1ad
Bsack

- sacdri
s3act
5sal
salard
salin
sablo -
saldt
3sanc
sandde
slap
sabta
Bsadtie
satdu
saud

sabSvor

Ssaw
4s5b
scandts
scadp
scavh
sdced
ducel
sdces
ech2
sdcho
3sdcie
Escindd
#cleb
sdeli
scofd
4scopy
scour5a
sicu
4854
4ge.
seda
seasd
seabw
se2c3o
Jsect
4pded
seddie
s5edl
selg
seg3r
S5ael
selle
5self
Esely
{seme
sedmol
sen5at
4senc
sendd

Zj

sBened
senbg
s5enin

4sentd

4dsentl]
sep3al
4sler,
sderl
serdo
4servo
rleds
sebsh
sesbt
Esebum
bEsev
sevien
sewdi
Esex
4831
283g
22h
2ah,
shier
Eshev

shiin

sh3io
3ship
shivh
shod
sh5o0ld
shond
shord
shorth
dshw
sild
sb5ice
3side.
Esides
bsidi
sibdiz
4signa
silde
dsily
2s1in
#2ina
GEsine.
s3ing
1sio
Esion
sionba
si2r
sirba
1eis
3sitio
Ssiu
1siv
Beiz
sk2
dske
s3ket
skb5ine
sk5ing
sll2
s3lat
s2le
sliths

v

2eim
3ma
smallld
sman3
smeld
sbmen
Bsmith
smol5d4
sind
iso
sodce
softld
sodlab
#013d2
so3lic
Esoly
Ssom
3sdon.
sonad
sondg
sdop
Ssophic
s5ophisz
sbophy
sorbe
sorbd
4dsov
sobvi
2spa
Espai
spadn
spendd
2s5peo
2sper
s2phe
Sapher
sphob
spild
sp5ing
4spio
sdply
sdpon
spord
4spot
squaldl
sir
280
sisa
ssas8
#28b5¢
#3sel
s5seng
sdsesn.
sbset
sisi
sdsie
seider
ssbily
sdsl
ss4ld
sdsn
sspendd
882t
ssurba
ssbw
2st.

J

s2tag
s2tal |
stamdi
bstand
sdtadp
Bstat.
sdted
stern5i
sbtero
stelv
stevba
s3the
st2i
pdti.
s5tia
sitic
Sstick
sdtie
s3tit
st3ing
betir
sitle
Bstock
stom3a
Estone
sdtop
Sstore
stdr
sdtrad
bstratu
sdtray
sdtrid
dstry
4st3w
s2vy
leu
sulal
su4b3
su2g3
suSis
suit3
sdul
sulm
sunm3i
su2n
sulr
4sv
sw2
dswo
sdy
4syc
38yl
syn5o0
sy5Srin
ita
3ta.
2tab
taSbles
Stabolix
4taci
taSdo
4tafd
taiblo
ta2l
tabla
talben
T

talsi
4talk
taldlis
taSlog
taSmo
tandde
tantald
taSper
ta5pl
tarda
4tarc
4tare
tadriz
tasde
tabsy
4tatic
tadtur
taund
tavd
2tav
taxdin
2t1d
dte
tdch
tchbet
4ti1d
ite.
teaddi
4teat
teced
Stect
2tied
tebdl
itee
tegd
teSger
teSgi
3tel.
telid
Gtels
teZma2
tem3at
3tenan
3tenc
3tend
4tenes
itent
tendtag
1teo
tedp
teSpe
ter3c
Ster3d
iteri
terSies
ter3is
teribza
bternit
ter5Svy
4{tos.
dtess
t3ess.
tethbe
3teu
3Stex
tey
v

2¢1¢
dtig
2th.
thand
th2e
4thea
thleas
thebat
thelis
Sthet
thbic.
thbica
4thil
Sthink
4thl
thbode
Ethodie
4thoo
thorbit
thobriz
2ths
itia
tidad
tidato
2ti2b
dtick
tdico
tdicin
btidi
Stien
tif2
tibty
2tig
Stigu
till6in
itim
4timp
timSul
2tiin
t2ina
3tine,
3tini
1tio
tiSoe
tionSee
5tiq
ti3ea
Stise
tisdm
ti5s0
tisdp
Stistica
ti3tl
tidu
itiv
tivda
itiz
ti3za
ti3zen
2tl
t5la
tland
3tle.
3tled
3tles.
t5let.

/

TEX82 HYPHENATION PATTERNS

t5le
itim
tmed
2tin2
ito
to3b
tobcrat
4todo
2tof
to2gr
tobiec
to2ma
tomdb
toSmy
tondali
toSnat
4tone
4tony
to2ra
to3rie
torbis
tos2
Stour
4tout
toSwar
dtip
itra
tradh
trabch
tracid
tracdit
tracdte
trasd
traSven
travbes$
tre5?
tredm
trembi
Stria
tribces
Stricia
4trice
2trim
tridv
trobmi
tronSi
4trony
tro5phe
tro3sp
tro3vy
truSi
trusd
4ti1s2
tdsc
tshd
tdcw
4t3t2
tites
t5to
ttud
itu
tula
tu3dar
tudbi
tud2
4{tue

7

dtafd
Btusi
Stum
tudnis
2t3up.
Sture
Sturi
turdis
turbo
tubry
Stus
ity
twd
itiva
twisd
4two
ity
itya
2tyl
type$
ty5ph
itz
tzde
4uad
uacd
uabna
uvandi
uarbant
uvar2d
uar3i
uar3t
ulat
uavd
ubde
udbel
ulber
udbereo
uibdi
udbSing

. udble.

u3ca
ucidb
ucdit
ucle3d
udcr
uldcu
udcy
ud5d
ud3er
udSest
udevd
uldic
ud3died
udlies
udSis
ubdit
uddon
uddsi
uddu
udene
uvensd
uenite
uerdil
Sufa
udfl
ugh3en

v

ughin
2ui2
uilbis
uidn
uling
uirda
uitad
uivd
uivder,
ubj
duk
uila
ulabb
ublati
ulchd
Bulche
uldder
ulde
uilen
uldgi
ul2i
ublia
ul3ing
ulbish
uldlar
uldlidh
uldlie
4ulsa
uildo
4uls
ulsbes
ulied
ultral
4ultu
ullu
ulbul
ulby
umbab
umdbi
undbly
uimi
udm3ing
umorbo
un2p
unat4
u2ne
under
uini
undim
u2nin
un5ish
unildvy
un3sd
undow
unt3ab
undter.
undtes
unud
unby
unbz
udors
ubos
ulou
ulpe
uperbs
ubpia
Vv

4137

EX82 YPHENATION PATTERNS

upling utobmatic 4ving w5p y5lu
udpl uSton vie3l wrad ymbolb
up3p udton v3iodr wrid ymed
upporth utsd viloun writad ympad
uptbid udu vidp wish yn3chr
uptud vudm ° vibro wedl ynsd
ulra uiv2 visdit wsdpe ynbg
dura. uxul vidso whbadt ynbic
udrag uzde vidsu dvt 5ynx
udras e iva dvitd wyd ylod
urdbe .. bva. vit3r xia yobd
urcd 2viadd dvivy xacbe ydobg
urid vacbil 3viv xdago yomd
urebat vacdu Bvo. xam3 yobnet
urdfer vagd void . - xdap ydons
urdfr vadge Svok xa8b ydos
udrit : vablie vodla x3c2 ydped
uridfic valbo - vbole xie yporb
uriin wvaliu - bvolt xedcato ypii
ulrio vabmo Svoly x2ed y3po
uirit vabniz vombi = xerdl ydpoe
urdis vabpi vorbab xebro ypta
ur2l - varbied vorid x1h ybpu
uribing, Svat ~ vodry .’ xhi2 yrabm
urdno 4ve. vodta xhilb yrbia
urosd = dved 4votee xhud yiro
urdpe veg3 dvvd 34 yrir
urdpi v3el, vdy - xiba yede
ursber vel3ll whabl xibe y3s2e
urbtes vedlo 2vac x15d1 ys3ica
ur3the vdely waSger xdime ye3lo
urtid ven3om wagho xibmiz 3ysis
urdtie vbenue waith " x30 ydso
udru vderd w5al. x40b’ ysed
2us . Evere. wand x3p yeit
ubsad vderel wvardt xpandd ys3ta
uSsan , v3eren vasdt xpecto5 ysurd,
usdap verSenc walte xpe3d y3thin
usc2 vderes wabver x1t2 yti3ie
usSci verdie wib - x3ti yiv
useba vermidn weabrie xiu zal
ubsia Sverse veath3 xu3a z5a2b
u3eic ver3th weddn xx4 © zar2
usélin vde2s weet3 y5ac 4zb
usip dves. woe5y 3yard 22«
usSel vesite - weldl y5at ze4n
usStere vedte wier yib zedp
usitr vet3er wostd yie zier
u2su vedty wiev y2ce ze3ro
usurd viball whid ycSer .. zotd
utadb Evian wi2 y3ch 2211
ultat bride. wil2 ychie zéil
dute. . Brided willSin ycomd zdis
dutel 4v3iden windde . ycotd 621
4uten Evides windg yid 4zm
utendi Evidi wird y5ee 1zo0
421624 - v3it 3vise yler zodm
utds1iz vibgn - with3 ydert zobol
udtine vik4 wizb . yend zted
ut3ing 2vil wik . yedt 42122
ution5a 5vilit wldes - y5gi zdzy
udtis v3i31iz wl3in 4y3h

" BuStiz viin wino ~ yii
udtll 4vidna ivo2 y3la

* utSof v2inc woml yllaSbl

ut.o\Sf vinbd woSven y3lo

Answers

moun-tain-ous vil-lain-ous
be-tray-al de-fray-al por-tray-al
hear-ken

ex-treme-ly su-preme-ly
tooth-aches

bach-e-lor ech-e-lon
xift-raft

anal-o-gous ho-mol-o-gous
gen-u-ine

any-place

co-a-lesce

fore-warn fore-word
de-spair '
ant-arc-tic corn-starch
mast-odon

squirmed

82

References

[1] Knuth, Donald E. TEX and METAFONT, New Directions in Typesetting. Digital
- Press, 1979.
[2] Webster’s Third New International Dictionary. G. & C. Merriam, 1961,

[3] Knuth, Donald E. The WEB System of Structured Documentation. Preprint,
Stanford Computer Science Dept., September 1982.

[4] Knuth, Donald E. The Art of Computer Programming, Vol. 8, Sorting and
Searching. Addison-Wesley, 1973.

[5] Standish, T. A. Data Structure Techniques. Addison-Wesley, 1980.

[6] Aho, A. V., Hopcroft, J. E., and Ullman, J. D. Algorithms and Data Structures.
Addison-Wesley, 1982.

[7] Bloom, B. Space/time tradeoffs in hash coding with allowable errors. CACM
13, July 1970, 422-436.

[8] Carter, L., Floyd, R., Gill, J., Markowsky, G., and Wegman, M. Exact and
approximate membership testers. Proc. 10th ACM SIGACT Symp., 1978, 59-
65.

[9] de la Briandais, Rene. File searching using variable length keys. Proc. Western
Joint Computer Conf. i5, 1959, 295-298.

[10] Fredkin, Edward. Trie memory. CACM 3, Sept. 1960, 400-500.

~[11) Trabb Pardo, Luis. Set representation and set intersection. Ph.D. thesis, Stan-
ford Computer Science Dept., December 1978.

[12] Mehlhorn, Kurt. Dynamic binary search. SIAM J. Computing 8, May 1979,
175-198.
[13] Maly, Kurt. Compressed tries. CACM 19, July 1976, 409-415.

[14] Knuth, Donald E. TEX82. Preprint, Stanford Computer Science Dept., Septem-
ber 1982.

[15] Resnikoff, H. L. and Dolby, J. L. The nature of affixing in written English.
Mechanical Translation 8, 1965, 84-89. Part II, June 1966, 23-33.

[16] The Merriam-Webster Pocket Dictionary. G. & C. Merriam, 1974.
(17] Gorin, Ralph. SPELL.REG[UP,DOC] at SU-AL

[18] Peterson, James L. Computer programs for detecting and correcting spelling
errors, CACM 23, Dec. 1980, 675-687.

83

84 REFERENCES

(19] Nix, Robert. Experience with a space-efficient way to store a dictionary, CACM
24, May 1081, 297-298.

[20] Morris, Robert and Cherry, Lorinda L. Computer detection of typographical
errors, IEEE Tyans. Prof. Comm. PC-18, March 1975, 54-64.

[21] Downey, P., Sethi, R., and Tarjan, R. Variations on the common subexpression
problem. JACM 27, Oct. 1980, 758-771.

[22] Tarjan, R. E. and Yao, A. Storing a sparse table. CACM 22, Nov. 1979, 606-611.

[23] Zeigler, S. F. Smaller faster table driven parser. Unpublished manuscript, Madi-
son Academic Computing Center, U. of Wisconsin, 1977.

[24] Aho, Alfred V. and Ullman, Jeffrey D. Principles of Compiler Design, sections
3.8 and 6.8. Addison-Wesley, 1977.

[25) Pfleeger, Charles P. State reduction in incompletely specified finite-state ma-
chines. JEEE Trans. Computers C-22, Dec. 1573, 1099-1102,

[26] Kohavi, Zvi. Switching and Finite Automata Theory, section 10-4. McGraw-
Hill, 1970. <

[27] Knuth, D. E., Morris, J. H., an i Pratt, V. R. Fast pattern matching in stringr.
SIAM J. Computing 6, June 1977, 323-350.

(28] Aho, A. V. In R. V. Book (ed.), Formal Language Theory: Perspectives and
Open Problems. Academic Press, 1980.

[29] Kucera, Henry and Francis, W. Nelson. Computational Analysis of Present-Day
American English. Brown University Press, 1087.

[30] Research and Engineering Council of the Graphic Arts Industry. Proceedings of
the 13th Annual Conference, 1963.

[31] Stevens, M. E. and Little, J. L. Automatic Typographic-Quality Typesetting
Techniques: A State-of-the-Art Review. National Bureau of Standards, 1967.

[32) Berg, N. Edward. Electronic Composition, A Guide to the Revolution in Type-
setting. Graphical Arts Technical Foundation, 1975.

[33] Rich, R. P. and Stone, A. G. Mcthod for hyphenating at the end of a printed
line. CACM 8, July 1965, 444-145.

[34] Wagner, M. R. The search for a simple hyphenation scheme. Bell Laboratories
Technical Memorandum MM-71-1371-8.

.[35] Gimpel, James F. Algorithms in Snobol 4. Wiley-Interscience, 1978,

REFERENCES 85

[36] Ocker, Wolfgang A, A program to hyphenate English words. IEEE Trans, Prof.
Comm, PC-18, June 1975, 78-84.

' [37] Moitra, A., Mudur, S, P., and Narwekar, A. W. Design and analysis of a hy-
phenation procedure, Software Prac. Exper. 9, 1979, 325-337.

[38] Lindsay, R., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J. DENDRAL.
McGraw-Hill, 1980.

