May 1989 Report No. STAN-CS-89-1255

METAFONTware

by

Donald E. Knuth, Tomas G. Rokicki, and Arthur L. Samuel

Department of Computer Science

Stanford University
Stanford, California 94305

The GFtype processor

(Version 3.0, April 1989)

Sect ion Page

INTrOAUCTION oottt t ettt e e e e e e e e e e et e I 102
The character Set 8 104
Generic font file format 13 106
Input from binary filesottt 200 111
Optional MOdes OF OUEPUL v vttt ettt et e ettt et e e et 25 112
ThE IMAZE AITAY « « v vt v e et e e et et e et e et e et e e e e e e 35 114
Translation to symbolic form -t 44 116
Reading the poStambIettt ettt et e 61 121
ThEeMaINPTOZIAM . vt ettt ettt e et et e e e et e et e e e e e e e e 66 123
System-dependent CHANZES « .o ntuttte ettt et ettt e e e 73126
IndeX oo 74 127

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘METAFONT’ is a trademark of Addison-Wesley Publishing Company.

102 INTRODUCTION GFtype gl

1. Introduction. The GFtype utility program reads binary generic-font (“GF”) files that are produced
by font compilers such as METAFONT, and converts them into symbolic form. This program has three chief
purposes: (1) It can be used to look at the pixels of a font, with one pixel per character in a text file; (2) it
can be used to determine whet her a GF file is valid or invalid, when diagnosing compiler errors: and (3) it
serves as an example of a program that reads GF files correctly, for system programmers who are developing
GF-related software.

The original version of this program was written by David R. Fuchs in March, 1984. Donald E. Knuth
made a few modifications later that year as METAFONT was taking shape.

The banner string defined here should be changed whenever GFtype gets modified.

define banner = This_is GFtype, Version 3.0~ {printed when the program starts }

2. This program is written in standard Pascal, except where it is necessary to use extensions; for example,
one extension is to use a default case as in TANGLE, WEAVE, etc. All places where nonstandard constructions
are used have been listed in the index under “system dependencies.”

define othercases = others: { default for cases not listed explicitly }

define endcases=end {follows the default case in an extended case statement }
format othercases = else

format endcases = end

3. The binary input comes from gf file, and the symbolic output is written on Pascal’s standard output
file. The term print is used instead of write when this program writes on output. so that all such output
could easily be redirected if desired.
define print (#) = write (#)
define print-In (#)=write_ln (#)
define print_nl = write_In
program GF_type(gf-file, output);
label (Labels in the outer block 4)
const (Constants in the outer block 5)
type (Types in the outer block 8)
var (Globals in the outer block 10)
procedure initialize; {this procedure gets things started properly }
var i:integer; {loop index for initializations }
begin print-in (banner);
(Set initial values 11)
end;

4. If the program has to stop prematurely, it goes to the "final_end’.
define final-end = 9999 { label for the end of it all }

(Labels in the outer block 4) =
final-end;

This code is used in section 3.

85 GFtype INTRODUCTION 103

5. Four parameters can be changed at compile time to extend or reduce GFtype's capacity. Note that the
total number of bits in the main image-array will be

(max-row + 1) x (maz_col + 1).

(METAFONT’s full pixel range is rarely implemented, because it would require 8 megabyvtes of inemory.)

(Constants in the outer block 5) =
terminal_line_length = 150;
{ maximum number of characters input in a single line of input from the terminal }
line-length = 79; { xxx strings will not produce lines longer than this }
max-row =79; {vertical extent of pixel image array }
maz-col = 79; {horizontal extent of pixel image array }

This code is used in section 3.

6. Here are some macros for common programming idioms.

define incr (#)=#—#+ 1 {increase a variable by unity }
define decr (#)=#—#—1 {decrease a variable by unity }
define negate(#) =# — —# {change the sign of a variable }

7. If the GF file is badly malformed, the whole process must be aborted; GFtype will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so a procedure called jump-out
has been introduced. This procedure, which simply transfers control to the label final-end at the end of the
program, contains the only non-local goto statement in GFtype.

define abort (#)=
begin print (“ ", #);jump-out;
end
define bad_gf (#) = abort("Bad GF_ file: . #.7!")
procedure jump-out;
begin goto final-end;
end;

104 THE CHARACTER SET GFtype 88

s. The character set. Like all programs written with the WEB system, GFtype can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used.

The next few sections of GFtype have therefore been copied from the analogous ones in the WEB system
routines. They have been considerably simplified, since GFtype need not deal with the controversial ASCII
codes less than 40. If such codes appear in the GF file, they will be printed as question marks.

(Types in the outer block 8)=

ASCII-code ="_".."""; {a subrange of the integers }

See also sections 9, 20, and 36.

This code is used in section 3.

9. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like GFtype. So we shall assume that the
Pascal system being used for GFtype has a character set containing at least the standard visible characters
of ASCII code ("!"through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text-char to stand for the
data type of the characters in the output file. We shall also assume that text-char consists of the elements
chr (first-text-char) through chr (lust-text-char), inclusive. The following definitions should be adjusted if
necessary.

define text-char = char {the data type of characters in text files }

define first-text-char =0 {ordinal number of the smallest element of text-char }

define [lust-text-char = 127 { ordinal number of the largest element of text-char }

(Types in the outer block 8) +=
text-file = packed file of text-char;

10. The GFtype processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

(Globals in the outer block 10) =

xord: array [text-char] of ASCII-code; { specifies conversion of input characters }

xehr:array [0 . . 255] of text-char; {specifies conversion of output characters }

See also sections 21, 23, 25, 27, 35, 37, 39, 41, 46, 54, 62, and 67.

This code is used in section 3.

§11 GFtype THE CHARACTER SET 105

11. Under our assumption that the visible characters of standard ASCII are all present, the following
assignment statements initialize the xchr array properly, without needing any system-dependent changes.

(Set initial values 11) =
for i — 0 to 37 do zchr[i] —"?";
zchr{40) « “"; xchr[41]) « ~ v "5 xchr|'42] © """ zchr[43] « "#7; zchr[44] « "$":
zchr[45] « b7 zchr[46] — & ; xchr|47)e """ 7,
zchr['50) « ~(°; zchr(51] — *)"; xchr['52]) v “x"; zchr['53] — "+7; zchr['54] — =, 7
zchr[55] « =75 xchr[56] — *. " xchr|'57] « "/ ":
xchr [60]— “07; zchr[61] « "1°; xchr|62] « "27; zchr['63]— 3", zchr['6{]— "'4";
xchr['65)— "57; xchr{'66])— "6"; xchr|'67] — 77,
xchr [“70)« "8°; xchr["71] — "97; zchr[72] « ~: 7 zchr[73] — *; 7 zchr[7] « "<7;
zchr("75) « “="; zchr[76] « “>7; zchr[77] « "77;
xchr['100)— "Q@"; xchr['101] — "A"; zchr[102] — "B~; zchr[’108] «— "C"; zchr['104] « "D":
zchr[105] — "E°; zchr[106] — "F~; zchr['107] «— "G";
wchr('110) — "H"; zchr['111] « "1°; zchr('112] « "3 zchr['118] «— "K~; zchr['114] « L";
zchr['115] « "M"; xchr['116] « "N°; zchr[117] « "07;
xchr [120] « P “; xchr['121] « "Q7; xchr['122] « "R"; xchr['123] « "S"; xchr['124] « "T";
xchr['125) « "U"; xchr['126] « "V°; zchr['127] — "W7;
zchr["130] «— "X°; xchr['131] — °Y *; zchr[132) — “Z7; xchr ["133] «"[";xchr['134] «— "\";
zchr{ "135] — “17; xchr['136] — "~ xchr(['137] « "_";
xchr [‘140] — =~ “; xchr['141) « "a"; zchr[142]) — "b"; xchr| 143] — "c”; xchr['144] — "d";
zchr| '145] «— “e *; xchr['146] «— £ °; zchr[147]—"g";
xchr[’150) — "h~; zchr['151) « "i7; zchr['152] « "j°; zchr['153]) — "k"; zchr[154] — "17;
zchr[’155] « "m"; zchr['156] — "n~; zchr['157] «— "07;
zchr([°160) « "p~; zchr{’161] « "q"; zchr('162] — "r~; zchr['163] — "8"; zchr['164]) — "t":
xchr(’165] « "u"; zchr[166]) — "v°; zchr['167] «— "w";
xchr['170) «— “x°; zchr['171] « “y~; zchr['172] — “z"; zchr['173] «— {5 zchr[174} — 1 7,
rchr|['175] « }°; zchr[176) — "~ 7,
for i — ‘w77to 255 do zchr[i] « "7 7;

See also sections 12, 26, 47, and 63.

This code is used in section 3.

12. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr.
(Set initial values 11) +=

for i « first-text-char to last_tezt_char do zord[chr(i)] — 40;

for i — " "to """ do zord[zchr[i]] — i;

106 GENERIC FONT FILE FORMAT GFtype 813

13. Generic font file format. The mostimportant output produced by a typical run of METAFONT is
the “generic font” (GF) file that specifies the bit pat terns of the characters that have been drawn. The term
generic indicates that this file format doesn’t match the conventions of any name-brand manufacturer: but
it is easy to convert GF files to the special format required by almost all digital phototypesetting equipment.
There’s a strong analogy between the DVI files written by TEX and the GF files written by METAFONT; and,
in fact, the file formats have a lot in common. It is therefore not surprising that GFtype is identical in many
respects to the DVItype program.

A GF file is a stream of 8-bit bytes that may be regarded as a series of commands in a machine-like language.
The first byte of each command is the operation code, and this code is followed by zero or more bytes that
provide parameters to the command. The parameters themselves may consist of several consecutive bytes:
for example, the ‘boc’ (beginning of character) command has six parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either
positive or negative, hence they range in value from —23!to 23! — 1. As in TEM files, numbers that occupy
more than one byte position appear in BigEndian order, and negative numbers appear in two’s complement
notation.

A GF file consists of a “preamble,” followed by a sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command, followed by any number of other commands that
specify “black” pixels, followed by an eoc command. The characters appear in the order that METAFONT
generated them. If we ignore no-op commands (which are allowed between any two commands in the file),
each eoc command is immediately followed by a boc command, or by a post command: in the latter case,
there are no more characters in the file, and the remaining bytes form the postamble. Further details about
the postamble will be explained later.

Some parameters in GF commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first file byte is nurnber 0, then comes number 1, and so on.

14. The GF format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information relative instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of two quantities: (a) the current column number, m; and
(b) the current row number, n. These are 32-bit signed integers, although most actual font formats produced
from GF files will need to curtail this vast range because of practical limitations. (METAFONT output will
never allow |m|or |n|to get extremely large, but the GF format tries to be more general.)

How do GF’srow and column numbers correspond to the conventions of TgX and METAFONT? Well, the
“reference point” of a character, in TgX’s view, is considered to be at the lower left corner of the pixel in
row 0 and column 0. This point is the intersection of the baseline with the left edge of the type; it corresponds
to location (0.0) in METAFONT programs. Thus the pixel in GF row 0 and column 0 is METRFONT’s unit
square, comprising the region of the plane whose coordinates both lie between 0 and 1. The pixel in GF
row n and column m consists of the points whose METAFONT coordinates (x, y) satisfy m <z <m + 1
and n<y <n + 1. Negative values of m and z correspond to columns of pixels /eft of the reference point:
negative values of n and y correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of the current state, namely the paint-switch, which is
always either black or white. Each paint command advances m by a specified amount d, and blackens
the intervening pixels if paint-switch = black; then the paint-switch changes to the opposite state. GF's
commands are designed so that m will never decrease within a row, and n will never increase within a
character: hence there is no way to whiten a pixel that has been blackened.

815 GFtype GENERIC FONT FILE FORMAT 17

15. Here is a list of all the commands that may appear in a GF file. Each command is specified by its

symbolic name (e.g., boc), its opcode byte (e.g.. 67), and its parameters (if any). The parameters are followed

by a bracketed number telling how many bytes they occupy; for example, ‘d[2]’ means that parameter d is

two bytes long.

paint-0 0. This is a paint command with d = 0; it does nothing but change the paint-switch from black to
white or vice versa.

paint-I through paint-63 (opcodes 1 to 63). These are paint commands with d = 1 to 63, defined as follows:
If paint-switch = black, blacken d pixels of the current row n. in columns m through m + d — 1
inclusive. Then, in any case, complement the paint-switch and advance m by d.

paint] 64 d[1]. This is a paint command with a specified value of d; METRFONT uses it to paint when
64 < d < 256.

paint2 65 d[2]. Same as paint] ,but d can be as high as 65535.

paint3 66 d[3]. Same as paintl , but d can be as high as 224 — 1, METAFONT never needs this command,
and it is hard to imagine anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min-m [4] mux-m [4]min-n [4] maz_n[4]. Beginning of a character: Here c is the character
code, and p points to the previous character beginning (if any) for characters having this code number
modulo 256. (The pointer p is -1 if there was no prior character with an equivalent code.) The
values of registers m and n defined by the instructions that follow for this character must satisfy
min-m < m < mux-m and min.n < n < mux-n. (The values of mux-m and min-n need not be
the tightest bounds possible.) When a GF-reading program sees a boc, it can use min-m, mux-m,
min-n, and mux-n to initialize the bounds of an array. Then it sets m « min-m, n < mux-n, and
paint-switch «— white.

bocl 6 8 c[1] del-m[1] maz-m[1] del_.n|[l]mux-n [1]. Same as boc, but p is assumed to be -1; also del-m =
maz-m — min-m and del-n = mux-n — min-n are given instead of min-m and min-n. The one-byte
parameters must be between 0 and 255, inclusive. (This abbreviated boc saves 19 bytes per character,
in common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for this character. In particular,
a completely blank character might have eoc immediately following boc.

skip0 70. Decrease n by 1 and set m « min-m, paint-switch «— white. (This finishes one row and begins
another, ready to whiten the leftmost pixel in the new row.)

skipl 71 d[1]. Decrease n by d + 1, set m « min-m, and set paint-switch «— white. This is a way to produce
d all-white rows.

skip2 72 d[2]. Same as skipl, but d can be as large as 65535.

skip3 73 d[3]. Same as skipl , but d can be as large as 224 — |. METAFONT obviously never needs this
command.

new -row-0 74. Decrease n by 1 and set m — min_.m, paint-switch « black. (This finishes one row and
begins another, ready to blacken the leftmost pixel in the new row.)

new-row-1 through new-row-I 64 (opcodes 75 to 238). Same as new-row-o, but with m — min-m + 1
through min-m + 164, respectively.

xzxzl 239 k(1] z[k]. This command is undefined in general; it functions as a (k + 2)-byte no-op unless
special GF-reading programs are being used. METAFONT generates xxx commands when encountering
a special string; this occurs in the GF file only between characters, after the preamble, and before the
postamble. However, xxx commands might appear anywhere in GF files generated by other processors.
It is recommended that x be a string having the form of a keyword followed by possible parameters
relevant to that keyword.

xxx2 240 k[2) z[k]. Like xxxI , but 0 < k < 65536.

xxx3 241 k[3] z[k]. Like zzzl, but 0 < k < 22%. METRFONT uses this when sending a special string whose
length exceeds 255.

108 GENERIC FONT FILE FORMAT GFtype §15

zzz4 242 k[4] z[k]. Like zzz!, but k can be ridiculously large; k mustn’t be negative.

yyy 243 y[4]. This command is undefined in general; it functions as a 5-byte no-op unless special GF-reading
programs are being used. METAFONT puts scaled numbers into yyy’'s, as a result of numspecial
commands; the intent is to provide numeric parameters to xxx commands that immediately precede.

no-op 244. No operation, do nothing. Any number of no-op’s may occur between GF commands, but a
no-op cannot be inserted between a command and its parameters or between two parameters.

char-Zoc 245 c[1] dx [4] dy [4] w[4] p[4]. This command will appear only in the postamble, which will be
explained shortly.

char_locO 246 c[1] dm[l] w[4] p[4]. Same as char_loc, except that dy is assumed to be zero, and the value
of dx is taken to be 65536 * dm, where 0 < dm < 256.

pre 247 i[1] k[1] z[k]. Beginning of the preamble; this must come at the very beginning of the file. Parameter i
is an identifying number for GF format, currently 131. The other information is merely commentary: it
is not given special interpretation like xxx commands are. (Note that xxx commands may immediately
follow the preamble, before the first boc.)

post 248. Beginning of the postamble, see below.
post-post 249. Ending of the postamble, see below.
Commands 250-255 are undefined at the present time.
define gf-td-byte = 131 {identifies the kind of GF files described here }

16. Here are the opcodes that GFtype actually refers to.
define paint-0=0 {beginning of the paint commands }
define paint] =64 {move right a given number of columns, then black — white }
define boc = 67 {beginning of a character }
define bocl = 68 { abbreviated boc }
define eoc=69 {end of a character }
define skip0 = 70 {skip no blank rows }
define skip I =71 {skip over blank rows }
define new-row-O =74 {move down one row and then right }
define zzzl= 239 {forspecial strings}
define yyy = 243 { for numspecial numbers }
define no-op = 244 {no operation }
define char_loc = 245 { character locators in the postamble }
define pre =247 { preamble}
define post =248 { postamble beginning}
define post-post = 249 {postamble ending }
define undefined-commands = 250,251, 252,253, 254, 255

§17 GFtype GENERIC FONT FILE FORMAT 109

17. The last character in a GF file is followed by ‘post’; this command introduces the post amble, which
summarizes important facts that METAFONT has accumulated. The postamble has the form

post pl4] ds [4] cs[4] hppp [4] vppp [4] min.m[4] mux-m [4] min_n[4] maz_n[4]
(character locators)
post-post q[4] i[1] 223’s[>4]

Here p is a pointer to the byte following the final eoc in the file (or to the byte following the preamble, if
there are no characters); it can be used to locate the beginning of xxx commands that might have preceded
the postarnble. The ds and cs parameters give the design size and check sum, respectively, which are exactly
the values put into the header of any TFM file that shares information with this GF file. Parameters hppp
and vppp are the ratios of pixels per point, horizontally and vertically, expressed as scaled integers (i.e.,
multiplied by 2!); they can be used to correlate the font with specific device resolutions, magnifications,
and “at sizes.” Then come min-m, mux-m, min-n, and mux-n, which bound the values that registers m
and n assume in all characters in this GF file. (These bounds need not be the best possible; mux-m and
min-n may, on the other hand, be tighter than the similar bounds in boc commands. For example, some
character may have min-n = -100 in its boc, but it might turn out that n never gets lower than -50 in any
character; then min-n can have any value < -50. If there are no characters in the file, it’s possible to have
min-m > mux-m and/ or min-n > mux-n .)

18. Character locators are introduced by char-Zoc commands, which specify a character residue c, character
escapements (dx, dy), a character width w, and a pointer p to the beginning of that character. (If two or
more characters have the same code ¢ modulo 256, only the last will be indicated; the others can be located
by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share the
same font metric information, hence the TFM file contains only residues of character codes modulo 256. This
convention is intended for oriental languages, when there are many character shapes but few distinct widths.)

The character escapements (dx, dy) are the values of METAFONT’s chardx and chardy parameters; they
are in units of scaled pixels; i.e., dx is in horizontal pixel units times 2'¢, and dy is in vertical pixel units
times 216. This is the intended amount of displacement after typesetting the character; for DVI files, dy
should be zero, but other document file formats allow nonzero vertical escapement.

The character width w duplicates the information in the TFM file; it is 224 times the ratio of the true width
to the font’s design size.

The backpointer p points to the character’s boc, or to the first of a sequence of consecutive xxx or yyy
or no-op commands that immediately precede the boc, if such commands exist; such “special” commands
essentially belong to the characters, while the special commands after the final character belong to the
postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc
commands, even though it wasn’t explained in the description of boc.

Pointer p might be -1 if the character exists in the TFM file but not in the GF file. This unusual situation
can arise in METAFONT output if the user had proofing < 0 when the character was being shipped out, but
then made proofing > 0 in order to get a GF file. .

110 GENERIC FONT FILE FORMAT GFtype 519

19. The last part of the postamble, following the post-post byte that signifies the end of the character
locators, contains g, a pointer to the post command that started the postamble. An identification byte, ¢,
comes next: this currently equals 131, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., “DF in
hexadecimal). METRFONT puts out four to seven of these trailing bytes, until the total length of the file
is a multiple of four bytes, since this works out best on machines that pack four bytes per word; but any
number of 223’s is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature
that is added at the very end.

This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first,
on most computers, even though METAFONT wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read ¢, and
move to byte g of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the GFreader can discover all the information needed for individual characters.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file.
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities, so
GF format has been designed to work most efficiently with modern operating systems. But if GF files have to
be processed under the restrictions of standard Pascal, one can simply read them from front to back. This
will be adequate for most applications. However, the postamble-first approach would facilitate a program
that merges two GF files, replacing data from one that is overridden by corresponding data in the other.

4§20 GFtype INPUT FROM BINARY FILES 11

20. Input from binary files. We have seen that a GF file is a sequence of 8-bit bytes. The bytes appear
physically in what is called a ‘packed file of 0..255 in Pascal lingo.

Packing is system dependent, and many Pascal systems fail to implement such files in a sensible way
(at least, from the viewpoint of producing good production software). For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such things. Therefore some system-dependent
code is often needed to deal with binary files, even though most of the program in this section of GFtype is
written in standard Pascal.

We shall stick to simple Pascal in this program, for reasons of clarity, even if such simplicity is sometimes
unrealistic.

(Types in the outer block 8) +=
eight-bits =0 .. 255; {unsigned one-byte quantity }
byte-file = packed file of eight-bits; { files that contain binary data }

21. The program deals with one binary file variable: gf file is the main input file that we are translating
into symbolic form.

(Globals in the outer block 10) +=

gf-file: byte-file; {the stuff we are GFtyping }

22. To prepare this file for input, we reset it.

procedure open_gf-file; { prepares to read packed bytes in g-ie }
begin reset (gf-file); cur-Zoc «— 0;
end;

23. If you looked carefully at the preceding code, you probably asked, “What is cur-loc?” Good question.
It’s a global variable that holds the number of the byte about to be read next from grie..

(Globals in the outer block 10) +=
cur_loc: integer; { where we are about to look, in gf-file}

24. We shall use a set of simple functions to read the next byte or bytes from gf file. There are four
possibilities, each of which is treated as a separate function in order to minimize the overhead for subroutine
calls.
function get-byte: integer; {returns the next byte, unsigned }
var b: eight-bits;
begin if eor (gl then get-byte «— 0
else begin read(gf-file, b); incr(cur-Zoc); get-byte «— b;
end;
end;
function get-two-bytes:integer; {returns the next two bytes, unsigned }
var a, b: eight-bits;
begin read(gf-file,a);read(gf-file,b); cur-Zoc « cur-Zoc + 2; get-two-bytes — a * 256 + b;
end;
function get-three-bytes: integer; { returns the next three bytes, unsigned }
var a, b, c: eight-bits;
begin read(gf_file, a); read (gf-file,b); read (gf-file, ¢); cur-Zoc « cur-Zoc + 3;
get-three-bytes «— (a * 256 + b) * 256 + c;
end;
function signed-quad: integer; { returns the next four bytes, signed }
var a, b, ¢, d: eight-bits;
begin read (gf-file,a); read (gf-file,b); read (gf-file, c); read (gf-file.d); cur_loc — cur-Zoc + 4;
if a < 128 then signed-quad « ((a * 256 + b) x 256 + c) * 256 + d
else signed-quad «— (((a —256) * 256 + b) *256 + c) * 256 + d;
end:

112 OPTIONAL MODES OF OUTPUT GFtype §25

25. Optional modes of output. GFtype will print different quantities of information based on some
options that the user must specify: We set wants-mnemonics if the user wants to see a mnemonic dump of
the GF file; and we set wants-pixels if the user wants to see a pixel image of each character.

When GFtype begins, it engages the user in a brief dialog so that the options will be specified. This
part of GFtype requires nonstandard Pascal constructions to handle the online interaction: so it may
be preferable in some cases to omit the dialog and simply to produce the maximum possible output
(wants-mnemonics = wants_pizels = true). On other hand, the necessary system-dependent routines are
not complicated, so they can be introduced without terrible trauma.

(Globals in the outer block 10) +=
wants-mnemonics: boolean; { controls mnemonic output }
wants-pixels: boolean; { controls pixel output }

26. (Set initial values 11) +=
wants__mnemom'cs — true; wants-pixels «— true;

27. The input-Zn routine waits for the user to type a line at his or her terminal; then it puts ASCII-code
equivalents for the characters on that line into the buffer array. The term-in file is used for terminal input,
and term-out for terminal output.

(Globals in the outer block 10) +=

buffer : array [0 .. terminal-line-length] of ASCII-code;

term-in: text-file; {the terminal, considered as an input file }

term-out: text-file; {the terminal, considered as an output file }

28. Since the terminal is being used for both input and output, some systems need a special routine to make
sure that the user can see a prompt message before waiting for input based on that message. (Otherwise
the message may just be sitting in a hidden buffer somewhere, and the user will have no idea what the
program is waiting for.) We shall invoke a system-dependent subroutine update-terminal in order to avoid
this problem.

define update-terminal = break (term-out) {empty the terminal output buffer }

29. During the dialog, extensions of GFtype might treat the first blank space in a line as the end of that
line. Therefore input-Zn makes sure that there is always at least one blank space in buffer .

(This routine is more complex than the present implementation needs, but it has been copied from DVItype
so that system-dependent changes that worked before will work again.)

procedure inpu t-Zn; {inputs a line from the terminal }

var k: 0.. terminal_line_length;

begin update-terminal; reset (term-in);

if eoln (term-in) then read-Zn (term-in);

k «— 0:

while (k <terminal-line-length) A —eoln(term-in) do
begin buffer [k] «— xord [term-in 1]; iner (k); get (term-in);
end;

buffer (k] «— ",";

end:

30. This is humdrum.

function lower_casify(c : ASCII-code): ASCII-code;
begin if (¢ >"A") A (c <"Z")then lower-cusify — c +"a" —"A"
else lower-cusify «— c;
end:

8§31 GFuype OPTIONAL MODES OF OUTPUT 113

31. The selected options are put into global variables by the dialog procedure, which is called just, as
GFtype begins.

procedure dialog,
label 1,2;
begin rewrite (term-out); {prepare the terminal for output }
write-Zn (term-out, banner);
(Determine whether the user wants-mnemonics 32);
(Determine whether the user wants_pizels 33);
(Print all the selected options 34):
end;

32. (Determine whether the user wants-mnemonics 32) =
1: write (term-out, "Mnemonic_output? (default=no,? for help):,"); input.ln;
buffer [0] — lower_casify(buffer [0]);
if buffer[0] # "?" then wants-mnemonics — (buffer [0] ="y") V (buffer [0] ="1") V (buffer [0] ="t ")
else begin write (term-out, "Type Y for complete_ listing, °);
write-Zn(term-out, “UNUE or_errors/images_only . "); goto I;
end

This code is used in section 31.

33. (Determine whether the user wants-pixels 33) =
2: write(term_out, "Pixel_output?,(default=yes, ? for_ help):\,"); input-Zn;
buffer [0]— low er-cusify (buffer [0]);
if buffer[0] # "?" then
wants-pixels «— (buffer[0] = “y”) V (buffer[0] = “1”) V (buffer[0] = "t") V (buffer[0] = ".")
else begin write (term-out, “Type Y to list characters pictorially~”);
write_ln(term_out, " with * " “s, N to_omit_this_option. "); goto 2;
end

This code is used in section 31.

34. After the dialog is over, we print the options so that the user can see what, GFtype thought was
specified.
(Print all the selected options 34) =

print("Options selected: Mnemonic output,=,");

if wants-mnemonics then print (‘true *) else print (false’);

print (7;upixel output, =,");

if wants-pixels then print (‘true ") else print (false °);

print-Zn(~. ")

This code is used in section 31. N

114 THE IMAGE ARRAY GFtype 835

35. The image array. The definition of GF files refers to two registers, m and » which hold integer
column and row numbers. We actually keep the values m’ = m — min_m and n’ = max-n — n instead, so
that our internal image array always has m, n > 0. We also need to remember paint-switch, whose value is
either black or white.

(Globals in the outer block 10) +=

m, n:integer; {current state values, modified by min-m and max-n }

paint-switch: pixel;

36. We’'ll need a big array of pixels to hold the character image. Each pixel should be represented as a
single bit in order to save space. Some systems may prefer the following definitions, while others may do
better using the boolean type and boolean constants.

define white =0 {could also be false }
define black =1 {could also be true }

(Types in the outer block 8) +=
pixel =white . . black; {could also be boolean }

37. In order to allow different systems to change the image array easily from row-major order to column-
major order (or vice versa), or to transpose it top and bottom or left and right, we declare and access it as

follows.
define image = image-array [m, n]

(Globals in the outer block 10) +=
image-array:packed array [0 .. max-col, 0. . maz-row]of pixel;

38. A boc command has parameters min.m, mazr-m, min_n, and max-n that define a rectangular subarray
in which the pixels of the current character must lie. The program here computes limits on GFtype's modified
m and n variables, and clears the resulting subarray to all white.

(There may be a faster way to clear a subarray on particular systems, using nonstandard extensions of

Pascal.)
(Clear the image 38)=
begin max-subcol — max_m_stated — min-m-stated — I;
if max-subcol > maz-col then max-subcol « max-col;
maxsubrow — maz_n_stated — min-n-stated;
if maz_subrow > max-row then maz_subrow — max-row;
n«—o0;
while n <max-subrow do
begin m « 0;
while m <max-subcol do
begin image — white: incr(m);
end:
incr (n);
end:
end

This code is used in section 71.

39. (Globals in the outer block 10) +=
max_ subrow. max-subcol: integer; { size of current subarray of interest }

§40 GFtype THE IMAGE ARRAY 115

40. As we paint the pixels of a character, we will record its actual boundaries in variables maz_m_observed
and max-n-observed. Then the following routine will be called on to output the image, using blanks for
white and asterisks for black. Blanks are emitted only when they are followed by nonblanks, in order to
conserve space in the output. Further compaction could be achieved on many systems by using tab marks.

An integer variable b will be declared for use in counting blanks.
(Print the image 40)=

begin (Compare the subarray boundaries with the observed boundaries 42);

if max-subcol >0then {there was at least one paint command }

(Print asterisk patterns for rows 0 to max-subrow 43)
else print_In(- (The character is_ent irely blank.));
end

This code is used in section 69.

41. (Globals in the outer block 10) +=
min-m-stated, maz.m_stated, min-n-stated, max-n-stated: integer; {bounds stated in the GF file }
max-m-observed, max-n-observed: integer; {bounds on (m’, n’) actually observed when painting}
min_-m.overall, max-m-overall, min_n_overall, mazr_n_overall: integer;

{ bounds observed in the entire file so far }

42. If the given character is substantially smaller than the boc command predicted, we don’t want to
bother to output rows and columns that are all blank.

(Compare the subarray boundaries with the observed boundaries 42)=
if (max-m-observed > maz_col)V (max-n-observed > maz_row) then
print_In(" (The character is too,large to_be displayed, in full.) ");
if max-subcol > max-m-observed then max-subcol — max-m-observed;
if max-subrow > max-n-observed then max-subrow «— max-n-observed;

This code is used in section 40.

43. (Print asterisk patterns for rows 0 to max-subrow 43) =
begin print.In(".<--This pixel~ “s lower_ left, corner_is_ at, (", min-m-stated : 1,",",
max-n-stated + 1 : 1, ") ,in METAFONT_ coordinates "); n — 0;
while n <max-subrow do
begin m « 0; b « 0;
while m <max-subcol do
begin if image =white then iner (b)
else begin while b >0do
begin print ("y "); decr(b);
end;
print(“*);
end;
incr{m);
end;
print-nl; incr (n);
end;
print-In(". <--This_pixel " “s jupper lef t corneryis at,(",min-m-stated : 1,°, ",
max-n-stated — max-subrow :1,”),in METAFONT coordinates’);
end

This code is used in section 40.

116 TRANSLATION TO SYMBOLIC FORM GFtype 44

44. Translation to symbolic form. The main work of GFtype is accomplished by the docnar proce-
dure, which produces the output for an entire character, assuming that the boc command for that character
has already been processed. This procedure is essentially an interpretive routine that reads and acts on the

GF commands.

45. We steal the following routine from METAFONT.
define unity = 200000 { 26 represents 1.00000)
procedure print-scaled (s : integer); {prints a scaled number, rounded to five digits }
var delta: integer; {amount of allowable inaccuracy }
begin if s <0 then
begin print ("="); negate(s); {print the sign, if negative}
end;
print(sdiv unity : 1); { print the integer part }
8 — 10 % (s mod unity) + 5;
if s#5 then
begin delta + 10; print(~. ");
repeat if delta > unity then s« s+ ‘100000 — (delta div 2); {round the final digit }
print (chr (ord (“0°) + (s div unity))); s — 10 x (s mod unity); delta «— delta x 10;
until s <delta;
end;
end;

46. Let’s keep track of how many characters are in the font, and the locations of where each one occurred
in the file.

(Globals in the outer block 10) +=

total-chars: integer; { the total number of characters seen so far }

char-ptr: array [0 .. 255] of integer; { correct character location pointer}

gf-prev_ptr: integer; { char-ptr for next character}

character-code: integer; { current character number }

47. (Set initial values 11) +=
for i — 0 to 255 do char-ptr[i] — -1; { mark characters as not being in the file }

total-chars « 0;

§48 GFtype TRANSLATION TO SYMBOLIC FORM 117

48. Before we get into the details of do-char, it is convenient to consider a simpler routine that computes
the first parameter of each opcode.

define four-cases (#)=#,#+1.#+2, #+3
define eight-cases (#) = four-cases (#), four-cases (# + 4)
define sixteen-cases (#) = eight-cases (#), eight-cases (# + 8)
define thirty-two-cases (#) = sixteen-cases (#), sixteen-cases (# + 16)
define thirty-seven-cases (#) = thirty-two-cases (#). four-cases (# + 32). # + 36
define sixty-four-cases (#) = thirty-two-cases (#) thirty-two-cases (# + 32)
function first-par(o : eight-bits): integer:
begin case o of
sixty-four-cases (paint-o): first-par + 0 — paint-0O;
paintl , skipl, char-lot, char-lot + 1, zzxl: first-par + get-byte;
paintl + 1, skipl + 1, zzxl + 1: first-par «— get-two-bytes;
paintl + 2, skipl + 2, xxxl + 2: first-par + get-three-bytes;
zzzl + 3, yyy: first-par «— signed-quad;
boc, bocl , eoc, skipQ, no_op, pre, post, post-post, undefined-commands: fist-par < o:
sizty_four_cases(rew-row-g, sixty-four-cases (new-row-0 + 64), thirty-seven-cases (new-row-0 + 128):
first-par + 0 — new -row-0;
end;
end;

49. Strictly speaking, the do-char procedure is really a function with side effects, not a procedure’ ; it
returns the value false if GFtype should be aborted because of some unusual happening. The subroutine is
organized as a typical interpreter, with a multiway branch on the command code.

function do-char: boolean ;

label 9998, 3999;
var o: eight-bits; { operation code of the current command }

p, q: integer; { parameters of the current command }
aok: boolean; {the value to return }
begin { we’ve already scanned the boc }

aok «— true;
while true do (Translate the next command in the GF file; goto 9999 if it was eoc; goto 9998 if

premature termination is needed so);
9998: print-In(~ ! °); aok + false;
9999: do-char «— aok;
end;

118 TRANSLATION TO SYMBOLIC FORM GFtype §50

50. define show-label(#)= print(a:1,":,", #)
define show-mnemonic (#) =
if wants-mnemonics then
begin print-nl: show-label(#);
end
define error(#) =
begin show-label (*! ", #); print-nl:
end
define nl_error (#)=
begin print-nl; show_label(" ! ", #); print-nl;
end
define start-op = a « cur_loc; o — get-byte; p « first-par(o);
if eof (gf-file) then bad-gf(“the_f ile ended prematurely”)
(Translate the next command in the GF file; goto 9999 if it was eoc; goto 9998 if premature termination is
needed 50) =
begin start-op; (Start translation of command o and goto the appropriate label to finish the job 51);
end

This code is used in section 49.

51. The multiway switch in first-par, above, was organized by the length of each command; the one in
do-char is organized by the semantics.
(Start translation of command o and goto the appropriate label to finish the job 51) =
if o <paintl + 3 then (Translate a sequence of paint commands, until reaching a non-paint 56);
case 0 of
four-cases(skip0): (Translate a skip command 60);
sixty-four-cases (new.row_0), sixty-four-cases (new-row-0 + 64), thirty-seven-cases (new-row-0 + 128):
(Translate a new-row command 59);
(Cases for commands no-op, pre, post, post-post, boc. and eoc 52)
four-cases (xzxl): (Translate an xxx command 53 };
yyy: (Translate a yyy command 55);
othercases error(undef ined command,,",0:1,"!")
endcases

This code is used in section 50.

52. (Cases for commands no-op, pre, post, post-post, boc, and eoc 52) =
no-op: show -mnemonic(“noop °);
pre: begin error(preamble command within a character!’); goto 9998;
end;
post, post-post: begin error(postamble command within,a character!); goto 9998;
end;
boc, bocl : begin error(“boc_occurred, before_eoc!”); goto 9998;
end;
eoc: begin show-mnemonic(‘eoc *); print_nl; goto 9999:
end;

This code is used in section 51.

653 GFtype TRANSLATION TO SYMBOLIC FORM [1Y

53. (Translate an xxx command 53) =
begin show_mnemonic(xxxy "~ *); bad-char « false; b — 16;
if p <0 then nl_error(“string of negative length!");
while p >0do
begin g« get-byte;
if (g <"U")V (¢ >""")then bad-char — true;
if wants-mnemonics then
begin print (xchr [q]);
if b < line-length then incr(b)
else begin print-m; b « 2:
end;
end;
decr (p);
end;
if wants-mnemonics then print (°°°7);
if bad-char then nl_error(non-ASCII character_in xxx, command'");
end

This code is used in sections 51 and 70.

54. (Globals in the outer block 10) +=
bad-char: boolean; { has a non-ASCII character code appeared in this xxx? }

55. (Translate a yyy command 55)=
begin show-mnemonic (“yyy,~,p:1, 0 (");
if wants-mnemonics then

begin print-scaled(p); print (*)");
end;
end

This code is used in sections 51 and 70.

56. The bulk of a GF file generally consists of paint commands, so we collect them together and print them
in an abbreviated format on one line.

(Translate a sequence of paint commands, until reaching a non-paint 56) =
begin if wants-mnemonics then print (“_paint,”):
repeat (Paint the next p pixels 57);
start-op;
until 0 > paintl + 3;
end

This code is used in section 51.

57. (Paint the next p pixels 57) =
if wants-mnemonics then
if paint-switch = white then print("(",p:1, ") ") else print(p: 1);
m e m+ p;
if m > max-m-observed then mazx_m_observed — m — 1;
if wants-pixels then (Paint pixels m — p through 7o — 1 in row n of the subarray 58);
paint-switch — white + black — paint-switch { could also be paint_switch — -paint-switch }

This code is used in section 56.

120 TRANSLATION TO SYMBOLIC FORM GFtype

58. We use the fact that the subarray has been initialized to all white.

(Paint pixels m — p through m ~ 1 in row n of the subarray 58)=
if paint-switch = black then
if n < mazr_subrow then
beginl — m —p; r —m —1;
if > maz_subcol then r — maz_subcol;
m « [
while m <rdo
begin image «— black; incr(m);
end:
m—l+p;
end

This code is used in section 57.

59. (Translate a new-row command 59) =
begin show-mnemonic("newrow, ", p : 1); iner (n); m « p; paint-switch — black;
if wants-mnemonics then print(~,(n=", maz.n_stated —n : 1,7)");
end

This code is used in section 51.

60. (Translate a skip command 60)=
begin show-mnemonic(‘skip’, (0 — skipl +) mod 4 : 1, " ,p:1;ne—n+4p + I, m « 0;
paint-switch «— white;
if wants-mnemonics then print(°,(n=",max-n-stated —n:1,7)");
end

This code is used in section 51.

861 GFtype READING THE POSTAMBLE 121

61. Reading the postamble. Now imagine that we are reading the GF file and positioned just after
the post command. That, in fact, is the situation, when the following part of GFtype is called upon to read,
translate, and check the rest of the postamble.

procedure read-postamble;
var k:integer; {loop index }
P> ¢;mu, v,w, c:integer; {general purpose registers }
begin post-Zoc + cur-lot — 1; print (“Postamble_ starts at byte , post_loc : 1);
if post-lot = gf-prev-ptr then print_in(". ")
else print-ln (*, after_special_info_at _byte ", gf-prev_ptr : 1, .");
p «— signed-quad;
if p # gf-prev-ptr then
error (“backpointer in byte, ", cur.loc—4 : 1, should be, ", gf-prev-ptr: 1, unot,".p : 1.7!");
design-size + signed-quad; check-sum — signed-quad;
print ("design size =", design-size: 1, (");print-scaled (design-size div 16); print_ln(pt)");
print_In (“checkysum =, °, check-sum :1);
hppp + signed-quad; vppp « signed-quad;
print(“hpppu=u", hppp : 1, "L ("); print-scaZed(hppp); print-In() *); print(“vpppu=u~, vppp : 1, "L (");
print-scaled (vppp); print-In (*)");pix-ratio « (design-size | 1048576) x (hppp | 1048576);
min-m-stated — signed-quad; max-m-stated + signed-quad; min-n-stated « signed-quad;
max-n-stated + signed-quad;
print-Zn(“min m =", min-m-stated : 1, , max m_=_ ,max-m-stated :1);
if min-m-stated > min-m-overall then error(min_m_should_be <=", min-m-overall :1.”!");
if max-m-stated < max-m-overall then error(max_m_should_be >=", max-m-overall :1."!");
print-Zn(‘minn =", min_n_stated : 1, ", max, n =", max-n-stated : 1),
if min-n-stated > min-n-overall then error(min_n should_be_ <=",min-n-overall : 1, ! "),
if max-n-stated < max-n-overall then error(‘max n_should be >= ", max-n-overall : 1, 1°);
(Process the character locations in the postamble 65);
(Make sure that the end of the file is well-formed 64);
end;

62. (Globals in the outer block 10) +=

design-size, check-sum: integer; { TFM-oriented parameters }

hppp. vppp: integer; { magnification-oriented parameters }

post-lot: integer; {location of the post command }

pix-ratio: real; { multiply by this to convert TFM width to scaled pixels }

63. (Set initial values 11) +=
min-m-overall — max-int ;max-m-overall «— — max-int ;min-n-overall + maz.int ;
rnax-n-overall + —max-int ;

64. When we get to the present code, the post-post command has just been read.

(Make sure that the end of the file is well-formed 64)=
if k # post-post then error(“should, be postpost!”);
q + signed-quad;
if q # post_loc then error(postamble pointer should be,",post.loc: 1, "unoty ", q: 1,"!7);
m + get-byte;
if m #gf-id-byte then error(“identification byte should be. ", gf-id-byte:1,", noty ", m :1," 1)
k + cur.loc; m — 223;
while (m =223) A —eof (gf-file) do m «— get-byte;
if —eof (gf-file) then bad-gf (“signature,in byte, ", cur-Zoc—1:1, should be 223")
else if cur_.loc < k + 4 then error(“not_enough_ signature bytes, at_end of £ ile! *);

This code is used in section 61.

122 READING THE POSTAMBLE GFtype

65. (Process the character locations in the postamble 65) =
repeat a « cur-lot; k — get-byte;
if (k =char-Zoc) V (k = char-lot + 1) then
begin c « first-par(k);
if k - char-1ot then
begin u « signed-quad; v «— signed-quad.:
end
else begin u — get-byte x unity; v « 0:
end;
w + signed-quad; p — signed-quad; print(Character, ,c: 1, ":udxy " u: 1, L();
print-scaled(u);
if v#0then
begin print(‘) ,udyu”,v : 1, "u("); print-scaled(v);
end;
print("), width,",w: 1, ",("); w < round (w * piz_ratio); print-scaled (w);
print-In("), loc, ", p: 1);
if p # char-ptr[c] then error(character location should be, ", char-ptrfc]: 1, 1");
k < no-op;
end;
until k # no-op;

This code is used in section 61.

§65

866 GFtype THE MAIN PROGRAM 123

66. The main program. Now we are ready to put it all together. This is where GFtype starts, and
where it ends.

begin initialize; { get all variables initialized }
dialog; {set up all the options }
(Process the preamble 68);
(Translate all the characters 69);
print_nl; read-postamble; print (“Theyfile had,,”,total-chars : 1, character *):
if total-chars # 1 then print("s”);
print(“Laltogether.);
final-end: end.

67. The main program needs a few global variables in order to do its work.

(Globals in the outer block 10) +=
a: integer; { byte number of the current command }
b, ¢, ly0,p, q,r: integer; {general purpose registers }

68. GFtype looks at the preamble in order to do error checking, and to display the introductory comment.

(Process the preamble 68) =
open_gf_file; o «— get-byte; { fetch the first byte }
if o # prethen bad-gf ("First byte isn "t start of_ preamble!");
o « get-byte; { fetch the identification byte }
if o # gf-id-byte then bad-gf (‘identif ication byte shouldy be, ", gf-id-byte : 1, "unot ", 0 : 1);
o — get-byte; { fetch the length of the introductory comment }
print ("7 77);
while o > 0 do
begin decr(0); print(zchr|get_byte]);
end;
print-ln (*°°");

This code is used in section 66.

69. (Translate all the characters 69) =
repeat gf-prev-ptr «— cur-Zoc; (Pass no-op, xxx and yyy commands 70);
if o # post then
begin if o # boc then
if o # boclthen bad-gf (“byte, ,cur-Zoc—1:1, " is not boc,(",0:1,7)");

print_nl; print (cur-lot —1:1,"+ beginning, of char, "); (Pass a boc command 71);
if ~do_char then bad-gf (“char_ended_unexpectedly’);
mazx_n_observed «— n;
if wants_pizels then (Print the image 40);
(Pass an eoc command 72);
end:

until 0 = post;

This code is used in section 66.

121 THE MAIN PROGRAM GFtype 870
70. (Pass no-op, xxx and yyy commands 70) =
repeat start_op;
if o = yyy then
begin (Translate ayyy command 55).
0 — no-op;
end
else if (0 > zxxl) A (0o < zzzl+ 3) then
begin (Translate an xxx command 53);
0 « no-op;
end
else if 0 = no-op then show-mnemonic (“no,op “);
until 0 # no-op;

This code is used in section 69.

71. (Pass a boc command 71) =
a + cur_loc — 1; incr(total-chars);
if 0 = boc then
begin character-code + signed-quad; p + signed-quad; ¢ + character-code mod 256;
ifc<Othen ¢« ¢+ 256;
min-m-stated «— signed-quad; max-m-stated «— signed-quad; min-n-stated +— signed-quad;
max-n-stated + signed-quad;
end
else begin character-code «— get-byte; p + -1; ¢ + character-code; q « get-byte;
max-m-stated + get-byte; min-m-stated — max-m-stated — q; q + get-byte; max-n-stated + get-byte;
min-n-stated + max-n-stated — g
end;
print(c : 1);
if character-code # ¢ then print (" with_extension ", (character-code —c)div 256 : 1);
if wants-mnemonics then print-In(" : ", min-m-stated : 1, "<=m<=", maxr_m_stated : 1, ",
min-n-stated : 1, " <=n<=",max-n-stated : 1);
maz_m_observed + -1;
if char-ptr [c] # p then
error(“previous character pointer should be, ", char-ptrfc]: 1, ", not, ,p:1, " '")
else if p >0 then
if wants-mnemonics then
print-Zn("~ (previous character_with the same code started at byte, ,p:1,7)"):
char-ptr [c] + gf-prev-p tr;
if wants-mnemonics then print(” (initially n=", max-n-stated : 1,7)");
if wants-pixels then (Clear the image 38);
m + 0; n + O; paint-switch + white;

This code is used in section 69.

§72 GFtype THE MAIN PROGRAM

72. (Pass an eoc command 72)=
max-m-observed «+— min-m-stated + max-m-observed + 1;n «— max-n-stated — max-n-observed;
{ now nis the minimum »n observed }
if min-m-stated < min-m-overall then min-m-overall — min-m-stated;
if max-m-o bserved >max_m_overall then max-m-overall — max-m-o bserved;
if n < min-n-overall then min-n-overall — n;
if max-n-stated > max-n-overall then max-n-overall — max-n-stated;
if max-m-observed > max-m-stated then
print-In("The previous character should have_had max, m >=_, °,mar_m_observed : 1, !");
if n < min_n_stated then
print_In(The_previous character should _have had, min mn <=, ,n:1,"!")

This code is used in section 69.

125

126 SYSTEM-DEPENDENT CHANGES GFtype §73
73. System-dependent changes.. This section should be replaced, if necessary, by changes to the
program that are necessary to make GFtype work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering: then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.

§74 GFtype INDEX 127

74. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.

a: 24, 67. end: 2.

abort: 1. endcases: 2.

aok: 49. eoc: 13, 15, 16, 17, 48, 52.
ASCII-code: 8, 10, 27, 30. eof: 24, 50, 64.

b: 24, 67. eoln: 29.

backpointer...should be p: 61. error: 30, 51, 52, 61, 64, 65, 71.
backpointers: 18. false : 36, 49, 53.

Bad GF file : 7. final-end: 4, 7, 66.

bad-char: 53, 54. First byte isn’t.. . : 68.

bad-gf : 7, 50, 64, 68, 69. first-par: 48, 50, 51, 65.

banner: 1, 3, 31. first-text-char: 9, 12.

black : 14, 15, 35, 36, 40, 57, 58, 59. four-cases : 48, 51.

boc: 13,15, 16,17, 18, 38, 42, 44, 48, 49, 52, 69, 71. Fuchs, David Raymond: 1, 19.

boc occurred before eoc : 52. get: 29.

bocl: 15, 16, 48, 52, 69. get-byte: 24, 48, 50, 53, 64, 65, 68, 71.
boolean: 25, 36, 49, 54. get-three-bytes: 24, 48.

break: 28. get-two-bytes: 24, 48.

buffer: 27, 29, 32, 33. gf-file : 3, 21, 22, 23, 24, 50, 64.
byte n is not boc: 69. gf-id-byte: 15, 64, 68.

byte-file: 20, 21. gf-prev-p tr: 46, 61. 69, 7T1.

c: 24, 30, 61, 67. GF-type: 3.

char: 9. hppp 1 17, 61, 62.

char ended unexpectedly: 69. ir 3.

char-lot: 15, 16, 18, 48, 65. identification byte should be n: 64, 68.
char_locO: 15. image: 37, 38, 43, 58.

char-ptr: 46, 47, 65, 71. image-array: 5, 37.

character location should be...: 65. mer: 6, 24, 29, 38, 43, 53, 58, 59, 71.
character-code: 46, 71. initialize: 3, 66.

check sum: 17. input-In: 27, 29, 32, 33.

check-sum: 61, 62. integer: 3, 23, 24, 35, 39, 41, 45, 46, 48, 49.
Chinese characters: 18. 61, 62, 67.

chr: 9, 10, 12, 45. Japanese characters: 18.

cs: 17. jump-out: 7.

cur-lot: 22, 23, 24, 50, 61, 64, 65, 69, 71. k: 29, 61.

d: 24. Knuth, Donald Ervin: 1.

decr: 6, 43, 53, 68. I: 67.

del-m: 15. last-text-char: 9, 12.

del-n: 15. line-length: 5, 53.

delta: 45. lower-casify: 30, 32, 33.

design size: 17. m: 35 6L

design-size : 61, 62. mar-col: 9, 37, 38, 42.

dialog: 31, 66. mazr_int: 6 3.

dm : 15. maz.m: 15, 17, 38.

do-char: 44, 48, 49, 51, 69. maz.m_observed: 40, 41, 42, 57, 71. 72.
ds: 17. rnax-m-overall: 41, 61, 63, 72.

dx: 15, 18. rnax-m-stated: 38, 41, 61, 71, 72.

dy: 15, 18. max-n: 15, 17, 35, 38.

eight-bits: 20, 24, 48, 49. max-n-observed: 40, 41, 42. 69, 72.
eight-cases: 48. max-n-overall: 41, 61, 63, 72.

else: 2. maz.n_stated: 38. 41, 43, 59, 60, 61, 71, 72.

128 INDEX

max-row: 9, 37, 38, 42.
max-subcol: 38, 39, 40, 42, 43, 58.
maz_subrow: 38, 39, 42, 43, 58.
min-m: 15,17, 35, 38.
min-m-overall: 41, 61, 63, 72.
min-m-stated: 38, 41,43, 61, 71, 72.
min-n: 15,17, 38.

min-n-overall: 41, 61, 63, 72.
min-n-stated: 38, 41, 61, 71, 72.
Mnemonic output? : 32.

n: 35.

negate: 6, 45.

new-row.0: 15, 16,48, 51.
new-row-1: 15.

new-row-1 64 : 15.

nl-error : 50, 53.

no-op: 15, 16,18, 48, 52, 65, 70.

non-ASCII character.. . : 53.
not enough signature bytes...: 64.
0: 49, 67.

open-gf-file: 22, 68.

Options selected : 34.

ord: 10, 45.

oriental characters: 18.

ot hercases: 2.

others: 2.

output: 3.

p: 49, 61, 67.

paint: 56.

paint-switch: 14,15, 35, 57, 58, 59, 60, 71.

paint.0: 15, 16, 48.

paintl : 15, 16, 48, 51, 56.

pant2: 15.

paint3 : 15.

piz_ratio: 61, 62, 65.

pixel: 35,36, 37.

Pixel output?: 33.

post: 13,15, 16,17, 19, 48, 52, 61, 62, 69.

post-lot: 61, 62, 64,

post-post: 15, 16,17, 19, 48, 52, 64.

postamble command within.. . : 52.

postamble pointer should be...: 64.

Postamble starts at byte n: 61.

pre: 13, 15, 16, 48, 52, 68.

preamble command within...: 52.

previous character.. . : 71, 72.

print: 3,7, 34, 43, 45, 50, 53, 55, 56, 57, 59,
60, 61, 65. 66, 68, 69, 71.

print.n: 3,34,40.42, 43,49, 61, 65, 68,71, 72.

print.nl: 3,43, 50, 52, 53, 66. 69.
print-scaled: 45, 55, 61, 65.
proofing: 18.

GFtype 874

q: 49, 61, 67.

r: 67.

read: 24.

read_ln: 29.

read-postamble: 61, 66.

real: 62.

reset: 22.29.

rewrite : 31.

round: 65.

s 48,

scaled: 15,17, 18.

should be postpost: 64.

show -label: 50.

show-mnemonic: 50,52, 53,55, 59, 60, 70.

signature.. .should be.. . : 64.

signed-quad: 24, 48, 61, 64, 65, 71.

sixteen-cases: 48.

sixty-four-cases: 48, 51.

skip0 : 15, 16, 48, 51.

skipl: 15, 16, 48, 60.

skip2: 15.

skip3: 15.

start_op: 50, 56, 70.

string of negative length: 53.

system dependencies: 2,7,9, 19, 20, 24, 25. 27.
28, 29, 31, 36, 37, 38, 40, 73.

term-in: 27, 29.

term-out: 27,28, 31, 32, 33.

terminal-line-length: 5, 27, 29.

text-char: 9, 10.

text-file: 9, 27.

The character is too large.. . : 42.
the file ended prematurely: 50.
The file had n characters.. . : 66.

thirty-seven-cases : 48,5 1.

thirty-two-cases: 48.

This pixel’s lower. . . : 43.

This pixel’s upper: 43.

total-chars: 46, 47, 66, 71.

true: 25,26, 36, 49, 53.

u: 61.

undefined command : 51.

undefined-commands: 16, 48.

unity: 45, 65.

update-terminal: 28, 29.

v: 61.

vppp: 17, 61, 62.

w: 61.

wants-mnemonics: 29, 26, 32, 34, 50, 53. 55.
56, 57, 59, 60, 71.

wants_pizels: 25,26. 33. 33,57, 69, 71.

white: 15,35, 36, 38, 40, 43, 57. 58, 60, 71.

§74

write :

GFtype

3, 32, 33.

write-In: 3, 31, 32, 33.

xchr :
xord:
Tl
zTI2:
rTT3:
TIT4

yyy:

lo, 11, 12, 53, 68.
lo, 12, 29.

15, 16, 48, 51, 70.
15.

15.

15.

15, 16, 18, 48, 51, 70.

INDEX

129

130 NAMES OF THE SECTIONS GFtype 874

(Cases for commands no-op, pre, post, post-post, boc. and eoc 52) Used in section 51.

(Clear the image 38) Used in section il.

(Compare the subarray boundaries with the observed boundaries 42) Used in section 40.

(Constants in the outer block 5) Used in section 3.

(Determine whether the user wants-mnemonics 32) Used in section 31.

(Determine whether the user wants-pixels 33) Used in section 31.

(Globals in the outer block 10, 21, 23, 25, 27, 35, 37. 39, 41, 46, 54, 62, 67) Used in section 3.

(Labels in the outer block 4) Used in section 3.

(Make sure that the end of the file is well-formed 64) Used in section 61.

(Paint pixels m — p through m — 1 in row n of the subarray 58) Used in section 57.

(Paint the next p pixels 57) Used in section 56.

(Pass a boc command 71) Used in section 69.

(Pass an eoc command 72) Used in section 69.

(Pass no-op, xxx and yyy commands 70) Used in section 69.

(Print all the selected options 34) Used in section 31.

(Print asterisk patterns for rows 0 to maz_subrow 43) Used in section 40.

(Print the image 40) Used in section 69.

(Process the character locations in the postamble 65) Used in section 61.

(Process the preamble 68) Used in section 66.

(Set initial values 11, 12, 26, 47, 63) Used in section 3.

(Start translation of command o and goto the appropriate label to finish the job 51) Used in section 50.

(Translate a sequence of paint commands, until reaching a non-paint 56) Used in section 51.

(Translate a new-row command 59) Used in section 51.

(Translate a skip command 60) Used in section 51.

(Translate a yyy command 55) Used in sections 51 and 70.

(Translate all the characters 69) Used in section 66.

(Translate an xxx command 53) Used in sections 51 and 70.

(Translate the next command in the GF file; goto 9999 if it was eoc; goto 9998 if premature termination is
needed 50) Used in section 49.

(Types in the outer block 8.9, 20, 36) Used in section 3.

The GFtoPK processor

(Version 2.0, 17 April 1989)

Section
INtrOdUCHION v vttt ettt e e e 1
TRECR AT ACTEI SOt « ottt ettt e et e et e e et e e e e e 9
Generic font file TOrmat -« oot v e e e 14
Packedfileformat e 21
Input and output for binary files 37
Plan of attack ... oot 48
Reading the generic font file 51
Converting the counts to packed format i i 62
System-dependent Changesttt 88
1T 1 P 89

The preparation of this report was supported in part by the National Science Founda-
tion under grants ET-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘METRFONT’ is a trademark of Addison-Wesley Publishing Company.

Page
202
204
206
211
218
222
223
228
238
239

202 INTRODUCTION GFtoPK 51

1. Introduction. This program reads a GF file and packs it into a PK file. PK files are significantly
smaller than GF files, and they are much easier to interpret. This program is meant to be the bridge between
METRFONT and DVI drivers that read PK files. Here are some statistics comparing pixel files, compressed
pixel files, generic font files, and packed files:

Font Resolution Pixel Compressed Generic font Packed

amrl0 300 14928 70 9866 106 12768 82 5292 198
amrlQ 360 20100 52 13130 80 14816 171 6160 170
amrlQ 432 27556 38 18241 57 17704 59 7564 139
amrl0 511 35652 29 25266 42 20712 51 9208 114
amrl0 622 47324 22 36129 29 24396 43 11156 94
amrl0 746 67108 16 50651 21 28848 36 13884 176
aminch 300 353432 3 329073 3 48900 21 22132 47

(Set of 48) 792832 100% 516397 65% 589100 74% 261532 33%

(Pixel files represent an obsolete format that was used with METAFONT79.)

The first number in each column is the space required in bytes; the second number is the number of fonts
of that size that would fit in one megabyte (1048576 bytes) of disk space, rounded to the nearest integer.
The last row is the set of sixteen basic fonts at the three resolutions 300, 329, and 360, totaled, with the
second number in each column being the percentage in bytes of the size of the set of files. The compressed
pixel format is a hypothetical format similar to the old pixel files, but with the character rasters packed by
the bit rather than by the 32-bit word; it represents a lower limit to the size of pixel files when a simple
scheme like the standard pixel file format is used. The fact that the PK files for the set of 48 fonts is less than
half the size of any of the other formats should indicate why this format is being introduced into a world
where there are already too many font formats. It is hoped that the simplicity and small size of the PK files
will make them widely accepted.

The PK format was designed and implemented by Tomas Rokicki during the summer of 1985. This program
borrows a few routines from GFtoPXL by Arthur Samuel.

The banner string defined here should be changed whenever GFtoPK gets modified. The preamble-comment
macro (near the end of the program) should be changed too.

define banner = "This_is GFtoPK, Version,2.0 {printed when the program starts }

2. Some of the diagnostic information is printed using d_print.In. When debugging, it should be set the
same as print_In, defined later.

define d-print-In (#) =

3. This program is written in standard Pascal, except where it is necessary to use extensions; for example.
one extension is to use a default case as in TANGLE, WEAVE, etc. All places where nonstandard constructions
are used should be listed in the index under “system dependencies.”

define othercases = others: { default for cases not listed explicitly }

define endcases =end { follows the default case in an extended case statement }

format othercases = else
format endcases = end

84 GFtoPK INTRODUCTION 203

4. The binary input comes from gf_file, and the output font is written on pk_file. All text output is written
on Pascal’s standard output file. The term print is used instead of write when this program writes onoutput.
so that all such output could easily be redirected if desired.
define print(#) = write(#)
define print-k (#) = write_ln (#)
program GFtoPK (gf_file, pk_file, output);
label (Labels in the outer block 5)
const (Constants in the outer block 6)
type (Types in the outer block 9)
var (Globals in the outer block 11)
procedure initialize ; {this procedure gets things started properly }
var i: integer; {loop index for initializations }
begin print_in (banner);
(Set initial values 12)
end:

5. If the program has to stop prematurely, it goes to the final-end’.
define final-end = 9999 {label for the end of it all }

(Labels in the outer hlock 5) =
final-end;

This code is used in section 4.

6. The following parameters can be changed at compile time to extend or reduce GFtoPK’s capacity. The
values given here should be quite adequate for most uses. Assuming an average of about three strokes per
raster line, there are six run-counts per line, and therefore max-row will be sufficient for a character 2600
pixels high.
(Constants in the outer block 6)=

line-length =79; {bracketed lines of output will be at most this long }

terminal-line-length = 150;

{ maximum number of characters input in a single line of input from the terminal }
mux-row =16000; {largest index in the main row array }

This code is used in section 4.

7. Here are some macros for common programming idioms.

define incr(#)=#—# + 1 {increase a variable by unity }
define decr (#) =# —#—1 {decrease a variable by unity }

8. If the GF file is badly malformed, the whole process must be aborted; GFtoPK will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so a procedure called jump-out
has been introduced. This procedure, which simply transfers control to the label final-end at the end of the
program, contains the only non-local goto statement in GFtoPK.

define abort (#) =
begin print ("L, #);jump-out;
end
define bad_gf (#)=abort ("Bad GF_file: ,#."!")
procedure jump-out;
begin goto final-end:
end;

204 THE CHARACTER SET GFtoPK §9

9. The character set. Like all programs written with the WEB system, GFtoPK can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used.

The next few sections of GFt oPK have therefore been copied from the analogous ones in the WEB system
routines. They have been considerably simplified, since GFtoPK need not deal with the controversial ASCII
codes less than “40. If such codes appear in the GF file, they will be printed as question marks.

(Types in the outer block 9) =
ASCIl-code = ",".."~"; {a subrange of the integers }
See also sections 10 and 37.

This code is used in section 4.

10. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper and
lower case alphabets in a convenient way, especially in a program like GFtoPK. So we shall assume that the
Pascal system being used for GFtoPK has a character set containing at least the standard visible characters
of ASCII code (" !" through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text-char to stand for the
data type of the characters in the output file. We shall also assume that text-char consists of the elements
chr(first_text_char) through chr(last-text-char), inclusive. The following definitions should be adjusted if
necessary.

define text-char = char { the data type of characters in text files }

define first-text-char=0 {ordinal number of the smallest element of rexz-char }

define last-text-char=127 {ordinal number of the largest element of rext-char }

(Types in the outer block 9) +=
text-file = packed file of text-char;

11. The GFtoPK processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

(Globals in the outer block 11)=

rord: array [text-char] of ASCII-code; { specifies conversion of input characters }

xchr: array [0 .. 255] of text-char; {specifies conversion of output characters }

See also sections 38, 41, 45, 47, 48, 55, 78, 82, and 87.

This code is used in section 4.

812 GFtoPK THE CHARACTER SET 205

12, Under our assumption that the visible characters of standard ASCII are all present, the following
assignment statements initialize the xchr array properly, without needing any system-dependent changes.

(Set initial values 12) =
for i - 0 to ‘37 do zchr[i] - "7 7;
zchr{’40) - L7y mehr 41) — * ! 75 zchr| 42]) «— " 7y zchr[743] - T#75 xehr[44] — "8
xchr(45] - "7 zchr[46] — "&7; zchr(47] - 77
zchr[50]) «— (7 zchr['51] «—) " xchr{’52] - “*"; xchr('53] - “+7; xzchr['54] - 7,7
zchr[’55] - “=": zchr['56] — ~. °; xchr['57) — "/ :
xchr[60)— ‘0’ ; xzchr('61] — 1 :zchr['62] — 2"; zchr[63]- 3" zchr(64]«— "4":
xchr ['65]- "5'; zchr[66]— 67;rchr[67]—"T";
zchr| 70) — 87y xchr["71] «— "97; zchr['72] « ~: 75 xchr['73] - ~; 5 xchr[74] — "<7;
zchr("75] «— “="; xchr[76] — "> zchr[77] — "77;
zchr[’100) — "Q°; zchr[’101] - "A"; zchr['102] - "B"; xzchr['103]) « "C”; zchr['104] - D",
zchr['105] - "E°; xchr[’106] - "F; zchr['107] — G";
zchr| “110) - "H°; zchr['111) « "I xzchr{112] - "J°; zchr{'113] « "K"; zchr['114] « "L";
zchr['115]— "M"; wchr['116)— "N"; zchr['117]- 20’ ;
xchr ['120] - "P"; zchr['121] - ‘Q’; zchr[’122] «— "R": zchr['123] — "S°; zchr['124] — T :
xchr['125)— "U"; zchr['126) - "V"; wchr{'127] - "W,
xchr ['130] - "X"; zchr('131) - "Y"; zchr('132] — 2" ; xzchr[133] — "["; zchr['134] — "\ ":
wchr('135] - "1 7 zchr['136] - ~~ 75 xchr| 137] — "_
zchr['140) « "~ *; zchr['141) - "a"; zchr['142] — "b"; zchr['143]) — "¢"; xchr['144] « "d~;
zchr('145] « “e”; zchr['146] — “f 5 zchr['147] - "g";
zchr| “150] - "h7; zehr['151] - “i7; zchr[152) — "7 zchr['158] - k75 xehr[154] « "17;
zchr| '155]) « "m”; zchr[156] - "n”; zchr['157] — 07;
cchr(['160] «— “p"; xchr{'161] — "q"; zchr['162] - "r°; zchr{'163] — "s”; zchr{'164] « "t~
zchr['165] - “u’; zchr['166] «— "v°; zchr['167] — "w~;
zchr[170] - "x7; zchr[171] - "y7; xchr['172) « “z": xchr['173]) - {7 zchr[174] « " ~:
xchr[’175) - "} i zchr[176) - 77
for i « ‘177 to 255 do xchr(i]«—"7";

See also sections 13, 42, 49, 79, and 83.

This code is used in section 4.

13. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mation in xchr.

(Set initial values 12) +=

for i « first-text-char to last-text-char do zord[chr(i)] « '40,
for i - ","to """ do zord[zchr[i]] — i;

206 GENERIC FONT FILE FORMAT GFtoPK 814

14. Generic font file format. The mostimportant output produced by a typical run of METAFONT is
the “generic font” (GF) file that specifies the bit patterns of the characters that have been drawn. The term
generic indicates that this file format doesn’t match the conventions of any name-brand manufacturer: but
it is easy to convert GF files to the special format required by almost all digital phototypesetting equipment.
There’s a strong analogy between the DVI files written by TEX and the GF files written by METAFONT: and,
in fact, the file formats have a lot in common.

A GF file is a stream of S-bit bytes that may be regarded as a series of commands in a machine-like language.
The first byte of each command is the operation code, and this code is followed by zero or more bytes that
provide parameters to the command. The parameters themselves may consist of several consecutive bytes:
for example, the ‘boc’ (beginning of character) command has six parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either
positive or negative, hence they range in value from —23!to 23! — 1. As in TFM files, numbers that occupy
more than one byte position appear in BigEndian order, and negative numbers appear in two’s complement
notation.

A GF file consists of a “preamble,” followed by a sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command, followed by any number of other commands that
specify “black” pixels, followed by an eoc command. The characters appear in the order that METAFONT
generated them. If we ignore no-op commands (which are allowed between any two commands in the file),
each eoc command is immediately followed by a boc command, or by a post command; in the latter case,
there are no more characters in the file, and the remaining bytes form the postamble. Further details about
the postamble will be explained later.

Some parameters in GF commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first file byte is number 0, then comes number 1, and so on.

15. The GF format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information relative instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of two quantities: (a) the current column number, m; and
(b) the current row number, n. These are 32-bit signed integers, although most actual font formats produced
from GF files will need to curtail this vast range because of practical limitations. (METAFONT output will
never allow |m|or |nfto get extremely large, but the GF format tries to be more general.)

How do GF's row and column numbers correspond to the conventions of TEX and METRFONT? Well, the
“reference point” of a character, in TEX’s view, is considered to be at the lower left corner of the pixel in
row 0 and column 0. This point is the intersection of the baseline with the left edge of the type; it corresponds
to location (0,0) in METAFONT programs. Thus the pixel in GF row 0 and column 0 is METAFONT’s unit
square, comprising the region of the plane whose coordinates both lie between 0 and 1. The pixel in GF
row n and column m consists of the points whose METAFONT coordinates (z, y) satisfy m <x <m + 1
and n <y <n + 1. Negative values of m and x correspond to columns of pixels left of the reference point:
negative values of n and y correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of the current state, namely the paint-switch, which is
always either black or white. Each paint command advances m by a specified amount d, and blackens
the intervening pixels if paint-switch = black; then the paint-switch changes to the opposite state. GF's
commands are designed so that m will never decrease within a row, and n will never increase within a
character; hence there is no way to whiten a pixel that has been blackened.

816 GFtoPK GENERIC FONT FILE FORMAT 207

16. Here is a list of all the commands that may appear in a GF file. Each command is specified by its
symbolic name (e.g., boc), its opcode byte (e.g., 67), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example, ‘d[2]’ means that parameter d is
two bytes long.

paint-0 0. This is a paint command with d = 0; it does nothing but change the paint-switch from black to
white or vice versa.

paint-1 through paint-69 (opcodes I to 63). These are paint commands with d = 1 to 63. defined as follows:
If paint-switch = black, blacken d pixels of the current row n, in columns m through m + d — 1
inclusive. Then, in any case, complement the paint-switch and advance m by d.

paintl 64 d[1]. This is a paint command with a specified value of d; METAFONT uses it to paint when
64 <d < 256.

paint2 65 d[2]. Sarne as paintl ,but d can be as high as 65535.

paint3 66 d[3]. Same as paintl , but d can be as high as 224 _ 1. METAFONT never needs this command,
and it is hard to imagine anybody making practical use of it; surely a more compact encoding will be
desirable when characters can be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min.m [4] max-m [4]min-n [4] maz_n[4]. Beginning of a character: Here ¢ is the character
code, and p points to the previous character beginning (if any) for characters having this code number
modulo 256. (The pointer p is -1 if there was no prior character with an equivalent code.) The
values of registers m and n defined by the instructions that follow for this character must satisfy
min-m < m < max-m and min-n < n < maz_n. (The values of max-m and min-n need not be
the tightest bounds possible.) When a GF-reading program sees a boc, it can use min-m, maez-m,
min-n, and max-n to initialize the bounds of an array. Then it sets m + min-m, n «— mux-n, and
paint-switch + w hite.

bocl 68 c[1] del.m[l] maz_m[1] del_n[1] maz_n [1]. Same as boc, but p is assumed to be -1; also del.m =
max-m — min-m and del-n = max-n — min-n are given instead of min-m and min-n. The one-byte
parameters must be between 0 and 255, inclusive. (This abbreviated boc saves 19 bytes per character,
in common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for this character. In particular.
a completely blank character might have eoc immediately following boc.

skip0 70. Decrease n by 1 and set m «— min-m, paint-switch + white. (This finishes one row and begins
another, ready to whiten the leftmost pixel in the new row.)

skipl 71 d[1]. Decrease n by d + 1, set m «— min-m, and set paint-swatch + white. This is a way to produce
d all-white rows.

skip2 72 d[2]. Same as skipl, but d can be as large as 65535.

skip3 73 d[3]. Same as skipl, but d can be as large as 224 — |. METAFONT obviously never needs this
command.

new -row-0 74. Decrease n by 1 and set m + min-m, paint-switch + black. (This finishes one row and
begins another, ready to blacken the leftmost pixel in the new row.)

new-row -l through new-row-164 (opcodes 75 to 238). Same as new-row-0O, but with m «— min-m + 1
through min-m + 164, respectively.

zzzl 239 k(1] z[k]. This command is undefined in general; it functions as a (k + 2)-byte no-op unless
special GF-reading programs are being used. METAFONT generates zrr commands when encountering
a special string; this occurs in the GF file only between characters, after the preamble, and before the
postamble. However, xxx commands might appear anywhere in GF files generated by other processors.
It is recommended that x be a string having the form of a keyword followed by possible parameters
relevant to that keyword.

xxx2 240 k[2] z[k]. Like zzzl , but 0 < k < 65536.

xxx3 241 k(3] z[k]. Like zzz!, but 0 < k < 224, METAFONT uses this when sending a special string whose
length exceeds 255.

208 GENERIC FONT FILE FORMAT GFEtoPK 16

zxz4 242 k[4]z[k]. Like zzz!, but k can be ridiculously large: kK mustn’t be negative.

yyy 243 y[4]. This command is undefined in general: it functions as a 5-byte no-op unless special GF-reading
programs are being used. METRFONT puts scaled numbers into yyy's, as a result of numspecial
commands; the intent is to provide numeric parameters to zzz commands that immediately precede.

no-op 244. No operation, do nothing. Any number of no-op’s may occur between GF commands, but a
no-op cannot be inserted between a command and its parameters or between two parameters.

char-Zoc 245 c(1] dz[4] dy[4] w(4] p[4]. This command will appear only in the postamble, which will be
explained shortly.

char_loc0 246 c[1] dm [1] w[4] p[4]. Same as char-Zoc, except that dy is assumed to be zero, and the value
of dx is taken to be 65536 x dm, where 0 < dm < 256.

pre 247 i[1] k[1] z[k]. Beginning of the preamble; this must come at the very beginning of the file. Parameter i
is an identifying number for GF format, currently 131. The other information is merely commentary: it
is not given special interpretation like xxx commands are. (Note that zzz commands may immediately
follow the preamble, before the first boc.)

post 248. Beginning of the postamble, see below.
post-post 249. Ending of the postamble, see below.
Commands 250-255 are undefined at the present time.
define gf.id_byte =131 {identifies the kind of GF files described here }

17. Here are the opcodes that GFt oPK actually refers to.
define paint-0=0 {beginning of the paint commands }
define paintl = 64 {move right a given number of columns, then black « white }
define boc = 67 {beginning of a character }
define bocl = 68 { abbreviated boc }
define eoc=69 {end of a character }
define skip0 =70 {skip no blank rows }
define skipl = 71 {skip over blank rows }
define new-row-0=74 {move down one row and then right }
define maz_new_row = 238 {move down one row and then right }
define no-op =247 {noop }
define zzzl = 239 {forspecial strings}
define yyy =243 { for numspecial numbers }
define nop =244 { no operation}
define char_loc = 245 { character locators in the postamble }
define char_locO = 246 { character locators in the postamble }
define pre =247 {preamble}
define post = 248 {postamble beginning }
define post-post = 249 {postamble ending }
define undefined-commands =250, 251,252, 253, 254, 255

818 GFtoPK GENERIC FONT FILE FORMAT 209

18. The last character in a GF file is followed by ‘post’: this command introduces the postamble, which
summarizes important facts that METAFONT has accumulated. The postamble has the form

post pl4] ds[4] cs[4] hppp[4] vppp[4] min-m [4]maz_m[4] min_n[4] maz_n[4]
(character locators)
post-post q[4] i[1]223’s[>4]

Here p is a pointer to the byte following the final eoc in the file (or to the byte following the preamble, if
there are no characters): it can be used to locate the beginning of xxx commands that might have preceded
the postamble. The ds and cs parameters give the design size and check sum, respectively, which are exactly
the values put into the header of any TFM file that shares information with this GF file. Parameters nop
and vppp are the ratios of pixels per point, horizontally and vertically, expressed as scaled integers (i.e.,
multiplied by 216); they can be used to correlate the font with specific device resolutions, magnifications,
and “at sizes.” Then come min-m, maz_m, min-n, and maz_n, which bound the values that registers m
and n assume in all characters in this GF file. (These bounds need not be the best possible; maz_m and
min-n may, on the other hand, be tighter than the similar bounds in boc commands. For example, some
character may have min-n = -100 in its boc, but it might turn out that n never gets lower than -50 in any
character; then min-n can have any value < -50. If there are no characters in the file, it’s possible to have
min-m > maz_m and/ or min-n > max-n.)

19. Character locators are introduced by char_loc commands, which specify a character residue ¢, character
escapements (dx, dy), a character width w, and a pointer p to the beginning of that character. (If two or
more characters have the same code ¢ modulo 256, only the last will be indicated; the others can be located
by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share the
same font metric information, hence the TFM file contains only residues of character codes modulo 256. This
convention is intended for oriental languages, when there are many character shapes but few distinct widths.)

The character escapements (dx, dy) are the values of METAFONT’s chardx and chardy parameters: they
are in units of scaled pixels; i.e., dx is in horizontal pixel units times 216 and dy is in vertical pixel units
times 216, This is the intended amount of displacement after typesetting the character; for DVI files. dy
should be zero, but other document file formats allow nonzero vertical escapement.

The character width w duplicates the information in the TEM file; it is 224 times the ratio of the true width
to the font’s design size.

The backpointer p points to the character’s boc, or to the first of a sequence of consecutive xxx or yyy
or no-op commands that immediately precede the boc, if such commands exist; such “special” commands
essentially belong to the characters, while the special commands after the final character belong to the
postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc
commands, even though it wasn’t explained in the description of boc.

Pointer p might be -1 if the character exists in the TFM file but not in the GF file. This unusual situation
can arise in METRFONT output if the user had proofing < 0 when the character was being shipped out, but
then made proofing > 0 in order to get a GF file. s

210 GENERIC FONT FILE FORMAT GFtoPK 520

20. The last part of the postamble, following the post-post byte that signifies the end of the character
locators, contains ¢, a pointer to the post command that started the postamble. An identification byte. i.
comes next; this currently equals 131, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 337 in
octal). METAFONT puts out four to seven of these trailing bytes, until the total length of the file is a multiple
of four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s
is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first.
on most computers, even though METAFONT wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read ¢, and
move to byte g of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the GF reader can discover all the information needed for individual characters.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities,
so GF format has been designed to work most efficiently with modern operating systems. GFtoPK first reads
the postamble, and then scans the file from front to back.

§21 GFtoPK PACKED FILE FORMAT 211

21. Packed file format. The packed file format is a compact representation of the data contained in a
GF file. The information content is the same, but packed (PK) files are almost always less than half the size of
their GF counterparts. They are also easier to convert into a raster representation because they do not have
a profusion of paint. skip, and new-row commands to be separately interpreted. In addition, the PK format
expressedly forbids special commands within a character. The minimum bounding box for each character
is explicit in the format, and does not need to be scanned for as in the GF format. Finally, the width and
escapement values are combined with the raster information into character “packets”. making it simpler in
many cases to process a character.

A PK file is organized as a stream of 8-bit bytes. At times, these bytes might be split into 4-bit nybbles or
single bits, or combined into multiple byte parameters. When bytes are split into smaller pieces, the ‘first’
piece is always the most significant of the byte. For instance, the first bit of a byte is the bit with value 128;
the first nybble can be found by dividing a byte by 16. Similarly, when bytes are combined into multiple
byte parameters, the first byte is the most significant of the parameter. If the parameter is signed, it is
represented by two’s-complement notation.

The set of possible eight-bit values is separated into two sets, those that introduce a character definition,
and those that do not. The values that introduce a character definition range from 0 to 239; byte values above
239 are interpreted as commands. Bytes that introduce character definitions are called flag bytes, and various
fields within the byte indicate various things about how the character definition is encoded. Command bytes
have zero or more parameters, and can never appear within a character definition or between parameters of
another command, where they would be interpeted as data.

A PK file consists of a preamble, followed by a sequence of one or more character definitions, followed
by a postamble. The preamble command must be the first byte in the file, followed immediately by its
parameters. Any number of character definitions may follow, and any command but the preamble command
and the postamble command may occur between character definitions. The very last command in the file
must be the postamble.

22. The packed file format is intended to be easy to read and interpret by device drivers. The small size of
the file reduces the input/ output overhead each time a font is loaded. For those drivers that load and save
each font file into memory, the small size also helps reduce the memory requirements. The length of each
character packet is specified, allowing the character raster data to be loaded into memory by simply counting
bytes, rather than interpreting each command; then, each character can be interpreted on a demand basis.
This also makes it possible for a driver to skip a particular character quickly if it knows that the character
is unused.

212 PACKED FILE FORMAT GFtoPK 823

23. First, the command bytes will be presented: then the format of the character definitions will be defined.
Eight of the possible sixteen commands (values 240 through 255) are currently defined; the others are reserved
for future extensions. The commands are listed below. Each command is specified by its symbolic name
(e.g., pk-no-op), its opcode byte, and any parameters. The parameters are followed by a bracketed number
telling how many bytes they occupy, with the number preceded by a plus sign if it is a signed quantity. (Four
byte quantities are always signed, however.)
pk-xxx1 240 k[1] z[k]. This command is undefined in general; it functions as a (k + 2)-byte no-op unless
special PK-reading programs are being used. METAFONT generates xxx commands when encountering
a special string. It is recommended that x be a string having the form of a keyword followed by
possible parameters relevant to that keyword.

pk_zzz2 241 k(2] z[k]. Like pk-xxxI , but 0 < k < 65536.

pk-xxx3 242 k[3] z[k). Like pk_zzzl,but 0 < k < 224, METRFONT uses this when sending a special string
whose length exceeds 255.

pk.zzz4 243 k[4] xz[k]. Like pk_zzzl,but k can be ridiculously large; kK musn’t be negative.

pk-yyy 244 y[4]. This command is undefined in general; it functions as a five-byte no-op unless special
PK reading programs are being used. METAFONT puts scaled numbers into yyy's, as a result, of
numspecial commands; the intent is to provide numeric parameters to xxx commands that immedi-
ately precede.

pk-post 245. Beginning of the postamble. This command is followed by enough pk-no-op commands to make
the file a multiple of four bytes long. Zero through three bytes are usual, but any number is allowed.
This should make the file easy to read on machines that pack four bytes to a word.

pk-no-op 246. No operation, do nothing. Any number of pk_no.op’s may appear between PK commands, but
a pk-no-op cannot be inserted between a command and its parameters, between two parameters, or
inside a character definition.

pk-pre 247 i[1} k[1] z[k] ds[4] cs[4] hppp[4] vppp[4]. Preamble command. Here, i is the identification byte of
the file, currently equal to 89. The string T is merely a comment, usually indicating the source of the
PK file. The parameters ds and cs are the design size of the file in 1/22° points, and the checksum of
the file, respectively. The checksum should match the TFM file and the GF files for this font. Parameters
hppp and vppp are the ratios of pixels per point, horizontally and vertically, multiplied by 2!6;they can
be used to correlate the font with specific device resolutions, magnifications, and “at sizes”. Usually.
the name of the PK file is formed by concatenating the font name (e.g., amrlQ) with the resolution at
which the font is prepared in pixels per inch multiplied by the magnification factor. and the letters
PK. For instance, amrl0 at 300 dots per inch should be named AMRI10.300PK; at one thousand dots
per inch and magstephalf, it should be named AMRI10.1095PK.

24, We put a few of the above opcodes into definitions for symbolic use by this program.

define pk-id = 89 {the version of PK file described }
define pk.rrzl=240 { special commands }

define pk-yyy = 244 {numspecial commands}
define pk-post = 245 {postamble }

define pk-no-op =246 { no operation }

define pk-pre = 247 { preamble }

425 GFtoPK PACKED FILE FORMAT 213

25. The PK format has two conflicting goals: to pack character raster and size information as compactly as
possible, while retaining ease of translation into raster and other forms. A suitable compromise was found
in the use of run-encoding of the raster information. Instead of packing the individual bits of the character.
we instead count the number of consecutive ‘black’ or ‘white’ pixels in a horizontal raster row, and then
encode this number. Run counts are found for each row from left to right, traversing rows from the top to
bottom. This is the same way the GF' format works. Instead of presenting each row individually, however,
we concatenate all of the horizontal raster rows into one long string of pixels, and encode this row. With
knowledge of the width of the bit-map, the original character glyph can be easily reconstructed. In addition,
we do not need special commands to mark the end of one row and the beginning of the next.

Next, we place the burden of finding the minimum bounding box on the part of the font generator, since
the characters will usually be used much more often than they are generated. The minimum bounding box is
the smallest rectangle that encloses all ‘black’ pixels of a character. We also eliminate the need for a special
end of character marker, by supplying exactly as many bits as are required to fill the minimum bounding
box, from which the end of the character is implicit.

Let us next consider the distribution of the run counts. Analysis of several dozen pixel files at 300 dots per
inch yields a distribution peaking at four, falling off slowly until ten, then a bit more steeply until twenty,
and then asymptotically approaching the horizontal. Thus, the great majority of our run counts will fit in a
four-bit nybble. The eight-bit byte is attractive for our run-counts, as it is the standard on many systems;
however, the wasted four bits in the majority of cases seem a high price to pay. Another possibility is to
use a Huffman-type encoding scheme with a variable number of bits for each run-count; this was rejected
because of the overhead in fetching and examining individual bits in the file. Thus, the character raster
definitions in the PK file format are based on the four-bit nybble.

26. An analysis of typical pixel files yielded another interesting statistic: Fully 37% of the raster rows
were duplicates of the previous row. Thus, the PK format allows the specification of repeat counts, which
indicate how many times a horizontal raster row is to be repeated. These repeated rows are taken out of the
character glyph before individual rows are concatenated into the long string of pixels.

For elegance, we disallow a run count of zero. The case of a null raster description should be gleaned from
the character width and height being equal to zero, and no raster data should be read. No other zero counts
are ever necessary. Also, in the absence of repeat counts, the repeat value is set to be zero (only the original
row is sent.) If a repeat count is seen, it takes effect on the current row. The current row is defined as the
row on which the first pixel of the next run count will lie. The repeat count is set back to zero when the
last pixel in the current row is seen, and the row is sent out.

This poses a problem for entirely black and entirely white rows, however. Let us say that the current
row ends with four white pixels, and then we have five entirely empty rows, followed by a black pixel at the
beginning of the next row, and the character width is ten pixels. We would like to use a repeat count, but
there is no legal place to put it. If we put it before the white run count, it will apply to the current row. If
we put it after, it applies to the row with the black pixel at the beginning. Thus, entirely white or entirely
black repeated rows are always packed as large run counts (in this case, a white run count of 54) rather than
repeat counts.

27. Now we turn our attention to the actual packing of the run counts and repeat counts into nybbles.
There are only sixteen possible nybble values. We need to indicate run counts and repeat counts. Since the
run counts are much more common, we will devote the majority of the nybble values to them. We therefore
indicate a repeat count by a nybble of 14 followed by a packed number, where a packed number will be
explained later. Since the repeat count value of one is so common, we indicate a repeat one command by
a single nybble of 15. A 14 followed by the packed number 1 is still legal for a repeat one count. The run
counts are coded directly as packed numbers.

For packed numbers, therefore, we have the nybble values 0 through 13. We need to represent the positive
integers up to, say, 23! — 1. We would like the more common smaller numbers to take only one or two
nybbles, and the infrequent large numbers to take three or more. We could therefore allocate one nybble
value to indicate a large run count taking three or more nybbles. We do this with the value 0.

214 PACKED FILE FORMAT GFtoPK 428

28. We are left with the values 1 through 13. We can allocate some of these, say dyn-f, to be one-nybble
run counts. These will work for the run counts 1.. dyn-f. For subsequent run counts, we will use a nybble
greater than dyn-f, followed by a second nybble, whose value can run from O through 15. Thus, the two-
nybble values will run from dyn-f +1 .. (13 —dyn-f) * 16 + dyn-f. We have our definition of large run count
values now, being all counts greater than (13 — dyn-f) * 16 + dyn-f.

We can analyze our several dozen pixel files and determine an optimal value of dyn-f, and use this value
for all of the characters. Unfortunately, values of dyn-f that pack small characters well tend to pack the
large characters poorly, and values that pack large characters well are not efficient for the smaller characters.
Thus, we choose the optimal dyn-f on a character basis, picking the value that will pack each individual
character in the smallest number of nybbles. Legal values of dyn-f run from O (with no one-nybble run
counts) to 13 (with no two-nybble run counts).

29. Our only remaining task in the coding of packed numbers is the large run counts. We use a scheme
suggested by D. E. Knuth that simply and elegantly represents arbitrarily large values. The general scheme
to represent an integer i is to write its hexadecimal representation, with leading zeros removed. Then we
count the number of digits, and prepend one less than that many zeros before the hexadecimal representation.
Thus, the values from one to fifteen occupy one nybble; the values sixteen through 255 occupy three, the
values 256 through 4095 require five, etc.

For our purposes, however, we have already represented the numbers one through (13 — dyn-f) * 16 + dyn-f .
In addition, the one-nybble values have already been taken by our other commands, which means that only
the values from sixteen up are available to us for long run counts. Thus, we simply normalize our long run
counts, by subtracting (13 —dyn-f)*16+dyn-f+ 1 and adding 16, and then we represent the result according
to the scheme above.

30. The final algorithm for decoding the run counts based on the above scheme might look like this,
assuming that a procedure called pk-nyb is available to get the next nybble from the file, and assuming that
the global repeat-count indicates whether a row needs to be repeated. Note that this routine is recursive,
but since a repeat count can never directly follow another repeat count, it can only be recursive to one level.

Q{
function pk-packedsum: integer;
var i, 7, k: integer;
begin i + get-nyb;
if i =0 then
begin repeat j + get-nyb; incr(i);
until j # 0;
while i> 0 do
begin j« j* 16 + get-nyb; decr(i);
end;
pk-packed-num «— j— 15+ (13 = dyn-f) * 16 + dyn-f;
end
else if i <dyn-f then pk-packed-num «— i
else if i < 14 then pk-packed-num — (i —dyn-f — 1) x 16 + get-nyb + dyn-f + 1
else begin if i =14 then repeat-count « pk-packed-num
else repeat-count « 1;
pk-packed-num «— pk-packed-num:
end;
end:

Q}

831 GFtoPK PACKED FILE FORMAT 215

31. For low resolution fonts, or characters with ‘gray’ areas, run encoding can often make the character
many times larger. Therefore, for those characters that cannot be encoded efficiently with run counts, the PK
format allows bit-mapping of the characters. This is indicated by a dyn-f value of 14. The bits are packed
tightly, by concatenating all of the horizontal raster rows into one long string, and then packing this string
eight bits to a byte. The number of bytes required can be calculated by (width * height + 7) div 8. This
format should only be used when packing the character by run counts takes more bytes than this, although,
of course. it is legal for any character. Any extra bits in the last byte should be set to zero.

32. At this point, we are ready to introduce the format for a character descriptor. It consists of three
parts: a flag byte, a character preamble, and the raster data. The most significant four bits of the flag byte
yield the dyn-f value for that character. (Notice that only values of O through 14 are legal for dyn-f, with
14 indicating a bit mapped character; thus, the flag bytes do not conflict with the command bytes, whose
upper nybble is always 15.) The next bit (with weight 16) indicates whether the first run count is a black
count or a white count, with a one indicating a black count. For bit-mapped characters, this bit should be
set to a zero. The next bit (with weight 8) indicates whether certain later parameters (referred to as size
parameters) are given in one-byte or two-byte quantities, with a one indicating that they are in two-byte
quantities. The last two bits are concatenated on to the beginning of the length parameter in the character
preamble, which will be explained below.

However, if the last three bits of the flag byte are all set (normally indicating that the size parameters
are two-byte values and that a 3 should be prepended to the length parameter), then a long format of the
character preamble should be used instead of one of the short forms.

Therefore, there are three formats for the character preamble; the one that is used depends on the least
significant three bits of the flag byte. If the least significant three bits are in the range zero through three, the
short format is used. If they are in the range four through six, the extended short format is used. Otherwise,
if the least significant bits are all set, then the long form of the character preamble is used. The preamble
formats are explained below.

Short form: flag(1] pl[1] cc[1] tfm[3] dm[1] w(1] h[1] hoff [+1] voff [+1]. If this format of the character
preamble is used, the above parameters must all fit in the indicated number of bytes, signed or
unsigned as indicated. Almost all of the standard TEX font characters fit; the few exceptions are fonts
such as aminch.

Extended short form: flag(1] pl[2] cc[1] tfm(3] dm[2] w(2] h(2] hoff [+2] voff [+2]. Larger characters use this
extended format.

Long form: flag(1] pl[4] cc[4] tfm[4] dz[4] dy[4] w[4] h[4] hoff [4] voff[4]. This is the general format that
allows all of the parameters of the GF file format, including vertical escapement.

The flag parameter is the flag byte. The parameter pl (packet length) contains the offset of the byte
following this character descriptor, with respect to the beginning of the ¢fm width parameter. This is given
so a PK reading program can, once it has read the flag byte, packet length, and character code (cc), skip over
the character by simply reading this many more bytes. For the two short forms of the character preamble,
the last two bits of the flag byte should be considired the two most-significant bits of the packet length.
For the short format, the true packet length might be calculated as (flag mod 4) x 256 + pl: for the short
extended format, it might be calculated as (flag mod 4) x 65536 + pl.

The w parameter is the width and the h parameter is the height in pixels of the minimum bounding box.
The dx and dy parameters are the horizontal and vertical escapements, respectively. In the short formats,
dy is assumed to be zero and dm is dx but in pixels; in the long format, dx and dy are both in pixels
multiplied by 2% The hoff is the horizontal offset from the upper left pixel to the reference pixel; the voff
is the vertical offset. They are both given in pixels, with right and down being positive. The reference pixel
is the pixel that occupies the unit square in METAFONT; the METRFONT reference point is the lower left
hand corner of this pixel. (See the example below.)

216 PACKED FILE FORMAT GFtoPK 833

33. TgXrequires all characters that have the same character codes modulo 256 to have also the same tfm
widths and escapement values. The PK format does not itself make this a requirement, but in order for the
font to work correctly with the TEX software, this constraint should be observed. (The standard version of
TEX cannot output character codes greater than 255, but extended versions do exist.)

Following the character preamble is the raster information for the character, packed by run counts or by
bits, as indicated by the flag byte. If the character is packed by run counts and the required number of
nybbles is odd, then the last byte of the raster description should have a zero for its least significant nybble.

34. As an illustration of the PK format, the character = from the font amrl0 at 300 dots per inch will
be encoded. This character was chosen because it illustrates some of the borderline cases. The raster for
the character looks like this (the row numbers are chosen for convenience, and are not METAFONT's row

numbers.)

0 I I O O O B B B B B B B B B B BN BN BN AN |
| B OQ00Q00000Q0Q0000Q000

2 BE O000000000000000%0

3 B O00000s000000000000

4 mm mm
5 mm mm
6 mm mm
7

8

9 mm mm

10 mm mm

11 mm mm

12 i1 nnninnil
13 EENEEEENEEEEEEER

14 i1 nnninnil
15 B O0000000000L000

16 mm mm

17 mm mm

18] | mm

19

20

21

22 mm mm
23 mm mm
24 mm mm
25 I I O O O B B B B B B B B B B BN BN BN AN |
26 I I O O O B B B B B B B B B B BN BN BN AN |

27 B mmmmmmmmmmmmmmmmmmm
22 + HESEEEEEEEEENEEEREEEE

The width of the minimum bounding box for this character is 20; its height is 29. The ‘4’ represents the
reference pixel; notice how it lies outside the minimum bounding box. The hoff value is -2, and the voff
is 28.

The first task is to calculate the run counts and repeat counts. The repeat counts are placed at the first
transition (black to white or white to black) in a row, and are enclosed in brackets. White counts are enclosed
in parentheses. It is relatively easy to generate the counts list:

82 [2] (16) 2 (42) [2] 2 (12) 2 (4) [3]
16 (4) [2]2 (12) 2 (62) [2] 2 (16) 82

Note that any duplicated rows that are not all white or all black are removed before the repeat counts arc
calculated. The rows thus removed are rows 5, 6, 10, 11, 13, 14, 15, 17, 18, 23, and 24.

635 GFtoPK PACKED FILE FORMAT 207

35. The next step in the encoding of this character is to calculate the optimal value of dyn-f. The details
of how this calculation is done are not important here: suffice it to say that there is a simple algorithm that
can determine the best value of dyn-f in one pass over the count list. For this character. the optimal value
turns out to be 8 (atypically low). Thus, all count values less than or equal to 8 are packed in one nybble;
those from nine to (13 —8) * 16 + 8 or 88 are packed in two nybbles. The run encoded values now become
(in hex, separated according to the above list):

D9 E2 97 2 Bl E2 2 93 2 4 E3
97 4 E2 2 93 2 C5 E2 2 97 D9

which comes to 36 nybbles, or 18 bytes. This is shorter than the 73 bytes required for the bit map, so we
use the run count packing.

36. The short form of the character preamble is used because all of the parameters fit in their respective
lengths. The packet length is therefore 18 bytes for the raster, plus eight bytes for the character preamble
parameters following the character code, or 26. The ¢tfm width for this character is 640796, or 9C71C in
hexadecimal. The horizontal escapement is 25 pixels. The flag byte is 88 hex, indicating the short preamble,
the black first count, and the dyn-f value of 8. The final total character packet, in hexadecimal, is:

Flag byte 88
Packet length 1A
Character code 04

tfm width 09 c7 1C
Horizontal escapement (pixels) 19
Width of bit map 14
Height of bit map 1D
Horizontal offset (signed) FE
Vertical offset 1C

Raster data D9 E2 97

2B 1E 22

93 24 E3

97 4E 22

93 2C 5E

22 97 D9

218 INPUT AND OUTPUT FOR BINARY FILES GFtoPK 837

37. Input and output for binary files. We have seen that a GF file is a sequence of 8-bit bytes. The
bytes appear physically in what is called a ‘packed file of 0 .. 255" in Pascal lingo. The PK file is also a
sequence of 8-bit bytes.

Packing is system dependent, and many Pascal systems fail to implement such files in a sensible way
(at least, from the viewpoint of producing good production software). For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such things. Therefore some systern-dependent
code is often needed to deal with binary files, even though most of the program in this section of GFtoPK is
written in standard Pascal.

We shall stick to simple Pascal in this program, for reasons of clarity, even if such simplicity is sometimes
unrealistic.

(Types in the outer block 9) +=
eight-bits =0.. 255; {unsigned one-byte quantity }
byte-file = packed file of egnsis; { files that contain binary data}

38. The program deals with two binary file variables: gf_file is the input file that we are translating into
PK format, to be written on pk_file .

{ Globals in the outer block 11) +=

gf-rire: byte_file; {the stuff we are GFtoPKing }

pk-file: byte-file; {the stuff we have GFtoPKed }

39. To prepare the gie for input, we reset it.

procedure open_gf.file : { prepares to read packed bytes in g-ie }
begin reset(gf-file); gr-zoc — 0;
end:

40. To prepare the pk-file for output, we rewrite it.

procedure open.pk_file; {prepares to write packed bytes in pk_file }
begin rewrite(pk_file); pk_loc «— 0; pk-open — true;
end;

41. The variable pk-Zoc contains the number of the byte about to be written to the pk-file, and gr-zc is
the byte about to be read from the gf file. Also, pk-open indicates that the packed file has been opened and
is ready for output.

(Globals in the outer block 11 } +=

pk-Zoc: ineger; { where we are about to write, in pk_file }

gf-Zoc: integer; { where are we in the gf-file}

pk_open: boolean; {is the packed file open? }

42. We do not open the pk-file until after the postarnble of the gf_filehas been read. This can be used, for
instance, to calculate a resolution to put in the suffix of the pk-file name. This also means, however, that
specials in the postamble (which METAFONT never generates) do not get sent to the pk-file.

(Set initial values 12) +=
pk-open — false;

$43 GFtoPK INPUT AND OUTPUT FOR BINARY FILES 219

43. We shall use two simple functions to read the next byte or bytes from gf_file. We either need to get
an individual byte or a set of four bytes.

function gf.byte: integer; {returns the next byte, unsigned }
var b: eight-bits;
begin if eof (gf-file) then bad-gf ("Unexpected end of file!")
else begin read(gf -file,b); gf byte — b;

end:

wmer (gf-zoc);
end:

function gf-signed-quad:integer; {returns the next four bytes, signed }
var a, b, ¢, d: eight-bits;
begin read {gf-file , a); read (gf-file, b); read (gf-file, c); read (gf-file, d);
if a< 128 then gf-signed-quad « ((a *256 + b) * 256 + c) * 256 + d
else gf-signed-quad — (((a —256) %256 + b) % 256 + ¢) * 256 + d;
gf-zoc — gf-zoc + 4;
end;

220 INPUT AND OUTPUT FOR BINARY FILES GFtoPK §44

44, We also need a few routines to write data to the PK file. We write data in 4-, 8-, 16-, 24-. and 32-bit
chunks, so we define the appropriate-routines. We must be careful not to let the sign bit mess us up, as
some Pascals implement division of a negative integer differently.
procedure pk_byte (a : integer);
begin if pk-open then
begin if a < 0 then a + a + 256;
write (pk-file, a); incr(pk_loc);
end;
end;
procedure pk_halfword (a : integer);
begin if a < 0 then a « a + 65536;
write (pk-file , a div 256); write (pk-fil, a mod 256); pk-lot «— pk-lot + 2;
end;
procedure pk_three_bytes(a : integer);
begin write (pk-file, a div 65536 mod 256); write (pk-file, a div 256 mod 256); write(pk-file,a mod 256):
pk_loc + pk_loc + 3;
end;
procedure pk_-word (a : integer);
var b: integer;
begin if pk-open then
begin if a <0 then
begin a « a + ‘70000000000 ; a « a + ‘10000000000; b + 128 + a div 16777216;
end
else b—adiv 16777216,
write (pk-file, b); write (pk-file, adiv 65536 mod 256): write (pk-file, a div 256 mod 256);
write(pk-file, a mod 256); pk_loc — pk loc + 4;
end;
end:
procedure pk-nyb(u : integer);
begin if bit-weight = 16 then
begin output-byte «— a * 16; bit-weight — 1;
end
else begin pk_byte(output-byte + a); bit-weight — 16;
end;
end;

45. We need the globals bit-weight and output-byte for buffering.
(Globals in the outer block 11) +=

bit-weight: integer; {output bit weight }

output-byte: integer; {output byte for pk file }

446 GFtoPK INPUT AND OUTPUT FOR BINARY FILES 221

46. Finally we come to the routines that are used for random access of the gf_file. To correctly find and
read the postamble of the file, we need two routines, one to find the length of the gf_file, and one to position
the gf_file . We assume that the first byte of the file is numbered zero.

Such routines are, of course, highly system dependent. They are implemented here in terms of two
assumed system routines called set-pos and cur-pos. The call set_pos(f, n) moves to item n in file £ unless
n is negative or larger than the total number of items in f: in the latter case, set_pos(f,n) moves to the end
of file £ The call cur_pos(f) gives the total number of items in f, if eof (f) is true; we use cur-pos only in
such a situation.
procedure find_gf length;

begin set-pos (gf-file, — 1); gf-len «— cur-pas (gf-file):

end;
procedure move-to-byte(n : integer);

begin set-pos (gf-file , n); gf-loc — n;

end;

47. The global gf-len contains the final total length of the gffile.

(Globals in the outer block 11) +=
gf-len: integer; { length of gffile }

222 PLAN OF ATTACK GFtoPK 818

48. Plan of attack. It would seem at first that converting a GF file to PK format should be relatively
easy, since they both use a form of run-encoding. Unfortunately, several idiosyncracies of the GF format make
this conversion slightly cumbersome. The GF format separates the raster information from the escapement
values and TFM widths: the PK format combines all information about a single character into one character
packet. The GF run-encoding is on a row-by-row basis, and the PK format is on a glyph basis, as if all of the
raster rows in the glyph were concatenated into one long row. The encoding of the run-counts in the cr files
is fixed, whereas the PK format uses a dynamic encoding scheme that must be adjusted for each character.
And, finally, any repeated rows can be marked and sent with a single command in the PK format.

There are four major steps in the conversion process. First, the postamble of the gf-file is found and read,
and the data from the character locators is stored in memory. Next, the preamble of the pk-file is written.
The third and by far the most difficult step reads the raster representation of all of the characters from the
GF file, packs them, and writes them to the pk-file Finally, the postamble is written to the pk-ile.

The conversion of the character raster information from the gf-file to the format required by the pk-ile
takes several smaller steps. The GF file is read, the commands are interpreted, and the run counts are
stored in the working row array. Each row is terminated by a end-of-row value, and the character glyph is
terminated by an end-of-char value. Then, this representation of the character glyph is scanned to determine
the minimum bounding box in which it will fit, correcting the min_m, maz_m, min_n,and maez_n values, and
calculating the offset values. The third sub-step is to restructure the row list from a list based on rows to a
list based on the entire glyph. Then, an optimal value of dyn_f is calculated, and the final size of the counts
is found for the PK file format, and compared with the bit-wise packed glyph. If the run-encoding scheme
is shorter, the character is written to the pkile as row counts; otherwise, it is written using a bit-packed
scheme.

To save various information while the GF file is being loaded, we need several arrays. The tfin-width,
dx, and dy arrays store the obvious values. The srarus array contains the current status of the particular
character. A value of 0 indicates that the character has never been defined; a 1 indicates that the character
locator for that character was read in; and a 2 indicates that the raster information for at least one character
was read from the gf file and written to the pk-file. The row array contains row counts. It is filled anew for
each character, and is used as a general workspace. The GF counts are stored starting at location 2 in this
array, so that the PK counts can be written to the same array, overwriting the GF counts, without destroying
any counts before they are used. (A possible repeat count in the first row might make the first row of the
PK file one count longer; all succeeding rows are guaranteed to be the same length or shorter because of the
end-of-row flags in the GF format that are unnecessary in the PK format.)

define virgin =0 {never heard of this character yet }

define located = 1 { locators read for this character}

define sent =2 { at least one of these characters has been sent }

(Globals in the outer block 11) +=

tfm-width: array [0 , . 255] of integer; {the TFM widths of characters }

dx, dy: array [0 .. 255] of integer; { the horizontal and vertical escapements }
status: array [0 .. 255] of virgin . . sent; { character status }

row:array [0 .. mux-row] of integer; {therow counts for working }

49. Here we initialize all of the character starus values to virgin.

(Set initial values 12) +=
for i« 0 to 255 do status[s] — virgin:

50. And, finally, we need to define the end_of-row and end-of-char values. These cannot be values that
can be taken on either by legitimate run counts, even when wrapping around an entire character. Nor can
they be values that repeat counts can take on. Since repeat counts can be arbitrarily large, we restrict
ourselves to negative values whose absolute values are greater than the largest possible repeat count.
define end-of-row = (-99999) {indicates the end of a row }
define end-of-char = (-99998) {indicates the end of a character }

851 GFtoPK READING THE GENERIC FONT FILE 223
51. Reading the generic font file. There are two major procedures in this program that do all of the
work. The first is convert-gf-file, which interprets the GF commands and puts row counts into the row array.
The second. which we only anticipate at the moment, actually packs the row counts into nybbles and writes

them to the packed file.

(Packing procedures 62);
procedure convert-gf-file ;
var i,j, k: integer; { general purpose indices }
gf-corn: integer; {current gf command }
(Locals to convert-gf-file 58)
begin open-gf-file ;
if gf-byte # pre then bad-gf ("First_byte is not_preamble-);
if gfbyte # gf-id_byte then bad-gf ("Identification, byte,is incorrect °);
(Find and interpret postamble 60);
open-pk-file; (Write preamble 81);
move-to-byte(2); i «— gf-byte; print(" " ");
for j— 1 to ido print (zchr[gf_byte]);
print-Zn(~ " 7);
repeat gf-corn + gf-byte;
case gf-corn of
boc, bocl : (Interpret character 54);
(Specials and no-op cases 53);

post: ; {We will actually do the work for this one later }
othercases bad-gf (‘Unexpected,’, gf-corn : 1, " command_between characters)
endcases;

until gf-corn = post;
(Write postamble 84);
end;

52. We need a few easy macros to expand some case statements:
define four-cases(#) =#,# + 1, # + 2, # + 3
define sixteen-cases (#) = four-cases (#), four-cases (# + 4), four-cases (# + 8), four-cases (# + 12)
define sixty-four-cases (#) = sixteen-cases (#), sixteen-cases (# + 16), sixteen-cases (# + 32),
sixteen-cases (# + 48)
define one-sixty&e-cases(#) = sixty-four-cases(#), sixty-four-cases(# + 64), sizteen_cases(# + 128),
sixteen-cases (# + 144), four_cases(# + 160), # + 164

53. In this program, all special commands are passed unchanged and any no-op bytes are ignored, so we
write some code to handle these:

(Specials and no_op cases 53) =
four_cases(xzxl): begin pk_byte(gf-com ~ zxxl + pk_rzzrl); i + 0;
for j « 0 to gfcom —xxxl doO
begin k + gf-byte; pk_byte(k); i «— i * 256 + k;
end;
for j+1to ido pk.byte(gf-byte);
end;
yyy: begin pk-byte(pk-yyy); pk-word(gf-signed_quad);
end;
no-op:
This code is used in sections 51, 54, 57, and 60.

224 READING THE GENERIC FONT FILE GFtoPK §54

54. Now we need the routine that handles the character commands. Again, only a subset of the gf
commands are permissible inside character definitions, so we only look for these.

(Interpret character 54) =
begin if gf-com = boc then
begin gfch «— gf-signed-quad; i — gf-signed-quad; {dispose of back pointer }
min-m + gf-signed-quad; max-m + gf-signed-quad ; min-n + gf signed_quad:
max-n + gf-signed-quad;

end

else begin gf-ch « gf-byte; i + gf-byte; max-m «— gf-byte; min-m + max-m — i; i + gf-byte:
max-n «— gf-byte; min-n + max-n — iy
end;

d.print_In(Character °, gf-ch : 1); gf-ch-mod-256 + gf-ch mod 256;
if status [gf-ch-mod_256] = virgin then
begin bad-gf ("nocharacter locator for charactery’, gf-ch : 1);
repeat gf-corn + gf-b yte;
case gf-com of
sixty-four-cases(paint-0), eoc, skip0, one-sixty-five-cases(new_row_()):;
(Specials and no-op cases 53);
paintl, skipl : i + gf-byte;
paint]l + 1, skipl + 1: begin i « gf-byte; i — gf-byte;

[

end;
paint]l + 2, skipl + 2: begin i « gf-byte; i + gf-byte; i — gf-byte;
end;
othercases bad-gf (Unexpected, gf-con : 1, "_while_ skipping character’)
endcases;
until gf-corm = eoc
end
else (Convert character to packed form 57);
end

This code is used in section 51.

55. Communication between the procedures convert-gf-file and pack-and-send-character is done with a
few global variables.

(Globals in the outer block 11) +=

gf-ch : integer; {the character we are working with }

gf-ch-mod_256: integer; { locater pointer }

pred_pk_loc: integer; { where we predict the end of the character to be. }
max-n, min-n: integer; {the maximum and minimum horizontal rows }
max-m, min-m : integer; {the maximum and minimum vertical rows }
row-ptr: integer; { where we are in the row array. }

56. Now we are at the beginning of a character that we need the raster for. Before we get into the
complexities of decoding the paint, skip, and new-row commands, let’s define a macro that will help us fill
up the row array. Note that we check that row-ptr never exceeds max-row; Instead of calling bad-gf directly,
as this macro is repeated eight times, we simply set the bad flag true.
define put-in-rows (#) =
begin if row-ptr > max-row then bad + true
else begin row [row-ptr] «— #; incr (row-ptr);
end;
end

§57 GFtoPK READING THE GENERIC FONT FILE 225

57. Now we have the procedure that decodes the various commands and puts counts into the row array.
This would be a trivial procedure, except for the painr-0 command. Because the painr-O command exists,
it is possible to have a sequence like paint 42. paint-o, paint 38, paint-O, paint.0, paint.0, paint 33, skip-o.
This would be an entirely empty row, but if we left the zeros in the row array, it would be difficult to
recognize the row as empty.

This type of situation probably would never occur in practice, but it is defined by the GF format, so we
must be able to handle it. The extra code is really quite simple, just difficult to understand; and it does not
cut down the speed appreciably. Our goal is this: to collapse sequences like paint 42, paint_0. paint 32 to a
single count of 74, and to insure that the last count of a row is a black count rather than a white count. A
buffer variable extra, and two state flags, on and state, enable us to accomplish this.

The on variable is essentially the paint-switch described in the GF description. If it is true, then we are
currently painting black pixels. The extra variable holds a count that is about to be placed into the row
array. We hold it in this array until we get a paint command of the opposite color that is greater than 0. If
we get a paint-O command, then the srare flag is turned on, indicating that the next count we receive can
be added to the extra variable as it is the same color.

(Convert character to packed form 57) =
begin bad « false; row-ptr «— 2; on <« false; extra «— 0; state «— true;
repeat gf-corn «— gf-byte;

case gf-corn of

(Cases for paint commands 59);

four_cases(skip0):begin i — 0;
for j« 1 to gf-corn — skip0 do i «— i * 256 + gf-byte;
if =on A (extra > 0) then put_in_rows(extra);
for j « 0 to i do put_in_rows(end-of-row);
on ¢« false; extra « 0; state «— true;
end;

one-sixty-five-cases(new_row-0): begin if —on A (extra > 0) then put-in-rows (extra);
put-in-rows(end-of-row); on + true; extra +— gf-corn — new-row-0; state +— false;
end;

(Specials and no-op cases 53);

eoc: begin if =on 4 (extra > 0) then put_in_rows(extra);
if (row-ptr > 2) A (row{row_ptr — 1| # end-of-row) then put_in_rows(end-of-row);
put-in-rows (end-of-char);
if bad then abort("Ran out of_ internal memory, f orurow counts !-);
pack-and-send-character; status [gf_ch_mod_256] — sent;
if pk.loc # pred_pk_loc then abort(“Internal_error_while writing character!’);

end:
othercases bad-gf (“Unexpectedy”, gf-corn : 1, " ,command, in character definition~)
endcases; “

until gf-corn = eoc;
end

This code is used in section 54.

58. A few more locals used above and below:

(Locals to convert_gf_file 58) =

on: boolean; {indicates whether we are white or black }

state: boolean; { a state variable-is the next count the same race as the one in the extra buffer? }
extra: integer; { where we pool our counts }

bad: boolean; {did we run out of space? }

See also section 61.

This code is used in section 51.

226 READING THE GENERIC FONT FILE GFtoPK 851

59. (Cases for paint commands 59) =
paint-0: begin state — —state; on + —on;
end;
sixty-four-cases(paint-0 + 1), paintl + 1, paint] + 2: begin if gf-corn < paintl then i «— gf-corn — paint-0
else begin i 0;
for j « 0 to gf-com — paint] do i« i * 256 + gf-byte;
end;
if state then
begin extra « extra + 1; state «— false;
end
else begin put-in-rows(extra); extra + i;
end;
on + —on;
end

This code is used in section 57.

§60 GFtoPK READING THE GENERIC FONT FILE 227

60. Our last remaining task is to interpret the postamble commands. The only things that may appear
in the postamble are post-post, char-Zoc. char_locO, and the special commands. Note that any special
commands that might appear in the postamble are not written to the pk_file. Since METRFONT does not
generate special commands in the postamble, this should not be a major difficulty.

(Find and interpret postamble 60) =
find-qf-lenqth; post-lot «— gf-Zen — 4;
repeat if ‘post-Zoc = 0 then bad-gf (“all 223" "s”);
move_to_byte(post_loc); k — gf-byte; decr(post.loc);
until k # 223;
if k # gfid.byte then bad-gf ("ID byte is ", k: 1);
move-to-byte (post-lot — 3); q + gf-signed-quad;
if (g <0)V (g> post-Zoc — 3) then bad-gf (“post_pointer is, ", q: 1);
move-to-byte(q); k + gf-byte;
if k# post then bad-gf (“byte,at, ,q : 1, "Lis not post *);
i < gf-signed-quad; {skip over junk }
design-size «— gf-signed-quad; check-sum <« gf-signed-quad; hppp +— gf-signed-quad;
h-mag — round (hppp * 72.27/65536); vppp «— gf-signed-quad;
if hppp # vppp then print_In(-0dd_ aspect ratio! “);
i + gf-signed-quad; i +— gf-signed-quad; {skip over junk }
i — gf-signed-quad; i «— gf-signed-quad;
repeat gf-corn « gf-byte;
case gf-corn of
char-Zoc, char_loc0: begin gf-ch — gf-byte;
if status [gf-ch] # virgin then bad-gf ("Locator f orthis character already_ f dund. °);
if gf-corn = char-Zoc then
begin dr[gf-ch] — gf-signed-quad; dy(gf-ch] «— gf-signed-quad;
end
else begin dx [gf-ch] + gf-byte * 65536, dy[gf-ch] — 0;
end;
tfm-width [gf-ch] < gf-signed-quad; i «— gf-signed-quad; status [gf-ch] « located;
end;
(Specials and no-op cases 53);
post-post: ;
othercases bad-gf (Unexpected,, gf-com : 1, “yin postamble-)
endcases;
until gf-corn = post-post

This code is used in section 51.

61. Just a few more locals:

(Locals to convert_gf_file 58) +=

hppp , vppp: integer; {horizontal and vertical pixels per point }
q: integer; { quad temporary }

post_loc: integer; {where the postamble was }

228 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK 562

62. Converting the counts to packed format. This procedure is passed the set of row counts from
the GF file. It writes the character to the PK file. First, the minimum bounding box is determined. Next,
the row-oriented count list is converted to a count list based on the entire glyph. Finally, we calculate the
optimal dyn-f and send the character.

(Packing procedures 62) =
procedure pack-and-send-character;
var i, j, k: integer; { general indices }

(Locals to pack-and-send-character 65)
begin (Scan for bounding box 63);
(Convert row-list to glyph-list 64);
(Calculate dyn-f and packed size and write character 68);
end

This code is used in section 51.

63. Now we have the row counts in our row array. To find the real mux-n, we look for the first non-
end-of-row value in the row. If it is an end-gf-char, the entire character is blank. Otherwise, we first
eliminate all of the blank rows at the end of the character. Next, for each remaining row, we check the first
white count for a new min-m, and the total length of the row for a new maz_m.

(Scan for bounding box 63) =
i & 2; decr(row-ptr);
while row [i] = end-of-row do incr(i);
if row [t] # end-of-char then
begin mux-n « maz_n — i+ 2;
while row [row-ptr — 2] = end-of-row do
begin decr(row-ptr); row [row-ptr] «— end-of-char;
end;
min-n «— mux-n + I; extra «— mux-m — min-m + 1; mux-m 0; _] — i
while row [j] # end-of-chur do
begin decr (min-n);
if row[j] # end-of-row then
begin k «— row[j];
if k& < extra then extra « k;
mer (j);
while row [j] # end-of-row do
begin k — k + row [j]; incer (j);
end;
if mux-m < kthen mux-m « k;
end;
mer (j);
end:
min-m — min-m + extra; mux-m «— min-m + mux-m — I — extra; height «— max-n — min_.n + 1;
width — mux-m — min-m + 1; x-offset — —min_m; y-offset — mux-n;
d-print-In("Wy~ width : 1, " H, ", height : 1, " X", z-offset : 1, "Y'~ y-offset : 1);
end
else begin height — 0; width «— 0; z_offset «— 0; y.offset — 0; d_print_In("Empty_raster. "),
end

This code is used in section 62.

864 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 229

64. We must convert the run-count array from a row orientation to a glyph orientation, with repeat counts
for repeated rows. We seperate this task into two smaller tasks, on a per row basis. But first, we define a
new macro to help us fill up this new array. Here, we have no fear that we will run out of space, as the glyph
representation is provably smaller than the rows representation.
define put-count (#) =
begin row[put_ptr] — #; incr(put_ptr);
if repeat-flag > 0 then
begin row [put-ptr] «— -repeat-flag; repent-flag «— 0; incr(put_ptr);
end;
end
(Convert row-list to glyph-list 64) =
put-ptr «— 0; row-ptr «— 2; repeat-flag «— 0; state — true; buff — 0;
while row [row_ptr] = end-of-row do incr(row-ptr);
while row [row-ptr] # end-of-char do
begin (Skip over repeated rows 66);
(Reformat count list 67);
end;
if buff > 0 then put-count(buff);
put-count (end-of-char)

This code is used in section 62.

65. Some more locals for pack-and-send-character used above:

(Locals to puck-and-send-character 65) =

extra: integer; {little buffer for count values }

put-ptr: integer; { next location to fill in row }

repeat-flag: integer; {how many times the current row is repeated }
h-bit: integer; {horizontal bit count for each row }

buff: integer; {our count accumulator }

See also sections 70 and 77.

This code is used in section 62.

66. In this short section of code, we are at the beginning of a new row. We scan forward, looking for
repeated rows. If there are any, repeat_flag gets the count, and the row-ptr points to the beginning of the
last of the repeated rows. Two points must be made here. First, we do not count all-black or all-white rows
as repeated, as a large “paint” count will take care of them, and also there is no black to white or white to
black transition in the row where we could insert a repeat count. That is the meaning of the big if statement
that conditions this section. Secondly, the while row[i] = row [j] do loop is guaranteed to terminate, as
7 > i and the character is terminated by a unique end-of-char value.

(Skip over repeated rows 66) =
L row-ptr;
if (row[i] # end-of-row) A ((row [i] # extra) V (row [i + 1] # width)) then
beginj — 1+ 1;
while row [j = 1] # end-of-row do iner(j);
while row [i] = row [j] do
begin if row [i] = end-of-row then
begin incr{repeat_flag); row_ptr — i + 1;
end;
incr(i); iner(j);
end;
end

w

This code is used in section 64.

230 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK N

67. Here we actually spit out a row. The routine is somewhat similar to the routine where we actually
interpret the GF commands in the count buffering. We must make sure to keep track of how many bits have
actually been sent, so when we hit the end of a row, we can send a white count for the remaining bits, and
possibly add the white count of the next row to it. And, finally, we must not forget to subtract the extra
white space at the beginning of each row from the first white count.
(Reformat count list 67) =
if row[row_ptr] # end-of-row then row[row_ptr} — row [row-ptr] — extra;
h-bit — 0;
while row [row-ptr] # end-of-row do
begin h-bit — h-bit + row|[row_ptr];
if state then
begin buff — buff + row(row_ptr); state — false;
end
else if row [row-ptr] > 0 then
begin put-count (buff); buff — row [row-ptr];
end
else state «— true;
incr (row-ptr);
end;
if h-bit < width then
if state then buff «— buff + width — h-bit
else begin put_count(buff); buff — width — h-bit; state — true;
end
else state « false;
incr (row-ptr)

This code is used in section 64.

868 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 231

68. Here is another piece of rather intricate code. We determine the smallest size in which we can pack
the data, calculating dyn-f in the process. To do this, we calculate the size required if dyn-fis 0. and put
this in camp-size. Then, we calculate the changes in the size for each increment of dyn-f, and stick these
values in the deriv array. Finally, we scan through this array and find the final minimum value, which we
then use to send the character data.

(Calculate dyn-f and packed size and write character 68) =
for i1 to 13 do derw[i] — 0;
i «— 0; first-on < row[z'] = 0;
if first_on then incr(i);
camp-size «— 0;
while TOW [i] # end-of-char do (Process count for best dyn-f value 69);
b_comp_size — comp_size; dyn-f «— 0;
for t—1to 13do
begin comp_size «— camp-size + deriv{i};
if comp_size < b_comp_size then
begin b-camp-size «— comp_size; dyn-f «— i;
end:
end;
camp-size — (b_comp_size + 1) div 2;
if (camp-size > (height * width + 7) div 8) V (height * width = 0) then
begin comp_size «— (height * width + 7) div 8; dyn-f «— 14;
end;
d_print_In(“Best_packing, is,dyn_fof, ", dynf : 1, "uwithylengthy ", camp-size : 1);
(Write character preamble 71);
if dyn-f# 14 then (Send compressed format 75)
else if height > 0 then (Send bit map 76)

This code is used in section 62.

232 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK 569

69. When we enter this module, we have a count at row [i]. First, we add to the camp-size the number
of nybbles that this count would require, assuming dyn-f to be zero. When dyn-f is zero, there are no one
nybble counts, so we simply choose between two-nybble and extensible counts and add the appropriate value.

Next, we take the count value and determine the value of dyn-f (if any) that would cause this count to
take either more or less nybbles. If a valid value for dyn-fexists in this range, we accumulate this change in
the deriv array.

One special case handled here is a repeat count of one. A repeat count of one will never change the length
of the raster representation, no matter what dyn-f is, because it is always represented by the nybble value
15.

(Process count for best dyn-f value 69 } =
begin j « row [i];
if j = -1 then incr(comp-size)
else begin if j <0 then
begin incr(comp.size); j — —j;
end;
if j <209 then comp_size «— comp._size + 2
else begin k — 5 — 193;
while k> 16do
begin k « k div 16; camp-size — camp-size + 2;
end;
camp-size «— camp-size + 1;
end;
if j < 14 then decr(deriv [5])
else if j <209 then incr(deriv](223 - j)div 15])
else begin k — 16;
while (k* 16 < j+ 3)do k «— kx 16;
if j — k<192 then deriw[(207 — j + k) div 15] — deriw[(207 — j + k) div 15] + 2;
end;
end;
iner(1);
end

This code is used in section 68.

70. We need a handful of locals:

(Locals to pack-and-send-character 65) +=

dyn-f: integer; { packing value }

height, width: integer; {height and width of character }
z-offset, y-offset: integer; {offsets }

deriv: array [1 .. 13] of integer; { derivative }
b_comp_size: integer; { best size }

first-on: boolean; { indicates that the first bit is on }
Jag-byte: integer; {flag byte for character }

state: boolean; { state variable }

on : boolean; { white or black? }

871 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 233

71. Now we write the character preamble information. First we need to determine which of the three
formats we should use.

(Write character preamble 71) =

flag-byte — dyn_f * 16;

if first-on then flag-byte — flag_byte + 8;

if (gf-ch > 255) NV (yfm_width[gf_ch_mod_256] > 16777215) V (tfm-width [gf-ch-mod_256] <
0) V (dylgf-ch-mod_256]# 0) V (dx [gf-ch-mod_256] < 0) V (dz[gf-ch-mod_256] mod 65536 #
0) V (camp-size > 196579) V (width > 65535) N (height > 65535) V (z.offset > 32767) NV (y_offset >
32767) V (z_offset < -32768) V (y_offset < -32768) then (Write long character preamble 72)

else if (dr{gf-ch] > 16777215) V (width > 255) N (height > 255) V (z_offset > 127) V (y.offset >

127) V (z-offset < -128) V (y-offset < -128) V (camp-size > 1016) then
(Write two-byte short character preamble 74)
else (Write one-byte short character preamble 73)

This code is used in section 68.

72. If we must write a long character preamble, we adjust a few parameters, then write the data.

(Write long character preamble 72) =
begin flag-byte — flag_byte + 7: pk_byte (flag-byte); comp_size — comp_size + 28; pk-word (comp_size):
pk-word (gf-ch); pred_pk_loc — pk_loc + comp_size; pk-word (tfm-width [gf-ch-mod_256]);
pk-word (dx [gf-ch-mod_256]); pk-word (dy [gf-ch-mod_256)); pk-word (width); pk-word (height);
pk-word(z_offset); pk-word(y-offset);
end

This code is used in section 71.

73. Here we write a short short character preamble, with one-byte size parameters.

(Write one-byte short character preamble 73) =
begin comp_size — comp_size + 8; flag_byte «— flag-byte + comp_size div 256; pk_byte(flag_byte);
pk_byte(comp_size mod 256); pk_byte(gf-ch); pred_pk_loc — pk_loc + camp-size;
pk_three_bytes(tfm_width[gf-ch-mod_256]); pk-byte(dz[gf-ch-mod_256] div 65535); pk_byte(width);
pk-byte (height); pk_byte(z_offset); pk_byte(y-offset);
end

This code is used in section 71.

74. Here we write an extended short character preamble, with two-byte size parameters.

(Write two-byte short character preamble 74) =
begin comp_size «— comp.size + 13; flag-byte «— flag-byte + comp_.size div 65536 + 4; pk_byte(flag_byte):
pk_halfword (comp_size mod 65536): pk.byte(gf.ch); pred_pk_loc — pk_loc + comp_size;
pk-three-bytes(tfm-width [gf-ch-mod-2561); pk_halfiord (dx [gf-ch-mod_256]div 65536):
pk-halfword (width); pk-halfword (height Y; pk-halfword (x-offset); pk-halfword (y-offset);
end

This code is used in section 71.

234 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK 475
75. At this point, we have decided that the run-encoded format is smaller. (This is almost always the
case.) We send out the data, a nybble at a time.
(Send compressed format 75) =
begin bit-weight « 16; max-2 « 208 — 15 * dyn-f; i « 0;
if row[i] = 0 then incr(i);
while row[i] # end-of-char do
begin j - row(i];
if j = -1 then pk.nyb(15)
else begin if j <0 then
begin pk_nyb(14); j — —j;
end;
if j < dyn-f then pk.nyb(j)
else if j < max-2 then
begin j« j— dyn-f — 1; pk_nyb(j div 16 + dyn-f + 1); pk-nyb(j mod 16):
end
else begin 7 « j — max-2 + 15; k — 16;
while k< jdo
begin k - k * 16; pk-nyb(0);
end;
while k> 1do
begin k«— kdiv 16; pk_nyb(j div k); 7 - j mod k;
end;
end;
end;
iner(1);
end;
if bit-weight # 16 then pk-byte(output-byte);
end

This code is used in section 68.

876 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 235

76. This macro is for the case where we have decided to send the character raster packed by bits. It uses
the bit counts as well, sending eight at a time. Here we have a miniature packed format interpreter, as we
must repeat any rows that are repeated. The algorithm to do this was a lot of fun to generate. Can you
figure out how it works?
(Send bit map 76) =
begin buff « 0; p-bit « 8; i « 1; h-bit «— width: on « false; state « false; count — row{0];
repeat-jlag < 0;
while (row(i|# end-of-char) V state N (count > 0) do
begin if state then
begin count «— r-count; i « r-i: on — r-on; decr(repeat_flag);
end
else begin r-count < count; r-i « i; r-on «— on:
end;
(Send one row by bits 80);
if state N (repeat-flag = 0) then
begin count < s-count; i + s-i; on +— s-on; state «— false;
end
else if —state A (repeat_flag > 0) then
begin s-count < count; s-i « i; s-on <« on: state «— true;
end;
end:
if p-bit # 8 then pk_byte(buff);
end

This code is used in section 68.

77. All of the remaining locals:

(Locals to pack-and-send-character 65) +=

comp_size: integer; {length of the packed representation in bytes }
count: integer; { number of bits in current state to send }

p-bit: integer; { what bit are we about to send out? }

r-on, s-on: boolean; { state saving variables }

r-count, s-count: integer; { ditto}

r-i, s-i: integer; {and again.}

maz-2: integer; { the highest count that fits in two bytes }

78. We make the power array global.

(Globals in the outer block 11) +=
power: array [0 .. 8] of integer; { easy powers of two }

79. We initialize the power array.
(Set initial values 12) +=
power[0] — 1;
for i «— 1 to 8 do power[i] «— power[z' - 1] + powerli — l]:

236 CONVERTING THE COUNTS TO PACKED FORMAT GFtoPK §80)

80. Here we are at the beginning of a row and simply output the next widrh bits. We break the possibilities
up into three cases: we finish a byte but not the row, we finish a row. and we finish neither a row nor a byte.
But, first, we insure that we have a count value.
(Send one row by bits 80) =
repeat if count = 0 then
begin if row [i] < 0 then
begin if —state then repeat_flag — -row [i];
mer(i);
end;
count «— row(i]; incr(i); on «— —on;
end;
if (count > p-bit) A (p-bit < h-bit) then
begin { we end a byte, we don’t end the row }
if on then buff < buff + power|p_-bit] — 1;
pk_byte(buff); buff «— 0; h-bit «— h-bit — p-bit; count «— count — p-bit; p-bit — §8;
end
else if (count < p-bit) A (count < h-bit) then
begin { we end neither the row nor the byte }
if on then buff « buff + power[p-bit] — power[p-bit — count];
p-bit « p-bit — count; h-bit « h-bit — count; count «— 0;
end
else begin { we end a row and maybe a byte }
if on then buff < buff + power[p-bit] — power[p-bit — h-bit];
count + count — h-bit; p-bit « p-bit — h-bit; h-bit < width;
if p-bit = 0 then
begin pk_byte(buff); buff « 0; p-bit — §;
end;
end;
until h-bir = width

This code is used in section 76.

81. Now we are ready for the routine that writes the preamble of the packed file.
define preamble-comment = ~GFtoPK_ 2.0 output -
define comm-length = 17
(Write preamble 81) =
pk_byte (pk_pre); pk_byte(pk_id); pk_byte(comm-length);
for i « 1 to comm-length do pk_byte(zord[comment [i]]);
pk-word (design-size); pk-word (check-sum); pk,word (hppp); pk-word (vppp)

This code is used in section 51. a

82. Of course, we need an array to hold the comment.

(Globals in the outer block 11) +=
comment: packed array [l .. comm-length] of char;

83. (Set initial values 12) +=
comment «— preamble_comment :

[

h84 GFtoPK CONVERTING THE COUNTS TO PACKED FORMAT 37

84. Writing the postamble is even easier.
(Write postamble 84) =
pk-byte(pk-post);
while (pk_-loc mod 4 # 0) do pk_byte(pk-no_op)

This code is used in section 51.

85. Once we are finished with the GF file, we check the status of each character to insure that each character
that had a locater also had raster information.

(Check for un-rasterized locaters 85) =
for i—0to 255 do
if status[i] = located then print-in(“Charactery”,7 : 1, “_missing raster_information! ")

This code is used in section 86.

86. Finally, the main program.

begin initialize; convert_gf-file; (Check for un-rasterized locaters 85);
print-ln (gf-Zen : 1, "_bytes_packed to, ", pk-loc : 1, "_bytes.");
final-end: end.

87. A few more globals.

(Globals in the outer block 11) +=

check-sum: integer; {the checksum of the file }

dir-ptr: integer; { where does the directory information start? }
design-size: integer; {the design size of the font }

h-mug: integer; {the pixel magnification in pixels per inch }

i: integer;

238 SYSTEM-DEPENDENT CHANGES GFtoPK 888
88. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make GFtoPK work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.

489 GFtoPK INDEX 239

89. Index. Pointers to error messages appear here together with the section numbers where each ident-
ifier is used.

a 43, dyn_f: 28, 29, 30, 31, 32, 35, 36, 48, 62, 68.
abort: 8, 57. 69, 70, 71, 75.

all 223's: 60. eight-bits: 37, 43.

ASCIl-code: 9, 11. else: 3.

b: 43, 44. end: 3.

b_comp_size: 6 8, T0. end-of-char: 48, 50, 57. 63, 64, 66, 68, 75, 76.
backpointers: 19. end-of-row: 48, 50, 57, 63, 64. 66, 67.
bud: 56, 57, 58. endcases: J.

Bad GF file : 8. eoc: 14, 16, 17, 18, 54, 57.

bad-gf : 8, 43, 51, 54, 56, 57, 60. eof : 43, 46.

banner: 1, 4. extra: 57, 58, 59, 63, 65, 66, 67.
bit-weight: 44, 45, 75. false: 42, 57, 59, 61, 76.

black : 15, 16. final-end: 3, 8, 86.

boc: 14, 16, 17, 18, 19, 51, 54. jind-gf-length: 46, 60.

bocl: 16, 17, 51. First byte is not preamble: 51.
boolean: 41, 58, 70, 77. first-on: 68, 70, 71.

buff: 64, 65, 67, 76, 80. first-text-char: 10, 13.

byte is not post: 60. flag: 32.

byte-file: 37 38. flag-byte: m, 7], 72, 73, 74.

e 43. four-cases: 52, 53, 57.

cc: 32 Fuchs, David Raymond: 20.

char: 10, 82. get-nyb: 30.

char-lot- 16. 17. 19. 60. gf-byte: 43, 51, 53, 54, 57, 59, 60.

gf-ch - 54, 55, 60, 71, 72, 73, 74.
gf-ch-mod-256: 54, 55, 57, 71, 72, 73, 74.
gf-corn: 91, 53, 54, 57, 59, 60.

of file: 4,38, 39, 41, 42, 43, 46, 47. 48.
gf-id-byte: 16, 51, 60.

gf-len : 46, 47, 60, 86.

gf-loc: 39, 41, 43, 46.

gf-signed_quad: 43, 53, 54, 60.
GFtoPK: 4.

h-bit: 65, 67, 76, 80.

char_loc0: 16, 17, 60.

check sum: 18.

check-sum: 60, 81, 87.

Chinese characters: 19.

chr: 10, 11, 13.

comm-length: 81, 82.

comment: 81, 82, 83.

camp-size: 68, 69, 71, 72, 73, 74, 77.
convert-gf-jile: 51, 55, 86.

count: 76, 77, 80. h-mug: 60, 87.

cs: 18, 23. height: 31, 63, 68, 70, 71, 72, 73, 74.

cur-pos: 46. hoff: 32, 34.

d: 43 hppp: 18, 23. 60, 61, 81.

d-prin t-In . 2, 54, 63, 68. . i: 4, 30, 51, 62, 87.

debugging: 2. ID byte is wrong: 60.

decr: 7, 30, 60, 63, 69, 76. Identification byte incorrect: S1.
del-m: 16. incr: 7,30, 43, 44, 56, 63, 64, 66, 67, 68. 69, 75, 80.
del.n: 16. initialize: 4, 86.

deriv : 68, 69, 70. integer: 4, 30, 41, 43, 44, 45. 46, 47, 48. 51. 55.
design size: 18. 58, 61, 62, 65, 70, 77, 78. 87.

design-size: 60, 81. 87. Internal error : 57.

dir-ptr: 87. o ol

dm: 16, 32. Japanese characters: 19.

ds: 18, 23. jump-out: 8.

dx: 16, 19, 32, 48, 60, 71, 72, 73, 74. k: 51.

dy: 16. 19, 32, 48, 60, 71, 72. Knuth, Donald Ervin: 29.

240 INDEX

last-text-char: 10, 13.
line-length: 6.

located: 48, 60, 85.

Locator. . . already found : 60.
maz_m: 16, 18, 48, 54, 55, 63.
maz_-n: 16, 18, 48, 54, 55, 63.
max-new-row: 17.

max-row: 6, 48, 56.

maz.2: 75, 17.

min-m: 16, 18, 48, 54, 55, 63.
min-n: 16, 18, 48, 54, 55, 63.
missing raster information: 85.
move-to-byte: 46, 51, 60.

n: 46.

new-row: 56.

new-row-0: 16, 17, 54, 57.
new-row-1 : 16.

new-row-1 64 : 16.

no character locator.. . : 54.
no-op: 16, 17, 19, 53.

nop: 17.

Odd aspect ratio: 60.

on: 57, 58, 59, 70, 76, 80.
one-sixty-five-cases: 52, 54, 57.
open_gf-file: 39, 5 I
open-pk-file: 40, 51.

ord: 11.

oriental characters: 19.

ot hercases: J.
others: 3.

output: 4.

output-byte: 44, 45, 75.

p-bit: 76, 77, 80.
pack-and-send-character: 55, 57, 62, 65.
paint: 56, 57.

paint-switch: 15, 16, 57.

paint-01 16, 17, 54, 57, 59.

paintl : 16, 17, 54, 59.

paint2: 16.

paint3: 16.

pk-byte: 44, 53, 72, 73, 74. 75, 76, 80, 81, 84.
pkfile : 4, 38, 40, 41, 42, 44, 48, 60.
pk-halfword: 44, 74.

pk-id: 24, 81.

pk_loc: 40, 41, 44, 57, 72, 73, 74, 84, 86.
pk-no-op: 23, 24, 84.

pk_nyb: 44,7 5 .

pk-open: 40, 41, 42, 44.
pk-packed-num: 30.

pk-post: 23, 24, 84.

pk-pre: 23, 24, 81.

pk-three-bytes: 44, 73, 74.

GFtoPK NG

pk-word: 44, 53, 72, 81.

pk-xxxI : 23, 24, 53.

pk_yyy: 23, 24, 53.

pl:32.

post: 14, 16, 17, 18, 20, 51, 60.

post pointer is wrong: 60.

post-lot: 60, G1.

post-post 16, 17, 18, 20, 60.

power: 7’8, 79, 80.

pre: 14, 16, 17, 51.

preamble-comment: 1, 81, 83.

pred_pk_loc: 55, 57, 72, 73, 74.

print: 4, 8, 51.

prin t-ln : 2, 4, 51, 60, 85, 86.

proofing: 19.

put-count: 64, 67.

put-in-rows: 56, 57, 59.

put-ptr: 64, 65.

q: 61.

r-count: 76, 77.

r-i: 76, 77.

r-on: 76, 77.

Ran out of memory: 57.

read: 43.

repeat-count: 30.

repeat_flag: 64, 65, 66, 76, 80.

reset: 39.

rewrite: 40.

Rokicki, Tomas Gerhard Paul: 1.

round: 60.

row: 6. 48, 51, 55, 56, 57, 63, 64, 65, 66, 67.
68, 69, 75, 76, 80.

row-ptr : 55, 56, 57, 63, 64. 66, 67.

s-count: 76, T7.

s-i: 76, 77.

s-on: 76, 7.

Samuel, Arthur Lee: 1.

scaled: 16, 18, 19, 23.

sent: 48, 57.

set-pos: 46.

sixteen-cases: D2.

sixty-four-cases: 52, 54. 59.

skip: 56.

skip-01 57.

skip0: 16, 17, 54, 57.

skipl: 16, 17, 54.

skip2: 16.

skip3: 16.

state: 57, 58, 59, 64. 67, 70, 76, 80.

status: 48, 49, 54, 57, 60, 85.

system dependencies: 3, 8, 10. 20. 37, 43, 88.

terminal_line_length: 6.

689 GFtoPK INDEX 241

text-char: 10, 11.

text-file : 10.

tfm: 32, 33, 36.

tfm-width: 48, 60, 71, 72, 73, 74.
true : 40, 56, 57, 64, 67, 7T6.
undefined-commands: 17.
Unexpected command: 51, 54, 57, 60.
Unexpected end of file : 43.
virgin: 48, 49, 54, 60.

voff: 32, 34.

vppp: 18, 23, 60, 61, 81.

white: 16.

width: 31, 63, 66, 67, 68, 70, 71, 72, 73, 74, 76, 80.
write : 4, 44.

write-ln: 4.

x-offset: 63, 70, 71, 72, 73, 74.
xchr @ 11, 12, 13, 51.

rord: 11, 13, 81.

rxrl: 16, 17, 53.

xxx2: 16.
7723: 16.
xxx4: 16.

y-offset: 63, 70, 71, 72, 73, 74.
yyy: 16, 17, 19, 23, 53.

242 NAMES OF THE SECTIONS GFtoPK

(Calculate dyn-f and packed size and write character 68) Used in section 62.
(Cases for paint commands 59) Used in section 57.

(Check for un-rasterized locaters 85) Used in section 86.

(Constants in the outer block 6) Used in section 4.

(Convert character to packed form 57) Used in section 54.

(Convert row-list to glyph-list 64) Used in section 62.

(Find and interpret postamble 60) Used in section 51.

(Globals in the outer block 11, 38, 41, 45, 47, 48, 55, 78, 82, 87) Used in section 4.
(Interpret character 54) Used in section 51.

(Labels in the outer block 5) Used in section 4.

(Locals to convert_gf_file 58, 61) Used in section 51.

(Locals to pack_and_send-character 65, 70, 77) Used in section 62.
(Packing procedures 62) Used in section 51.

(Process count for best dyn_f value 69) Used in section 68.

(Reformat count list 67) Used in section 64.

(Scan for bounding box 63) Used in section 62.

(Send bit map 76) Used in section 68.

(Send compressed format 75) Used in section 68.

(Send one row by bits 80) Used in section 76.

(Set initial values 12, 13, 42, 49, 79, 83) Used in section 4.

(Skip over repeated rows 66) Used in section 64.

(Specials and no-op cases 53) Used in sections 51, 54, 57, and 60.

(Types in the outer block 9, 10, 37) Used in section 4.

(Write character preamble 71) Used in section 68.

(Write long character preamble 72) Used in section 71.

(Write one-byte short character preamble 73) Used in section 71.
(Write postamble 84) Used in section 51.

(Write preamble 81) Used in section 51.

(Write two-byte short character preamble 74) Used in section 71.

unY

The GFtoDVI processor

(Version 2.0, April 1989)

Section
INtrOdUCHON .ottt et e e e e e e 1
TRECRATACLEISCL .« v v v v ettt e e e e e e e e e e e e e e e e e 10
Device-independent fIle fOIrMAL - -« v v v o e et e e e e e e e e e e e e e 19
Generic font file fOrmat - - -« v o o vttt e e e e e e e e e e e e e e e e e e 27
Extensions to the generic formatooono i 34
Font Metric datattt et e e e e e 36
[nput from binary 0 45
Reading the font informationo i 52
TheStriNEPOO] .ottt ettt e e 70
FIIE NAMES .« oottt et e e e e e e e 86
ShIPPINEPAZESOUL .« v vt e ettt ettt ettt et e e e e e e e e e e 102
Rudimentary typesetting ... 116
Gray fOntS | 121
SIANE fONES o vttt ettt e e e 131
Representation Of TECLANEIES - -« c oo v v vt ettt ettt ettt 136
Doing the 1abelsttt e 150
DoIng the PIXElS.. ..ottt ettt e e e e e e 201
The Main PIOGTAML .« ottt vttt e e e e e e e e e e e e e e e ettt e e e e e e e 216
System-dependent ChANZESttt ettt et e e e e 219
INAEX ottt et e 220

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX’ is a trademark of the American Mathematical Society.
‘METAFONT’ is a trademark of Addison-Wesley Publishing Company.

Page
302
305
308
314
319
321
325
327
334
341
346
349
351
355
356
360
373
377
378
379

302 INTRODUCTION GF to DVI 41

1. Introduction. The GFtoDVI utility program reads binary generic font (“GF”) files that are produced
by font compilers such as METAFONT, and converts them into device-independent (“DVI”) files that can be
printed to give annotated hardcopy proofs of the character shapes. The annotations are specified by the
comparatively simple conventions of plain METAFONT; i.e., there are mechanisms for labeling chosen points
and for superimposing horizontal or vertical rules on the enlarged character shapes.

The purpose of GFtoDVI is simply to make proof copies; it does not exhaustively test the validity of a GF
file, nor do its algorithms much resemble the algorithms that are typically used to prepare font descriptions
for commercial typesetting equipment. Another program, GFtype, is available for validity checking: GFtype
also serves as a model of programs that convert fonts from GF format to some other coding scheme.

The banner string defined here should be changed whenever GFtoDVI gets modified.

define banner = “This_is_ GFtoDVI , Version 2.0 {printed when the program starts }

2. This program is written in standard Pascal, except where it is necessary to use extensions: for example,
GFtoDVI must read files whose names are dynamically specified, and such a task would be impossible in pure
Pascal. All places where nonstandard constructions are used have been listed in the index under “system
dependencies.”

Another exception to standard Pascal occurs in the use of default branches in case statements; the
conventions of TANGLE, WEAVE, etc., have been followed.

define othercases = others: { default for cases not listed explicitly }
define endcases =end {follows the default case in an extended case statement }

format othercases = else
format endcases = end

3. The main input and output files are not mentioned in the program header, because their external names
will be determined at run time (e.g., by interpreting the command line that invokes this program). Error
messages and other remarks are written on the outpur file, which the user may choose to assign to the
terminal if the system permits it.
The term print is used instead of write when this program writes on the ourpur file, so that all such
output can be easily deflected.
define print (#) = write (#)
define print_in (#)=write.ln (#)
define print_nl(#) = begin write_ln; write#); end
program GF_to.DVI(output);
label (Labels in the outer block 4)
const (Constants in the outer block 5)
type (Types in the outer block 9)
var (Globals in the outer block 12)
procedure initialize; { this procedure gets things started properly }
var 1,j,m,n: integer; {loop indices for initi:dizations }
begin print.ln (banner);
(Set initial values 13)
end;

4. If the program has to stop prematurely, it goes to the final-end’
define final-end = 9999 {label for the end of it all }

(Labels in the outer block 4) =
final-end;

This code is used in section 3.

85 GF to DVI INTRODUCTION 303

5. The following parameters can be changed at compile time to extend or reduce GFtoDVI's capacity.

(Constants in the outer block 5) =
maz_labels = 2000; { maximum number of labels and dots and rules per character }
pool-size = 10000; { maximum total length of labels and other strings }
maz.strings = 1100; { maximum number of labels and other strings }
terminal-line-length = 150;
{ maximum number of characters input in a single line of input from the terminal }
file-name-size = 50; {a file name shouldn’t be longer than this }
font-mem-size = 1000; { space for font metric data }
dvi-buf-size = 800; { size of the output buffer; must be a multiple of 8 }
widest-row = 8192; { maximum number of pixels per row }

This code is used in section 3.

6. Labels are given symbolic names by the following definitions, so that occasional goto statements will
be meaningful. We insert the label ‘exir:’ just before the ‘end’ of a procedure in which we have used the
return’ statement defined below; the label ‘reswitch’ is occasionally used just prior to a case statement in
which some cases change the conditions and we wish to branch to the newly applicable case. Loops that are
set up with the loop construction defined below are commonly exited by going to ‘done’ or to ‘found’ or to
‘not-found’, and they are sometimes repeated by going to ‘continue’.

Incidentally, this program never declares a label that isn’t actually used, because some fussy Pascal
compilers will complain about redundant labels.

define exit = 10 {go here to leave a procedure }

define reswitch = 21 { go here to start a case statement again }
define continue = 22 { go here to resume a loop }

define done = 30 { go here to exit a loop }

define donel = 31 { like done, when there is more than one loop }
define found = 40 {go here when you’ve found it}

define not-found =45 {go here when you’ve found nothing }

7. Here are some macros for common programming idioms.

define incr(#)=#—# + 1 {increase a variable by unity }

define decr(#)=#—#—1 {decrease a variable by unity }

define loop = while true do {repeat over and over until a goto happens }
format loop = xclause {WEB’s xclause acts like ‘while truedo’}

define do-nothing = {empty statement }

define return = goto exit { terminate a procedure call }

format return = nil { WEB will henceforth say return instead of return }

8. If the GF file is badly malformed, the whole process must be aborted; GFtoD VI will give up, after issuing
an error message about the symptoms that were noticed.

Such errors might be discovered inside of subroutines inside of subroutines, so a procedure called jump-out
has been introduced. This procedure, which simply transfers control to the label final-end at the end of t he
program, contains the only non-local goto statement in GFtoDVIL

define abort (#) = begin print(" ", #); jump-out; end

define bad_gf (#) = abort("Bad GF_file: . #, ! (at byte ", curlot — 1 : 1, ") ")
procedure jump-out:

begin goto final-end;

end:

304 INTRODUCTION GFtoDVI 89

9. As in TEX and METAFONT, this program deals with numeric quantities that are integer multiples of 216
and calls them scaled.
define unity = 200000 {scaled representation of 1.0 }
(Types in the outer block 9)=
scaled = integer; {fixed-point numbers }
See also sections 10, 11, 45, 52, 70, 79, 104, and 136.

This code is used in section 3.

510 GF to DVI THE CHARACTER SET 305

10, The character set. Like all programs written with the WEB system, GFtoDVI can be used with any
character set. But it uses ASCII code internally, because the programming for portable input-output is
easier when a fixed internal code is used. Furthermore, both GF and DVI files use ASCII code for file names
and certain other strings.

The next few sections of GFtoDVI have therefore been copied from the analogous ones in the WEB system
routines. They have been considerably simplified, since GFtoDVI need not deal with the controversial ASCII
codes less than “0.

(Types in the outer block 9) +=
ASCll-code =" " . . "~"; {a subrange of the integers }

11. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common,
so it did not make provision for lower case letters. Nowadays, of course, we need to deal with both upper
and lower case alphabets in a convenient way. So we shall assume that the Pascal system being used for
GFtoDVI has a character set containing at least the standard visible ASCII characters (" ! " through "~").

Some Pascal compilers use the original name char for the data type associated with the characters in text
files, while other Pascals consider char to be a 64-element subrange of a larger data type that has some
other name. In order to accommodate this difference, we shall use the name text-char to stand for the
data type of the characters in the output file. We shall also assume that text-char consists of the elements
chr(first_text_char) through chr(last_text_char), inclusive. The following definitions should be adjusted if
necessary.

define text-char = char { the data type of characters in text files }

define first-text-char =0 { ordinal number of the smallest element of text-char }

define lust-text-char = 127 { ordinal number of the largest element of text-char }

(Types in the outer block 9) +=
text-file = packed file of text-char;

12. The GFtoDVI processor converts between ASCII code and the user’s external character set by means
of arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

(Globals in the outer block 12) =

xord: array [text-char] of A SCIl.code ; {specifies conversion of input characters }

xchr: array [0 .. 255] of text-char; {specifies conversion of output characters }

See also sections 15, 17, 18, 37, 46, 48, 49, 53, 71, 76, 80, 86, 87, 93, 96, 102, 105, 117, 124, 131, 137, 146, 152, 155, 157, 163,
165, 171, 179, 180, 204, 208, 209, and 217.

This code is used in section 3.

306 THE CHARACTER SET GF toDVI 213

13. Under our assumption that the visible characters of standard ASCII are all present. the following
assignment statements initialize the xchr array properly, without needing anv svstem-dependent changes.

(Set initial values 13) =
for i 0 to 37 do zchr[i]—"7";
zchr[0] — "5 zehr[41] «— "1 75 zchr[42] «— "7 zchr[43] — “#7; zchr[44] — "$":
zchr(45) — “%7; zchr['46] « & ; zchr[47] « "~ 7;
xchr['50) — “(7; xchr['51] « °) "5 xchr[°52] — "*7; xchr['53] — "+°; zchr['54] « ~,";
zchr(['55] — =7 zchr['56] — ~. " xchr[’57] « "/ ~;
xchr [60] «— 075 zchr[61]) «— 175 zchr['62] «— "27; zchr['63] — "37; zchr[64] — "47;
‘65] < 57, zchr['66] — “67; xchr['67] — "T°;
xchr|70] « 875 xchr[71] « "97; zchr[72] « ": 75 xchr[' 78] — ~; 7 zchr['74] « "<7;
xchr[15] « “=7; zchr["76] « "> zchr[77] — "?7;
xchr ['100] — "@"; zchr['101] — "A"; zchr['102] — "B"; xchr['103] « "C"; zchr['104] — D7;
‘105) « "E°; xchr('106] «— "F°; zchr[107] — "G;
‘110) « "H°; zchr['111]) « "1°; zchr['112] — "J°; zchr['118] — "K~; zchr['114] — "L";
xchr|'115] — "M"; zchr['116] « "N°; zchr[117] « '0';
xchr ['120) — “P"; zchr['121]) «— ‘Q’; zchr['122] — "R"; zchr[’123] — S’ zchr|['124] — "T";
xchr ['125]— “U"; zchr['126] — "V°; zchr['127] — W";
xchr ['130)— “X7; zchr[131] — "Y~; xchr['132] — "Z7; zchr('133] « "[7; zchr['134] « "\";
xchr['135] « 1 75 achr['136] « ~~°; xchr['137] — "_7;
zchr['140] « =~ 7; zchr[141] « "a"; zchr['142] — "b"; zchr['143] « "c”; zchr['144] « "d";
zchr(['145] — “e”; achr['146] « £ ~; zchr('147] — "g~;
xchr ['150) — "h"; zchr[151] « "i°; zchr(['152) — "j°; zchr[’153] « "k°; zchr['154] « "17;
zchr['155]) t 'm”; zchr['156] «— "n"; zchr[157] « "07;
zchr[’160] — "p~; zchr['161] — "q"; zchr('162] — "r°; zchr['163] « “s”; zchr['164] « "t~;
rchr[165) «— "u”; zchr['166) — "v7; zchr['167] — "w~;
zchr['170] « "x7; zchr['171) « "y7; zchr['172] « "z zchr['173] « {75 zchr['174] « | *;
zchr['175] — "} 1 zchr(['176] — "~ 7;
for i — ‘177 to 255 do zchr[i] — "7 ";
See also sections 14, 54, 97, 103, 106, 123, and 139.

This code is used in section 3.

xchr

xchr
xchr

14. The following system-independent code makes the xord array contain a suitable inverse to the infor-
mat ion in xchr .
(Set initial values 13) +=

for i « first-text-char to lust-text-char do xord [chr(i)] «— "";

for i—"1"to """ do xord [xchr [i]] —

15. The input_ln routine waits for the user to type a line at his or her terminal; then it puts ASCII-code
equivalents for the characters on that line into the buffer array. The term-in file is used for terminal input.

Since the terminal is being used for both input and output, some systems need a special routine to make
sure that the user can see a prompt message before waiting for input based on that message. (Otherwise the
message may just be sitting in a hidden buffer somewhere, and the user will have no idea what the program
is waiting for.) We shall call a system-dependent subroutine update-terminal in order to avoid this problem.

define update-terminal = break(output) {empty the terminal output buffer }

(Globals in the outer block 12) +=
buffer:array [0 . . terminal-line-length] of 0 . . 255;
term-in: text-file; {the terminal, considered as an input file }

§16 GF to DVI THE CHARACTER SET 307

16. A global variable line-length records the first buffer position after the line just read.

procedure input-ln; {inputs a line from the terminal }

begin update-terminal; reset (term-in);

if eoln(term-in) then read-In(term-in);

line_length — 0;

while (line-length < terminal-line-length) A — eoln (term-in) do
begin buffer [line-length] — xord | term-in 1]; incr (line-length); get (term-in);
end;

end:

17. (Globals in the outer block 12) +=
line-length: 0 . . terminal-line-length; {end of line read by input_in }

18. The global variable buf_ptr is used while scanning each line of input; it points to the first unread
character in buffer.

(Globals in the outer block 12) +=
buf-ptr: O . . terminal-line-length; {the number of characters read }

308 DEVICE-INDEPENDENT FILE FORMAT GF to DVI 819

19. Device-independent file format. Before we get into the details of GFtoDVI. we need to know
exactly what DVI files are. The form of such files was designed by David R. Fuchs in 1979. Almost any
reasonable typesetting device can be driven by a program that takes DVI files as input, and dozens of such
DVI-to-whatever programs have been written. Thus, it is possible to print the output of document compilers
like TEX on many different kinds of equipment. (The following material has been copied almost verbatim
from the program for TgX.)

A DVI file is a stream of 8-bit bytes, which may be regarded as a series of commands in a machine-like
language. The first byte of each command is the operation code, and this code is followed by zero or
more bytes that provide parameters to the command. The parameters themselves may consist of several
consecutive bytes; for example, the ‘set_rule’ command has two parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters, and shorter
parameters that denote distances, can be either positive or negative. Such parameters are given in two’s
complement notation. For example, a two-byte-long distance parameter has a value between —215 and
215 — 1.

Incidentally, when two or more 8-bit bytes are combined to form an integer of 16 or more bits, the most
significant bytes appear first in the file. This is called BigEndian order.

A DVI file consists of a “preamble,” followed by a sequence of one or more “pages,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that define the dimensions
used in the file; this must come first. Each “page” consists of a bop command, followed by any number of
other commands that tell where characters are to be placed on a physical page, followed by an eop command.
The pages appear in the order that they were generated, not in any particular numerical order. If we ignore
nop commands and fir-def commands (which are allowed between any two commands in the file), each eop
command is immediately followed by a bop command, or by a posr command; in the latter case, there are
no more pages in the file, and the remaining bytes form the postamble. Further details about the postamble
will be explained later.

Some parameters in DVI commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first byte is number 0, then comes number 1, and so on. For
example, one of the parameters of a bop command points to the previous bop; this makes it feasible to read
the pages in backwards order, in case the results are being directed to a device that stacks its output face
up. Suppose the preamble of a DVI file occupies bytes 0 to 99. Now if the first page occupies bytes 100 to
999, say, and if the second page occupies bytes 1000 to 1999, then the bop that starts in byte 1000 points to
100 and the bop that starts in byte 2000 points to 1000. (The very first bop, i.e., the one that starts in byte
100, has a pointer of -1.)

20. The DVI format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information implicit instead of explicit. When a DVI-reading program
reads the commands for a page, it keeps track of several quantities: (a) The current font f is an integer:
this value is changed only by fut and fnt_num commands. (b) The current position on the page is given by
two numbers called the horizontal and vertical coordinates, # and v. Both coordinates are zero at the upper
left corner of the page; moving to the right corresponds to increasing the horizontal coordinate, and moving
down corresponds to increasing the vertical coordinate. Thus, the coordinates are essentially Cartesian,
except that vertical directions are flipped; the Cartesian version of (h v) would be (h, —v). (c) The current
spacing amounts are given by four numbers w, X, y, and z, where w and x are used for horizontal spacing
and where y and z are used for vertical spacing. (d) There is a stack containing (4, v, w, X, y, z) values: the
DVI commands push and pop are used to change the current level of operation. Note that the current font f
is not pushed and popped; the stack contains only information about positioning.

The values of h, v, w, X, y, and z are signed integers having up to 32 bits, including the sign. Since they
represent physical distances, there is a small unit of measurement such that increasing 4 by 1 means moving
a certain tiny distance to the right. The actual unit of measurement is variable, as explained below.

§21 GF to DVI DEVICE-INDEPENDENT FILE FORMAT 309

21. Here is a list of all the commands that may appear in a DVI file. Each command is specified by
its symbolic name (e.g., bop), its opcode byte (e.g., 139), and its parameters (if any). The parameters
are followed by a bracketed number telling how many bytes they occupy; for example, ‘p[4] means that
parameter p is four bytes long.

set-char-0 0. Typeset character number O from font f such that the reference point of the character is
at (h, v). Then increase h by the width of that character. Note that a character may have zero or
negative width, so one cannot be sure that » will advance after this command; but 4 usually does
increase.

set-char-l through set-char-127 (opcodes 1 to 127). Do the operations of sef_char_0; but use the character
whose number matches the opcode, instead of character 0.

setl 128 c[1]. Same as set-char-O, except that character number ¢ is typeset. TEX82 uses this command
for characters in the range 128 < ¢ < 256.

set2 129 c[2]. Same as setl, except that ¢ is two bytes long, so it is in the range 0 < ¢ < 65536.

set3 130 c[3]. Same as set!, except that c is three bytes long, so it can be as large as 224 — 1. Not even
the Chinese language has this many characters, but this command might prove useful in some yet
unforeseen way.

set4 131 c[4]. Same as setl, except that ¢ is four bytes long, possibly even negative. Imagine that.

set-rule 132 a[4] b[4]. Typeset a solid black rectangle of height a and width b, with its bottom left corner
at (h, v). Then set h «— h + b. If either a <0 or » < 0, nothing should be typeset. Note that if b < 0.
the value of # will decrease even though nothing else happens.

putl 133 ¢[1]. Typeset character number ¢ from font f such that the reference point of the character is at
(h, v). (The ‘put’ commands are exactly like the ‘set” commands, except that they simply put out a
character or a rule without moving the reference point afterwards.)

put2 134 c[2]. same as ser2, except that h is not changed.

put3 135 c[3]. same as setd, except that & is not changed.

put4 136 c[4]. Same as set4, except that & is not changed.

put-rule 137 a[4] b[4]. Same as set-rule, except that h is not changed.

nop 138. No operation, do nothing. Any number of nop’s may occur between DVI commands, but a nop
cannot be inserted between a command and its parameters or between two parameters.

bop 139 co(4] c1[4] . . . co[4] p[4]. Beginning of a page: Set (h, v,w,z,y, z) « (0,0,0, 0,0, 0) and set the
stack empty. Set the current font f to an undefined value. The ten ¢; parameters can be used to
identify pages, if a user wants to print only part of a DVI file; TEX82 gives them the values of \ countO
... \count9 at the tine \ shipout was invoked for this page. The parameter p points to the previous
bop command in the file, where the first bop has p = -1.

rop 140. End of page: Print what you have read since the previous bop. At this point the stack should
be empty. (The DVI-reading programs that drive most output devices will have kept a buffer of the
material that appears on the page that has just ended. This material is largely, but not entirely. in
order by v coordinate and (for fixed v) by h coordinate: so it usually needs to be sorted into some
order that is appropriate for the device in question. GFtoDVI does not do such sorting.)

push 141. Push the current values of (h, v, w, X, y, z) onto the top of the stack; do not change any of these
values. Note that f is not pushed.

pop 142. Pop the top six values off of the stack and assign them to (h v.w, X, y, z). The number of pops
should never exceed the number of pushes, since it would be highly embarrassing if the stack were
empty at the time of a pop command.

right] 143 b[1]. Set h «— h + b, i.e., move right b units. The parameter is a signed number in two’s
complement notation, -128 < b < 128; if b < 0, the reference point actually moves left.

right2 144 b[2]. Same as right] , except that b is a two-byte quantity in the range -32768 < b < 32768.
right3 145 b[3]. Same as right] , except that b is a three-byte quantity in the range —2% < b < 2%,

310 DEVICE-INDEPENDENT FILE FORMAT GFto DVI 21

right4 146 b[4]. Same as right!, except that b is a four-byte quantity in the range —23! < » < 231,

w0 147. Set h «— h + w; i.e., move right w units. With luck, this parameterless command will usually
suffice, because the same kind of motion will occur several times in succession; the following commands
explain how w gets particular values.

wl 148 b[l]. Set w + b and & + h + b. The value of bis a signed quantity in two’s complement notation,
-128 < b < 128. This command changes the current w spacing and moves right by b.

w2 149 b[2]. Same as w1, but b is a two-byte-long parameter, -32768 < b < 32768.
w3 150 b[3]. Same as wi, but bis a three-byte-long parameter, —223 < b < 223,
w4 151 b[4]. Same as w1, but bis a four-byte-long parameter, —23! < b < 231,

x0 152. Set h «— h + x; i.e., move right x units. The ‘z’ commands are like the ‘w’ commands except that
they involve x instead of w.

x1 153 b[l]. Set x « b and h + h + b. The value of b is a signed quantity in two’s complement notation,
— 128 < b < 128. This command changes the current x spacing and moves right by 5.

x2 154 b[2]. Same as z1, but b is a two-byte-long parameter, -32768 < b < 32768.
x3 155 b[3]. Same as xlI, but b is a three-byte-long parameter, —223 < b < 223,
x4 156 b[4]. Same as z1, but b is a four-byte-long parameter, —23! < b < 231,

downl 157 a[l]. Set v &<~ v + a, i.e., move down a units. The parameter is a signed number in two’s
complement notation, -128 < a < 128; if a < 0, the reference point actually moves up.

down2 158 af2]. Same as downl , except that a is a two-byte quantity in the range -32768 < a < 32768.
down3 159 a[3]. Same as downl, except that a is a three-byte quantity in the range —223 < a < 223,
down4 160 a[4]. Same as down! , except that a is a four-byte quantity in the range —23! < a < 23

y0 161. Set v « v + y; i.e,, move down y units. With luck, this parameterless command will usually
suffice, because the same kind of motion will occur several times in succession; the following commands
explain how y gets particular values.

yl 162 a[l]. Set y + a and v «< v + a. The value of a is a signed quantity in two’s complement notation,
-128 < a < 128. This command changes the current y spacing and moves down by a.

y2 163 a[2]. Same as y/, but a is a two-byte-long parameter, -32768 < a < 32768.
y3 164 a[3]. Same as yl/, but a is a three-byte-long parameter, —223 < a < 223,
y4 165 a[4]. Same as y1, but a is a four-byte-long parameter, —23! < a < 231,

20 166. Set v «— v + z;i.e.,, move down 2 units. The ‘z’ commands are like the ‘y’ commands except that
they involve z instead of y.

z1 167 afl]. Set z + a and v + v + a. The value of a is a signed quantity in two’s complement notation,
-128 < a < 128. This command changes the current z spacing and moves down by a.

22 168 a[2]. Same as 21, but a is a two-byte-long parameter, -32768 < a < 32768.

23 169 a[3]. Same as 21, but a is a three-byte-long parameter, —223 < a < 223,

z4 170 a[4]. same as zI, but a is a four-byte-long parameter, —231 < a < 231,

fnt-num-0 171. Set f + 0. Font 0 must previously have been defined by a fnt_def instruction, as explained
below.

fnt_.num_1 through fnt_num_63 (opcodes 172 to 234). Set f + 1, ..., f + 63, respectively.

fnt1 235 k[1]. Set f + k. TEX82 uses this command for font numbers in the range 64 <k < 256.

fnt2 236 k{2]. Same as fntl, except that k is two bytes long, so it is in the range 0 < k < 65536. TEX82
never generates this command, but large font numbers may prove useful for specifications of color
or texture, or they may be used for special fonts that have fixed numbers in some external coding
scheme.

fnt3 237 k[3]. same as fntl, except that k is three bytes long, so it can be as large as 224 — 1.

§21 GF to DVI DEVICE-INDEPENDENT FILE FORMAT S11

fnt4 238 k[4]. same as fntl,except that k is four bytes long; this is for the really big font numbers (and
for the negative ones).

zzzl 239 k[1] x[k]. This command is undefined in general; it functions as a (k + 2)-byte nop unless special
DVI-reading programs are being used. TEX82 generates zzz! when a short enough \special appears,
setting k to the number of bytes being sent. It is recommended that x be a string having the form of
a keyword followed by possible parameters relevant to that keyword.

xxx2 240 k[2] z[k]. Like zzzl , but 0 < k < 65536.

xxx3 241 k[3] z[k]. Like zzz!, but 0 < k < 224,

zzz4 242 k[4] x/k]. L ike zzzl , but k can be ridiculously large. TEX82 uses zzr4 when zzzl would be
incorrect.

fnt-defl 243 K[1] c[4] s[4] d[4] a[1] I[1] n[a + Z]. Define font k where 0 < k < 256; font definitions will be
explained shortly.

fnt_def2 244 k[2] c[4] s[4] d[4] a[1] I[1] n[a + []. Define font k where 0_< k < 65536.

fnt_def3 245 k(3] c[4] s[4] d[4] a[1] I[1] n[a + {]. Define font k, where 0 < k < 224,

fnt_def4 246 k[4] c[4] s[4] d[4] a[1] {[1] n[a + Z]. Define font k, where —23! < k < 231

pre 247 i[l] num [4] den [4] mag([4] k[1] z[k]. Beginning of the preamble; this must come at the very
beginning of the file. Parameters @, num, den, mug, k, and x are explained below.

post 248. Beginning of the postamble, see below.
post-post 249. Ending of the postamble, see below.

Commands 250-255 are undefined at the present time.

22. Only a few of the operation codes above are actually needed by GFt oDVI.

define setl = 128 {typeset a character and move right }
define put-rule = 137 {typeset a rule }

define bop = 139 {beginning of page }

define eop = 140 {ending of page }

define push = 141 {save the current positions }

define pop = 142 {restore previous positions }

define right{ = 146 {move right }

define down4 = 160 {move down}

define 20 =166 {movedown z}

define z{ = 170 { move down and set z }

define fat-num-0 = 171 { set current font to 0 }

define fut-defl = 243 {define the meaning of a font number }
define pre = 247 { preamble }

define post = 248 { post amble beginning }

define post-post = 249 { postamble ending } °

312 DEVICE-INDEPENDENT FILE FORMAT GF to DVI 823

23. The preamble contains basic information about the file as a whole. As stated above. there are six

parameters:
i[1] num[4] den[4] mag[4] k[1] z[k].

The i byte identifies DVI format; currently this byte is always set to 2. (Some day we will set ¢ = 3, when
DVI format makes another incompatible change-perhaps in 2048.)

The next two parameters, num and den, are positive integers that define the units of measurement;
they are the numerator and denominator of a fraction by which all dimensions in the DVI file could be
multiplied in order to get lengths in units of 1077 meters. (For example, there are exactly 7227 TgX points
in 254 centimeters, and TEX82 works with scaled points where there are 2'® sp in a point. so TEX82 sets
num = 25400000 and den = 7227 - 2'6 = 473628672.)

The mug parameter is what TRX82 calls \mag, i.e., 1000 times the desired magnification. The actual
fraction by which dimensions are multiplied is therefore mn/1000d. Note that if a TgX source document
does not call for any ‘true’ dimensions, and if you change it only by specifying a different \ mag setting, the
DVI file that TEX creates will be completely unchanged except for the value of mug in the preamble and
postamble. (Fancy DVI-reading programs allow users to override the mug setting when a DVI file is being
printed.)

Finally, k and x allow the DVI writer to include a comment, which is not interpreted further. The length
of comment X is k&, where 0 < k < 256.

define dvi-id-byte = 2 {identifies the kind of DVI files described here }
24. Font definitions for a given font number & contain further parameters
c(4] s[4] d{4] a[1] {[1] n[a + z].

The four-byte value c is the check sum that TEX (or whatever program generated the DVI file) found in the
TFM file for this font; ¢ should match the check sum of the font found by programs that read this DVI file.

Parameter s contains a fixed-point scale factor that is applied to the character widths in font ; font
dimensions in TFM files and other font files are relative to this quantity, which is always positive and less
than 227, It is given in the same units as the other dimensions of the DVI file. Parameter d is similar to s;
it is the “design size,” and it is given in DVI units that have not been corrected for the magnification mug
found in the preamble. Thus, font k is to be used at mug . $/1000d times its normal size.

The remaining part of a font definition gives the external name of the font, which is an ASCII string of
length a + [. The number a is the length of the “area” or directory, and [is the length of the font name
itself; the standard local system font area is supposed to be used when a = 0. The n field contains the area
in its first a bytes.

Font definitions must appear before the first use of a particular font number. Once font k is defined. it
must not be defined again; however, we shall see below that font definitions appear in the postamble as well
as in the pages, so in this sense each font number is defined exactly twice, if at all. Like nop commands and
xxx commands, font definitions can appear before the-first bop, or between an esp and a bop.

$25 GF to DVI DEVICE-INDEPENDENT FILE FORMAT 313

25. The last page in a DVI file is followed by fpost’; this command introduces the postamble, which
summarizes important facts that TEX has accumulated about the file, making it possible to print subsets of
the data with reasonable efficiency. The postamble has the form

post p[4] num[4] den [4] mag[4] 1[4] u[4] s[2] t[2]
(font definitions)
post-post q[4] t[1] 223's[>4]

Here p is a pointer to the final bop in the file. The next three parameters, num, den. and mug, are duplicates
of the quantities that appeared in the preamble.

Parameters [and u give respectively the height-plus-depth of the tallest page and the width of the widest
page, in the same units as other dimensions of the file. These numbers might be used by a DVI-reading
program to position individual “pages” on large sheets of film or paper; however, the standard convention
for output on normal size paper is to position each page so that the upper left-hand corner is exactly one
inch from the left and the top. Experience has shown that it is unwise to design DVI-to-printer software
that attempts cleverly to center the output; a fixed position of the upper left corner is easiest for users to
understand and to work with. Therefore [and u are often ignored.

Parameter s is the maximum stack depth (i.e., the largest excess of push commands over pop commands)
needed to process this file. Then comes ¢, the total number of pages (bop commands) present.

The postamble continues with font definitions, which are any number of fnt_def commands as described
above, possibly interspersed with nop commands. Each font number that is used in the DVI file must be
defined exactly twice: Once before it is first selected by a fnt command, and once in the postamble.

26. The last part of the postamble, following the post-post byte that signifies the end of the font definitions,
contains ¢ a pointer to the post command that started the postamble. An identification byte, ¢, comes next:
this currently equals 2, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., 337 in
octal). TEX puts out four to seven of these trailing bytes, until the total length of the file is a multiple of
four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s is
allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a DVI file makes it feasible for DVI-reading programs to find the postamble
first, on most computers, even though TEX wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the DVI reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read ¢ and
move to byte ¢ of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the DVI reader discovers all the information needed for typesetting the pages. Note that it is
also possible to skip through the DVI file at reasonably high speed to locate a particular page, if that proves
desirable. This saves a lot of time, since DVI files used in production jobs tend to be large.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities, so
DVI format has been designed to work most efficiently with modern operating systems.

314 GENERIC FONT FILE FORMAT GF to DVI $27

27. Generic font file format. The “generic font” (GF) input files that GFtoDVI must deal with have a
structure that was inspired by DVI format, although the operation codes are quite different in most cases. The
term generic indicates that this file format doesn’t match the conventions of any name-brand manufacturer;
but it is easy to convert GF files to the special format required by almost all digital phototypesetting
equipment. There’s a strong analogy between the DVI files written by TgX and the GF files written by
METRFONT; and, in fact, the reader will notice that many of the paragraphs below are identical to their
counterparts in the description of DVI already given. The following description has been lifted almost
verbatim from the program for METRFONT.

A GF file is a stream of 8-bit bytes that may be regarded as a series of commands in a machine-like language.
The first byte of each command is the operation code, and this code is followed by zero or more bytes that
provide parameters to the command. The parameters themselves may consist of several consecutive bytes;
for example, the ‘boc’ (beginning of character) command has six parameters, each of which is four bytes
long. Parameters are usually regarded as nonnegative integers; but four-byte-long parameters can be either
positive or negative, hence they range in value from —231to 23! — 1. As in DVI files, numbers that occupy
more than one byte position appear in BigEndian order, and negative numbers appear in two’s complement
notation.

A GF file consists of a “preamble,” followed by a sequence of one or more “characters,” followed by a
“postamble.” The preamble is simply a pre command, with its parameters that introduce the file; this must
come first. Each “character” consists of a boc command, followed by any number of other commands that
specify *black” pixels, followed by an eoc command. The characters appear in the order that METAFONT
generated them. If we ignore no-op commands (which are allowed between any two commands in the file),
each eoc command is immediately followed by a boc command, or by a post command; in the latter case,
there are no more characters in the file, and the remaining bytes form the postamble. Further details about
the postamble will be explained later.

Some parameters in GF commands are “pointers.” These are four-byte quantities that give the location
number of some other byte in the file; the first file byte is number 0, then comes number 1, and so on.

28. The GF format is intended to be both compact and easily interpreted by a machine. Compactness
is achieved by making most of the information relative instead of absolute. When a GF-reading program
reads the commands for a character, it keeps track of two quantities: (a) the current column number, m: and
(b) the current row number, n. These are 32-bit signed integers, although most actual font formats produced
from GF files will need to curtail this vast range because of practical limitations. (METAFONT output will
never allow |m|or |n|to get extremely large, but the GF format tries to be more general.)

How do GF’srow and column numbers correspond to the conventions of TEX and METRFONT? Well, the
“reference point” of a character, in TEX’s view, is considered to be at the lower left corner of the pixel in
row 0 and column 0. This point is the intersection of the baseline with the left edge of the type; it corresponds
to location (0,0) in METRFONT programs. Thus the pixel in GF row 0 and column 0 is METAFONT’s unit
square, comprising the region of the plane whose coordinates both lie between 0 and 1. The pixel in GF
row n and column m consists of the points whose METRFONT coordinates (x, y) satisfy m <z <m + 1
and n <y <n + 1. Negative values of m and x correspond to columns of pixels left of the reference point:
negative values of n and y correspond to rows of pixels below the baseline.

Besides m and n, there’s also a third aspect of the current state, namely the paint-switch, which is
always either black or whire. Each paint command advances m by a specified amount d, and blackens
the intervening pixels if paint-switch = black; then the paint-swirch changes to the opposite state. GF's
commands are designed so that m will never decrease within a row, and » will never increase within a
character: hence there is no way to whiten a pixel that has been blackened.

§29 GF to DVI GENERIC FONT FILE FORMAT 315

29. Here is a list of all the commands that may appear in a GF file. Each command is specified by its
symbolic name (e.g., boc), its opcode byte (e.g., 67), and its parameters (if any). The parameters are followed
by a bracketed number telling how many bytes they occupy; for example, ‘d[2]’ means that parameter d is
two bytes long.
paint-0 0. This is a puint command with 4 = 0: it does nothing but change the paint-swirch from black
to white or vice versa.

paint-l through paint-63 (opcodes 1 to 63). These are paint commands with d = 1 to 63. defined
as follows: If paint-switch = black, blacken d pixels of the current row n, in columns m through
m + d — 1 inclusive. Then, in any case, complement the paint-swirch and advance m by d.

puintl 64 d[1]. This is a paint command with a specified value of & METAFONT uses it to paint when
64 < d < 256.

paint2 65 d[2]. Same as paint] , but d can be as high as 65535.

paint3 66 d[3]. Same as paint] , but d can be as high as 224 — 1. METAFONT never needs this command,
and it is hard to imagine anybody making practical use of it: surely a more compact encoding will be
desirable when characters can be this large. But the command is there, anyway, just in case.

boc 67 c[4] p[4] min-m [4] mux-m [4] min_n[4] maz_n[4]. Beginning of a character: Here c is the character
code, and p points to the previous character beginning (if any) for characters having this code number
modulo 256. (The pointer p is -1 if there was no prior character with an equivalent code.) The
values of registers m and n defined by the instructions that follow for this character must satisfy
min-m < m < mux-m and min-n < n < mux-n. (The values of mux-m and min-n need not be
the tightest bounds possible.) When a GF-reading program sees a boc, it can use min-m. mux-m,
min-n, and mux-n to initialize the bounds of an array. Then it sets m « min-m, n «— mazr_n, and
paint-switch «— white.

bocl 68 c[l] del_m[1] mux-m[1] del.n[l] maz_n[l]. Same as boc, but p is assumed to be -1: also
delm = mux-m —min-m and deln = mux-n — min-n are given instead of min-m and min-n.
The one-byte parameters must be between 0 and 255, inclusive. (This abbreviated boc saves 19 bytes
per character, in common cases.)

eoc 69. End of character: All pixels blackened so far constitute the pattern for this character. In particular,
a completely blank character might have eoc immediately following boc.

skip0 70. Decrease n by 1 and set m + min-m, paint-switch +— white. (This finishes one row and begins
anot her, ready to whiten the left most pixel in the new row.

skip! 71 d[1]. Decrease n by d + 1, set m « min-m, and set paint-switch — white. This is a way to
produce d all-white rows.

skip2 72 d[2]. Same as skipl , but d can be as large as 65535.

skip3 73 d[3]. Same as skipl , but d can be as large as 22* — 1. METAFONT obviously never needs this
command.

new-row-0O 74. Decrease n by 1 and set m «— min-m, paint-switch — black. ~(This finishes one row and
begins another, ready to blacken the leftmost pixel in the new row.)

new-row-l through new-row-164 (opcodes 75 to 238). Same as new-row-O, but with m «— min-rn + I
through min-m + 164, respectively.

zzrl 239 k[1] z[k]. This command is undefined in general: it functions as a (k + 2)-byte no-op unless
special GF-reading programs are being used. METRFONT generates xxx commands when encountering
a special string; this occurs in the GF file only between characters, after the preamble, and before the
postamble. However, xxx commands might appear anywhere in GF files generated by other processors.
It is recommended that x be a string having the form of a keyword followed by possible parameters
relevant to that keyword.

xxx2 240 k[2] z[k]. Like zzz! , but 0 < k < 65536.

xxx3 241 k(3] z[k]. Like zzz!.but 0 < k < 22*. METAFONT uses this when sending a special string
whose length exceeds 255.

316 GENERIC FONT FILE FORMAT GF to DVI 429

zrz4 242 k(4] z[k]. Like zzzl, but k can be ridiculously large; k mustn’t be negative.

yyy 243 y[4]. This command is undefined in general; it functions as a 5-byte no-op unless special GF-reading
programs are being used. METAFONT puts scaled numbers into yyy's, as a result of numspecial
commands; the intent is to provide numeric parameters to xxx commands that immediately precede.

no-op 244. No operation, do nothing. Any number of no-op’s may occur between GF commands, but a
no-op cannot be inserted between a command and its parameters or between two parameters.

char-Zoc 245 c[1] dz[4] dy[4] w[4] p[4]. This command will appear only in the postamble, which will be
explained shortly.

char_loc0 246 c[1] dm[1] w[4] p[4]. Same as char_loc, except that dy is assumed to be zero, and the value
of dx is taken to be 65536 x dm, where 0 < dm < 256.

pre 247 i[1] k[1] z[k]. Beginning of the preamble; this must come at the very beginning of the file.
Parameter ¢ is an identifying number for GF format, currently 131. The other information is merely
commentary; it is not given special interpretation like xxx commands are. (Note that xzz commands
may immediately follow the preamble, before the first boc.)

post 248. Beginning of the postamble, see below.
post-post 249. Ending of the postamble, see below.
Commands 250-255 are undefined at the present time.
define gf.id_byte = 131 {identifies the kind of GF files described here }

30. Here are the opcodes that GFtoDVI actually refers to.
define puint-0 = 0 { beginning of the paint commands }
define paint 1 = 64 {move right a given number of columns, then black < white }
define paint2 = 65 {ditto, with potentially larger number of columns }
define paint3 = 66 {ditto, with potentially excessive number of columns }
define boc = 67 {beginning of a character }
define bocl = 68 { abbreviated boc }
define eoc =69 {end of a character }
define skip0 = 70 { skip no blank rows }
define skipl = 71 {skip over blank rows }
define skip2 = 72 {skip over lots of blank rows }
define skip3 = 73 {skip over a huge number of blank rows }
define new-row-0 =74 {move down one row and then right }
define zzxl= 239 {forspecial strings}
define xxx2 =240 {for somewhat long special strings }
define zzz3d = 241 {for extremely long special strings }
define zzz4 = 242 {for incredibly long special strings }
define yyy = 243 { for numspecial numbers }
define no-op = 244 {no operation }

831 GF to DVI GENERIC FONT FILE FORMAT 317

31. The last character in a GF' file is followed by ‘post’: this command introduces the postamble. which
summarizes important facts that METAFONT has accumulated. The postamble has the form

post pl4] ds [4] cs[4] hppp [4] vppp [4] min-m[4] mux-m [4] min.n[4] mux-n [4]
(character locators)
post-post q[4] i[1] 223’s[>4]

Here p is a pointer to the byte following the final eoc in the file (or to the byte following the preamble, if there
are no characters); it can be used to locate the beginning of xxx commands that might have preceded the
postamble. The ds and cs parameters give the design size and check sum, respectively, of the font (see the
description of TFM format below). Parameters hppp and uppp are the ratios of pixels per point, horizontally
and vertically, expressed as scaled integers (i.e., multiplied by 216); they can be used to correlate the font with
specific device resolutions, magnifications, and “at sizes.” Then come min-m, mux-m, min-n. and mazx_n,
which bound the values that registers m and »n assume in all characters in this GF file. (These bounds need
not be the best possible; mux-m and min-n may, on the other hand, be tighter than the similar bounds
in boc commands. For example, some character may have min-n = -100 in its boc, but it might turn out
that » never gets lower than -50 in any character; then min-n can have any value < -50. If there are no
characters in the file, it’s possible to have min-m > mux-m and/ or min-n > maz.n.)

32. Character locators are introduced by char-Zoc commands, which specify a character residue c, character
escapements (dx, dy). a character width w, and a pointer p to the beginning of that character. (If two or
more characters have the same code ¢ modulo 256, only the last will be indicated; the others can be located
by following backpointers. Characters whose codes differ by a multiple of 256 are assumed to share the
same font metric information, hence the TFM file contains only residues of character codes modulo 256. This
convention is intended for oriental languages, when there are many character shapes but few distinct widths.)

The character escapements (dx, dy) are the values of METAFONT’s chardx and chardy parameters: they
are in units of scaled pixels; i.e., dx is in horizontal pixel units times 2'8, and dy is in vertical pixel units
times 216, This is the intended amount of displacement after typesetting the character; for DVI files. dy
should be zero, but other document file formats allow nonzero vertical escapement.

The character width w duplicates the information in the TFM file; it is 224 times the ratio of the true width
to the font’s design size.

The backpointer p points to the character’s boc, or to the first of a sequence of consecutive xxx or yyy
or no-op commands that immediately precede the boc, if such commands exist; such *special” commands
essentially belong to the characters, while the special commands after the final character belong to the
postamble (i.e., to the font as a whole). This convention about p applies also to the backpointers in boc
commands, even though it wasn’t explained in the description of boc.

Pointer p might be -1 if the character exists in the TFM file but not in the GF file. This unusual situation
can arise in METAFONT output if the user had proofing < 0 when the character was being shipped out, but
then made proofing > 0 in order to get a GF file.

318 GENERIC FONT FILE FORMAT GF to DVI 633

33. The last part of the postarnble, following the post-post byte that signifies the end of the character
locators, contains ¢, a pointer to the post command that started the postamble. An identification byte, i,
comes next; this currently equals 131, as in the preamble.

The i byte is followed by four or more bytes that are all equal to the decimal number 223 (i.e., "337 in
octal). METRFONT puts out four to seven of these trailing bytes, until the total length of the file is a multiple
of four bytes, since this works out best on machines that pack four bytes per word; but any number of 223’s
is allowed, as long as there are at least four of them. In effect, 223 is a sort of signature that is added at the
very end.

This curious way to finish off a GF file makes it feasible for GF-reading programs to find the postamble first,
on most computers, even though METAFONT wants to write the postamble last. Most operating systems
permit random access to individual words or bytes of a file, so the GF reader can start at the end and skip
backwards over the 223’s until finding the identification byte. Then it can back up four bytes, read ¢ and
move to byte g of the file. This byte should, of course, contain the value 248 (post); now the postamble can
be read, so the GF reader can discover all the information needed for individual characters.

Unfortunately, however, standard Pascal does not include the ability to access a random position in a file,
or even to determine the length of a file. Almost all systems nowadays provide the necessary capabilities, so
GF format has been designed to work most efficiently with modern operating systems. But if GF files have to
be processed under the restrictions of standard Pascal, one can simply read them from front to back. This
will be adequate for most applications. However, the postamble-first approach would facilitate a program
that merges two GF files, replacing data from one that is overridden by corresponding data in the other.

$34 GF to DVI EXTENSIONS TO THE GENERIC FORMAT 319

34. Extensions to the generic format. The xxx and yyy instructions understood by GFtoDVI will be
listed now, so that we have a convenient reference to all of the special assumptions made later.

Each special instruction begins with an xxx command, which consists of either a keyword by itself, or
a keyword followed by a space followed by arguments. This xxx command may then be followed by yyy
commands that are understood to be arguments.

The keywords of special instructions that are intended to be used at many different sites should be
published as widely as possible in order to minimize conflicts. The first person to establish a keyword
presumably has a right to define it: GFtoDVI, as the first program to use extended GF commands, has the
opportunity of choosing any keywords it likes, and the responsibility of choosing reasonable ones. Since
labels are expected to account for the bulk of extended commands in typical uses of METAFONT, the “null”
keyword has been set aside to denote a labeling command.

35. Here then are the special commands of GFtoDVI.

un(string) x y. Here n denotes the type of label; the characters 1, 2, 3, 4 respectively denote labels
forced to be at the top, left, right, or bottom of their dot, and the characters 5, 6, 7, 8 stand for the
same possibilities but with no dot printed. The character 0 instructs GFtoDVI to choose one of the
first four possibilities, if there’s no overlap with other labels or dots, otherwise an “overflow” entry is
placed at the right of the figure. The character / is the same as 0 except that overflow entries are
not produced. The label itself is the (string) that follows. METRFONT coordinates of the point that
is to receive this label are given by arguments x and y, in units of scaled pixels. (These arguments
appear in yyy commands.) (Precise definitions of the size and positioning of labels, and of the notion
of “conflicting” labels, will be given later.)

rule I, Y1 T3 y2. This command draws a line from (zy, y1) to (z2, y2) in METRFONT coordinates. The
present implementation does this only if the line is either horizontal or vertical, or if its slope matches
the slope of the slant font.

title,(string). This command (which is output by METAFONT when it sees a “title statement”) specifies
a string that will appear at the top of the next proofsheet to be output by GFtoDVI. If more than
one title is given, they will appear in sequence; titles should be short enough to fit on a single line.

titlefontu(string). This command, and the other font-naming commands below, must precede the first
boc in the GF file. It overrides the current font used to typeset the titles at the top of proofsheets.
GFt oDVI has default fonts that will be used if none other are specified; the “current” title font is
initially the default title font.

t itlef ont area,(string). This command overrides the current file area (or directory name) from which
GFtoDVI will try to find metric information for the title font.

t itlef ontat s. This command overrides the current “at size” that will be used for the title font. (See
the discussion of font metric files below, for the meaning of “at size” versus “design size.”) The value
of sis given in units of scaled points.

labelfont,(string). This command overrides the current font used to typeset the labels that are
superimposed on proof figures. (The label font is fairly arbitrary, but it should be dark enough
to stand out when superimposed on gray pixels, and it should contain at least the decimal digits and
the characters *(’,), ‘=", *+' =" ¢ " and ‘. "))

labelfontarea,(string). This command overrides the current file area (or directory name) from which
GFtoDVI will try to find metric information for the label font.

labelf ontat s. This command overrides the current “at size” that will be used for the label font.

grayfont_(string). This command overrides the current font used to typeset the black pixels and the
dots for labels. (Gray fonts will be explained in detail later.)

grayfontareay(string). This command overrides the current file area (or directory name) from which
GFtoDVI will try to find metric information for the gray font.

grayfontat s. This command overrides the current “at size” that will be used for the gray font.

320 EXTENSIONS TO THE GENERIC FORMAT GF to DVI 835

slantfont (string). This command overrides the current font used to typeset rules that are neither
horizontal nor vertical. (Slant fonts will be explained in detail later.)

slantf ontareay(string). This command overrides the current file area (or directory name) from which
GFtoDVI will try to find metric information for the slant font.

slantf ontat s. This command overrides the current “at size” that will be used for the slant font.

rulethickness ¢. This command overrides the current value used for the thickness of rules. If the current
value is negative, no rule will be drawn; if the current value is zero, the rule thickness will be specified
by a parameter of the gray font. Each rule command uses the rule thickness that is current at the
time the command appears; hence it is possible to get different thicknesses of rules on the same figure.
The value of ¢ is given in units of scaled points (TEX’s ‘sp’). At the beginning of each character the
current rule thickness is zero.

offset x y. This command overrides the current offset values that are added to all coordinates of a
character being output; x and y are given as scaled METAFONT coordinates. This simply has the
effect of repositioning the figures on the pages; the title line always appears in the same place, but the
figure can be moved up, down, left, or right. At the beginning of each character the current offsets
are zero.

xof f set x. This command is output by METAFONT just before shipping out a character whose x offset is
nonzero. GFtoDVI adds the specified amount to the x coordinates of all dots, labels, and rules in the
following character.

yoffset y. This command is output by METAFONT just before shipping out a character whose y offset is
nonzero. GFtoDVI adds the specified amount to the y coordinates of all dots, labels, and rules in the
following character.

§36 GF to DVI FONT METRIC DATA 321

36. Font metric data. Before we can get into the meaty details of GFtoDVI. we need to deal with yet
another esoteric binary file format, since GFtoDVI also does elementary typesetting operations. Therefore
it has to read important information about the fonts it will be using. The following material (again copied
almost verbatim from TEX) describes the contents of so-called TEX font metric (TFM) files.

The idea behind TFM files is that typesetting routines need a compact way to store the relevant information
about fonts, and computer centers need a compact way to store the relevant information about several
hundred fonts. TFM files are compact, and most of the information they contain is highly relevant, so they
provide a solution to the problem. GFtoDVI uses only four fonts, but interesting changes in its output will
occur when those fonts are varied.

The information in a TFM file appears in a sequence of 8-bit bytes. Since the number of bytes is always a
multiple of 4, we could also regard the file as a sequence of 32-bit words; but TEX uses the byte interpretation,
and so does GFtoDVI. The individual bytes are considered to be unsigned numbers.

37. The first 24 bytes (6 words) of a TFM file contain twelve 16-bit integers that give the lengths of the
various subsequent portions of the file. These twelve integers are, in order:

If = length of the entire file, in words;

lh = length of the header data, in words;

bc = smallest character code in the font;

ec = largest character code in the font;
nw = number of words in the width table;

nh = number of words in the height table;

nd = number of words in the depth table;

ni = number of words in the italic correction table;
nl = number of words in the lig/kern table;

nk = number of words in the kern table;

ne = number of words in the extensible character table;
np = number of font parameter words.

They are all nonnegative and less than 2'3. We must have bc — 1 < ec < 255, ne < 256, and
If =6+t +(ec—bc + 1)+ nw +nh + nd + ni +nl + nk + ne + np.

Note that a font may contain as many as 256 characters (if bc = 0 and ec = 255), and as few as 0 characters
(if bc = ec + 1). When two or more 8-bit bytes are combined to form an integer of 16 or more bits, the bytes
appear in BigEndian order.

(Globals in the outer block 12) +=
If, h. be ec nw. nh, nd, ni, nl, nk, ne, np: 0 . . 17777; { subfile sizes}

322

38.

FONT METRIC DATA GF to DVI 438

The rest of the TFM file may be regarded as a sequence of ten data arrays having the informal

specification

header : array [0 .. lh—1] of stuff
char-info : array [bc . . ec] of char-info-word
width : array [0 .. nw — 1] of fix-word
height : array [0 .. nh — 1] of fix-word
depth : array [0 .. nd — 1] of fix-word
italic : array [0 .. ni — 1] of fix-word
lig_kern:array [0 .. nl — 1] of lig-kern-command
kern :array [0.. nk — 1] of fix-word
exten : array [0 .
param : array [1

ne — 1] of extensible-recipe
. np] of fix-word

The most important data type used here is a fix-word, which is a 32-bit representation of a binary fraction.
A fix-word is a signed quantity, with the two’s complement of the entire word used to represent negation.
Of the 32 bits in a fix-word, exactly 12 are to the left of the binary point; thus, the largest fix-word value is
2048 —2‘20, and the smallest is -2048. We will see below, however, that all but one of the fix-word values
will lie between -16 and +16.

39.

The first data array is a block of header information, which contains general facts about the font.

The header must contain at least two words, and for TFM files to be used with Xerox printing software it
must contain at least 18 words, allocated as described below. When different kinds of devices need to be
interfaced, it may be necessary to add further words to the header block.

header[0] is a 32-bit check sum that GFtoDVI will copy into the DVI output file whenever it uses the font.

Later on when the DVI file is printed, possibly on another computer, the actual font that gets used
is supposed to have a check sum that agrees with the one in the TFM file used by GFtoDVL. In this
way, users will be warned about potential incompatibilities. (However, if the check sum is zero in
either the font file or the TFM file, no check is made.) The actual relation between this check sum and
the rest of the TFM file is not important; the check sum is simply an identification number with the
property that incompatible fonts almost always have distinct check sums.

header [1] is a fix-word containing the design size of the font, in units of TgX points (7227 TgX points =

254 cm). This number must be at least 1.0; it is fairly arbitrary, but usually the design size is 10.0
for a “10 point” font, i.e., a font that was designed to look best at a lo-point size, whatever that
really means. When a TEX user asks for a font ‘at é pt’, the effect is to override the design size
and replace it by §, and to multiply the x and y coordinates of the points in the font image by a
factor of 4 divided by the design size. Similarly, specific sizes can be substituted for the design size
by GFtoDVI commands like ‘titlefontat’. AIll other dimensions in the TFM file are fixr_word numbers
in design-size units. Thus, for example, the value of param[6], one em or \quad, is often the fix-word
value 2%° = 1.0, since many fonts have a design size equal to one em. The other dimensions must be
less than 16 design-size units in absolute value; thus, header(1l] and param[l] are the only fiz.word
entries in the whole TFM file whose first byte might be something besides 0 or 255.

header [2 . . 11}, if present, contains 40 bytes that identify the character coding scheme. The first

byte, which must be between 0 and 39, is the number of subsequent ASCII bytes actually relevant
in this string, which is intended to specify what character-code-to-symbol convention is present
in the font. Examples are ASCII for standard ASCII, TeX text for fonts like c¢cmr10 and cmti9.
TeX math extension for cmex10, XEROX text for Xerox fonts, GRAPHIC for special-purpose non-
alphabetic fonts, GFGRAY for GFtoDVI’s gray fonts, GFSLANT for GFtoDVTI’s slant fonts, UNSPECIFIED
for the default case when there is no information. Parentheses should not appear in this name. (Such
a string is said to be in BCPL format.)

header[12.. whatever] might also be present.

§40 GF to DVI FONT METRIC DATA 323

40. Next comes the char-info array, which contains one char_info.word per character. Each char-info-word
contains six fields packed into four bytes as follows.

first byte: width_indez (8 bits)

second byte: height-index (4 bits) times 16, plus depth-index (4 bits)

third byte: italic-index (6 bits) times 4, plus rug (2 bits)

fourth byte: remainder (8 bits)
The actual width of a character is width[width_index], in design-size units; this is a device for compressing
information, since many characters have the same width. Since it is quite common for many characters to
have the same height, depth, or italic correction, the TEFM format imposes a limit of 16 different heights, 16
different depths, and 64 different italic correct ions.

Incidentally, the relation width[0] = height [0] = depth[0] = italic[0] = 0 should always hold, so that an
index of zero implies a value of zero. The width-index should never be zero unless the character does not exist
in the font, since a character is valid if and only if it lies between bc and ec and has a nonzero widrh-index.

41. The tug field in a char-info-word has four values that explain how to interpret the remainder field.

0 (no-tug) means that remainder is unused.

1 (lig-rug) means that this character has a ligature/ kerning program starting at Zig-kern [remainder].

tug = 2 (list-tug) means that this character is part of a chain of characters of ascending sizes, and not the
largest in the chain. The remainder field gives the character code of the next larger character.

tug = 3 (ext-tug) means that this character code represents an extensible character, i.e., a character that
is built up of smaller pieces so that it can be made arbitrarily large. The pieces are specified in
exten [remainder].

tug

tug

define no-tug = 0 { vanilla character }

define lig-tug = 1 {character has a ligature/ kerning program }
define list-tug = 2 { character has a successor in a charlist }
define ext- g = 3 { character is extensible }

42. The Zig-kern array contains instructions in a simple programming language that explains what to do
for special letter pairs. Each word is a lig_kern_command of four bytes.

first byte: srop-bir, indicates that this is the final program step if the byte is 128 or more.

second byte: next-char, “if next-char follows the current character, then perform the operation and stop,
otherwise continue.”

third byte: op-bit, indicates a ligature step if less than 128, a kern step otherwise.

fourth byte: remainder.

In a ligature step the current character and next-char are replaced by the single character whose code is
remainder. In a kern step, an additional space equal to kern[remainder] is inserted between the current
character and next-char. (The value of kern[remainder]is often negative, so that the characters are brought
closer together by kerning; but it might be positive.)

define stop-flag = 128 {value indicating *STOP’ in a lig/ kern program }

define kern_flag = 128 {op code for a kern step }

43. Extensible characters are specified by an extensible-recipe, which consists of four bytes called rop, mid,
bot, and rep (in this order). These bytes are the character codes of individual pieces used to build up a large
symbol. If rop, mid, or bot are zero, they are not present in the built-up result. For example, an extensible
vertical line is like an extensible bracket, except that the top and bottom pieces are missing.

324 FONT METRIC DATA GFtoDVI §44

44. The final portion of a TFM file is the purum array, which is another sequence of fix-word values.

purum [1] = slant is the amount of italic slant. For example, slant = .25 means that when you go up one
unit, you also go .25 units to the right. The slanr is a pure number; it’s the only fix-word other than
the design size itself that is not scaled by the design size.

param[2] = space is the normal spacing between words in text. Note that character " " in the font need
not have anything to do with blank spaces.

param[3] = space-stretch is the amount of glue stretching between words.

param[4] = space-shrink is the amount of glue shrinking between words.

param|[5] = x-height is the height of letters for which accents don’t have to be raised or lowered.

purum [6] = quad is the size of one em in the font.

param (7] = extra-space is the amount added to param{2] at the ends of sentences.

When the character coding scheme is GFGRAY or GFSLANT, the font is supposed to contain an additional

parameter called default-rule-thickness. Other special parameters go with other coding schemes.

§45 GF to DVI INPUT FROM BINARY FILES 325

45. Input from binary files. We have seen that GF and DVI and TFM files are sequences of 8-bit bytes.
The bytes appear physically in what is called a ‘packed file of 0.. 255 in Pascal lingo.

Packing is system dependent, and many Pascal systems fail to implement such files in a sensible way
(at least, from the viewpoint of producing good production software). For example, some systems treat all
byte-oriented files as text, looking for end-of-line marks and such things. Therefore some system-dependent
code is often needed to deal with binary files, even though most of the program in this section of GFtoDVI
is written in standard Pascal.

One common way to solve the problem is to consider files of inreger numbers, and to convert an integer
in the range —23! <x < 231to a sequence of four bytes (a, b, ¢, d) using the following code, which avoids the
controversial integer division of negative numbers:

if x >0 then a «—xdiv '100000000

else begin x «(x +710000000000) + '10000000000; a « x div '100000000 + 128;
end ;

x «—xmod "100000000;

b—xdiv 200000; x —x mod 200000;

¢ « xdiv 400; d «— xmod "{00;

The four bytes are then kept in a buffer and output one by one. (On 36-bit computers, an additional
division by 16 is necessary at the beginning. Another way to separate an integer into four bytes is to
use/ abuse Pascal’s variant records, storing an integer and retrieving bytes that are packed in the same place:
caveat implementor!) It is also desirable in some cases to read a hundred or so integers at a time, maintaining
a larger buffer.

We shall stick to simple Pascal in this program, for reasons of clarity, even if such simplicity is sometimes
unrealistic.
(Types in the outer block 9) +=

eight-bits = 0 . . 255, {unsigned one-byte quantity }

bytefile = packed file of eight-bits; { files that contain binary data}

46. The program deals with three binary file variables: gf-file is the main input file that we are converting
into a document; dvi-file is the main output file that will specify that document; and #fin-file is the current
font metric file from which character-width information is being read.

(Globals in the outer block 12) +=

gf-file : bytefile ; {the character data we are reading }

dvi_file : bytefile ; { the typesetting instructions we are writing}
tfim-file : byte-file ; { a font metric file }

47. To prepare these files for input or output, we reser or rewrite them. An extension of Pascal is needed,
since we want to associate it with external files whose names are specified dynamically (i.e., not known at
compile time). The following code assumes that "réset(f, s)’ and ‘rewrite(f) s)’ do this, when fis a file
variable and s is a string variable that specifies the file name.

procedure open_gf-file; { prepares to read packed bytes in gffile }
begin reset (gf_file, name_of_file); cur_loc « 0;
end;

procedure open- tfm-file; { prepares to read packed bytes in tfin-file }
begin reset (tfm-file, name-of-file);
end;

procedure open-dvifile ; { prepares to write packed bytes in dvifile }
begin rewrite (dvi-file name_of_file);
end:

326 INPUT FROM BINARY FILES GF to DVI 618

48. If you looked carefully at the preceding code, you probably asked, “What are cur-lot and name-of-file?
Good question. They are global variables: The integer cur_loc tells which byte of the input file will be read
next, and the string name-of-file will be set to the current file name before the file-opening procedures are
called.

(Globals in the outer block 12) +=

cur_loc: integer; { current byte number in gffile }
name_of_file: packed array (1 .. filename-size] of char; {external file name }

49. It turns out to be convenient to read four bytes at a time, when we are inputting from TFM files. The
input goes into global variables b0, b1, b2, and b3, with b0 getting the first byte and b3 the fourth.

(Globals in the outer block 12) +=
b0, b1, b2, b3: eight-bits; { four bytes input at once }

50. The read-tfim-word procedure sets b0 through b3 to the next four bytes in the current TEM file.

procedure read-tfm-word;
begin read(tfm.file, b0); reud(tfm-file, bl1); read(tfm_file, b2); read(tfm_file, b3);
end:

51. We shall use another set of simple functions to read the next byte or bytes from gf.file. There are four
possibilities, each of which is treated as a separate function in order to minimize the overhead for subroutine
calls.
function get-byte: integer; {returns the next byte, unsigned }
var b: eight-bits;
begin if eof (gf-file) then get-byte — 0
else begin read (gf-file, b); incr(cur-Zoc): get-byte «— b;
end;
end;
function get-two-bytes: integer; {returns the next two bytes, unsigned }
var a, b: eight-bits;
begin read (gf_file, a); read (gf-file, b); cur.loc — cur_loc + 2; get-two-bytes — a x 256 + b;
end;
function get-three-bytes: integer; { returns the next three bytes, unsigned }
var a b, c: eight-bits;
begin read (gf-file, a); read (gf-file, b); read (gf-file, c); cur-loc «— cur-Zoc + 3;
get-three-bytes «— (a x256 + b) * 256 + c;
end;
function signed-quad: integer; {returns the next four bytes, signed }
var a, b, ¢ d: eight-bits;
begin read (gf-file, a); read (gf-file, b); read (gf-file, c); read (gf-file, d); cur_loc «— cur_-loc + 4;
if a < 128 then signed-quad «— ((a * 256 + b) % 256 + ¢) * 256 + d
else signed-quud — (((a —256) x 256 + b) x 256 + ¢) * 256 + d;
end;

$52 GF to DVI READING THE FONT INFORMATION 327

52. Reading the font information. Now let’s get down to brass tacks and consider the more sub-
stantial routines that actually convert TFM data into a form suitable for computation. The routines in this
part of the program have been borrowed from TgX, with slight changes, since GFtoDVI has to do some of
the things that TEX does.

The TFM data is stored in a large array called fonr-info. Each item of font-info is a memory-word; the
fix-word data gets converted into scaled entries, while everything else goes into words of type four-quarters.
(These data structures are special cases of the more general memory words of TEX. On some machines it is
necessary to define min-quurterword = -128 and mux-quarterword = 127 in order to pack four quarterwords
into a single word.)

define min-quarterword = 0 {change this to allow efficient packing, if necessary }
define mux-quarterword = 255 {ditto }
define qi(#) = # + min-quarterword { to put an eight-bits item into a quarterword }
define qo(#) = # — min-quarterword { to take an eight-bits item out of a quarterword}
define ritle-font = 1
define label-font = 2
define gray-font = 3
define slant-font = 4
define logofont = 5
(Types in the outer block 9) +=

quarterword = min-quarterword . . mux-quarterword; {1/4 of a word }
four-quarters = packed record b0: quarterword;

bl : quarterword;

b2 : quarterword;

b3 : quarterword;

end;
memory-word = record

case boolean of

true: (SC : scaled);

false: (qqqq : four-quarters);

end;
internal_font_number = title-font . . logo-font;

328 READING THE FONT INFORMATION GFtoDVL 533
53. Besides font_info, there are also a number of index arrays that point into it, so that we can locate
width and height information, etc. For example, the char-info data for character ¢ in font f will be in
font_info[char_base[f] + c].qqqq; and if w is the width-index part of this word (the b0 field), the width of
the character is font_info[width_base[f] + w].sc. (These formulas assume that min-quarterword has already
been added to w, but not to c.)

(Globals in the outer block 12) +=

font-info: array [0 . . font-mem-size] of memory-word; { the font metric data}

fmem-ptr : 0 . . font-mem-size; { first unused word of font-info }

font-check: array [internal_font.number| of four-quarters; { check sum }

font-size: array [internal_font_.number] of scaled; { “at” size }

font-dsize: array [internal_font-number] of scaled; { “design” size }

font-be: array [internal-font-number] of eight-bits; { beginning (smallest) character code }

font-ec: array [internal-font-number] of eight-bits; {ending (largest) character code }

char-base: array [internal-font-number] of integer; { base addresses for char-info }

width-base: array [internal_font_number]| of integer; { base addresses for widths }

height-base: array [internal-font-number] of integer; { base addresses for heights}

depth-base: array [internal-font-number] of integer; { base addresses for depths }

italic-base: array [internal-font-number] of integer; { base addresses for italic corrections }
lig-kern-base: array [internal_font-number] of integer; { base addresses for ligature/kerning programs }
kern-base: array [internal_font.number] of integer; { base addresses for kerns}

exten-base: array [internal-font-number] of integer; { base addresses for extensible recipes }
param_base: array [internal-font-number] of integer; { base addresses for font parameters }

54. (Set initial values 13) +=
fmem-ptr — 0;

$55 GF to DVI READING THE FONT INFORMATION 329

55. Of course we want to define macros that suppress the detail of how font information is actually packed.
so that we don’t have to write things like

font_info[width_base[f] + font_info[char_base[f] + c].qqqq.b0].sc

too often. The WEB definitions here make char-info(f)(c) the fu r.quarters word of font information
corresponding to character ¢ of font £ If ¢ is such a word, char-width (f)(q) will be the character’s width:
hence the long formula above is at least abbreviated to

char_width(f)(char_info(f)(c)).

In practice we will try to fetch g first and look at several of its fields at the same time.

The italic correction of a character will be denoted by char-italic(f)(gq), so it is analogous to char- width.
But we will get at the height and depth in a slightly different way, since we usually want to compute both
height and depth if we want either one. The value of height-depth(q) will be the 8-bit quantity

b = height-index x 16 + depth-index,

and if b is such a byte we will write char-height(f)(b) and char-depth(f)(b) for the height and depth of the
character ¢ for which g = char-info(f)(c). Got that?
The tag field will be called char-tug(q); and the remainder byte will be called rem-byte(q).
define char-info-end (#) = #]. qqqq
define char-info(#) = font-info | char-base [#] + char-info-end
define char-width-end(#) = #. b0 | .sc
define char-width(#) = font-info [width_base[#] + char-width-end
define char-exists (#) = (#. b0 > min_quarterword)
define char-italic-end(#) = (qo(#.b2)) div 4] .sc
define char_italic(#) = font-info [italic-base [#] + char-italic-end
define height-depth (#) = qo (1. b1)
define char-height-end (#) = (#) div 16 | .sc
define char-height (#) = font-info [height-base [#] + char-height-end
define char-depth-end (#) =# mod 16 |.sc
define char-depth(#) = font-info | depth-base [#] + char-depth-end
define char-tag(#) = ((qo(#.62)) mod 4)
define stop-bit (#) =#.b0
define next-char (#) = #. b1
define op-bit(#) = #.b2
define rem-byte(#) = #. b3

56. Here are some macros that help process ligatures and kerns. We write char-kern(f)(j) to find the
amount of kerning specified by kerning command j in font f.

define Zig-kern-start(#) = lig_kern_base[#] + rem-byte { beginning of lig/kern program }

define char-kern-end(#) = rem-byte(#) | .sc

define char-kern(#) = font-info [kern_-base[#] + char-kern-end

5 7. Font parameters are referred to as slant (f), space(f), etc.

define param_end (#) = param_base [#]].sc

define param(#) = font-info [# + param_end

define slant = param(1) { slant to the right, per unit distance upward }
define space = param(2) {normal space between words }

define x-height = param (5) { one ex }

define default_rule_thickness = param (8) { thickness of rules }

330 READING THE FONT INFORMATION GF to DVI 858

58. Here is the subroutine that inputs the information on #fm_file, assuming that the file has just been
reset. Parameter f tells which metric file-is being read (either title-font or label_font or gray_font or slant_font
or logo-font); parameter s is the “at” size, which will be substituted for the design size if it is positive.

This routine does only limited checking of the validity of the file, because another program (TFtoPL) is
available to diagnose errors in the rare case that something is amiss.

define bud-tfm = 11 { label for read-font-info }
define ubend = goto bud-tfm { do this when the TFM data is wrong}

procedure read-font-info(f : integer; s : scaled); {inputa TFM file}
label done, bud- tfim;
var k: 0 .. font-mem-size; { index into font-info }
If, Zh, bc, ec, nw, nh, nd, ni, nl, nk, ne, np: 0 .. 65535; {sizes of subfiles}
quw : four-quarters; sw: scaled; { accumulators }
z: scaled; { the design size or the “at” size }
alpha: integer; beta: 1 . . 16; { auxiliary quantities used in fixed-point multiplication }
begin { Read and check the font data; ubend if the TFM file is malformed; otherwise goto done 59);
bud-tfm: print-nZ(“Bad_ TFM_ file for);
case fof
title-font: abort (‘titles ! °);
label-font: abort (-~ labels ! 7);
gray-font: abort ("pixels ! “);
slant-font: abort ('slants ! 7);
logo-font: abort ("METAFONT_logo! °);
end; { there are no other cases }
done: { it might be good to close tfm.file now }
end;

59. (Read and check the font data: ubend if the TEM file is malformed; otherwise goto done 59) =
(Read the TFM size fields 60);
(Use size fields to allocate font information 61);
(Read the TFM header 62 };
(Read character data 63);
(Read box dimensions 64) ;
(Read ligature/kern program 66);
(Read extensible character recipes 67);
(Read font parameters 68);
(Make final adjustments and goto done 69)

This code is used in section 58.

60. define read-two-halves-end (#) = # « b2 x 256 + b3
define read- two-halves (#) = read_tfm_word; # «— b0 x 256 + bl ; rend-two-halves-end
(Read the TFM size fields 60 } =
begin read_two_halves(If)(lh); read-two-huZves(bc)(ec);
if (bc > ec + 1)V (ec > 255) then ubend;
read_two_halves(nw)(nh); read.two_halves(nd)(ni); read-two-huZves(nZ)(nk); read_two_halves(ne)(np):
if f #6+ 1+ (ec— bc+ 1) + nw + nh + nd + ni + nl + nk + ne + np then ubend:
end

This code is used in section 59

§61 GF to DVI READING THE FONT INFORMATION 331

61. The preliminary settings of the index variables width-base, Zig-kern- base, kern- base, and exten_ base
will be corrected later by subtracting min_quarterword from them; and we will subtract 1 from param_base
too. It’s best to forget about such anomalies until later.

(Use size fields to allocate font information 61) =
If —If —6—Zh; { If words should be loaded into font-info }
if np<8then |f —If +8—np; { at least eight parameters will appear }
if fmem-ptr +lf > font-mem-sizethen abort ("No_room f or TFM.f ile ! ~);
char-buse [f] — fmem-ptr — bc; width_base[f] — char_base[f] + ec + 1;
height-base [f] — width_base[f] + nw; depth_base[f] — height_base[f] + nh;
italic_base[f] — depth_base[f] + nd; Zig-kern-buse[f] — italic_base[f] + ni;
kern-base [f] «— Zig-kern-buse[f] + nl; exten_base[f] — kern_base[f] + nk;
purum-base [f] — exten_base[f] + ne

This code is used in section 59.

62. Only the first two words of the header are needed by GFt oDVI.

define store-four-quarters (#) =
begin read-tfm-word; quw.b0 «— qi(b0); quw.b1 — qi(b1); qw.b2 — qi(b2); quw.b3 — qi(b3);
— qw;
end
(Read the TFM header 62) =
begin if lh < 2 then ubend;
store-four-quurters(font-check(f]); read-tfm-word;
if b0 > 127 then ubend; { design size must be positive }
z — ((b0 256 + b1) * 256 + b2) * 16 + (b3 div 16);
if 2 < unity then ubend:
while [h > 2 do
begin read-tfm-word; decr (Zh); { ignore the rest of the header }
end:
font_dsize[f] — z;
if s> 0 then z « s;
font_size[f] — z;
end

This code is used in section 59.

63. (Read character data 63) =
for k — fmem-ptr to width_base[f] — 1 do

begin store-four-quarters (font_info(k]. qqqq);
if (b0 > nw) V (b1 div 20 > nh) V (bl mod 20 > nd) V (b2 div 4 > ni) then abend:
case h2mod 4 of
Zig-tug: if b3 > nl then ubend;
ext-tug: if b3 > ne then ubend;
no-tug, list-tug: do-nothing:
end; { there are no other cases }
end

This code is used in section 59.

332 READING THE FONT INFORMATION GF to DVI 564

64. A fir_word whose four bytes are (b0, bl, b2, b3) from left to right represents the number

by 274 4+ by 2712 4 by 2720 if bg = 0;
x = |-16 + by .27 4+ by - 2712 4 b3 2720, if by = 255.

(No other choices of b are allowed, since the magnitude of a number in design-size units must be less than
16.) We want to multiply this quantity by the integer z, which is known to be less than 227. Let a = 162.
If z < 223, the individual multiplications b . z, ¢ . z, d . z cannot overflow; otherwise we will divide z by 2, 4,
8, or 16, to obtain a multiplier less than 223 and we can compensate for this later. If z has thereby been
replaced by 2z’ = z/2°, let 3 = 2*7%; we shall compute

L(by +b2.27% + b3. 2718) 2"/ 3]

if a = 0, or the same quantity minus « if a = 255.
define store-scaled (#) =
begin read_tfm_word: sw — (((((b3 * z) div 400) + (b2 % z)) div 400) + (b1 % z2)) div beta;
if 80 = 0 then # — sw else if b0 = 255 then # < sw — alpha else abend;
end

(Read box dimensions 64) =
begin (Replace z by 2z’ and compute a, 8 65);
for k — width_base[f] to lig_kern_base[f] — 1 do store_scaled(font_info[k].sc);
if font-info [width-base [f]] .sc # 0 then ubend; { width [0] must be zero }
if font_infolheight_base[f]].sc # 0 then abend; { height[0] must be zero }
if font_info|depth_base[f]].sc # 0 then ubend; { depth[0] must be zero }
if font_infolitalic_base[f]].sc # 0 then wubend; { italic[0] must be zero}
end

This code is used in section 59.

65. (Replace z by 2’ and compute a, 3 65) =
begin alpha « 16 x z; beta — 16;
while 2> ‘40000000 do
begin z « 2z div 2; beta «— beta div 2;
end;
end

This code is used in section 64.

66. define check-byte-range (#) =
begin if (# < bc) V (# > ec) then ubend
end

(Read ligature/kern program 66) =
begin for k — lig-kern_base[f] to kern_base[f] - 1 do
begin store-four-gwwters(font-infolk].qqqq); check-byte-runge(bl);
if b2 < 128 then check-byte-runge(b3) { check ligature }
else if b3 > nk then ubend; { check kern }
end;
if (nl > 0) A (b0 < 128) then ubend; { check for stop bit on last command }
for k — kern_base[f] to exten_base[f] — 1 do store-scaled (font_info[k].sc);
end

This code is used in section 59.

867 GF to DVI READING THE FONT INFORMATION 333

67. (Read extensible character recipes 67) =

for k — exten_base[f]to param_base[f]—1 do
begin store-four-quarters (font-info [k]. qqqq);
if b0 # 0 then check-byte-runge(bO);
if 61 # 0 then check-byte-runge(bl);
if b2 # 0 then check-byte-runge(b2);
check-byte-runge(b3);
end

This code is used in section 59.

68. (Read font parameters 68) =
begin for kK« 1 tonpdo
if k=1then { the slant parameter is a pure number }
begin read.tfm_word;
if b0 > 127 then sw « b0 — 256 else SwW « b0;
SW — SW « ‘400 + bl; sw — sw x 400 + b2; font_info[param_base[f]].sc «— (sw x 20) + (b3 div "20);
end
else store_scaled(font_info[param_base[f] + k — 1].sc);
for k—np+ 1 to 8 do font_info[param_base[f]+ k —1].5c — 0;
end

This code is used in section 59.

69. Now to wrap it up, we have checked all the necessary things about the TFM file, and all we need to do
is put the finishing touches on the data for the new font.

define adjust(#) = #[f] — qo(#[f]) {correct for the excess min_quarterword that was added }
(Make final adjustments and goto done 69) =

font_be[f] «— bc; font-ec[f] + ec; adjust (width-base); adjust (lig-kern_base); adjust (kern-base);

adjust (exten_base); decr(param_base[f)); fmem-ptr — fmem-ptr + If; goto done

This code is used in section 59.

334 THE STRING POOL GF to DVI §70

70. The string pool. GFtoDVI remembers strings by putting them into an array called str_pool. The
str_start array tells where each string starts in the pool.

(Types in the outer block 9) +=
pool-pointer = 0 . . pool-size; { for variables that point into str_pool }
str_number = 0 . . mux-strings; { for variables that point into str-start }

71. As new strings enter, we keep track of the storage currently used, by means of two global variables
called pool-ptr and str-ptr . These are periodically reset to their initial valus when we move from one character
to another, because most strings are of only temporary interest.

(Globals in the outer block 12) +=

str-pool: packed array [pool_pointer] of ASCII-code; { the characters }
str_start: array [str-number] of pool-pointer; { the starting pointers }
pool-p tr : pool-pointer; { first unused position in str-pool }

str-ptr: str-number; { start of the current string being created }
init_str_ptr: str-number; { str-ptr setting when a new character starts }

72. Several of the elementary string operations are performed using WEB macros instead of using Pascal
procedures, because many of the operations are done quite frequently and we want to avoid the overhead of
procedure calls. For example, here is a simple macro that computes the length of a string.

define length(#) = (str-start (# + 1] — str-start [#]) { the number of characters in string number # }

73. Strings are created by appending character codes to str-pool. The macro called append-char, defined
here, does not check to see if the value of pool-ptr has gotten too high; that test is supposed to be made

before append-char is used.
To test if there is room to append 1 more characters to str-pool, we shall write str-room(Z), which aborts

GFtoDVI and gives an apologetic error message if there isn’t enough room.

define append_char (#)= { put ASCII-code # at the end of str-pool }
begin str_pool|pool_ptr] — #; incr(pool_ptr);

end

define str_room (#)= { make sure that the pool hasn’t overflowed }
begin if pool-ptr + # > pool-size then abort(“Too_many strings!)
end

74. Once a sequence of characters has been appended to str-pool, it officially becomes a string when the
function make-string is called. This function returns the identification number of the new string as its value.
function make-string: str-number; { current string enters the pool }

begin if str-ptr = mux-strings then abort(Too_many _labels ! °);

incr(str-ptr); str_start{str_ptr] « pool-ptr; make-string «— str,ptr — 1;

end:

875 GF to DVI THE STRING POOL 335

75. The first strings in the string pool are the keywords that GFtoDVI recognizes in the xxx commands of
a GF file. They are entered into str_pool by means of a tedious bunch of assignment statements, together
with calls on the first-string subroutine.

define init_str((#) = first-string (#)

define init-strl (#) = buffer[l] — #; init_str0

define init_str2 buffer|2] — #; init-strl

—
#*
~—

define init_str3 (#) = buffer[3] — #; inat_str2
define init_strf (#) = buffer[d] — #; init_strd
define inut_strs (#) = buffer [5] — #; inst_stry
define init_str6 (#) = buffer[6] « #; init_str5
define init_str7 (#) = buffer [7] + #; inst_str6
define init_str8 (#) = buffer [8) — #; init_str7
define init_str9 (#) = buffer [9] «— #; init_str8
define init_str10 (#) = buffer [10] — #; init_str9
define init_str1l (#) = buffer [11] — #; init_str10
define inst_str12 (#) = buffer [12] + #; inut_str11

define init_stri3(#) = buffer[13] + #; inut_str12
define longest-keyword = 13
procedure first-string (c : integer);
begin if str-ptr # ¢ then abort("?"); { internal consistency check }
while [> 0 do
begin append-char (buffer [l]); decr(l);
end;
tner(str-ptr); str_start[str_ptr] — pool-ptr;
end:

76. (Globals in the outer block 12) +=
l: integer; { length of string being made by first-string }

336 THE STRING POOL GF to DVI gii

77. Here are the tedious assignments just promised. String number O is the empty string.

define null-string =0 { the empty keyword }

define area-code = 4 { add to font code for the ‘area’ keywords }

define at-code =8 { add to font code for the ‘at’ keywords }

define rule-code = 13 { code for the keyword ‘rule’ }

define title-code = 14 { code for the keyword ‘title’}

define rule-thickness-code = 15 { code for the keyword ‘rulethickness’}
define offset_code = 16 { code for the keyword ‘off set’ }

define z_offset.code = 17 { code for the keyword ‘xoff set’ }

define y-onset-code = 18 { code for the keyword ‘yoff set’ }

define max.-keyword = 18 { largest keyword code number }

(Initialize the strings 77) =
str_ptr «— 0; poobptr — 0: str-start [0] + O;
1 — 0; wmat_str0 (null-string);

l — 9 init_str!)("t")(" ")("t")("l")("e")("f")("o")("n")("t")(title.font);
| — 9 it 9tr9("1 |)(nau ("b")("e")("1")("f")("o")("n“)("t")(label_font);
l — 8 anf 9t7‘8(" n)(uru)(nan)('y")("f")("o")("n")("t")(gray_font);

1 9 ant-‘)”"g("S")("l")("a")(‘n")("t")("f")("o")("n")("t")(slant_font):

[l —13;
indt_str13("£")("i") ("t ") (1) ("e")("£")("o") ("n") ("t ") ("a")("r")("e")("a") (title_font + area-code):
l — 13;

init_str13("1")("a")("b")("e")("1")("£")("o")("n") ("t ")(*a")("z")("e")("a")(label font + area-code);
l—12;

init-strl?("g")("r“)("a")("y")("f")("o") unu)(ntu)(uan) uru) "e")("a")(gray_font + area-(:()d(f):

[—13;

ant_StT’IB(" ")("l" (u 1" (nnn) Wt (“f‘ ("0" " (u " (nau (“I'") ot (

1 — 115 init-strll ("£")("i")(" "a")("t")(title_font + ut-code);
I — 11; init-stril ("1")("a")("b' ("t")(label_font + at-code);
[« 10; init_str10("g")("r") ("y") (£ ("o")("n")("t")("a")("t")(gray-font + at-code);

14_]l init- Stl’ll(SI (1 ngt ("n")("t")("f")(o")("n")(t")(ta" (n u ‘;lant.font + at-code);
I — 4; init_str4 ("r")("u")

l « 5; indt_str5 ("e")("i")
1« 13;
init_str13("c")("u")("1")
1 « 6; init_str6 ("o")("£"
1 — 7; init_str7("x")("o"
l— 7 init_str7("y")("o

See also sections 78 and 88.

"a")(slant_font + area-code);
a
Na"

"e")("k")("n")("e")("s")("s")(rule_thickness_code):
(_[fset_code)

("t")(z-offset_code);

M("e")("t")(y-onset-code);

~— —

This code is used in section 216.

$78 GF to DVI

THE STRING POOL

337

78. We will also find it useful to have the following strings. (The names of default fonts will presumably
be different at different sites.)

define gf.ext = maz_keyword + 1 { string number for *. gf’ }

define dvi-ext = max-keyword + 2 { string number for ‘. dvi’ }

define ifm-ext = max-keyword + 3 {string number for* . tfm' }

max-keyword + 4 { string number for ‘ , Page,’ }

max-keyword + 5 { string number for ‘_, Character’ }

define ext-header = max-keyword + 6 { string number for ‘|, Ext.’ }

define left-quotes = max-keyword + 7 { string number for ‘,, < ¢ "}

define right-quotes = max-keyword + 8 { string number for * >’ }

define equals-sign = max-keyword + 9 { string number for * =’}

define plus-sign = max.-keyword + 10 { string number for < + (' }

define default-title-font = max.-keyword + 11 { string number for the default ritle-font }
define default-label-font
define default-gray-font

define page-header =
define char-header =

define logo-font-name

max-keyword + 12 { string number for the default label-font }
max-keyword + 13 { string number for the default gray-font }
max-keyword + 14 {string number for the font with METRFONT logo }

define small-logo = max-keyword + 15 { string number for ‘"METAFONT ' }

define home-font-area

max-keyword + 16 { string number for system-dependent font area }

(Initialize the strings 77) +=
| — 3; init_str.?(" . n)(ngu)(ufn)(gf ext)
I — 4; anat_stry (".")("d")("v")("i")(dvi_ext);
| — 4; init-stn{ (n . ")(ntn)(nfn)(c u)(tﬁn-ext);
)

| — 7:init_str7 (") (o) ("P"

"a")("g")("e")(".,") (page.header)

l—12; natstr12("u")("u")("C ")("h")("a" ("rm)("am)("e")("e")("e")("r")("L")(char_header);
[6; mat_str6 (") (") ("EM)("x")("e")" L") (ext_header):

I — 4; amat_strf ("u")("")(")" ") (left_quotes):

" ")(right.quotes);

"-on

I« 2; nit_str2
1 f- 3; mat_str3("y")

)
u))(" n)(equals sign);

(] (" u)(u (")(plus_sign);

m")("r")("8")(default-title-font);

1= 6 dnitstr ("c)("m") (") ("5")("1)("0") (default_Label font)

E (
1 — 4; init_str4 (",")("
1 —4; anit_strg ("c")("m
("e")(
("g")(

c
L —4; wmat_str4 ("g"

)
"I'")
)

l—5; anit_str5("1")("o"

("a")("y")(default-gray-font);
(n u)("O")("8")(logo-font-name);

(
l — 8; init_strb’(IIMH)(IIE")(uTn)(nAn)(nFn)(lloll)(nNn)(nTn)(small-logo);

338 THE STRING POOL GF to DV 579

79. If an xxx command has just been encountered in the GF file, the following procedure interprets its
keyword. More precisely, we assume that cur-gf contains an op-code byte just read from the GF file, where
zzzl < cur-gf < no-op. The interpret-xxx procedure will read the rest of the command, in the following
way:

1) If cur-gf is no-op or yyy, or if it’s an xxx command with an unknown keyword, the bytes are simply
read and ignored, and the value no-operation is returned.

2) If cur-gf is an xxx command (either zzzl or . - . or xxx4), and if the associated string matches a keyword
exactly, the string number of that keyword is returned (e.g., rule-thickness-code).

3) If cur-gf is an xxx command whose string begins with keyword and space, the string number of that
keyword is returned, and the remainder of the string is put into the string pool (where it will be string
number cur-string. Exception: If the keyword is null-string, the character immediately following the
blank space is put into the global variable label-type, and the remaining characters go into the string
pool.

In all cases, cur-gf will then be reset to the op-code bvte that immediately follows the original command.
define no-operation = max-keyword + 1

(Types in the outer block 9) +=
keyword-code = null-string . . no-operation;

80. (Globals in the outer block 12) +=

cur-gf: eight-bits; { the byte most recently read from gf file }

cur-string: str_number; { the string following a keyword and space }
label-type: eight-bits; { the character following a null keyword and space }

81. We will be using this procedure when reading the GF file just after the preamble and just after eoc
commands.

function interpret-xxx: keyword-code;

label done, donel , not-found;

var k: integer; { number of bytes in an xxx command }
j: integer; { number of bytes read so far }
l: 0. . longest-keyword; { length of keyword to check }
m: keyword-code; { runs through the list of known keywords }
nl: 0.. longest-keyword; { buffered character being checked }
n2 : pool-pointer; { pool character being checked }
c: keyword-code ; { the result to return }

begin c¢ < no-operation; cur-string < null-string;

case cur-gf of

no-op: goto done;

yyy: begin k « signed-quad; goto done;
end;

zzxrl : k < get-byte;

zxr2: k «— get-two-bytes;

xxx8: k — get-three-bytes;

xxx4 1 k + signed-quad;

end; { there are no other cases }

(Read the next k characters of the GF file: change ¢ and goto done if a keyword is recognized 82):

done: cur-gf «— get-byte; interpret-xxx «— c;
end;

§82 GF toDVI THE STRING POOL 339

82. (Read the next k characters of the GF file; change ¢ and goto done if a keyword is recognized 82) =
Jj— 0;if Kk < 2 then goto not-found;
loop begin [« j;
if j = k then goto donel;
if j = longest-keyword then goto not-found:
iner(j); buffer{y] — get-byte;
if buffer(j] ="." then goto donel;
end;
donel : (If the keyword in buffer [1 . . 1] is known, change ¢ and goto done 83);
not-found: while j < k do
begin incr(j); cur-gf «— ger-byte;
end

This code is used in section 81.

83. (If the keyword in buffer[l . . I] is known, change ¢ and goto done 83) =
for m « null-string to max.-keyword do
if length(m) =1 then
begin nl — 0; n2 — str_start|m];
while (nl <) A (buffer [nl + 1] = str_pool[n2]) do
begin ncr (nl); incr (n2);
end;
if nl ={then
begin ¢ «—m;
if m = null-string then
begin ncr(j); label-type — get-byte;
end;
str-room(k — 7);
while j < kdo
begin incr(j); append_char(get.byte);
end;
cur-string <« make-string; goto done;
end;
end

This code is used in section 82.

84. When an xxx command takes a numeric argument, get-yyy reads that argument and puts the following
byte into cur-gf.
function getyyy: scaled;

var v: scaled; { value just read }

begin if curgf # yyy then getyyy « 0

else begin v « signed-quad; cur-gf — get-byte; get_yyy «— v;

end;
end;

340 THE STRING POOL GF fo DVI 885

85. A simpler method is used for special commands between boc and eoc, since GFtoDVI doesn’t even look
at them.

procedure skip-nop;
label done;
var k: integer; { number of bytes in an xxx command }
J: integer; { number of bytes read so far }
begin case cur-gf of
no-op: goto done;
yyy: begin k «— signed-quad; goto done;
end;
zrrl: k — get-byte;
rxx2: k — get-two-bytes;
72x3: k «— get-three-bytes;
xxx4 : k « signed-quad;
end; { there are no other cases }
for j« 1to kdo cur-gf « get-byte;
done: cur-gf «— get-byte;
end;

§86 GF to DVI FILE NAMES 341

86. File names. It’s time now to fret about file names. GFtoDVI uses the conventions of TEX and METR-
FONT to convert file names into strings that can be used to open files. Three routines called begin-name,
more.name, and end-name are involved, so that the system-dependent parts of file naming conventions
are isolated from the system-independent ways in which file names are used. (See the TEX or METAFONT
program listing for further explanation.)

(Globals in the outer block 12) +=

cur-name: str-number; { name of file just scanned }

cur-area: str-number ; { file area just scanned, or null-string }
cur-ext: str-number; { file extension just scanned, or null-string }

87. The file names we shall deal with for illustrative purposes have the following structure: If the name
contains ‘> or * : ’, the file area consists of all characters up to and including the final such character; otherwise
the file area is null. If the remaining file name contains ‘ . ’, the file extension consists of all such characters
from the first remaining ¢ .' to the end, otherwise the file extension is null.

We can scan such file names easily by using two global variables that keep track of the occurrences of area
and extension delimiters:

(Globals in the outer block 12) +=
area-delimiter: pool-pointer; { the most recent ‘> or ‘ : °, if any }
ext-delimiter : pool-pointer; { the relevant * ., if any }

88. Font metric files whose areas are not given explicitly are assumed to appear in a standard system area
called home-font-area. This system area name will, of course, vary from place to place. The program here

k)

sets it to ‘TeXf onts : .

(Initialize the strings 77) +=
[— 9 nat_strg ("T")("e")("X")("£")("o")("n")("t")("s")(":")(home_font_area);

89. Here now is the first of the system-dependent routines for file name scanning.

procedure begin-name;
begin area-delimiter «— 0; ext-delimiter — 0;
end;

90. And here’s the second.

function more-name (¢ : ASCIl-code): boolean;
begin if c =" " then more-name « false
else begin if (c =">")V (c =":")then
begin area-delimiter «— pool-ptr; ext-delimiter «— 0;
end
else if (¢ =".") A (ext-delimiter = 0) then ext-delimiter «— pool-ptr ;
str-room (1): append-char(c); { contribute ¢ to the current string }
more-name +— true;
end;
end;

342 FILE NAMES GF toDVI 591

91. The third.

procedure end-name;

begin if str-ptr + 3 > max-strings then abort(“Too_many strings!);

if area-delimiter = 0 then cur-area — null-string

else begin cur-area — str-ptr: incr (str-ptr); str-sturt [str-ptr] — area-delimiter + 1;
end;

if ext-delimiter = 0 then
begin cur-ext « null-string;, cur-name «— make-string;
end

else begin cur-name « str-ptr; incr(str-ptr); str-start [str-ptr] — ext-delimiter;
cur-ext — make-string;
end;

end;

92. Another system-dependent routine is needed to convert three strings into the name-of-file value that
is used to open files. The present code allows both lowercase and uppercase letters in the file name.
define append-to-name (#) =
begin ¢ « #; incr(k);
if k < file-name-size then name_of_file [k] «— xchr[c]
end
procedure pack-fil-name (n, a, e : str-number);
var k: integer; { number of positions filled in name-of-file }
c: ASCII-code; { character being packed }
j: integer; { index into str_pool }
name-length: O . . file-name-size; { number of characters packed }
begin k—0;
for j « str-start [a] to str-start [a + 1] = 1 do append-to-name(str-pooZ[j]);
for j e str_start [n] to str-start [n + 1] — 1 do append-to-name(str_pool(j]);
for j« str-start [e] to str-start [e + 1] — 1 do append_to_name(str_pool[j]);
if k < file-name-size then name-length «— k else name-length « file-name-size;
for k « name-length + 1 to file-name-size do name_of_file[k] — "L ~;
end;

93. Now let’s consider the routines by which GFtoDVI deals with file names in a system-independent
manner. The global variable job-name contains the GF file name that is being input. This name is extended
by *dvi’ in order to make the name of the output file.

(Globals in the outer block 12) +=
job-name: str_number; { principal file name }

594 GF to DVI FILE NAMES 343
94. The start-gf procedure prompts the user for the name of the generic font file to be input. It opens the
file, making sure that some input is present; then it opens the output file.

Although this routine is system-independent, it should probably be rnodified to take the file name from
the command line (without an initial prompt), on systems that permit such things.

procedure start-gf;
label found, done;
begin loop begin print_nl("GF_f ile name :, °); input_ln; buf-ptr — 0; buffer [line_length] — "?":
while buffer[buf_ptr] = "," do incr(buf-ptr):
if buf-ptr < line-length then
begin (Scan the file name in the buffer 95);
if cur-ext = null-string then cur-ext « gf-ext;
pack-file-name (cur-name, cur-area, cur-ext); open-gf-file;
if —eof (gf-file) then goto found;
print_nl("Oops . . .ulucan” "t f ind f ile, °); print (name-of-file);
end;
end;
found: job-name — cur_name; pack-file-name (job-name, nullstring, dvi-ext); open-dvi-file;

end;

95. (Scan the file name in the buffer 95) =
if buffer|line_length — 1] = "/" then
begin interaction «— true ; decr (line-length);
end:
begin-name ;
loop begin if buf-ptr = line-length then goto done;
if ~more_name (buffer [buf-ptr]) then goto done;
iner (buf-ptr);
end:
done: end-name

This code is used in section 94.

96. Special instructions found near the beginning of the GF file might change the names, areas, and “at
sizes of the fonts that GFtoDVI will be using. But when we reach the first boc instruction, we input all of the
TFM files. The global variable interaction is set true if a "/" was removed at the end of the file name; this
user that the user will have a chance to issue special instructions online just before the fonts are loaded.

define check-fonts = if fonts-not-loaded then load-fonts

(Globals in the outer block 12) +=

interaction: boolean; { is the user allowed to type specials online? }
fonts-not-loaded: boolean; { have the TFM files still not been input? }

font-name : array [internal-font-number] of str_mumn her; { current font names }
font-area: array [internal-font-number] of str_number; { current font areas }
font-at: array [internal_font-number] of scaled; { current font “at” sizes }

97. (Set initial values 13) +=
interaction «— false; fonts-not-loaded «— true; font-name | title-font] — default_title_font:

font-name [label-font] — default_label_font; font-name [gray-font] — default-gray-font;
font-name [slant-font] «— null-string; font-name [logo-font] «— logo-font-nume;
for k «— title-font to logo-font do

begin font-urea [k] «— null-string; font-at[k] — 0;

end;

344 FILE NAMES GF to DVI 893

98. After the following procedure has been performed, there will be no turning back; the fonts will have
been firmly established in GFtoDVI's memory.

(Declare the procedure called load-fonts 98) =
procedure load-fonts;
label done, continue, found, not-found;
var f: internal-font-number; i: four-quarters; { font information word }
Jo k, v:integer; { registers for initializing font tables }
m: title-font . . slant-font + area-code; { keyword found }
nl: 0.. longest-keyword; { buffered character being checked }
n2 : pool-pointer ; { pool character being checked }
begin if interaction then (Get online special input 99);
fonts-not-loaded — false;
for f « title-font to logo-font do
if (f # slant-font) V (length(font_-name[f]) > 0) then
begin if length (font_area[f]) = 0 then font_area[f] — home-font-area;
pack_file_name (font_name|(f], font_area[f], tfm_ext); open_tfm_file; read-font-info(f , font-at[f]);
if font-area[f] = home_font_area then font-arealf] — null-string;
dvi_font_def (f); { put the font name in the DVI file }
end;
(Initialize global variables that depend on the font data 134);
end;

This code is used in section 111.

99. (Get online special input 99 } =
loop begin not-found: print-nZ(“Special_ font_substitution: ");
continue: input_ln;
if line-length = 0 then goto done;
(Search buffer for valid keyword; if successful, goto found 100);
print("Please say, e.g. ,u"grayfont _foo" or_ "slantfontarea baz".) goto not-found;
found: (Update the font name or area 101);
print (‘OK ; any more? "); goto continue;
end;
done:

This code is used in section 98.

100. (Search buffer for valid keyword; if successful, goto found 100) =
buf-ptr «— 0; buffer [line-length] — " ";
while buffer(buf-ptr] # """ do incr(buf-ptr);
for m « title-font to slant-font + area-code do
if length(m) = buf-ptr then
begin nl — 0; n2 « str_start[m];
while (nl < buf-ptr) A (buffer[nl] = str_pool[n2]) do
begin incr(nl); incr(n2);
end:
if nl = buf-ptr then goto found;
end

This code is used in section 99.

5101 GF to DVI FILE NAMES 345

101. (Update the font name or area 101) =

iner(buf-ptr); str_room(line-length — buf-ptr);

while buf-ptr < line-length do
begin append-char (buffer [buf-ptr]); incr (buf-ptr);
end:

if m > area-code then font-area(m — area-code] «— make-string

else begin font-name [m] + make-string; font_area[m] — null-string; font-at [m] — 0:
end;

mt_str-ptr + str_ptr

This code is used in section 99.

346 SHIPPING PAGES OUT GFtoDVI 5102

102. Shipping pages out. The following routines are used to write the DVI file. They have been copied
from TgEX, but simplified; we don’t have to handle nearly as much generality as TEX does.
Statistics about the entire set of pages that will be shipped out must be reported in the DVI postamble.
The global variables total-pages, max-v, max-h, and last-bop are used to record this information.
(Globals in the outer block 12) +=
total-pages: integer: { the number of pages that have been shipped out }
max-v: scaled; { maximum height-plus-depth of pages shipped so far }
max-h : scaled; { maximum width of pages shipped so far }
last-bop: integer; { location of previous bop in the DVI output }

103. (Set initial values 13) +=
total-pages + 0; max-v «— 0; max-h «— 0; last-bop + -1;

104. The DVI bytes are output to a buffer instead of being written directly to the output file. This makes
it possible to reduce the overhead of subroutine calls.

The output buffer is divided into two parts of equal size; the bytes found in dvi-buf [0 . . hadlf-buf — 1]
constitute the first half, and those in dvi-buf [half-buf . . dvi-buf-size — 1] constitute the second. The global
variable dvi-ptr points to the position that will receive the next output byte. When dwvi_ptr reaches duvi.limit.
which is always equal to one of the two values half-buf or dvi-buf-size, the half buffer that is about to be
invaded next is sent to the output and dvi-limit is changed to its other value. Thus, there is always at least
a half buffer’s worth of information present, except at the very beginning of the job.

Bytes of the DVI file are numbered sequentially starting with 0; the next byte to be generated will be
number dvi-offset + dvi-ptr.

(Types in the outer block 9) +=
dvi-index = 0 . . dvi-buf-size; { an index into the output buffer }

105. Some systems may find it more efficient to make dvi- buf a packed array, since output of four bytes
at once may be facilitated.

(Globals in the outer block 12) +=

dvi-buf: array [dvi-index] of eight-bits; { buffer for DVI output }

half-buf : dvi-index; { half of dvi-buf-size }

dvi-limit : dvi-index; { end of the current half buffer }

dvi-ptr : dvi-index; { the next available buffer address }

dvi-offset : integer; { dvi-buf-size times the number of times the output buffer has been fully emptied }

106. Initially the buffer is all in one piece; we will output half of it only after it first fills up.

(Set initial values 13) +=
half-buf + dvi-buf-size div 2; dvi-limit +— dvi-buf-size; dvi-ptr +— 0; dvi-offset + 0;

107. The actual output of dvi-buf [a . . b] to dvi_file is performed by calling write-dvi(a, b). It is safe to
assume that a and b + 1 will both be rnultiples of 4 when write-dvi(a, b) is called: therefore it is possible on
many machines to use efficient methods to pack four bytes per word and to output an array of words with
one system call.
procedure write-dvi (a, b : dvi-index);

var k: dvi-index;

begin for k — ato b do write (dvi_file, dvi-buf [k]);

end;

6108 GF to DVI SHIPPING PAGES OUT 347

108. To put a byte in the buffer without paying the cost of invoking a procedure each time, we use the
macro dvi-out.
define dvi-out (#) = begin dvi-buf [dvi-ptr] « #: incr(dvi-ptr);
if dvi-ptr = dvi-limit then dvi-swap;
end
procedure dvi-swap; { outputs half of the buffer}
begin if dvi-limit = dvi-buf-size then
begin write-dvi(0, half-buf — 1); dvi_limit — half-buf: dvi_offset — dvi_offset + dvi_buf_size:
dvi-ptr — 0;
end
else begin write-dvi(half-buf, dvi-buf-size — 1); dvi-limit — dvi-buf-size;
end;
end;

109. Here is how we clean out the buffer when TEX is all through; dvi-ptr will be a multiple of 4.

(Empty the last bytes out of dvi-buf 109) =
if dvi-limit = half-buf then write_dvi(half-buf, dvi-buf-size — 1);
if dvi-ptr > 0 then write-dvi(O, dvi-ptr — 1)

This code is used in section 115.

110. The dvi-four procedure outputs four bytes in two’s complement notation, without risking arithmetic
overflow.

procedure dvi-four (x : integer);
begin if x > 0 then dvi-out (x div ‘700000000)
else begin x « x + ‘70000000000; x «— x + ‘10000000000; dvi-out ((x div ‘100000000) + 128):
end;
x —x mod ‘700000000 ; dvi-out (x div 200000); x «— x mod 200000; dvi_out(z div ‘400);
dvi-out (x mod ‘400);
end;

111. Here’s a procedure that outputs a font definition.
define select-font (#) = dvi_out(fnt-num_0 + #) { set current font to # }

procedure dvi-font-def (f : internal-font-number);
var k: integer; { index into str-pool }
begin dvi-out (fnt-defl); dvi_out (f);
dvi-out(qo(font_check[f].b0)); dvi-out(qo(font_check[f].b1)); dvi_out(qo(font.check[f].b2));
dvi-out (qo (font-check [f]. b3));
dvi_four (font_size[f]); dvi_four(font_dsize[f]);
dvi_out(length(font_area[f])); dvi_out(length(font_name|f)));
(Output the font name whose internal number is f 112);
end;
(Declare the procedure called load-fonts 98)

112. (Output the font name whose internal number is f 112) =
for k « str-start [font_area(f]] to str_start [fontarea[f] + 1] — 1 do dvi_out(str_pool[k]);
for k « str_start [font_name[f]] to str_start [font_name|f] + 1] — 1 do dvi-out (str_pool[k])

This code is used in section 111.

348 SHIPPING PAGES OUT GF to DVI 8113

113. The typeset subroutine typesets any eight-bit character.

procedure typeset (c : eight-bits);
begin if ¢ > 128 then dvi-out (setl);
dvi-out (c);
end:

114. The dvi-scaled subroutine takes a real value x and outputs a decimal approximation to x/unity,
correct to one decimal place.

procedure dvi-scaled (x : real);
var n: integer; { an integer approximation to 10 * x/unity }
m: integer; {the integer part of the answer }
k: integer; { the number of digits in m }
begin n — round(z/6553.6);
if n <0 then
begin dviout("-"); n «— —n;
end;
m «—n div 10; k — 0;
repeat iner(k); buffer [k] — (m mod 10) + "0"; m t m div 10;
until m = 0;
repeat dvi-out (buffer [k]); decr(k);
until k = 0;
if nmod 10#0 then
begin dvi-out ("."); dvi-out ((n mod 10) +"0");
end;
end;

115. At the end of the program, we must finish things off by writing the postamble. An integer variable k
will be declared for use by this routine.

(Finish the DVI file and goto final-end 115) =

begin dvi_out(post); { beginning of the postamble }
dvi_four (last_bop); last-bop — dvi_offset + dvi-ptr — 5; {post location }
dvi-four (25400000); dvi-four (473628672); { conversion ratio for sp }
dvi-four (1000); { magnification factor }
dvi-four (maz_v); dvi-four (maz.h);
dvi_out(0); dvi_out(3); {‘maz_push’ is said to be 3 }
dvi-out (total-pages div 256); dvi-out (total-pages mod 256);
if =fonts_not_loaded then

for k « title-font to logo-font do

if length(font_-name(k]) > 0 then dvi_font_def (k);

dvi-out (post-post); dvi_four(last-bop); dvi_out(dwi_id_byte);
k — 4 + ((dvi_buf_size — dvi-ptr) mod 4); { the number of 223’s }
while k>0 do

begin dvi-out (223); decr (k);

end;
(Empty the last bytes out of dvi.buf 109);
goto final-end;
end

This code is used in section 216.

8116 GF to DVI RUDIMENTARY TYPESETTING 349

116. Rudimentary typesetting. One of GFtoDVI's little duties is to be a mini-TEX: It must be able
to typeset the equivalent of ‘\hbox{(string)}’ for a given string of ASCII characters, using either the title

font or the label font.
The hbox procedure does this. The width, height. and depth of the box defined by string s in font f are

computed in global variables box-width, box-height, and box-depth.

If parameter send-it is false, we merely want to know the box dimensions. Otherwise typesetting

commands are also sent to the DVI file; we assume in this case that font f has already been selected in
the DVI fileas the current font.
procedure hbox(s : str_number: f : internal_font_number; send-it : boolean):
label continue, done ;
var k, max-k: pool-pointer; { indices into str-pool }
i, j: four-quarters; { font information words }
c: eight-bits; { a character code }
r: quarterword; { ligature or kern must match this }
l: 0. . font-mem-size; {pointer to lig/kern instruction}
kern-amount: scaled; { extra space to be typeset }
hd: eight-bits; { height and depth indices for a character }
x: scaled; { temporary register }
begin box-width — 0; box-height «— 0; box-depth — 0;
k — str_start[s]; maz_k — str_start [s + 1];
while k < maz_k do (Typeset character str_pool[k], possibly making a ligature with the following
character or characters, and advance k 118);
end;

117. (Globals in the outer block 12) +=

box-width: scaled; { width of box constructed by hbox }
box-height : scaled; { height of box constructed by hbox }
box-depth : scaled; { depth of box constructed by hbox }

118. (Typeset character str_pool[k], possibly making a ligature with the following character or characters,
and advance k 118) =
begin ¢ « str_pool(k]; incr(k); kern-amount «— 0;
if ¢ ="_" then kern-amount «— space(f)
else if ¢ > font_bc[f] then
if ¢ < font_ec[f] then
begin continue: 1 « char_info(f)(c);
if char-exists(i) then
begin if char-tag(i) = lig-tag then
if k < max-k then
(Look for possible ligature or kern: goto continue if ¢ has been replaced by a ligature 119):
(Typeset character ¢ 120);
end;
end;
if kern-amount # 0 then
begin box-width — box-width + kern-amount;
if send-it then
begin dvi_out (right4); dvi_four(kern_amount):
end:
end:
end

This code is used in section 116.

300 RUDIMENTARY TYPESETTING GF to DV sl
119. (Look for possible ligature or kern: goto continue if ¢ has been replaced by a ligature 119) =
begin r« gi(str_pool [k]); I «— lig-kern_start (f)(i);
repeat j— font-info [l}. qqqq;
if next-char(j) = r then
if op-bit (j) < qi(kern-flag) then
begin ¢ «— gqo(rem_byte(j)); incr(k); goto continue;
end
else begin kern-amount — char-kern(f)(j); goto done;
end;
incr(1);
until stop-bit(j) > qi (stop-flag);
done: end

This code is used in section 118.

120. (Typeset character ¢ 120) =
box-width «— box-width + char-width(f)(i); hd — height-depth(i); © « char_height(f)(hd);
if x > box-height then box-height «— x;
X « char-depth(f)(hd);
if x > box-depth then box-depth «— x;
if send-it then typeset(c);

This code is used in section 118.

6121 GF to DVI GRAY FONTS 301

121. Gray fonts. A proof diagram constructed by GFtoDVI can be regarded as an array of rectangles,
where each rectangle is either blank or. filled with a special symbol that we shall call x. A blank rectangle
represents a white pixel, while x represents a black pixel. Additional labels and reference lines are often
superimposed on this array of rectangles; hence it is usually best to choose a symbol x that has a somewhat
gray appearance, although any symbol can actually be used.

In order to construct such proofs, GFtoDVI needs to work with a special type of font known as a “gray
font”; it’s possible to obtain a wide variety of different sorts of proofs by using different sorts of gray fonts.
The next few paragraphs explain exactly what gray fonts are supposed to contain, in case you want to design
your own.

122. The simplest gray font contains only two characters, namely x and another symbol that is used for
dots that identify key points. If proofs with relatively large pixels are desired, a two-character gray font is
all that’s needed. However, if the pixel size is to be relatively small, practical considerations make a two-
character font too inefficient, since it requires the typesetting of tens of thousands of tiny little characters:
printing device drivers rarely work very well when they are presented with data that is so different from
ordinary text. Therefore a gray font with small pixels usually has a number of characters that replicate x in
such a way that comparatively few characters actually need to be typeset.

Since many printing devices are not able to cope with arbitrarily large or complex characters, it is not
possible for a single gray font to work well on all machines. In fact, x must have a width that is an integer
multiple of the printing device’s unit of horizontal position, since rounding the positions of grey characters
would otherwise produce unsightly streaks on proof output. Thus, there is no way to make the gray font
as device-independent as the rest of the system, in the sense that we would expect approximately identical
output on machines with different resolution. Fortunately, proof sheets are rarely considered to be final
documents; hence GFtoDVI is set up to provide results that adapt suitably to local conditions.

352 GRAY FONTS GF to DVI §123

123. With such constraints understood, we can now take a look at what GFtoDVI expects to see in a gray
font. The character x always appears in position 1. It must have positive height 4 and positive width w; its
depth and italic correction are ignored.

Positions 2-120 of a gray font are reserved for special combinations of x’s and blanks, stacked on top of
each other. None of these character codes need be present in the font; but if they are, the slots should be
occupied by characters of width w that have certain configurations of x’s and blanks, prescribed for each
character position. For example, position 3 of the font should either contain no character at all, or it should
contain a character consisting of two x’s, one above the other; one of these x’s should appear immediately
above the baseline, and the other should appear immediately below.

It will be convenient to use a horizontal notation like ‘XOXXO’ to stand for a vertical stack of x’s and blanks.
The convention will be that the stack is built from bottom to top, and the topmost rectangle should sit on
the baseline. Thus, ‘XOXXO’ stands actually for a character of depth 4h that looks like this:

blank __ paseline

x
blank

T

(We use a horizontal notation instead of a vertical one in this explanation, because column vectors take too
much space, and because the horizontal notation corresponds to binary numbers in a convenient way.)

Positions 1-63 of a gray font are reserved for the patterns X, X0, XX, X00, X0X, . . . , XXXXXX, just as in the
normal binary notation of the numbers 1-63. Positions 64-70 are reserved for the special patterns X000000.
XX00000, . . ., XXXXXXO0, XXXXXXX of length seven; positions 71-78 are, similarly, reserved for the length-eight
patterns X0000000 through XXXXXXXX. The length-nine patterns X00000000 through XXXXXXXXX are assigned
to positions 79-87, the length-ten patterns to positions 88-97, the length-eleven patterns to positions 98- 108,
and the length-twelve patterns to positions 109-120.

The following program sets a global array c[l . . 120] to the bit patterns just described. Another array
d[l . . 120] is set to contain only the next higher bit; this determines the depth of the corresponding character.

(Set initial values 13) +=
c[1] « 1; d[1] « 2; two_to_the[0] — 1; m « 1;
for k< 1 to 13 do two-to-the[k] — 2 * two-to-thelk — 1];
for k — 2 to 6 do (Add a full set of k-bit characters 125);
for k + 7 to 12 do (Add special k-bit characters of the form X..X0. .O 126);

124. (Globals in the outer block 12) +=

c:array [1..120]of 1..4095; { bit patterns for a gray font }
d:array [1..120]of 2 .. 4096; { the superleading bits }
two-to-the: array [0 .. 13]of 1 ..8192; { powers of 2 }

125. (Add a full set of k-bit characters 125) =
begin n — two-to-thelk — 1J;
for j—~0ton—1do
begin incr(m); cfm] — m; dm] — n + n;
end;
end

This code is used in section 123.

$126 GF to DVI GRAY FONTS 353

126. (Add special k-bit characters of the form X. .X0. .0 126) =
begin n — two_to_the[k — 1};
for j — kdownto 1 do
begin incr{m);d(m]—n + n:
if j=kthen ¢[m]—n
else ¢[m] «— c[m — 1] + two_to_the[j — 1];
end:
end
This code is used in section 123.

127. Position 0 of a gray font is reserved for the “dot” character, which should have positive height IL’
and positive width w’. When GFtoDVI wants to put a dot at some place (z, y) on the figure, it positions
the dot character so that its reference point is at (z, y). The dot will be considered to occupy a rectangle
x+6,y+¢€)for—w <6< w and —h' <€ < h’; the rectangular box for a label will butt up against the
rectangle enclosing the dot.

128. All other character positions of a gray font (namely, positions 121-255) are unreserved, in the sense
that they have no predefined meaning. But GFtoDVI may access them via the ‘“character list” feature of TFM
files, starting with any of the characters in positions 1-120. In such a case each succeeding character in a
list should be equivalent to two of its predecessors, horizontally adjacent to each other. For example, in a

character list like
53, 121, 122, 123

character 121 will stand for two 53’s, character 122 for two 121’s (i.e., four 53’s), and character 123 for two
122’s (i.e., eight 53’s). Since position 53 contains the pattern XXOXOX, character 123 in this example would
have height A, depth 5h, and width 8w, and it would stand for the pattern

TTTTTTTT
XXXXXXXX

ITTTTTTT
ITTTTTTTT

Such a pattern is, of course, rather unlikely to occur in a GF file, but GFtoDVI would be able to use if it were
present. Designers of gray fonts should provide characters only for patterns that they think will occur often
enough to make the doubling worthwhile. For example, the character in position 120 (XXXXXXXXXXXX), or
whatever is the tallest stack of x’s present in the font, is a natural candidate for repeated doubling.

Here’s how GFtoDVI decides what characters of the gray font will be used, given a configuration of black
and white pixels: If there are no black pixels, stop. Otherwise look at the top row that contains at least one
black pixel, and the eleven rows that follow. For each such column, find the largest k such that 1 < k < 120
and the gray font contains character k and the pattern assigned to position & appears in the given column.
Typeset character k& (unless no such character exists) and erase the corresponding black pixels: use doubled
characters, if they are present in the gray font, if two or more consecutive equal characters need to be typeset.
Repeat the same process on the remaining configuration, until all the black pixels have been erased.

If all characters in positions 1-120 are present. this process is guaranteed to take care of at least six rows
each time: and it usually takes care of twelve, since all patterns that contain at most one “run” of x’s are
present.

354 GRAY FONTS GF to DVL §129

129. Fonts have optional parameters, as described in Appendix F of The TgXbook, and some of these are
important in gray fonts. The slant parameter s, if nonzero, will cause GFtoDVI to skew its output; in this
case the character x will presumably be a parallelogram with a corresponding slant. rat her than the usual
rectangle. METAFONT’s coordinate (x, y) will appear in physical position (zw + yhs, yh) on the proofsheets.

Parameter number 8 of a gray font specifies the thickness of rules that go on the proofs. If this parameter
is zero, TEX's default rule thickness (0.4 pt) will be used.

The other parameters of a gray font are ignored by GFtoDVI, but it is conventional to set the font space
parameter to w and the xheight parameter to h.

130. For best results the designer of a gray font should choose 4 and w so that the user’s DVI-to-hardcopy
software will not make any rounding errors. Furthermore, the dot should be an even number 2m of pixels
in diameter, and the rule thickness should work out to an even number 2n of pixels: then the dots and
rules will be centered on the correct positions, in case of integer coordinates. Gray fonts are almost always
intended for particular output devices, even though ‘DVI’ stands for ‘device independent’; we use DVI files
for METRFONT proofs chiefly because software to print DVI files is already in place.

$131 GF to DVI SLANT FONTS 355

131. Slant fonts. GFtoDVI also makes use of another special type of font, if it is necessary to typeset

slanted rules. The format of such so-called “slant fonts” is quite a bit simpler than the format of gray fonts.
A slant font should contain exactly n characters, in positions 1 to n, where the character in position k

represents a slanted line k units tall, starting at the baseline. These lines all have a fixed slant ratio s.

The following simple algorithm is used to typeset a rule that is m units high: Compute g = [m/n]; then
typeset g characters of approximately equal size, namely (m mod ¢g) copies of character number [m/q] and
q — (m modq)copies of character number [m/q|. For example, if n = 15 and m = 100, we have ¢ = 7: a
loo-unit-high rule will be composed of 7 pieces, using characters 14, 14, 14, 14, 14, 15, 15.

(Globals in the outer block 12) +=

rule-slant: real; { the slant ratio s in the slant font, or zero if there is no slant font }
slant-n: integer; { the number of characters in the slant font }

slant-unit: real; { the number of scaled points in the slant font unit }

slant-reported: real ; { invalid slant ratio reported to the user }

132. GFtoDVI looks only at the height of character n, so the TFM file need not be accurate about the heights
of the other characters. (This is fortunate, since TFM format allows at most 16 different heights per font.)
The width of character £ should be k/n times s times the height of character n.
The slant parameter of a slant file should be s. It is customary to set the default-rule-thickness parameter
(number &) to the thickness of the slanted rules, but GFtoDVI doesn’t look at it.

133. For best results on a particular output device, it is usually wise to choose the ‘unit’ in the above
discussion to be an integer number of pixels, and to make it no larger than the default rule thickness in the
gray font being used.

134. (Initialize global variables that depend on the font data 134) =
if length(font_name|[slant_font]) = 0 then rule-slant — 0.0
else begin rule-slant «— slant (slant-font)/ unity; slant-n + font-ec[slant-font];
i + char_info(slant_font)(slant_-n); slant-unit «— char-height (slant-font)(height-depth(i))/slant-n:
end;
slant-reported « 0.0;
See also sections 166, 172, 181, 202, and 203.

This code is used in section 98.

135. The following error message is given when an absent slant has been requested.

procedure slant-complaint (r : real);
begin if abs (r — slant-reported) > 0.001 then
begin print.nl (‘Sorry, Ican” "t_make diagonal_ rules of_ slanty",7:10:5, !);
slant-reported — T;
end;
end:

356 REPRESENTATION OF RECTANGLES GF to DVI §136

136. Representation of rectangles. OK-the preliminary spadework has now been done. We’re ready
at last to concentrate on GFtoDVI’'s raison d'étre.

One of the most interesting tasks remaining is to make a “map” of the labels that have been allocated.
There usually aren’t a great many labels, so we don’t need fancy data structures; but we do make use
of linked nodes containing nine fields. The nodes generally represent rectangular boxes according to the
following conventions:

xl, zr, yt , and yb are the left, right, top, and bottom locations of a rectangle, expressed in DVI coordinates.
(This program uses scaled points as DVI coordinates. Since DVI coordinates increase as one moves
down the page, yb will be greater than yz.)

xx and yy are the coordinates of the reference point of a box to be typeset from this node, again in DVI
coordinates.

prev and next point to the predecessor and successor of this node. Sometimes the nodes are singly linked
and only next is relevant; otherwise the nodes are doubly linked in order of their yy coordinates, so
that we can move down by going to next, or up by going to prev.

info is the number of a string associated with this node.

The nine fields of a node appear in nine global arrays. Null pointers are denoted by null, which happens
to be zero.

define null =0

(Types in the outer block 9) +=
node-pointer = null . . max-labels;

137. (Globals in the outer block 12) +=

xl, zr, yt, yb: array [1 .. max-labels] of scaled; { boundary coordinates }
xx. yy: array [0 .. maz_labels] of scaled; { reference coordinates }

prev, next: array [0 .. max-labels] of node-pointer; { links }

info:array [1.. max-labels] of str-number; { associated strings }
max-node: node-pointer; { the largest node in use }

max-height: scaled; { greatest difference between yy and yr }

maz_depth : scaled; {greatest difference between yb and yy }

138. It's easy to allocate a new node (unless no more room is left):

function get-avail: node-pointer;
begin ncr (max-node);
if max-node = max-labels then abort(“Too_many, labels and/or rules ! °);
get-avail — max-node;
end;

139. The doubly linked nodes are sorted by yy coordinates so that we don’t have to work too hard to find
nearest neighbors or to determine if rectangles overlap. The first node in the doubly linked rectangle list is
always in location 0, and the last node is always in location max-labels; the yy coordinates of these nodes
are very small and very large, respectively.

define end-of-list = max-labels

(Set initial values 13) +=
Yy [0] — — ‘100011000000 ; yy [end-of-list] + ‘10000000000 ;

8140 GF to DVI REPRESENTATION OF RECTANGLES 307

140. The node-ins procedure inserts a new rectangle, represented by node p, into the doubly linked list.
There’s a second parameter, ¢; node-q should already be in the doubly linked list. preferably with yy[q] near

yylpl-
procedure node-ins (p, q : node-pointer);
var r: node-pointer; { for tree traversal }
begin if yy [p] >yy [¢]then
begin repeat r— q; ¢ — next [¢]; until vy [p] < vy [¢];
next [r] « p; prev[p] « r; next [p] — ¢; prev(q] + p;
end
else begin repeat 7 — ¢; ¢ — prev[q); until yy[p] > yy[q);
prev(r] « p; next [p| — r; prev|p] — ¢ next [q] — p;
end;
if yy[p) — yt[p] > max-height then max-height — yy[p} — yt[p);
if yb[p] — yy[p] > max-depth then max-depth + yb[p] — yy [pl;
end;

141. The data structures need to be initialized for each character in the GF file.

(Initialize variables for the next character 141) =
max-node + 0; next [0] «— end-of-list; prev({end.of list] — 0; max-height « 0; max-depth + 0;
See also sections 153 and 158.

This code is used in section 216.

142. The overlap subroutine determines whether or not the rectangle specified in node p has a nonempty
intersection with some rectangle in the doubly linked list. Again g is a parameter that gives us a starting
point in the list. We assume that g # end-of-list, so that next [q] is meaningful.

function overlap (p, q : node-pointer): boolean;
label exit;
var y-thresh: scaled; { cutoff value to speed the search }
x-left, x-right, y-top, y-bot: scaled; { boundaries to test for overlap }
r: node-pointer; { runs through the neighbors of ¢ }
begin x-left — zl[p]; x-right « zr[p]; y-top + yt [p]; y-bot + yb[p|;
(Look for overlaps in the successors of node g 143);
(Look for overlaps in node ¢ and its predecessors 144);
overlap + false;
exit: end;

143. (Look for overlaps in the successors of node g 143) =
y-thresh + y-bot + max-height; T — next[q];
while yy [r] < y-thresh do

begin if y-bor > yt[r] then
if x-left < zr [r] then
if x-right > zl[r] then
if y-top < yb[r] then
begin overlap « true; return:
end;
T next [r];
end

This code is used in section 142,

358 REPRESENTATION OF RECTANGLES

GF to DVI 5144
144, (Look for overlaps in node ¢ and its predecessors 144) =
y-thresh «— y-top — max-depth; r — q;
while yy [r] > y-thresh do
begin if y-bot > yt[r] then
if x-left < zr{r]then
if x-right > x1 [r]then
if y-top < yb[r] then
begin overlap «— true; return;
end;
r o« prev[r];
end

This code is used in section 142.

145. Nodes that represent dots instead of labels satisfy the following constraints:
infolp] < 0;
ol [p] = xx [p] ~ dot-width,
yt [p] = vy [p] — dot-height,

p > first-dot;
xr [p] = xx [p] + dot-width;
yb[p] = yy [p) + dot-height.

The nearest-dot subroutine finds a node whose reference point is as close as possible to a given position,
ignoring nodes that are too close. More precisely, the “nearest” node minimizes

d(q, p) = max(|zz[q] — zz[p]], lyyla] — yy(pll)

over all nodes q with d(q,p) > d0. We call the subroutine nearest-dot because it is used only when the
doubly linked list contains nothing but dots.

The routine also sets the global variable twin to true, if there is a node ¢ # p with d(q,p) < d0.

146. (Globals in the outer block 12) +=
first-dot: node-pointer;

{ the node address where dots begin }
twin: boolean;

{ is there a nearer dot than the “nearest” dot? }

147.

If there is no nearest dot, the value null is returned; otherwise a pointer to the nearest dot is returned.
function nearest-dot (p : node-pointer; d0 : scaled): node-pointer;

var best-g: node-pointer; { value to return }

d-min, d: scaled; { distances }

begin twin « false; best-q — 0; d-min «— 2000000000;
(Search for the nearest dot in nodes following p 148);

(Search for the nearest dot in nodes preceding p 149);
nearest-dot «— best-g;

end:

§148 GF to DVI REPRESENTATION OF RECTANGLES 339

148. (Search for the nearest dot in nodes following p 148) =
q — next[p|;
while yy[g] < yy [p] + d-min do
begin d « abs(zz [q] — xx [p]);
if d <yylq] - vy [p] then d — yylg| - yy[pl:
if d < d0 then twin — true
else if d < d-min then
begin d-min «— d; best-q — q:
end:
4 — next|q];
end

This code is used in section 147.

149. (Search for the nearest dot in nodes preceding p 149) =
q < prev[p];
while yylq] > yy[p] — d-min do
begin d — abs(zz[g] — zz[p]);
if d < yy[p] - yy [g] then d — yy[p] — vy [4];
if d < d0 then twin « true
else if d < d-min then
begin d-min «— d; best-q +— q;
end;
g — prev[g);
end

This code is used in section 147.

360 DOING THE LABELS GF to DVI 8150

150. Doing the labels. Each “character” in the GF file is preceded by a number of special commands
that define labels, titles, rules, etc. We store these away, to be considered later when the boc command
appears. The boc command establishes the size information by which labels and rules can be positioned, so
we spew out the label information as soon as we see the boc. The gray pixels will be typeset after all the
labels for a particular character have been finished.

151. Here is the part of GFtoDVI that stores information preceding a boc. It comes into play when cur-gf
is between rrzl and no-op, inclusive.
define font-change (#) =
if fonts-not-loaded then
begin #;
end
else print_nl(" (Tardy_f ont_change will be ignored, (byte, ,curloc:1,")!) ")
(Process a no-op command 151) =
begin k + interpret-xxx;
case kof
no-operation: do-nothing;
title-font, label-font, gray-font, slant-font: font-change (font-name [k] + cur-string;
font-arealk] — null-string; font-atfk] — O; init-str-ptr «— str-ptr):
title-font + area-code, label-font + area-code, gray-font + area-code, slant-font + area-code:
font-change(font-arealk — area-code] «— cur-string; init-str-ptr « str-ptr);
title-font + at-code, label-font + at-code, gray-font + at-code, slant-font + at-code:
font-change(font-at [k — at-code] + get-yyy; init-str-ptr + str-ptr);
rule-thickness-code: rule-thickness + get-yyy;
rule-code: (Store a rule 156);
offset-code: (Override the offsets 154);
z-offset_code: x-offset — get-yyy;
y-offset_code: y_offset — get-yyy;
title-code: (Store a title 159);
null-string: (Store a label 160);
end; { there are no other cases }
end

This code is used in section 216.

152. The following quantities are cleared just before reading the GF commands pertaining to a character.

(Globals in the outer block 12) +=
rule-thickness: scaled; { the current rule thickness (zero means use the default) }
offset_z, offset-y: scaled; { the current offsets for images }
z_offset , y_offset : scaled; { the current offsets for labels }
pre-min_x , pre-max-x , pre.min_y, pre.max.y: scaled;
{ extreme values of coordinates preceding a character, in METAFONT pixels }

153. (Initialize variables for the next character 141) +=
rule-thickness + 0; offset_.x — 0; offset_y — 0; zr_offset + 0: y-offset «— 0; pre-minx - 2000000000 :
pre_maz.z + — 2000000000 ; pre_min_y « 2000000000 : pre_maz_y + — 2000000000 ;

154. (Override the offsets 154) =

begin offset_r - get-yyy; offset.y «— get-yyy;
end

This code is used in section 151.

§155 GF to DVI DOING THE LABELS 361

155. Rules that will need to be drawn are kept in a linked list accessible via rule-ptr, in last-in-first-out
order. The nodes of this list will never get into the doubly linked list, and indeed these nodes use different
field conventions entirely (because rules may be slanted).

define x0 =zl { starting x coordinate of a stored rule }

define y0=yr { starting y coordinate (in scaled METRFONT pixels) }
define xI = xr { ending x coordinate of a stored rule }

define yI=yb { ending y coordinate of a stored rule }

define rule-size = xx { thickness of a stored rule, in scaled points }

(Globals in the outer block 12) +=
rule-ptr : node-pointer; { top of the stack of remembered rules }

156. (Store a rule 156) =
begin p + get-avail; next [p| «— rule-ptr; rule-ptr + p;
20(p] — get-yyy; y0[p| — get-yyy; z1 [p] — get-yyy; y! [p] — get_yyy;
if x0 [p] < pre-min-x then pre-min-x + x0 [p];
if z0[p] > pre-max-x then pre-max-x — x0 [p];
if y0 [p] < pre_min_y then pre-min-y — y0 [p];
if y0[p] > preemax-y then pre-max-y «— y0[p];
if xl [p] < pre-min-x then pre-min-x + xl [p];
if xI [p] > preemax-x then pre-max-x «— xl [p);
if yl [p] < pre-min-y then pre-min-y «— yl [pl;
if yl [p] > pre-maz_ y then pre-max-y «— yl [p};
rule-size [p] < rule- thickness ;
end

This code is used in section 151.

157. Titles and labels are, likewise, stored temporarily in singly linked lists. In this case the lists are
first-in-first-out. Variables title-tail and label-tail point to the most recently inserted title or label; variables
title-head and label-head point to the beginning of the list. (A standard coding trick is used for [label-head.
which is kept in nezt[end.of list]; we have label-tail = end-of-list when the list is empty.)
The prev field in nodes of the temporary label list specifies the type of label, so we call it lab-typ.
define lab-typ = prev { the type of a stored label ("/" . .."8")}
define label-head = next | end.of-list]
(Globals in the outer block 12) +=
label-tail: node-pointer; { tail of the queue of remembered labels }
title-head, title-tail: node-pointer; { head and tail of the queue for titles }

158. We must start the lists out empty.

(Initialize variables for the next character 141) += ’
rule-ptr — null; title-head — null; title-tail + null; label-head «— null; label-tail + end-of-list:
first-dot + mazx_labels;

159. (Store a title 159) =
begin p « get-avail; info [p| + cur-string;
if title-head = null then title-head — p
else next| title-tail] «— p;
title-tail + p;
end

This code is used in section 151.

362 DOING THE LABELS GF o DVI §160

160. We store the coordinates of each label in units of METAFONT pixels; they will be converted to DVI
coordinates later.

(Store a label 160) =
if (label-type < "/") V (label-type > “8”) then
print_nl(“Bad_label_type precedes byte ", curloc:1,"!")
else begin p «— get-avail; next [label-tail] + p; label-tail «— p;
lab_typ[p] — label-type; info[p] «— cur-string;
zz[p] — get_yyy: vy [p] — get_yyy;
if zz[p] < pre-minx then pre-minx — zz|p);
if zz[p] > pre-max-x then pre_maz_z + zz[p|;
if yy[p] < pre-min-y then pre-min-y — yy[pl;
if yy[p] > preomaz_y then pre_maz_y — yy[pl;
end

This code is used in section 151.

161. The process of ferreting everything away comes to an abrupt halt when a boc command is sensed.
The following steps are performed at such times:

(Process a character 161) =
begin check-fonts; (Finish reading the parameters of the boc 162);
(Get ready to convert METAFONT coordinates to DVI coordinates 167);
(Output the bop and the title line 169);
print(* [, total-pages : 1); update-terminal; { print a progress report }
(Output all rules for the current character 170);
(Output all labels for the current character 178);
do-pixels; dvi.out (eop); { finish the page }
(Adjust the maximum page width 200);
print ("1 7); update-terminal;
end

This code is used in section 216.

162. (Finish reading the parameters of the boc 162) =

if cur-gf = boc then
begin ext « signed-quad; { read the character code }
char-code + ext mod 256;
if char-code < 0 then char-code < char-code + 256;
ext «— (ext — char-code) div 256; k «— signed-quad; { read and ignore the prev pointer }
min-x «— signed-quad; { read the minimum x coordinate }
max-x + signed-quad; { read the maximum x coordinate }
min.y — signed-quad; { read the minimum y coordinate }
max- y « signed-quad ; { read the maximum y coordinate }
end

else begin ext + 0; char-code + get-byte; { cur-gf = bocl }
min-x — get-byte; max-x + get-byte; min_.x + max-x — min-x;
min-y « get-byte; max-y + get-byte; min-y — max-y — min-y;
end:

if max-x — min-x > widest-row then abort (“Character too_ wide! ")

This code is used in section 161.

§163 GF to DVI DOING THE LABELS 363

163. (Globals in the outer block 12) +=

char-code, ext : integer; { the current character code and extension }
min-x, max-x, min-y. max-y: integer; { character boundaries, in pixels }
x. y: integer; { current painting position, in pixels }

z: integer; { initial painting position in row, relative to min-x }

164. METAFONT coordinates (z, y) are converted to DVI coordinates by the following routine. Real values
x-ratio, y-ratio, and slant-ratio will have been calculated based on the gray font; scaled values delta-x and
delta-y will have been computed so that, in the absence of slanting and offsets, the METAFONT coordinates
(min-x, max-y + 1) will correspond to the DVI coordinates (0,50 pt).

procedure convert (x, y : scaled);
begin x « x + x-offset; y «— y + y-offset; dvi.y — -round (y-ratio * y) + delta-y;
dvi-x + round (x-ratio ¥ x + slant-ratio * y) + delta-x;
end;

165. (Globals in the outer block 12) +=

x-ratio, y-ratio, slant-ratio: real; { conversion factors }

unsc-x-ratio, unsc-y-ratio, unsc,slant-ratio: real; {ditto, times unity }
fudge-factor: real; { unconversion factor }

delta-x, delta-y: scaled; { magic constants used by convert }

dvi-x , dvi.y : scaled; { outputs of convert, in scaled points }

over-col: scaled; { overflow labels start here }

page-height, page-width: scaled; { size of the current page }

166. (Initialize global variables that depend on the font data 134) +=
i — char-info(gray-font)(1),
if —char_ezists(i) then abort("Missing pixel char! ");
unsc-x-ratio «— char-width (gray-font)(1); x-ratio «— unsc-x-ratio /unity;
unsc-y-ratio «— char_height(gray.font)(height.depth(i)); y-ratio — unsc_y.ratio/unity;
unsc-slant-ratio + slant (gray-font) * y-ratio; slant-ratio — unsc_slant_ratio[unity;
if x-ratio * y-ratio = 0 then abort(Vanishing pixel size!~);
fudge-factor — (slant_ratio/z_ratio)/y-ratio;

167. (Get ready to convert METAFONT coordinates to DVI coordinates 167) =
if pre_mun_x < min-x % unity then offset-x «— offset-x + min-x * unity — pre_min._t;
if pre_maz_y > max-y * unity then offset-y « offset-y + max-y * unity — pre-max-y;
if pre-max-x > max-x * unity then pre-max-x « pre.maz_x div unity
else pre-max-x + max-x;
if premin_y < min-y * unity then pre-min-y « pre-min-y div unity
else pre-min-y «— min- y;
delta-y «— round (unsc-y-ratio * (max-y + 1) — y-ratio * offset.y) + 3276800;
delta-x «— round(z.ratio % offset_.x — unsc-x-ratio x min_t);
if slant-ratio > 0 then over.col «— round(unsc_z_ratio * pre-max-x + unsc-slant-ratio * max-y)
else over_col — round (unsc-x-ratio * pre-max-x + unsc-slant-ratio * min-y);
over.col «— over-col + delta-x + 10000000;
page-height «— round(unsc_y_ratio * (max-y + I — pre-min-y)) + 3276800 — offset_y;
if page-height > maz_v then maz_v — page-height;
page-width + over_col — 10000000

This code is used in section 161.

364 DOING THE LABELS GF to DVI q163

168. The dwvi_goto subroutine outputs bytes to the DVI file that will initiate typesetting at given DVI
coordinates, assuming that the current position of the DVI reader is (0,0). This subroutine begins by
outputting a push command; therefore, a pop command should be given later. That pop will restore the DVI
position to (0,0).
procedure dvi_goto (z.y: scaled);

begin dvi_out(push);

if £ #0 then
begin dvi_out(right4); dvi-four(x);
end;

if y#0 then
begin dvi-out (down4); dvi-four (y);
end;

end;

169. (Output the bop and the title line 169) =
dvi-out(bop); incr(total-pages); dvi_four(rotal-pages); dvi_four(char-code); dvi_four(ext);
for k—3to 9 do dvi-four (0);
dvi-four (lust-bop); lust-bop — dvi_offset + dvi-ptr — 45;
dvi_goto (0, 655360); { the top baseline is 10 pt down }
if use-logo then
begin select-font (logo-font); hbox (small-logo, logo-font, true);
end:
select_font(title-font); hbox(time-stump, title-font, true);
hbox (page_header, title-font, true); dvi_scaled (total-pages * 65536.0);
if (char-code # 0) V (ext # 0) then
begin hbox(char-header, title-font, true); dvi-scaled (char-code * 65536.0);
if ext #0 then
begin hbox (ext-header, title-font, true); dvi-scaled (ext * 65536.0);
end;
end;
if title-heud # null then
begin next [title-tail] — null;
repeat hbox (left-quotes, title-font, true); hbox (info [title-head], title-font, true);
hbox (right-quotes, title-font, true); title-heud — next [title-head];
until title-head = null;
end:
dvi-out (pop)

This code is used in section 161.

8170 GF to DVI DOING THE LABELS

170. define tol = 6554 { one tenth of a point. in DVI coordinates }

(Output all rules for the current eharacter 170) =
if rule-slant # 0 then select-font (slant-font);
while rule-ptr # null do
begin p «— rule-ptr; rule-ptr — next [pl;
if rule_size[p] = 0 then rule_size[p] — gray-rule-thickness;
if rule-size [p] > 0 then
begin convert(z0[p], y0[p)); temp-x — dvi_z; temp-y — dvi-y; convert(zl [p], yI [p]);
if abs(temp-x — dvi-x) < tol then (Output a vertical rule 173)
else if abs(temp-y — dvi-y) < tol then (Output a horizontal rule 174)
else (Try to output a diagonal rule 175);
end;
end

This code is used in section 161.

171. (Globals in the outer block 12) +=
gray-rule-thickness : scaled; { thickness of rules, according to the gray font }
temp-x, temp-y: scaled; { temporary registers for intermediate calculations }

172. (Initialize gl & al variables that depend on the font data 134) +=
gra y-rule- thickness «— default-rule- thickness (gru y-font);
if gray-rule-thickness = 0 then gray-rule-thickness + 26214; {0.4 pt }

173. (Output a vertical rule 173) 3
begin if temp-y > dvi-y then
begin k « temp-y; temp-y «— dvi-y; dvi-y «— k;
end;
dvi_goto(dvi-x — (rule_size[p] div 2), dvi-y); dvi-out (put-rule); dvi_four(dvi-y — temp-y);
dvi_four (rule-size [p]); dvi-out (pop);
end

This code is used in section 170.

174. (Output a horizontal rule 174) =
begin if temp-x < dvi-x then
begin k « temp-x; temp-x — dvi-x; dvi-x — k;
end;
dvi_goto (dvi-x, dvi-y + (rule-size [p] div 2)); dvi-out (put-rule); dvi_four (rule-size [p]):
dvi_four(temp-x — dvi-x); dvi-out (pop);
end

This code is used in section 170. g

BT

366 DOING THE LABELS GF toDVI 8175

175. (Try to output a diagonal rule 175) =
if (rule-slant = 0) V (abs(temp_z + rule-slant x (temp-y ~ dvi-y) — dvi-x) > rule_size[p]) then
slant_complaint ((dvi-x — temp_z)/(temp-y — dvi-y))
else begin if temp_y > dvi-y then
begin k «— temp-y; temp-y — dvi-y; dvi-y + k:
k + temp_x; temp-x + dvi-x; dvi-x « k:
end;
m + round((dvi-y — temp-y)/slunt-unit);
if m> 0 then
begin dvi-goto(dvi-x, dvi-y); q « ((m — 1) div slant.n) + 153 k —m div ¢: p — m mod g¢:
q < g — p; (Vertically typeset q copies of character k 176);
(Vertically typeset p copies of character k + 1 177);
dvi-out (pop);
end;
end

This code is used in section 170.

176. (Vertically typeset g copies of character k 176) =
typeset(k); dy — round (k slant-unit); dvi-out (24); dvi-four (— dy);
while ¢ > 1 do
begin typeset(k); dvi-out (20); decr (q);
end

This code is used in section 175.

177. (Vertically typeset p copies of character k + 1 177) =
if p> 0 then
begin incr (k); typeset(k); dy — round (k * slant-unit); dvi-out (24); dvi-four (= dy);
while p > 1do
begin typeset(k): dvi-out (20); decr(p);
end;
end

This code is used in section 175.

178. Now we come to a more interesting part of the computation, where we go through the stored labels
and try to fit them in the illustration for the current character, together with their associated dots.

It would simplify font-switching slightly if we were to typeset the labels first, but we find it desirable to
typeset the dots first and then turn to the labels. This procedure makes it possible for us to allow the dots
to overlap each other without allowing the labels to overlap. After the dots are in place, we typeset all
prescribed labels, that is, labels with a lab_typ of "1" .. "8": these, too, are allowed to overlap the dots and
each other.

(Output all labels for the current character 178) =

overflow-line + 1;

if label-head # null then
begin next [label_tail] + null; select-font (gray-font); (Output all dots 184);
(Find nearest dots, to help in label positioning 188);
select-font (label-font); (Output all prescribed labels 186);
(Output all attachable labels 190);
(Output all overflow labels 197);
end

This code is used in section 161.

5179 GF to DVI DOING THE LABELS 367

179. (Gdhls in the outer block 12) +=
overflow_line: integer; { the number of labels that didn’t fit, plus 1 }

180. A label that appears above its dot is considered to occupy a rectangle of height 7 + A, depth d, and
width w + 2A. where (h, w, d) are the height, width, and depth of the label computed by hbox, and A is an
additional amount of blank space that keeps labels from coming too close to each other. (GFtoDVI arbitrarily
defines A to be one half the width of a space in the label font.) This label is centered over its dot, with its
baseline d + h’ above the center of the dot: here A’ = dot-height is the height of character O in the gray font.

Similarly, a label that appears below its dot is considered to occupy a rectangle of height 4, depth d + A.
and width w + 2A; the baseline is & + h’ below the center of the dot.

A label at the right of its dot is considered to occupy a rectangle of height 2 + A, depth d + A, and
width w + A. Its reference point can be found by starting at the center of the dot and moving right
w’ = dot-width (i.e., the width of character 0 in the gray font), then moving down by half the x-height of
the label font. A label at the left of its dot is similar.

A dot is considered to occupy a rectangle of height 2k’ and width 2w’, centered on the dot.

When the label type is "1" or more, the labels are put into the doubly linked list unconditionally. Otherwise
they are put into the list only if we can find a way to fit them in without overlapping any previously inserted
rectangles.

(Globals in the outer block 12) +=

delta: scaled; { extra padding to keep labels from being too close }
half-x-height : scaled; { amount to drop baseline of label below the dot center }
thrice-x-height: scaled; { baseline separation for overflow labels }

dot-width, dot-height: scaled; { w’ and h’ in the discussion above }

181. (Initialize global variables that depend on the font data 134) +=
i — char_info(gray_font)(0);
if ~char_ezists(i) then abort("Missing, dot char!");
dot-width — char_width(gray-font)(i); dot-height — char_height(gray_font)(height_depth(7));
delta — space(label_font) div 2; thrice-x-height «— 3 * x-height (label-font);
half_z_height — thrice-x-height div 6;

182. Here is a subroutine that computes the rectangle boundaries zl [p], zr [p], yt [p], yb [p], and the reference
point coordinates xx [p], yy [p], for a label that is to be placed above a dot. The coordinates of the dot’s
center are assumed given in dvi-x and dvi-y; the hbox subroutine is assumed to have already computed the
height, width, and depth of the label box.
procedure top-coords (p : node-pointer);

begin zz(p] — dvi-x — (box-width div 2); zl[p] — xx [p] — delta; zr [p] — xx [p] + box-width + delta;

yb [p] — dvi-y — dot-height; yy [p] + yb[p) — box-depth: yt [p] — yy [p] — box-height — delta;

end:

368 DOING THE LABELS GFto bV 5183

183. The other three label positions are handled by similar routines.

procedure bot_coords (p : node_pointer);
begin zz(p] — dvi-x — (box-width div 2); zl [p] — xx [p] — delta; xr [p] — xx [p] + box-width + delta:
yt [p] — dvi-y + dot-height; yy [p] — yt [p] + box-height: yb [p] — yy [p] + box-depth + delta;
end:

procedure right-coords (p : node-Pointer);
begin zl[p] — dvi-x + dot-width; zz[p] — zl[p]; zr[p] — zx[p] + box-width + delta;
yylp] «— dvi-y + half-x-height; yb[p] — yy[p| + box-depth + delta; yt[p] — yy[p| — box-height — delta;
end;

procedure left_coords (p : node-pointer);
begin zr{p] « dvi-x — dot-width; zz[p] — zr[p| — box-width; zl[p] — zx[p] - delta;
yylp] — dvi-y + half-x-height; yb[p] — yy[p] + box-depth + delta; yt[p] — yy[p] — box-height — delta;
end;

184. (Output all dots 184) =
p - label-head; first-dot «— max-node + 1;
while p #null do
begin convert(zz[p), yy(p)); zz[p] — dvi-x; yylp] — dvi-y;
if lab_typ[p] < "6" then (Enter a dot for label p in the rectangle list, and typeset the dot 185);
p — next[p|;
end

This code is used in section 178.

185. We plant links between dots and their labels by using (or abusing) the zl and info fields, which aren’t
needed for their normal purposes.
define dot-for-label = xl
define label-for-dot = info
(Enter a dot for label p in the rectangle list, and typeset the dot 185) =
begin q « get-avail; dot._for.label[p] — g; label-for-dot [q] — p;
xx [q] « dvi-x; zl[q] — dvi-x — dot-width; xr [q] — dvi-x + dot-width;
vy lq] — dvi_y; ytlq) — dvi-y — dot-height ; yblq] — dvi-y + dot-height:
node-ins (g, 0);
dvi_goto(zz{q], yylq]); dvi_out(0); dvi-out(pop);
end

This code is used in section 184.

186. Prescribed labels are now taken out of the singly linked list and inserted into the doubly linked list.
(Output all prescribed labels 186) =
q + end-of-list; { label-head = next [q] }
while next [q] # null do
begin p « next [g];
if lab_typ[p] > "0" then
begin nezt[q] — next|p];
(Enter a prescribed label for node p into the rectangle list, and typeset it 187);
end
else q «— next [q];
end

This code is used in section 178.

$187 GF to DVI DOING THE LABELS 369

187. (Enter a prescribed label for node p into the rectangle list, and typeset it 187) =
begin hbox (info [p], label_font, false); { Compute the size of this label }
dvi_z — zz(p); dviiy — yy[p|;
if lab_typ[p] < "5" then r « dot_for_label[p] else r — 0;
case lab_typ[p] of
", "8 top_coords(p);
w2 ne": left_coords (p);

"3", “77: right-coords (p);

"4r "8": bot-coords (p);

end; { no other cases are possible }

node-ins (p, T);

dvi_goto(zz [p], yy[p]); hbox (info(p], label_font, true); dvi_out(pop);
end

This code is used in section 186.

188. GFtoDVI's algorithm for positioning the “floating” labels was devised by Arthur L. Samuel. It tries
to place labels in a priority order, based on the position of the nearest dot to a given dot. If that dot, for
example, lies in the first octant (i.e., east to northeast of the given dot), the given label will be put into the
west slot unless that slot is already blocked; then the south slot will be tried, etc.

First we need to compute the octants. We also note if two or more dots are nearly coincident, since
Samuel’s algorithm modifies the priority order on that case. The information is temporarily recorded in the
Xr array.

define octant = xr { octant code for nearest dot, plus 8 for coincident dots }

(Find nearest dots, to help in label positioning 188) =
p + label-head;
while p #null do
begin if lab-typ[p] < "0" then (Compute the octant code for floating label p 189);
p — next [p|;
end;

This code is used in section 178.

370 DOING THE LABELS GFwoDVI §139

189. There’s a sneaky way to identify octant numbers, represented by the code shown here. (Remember
that y coordinates increase downward in the DVI convention.)

define first-octant = 0
define second-octant = 1
define third-octant = 2
define fourth-octant = 3
define fifth-octant = 7
define sixth-octant = 6
define seventh-octant = 5
define eighth-octant = 4

(Compute the octant code for floating label p 189) =
begin r « dot_for_label[p]; q¢ «— nearest-dot(r, 10);
if twin then octant[p] < 8 else octant[p] — 0;
if ¢ # null then

begin dx « zz[q) — zz[r]; dy — yylq] — yy[r];
if dy > 0 then octant[p] «— octant [p] + 4;
if dx < 0 then incr(octant|p]);
if dy > dx then incr(octant [p));
if -dy > dx then incr(octant [p]);
end;
end

This code is used in section 188.

190. A procedure called place-label will try to place the remaining labels in turn. If it fails, we “disconnect”
the dot from this label so that an unlabeled dot will not appear as a reference in the overflow column.

(Output all attachable labels 190) =
q — end-of-list: { now next (q] = label-head }
while next{q] # null do
begin p + next [q]; r — next[p]; s — dot_for_label[p];
if place-label(p) then next [q] «— r
else begin label-for-dot [s] « null; { disconnect the dot }
if lab_typ[p] = "/" then nezt[q] — r { remove label from list }
else q«p; { retain label in list for the overflow column }
end;
end

This code is used in section 178.

191. Here is the place-label routine, which uses the previously computed octant information as a heuristic.
If the label can be placed, it is inserted into the rectangle list and typeset.

function place_label(p : node-pointer): boolean;
label exit, found;
var oct: 0. 15; { octant code }
dfl: node-pointer; { saved value of dot_for_label[p] }
begin hbox(info [p], label-font, false); { Compute the size of this label }
dvi.z — zzp]; dvi-y + yy[p]; (Find non-overlapping coordinates, if possible, and goto found: otherwise
set place-label «— false and return 192);
found: node-ins (p, dfl);
dvi_goto(zz[p], yy[p]); hboz (info(p], label-font, true); dvi_out(pop); place-label — true:
exit rend:

§192 GF to DVI DOING THE LABELS 371

192. (Find non-overlapping coordinates, if possible, and goto found; otherwise set place-label « false
and return 192) =
dfl — do t-for-label [p]; oct — octant [p]; (Try the first choice for label direction 193);
(Try the second choice for label direction 194 };
(Try the third choice for label direction 195);
(Try the fourth choice for label direction 196);
zz(p] — dvi-x; yylp] — dvi.y; dot_for_label[p] — dfl: { no luck; restore the coordinates }
place-label «— false; return

This code is used in section 191.

193. (Try the first choice for label direction 193) =
case oct of
first-octant , eighth-octant , second-octant + 8, seventh-octant + 8: left_coords (p);
second-octant , third-octant , first-octant + 8, fourth-octant + 8: bot-coords (p);
fourth-octant , fifth-octant , third-octant + 8, sixth-octant + 8: right-coords (p);
sixth-octant , seventh-octant, fifth-octant + 8, eighth-octant + 8: top-coords (p);
end;
if —overlap(p, dfl) then goto found

This code is used in section 192.

194. (Try the second choice for label direction 194) =
case oct of
first-octant, fourth-octant , fifth-octant + 8, eighth-octant + 8: bot_coords (p);
second-octant , seventh-octant, third-octant + 8, sixth-octant + 8: left_coords(p);
third-octant , sixth-octant, second-octant + 8, seventh-octant + 8: right-coords (p);
fifth-octant , eighth-octant , first-octant + 8, fourth-octant + 8: top-coords (p);
end;
if ~overlap(p, dfl) then goto found

This code is used in section 192.

195. (Try the third choice for label direct ion 195) =
case oct of
first-octant, fourth-octant, sixth-octant + 8, seventh-octant + 8: top-coords(p);
second-octant . seventh-octant, fourth-octant + 8, fifth-octant + 8: right-coords (p);
third-octant , sixth-octant , first-octant + 8, eighth-octant + 8: left_coords(p);
fifth-octant , eighth-octant, second-octant + 8, third-octant + 8: bot_coords(p);
end;
if —overlap(p, dfl) then goto found

This code is used in section 192.

196. (Try the fourth choice for label direction 196) =
case oct of
fzrst-octant , eighth-octant , first-octant + 8, eighth-octant + 8: right-coords (p);
second-octant , third-octant, second-octant + 8, third-octant + 8: top_coords(p);
fourth-octant, fifth-octant, fourth-octant + 8, fifth-octant + 8: left_coords(p);
sixth-octant , seventh-octant, sixth-octant + 8, seventh-octant + 8: bot_coords(p);
end:
if —overlap (p, dfl) then goto found

This code is used in section 192.

372 DOING THE LABELS GF toDVI S 197

197. (Output all overflow labels 197) =
(Remove all rectangles from list, except for dots that have labels 198);
p « label-head;
while p #null do
begin (Typeset an overflow label for p 199);
p — next [p];
end

This code is used in section 178.

198. When we remove a dot that couldn’t be labeled, we set its next field to the preceding node that
survives, so that we can use the nearest-dot routine later. (This is a bit of a kludge.)

(Remove all rectangles from list, except for dots that have labels 198) =
p « next[0];
while p # end-of-list do
begin q — next [p];
if (p < first-dot) V (label_for_dot[p] = null) then
begin r «— prev(p|; next [r] «— q; prev[q] « r: next [p] + r:
end;
P—q
end

This code is used in section 197.

199. Now we have to insert p into the list temporarily, because of the way nearest-dot works.

(Typeset an overflow label for p 199) =
begin r «— next [dot_for_label[p]]; s — next [r]; t « next [p]; next [p] + s; prev(s| — p; next [r] — p;
prev([p] — r;
q < nearest-dot (p, 0);
next [r] «— s; prev[s] - r; next [p] — t; { remove p again }
incr (overflow-line); dvi_goto (over_col, overflow-line * thrice-x-height + 655360);
hbox (info[p], label-font, true);
if ¢ # null then
begin hbox (equals-sign, label-font, true); hbox(info[label_for_dot [q]], label-font, true);
hbox (plus-sign. label_font , true); dvi_scaled ((xx [p| — xx [q])/z_ratio + (yy [p]— yy [q]) * fudge-factor):
dvi-out (", "): dvi_scaled ((yy(q) — yy[p])/y-ratio); dvi_out(") ");
end;
dvi-out (pop);
end

This code is used in section 197.

200. (Adjust the maximum page width 200) =
if overflow-line > 1 then page-width — over-col + 10000000;
{ overflow labels are estimated to occupy 107 sp }
if page-width > maz.h then max-h — page-width

This code is used in section 161.

$201 GF to DVI DOING THE PIXELS 373

201. Doing the pixels. The most interesting part of GFtoDVI is the way it makes use of a gray font to
typeset the pixels of a character. In fact, the author must admit having great fun devising the algorithms
below. Perhaps the reader will also enjoy reading them.

The basic idea will be to use an array of 12-bit integers to represent the next twelve rows that need to be
typeset. The binary expansions of these integers, reading from least significant bit to most significant bit,
will represent pixels from top to bottom.

202. We have already used such a binary representation in the tables ¢[1 . . 120] and d[1 . . 120] of bit
patterns and lengths that are potentially present in a gray font; we shall now use those tables to compute
an auxiliary array b[0 . . 4095]. Given a 12-bit number v, the gray-font character appropriate to v's binary
pattern will be b[v]. If no character should be typeset for this pattern in the current row, b[v] will be 0.

The array 6 can have many different configurations, depending on how many characters are actually present
in the gray font. But it’s not difficult to compute b by going through the existing characters in increasing
order and marking all patterns x to which they apply.

(Initialize global variables that depend on the font data 134) +=
for k0 to 4095 do blk] — 0;
for k — font_bc [gray_font] to font-ec [gray-font]do
if k> 1then
if k<120 then
if char-exists (char-info (gray-font)(k)) then

begin v — c[kl;
repeat b[v] — kv — v + d[k];
until v > 4095;
end;

203. We also compute an auxiliary array rho[0 . . 4095] such that rho[v] = 27 when v is an odd multiple
of 27; we also set rho[O] = 212,

(Initialize global variables that depend on the font data 134) +=
for j —0toll do
begin k — two_to_the[j]; v «— k;
repeat rho [v] «— k; v — v+ k + k;
until v > 4095;
end;
rho[O] «— 4096;

204. (Globals in the outer block 12) +=
brarray [0 ..4095]0of 0 .. 120; { largest existing character for a given pattern }
rho:array [0 .. 4095]) of 1..4096; { the “ruler function” }

374 DOING THE PIXELS GF to DVI 5200

205. But how will we use these tables? Let’s imagine that the DVI file already contains instructions that
have selected the gray font and moved to the proper horizontal coordinate for the row that we wish to
process next. Let’s suppose that 12-bit patterns have been set up in array a, and that the global variables
starting_col and finishing-col are known such that a[j] is zero unless starting-col < j < finishing-col. Here’s
what we can do, assuming that appropriate local variables and labels have been declared:
(Typeset the pixels of the current row 205) =
J «— starting-col;
loop begin while (j < finishing-col) A (bla[j]] = 0) do iner(j);
if j > finishing-col then goto done;
dvi_out{push); (Move to column j in the DVI output 206):
repeat v < blalf]]; a[j] — alj] - c[v]; k — jiiner(5);
while bla[j]]=v do
begin a[j] « a[j] = c[v]; incr(j);
end;
k — j — k; (Output the equivalent of k copies of character v 207);
until bla[j]] = 0;
dvi_out (pop);
end;
done:

This code is used in section 215.

206. (Move to column 7 in the DVI output 206) =
dvi-out(right4); vb afir (round(unsc—x-ratio x j + unsc-slant_ratio * y) + delta-x)

This code is used in section 205.

207. The doubling-up property of gray font character lists is utilized here.

(Output the equivalent of k copies of character v 207) =
reswitch: if k = 1 then typeset(v)
else begin i « char-info (gray-font){(v);
if char-tug(i) = list-tug then { v has a successor}
begin if odd(k) then typeset(v);
k — k div 2; v « qo(rem-byte (i)); goto reswitch;
end
else repeat typeset(v); decr(k);
until k = 0;
end

This code is used in section 205.

208. (Globals in the outer block 12) +=
ararray [0 .. widest-row] of 0 . . 4095; { bit patterns for twelve rows }

209. In order to use the approach above, we need to be able to initialize array a, and we need to be able
to keep it up to date as new rows scroll by. A moment’s thought about the problem reveals that we will
either have to read an entire character from the GF file into memory, or we’ll need to adopt a coroutine-like
approach: A single skip command in the GF file might need to be processed in pieces, since it might generate
more rows of zeroes than we are ready to absorb all at once into a.
The coroutine method actually turns out to be quite simple, so we shall introduce a global variable
blank_rows, which tells how many rows of blanks should be generated before we read the GF instructions for
anot her row.

(Globals in the outer block 12) +=
blank-rows: integer; { rows of blanks carried over from a previous GF command }

$210 GF to DVI DOING THE PIXELS 375

210. Initialization and updating of a can now be handled as follows, if we introduce another variable 1
that is set initially to 1:

(Add more rows to a, until 12-bit entries are obtained 210) =
repeat (Put the bits for the next row, times [, into a 211);
1 — 1+ 1; decr(y);
until { = 4096;

This code is used in section 215.

211. As before, cur-gf will contain the first GF command that has not yet been interpreted.

(Put the bits for the next row, times [, into a 211) =
if blank-rows > 0 then decr(blank-rows)
else if cur-gf # eoc then
begin X « z;
if starting_col > x then starting-col «— x;
(Read and process GF commands until coming to the end of this row 212);
end;

This code is used in section 210.

212. define do-skip = z « 0; paint-black — false
define end-with(#) =
begin #; cur-gf — get-byte; goto donel; end
define five_cases(#)=##+ 1, #+2, #+3 #+4
define eight-cases () =#,#+ |, #+2, #+3, #+4, #+5 #+6, #+7
define thirty-two-cases(#) = eight-cases(#), eight_cases(# + 8), eight_cases(# + 16), eight_cases(# + 24)
define sixty-four-cases (#) = thirty-two-cases (#), thirty-two-cases (# + 32)
(Read and process GF commands until coming to the end of this row 212) =
loop begin continue: case cur-gf of
sixty-four-cases (0): k — cur-gf ;
paintl : k «— get-byte;
paint2: k — get-two-bytes;
puint3: k «— get-three-bytes;
eoc: goto donel ;
skipO : end-with (blank-rows «— 0; do-skip);
skipl : end_with(blank-rows + get-byte; do-skip);
skip2: end_with(blank-rows « get-two-bytes; do-skip);
skip3: end-with(blank-rows + get-three-bytes; do-skip);
sixty-four-cases (new-row-0), sixty-four-cases (new-row-0 + 64), thirty-two-cases (new-row-0 + 128),
five_cases(new-row-0 + 160): end_with(z « cur-gf — new-row-O; paint-black — true);
zrrl , rrr2, T3, TTT4,yyYy, no-op: begin skip_i:p; goto continue;
end:
othercases bud-gf (~ Improper opcode °)
endcases;
(Paint k bits and read another command 213);
end;
donel :

This code is used in section 211.

376 DOING THE PIXELS GFtoDVI 8213

213. (Paint k bits and read another command 213) =
if x + k > finishing_col then finishing_col — x + k;
if paint_black then
for j—xtox + k—=1do a[j] —alj] + L
paint-black — —paint_black; x — x + k; cur_gf + get-byte

This code is used in section 212.

214. When the current row has been typeset, all entries of a will be even; we want to divide them by 2
and incorporate a new row with { = 2!!, However, if they are all multiples of 4, we actually want to divide
by 4 and incorporate two new rows, with [= 21% and | = 2!*. In general, we want to divide by the maximum
possible power of 2 and add the corresponding number of new rows; that’s where the rho array comes in
handy:
(Advance to the next row that needs to be typeset: or return, if we’re all done 214) =
| — rho[a[starting_col]);
for j + starting_col + 1 to finishing_col do
if 1> rho[a[j]] then I « rho[a[j]);
if [=4096 then
if cur-gf = eoc then return
else begin y «— y — blank-rows; blank-rows + 0; | — 1; starting-col — z; finishing_-col — z;
end
else begin while a[starting_col] = 0 do incr(starting_col);
while a[finishing_col] = 0 do decr(finishing-col);
for j « starting-col to finishing_col do a[j] < a[j] div {;
[—4096 div [
end

This code is used in section 215.

215. We now have constructed the major components of the necessary routine: it simply remains to glue
them all toget her in the proper framework.

procedure do-pixels;
label done, donel , reswitch, continue, exit;
var paint-black: boolean; { the paint switch }
starting-col, finishing-col: 0 . . widest-row; { currently nonzero area }
J: 0.. widest-row ; { for traversing that area }
l: integer; { power of two used to manipulate bit patterns }
i: four-quarters; { character information word }
v: eight-bits; { character corresponding to a pixel pattern }
begin select-font (gray-font); delta-x + delta-x + round (unsc_r_ratio * min_x);
for j « 0 to maz.x — min-x do a[j] — 0;
l — 1; z « O; starting-col — 0; finishing_col — 0; y — mux-y + 12; paint-black + false;
blank-rows + 0; cur-gf « get-byte;
loop begin (Add more rows to a, until 12-bit entries are obtained 210);
dvi_goto(0, delta-y — round(unsc_y-ratio * y)); (Typeset the pixels of the current row 205);
dvi-out (pop); (Advance to the next row that needs to be typeset; or return, if we’re all done 214);
end;
exit :end:

4216 GF 1 DVI THE MAIN PROGRAM 377

216. The main program. Now we are ready to put it all together. This is where GFtoDVI starts, and
where it ends.
begin initialize; { get all variables initialized }
(Initialize the strings 77);
start-g!; { open the input and output files }
(Process the preamble 218) ;
cur-gf «— get-byte; init-str-ptr « str-ptr:
loop begin (Initialize variables for the next character 141);
while (cur-gf > rxxl) A (cur-gi < no-op) do (Process a no-op command 151);
if cur-gf = post then (Finish the DVI file and goto final-end 115);
if cur-gf # boc then
if cur-gf # bocl then abort("Missing boc ! “);
(Process a character 161);
cur-gf «— get-byte; str-ptr — init_str_ptr: pool-ptr « str_start [str-ptr];
end;
final-end: end.

217. The main program needs a few global variables in order to do its work.
(Globals in the outer block 12) +=

k, m, p, g r, s, t, dx, dy: integer; { general purpose registers }

time-stamp: str-number ; { the date and time when the input file was made }
use-logo: boolean; { should METAFONT’s logo be put on the title line? }

218. METAFONT sets the opening string to 32 bytes that give date and time as follows:
"UMETAFONT_output_yyyy.mm.dd:tttt"

We copy this to the DVI file, but remove the ‘METAFONT’ part so that it can be replaced by its proper logo.
(Process the preamble 218) =
if get-byte # pre then bad_gf ("No_preamble");
if get-byte # gf-id_byte then bad.gf ("Wrong, ID °);
k « get-byte; { k is the length of the initial string to be copied }
for m «— 1 to k do append-char(get-byte);
dvi-out (pre); dvi-out (dvi-id_byte); { output the preamble }
dvi_four (25400000); dvi_four (473628672); { conversion ratio for sp }
dvi_four(1000); { magnification factor }
dvi-out(k); use-logo «— false; 8 «— str_start[str_ptr];
for m «— I to kdo dvi-out (str_pool [s + m —1]);
if str_pool[s] = "_" then
if str_pool[s + 1] = "M" then
if str_pool (s + 2] = "E" then
if str_pool[s + 3] = "T" then
if str_pool[s + 4] = "A" then
if str_pool(s + 5] = "F" then
if str_pool[s + 6] = "0" then
if str_pool[s + 7] = "N" then
if str_pool[s + 8] = "T" then
begin incr(str-ptr); str_start [str-ptr] — s + 9: use-logo «— true;
end; { we will substitute ‘METAFONT’ for METAFONT }
time-stamp «— make-string

This code is used in section 216.

378 SYSTEM-DEPENDENT CHANGES GF to DVI $219

219. System-dependent changes. This section should be replaced, if necessary, by changes to the
program that are necessary to make GFtoDVI work at a particular installation. It is usually best to design
your change file so that all changes to previous sections preserve the section numbering; then everybody’s
version will be consistent with the printed program. More extensive changes, which introduce new sections,
can be inserted here; then only the index itself will get a new section number.

9220 GF to DVI

220. Index.

INDEN B0

Here is a list of the section numbers where each identifier is used. Cross references to error

messages and a few other tidbits of information also appear.

a: 51, 92, 107, 208.

abend: 58, 60, 62, 63, 64. 66.

abort: 8,58, 61, 73, 74, 75, 91, 138, 162, 166,
181, 216.

abs: 135, 148, 149, 170, 175.

adjust: 69.

alpha: 58, 64, 65.

append-char: 13, 75, 83, 90, 101, 218.

append-to-name: 92.

area-code: 77, 98, 100, 101, 151.
area-delimiter: 87, 89, 90, 91.
ASCII-code: o, 12, 71, 73, 90, 92.
at size: 39.

at-code: 77, 151.

b: 51, 107, 204.

backpointers: 32.

Bad GF file : 8.

Bad label type.. . : 160.

Bad TFM file.. . : 58.

bad-gf: 8, 212, 218.

bad-tfm: 58.

banner: 1, 3.

be: 37, 38, 40, 58, 60, 61, 66, 69.

begin-name: 86, 89, 95.

best-q: 147, 148, 149.

beta: 58, 64, 65.

BigEndian order: 19, 37.

black : 28, 29.

blank-rows: 209, 211, 212, 214, 215.

boc: 27, 29, 30, 31, 32, 35, 85, 96, 150, 151,
161, 162, 216.

bocl: 29, 30, 162, 216.

boolean: 52, 90, 96, 116, 142, 146, 191, 215, 217.

bop: 19, 21, 22, 24, 25, 102, 169.

bot: 43.

bo t-coords : 183, 187, 193, 194, 195, 196.

box-depth: 116, 117, 120, 182, 183.
box-height: 116, 117, 120, 182, 183.
box-width : 116, 117, 118, 120, 182, 183.
break: 15.

buf-ptr : 18, 94, 95, 100, 101.

buffer: 15,16, 18, 75, 82, 83, 94, 95, 100, 101, 114.
byte-file: 45, 46.

b0: 49, 50, 52,53, 55, 60, 62, 63, 64. 66, 67,68, 111.
bl: 49, 50, 52, 55, 60, 62, 63, 64, 66, 67, 68, 111.
b2: 49, 50, 52, 55, 60, 62, 63. 64, 66, 67, 68, 111.
b3: 49, 50, 52, 55, 60, 62, 63, 64, 66, 67, 68, 111.
e 8a, TR, RL, A, 2, LU, LLG, 124,

char: 11, 48.
char-base: 53, 55, 61.

char-code: 162, 163, 169.
char-depth: 55, 120.
char-depth-end: 55.

char-exists: 35, 118, 166, 181, 202.
char-header: 178, 169.

char-height: 55, 120, 134, 166. 181.
char-height-end: 35.
char-info: 40, 53, 55, 118, 134, 166. 181, 202, 207.

char-info-end: 95.
char-info-word: 38, 40, 41.
char-italic: 55.
char-italic-end: 55.
char-kern: 56, 119.
char-kern-end: 56.
char-lot: 29, 32.
char_locO: 29.

char-tag: 55, 118, 207.
char-width: 55, 120, 166, 181.
char-width-end: 55.
Character too wide: 162.
check sum: 24, 31, 39.
check-byte-range: 66, 67.
check-fonts: 96, 161.
Chinese characters: 32.
chr: 11, 12, 14.

coding scheme: 39.

continue: 6,98, 99, 116, 118. 119. 212. 215.
convert: 164, 165, 170. 184

cs: J1.

cur-area: 86, 91, 94.

cur-ext: 86, 91, 94.

cur-gf : 79, 80, 81, 82, 84, 85, 151, 162, 211,
212, 213, 214, 215, 216.

cur-lot: 8, 47, 48, 51, 151, 160.

cur-name: 86, 91, 94.

cur-string : 79, 80, 81, 83, 151, 159, 160.

d: 51, 124, 147.

d-min: 147, 148, 149.

decr: 7,62, 69, 75, 95, 114, 115, 176, 177. 207.
210, 211, 214.

default fonts: 78.

default-gray-font: 78, 97.

default-label-font: 78, 97.

default-rule-thickness: 44, 57, 132, 172.

default-title-font: 78, 97.

del.m: 29.
del.n: 29.
delta: 180, 181, 182. 183.

delta-x:
delta-y:

164, 165, 167, 206, 215.
164, 165. 167, 215.

380 INDEX

den: 21, 23, 25.

depth: 40.

depth-base: 53, 55, 61, 64.

depth-index: 40, 55.

design size: 31, 39.

dft: 191, 192, 193, 194, 195, 196.

dm : 29.

do-nothing: 7, 63, 151.

do-pixels: 161, 215

do-skip: 212.

done: 6,58, 69, 81, 83, 85, 94, 95, 98, 99, 116,
119, 205, 215.

donel : 6, 81, 82, 212, 215.

do t-for-label: 185, 187, 189, 190, 191, 192, 199.

dot-height: 145, 180, 181, 182, 183, 185.

dot-width : 145, 180, 181, 183, 185.

downl: 21.

down2: 21.

down3: 21.

downg: 21, 22, 168.

ds: 31.

DVI files : 19.

dvi_buf: 104, 105, 107, 108.

dvi-buf_size: 5, 104, 105, 106, 108, 109, 115.

dvi-ext: 78, 94.

dvi-file: 46, 47, 107.

dvi_font_def: 98, 111, 115.

dvi-four: 110, 111, 115, 118, 168, 169, 173, 174,
176, 177, 206, 218.

dvi_goto: 168, 169, 173, 174, 175, 185, 187,
191, 199, 215.

dvi-id-byte: 23, 115, 218.

dvi-index: 104, 105, 107.

dvi_limat: 104, 105, 106, 108, 109.

dvi-offset : 104, 105, 106, 108, 115, 169.

dvi-out : 108, 110, 111, 112, 113, 114, 115, 118,
161, 168, 169, 173, 174, 175, 176, 177, 185,
187, 191. 199, 205, 206, 215, 218.

dvi-ptr: 104, 105, 106, 108, 109, 115, 169.

dvi-scaled: 114, 169, 199.

dvi_swap: 108.

dvi_z: 164. 165, 170, 173, 174, 175, 182, 183,
184, 185, 187, 191, 192.

dvi-y: 164. 165, 170, 173, 174, 175, 182, 183,
184, 185, 187, 191, 192.

dx: 29, 32, 189, 217.

dy: 29,32, 176, 177, 189, 217.

d0: 145, 147, 148, 149.

e: 92.

ec: 37, 38, 40, 38, 60, 61, 66, 69.

erght_bits: 45,49, 51, 52, 53, 80, 105, 113, 116, 215

eight-cases: 212.

GFto DVI

eighth-octant: 189, 193, 194, 195, 196.

else: 2.
end: 2.

end-name: 86, 91, 95.
end-of-list: 139, 141, 142, 157, 158, 186, 190, 198.

end-with: 212.
endcases: 2.

eoc: 27,29, 30, 31, 81, 85, 211, 212, 214.

eof: 51, 94.
eoln: 16 .

eop: 19, 21, 22,
equals-sign: 78,
exit: 6, 7, 142,
ext: 162, 163, 1

ext-delimiter: 87, 89, 90, 91.

ext-header: 18,
ext-tag: 41, 63.
exten: 41.

exten-base: 53, 61, 66, 67, 69.

extensible-recipe:
extra-space: 44.

24, 161.
199.
191, 215.
69.

169.

38, 43.

f: 58, 98, 111, 116.
false : 52, 90, 97, 98, 116, 142, 147, 187, 191,

192, 212, 21

5, 218.

fifth_octant: 189, 193, 194, 195, 196.
file-name-size: 9, 48, 92.

final-end: 4, 8,

115, 216.

finishing-col: 205, 213, 214, 215.
first-dot: 145, 146, 158, 184, 198.
first_octant: 189, 193, 194, 195, 196.

first-string: 75,
first-text-char:
five-cases : 212.

fix-word: 38, 39, 44, 52, 64.
fmem-ptr: 53, 54, 61, 63, 69.

76.
11, 14.

fnt-defl : 21, 22, 111.

fnt.def2: 21.
fnt.def3: 21.
fnt_deff : 21.
fnt-num-0: 21,
fntonum_1: 21.
fnt_num_63: 21.
frntl: 21.

fnt2: 21.

fnt3: 21.

fnty: 21.

22, 111.

font-area: 96, 97, 98, 101, 111, 112, 151.

font-at: 96, 97, 98, 101, 151.

font-bc: 53, 69,

118, 202.

font-change: 151.

font-check: 53,
font_dsize: 53,

62, 111.
62, 111.

5220 GF to DVI

font-ec: 33, 69, 118, 134, 202.

font-info: 52, 53, 55, 56, 57, 58, 61, 63, 64.
66, 67, 68, 119.

font_mem_size: 3, 53, 58, 61, 116.

font-name:

font-size: 33, 62, 111.

fonts-not-loaded: 96, 97, 98, 115, 151.

found: 6,94, 98, 99, 100, 191, 193, 194, 195, 196.

four-quarters: 52, 53, 55, 58, 98, 116, 215.

fourth-octant: 189, 193, 194, 195, 196.

Fuchs, David Raymond: 19, 26, 33.

fudge-factor: 165, 166, 199.

get: 16.

get-avail: 138, 156, 159, 160, 185.

get-byte: 51, 81, 82, 83, 84, 85, 162, 212, 213,
215, 216, 218.

get-three-bytes: 51, 81, 85, 212.

get-two-bytes: 51, 81, 85, 212.

get-yyy: 84, 151, 154, 156, 160.

GF file name : 94.

gf-ext: 78, 94.

offile: 46, 47, 48, 51, 80, 94.

gf-id_byte: 29, 218.

GF-to-DVI: 3.

gray fonts: 35, 39, 121.

gray-font: 52, 58, 77, 78, 97, 151, 166, 172, 178,
181, 202, 207, 215.

gray-rule-thickness: 170, 171, 172.

half-buf: 104, 105, 106, 108, 109.

half-x-height: 180, 181, 183.

hbox: 116, 117, 169, 180, 182, 187, 191, 199.

hd: 116, 120.

header: 39.

height: 40.

height-base: 53, 55, 61, 64.
height-depth: 55, 120, 134, 166, 181.

height-index: 40, 55.
home-font-area: 78, 88, 98.

hppp: 31.
ir 3, 23, 98, 116, 215.
I can’t find.. . : 94.

mer: 7,16, 51, 73, 74, 75, 82, 83, 91, 92, 94, 95,
100, 101, 108, 114, 118, 119, 125, 126, 138,
169, 177. 189, 199, 205, 214, 218.

info: 136. 137, 145, 159, 160, 169, 185, 187,
191, 199.

init_str_ptr: 1, 101, 151, 216.

mat_str0: 75, 77.

mat_strl: 75.

mat_str10: 75, 77.

wmat_strll : 75, 77.

mat_str12: 75, 77, 78.

96, 97, 98, 101, 111, 112, 115, 134, 151.

INDEX 381

mit_strl3: 75, 7 7.
imit_str2: 75, 78.
init_str3: 75, 78.
wet.strd: 715, 77, 78.
wmat_strs5: 75, 77, T8.
mat_str6: 75, 77. 78.
wet_str7: 75, 77, 78.
wmat_str8: 75, 77, 78.
mat_str9: 75, 77, 88.

initialize: 3, 216.
mput_ln: 15, 16, 17, 94, 99.
integer: 3,9, 45, 48, 51, 53, 58, 75, 76. 81. 85,

92, 98, 102, 105, 110, 111, 114, 131. 163,
179, 209, 215, 217.

interaction: 95, 96, 97, 98.

internal-font-number: 52, 53, 96, 98, 111, 116.

interpret-xxx: 79. 81, 151.

italic: 40.

italic-base: 53. 55, 61, 64.

italic-index : 40.

it 3, 81, 85, 92, 98, 116, 215.

Japanese characters: 32.

job-name: 93, 94.

jump-out: 8.

k: 23,58, 81,85, 92,98, 107. 111; 114, 116. 217.

kern: 42.

kern-amount: 116, 118, 119.

kern-base: 53, 56, 61, 66, 69.

kern-flag: 42, 119.

keyword-code: 79, 81.

1: 76, 81, 116. 215.

lab-typ: 157, 160, 178, 184, 186, 187, 188, 190.

label-font: 52, 58, 77, 78, 97, 151, 178, 181,
187, 191, 199.

label-for-dot: 185, 190, 198. 199.

label-head: 157, 158, 178. 184, 186, 188, 190, 197.

label-tail: 157, 158, 160, 178.
label-type: 79, 80, 83, 160.
last-bop: 102, 103, 115, 169.

last-text-char: 11, 14.

left_coords: 183, 187. 193, 194, 195, 196.
left-quotes: 78, 169.

length : 72, 83, 98, 100, 111, 115, 134.
If: 37, 58, 60, 61, 69.

lh: 37, 38, 58, 60, 61, 62.

lig-kern: 41, 42.

lig-kern-base: 53, 56, 61, 64, 66, 69.
lig-kern-command: 38, 42.
lig_kern_start: 56, 119.

lig_tag: 41, 63, 118.

line-length: 16, 17, 94, 95, 99, 100, 101.
list-tag: 41, 63, 207.

382 INDEX GF to DVI §220)

load-fonts: 96, 98. No room for TFM file : 61.
logo-font: 52, 58, 97, 98, 115, 169. no-op: 29, 30, 32, 79, 81, 85, 151, 212, 216.
logo-font-name: 78, 97. no-operation: 719, 81, 151.
longest-keyword: 75, 81, 82, 98. no-tag: 41, 63.
loop: 6, 1. node-ins: 140, 185, 187, 191.
m: 3, 81, 98, 114, 217. node-pointer: 136, 137, 138. 140, 142, 146, 147.
may: 21, 23, 24, 25. 155, 157, 182, 183, 191.
make-string: 74, 83, 91, 101, 218. nop: 19, 21, 24, 25.
max-depth: 137, 140, 141, 144. not-found: 6, 81. 82, 98, 99.
maz_h: 102, 103, 115, 200. np: 37, 38, 58, 60, 61, 68.
maz_height: 137, 140, 141, 143. null: 136, 147, 158, 159, 169, 170, 178, 184, 186.
maz.k: 116, 118. 188, 189, 190, 197, 198, 199.
maz_keyword: 77,78, 79, 83. null-string: 77, 79, 81, 83, 86, 91, 94, 97, 98,
maz_labels: 5, 136, 137, 138, 139, 158. 101, 151.
maz-m: 29, 31. num: 21, 23, 25.
max-n: 29, 31. nw: 37, 38, 58, 60, 61, 63.
max-node: 137, 138, 141, 184. nl: 81, 83, 98, 100.
max-quarterword: 52, n2: 81, 83, 98, 100.
max-strings: 9, 70, 74, 91. oct: 191, 192, 193, 194, 195, 196.
maz.v: 102, 103, 115, 167. octant: 188, 189, 191, 192.
max-x: 162, 163, 167, 215. odd: 207.
max-y: 162, 163, 164, 167, 215. offset-code: 77, 151.
memory-word: 52, 53. offset-x: 152, 153, 154, 167.
mid: 43. offset-y: 152, 153, 154, 167.
min-m: 29, 31. Oops.. . : 94.
min-n: 29, 31 op-bit: 42, 55, 119.
min-quarterword: 52, 53, 55, 61, 69. open-dvi-file: 47, 94.
min-x: 162, 163, 164, 167, 215. open_gf-file: 47, 94.
min-y: 162, 163, 167. open-tfm-file: 47, 98.
Missing boc: 216. ord: 12.
Missing dot char: 181. oriental characters: 32.
Missing pixel char: 166. othercases: 2.
more-name : 86, 90, 95. others: 2.
n: 3, 92, 114. output: 3, 15.
name-length: 92. over-col: 165, 167, 199, 200.
name-of-file: 47, 48, 92, 94. overflow-line: 178, 179, 199, 200.
nd: 37, 38, 58, 60, 61, 63. overlap: 142, 143, 144, 193, 194, 195, 196.
ne: 37, 38, 58, 60, 61, 63. p: 140, 142, 147. 182. 183, 191. 217.
nearest-dot: 145, 147,189, 198, 199. pack-file-name: 92, 94, 98.
new-row-0: 29, 30, 212. page-header: 78, 169.
new-row-l : 29. page-height: 163, 167.
new-row-164: 29. page-width: 165, 167, 200.
next: 136, 137, 140, 141, 142, 143, 148, 156, paint-black: 212, 213, 215.

157, 159, 160, 169, 170, 178, 184, 186, 188, paint-switch: 28, 29.

190, 197, 198, 199. paint-01 29, 30.
next-char: 42, 55, 119. paintl : 29, 30, 212.
nh: 37, 38, 58, 60, 61, 63. paint2: 29, 30, 212.
ni: 37, 38, 58, 60, 61, 63. paintd: 29, 30, 212.
nil: 7. param: 39, 44, 57.
nk: 37, 38, 58, 60, 61, 66. param_base: 53, 57, 61, 67. 68, 69.
nl: 37, 38, 58. 60, 61, 63, 66. param_end: 57.

No preamble: 218. place-label: ii-o, 191, 192.

§220 GF to DVI

plus-sign: 78, 199.

pool-pointer: 70, 71, 81, 87, 98, 116.
pool-ptr: 71, 73, 74, 75, 77, 90, 216.
pool-size: 5, 70, 73.

pop: 20, 21, 22, 25, 168, 169, 173, 174, 175, 185.

187, 191, 199, 205, 215.
post: 19, 21, 22, 25, 26, 27, 29, 31, 33, 115, 216.
post-post: 21, 22, 25, 26, 29, 31, 33, 115.
pre: 19, 21, 22, 27, 29, 218.
pre.maz.r: 152, 153, 156, 160, 167.
pre.maz.y: 152, 153, 156, 160, 167.
pre.min.x: 152, 153, 156, 160, 167.
pre.min.y: 152, 153, 156, 160, 167.

prev: 136, 137, 140, 141, 144, 149, 157, 198, 199.

print: 3, 8, 94, 99, 161.
print-In: 3.

print.nl: 3, 58, 94, 99, 135, 151, 160.
proofing: 32.

push: 20, 21, 22, 25, 168, 205.
put-rule: 21, 22, 173, 174.

putl : 21.

put2: 21.

put3: 21.

putf: 21.

q: 140, 142, 217.

gi: 52, 62, 119.

qo: 52, 55, 69, 111, 119, 207.
qqqq: 52, 53, 55, 63, 66, 67, 119.
quad: 44.

quarterword: 52, 116.

gw: 58, 62.

r. 116, 135, 140, 142, 217.
read: 50, 51.

read-font-info: 58, 98.

read_ln: 16 .

read-tfm-word: 50, 60, 62, 64, 68.
read-two-halves: 60.
read-two-halves-end: 60.

real: 114, 131, 135, 165.
rem-byte : 55, 56, 119, 207.
remainder: 40, 41, 42.

rep: 43.

reset: 16, 47.

reswitch: 6, 207, 215.

return: 6, 7.

rewrite: 47.

rho: 203, 204, 214.

right-coords: 183, 187, 193, 194, 195, 196.
right-quotes: 78, 169.

right! : 21.

right2: 21.

rights @+ 21.

INDEX 383

right4 : 21. 22, 118, 168, 206.

round: 114, 164, 167, 175, 176, 177, 206. 215.

rule-code: 77, 151.

rule-p tr: 155, 156, 158, 170.

rule-size: 155, 156, 170, 173, 174, 175.

rule-slant: 131, 134, 170, 175.

rule- thickness: 151, 152, 153, 156.

rule-thickness-code: 77, 79, 151.

st 98, 116. 217.

Samuel, Arthur Lee: 188.

sc: 92, 53, 55, 56, 57, 64, 66, 68.

scaled: 9, 29, 31, 32, 52, 53, 58, 84, 96. 102, 116.
117, 137, 142, 147, 152, 164, 165, 168, 171. 180.

second-octant: 189, 193, 194, 195, 196.

select-font: 111, 169, 170, 178, 215.

send-it: 116, 118, 120.

set-char-O: 21.

set-char-1 : 21.

set_char_127: 2 1.

set-rule: 19, 21.

setl: 21, 22, 113.

set2: 21.

set3: 21.

set4: 21.

seventh-octant: 189, 193, 194, 195, 196.

signed-quad: 51, 81, 84, 85, 162.

sixth-octant : 189, 193, 194, 195, 196.

sixty-four-cases: 212.

skip-nop: 85, 212.

skip0: 29, 30, 212.

skipl: 29. 30, 212.

skip2 : 29, 30, 212.

skip3: 29, 30, 212.

slant: 44, 57, 68, 134, 166.

slant fonts: 35, 39.

slant-complaint: 135, 175.

slant-font: 52, 58, 77, 97, 98, 100, 134, 151, 170.

slant-n: 131, 134, 175.

slant-ratio: 164, 165, 166, 167.

slant-reported: 131, 134, 135.

slant-unit: 131, 134, 175, 176, 177.

small-logo: 78, 169.

Sorry, I can’t.. . : 135.

sp: 23.

space: 44, 97, 118, 181.

space-shrink: 44.

space-stretch: 44.

Special font subst . . . : 99.

start-gf: 94, 216.

starting-col: 205, 211, 214, 2135.

stop-bit: 42, 55, 119.

stop_flag: 42, 119.

384 INDEX

store-four-quarters: 62, 63, 66, 67.

store-scaled: 64, 66, 68.

str-number: 70, 71, 74, 80, 86, 92, 93, 96,
116, 137, 217.

str_pool: 70, 71, 73, 74, 75, 83, 92, 100, 111,
112, 116, 118, 119, 218.

str-ptr: 71,74, 75, 77, 91, 101, 151, 216, 218.
str-room: 73, 83, 90. 101.
str-start: 70, 71, 72, 74, 75, 77, 83, 91, 92, 100,

112, 116, 216, 218.

stuff: 38.

sw: 58, 64, 68.

system dependencies: 2, 3, 8, 11, 15, 16, 26, 33,
45, 47, 50, 51, 52. 78, 86, 87. 8K. RQ. 90,
91, 92, 105, 107. 219.

o 217

tag : 40, 41.

Tardy font change. . . : 151.

temp-x: 170, 171, 174, 175.

temp-y: 170, 171, 173, 175.

term-in: 15, 16.

terminal-line-length: 5, 15, 16, 17, 18.

TeXfonts : 88.

text-char: 11, 12.

text-file: 11, 15.

tfm_ext: 78, 98.

tfmfile: 46, 47, 50, 58.

third-octant : 189, 193, 194, 195, 196.

thirty-two-cases: 212.

thrice-x-height: 180, 181, 199.

time-stamp: 169, 217, 218.

title-code: 77, 151.

title-font: 52,58, 77, 78, 97, 98, 100, 115, 151, 169.
title-head: 157, 158, 159, 169.

title- tail : 157, 158, 159, 169.

tol: 170.

Too many labels: 74, 138.

Too many strings: 73, 91.

top: 43.

top-coords: 182, 187, 193, 194, 195, 196.

total-pages : 102, 103, 115, 161, 169.

true: 7,52, 90. 95, 96, 97, 143, 144, 145. 148, 149,
169, 187, 191, 199, 212, 218.

twin : 145, 146, 147, 148, 149, 189.

two-to-the: 123, 124, 125, 126, 203.

typeset: 113, 120, 176, 177, 207.

unity: 9, 62, 114, 134, 165, 166, 167.

unsc-slant-ratio: 165, 166, 167, 206.

165, 166, 167, 206, 215.

unsc- y-ratio: 163, 166, 167, 215.

update-terminal: 15, 16, 161.

use-logo: 169, 217, 218.

unsc-x-ratio:

GFtoDVI 5220

v: 84, 98, 215.

Vanishing pixel size: 166.
vppp: 31
WEB: 72.
white: 29.
widest-row:
width: 40.
width-base: 53, 55, 61, 63, 64, 69.
width-index: 40, 53.

write: 3, 107.

write-dvi: 107, 108, 109.
write-In: 3.

Wrong ID: 218.

5, 162, 208, 215.

wo: 21.

wl: 21.

w2: 21.

w3: 21.

w4: 21.

x: 23, 110, 114, 116, 163, 164, 168.
x-height: 44, 57, 181.

x-left: 142, 143, 144.

z_offset: 151, 152, 153, 164.
x-offset-code: 77, 151.

x-ratio: 164, 165, 166, 167, 199.
x-right: 142, 143, 144.

xchr: 12, 13, 14, 92.

xclause: 7 .

xl: 136, 137, 142, 143, 144, 145, 155, 182, 183, 185.
xord: 12, 14, 16.

zr: 136, 137, 142, 143, 144, 145, 155. 182,
183, 185, 188.

xx: 136, 137, 145, 148, 149, 155, 160, 182, 183,
184, 185, 187, 189, 191, 192, 199.

rrrl: 21, 29, 30, 79, 81, 85, 151, 212, 216.
xxx2 : 21, 29, 30, 81, 85, 212.

xxx3 : 21,29, 30, 81, 85, 212.

xxx4 : 21, 29, 30, 79, 81, 85, 212.

£0: 21, 155, 156, 170.

xl: 21, 155, 156, 170.

x2: 21.

x3:21.

x4: 21.

y: 163, 164, 168.

y-bot: 142, 143, 144,
y-offset: 151, 152, 153, 164.
y-offset-code: 77, 151.

y-ratio: 164, 165, 166, 167, 199.
y-thresh : 142, 143, 144.
y-top: 142, 143, 144,

yb: 136, 137, 140, 142, 143, 144, 145, 155.
182, 183, 185.

6220 GF to DVI

yt: 136, 137, 140, 142, 143, 144, 145, 155,
182, 183, 185.
yy: 136, 137, 139, 140, 143, 144, 145, 148, 149,

160, 182, 183, 184, 185, 187, 189, 191, 192, 199.

yyy: 29, 30, 32, 79, 81, 84, 85, 212.
y0: 21, 155, 156, 170.
yl: 21, 155, 156, 170.
y2: 2 1.

y3: 21.

y4: 21.

z: 58, 163.

20: 21, 22, 176, 177.
zl:21.

22:21.

23:21.

z4: 21, 22, 176, 177.

INDEX

385

386 NAMES OF THE SECTIONS GF to DVI §220

(Add a full set of k-bit characters 125) Used in section 123.

(Add more rows to a, until 12-bit entries are obtained 210) Used in section 215.

(Add special k-bit characters of the form X .. X0..0 126) Used in section 123.

(Adjust the maximum page width 200) Used in section 161.

(Advance to the next row that needs to be typeset; or return, if were all done 214) Used in section 215.

(Compute the octant code for floating label p 189) Used in section 188.

(Constants in the outer block 5) Used in section 3.

(Declare the procedure called load-fonts 98) Used in section 111.

(Empty the last bytes out of dvi_buf 109) Used in section 115.

(Enter a dot for label p in the rectangle list, and typeset the dot 185) Used in section 184.

(Enter a prescribed label for node p into the rectangle list, and typeset it, 187) Used in section 186.

(Find nearest, dots, to help in label positioning 188) Used in section 178.

(Find non-overlapping coordinates, if possible, and goto found; otherwise set, place-label «— false and
return 192) Used in section 191.

(Finish reading the parameters of the boc 162) Used in section 161.

(Finish the DVI file and goto final-end 115) Used in section 216.

(Get online special input 99) Used in section 98.

(Get ready to convert METAFONT coordinates to DVI coordinates 167) Used in section 161.

(Globals in the outer block 12,15, 17, 18, 37, 46, 48, 49, 53, 71, 76, 80, 86, 87, 93, 96, 102, 105, 117, 124, 131, 137, 146,
152, 155, 157, 163, 165, 171, 179, 180. 204, 208, 209, 217) Used in section 3.

(If the keyword in buffer [1 .. [] is known, change ¢ and goto done 83) Used in section 82.

(Initialize global variables that depend on the font data 134, 166, 172, 181, 202, 203) Used in section 98.

(Initialize the strings 77, 78, 88) Used in section 216.

(Initialize variables for the next character 141, 153, 158) Used in section 216.

(Labels in the outer block 4) Used in section 3.

(Look for overlaps in node g and its predecessors 144) Used in section 142.

(Look for overlaps in the successors of node g 143) Used in section 142.

(Look for possible ligature or kern; goto continue if ¢ has been replaced by a ligature 119)
Used in section 118.

(Make final adjustments and goto done 69) Used in section 59.

(Move to column 7 in the DVI output 206) Used in section 205.

(Output a horizontal rule 174) Used in section 170.

(Output a vertical rule 173) Used in section 170.

(Output all attachable labels 190) Used in section 178.

(Output all dots 184) Used in section 178.

(Output all labels for the current character 178) Used in section 161.

(Output all overflow labels 197) Used in section 178.

(Output all prescribed labels 186) Used in section 178.

(Output all rules for the current character 170) Used in section 161.

(Output the equivalent of k copies of character v 207) Used in section 205.

(Output the font, name whose internal number is f 112) Used in section 111.

(Output the bop and the title line 169) Used in section 161.

(Override the offsets 154) Used in section 151.

(Paint k bits and read another command 213) Used in section 212.

(Process a character 161) Used in section 216.

(Process a no-op command 151) Used in section 216.

(Process the preamble 218) Used in section 216.

(Put the bits for the next row, times /, into @ 211) Used in section 210.

(Read and check the font data; abend if the TEM file is malformed: otherwise goto done 59)
Used in section 58.

(Read and process GF commands until coming to the end of this row 212) Used in section 211.

(Read box dimensions 64) Used in section 59.

§220 GF to DVI NAMES OF THE SECTIONS

(Read character data 63) Used in section 59.

(Read extensible character recipes 67) Used in section 59.

(Read font parameters 68) Used in section 59.

(Read ligature/kern program 66) Used in section 59.

(Read the next k characters of the GF file; change ¢ and goto done if a keyword is recognized 82)
Used in section 81.

(Read the TFM header 62) Used in section 59.

(Read the TFM size fields 60) Used in section 59.

(Remove all rectangles from list, except for dots that have labels 198) Used in section 197.

(Replace z by 2/ and compute a, 3 65 Used in section 64.

(Scan the file name in the buffer 95) Used in section 94.

(Search buffer for valid keyword; if successful, goto found 100) Used in section 99.

(Search for the nearest dot in nodes following p 148) Used in section 147.

(Search for the nearest dot in nodes preceding p 149) Used in section 147.

(Set initial values 13, 14, 54, 97, 103, 106, 123, 139) Used in section 3.

(Store a label 160) Used in section 151.

(Store a rule 156) Used in section 151.

(Store a title 159) Used in section 151.

(Try the first choice for label direction 193) Used in section 192.

(Try the fourth choice for label direction 196) Used in section 192.

(Try the second choice for label direction 194) Used in section 192.

(Try the third choice for label direction 195) Used in section 192.

(Try to output a diagonal rule 175) Used in section 170.

(Types in the outer block 9, 10, 11, 45, 52, 70, 79, 104, 136) Used in section 3.

(Typeset an overflow label for p 199) Used in section 197.

(Typeset character ¢ 120) Used in section 118.

38

d

{

(Typeset character StT.pool[k], possibly making a ligature with the following character or characters, and

advance k 118) Used in section 116.
(Typeset the pixels of the current row 205) Used in section 215.
(Update the font name or area 101) Used in section 99.
(Use size fields to allocate font information 61) Used in section 59.
(Vertically typeset p copies of character kK + 1 177) Used in section 175.
(Vertically typeset g copies of character k 176) Used in section 175.

The MFT processor

(Version 1.1, April 1989)

Sect ion
INErOAUCTION ..ottt ettt e ettt e e e e e e e I
TheCharacterSEt ..ttt ettt e e et e e e e e e e 11
INPUE ANA OUEPUL « ottt ettt et e et e et e e e e e e e e e e e e e 19
RepOrting errors to the USEI .« vttt ettt e e et 29
Inserting the changes 34
Data SIIUCLUIES . . ottt e et e e e e e e e e e e e e e e e e et e e e e e 50
Initia]izing the primitive LOK IS v v v v v v e e e e e e e e e 63
Inputting the next tOKEN 75
Low-1evel OUEPUL TOULIMES .+ o\ vttt ettt et et 86
Translation 97
The Main Programttt e e 112
System-dependent ChaANEES . ..ottt t ettt 114
Index 115

The preparation of this report was supported in part by the National Science Founda-
tion under grants IST-8201926, MCS-8300984, and CCR-8610181, and by the System
Development Foundation. ‘TEX' is a trademark of the American Mathematical Society.
‘METAFONT ' is a trademark of Addison-Wesley Publishing Company.

Page
402
405
408
410
412
417
420
429
432
435
440
440
441

102 INTRODUCTION MET 4l

1. Introduction. This program converts a METAFONT source file to a TEX file. It was written by D. E.
Knuth in June, 1985; a somewhat similar SATL program had been developed in January, 1980.

The general idea is to input a file called, say, f oo .mf and to produce an output file called, say, f oo . tex.
The latter file, when processed by TEX, will yield a “prettyprinted” representation of the input file.

Line breaks in the input are carried over into the output; moreover, blank spaces at the beginning of a
line are converted to quads of indentation in the output. Thus, the user has full control over the indentation
and line breaks. Each line of input is translated independently of the others.

A slight change to METAFONT’s comment convention allows further control. Namely, "%%’ indicates that
the remainder of an input line should be copied verbatim to the output; this interrupts the translation and
forces ME'T to produce a certain result.

Furthermore, ‘%%% (token;) . . . (token,)’ introduces a change in MFT’s formatting rules; all tokens after
the first will henceforth be translated according to the current conventions for (tokenj } The tokens must
be symbolic (i.e., not numeric or string tokens). For example, the input line

%A% addto fill draw filldraw

says that the ‘ill’, ‘draw’, and filldraw’ operations of plain METAFONT should be formatted as the
primitive token ‘addto’, i.e., in boldface type. (Without such reformatting commands, MFT would treat fill’
like an ordinary tag or variable name. In fact, you need a reformatting command even to get parentheses to
act like delimiters!)

METAFONT comments, which follow a single % sign, should be valid TEX input. But METAFONT material
can be included in | ... | within a comment; this will be translated by MFT as if it were not in a comment.
For example, a phrase like ‘make | X2r I zero’ will be translated into ‘make x_{2r} zero’.

The rules just stated apply to lines that contain one, two, or three % signs in a row. Comments to MET can
follow ‘%%%%’. Five or more Y% signs should not be used.

Beside the normal input file, ME'T also looks for a change file (e.g., € 0o. ch’), which allows substitutions
to be made in the translation. The change file follows the conventions of WEB, and it should be null if there
are no changes. (Changes usually contain verbatim instructions to compensate for the fact that ME'T cannot
format everything in an optimum way.)

There’s also a third input file (e.g., ‘plain. mf t '), which is input before the other two. This file normally
contains the “4%4%4’ formatting commands that are necessary to tune MFT to a particular style of METAFONT
code, so it is called the style file.

The output of ME'T should be accompanied by the macros in a small package called mf tmac . tex.

Caveat: This program is not as ‘bulletproof” as the other routines produced by Stanford’s TEX project.
It takes care of a great deal of tedious formatting, but it can produce strange output, because METRFONT
is an extremely general language. Users should proofread their output carefully.

2. MFT uses a few features of the local Pascal compiler that may need to be changed in other installations:

1) Case statements have a default.
2) Input-output routines may need to be adapted for use with a particular character set and/or for printing
messages on the user’s terminal.
These features are also present in the Pascal version of TEX, where they are used in a similar (but more
complex) way. System-dependent portions of MET can be identified by looking at the entries for ‘system
dependencies’ in the index below.
The “banner line” defined here should be changed whenever MFT is modified.

define banner = This is MFT, /Version, 1.1~

b MFT INTRODUCTION 103

3. The program begins with a fairly normal header, made up of pieces that will mostly be filled in later.
The MF input comes from files mf_file, change-file. and style-file; the TEX output goes to file tex-file.

If it is necessary to abort the job because of a fatal error, the program calls the jump-out’ procedure.
which goes to the label end-of-MFT.

define end-of-MFT = 9999 { go here to wrap it up }

(Compiler directives 4)
program MFT (mf_file, change-file. style-file, tex-file);
label end-of-MFT; { go here to finish}
const (Constants in the outer block 8)
type (Types in the outer block 12)
var (Globals in the outer block 9)
(Error handling procedures 29)
procedure initialize;
var (Local variables for initialization 14
begin (Set initial values 10)
end:

4. The Pascal compiler used to develop this system has “compiler directives” that can appear in comments
whose first character is a dollar sign. In our case these directives tell the compiler to detect things that are
out of range.

(Compiler directives 4) =
@{Q&$C+, A+, D-43 {range check, catch arithmetic overflow, no debug overhead }

This code is used in section 3.

5. Labels are given symbolic names by the following definitions. We insert the label ‘exit:‘ just before
the ‘end’ of a procedure in which we have used the Teturn’ statement defined below; the label restart’
is occasionally used at the very beginning of a procedure; and the label ‘reswitch’ is occasionally used just
prior to a case statement in which some cases change the conditions and we wish to branch to the newly
applicable case. Loops that are set up with the loop construction defined below are commonly exited by
going to done’ or to found’ or to not-found’, and they are sometimes repeated by going to ‘continue’

define exit = 10 { go here to leave a procedure }

define restart =20 { go here to start a procedure again }

define reswitch = 21 { go here to start a case statement again }
define continue =22 { go here to resume a loop }

define done =30 { go here to exit a loop)}

define found =31 { go here when you've found it }

define not-found =32 { go here when you've found something else }

6. Here are some macros for common programming idioms.

define incr(#)=# —#+ 1 {increase a variable by unity }

define decr(#)=#—#—1 {decrease a variable by unity }

define loop = while true do { repeat over and over until a goto happens }
define do-nothing = { empty statement }

define return = goto exit { terminate a procedure call }

format return = nil

format loop = rclause

104 INTRODUCTION MFT i

7. We assume that case statements may include a default case that applies if no matching label is found.
Thus. we shall use constructions like

case x of

1: (code for x 1);

3: (code for x = 3);

othercases (code for x # 1 and x #3)
endcases

since most Pascal compilers have plugged this hole in the language by incorporating some sort of default
mechanism. For example, the compiler used to develop WEB and TEX allows others:”as a default label, and
other Pascals allow syntaxes like ‘else’ or ‘otherwise’ or otherwise:; etc. The definitions of othercases
and endcases should be changed to agree with local conventions. (Of course, if no default mechanism is
available, the case statements of this program must be extended by listing all remaining cases.)

define othercases = others: { default for cases not listed explicitly }

define endcases =end { follows the default case in an extended case statement }
format othercases = else

format endcases = end

8. The following parameters are set big enough to handle the Computer Modern fonts, so they should be
sufficient for most applications of MFT.
(Constants in the outer block 8) =

max-bytes = 10000; { the number of bytes in tokens; must be less than 65536 }

max-names = 1000; { number of tokens }

hash-size = 353; { should be prime }

buf_size = 100; { maximum length of input line }

line-length = 80; { lines of TEX output have at most this many characters, should be less than 256 }

This code is used in section 3.

9. A global variable called history will contain one of four values at the end of every run: spotless means that
no unusual messages were printed; harmless-message means that a message of possible interest was printed
but no serious errors were detected; error-message means that at least one error was found; fatal-message
means that the program terminated abnormally. The value of history does not influence the behavior of the
program; it is simply computed for the convenience of systems that might want to use such information.

define spotless =0 { history value for normal jobs }
define harmless-message =1 { history value when non-serious info was printed }
define error-message =2 { history value when an error was noted }
define fatal-message=3 { history value when we had to stop prematurely }
define mark-harmless = if history = spotless then history «— harmless-message
define mark-error = history « error-message
define mark-fatal = history «— fatal-message

(Globals in the outer block 9) =

history: spotless . . fatal-message; { how bad was this run? }

See also sections 15, 20, 23, 25, 27, 34, 36, 51, 53, 55, 72, 74, 75, 77, 78. and 86.

This code is used in section 3.

10. (Set initial values 10) =
history « spotless:
See also sections 16, 17, 18, 21, 26, 54, 57, 76, 79, 88, and 90.

This code is used in section 3.

§11 MFT THE CHARACTER SET 405

11. The character set. MFT works internally with ASCII codes, like all other programs associated with
TEX and METAFONT. The present-section has been lifted almost verbatim from the METAFONT program.

12. Characters of text that have been converted to METAFONT’s internal form are said to be of type
AS CII-code, which is a subrange of the integers.

(Types in the outer block 12) =
ASCII-code =0 .. 127, { seven-bit numbers }
See also sections 13, 50, and 52.

This code is used in section 3.

13. The original Pascal compiler was designed in the late 60s, when six-bit character sets were common, so
it did not make provision for lowercase letters. Nowadays, of course, we need to deal with both capital and
small letters in a convenient way, especially in a program for font design; so the present, specification of ME'T
has been written under the assumption that the Pascal compiler and run-time system permit the use of text
files with more than 64 distinguishable characters. More precisely, we assume that the character set, contains
at least, the letters and symbols associated with ASCII codes '40 through 176; all of these characters are
now available on most computer terminals.

Since we are dealing with more characters than were present in the first Pascal compilers, we have to
decide what to call the associated data type. Some Pascals use the original name char for the characters in
text files, even though there now are more than 64 such characters, while other Pascals consider char to be
a 64-clement subrange of a larger data type that has some other name.

In order to accommodate this difference, we shall use the name fext-char to stand for the data type of
the characters that are converted to and from ASCII-code when they are input and output. We shall also
assume that text-char consists of the elements chr (first-text-char) through chr(last-text-char), inclusive.
The following definitions should be adjusted if necessary.

define text-char = char { the data type of characters in text files }

define first-text-char =0 { ordinal number of the smallest element of text-char }

define last-text-char = 127 { ordinal number of the largest, element of rext-char }

Types in the outer block 12) +=
text-file = packed file of text-char;

—~

14. (Local variables for initialization 14) =
i:0.. last-text-char;
See also section 56.

This code is used in section 3.

15. The MFT processor converts between ASCII code and the user’s external character set by means of
arrays xord and xchr that are analogous to Pascal’s ord and chr functions.

(Globals in the outer block 9) +=

xord: array [text-char] of ASCII-code: { specifies conversion of input characters }

xchr :array [ASCII-code] of text-char; { specifies conversion of output characters }

106 THE CHARACTER SET MFT 516

16. Since we are assuming that our Pascal system is able to read and write the visible characters of
standard ASCII (although not necessarily using the ASCII codes to represent them), the following assignment
statements initialize most of the xchr array properly, without needing any system-dependent changes. On
the other hand, it is possible to implement MFT with less complete character sets, and in such cases it will
be necessary to change something here.

(Set initial values 10) +=
xchr[40] - U5 wehr[41] - TV xehr[42] - "7y achr[43) - #7 zchr[44] — “$°:
wchr(’45] - %75 wehr[46] - &7 zehr[47] — 77
zchr[50] — “ (75 zehr[51] -)"y mchr[’52] + “*7i xzchr['53]) — "+ wehr[54] «
zchr(55] + =75 zchr['56) - .7 zchr['57) — /7
xchr [60) - 07 xchr['61) — "17; zchr['62] - "27; zchr['63] - 37 zchr[64] — “4°;
xchr ['65] - "57; zchr['66] «— "6°; zchr[67] - "T7;
xchr [70] - 875 xzchr["71]) — “9°; xzchr[72]) — ~:7; zchr["73] - ~; 5 zchr[74] — “<7;
xchr(75] - "=, zchr['76]) + °>7; zchr[77] - 7?7
zchr| '100] - “@7; zchr['101) - “A"; xchr['102] - "B"; zchr['103] + "C"; zchr{'104] — D";
xchr ['105] - "E"; xzchr['106] - °F°; zchr[107] - "G;
zchr{ '110] + “H™; xchr[l1ll] - "1°; zchr['112]) - "J°; zchr('118]) - "K~; zchr['114] — ‘L :
xchr[‘115] - "M"; zchr['116] - "N°; zchr['117] - “07;
xchr [120] - "P"; xzchr['121] «— "Q"; zchr(['122] « "R"; zchr['123] - °S°; zchr['124] - T7;
xchr ['125]— "U"; zchr['126] «— “V°; zchr('127] - "W";
xchr [“130] - "X"; xchr(['131] « "Y"; zchr['132] - "Z7; xzchr['133] + “[7; zchr['134] « "\7;
xchr[“135] - °1 5 xchr[‘136] - "~°; xchr[187 - "_ °;
xchr('140] - =~ “: zchr['141] - "a”; xchr[142] « "b"; xchr['143] — "c”; zchr['144] — "d";
xchr|'145) « “e”; zchr['146] — £ " xchr['147] — "g~;
xchr|’150] - "W zehr['151) - "1 75 xchr[152] «— "j i xchr['153] - "k"; zchr| '154] - "1°;
xchr[’155] « "m"; zchr[’156] + "n"; xchr['157] « "0";
xchr|'160) - "p~; zchr('161] « "q"; xchr(['162] « "r°; zchr['163] - "s”; zchr['164] - “t~:
xchr['165] — “u"; zchr['166]) - "v7; xchr['167] « "w’;
rchr[’170) - "x7; zchr['171) « “y7; zchr[172) - “z7; zchr['173]) — {"; zchr{'174]) — | °;
xchr['175] «— "} zchr[176] - "~
zchr[0] - 75 zehr['177) « "u; { ASCII codes 0 and 777 do not appear in text }

17. The ASCII code is “standard” only to a certain extent, since many computer installations have found
it advantageous to have ready access to more than 94 printing characters. If MFT is being used on a garden-
variety Pascal for which only standard ASCII codes will appear in the input and output files, it doesn’t
really matter what codes are specified in xchr [l . '3’7], but the safest policy is to blank everything out by
using the code shown below.

However, other settings of xchr will make MFT more friendly on computers that have an extended character
set, so that users can type things like ‘#’ instead of ‘<>’, and so that MFT can echo the page breaks found
in its input. People with extended character sets can assign codes arbitrarily, giving an xchr equivalent to
whatever characters the users of MFT are allowed to have in their input files. Appropriate changes to MFT's
char-class table should then be made. (Unlike TEX, each installation of METRFONT has a fixed assignment
of category codes, called the char-class .} Such changes make portability of programs more difficult, so they
should be introduced cautiously if at all.

(Set initial values 10) +=
for ¢ «— 1 to 37 do xchr [i] - "|";

818 MFT THE CHARACTER SET 107

18. The following system-independent code makes the rord array contain a suitable inverse to the infor-
mation in xchr. Note that if zchr [i] = xchr [j] where @ < j < 177, the value of zord[zchr [i]] will turn out
to be j or more: hence, standard ASCII code numbers will be used instead of codes below 40 in case there
is a coincidence.
(Set initial values 10) +=

for i« first-text-char to lust-text-char do xord[chr(%)]— 177;

for i—1to 176 do xord[zchr[i]]—i

108 INPUT AND OUTPUT MET 519

19. Input and output. The I/O conventions of this program are essentially identical to those of WEAVE.
Therefore people who need to make modifications should be able to do so without too many headaches.

20. Terminal output is done by writing on file term-out, which is assumed to consist of characters of type
text-char:

define prznt (#) = write(term-out, #) { print’ means write on the terminal }

define print_In(#)= write-Zn(term-out, #) { ‘print’ and then start new line }

define new-line = write_ln(term-out) { start new line on the terminal }

define print-d(#) = { print information starting on a new line }
begin new-line; print (#);
end

(Globals in the outer block 9) +=
term-out: text-file; { the terminal as an output file}

21. Different systems have different ways of specifying that the output on a certain file will appear on the
user’s terminal. Here is one way to do this on the Pascal system that was used in WEAVE's initial development:

(Set initial values 10) +=
rewrite (term-out, 'TTY:"); { send term-out output to the terminal}

22. The update-terminal procedure is called when we want to make sure that everything we have output
to the terminal so far has actually left the computer’s internal buffers and been sent.

define update-terminal = break(term-out) { empty the terminal output buffer }

23. The main input comes from mf-file; this input may be overridden by changes in chunge-file. (If
change-file is empty, there are no changes.) Furthermore the style-file is input first; it is unchangeable.

(Globals in the outer block 9) +=

mf_file : text-file; { primary input }

change-file : text-file; { updates }

style-file: text-file; { formatting bootstrap }

24. The following code opens the input files. Since these files were listed in the program header, we assume
that the Pascal runtime system has already checked that suitable file names have been given; therefore no
additional error checking needs to be done.
procedure open-input; { prepare to read the inputs }

begin reset (mf.file); reset (change-file); reset (style-file);

end:

25. The main output goes to tex-file.

(Globals in the outer block 9) +=
tex-file : text-file ;

26. The following code opens ter_file. Since this file was listed in the program header, we assume that the
Pascal runtime system has checked that a suitable external file name has been given.

(Set initial values 10) +=
rewrite(tex-file);

27. Input goes into an array called buffer.

(Globals in the outer block 9) +=
buffer :array [0 .. buf_size] of ASCII-code ;

§28 MFT INPUT AND OUTPUT 409

28. The input-h procedure brings the next line of input from the specified file into the buffer array and
returns the value frue, unless the file has already been entirely read, in which case it returns false. The
conventions of TEX are followed; i.e., ASCII-code numbers representing the next line of the file are input
into buffer(0], buffer(1],. . ., buffer[limit — 1]; trailing blanks are ignored; and the global variable limit is set
to the length of the line. The value of limit must be strictly less than buf-size.

function input-In(var f : text-file): boolean; { inputs a line or returns false }
var final_limit:0 . . buf-size; { limit without trailing blanks }
begin limit — 0; final-limit — 0,
if eof (f) then input_ln — false
else begin while —eoln (f) do
begin buffer[limit] — zord[f1]; get(f); incr(limit);
if buffer[limit — 1] #"." then final-limit «— limit;
if limit = buf-size then
begin while —eoln(f) do get(f);
decr (limit); { keep buffer [buf-size] empty }
if final-limit > limit then final-limit « limit;
print_nl(~ ! JInput_line_too_long"); loc «— O; error;
end:
end;
rend-h (f);limit — final-limit; input-h — true;
end;
end;

410 REPORTING ERRORS TO THE USER MFT 529

29. Reporting errors to the user. The command ‘err_print(~! jError message °)’ will report a
syntax error to the user, by printing the error message at the beginning of a new line and then giving
an indication of where the error was spotted in the source file. Note that no period follows the error
message, since the error routine will automatically supply a period.
The actual error indications are provided by a procedure called error.
define err-print (#) =
begin new-line; print (#); error:
end
(Error handling procedures 29) =
procedure error; {prints *.” and location of error message }
var k, 1: 0. . buf_size; { indices into buffer }
begin (Print error location based on input buffer 30);
update-terminal; mark-error;
end;
See also section 31.

This code is used in section 3.

30. The error locations can be indicated by using the global variables loc, line, styling, and changing,
which tell respectively the first unlooked-at position in buffer, the current line number, and whether or not
the current line is from style-file or change-file or mf-file. This routine should be modified on systems whose
standard text editor has special line-numbering conventions.

(Print error location based on input buffer 30) =
begin if styling then print (". (style file ")
else if changing then print (~.,(change file, ") else print(~ ., (");
print-ln(‘1. ", line : 1,7) 7);
if loc > limit then 1 + limit
else | « loc;
for k — 1 to ldo print (zchr[buffer(k — 1]]); { print the characters already read }
new-line;
for k — 1 to ldo print(","); { space out the next line }
for k «— I+ 1to limit do print (zchr [buffer [k —1]]); { print the part not yet read }
end

This code is used in section 29.

31. The jump-out procedure just cuts across all active procedure levels and jumps out of the program.
This is the only non-local goto statement in MFT. It is used when no recovery from a particular error has
been provided.

Some Pascal compilers do not implement non-local goto statements. In such cases the code that appears
at label end_.of MFT should be copied into the jump-out procedure, followed by a call to a system procedure
that terminates the program.

define fatal-error (#) =

begin new-line; print (#); error; mark-fatal; jump-out;
end
(Error handling procedures 29) +=
procedure jump-out;
begin goto end_of MFT;
end:

§32 MFT REPORTING ERRORS TO THE USER 411

32. Sometimes the program’s behavior is far different from what it should be, and MFT prints an error
message that is really for the MFT maintenance person, not the user. In such cases the program says
confusion (“indication_of where we are~).

define confusion (#)= fatal_error (" ! This can” "t happen, (", #,7)")

33. An overflow stop occurs if MFT’s tables aren’t large enough.

define overflow (#) = faral-error (“! Sorry, ,#,",Ccapacity exceeded”)

412 INSERTING THE CHANGES MFT 534

34. Inserting the changes. Let’s turn now to the low-level routine get-line that takes care of merging
change-file into mf-file. The get-line procedure also updates the line numbers for error messages. (This
routine was copied from WEAVE, but updated to include styling.)

(Globals in the outer block 9) +=

line: integer; { the number of the current line in the current file }

other-line: integer; { the number of the current line in the input file that is not currently being read }
temp-line: integer; { used when interchanging line with other-line }

limit: 0 . . buf-size; { the last character position occupied in the buffer }

Zoc: 0. . buf-size; {the next character position to be read from the buffer }

input-has-ended: boolean; { if true, there is no more input }

changing :boolean ; { if true, the current line is from change-file }

styling: boolean; { if true, the current line is from style-file }

35. As we change changing from true to false and back again, we must remember to swap the values of
line and other-line so that the err-print routine will be sure to report the correct line number.
define change-changing =changing «— —changing; temp-line « other-line; other-line «— line;
line + temp-line {line — other-line }

36. When changing is false, the next line of change-file is kept in change-bufler [0 . . change-limit], for
purposes of comparison with the next line of mf_file. After the change file has been completely input, we set
change-limit « 0, so that no further matches will be made.

(Globals in the outer block 9) +=
change-buffer: array [0.. buf-size] of ASCII-code;
change-limit: 0 . . buf-size; { the last position occupied in change-buffer }

37. Here’s a simple function that checks if the two buffers are different.

function lines-dont-match: boolean;
label exit;
var k: 0. . buf-size; { index into the buffers }
begin lines-dent-match + true;
if change-limit # limit then return;
if limit > 0 then
for k — 0 to limit—1do
if change-buffer [k] # buffer [k] then return;
lines-dont-match — false;
exit: end;

38. Procedure prime-the-change-buffer sets change-bufler in preparation for the next matching operation.
Since blank lines in the change file are not used for matching, we have (change-limit = 0) A —changing if
and only if the change file is exhausted. This procedure is called only when changing is true; hence error
messages will be reported correctly.

procedure prime-the-change-buffer;
label continue, done, exit:
var k: 0 .. buf-size; { index into the buffers }
begin change-limit «— 0; { this value will be used if the change file ends }
(Skip over comment lines in the change file; return if end of file 39);
(Skip to the next nonblank line; return if end of file 40);
(Move buffer and limit to change-bufler and change-limit 41);
exit: end;

839 MFT INSERTING THE CHANGES 413

39. While looking for a line that begins with @x in the change file, we allow lines that begin with @, as
long as they don’t begin with @y or @z (which would probably indicate that the change file is fouled up).

(Skip over comment lines in the change file; return if end of file 39) =
loop begin incr (line);
if ~input_ln (change-file) then return;
if limit < 2 then goto continue:
if buffer[0] # "@" then goto continue;
if (buffer[1] > "X") A (buffer[l] < "Z") then buffer(l] « buffer(1] + "z" —"2"; { lowercasify }
if buffer(l] = "x" then goto done;
if (buffer[l] = "y")|(buffer[l] = "z") then
begin loc — 2; err-print (~ | _Where is_ the matching ,@x7");
end;
continue: end;
done:

This code is used in section 38.

40. Here we are looking at lines following the @x.

(Skip to the next nonblank line; return if end of file 40) =
repeat incr (line);
if minput_In(change-file) then
begin err-print (* ! ,Change file ended, after @x"); return;
end;
until limit > 0;

This code is used in section 38.

41. (Move buffer and limit to change-buffer and change-limit 41) =
begin change-limit «— limit;
if limit > 0 then
for k «— 0 to limit — 1 do change_buffer k] — buffer[k];
end

This code is used in sections 38 and 42.

414 INSERTING THE CHANGES MFT 842

42. The following procedure is used to see if the next change entry should go into effect; it is called only
when changing is false. The idea is to test whether or not the current contents of buffer matches the current
contents of change-buffer. If not, there’s nothing more to do; but if so, a change is called for: All of the
text down to the Qy is supposed to match. An error message is issued if any discrepancy is found. Then the
procedure prepares to read the next line from change-file.

procedure check-change ; { switches to change_file if the buffers match }
label exit;
var n:integer; { the number of discrepancies found }
k:0 .. buf-size; {index into the buffers }
begin if lines-dont-match then return;
n «—0;
loop begin change-changing;, { now it’s tfrue }
wncer (line);
if minput-In (change-file) then
begin err-print (* ! ,Change_f ile_ended bef ore Qy"); change-limit « 0; change-changing;
{false again }
return;
end;
(If the current line starts with @y, report any discrepancies and return 43);
(Move buffer and limit to change-buffer and change-limit 41);
change-changing;, { now it’s false }
wmer (line);
if ~input_ln (mf-file) then
begin err-print (*! MF_file ended during a change~); input-has-ended + true; return;
end;
if lines-dont-match then incr(n);
end;
exit rend;

43. (If the current line starts with Qy, report any discrepancies and return 43)
if limit > 1 then
if buffer{0] = "@" then
begin if (buffer(1] > "X") A (buffer[l] <"Z") then buffer[l] — buffer(l] + "z" —"2Z";
{ lowercasify }
if (buffer[l] = "x")|(buffer(l] = "2z") then
begin loc « 2; err-print (“!_Where_ is, the matching Qy7");
end
else if buffer[l] = "y" then
begin if n > 0 then
begin loc + 2:
err_print(! Hmm. .., ,n:1, ",of the preceding lines_ failed_to_match”);
end;
return;
end;
end

This code is used in section 42.

844 MFT

INSERTING THE CHANGES I5)
44. Here’s what we do to get the input rolling.

(Initialize the input system 44) =
begin open-input; line «— 0; other-line «— 0;
changing «— true: prime-the-change-buffer; change-changing;

styling « true: limit «— 0; loc — 1: buffer(0] < "u"; input-has-ended — false;
end

This code is used in section 112.

45.

The get-line procedure is called when loc > limit: it puts the next line of merged input into the buffer
and updates the other variables appropriately.

procedure get-line;

{ inputs the next line }
label restart;

begin restart: if styling then (Read from style-file and maybe turn off styling 47);
if —styling then

begin if changing then (Read from change-file and maybe turn off changing 43);
if ~changing then

begin (Read from mf_file and maybe turn on changing 46);
if changing then goto restart;
end;

end:
end;

46. (Read from mf-file and maybe turn on changing 46) =
begin incr (line);
if ~input_n(mf-file) then input-has-ended — true
else if limit = change-limit then
if buffer[0] = change-buffer [0] then

if change-limit > 0 then check-change;
end

This code is used in section 45.

47. (Read from style-file and maybe turn off styling 47) =
begin wncer (line);

if ~input_In(style-file) then

begin styling «— false; line «— 0;
end:

end

This code is used in section 45.

416 INSERTING THE CHANGES MFT 548

48. (Read from change-file and-maybe turn off changing 48) =
begin incr (line);
if —enput_ln (change-file) then
begin err-print (* ! ,Change_ f ile ended without @z "); buffer[0] — "@"; buffer[1] — "z"; limit — 2;
end;
if limir > 1 then {check if the change has ended }
if buffer[0] = "@" then
begin if (buffer[1] > "X") A (buffer[1] <"Z") then buffer[l] — buffer(l] + "z" —"Z™;
{ lowercasify }
if (buffer[1] = "x")|(buffer[1] = "y") then
begin loc « 2; err-print (*!_Where is_the matching @z7");
end
else if buffer [1]="z"then
begin prime-the-change-buffer; change-changing;
end;
end;
end

This code is used in section 45.

49. At the end of the program, we will tell the user if the change file had a line that didn’t match any
relevant line in mf-file.

(Check that all changes have been read 49) =
if change-limit #0 then {changing is false }
begin for loc — 0 to change-limit do buffer[loc] — change_buffer|loc];
limit « change-limit; changing « true: line «— other-line; loc «— change-limit;
err_print(~!_Change file_ entry did not match-);
end

This code is used in section 112.

§50 MFT DATA STRUCTURES 417

50. Data structures. MFT puts token names into the large byte-mem array, which is packed with seven-
bit integers. Allocation is sequential, since names are never deleted.

An auxiliary array byte-start is used as a directory for byte-mem; the link and ilk arrays give further
information about names. These auxiliary arrays consist of sixteen-bit items.

(Types in the outer block 12) +=
eight-bits =0 .. 255; { unsigned one-byte quantity }
sizteen_bits = 0 .. 65535; {unsigned two-byte quantity }

51. MFT has been designed to avoid the need for indices that are more than sixteen bits wide, so that it
can be used on most computers.

(Globals in the outer block 9) +=

byte-mem:packed array [0..max-bytes] of ASCIl.code; { characters of names}

byte-start: array [0 .. maxnames] of sixteen-bits; { directory into byte-mem }

link: array [0 .. maxnames] of sixteen-bits; { hash table links }

ilk: array [0 .. maxnames] of sixteen-bits; { type codes }

52. The names of tokens are found by computing a hash address 2 and then looking at strings of
bytes signified by hash[h], link[hash[h]], link[link [hash[h]]],. . ., until either finding the desired name or
encountering a zero.

A name-pointer’ variable, which signifies a name, is an index into byte-start. The actual sequence of
characters in the name pointed to by p appears in positions byte_start[p] to byte-sta,rt[p + 1] — 1, inclusive,
of b yte-mem .

We usually have byte-start[name-ptr] = byte-ptr, which is the starting position for the next name to be
stored in byte-mem.

define length(#) = byte_start[# + 1] — byte_start[#] { the length of a name}

(Types in the outer block 12) +=
name-pointer =0 . . max-names; {identifies a name }

53. (Globals in the outer block 9) +=
name-ptr: name-pointer; { first unused position in byte-start }
byte-ptr: 0 .. max-bytes; { first unused position in byte-mem }

54. (Set initial values 10) +=
byte-start [0] — 0; byte-ptr «— 0; byte_start[1] < 0; { this makes name O of length zero }
name-ptr « 1;

55. The hash table described above is updated by the lookup procedure, which finds a given name and
returns a pointer to its index in byte-start. The token is supposed to match character by character. If it was
not already present, it is inserted into the table.

Because of the way MFT’s scanning mechanism works, it is most convenient to let lookup search for a token
that is present in the buffer array. Two other global variables specify its position in the buffer: the first
character is buffer [id-first], and the last is buffer [id-lot —1].

(Globals in the outer block 9) +=
id-first: 0 . . buf_size; { where the current token begins in the buffer }
id-lot: 0 . . buf-size; {just after the current token in the buffer }

hash: array [0 .. hash-size] of sixteen-bits; { heads of hash lists }

56. Initially all the hash lists are empty.

(Local variables for initialization 14) +=
h: 0 .. hash-size: { index into hash-head array }

418 DATA STRUCTURES MFT 837
57. (Set initial values 10) +=
for h «<— 0 to hash-size — 1 do hash[h]— 0:

58. Here now is the main procedure for finding tokens.
function lookup: name-pointer: { finds current token}
label found;
var i: 0 .. buf-size; { index into buffer }
h:0.. hash-size; { hash code }
k:0 .. maz.bytes; {index into byte-mem }
1:0 .. buf-size; {length of the given token }
p: name-pointer; { where the token is being sought }
begin [—id.loc — id-first; { compute the length }
(Compute the hash code h 59);
(Compute the name location p 60);

if p = name-ptr then (Enter a new name into the table at position p 62);
lookup —p;

end;
59.

A simple hash code is used: If the sequence of ASCII codes is c¢yca . . . c,. its hash value will be

(2"_1c1 +2" 2%y + . +cp) mod hash-size.

(Compute the hash code h 59) =
h — buffer[id_first]; i — id-first + 1;
while i < id-lot do
begin h «— (h + h + buffer [i]) mod hash-size; incr (i),
end

This code is used in section 58.

60. If the token is new, it will be placed in position p = name-ptr, otherwise p will point to its existing
location.

(Compute the name location p 60) =
p — hash[h];
while p#0do
begin if length(p) = | then (Compare name p with current token, goto found if equal 61);
p link[p];
end;
p + name-ptr; {the current token is new }
link [p]— hash [h]; hash[h]—p; {insert p at beginning of hash list }
found.:

This code is used in section 58.

61. (Compare name p with current token, goto found if equal 61) =
begin i — id-first; k «— byte-start [p];
while (i <id.loc) A (buffer [i] = byte-mem[k]) do
begin ner (i); wner (k);
end:

if i =id-lot then goto found; { all characters agree }
end

This code is used in section 60.

562 MFT DATA STRUCTURES HY

62. When we begin the following segment of the program. p = name-ptr .

(Enter a new name into the table at position p 62) =
begin if byte-ptr + | > max-bytes then overflow(byte_memory);
if name-ptr + 1 > max-names then overflow (name’;
i — id_first; { get ready to move the token into byte-rnem }
while ¢ < id-Zoc do
begin byte-mem [byte_ptr] — buffer(il; incr(byte-ptr); iner(i);
end;
incr(name-ptr); byte-start [name-ptr] « byte-ptr; (Assign the default value to lk[p] 63);
end

This code is used in section 58.

420 INITIALIZING THE PRIMITIVE TOKENS MFT §63

63. Initializing the primitive tokens. Each token read by MFT is recognized as belonging to one of

the following “types” :

define
define
define
define

define
define
define
define
define
define

define
define
define
define
define

define

define

indentation =0 { internal code for space at beginning of a line }
end-of-line =1 { internal code for hypothetical token at end of a line }
end-of-file=2 { internal code for hypothetical token at end of the input }
verbatim =3 { internal code for the token ‘%4’ }

set-format = 4 { internal code for the token ‘%A%’ }

mft.comment =5 { internal code for the token ‘A%4%%’ }
min-action-type =6 {smallest code for tokens that produce ‘real” output }
numeric-token = 6 { internal code for tokens like 3.14159" }
string-token =7 { internal code for tokens like “pie”™
min-symbolic-token = 8 { smallest internal code for a symbolic token }
op =8 { internal code for tokens like ‘sqrt’}

command =9 { internal code for tokens like ‘addto’ }

endit = 10 { internal code for tokens like ‘f i’ }

binary =11 { internal code for tokens like ‘and’ }

abinary = 12 { internal code for tokens like ‘+'}

bbinary = 13 { internal code for tokens like ‘step’ }

ampersand = 14 { internal code for the token ‘&’ }

define pyth-sub = 15 { internal code for the token ‘+-+'}

define
define
define
define
define
define
define

define

define
define

define
define
define
define
define

define
define

define
define

us-is = 16 { internal code for tokens like ‘]’ }

bold =17 { internal code for tokens like ‘nullpen’}

type-name = 18 { internal code for tokens like ‘numeric’}

path-join =19 { internal code for the token ‘.. }

colon =20 {internal code for the token *: ’}

semicolon =21 { internal code for the token ;' }

backslash = 22 { internal code for the token ‘\’}

double-back = 23 { internal code for the token ‘\\'}

less-or-equal =24 { internal code for the token ‘<="}

greater-or-equal = 25 { internal code for the token ‘>=’}

not-equal =26 { internal code for the token ‘<>’ }

sharp =27 { internal code for the token ‘# }

comment =28 { internal code for the token *%’ }

recomment = 29 {internal code used to resume a comment after ‘1...1"}
min_suffit = 30 { smallest code for symbolic tokens in suffixes }

internal = 30 { internal code for tokens like ‘pausing’}

input-command = 31 { internal code for tokens like ‘input’}

special-tag = 32 { internal code for tags that take at most one subscript }
tag =33 { internal code for nonprimitive tokens }

(Assign the default value to ilk [p] 63)=
ilk [p] —tug

This code is used in section 62.

864 MFT

INITIALIZING THE PRIMITIVE TOKENS

421

64. We have to get METAFONT's primitives into the hash table, and the simplest way to do this is to insert

them every time MFT is run.
A few macros permit us to do the initialization with a compact program. We use the fact that the longest

primitive is intersectiontimes, which is

17 letters long.

spr17 (#) = buffer [17] — #; cur-tok « lookup: ilk [cur-tok | —

define

define spri6 (#)= buffer [16] — #; spr17
define spr15(#) = buffer{15] — #; spri6
define sprif (#) = buffer[14] — #; spr15
define spri13(#) = buffer(13] — #; spri4
define spri2 (#) = buffer [12] — #; spri3
define spril(#) = buffer[11] — #; spri2
define spri10(#) = buffer[10] — #; sprii
define spr9 (#) = buffer[9] — #; spr10
define spr8 (#) = buffer [8] — #; spr9
define spr7(#) = buffer (7] — #; spr8
define spr6 (#) = buffer [6] — #; spr7

define sprs (#) = buffer [5] — #; spr6
define sprf (#) = buffer [4] — #; spr5
define spr3 (#) = buffer[3] — #; spry4

define
define

spr2 (#) = buffer (2] — #; spr3
sprl (#) = buffer [1] — #; spr2

define prl = id-first « 17; spr17
define pr2 =id-first «— 16; sprl6
define pr3 = id-first «— 15; sprl5
define pr4 = id-first — 14; spri}
define pr5 =id-first — 13; spri3
define pr6 =id-first « 12; spri2
define pr7 = id_first — 11; spril
define pr8 = id-first « 10; sprl0
define pr9 = id-first «— 9; spr9
define pri10 = id-first — 8; spr§
define pril = id-first « 7; spr7
define pri2 =id-first « 6; spr6
define pri3 =id-first « 5; sprd
define pri4 = id-first «+ 4; spr4
define pri5 =id-first « 3; spr3
define pri6 =id-first «— 2; spr2
define pri7 = id-first — 1; sprl

Iy

422 INITIALIZING THE PRIMITIVE TOKENS MET 465

65. The intended use of the macros above might not be immediately obvious, but the riddle is answered
by the following:
(Store all the primitives 65) =

id-lot — 18;

pr2 (".")(".")(path_join);

pri("[")(as-is);
pri("1")(as-is);
pri ("3 us-is);
pri ("{")(us-is);
pri(":")(colon);
pl’2(")(""")(MS lS)

prl (vl n)(us- lS)
pri (" ;") (semicolon);

pri("\")(backslash);

pr2("\")("\")(double-buck);

pr5("a")("d)("d")(" u) "o")(command);

pr2("a")("t")(bbinary);

pT7(a")("t")("l") uen)(u)(n)("t' ()

prlO("b") n)()(u n)()()(n (u n)(nuu)(n)(command);
p7'8(" u)(uol)(lnn)(n ll)(l u)()(llll)(ll ")(0])

pr4(" ")("u")("1")("1")(command),

pr4(n n) nun)(u)("1")(0]7)

pTIU("d")(n)(ulu)(u n)(n u)(')('t")("e")("r")("s")(command);
pr7("d")("1')(" ")("p")("l")("a')("y")(command);

pr8(")("n")("d")("g")(u)(u n)(n n)(n)(endzt)

prg(v)(uvn)(a u)(n n)(l)(n u)(u ")("b")(command)

p’f'6()(uxu)(u u)(u)(n v)(n)(command),

prll (u)(l)(npn)(u n)(nnu)(ndu)()()(.)(")("r")(command);

pT4 (‘fn)(Nyt) " n)(umu (bblnury);

pr8(“1)(nnn) uwu)(vl u)()(ndu)(u u)()(bbmary);
pr7("1")("n")(" t" ()("I‘")()(n)(command)
pr3(“l")("e“)(“ " (command),

prll (nnn)(ueu)(uwu)(n n)()(n)()("r")("n")("a")("l")(command);
pr2("o")(" ")(command)
pr10("o")("p")("e")("n")("w")("1")("n")("d")("0")("w")(command);
prlO("r")("a")()(ldn)(l)(umu)(n u)(n u)()()(command)
pri ("s")("a")("v")("e") (command):

prlO(" n)())(unn)(utn)(u ')("k")("e")("n")("s")(command):
pT7(" n)(u)(u n)(n)(o')("u")("t")(command):

pr4 ("s")("e")("e")("p")(bbinary);

pr3("s")("t")(" ")(command)

pr7(“t")("e")(' u)(u u)(u n)(u n)(nnn)(op);
pr2("t")("o")(bbinary);

pr5("u")("n")(" u)(n ")("1")(bbmary)
pr?("d")('e")("f")(command)

pr6("v")("a")(')("d")(') "f) mmand

pri0("p")("r" ")(command);

("f
)("z")("3")("m")("a") ("
pTIQ(" u)(u ll)(|)()(nnu)(ngn
pTII(" n)(n ")('I‘")("t")(" n)(uan
See also sections 66, 67, 68, 69, 70, and 71

This code is used in section 112.

(co);

)(yn)(nd)(ne ')("f
)("a")("r")("y")("d")("e")("f")(comma,nd);
)(I‘")("y")("d")("e")("f")(command);

$66 MFT INITIALIZING THE PRIMITIVE TOKENS 123

66. (There are so many primitives, it’s necessary to break this long initialization code up into pieces so as
not to overflow WEAVE’s capacity.) ~

(Store all the primitives 65) +=

pré("e™)("n")("d")("d")("e")("£")(endit);
prﬁ’("f")("o")("r")(commcmd);

prll (u u)(n 1] (u n)(s)(nun)(nfn)(nf)(’n)(nx)(ne)(s)(command)
pr7("£")("o")("r")("e")("v")("e")("r")(command):
p'r6('e")("n")(d")("f')(" n)(u ")(endzt)

p?‘5("q")(vuu)(nov)(utn)(u ")(command)
pM("e")("x")("p")("r")(command)
pr6("s")("u")("f")("f")(" n)(u ")(command)
pr4d("t")("e")("x")("t")(command);
pr7("p")('r")("l")("m")(" u)(n ")('y")(command),
pr!)("s")("e")("c")("o")(u)(ndu)(van)(I'"))(command):
pr8("t')("e")("r")("t")()(lall (n ")('Y' (command)
pT5("l")("Il")("p')(uuu)(n ")(mput_command)
pr8("e")("n")("d")(" n)(unn)(upu)(n n (n ")(bOld);
pr2("i")("£")(command);

pr2("")("1") (endit);

pr4("e™)("1m)(" ")(e")(command);

pr6("e")("1")(')()(u ")("f")(command)

pr4("t")(" n)(nun)(u ")(bOld)

pT5("f")("a")("l")(')()(bold),

prl]("n") " 1)("1")(1")(")("i")("c")("t")("u")("r")("e")(bold);
pr7(" n ("u")("l“)("1")("p")('e")("n")(bold);

pT7(" u)(nou)(nbn)(n ll)(" n)(u n)(n ")(bOld)

p'r10(" u) " u)(u u)(ndn)(n n)(u n)(n n)(n u)(n n)(n)(bold)
prg(u n (ne|)(n n (n n)(n n)(n n)(n n)(nln)(")(bold);
[)7‘4(" u)(non)(| ")("d")(speczal tag)

ROT

MFT

INITIALIZING THE PRIMITIVE TOKENS

124

(Does anybody out there remember the commercials that went LS-MFT?)

67.

-

=i

(Store all the,or

~

Q

S

S’

.- -~
i — =
= [

S S :
= - =
@ = P
= . = =
z ~= = -
P S o ©
L < = = ..
= = s =z o~
« g ..QD .ll w.
= = = =
- < B >
= = = ==
3 AL b0 E oP
= <Y = H = =
= S = ==
= = = = = = =
[} ~))wnml ks o N
= p N s - = =
= S SSISFE = =T
= —_ —_—~ A~ == e TS I
k] = z = (] ~ b0 —_ = == g
= s - o e g N NSNS = =
= Ll R S 2LEe =
= L= ~R == s A~E, e e~ =3 . ea
— — = s =z =z =z 3 —~ = A ===z = =z =)Y.lX\nI\D/;
L &F ppool & FFEPrrY SRS
= —~~ o~ N N N N - AN N AN N AN AN AN N b e e ee e - Ty TN
o] = = = = = =z ~ = =z H:- =z = =z z =z A=< <S~<":= o09: =
= nnuo nmuruD..up,U\ vnlw,.u_bﬂ\mbmbnrurnrur w.w..w‘w.w.nrﬂ\(neue
— ~— — ~— o — e T (((\l}((((((((((((\l}\l}((
= P T N N e e e PN e AN T N N N N N s s o N S e~
g~z = —~=z = £ = ® <=z == #fA=3= =z =2 =z = = =T = =z = ¢4 M=z
ﬁ\w.annW.nlueneueﬁ\w.w‘.ullrng/l\urnruauana"awtupng.nanan/li\/vl\.ulm;
ur T S \vlln)H}\il/W}\v)n)ﬂl/\:l/n.IH/\vl/.ul © T
n(\nduOnk.utnCanKuk“\% ux Mv“a unxul\nananplpnpnp.nr x¥oe-r 2 uOrnl\m.\lUDnC
PR R et i ek L b \tl/n.lﬂl\l)ﬂl\lnln./\')n/\'.)\u)n}un o
IPDAFOOO0FUIE VONE O PAKRBR®™OOH HOHE | o
I N N N L NN NN NN T
= H.I\v)\ll/\un/\vllnl\u}ﬂluu T e H)\l.lﬂln)\u)ﬂl\ul/nlﬂiufﬂl\n)nurC' -
T OM DD AT HEHHE? O8 < UM Kbl Ko EH®OWMS = © O
~—~z ¥ ¥ = = =¥ ¥ =z ~= =T = =T =T ~z= = =T = =Z T =T =T = = = =T ““r~—=z= =
0 > Q© T~ [V O~ w Y v o
rTTTTTTTTTQ“@”TMTTK”TTTTAMMMMM.MFN””MED
A AR AR RARARRRQARRRRR QRS QS 8 S

s WEB code is ugly, you should see the Pascal code it produces.)

o=

(If you think th

68.

2]

-

=i

-

")("s")(internal):
"Y(internal);
nternal);

al
n
]

A~ N AN e

= = = =2 3

R M I g
PPy

~

—
g
kel
-~
e
-
S
=
=t 2
=5
=

—~
PETE
“\(M(
- - QO -
FaoE e
LR

~

-~

o N
NN N N~

e e e e e e e e e S
PN TN AN AN AN N N N N s s

e N N N N N e N e N e e
P e e T e N N e T N

Nt Nt N e N e S’ N e N e e
P

N N N N N e e N S S S S
N TN AN N AN N s

N Nt N N S e N e S e e e
e e, o, o, e, o, e . o,

e N N N e N e e e e e
AN N N N N N N N N~

N N N N N e e N S e e e
AN TN TN N N N N S N S~

N N N N S S N S e e e’ e
PR e

R N N NN NN
e, e, ===

e e N S e e N N e S S e
P e R R R N e e Y

N e e e S S S e e e e e
AN TN N AN N N N N N~ —~

(SISt NS
d ©® © o
HOH MM
PP PP

N N Nt N N S N e S e e S

425

INITIALIZING THE PRIMITIVE TOKENS

MFT

£69

— e TN N e T

("n")("g")(internal);

N AN — N~

—_— —_—
—~ —~ =

~

BiS PPN
3 33
£E. EE
D~ L WO
= S
83 =%
Z B N
=& =X
oE X
NG
== ==
B> oo
L LI
== ==
HP oo
L LT
== ==
o o&F
L LI

==
HH oo
I s

==
P o wow

~— e TN TN e T T T

N TN T T — T T

o fg= A 4
—~
N N T N N
—~ = =
P O = NN
= = = =
N e’ B N
T T
BuHT 8w
= = - = =
S e’ B S S

~— T~

P e
~ ~
M I
£ £
L L
ad -~
g g
= =
- oo
g ° o o
] b= 4 =
£ = ==
i3 Y33 ILE
SRR aY S3SSan
llllll S
g eI g8 8= =
I 2 ggg X S= =
. ==L & & & & &= === =
= z 0z NV VYWY, - = =
~ dmttttttl P &
S - = 8888882 PP ys
___ m KNX(((((H/ 2 Z .
B D e N IS R ~—~—~=_ =
& ===t =T =T == H o= = = p o
+3 = FOWT P AUKPEII OO A=
S BT ILIIFgglliXXE
CH.I\.heﬂ/H’\ll/\ll/\llfxll/\lllﬂ)lgee\rllﬂ}\l)uS um
%munlam.cfwhdiddm\mmssiu =
‘e T R = = = = = = = N T~ = = <
.nﬂ)n/eﬂllﬂ}ﬂllﬂ)ﬂ)ﬂ)ﬂ)ﬂllﬂ.lll)))))nwn = = =
= = = = = =z =z = =z =z = »A= =z = = = P
EHPE OHHHKMHMKMNHTI QURHH ®O: =
— = T '~ = = H = = = H = = Y~z = = = S
Sl N N N N e N e e e e e e TN e s e e e TN TN TN N S S
LI FPEI 00088 S O AN B
- e XX
— TN N AN AN AN N AN AN D N ~ o~ <
- = = = = = = = = = = = = QO = = = = = ho
“Tpoedmnaddaogagagg8: PP OO ®E =
= = = = = = = = = = s = s = = = = =
§ =SS LR ER R EERERRERRY EXEERE
= = - = = = = = = = = = - = = = = mn
&vfm.dtccccccccnhvxypn.nt
= - - = = = = = = = = s =z - = = S N
(((((((((((((0(! R)
RO R L R e e g N N
N O~ - T U O O e i SO S A S S S R
o NRARJIAUAALAIAN/RNANXLS A A S
O

426 INITIALIZING THE PRIMITIVE TOKENS

70. Still more.

(Store all the primitives 65) +=
pri("+")(abinary);
pr1("-")(abinary);
prl ("% (&nary);

pri ("/™")(us-is);
pr2("+")("+")(binary);
pr3("+")("=")("+")(pyth_sub);
pr3("a")("n")("d")(binary);
pr2("o")("r")(binary);

pri("<")(us-is);
pr2("<")("=")(less-or_equal);
pri (">")(us-is);

pr2 (">")("=")(greater_or.equal);

u
pr2("< (">)(not -equal);
pro("s")("u")("b")("s")(¢! (r)(1t)("n")("g")(command);
pr7("s")("u")("b")("p")("a")("t")("h")(command);
priz (") ("1)("E) (e M) (e (") ("L ("o ("n") (") (") ("m")("e")(command);
prs ("p")("o")("1")("n ")(ret)(command);
pri0("p")("z")("e")("c")("o")("n")(" ")("r")("0")("1")(command);
L (1)) (") (1)) (") (m) (7e7) ()"0 "1 command
pro("p")("e")("n")("o")("£")("£")("s")("e")("t")(command);
pri("&")(ampersand);
pr7 (") ("o") (") ("a")("5")("e")("da") (binary);
pr7("s")("1)("a")("n")("&")("e")("da") (binary);
pr6("s")("c")("a")("1")("e")("a") (binary)
pr7(s") (B (120 ("£)("6)("e")("d") (bimary)
priL("e")("E")("a") ("n) (") ("E")("0") (") ("m")("e") ("d") (binary);
pr7("x")("s")("e")("a")("1")("e")("a") (binary)
pr7("y")("s")("c")("a")("1")("e")("d") (binary):
pr7("z")("s")("c")('a)("1")("e")("d")(binary);
p7‘17("i")("11")(")(ne!)(vrn)(s")("e")("c")("t")("i")("o")("n")("t")("i")("m")("e")("s
pr7(nnn)(uun)(nmn)(nat)(u n)(uiu)(u)([ype name)’.
pré("s")("t")("r")("1")("n")("g")(type_name);
pr7("b")("o")("o")("1")("e")("a")("n")(type-name);
pr4d ("p")("a™)("t")("h")(type-name);
pr3 ("p)("e")("n")(1ype-name);
pr7("p) (") ("en)("e")("u) ("2")("e") type-nuzie):
pro("et)("r")("a")("n")("s")("£")("o")("r")("m") (type-name);
pT4 (upn)(“a”)("i")(|rn)(type- name)

MFT

570

")(binary):

471

71.

MFT

INITIALIZING THE PRIMITIVE TOKENS

At last we are done with the tedious initialization of primitives.

(Store all the primitives 65) += -

pr3("e™)(")(d“)(endzt)

pM ("d") m")(u)(endzt)

pralrsCan(reen) o)) eer) ol

pl’ll() n n)(("t") "O") (lmﬂ)(lol)(lldﬂ "a bOld)
prio("s")("e")("z")("o")("1")(") (s w")("o")("d")("e ot

pT'IJ(' " ('I'")("O")()(n n)(n)(nol)(upu))(I ')("d")('e")(bold);
pro("im)("n") m")("e")("r"){command);

p,,.5(n u) Nyt utn)(nen)(n ")(command)

prg()n O")('V)(l u)(n H)("k")(l " (" (command):

prg(u u) non)(nwn)(u u)()(u u)(n n)(')(bOld)

p1‘4(" u) uon)(n“u)(mand)

p7'12(" " ("h" (u n)(uwu)(u n)()()(I1|)(l)("b")("1")("e")(command);
pT16(" (uhn (n u)(uwu)(ldu)(()(e" (v n)(d")("e")("n")("c")("i")("e")("s")(bold);
pT7(")u n)(n)(n u)(uol)(n u)(n n (command)

pT‘IO("d" (ll n)(u ll)(b")("l")(I)(l |)(an)(n)("h")(command);

p,,.4(n n) nln (v |)(n ")(CO and)

pT’7("V")(" n)(|)(n n)(n |)(|e)("n")(command)

pr10(" n (n u)(u u)(u) " ")(u u)(n u)(()(t!)(command);
pT‘S("d") nru)(u u)(upv)(npl)(nln)(n u)(u) command)

p7'7("k") " n)(u n)(np)("1")("n)("g")(command)

p.r7(nmu) " |)(n u)(nsn)(nau)(ngu)(n ")(command)

pT‘IO(" " ("I‘")(u) " u)(u)(u l ("S)(an)(g)("e")(cammand);

pT7(" u) "I'")("I")("h)(lel)(llll)('p")(command):

p‘f’8(" ")("h")("a")('r")("l")(1")(lsll)(' (Command)

pr8 ("1)("1")("g")("&")("a")("b")("1")("e") (command)

pr10("e" " (vl)(uev)(nnu)(ns)(n n) vbu)(nlu)(tah (command);
pr10("h")("e")(" ')("d')(‘e‘)('r) (") ("y") (") ("e") (command);
p’f'g("f') ("t')("d")(" ll)(llml)()(')(command)

prg(u_u) (as_zs), p'r4("k)(n) n (n ")(bmary)

pr7("s")(" ")(" N("e)()('1)("am)("1)(command)

pr10(“n)
pri ("
pr2
pr3
p,r4 n "

h
prl "#H

0
n‘ " |/

A")
m/u)
)

)

(
(
(
("%
(

)(u n)(n u)(n)(na)(”1")(c0mmand);

mment)

"Y(verbatim);

ne ")(ll ")(setformat)
(%" (mft_.comment);
sharp);

127

428 INITIALIZING THE PRIMITIVE TOKENS

MFT

972

72. We also want to store a few other strings of characters that are used in MFT's translation to TEX code.

define ttr!(#) = byte-mem [byte-ptr — 1] — #: cur-tok — name-ptr; incr(nume-ptr);

byte-start [name-ptr] «— byte-ptr

define ttr2(#) = byte_mem [byte_ptr — 2] — #; rtrl
define ttr3 (#) = byte-mem [byte-ptr — 3] — #; 1tr2
define tirf (#) = byte-mem [byte-ptr — 4] — #; tir3
define tir5 (#) = byte_mem[byte_ptr — 5] — #; tir4
define trl = incr(byte-ptr); ttrl
define tr2 = byte-ptr «— byte-ptr + 2; ttr2
define tr3 = byte-ptr « byte-ptr + 3; ttr3
define tr4 = byte-ptr « byte-ptr + 4, ttr4
define tr5 = byte-ptr «— byte-ptr + 5; ttr5

(Globals in the outer block 9) +=

translation: array [AS CII-code] of name-pointer;

i: ASCll-code; {index into translation }

73. (Store all the translations 73) =
for i «—0to 127 do translation[i]— 0;

tr2("\")("$"); translation["$"] — cur-tok;
tr2("\")("#"); translation["#"] «— cur-tok;
tr?("\")("&"), translation["&"] — cur-tok;
tr2("\")("{"); translation["{"] « cur-tok;
tr2("\")("}"); translation["}"] « cur-tok;
tr2("\")("_ "), translation["_"] «— cur-tok;
tr2("\")("%"); translation["%"] — cur-tok;
trg ("\") ("B")('S")("y"); translation["\"] « cur-tok;
trg ("\")("H")("A")("L"); translation[" "] « cur-tok;
trg ("\")("T")("I")("u"); translation[" "] — cur-tok:
trs ("\")("a")("s")("t")("L"); translation["*"] «— cur-tok;
tT‘4 (u\n)(nAu)("M")("L.I") tr- -amp — cur- tOk
trg ("\")("B")("L")("L"); tr-skip « cur-tok;
trgd ("\")("S")("H")("L"); tr-sharp «— cur-tok;
tT‘4 (II\H)(IIPII)("S")(HUH) trps — cur tOk
tT‘4 (n\n)(nln)(uen)(nuu) tr le — cur tOk
t7"4 ("\")("g")("e")("u"); tr-ge — cur—tok;
trd ("\")("n")("e")("L"): tr-ne «— cur-tok;

(" (

tr5("\")

This code is used in section 112.

"q"); tr-quad — cur-tok;

74. (Globals in the outer block 9) +=

trle. tr-ge, tr-ne, tr-amp. tr_sharp. tr-skip, tr_ps, tr-quad:

name_pointer:;

{ special translations }

$75 MFT INPUTTING THE NEXT TOKEN 129

75. Inputting the next token. MFT’s lexical scanning routine is called gef-next. This procedure inputs
the next token of METAFONT input and puts its encoded meaning into two global variables, cur-type and
cur- tok .

(Globals in the outer block 9) +=

cur-type: eight-bits; { type of token just scanned }
cur-tok: integer; { hash table or buffer location }
prev-type: eight-bits; { previous value of cur-type }
prev-tok: integer; { previous value of cur-tok }

76. (Set initial values 10) +=
cur-type «— end-of-line; cur-tok «— 0;

77. Two global state variables affect the behavior of get-next: A space will be considered significant when
start-of-line is true, and the buffer will be considered devoid of information when empty-buffer is true.

(Globals in the outer block 9) +=
start-of-line: boolean; { has the current line had nothing but spaces so far? }
empty-buffer: boolean; { is it time to input a new line? }

78. The 128 ASCII-code characters are grouped into classes by means of the char-class table. Individual
class numbers have no semantic or syntactic significance, expect in a few instances defined here. There’s
also max-class. which can be used as a basis for additional class numbers in nonstandard extensions of

METRFONT.

define digit-class = 0 { the class number of 0123456789)

define period-class = 1 { the class number of . '}

define space-class =2 { the class number of spaces and nonstandard characters }
define percent-class =3 { the class number of ‘%’ }

define string-class = 4 { the class number of "’}

define right-paren-class = 8 { the class number of ‘) '}

define isolated-classes = 5,6,7,8 { characters that make length-one tokens only }
define letter-class =9 { letters and the underline character)

define left-bracket-class = 17 {‘[’}

define right-bracket-class =18 {‘]1’}

define invalid-class = 20 { bad character in the input }

define end-line-class =21 { end of an input line (MFT only) }

define max-class =21 { the largest class number }

(Globals in the outer block 9) +=
char-class: array [ASCII-code] of O .. max-class; { the class numbers }

130 INPUTTING THE NEXT TOKEN MFT $79

79. If changes are made to accommodate non-ASCII character sets, they should be essentially the same in
MFT as in METAFONT. However, MFT has an additional class number, the end-line-class, which is used only
for the special character carriage-return that is placed at the end of the input buffer.

define carriage-return = ‘15 {special code placed in buffer [1imi1] }
(Set initial values 10) +=

fori « "0" to "9" do char_class[i] — digit-class;

char-class [". "]« period_class; char-class [""]« space-class: char-class ["},"]— percent-class :

char-class [""""] « string-class ;

char-class [" s "] — b:char-class [" ; "] — 6; char-class [" ("] — T:char_class [") "] — right-paren-class ;

for i« "A" to "Z" do char-class[i] «— letter-class;

for i — "a" to "z" do char_class[i] — letter-class;

char-class ["_"] «— letter-class;

char-class["<"] «— 10; char_class["="] « 10; char-class [">"] « 10; char_class[" : "] — 10:

char-class ["I "] — 10;

char_class["~ "] « 11; char_class[" "] « 11;

char-class["+"] « 12; char_class["-"] « 12;

char_class["/"] « 13; char-class ["*"] « 13; char_class["\"] — 13;

char-class ["!"] — 14; char-class ["?"] — 14;

char-class ["#"] — 15; char_class["&"] — 15; char_class["@"] — 15; char_class["$"] — 15;

char_class["~"] «— 16; char_class["""] — 16;

char-class [" ["] « left-bracket-class; char_class["1"] « right-bracket-class;

char_class["{"] — 19; char_class["}"] — 19;

for i — 0 to "," — 1 do char_class[i] — invalid-class;

char-class [carriage-return] «— end-line-class;

char_class[127] «— invalid-class ;

80. And now we're ready to take the plunge into get-next itself.

define switch =25 { a label in get-next }

define pass-digits = 85 { another }

define pass-fraction = 86 { and still another, although goto is considered harmful}
procedure get-next; { sets cur-type and cur-tok to next token }

label switch, pass-digits, pass-fraction. done, found, exit ;

var c¢: ASCII-code; { the current character in the buffer }

class: ASCII-code ; { its class number }

begin prev-type «— cur-type; prev-tok <« cur-tok;

if empty-buffer then (Bring in a new line of input; return if the file has ended 85);
switch: ¢ — buffer[loc]; id-first «— loc; incr (loc); class «— char-class [c]; (Branch on the class, scan the

token; return directly if the token is special, or goto found if it needs to be looked up 81});

found: id_loc — loc; cur-tok «— lookup; cur-type «— ilk[cur_tok];
exit:end:

881 LIFT INPUTTING THE NEXT TOKEN 131

81. define emit(#) =begin cur-type «— #:cur-tok « id-first; return: end
(Branch on the class, scan the token; return directly if the token is special, or goto found if it needs to
be looked up 81) =
case class of
digit-class: goto pass-digits;
period-class: begin class — char-class [buffer [loc]];
if class > period-class then goto swirch {ignore isolated ‘. "}
else if class < period-class then goto pass-fraction; {class = digit-class }
end;
space-class: if start-of-line then emit (indentation)
else goto switch;
end-line-class: emit (end-of-line);
string-class: (Get a string token and return 82);
isolated-classes: goto found;
invalid-class: (Decry the invalid character and goto switch 84);
othercases do-nothing { letters, etc. }
endcases;
while char-class | buffer [loc]] = class do incr (Zoc);
goto found;
pass-digits: while char-class [buffer [loc]) = digit-class do incr (Zoc);
if buffer [Eoc]#" ."then goto done;
if char_class[buffer[loc + 1]] # digit-class then goto done;
incer (loc);
pass-fraction: repeat incr (loc);
until char-class [buffer [loc]] # digit-class;
done: emit (numeric-token)

This code is used in section 80.

82. (Get a string token and return 82) =
loop begin if bufferloc)=""""then
begin wncr (Zoc); emit (string-token);
end;
if loc = limit then (Decry the missing string delimiter and goto swirch 83);
iner(loc);
end

This code is used in section 81.

83. (Decry the missing string delimiter and goto switch 83) =
begin err-print (“ ! Incomplete string, will be_ignored"); goto switch;
end

This code is used in section 82.

84. (Decry the invalid character and goto switch 84) =
begin err-print (“!,Invalid, ,character will be ignored”); goto switch;
end

This code is used in section 81.

85. (Bring in a new line of input; return if the file has ended 85) =
begin get-line:
if input-has-ended then emit (end-of-file);
buffer(limit] «— carriage-return: loc «— 0: start-of-line — true; empty_buffer — false;
end

This code is used in section 80.

132 LOW-LEVEL OUTPUT ROUTINES MFET 636

86. Low-level output routines. The TEX output is supposed to appear in lines at most line_length
characters long, so we place it into an output buffer. During the output process, out-line will hold the
current line number of the line about to be output.

(Globals in the outer block 9) +=

out-buf: array [0 .. line-length] of ASCII.code; { assembled characters }
out-ptr: 0 . . line-length; { number of characters in out-buf }

out-line: integer; { coordinates of next line to be output }

87. The flush_buffer routine empties the buffer up to a given breakpoint, and moves any remaining
characters to the beginning of the next line. If the per-cent parameter is true, a "%4" is appended to
the line that is being output; in this case the breakpoint b should be strictly less than line-length. If the
per-cent parameter is false, trailing blanks are suppressed. The characters emptied from the buffer form a
new line of output.

procedure flush_buffer(b : eight-bits; per-cent : boolean); {outputs out_buf(l. . b], where b < out-ptr}
label done;
var j,k: 0 .. line-length;
begin j« b;
if —per_cent then {remove trailing blanks }
loop begin if j =0 then goto done;
if out-buf [j] # """ then goto done;
decr (j);
end;
done: for k — 1 to jdo write (tez_file, xchr[out_buf [k]]);
if per-cent then write (tex_file, zchr ["%"]);
write-Zn(tex_file); incr (out-line);
if b <out-ptr then
for k — b+ 1 to out-ptr do out-buf [k — b} — out-buf [k]:
out-ptr «— out-ptr = b;
end:

88. MFT calls flush_buffer(out-ptr, false) before it has input anything. We initialize the output variables
so that the first line of the output file will be ‘input mftmac’.

(Set initial values 10) +=
out-ptr « 1; out_buf [1] « ""; out-line — 1; write (tez_file, \input_mftmac *);

89. When we wish to append the character ¢ to the output buffer, we write out(c); this will cause the
buffer to be emptied if it was already full. Similarly, ‘out2(c;)(ce)’ appends a pair of characters. A line
break will occur at a space or after a single-nonletter TEX control sequence.
define oot(#) =
if out-ptr = line-length then break-out;
iner (out-ptr); out-buf [out-ptr] — #;
define oot! (#) = oot(#) end
define oot2(#) = oot(#) ootl
define oot3(#) = oot(#) oot2
define oot{ (#) = oot(#) oot3
define oot5 (#) = oot (#) oot
define out =begin ootl
define out2 =begin oot2
define out3 =begin oot3
define out4 = begin oot4
define out5 = begin oot

890 MFT LOW-LEVEL OUTPUT ROUTINES 133
90. The break-out routine is called just before the output buffer is about to overflow. To make this routine
a little faster, we initialize position 0 -of the output buffer to *\’; this character isn’t really output.

(Set initial values 10) +=
out-buf [0] —"\";

91. A long line is broken at a blank space or just before a backslash that isnt preceded by another
backslash. In the latter case, a "%" is output at the break. (This policy has a known bug, in the rare
situation that the backslash was in a string constant that’s being output “verbatim.®)

procedure break-out; { finds a way to break the output line }
label exit;
var k: 0 .. line-length; {index into out-buf }
c.d: ASCll-code; { characters from the buffer }
begin k « out-ptr;
loop begin if k =0 then (Print warning message, break the line, return 92);
d — out-buf [k];
if d ="_,"then
begin flush_buffer (k, false); return;
end;
if (d ="\") A (out-buf [k —1]#"\") then {in this case k > 1 }
begin flush_buffer (k — 1, true); return;
end;
decr(k);
end;
exit: end:

92. We get to this module only in unusual cases that the entire output line consists of a string of backslashes
followed by a string of nonblank non-backslashes. In such cases it is almost always safe to break the line by
putting a "%" just before the last character.
(Print warning message, break the line, return 92) =

begin print_nl(! Line_had to_be broken (output_ l.", out-line : 1); println(") : °);

for k — 1 to out-ptr — 1 do print(zchr|out_buf [k]]);

new-line; mark-harmless; flush_buffer(out,ptr — 1, true); return;

end

This code is used in section 91.

93. To output a string of bytes from byte-mem, we call out-str.

procedure out_str(p : name-pointer); { outputs a string }
var k: 0. . maz_bytes; {index into byte-mem }
begin for k « byte_start[p] to byte_start[p + 1] —.1 do out(byte_-mem|[k]);

end:

434 LOW-LEVEL OUTPUT ROUTINES

MFT §94

94. The out-name subroutine is used to output a symbolic token. Unusual characters are translated into

forms that won’t screw up.

procedure out-name (p : name-pointer); { outputs a name }
var k:0 .. maz-bytes; {index into byte-mem }
t: name-pointer; { translation of character being output, if any}
begin for k « byte_start[p]to byte-start [p +1]—1 do
begin t « translation [byte-mem [k]];
if t = 0 then out(byte-mem[k])
else out_str(t);
end;
end;

95. We often want to output a name after calling a numeric macro (e.g., ‘\1{foo0}").

procedure out-mat-and-name (n : ASCII-code; p :name-pointer);
begin our ("\"); out(n);
if length(p) = 1 then out-name(p)
else begin our ("{"); out-name(p); out ("}");
end;
end;

96. Here’s a routine that simply copies from the input buffer to the output buffer.

procedure copy(first_loc : integer); { output buffer(first_loc . . loc — 1]}
var k: 0 .. buf.size; { buffer location being copied }
begin for k « first-Zoc to loc— 1 do out (buffer [k]);
end:

8§97 MFT TRANSLATION 435

97. Translation. The main wprk of MFT is accomplished by a routine that translates the tokens, one by
one, with a limited amount of lookahead/lookbehind. Automata theorists might loosely call this a “finite
state transducer,” because the flow of control is comparatively simple.

procedure do-the-translation;

label restart, reswitch, done, exit;

var k:0.. buf-size: {looks ahead in the buffer }
t: integer; { type that spreads to new tokens}

begin restart: if out-ptr > 0 then flush-buffer(out-ptr, false);

empty-buffer — true;

loop begin get-next ;
if start-of-line then (Do special actions at the start of a line 98);

reswitch: case cur-type of
numeric-token: (Translate a numeric token or a fraction 105);
string-token: (Translate a string token 99);
indentation: out-str (tr_quad);
end-of-line, mft-comment: (Wind up a line of translation and goto restart, or finish a I ... I segment

and goto reswitch 110) ;
end-of-file : return;
(Cases that translate primitive tokens 100)
comment, recomment: (Translate a comment and goto restart, unless there’s a I . . . I segment 108);
verbatim: (Copy the rest of the current input line to the output, then goto restars 109);
set-format: (Change the translation format of tokens. and goto restart or reswitch 111);
internal, special-tag, tug: (Translate a tag and possible subscript 106);
end; {all cases have been listed }
end;
exit: end:

98. (Do special actions at the start of a line 98) =
if cur-type > man_action_type then
begin out ("$"); start-of-line — false;
case cur-type of
endit:out2 ("\")("/");
binary, abinary, bbinary, ampersand,pyth-sub: out2 ("{")("}");
othercases do-nothing
endcases;
end
else if cur- type = end-of-line then
begin out-str (tr-skip); goto restart;
end
else if cur-type = mft-comment then goto restart

This code is used in section 97.

99. Let’s start with some of the easier translations, so that the harder ones will also be easy when we get
to them. A string like "cat" comes out ‘\7"cat"’.
(Translate a string token 99) =

begin out2 ("\")("7"); copy(cur-tok);

end

This code is used in section 97.

136 TRANSLATION

100. Similarly, the translation of ‘sqrt’is ‘\1{sqrt}"

(Cases that translate primitive tokens 100) =
op:out-mat-and-name("1", cur-tok);
command: out-mat-and-name ("2". cur-tok):
type-name: if prev-type = command then out_mac_and_name("1". cur-tok)

else out_mac_and_name("2". cur-tok);
endit: out_-rnac_and_name("3", cur-tok):
bbinary: out_mac_and_name ("4", cur-tok):
bold: out-mat-and-name("5". cur-tok);
binary: out_mac-and_name("6", cur-tok):
path-join: out-mat-and-name (8", cur-tok);
See also sections 101, 102, and 103.

This code is used in section 97.

101. Here are a few more easy cases.

(Cases that translate primitive tokens 100) +=
as-is, sharp, abinary: out-name (cur-tok);
colon: out2 ("\")("?");
double-back: out2 ("\")(";");
semicolon: begin out-name (cur-tok): get-next;
if cur-type # end-of-line then
if cur-type # endit then out2("\")("L");
goto reswitch;:
end;

102. Some of the primitives have a fixed output (independent of cur-tok):

(Cases that translate primitive tokens 100) +=
backslash: out-str (translation ["\"]);

pyth-sub: out_str(tr_ps);

less-or-equal: out-str (tr_le);

greater-or-equal: out-str (tr-ge);

not-equal: out_str(tr_ne);

ampersand: out-str(tr-amp);

103. The remaining primitive is slightly special.

(Cases that translate primitive tokens 100) +=

input-command: begin out-mat-and-name ("2", cur-tok); out5("\")("h")("b")("0")(

(Scan the file name and output it in typewriter type 104);
end;

X

);

NMET

s loo

§104 MFT TRANSLATION 437

104. File names have different formats on different computers, so we don’t scan them with get-next. Here
we use a rule that probably covers most cases satisfactorily: We ignore leading blanks, then consider the file
name to consist of all subsequent characters up to the first blank, semicolon, comment, or end-of-line. (A
carriage-return appears at the end of the line.)

(Scan the file name and output it in typewriter type 104) =
while buffer[loc] = "." do incr(loc);
outs (“{")("\") ("6 ("e) (")
while (buffer[loc] #",")A (buffer [Eoc]#"%") A (buffer [loc]#";")A (Zoc < limit)do
begin out (buffer [loc]); iner (Zoc):
end;
out("}")

This code is used in section 103.

105. (Translate a numeric token or a fraction 105) =
if buffer{loc] = "/" then
if char-class [buffer(loc +1]] = digit-class then { it’s a fraction }
begin out5("\")("£")("r")("a")("c"); copy(cur_tok); get-next; out2("/")("{"); get-next:
copy(cur-tok); out ("}");
end
else copy(cur-tok)
else copy(cur-tok)

This code is used in section 97.

106. (Translate a tag and possible subscript 106) =
begin if length(cur-tok) = 1 then out-name(cur-tok)
else out-mat-and-name ("\", cur-tok);
get-next;
if byte-mem [byte-start [prev_tok]]="""then goto reswitch;
case prev- type of
internal: begin if (cur-type = numeric-token)((cur-type > min_suffiz) then out2 ("\")(", ");
goto reswitch;
end;
special-tag: if cur-type < min_suffir then goto reswitch
else begin out ("."); cur-type « internal; goto reswitch;
end;
tag: begin if cur-type = tag then
if byte-mem [byte-start [cu r-tokJ] =" " then goto reswitch;
{a sequence of primes goes on the main line }
if (cur-type = numeric-token) |(cur-type > min_suffir) then (Translate a subscript 107)
else if cur-type = sharp then out-str(tr_sharp)
else goto reswitch;
end;
end; {there are no other cases }
end

This code is used in section 97.

138 TRANSLATION MFT 5107

107. (Translate a subscript 107) =
begin out2 ("_")("{");
loop begin if cur-type > min_suffix then out_name(cur_tok)
else copy(cur-tok);
if prev-type = special-tag then
begin get_next: goto done:
end:
get-next;
if cur_type < min_suffix then
if cur-type # numeric-token then goto done:
if cur-type = prev-type then
if cur-type = numeric-token then out2 ("\")(",")
else if char_class[byte_mem[byte_start[cur_tok]]] = char_class[byte.mem[byte_start[prev_tok]]] then
if byte-mem [byte-start [prev_tok]]#"."then out (".")
else our2 ("\")(",");
end;
done: out ("}"); goto reswitch;
end

This code is used in section 106.

108. The tricky thing about comments is that they might contain I . . . I. We scan ahead for this, and
replace the second ‘1’ by a carriage-return.

(Translate a comment and gOtO restart, unless there’sal...I segment 108) =
begin if cur-type = comment then out2("\")("9");
id-first « loc;
while (loc < limit) A (buffer [loc]#" I ") do incr (loc);
copy (id-first);
if loc < limit then
begin start_of-line + true; incr (loc); k « loc;
while (k <limit) A (buffer[k]# " | ") do incr(k);
buffer(k] + carriage-return;
end

else begin if out-buf [out-ptr]="\"then out (", ");
outd ("\")("p")("a")("r"); got0 restart:
end;

end

This code is used in section 97.

109. (Copy the rest of the current input line to the output, then goto restart 109) =
begin id-first «— loc; loc + limit; copy(id_first);
if out-prr =0 then
begin out-ptr + 1; out-buf[1] — " ";
end;
gotQ restart:
end

This code is used in section 97.

8110 MFT TRANSLATION 139

110. (Wind up a line of translation and goto restart, or finish a |... I segment and goto reawitch 110) =
begin out ("$");
if (loc < limit) A (cur-type = end-of-line) then
begin cur_-type — recormment: goto reswitch;
end
else begin outd ("\")("p")("a")("xr"): goto restart;
end:
end

This code is used in section 97.

111. (Change the translation format of tokens, and goto restart or reswitch 111) =
begin start-of-line «— false; get-next; t «— cur-type;
while cur-type > min-symbolic-token do
begin get-next;
if cur-type > min-symbolic-token then ilk[cur_tok] — ¢;
end;
if cur-type # end-of-line then
if cur-type # mft_comment then
begin err-print (~ ! _Only symbolic tokens should appear af ter %% "); goto reswitch
end;
empty-buffer «— true; got0Q restart;
end

This code is used in section 97.

440 THE MAIN PROGRAM MFT qlbl2

112. The main program. Let’s put it all together now: MFT starts and ends here.
begin initialize; { beginning of the main program }
print-ln (bunner); { print a “banner line” }
(Store all the primitives 65);
(Store all the translations 73);
(Initialize the input system 44);
do_the_translation; (Check that all changes have been read 49);
end-of MFT: { here files should be closed if the operating system requires it }
(Print the job history 113);
end.

113. Some implementations may wish to pass the history value to the operating system so that it can be
used to govern whether or not other programs are started. Here we simply report the history to the user.

(Print the job history 113) =
case history of
spotless: print_nl(~ (No_errors were, f ound.) *);
harmless_message: print_nl(~ (Did_you_see_the warning message above?) ");
error-messuge: print-nl(~ (Pardon me,_but I think I spotted something wrong.) ");
fatal-message: print_nl(” (That_was_a_f atal error, _my_f riend.) *);
end { there are no other cases }

This code is used in section 112.

114. System-dependent changes. This module should be replaced, if necessary, by changes to the
program that are necessary to make MFT work at a particular installation. It is usually best to design your
change file so that all changes to previous modules preserve the module numbering; then everybody’s version
will be consistent with the printed program. More extensive changes, which introduce new modules, can be
inserted here: then only the index itself will get a new module number.

5115 MFT INDEX L

115. Index.
Ao 98, change-limit: 36, 37, 38, 41, 42, 46. 49.
\, : 106, 107. changing: 30, 34, 35, 36, 38, 42, 44, 45. 49.
\;: 101, char: 13.
\?2: 101, char_class: 17, 78, 79, 80. 81, 105, 107.
\\: 106. character set dependencies: 17, 79.
\ . 101. check-chunge : 42, 46.
\ AM, etc : 73. chr: 13, 15, 18.
\ frac : 105. class: 80, 81.
\par : 108, 110. colon: 63, 65, 101.
\1l: 100. command: 63, 65, 66, 70, 71, 100.
\2:100. comment: 63, 71, 97, 108.
\3:100. confusion: 32.
\4:100. continue: 9, 38, 39.
\6:100. copy: 96, 99, 105, 107, 108, 109.
\6:100. cur-tok: 64, 72, 73, 75, 76, 80, 81, 99, 100. 101.
\7:99. 102, 103, 105, 106, 107, 111.
\8:100. cur-type: 715, 76, 80, 81, 97, 98, 101. 106 107,
\9:108. 108, 110, 111.
{}:938. d: 9l1.
ubinury: 63, 70, 98, 101. decr: 6, 28, 87, 91.
ampersand: 63, 70, 98, 102. digit-class : 78, 79, 81, 105.
us-is . 63, 65, 70, 71, 101. do-nothing: 6, 81, 98.
ASCII code: 11. do-the-translation: 97, 112.
ASClI-code: 12, 13, 15, 27, 28, 36, 51, 72, 78, done: 9, 38, 39, 80, 81, 87, 97, 107.
80, 86, 91, 95. double-buck: 63, 65, 101.
b: 87. eight-bits: 50, 75, 87.
buckslush: 63, 65, 102. else: 7.
banner: 2, 112. emit: 81, 82, 85.
bbinury: 63, 65, 98, 100. empty-buffer: 77, 80, 85, 97, 111.
binary : 63, 70, 71, 98, 100. end: 7.
bold: 63, 66, 71, 100. end-line-class: 78, 79, 81.
boolean: 28. 34, 37, 77, 87. end-of-file: 63, 85, 97.
break: 22. end-of-line: 63, 76, 81, 97. 98, 101, 110, 111.
break_out: 89. 90, 91. end-of-MFT: 3, 31, 112.
buf_size: 8. 27, 28, 29, 34, 36, 37, 38, 42, 55, endcases: 7.
58. 96, 97. endit: 63, 65, 66, 71, 98, 100, 101.
buffer: 27, 28, 29, 30, 37, 39, 41, 42, 43, 44, 16, eof: 28.
48. 49, 55. 58. 59, 61, 62, 64, 79, 80, 81. 82, eoln: 2 8 .
85, 96, 104, 105, 108. err-print: 29,35, 39. 40. 42, 43, 48, 49, 83, 84, 111.
byte-mem: 50, 51, 52, 53, 58, 61, 62, 72, 93, error: 28, 29, 31.
94, 106, 107. error-rnessuge: 9, 113.
byte-ptr: 52. 53, 54, 62, 72. erit: 5,6, 37, 38, 42, 80, 91, 97.
byte-start: 50, 91, 52, 53, 54, 55, 61, 62, 72. f: 28
93, 94. 106, 107. false: 28. 35, 36, 37, 42, 44, 47, 85. 87. 88.
c: 80, 91. 91, 97, 98, 111.
carriage_return: 79, 85, 104, 108. futul-error : 31, 32, 33.
Change file ended. . . : 40, 42. 48. fatal_message: 9. 113.
Change file entry did not match: 49. final_lurmat = 28.
change_buffer: 36, 37. 38, 41, 42, 46, 49, first_loc: 96.
change_changing: 35, 42, 44, 48. first-text-chur: 13, 18.

change_file: 3,23.24, 30, 34, 36, 39. 40. 42. 43. flush_buffer: 87, 88. 91. 92. 97.

442 INDEX

found: 5, 58, 60, 61, 80. 81.

get: 28.

get-line: 34, 45, 85.

get-next: 75, 77, 80, 97, 101, 104, 105, 106,
107, 111.

greater-or-equal: 63, 70, 102.

h: 36, 38.

harmless_message: 9, 113.

hush: 52, 55, 57, 60.

8, 55, 56, 57, 58, 59.

history: 9, 10, 113.

Hmm... n of the preceding. . . : 43.

i 58, 72.

id-first: -55, 58, 59, 61, 62, 64, 80, 81, 108, 109.

id-lot: 55, 58, 59, 61, 62, 65, 80.

ilk : 50, 51, 63, 64, 80, 111.

Incomplete string.. . : 83.

mer: 6, 28, 39, 40, 42, 46, 47, 48, 59, 61, 62, 72,
80, 81, 82, 87, 89. 104, 108.

63, 81, 97.

3, 112,

Input line too long: 28.

63, 66, 103.

34, 42, 44, 46, 85.

hush-size:

indentation:
initialize:

input-command:
input-has-ended:

input-ln: 28, 39, 40, 42, 46, 47, 48.
integer: 34, 42, 75, 86, 96, 97.
internal: 63, 68, 69, 97, 106.
Invalid character.. . : 84.
invulid-class: 78, 79, 81.
isolated-classes: 718, 81.

i 87.

jump-out: 3, 31._

k. 29, 37, 38, 42, 58, 87, 91, g&v %s %7 9_7

Knuth, Donald Ervin: 1.

l: 29, 58.

lust-text-char: 13, 14, 18.

left-bracket-class: 78, 79.

length : 52, 60, 95, 106.

less-or-equal: 63, 70, 102.

letter_class: 78, 7 9 .

lirnit: 28, 30. 34, 37, 39, 40, 41, 43, 44, 45, 46, 48,
49, 79, 82, 85, 104, 108, 109, 110.

line: 30, 34, 35, 39, 40, 42, 44, 46, 47, 48, 49.

Line had to be broken: 92.

line-length: 8, 86. 87, 89, 91.

lines-dent-match: 37, 42.

link : 50, 31, 52, 60.

loc: 28, 30, 34, 39, 43, 44, 45, 48, 49, 80, 81, 82,
85, 96, 104, 105, 108, 109, 110.

lookup: 55, 58, 64, 80.

loop: 6.

murk-error: 9, 29.

MET 5115

murk-fatal: 9, 31.

murk-harmless : 9, 92.

8,51, 53, 58, 62. 93, 94,
mnx-class: 78.

mar_-names: 8, 51, 52, 62.

MF file ended... : 42.

mux-bytes:

mf_file: 3,23, 24, 30, 34, 36, 42, 46, 49.
MFT: 3.

mft_comment: 63, 71, 97, 98, 111.
min-action-type: 63, 98.

man_suffiz: 63, 106, 107.
min-symbolic-token: 63, 111.

n: 42, 95.

nume-pointer: 52, 53, 58, 72, 74, 93, 94. 95.

name-ptr: 52, 53, 54, 58, 60. 62, 72.
new-line: 20, 29, 30, 31, 92.

nil: 6.

no t-equal: 63, 70, 102.

no t-found : 9.

numeric-token: 63, 81, 97, 106, 107.
Only symbolic tokens.. . : 111.
oot: 89.

ootl:
00t2:
oot3:
oot4:
oot5:
op: 63, 65, 67, 100.
24, 44.

IOOOOOO]OEOO
SIBIBISIS

open-input:

ord: 15.

other-line: 34, 35, 44, 49.

ot hercases: 7.

others: 7.

out: 89, 93, 94, 95, 96, 98, 104, 105, 106.
107, 108, 110.

out-buf: 86, 87, 88, 89, 90, 91, 92, 108, 109.

out-line: 86, 87, 88, 92.

out_mac_and_name: 95, 100, 103, 106.

out,nume: 94, 95, 101, 106, 107.
out-ptr: 86, 87, 88, 89. 91, 92. 97, 108. 109.
out-str: 93, 94, 97, 98, 102, 106.

out2 : 89, 98, 99, 101, 105, 106, 107, 108.
out3: 89.

outd : 89, 108, 110.
outs : $9, 103, 104, 105.
overflow: 33, 62.

p: 58. 93. 94, 95.
80,8 1.
pass_fraction: 80, 8 1 .
path_join: 63, 65, 100.
per-cent: 8T.
percent_class: 78, 7 9.

puss-digits :

$115 MFT

period-class: 78, 79,

81.

prev_tok: 75, 80, 106, 107.

prev-type . 75, 80, 100, 106, 107.
prime-the-chnnge-buffer: 38, 44, 48.

print: 20, 29, 30, 31
print.ln: 20, 30, 92,
print-nl: 20, 28, 92,
prl : 64, 65, 70, 71.

prl0: 64, 65, 66. 67, 69, 70, 71.
prll: 64, 65, 66, 67, 68, 69, 70, 71.
, 71

pri2: 64, 65, 68, 69

, 92.
112.
113.

pri3: 64, 67, 68, 70, 71.

pri4: 64, 67, 68.

prld: 64, 68.
pri6: 64, 68, 71.
prl7: 64, 70.

pr2: 64, 65, 66, 70.
pr3: 64, 65, 66, 67,
pr4: 64, 65, 66, 67,
pré: 64, 65, 66, 67,
pr6 : 64, 65, 66, 67,

pr7: 64, 65, 66, 67. 69, 70, 71.

pr8: 64, 65, 66, 67,
pr9: 64, 66, 69, 70,
pyth_sub: 63, 70, 98,
read_ln: 2 8.
recomment: 63, 97,
reset: 24.

restart: 9, 45, 97, 98, 108, 109, 110, 111.
reswitch: 9, 97, 101, 106, 107, 110, 111.

return: 5, 6.
rewrite: 21, 26.

71.

69, 70, 71.
69, 70, 71.
69, 70, 71.

69, 70.

69, 71.
71.
102.

110.

right-bracket-class: T8, 79.

right-puren-class: 78,

79.

semicolon: 63, 65, 101.
set-format: 63, 71, 97.
sharp: 63, 71, 101, 106.
sixteen-bits: 50, 51, 55.

Sorry, x capacity exceeded:

space-class: 78, 79. 81.

special-tug: 63, 66, 97, 106, 107.

spotless: 9, 10. 113.
spril —sprl7: 64.

start-of-line: 77, 81, 85, 97, 98, 108, 111.

string-class: 78, 79,
string-token: 63, 82,

style_file: 3. 23, 24, 30, 34, 47.

81.
97.

styling: 30, 34, 44, 45. 47.
switch: 80, 81, 83, 84.

system dependencies:

t: 94, 97.

2,3, 4,7, 13, 16, 17, 20, 21,
22, 24. 26. 28. 30. 31, 79, 112, 113, 114.

INDEX 443

tug: 63, 97, 106.

temp-line: 34, 35.

term-out: 20, 21, 22.

texfile: 3, 25, 26, 87, 88.

text-char: 13, 15, 20.

text-file : 13, 20. 23, 25, 28.

This can’t happen: 32.

tr-amp: 73, 74, 102.

tr-ge: 73, 74, 102.

tr-le: 73, 74, 102.

tr-ne: 73, 74, 102.

trops: 73, 74, 102.

tr-quad: 73, 74, 97.

tr-sharp: 73, 74, 106.

tr-skip : 73, 74, 98.

translation: 72, 73, 94, 102.

true: 6, 28, 34, 35, 37, 42, 44, 46, 49. 77, 85.
87, 91, 92, 97, 108, 111.

trl: T2
tr2 . 72, 73.
ir3: 72.
try: 72, 73.
tro: 72, 73.
ttrl o 72.
ttr2: 72
ttrg: 72
ttry: 72.
ttr5: 72.

type-name: 63, 70, 100.
update-terminal: 22, 29.

user manual: 1.

verbatim: 63, 71, 97.

Where is the match.. . : 39, 43. 48.
write: 20, 87, 88.

write.ln: 20, 87.

xchr: 15, 16, 17, 18, 30, 87, 92.
xclause: 6.

xord: 15, 18, 28.

144 NAMES OF THE SECTIONS MFT 5115

(Assign the default value to ilk [p] 63) Used in section 62.

(Branch on the class, scan the token; return directly if the token is special, or goto found if it needs to
be looked up 81) Used in section 80.

Bring in a new line of input; return if the file has ended 85) Used in section 80.

Cases that translate primitive tokens 100, 101, 102, 103) Used in section 97.

Change the translation format of tokens, and goto restart or reswitch 111) Used in section 97.

Check that all changes have been read 49) Used in section 112.

Compare name p with current token, goto found if equal 61) Used in section 60.

Compiler directives 4) Used in section 3.

Compute the hash code 7 59) Used in section 58.

Compute the name location p 60) Used in section 58.

Constants in the outer block 8) Used in section 3.

Copy the rest of the current input line to the output, then goto restzart 109) Used in section 97.

Decry the invalid character and goto swirch 84) Used in section 81.

Decry the missing string delimiter and goto switch 83) Used in section 82.

Do special actions at the start of a line 98) Used in section 97.

Enter a new name into the table at position p 62) Used in section 58.

Error handling procedures 29, 31) Used in section 3.

Get a string token and return 82) Used in section 81.

Globals in the outer block 9, 15. 20, 23, 25, 27, 34, 36, 51, 53, 55, 72, 74, 75, 77, 78, 86) Used in section 3.

If the current line starts with @y, report any discrepancies and return 43) Used in section 42.

Initialize the input system 44) Used in section 112.

Local variables for initialization 14, 56) Used in section 3.

Move buffer and limit to change-buffer and change-limit 41) Used in sections 38 and 42.

Print error location based on input buffer 30) Used in section 29.

Print the job history 113) Used in section 112.

Print warning message, break the line, return 92) Used in section 91.

Read from change-file and maybe turn off changing 48) Used in section 45.

Read from mf_file and maybe turn on changing 46) Used in section 45.

Read from style-file and maybe turn off styling 47) Used in section 45.

Scan the file name and output it in typewriter type 104) Used in section 103.

Set initial values 10, 16, 17, 18, 21, 26, 54, 57, 76, 79, 88, 90) Used in section 3.

Skip over comment lines in the change file; return if end of file 39) Used in section 38.

Skip to the next nonblank line; return if end of file 40) Used in section 38.

Store all the primitives 65, 66, 67, 68, 69, 70, 71) Used in section 112.

Store all the translations 73) Used in section 112.

Translate a comment and goto restart, unless there’s a 1. .. I segment 108) Used in section 97.

Translate a numeric token or a fraction 105) Used in section 97.

Translate a string token 99) Used in section 97.

Translate a subscript 107) Used in section 106.

Translate a tag and possible subscript 106) Used in section 97.

Types in the outer block 12, 13, 50, 52) Used in section 3.

Wind up a line of translation and goto restart, or finish a | . . . I segment and goto reswirch 110)
Used in section 97.

o Y N Y N T T N N T T T N Y Y N N N N e T N T N N N T T N N e N N N e N e N

W% MET commands for the PLAIN base

A% YCD) 13 !t %A% tokens that need no special formatting

W% step upto donnto %A%% boldface binary operators

%4% addto fill unfill draw undraw %%4%% boldface unary operators

%%4% addto filldraw unfilldraw drawdot undrawdot erase pickup

%%% addto exitunless stop incr decr proofrulethickness screenrule

%%% addto define-pixels define-whole-pixels define-whole-vertical-pixels
%i%addtodefine-blacker-pixels define_whole_blacker_pixels

%A% addto define-corrected-pixels lowres_fix proofoffset penstroke

%%% addto beginchar italcorr font-size font-slant labels

%4k addto font-normal-space font-normal-stretch font-normal-shrink font-quad
%A% addto font-x-height font-extra-space font-identifier font-coding-scheme
%A% enddef endchar %%%% boldface closing

%h% true relax mode-setup %UA%% boldface nullary operators

%A% true clearit shipit cullit openit showit clearxy clearpen

%A% true nodisplay notransforms screenchars screenstrokes imagerules

Y% -—— ——- %%%% path operators made of dots and dashes

%A% length flex abs dir %%A%% unary operators to be in roman type

%A% length unitvector inverse ceiling round vround counterclockwise

%4% length tensepath byte reflectedabout rotatedaround magstep max min

%A% and mod dotprod intersectionpoint softjoin %%U%% binary operators to be roman
Uitk ++ *x Y%%% binary operators made of two special characters

%%% penoffset goodval direction directionpoint %%%4% operators that take "of"
%44 pausing tolerance pixels-per—-inch blacker o-correction %%4% internals
%% pausing screen-rows screen,cols currentwindow displaying

%%% pausing pen-top pen,bot pen_lft pen,rt rt 1ft top bot

Y% = £ 2 # YUU% conversions for the SAIL character set only

J~
o~
(W)

i~
i~
N

WAA% MET commands for the Computer Modern base

Whh
Whh
Wil
Wil
Wik
Wil
Wbk
Wl
Whle
Whih
Wil
Whih
Wik
VAN
Wl
Whh
YANA
Wil
Wil
AN
Wl
Whih
Whh
JAAA
Wi
Whh
Wil
Wik
Whh
Wil
Whh
Wik

} ()II{{ 3} ! t %%%% tokens that need no special formatting

step upto downto %%%% boldface binary operators

addto fill unfill draw undraw %%4%% boldface unary operators

addto filldraw unfilldraw drawdot undrawdot erase pickup

addto exitunless stop incr decr proofrulethickness screenrule
addtodefine-pixels define-whole-pixels define_whole_vertical_pixels
addto define-blacker-pixels define-whole-blacker-pixels

addto define-corrected-pixels lowres_fix proofoffset penstroke

addto beginchar beginarithchar italcorr font-size font-slant

addto font-normal-space font-normal-stretch font-normal-shrink font-quad
addto font-x-height font-extra-space font-identifier font-coding-scheme
addto cmchar iff generate adjust-fit math-fit labels penlabels

addto stroke circ,stroke padded

enddef endchar %A% boldface closing

true relax mode-setup font-setup %%4%% boldface nullary operators

true clearit shipit cullit openit showit clearxy clearpen

true nodisplay notransforms screenchars screenstrokes imagerules
.............. %%%%A path operators made of dots and dashes

length flex abs dir %%%% unary operators to be in roman type

length unitvector inverse ceiling hround vround Vround counterclockwise
length tensepath byte reflectedabout rotatedaround magstep max min

and mod dotprod intersectionpoint softjoin %%%% binary operators to be roman
++ %% %Y%%% binary operators made of two special characters

penoffset goodval direction directionpoint %%%% operators that take "of"
pausing tolerance pixels-per—-inch blacker o-correction %%%% internals
pausing screen-rows screen,cols currentwindow displaying

pausing pen-top pen,bot pen-1lit pen,rt shrink-fit rt 1ft top bot

= £ 2> # YUU% conversions for the SAIL character set only

good crisp fine tiny rule light-rule cal light_cal med,cal heavy_cal
good term fudged mfudged sloped-serif tilted med,tilted

pausing slant fudge math-spread superness superpull beak-darkness ligs
input generate

%% \outer\defttL{\par\vfill\eject} % obeypages

Wb

%% %4 nine-point type:
%h \catcode‘@=11 % borrow the private macros of PLAIN (with care)

Wh
W

\def\ninebig#1{{\hbox{$\textfontO=\tenrm\textfont2=\tensy
\left#1i\vbox to7.25pt{}\right.\nCspace$}}}

%% \catcode‘@=12 % now 0 is a nonletter again

Wh
Wh
Wh
Wh
Wh
Wh
Wh
Wh
Wh
Wh
h

\font\ninerm=cmr9 \font\sixrm=cmré
\font\ninei=cmmi9 \font\sixi=cmmig
\skewchar\ninei=’177 \skewchar\sixi=’177
\font\ninesy=cmsy9 \font\sixsy=cmsy6 '
\skewchar\ninesy=’60 \skewchar\sixsy=’60
\font\nineit=cmti9

\font\ninesl=cmsl9

\font\ninebf=cmbx9 \font\sixbf=cmbx6
\font\ninett=cmtt9 \hyphenchar\ninett=-1
\font\ninetex=cmtex9 \hyphenchar\ninetex=-1
\def\rm{\famO\ninerm}

%4 \textfontO=\ninerm \scriptfontO=\sixrm \scriptscriptfontO=\fiverm
%% \textfont1=\ninei \scriptfontl=\sixi \scriptscriptfonti=\fivei

W
W
Wh
Wh
W
wh
Wk
W

\textfont2=\ninesy \scriptfont2=\sixsy \scriptscriptfont2=\fivesy
\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex
\def\it{\fam\itfam\nineit}

\textfont\itfam=\nineit

\def\sl{\fam\slfam\ninesl}

\textfont\slfam=\ninesl

\def\bf{\fam\bffam

\def_{\kern.O04em\vbox{\hrule width.3em height .6pt}\kern.O8em}/

%% \ninebf}

%4 \textfont\bffam=\ninebf \scriptfont\bffam=\sixbf

%% \scriptscriptfont\bffam=\fivebf

%4 \def\tt{\fam\ttfam\ninett}

%% \textfont\ttfam=\ninett

%4 \def\finstring"#1"{\ninetex"#1"\egroup}

%% \baselineskip=11pt

%% \def\MF{{\manual hijk}\-{\manual 1mnj}}

%% \let\big=\ninebig

%é \setbox\strutbox=\hbox{\vrule height8pt depth3pt widthOpt}
%h \rm

%% \setbox\shorthyf=\hbox{-\kern-.05em}

%% \hsize=29pc % this is the size of pages in the Computer Modern book
5& \vsize=44pc % likewise

WANA \mag=\magstepl %4%4% for magnified proofs

% special macros for use with MFT output

\font\tenlogo=logo10 % font used for the METAFONT logo
\font\tentex=cmtex10 \hyphenchar\tentex=-1 % font used for strings
\font\sevenit=cmti7 \scriptfont\itfam=\sevenit

\def\MF{{\tenlogo META}\-{\tenlogo FONT))

\parindent=0pt
\thinmuskip=Smu
\thickmuskip=6mu plus 6mu

\def\\#1{{\it#1}} % italic type for identifiers
\def\0#1#2#3{\hbox{\rm\’{}\kern-.2em\it#1#2#3\/\kern.05em}} % octal constant
\def\1#1{\mathop{\hbox{\rm#1}}} % operator, in roman type
\def\2#1{\mathop{\hbox{\bf#1\/\kern.06em}}} % operator, in bold type
\def\3#1{\,\mathclose{\hbox{\bf#1\/}}} % ‘fi’ and ‘endgroup’
\def\4#1{\mathbin{\hbox{\bf#1\/}}} % 'step’' and 'at'
\def\6#1{\hbox{\bt#1\/}} % 'true' and 'nullpicture’
\def\6#1{\mathbin{\rm#1}} % ‘++’ and 'scaled'
\def\7{\hbox\bgroup\nocats\frenchspacing\finstring} ¥ string token
\def\8#1{\mathrel{\mathcode‘\.="8000 \mathcode‘\-="8000
#1\unkern}} % ‘..’ and ‘-=?
\def\9{\h£il1$\%} % comment separator
\def\?{\mathopen:\;} % colon
\def\frac#i/#2{\leavevmode\kern. 1em
\raise.S5ex\hbox{\the\scriptfont0 #1}\kern-.1lem
/\kern-.15em\lower.25ex\hbox{\the\scriptfont0 #2}}

\mathchardef\AM="2028 % ampersand

\let\BL=\medskip % space for empty line

\mathchardef\BS="026E % backslash

\mathchardef\HA="0222 % hat ("O00BE not as good)
\det\PS{\mathbin{+{-}+}} % Pythagorean subtraction
\det\SH{\raise.7ex\hbox{$\scriptstyle\#$}} % sharp sign for sharped units
\mathchardef\TI="007E % tilde

\chardef\other=12

\def\nocats{\catcode‘\\=\other \catcode‘\{=\other
\catcode‘\}=\other \catcode‘\$=\other \catcode‘\&=\other
\catcode ‘\#=\other \catcode‘\%=\other \catcode‘\"=\other
\catcode‘_=\other \catcode‘\t=\other}

\def\finstring"#1"{\tentex"#1"\egroup}

\newbox\shorthyf \setbox\shorthyf=\hbox{-\kern-.05em}

\mathchardef\period="‘\.

{\catcode‘\-=\active \global\def-{\copy\shorthyf\mkern3.9mu}
\catcode‘\.=\active \global\def.{\period\mkern3mul}}

\def\bf{\fam\bffam
\def_{\kern.04em\vbox{\hrule width.3em height .6pt}\kern.08em}%
\tenbt}

\def\join#1${} % say %%\join in .mf file to join lines together
\def\]{\hskipOpt plus 1filll\ } % say % comment\] to get comment flush left

1~

g~

-

9

