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A Model of Object-Identities and Values

Toshiyuki Matsushima. Gio Wiederhold

February 23, 1990

Abstract

In this report, a formalization of the object-oriented data model is proposed, which inte-

grates value-oriented models and object-oriented models by providing a simple semantics of

object-identity.

The formalism reveals that the semantics of the object-oriented model consists of two

portions. One is expressed by an algebraic construct, which has essentially a value-oriented se-

mantics. The other is expressed by object-identities, which characterize the essential difference

of the object-oriented model from value-oriented models, such as the relational model and the

logical database model. The value-oriented portion represents the abstraction of the real world

objects, while the object-oriented portion represents the existence of the real world objects.

These two portions are integrated by a simple commutative diagram of modeling functions.

The formalism includes the expression of integrity constraints in its construct of classes.

which provides the natural integration of the logical database model and the object-oriented

database model. More specifically, we will show that a datalog program can be expressed as a
collection of classes in our model.

As an application of the formalism, formal guidelines on database design are also discussed.
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l Introduction

In recent years, many attempts have been made to formalize the semantics of the object-

oriented model. As the result of these efforts, several models have been proposed [AK 89],
[LR 89], [KW 89],/CW 89]. Roughly speaking, these models are logical database models with
typed variables. Their approach is to incorporate a structured knowledge representation, such

as complex objects, object-hierarchy, into a logical representation paradigm. However, the

semantics of object-identity is not captured in these models. Although [AK 89] formalize
object-identity in their model, the semantics remains complicated. Basically, what they have
done is to “push” object-identity into a value-oriented framework consisting of logic and types.

However, as discussed later, the notion of object-identity is something that will never fit into

the value-oriented paradigm.

In this report, a formal semantics of an object-oriented model is proposed, which approaches

the issue from the opposite direction. We try to incorporate a. logical knowledge representation

into a structured knowledge representation paradigm. We will show that our approach pro-

vides a natural formalization of object-identity and a simple integration of the object-oriented

paradigm and the value-oriented paradigm.

This report has two main objectives. One is to provide simple and elegant semantics of

object-identity, which integrates value-oriented models and object-oriented models. The other

is to extend the formalization of objects so that the integrity constraints are included.

1.1 Formalization of Object-identity

In this section, we first provide an overview of the origin and the role of object-identity in

knowledge representation, using the discussions in the literature listed above. Then, we provide

an outline of our formalization of object-identity.

The semantics of object-identity is obtained by considering a basic aspect of a knowledge

representation. Namely, any knowledge representation is only an approximation of the real

world knowledge. The existence of objects in the real world cannot be captured by the values

of expressions. We consider an example. Let us assume that a concept ‘person’ is expressed

by name and address according to the following schema in the sense of [AK 89]}.

Location = [city:String, street:String, number:Integer],

Person = [name:[f irst:String, last:String], address: Location].

[n most cases, we can completely identify each individual person by providing the name and

address. However, there is a possibility that two distinct persons with the same name are

living at the same‘ place. The occurrence of these persons cannot be characterized by the

values of attribut’es ‘name’ and ‘address’. We can come up with two relevant solutions for

this problem. One is to provide more attributes for expressing the concept ‘person’. However,

the real attributes of a person are almost infinite in number. So, even if we introduce many

attributes for ‘person’, we cannot eliminate the possibility that some distinct persons are

expressed by the same set of attribute values. The other solution is to provide a key attribute

to express the uniqueness of each individual person. However, this does not provide a natural

way of expressing the real world, because it is an artificial attribute. We cannot avoid the

unnecessary semantics of the key attribute. For example, a. ‘social-security-number’ may be

!We use the notation explained in [AK 89] for the moment.
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implemented as either an integer or a string consisting of digit characters. In order to define

the equality of objects, we have to define it as equality of integer, or equality of string according

to the “implementation.” Further, we have to express the maintenance of the key attribute

explicitly in the higher level semantics. For example, “Once an instance is created, the key

attribute should not be altered”, “there should not be more than one instance whose key

attributes are identical.” Since the semantics of “real existence of objects,” is just that of a. set

with the equality relation, it is not desirable that the semantics of the implementation appears

in higher level semantics.

The problem is essentially due to the inherent incompleteness of our representation. There-

fore, rather t han expressing the uniqueness of an occurrence in the real world by at t ribute val-

ues, we need something that specifies the existence of occurrence. The oh ject-identi ty serves

this role. It is important that an object-identity is not a value. Instead, it 1s an entry point

for information access in our knowledge. In other words, it is the reference to knowledgebase.

Hence, as discussed in [LR 89]. it provides the basis for object sharing, which is the most
important advantage of introducing object-identities in a practical system.

Let us come back to the previous example. Suppose that a person named “John Ford”

lives at “2260 Yale Street Pa.10 Alto”. Moreover, suppose that a person named “Mary Carter”

lives with him. These facts are cspressed by:

‘PO01" = [name first:*John” last:* Ford”), address: L010],

"P0002" = [name first:“Mary”, last:“Carter”], address: L010],

L010" =[city:“PaloAlto”, street:“Y ale”, number:2260).

What happens if the name of the street where John lives is changed from “Yale” to “Harvard”?

Since John lives at the location ‘L010’, the expression of the location becomes:

‘L010’ = [city:“ PaloAlto”, street:“H arvard”, number:2260].

Hence, after the change, we can say that borh John and Mary are living on Harvard Street.

The point is that ‘L010’ corresponds to the existing location on earth, and John and Mary’s

address is expressed by referring to ’L0O10°. Thus, when its street name has been changed, the

change is propagated properly.

So far, we have seen the origin of object-identity and the role of object-identity in the

knowledge representation. To summarize:

e The object-identity corresponds to the real existence of objects in the real world, which

cannot be captured by the the value of expression.

e The object-identity provides the basis of object-sharing. An object-identity is the refer-

ence to represented knowledge. which is exactly what is to be shared.

Next we claim that in order to take full advantage of ob ject-sharing, attribute values of an

object should be object-identities.

[AK 89], [CW 89] allow complex values? as the values of attributes. It provides us the
complicated expression of objects. Namely, in the above example, [first:“John™, last:*Ford]
is a. complex( structured) value. However, this approach has a disadvantage. If we allow

complex values, there is an inherent possibility that the subexpression of a complex value

“We use the term “complex value” instead of “complex object,“. They don't carry object-identity.
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would be changed. Since a substructure of a value cannot be shared. it will cause costly

update maintenance. Of course, the schema is designed so that the attribute value of ‘name’

is really a value and not sharable, because it is quite natural to express a person’s name as a

value. However, even in this case, we can show an example that demonstrates the necessity of

sharing objects.

Let us consider an additiona. concept, ‘BusinessCard’.

BusinessCard = [company:String, title:String, namef irst:String, last:String]]

Assume that John’s business card is expressed by:

‘BO11" = [company:“C DB”, title:“salesman”, name first:“John™, last:“ Ford”]]

What happens if John marries Mary and changes his last name to “Carter”? We have to create
a new value:

Sirst:“ John” last:*Carter”],

and replace

[first:“John” last:* Ford”).

The creation of the new value will be costly when the structure is large. Furthermore, we have

to replace ‘name’ of both ‘P001’ and ‘B011’.

If there is no need for the object-sharing, the comples value would be reasonable. However,

if we have more than one concept that shares a same value, as in above example, we should

incorporate with object-sharing. Thus, in this case, the following schema will be preferable.

Name = [first:String,last:String],

Person = [name:Name, address:Location)],

BusinessCard = [company:String, title:String, name:N ame].

The point is that every attribute should refer to an object with object-identity. Therefore,

it is not desirable to design such a schema as the original ‘Person’ with complex-value [first:

String, last:String] as attribute value. The schema must be changed dramatically when we
add a new schema object like ‘BusinessCard’.

In order to demonstrate the idea. more clearly, we repeat the discussion with the following

schema. In this case, the attribute is not a comples value, but just a value.

Person, = [name:String, employer:String]

BusinessCard = [company:String, name:String].

The information about John will be expressed by:

‘P001" = [name:".JohnFord”,employer:“CDB”]

‘BO11’ = [company:“CDB”, title:“salesman”, name:“.John Ford”

If he changes his company from "CDB” to “HAL”. we have to change the employer of ‘P001

and the company of ‘B0O11’. Therefore, rather than having value-attribute, we should have

only attribute referring the object-identity of other objects. Namely,

‘P001" = [name NO12'. employer:E000],
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‘BO11" = [company E000, title S111, name: N012].

‘NQ12’ can be associated with a string value “CDB” or “HAL.

To summarize, in order to make use of object-sharing fully, it is preferable that a schema

object doesn’t have ‘value’ as an attribute value®. Instead, attribute value should be an object-
identity referring to another object instance. In particular, it is not desirable to have complex
values as attribute values.

Moreover, since the attribute names, such as ‘name’,‘employer’, can be regarded as access

functions, we get the following flat representation.

name( 001") = ‘N012". employer( ‘P001") =‘ £000’,

company(‘B011") = “E000, title('B011") = ‘S111’, name(‘B011") = ‘POOL’.

Thus the information about John is expressed by the partial functions from object-identities to

object-identities. We call this represent ation space object-identity space, which will be precisely

formalized in Section 4.2. The semantics of this representation is quite simple.

However, the above representation does not have an important feature of object-oriented

representation. That is the explicit structural representation of knowledge. One of the big

advantages of frame or complex object in knowledge representation is that they provide the

structure of knowledge that we can easily imagine and manage. Of course, we can espress the

semantics of complex-object in first order logic by some transformation [CW 89]. However, if
we express it in first order sentences or formulas, the structure is concealed in the semantics of

sentences. Hence we have to interpret the first order sentences to get the structure. Therefore,

we should integrate the object-identity space with a structured complex-value representation.

In Chapter 4, we have a simple and elegant formalization that integrates them. The outline

of the integration is as follows. First, we provide the syntactical construct of schema objects.

Next, we provide the value-oriented model, i.e. an algebraic model with (complex) values.

Then we provide the model expressed by the object-identity space. Finally, we provide the

mapping that combines object-identity space and algebraic representation of complex-values.

The compatibility of object-identity space representa tion and algebraic representation is ex-

pressed by a simple commutative diagram.

1.2 Integrity Constraints

In the conventional approach as [AK 89], [KW 89]. schema objects are defined with the struc-
ture expressed by types. Then logical formulas are constructed on top of the objects (Rules in

[AK 89], O-formulas in [KW 89]).
In our model, each schema object, called C-class, consists of type and a restriction pred-

icate. The type expresses the structure of knowledge representation, which will be referred

to as a comples object, a hierarchy of objects in conventional object-oriented models. The

restriction predicate will espress the integrity constraint of the representation. Let us consider

“absolute temperature,” as a. simple example. It can be expressed by the positive real numbers.

The structure will be realized by the algebra R with operations +, —, * etc. The integrity

constraints will be expressed by the predicate K(x) = (x > 0) expressing ‘“‘positiveness.”

By including the integrity constraints as the basic component of each object, we can show

that every unit. of knowledge can be expressed by objects. Even a logical formula can be

“The term “attribute value” is not a nice terminology. Maybe it should be “accessed attribute.”
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expressed by an object. In the conventional approach, a logical formula(ground fact) is a value

in the sense that if every substructure of two logical formulas are the same, then those logical

formulas are the same. However, as discussed in Chapter 5, even a logical formula cannot

be treated as a value, due to the inherent incompleteness of our knowledge representation.

Rather, it should be expressed by an object that carries a unique object-identity.
If we express knowledge by objects, we can provide a representation Of the real world that is

closer to our intuition than expressing know/ edge by logical formulas on complex objects. We

will discuss this matter in detail in Chapter 5.

1.3 Outline

The outline of this report is as follows.

In Chapter 2, we introduce a notion of data algebra that is an abstraction of data. Roughly

speaking, the data algebra is the combination of type and integrity constraints. The tvpe part

is expressed by a universal algebra, and the integrity constraints part is espressed by a boolean

function. The data algebra provides the basis for the semantics of value-oriented data. model,
which is discussed in Chapter 4.

In Chapter 3, we introduce a notion of C-class that formalizes schema objects. A (-class is

a construct that expresses a unit of real world knowledge. As mentioned earlier, in conventional

models such as [AK 89], [KW 89], those units of knowledge are expressed by complex objects
and logical formulas. The C-class is similar to class in the usual object-oriented languages,

such as Smalltalk, and CLOS [WT 89}. A C-class is a combination of syntactical expressions
of type and restriction predicate, the type specifies the structure and the restriction predicate

expresses integrity constraints. A restriction predicate is a first order formula with implicitly

typed variables, which is essentially a restricted form of O-formula [KW 89]. We also introduce
a hierarchy among C-classes to espress the hierarchy of knowledge.

In Chapter 4, we discuss the main theme of this report, object-identity. First we formalize

a value-oriented model of C-classes. Then we define a object-oriented model of C-classes by

introducing the object-identity space. This object-oriented model represents the clear semantic

distinction of a. value-oriented model and an object-oriented model. [‘urther it clarifies the role

of object-identity in the knowledge representation.

In Chapter 5, we consider the C-classes in detail and provide some kinds of C-classes. It

reveals that even a logical representation of knowledge cannot be captured in a value-oriented

paradigm. We discuss which knowledge should be value and which should be object as the

database design issue. We introduce the concept model as a knowledgebase model.

In Chapter 6, we demonstrate the expressibility of the concept model, by simulating the

semantics of other models, such as datalog, IQL{AK 89].
In Appendices, we briefly discuss database operations, inheritance and overloading. The

semantics of database operation is quite simple, especially for queries. Furthermore, we provide

the copy of the actual session performed on the prototype system that has been implemented.

2 Data Algebras

We introduce a notion of dala algebra to express instances of schema objects. The notion of

data algebra is an abstract formalization of complex objects with integrity constraints. which
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will serve as a value-oriented model of schema objects later. We assume a basic knowledge of

the universal algebra, as found in p.22 - p.60 in [BS 81].

2.1 Multi-valued Universal Algebra

In order to define the notion of data algebra, we provide a precise definition of multi-dued

function, partial function, and an extended universal algebra. If the rcader does not like

mathematical details, he/she may read only the last paragraph of this section.

Let A and B be sets, and let 24 and 2B be the power sets of A and B respectively. Then,
a. function from 24 to 2B is called a multi-dued function” from A to B, if it satisfies the
following condition.

VU € 24, f(U) = | f({z}).
zeU

We denote the multi-valued function as:

fi:A — B.

It is easily proven that the composition of multi-valued functions is also a multi-valued

function. Namely,

fi:A— B,guB — (C = gofi:A — (.

A multi-valued function f is called total if

fi:A—>B, VzxeA, f({z}) #0.

Note that we can construct a category consisting of sets as objects and multi-valued functions

as morphisms. The identity multi-valued function ids on a set A is the identity function on
24,

For a multi-valued function f from A to B, we can always define the quasi-inverse function

f=! from B to A.
_ d

YV oe 2B, FIV) (red (flx)nV) £0).

A multi-valued function f from A to B is called injective if f=! of equals id4. The function f
is called surjective, if fof~! equals idp.

A partial function f from A to B is a multi-valued function from A to B such that for each

clement of A, the cardinality of its image is no more than one,

Ve € A, card(f({z})) <1.

The domain O(f) of a partial function f is:

If) =A{ze Al f({z}) #0}.

Any function h from A to B can be regarded as a multi-valued function. Namely, we can

define a multi-valued function h by:

VI € 24. h(U) = {f(z)|ze U}s

1A multi-valued function from A to B is equivalent to a binary relation on A x B.
>The operator . can be considered as a functor from the category of sets to another category consisting of sets as

objects and multi-valued functions as morphisms
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In the rest of this report, we use the following simplified notation so long as it causes no

confusion. For a multi-valued function from A to B, for an element x of A, and y of B,

def def
fx) = f(z}, (fle) = 9) = (f({z}) = {¥}).

Moreover, we introduce a virtual element rv; to express “undefinedness”, which is called the

null value. The null value iv; is a. common element of all sets. For a multi-valued(pa.rtia.l)

function f, we denote

f(2) = Vy,

if

f({z}) =o.

Now we extend the notion of universal algebra. A multi-valued universal algebra A is

a pair of a set A and a family {f;};c; of multi-valued functions. All the notions, such as
homomorphism, isomorphism, are redefined using multi-valued functions instead of functions.

Similarly, a. partial-valued universal algebra is a multi-valued universal algebra such that all

the functions are partial.

The notion of data algebra. is defined by multi-valued universal algebras. However, in order

to make the discussion simple, we only consider partial-valued universal algebras in the rest

of this report. The reader can consider the partial-valued universal algebra as usual universal

algebra, except for the existence of null value. Hence, we use the term “universal algebra”

instead of “partial-valued universal algebra” from now on. But readers should remember that

functions are partial.

2.2 Definition of Data Algebra

In this section, we provide the definition of the data algebras. A data algebra é is a pair of a

universal algebra ® A and a restriction function *. Namely,

6 = (A,r), A = (A {filier), rt 1 A= 2,

where 2 is the two-element boolean algebra.,

2 = ({0,1}, A, V, =).

Further, we assume that each data algebra contains a. special element null value vj. As

mentioned before, the null value expresses “undefinedness.” For each function, if one of the

arguments is null value then its value is also null value.

A data algebra is the abstraction of a collection of data with operations on it. For example,

“positive numbers” would be expressed by a data algebra:

def 1 ( Tr > 0)R =

where R is the universal algebra of real numbers.

We should remember that this universal algebra is a partial-valued universal algebra defined in the previous
section. We can regard it, as if it was a usual universal algebra by introducing a null-value v;, as a common value ot

all universal algebra.

“More precisely, r is a function on the domain of A. However, we describe it as a function on A. Similarly.
throughout this report, we treat A and its domain interchangeably so Iong as the meaning is clear. For example, for

give universal algebras A, B, we would state something like “a mapping from A to B”. The meaning is * a mapping
from a domain of A to the domain of B.”
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2.3 Fundamental Operators

We introduce operations among data algebras. These operations will provide the interpreta-
tions of fundamental operations on C-classes. which will be introduced in Chapter 3. Each

operation happens to have a corresponding construct in relational algebra or SQL. However,

we should note that these operators have not been obtained by a mere extension of relational

algebra, but by the consideration of knowledge representation, as their names suggest. We

could say that one of the reasons of the success of relational model is due to the fact that

the relational operations have a. correspondence to a higher level of mental processes, such as

abstraction of concepts. This will be clear when we introduce the fundamental operators on

C-classes in Chapter 3.

2.3.1 Aggregation

The aggregation operator constructs a complex structure out of data algebras. It. is similar to
Cartesian product operator in relational algebra.

Let ® be a set of symbols, and let a be a. mapping from ® to a set of data algebras,

of) = by = (Agrp) (fe ®).

Then the aggregation of {85}eq is

(TL As Alriop)
fed fed

where p; is the projection from [[’—; A; to A;, and o designates a composition of mappings.
We denote the aggregation by

[1(®,a) or II Of.
fed

In particular, if ® is equal to {1,..., n} we denote it

n

11 &
1=1

Moreover? if 6; is equal to a data algebra S for each i (1 <1 < n), we denote 0" instead of

[i= 6;. Furthermore, if we write the aggregated data algebras as:

8" x 8,8" xéxé,

for given data algebras S, ¢’, 6”. etc, it means that we are assuming the following implicit

sequencing,

a(l)=60"a(2)=6,a(3)=5".....

2.3.2 Recursive Aggregation

In order to provide an algebraic model for recursive types, we introduce recursive aggregation.

Let ( be a directed graph with nodes I,” and labeled edges £,

G = (V, BE).
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We denote an element of E by (n, m, [), which means that there is an edge from n to m labeled
by [. Further, let « be a mapping from U to a set of data algebras, where U is the subset of

VV such that each element © of U doesn’t have any edge that comes into u,

def
U= fuev|-(Ivdl(v,u,l)€E))

a(n) = (B,,s,) (ne U).

Then, the recursive aggregation with respect to G' and « is defined as follows.

[I(G, a) = (Trev A, Anev (rn O Tr) )

Vn eV, A, =

def | 1 (1 € ty(2))Vn ev = |
eV) 0 (otherwise)

The functions t,, are multi-valued functions from A,, to 2. which is defined as follows.

def) Anmner(Smommy) (no U)
" Sy, (otherwise)

where sm( 2) = t,(z) (otherwise)

Note that the elements of A,(n € U) have an infinite structure in general. We may regard
those elements as infinite trees. However, since we allow null value v; as the common element

of every algebra, we can espress elements with a. finitely recursive structure. The function t,

is well-defined, if the recursive definition assigns consistent values to each subtrees. Although
the restriction function r is a partial function, it is well-defined on the elements with finite

structure and cyclic structure. The aggregation defined above is a special case of the recursive

aggregation. In fact, if we assume:

we get the original aggregation operator.

2.3.3 Abstraction

The abstraction operator constructs a new data algebra ignoring some of the substructures of

a data algebra. It is similar to the projection operator in relational algebra.

For f € ®, let As be a universal algebra., where ® is a set of symbols, and let ¥ be a subset
of ¢. Let us consider the following data algebra 0

6 = (]] As. 1).
fed
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where J]fed Ay is the product algebra of {A}scq. Further, let Py be the projection from
[Tree Af to [lew Ag. The abstraction T( é, ¥) of the data algebra S with respect to ¥ is
defined as:

T(6,9) = ([] Ay, FB),
gevw

where

fe) = | LU de FRt@)ry) = 1)
0 (otherwise)

2.3.4 Restriction

The restriction operator imposes a new restriction on a data algebra. It is similar to the

selection operator in relational algebra.

Let S = (A,r) be a data algebra, and let s be a mapping from the domain of A to 2.
Then the restriction with respect to s is

(A.rT As)

The restriction is denot ed bv O( 6, s).

2.3.5 Sequence Construction

The sequence construction operator constructs a data algebra consisting of sequences of ele-

ments of a data algebra.

Let S = (A, r) be a data algebra. The sequence algebra Seq(é) derived from S consists
of the direct sum® of t he product algebra A’” (¢ = 0, 1,2, .. .), and the relevant restriction
function req,

Seq(é) = (E22 A", Tseq) |

"_gr(x;) (n>0

Fseq(2) = A = 1 ri) oo

Given a class of universal algebras. The set of finite sequences of elements of the algebras

in the class forms a universal algebra. with functions, length, concutennte, null, reverse, etc.

We designate it by SEQ. We assume that the direct sum 52 ,A™ is a subalgebra of SEQ by

embedding it in SEQ.

2.3.6 Bag Construction

The bag construction operator constructs a data algebra consisting of bags of elements of a

data algebra..

Let S = (A? r) be a data, algebra. We can define a congruence relation ~ in the direct sum

algebra. ©°2, A” as follows. For elements Z, i of Seq(é),

8The direct sum is always a partial-valued algebra.
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the sequences © and y are equivalent with respect to ~; & ~ ¥, if n equals mn, and there exists
a permutation ¢ of order n such that

(z1, . Ty) = (of 1), “ny To(n))-

Then the bag algebra derived from é consists of the quotient algebra of X72, A™ with respect

to ~ and the restriction function r,,,. Since the restriction function rs, of Seq(d) has the
same value on the equivalence class of ~, we can define the restriction function rj,, of Bag &)
by:

Tag ([T]) = Tseq(Z),

where [Z] is the equivalence class with respect to ~ containing 7. Similarly, we can construct
a universal algebra BAG as a quotient algebra of SEQ. As in the definition of Seq{é), we
assume that the algebraic part of Bag(é) is a subalgebra of BAG by embedding it in BAG.

2.3.7 Set Construction

The set construction operator constructs the data algebra consisting of finite sets of elements

of a data algebra..

Let 0 be (A, r). The set algebra Set(d) is the collection of finite elements of A that satisfies

r. The definition is as follows. First, we define a restriction function s on Bag(G). We denote

ant element of Bag(6) by [z], where & is an element in Seq(é). Then.

T= (21,225 .., Tn)
_ 1 (if (2 i

0 (otherwise)

Nest. let SET be the universal algebra of finite sets with functions U(union), N(intersection),
-(difference), etc. Then set algebra of Se#(G) is obtained from O(Bag(é),s) by regarding its
algebraic component as subalgebra of SET. Namely,

O(Bag(é), s) = (L7ZoA"/~, Tig As).

2.3.8 Categorization

The categorization operator constructs a new data algebra by categorizing elements of a data

algebra. with respect to the values of some substructures. It is similar to the grouping construct

of SQL without aggregation functions.
Let ® be a set of symbols, let ¥ be a subset of ® and. let ¥¢ be the complement of V¥,

YC, Vv =0-1V.

Further let 3 be a mapping from ® to a set of universal algebra. Now let us consider the

following data. algebra ¢.

6 = (II 3(f)r).
fed

Then the categorization Od. WW) of 6 with respect to V is:



page 15

Qo, ¥) = O(T(6. ¥) x Set(Y(6, ¥°)), rq).

The restriction function ru is defined as follows.

B | (Vz € y,r(z@dz) = 1)
ra((z,y)) = 0 (otherwise),

where for (zq,....2,) in [T;eq Bf), (41, > Um) in [Tcq 3g),

fed

2.4 Many-Sorted Data Algebra

So far, we have introduced the notion of data algebra based on universal algebras. In this

section, we extend the notion to many-sorted universal algebras instead of universal algebras.

First we consider a many-sorted algebra with sorts S. For a sort $s in S, let us denote the

universal algebra of the sort s by A,, and let A(s) be the collection of all subalgebra of A.,.
Further let d(S) be the closure of U,ecs d(s) with respect to the Cartesian product operator.

A set of data algebras D is the many-sorted data algebras with sorts S, if

VéeDé= (A,r), A € ALY).

We call the data algebra of the following form as the primitive data algebra of sort s.

d= (A,r) (seb)

We assume that any primitive data algebra of sort s will never be derived from primitive

algebras of different sorts with fundamental operators. Namely, any data algebra of the form

(A,, vr) (s € S) will never be derived from another data algebras of the form (A’,, r) (s' €

S — {s}) with fundamental operators.
From now on, we assume that data algebras axe constructed on a many-sorted algebra,

even if the sorts S is not specifically stated. In another word, data algebras are generated from

primitive data algebra in the sense defined in the nest section.

2.5 Generated Data Algebra

For a given set of data algebras, we can generate data algebras by the fundamental operators,
such as aggregation, restriction, abstraction etc. ‘We call a set of data algebras algebraic

family of data algebras if it is closed under these operations. For a set D of data algebras, we

can consider the minimum algebraic family of data algebras that contains D. We call it the

algebraic closure of D and denote it as D. Since the intersection of algebraic families is also an
algebraic family, it is obvious that there exists a unique algebraic closure for any set of data

algebras. In fact, the closure of D is the in tersection of all algebraic families that contain D.

Conversely, we can consider the minima.l set of data algebras that generate a given set D

of data algebras. More precisely, we can consider the set ~(I)) of data algebras such that:
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o the algebraic closure of x(D ) contains D.

r(D) DO D.

o among the sets that satisfy the above condition, h;(D) is minimal. Namely, for a set of

data algebras E, if

E DD and x(D) DE,

then

D = E.

It is not difficult to prove the uniqueness of x(D) up to isomorphism, if D is finite. Namely,
it is not only minimal but also minimum. So we call it the kernel of D. The kernel of a set of

data algebras will provide the building bricks to construct the data algebras.

2.0 Named Data Algebra

The notion of data algebra will provide a structure of the space to express our knowledge.

However, the structure itself is not enough. For example, we can express “absolute temper-

ature” and “half line” by the same data. algebra as “positive numbers”, which is defined in

section 2.2 as an example. Moreover, we don’t want to allow operations such as:

1°K + 2cm.

Thus we need to distinguish the data, algebras that are espressions of “absolute temperature”

and “half line.” Hence, we attach names to all algebras to distinguish them. We don’t allow

algebraic operations between the elements of data algebras with different names. A named

algebra is expressed by a tuple:

(ns, As, Ts).

In the rest of this report, we assume that every data algebra is named. However, when we

don’t have to consider the name explicitly, we use the previous notation without a name.

2.7 Hierarchy of Data Algebras

In the later chapters, we will see that data algebras play the role of model of a knowledge

representation (schema representation). In order to express the hierarchy of knowledge. we
introduce mappings among data algebras. First we assume that there esists a partial order

< among names of data algebras. If n < n’ we say that. the name n is a. subname of n’. A

subtype mapping is the mapping from a data algebra to another data algebra, which is defined
asfollows.

Let us consider the many-sorted data algebra on the sort S. Let d be the set of universal

algebras corresponding to the sorts.

d ={A,|s€I}

Let. D be the many-sorted data algebra on S.

D = {§ = (ns, As, rs)}.

A subtype mapping p from a data algebra é to another data algebra ¢’ is the mapping that

satisfies the following conditions. Let us assume that:

é& = (n. A,r), & =n,A" 1).
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oe Case 1: The data algebras 6 and ¢’ are primitive algebras.

— The name »n is a subname of »n’ and the algebras are the same.

n <n and A = A’,

~ The restriction function r is stricter than r’ and the p is the inclusion mapping.

Namely,

Ve € Ar(z) = 1 = r'(z) = 1,

dp)={zrecAlr(z)=11},

Vo € 3(p), plz) = z.

oe Case 2: The data algebras é and ¢’ are compound algebras:

§ = (n, IT A, r), §’ = (n [1 A’; r').
ed tEP!

— The name n is a subname of nn’: n <n’

— The attribute ®’ is a subset of &; &' C .

— For each f in ®’, there exists a subtype mapping ps from ( Af, Ts (1r)) to (A, 7 4( r')),
where

— _ J 1 (fy (ms(y) = 2) A (ry) =1))
my(r)(z) = 0 (otherwise),
ms is the projection from Il ep Ay to Ay .

Similarly for =¢/( x’).

— Let II be the projection from Ilse Ay to IH fece Ay. Then,

Vr € co Ay, r(z) = 1 = r'((Treqps) 0 II{z)) = 1,

where m¢cg/ps 18 the product mapping:

Vr € lljeqr Vg € &, mo((Treaps)()) = primg(a)).

— The subtype mapping p from 6 to ¢’ is defined by:

p=(mrearpys)o Il.

We say that § is a subtype algebra of §' if there exists a subtype mapping from § to &’.

If there exists a subtype mapping from 0 to S’, ¢’ will be a model of a more general concept

than the concept that has the model 6. We will discuss it precisely in Chapter 3.

3 C-Classes

[n order to formalize the construct of schema objects, we introduce the notion of C-class”.
First we define the structure of C-classes.

“C-class is a kind of class. The letter C in “C-class” is intended to suggest concep.
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3.1 C-Class Construct

The set [I' of C-classes is defined as follows.

3.1.1 Definition of C-Classes

I'={yvl7 = (ny, 4, vy, I}, Ay, Ry) }.

The intended meaning of symbols is:

e The name n, of + is a symbol that designates the name of the C-class vy. The symbol is
unique to each C-class.

o The attributes set ®, of y is a set of function symbols that designate attribute names.

e The attribute value v, of vy is a mapping from @., to the set of C-class names in I’.

o The structural sentences I. of v are a set of sentences that define the algebraic structure

of a universal algebra, which specifies the structure of the representation.

eo The auxiliary sentences A, of 7 is a set of sentences that defines new functions and

predicates concerning vv. A, is used to simplify the espression.

e The restriction formula R., of 7v is a well-formed formula with one free variable. This
formula specifies a subset of the domain of the universal algebra defined by 7. It is the
restriction condition on the domain.

The above construction provides a language for conceptualization of the real world. But

we should keep in mind that our conceptualization is always incomplete. Since any object in

the real world has almost infinitely many attributes, our conceptualization of the object will

be only an approximation. We should distinguish between “real conceptual world” and “our

conceptualization.” The real conceptual world is the complete conceptualization of the real

physical world. In the real conceptual world, a concept can be characterized by the set of

attributes. Namely, any two distinct concepts have different sets of attributes. However our

conceptualization may not be complete, two distinct concepts may be expressed with identical

attributes. Therefore we need C-class names to identify each distinct concept. (It is true that

we can carefully choose attribute names ¢., so that any distinct concepts are expressed with
different attributes in our conceptualization. However, it becomes fairly difficult to design

schema in such a way, if the schema is big. Moreover, if the schema will change in the course

of time, the maintenance of consistent attribute names will be much more difficult.)

3.1.2 Examples of C-classes

We use the prefix notation for +,-, > etc., instead of the conventional infix notation. The

only exception is equality =.

e Integer In our model, we treat integers as the instances of a C-class.

Integer = (integer, D, 1, Trntegers A Integer, TR UL),
where

T'integer = {vx Wy t (z, y) = +(y, x).g

Ve Wy Vz t (T,+(y,2)) = +(+(x.y).3),
etc.},
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A Integer = {Vx Positive( z) = > (x, 0), etc.}.

e People

People is conceptualized by name and age in this example.

Person = (person, (name, age), Uperson, person Apersons Ryerson).

Uperson (Name) = SEPINg, Vperson(age) = integer,

where string and integer designate the C-classes that have algebraic structure of strings

and integers,

Tperson = 1 VaT( name(z), string) A T(age(x), integer),
VaVy name(modtf y(x, person, y)) =v,
Vay age(modif y(z, person, y)) = y).

where modify designates the function that modifies the attribute values of C-classes.

Nperson = {Va OldPerson(x) & age(zx) > 60, etc)

R person(T) = ((0 < age(x) < 200) A . ..).

o Rational Numbers

The structured values, such as rational numbers, are also expressed by instances of a

C-class. The expressions of rational numbers are expressed by:

Rationales = (rational, {num, den}, URationals 1 Rationaly O Rationals Rational),
where

URational (num) — URational( den) — integer,
T'Rational
= {Va¥b num(a) = x A num( b) = u A denn) =y A den( b) =v

=>

num(+(a, bj) = +(*(z. v), *(u, y)) A den(+(a, b)) = *(y,v),
etc.},

ARational = {Vz Invertible(x) = =(num(z) = 0), etc).

Ryationat(2) = =(den(z) = 0).

e Set -of-Integer

A set of a concept is expressed as a C-class without attributes. We assume that a.

predicate symbol T is provided to designate the instance-class relation. We also assume

that each set C-class has a standard predicate In, such that In(x,y) means x is in a. set

y. We will extend this example to a general case later.

S et-of Integer = (set-of -integer. 0, 1, Tse, ASet of Integer ) Rset of _Integer ),
Tse: ={U(x,y)=U(y,2).N(z.U(y, 2) =U(N(z, y), N(z, 2)), etc.},
R Set of _Integer(T) = (Vy In( Y, x) = T( 9, imteger)).
A Set of Integer = { Vr One-Element(x)

~

(VyV:z In(y,zT) Aln(z.zj=>y = 2), etc. }.

In above examples, we have introduced relation symbols T and In. Irom now on. we assu me

these symbols are part of the basic construct of C-classes.
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3.1.3 Primitive C-Classes

Let us consider a concept with some attributes. We may say the concept is constructed by

the concepts that are attribute values of the concept. To formalize this intuition, we impose a

condition on the structural sentence 7., of the C-class with non-empty attributes. If it is not
specially declared, we assume that any C-class with non-empty attributes has the structural

sentences 1. containing the following sentences I,

0

1, CT.

Let ®,be{ f1,..., fn}, then
T? = {VaVy filmodif y(z, fi,y))=yli=1,...,n }U

The function symbol mod: sr y designates the function that modifies the attributes of C-classes.

The typical model of the sentences T) is the cartesian product of the attributes specified by
v,. Hence all the C-classes are constructed out of its attribute C-classes, if their attributes

are not empty. In this sense, if a C-class has no attributes, we call it a primitive C-class. A

C-class that is not primitive is called compound C-class.

In the last example of Section 3.1.2, we have shown that the set of integers is expressed
as a primitive C-class. Later, we will extend this example to express the set of any C-class

as a primitive C-class. This may seem a little bit strange, because it contradicts the term

“primitive.” It may be considered that the set of a C-class should be formalized as something

complex. We use the term “primitive” meaning “structureless.” In a model theoretic sense, a

set C-class is structureless, the operations that are allowed to them are the standard wnion,

intersection, etc. There is no algebraic operation that accesses its “sub-structure.”

3.2 Universal Language

Since the description of concepts is essentially local to each concept, there may be inconsis-

tency in the name of function symbols and relation symbols. For example, a person can be

concept ualized by a C-class Person:

Person = (person. {name, address}, Upersons 0, 0, TRUE).

On the other hand, a subconcept Student of Person may be expressed by a C-class Student

Stuclent = (student, {s_name, residence}, Vsjudent, 0, 0, TRUE).

In this case, s-name and residence are intended to express the name and the address of the

student respectively. So, in order to designate the intended equivalence of these symbols, we

need a common language. We call this common language universal language of I’. Later, we
need the common language to define the hierarchy of the concepts. The precise definition is
as follows.

3.2.1 Universal Renaming

In order to describe the correspondence of attribute names of C-class descriptions; we define

the notion of renaming as follows. For i being 1 or 2, let L; be a first order language made of
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set V; of variables, set J; of function symbols and set R; of predicate symbols. A renaming «a

from L, to Ly is a collection of injective mappings from V; to V, Fj to F2 and Rj to Ra:

a = (ay, af, ar), ay: V1 — Vy, xy. Fr — Fay ap: Ry — Ra,

such that it preserves the similarity types of function symbols and predicate symbols. Namely,

if a function symbol f has n arguments, a¢(f) a so has n arguments. Similarly for predicate
symbols. Note that the renaming « induces a injective mapping from L, to Ls.

Let L(y) be the language generated by the symbols of the description of vy. Then a language

L is the universal language of I, if there exists a set TV of renamings such that:

N = {ay|yeT}

Ww €Tl ay:L(v) — L.

In a practical case, we may require that the symbols of the same intended meaning will be

mapped to the same symbol in the universal language. In the above example,

Qperson{ name) = Qgtudent( S-name),

Qperson (address) = Qgpydent ( TESIdENCE).

However these are meta-conditions. Theoretically the morphisms NV determines the semantics

of symbols. If we have

Qperson (Name) = student (reside nce),

it means that the ‘name’ of ‘person’ has the same semantics as ‘residence’ of, ‘student’, although

it is different from the common meaning of the words “name” and “residence.” The set N of

renamings is called universal renaming of I.

3.2.2 Local Renaming

In the actual programming, it is difficult to describe the global semantic equality from the be-

ginning. We can only specify the semantic equality locally, i.e. we only provide the renaming

between the description languages of C-classes. In the above example, we may provide the

renaming QsStudent Person trom L(Student) to L(Person). When we have provided renaming
between the description languages of individual concepts. we expect that there exists a uni-

versal renaming, which is compatible with those renamings. Before considering the existence,

we introduce the conditions that those locally defined renamings should satisfy.

Let (7 be a subset of [' x I; and let J be the set of injective renamings among L(7)’s, such
that

J = {ym 1 Oy 2 Lm) = L(72) (11,72) € GY,

We call (G, J) as the semantic local renaming of I' if the following conditions are satisfied.

1. Transitivity

Oy yt y og 11 € J = (Cty € J A (Xy 11 = Qtyr 1 0) Ary 1),

where o is the composition of mappings.

2. Route Independence
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(7, 71), (7,72), (71,7), (72 7") cG = Qryp yO Ayyp = Ayyt O Qiyyp -

3. Acyclicity The binary relation G has no cycle.

The first condition expresses the global semantic compatibility of the morphisms. If a

symbol s is semantically equivalent to a symbol s’ and s’ is equivalent to s”, then s should be
equivalent to s” by the transitive rule of equivalence relation. The second condition designates

the consistency of the inherited attributes. The third condition describes the relevant structure

of a hierarchy.

Note that we can eliminate the first condition. In fact, the second condition guarantees

that we can estend (G, J) to another semantic local renaming (G’, J’) so that G' is transitive.

3.2.3 Existence of Universal Language

If we have a local renaming, there exists a universal language and universal renaming such that

the universal renaming is compatible with the given local renaming, under a certain condition.

Let us define a partial order <5 on I' by the binary relation G.

de
y 267 ¥ (1,7) €G.

Theorem 1 Let I be a set of concepts, and let (G, J) be a semantic local renaming of I'. If G
is at most countably infinite, and T has the finite minimal elements with respect to XG, then

there exists a universal language L and the universal renaming N of I to L, such thut

/

Oy € J = 0p = 0) 00,

where

N = {ay |v eT}.

3.3 Fundamental Operator on C-Classes

In order to construct complex C-classes out of given C-classes, we define several operations

on C-classes. These operators are some abstraction of the mental process of human beings to

create new concepts out of esisting concepts. These fundamental operators correspond to the

fundamental operators for data, algebras. In fact, the fundamental operators on data algebras

will provide the models of the fundamental operators on C-classes.

3.3.1 Aggregation

For given C-classes, we can create a new C-class by introducing a C-class name, attribute

names that correspond to given C-classes, a set of sentences that specifies the structure similar

to a Cartesian product such that the attribute names are designating projections. Let 7 be a

sequence of C-classes.

ol - (V1, 72, . Yn)

and let ® be a sequence of svinbols with the same length as 7,

® = (fi.fo. i fn).
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We express each component C-class in § by:

Then the aggregation II(ny, 7. ®) of ¥ is defined as follows.

[{nn,¥, ®) = (rn, @, vn, Tn, An, Rn)

e The name np of the aggregation is the symbol that is compatible with other C-classes.

Namely, the symbol never appears as the name of other C-class.

e The symbols in ® are the attribute names of the aggregated C-class ll(np, 7, ®).

e The attribute value vy is the mapping from the components of ® to the set I' of C-classes,
such that

I <Vi<nonl fi) ="

e The structural sentences 7 is similar to 7 for a C-class vy with non-empty attributes.
71 = {Va Vy fi(modify(z, fi,y))=yli =1.. .n}pU

The symbol modify is the function symbol for the modifier of attribute values.

e The auxiliary sentences may be any definition of new function symbols and relation

symbols that simplify the description.

e Each component of the aggregation should satisfy the restrictions that are imposed on

the attribute value C-classes. The restriction predicate Kp is defined by:

n

Rn(z) = A Ri(fi(2)).
i=1

The aggregation of C-classes has a model that corresponds to the aggregation of data

algebras, which was defined in section 2.3.1. This will be discussed later.

3.3.2 Recursive Aggregation

Let G be a directed graph with a set of C-class names V as nodes and labeled edges E. Let U

be a collection of nodes in V, such that there is no incoming edge. Further let W be a subset

of V that contains U,

UCW CV.

We assume that for elements of W, C-classes are given. We denote an element of [' as », m, ¢),

which designates the edge from » to m with label ¢g. Let ® be a set of symbols that has one

to one correspondence with V',

®={f|veV}

The recursive aggregation (ns, G, ®) with respect to G, ¢ and W is defined as follows.

Mw (ng, G,P)= (ng, ob, vss Ig, Ag Rg).

e The symbol ng is a new C-class name.
e The symbols ¢ are the attribute names.
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e The attribute values are provided by the one to one correspondence of ® and V.

Vv € V, va (fo) = v.

o The structural sentences express the nested structure defined by G. Let V be (v1, . . . , Vk);
we consider V as a sequence.

I; = {Ve,.. .Vai fu, (conss(zy,.. Loap))=zi|li=L..., k} UU
{VaT(fu(z),v)veV} U

{VeT(g(fu(2)), u) 7 (v, u,g)€ FE }

e The auxiliary sentences include recursive definitions of restriction predicates for compo-
nent C-classes.

Ag = UrevewiVe Ro(2) & ((z = v1) V(Awugies Bulg(2))))}

where the v is intended to designate the null value in universal algebra. For v in V — W,

the “v’th” component of II((, ®)is a. C-class with recursive structure.

e The restriction predicate designates that each component should satisfy its own restric-

tion predicate,

Ra(z) = /\ Ru(ful2)).
veVv

3.3.3 Abstraction

Let v be a C-class

¥ = (1, ®., Un I, A, R,).

and let ¥ be a subset of ®.:

The abstraction Y(ny,v, ¥) of v with respect to ¥ is defined as:

T(ny,v,¥) = (ny, V,vy, Ty, Ay, Ry).

The definition of ny, Ty, and Ay are similar to those of aggregation.

e ny is a symbol, which designates the name of T (ny, vy, ¥).

e WU is the set of symbol that designates the attributes of the new C-class.

e The attribute values are the same as those of =,

Vg € ¥ vr(g) = vy(g).

e Iv is the structural sentence defined as follows.

Ty = {Vz Vy gi(modify( 2, g;,y))=yli=1...m} U
{Va T(gi(z),v4(g:)) |i=1...m}.

oe The restriction relation Ry is defined as:

Ry(z) = (3y T(y, n) A RLY) ACA (9(y) = gz) ).
geWw
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3.3.4 Restriction

The restriction operator replaces the restriction formula of a C-class by the conjunction of the

original restriction formula and an unary predicate '°. For a C-class 7,

v= (7s b., Uys I. Ay, Ry),

the restriction of + by an unary relation S is

O(ne,v,S) = (ne, ®,, vy, Ty, Ay, BR, AS).

3.3.5 Set Construction

For a C-class «

7 = (Ny, Oy, vy, To, Ay, Ry),

the set of v is defined as follows. This definition is an generalization of the example discussed

for Set-of _Integer before. The relation symbols T and In have the same meaning as in the

example of Set-Of -Integer.

Set{nge vv) — (12Sets 0, 1. Tse, Aset(~) Rset(v))

where

The structural sentences of Set(mset, ¥) are just the theory 1; of set for any C-class 7.
The auxiliary sentences Ag. may be defined arbitrarily to meet the appropriate description

of C-classes. Although Rg.; says nothing about the cardinality of the set, we assume that the

cardinality is finite. More precisely, we only consider finite sets as the model of the set C-class

Set(nget, 7). Combining Set operation with restriction operation, we get a more general set of
C-classes. More specifically, subsets of the set Set(nset, 7) of a C-class v will be expressed by
applying a restriction operator to Set(nset, 7)-

3.3.6 Categorization

Once we get the notion of the set construction of a C-class, we can categorize the elements of

the set by concerning some attributes. In the categorization, we ignore the other attributes

that are not interested. We obtain a set of set of’ a concept by taking a categorization. We

define the categorization operatoras follows. Let ¥ be a C-class, and let the interested attributes

¥ be a subset of the attributes ®.,

7 = (Ny, By vy Ty, Ay Ry), WC OD,

The categorization §2(nq, 7, ¥) of the C-class vy with respect ¥ is:

Q(nq,, 0) — (nq, ?, 1, Tsety, Aq, Raq),
where

Ra(z) = (VyVuVvIn(y,z) A In(w, y) A In(v,y)

= T(u,ny) ANT(v,ny) A Asep (S(1) = f(v)))).

10We assume that the free variable of these formulas are the same
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3.3.7 Generated C-Classes

We can consider the closure by the fundamental operators on C-classes in the same manner

as data algebras. The universal family of C-classes is the set of C-classes that is closed under

fundamental operators. And the universal closure of C-classes is the minimum universal family
that contains the C-classes.

3.4 Hierarchy of C-Classes

To formalize the hierarchy of concepts, we introduce a partial order among C-classes. We

assume that C-classes are described in a universal language. If concepts are precisely espressetl

in the real conceptual world, we can express the hierarchy of concepts by referring to only

attributes. Namely a concept has more attributes than its superconcept. Thus we can express

the conceptual hierarchy by inclusion of attributes. Roughly speaking, we can formalize it as

follows. Let, ¢,c’ be concepts, and let the attributes ®., ®. be the attributes of c¢, ¢’ respectively.

Then c¢ is the subconcept of ¢’ if and only if

¢. DO dD.

However as we discuss in Chapter 4, our conceptualization is incomplete. Hence we cannot

specify the hierarchy only by its attributes. We need to specify the hierarchy explicitly by

introducing an order in the concepts. So we introduce an artificial partial order <, on the

names of C-classes. Let nj ,n9 be the name of C-classes <i,v2 respectively. We sav np is a

subname of nq if

ny Xn No.

We assume that the type matching predicate T that is introduced in Section 3.3.5 satisfies the

following condition,

VniV¥ng ny X ne = (Vz T(z,n,) = T(z, ng) )

We include above sentence as a part of our theory. With this name hierarchy, we introduce a

hierarchy among C-classes.

Let v1, v2 be C-classes,

vi = (ni, 9, vw, Ti, Ay Ri) G = 1,2).

Then v; is a subclass of yo

M272,

if the following holds.

ni <n no, Th I= Ts,

12 VT Ry(y,,0,)(2) = Raz),

where c¢(v;(f)) designates the C-class with name v;(f) (+ = 1,2), and

Ry (n),0,)(2) = JyT(y, ni) A Ry(y) A A (g(y) = g(z)).
ged?

Since each C-class has a unique name, we could have defined the hierarchy only by the

name hierarchy. However, as we discussed above, the name hierarchy is a compromise for our
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incomplete conceptualization. Therefore it is natural to reflect the effect of attributes in the

definition of C-class hierarchy as much as possible. Thus the attributes of C-classes play the

major role in determining the hierarchy of C-classes.

We should note that we can have the most general C-class in the following way. First we

assume that there is the greatest element, say top, in the name hierarchy. Then, the most

general c-class yr is:

v7 = (top,0, 1,0,0, TRUE).

We assume that the theory T- of equality is always implicitly included in the structural

sentences for any C-class =.

I= = {Vez=z}U{VaVyaz=y => y = 2}
U{Vz Vy Vz (x =yAy=2z)=>x=7z)

Thus if we express 1 to be empty, it means the structure is specified only by T—. Namely, it

is just the structure of a set.

3.5 Conceptual Order and Fundamental Operators

The conceptual order is the realization of semantic hierarchy of concepts. There is a close

relation between conceptual order and the fundamental operators, as shown in the following
theorem.

Theorem 2 Let v,Y', 5 = {71x and ~ = {vi}, be C-classes. Moreover, let n and n' be
new C-class names such that n <n’.

o Aggregation
For attribute names ®,

(1<Vi<n,y <7) = (Mn, 7, @) I(x, 7, ®)).

eo Abstraction

For a subset ® of the attributes of 7,

ny <n=>v=<T(n-7y,>o)

e Restriction

For a unary predicate S,

n<ny => 0(n,v,95) <7

oe Set Construction

YX = Ser( n,v) 2 Sern’ 7")

o (Categorization

[f the set of attributes W is common in y and vy’, then

y 27 => Qn,vy, ¥) XQ, 0).

The proof of the theorem is easv. so it is omitted.
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3.6 Generalization and Specialization

In our mental processes, we generalize several concepts by taking the common attributes of

those concepts. For example, we get concept ‘mammal’ by generalizing ‘dog’, ‘cat’, ‘monkey’.

etc. On the other hand, we specify a concept as the semantic intersection of several concepts.

For example, the natural number is described by the semantic intersection of integer and

positive number. We formalize these mental processes using the conceptual hierarchy provided
above.

Let us assume that a conceptual hierarchy =< is given. First we introduce some notations.

Let {7; }*, be a set of C-classes. If the least upper bound of {v; }*_; with respect < exists.

we denote it by ]
VAR
1=1

If n = 2, we denote it by

Y1V 72.

| Dually, the greatest lower bound of {y; }7_, is denoted by
n

| AZ
1=1

or

Y1 A 72-

By definition, the operator V and A are commutative and associative. Furthermore,

n

\/ Yi = (v1V(y2V((Yn-1 Vn),
1=1

mn

A vi= (nA AC (Taet Ata):
1=1

Now we define the generalization and specialization.

The generalization of {y; }’_, is defined by the least upper bound V?_ | 7;. In particular
the generalization of two C-classes vy and +’ is ¥ V 4’. As stated above, any generalization

is described by the operator V. We call V the generalization operator. The definition of the

specialization is similar to that of the generalization. We replace V and “least upper bound’?

in the definition of generalization by A and “greatest lower bound” respectively. We call the

operator A the specialization operator.

| Similarly, we introduce operators V, A in the C-class names, according to the name hier-

archy.

Due to theorem 2, we have the following theorem.

Theorem 3 Let 4,7, 5 = {yi}, = {7!}~, be C-classes.

® Aggregation

Let 7 A +! be the sequence (Y1 A Yys-+.y Yn NY.) and let ¥ V zy! be (1VY1..- Ta VA)
For a new C-class name n,n’, n”, a sequence of attribute names ¢,

nAn' =n" = (n,3, &) Al,v, ®) = I(r", 5 A +, D),

nVn =n" = I(n,73,&)v M(n',4",®) < M(n", SY 3 (a).
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eo Abstraction

For a common subset ® of attributes of 7,7’,

n An’ =n" = T(n,y, ®) AT ,y, ®)=T(n",v Av, ®),

nva' =n" = YT(ny, ®)v Y(,9,8)- T(r", ,vVv+y, a)

e Restriction

For a unary predicate S,S’,

IN nN : .

n An’ =n" = 0(y,5A5)=0(v,8) AB, SI,
/ 1

nvr =n" =0(,5VvS)=0(y, S)vo(y, Ss).
e Set Construction

n An’ =n" = Set(n,y)ASet(n', 7") =Set(n", yA),

nvn' =n" = Set(n,y)V Set(n', 7") < Set(n”, vv 7)

We should note that in the previous two theorems, we always have to specify the name hierarchy

to obtain a reasonable result. The name hierarchy is an artificial hierarchy and we have to

assign the order in the names of C-classes so that they are compatible to the natural semantic

hierarchy of concepts.

To summarize, we have introduce the notion of C-class and an order among them to

formalize concepts and the semantic hierarchy of concepts. Moreover we have introduced

formal operators on C-classes that provides a formalism of mental processes that produce new

concepts out of existing concepts. Finally, we have provided some theorems to show that the

formalism provides the natural relation between the fundamental operators and the concept

hierarchy, which is one of the verifications of the correctness of the formalism.

4 Models and Instances

So far, we have discussed the notion of C-classes, which 1s the formalization of database schema

objects. Now, we are going to discuss the actual data that will be in a database. We regard

a database as an expression of the real world. Each concept in the real world is expressed by

(C-class defined in the previous chapter. Each occurrence of concept is expressed as an instance
of C-class.

In the framework of a value-oriented model, an instance of a C-class is just an element of

the data algebra that is the model of the C-class. The occurrence of a compound C-class is

determined by the set of attribute values. However, as we discussed in Section 1.1, we cannot

capture the real existence of the occurrence in this paradigm, because our conceptualization is

always incomplete, i.e., an approximation of the real concept. We need something other than

attribute values to distinguish the occurrences in the real world. It is so-called object-identity,
which will be formalized.

In this chapter, we first define the value-oriented model of C-classes. A value-oriented

model of C-classes is a collection of data algebras that are specified by the C-classes. The

data algebra provides the space where the structure of the real world objects are expressed.

Next, we will estend the value-oriented model to object-oriented model by introducing the

object-identity space.
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4.1 Value-Oriented Model of C-Classes

Let I" be a set of C-classes generated by fundamental operators from a set I'g of the primitive
C-classes, and let

D = ({6]6y = (ny, A, r,), ¥ €T}, <n)

be the pair of a many-sorted data algebra with the sort 5 generated by [y, and the name-

hierarchy <,, of data algebras. Then D is called a value-oriented model of I’, if the following

conditions are sat isfied. [Let v be an element of I' such that:

T= (By, By, vy Thy. Ay, Ry).

¢ Primitive C-Classes

Each primitive C-class 7 satisfies:

— The universal algebra A, is the algebra. corresponding to a sort in S.

— The restriction function of ¢. is the interpretation of R,. We assume that each
predicate will be interpreted as a function to 2, where 1 is regarded to be TRUE.

e Compound C- Classes

For any compound C-class 7, A, is a subalgebra of lljco As). Typically, when T., is
equal to TY, A, is isomorphic to the product algebra Ilse, Ay) itself.

— Each function symbol f in ®. is interpreted as the projection from []fed. Ay to
Auf)-

— The restriction function r. is also the interpretation of R,.

For a C-class 7 corresponding a concept, an element of the data algebra 4, represents an
occurrence of the concept as a value. We call the element a value instance of 7. Furthermore,

the data algebras should be compatible with the hierarchy of C-classes. Namely,

VyVy' €T, 7 Xv" = Jpg: 64 — by, (py is the subtype mapping from 7 to 7°).

For the top C-class, we have a model ét that is set theoretically isomorphic to the set of

object-identities. which will be formally introduced in the nest section.

or - (2,0), 1).

4.2 Object-Oriented Model of C-Classes

The value-oriented model of a C-class provides the base of the algebraic structure for expressing

occurrences of concepts. In this section, we extend the value-oriented model by the notion of

object-identity. We will introduce object-identity space to express the real existence of objects.

Let D be a value-oriented model of I’ as defined in the previous section. Let £2 be the pair

of a set } with an appropriate cardinality, a collection JF of partial functions from §) to itself.

We call © the object-identity space. Further, let 1 be a. collection of partial functions from {2
to a data, algebras in D for each 7 in ['. Namely,

D = {&,ly€ I}.

I= {3)ty: = 6, y€T}
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The partial function i, is called the instance mapping of 7. The domain O(yj of i is called
the object instances of 7.

Then, an object-oriented model M(T') of C-classes I’ is a triplet

M(T) = (D,Q, 1),

which satisfies the following conditions.

e Let 7,7 be inl If v <7 then

d(v) C 0(7") and Vw € 9(7) 1) (w) = pyy0 (w).

where p.,+ 1s the subtype mapping from 7 to 7° in the value-oriented model D. This
condition shows the compatibility of the hierarchies of the object-identity space and the

value-oriented model D. Note that the hierarchy of C-classes in the object-identity space

is expressed by the set inclusion of the domains of instance mappings.

e For each function symbol f that appears in the description of C-classes, there is a. corre-

sponding partial function o(f) in F.

e The mappings o(f)’s are related to the value-oriented interpretations v(f)’s via the map-
pings [ in the following way. Let us take a function symbol f that appears in the descrip-

tion of C-classes, which has a. signature” ning . . . n,, — n, where n and n;’s are concept

names of C-classes v, 7;°s. Then we have the commutative equation:

v0 off) = u(f) 0 Tis u,

Tiel b
Qn ——————————— TI;

o( f) o) v(f)
2— 6

where

Ui) : I, 6; — 6, o(f): 2" — £2,

mI, t; is the product mapping of 2; (¢+ = 1, . . . n):

de f
gt((@n wn) ZF (wr), twa).

The data algebra. é corresponds to the C-class 7, and 1 is the instance mapping of 7,

similarly data algebra, 6, and instance mapping i; for v; (1 <1 < nj

“The definition of signature is provided in [GB 85].
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The above commutativity is the essence of our model. It clearly separates the “object-

oriented part” and “value-oriented part”. We call it fundamental commutativity. Further, it
demonstrates the essential difference of an object-oriented data model and a value-oriented

data model. The difference between object-oriented model and value-oriented model lies in

the object identity. There are several features other than object-identity, which are generally

considered to characterize an object-oriented model. such as complex object, inheritance, etc.

However, as we will see later, the semantics of those features can be captured by the algebraic

construct, such as types, aggregation operators, when we express instances as elements( values)
of a data algebra.

The set of instance mappings {v, | 7 € I'} is called an schema instance of T.
The object-identity space 2 is a flat!? set with a set of partial functions. The value-oriented

model D provides a structure on £2, which is called value space of I'. The instance mapping

| of a C-class expresses the correspondence between object instances and value instances.

We have a natural ordering for schema instances. Let the object-identity space {2 and
value-oriented model D be fixed, and let I and I’ be schema instances of I:

/ /

I ={n|veTl}h I'={L]|yeT}.

We call the schema instance I the schema subinstance of I' and denote it by

11,

if

Vy eT, r, is an extension of 2.

This ordering is useful when we consider the schema instances of C-classes with recursive

structure. Obviously, the order is a partial order. If [I and I’ coincide on the intersection of

their domains,

Vy € T, Va € 8(1,) 0 03), 1(x) = &(2).

we call them compatible. It is easy to prove that any set of compatible schema instances has

the least upper bound with respect to the above order.

4.3 Induced Mapping on Instances

In this section, we discuss how the fundamental operators on C-classes are interpreted in the

object-oriented model.

The induced fundamental operators are the mappings that transform instance mappings to

other instance mappings. For given C-classes, we can create new C-classes using fundamental

operators. Accordingly, for the created C-classes, we can create instance mappings out of

instance mapping of original C-classes. In this section, by the term “instance mapping”, we

mean a, partial function. from object-identity space to a data algebra, which may provide an

object-oriented model. As discussed later, the induced instance mapping will not provide an

object-oriented model for a certain kind of fundamental operators.

Let us assume that an object-oriented model M{I[') of I' is given:

MID) =(D, QI), ] = {ty: 2 — 0, |7€T}.

12By the term flat, we mean that no element of the set has a. substructure.
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We assume D and {2 are fised. As defined before, an instance mapping :, is a partial function
from the object-identity space £ to the data algebra 6. We denote the domain of an instance

mapping 2, by 0(2,). Let ¢, be the instance mapping of 7 in I,

v= (ny, 04, vy, Ty, Ay, Ry).

e Restriction

Let S be a unary predicate that is intended to impose a restriction on 7. The induced

restriction operator O(-, S) is defined =.=

NS de f
I(O(1y, 5) = {w € (ay) [¥( 5) (2y(w)) = 1 }

~ ~ def
Vw € (0(14)), Oty, sH (wy = 14(w).

Intuitively, the induced restriction operator takes only instances that satisfy the predicate

S. Note that the predicate symbol § is interpreted as a mapping from 6 to 2.

e Abstraction

Let ¥ be a subset of ®. The induced abstraction operator Y(-, ¥) is defined by:

yp de f
(L(y, ¥)) = 0(2y),

yy = def

Vw € A(T (ty); T(ty, ¥)(w) = Py o 1(w),

where Py is the projection from feoA to Mcp Ag.

e Aggregation

The induced operator for aggregation is different from the above operators, because it

is a constructive operator. Let 7; be a C-class and let i; be the instance mapping for 7;
(# = 1,...,n).. Then the induced aggregation operator II(-) is defined as follows. The
domain J(II{(z;...1,))) of the induced mapping is a new subset of {! that has one to one

correspondence to II%_; O(2;) with a mapping e:

€: I I((21,. ...0))=1L,0(1).

Then the induced instance mapping is defined by:

~ d

M((e, sen) = (TT0) oe.

There is a certain technical details, about the aggregation operator. If we have already

an instance mapping t¢ for the aggregated C-class, we impose a condition to the invention

of object identities so that the newly derived instance mapping is an extension of the

esisting one.

eo Recursive Aggregation

The induced operator for a recursive aggregation is obtained by inductive limit of gen-

erated instances. More precisely, we first define an inflational operator to produce new

instances. Then we take the limit of successive applications of the operator.

Let G’, V, FE, U, WW and ® be the same as in Section 3.3.2. Let [' be the set of C-classes

corresponding V', and let D be the object-oriented model of I’,

F={v|ueV}D={§]|ueV}.
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Further, let Z be the collection of all schema instances of I’. We define an operator (jy

from the 7 to Z. Let I be in Z,

I ={1,:Q—6,|ueV}

Then tofec

Cw(l) = IVEw(I)

where Vv designates the least upper bound with respect to the schema instance ordering

defined at the end of section 4.2. The instance mappings &w([) is defined as the minimal
schema instance that is compatible with I such that it satisfies the following conditions.

Vv e WW, Ew(l)y = 24, |
VveV—W, VuVgs.t. (v,u,g)€ FE, m7,(S(Ew(I)y)) 2 (2).

where S( &w(1),)) and S( +,) are codomain of &w (1), and (2,) respectively, and m, is the
project ion correspondin g the edge (v, u, g). Note that {yy (I) may not be unique !°. For a
given schema instance [, we construct a monotone increasing schema instance sequence

{I,}°2, by applying (w successively.

def oo
Io — I, Int — (wily).

Since { /,}°%, forms a compatible set of schema instances, we can obtain the inductive
limit /., as the least upper bound of the set. Then we define the induced schema instance

II(G, ¢. IV) as I:

V={vi, v0... 0m}, loo = {i = 6,, | 1 <i < mj.

M(G,®,W)=1((31,...,5nm)).

By definition, the instance mappings for the C-classes in W will not change with (jr. We

call VV the set of stable C-classes. If W is equal to V, the recursive aggregation reduces

to the original aggregation defined above.

e For a. set construction, we can naturally induce an instance mapping. The induced

instance mapping describes the instances with all the possible finite sets of original in-

stances. More precisely, let © be an instance mapping of a C-class 7.

1: — 0,.

Then induced mapping 7 by set construction is a minimal instance mapping such that its

codomain includes all finite sets generated by the codomain of :.

(7) {{z1,22,.-.,zn} |2i €S(2) 1 <<), n=0,1,2,...}.

The induced mapping is not unique. If the C-class Set(n, 7) has non-null instance map-
ping 1,4; from the beginning, we construct the instance mapping j so that j is the extension

of lset

3Actually, &w is a multi-valued function. However, we consider it as an ordinary function by taking one of the
values. I'he existence of Ew can be easily proven using the fundamental commutativity.
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o Categorization

The induced mapping for the categorization is obtained by the composition of induced

mappings of set construction, aggregation, and restriction operators, according to the

definition of the categorization.

We should notice that the induced instance mapping may not be unique for (generalized)

| aggregation, and set construction. This is due to the fact that these operators require object-

identity invention [AK 89].
Furthermore, we can introduce operators on instances that correspond to generalization/specialization

operators.

Let v; be a C-class,

and let (II;cp,A; s, r;) be the data algebra corresponding to <;. Further, let i; be an instance
mapping of 7;, and let F; be the projection from Ilfcqp, A; to Hico,ne, Ais G = 1, 2). If

Vfed Nd, Ay y= Ag; and Poy = Psoiy on 011) NI(22),

the induced generalization and specialization of ¢; and :, are defined as follows.

¢ Generalization

The induced generalization operator V is defined as:

—~ if the intersection of ®; and ®, is not empty,

~ def _ .
(Vip) = J(11) U 9(22),

~ def .
Vw € 0(1) (nV) (w) 2 Pi(u(w)) (0 = 1,2).

— if the intersection of ®; and ®, is empty, the domain of 2;Vi9 is the same as above,
and _

(Vig):  — ér - ((2,0),1)
w +— w ( inclusion mapping ).

e Specialization

For the specialization operator on C-classes, we have the following induced specialization

operator A. The operator A is defined as:

~ def,
11heg) = (11)N Aa),

Vw € d(1 A), (1 An) (w)€ [1 Ay. |
| fed ud,

II; O (11A22) = (2) (¢ = 1, 2). |

Although we can derive new instances by induced operators, we should note that these

instances are just, possible candidate instances in our model. However, in intuitive sense, if

a C-class is derived by the fundamental operator other than aggregation or set construction,

the instance mapping should be obtained by the induced operators. We should note that

our object-oriented model is fairly general. Hence we would get a variety of “actual models”

according to the way of providing instance mappings. To provide instance mappings by the

induced mappings of the fundamental operators is a. canonical way of obtaining an object-
oriented model.
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5 Database Design

5.1 Entity C-Classes and Abstract C-Classes

In our object-oriented model of C-classes, there can be more than one object-identity corre-

sponding to one element of data algebra. Because our conceptualization is incomplete, we

cannot characterize the real existence of objects by their attribute values. However, in order

to provide a representation, we should assume that the existence can be described by attribute

values for certain concepts at least in a closed domain of the real world. This is a matter of

knowledgebase design.

Hence it is important to analyze in which case a C-class should be characterized by its

attribute values, or more generally, in which case the object instances are equivalent to the

value instances. Namely, we should consider when we should require the instance mapping of

C-class to be injective. In this section, we consider two kinds of C-classes that the instance

mapping will be injective. One is the algebraic C-class, the other is the logical C-class. Further

we claim that even the instance mapping of a logical C-class has the inherent possibility of not

being injective, because our knowledge representation is always incomplete.

First, we introduce and discuss the algebraic C-classes. Let us consider the concept string

for example. What are the instances of string? It depends on the context how we consider

the concept. We can say that every string appearing in the real world can be an instance of

C-class String. Consider the following same sentences.

e “string” is an instance of String.

e “string” is an instance of String.

The string “string” in the first sentence is an instance of String which is different from the

instance “string” in the second sentence. However, we often need to abstract the real occur-

rences of String and regard the many instances as a same object. This is exactly what the

value-oriented model of C-class String is intended to be. The universal algebra Agir;n, 1S the
abstraction of real occurrences of strings with abstracted functions such as length, conctrtenute.

The algebraic model A ir, 1s virtual and doesn’t exist in the real world. However, we want to

treat the virtual model, such as the algebra Agg, as if it existed in the real world. In other
words, we want to allow the conceptual existence of the abstract objects. So we introduce a.

category of C-classes whose instances are virtually the same as the domain of an algebra in

the value-oriented model. Namely, the instance mapping is injective. We call such C-classes

algebraic C-classes. An algebraic C-class is a. kind of “literal.”

Other than algebraic C-classes, there is another kind of C-classes that instance mapping

should be injective. It is the C-class derived from a logical relation. We can express a. n-ary

logical relation by a C-class with n attributes. Since an occurrence Of logical relation is nothing

but an element of a subset of the Cartesian product of doma.ins(object-identities), it is exactly

characterized by its attribute values. We call such C-classes logical C-classes. The notion of

logical C-classes will be discussed in detail with an example later in this section.

Note that the notion of algebraic C-classes and logical C-classes are not determined by

object-oriented models. Rather, it is required in the meta level. In other words, it is a design

issue of knowledge representation whether we require a C-class to be an algebraic or logical

C-class. We call a C-class an abstract C-class, if we impose a restriction that its instance

mapping is injective.

The abstract c-classes strictly fit into tlie value-oriented data model. If all the C-classes
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are abstract C-classes, any object-oriented model is essentially the same as a value-oriented
model.

We call the remaining C-classes enriry (-classes, whose instance mappings are not, intended

to be injective. The entity C-classes are the representation of the “existing objects” in the real

world. In a practical design of knowledgebase, the physical objects and events are espressed

as entity C-classes. This design issue will be discussed in the later section. For example,

‘person’,‘animal’,‘company’, ‘meeting’ and ‘order’ are entity C-classes. Note that the ‘“esisting

objects” should not necessarily be physical objects nor events. It can be some abstract object,

which is still an expression of the existence of “something” in the real world. Basically, anything
that can be noun will be an entity C-class. Hence, even ‘friendship’, ‘love’ can be entity C-

classes. Actually, the author presumes that the nominalization in the mental process of human

being is essentially the same as creating an entity C-class. The identity of an entity C-class is

characterized by its object-identity.

We emphasize again that the notion of abstract C-class and entity C-class 1s not determined

by its model. The instance mapping of an entity C-class may be injcctive with some particular

object-oriented model. It is a meta level requirement, i.e. design level requirement.

It is controversial whether we should express a logical relation as a C-class. Alternatively,

we can introduce the notion of logical relation as another construct of our theory. There are

two reasons why we express logical relations as C-classes.

o It may be the case that an occurrence of logical relation will be converted to an existing
object by a certain meta operation, which will be discussed in the rest of this section. So,

it is more convenient to express logical relations as C-classes, because the meta operation

can be expressed as just a mapping from a C-class to another (C-class.

e It is better to have only C-classes as the basic construct of the model so that we can

treat the knowledge representation in a simple and homogeneous way.

In the rest of this section, we will provide the intensive consideration to the meaning of

entity C-classes and logical C-classes. Especially, we will discuss the meta operation that

converts a logical C-class to an entity C-class.
A logical C-class is a compound C-class that we make up to express a logical relation of

the real world objects.

Let us consider a concept Person with attributes, name, loving. Further, let 1: be the

instance mapping of Person and J(:) be the domain of :. The at tribute value loving(w)
designates the people that w loves.

Person = (person, (name. loving), Persons 1 Persons 1RUE)

VPerson(name) = String. Uperson({loving)= Set_of _Person.

For esample,

w, w’€ (1), name(w) = “John”, name(w') = “Mary”. In(W'. loving(w))

means that the person w named “John” loves the person w’ named “Mary.”

A C-class © will be a logical C-class with two attributes ‘loves’ and ‘loved’ pointing persons;

QO = (affection, {loves, loved}, vo, To. Ro),

where

vo(lores) = person, vo(loved) = person,
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Ro(z) = In(loved(a), loving(loves( x))),

and the structural sentence To is the one that is similar to T? for a C-class + with non-
empty attributes. It is important that the existence of the ‘affection’ is derived from the

attributes(state) of the persons. In this case, it is derived from the attributes of the loving

person. The restriction form Ro is not only restriction but also the definition of the C-class

0. Namely, the existence of instance is exactly specified by Ro. Generally, the occurrence of a

logical C-class + is specified by the the restriction predicate R.. Thus the identity of a logical
C-class should be determined completely by its attribute values. The occurrences of a logical

C-class should be the same if and only if their attribute values are the same. Thus one might

sav that a logical C-class can be dealt with by the value-oriented paradigm. However it is not

so simple.

We should notice that even a logical C-class is an approximation of the real world. In

the above example, we specified the C-class affection with the predicate Ro. If the predicate

completely specifies an “affection”, the attribute values will determine the equivalence of in-

stances. However, it does not. ‘John loved ‘Mary’ yesterday, i.e. the predicate lio held for

‘John’ yesterday, but it doesn’t hold today. Even in such case, we can still think “yesterday’s

love of John for Mary.” The instance of concept acquired an object identity. The reason is

that the specification by the predicate Ko had lacked temporal information. If it had included

the temporal attribute, we could have expressed the “yesterday’s love” only by attribute val-

ues. Therefore, due to the incompleteness of our representation, even a logical C-class may

end up as an entity C-class. Hence we introduce a meta operation A that converts a logical
C-class to an entity C-class. We call ,\ a nominalization operator. The nominalization oper-

ator corresponds to the mental process of putting a name to a chunk of information that we

acquired.

As discussed above, every C-class may be inherently an entity C-class. However, in order

to organize the knowledge representation. we should impose a condition that certain C-classes

are to be abstract C-classes, as discussed in the nest section.

5.2 The Concept Model

In this section, we introduce concept model for database design, and discuss its semantics.

5.2.1 Design Process

First, we discuss the design of knowledge representation. As we mentioned in the previous

section, even an instance of logical relation would be an instance with object-identity. How-
ever, when we develop a knowledge representation, we have to assume some of the C-classes

should be abstract C-classes. For example, when we register a new instance of C-class in the

knowledgebase, we have to know whether the instance is already stored or not. As we dis-

cussed, we can only believe that we can distinguish the instances by our representation. This

is a. matter of correctness of knowledge representation. Hence, when we design a knowledge

representation using C-classes, it is the main issue what C-classes we should regard as the
basic abstract C-classes.

The design process will consists of the following steps.

1. Provide algebraic C-classes, such as Integer. String, Set, Sequence. Further we provide

primitive functions and predicates. For example, { +. —. >, . . .} for Integer, {union,
intersection, In} for Set.
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2. Choose real world concepts that provide the basis of our knowledge representation and

express them by C-classes. We introduce as many attributes as possible to those C-

classes, so that we can assume that their inst ances are fully specified by at tribute values,

i.e., the instance mapping is injective. We call such C-classes base C-classes. For example,

a concept person would be expressed by a base C-class Real-Person. We assign as many

attributes as possible so that we can distinguish individual persons. (The concepts,

such as employee, student can be espressed by C-classes derived from Real-Person by

abstraction operator, because we don’t need all the attributes of Real-Person to express

an employee or a student .)

We should note that basic C-classes are inherently entity C-classes, although we regard

them as abstract C-classes. In fact, when we view the knowledge representation through

a perspective different from the original design or when we add a new C-class into the

schema, a base C-class may become an entity C-class. In such a case, we have to mod-

ify the schema by adding new attributes to the base C-class, in order to keep up our

requirement that the C-class should be an abstract C-class.

The guidelines of selecting base C-classes are as follows.

oe Physical objects should be base C-classes. For instance, person, car, location. etc. So-

cial organizations, such as company, may be considered as physical objects, because

they consists of physical objects, such as employee, office, factory, etc.

e Events should be base C-classes. For instance, meeting, accident, order form of

parts, etc.

3. Analyze the relation of base C-classes and check that every necessary logical relation

among base C-classes can be expressed by the attributes of base C-classes. We add

new attributes, if necessary. The point is that all information should be included in the

attributes Of base C-classes. If so, we can express any information by the C-classes derived

by the fundamental operators from base (C-classes. Hence, the integrity constraints of

knowledgebase will be completely described by the restriction predicates of base C-classes.

Thus in order to maintain the consistency, we only have to maintain that of base C-classes.

For example, when we consider a C-class Person and a C-class C'ar, there may be a logical

relation QwnerCar. We express them with attributes owns of Person and owner of

C'ar. The attribute owns designates the belongings of a person, and the attribute owner

designates the owner of a car. Then we will express the QwnerCar relation by a logical

C-class with attributes fowner. car}, and the restriction predicate RK, nercar.

Ownerar = (ownercar, {owner car}, vownercar, Tn, 0, Rownercar),

Vownercar (OWNET) = person, Voynercar = Object,

R ownercar (2) 3 In cal’( 2), owns(owner(a))),

where TY is the same as in section 3.1.3. The restriction predicate means that the car
car(x) 1s one of the belongings of the person owmner(x).

It is an important requirement that we can construct every logical relation by attributes

and primitive functions and predicates of algebraic C-classes A and base C-classes 5. If

so, we can construct any logical relation through fundamental operators from A and B.

Hence it will allow us to provide the semantics of those logical C-classes using induced

instance mappings. We will discuss it in the next section.
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4. We define appropriate “view” C-classes using fundamental operators. Logical C-classes

will be defined by the (generalized) aggregation operator, while entity C-classes will be

defined by abstractions and restriction operators.

5.2.2 The Concept Model and Its Semantics

A concept model M of a knowledgebase is a tuple consisting of C-classes of three kinds together

with a C-class hierarchy <,

A is the set of algebraic C-classes such as Integer, String, etc. B is the set of base C-classes.

D is the set of all derivable C-classes, which can be derived by a. finite application of the

fundamental operators from A U [B. We should note that the union of A, 5 and D forms the
universal closure of the union of A and B.

The semantics of the model is as follows. Let I" be a finite subset of the union of A, B, D.

such that for each C-class in I’, the C-classes that are the attribute values of ~ is also in I:

TY = (7+, d.,, Uns 1, A, R.),

Ved, v,(f) el.

We call such a set of C-classes closed set of C-classes.

The semantics of the concept model is provided by an object-oriented model (D, ©. I) of

the C-classes I’ with the following conditions for I. Let é, be a data algebra in D that is the
model of v in I.

e The instance mapping of a C-class v in A is injective and surjective partial function from

QQ to 0.

e The instance mapping of a C-class vy in ID is obtained by induced instance mapping of the

fundamental operators that define the C-class. For a recursive aggregation, we require

that the base C-classes are always treated as stable C-classes. We will consider this

ind riced mapping in detail in the next section.

e¢ The instance mappings of base C-classes espress the instances that are existing in the real

world. The instance mapping of a C-class 4 in B would be intended to be injective by the

knowledgebase designer. However, we don’t impose the restriction as part of the formal

semantics. If the instance mapping happens to become not being injective, the schema, of

the knowledgebase should be altered. It is a matter of maintenance of schema.. Note that

a base C-class may be defined with fundamental operator from other base C-classes and

algebraic C-classes. However, the instance mapping is not derived by induced instance

mapping. The instances will be created by update operations of the user.

As we discuss in Appendix A, one of the characteristics of this model is homogeneous

representation of query. There is no distinction between those three kinds of C-classes for

users, so long as query is concerned. A user doesn’t have to consider which C-class corresponds

to the data. stored in the knowledgebase. Each C-class would be automatically bound to a set

of instances by the system. The homogeneity of C-classes will bring a clear semantics of view

update, which will be discussed in Section A.2.4.
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5.2.3 Two Kinds of Predicates

If the derived C-classes are recursively defined, their instance mappings will not be always

determined nor exist. In this section, we consider this matter further.

First we extend the graph we discussed in the definition of generalized aggregation. We al-

low the labels of edges to be operator expressions that express the other fundamental operators.

For example,

Person = (person, (name, height, father), UPersons LPersons V, TRUE),

VPerson (ame) = string, UPerson(hetght) = Integer,

Tall Person = Oftallperson, Person, RTaniPerson)s

RTaliPerson() = (height(x) > 6 (ft.)).

The graph will be:

V = { person, tallperson, string, integer),
E = { (person, string, name), (person. integer, height),

(person, person, father),

(tallperson, person. O(tallperson, °o . RTaniPerson)}

We can define a function ( from schema instances to themselves in a similar way as in section

4.3. The difference lies in deriving the new instance mapping of the C-classes Vj that are

derived by fundamental operators other than aggregation.

Vo e W, E(1)y = ty,

Vo eV —W = Vy, Vu, gs.t.(v,u,g) € E,m(S(Ew(I)y)) 2 S(t),

Vo e Vy —W, (v,u, expr) € E &(I), = (the induced instance mapping by ezpr).

v E(1),. (otherwise).

As shown later in this section, this ¢ will produce a non-sense instance mappings for a

certain class of restriction operators.

Next, we introduce a meta function symbol getinstances in the language that designates

all the instances of a C-class. For a C-class v and its name n.,, getinstances(n.) designates the

set of object-identities in J(2y). The set getinstances(n.) can be regarded as an instance of
Set( nger, v ). For example, we consider a base C-class Man and a derived C-class Kichestman.

Man = ( man, {name, wealth,. . .}, Aran, Tran, 9, TRUE),

Richestman = (richestman, {name, wealth}. VRichestmans 1 Richestman, Oy RRichestman),

UMan(NAME) = URichestman (name) = string,

UMan( Wealth) = VRichestman( wealth) = integer,

R Richestmard@) = (Vy In(y.getinstances(man)) => wealth( x) > wealth(y) ).
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The getinstances cause the interpretation of predicates to be dependent on the instance

mappings. Hence, it may not be a consistent instance mapping to some C-class definition. For

example, we can express an inconsistently defined C-class:

Wrong Number = O(wrongnumber, I1(n001, (Integer), (value), RirongNumber)s

UW rong Number (Value) = integer,

R WrongNumber () = (Vy In(y, getinstances(wrongnumber)) = x # y).

We should note that this kind of inconsistency comes from semantics of instances. It is different

from a relevant, inconsistent restriction predicate. such as

The operator ( defined above gives us the wrong answer in this case. Let us assume [ is
the initial schema instance.

[integer: 8 — Z(onto, one to one),

I Linteger) — {wr, wo, JER }s

Lyrongnumber = 1.

where 1. is the null mapping:

L:Q~— 7 (9(L) = 0).

Then, by definition, we have:

E(1 integer — Linteger &( I) wrongnumber = Linteger ’

C()integer — Linteger y C(I) wrongnumber — Linteger 9

&( ¢(1) )integer _ Linteger y &( ¢(1) Jwrongnumber = 1,

G( ¢( I) )integer = Linteger ’ ¢( C(I) wrongnumber = 1.

In general,

&( n Jwrongnumber — 1 (if n is odd),
where [,, designates (™([). Thus, we cannot have the inductive limit of {[,}52,. The problem
comes from the fact that I2,rongnumber depends on its own instance mapping. More specifically,
the variable y is universally quantified on the domain of the instance mapping. So, &( [, )

“oscillates” between Iinieqer and L. The induced mapping of WrongN umber doesn’t provide
an object-oriented model.

According to this observation, we introduce a class of predicates.

First,, we introduce the following syntax sugar to simplify the notation.

def
(Va : nn, ¢) = Va( In(z, getinstances( n.,)) = ¢),

(32: n, @) stackrelde f=3a( In(x, getinstances(n,))A o).

Then the above example is denoted by:

RwrongNumber(T) = (Vy:wrongnumber x # y).
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We call the expressions Xx : Ty a explicitly typed variables, and Y(3J) x : n. a explicitly typed
quantifier. For any first order formula, we can move each explicitly typed quantifier to left

side of the expression, in the same manner as ordinary quantifiers. For example,

Vein (T(z) = y:m P(e, y))

becomes

Ve:ndy:m -T(2)V P(z,y).

We call the first order form a normally quantified form, if each explicitly typed quantifier is

placed at the left side of the expression.

If a first order form has a normally quantified form with only existential explicitly typed

quantifiers, we say that it is of rype 2. A general first order form is called type I.

Theorem 4 If every restriction predicate is of type 2, then for each schema instance I, the
operator ( defined in this section has a fix point Io, such that I is a subinstance of I.

We can prove that the restriction operator is monotone increasing with respect to the order

among instances. So, we can prove ( is monotone increasing. Hence, there exists an inductive

limit by the fact mentioned at the end of Section 4.2.

In this section, we have introduce a forma.l semantics for the concept model. The semantics

is espressed by a. fixed point of (-operator. The fixed point of i-operator doesn’t exist in some

case. We can consider such a concept model as inconsistent. Theorem 4 shows that some class

of concept model is consistent in the sense that there exists a fixed point of (14.

6 Expressibility of Concept Model

In this chapter, we consider the expressibility of our model by simulating other models.

6.1 Relational Model Semant ics

The relational model can be simulated by a. concept model. Since we will show that datalog

semantics can be simulated by a concept model in the next section, we can derive this result

as an easy corollary. However, we can prove it directly. In this section we provide only the

sketch of the proof.

We express relations as compound C-classes. For esample, a. relation Person( name, address)
will be expressed by a C-class:

Person — (person, {name, address), Vperson Terson 0. TRUE),

Uperson(NAME) = Vpersonl(address) = String.

The relational operators are simulated by induced operators of the fundamental operators.

selection «—> restrict LON

project ton — composition of categorization and abstraction

product — aggregation

14 here is a trivial case that the fixed point, always exists. If there are no recursive aggregation involved in the
definition of the derived C-classes, then the concept model is consistent, i.e., the (-operator has a fixed point. In

fact, for an initial schema instance I, {(/) is the fixed point.
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Furthermore we have a natural interpretation for the natural join operator. It is expressed by

the specialization operator. Let RB and S be relations and yg and vs be the corresponding
C-classes. Then

RMS «— vp Avs.

6.2 Datalog Semantics

In this section, we show that the semantics of datalog can be simulated by the concept model.

First we discuss how to convert datalog rules to C-class definitions. We assume that algebraic

C-classes such as Integer, String are provided from beginning. We introduce some terminol-

ogy. A simple rule is a rule with the body consisting of one literal. If a rule is not simple, we

call it a complex rule. We call predicates such as =, < , restrictive predicates and literals such

as X < 1 restrictive literals. We also assume that all rules are rectified'®. Moreover, we assume:

e There is no predicate symbol that is used with different arity. For example, we don’t
have the rules such as:

p(X, Y) :- x = Y.

p(X) :- x > 0.

We convert. rules into the forms that will be easily transformed to C-class definitions in the

following way.

1. If the predicate symbols of facts appear as the heads of rules, we add new rules so that

they never appear in rules. For example, the rules:

pa).

p(X) :- g(X) .
will become

pia).

p(X) :- p1(X) .

p(X) :- q(X).

2. If there is a variable that is shared by more than one negated literal, and doesn’t appear

in positive literals, we renaine the variable so that it is not shared by negated literals.

For example,

p(X) : = =q(X,¥) & -s(X.¥) & t(X).
will become

p(X): = =gq(X,Y) & =s( x. 2) & t(X).

3. We convert the rules by adding equality literals so that the non-restrictive literals do not

share any variable.

p(x) :- gq(X,Y) & Y = 1.
will become

I5[UL 88] Chapter 3.
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4. If a negated non-restrictive literal shares variables with restrictive literals, we seperate

them by introducing “intermediate” equalities. For example,

p(X):= =q(V,2)& Y=x& z= 1
will become

p(X): — "qY,2)&Y =Y&Z=2z&Y=x&z=1.

We call the expressions like Y’ = Y, Z’ = Z in the above example the intermediate literals

and distinguish them from restrictive literals by using the equality symbol = instead of
=. So the second rule in the above example is expressed by:

p(X):= qY,ZN&Y2Y&Z 22&Y=x&z=1.

For the rules after the above conversion, we assign C-classes as follows.

1. For each non-restrictive literal symbol, we assign a. C-class (taking the predicate symbol

as its name).

2. For each argument of a non-restrictive literal, we assign numbered literal names as the

attribute names. For example, a literal p(X, Y, Z) has attributes, pl.p2,p3. pl corresponds

to X, p2 to Y and p3 to Z. Let us denote the correspondence by «a. In the above esample,

a(X)=pl,a(Y)=p2, a(Z) = p3.

3. For each variable, we assign a C-class name as follows. We express the assignment by a

mapping 7.

o If a variable appears in a restrictive literal, we assign the name of an algebraic C-class

according to the literal. For example, if we have X = 1. we get

r(x) = integeri®.

e Otherwise. we assign the most generic C-class name top:

T(x) = top.

We should remember that we assumed the existence of t he most generic C-class Op
v7 in the C-class hierarchy.

4. For each attribute, we assign a C-class name in the the following way. We determine the

values of attribute value function v, for each literal symbol p. In the above example,

vp(pl) = T(X), vp(P2) = 7(Y), v,(p3) = (2).

5. We convert bodies of rules to first order forms with explicitly tvped quantifiers. We

describe the way of conversion with examples. We express the conversion with a mapping
O.

18Tf X is paired wit.11 different, {vpes(C-classes) by equalities, we assign the least upper bound of those C-classes to
the variable X. For example, if ‘X = 1” and ‘X = “ad” ', we assign top to X.
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e restrictive literal

We convert the variables as shown in the following example.

a(X)(self) =1 (if X is in the head of the rule)

dX =1 =< a(X)(z,) =1 (@(f X is in a non-restrictive literal p(...))
r=1 (otherwise)

where self will be the free variable in the restriction predicate of the restriction

operator. The variable z, designates the instance of C-class p.
e Intermediate literal

Let X> = X be an intermediate literal, where X’ is in a negated non-restrictivel? literal
and X is in a restrictive literal. The variable X will be converted in the same way

as in the restrictive literal. We denote it by ¢(X). The variable X’ 1s converted to

a(X')(z,) where p is the literal symbol that contains X. So X’ = X will be converted
to a(X')(z,) = ¢(X).

e non-negated non-restrictive literal

We assume that non-restrictive literals are placed on the left side of restrictive literals
in the bodies of rules.

e negated non-restrictive literal

o(-p(X, Y) = Va, :p.

After the above conversion, we add explicitly typed quantifiers for the variables that

appear only in the restrictive literals.

o If the variable X appears only in a negated literal, we add Vz : 7(X).

e Otherwise, we add 3x :7(X).

We arrange the existential quantifiers left side of the universal quantifiers. Next we collect

the intermediate literals for each negated non-restrictive literal and take the disjunction

of negation of the literals. For example,

p(X, Y) : = —q(W,V) &s(A,B)&X=W&V=B&A=YL&B=C

will become

plX,Y): = =q(W,V) & s(A,B)&W=W&V =v&X=W&V=B&A=Y{B=C.

Then its body will be transformed to:

de top 3u:top Jv:top Jas: sVa,:q ((=(gl(zq) =u) V ~(q2(x,) =v) A
(pl(self)=u An 2(xs)=v A sl(ag) = p2(self) A s2(x,) = ¢)).

Finally, we convert rules to C-class definitions.

1"More precisely, we should say non-restrictive and non-intermediate literal. 1{owever we use the term “non-
restrictive literal” in this sense.
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o For rules with head literal p(X;, Xo, . .., X,) with bodies B; (1 <i < m),

p(X, Xo, 0, Xn) t= By

p(X1, Xo,. oy Xn) Lo By

the C-class vy, is defined as:

vp = Op, (‘COOL (pl,...,p0), (7(X1),-..,7(Xn)), \/ o(B;)).
1=1

oe For facts, we assign each predicate symbol of facts a C-class. For example, for the

following fac ts,

f(1,“abc™).

f( Wo “b c”).

we have

vr = 1(f,(f1, £2), (top, string)).

We regard that all the C-classes are abstract C-classes. We construct a. concept model
with:

e Algebraic C-classes, such as Integer, String, are given.

e Base C-classes are those obtained from facts.

e The rest of the C-classes are regarded as derived C-classes.

If we provide the instance mappings for a.11 the base C-classes according to ground facts, we

can get the datalog semantics as the least fised point of <-operator. If there is no negated
subgoal, ( is monotone increasing, because the restriction predicates are type 2. Thus ( has

the inductive limit as its fixed point. If we have stratification, we can get the least fixed point

of { by the algorithm described in Chapter 3 of [UL S88].

6.3 IQL Semantics

We show that our model can espress the semantics of Abiteboul and Kanellakis’ IQL-model.

In the following discussion, the meaning of notations is the same as theirs, unless it. is

explicitly mentioned. We have the sets of relation names R, class names P, attributes A. and

constants D, and object identities 0. A given schema (R, P, T) is converted by introducing

new class names P’ so that each type expressions appearing concerning T is depth 1. For cach

class name p in P U P’,

T(p)= Dp |[Avpr... os Aaa] {PD} (21VP2)| (p1A2),

where p’, p1, p2,..., pp are in P UP’.

For example, if we have type assignment,

T(person) = [name first:string. last:string], age:integer],
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we convert it as:

T (person) = [name:person_name, age:integer],

T( person-name) = [f irst:string, last:string].

Another example is that:

T( set-of rational) = {[den:integer, num :integer]}

will be converted to:

T(set-of -rational) = (rational),

T(rational) = [den:integer, numanteger.

Next we change the syntax of literals in Abiteboul-Kanerakis’ paper. © We convert each

literal expression t1(ty) to In(ta, t), where t; is of type {t2}. Furthermore, for a type assign-
ment 7 for variables in rules, we introduce new C-class names so that the value of 7 is always

a class name. For example, if we have a rule:

p([A1:X, A2Y]) — q(X). r(Y).

and type assignment for variables:

7(X) = [denznteger, num:integer], 7(Y) = integer,

we convert the type assignment by introducing a class name rationall and a new type assign-
ment :

r(X) = rational, r(Y) = integer,

T( rational) = [den:integer, num:integer].

Furthermore, for each type expression that appears in a rule, we assign a new class name,

which will be also included in P’. We introduce a new class pl

T(p1) = [Agr(X), Azr(Y)).

Finally, we convert the rule using new type assignment and class names. together with newly

introduced variables. For example, the above rule will be:

7(2) = p1, T(p1) = [Ar:7(X), A2:7(Y)].

We extended the syntax by interpreting Ay and A, as a function symbol.

After this conversion, we have:

e class names P U P’,

0 the estended type assignment T° for classes and 7’ for variables, (Note that we can assume

that each rule has the disjoint set of variables),

e new rules with only variables as the argument of relation symbols R U {In}.

Now, we create the C-classes according to an extended schema and modified rules in the

following way. First. we convert the schema into C-classes.
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1. T(p) = p'

We replace each class name p by p' in the schema expression and rules

2. T(p) = {»'}
We use set construction.

Tp = Set(p, vp):

3. T(p) = p1 V po

Te = Tm Vv Tp2-

4. T(p) = p1 A pa

Tp = Tp A Tpa

5. [A1p1y «+ vo - Aim]

We use recursive aggregation to define 7,’s.

Ydummy = (dummy, G,®), G = (V, FE),

Vi ={p € PUP |p appears in the aggregation expression.},

E={(p,p, A) | T(p) = [Aypr,.- Axps. ]

¢ is any set of symbols that has one to one correspondence with V'.

Nest we convert the rules into C-class by the same way as we convert datalog rules. The

only difference is that we may have a functional expression, such as A(X), as argument of
equality. We can convert such an expression naturally to a first order formula. In the above

example, the rule:

p(Z) — q(X),r(Y),A1(Z) = X,A2(Z) = Y.

would be converted into

Tp = Op, pL, (Fz4:q yr: Ar(self) = ql(z,) A Ao(self) = r1(y.))).

[or given IQL program I’( S, Si, Sout ), We convert the schema 5 and the rules in the above

wav and get C-classes. Then we define a concept model with

e The C-class vp for the constants D is the only algebraic C-class.

e The C-classes that correspond to the initial ground fact are base C-classes, as in the case

of datalog program.

e The remaining C-classes are derived C-classes.

Then the programs inflational fixed point will be provided by a fixed point of the <-operator.

Note that providing the instance of a schema in the IQL model is the same as providing a set

of ground facts.
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6.4 TRIS Semantics

In this section, we briefly show that most of the semantics of IRIS system [FS 89] can be
espressed by a concept model. We provide only a sketch of simulating the IRIS semantics by

the concept model.

Up to now, we assumed that the algebras that appear in the value-oriented model C-classes

are partial-valued algebras. In ordered to capture the semantics of IRIS system, we assume

that they are multi-valued algebras. We need no change in our theory, because we can replace

the partial functions in our discussion by multi-valued functions, because the multi-valued

functions and sets form a category as we suggested in Section 2.1.

We formalize the semantics of IRIS system without foreign functions. First we assign

algebraic C-classes to its literals, such as integers, strings. Second we assign base C-classes to

its objects. Finally, we describe the functions by first order sentences and add them to the

auxiliary sentences of C-classes. Then the object-oriented model of these C-classes provides the

semantics of IRIS system. Actually, the semantics is expressed exactly by the object-identity

space of the object-oriented model.

7 Future Work

There are several issues for future work.

e Schema Evolution

As suggested in Chapter 5, object-identity plays an essential role of schema maintenance.

It may provide the formal guideline for schema evolution. For example, when a new

concept (schema object) is added to schema, the existing concepts should be altered so

that base concepts will stay being abstract concepts.

eo Complex Values

We demonstrated that complex value has an inherent disadvantage concerning main-

tenance of consistency of a. knowledgebase, because it cannot incorporate with ob ject-

sharing. However, it has a strong advantage in providing structured data that a pro-

grammer can easily handle, as discussed in [LR 89]. Hence we should introduce the
formalism that can provide the structured data without sacrificing object-sharing. The

author presumes that it would be attained by introducing “local concept.” Namely, the

language provides the construct for defining concepts that are local to a concept. A

programmer can provide the access method to the local concepts so that the instance of

local concept and its attributes can be shared from outside. We should note that this

will bring no change in the semantics of object-identity. Any object-identity is inherently

global, because knowledge is global. The object-identity of a local concept is realized in

the “global” object-identity space, as well as that of global concept. The construct of the

local concepts will be introduced for programming convenience.

e Implementation of Concept Model

Recently, a prototype system of Concept, Model has implemented the model as a language.

The prototype system is written in 12,000 lines of Common Lisp code. The system checks

the integrity constraints automatically. The actual session performed on the prototvpe

system is shown in Appendix C.

There are several technical issues. such as tvpe checking consistency maintenance and

object-binding, which will be discussed in the nest. report.
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8 Conclusion

We have presented a formalism that expresses the clear semantics of object-identity and the

essential distinction of the value-oriented model and the object-oriented model. In order to

express the value-oriented semantics, we have introduced the notion of data algebras. The

semantics of object-oriented model is expressed by the combination of the object-identity

representa tion and the value-orieuted representation.

Moreover, the formalism has incorporated the logical database model into the ob ject-

oriented model by expressirg logical relations as classes.

We should emphasize that our model provides the full-advantage of object-sharing using

object-identities, when it is applied to a practical system. Yet, it also provides the structured

algebraic semantics.

The concept model based on the formalism has been proposed, which provides the formal

guidelines on knowledgebase design. The concept model is an attempt to represent the existing

objects in the real norld as faithfully as possible. Namely, the instances of base C-classes

are strictly corresponding to the esisting objects. Then the abstraction of those objects is

expressed by derived C-classes. The model provides a way of expressing and maintaining the

integrity constraints casilv.
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A Database Operation

So far, we have discussed the schema representation of database. In this chapter, we will

describe the database operations, query and update.

A.1 Query

The semantics of query is simple for the concept model M,

M = ((A,B.D)=X).

A query is basically to get instance mapping of a concept v in A U5 UD. We take the minimal

closed set I" of concepts that contains + in the union of A, 5 and DP. Then we obtain a fixed

point of ( operator for I". As discussed in the previous chapter, for a certain concept, there

may not exist the fixed point.

A.2 Update

The update is to modify the object-model of concepts, i.e., to modify the instance mappings.

We assume that the value-oriented model and object-identity space are fixed. Further, we

assume that anv update is obtained by composing the following three operations.

A.2.1 Insertion

Basically, the insertion can be done to base concepts. Or when we insert an instance to a

derived concept, it should be transformed to the insertion of a base concept. Thus we cannot

insert to a. derived concept obtained by the constructive aggregation. On the other hand, we

can insert an instance to a concept derived by the restriction operator. If we allow “null-valued”

attributes, we can insert an instance to a concept derived by the abstraction operator.

The procedure for insertion is as follows.

(‘reate a new object-identity, say w.

2. Register the values of attributes, say ®, of w. More specifically, modify the interpretation

o(f)s of fin ®. If the value(object-identity) doesn’t exist, we create and insert it

recursively.

3. Check the integrity constraints. If the constraints are not satisfied, then undo the oper-

al ion. (Signal error.)

A.2.2 Deletion

Theoretically, we don’t allow the deletion of object-identity, because object-identity is some-

thing that expresses the real existing object. For example, even if a person dies, the fact of

the existence of the person cannot be eliminated from our knowledge. However, in a practical

system, we may eliminate the object-identity if the object-identity is no longer referred to by

the objects of our interest. This operation is performed by a kind of garbage collection.
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A.2.3 Modification

When we modify an attribute value of an instance w, we change the interpretation of the

function symbol, say f, that corresponds to the attribute. More specifically, we change the

value of o(f)(w). The modification should be compatible with the value-oriented model. If

the object-identity for the new value of of f)(w)is not in the knowledge base, we create a new
object-identity with the same procedure for insertion.

A.2.4 View Update

Since we have a homogeneous representation of concepts, we can update the knowledgebase

through derived concepts, whenever it is possible. More precisely, if we can specify a unique

object-identity(instance) to be deleted or modified, then we can delete the instance or modify

the attribute value of the instance. When we insert an object through view concept, if we can

verify the object doesn’t exist as an instance of base concept, we can convert the insertion

operation to the insertion of the object-identity to a base concept.

To summarize, if the update can be mapped to a. unique update at base concept level,

then it can be performed. There is a typical case when update through derived concept can

be done safely. If a derived concept is derived from A and B only through abstractions and
restrictions, then the deletion and modification can be mapped to a unique update of the base

concept, because the induced instance mapping of the concept derived by abstraction and

restriction has a smaller domain than that of instance mapping of the base concept.

B Methods, Overloading, Encapsulation

The methods and encapsulation can be formalized simply by using functions with subtype

matching. We should note that we don’t distinguish the type and class in our model. A C-

class plays the role of type. In other words, each type will be assigned to only one class. Since

we have C-class hierarchy, there is no semantic reduction even without the distinction of class

and type. In this chapter, we use the term type instead of (-class, when we use a C-class as

type.

B.1 Method by Function

All methods are defined as a function with strong tvpe checking. A method of a C-class vy is

defined by a binary function. One argument type for the function is +, the other is the type for

the message. Note that we allow a. multiple function definition in the following sense. For each

function name, we can have the multiple definition, so long as the tuple of the argument types

of the function is different. The tuples of the argument types are ordered by the product order

derived from the C-class hierarchy. Hence, the compiler will try to pick up the most specific

function definition according to the argument types. For example, if we have the espression

(fay...apn)

13 we pick up the function definition of f with the minimal type tuple that matches the types

of (21... 2, ). We require the minimal type t uple to be unique. In a. practical system, if there
exists more than one minimal type tuple, then the compiler will signal an error.

!3\Ve use a lisp-like notation of function.
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B.2 Overloading

The overloading of methods is naturally attained, because the most specific function definition

is taken for a particular pair of type and message.

B.3 Encapsulation by Subtype Matching

The encapsulation is realized by the C-class hierarchy. Let us assume that C-class vy; is a. super

class of =j,.

X72, Yi=(ng, ®, vu, Ty, Af, Ry) (1 =1,2)

The attributes that are proper for 7; cannot be accessed from 7,. In other words, the argument

to the function in ®; — @, should be an instance of a subclass of y;. Note that we include a
C-class itself to its subclass.

By type casting, we can easily provide a way to define a method of ~y, that can access the

attributes proper to vj. For example, let (x . -) be the type casting function. If a variable z
has a type 73, and <; is the subtype of v,, then (x 7; x) has type ;. Then we can define a
function like in the following example.

(defunction funl (x : v2, m: 7p)

(f (x v1 x))...),
where f is the function with argument type =.

B.4 Application to Database Security

The encapsulation can be used for database security. In this section, we describe the rough

sketch of the idea.. First a user is provided with a set of C-classes that he/she can access.

More specifically, the type names that the user can use for the type declaration is restricted in

the access language. So, we could say that each user has the different access language. Let us

denote the set of accessible types for a user u by d(u). We call it access domain. The restriction

of accessible C-classes is used as follows, for example. When we want to restrict a user to access

only instances of a C-class that satisfy a certain condition, it can be easily realized by allowing

the user to access only to the C-class derived from the C-class by a restriction operator.

A user who can access only some higher level of types is not able to access the attributes

proper to the subtypes of them without a type casting function. Hence, we can impose a.

protection by restricting the use of the type casting function. The protection mechanism is

quite simple. A user is provided with a set of types that can be used as the destination type of

type casting function. In the above example, each user has the restriction for the first argument

of (x--). Let ‘P(u) be the set of types that a user « is allowed to use in type casting function.

The set 7?( u) is called the access range of a user u. Let us call u a supervising user of type ~v if

P(u) contains 7 . If a. user © needs a method that should access the attributes of a. type that

are not in the access range nor in the access domain, u should ask a supervising user of the

type for defining the function. Then the defined function is shipped to wu. Each user wu. has the

set of given functions F(u) that he/she can use other than functions of his/her own definition.

The shipped function is added to F( wu). Therefore, the protect ion is completely characterized

by the triplet (A( u), P(u)., F(u)) of access domain, access range and given functions. We call

it access privilege. Furthermore, we could introduce a relevant order to designate the strength
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of access privilege. Let us denote the set of all access privileges by P. Let «, J be in P.

Qt — (Aas Pay Fo), 8 = (Aas Ps, Fa).

The access privilege ck is stronger than 3, if

Ax 2 Ag and Py 2 Pg and F, 2 Fz.

Moreover, we can estend the notion of access privilege by assigning protection with each

of database operations, such as read and write, insert and delete. Let C be the categories of

operations. The extended access privilege II is the collection of mapping from C to P.

We can manage the access of user by II together with the access hierarchy provided by the

partial order of access privileges.

For example, it is natural to require that write protection is tighter than read protection.

Then, it 1s expressed by:

Vf elT, f( ‘write') < f( ‘rend’).

We can also introduce the order in II. For f, g in II, ¢ has stronger access power than f if

Ye € C,f(c) = gle).

Then users can be organized by II with this order. For example, a manager would have
stronger access power than his staff members with this order.

C ADL Sample Session

As we mentioned earlier, the implementation of the formalism in this report is in progress. It

is realized as a data description language called ADL(Algebraic Data Language). Currently,
the system is made of 12,000 lines of Common Lisp Code. It has the following features.

1. CLOS-like Functional Language

It has CLOS-like functional language with strong type checking for hierarchical types,

i.e., it allows subtypes. We can attach a restriction predicate to each class to express the

integrity constraints.

2. Lazy Evaluation of Object-binding

The binding of instances to each class will be delayed until necessary. Moreover, the

update of instances are performed according to the local logs of classes. The dependency

of classes, such as “what update of which class will affects which class” is checked at

compile time. Since the object-binding is done according to the local update logs, the

update cost is smaller and we can perform a necessary optimization according to the

sequences of updates recorded in the logs.

3. Incremental Class and Function Definition

Yew schema objects(C-classes) and functions on C-classes can be added after instances
are bound to classes. If the new classes contradict the instances of base C-classes, all

the further transactions may be rejected as inconsistent. The contradicting instances of

derived C-classes will be automatically fised when the object-binding for the classes is

performed.
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The current version of the language is quite tentative and will be subjected to many changes
in the future.

There are built in classes and functions. For classes, we have ‘top’, ’bool’,’number’,’string’,
'sequence’,’bag’, ‘set’, etc. For functions, we have:

plus : number X number — number ; (add numbers)
minus . number Xx n umber — number ; (subtract a number from a. number)

length ; string — number ; (string length)
substring? : string X string — bool  : (lst arg. is a substring of 2nd arg.?)
++, ete.

The following is the actual session performed on this system. The lines preceded by 7;;” are
the comments, which were added afterwards. The highlights are in the second half of the
session, where the automatic integrity constraints checking, incremental class definition and

object-binding are demonstrated.

ADL[0]> (lisp (reset-kb!))

'; Clear all instances and initialize transaction management

;; routine.

rest-kb

ADL[0]> (defconcept person (base entity) (isa top)

((name string) (address location) (age number) (phone string)
(occupation string) (salary number))

(res (and (gt (age self) 0) (lt (age self) 200 Y))

ADL[Q0]> (defconcept location (base entity) (isa top)

((state string) (city string) (street string) (number string)

(apartment string) (apartment-number string))

(res true))

ADL[0]> (defconcept student (derived entity) (isa person) ()

(res (equal (occupation self) "student")))

ADL[0]> (defconcept professor (derived entity) (isa person) ()

(res (equal (occupation self) "professor")))

:; We have defined four new C-classes: person, location, student,

> and professor.

ADL[0]> (compile)

; recompile the classes and functions.

;; First, we demonstrate a nested transaction and object sharing.

ADL[0]> (begin-transaction)[1]

,/ begin the transaction.

+ The system supports nested transactions.

; ; The number in the prompt "ADL[#]>'" shows the nesting depth.
ADL{1]> (insert (person (name "John")
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(address (location (state "CA")

(city "Palo Alto")

(street "Yale")

(number "2260")))

(age 20)
(salary 40000)))

ADL[1]> (set john (find person (equal (name self) "John")))

;; Any instance can be bound to a global variable.

; ; Note that we don't have to specify the all of the attribute

,; values, because an attribute is treated as a partial function.

ADL[1]> (insert (person (name "Mary")

(address (location (state "NY")

(city "New York")

(street "West")

(number "47")))

(age 18)
(salary 50000)))

ADL[1]> (set mary (find person (equal (age self) 18)))

ADL[1]> (end-transaction)

transaction[1] successfully terminated

ADL[0]> (begin-transaction)[2]

ADL[1]> (modify mary age 25)

ADL[1]> (begin-transaction)[3]

ADL[2]> (begin-transaction)[4]

ADL[3]> (modify mary age 21)

;; We modified Mary's age in the deepest level of the
;; transactions.

ADL[3]> (end-transaction)

transaction[4] successfully terminated

ADL[2]> (output mary)

,; We show that Mary's age is actually modified.

[person]:

salary —-> [number] :50000

age -> [number]:21
address ->

[locationl:

number -> [string] :"47"

street -> [string]:'West"
city => [string] :'"'New York"

state => [string] :"NY"

name -> [string] :'"Mary"



page 53

ADL[2]> (modify mary address (address john))

;+ Mary's address becomes the same as John's address
33 Tha object 1s shared.

ADL[2]> (output person)

;; Now, both persons have the same address.

Instances [person]: ::

[person]:

salary => [number] :50000

age —> [number]:21
address ->

[location]:

number -> [string]:"2260"
street => [string] :"Yale"

city => [string] :"Palo Alto"

state -> [string] :'"CA"

name -> [string] :'Mary"

[person]:

salary => [number] :40000

age -> [number] :20
address ->

[location]:

number-> [string]:'"2260"
street => [string] :"Yale"

city => [string]:"PaloAlto"
state => [string] :"CA"

name -> [string] :''John"

ADL[2]> (modify (address mary) city "Stanford")

+ We change the city of Mary's address to "Stanford".

,, Since the location object is shared, this change is
; 3 aukematically propagated to John's address.

ADL{2]> (output person)

; 3 The change is actually propagated.

Instances [person]: ::

[person]:

salary => [number] :50000

age —-> [number] :21
address =>

[location]:

number -> [string]:''2260"
street -> [string]: "Yale"
city => [string] :"Stanford"

state -> [string] :"CA"

name -> [string] :"Mary"

[person]:

salary => [number] :40000

age —> [number] :20
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address =>

[location]:

number => [string] :'2260"

street => [string] :"Yale"

city => [string] :"Stanford"

state => [string] :"CA"

name -> [string]:" John"

ADL[2]> (modify john age 300)

:; This change contradicts the integrity constraints that

*+ a person's age should be greater than 0 and less than 200.

ADL[2]> (end-transaction)

transaction[3] aborted

;; The transaction in level 2 1s rejected.

+ Since the modification of the addresses of John and Mary

'; are performed in level 2, it is thrown away.
ADL[1]>

(modify john age 30)

++ Just one more change in level 1.

ADL[1]> (end-transaction)

transaction{2] successfully terminated

‘+ The only changes performed in level 1 have been accepted.

ADL[{O0]> (output person)

; © We show what has been changed.

Instances [person]I::

[person]:

salary => [number] :50000

age => [number] :25
address =>

[location]:

number -> [string]:"47"
street -> [string] :'"West"

city => [string]:"'New York"

state => [string] :"NY"

name —> [string] :"Mary"

[person]:

salary => [number] :40000

age -> [number] :30
address ~>

[location]:

number => [string] :'2260"

street => [string] :"Yale"

city => [string] :"Palo Alto"

state -> [string] :'"CA"

name —-> [string] :"John"

,, Only Mary and John's ages have been changed.

;; Next we demonstrate the automatic object-binding.

ADL[0]> (output student)
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Instances [student]: ::

;» No instances are bound to 'student'.

ADL[0]> (begin-transaction)[5]

ADL[1]l> (modify john occupation "student")

;; John becomes a 'student'.

ADL[1]> (end-transaction)

transaction[5] successfully terminated

ADL[0]> (output student)

++ Now, John 1s bound to 'student' as an instance.

Instances[student]:::

[student]:

salary => [number] :40000

occupation => [string] :'"student"

age -> [number]:30
address =>

[location]:

number -> [string] :'"2260"

street -> [string]:"Yale"
city => [string] :"Palo Alto"

state => [string] :"CA"

name => [string] :"John"

ADL[0]> (begin~transaction)[6]

ADL[1]> (modify john occupation "professor")

; ; John becomes a 'professor'. He 1s no longer a 'student'.

ADL[1]> (end-transaction)

transaction([6] successfully terminated

ADL[0]> (output student)

Instances [student]: ::

+» He 1s no longer bound to 'student'.

ADL[0]l> (output professor)

; ; Now he has been moved from 'student' to 'professor'.

Instances [professor]: ::

[professor]:

salary => [number] :40000

occupation -> [string]: "professor"
age -> [number] :30
address ->

[location]:

number-> [string]:'2260"
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street => [string]:"Yale"
city => [string] :"Palo Alto"

state -> [string] :"CA"

name => [string] :'"John"

; ; Next demonstration shows the integrity constraints involving several

;; C—classes.

ADL[0]> (defconcept I-am-the-richest (base entity) (isa top)

((name string) (salary number))

(res (forall ((x person)) (gt (salary self) (salary x)))))

;; First, we define a new C-class, which claims that

;; 1t 1s richer than any 'person'.

ADL[0]> (compile)

'; Incrementally compile the schema.

ADL[0]> (begin-transaction)[7]

ADL[1]> (insert (I-am-the-richest (name "tyrant") (salary 10000)))

ADL[1]> (end-transaction)

transaction{7] aborted

;; Since there is already a 'person' whose 'salary' is

;; more than 10000, the transaction is rejected.

ADL[0]> (begin-transaction)[8]

ADL[1]> (insert (I-am-the-richest (name "tyrant") (salary 100000)))

ADL[1]> (end-transaction)

transaction[8] successfully terminated

*; No 'person' earns more than 100000. So, this transaction

;; 1s accepted.

ADL[0]> (begin-transaction)[9]
> Now, we try to insert a 'person' whose salary 1s

;; More than "tyrant."

ADL[1]> (insert (person (name "richman") (age 45) (salary 110000)))

ADL{1]> (end-transaction)

transaction[9] aborted

; 3 Although, "richman" satisfies the local constraint on

;, the age, this transaction 1s rejected, because "tyrant"

:; doesn't allow a richer 'person' than him.

,; We can use any first order formula to express the integrity constraints.

,; The following example demonstrates the use of quantified first order formulas.

*, Since the schema objects can be incrementally defined, we can express

;; complicated query by a schema definition.
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ADL[0]> (defconcept oldest-person (derived entity) (isa person) nil

(res (forall ((x person)) (ge (age self) (age x)))))

ADL[0]> (defconcept the-oldest-person (derived entity) (isa person) nil

(res (forall ((x person))

(1f (not (equal self x)) (gt (age self) (age x))))))

+ Two classes are added. The class 'the-oldest-person'

+ should be a person who 1s really older than any one else.
ADL[0]> (compile)

ADL[0]> (output oldest-person)

++ Both 'oldest-person' and 'the-oldest-person' has an

;; lnstance, because there is only one person with the

i QAldast age.

Instances [oldest-person]:::

[oldest-person]:

salary -> [number] :40000

occupation -> [string] :"professor"
age => [number] :30
address ->

[location]:

number -> [string] :'"2260"

street => [string] :'"Yale"

city -> [string] :'"Palo Alto"

state -> [string] :"CA"

name —-> [string] :'"John"

ADL[0]> (output the-oldest-person)

Instances [the-oldest-person]:::

[the-oldest-person]:

salary => [number] :40000

occupation -> [string] :"professor"

age -> [number] :30
address ->

[location]:

number -> [string] :'"2260"

street => [string] :"Yale"

city => [string] :"Palo Alto"

state => [string] :"CA"

name -> [string]:"John"

ADL[0]> (begin-transaction)[10]
:: Now, we add one more 'person' whose age 1s the oldest.

ADL{1]> (insert (person (name "Kate") (age 30) (salary 45000)))

ADL[1]> (end-transaction)

transaction[10] successfully terminated

;; Now, there are two persons with the oldest age 30.
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ADL[0]> (output oldest-person)

,; S50, 'oldest-person' has two instances.

InstancesColdest-person]:::

[oldest-person]:

salary -> [number] :40000

occupation -> [string] :"professor"
age -> [number] :30
address ->

[location]:

number -> [string] :'"2260"
street -> [string] :"Yale"

city => [string] :'" Palo Alto"

state => [string] :"CA"

name -> [string] :"John"

[oldest-person]:

salary -> [number] :45000

age -> [number] :30

name -> [string]l:"Kate"

ADL[0]> (output the-oldest-person)

Instances[the-oldest-person]:::

;; But 'the-oldest-person' has no instances, because
; ; there 1s no person who is strictly older than anyone else.

ADL [0] >
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