February 1990 Report No. STAN-CS-90-1304

A Model of Object-Identities and Values

by

Toshiyuki Matsushima and Gio Wiederhold

Department of Computer Science

Stanford University
Stanford, California 94305

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No.(0704-0188

1 a REPORT SECURITY CLASSIFICATION

1 b RESIRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

2b DECLASSFACATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION /AVAILABILITY OF REPORT

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION
Stanford University

6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

5c. ADDRESS (City, Sate, and ZIP Code)

Department of Computer Science
Stanford, CA 94305

7b ADDRESS (City, Sate, and ZIP Code)

8a NAME OF FUNDING / SPONSORING
ORGANIZATION
DARPA

8b OFFICE SYMBOL g PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

(If applicable)

N00039-84-C-0211

8¢ ADDRESS (City, Sate, and ZIP Code)
Arlington, VA

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

PROJECT
NO

TASK
NO

WORK UNIT
ACCESSION NO

1 1 TITLE (include Security Classification)

A Model of Object Identities and Values

12 PERSONAL AUTHOR(S
Matgushima Toshiyuki

13a TYPE OF REPORT 3 TME COVERES
Research FROM 198870 1990

14 DATE OF REPORT (Year, Month, Day)
February 1990

15. PAGE COUNT

16 SUPPLEMENTARY NOTATION

17 COSATI CODES

FIELD GROUP SUB-GROUP

18 SUBJECT TERM S (Continue on reverse if necessary and identify by block number)

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

semantics.

The other is

An algebraic formalization of the object-oriented data model is proposed.
The formalism reveals that the semantics of the object-oriented model
consists of two portions. One is expressed by an algebraic construct,
which has essentially a value-oriented
expressed by object-identities, which characterize the essential difference of
the object-oriented model and value-oriented models, such as the relational
model and the logical database model. These two portions are integrated by a
simple commutativity of modeling functions.
The formalism includes the expression of integrity constraints in its
construct, which provides the natural integration of the logical database
model and the object-oriented database model.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

[J UNCLASSIFIED/UNUMITED [SAME AS RPT] DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

22a NAME OF RESPONSIBLE INDIVIDUAL

22b TELEPHONE (Include Area Code) zrc OFFICE SYMBOL

DD Form 1473, JUN 86

Previous editions are obsolete.

S/N 0102-LF-014-6603

SECURITY CLASSACATION OF THIS PAGE

A Model of Object-Identities and Values

Toshiyuki Matsushima, Gio Wiederhold

February 23, 1990

Abstract

In this report, a formalization of the object-oriented data model is proposed, which inte-
grates value-oriented models and object-oriented models by providing a simple semantics of
object-identity.

The formalism reveals that the semantics of the object-oriented model consists of two
portions. One is expressed by an algebraic construct, which has essentially a value-oriented se-
mantics. The other is expressed by object-identities, which characterize the essential difference
of the object-oriented model from value-oriented models, such as the relational model and the
logical database model. The value-oriented portion represents the abstraction of the real world
objects, while the object-oriented portion represents the existence of the real world objects.
These two portions are integrated by a simple commutative diagram of modeling functions.

The formalism includes the expression of integrity constraints in its construct of classes.
which provides the natural integration of the logical database model and the object-oriented
database model. More specifically, we will show that a datalog program can be expressed as a
collection of classes in our model.

As an application of the formalism, formal guidelines on database design are also discussed.

page 2

Contents
1 Introduction 4
1.1 Formalization of Object-identity 4
1.2 Integrity Constraints - . . . « « « « o v v vttt T
1.3 OUutline - - - ¢ o« v v e S
2 Data Algebras 8
2.1 Multi-valued Universal Algebra. 9
2.2 Definition of Data Algebra 10
2.3 Fundamental Operators v v v v v vttt 11
2.3.1 -Aggregation L. [
2.3.2 Recursive Aggregationo 11
2.3.3 ADSLFACtION -« « « « « v v e e e e e e e e e e e e e e e e e e e 12
2.3.4 RESIriCtION -« « « ¢« v v e e e e e e e e e e e e e e 13
2.3.5 Sequence CONSLrUCHON - - « « « v o v v v v et 13
2.3.6 Bag Construction 13
2.3.7 Set ConStrUCHON - « « « « « v v v e et e e e e e L4
2.3.S Categorization L
2.4 Many-Sorted Data A]gebra 15
2.5 Generated Data Algebra. - - - « -« « « Lo 15
2.6 Named Data Algebra . - - - -« « . .. 16
2.7 Hierarchy of Data Algebras - - - - - - .« . . o oo 16
3 C-Classes 17
3.1 C-Class ConstruCt - - « = « o o v b i b i e e e e e e e e e e e e e e e e e e e 18
3.1.1 Definition 0of C-ClasSEs - « « « « « « &« vt v v vt e e et e e e 18
3.1.2 Examples of C-classes - - - - « « -+« o oo oo 18
3.1.3 Primitive C-ClasSes « = « « « ¢ o e v vt v et e e 20
3.2 Universal Language - - - - « - -+« « o o oo oo 20
3.2.1 Universal Renaming . - - - -« .« o oo 20
3.2.2 Local Renaming - - -« « « « o v vttt 21
3.2.3 Lxistence of Universal Language - - - - -« -« « - oo 22
3.3 Fundamental Operator on C-Classes - - - « -« oo 22
3.3.1 Aggregation - - - - - . ..o 22
3.3.2 Recursive Aggregation - - - - « « .« . ..o 23
3.3.3 ADSITACEION « « = « « ¢ v v e e e e e e e e e 24
3.3.4 ReStriCtion - « « « « v v v v v b e e e e e e e e e e e e e e e e e e e 25
3.3.5 Set CONStruCtion - « « « « ¢ o e v e bt et e e e e e e e e .
3.3.6 Categorization . . - L L o 25
3.3.7 Generated C-ClasSES - « « « = = o v o ettt e e e e e e e e e 26
3.4 Hierarchy of C-Classes - - - - - -« o o o v v i v e 26
3.5 Conceptual Order and Fundamental Operators - - 27

3.6 Generalization and Specialization - - - - - - .« . ..o 28

page 3

4 Models and Instances 29
4.1 Value-Oriented Model of C-Classes - - - . . « .« o o v vt v it oo 30
4.2 Object-Oriented Model of C-Classes - - .« . .« oo v oot 30
4.3 Induced Mapping on INStances - - - « « « v v o v e 32

5 Database Design 36
5.1 Entity C-Classes and Abstract C-Classes . - . - .« .« ..« oo oL 36
5.2 The Concept Model« o oo 38

5.2.1 Design Process o oo 38
5.2.2 The Concept Model and Its Semantics - 40
5.2.3 Two Kinds of Predicates - . . - « v« v v v v i i i e e e e 41

6 Expressibility of Concept Model 43
6.1 Relational Model SemantiCsS - « « « v v« v v e v e e e e e e e e e 43
6.2 Datalog Semantics - -o 44
6.3 IQL Semantics - - -« « « o« « oo e 47
G.4 IRIS SemantiCS - - « « « « v v v v i i e 50

7 Future Work 50

8 Conclusion 51

A Database Operation 52
Al QUETY + - ¢ v o e 52
A2 Update .. 52

A.2.1 INSErtion - « - « « ¢ v v v e 52
A.2.2 Deletion - - - - o o e 52
A.2.3 Modification . . .« « « o o o e 53
A2.4 View Update« . oo o 53

B Methods, Overloading, Encapsulation 53
B.l Method by Function - - « - « v+« v vt i 53
B.2 Overloading 54
B.3 Encapsulation by Subtype Matching - « « - - -« - o oo 54
B.4 Application to Database Security - - - - - - -« - oo 54

C ADL Sample Session 55

page 4

1 Introduction

In recent years, many attempts have been made to formalize the semantics of the object-
oriented model. As the result of these efforts, several models have been proposed [AK 89,
[LR 89], [KW 89],(CW 89]. Roughly speaking, these models are logical database models with
typed variables. Their approach is to incorporate a structured knowledge representation, such
as complex objects, object-hierarchy, into a logical representation paradigm. However, the
semantics of object-identity is not captured in these models. Although [AK 89| formalize
object-identity in their model, the semantics remains complicated. Basically, what they have
done is to “push” object-identity into a value-oriented framework consisting of logic and types.
However, as discussed later, the notion of object-identity is something that will never fit into
the value-oriented paradigm.

In this report, a formal semantics of an object-oriented model is proposed, which approaches
the issue from the opposite direction. We try to incorporate a. logical knowledge representation
into a structured knowledge representation paradigm. We will show that our approach pro-
vides a natural formalization of object-identity and a simple integration of the object-oriented
paradigm and the value-oriented paradigm.

This report has two main objectives. One is to provide simple and elegant semantics of
object-identity, which integrates value-oriented models and object-oriented models. The other
is to extend the formalization of objects so that the integrity constraints are included.

1.1 Formalization of Object-identity

In this section, we first provide an overview of the origin and the role of object-identity in
knowledge representation, using the discussions in the literature listed above. Then, we provide
an outline of our formalization of object-identity.

The semantics of object-identity is obtained by considering a basic aspect of a knowledge
representation. Namely, any knowledge representation is only an approximation of the real
world knowledge. The existence of objects in the real world cannot be captured by the values
of expressions. We consider an example. Let us assume that a concept ‘person’ is expressed
by name and address according to the following schema in the sense of [AK 89].

Location = [city:String, street:String, number:Integer],

Person = [name:[f irst:String, last:String], address:Location].

In most cases, we can completely identify each individual person by providing the name and
address. However, there is a possibility that two distinct persons with the same name are
living at the same‘ place. The occurrence of these persons cannot be characterized by the
values of attribut’es ‘name’ and ‘address’. We can come up with two relevant solutions for
this problem. One is to provide more attributes for expressing the concept ‘person’. However,
the real attributes of a person are almost infinite in number. So, even if we introduce many
attributes for ‘person’, we cannot eliminate the possibility that some distinct persons are
expressed by the same set of attribute values. The other solution is to provide a key attribute
to express the uniqueness of each individual person. However, this does not provide a natural
way of expressing the real world, because it is an artificial attribute. We cannot avoid the
unnecessary semantics of the key attribute. For example, a. ‘social-security-number’ may be

'We use the notation explained in [AK 89] for the moment..

page

implemented as either an integer or a string consisting of digit characters. In order to define
the equality of objects, we have to define it as equality of integer, or equality of string according
to the “implementation.” Further, we have to express the maintenance of the key attribute
explicitly in the higher level semantics. For example, “Once an instance is created, the key
attribute should not be altered”, “there should not be more than one instance whose key
attributes are identical.” Since the semantics of “real existence of objects,” is just that of a. set
with the equality relation, it is not desirable that the semantics of the implementation appears
in higher level semantics.

The problem is essentially due to the inherent incompleteness of our representation. There-
fore, rather t han expressing the uniqueness of an occurrence in the real world by at t ribute val-
ues, we need souething that specifies the existence of occurrence. The oh ject-identi ty serves
this role. It is important that an object-identity is not a value. Instead, it is an entry point
for information access in our knowledge. In other words, it is the reference to knowledgebase.
Hence, as discussed in [LR 89], it provides the basis for object sharing, which is the most
important advantage of introducing object-identities in a practical system.

Let us come back to the previous example. Suppose that a person named “John Ford”
lives at “2260 Yale Street Pa.10 Alto”. Moreover, suppose that a person named “Mary Carter”
lives with him. These facts are cspressed by:

‘P00 = [namefirst:“John” last:“ Ford),address:'L010),

“P002" = [name first:“Mary”, last:*Carter”], address: L010'],
‘L010" = [city:“PaloAlto”, street:“Y ale” , number:2260].

What happens if the name of rhe street where John lives is changed from “Yale” to “Harvard”?
Since John lives at the location ‘L010’, the expression of the location becomes:

‘L0110’ = [city:* PaloAlto”, street:“H arvard”, number:2260].

Hence, after the change, we can say that both John and Mary are living on Harvard Street.
The point is that ‘L0O10° corresponds to the existing location on earth, and John and Mary’s
address is expressed by referring to 'L0O10°. Thus, when its street name has been changed, the
change is propagated properly.

So far, we have seen the origin of object-identity and the role of object-identity in the
knowledge representation. To summarize:

e The object-identity corresponds to the real existence of objects in the real world, which
cannot be captured by the the value of expression.

o The object-identity provides the basis of object-sharing. An object-identity is the refer-
ence to represented knowledge. which is exactly what is to be shared.

Next we claim that in order to take full advantage of object-sharing, attribute values of an
object should be object-identities.

[AK 89], [CW 89] allow complex values? as the values of attributes. It provides us the
complicated expression of objects. Namely, in the above example, [first:“John”, last:*Ford"]
is a. complex(structured) value. However, this approach has a disadvantage. If we allow
complex values, there is an inherent possibility that the subexpression of a complex value

2We use the term “complex value” instead of “complex object,“. They don’t carry object-identity.

page 6

would be changed. Since a substructure of a value cannot be shared. it will cause costly
update maintenance. Of course, the schema is designed so that the attribute value of ‘name’
is really a value and not sharable, because it is quite natural to express a person’s name as a
value. However, even in this case, we can show an example that demonstrates the necessity of
sharing objects.

Let us consider an additiona. concept, ‘BusinessCard’.

BusinessCard =[company:String, title:String, name:(f irst:String,last:String)
Assume that John’s business card is expressed by:
‘BO11" = [company:“C D B, title:“salesman™, name:[first:*John™, last:“Ford"]|

What happens if John marries Mary and changes his last name to “Carter”? We have to create
a new value:

[first:“John” last:“Carter”],

and replace
[first:“John”, last:“ Ford”).

The creation of the new value will be costly when the structure is large. Furthermore, we have
to replace ‘name’ of both ‘P001’ and ‘B0O11".

If there is no need for the object-sharing, the comples value would be reasonable. However,
if we have more than one concept that shares a same value, as in above example, we should
incorporate with object-sharing. Thus, in this case, the following schema will be preferable.

Name = [first:String, last:String],

Person = [name:Name, address:Location],
BusinessCard = [company:String, title:String, name:N ame].

The point is that every attribute should refer to an object with object-identity. Therefore,
it is not desirable to design such a schema as the original ‘Person’ with complex-value [first:
String, last:String] as attribute value. The schema must be changed dramatically when we
add a new schema object like ‘BusinessCard’.

In order to demonstrate the idea. more clearly, we repeat the discussion with the following
schema. In this case, the attribute is not a comples value, but just a value.

Person, = [name:String, employer:String]
BusinessCard = [company:String, name:String).
The information about John will be expressed by:
‘P001" = [name:"JohnFord”,employer:“C' DB”]

‘BO11" = [company:“C DB”, title:*salesman”, name:“.John Ford”)

If he changes his company from “CDB” to “HAL". we have to change the employer of *P001"
and the company of ‘B011’. Therefore, rather than having value-attribute, we should have
only attribute referring the ohject-identity of other objects. Namely,

‘P001" = [name: NO12'. employer: E000],

page 1

‘B011" = [company: EO00', titler S111', name: N012].

‘N012’ can be associated with a string value “CDB” or “HAL”

To summarize, in order to make use of object-sharing fully, it is preferable that a schema
object doesn’t have ‘value’ as an attribute value®. Instead, attribute value should be an object-
identity referring to another object instance. In particular, it is not desirable to have complex
values as attribute values.

Moreover, since the attribute names, such as ‘name’,‘'employer’, can be regarded as access
functions, we get the following flat representation.

name("P001") = N012'. employer(‘P001") = £000’,

company(‘BO11’) = ‘000, title('B011") = “S111', name(‘B0O11") = ‘P00L".

Thus the information about John is expressed by the partial functions from object-identities to
object-identities. We call this represent ation space object-identity space, which will be precisely
formalized in Section 4.2. The semantics of this representation is quite simple.

However, the above representation does not have an important feature of object-oriented
representation. That is rhe explicit structural representation of knowledge. One of the big
advantages of frame or complex object in knowledge representation is that they provide the
structure of knowledge that we can easily imagine and manage. Of course, we can espress the
semantics of complex-object in first order logic by some transformation [CW 89]. However, if
we express it in first order sentences or formulas, the structure is concealed in the semantics of
sentences. Hence we have to interpret the first order sentences to get the structure. Therefore,
we should integrate the object-identity space with a structured complex-value representation.
In Chapter 4, we have a simple and elegant formalization that integrates them. The outline
of the integration is as follows. First, we provide the syntactical construct of schema objects.
Next, we provide the value-oriented model, i.e. an algebraic model with (complex) values.
Then we provide the model expressed by the object-identity space. Finally, we provide the
mapping that combines object-identity space and algebraic representation of complex-values.
The compatibility of object-identity space representa tion and algebraic representation is ex-
pressed by a simple commutative diagram.

1.2 Integrity Constraints

In the conventional approach as [AK 89], [KW 89]. schema objects are defined with the struc-
ture expressed by types. Then logical formulas are constructed on top of the objects (Rules in
[AK 89], O-formulas in [KW 89]).

In our model, each schema object, called C-class, consists of type and a restriction pred-
icate. The type expresses the structure of knowledge representation, which will be referred
to as a comples object, a hierarchy of objects in conventional object-oriented models. The
restriction predicate will espress the integrity constraint of the representation. Let us consider
“absolute temperature,” as a. simple example. It can be expressed by the positive real numbers.
The structure will be realized by the algebra R with operations +, —, * etc. The integrity
constraints will be expressed by the predicate R(xz) = (x > 0) expressing “positiveness.”

By including the integrity constraints as the basic component of each object, we can show
that every unit. of knowledge can be expressed by objects. Even a logical formula can be

FThe term “attribute value” is not a nice terminology. Maybe it should be “accessed attribute.”

page S

expressed by an object. In the conventional approach, a logical formula(ground fact) is a value
in the sense that if every substructure of two logical formulas are the same, then those logical
formulas are the same. However, as discussed in Chapter 5, even a logical formula cannot
be treated as a value, due to the inherent incompleteness of our knowledge representation.
Rather, it should be expressed by an object that carries a unique object-identity.

If we express knowledge by objects, we can provide a representation Of the real world thal is
closer to our intuition than expressing know/edge by logical formulas on complex objccts. We
will discuss this matter in detail in Chapter 5.

1.3 Outline

The outline of this report is as follows.

In Chapter 2, we introduce a notion of data algebra that is an abstraction of data. Roughly
speaking, the data algebra is the combination of type and integrity constraints. The type part
is expressed by a universal algebra, and the integrity constraints part is espressed by a boolean
function. The data algebra provides the basis for the semantics of value-oriented data. model,
which is discussed in Chapter 4.

In Chapter 3, we introduce a notion of C-class that formalizes schema objects. A (-class is
a construct that expresses a unit of real world knowledge. As mentioned earlier, in conventional
models such as [AK 89], [KW 89], those units of knowledge are expressed by complex objects
and logical formulas. The C-class is similar to class in the usual object-oriented languages,
such as Smalltalk, and CLOS [WT 89]. A C-class is a combination of syntactical expressions
of type and restriction predicate, the type specifies the structure and the restriction predicate
expresses integrity constraints. A restriction predicate is a first order formula with implicitly
typed variables, which is essentially a restricted form of O-formula [KW 89]. We also introduce
a hierarchy among C-classes to espress the hierarchy of knowledge.

In Chapter 4, we discuss the main theme of this report, object-identity. First we formalize
a value-oriented model of C-classes. Then we define a object-oriented model of C-classes by
introducing the object-identity space. This object-oriented model represents the clear semantic
distinction of a. value-oriented model and an object-oriented model. Further it clarifies the role
of object-identity in the knowledge representation.

In Chapter 5, we consider the C-classes in detail and provide some kinds of C-classes. It
reveals that even a logical representation of knowledge cannot be captured in a value-oriented
paradigm. We discuss which knowledge should be value and which should be object as the
database design issue. We introduce the concept model as a knowledgebase model.

In Chapter 6, we demonstrate the expressibility of the concept model, by simulating the
semantics of other models, such as datalog, IQL[AK 89].

In Appendices, we briefly discuss database operations, inheritance and overloading. The
semantics of database operation is quite simple, especially for queries. Furthermore, we provide
the copy of the actual session performed on the prototype system that has been implemented.

2 Data Algebras

We introduce a notion of date algebra to express instances of schema objects. The notion of
data algebra is an abstract formalization of complex objects with integrity constraints. which

page Y

will serve as a value-oriented model of schema objects later. We assume a basic knowledge of
the universal algebra, as found in p.22 - p.60 in [BS 81].

2.1 Multi-valued Universal Algebra

In order to define the notion of data algebra, we provide a precise definition of multi-dued
function, partiel function, and an extended universal algebra. If the rcader does not like
mathematical details, he/she may read only the last paragraph of this section.

Let A and B be sets, and let 24 and 2B be the power sets of A and B respectively. Then,
a. function from 24 to 2B is called a multi-dued function® from A to B, if it satisfies the
following condition.

VU €24, f(U) = | f({=}).

zelU

We denote the multi-valued function as:
fi:A — B.

It is easily proven that the composition of multi-valued functions is also a multi-valued

function. Namely,
fiA—= B,guB — C = goftA — (.

A multi-valued function f is called total if
fi:A =B, VreA f({z}) #0.

Note that we can construct a category consisting of sets as objects and multi-valued functions
as morphisms. The identity multi-valued function id4 on a set A is the identity function on
24,

For a multi-valued function f from A to B, we can always define the quasi-inverse function
f~! from B to A.

YV o€ 2B, 1) % (wed T (f(x)n V)£ 0}

A multi-valued function f from A to B is called injective if f~! of equals id4. The function f
is called surjective, if fof~! equals idp.

A partial function f from A to B is a multi-valued function from A to B such that for each
clement of A, the cardinality of its image is no more than one,

Ve € A, card(f({z})) < 1.
The domain O(f) of a partial function f is:
I(f) ={z € Al f({=}) # 0}.

Any function h from A to B can be regarded as a multi-valued function. Namely, we can
define a multi-valued function h by:

VU €24, hU) = {f(z)|z e U}

1A multi-valued function from A to B is equivalent to a binary relation on 4 x B.
>The operator . can be considered as a functor from the category of sets to another category consisting of sets as
objects and multi-valued functions as morphisms

page 10

In the rest of this report, we use the following simplified notation so long as it causes no
confusion. For a multi-valued function from A to B, for an element x of A, and y of B,

o € e, @) = » ¥ Jlah = W),
Moreover, we introduce a virtual element v, to express ‘“undefinedness”, which is called the
null value. The null value 1} is a. common element of all sets. For a multi-valued(pa.rtia.l)
function f, we denote
flz) = vy,
if
f{z}) =0

Now we extend the notion of universal algebra. A multi-valued universal algebra A is
a pair of a set A and a family {f;};c; of multi-valued functions. All the notions, such as
homomorphism, isomorphism, are redefined using multi-valued functions instead of functions.
Similarly, a. partial-valued universal algebra is a multi-valued universal algebra such that all
the functions are partial.

The notion of data algebra. is defined by multi-valued universal algebras. However, in order
to make the discussion simple, we only consider partial-valued universal algebras in the rest
of this report. The reader can consider the partial-valued universal algebra as usual universal
algebra, except for the existence of null value. Hence, we use the term “universal algebra”
instead of “partial-valued universal algebra” from now on. But readers should remember that
functions are partial.

2.2 Definition of Data Algebra

In this section, we provide the definition of the data algebras. A data algebra § is a pair of a
universal algebra ® A and a restriction function 7. Namely,

d=(A,r), A = (A, {filier),r : A = 2,
where 2 is the two-element boolean algebra.,
2 = ({0.1}, A, NV, "1).

Further, we assume that each data algebra contains a. special element null value vj. As
mentioned before, the null value expresses “undefinedness.” For each function, if one of the
arguments is null value then its value is also null value.

A data algebra is the abstraction of a collection of data with operations on it. For example,
“positive numbers” would be expressed by a data algebra:

def) 1 (z > 0)
(R, 1), r(x) —{0 (z < 0),

where R is the universal algebra of real numbers.

5We should remember that this universal algebra is a partial-valued universal algebra defined in the previous
section. We can regard it, as if it was a usual universal algebra by introducing a null-value 1, as a common value ot
all universal algebra.

"More precisely, r is a function on the domain of A. However, we describe it as a function on A. Similarly.
throughout this report, we treat A and its domain interchangeably so Iong as the meaning is clear. For example, for
give universal algebras A, B, we would state something like “a mapping from A to B”. The meaning is * a mapping
from a domain of A to the domain of B.”

page |1

2.3 Fundamental Operators

We introduce operations among data algebras. These operations will provide the interpreta-
tions of fundamental operations on C-classes. which will be introduced in Chapter 3. Each
operation happens to have a corresponding construct in relational algebra or SQL. However,
we should note that these operators have not been obtained by a mere extension of relational
algebra, but by the consideration of knowledge representation, as their names suggest. We
could say that one of the reasons of the success of relational model is due to the fact that
the relational operations have a. correspondence to a higher level of mental processes, such as
abstraction of concepts. This will be clear when we introduce the fundamental operators on
C-classes in Chapter 3.

2.3.1 Aggregation

The aggregation operator constructs a complex structure out of data algebras. It. is similar to
Cartesian product operator in relational algebra.
Let ® be a set of symbols, and let a be a. mapping from ¢ to a set of data algebras,

alf) =65 =(Ayg,ry) (f € D).

Then the aggregation of {6} feq is

([T Az Atriopi))

fee fed

where p; is the projection from []i=; A; to A;, and o designates a composition of mappings.
We denote the aggregation by
H(@,a) or H Of.

fed

In particular, if ® is equal to {1,.. ., n}, we denote it

I &
=1

Moreover? if é; is equal to a data algebra S for each i (1 < i < n), we denote 6™ instead of
"_, 0;. Furthermore, if we write the aggregated data algebras as:

8" x6,8"x§x 8,

for given data algebras S, ¢’, §”. etc, it means that we are assuming the following implicit
sequencing,

a(l)=6"a(2)=6,a(3)=5s".....
2.3.2 Recursive Aggregation

In order to provide an algebraic model for recursive types, we introduce recursive aggregation.
Let G be a directed graph with nodes I;” and labeled edges E,

G = (V, B).

page 12

We denote an element of E by (n, m, !), which means that there is an edge from n to m labeled
by [. Further, let be a mapping from U to a set of data algebras, where U is the subset of
V' such that each element u of U doesn’t have any edge that comes into ,

U ev|~(3v3l (v,u, 1) € E))

a(n) = (B,,s,) (n e U).

Then, the recursive aggregation with respect to GG and « is defined as follows.
H(Gv (_1') = (HnEV An’ /\neV(rﬂ 0 7Tn))

. def Bn (Tt € U)
VneV, A, =
' { H(n.mJ)GE Am) (n 4 U)
V(TI m~l) € E Am,l = A’

def | 1 (1 € tp(z))
/ =
Vn eV, ry(z) { 0 (otherwise)

The functions t,, are multi-valued functions from A,, to 2. which is defined as follows.

t ‘léf{ Amt)eE(SmOT(my) (n 4 U)

Sn (otherwise)

R (z =vy)
where Sm(1') = { tn(z) (otherwise)

Note that the elements of A,(n ¢ U) have an infinite structure in general. We may regard
those elements as infinite trees. However, since we allow null value v, as the common element
of every algebra, we can espress elements with a. finitely recursive structure. The function t,
is well-defined, if the recursive definition assigns consistent values to each subtrees. Although
the restriction function r is a partial function, it is well-defined on the elements with finite
structure and cyclic structure. The aggregation defined above is a special case of the recursive
aggregation. In fact, if we assume:

V=0 FE=0af) = Asf € @),

we get the original aggregation operator.

2.3.3 Abstraction

The abstraction operator constructs a new data algebra ignoring some of the substructures of
a data algebra. It is similar to the projection operator in relational algebra.

For f € ®, let Ay be a universal algebra., where ® is a set of symbols, and let ¥ be a subset
of ®. Let us consider the following data algebra ¢

§ = (H A, r).
jed

page 13

where [[;cq Ay is the product algebra of {As}sece. Further, let Py be the projection from
[Tfeo As to [Tgew Ay The abstraction Y(¢, ¥) of the data algebra S with respect to ¥ is

defined as:
T(6,9) = ([] Ay B),
geVvw

0 (otherwise)

Ho) = { 1(if 3y € Pyla)r(y) = 1)

2.3.4 Restriction

The restriction operator imposes a new restriction on a data algebra. It is similar to the
selection operator in relational algebra.

Let S = (A,r) be a data algebra, and let s be a mapping from the domain of A to 2.
Then the restriction with respect to s is

(A.rAs)

The restriction is denot ed bv @(§, s).

2.3.5 Sequence Construction

The sequence construction operator constructs a data algebra consisting of sequences of ele-
ments of a data algebra.

Let S = (A, r) be a data algebra. The sequence algebra Seq(§) derived from S consists
of the direct sum® of t he product algebra A’” (i = 0, 1,2, .. .), and the relevant restriction
function rgeq,

Seq(8) = (E52gA™, Tyeq) |
Vo = (21,29, ..., %n) € Seq(é), (n=0,1,2,...)

v) ANt=a1r(z) (n>0)
realt) = 7T (n =0)

Given a class of universal algebras. The set of finite sequences of elements of the algebras
in the class forms a universal algebra. with functions, length, concutennte, null, reverse, etc.
We designate it by SEQ. We assume that the direct sum X52,A"™ is a subalgebra of SEQ by
embedding it in SEQ.

2.3.6 Bag Construction

The bag construction operator constructs a data algebra consisting of bags of elements of a
data algebra..

Let S = (A? r) be a data, algebra. We can define a congruence relation ~ in the direct sum
algebra. ©°%, A™ as follows. For elements &, i of Seq(é),

F= (2102, ¥ = (Y1 Um)s

8The direct sum is alwavs a partial-valued algebra.

page L1

the sequences ¥ and § are equivalent with respect to ~; & ~ ¥, if n equals m, and there exists
a permutation ¢ of order n such that

(xla'- . ’z71)=(:l:0'(1)’- . s'ra(n))'

Then the bag algebra derived from § consists of the quotient algebra of L3LjA™ with respect
to ~ and the restriction function ry,,. Since the restriction function rse, of Seq(é) has the
same value on the equivalence class of ~, we can define the restriction function rj,, of Bag(¢)
by:
Tbag([F]) = Tseq(),

where [Z] is the equivalence class with respect to ~ containing #. Similarly, we can construct
a universal algebra BAG as a quotient algebra of SEQ. As in the definition of Seq(é), we
assume that the algebraic part of Bag(é) is a subalgebra of BAG by embedding it in BAG.

2.3.7 Set Construction

The set construction operator constructs the data algebra consisting of finite sets of elements
of a data algebra..

Let 6 be (A, r). The set algebra Set(d) is the collection of finite elements of A that satisfies
r. The definition is as follows. First, we define a restriction function s on Bag(G). We denote
an element of Bag(6) by [z], where Z is an element in Seq(d). Then.

T = (T1, T2y 00y 41:71)

s([#) def{ I (if (1 #j=>x#x59)

- 0 (otherwise)

Nest. let SET be the universal algebra of finite sets with functions U(union), N(intersection),
-(difference), etc. Then set algebra of Ser(G) is obtained from ©(Bag(d),s) by regarding its
algebraic component as subalgebra of SET. Namely,

O(Bag(d), s) = (U520A™/~, Thyq A S).

2.3.8 Categorization

The categorization operator constructs a new data algebra by categorizing elements of a data
algebra. with respect to the values of some substructures. It is similar to the grouping construct
of SQL without aggregation functions.

Let ® be a set of symbols, let ¥ be a subset of ® and. let ¥¢ be the complement of ¥,

¥Ccod, ¥ =01,

Further let 3 be a mapping from ® to a set of universal algebra. Now let us consider the
following data. algebra .

6= (H 3(f).r).

fed

Then the calegorization Q8. W) of § with respect to V is:

page 15

Q6, W) = O(T(4, ¥) x Set(Y (6, ¥9)), rq).
The restriction function rq is defined as follows.

L(Vz € y,r(zdz) = 1)
0 (otherwise),

I‘Q((.’L‘, y)) = {

where for (z1,....2,) in [Trey B(f), (9155 Um) in [T e 3(9),

(:Bl)-"?xn)®(y17"'»ym) = (-731,-~-,$m3/1’~-,ym) € H:B(f)
fed

2.4 Many-Sorted Data Algebra

So far, we have introduced the notion of data algebra based on universal algebras. In this

section, we extend the notion to many-sorted universal algebras instead of universal algebras.
First we consider a many-sorted algebra with sorts S. For a sort s in S, let us denote the

universal algebra of the sort s by A,, and let A(s) be the collection of all subalgebra of A,.

Further let d(S) be the closure of Uses d(s) with respect to the Cartesian product operator.
A set of data algebras D is the many-sorted data algebras with sorts S, if

Vo eD 6= (Ar), A € A(S).
We call the data algebra of the following form as the primitive data algebra of sort s.
§d= (A, r)(seb).

We assume that any primitive data algebra of sort s will never be derived from primitive
algebras of different sorts with fundamental operators. Namely, any data algebra of the form
(A,, r) (s € S) will never be derived from another data algebras of the form (A’,, r) (s’ €
S — {s}) with fundamental operators.

From now on, we assume that data algebras axe constructed on a many-sorted algebra,
even if the sorts § is not specifically stated. In another word, data algebras are generated from
primitive data algebra in the sense defined in the nest section.

2.5 Generated Data Algebra

For a given set of data algebras, we can generate data algebras by the fundamental operators,
such as aggregation, restriction, abstraction etc. We call a set of data algebras algebraic
family of data algebras if it is closed under these operations. For a set D of data algebras, we
can consider the minimum algebraic family of data algebras that contains D. We call it the
algebraic closure of D and denote it as D. Since the intersection of algebraic families is also an
algebraic family, it is obvious that there exists a unique algebraic closure for any set of data
algebras. In fact, the closure of D is the in tersection of all algebraic families that contain D.

Conversely, we can consider the minima.l set of data algebras that generate a given set D
of data algebras. More precisely, we can consider the set (D) of data algebras such that:

page 10

o the algebraic closure of (D) contains D.

(D) D D.
o among the sets that satisfy the above condition, h;(D) is minimal. Namely, for a set of
data algebras E, if
E O D and k(D) D E,

then
D = E.

It is not difficult to prove the uniqueness of x(D) up to isomorphism, if D is finite. Namely,
it is not only minimal but also minimum. So we call it the kernel of D. The kernel of a set of
data algebras will provide the building bricks to construct the data algebras.

2.6 Named Data Algebra

The notion of data algebra will provide a structure of the space to express our knowledge.
However, the structure itself is not enough. For example, we can express “absolute temper-
ature” and “half line” by the same data. algebra as “positive numbers”, which is defined in
section 2.2 as an example. Moreover, we don’t want to allow operations such as:

1°K + 2c¢m.

Thus we need to distinguish the data, algebras that are espressions of “absolute temperature”
and “half line.” Hence, we attach names to all algebras to distinguish them. We don’t allow
algebraic operations between the elements of data algebras with different names. A named
algebra is expressed by a tuple:

(ns, As, T5).
In the rest of this report, we assume that every data algebra is named. However, when we
don’t have to consider the name explicitly, we use the previous notation without a name.

2.7 Hierarchy of Data Algebras

In the later chapters, we will see that data algebras play the role of model of a knowledge
representation (schema representation). In order to express the hierarchy of knowledge. we
introduce mappings among data algebras. First we assume that there esists a partial order
< among names of data algebras. If n < n’, we say that. the name n is a. subname of n’. A
subtype mapping is the mapping from a data algebra to another data algebra, which is defined
asfollows .

Let us consider the many-sorted data algebra on the sort 5. Let d be the set of universal
algebras corresponding to the sorts.

d={A |se€S)
Let. D be the many-sorted data algebra on S.
D = {é = (ns, As, rs5)}.

A subtype mapping p from a data algebra é to another data algebra ¢’ is the mapping that
satisfies the following conditions. Let us assume that:

6= (n,A,r), & =, A").

page 17
o Case I: The data algebras § and ¢’ are primitive algebras.

— The name n is a subname of n’ and the algebras are the same.
n<nand A = A,

— The restriction function r is stricter than r’ and the p is the inclusion mapping.
Namely,

Vz € A,r(z) = 1 = r'(z) = 1,
dp)={z€Alr(z)=1},
¥ € 8(p), () = 2.
o Case 2: The data algebras ¢ and ¢’ are compound algebras:
§=(n [A1), 6 = (n” IT A%).
ed tEP!

— The name n is a subname of n; n < n’

— The attribute ' is a subset of &; &' C P.

— For each f in ®’, there exists a subtype mapping p from (Ay, 77 (1)) to (A, w¢'(r')),
where

() = { L (f 3y (ry(y) = 2) A (rly) = 1))

0 (otherwise),
ms is the projection from Ilyep Ay to Ay .
Similarly for 7 ¢/(r').

— Let II be the projection from Ilfcp Af to e Ay. Then,
Vo € e Ap, r(z) = 1 = r'((7pearps) 0 () = 1,
where 7cqpys is the product mapping:
Vo € Myeqr Vg € ¥, my((Trearps)(x)) = pr(my(a)).
— The subtype mapping p from é to ¢’ is defined by:
p=(mreapy)e Il

We say that ¢ is a subtype algebra of &' if there exists a subtype mapping from § to &',
If there exists a subtype mapping from 4 to S’, §’ will be a model of a more general concept
than the concept that has the model 6. We will discuss it precisely in Chapter 3.

3 C-Classes

In order to formalize the construct of schema objects, we introduce the notion of C-class®.
First we define the structure of C-classes.

9C-class is a kind of class. Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>