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Abstract

These lecture notes are based on the course CS351 (Dept. of Computer
Sciencel'Stanford University) offered during the academic year 1991-92.

The notes below correspond to the first half of the course. The second

half consists of topics such as MAX SNP, cliquesI'and coloringslas well
as more specialized material covering topics such as geometric problemsl’
Steiner trees and multicommodity flows. The second half is being re-

vised to incorporate the implications of recent results in approximation
algorithms and the complexity of approximation problems. Please let

me know if you would like to be on the mailing list for the second half.

Commentsl'criticisms and corrections are welcomel'please send them
by electronic mail to rajeev@cs.stanford.edu.
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Chapter 1

Introduction

SUMMARY: The notion of approximation algorithm is introduced and
some motivation is provided for the issues to be considered later. Ba-
sic notation and some elementary concepts from complexity theory are
presented. Two measures of goodness for approximation algorithms are
contrasted: absolute and relative. Both positive and negative results are
described for the following problems: scheduling, bin packing, and the
traveling salesman problem.

A large number of (if notI'most of) the optimization problems which
are required to be solved in practice are N"P-hard. Complexity theory
tells us that it is impossible to find efficient algorithms for such problems
unless P = NPl'and this is very unlikely to be true. This does not
obviate the need for solving these problems. Observe that AP-hardness
only means thatl'if P # N'PI'we cannot find algorithms which will find
exactly the optimal solution to all instances of the problem in time
which is polynomial in the size of the input. If we relax this rather
stringent requirementl'it may still be possible to solve the problem
reasonably well.

There are three possibilities for relaxing the requirements outlined
above to consider a problem well-solved in practice:

e [Super-polynomial time heuristics.] We may no longer re-
quire that the problem be solved in polynomial time. In some
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cases there are algorithms which are just barely super-polynomial
and run reasonably fast in practice. There are techniques (heuris-
tics) such as branch-and-bound or dynamic programming which
are useful from this point of view. For examplel'the Knapsack
problem is N'P-complete but it is considered “easy” since there
is a “pseudo-polynomial” time algorithm for it. (We shall say
more about this in Chapter 2.) A problem with this approach
is that very few problems are susceptible to such techniques and
for most A"P-hard problems the best algorithm we know runs in
truly exponential time.

e [Probabilistic analysis of heuristics.] Another possibility is
to drop the requirement that the solution to a problem cater
equally to all input instances. In some applicationsI'it is possible
that the class of input instances is severely constrained and for
these instances there is an efficient algorithm which will always
do the trick. Consider for example the problem of finding Hamil-
tonian cycles in graphs. This is A"P-hard. Howeverl'it can be
shown that there is an algorithm which will find a Hamiltonian
cycle in “almost every” graph which contains one. Such results
are usually derived using a probabilistic model of the constraints
on the input instances. It is then shown that certain heuristics
will solve the problem with very high probability. Unfortunatelyl’
it is usually not very easy to justify the choice of a particular
input distribution. Moreoverl'in a lot of casesl'the analysis of
algorithms under assumptions about distributions is in itself in-
tractable.

e [Approximation algorithms.] Finallyl'we could relax the re-
quirement that we always find the optimal solution. In practicelit
is usually hard to tell the difference between an optimal solution
and a near-optimal solution. It seems reasonable to devise algo-
rithms which are really efficient in solving NP-hard problemsI'at
the cost of providing solutions which in all cases is guaranteed to
be only slightly sub-optimal

In some situationsl'the last relaxation of the requirements for solving
a problem appears to be the most reasonable. This results in the notion
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of the “approximate” solution of an optimization problem. In this book
we will attempt to classify as one of three types all hard optimization
problemsI'from the point of view of approximability. Some problems
seem to be extremely easy to approximatel'e.g. KnapsackI'Scheduling
and Bin Packing. Other problems are so hard that even finding very
poor approximations can be shown to be NP-hardl'e.g. Graph Color-
ingl'TSP and Clique. Finally['there is a class of problems which seem
to be of intermediate complexityl'e.g. Vertex Coverl'Fuclidean TSP or
Steiner Trees. In some cases we will be able to demonstrate that a
problem is provably hard to approximate within some error.

1.1. Preliminaries and Basic Definitions

We first define an A/P-hard optimization problem and explore two no-
tions of approximation. The following is a formal definition of a maxi-
mization problem; a minimization problem can be defined analogously.

Definition 1.1: An optimization problem II is characterized by
three components:

e [Instances]| D: a set of input instances.

e [Solutions] S([1): the set of all feasible solutions for an instance
IeD.

e [Value] f: a function which assigns a value to each solution,

ie. f:S(1)— R

A maximization problem II is: given I € D, find a solution agpt €
S(1) such that

Vo € S(I), flog,) = f(o)
We will also refer to the value of the optimal solution as OPT(1),
i.e. OPT(I) 2 f(ol)).

opt
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We will abuse our notation a bit by sometimes referring to the op-
timal solution also as OPT(/). The meaning should be clear from the
context. The following example should help to flesh out these defini-
tions.

BIN PACKING (BP): Informallyl'we are given a collection of
items of sizes between 0 and 1. We are required to pack them into bins
of unit size so as to minimize the number of bins used. Thus['we have
the following minimization problem.

e [Instances] I = {sy, s2,...s,}'such that Vi, s; € [0, 1].

e [Solutions] A collection of subsets o = {By, By, ... By} which is
a disjoint partition of IT'such that Vi, B; C [ and > ,cp, s; < 1.

e [Value] The value of a solution is the number of bins used['or

fo) = o] = T

We would like to specify at the outset that an underlying assumption
throughout this book will be that the optimization problems satisfy the
following two technical conditions. This will be particularly important
when we present complexity-theoretic results.

1. The range of f and all the numbers in [ have to be integers. Note
that we can easily extend this to allow rational numbers since
those can be represented as pairs of integers. For examplel'in the
Bin Packing problem we will assume all item sizes are rationals.

2. For any o € S(I)I' f(o) is polynomially bounded in the size of
any number which appears in [.

It is not very hard to see that the first condition is reasonable since
no computer can deal with infinite precision real numbers. As for the
second conditionl'we defer the justification and the motivation to Chap-
ter 2.

We are only going to be concerned with NP-complete optimiza-
tion problems such as Bin Packing. Some people may find this concept
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slightly puzzling since normally the notion of N"P-completeness is ap-
plied to languages or decision problems. For examplel'when we say that
Bin Packing is N'P-completel’it is understood that we are referring to
the problem of deciding whether a given instance [ has a solution of
value at most K T'where K is also specified as a part of the input. There-
foreI'we define the notion of N"P-hardness for optimization problems.

Definition 1.2: If an N'P-hard decision problem 11, is polynomially
reducible to computing the solution of an optimization problem 1l,, then

I, is N'P-hard.

Typicallyl'the problem II; is the decision version of the problem
II;. In other wordsI'for a maximization problem II,I'II; is of the form:
“Does there exist o € D(I) such that f(o) > K7”; howeverl'this is
not always the case. In factI'the above definition uses the more general
notion of Turing reducibility and this permits a wider applicability of

the term N'P-hardness. Refer to the book by Garey & Johnson [15] for

a discussion of these issues.

Given an A'P-hard optimization problem IIT'it is clear that we can-
not find an algorithm which is guaranteed to compute an optimal so-
lution in polynomial time for all input instancesI'unless P = N"P. We
now relax the requirement of optimality and ask for an approximation
algorithm. This is defined as follows.

Definition 1.3: An approximation algorithm A, for an optimiza-
tion problem 11, is a polynomial time algorithm such that given an input
instance [ for 11, it will output some o € S(1). We will denote by A(1)
the value f(o) of the solution obtained by A.

A couple of remarks are in order. FirstI'note that we are only
interested in polynomial time algorithms and so this is built into the
definition of an approximation algorithm. We will abuse notation and
use A(I) to denote both the value of the solution and the solution itself.

Consider]'for examplel'the Bin Packing problem. Let DA (Dumb
Algorithm) be an algorithm which packs each item into a bin by itself.
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Clearlyl'this is an approximation algorithm for the problem BP. Of
course it is not a very good approximation algorithm in the sense that
the number of bins it uses need not be close to the optimal number of
bins.

ThusI'we need some way of comparing approximation algorithms
and analyzing the quality of solutions produced by them. Moreoverl'the
“measure of goodness” of an approximation algorithm must somehow
relate the optimal solution to the solution produced by the algorithm.
Such measures are referred to as performance guarantees and the exact
choice of such a measure is not obvious a priori. We will explore several
notions of performance guarantees in what follows.

1.2. Absolute Performance Guarantees

We know that packing a collection of items into the smallest possible
number of bins is “impossible”. So what is the next best solution
that we could obtain? Clearlyl'this would be a solution which uses at
most one extra bin when compared to the optimal solution. In generall’
it would be desirable to have a solution whose value differs from the
optimal by some small constant. This is formalized in the absolute
performance measure.

Definition 1.4: An absolute approximation algorithm is a poly-
nomial time approximation algorithm for 1l such that for some constant
k>0,

Vie D,|A(I)—OPT(| <k

This is clearly the best we can expect from an approximation al-
gorithm for any NP-hard problem. But can we find such algorithms?
We give below a couple of examples where such algorithms are possible

to find.
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1.2.1. Absolute Approximation Algorithms

Consider the problem* of coloring the vertices of a graph such that no
two adjacent vertices have the same color. The goal is to minimize the
number of colors used. The decision version of this problem is AP-
hard even when restricted to graphs that are planar. We now show
that the planar graph coloring problem has an absolute approximation
algorithm.

We first present the following theorem about the ANP-hardness of
the planar graph coloring [15].

Theorem 1.1: The problem of deciding whether a planar graph is 3-
colorable is N'P-complete.

It is also well-known that any planar graph is 5-colorable. In factI’
the (in)famous Four Color Theorem for planar maps [2I'3] tells us that
every planar graph is 4-colorable.

Consider the following approximation algorithm A for the planar
coloring problem. It first checks if the graph is 2-colorable (orI'bipartite)
and computes the 2-coloring if possible. Otherwisel'it just computes
the obvious 5-coloring in polynomial time. It follows that A never uses
more than 2 extra colors.

Theorem 1.2: Given any planar graph G, the performance of the ap-
proximation algorithm A is such that |A(G) — OPT(G)] < 2.

Consider now the related problem of edge coloring. Here we have to
color the edges of a graph with the smallest possible number of colors
such that no two adjacent edges have the same color. The following
theorem of Vizing [8] relates the maximum degree A to the edge coloring
number.

Theorem 1.3: Fvery graph needs at least A and at most A+ 1 colors
to color its edges.

*We will not explicitly specify the various components of optimization problems
in the rest of the book.

Do you know how
check if a graph is
bipartite?
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In factI'the proof of Vizing’s Theorem gives a polynomial time algo-
rithm to actually find a coloring using A 4+ 1 colors. It is therefore
amazing that even a very special case of the edge coloring problem is

NP-hardl'as described in the following theorem of Holyer [26].

Theorem 1.4: The problem of determining the number of colors
needed for a 3-regular planar graph is N'P-hard.

Putting all this together we can construct another absolute approx-
imation algorithm for an A“P-hard optimization problem. The algo-
rithm A just colors the input graph using A + 1 colors as per Vizing’s
Theorem.

Theorem 1.5: The approximation algorithm A has the performance
guarantee |A(G) — OPT(G)| < 1.

1.2.2. Negative Results for Absolute Approxima-
tion

One may conclude from the preceding examples that only a very spe-
cial type of optimization problem can have an absolute approximation
algorithm. These are problems where the value of the optimal solution
can easily be pinned down within a small rangel’and the hardness of
the problem lies in determining the exact value of the optimum solution
within this range. An absolute approximation algorithm merely uses
this information to give a trivial solution. It remains open whether
some really interesting problem (i.e. one where the optimum value is
not so easily pinned down) has an absolute approximation algorithm.
Possibly the best candidate for such a result would be the Bin Packing
problem.

But what if there is no such algorithm for Bin Packing? How do
we go about proving that such an approximation is impossible? First
note that if P = NP then we can find the exact optimum for any A P-
complete problem. Thusl any hardness or impossibility result must
be predicated upon the assumption that P # ANP. It turns out that
most optimization problems are hard to approximate in the sense that
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finding an absolute approximation is itself NP-hard. The following
two examples will help to illustrate this.

Let us first consider the KNAPSACK problem. An instance of the

problem consists of:

o ltems [ ={1,...,n}.
e Sizes $q,...,s, for each of the corresponding items.
e Profits py,...,p, for each of the corresponding items.

e Knapsack capacity B.

A feasible solution to the problem is a subset [’ C [ such that
Yoier $i < B. We want to maximize f(I') = ;e pi. More informallyl’
we would like to pack some items of differing sizes into a knapsack of
fixed capacityl'so as to maximize the payoffs obtained from packing
each item.

This problem is A"P-hard and so it is natural to try for an absolute
approximation algorithm for it. Unfortunatelyl'there exists no such
algorithm unless there is a polynomial time algorithm which can find
an optimum solution.

Theorem 1.6: If P # NP then no approzimation algorithm can solve
KNAPSACK with |A(I) — OPT(1)| <k, for any fized k.

Proof: We will prove this by contradiction using a scaling argu-
ment. Assume there exists an algorithm A with performance guarantee
k which is a positive integer. We will show that this algorithm can be
used to construct an optimum solution to any instance of KnapsackI’
thereby establishing the theorem.

Suppose we are given some instance [ of Knapsack. We then con-
struct a new instance [’ such that s = s; and p} = (k + 1)p;. In
other wordsl'we leave everything unchanged except the profits which
are scaled up by a factor of k4 1. It is easy to see that every feasible
solution for [ is also a feasible solution for I''and vice versa. The only
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difference is that the value of the solution for I’ is k+ 1 times the value
of the solution for I.

We now run the algorithm A on [’ to obtain the solution A(l’).
This gives us a solution ¢ for [. Clearlyl’

|A(I') — OPT(I")| < k
= |(k+1)f(o) = (k+1DOPT(I)] < &k

Recall that we are only dealing with integer values here. Upon dividing
across by k + 1 we get

_k_
k41

/(o) = OPT(I)] <
= [flo) =OPT(I)] <

Thisl'of coursel'means that we have found the optimal solution o.
O

The key ingredient in the proof was the observation that KNAP-
SACK has a certain scaling property due to the linear dependence of
the value function on some numbers in the input. It may seem that this
will only be possible when the problem involves numbers in some cru-
cial sense. As the next example shows['we can use “scaling” arguments
in purely combinatorial problems which do not have any numerical as-
pect. But this relies on the notion of “graph products” which implicitly
provides us with the required scaling.

Consider the CLIQUE problem. The problem is that of finding the
largest clique (orl'complete subgraph) in the input graph . This is
an N'P-hard problem. Note the problem is essentially the same as
the MAXIMUM INDEPENDENT SET (MIS) problem. The following

theorem establishes the hardness of approximating the largest clique.

Theorem 1.7: If P # NP, then there is no absolute approzimation
algorithm A for the CLIQUE problem.

Proof: We first define the m-power of a graph G'l'say GG T'as follows.
Take m copies of (G and connect any two vertices which lie in different
copies. We leave the proof of the following claim as an exercise.
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Claim: The largest clique in G is of size « if and only if the largest
clique in G™ is of size ma.

Againl'let us assume for the purposes of contradiction that the ap-
proximation algorithm A gives an absolute error of k. Then we claim
that the clique problem can be optimally solved by the following strat-
egy. Run A on G**'. If the largest clique in G is of size al'then we
have that:

JA(GH) — OPT(GHY)| <k
= JAGHY) — (k+ 1)OPT(G)| < k

Now it is not very hard to see that given any clique of size § in G"I'we
can find a clique of size % in ¢ in polynomial time. ThusI'we can find
a clique €' in (G such that

k

_ <
1]~ OPT(G)] < 15

Since both |C'| and OPT(() are integer-valuedl'it follows that C' must
be an optimal clique.
O

1.3. Relative Performance Guarantees

From the preceding section it is clear thatI'while absolute performance
guarantees are the most desirable onesl'it is quite unlikely that we
can give such guarantees for any interesting class of hard optimization
problems. Therefore it seems reasonable to relax the requirement for a
“good approximation algorithm”. We start by examining the problem
of multiprocessor scheduling and use it to motivate the definition of
relative performance guarantees. Interestingly enoughl'the whole field
of approximation algorithms has its roots in the work of Graham [18§]
in 1966 on the problem of scheduling. In factl'scheduling problems
probably have the most well-developed body of work from the point of
view of approximation algorithms. In this bookI'however['we will not
be able to cover most of these results and the reader is referred to the
survey article by Lawler et al [40] for further details.
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1.3.1. Multiprocessor Scheduling

Consider the simplest version of the multiprocessor scheduling problem.
The input consists of n jobsI'Jy, Js, ..., J,. Each job has a correspond-
ing runtime py,...,p,['where each p; is assumed to be rational. The
jobs are to be scheduled on m identical machines or processors so as
to minimize the finish time. The finish time is defined to be the max-
imum over all processors of the total run-time of the jobs assigned to
that processor. The set of feasible solutions consists of all partitions of
the n jobs into m subsetsl'and the value of a solution is the maximum
over all subsets of the total run-time of the subset. The problem is
known to be AN"P-hard even in the case where m = 2.

Consider the following algorithm due to Graham which is called the
list scheduling algorithm. The algorithm considers the n jobs one-by-
onel'assigning each job to one of the m machines in an online fashion.
The rule is to assign the current job to that processor which is (at that
point) the least loaded processor. Note that the load on a processor is
the total run-time of all the jobs assigned to it.

Theorem 1.8: Let A denote the list scheduling algorithm. Then, for
all input instances I,

A(I) 1

V) c9
OPT(I) — m
Moreover, this bound is tight in that there exists an input instance [
such that

Proof: Let us first prove the upper bound on the ratio. Assumel
without loss of generalityl'that after all the jobs have been assigned the
machine M; has the highest load. Let L denote the total run-time of all
the jobs assigned to M;. Alsol'let J; denote the last job to be assigned
to this machine.

We claim that every machine has a total load of at least L — p;.
This is because when .J; was assigned to M;I'M; was the least loaded
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processor with a load exactly L — p;. It then follows that

ST pi > m(L —p;) +p;

=1
But it is also the case that
oPT(1) > ==V
m
since some processor must have this much load at the end of the schedul-
ing process. Since A(/) = LI'we obtain that

P; 1
OPT(I) 2 (L—pj)+ 2 = A1) - (1= —)
Observing that OPT'(I) > p; since some processor has to execute the
job J;I'we obtain the desired result.

To see that the algorithm actually achieves this ratiol'consider the
following input instance [*. Let n = m(m — 1) + 1 and let the first
n — 1 jobs have a run-time of 1 eachI'while the last job has p, = m. It
is easy to see that OPT([*) = m while A(]) = 2m — 1. This gives the

desired lower bound on the ratio. O

The interesting thing to note about this result is that we are mea-
suring the quality of the approximation algorithm in terms of the ratio
between the value of its solution and that of the optimal solution. This
is exactly what we mean by a relative performance measure. The fol-
lowing definition formalizes this notion.

Definition 1.5: Let A be an approximation algorithm for an optimiza-
tion problem 1. The performance ratio Ra(I) of the algorithm A on
an input instance I is defined as

_ A
~ OPT(I)

in the case where 11 is a minimization problem. On the other hand
when Il is @ maximization problem we define the performance ratio as

Ra(I)
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The ratio is defined differently for maximization and minimization
problems so as to have a uniform measure for the quality of the solu-
tion produced by A. The ratio is always at least 1 and the algorithm
produces a better approximation if the ratio is closer to 1. We now
define the worst-case ratio for the algorithm A.

Definition 1.6: The absolute performance ratio, R4, of an ap-
proximation algorithm A for an optimization problem II is

Ry=inf{r|Ra(l) <r,¥Il € D}

Applying these definitions to the list scheduling algorithm AIl'we
have that R4 = 2 — % Actually there is an even better approximation
algorithm for the scheduling problem called LPT'. This algorithm first
orders the jobs by decreasing value of their run-times. After thisl'the
algorithm behaves exactly the same as the list scheduling algorithm.
Graham proved the following result for this new algorithm. We leave
the proof as an exercise.

Theorem 1.9: The LPT algorithm has a performance ratio of Ryppy =
4 1

3 3m’

In some problemsI'the absolute performance ratio is not the best
possible definition of the performance guarantee for an approximation
algorithm. This is because there may be input instances where the
value of the optimal solution is very smalll'and the performance of the
approximation algorithm differs only slightly from the optimal value.
HoweverI'the small value of the optimum solution will make the ratio
appear to be large. This is unreasonable since on larger instances the
ratio is bounded by a small constant. We will see an example of such
a problem in the next section. To take care of such anomaliesI'we will
also define an asymptotic performance ratio.

Definition 1.7: The asymptotic performance ratio, RY, of an
approximation algorithm A for an optimization problem 11 is

RY = inf{r|3INg, Ra(l) <r for all I € Dy with OPT(I) > Ny}
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We note that there is no difference between the absolute and asymp-
totic performance ratios of any approximation algorithm for scheduling.
This is due to the scaling property of this problem. The scaling prop-
erty is that we can multiply all the run-times by any large constant
NT'thereby scaling up the value of the optimal solution by NI'with-
out really changing the problem being solved. On the other handl'we
will see that the approximative behavior of the Bin Packing problem
changes dramatically when we move from the absolute to the asymp-
totic ratios. Most N"P-complete optimization problems do not have the
scaling property.

Before we start proving bounds on the performance ratios of specific
algorithmsI'it is useful to consider how such a bound may be derived
in general. Assume without loss of generality that Il is a minimization
problem. Then the proof of an upper bound on R4 for any algorithm
A can be broken up into two parts. The first part is a proof of a lower
bound on the value of OPT'(I) in terms of some parameters x. The
second stage is to show that we can provide an upper bound on A([)
in terms of x. To obtain the bound on the ratiol'we merely eliminate x
from these two inequalities. It is reasonably easy to see what the two
parts of the proof need to be in the case where Il is a maximization
problem and/or when proving a lower bound on Ry.

1.3.2. Bin Packing

Recall the Bin Packing problem defined earlier. This problem is very
closely related to the scheduling problem — they are duals of each other.
Thereforel'it is not very surprising that similar ideas crop up in devising
approximation algorithms for these two problems.

We first consider the algorithm called First Fit or FF. This algo-
rithm goes down the list of items and fits each item into the first bin
where it will fit. More preciselyl'let us number the bins according to
the time at each the first item was inserted into it. While trying to
pack item :I'FF successively tries to fit it into the already opened bins
in this order. If no open bin has any room for the current itemI'then it
opens a new bin and place item ¢ in it.

Can you identify
these two parts of
the proof in
Theorem ?
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Claim: For all instances ITFF(I) < [23 s;].

Proof: The proof is based on the observation that at most one
bin is more than half empty at the end of the entire packing process.
Suppose this is not the case. Let B; and B; be two bins which are more
than half emptyl'such that ¢ < j. Then the first item placed into bin
B; is of size at most 0.5. But this item would have fit into B; and FF
would not have opened the new bin B;.

From this we conclude that total size of all the items is at least half
of the number of bins used by FF. But the total size of all the items is
also a lower bound on the value of the optimal solution. This gives the
desired bound. O

Actuallyl’ much stronger bounds were obtained for the First Fit
algorithm by Johnson et al [31] in 1974. They established the following
result.

Theorem 1.10: R%y = 1.7 and more precisely we have the following
bounds.

o VI, FF(I)<170PT(I)+2
o 3, FF()> LI(OPT(I) — 1)
It is fairly easy to see an example where F'F'(I) > 20PT(I). Con-

sider the following instance [ with 18m items. Here € denotes a suitably
small constant.

e Gm items of size % + €.
e Gm items of size % + €.

o G6m items of size % + e
It is clear that OPT' (1) = 6m — the optimal packing puts one item of
each type into each bin. On the other handl' F'F' will distribute the

items as follows.

e m bins with 6 items of size % + ¢ each.
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e 3m bins with 2 items of size % + ¢ each.

e Gm bins with 1 item of size % + ¢ each.

A seemingly smarter heuristic is called Best Fit or BF. This puts
each item into a bin where it fits the best. In other wordsl'if the item
fits into a bin which is already openl'then it is placed into that bin
where the empty space left over (after the current item has been added)
is minimized. If no currently open bin can accommodate the current
item then a new bin is opened for it. Quite surprisinglyl’Johnson et
al showed that the BF algorithm also has an asymptotic performance
ratio of 1.7.

In the lower bound example for FF it seems that the poor perfor-
mance is due to the fact that all the small items are placed earlier in the
list. A natural modification is to first sort the items in decreasing order
of sizesl'and then run the FF or BF algorithm. This is quite similar to
the LPT modification to the list scheduling algorithm. Let us call the
resulting algorithms FFD (First Fit Decreasing) and BFD (Best Fit
Decreasing). Once again both algorithms have the same asymptotic
ratio of %.

The proof of the upper bound for FFD or BFD is very involved
(over 100 pages long!). Howeverl'it is easy to see that the bound of L
is achieved for the following input instance: 6m items of size % + el'6m
items of size + + 2el'6m items of size * + el'and 6m items of size + — e.

4
We leave the proof as an exercise.

Finallyl'we comment on the difference between the absolute and
asymptotic performance ratios for the Bin Packing problem. The fol-
lowing theorem can be proved by using an input instance consisting of
only seven items — the proof is again left as an exercise.

Theorem 1.11: Rppp > 32

Contrast this result with upper bound of 11/9 on the asymptotic
ratio for FFD. This gives an example of an approximation algorithm
with very different performance in terms of the two kinds of ratios.
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1.3.3. The Traveling Salesman Problem

As a final example to illustrate the notion of performance ratiosI’we
consider the famous problem of TSP. The input instance for TSP con-
sists of a directed graph ¢ with edge lengths d(7, j)['for all vertices ¢
and 7. Some of the edge lengths may be infinitel'so we can assume that
the graph is complete without any loss of generality. A feasible solution
consists of a tour of the graph which visits every vertex exactly once.
The goal is to find a tour of minimum length. We will only consider
the symmetric version of the TSPI'i.e. where d(7, ) = d(j,7). Thusl'we
may restrict ourselves to the case of undirected graphs only. At this
point we are interested in an even more special case of this problem

called ATSP.

Definition 1.8: The Metric Traveling Salesman Problem (ATSP) is
the special case of the TSP where the input instances satisfy the triangle
inequality. More precisely, for all vertices v, 57 and k,

d(i, k) < d(i,5) +d(j, k)

Consider the following heuristic for ATSP called the Nearest Neigh-
bor heuristic or NN. Starting at any vertexI'construct a Hamiltonian
path by going to the nearest unvisited vertex at each step. Finallyl’
the cycle is completed by returning to the starting vertex. This is a
natural heuristic but its performance is very poor as demonstrated by
the following result due to Rosenkrantz et al [51].

Theorem 1.12: Let n denote the number of vertices in an instance of
ATSP. Then, Ry = O(logn)

Howeverl'it turns out that we can do much better by using more
complex ideas. In factI'there are several heuristics known to achieve an
asymptotic ratio of 2 [51]. Most of the good heuristics for ATSP are
based on finding an Fulerian tour and then using “short-cuts” to obtain
a Hamiltonian tour. We start by reviewing the notion of an Eulerian
tour (refer to any standard graph theory book for more details).
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Definition 1.9: Let G be a multigraph. An Eulerian tour in G is a
walk that visits every vertex at least once and each edge exactly once.

Note that in a multigraph every edge can be repeated arbitrarily
often. The following theorem characterizes the class of graphs which
permit an Fulerian tour. Constructing such a tour in polynomial time
is an easy consequence of the proof of this theorem.

Theorem 1.13: A multigraph G has an Eulerian tour if and only if G
is connected and all vertices are of even degree.

Let us now consider the heuristic for ATSP based on the Minimum
Spanning Tree (MST) in a weighted graph. The MST heuristic starts
off by finding (in polynomial time) any MST for the graph G. It then
constructs an Eulerian tour KT from the edges of T' (using each edge
exactly twice). The Eulerian tour yields a Hamiltonian cycle as follows.
Starting at any vertexI'visit the vertices in the order in which they are

first visited in E'T.

Algorithm MST:

Input: Graph G(V, F) with distance function d.

Output: A Hamiltonian tour in G.

1. Find a minimum spanning tree 7" in G\
2. Construct a multigraph 7" by making two copies of each edge in T'.

3. Find an Eulerian tour ET in T".

4. Construct a Hamiltonian tour by short-circuiting the Eulerian
tour. That isI'starting at any vertexI'follow the Fulerian tour as
long as new vertices are being visited. At any point where the
Eulerian tour repeats a vertexIjump directly to the next
unvisited vertex. Finallyl'complete the cycle by returning to the
starting vertex.



Do you see why
ApsT < d(ET)?

Why does such a
matching always
exist?
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Theorem 1.14: The MST heuristic applied to ATSP has Ryjqr = 2.

Proof: To prove correctnessl'it suffices to note that the graph 7" is
Eulerian since it is connected and all degrees are even.

Given any collection of edges H from G1'denote by d(H) the sum
of all the edge lengths for the edges in H. We first claim the d(T") <
OPT(G). This is because any Hamiltonian cycle with an edge removed
gives a spanning tree. Thusl'we obtain that d(ET) = d(T") < 2-
OPT(G). Finallyl'the short-cut procedure ensures that Aygr(G) <
d(ET). This gives us an upper bound of 2 for the ratio.

We leave the construction of an instance where this ratio is achieved
by Apmsr as an (easy) exercise.
O

It turns out that there is a modification to this heuristic which
improves the performance ratio substantially. This is the heuristic due
to Christofides [9] which we will refer to as CH. The basic idea is to
avoid doubling the edges in going from the MST to an Fulerian graph.
All we really need to do is to add a collection of edges which will increase
the degree of every odd-degree vertex in the MST by exactly 1. This
collection of edges is nothing but a matching on the odd-degree vertices.

Recall that a matching for a collection of vertices S in (i is a subset
of edges from (& such that the set of end-points of these edges is exactly
STand each vertex in S has exactly one edge from the matching incident
on it. Since (G is completel'there exists a matching for every set S.
Moreoverl'using standard results [38]1'the minimum-weight matching
in G for S can be found in polynomial time.

It is relatively easy to modify the MST heuristic to incorporate the
ideas presented above. We obtain the following result for Christofides
heuristic.

Theorem 1.15: Ry = 1.5

Proof: Let M be the minimum weight matching on the set O of
odd degree vertices in the MST 7. We claim that d(M) < %@.
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To see thisI'consider the tour X obtained by taking short-cuts in the
optimal solution so as to exclude all vertices which are not in O. The
claim follows from the observations that d(X) < OPT(() and that the
tour on O is the union of two matchings for O (consider the alternate
edges in the tour). Thusl'one of these two matchings has weight at most
half that of the entire tour. Now the Eulerian tour KT is constructed
in the graph T'U M and has weight at most 1.5 - OPT((). This gives
the desired result. As usuall'we leave as an exercise the construction
of an example to show that this bound can be achieved.

a

This last heuristic is the best-known for ATSP. Note that the MST
heuristic is very efficient since it runs in almost linear time. The heuris-
tic due to Christofides is much more inefficient since finding a minimum
weight matching [38] requires time O(n?). An interesting open problem
is to find a simple construction of a class of algorithms which allows a
smooth trade-off between the running time and the performance ratio.
The results of Vaidya [571'58] on exact and approximate minimum-
weight matching (for points in the Euclidean plane) does give a trade-
off'but it would seem that better results should be possible. Of coursel’
improving the bound of 1.5 would be a major breakthrough! Another
way of looking at the Euclidean TSP problem is: given n points in the
planel’embed a Hamiltonian cycle on these points so as to minimize
the total length of the embedded cycle. This can now be generalized
to the embedding of any graphl'and not just the Hamiltonian cycle.
Interesting approximation results of this type can be found in the work

of Bern et al [7] and Hansen [23].

1.3.4. Negative Results for Relative Approxima-
tion

We have seen several problems which permit good approximation al-
gorithms under the relative performance measure. Howeverl'there are
a large number of problems which do not exhibit this behavior. For

examplel'in the GRAPH COLORINGI'CLIQUE or TSP problems we

do not know of any algorithm which provides a performance guaran-
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tee that is substantially better than nI'the number of vertices in the
graph. It is desirable to come up with some explanation for why certain
problems are easy to approximate and others are as intractable in their
approximating versions as in the optimization version. Unfortunatelyl’
the theory of A'P-completeness does not provide any insight into this
issue. There appears to be no connection between the approximate
version of problems which are very closely related in their optimization
versions (as all N'P-complete problems must be!).

A good example is provided by the problems of VERTEX COVER
(VC) and MAXIMUM INDEPENDENT SET (MIS). Given a graph
G(V, E)l'a vertex cover is a set ¢ C V such that each edge in £ has
at least one end-point in C'. The VC problem is to find a minimum
cardinality vertex cover in the input graph . An independent set
in GG is a set [ C V such that there are no edges between any pair
of vertices in I. The MIS problem is to find a maximum cardinality
independent set in (. An independent set is exactly the complement
of a cliquel'so the MIS problem is the same as the CLIQUE problem
in the complement graph.

Exercise 1.1: Show that in every graph G, C' is a vertex cover if and
only if I =V \ C is an independent set. Moreover, C' is an optimal
solution to VC if and only if I =V \ C is an optimal solution to MIS.

From this one might conclude that approximating VC and MIS are
related problems. This is not the case! As we will see in Chapter 4T’
there is an approximation algorithm for VO with the ratio 2. On the
other handI'we do not know of any approximation algorithm for MIS
with a ratio significantly better than [V| = n. To see why the approx-
imation of VC does not help in approximating MISI'let G be a graph
with an optimal VC of size & — 1. Then we are guaranteed a vertex
cover of size at most n — 2 by the approximation algorithm. Unfortu-
natelyl'the complement of this vertex cover gives us an independent set

of size only 2I'as opposed to the optimal independent set of size % + 1.

Even though N'P-hardness reductions shed little light on the ap-
proximative behavior of optimization problemslit turns out we can use
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the theory of N'P-completeness to show that certain kinds of approxi-
mation algorithms do not exist unless P = N'P. Let us first define the
best possible performance ratio for a given optimization problem.

Definition 1.10: We define Ryrpn(11), the best achievable perfor-
mance ratio for an optimization problem 11, as follows

Ryn(IL) = inf{r > 1|3 poly-time algorithm A for 1l with RY < r}

The most desirable situation would be to have Ryn = 1 for a
problem II. We see in the next few chapters that this can be achieved
for problems such as KNAPSACK and BIN PACKING. These are the
problems which are very easy to approximate. The next level of prob-
lems are those for which we can show that Rpsrn is boundedI'as in the
case of ATSP. Finallyl'there are the really hard problems for which
Rarrnv is unbounded. In the rest of this chapter we examine a few
problems of the latter type.

Consider the general TSP problemli.e. without the triangle inequal-
ity. The following theorem due to Sahni and Gonzalez [55] shows that
this is a really hard problem to approximate. Note thatl’as usuall'the
hardness of an approximation problem is predicated upon P and NP
being different.

Theorem 1.16: If P # NP then Ryn(TSP) = co.

Proof: Assume that there is an algorithm A such that R} = KT'for
some constant K. The proof idea is to use A to construct a polynomial

time algorithm to solve HAMI'the Hamiltonian cycle problem. Since
the HAM is N'P-completel'we get a contradiction if P # NP.

Suppose we have an instance of HAMI'i.e. an undirected and un-
weighted graph G(V, E). We construct an instance [ for the TSP as
follows. Let H be a complete graph on the vertex set V. The length
of an edge in H which is from £ is set to 1I'and the length of all other
edges are set to Anl'where n is the cardinality of V. The following
claim is easy to prove.



CHAPTER 1. INTRODUCTION Page 28

Claim: If G has a Hamiltonian cyle then OPT'(I) = n. Otherwisel’
OPT(I) > (K + 1)n — 1.

Consider what happens when we run the algorithm A on [. If
¢/ is HamiltonianI'then A(/) < Kn. Otherwise['A(1) > OPT(I) >
(K + 1)n — 1. ThusI'the value of the solution found by A tells us
whether (¢ is Hamiltonian or not. In effectI'we have given a polynomial
time reduction from HAM to the approximate version of TSP. This
contradicts the fact that HAM is A'P-completel'unless P = N'P.

a

So far we have seen results which prove the impossibility of finding
absolute approximation algorithms (e.g. for CLIQUE)I'and the above
result shows that for the TSP there is no approximation algorithm
with a bounded performance ratio. It is possible to devise algorithms
whose performance lies somewhere in between these two kinds of ap-
proximation algorithms. For examplel'we will see shortly an approx-
imation algorithm A for BIN PACKING where |A(I) — OPT(I)] <
O(log?OPT(I)). Another example is the result of Lipton and Tar-
jan [42] where it is shown that there is an approximation algorithm A
for finding maximum independent sets in planar graphs such that

1
Vloglog OPT (1)

|A(I) — OPT(I)] < O ( ) OPT(I)

using the planar separator theorem. Notice that such results imply that
Ry = 1.

Given the possibility of such intermediate performance guaranteesl’
it becomes interesting to prove impossibility results for such approxima-
tion algorithms. It is not very hard to modify the proof of Theorem 1.7

to obtain the following hardness result for CLIQUE. A series of such
results have been obtained by Nigmatullin [47] and Kucera [37].

Theorem 1.17: For all constants ¢, K > 0, there is no approximation
algorithm A for the CLIQUE problem such that

|A(1) = OPT(I)| < K - OPT(I)I_E
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Notice that this theorem does not rule out the possibility that there
is some algorithm A for CLIQUE such that R} = 1. (For examplel’
one could obtain a result similar to that obtained for the case of planar
graphs.) We do not know whether this is possible for CLIQUE but
believe it to be extremely unlikely. Unfortunatelyl’we do not know
of any way of showing that the asymptotic ratio 1 is not achievablel’
besides showing that Ryy > 1 if P # NP. The latter is strictly
stronger result.

Assuming that the ratio 1 is not achievable for CLIQUEI'we can
show that no constant ratio is achievable either. This is a consequence
of the following very curious theorem. Basically the result says that
if that problem can be approximated within a specific constant fac-
tor['then it can be approximated within any constant factor. This is
an example of a self-reducibility result for the approximation of an op-
timization problem. This result is usually interpreted as saying that
CLIQUE is very hard to approximate as we do not believe that it has
Ryv = 1.

Theorem 1.18: For the CLIQUE problem, either Ryn(CLIQUE) =
oo or RM[N(CL[QUE) =1.

The idea behind this theorem is to use a notion of graph product
to amplify the size of the optimal clique.

Definition 1.11: The product of two graphs G (Vi, Ey) and Gy (Vz, E3)
is defined as a graph G(V, E) such that

o V=V xV.

o an edge {(u1,uq), (v1,v2)} s in G if either (uy,v1) € By or (uy =
v1 and (ug,vy) € Ey).

We write G = Gy 0 Gy and define GN = GN"1o (.

Note that the product operation is non-commutative. We will need
the following lemma whose proof is left as an exercise.
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Lemma 1.1: Let OPT(G) denote the size of the largest clique in G.
Then OPT(GN) = OPT(G)N for all N > 0. Moreover, given any

clique of size C' in GN, we can find in polynomial time a clique of size

C'>[C~] in G.

We are now ready to prove the theorem.

Proof: Assume that Ry n(CLIQUE) < co. Then there exists an
approximation algorithm A for the clique problem which has R = rI’
for a some constant . We now fix any € > 0 and construct an algorithm
A, such that R < 1+ €. This would imply the desired result.

The algorithm A, first chooses N such that r¥ < 1+ec. It then runs
the algorithm A on GN. Clearlyl'A finds a clique of size at least

OPT(GN) _ OPT(G)Y

r r

in GN. By the preceding lemmal'this can be used to construct a clique
of size at least

OPT(G) _ OPT(G)
r% 1 + ¢

in G.

To see that the algorithm A, runs in polynomial timel'observe that
the graph product can be computed in polynomial time and N is a
constant.

O

1.4. Discussion

We are following the notation of Garey and Johnson [15] which is now
universally accepted. Their book is well-known as a good reference on
the theory of N"P-completeness. It also provides a great introduction to
the area of approximation algorithmslalthough it is quite a bit outdated
in this respect. You could also refer to some of the other standard text-
books on combinatorial algorithms [271'48]. Unfortunately neither of
these is up-to-date and they only provide a very cursory description of
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the work in this area. There are some survey articles on approximation
algorithms [131'30I'35] but again all of these are really old and out-
dated. A more recent article by Kannan and Korte [32] is much more
useful.

Problems

1-1

1-2

1-3

Using the fact that every planar graph has a vertex of degree at
most 5'show that all planar graphs are 5-colorable. How do you
find such a coloring in polynomial time?

Consider the following variant of the traveling salesman problem
called the bottleneck TSP problem. The goal is to find a Hamilto-
nian tour of the input graph so as to minimize the length of the
longest edge in the tour. Assuming that the input graph satisfies
the triangular inequalitylshow that this problem has a polynomial
time approximation algorithm with ratio 3.

Consider the following generalization of the TSP called k-TSP
which is defined for any fixed & > 0. Notice that the 1-TSP
problem is exactly the ATSP.

Instance: Complete graph G(V, E)['with a distance function d :
E — RT which satisfies the triangle inequality.

Feasible Solutions: A collection of k£ subtours on (' such that
each subtour starts and ends at v;1'and all other vertex occur
exactly once in exactly one of the subtours.

Goal: The objective is to minimize the total length of the k sub-
tours.

Modify the Christofides Heuristic to solve this problem approxi-
mately and provide upper and lower bounds on its performance
ratio.

(Hint: There is a polynomial time algorithm to find a minimum
spanning tree T' of G such that a specific node v has a specific

degree d in T'.)
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1-4

1-5

1-6

Define the product of two graphs Gy and Gy as G = Gy x Gl
where (i is obtained by replacing each vertex of Gy by a copy
of G5 and putting all possible edges between two copies which
correspond to adjacent vertices. Let GV be the graph defined by
the recurrence relation G'*' = G x (. Prove the following two
claims.

o Let OPT(G) be the size of the largest clique in ;. Thenl’
OPT(GN)=O0PT(G)N.

o Given a clique of size C' in G¥T'we can construct in polyno-
. . . . 1 .
mial time a clique of size at least [C'¥] in G.

A Hamiltonian walk in a graph G(V, E) is a closed walk that visits
each vertex at least once. Let II denote the optimization problem
of finding a minimum length Hamiltonian walk.

a). Show that II is N'P-complete.
b). What can you say about the hardness of approximating 117

c). Construct (and analyze) the best approximation algorithm
you can for II.

The Edge-Disjoint Cycle Cover [IKCC] problem is to find a col-
lection of cycles in G(V, F) which are edge-disjoint and which
include every vertex at least once. Comment on the relationship
between the optimization version of finding a cover by the small-
est number of cycles and the Hamiltonian walk problem. Analyze
the approximability of ECC by presenting positive and negative
results.



Chapter 2

Approximation Schemes

SUMMARY: The concept of an approximation scheme is defined and
is tllustrated by presenting such schemes for multiprocessor schedul-
ing and the knapsack problem. This definition is then strengthened to
that of fully polynomial approximation schemes and illustrated via the
knapsack problem. It is observed that the existence of such schemes
is intimately related to the existence of pseudo-polynomial time algo-
rithms. The notion of strong N'P-completeness is presented and a
connection is made with the existence of approximation schemes and
pseudo-polynomial time algorithms.

Recall the result for CLIQUE which states that either Ryn = 1
or Ryjny = oo for that problem. We had said that this is a “hardness”
result. Why should this not be viewed as an “easiness” result? After
alll'we have only to find any bounded-ratio approximation algorithm
for CLIQUETl'and then that can be turned into an approximation algo-
rithm with a ratio arbitrarily close to 1. One reason for viewing this
as hardness result is similar to the commonly held view of an N P-
completeness result as a hardness result. The existence of a bounded
ratio algorithm for CLIQUE would imply a result which seems much
too good to be truel'given the lack of success in solving the problem
so far. Another reason is that not too many problems seem to have
algorithms which can achieve a ratio arbitrarily close to 1. We will try
to provide some characterization of such problems in this part of the

33
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book.

Let us start by formalizing the notion of “having an algorithm which
can achieve a ratio arbitrarily close to 1.”

Definition 2.1: An approximation scheme for an optimization
problem 11 is an algorithm A which takes as input both the instance
I and an error bound ¢, and has the performance guarantee

Ra(l,¢e) < (1 +e).

Notice that we can view such an algorithm A as a family of algorithms
{A. : ¢ > 0} such that R4, < 14 ¢. Howeverl'the definition of
an approximation scheme has the stronger requirement that the entire
(infinite) family of algorithms have a finite and uniform representation.
This is a very good solution to a hard optimization problem and most
people would consider a problem well-solved for all practical purposes if
such an algorithm could be found. As we shall seel'one can impose even
stronger conditions on the approximate solution to a problem. Our con-
vention has been to assume implicitly that an approximation algorithm
must run in polynomial time. Howeverl'for the sake of traditionl'we
will make this explicit in the following definition.

Definition 2.2: A polynomial approximation scheme (PAS) is
an approximation scheme {A.} where each algorithm A, runs in time
polynomial in the length of the input instance I.

We would like to emphasize that the above definitions are made
in terms of the absolute performance ratiosl’and not the asymptotic
performance ratio. We will see later that this is a crucial difference.
We now provide some examples of problems which permit of a PASI

viz. SCHEDULING and KNAPSACK.
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2.1. Approximation Scheme for Schedul-
ing

Recall the multiprocessor scheduling problem: Jobs JiI'...I'J,, have run-
times of piI'.. .I'p,. They are to be scheduled on m machines/processors
so as to minimize the finish time. We have already seen some approx-
imation algorithms with bounded ratios for this problem. We now
present a PAS for this problem due to Graham [18].

Assume that n > ml'and that the run-times are arranged in non-
increasing order (i.e. i < j implies that p; > p;). Note that the latter
assumption can be easily fulfilled by sorting the jobs based on their
run-times. Consider now the algorithm Aj which is defined for each
integer k € [0, n].

Algorithm Ay:

Input: Runtimes of n jobs {p1,...,p,} and processor count m.

Output: A feasible schedule.

1. Schedule the first £ jobs JiI'...I'J; optimally.
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