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Abstract

These lecture notes are based on the course CS351 (Dept. of Computer
Sciencel'Stanford University) offered during the academic year 1991-92.
The notes below correspond to the first half of the course. The second

half consists of topics such as MAX SNP, cliquesl'and coloringsl'as well

as more specialized material covering topics such as geometric problemsl’

Steiner trees and multicommodity flows. The second half 1s being re-

vised to incorporate the implications of recent results in approximation

algorithms and the complexity of approximation problems. Please let

me know if you would like to be on the mailing list for the second half.

Commentsl'criticisms and corrections are welcomel please send them

by electronic mail to rajeev@cs.stanford.edu.
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Chapter 1

®

Introduction

SUMMARY: The notion of approximation algorithm ts introduced and

some motivation is provided for the issues to be considered later. Ba-

sic notation and some elementary concepts from complexity theory are

presented. Two measures of goodness for approximation algorithms are

contrasted: absolute and relative. Both positive and negative results are

described for the following problems: scheduling, bin packing, and the

traveling salesman problem.

A large number of (if notI'most of) the optimization problems which
are required to be solved in practice are NP-hard. Complexity theory
tells us that it 1s impossible to find efficient algorithms for such problems

unless P = N'PI'and this is very unlikely to be true. This does not

obviate the need for solving these problems. Observe that A/P-hardness
only means thatl'if P # N'PI'we cannot find algorithms which will find
exactly the optimal solution to all instances of the problem in time

which 1s polynomial in the size of the mput. If we relax this rather

stringent requirementl'it may still be possible to solve the problem

reasonably well.

There are three possibilities for relaxing the requirements outlined

above to consider a problem well-solved in practice:

¢ [Super-polynomial time heuristics.] We may no longer re-
quire that the problem be solved in polynomial time. In some

5



CHAPTER 1. INTRODUCTION Page 6

cases there are algorithms which are just barely super-polynomial

and run reasonably fast in practice. There are techniques (heuris-
tics) such as branch-and-bound or dynamic programming which
are useful from this point of view. For examplel'the Knapsack

problem is NP-complete but it is considered “easy” since there

is a “pseudo-polynomial” time algorithm for it. (We shall say
more about this in Chapter 2.) A problem with this approach
1s that very few problems are susceptible to such techniques and

for most NP-hard problems the best algorithm we know runs in
truly exponential time.

e [Probabilistic analysis of heuristics.] Another possibility is
to drop the requirement that the solution to a problem cater

equally to all input instances. In some applicationsl'it 1s possible

that the class of input instances 1s severely constrained and for

these instances there is an efficient algorithm which will always

do the trick. Consider for example the problem of finding Hamil-

tonian cycles in graphs. This is A’P-hard. Howeverl'it can be
shown that there is an algorithm which will find a Hamiltonian

cycle in “almost every” graph which contains one. Such results

are usually derived using a probabilistic model of the constraints

on the mput instances. It 1s then shown that certain heuristics

will solve the problem with very high probability. Unfortunatelyl

it 1s usually not very easy to justify the choice of a particular

input distribution. Moreoverl'in a lot of cases] the analysis of

algorithms under assumptions about distributions is in itself in-
tractable.

¢ [Approximation algorithms.| Finallyl'we could relax the re-
quirement that we always find the optimal solution. In practicelit

1s usually hard to tell the difference between an optimal solution

and a near-optimal solution. It seems reasonable to devise algo-

rithms which are really efficient in solving NP-hard problemsI'at
the cost of providing solutions which in all cases is guaranteed to

be only slightly sub-optimal

In some situationslthe last relaxation of the requirements for solving

a problem appears to be the most reasonable. This results in the notion
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of the “approximate” solution of an optimization problem. In this book

we will attempt to classify as one of three types all hard optimization

problemsI'from the point of view of approximability. Some problems

seem to be extremely easy to approximatel’e.g. Knapsackl'Scheduling

and Bin Packing. Other problems are so hard that even finding very

poor approximations can be shown to be A"P-hardl'e.g. Graph Color-
ingl'T'SP and Clique. Finallyl'there is a class of problems which seem

to be of intermediate complexityl'e.g. Vertex Coverl'Euclidean TSP or
Steiner Trees. In some cases we will be able to demonstrate that a

problem 1s provably hard to approximate within some error.

1.1. Preliminaries and Basic Definitions

We first define an NP-hard optimization problem and explore two no-

tions of approximation. The following is a formal definition of a maaxi-

mization problem; a minimization problem can be defined analogously.

Definition 1.1: An optimization problem II is characterized by

three components:

o [Instances] D: a set of input instances.

o [Solutions] S([1): the set of all feasible solutions for an instance
lebD.

e [Value] f: a function which assigns a value to each solution,
ie. f:S5(1)—R.

A maximization problem II is: given I € D, find a solution ol c
S(I) such that

Vo e SUI), (ol) = flo)

We will also refer to the value of the optimal solution as OPT(I),

i.e. OPT(I) 2 fol).
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We will abuse our notation a bit by sometimes referring to the op-

timal solution also as OPT(I). The meaning should be clear from the
context. The following example should help to flesh out these defini-
tions.

BIN PACKING (BP): Informallyl’we are given a collection of
items of sizes between 0 and 1. We are required to pack them into bins
of unit size so as to minimize the number of bins used. ThusI'we have

the following minimization problem.

o [Instances] I = {sy, s9,...s,}'such that Vi, s; € [0,1].

e [Solutions] A collection of subsets 0 = {B;, Bs, ... B.} which is

a disjoint partition of IT'such that Vi, B; C I and }_cp. s; < 1.

e [Value] The value of a solution is the number of bins usedI'or

f(o) = la] = kT

We would like to specify at the outset that an underlying assumption

throughout this book will be that the optimization problems satisty the

following two technical conditions. This will be particularly important

when we present complexity-theoretic results.

1. The range of f and all the numbers in I have to be integers. Note

that we can easily extend this to allow rational numbers since

those can be represented as pairs of integers. For examplel'in the

Bin Packing problem we will assume all item sizes are rationals.

2. For any 0 € S(I)I' f(o) is polynomially bounded in the size of
any number which appears in I.

It 1s not very hard to see that the first condition is reasonable since

no computer can deal with infinite precision real numbers. As for the

second conditionl'we defer the justification and the motivation to Chap-
ter 2.

We are only going to be concerned with NP-complete optimiza-
tion problems such as Bin Packing. Some people may find this concept
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slightly puzzling since normally the notion of N'P-completeness is ap-
plied to languages or decision problems. For examplel'when we say that

Bin Packing is A'P-completel'it is understood that we are referring to
the problem of deciding whether a given instance I has a solution of

value at most KT'where K 1s also specified as a part of the input. There-

foreI'we define the notion of NP-hardness for optimization problems.

Definition 1.2: If an NP-hard decision problem 11, is polynomially
reducible to computing the solution of an optimization problem Ils, then

[15 is NP-hard.

Typicallyl'the problem II; 1s the decision version of the problem

II;. In other wordsI'for a maximization problem II,I'lI; 1s of the form:

“Does there exist 0 € D(I) such that f(o) > K77; howeverl'this is
not always the case. In factI'the above definition uses the more general

notion of Turing reducibility and this permits a wider applicability of

the term A/P-hardness. Refer to the book by Garey & Johnson [15] for
a discussion of these issues.

Given an NP-hard optimization problem III'it is clear that we can-
not find an algorithm which 1s guaranteed to compute an optimal so-

lution in polynomial time for all input instances'unless P = NP. We
now relax the requirement of optimality and ask for an approximation

algorithm. This is defined as follows.

Definition 1.3: An approximation algorithm A, for an optimiza-

tion problem 11, is a polynomial time algorithm such that given an input

instance I for Il, it will output some oc € S(I). We will denote by A(T)
the value f(o) of the solution obtained by A.

A couple of remarks are in order. Firstl' note that we are only

interested in polynomial time algorithms and so this is built into the

definition of an approximation algorithm. We will abuse notation and

use A([]) to denote both the value of the solution and the solution itself.

Considerl'for examplel'the Bin Packing problem. Let DA (Dumb
Algorithm) be an algorithm which packs each item into a bin by itself.
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Clearlyl' this 1s an approximation algorithm for the problem BP. Of

course 1t 1s not a very good approximation algorithm in the sense that

the number of bins it uses need not be close to the optimal number of
bins.

Thusl’we need some way of comparing approximation algorithms

and analyzing the quality of solutions produced by them. Moreoverl'the

“measure of goodness” of an approximation algorithm must somehow

relate the optimal solution to the solution produced by the algorithm.

Such measures are referred to as performance guarantees and the exact

What do you think choice of such a measure 1s not obvious a priori. We will explore several

8 oat notions of performance guarantees in what follows.

1.2. Absolute Performance Guarantees

We know that packing a collection of items into the smallest possible

number of bins is “impossible”. So what 1s the next best solution

that we could obtain? Clearlyl'this would be a solution which uses at

most one extra bin when compared to the optimal solution. In generall’
it would be desirable to have a solution whose value differs from the

optimal by some small constant. This 1s formalized in the absolute

performance measure.

Definition 1.4: An absolute approximation algorithm is a poly-

nomial time approximation algorithm for 11 such that for some constant

E> 0,

VI D,|A(I) — OPT(I)| <k

This 1s clearly the best we can expect from an approximation al-

gorithm for any NP-hard problem. But can we find such algorithms?
We give below a couple of examples where such algorithms are possible
to find.
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1.2.1. Absolute Approximation Algorithms

Consider the problem™ of coloring the vertices of a graph such that no

two adjacent vertices have the same color. The goal is to minimize the

number of colors used. The decision version of this problem is AN P-
hard even when restricted to graphs that are planar. We now show

that the planar graph coloring problem has an absolute approximation

algorithm.

We first present the following theorem about the AP-hardness of
the planar graph coloring [15].

Theorem 1.1: The problem of deciding whether a planar graph is 3-

colorable is NP-complete.

It 1s also well-known that any planar graph is 5-colorable. In factl’

the (in)famous Four Color Theorem for planar maps [2I'3] tells us that
every planar graph is 4-colorable.

Consider the following approximation algorithm A for the planar

coloring problem. It first checks if the graph is 2-colorable (or['bipartite)

and computes the 2-coloring if possible. Otherwisel'it just computes Do you know how
the obvious 5-coloring in polynomial time. It follows that A never uses i graph 1s
more than 2 extra colors.

Theorem 1.2: Given any planar graph GG, the performance of the ap-

proximation algorithm A is such that |A(G) — OPT (G)| < 2.

Consider now the related problem of edge coloring. Here we have to

color the edges of a graph with the smallest possible number of colors

such that no two adjacent edges have the same color. The following

theorem of Vizing [8] relates the maximum degree A to the edge coloring
number.

Theorem 1.3: Fuvery graph needs at least A and at most A +1 colors

to color its edges.

 *We will not explicitly specify the various components of optimization problems
in the rest of the book.
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In factl'the proot of Vizing’s Theorem gives a polynomial time algo-

rithm to actually find a coloring using A 4+ 1 colors. It is therefore

amazing that even a very special case of the edge coloring problem 1s

NP-hardl'as described in the following theorem of Holyer [26].

Theorem 1.4: The problem of determining the number of colors

needed for a 3-reqular planar graph is NP-hard.

Putting all this together we can construct another absolute approx-

imation algorithm for an A“P-hard optimization problem. The algo-
rithm A just colors the input graph using A + 1 colors as per Vizing’s
Theorem.

Theorem 1.5: The approximation algorithm A has the performance

guarantee |A(G) — OPT (G)| <1.

1.2.2. Negative Results for Absolute Approxima-
tion

One may conclude from the preceding examples that only a very spe-

cial type of optimization problem can have an absolute approximation

algorithm. These are problems where the value of the optimal solution

can easily be pinned down within a small rangel’and the hardness of

the problem lies in determining the exact value of the optimum solution

within this range. An absolute approximation algorithm merely uses

this information to give a trivial solution. It remains open whether

some really interesting problem (i.e. one where the optimum value is
not so easily pinned down) has an absolute approximation algorithm.
Possibly the best candidate for such a result would be the Bin Packing

problem.

But what if there is no such algorithm for Bin Packing? How do

we go about proving that such an approximation is impossible? First

note that if P = ANP then we can find the exact optimum for any AN P-
complete problem. Thusl any hardness or impossibility result must

be predicated upon the assumption that P # AP. It turns out that
most optimization problems are hard to approximate in the sense that
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finding an absolute approximation is itself NP-hard. The following
two examples will help to illustrate this.

Let us first consider the KNAPSACK problem. An instance of the

problem consists of:

o Items I ={1,...,n}.

® Sizes si1,...,S, for each of the corresponding items.

oe Profits p1,...,p, for each of the corresponding items.

eo Knapsack capacity B.

A feasible solution to the problem is a subset I’ C [ such that

dicen Si $B. We want to maximize f(I') = 3,cp pi. More informallyl’
we would like to pack some items of differing sizes into a knapsack of

fixed capacityl'so as to maximize the payofls obtained from packing
each item.

This problem is A/P-hard and so it is natural to try for an absolute
approximation algorithm for it. Unfortunatelyl there exists no such

algorithm unless there is a polynomial time algorithm which can find

an optimum solution.

Theorem 1.6: IfP = NP then no approximation algorithm can solve
KNAPSACK with |A(1) — OPT (I)| <k, for any fired k.

Proof: We will prove this by contradiction using a scaling argu-

ment. Assume there exists an algorithm A with performance guarantee

k which is a positive integer. We will show that this algorithm can be

used to construct an optimum solution to any instance of KnapsackI’

thereby establishing the theorem.

Suppose we are given some instance I of Knapsack. We then con-

struct a new instance I’ such that s! = s; and pl = (kK + 1)p;. In
other wordsl'we leave everything unchanged except the profits which

are scaled up by a factor of k + 1. It is easy to see that every feasible

solution for I is also a feasible solution for /'I'and vice versa. The only
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difference is that the value of the solution for I’ is k + 1 times the value

of the solution for I.

We now run the algorithm A on I’ to obtain the solution A([’).
This gives us a solution o for I. Clearlyl’

JAI") — OPT(I')] < k
= |(k+1)flo) = (k+1)OPT(I)| < k

Recall that we are only dealing with integer values here. Upon dividing

across by k + 1 we get

fo) = OPT(I)] <= +5
= flo) =OPT()] < 0

Thisl'of coursel'means that we have found the optimal solution o.
[]

The key ingredient in the proof was the observation that KNAP-

SACK has a certain scaling property due to the linear dependence of

the value function on some numbers in the input. It may seem that this

will only be possible when the problem involves numbers in some cru-

cial sense. As the next example showsI'we can use “scaling” arguments

in purely combinatorial problems which do not have any numerical as-

pect. But this relies on the notion of “graph products” which implicitly

provides us with the required scaling.

Consider the CLIQUE problem. The problem is that of finding the

largest clique (orl’complete subgraph) in the input graph G. This is
an NP-hard problem. Note the problem is essentially the same as

Can you see why the MAXIMUM INDEPENDENT SET (MIS) problem. The following

MIS and CLIQUE theorem establishes the hardness of approximating the largest clique.

Theorem 1.7: IfP + NP, then there is no absolute approximation
algorithm A for the CLIQUE problem.

Proof: We first define the m-power of a graph Gl'say GG" I'as follows.

Take m copies of G and connect any two vertices which lie in different

copies. We leave the proof of the following claim as an exercise.
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Claim: The largest clique in G is of size « if and only if the largest

clique in G"™ 1s of size ma.

Againl'let us assume for the purposes of contradiction that the ap-

proximation algorithm A gives an absolute error of k. Then we claim

that the clique problem can be optimally solved by the following strat-

egy. Run A on G*t!. If the largest clique in ( is of size al'then we
have that:

AGH) — OPT(GFY < k
= |AGFY) — (E+ 1)OPT(G)| < k

Now it 1s not very hard to see that given any clique of size 3 in GG" I'we

can find a clique of size 2 in GG in polynomial time. ThusI'we can find
a clique C' in GG such that

IC] — 0PT(G)| < —
—k+1

Since both |C'| and OPT (() are integer-valuedl'it follows that C' must
be an optimal clique.
[]

1.3. Relative Performance Guarantees

From the preceding section it is clear thatI'while absolute performance

guarantees are the most desirable onesl'it is quite unlikely that we

can give such guarantees for any interesting class of hard optimization

problems. Therefore 1t seems reasonable to relax the requirement for a

“good approximation algorithm”. We start by examining the problem

of multiprocessor scheduling and use 1t to motivate the definition of

relative performance guarantees. Interestingly enoughl'the whole field

of approximation algorithms has its roots in the work of Graham [18]
in 1966 on the problem of scheduling. In factl scheduling problems

probably have the most well-developed body of work from the point of

view of approximation algorithms. In this bookI'howeverl'we will not
be able to cover most of these results and the reader is referred to the

survey article by Lawler et al [40] for further details.
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1.3.1. Multiprocessor Scheduling

Consider the simplest version of the multiprocessor scheduling problem.

The mput consists of n jobsI'.Jy, Jo, ...., J,. Each job has a correspond-

ing runtime pq,...,p,I' where each p; 1s assumed to be rational. The

jobs are to be scheduled on m identical machines or processors so as
to minimize the finish time. The finish time 1s defined to be the max-

imum over all processors of the total run-time of the jobs assigned to

that processor. The set of feasible solutions consists of all partitions of

the n jobs ito m subsetsI'and the value of a solution is the maximum

over all subsets of the total run-time of the subset. The problem is
known to be A/P-hard even in the case where m = 2.

Consider the following algorithm due to Graham which is called the

list scheduling algorithm. The algorithm considers the n jobs one-by-

onel'assigning each job to one of the m machines in an online fashion.

The rule is to assign the current job to that processor which is (at that
point) the least loaded processor. Note that the load on a processor is
the total run-time of all the jobs assigned to it.

Theorem 1.8: Let A denote the list scheduling algorithm. Then, for

all input instances 1,
A(T) 1
—<2 —

OPT(I) — m

Moreover, this bound is tight in that there exists an input instance I”
such that

CAT) — 9 _ 1
OPT(I*) =~ m

Proof: Let us first prove the upper bound on the ratio. Assumel

without loss of generalityl'that after all the jobs have been assigned the

machine My has the highest load. Let L denote the total run-time of all

the jobs assigned to M;. Alsollet J; denote the last job to be assigned
to this machine.

We claim that every machine has a total load of at least L — p;.

This is because when J; was assigned to M,I'M; was the least loaded
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processor with a load exactly L — p;. It then follows that

> pi > m(L—p;) +p;
1=1

But it 1s also the case that

OPT(I) > Z=tli
m

since some processor must have this much load at the end of the schedul-

ing process. Since A([l) = LI'we obtain that

Pj 1

OPT() = (L—p) +2 = Atl) = (1- —]p,
Observing that OPT(I) > p; since some processor has to execute the
job J;I'we obtain the desired result.

To see that the algorithm actually achieves this ratiol'consider the

following input instance I". Let n = m(m — 1) + 1 and let the first
n — 1 jobs have a run-time of 1 eachl'while the last job has p, = m. It

is easy to see that OPT (1*) = m while A(I) = 2m — 1. This gives the
desired lower bound on the ratio. O

The interesting thing to note about this result is that we are mea-

suring the quality of the approximation algorithm in terms of the ratio

between the value of its solution and that of the optimal solution. This

1s exactly what we mean by a relative performance measure. The fol-

lowing definition formalizes this notion.

Definition 1.5: Let A be an approximation algorithm for an optimiza-

tion problem 11. The performance ratio R4(I) of the algorithm A on
an input instance I is defined as

A(1)
Rill) = ————

all) OPT(I)
in the case where 11 is a minimization problem. On the other hand

when 11 is a maximization problem we define the performance ratio as

OPT(I)
Rill) = ——

al) A(T)
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The ratio 1s defined differently for maximization and minimization

problems so as to have a uniform measure for the quality of the solu-

tion produced by A. The ratio is always at least 1 and the algorithm

produces a better approximation if the ratio is closer to 1. We now

define the worst-case ratio for the algorithm A.

Definition 1.6: The absolute performance ratio, K4, of an ap-

proximation algorithm A for an optimization problem 11 is

Applying these definitions to the list scheduling algorithm AI'we

have that 4 = 2 — od Actually there is an even better approximation
algorithm for the scheduling problem called LPT. This algorithm first

orders the jobs by decreasing value of their run-times. After thisI'the

algorithm behaves exactly the same as the list scheduling algorithm.

Graham proved the following result for this new algorithm. We leave

the proof as an exercise.

Theorem 1.9: The LPT algorithm has a performance ratio of Rppr =
4 1

3 3m”

In some problemsl'the absolute performance ratio is not the best

possible definition of the performance guarantee for an approximation

algorithm. This is because there may be input instances where the

value of the optimal solution 1s very smalll'and the performance of the

approximation algorithm differs only slightly from the optimal value.

HoweverI'the small value of the optimum solution will make the ratio

appear to be large. This 1s unreasonable since on larger instances the

ratio 1s bounded by a small constant. We will see an example of such

a problem in the next section. To take care of such anomaliesI'we will

also define an asymptotic performance ratio.

Definition 1.7: The asymptotic performance ratio, RY, of an
approximation algorithm A for an optimization problem 11 is

RY = inf{r|ANy, Ra(l) <r for all I € Dy with OPT (I) > Ny}
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We note that there is no difference between the absolute and asymp-

totic performance ratios of any approximation algorithm for scheduling.

This 1s due to the scaling property of this problem. The scaling prop-

erty 1s that we can multiply all the run-times by any large constant

NT thereby scaling up the value of the optimal solution by NI with-

out really changing the problem being solved. On the other handI'we

will see that the approximative behavior of the Bin Packing problem

changes dramatically when we move from the absolute to the asymp-

totic ratios. Most NP-complete optimization problems do not have the

scaling property.

Before we start proving bounds on the performance ratios of specific

algorithmsI'it 1s useful to consider how such a bound may be derived

in general. Assume without loss of generality that II is a minimization

problem. Then the proof of an upper bound on R4 for any algorithm

A can be broken up into two parts. The first part 1s a proof of a lower

bound on the value of OPT(I) in terms of some parameters x. The
second stage is to show that we can provide an upper bound on A([)
in terms of x. To obtain the bound on the ratiol'we merely eliminate x

from these two inequalities. It 1s reasonably easy to see what the two can you identify

parts of the proof need to be in the case where II 1s a maximization oe parts of
problem and/or when proving a lower bound on Ry . Theorem ?

1.3.2. Bin Packing

Recall the Bin Packing problem defined earlier. This problem is very

closely related to the scheduling problem — they are duals of each other.

Thereforelit 1s not very surprising that similar ideas crop up in devising

approximation algorithms for these two problems.

We first consider the algorithm called First Fit or FF. This algo-

rithm goes down the list of items and fits each item into the first bin

where 1t will fit. More preciselyl'let us number the bins according to

the time at each the first item was inserted into it. While trying to

pack item :I'FF successively tries to fit it into the already opened bins

in this order. If no open bin has any room for the current itemI'then it

opens a new bin and place item 7 in it.
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Claim: For all instances [TFF(I) < [23 s;].

Proof: The proof is based on the observation that at most one

bin 1s more than halt empty at the end of the entire packing process.

Suppose this is not the case. Let B; and B; be two bins which are more
than half emptyl'such that + < 5. Then the first item placed into bin

B; is of size at most 0.5. But this item would have fit into B; and FF
would not have opened the new bin B;.

From this we conclude that total size of all the items is at least half

of the number of bins used by FF. But the total size of all the items is

also a lower bound on the value of the optimal solution. This gives the
desired bound. 0O

Actuallyl’ much stronger bounds were obtained for the First Fit

algorithm by Johnson et al [31] in 1974. They established the following
result.

Theorem 1.10: RY, = 1.7 and more precisely we have the following
bounds.

o VI.FF(I)<1.70PT(I)+2

oe II. FF(I)>1.7(OPT(I)—1)

It is fairly easy to see an example where FF (I) > 20PT(I). Con-
sider the following instance I with 18m items. Here € denotes a suitably
small constant.

eo 6m items of size 1 + e.

eo 6m items of size : + e.

eo 6m items of size 1 + e.

It is clear that OPT(I) = 6m — the optimal packing puts one item of

Can you see why each type into each bin. On the other handl' FF" will distribute the
there 1s no better Spams as follows.packing’

oe m bins with 6 items of size 1 + ¢ each.
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oe 3m bins with 2 items of size : + ¢ each.

eo 6m bins with 1 item of size 1 + ¢ each.

A seemingly smarter heuristic is called Best [it or BF. This puts
each item into a bin where 1t fits the best. In other wordsI'if the item

fits into a bin which is already openl then it is placed into that bin

where the empty space left over (after the current item has been added)
1s minimized. If no currently open bin can accommodate the current

item then a new bin is opened for it. Quite surprisinglyl’ Johnson et

al showed that the BI algorithm also has an asymptotic performance
ratio of 1.7.

In the lower bound example for FF it seems that the poor perfor-

mance 1s due to the fact that all the small items are placed earlier in the

list. A natural modification is to first sort the items in decreasing order

of sizesl'and then run the FF or BI algorithm. This is quite similar to

the LPT modification to the list scheduling algorithm. Let us call the

resulting algorithms FFD (First Fit Decreasing) and BFD (Best Fit
Decreasing). Once again both algorithms have the same asymptotic

ratio of A

The proot of the upper bound for FFD or BFD 1s very involved

(over 100 pages long!). Howeverl'it is easy to see that the bound of o
1s achieved for the following input instance: 6m items of size 1 + el'6m
items of size 3 + 2el'6m 1tems of size 3 + el'and 6m items of size 3 — €.
We leave the proof as an exercise.

Finallyl'we comment on the difference between the absolute and

asymptotic performance ratios for the Bin Packing problem. The fol-

lowing theorem can be proved by using an input instance consisting of

only seven items — the proof is again left as an exercise.

Theorem 1.11: Rrrp > 3

Contrast this result with upper bound of 11/9 on the asymptotic
ratio for FFD. This gives an example of an approximation algorithm

with very different performance in terms of the two kinds of ratios.
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1.3.3. The Traveling Salesman Problem

As a final example to illustrate the notion of performance ratioslwe

consider the famous problem of TSP. The input mstance for TSP con-

sists of a directed graph GG with edge lengths d(z, 7)['for all vertices ¢
and 7. Some of the edge lengths may be infinitel'so we can assume that

the graph 1s complete without any loss of generality. A feasible solution

consists of a tour of the graph which visits every vertex exactly once.

The goal is to find a tour of minimum length. We will only consider

the symmetric version of the TSPTi.e. where d(z,7) = d(j,2). Thusl'we
may restrict ourselves to the case of undirected graphs only. At this

point we are interested in an even more special case of this problem
called ATSP.

Definition 1.8: The Metric Traveling Salesman Problem (ATSP) is
the special case of the TSP where the input instances satisfy the triangle

inequality. More precisely, for all vertices 1, 7 and k,

d(i,k) < d(i,7) + d(j,k)

Consider the following heuristic for ATSP called the Nearest Neigh-

bor heuristic or NN. Starting at any vertexI'construct a Hamiltonian

path by going to the nearest unvisited vertex at each step. Finallyl’

the cycle 1s completed by returning to the starting vertex. This is a

natural heuristic but its performance is very poor as demonstrated by

the following result due to Rosenkrantz et al [51].

Theorem 1.12: Let n denote the number of vertices in an instance of

ATSP. Then, Ry = O(logn)

Howeverl'it turns out that we can do much better by using more

complex ideas. In factI'there are several heuristics known to achieve an

asymptotic ratio of 2 [51]. Most of the good heuristics for ATSP are
based on finding an Eulerian tour and then using “short-cuts” to obtain

a Hamiltonian tour. We start by reviewing the notion of an Eulerian

tour (refer to any standard graph theory book for more details).
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Definition 1.9: Let G be a multigraph. An Eulerian tour in G is a

walk that visits every vertex at least once and each edge exactly once.

Note that in a multigraph every edge can be repeated arbitrarily

often. The following theorem characterizes the class of graphs which

permit an Eulerian tour. Constructing such a tour in polynomial time

1s an easy consequence of the proof of this theorem.

Theorem 1.13: A multigraph G' has an Eulerian tour if and only if G

is connected and all vertices are of even degree.

Let us now consider the heuristic for ATSP based on the Minimum

Spanning Tree (MST) in a weighted graph. The MST heuristic starts
off by finding (in polynomial time) any MST for the graph G. It then
constructs an Eulerian tour ET from the edges of T' (using each edge
exactly twice). The Eulerian tour yields a Hamiltonian cycle as follows.
Starting at any vertexl'visit the vertices in the order in which they are

first visited in ET.

Algorithm MST:

Input: Graph G(V, EF) with distance function d.

Output: A Hamiltonian tour in G.

1. Find a minimum spanning tree 17" in (.

2. Construct a multigraph 1” by making two copies of each edge in T.

3. Find an Eulerian tour ET in 1".

4. Construct a Hamiltonian tour by short-circuiting the Eulerian

tour. That isI'starting at any vertexI'follow the Eulerian tour as

long as new vertices are being visited. At any point where the

Eulerian tour repeats a vertexI'jump directly to the next

unvisited vertex. Finallyl'complete the cycle by returning to the

starting vertex.
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Theorem 1.14: The MST heuristic applied to ATSP has Rij = 2.

Proof: To prove correctnessl'it suffices to note that the graph 7" is

Eulerian since it 1s connected and all degrees are even.

Given any collection of edges H from GI'denote by d(H) the sum
of all the edge lengths for the edges in H. We first claim the d(T") <
OPT (G). This is because any Hamiltonian cycle with an edge removed
gives a spanning tree. Thusl'we obtain that d(ET) = d(T") < 2 -
OPT (G). Finallyl'the short-cut procedure ensures that Aps7(G) <

Do you see why d( ET). This gives us an upper bound of 2 for the ratio.
Aprsr < d(ET)?

We leave the construction of an instance where this ratio is achieved

by Aas as an (easy) exercise.
[]

It turns out that there is a modification to this heuristic which

improves the performance ratio substantially. This is the heuristic due

to Christofides [9] which we will refer to as CH. The basic idea is to
avold doubling the edges in going from the MST to an Eulerian graph.

All we really need to do is to add a collection of edges which will increase

the degree of every odd-degree vertex in the MST by exactly 1. This

Why does such a collection of edges is nothing but a matching on the odd-degree vertices.
matching always

Teast? Recall that a matching for a collection of vertices S in (i is a subset
of edges from GG such that the set of end-points of these edges is exactly

STand each vertex in S has exactly one edge from the matching incident

on 1t. Since (i is completel there exists a matching for every set S.

Moreoverl using standard results [38]['the minimum-weight matching
in GG for S can be found in polynomial time.

It is relatively easy to modify the MST heuristic to incorporate the

ideas presented above. We obtain the following result for Christofides
heuristic.

Theorem 1.15: RZ, = 1.5

Proof: Let M be the minimum weight matching on the set O of

odd degree vertices in the MST T. We claim that d(M) < SLAC
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To see thisl'consider the tour X obtained by taking short-cuts in the

optimal solution so as to exclude all vertices which are not in O. The

claim follows from the observations that d(X) < OPT((G) and that the
tour on O is the union of two matchings for O (consider the alternate
edges in the tour). Thusl'one of these two matchings has weight at most
half that of the entire tour. Now the Eulerian tour ET" 1s constructed

in the graph T"U M and has weight at most 1.5 - OPT(G). This gives
the desired result. As usuall'we leave as an exercise the construction

of an example to show that this bound can be achieved.
[]

This last heuristic 1s the best-known for ATSP. Note that the MST

heuristic is very efficient since it runs in almost linear time. The heuris-

tic due to Christofides is much more inefficient since finding a minimum

weight matching [38] requires time O(n”). An interesting open problem
1s to find a simple construction of a class of algorithms which allows a

smooth trade-off between the running time and the performance ratio.

The results of Vaidya [57158] on exact and approximate minimum-

weight matching (for points in the Euclidean plane) does give a trade-
offI'but 1t would seem that better results should be possible. Of coursel’

improving the bound of 1.5 would be a major breakthrough! Another

way of looking at the Euclidean TSP problem is: given n points in the

planel’embed a Hamiltonian cycle on these points so as to minimize

the total length of the embedded cycle. This can now be generalized

to the embedding of any graphl'and not just the Hamiltonian cycle.

Interesting approximation results of this type can be found in the work

of Bern et al [7] and Hansen [23].

1.3.4. Negative Results for Relative Approxima-
tion

We have seen several problems which permit good approximation al-

gorithms under the relative performance measure. Howeverl'there are

a large number of problems which do not exhibit this behavior. For

examplel'ln the GRAPH COLORINGI'CLIQUE or TSP problems we

do not know of any algorithm which provides a performance guaran-
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tee that 1s substantially better than nI'the number of vertices in the

eraph. It is desirable to come up with some explanation for why certain

problems are easy to approximate and others are as intractable in their

approximating versions as in the optimization version. Unfortunatelyl’

the theory of N'P-completeness does not provide any insight into this
issue. There appears to be no connection between the approximate

version of problems which are very closely related in their optimization

versions (as all NP-complete problems must be!).

A good example 1s provided by the problems of VERTEX COVER

(VC) and MAXIMUM INDEPENDENT SET (MIS). Given a graph
G(V, E)l'a vertex cover is a set (| C V such that each edge in FE has
at least one end-point in '. The VC problem is to find a minimum

cardinality vertex cover in the input graph G. An independent set

in Gis a set I C V such that there are no edges between any pair

of vertices in I. The MIS problem 1s to find a maximum cardinality

independent set in (G. An independent set 1s exactly the complement

of a cliquel'so the MIS problem is the same as the CLIQUE problem

in the complement graph.

Exercise 1.1: Show that in every graph G, C is a vertex cover if and

only if I = V \ C is an independent set. Moreover, C is an optimal
solution to VC if and only ifI = V \ C is an optimal solution to MIS.

From this one might conclude that approximating VC and MIS are

related problems. This is not the case! As we will see in Chapter 4I'

there 1s an approximation algorithm for VC with the ratio 2. On the

other handI'we do not know of any approximation algorithm for MIS

with a ratio significantly better than |V| = n. To see why the approx-
imation of VC does not help in approximating MISI'let GG be a graph

with an optimal VC of size 5 — 1. Then we are guaranteed a vertex
cover of size at most n — 2 by the approximation algorithm. Unfortu-

natelyl'the complement of this vertex cover gives us an independent set

of size only 2I'as opposed to the optimal independent set of size 5 + 1.

Even though AN P-hardness reductions shed little light on the ap-
proximative behavior of optimization problemslit turns out we can use
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the theory of N'P-completeness to show that certain kinds of approxi-
mation algorithms do not exist unless P = NP. Let us first define the
best possible performance ratio for a given optimization problem.

Definition 1.10: We define Rasin(1D), the best achievable perfor-
mance ratio for an optimization problem 11, as follows

Ryrin(I) = inf{r > 1| 3 poly-time algorithm A for Il with Ry <r}

The most desirable situation would be to have Eyry = 1 for a

problem II. We see in the next few chapters that this can be achieved

for problems such as KNAPSACK and BIN PACKING. These are the

problems which are very easy to approximate. The next level of prob-

lems are those for which we can show that Fasrn 1s boundedl'as in the

case of ATSP. Finallyl' there are the really hard problems for which

Ryn 1s unbounded. In the rest of this chapter we examine a few

problems of the latter type.

Consider the general TSP problemli.e. without the triangle inequal-

ity. The following theorem due to Sahni and Gonzalez [55] shows that
this 1s a really hard problem to approximate. Note thatl'as usuall'the

hardness of an approximation problem is predicated upon P and NP
being different.

Theorem 1.16: IfP + NP then Ry n(TSP) = co.

Proof: Assume that there is an algorithm A such that RY = KT1'for
some constant K'. The proof idea 1s to use A to construct a polynomial

time algorithm to solve HAMI'the Hamiltonian cycle problem. Since

the HAM is N'P-completel'we get a contradiction if P # NP.

Suppose we have an instance of HAMI'i.e. an undirected and un-

weighted graph G(V, FE). We construct an instance [ for the TSP as
follows. Let H be a complete graph on the vertex set VV. The length

of an edge in H which is from FI is set to 1I'and the length of all other

edges are set to Knl'where n is the cardinality of V. The following

claim 1s easy to prove.
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Claim: If ( has a Hamiltonian cyle then OPT(I) = n. Otherwisel’
OPT(I)> (K+ 1)n—1.

Consider what happens when we run the algorithm A on I. If

G' is HamiltonianI'then A(/) < Kn. Otherwise’A(1) > OPT(I) >
(K + 1)n — 1. Thus the value of the solution found by A tells us
whether ¢ 1s Hamiltonian or not. In effectI'we have given a polynomial

time reduction from HAM to the approximate version of TSP. This

contradicts the fact that HAM is N'P-completel'unless P = NP.
[]

So far we have seen results which prove the impossibility of finding

absolute approximation algorithms (e.g. for CLIQUE)'and the above
result shows that for the TSP there is no approximation algorithm

with a bounded performance ratio. It is possible to devise algorithms

whose performance lies somewhere in between these two kinds of ap-

proximation algorithms. For examplel'we will see shortly an approx-

imation algorithm A for BIN PACKING where |A(I) — OPT(I)| <
O(log”OPT(I)). Another example is the result of Lipton and Tar-
jan [42] where it is shown that there is an approximation algorithm A
for finding maximum independent sets in planar graphs such that

1

Al) — OPT (I) £0 |———==| OPT(I)
/loglog OPTI)

using the planar separator theorem. Notice that such results imply that

RY = 1.

(Given the possibility of such intermediate performance guarantees’

it becomes interesting to prove impossibility results for such approxima-

tion algorithms. It is not very hard to modify the proof of Theorem 1.7

to obtain the following hardness result for CLIQUE. A series of such

results have been obtained by Nigmatullin [47] and Kucera [37].

Theorem 1.17: For all constants ¢, IK > 0, there ts no approximation

algorithm A for the CLIQUE problem such that

IAI) = OPT(I)| < K -OPT(I)""°
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Notice that this theorem does not rule out the possibility that there

is some algorithm A for CLIQUE such that RY = 1. (For examplel
one could obtain a result similar to that obtained for the case of planar

graphs.) We do not know whether this is possible for CLIQUE but
believe 1t to be extremely unlikely. Unfortunatelyl’ we do not know

of any way of showing that the asymptotic ratio 1 is not achievablel’

besides showing that Ry;;ny > 1 if P #% NP. The latter is strictly
stronger result.

Assuming that the ratio 1 1s not achievable for CLIQUEI'we can

show that no constant ratio 1s achievable either. This is a consequence

of the following very curious theorem. Basically the result says that

if that problem can be approximated within a specific constant fac-

tor['then 1t can be approximated within any constant factor. This is

an example of a self-reducibility result for the approximation of an op-

timization problem. This result is usually interpreted as saying that

CLIQUE is very hard to approximate as we do not believe that it has

Ray = 1.

Theorem 1.18: For the CLIQUE problem, either Ryjin(CLIQUE) =
oo or Ryn(CLIQUE) = 1.

The idea behind this theorem is to use a notion of graph product

to amplify the size of the optimal clique.

Definition 1.11: The product of two graphs G'1(V1, Ev) and Gy (Va, E3)
is defined as a graph G(V, EF) such that

o VV =V] x5.

o an edge {(uy, uz), (vy,v9)} ts in G if either (uy,vy) € Ey or (uy =
v1 and (ug, vy) € Ey).

We write G = G1 0 Gy and define GN = GN o (.

Note that the product operation is non-commutative. We will need

the following lemma whose proof is left as an exercise.
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Lemma 1.1: Let OPT(G) denote the size of the largest clique in G.
Then OPT(GYN) = OPT(G)N for all N > 0. Moreover, given any
clique of size Cin GV, we can find in polynomial time a clique of size
C' > [C~] in G.

We are now ready to prove the theorem.

Proof: Assume that Ry n(CLIQUE) < co. Then there exists an
approximation algorithm A for the clique problem which has RY = rl
for a some constant r. We now fix any € > 0 and construct an algorithm

A. such that BR <1 4 e. This would imply the desired result.

The algorithm A, first chooses N such that r¥ < 1+e¢ It then runs
the algorithm A on GV. Clearly'A finds a clique of size at least

OPT(GN)y OPT(G)"
r B r

in GV. By the preceding lemmal'this can be used to construct a clique
of size at least

OPT (G) - OPT (G)

in @.

To see that the algorithm A. runs in polynomial timel'observe that

the graph product can be computed in polynomial time and N is a
constant.

[]

1.4. Discussion

We are following the notation of Garey and Johnson [15] which is now
universally accepted. Their book is well-known as a good reference on

the theory of A'P-completeness. It also provides a great introduction to
the area of approximation algorithmsl'although it is quite a bit outdated

in this respect. You could also refer to some of the other standard text-

books on combinatorial algorithms [271'48]. Unfortunately neither of
these 1s up-to-date and they only provide a very cursory description of
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the work in this area. There are some survey articles on approximation

algorithms [13130135] but again all of these are really old and out-
dated. A more recent article by Kannan and Korte [32] is much more
useful.

Problems ~~~ 00000000000

1-1 Using the fact that every planar graph has a vertex of degree at

most Hl'show that all planar graphs are 5-colorable. How do you

find such a coloring in polynomial time?

1-2 Consider the following variant of the traveling salesman problem

called the bottleneck TSP problem. The goal is to find a Hamilto-

nian tour of the mput graph so as to minimize the length of the

longest edge in the tour. Assuming that the input graph satisfies

the triangular inequalityl'show that this problem has a polynomial

time approximation algorithm with ratio 3.

1-3 Consider the following generalization of the TSP called k-TSP

which 1s defined for any fixed £& > 0. Notice that the 1-TSP

problem 1s exactly the ATSP.

Instance: Complete graph G(V, F)I'with a distance function d :
FE — RT which satisfies the triangle inequality.

Feasible Solutions: A collection of k subtours on GG such that

each subtour starts and ends at vil'and all other vertex occur

exactly once in exactly one of the subtours.

Goal: The objective is to minimize the total length of the & sub-
tours.

Modify the Christofides Heuristic to solve this problem approxi-

mately and provide upper and lower bounds on its performance
ratio.

(Hint: There is a polynomial time algorithm to find a minimum
spanning tree T' of G such that a specific node v has a specific

degree d in T'.)
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1-4 Define the product of two graphs GG; and G5 as GG = G7 xX GLI

where (G is obtained by replacing each vertex of GG; by a copy

of (G5 and putting all possible edges between two copies which

correspond to adjacent vertices. Let GV be the graph defined by
the recurrence relation G'*! = G* x (G. Prove the following two
claims.

o Let OPT(G) be the size of the largest clique in GG. Thenl’
OPT(GN) = OPT (G)V.

o Given a clique of size C' in G"T'we can construct in polyno-
mial time a clique of size at least [CF] in GG.

1-5 A Hamiltonian walk in a graph G(V, FE) is a closed walk that visits
each vertex at least once. Let II denote the optimization problem

of finding a minimum length Hamiltonian walk.

a). Show that II is NP-complete.

b). What can you say about the hardness of approximating II7

c). Construct (and analyze) the best approximation algorithm
you can for II.

1-6 The Edge-Disjoint Cycle Cover [ECC] problem is to find a col-
lection of cycles in G(V, EF) which are edge-disjoint and which
include every vertex at least once. Comment on the relationship

between the optimization version of finding a cover by the small-

est number of cycles and the Hamiltonian walk problem. Analyze

the approximability of ECC by presenting positive and negative
results.



Chapter 2

® ®

Approximation Schemes

SUMMARY: The concept of an approximation scheme is defined and

is illustrated by presenting such schemes for multiprocessor schedul-

ing and the knapsack problem. This definition is then strengthened to

that of fully polynomial approximation schemes and illustrated via the

knapsack problem. It is observed that the existence of such schemes

is intimately related to the existence of pseudo-polynomial time algo-

rithms. The notion of strong N'P-completeness is presented and a
connection 1s made with the existence of approximation schemes and

pseudo-polynomial time algorithms.

Recall the result for CLIQUE which states that either Ryn = 1

or Ryrrny = oo for that problem. We had said that this is a “hardness”

result. Why should this not be viewed as an “easiness” result? After

alll'we have only to find any bounded-ratio approximation algorithm

for CLIQUEI'and then that can be turned into an approximation algo-

rithm with a ratio arbitrarily close to 1. One reason for viewing this

as hardness result is similar to the commonly held view of an NP-
completeness result as a hardness result. The existence of a bounded

ratio algorithm for CLIQUE would imply a result which seems much

too good to be truel'given the lack of success in solving the problem

so far. Another reason is that not too many problems seem to have

algorithms which can achieve a ratio arbitrarily close to 1. We will try

to provide some characterization of such problems in this part of the

33
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book.

Let us start by formalizing the notion of “having an algorithm which

can achieve a ratio arbitrarily close to 1.”

Definition 2.1: An approximation scheme for an optimization

problem 11 is an algorithm A which takes as input both the instance

[ and an error bound ¢, and has the performance guarantee

Ra(l,e) < (1+ e).

Notice that we can view such an algorithm A as a family of algorithms

{A. : €¢ > 0} such that Ry, < 1 + ¢. Howeverl'the definition of
an approximation scheme has the stronger requirement that the entire

(infinite) family of algorithms have a finite and uniform representation.
This 1s a very good solution to a hard optimization problem and most

people would consider a problem well-solved for all practical purposes if

such an algorithm could be found. As we shall seel'one can impose even

stronger conditions on the approximate solution to a problem. Our con-

vention has been to assume implicitly that an approximation algorithm

must run in polynomial time. Howeverl'for the sake of traditionlwe

will make this explicit in the following definition.

Definition 2.2: A polynomial approximation scheme (PAS) is
an approximation scheme {A.} where each algorithm A. runs in time
polynomial in the length of the input instance I.

We would like to emphasize that the above definitions are made

in terms of the absolute performance ratiosl’ and not the asymptotic

performance ratio. We will see later that this is a crucial difference.

We now provide some examples of problems which permit of a PAST
viz. SCHEDULING and KNAPSACK.
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2.1. Approximation Scheme for Schedul-

ing

Recall the multiprocessor scheduling problem: Jobs J;I'...I'J, have run-

times of p1I'...I'p,. They are to be scheduled on m machines /processors
so as to minimize the finish time. We have already seen some approx-

imation algorithms with bounded ratios for this problem. We now

present a PAS for this problem due to Graham [18].

Assume that n > mI'and that the run-times are arranged in non-

increasing order (i.e. 1 < j implies that p; > p;). Note that the latter
assumption can be easily fulfilled by sorting the jobs based on their

run-times. Consider now the algorithm Aj; which is defined for each

integer k € 0, n].

Algorithm Ay:

Input: Runtimes of n jobs {p,...,p,} and processor count m.

Output: A feasible schedule.

1. Schedule the first k jobs JiI'...I'J, optimally.

2. Starting with the partial schedule obtained in the previous stepl’

schedule the remaining jobs greedily using the LPT rule.

Recall that the LPT rule picks the next largest unscheduled job

and schedules it on a processor which has the least load currently. This

algorithm clearly runs in polynomial time. As for its performance ratiol’

we have the following result due to Graham.

1—L

Theorem 2.1: Ry, <1+ A]

Proof: Let K denote the finish time of the schedule found in Step 1.

Clearlylif Ax(/) = K then this algorithm has found an optimal schedule
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and we are done. Assume now that the finish time of the total schedule

1s strictly greater than K. Then it must be the case that there is some

job J; with 5 > k that is finished at time Ax(/). This implies that
all processors are busy during the time interval [0, Ax(/) — p;]I'since
otherwise the job J; would have been scheduled earlier on. (Notice
that once a processor becomes idlel'it remains idle till the end of the

Why cannot a schedule.) Let T" = 377, p; be the total run-time of the n jobs. We
P"ter gern now conclude that

idle? T= m(Ax(l) — pj) + pj

Since the jobs are arranged in non-increasing order of run-timeslwe
have that

T >mAp(I) — (m — 1)praq

Observing that OPT'(I) is at least T'/mI'we have the following inequal-
ity.

1

Ap(l) < OPT(I) + (1 _ —) Pert (2.1)
If we can now show that pri; cannot be too large in terms of

OPT (I)*I'we will have the desired result. This may be established
as follows. Consider the k largest jobs which were scheduled in Step

1. In an optimal schedulel'some processor must be assigned at least

1 + |k/m]| of these k jobs. Since each of these has run-time at least as
large as Jri1I'we conclude that

OPTI) = (1+ |%]) pris
« OPT()

= Pk+1 > [=]

Combining this with equation 2.1I'we have the desired result.
[]

We can now extract the promised PAS from the above result. Let

A.I'for any e€ > 0I'be the algorithm Aj; with k chosen such that the

*The proof of an upper bound on R4([) usually consists of two parts. First,
there is an upper bound on A([I), possibly in terms of OPT'(I) and some parameter
X; then there is a lower bound on OPT(I), possibly in terms of A(I) and X.
Eliminating X from these two inequalities gives the upper bound.
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performance ratio of Aj 1s at most 1 + e. Verily that this will be the

case provided k > =m. Howeverl'we have left out one crucial detail
in the description of the algorithm Aj. Exactly how does Step 1 get

implemented? It is not very hard to see that there is a brute-force

algorithm which compute an optimal schedule in time O(m")I' for k
jobs on m processors. The running time of this step is polynomially

bounded in the length of I for sufficiently small values of mlI'say for

constant m. We have established the following theorem. Exactly how large
can m be without

making the time

Theorem 2.2: For fired m, there is a polynomial approximation super-polynomial?

scheme for the m-processor scheduling problem.

Notice that this algorithm is by no means a practical algorithm even

for relatively small value of m. The running time is exponential in 1/¢
and so we cannot ask for ratios arbitrarily close to 1 without excessively

increasing the running time. It is instructive to compute the running

time of A. for small values of e. For examplel'figure out the running
time when m = 10 and ¢ = 0.1.

We would like to point out that this trade-off between the running-

time and the quality of the approximation obtained is an important

feature of any approximation scheme. In generall'we would like the

trade-off to be such that the running time does not increase too fast

with a decrease in the performance ratio. We will see this feature in

the approximation schemes presented in the next few sections.

2.2. Approximation Scheme for Knap-
sack

In the KNAPSACK problem we are required to find a subset of the

specified items such that the total size of the subset does not exceed the

knapsack capacityl'while maximizing the sum of the payofls associated

with the items. More formallyl’

Instances: Set U = {uy,...,u,} of items where each item wu; has a
size s; and a profit p; associated with 1t. The capacity of the
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knapsack’ Bl'is also specified as a part of the input.

Solutions: Subset U’ C U such that >, cys; < B.

Value: The value of a solution is the total profit’),ov p;l'of the items
packed into the knapsack. The goal is to maximize the net profit.

As usual we assume that the numbers involved in the input instance are

non-negative rationals. There is no loss of generality in requiring that

each item has size at most B. The following greedy algorithm GGA 1s an

obvious approximation algorithm for knapsack. The idea is to consider

the items one-by-one in the order decreasing profit to size ratio. Each

item 1s inserted into the knapsack if adding it does not cause the set of

current items to exceed the knapsack capacity.

Algorithm GA:

Input: The knapsack size Bl'the item sizes {sq,...,s,} and the
profits {p1,..., pa}.

Output: Subset of the items of total size at most B.

1. Sort the items in non-increasing order of their profit densities

pi/s;. At this pointI'we have that if1 < 7 then p;/s; > p;/s;;

2. U' + 0;

3. for 1:= 1 ton do begin

if > .cps;, < B—s; then U «+ U +7;

end .

Unfortunatelyl’ this natural greedy algorithm does not do well in

the worst case. For examplel'consider the case where there are only

two items — the first has size 1 and profit 2I' while the second has

What is Raa? size B and payofl B. Surprisinglyl'there is a very simple modification

to GA which substantially improves its performance. Let MGA be
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the Modified Greedy Algorithm which picks the better of the solutions

provided by GA and the solution obtained by packing just one item of

the largest possible size into the knapsack. We leave the proof of the

following theorem as an easy exercise.

Theorem 2.3: Eyga = 2

In 19751" Sahni [53] came up with a PAS for this problem. The
basic idea was quite similar to the one used for the scheduling problem.

For all kI'0 < k < nl'define the algorithm Aj; as follows. First the

algorithm Aj chooses a subset S of at most k items as being in the

knapsack initially. Then it runs the algorithm (GA using the remaining

items. This process 1s repeated for all possible choices of the k-set S.

This paradigm is generally referred to as k-enumeration for obvious

reasons. Almost every PAS that has been devised 1s based on this

approach. The application of this idea to knapsack gives the following
result.

Theorem 2.4: For all k, Ar has a performance ration Rg, < 1 + -
and runs in time O(kn*t1).

Proof: The number of subsets of size at most k is O(kn"). For each
such subset the amount of work done by Aj is O(n)limplying the bound
on the running time. We now turn our attention to the performance

ratio for Ay. It can be shown that the bound on the performance ratio is

tightI'the construction of an input instance for this is left as an exercise.

Let us fix our attention on any one optimal solutionl'say X C U.

If |X| < EI'then it is obvious that Aj will find an optimal solution
and we are done. Assume then that © = |X| > k. Let the items
Y = {v1,...,v} CX be the items with the largest profits in X. The
remaining items Z = X \'Y = {vpy1,...,v,} all have smaller profits
than the items in YT'and are assumed to be numbered in the order of

decreasing profit density p;/s;.

The algorithm A; will try Y as the initial k-set at some point.

We are only interested in this one iteration of the algorithm. After
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initializing the knapsack to YT'the algorithm will greedily try to fit into

the knapsack all the remaining items one-by-one in the order of their

profit densities. Define m as the index of the first item in the set 7

which 1s not placed into the knapsack by the algorithm Ail'i.e. items

viel. ..I'v,,_1 are placed into the knapsack.

The reason that the item v,, did not get placed in the knapsack

1s that the remaining empty space at that pointl'say El was smaller

than s,,. At the time when v,, 1s rejected the knapsack contains the

items from YT'the items vi(I'...I'v,,_; and some items which are not

present in the optimal set X. Let (¢ denote the items that are placed

into the knapsack so far by the greedy stage of Ax. (These are all the
items added to the knapsack up to this point that are not in Y.) It is
clear that the items in GG \ X are of total size A = B— FE — 7's;
Moreoverl'each of these items has profit density at least p,,/s,, since
they were considered earlier than v,, by the greedy stage of Aj. It then
follows that!

profit(G) > > pi + AL
i=k+1 Sm

We can now write profit(X)['the net profit of the optimal solution
XTas follows.

k m—1 x

> pi + > p+ > Di
1=1 1=k+1 =m

p — _\P

< profit(Y) + (profit(cy — Ab) oe ( => ‘) —Sm — Sm

= profit(Y) + profit(G) + fod
Sm

< profit(Y UG) + pn

Since the solution produced by Aj 1s a superset of Y U GT we get

OPT (I) — A(I) < p,. Noting that there are at least k items with
a higher profit than p,, in XI viz. the items in YI we have that

 TWe will use profit(T) and size(T) to denote the total profit and size, respec-
tively, of the items in the subset 7.
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Pm < profitly). This completes the proof.
[]

To obtain a PAS for KNAPSACKTI'let A. be the algorithm A; with

Corollary 2.1: There exists a PAS for KNAPSACK where the algo-

rithm A. runs in time nO),

2.3. Fully Polynomial Approximation
Schemes

Consider the running times of the algorithm A. in the PAS presented

above for KNAPSACK and SCHEDULING - the running times are

really enormous even for reasonable values of ¢. The definition of fully

polynomial approximation schemes is designed to remedy this short-

coming in the definition of a PAS.

Definition 2.3: A fully polynomial approximation scheme

(FPAS) is an approximation scheme {A.} where each algorithm A.
runs in time polynomial in the length of the input instance I and 1/e.

Assuming that P # N'PI'the existence of a FPAS is the best one
can hope for in the case of an NP-complete problem. Not surprisinglyl’
there are very few NP-complete problems which permit of an FPAS.
One problem for which we can demonstrate such a scheme 1s KNAP-

SACK. The basic idea behind the FPAS for KNAPSACK is prototypical
of most FPAS that are known.

Let PP be an algorithm for the exact solution of KNAPSACK which

runs in time O(n° Plog SB)I'where P = max; p; and S = max; s;. From This does not
this we construct an approximation algorithm Ay for KNAPSACK as gly at
follows. though the running

time appears to be

polynomaal. Do

you see why not?

Algorithm Ay:
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Input: Knapsack instance I with the profits p;I'sizes s;I'and

knapsack capacity B.

Output: Subset of items of total size at most B.

1. Construct an input instance [x with new profits p. = |p;/K|T
while leaving everything else unchanged.

2. Run algorithm PP on the instance [x to obtain a subset of the

items S which has total size not exceeding B.

3. return 5.

Let V = >; p;. We derive an algorithm A. from Ag by setting

K = En This gives us an FPAS for KNAPSACK as proved in the
following theorem [28]. The running time is polynomial in both the
length of the input and the inverse of e.

Theorem 2.5: The algorithm A. runs in time O (ntoesB) and has
Ra <1 +e.

Proof: The running time is easily obtained from the above defini-

tions. As for the performance ratiol'first observe that

OPT(I)— K-OPT (Ig) < Kn

which implies that

OPT (I) — Ax(I) < Kn

Note also that OPT (1) < V. We can now derive the desired bound as
followsI’

A(l)+ Kn
Ri(l) < ———

— Kn
- A(T)

< 14 Kn
~ OPT(I) — Kn
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< 14 Kn
- V — Kn

< 1 +4e€

[]

Basicallyl'this FPAS starts off with a slow but exact algorithm for

KNAPSACKTI'and then trades accuracy for speed by means of a “scal-

ing” technique. Of coursel'we have yet to specify the algorithm PP;
this 1s dealt with in the next section.

2.4. Pseudo-Polynomial Algorithms

The algorithm PP that we promised in the last section is an example

of a pseudo-polynomial algorithm. This 1s a class of algorithms which

runs in time that is polynomial in the size of the numbers involved in an

input instance. Note that the usual definition of the length of an input

depends logarithmically in the size of the numbers used. Thusl such

algorithms are not really polynomially bounded in the length of the

input. In this section we present a brief introduction to these notions.

Refer to the book by Garey and Johnson [15] for a more thorough
treatment of these concepts. We will also point out the connections

between such algorithms and the construction of FPAS.

We start off by defining the notion of a number problem. A com-

binatorial optimization problem consists of two components — a com-

binatorial component and a numerical component. The former refers

to structures which are purely combinatorial in naturel'such as graphs

and set systems. This component can be thought of as structures which

are made up of atoms drawn from some bounded domains; these can

be encoded as vectors over a finite domain. The latter can be thought
of as numbers which are drawn from some unbounded domain such as

integers or rationals. We now define the following two functions which

measure the size of the encoding of an input instance assuming some

“reasonable” encoding scheme.”

We are presenting only an intuitive development here and the reader should
refer to [15] for a more formal treatment.
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Definition 2.4: Given any optimization problem 11 and a reasonable

encoding of the input instance for II, we define LENGTH(I) and
MAX#(I) as functions which map the input instances into positive
integers. The LENGTH function measures the combinatorial size of

the input, and the MAX function measures the size of the largest

number used in the encoding.

For examplel'in the case of the KNAPSACK probleml we have

LENGTH(I)=n and MAX#(I) = max{P,S}. We can now present
a more formal definition of polynomial time and pseudo-polynomial

time algorithms.

Definition 2.5: A polynomial time algorithm A for II runs in time

which is polynomially bounded in LENGTH(I) and log MAXH#(I) for
each input instance I.

Definition 2.6: A pseudo-polynomial time algorithm A for Il runs

in time which is polynomially bounded in LENGTH(I) and MAX #(I)
for each input instance I.

ThusI' our usual definition of an efficient algorithm refers to the

former class of algorithmsI'while the algorithm PP for KNAPSACK

belongs to the latter class of algorithms. Let us illustrate the latter

definition by providing a pseudo-polynomial algorithm for the PARTI-

TION problem. This problem is NP-complete and is defined as follows.
An input instance consists of n positive integersl's{I'...I's,I'and a bag

size B. A feasible solution solution consists of a subset X C [1,...,n]

such that >~,cx s; = B. The decision version of this problem is closely
related to the BIN PACKINGISCHEDULING and KNAPSACK prob-
lems.

Consider the algorithm DP [14] for PARTITION which is based on
the paradigm of Dynamic Programming. The basic idea behind DFP 1s

to construct the table 7; ;I'for 1 <i <n and 0 <j < B. The entries in
the table are boolean values such that 7;; = TRUFE if and only if there

exists YY C [1,...,¢] such that > ;cy s; = 7. This table T' is constructed
in a row-by-row fashion as follows.
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Algorithm DP:

Input: Bag size B and item sizes {s1,...,$,}.

Output: Table T.

1. forall 1 <:<ndo T,g + TRUE;

2. forall 0 <j<Bdo Ti; + (j=s1);

3. for 9 = 1 to B do Tiv1, — 1; V Li i—siyis

A simple induction proof establishes that this algorithm will cor-

rectly compute the table T'. To decide the problem of PARTITIONI

it suffices to check the entry T'(n, B). Actuallyl'the algorithm can
be easily modified to solve the search problem of computing a set X.

This can be done by storing the set X;; at the position 7;; such that

X;; C1,...,1Jand Xie, si = j. Note that there may not be a unique Do you see how to
X;; but it suffices to store any one set at each position in T'. We obtain do this?
the following theorem which implies that DFP 1s a pseudo-polynomial

time algorithm for PARTITION.

Theorem 2.6: The algorithm DP solves the search version of the

PARTITION problem in time O(n*B).

We now show how to devise the pseudo-polynomial time algorithm

PP for KNAPSACK using some of the ideas from DP. Our goal is
now to find a subset U’ C U of total size at most B so as to maximize

the profit(U’). The obvious modification to DP would be to store a Observe the close
set X,;; at each each table entry 7;, as beforel'just ensuring that we ren elneen
pick the set of maximum possible profit out of all the sets which are KnvaPsAck.

candidates for being X; ;. Unfortunatelyl'this does not work and there
are two problems which crop up.

The first problem is that we get a running time that depends expo-

nentially on the length of BI'while the scaling argument of the previous

section works only permits the running time of the algorithm PP to

depend exponentially on the length of P. Secondlyl'it is not clear that
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picking the set X;; of the largest profit is the right choice of a partial
solution. It may be the case that only a lower profit subset of [1...1]
can be extended to an optimal solution.

The way to fix the first problem is to have the columns of T" as being

in correspondence with the profits of the sets rather than their sizes.

Note that the maximum profit of any set 1s nPl'and in particular we

have that OPT(I) < nP.

Definition 2.7: The boolean table T' consists of entries T;;, for 1 <
1 <n and 0 < 53 < nP, such that T;; = TRUE if and only if there

exists a set X;; C|1,....1] with size(X;;) < B and profit(X;,;) = 7.

In this definitionI'the entry 7;; tells us if there is a subset of the first 2
items which 1s a feasible solution to KNAPSACK and has value j.

The second problem that we had mentioned can be easily handled

once we have the following fact. The proof is obvious.

Lemma 2.1: Let X, YY C [l,...,1] be such that profit(X) =
profit(Y) = 7 and size(X) < size(Y). Then, forall Z C [1+1,...,n],
it is the case that size(X UZ) < size(Y U Z).

This means that if any candidate set X;; can be extended to an optimal
solutionI'then a candidate set of the smallest size can be so extended.

ThusI'we can now define the sets X;; as follows.

Definition 2.8: Consider any entry 1;; in the table T. If T;; =
FALSE then X;; = *, where x denotes that X,,; is undefined. If
T;,;, = TRUE, then X;,; is defined as the subset X C [1,...,1] of the
smallest size which has size at most B and profit exactly 7; when no

such set exists the value of X;; is undefined.

It 1s now fairly easy to come up with a strategy for computing the

T" and X values inductively in a row-by-row fashion.

Algorithm PP:
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Input: Knapsack capacity Bl'item sizes s; and profits p;.

Output: The tables T' and X.

1. for all 1 <: <n do begin

Xio — 0;

end ;

2. for all 7 # p; do begin

Ty; FALSE;

end ;

5. for 1 = 2 to n do begin

for all 1 <7 <nP do begin

Liprj = Li V Lijpigs;
X41; 1s assigned the set of smallest size among Xj ;

and X;;_p,., U{?+ 1}. If only one of these is
defined then the choice is forced; when both are

undefined or infeasiblel'then X,;; = *.
end ;

end .

Once we have computed the tables X and T'T'the optimal solution

to KNAPSACK can be read off from the column with highest index

which has a T'RUL entry. The proof of correctness 1s by means of a

simple induction on ¢ and 1s omitted. The following theorem results.

Theorem 2.7: Algorithm PP solves KNAPSACK exactly in time

O(n’Plog SB).

This result is due to Ibarra and Kim [28]T'and a more efficient FPAS
has been presented by Lawler [39].
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2.5. Strong NP-completeness and FPAS

Let us try to better understand the implications of a pseudo-polynomaial

algorithms for NP-complete problems. Does the existence of such an
algorithm imply that P = ANP? The answer is nol'because the running

time is exponential in log MAX#([) and the length of the input is as-
sumed to be polynomial in both LENGTH(I) and log MAX#([) when
we define the notion of NP-completeness. Given thisl'it seems possible
that every NP-complete problem has a pseudo-polynomial time algo-
rithmleven if P # NP. But it is not very hard to see that if MAX#(I)
is polynomially bounded in LENGT H(I)I'for every instance I of IIT’
then the existence of a pseudo-polynomial algorithm implies the exis-

tence of a polynomial time algorithm. This bound is valid for every

“non-number” problem such as CLIQUE or HAM. We conclude that it

1s impossible to find pseudo-polynomial algorithms for such problems

unless P = NP. This can be formalized as follows [14I'15].

Definition 2.9: Given any optimization problem II, we define the

problem 11,.,;, as the problem 11 restricted to only those instances I

where MAX#(I) is polynomially bounded in LENGTH(I).

Definition 2.10: An optimization problem 11 is said to be strongly

NP-complete if 11,.;, is NP-complete.

It is clear that all non-number problems are strongly NP-complete.
Moreoverlit 1s fairly easy to see that the existence of pseudo-polynomial

algorithms 1s quite unlikely for any number problem which is strongly

NP-complete.

Theorem 2.8: Unless P = NP, a strongly NP-complete problem
cannot have a pseudo-polynomial algorithm.

Some examples of strongly NP-complete number problems are
BIN PACKINGI'TSP and SCHEDULING. The standard A/P-hardness

proof of KNAPSACK uses really large numbers so that does not es-

tablish strong N'P-completeness for this problem. (Of courselif we
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believe that P # NP then KNAPSACK cannot be strongly N7P-
complete since we have already seen a pseudo-polynomial algorithm

for it.) It is not obvious how one may go about establishing strong
NP-completeness results. Most reductions for number problems in-

volve really large numbers and thus say nothing about the hardness of

I1,,,.- The following theorem [141'15]| proves to be very helpful in this
regard.

Theorem 2.9: If II; is strongly NP-hard, 115 is in NP, and there is
a pseudo-polynomial reduction from 11, to Il, then ly is strongly

NP-complete.

Here a pseudo-polynomial reduction is a generalization of the usual

notion of polynomial reductionl'where it 1s required that the length of

the produced instance is not much smaller than the original instance.

The proof of the above theorem is fairly obvious. The only problem

is that to apply this theorem we must know of some strongly NP-
complete number problem to start with. (Non-number problems are
trivially strongly NP-completel'but they are not very useful in the
application of this theorem to number problems since reductions from

them always seem to involve large numbers.) Luckilyl'there is a num-
ber problem called 3-PARTITION which is known to be strongly NP-
complete and this usually plays the role of the satishability problem

when proving strong AN P-completeness results. Once again we urge
the reader to refer to the book of Garey and Johnson [15] for a more
comprehensive treatment of these ideas.

What does all this have to do with the approximation issue? It

turns out that all known FPAS have been derived by the application of

a scaling-like technique to a pseudo-polynomial algorithmIjust as in the

case of KNAPSACK. It seems plausible then to argue that we can find

an FPAS for a problem only if it is not strongly AP-complete. This
idea is formalized in the following result due to Garey and Johnson [14].

Theorem 2.10: Let II be an optimization problem which has the prop-

erty that for all instances I, OPT(1I) is polynomially bounded in the
LENGTH(I) and MAX#(I). If II has a FPAS, then II has a pseudo-
polynomial algorithm.
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Proof: We will only deal with problems where all the numbers

involved are positive integersl'although the following proof can be gen-

eralized to the case of rationals too. Let ¢ = 1/MAXOPTI where
MAXOQPT 1s the bound on the value of OPT that is guaranteed in

the theorem. Then 1/€ is polynomially bounded in LENGTH(I) and

Suppose we have a F'PAS for III'and assume without loss of gener-

ality that II is a minimization problem. Then we have an algorithm A,

which finds a solution to any instance of II such that

Al) < (1+€OPT(I)
= A(I)—-OPT(I) < €¢-OPT(I)<1

The last equality follows from the choice of ¢. Since the numbers

involved are all integersI'this means that A. finds an optimal solution.

Moreoverl'A, is a pseudo-polynomial algorithm given our choice of e.
[]

Corollary 2.2: Let II be an integer optimization problem such that

OPT(I) is polynomially bounded in the LENGTH(I) and MAXI).
If 11 is strongly NP-complete , then 11 does not have a FPAS.

Notice that this accounts for the two technical conditions we had

imposed on the class of optimization problems we are dealing with in

this book. It 1s possible to find optimization problems which violate

the conditions of the corollaryl'’but such problems do not arise naturally

in practice. At this point we have a fairly complete characterization

of problems which have a FPAS. Since most interesting problems are

strongly N'P-completel'we may as well forget about constructing FPAS
for them. It is still possible to construct PAS for such problemsle.g. the
one we saw for SCHEDULING. Howeverl'we do not even know how to

construct a PAS for a large class of strongly NP-complete problems. It
1s therefore quite natural to look for negative results about the existence

of PAS. The following theorem of Garey and Johnson proves to be quite

useful for this purpose; the proof is trivial.
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Definition 2.11: Let II be an optimization problem. The decision

problem ll is the problem of deciding, for a given instance I, whether

OPT(I) < K.

Theorem 2.11: Let II be an integer optimization problem. Suppose

that the decision problem ll is N'P-hard for some constant K. Then,
unless P = NP, there is no PAS for 11 and, in particular, there does

not exist any approximation algorithm A for Il with R4 < 1+ 1/K.

Let us see how this theorem applies to specific problems. Consider

the COLORING problem of finding a vertex coloring of a graph with

the minimum number of colors. It is well known that checking that a

graph is 3-colorable is NP-hard. This implies that there is no PAS for
coloringl’and that no algorithm can guarantee a ratio better than 4/3.
Similarlyl'the problem of deciding if an instance of BIN PACKING has

a solution with 2 bins is NP-hard — this is exactly the PARTITION
problem. This implies that BIN PACKING does not have a PAS and

that no algorithm can guarantee a ratio better than 3/2.

At this point a discerning reader may start to protest at what seems

like a contradiction in that we have already seen an algorithm for BIN

PACKING which has a ratio much better than 3/2. But note that
we are talking only about absolute performance ratios in this sectionl’

whereas the approximation algorithms for BIN PACKING seen earlier

(such as FFD or BFD) guaranteed a good asymptotic performance ratio.
In factI'most people had assumed that strong NP-completeness even
implied that no Asymptotic PAS/FPAS could be be devised for the
problemI'unless P = AP. It was therefore a big shock when Vega and
Lueker [59] presented an Asymptotic PAS for Bin Packing in 1981. This
shock was compounded when Karmakar and Karp [34] transformed this
result into an Asymptotic FPAS for BIN PACKING. These two results

will be our next topic of discussion.

In conclusionl'we would like to offer some observations about the

above development. Consider the SCHEDULING problem. It is a scal-

able problemI'which implies that for every approximation algorithm

it must be the case that R4 = RY. We know of a PASI'and there-
fore an Asymptotic PASI'for this problembut it is clear that there
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cannot be even an Asymptotic FPAS (without leading to a FPAS and
therefore a pseudo-polynomial algorithm) for SCHEDULING. This is
in contrast to BIN PACKING which does not have a PASI'but does

have an Asymptotic FPAS!

2.6. Discussion

Sahni [54] gives general techniques for constructing PAS and FPAS. For
constructing a PASI'the technique is k-enumeration whose applications

have been demonstrated above. The techniques for FPAS are round-

ing /scaling and interval partitioningl’'some aspects of which were seen
above and are further demonstrated in the algorithms for BIN PACK-

ING that follow. An interesting result of Korte and Schrader [36] shows
that essentially the only way to construct PAS/FPAS is by means of
these techniques. This result 1s proved in the context of independence

systems but appear to be reasonably powerful in their application.

Problems ~~~ 00000000000

2-1 Consider the KNAPSACK problem defined in class. (Find a sub-
set of n itemsI'with total size at most KT'which maximizes the

total value.)

a). Consider the Greedy Algorithm (GA). It first sorts the items

in decreasing order of their density d; = ==. Then it considers
the items in this order and greedily adds an item to the current

knapsack if the resulting size 1s at most K. Finallyl'it compares

the solution so obtained with the one in which only the maximum

value item 1s placed in the knapsack — choosing the better of these

two possible solutions. Show that Roy = 2.

b). Construct (and analyze) a PAS (polynomial time approxima-
tion scheme) for the KNAPSACK problem using G A.



Chapter 3

Bin Packing

SUMMARY: Approximation schemes are presented for BIN PACKING,

including a PAS due to Vega and Lueker, and an FPAS due to Kar-

makar and Karp. It is shown that the latter can be modified into an

approximation algorithm whose absolute error is bounded by a poly-

logarithmic function in the value of the optimal solution.

It is clear from the preceding discussion that we cannot expect to

find any approximation schemes for BIN PACKINGI unless P = NP.
Howeverl'we had said that the hardness result for BIN PACKING does

not preclude the existence of asymptotic approximation schemes. For

the sake of completenessI'we give a formal definition of such schemes.

Definition 3.1: An Asymptotic PAS (APAS) is a family of algo-
rithms {A. |e > 0} such that each A. runs in time polynomial in the

length of the input and RY <1 +e.

Definition 3.2: An Asymptotic FPAS (AFPAS) is a family of
algorithms {A. |e > 0} such that each A. runs in time polynomial in

the length of the input and 1/e, while RY <1 +e.

The first result that we present is due to Vega and Lueker [59].
They provide an APAS for BIN PACKING which runs in linear time

and has A.(1) < (1 4+¢€)-OPT(I)+ 1. The running time is linear in

53
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the LENGT H(I) but turns out to be severely exponential in e. Note
that the reason this is an APASI'and not a PASI'is the additive error

term of 1 in this bound. The basic techniques used in this result were

similar to those used earlier for other problems such as Knapsack [54].
These may be summarized as follows:

oe Elimination of “small” items.

e Interval Partitioning or Linear Grouping.

¢ Rounding of “Fractional” Solutions.

We then present the modification of this result due to Karmakar

and Karp [34] which led to an AFPAS for BIN PACKING. They gave
an approximation scheme with a performance guarantee similar to the

one described above; the running time was improved to O (2logr). In
factl'a variation of their ideas leads to a stronger result. This was the

construction of an approximation algorithm A which is fully polynomial

and has the performance guarantee

A(I) < OPTI) + O(log” OPT(I))

At this point there is no reason to believe that we cannot devise an

(asymptotic) approximation algorithm which runs in polynomial time
and guarantees that A(I) < OPT(I) + O(1). This is a major open
problem!

We now derive the results described above. Our presentation com-

bines the ideas of both Vega and Luekerl'and Karmakar and Karpl'as

there 1s a considerable overlap in the basic tools used by them. The

basic approach used in both results is as follows. We first define a re-

stricted version of the problem where all items are reasonably large in

sizel'and the item sizes can only take on a few distinct values. This

version of the BIN PACKING problem turns out to reasonably easy

to solve. We then provide a reduction from the original problem in-

stance to a restricted problem instance in two steps. The first step is

to eliminate “small” items — it 1s shown that given any packing of the

remaining itemsl'the small items can be added in without increasing

the number of bins used significantly. The second step is to divide the
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item sizes into m intervalsl'and replace all items in the same interval

by items of the same size. It turns out that this affects the value of the

optimal solution only marginally. In the next few sectionsI'we consider

each of these ingredients in turn and finally show how they can all be

tied together to give the APAS/AFPAS.

3.1. Asymptotic Approximation Scheme

The input to the BIN PACKING problem consists of a set of n itemsI’

where the size of the i item is s;. We will assume that each item size

is a rational number in the interval (0, 1].

Definition 3.3: For any instance I = {sy,...,s,}, let SIZE(I) =
dr 1s; denote the total size of the n items, and let OPT (I) denote the
minimum number of unit size bins needed to pack the items.

We now give two inequalities relating these quantities. The proof
of the first lemma 1s obvious. The second lemma follows from a re-

sult given in Chapter 1 which showed that the First Fit algorithm will

always find a solution that uses at most 2- SIZE(I) + 1 bins. This
1s a constructive result in that there is a linear time algorithm which

guarantees the bound of Lemma 3.2.

Lemma 3.1: SIZE(I) <OPT(I) < || =n.

Lemma 3.2: OPT(I)<2-SIZE(I)+ 1.

We will represent an instance [ as an ordered list of itemsI'writing
| =s8189...5,such that 1 > ss; >s,>--->3s, > 0.

Definition 3.4: Let I}, = xy29...2, and I, = ys...vy, be two in-

stances of equal cardinality. The instance I, is said to dominate the

instance Io, or Iy = Iq, if it is the case that x; > y;, for all 1.
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The following lemma is easily proved by noting that any feasible

packing of I; gives a feasible packing of I;I'using the same number of
bins.

Lemma 3.3: Let I; and I, be two instances of equal cardinality such

that I; = I. Then, SIZE(Ily) > SIZE(I) and OPT (1) > OPT (1).

We define a restricted version of the BIN PACKING problem as

follows. Suppose that the item sizes in I take on only m distinct values.

Now the instance I can be represented as a multi-set of items which

are drawn from these m types of items.

Definition 3.5: Suppose that we are given m distinct item sizes V =

{v1,..., 0m}, such that 1 > vy > vy > «++ > v,, > 0, and an instance
I of items whose sizes are drawn only from V. Then, we can represent

I as multi-set My = {ny : vi,ng : va,...,Ny © Vy}, where n; is a
non-negative integer denoting the number of items in I which have size

Uj.

It follows that |[M;| = >>%, n; = nl' SIZE(M;) = 3-7 nyu; =
SIZE(I) and OPT(M;) = OPT(I). We now define the restricted
version of the BIN PACKING problem called RBP.

Definition 3.6: For all 0 < 6 < 1 and positive integers m, the prob-

lem RBP|6,m] is defined as the BIN PACKING problem restricted to
instances where the item sizes take on at most m distinct values and

each item size is at least as large as 9.

In the next section we show how to approximately solve RBP via

a linear programming formulation.

3.1.1. Restricted Bin Packing

Assume that ¢ and m are fixed independently of the input size n.

The input instance for RBP[d,m] is a multiset M = {ny : vi, ng :
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V2y eves Nyy © Upt such that 1 > v1 > vg > «++ > v,, > §. Let
n = |M| = 3>",n; In the following discussion we will assume that
the underlying set V for M is fixed. Note thatl'given MT'it is trivial to

determine V and verify that M is a valid instance of RB P[d, m].

Consider a packing of some subset of the items in M into a unit size

bin B. We can denote this by a multiset B = {by : v1,by : va,...,b,, :
Umt such that b; is the number of items of size v; that are packed into
B. More conciselyl'having fixed VI'we can denote the packing in B

by the m-vector B = (by, ...,b,,) of non-negative integers. We will say
that two bins packed with items from M are of the same type if the

corresponding packing vectors are identical.

Definition 3.7: A bin type T is an m-vector (1y,...,T,,) of non-
negative integers such that 37° Tv; <1.

Having fixed the set VI'the collection of possible bin types is fully

determined and is finite. Let T'I"...I'T'? denote the set of all legal bin Do you see why?
types with respect to V. Here ¢l' the number of distinct typesl'is a

function of 4 and m. We bound the value of ¢ as follows.

Lemma 3.4: Let k= ||. Then,

q(d,m) < nek

Proof: Notice that each type vector T" = (T},...,T!) has the
property thatl'for all :I'7T > 0 and >", Tv; < 1. It follows that
Son TP < kI'since we have a lower bound of § on the values in V.
Thusl'each type vector corresponds to a way of choosing m non-negative

integers whose sum is at most £. This 1s the same as choosing m+1 non-

negative integers whose sum is exactly k. The number of such choices

1s an upper bound on the value of gq. A standard counting argument

now gives the desired bound.
[]

Consider any feasible solution = to an instance M of RBP[d, mm].
Fach packed bin in this solution can be classified as belonging to one of
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the (0d, m) possible types of packed bins. The solution = can therefore
be specified completely by providing the number of bins of each of the

q types.

Definition 3.8: A feasible solution x to an instance M of RBP|j, m)]
is a q-vector of non-negative integers, say r = (xy,...,x,), where x;
denotes the number of bins of type T" used in x.

Notice that not all ¢g-vectors correspond to a feasible solution. A

feasible solution must guaranteelfor each :I'that exactly n; items of

size v; are packed in the various copies of the bin types. The feasibility

condition can be phrased as a series of linear equations as follows.

q

Vie {l,...,m}, > ad] =n;
t=1

Let the matrix A be a ¢ x m matrix whose #!* row is the type vector

T'T'and 77 = (ny,...,n,) denote the multiplicities of the various item
sizes in the input instance M. Then the above set of equations can

be concisely expressed as ¥.A = n. The number of bins used in the

solution x is simply #.1 = >_}_, x;['where 1 denotes all-ones vector. In
factI'we have proved the following lemma.

Lemma 3.5: The optimal solution to an instance M of RBP[d, m] is
exactly the solution to the following integer linear program ILP(M)

minimize 7.1

subject to

> 0

rT A>n

Notice that we have replaced the equations by inequalitiesI'but that

does not affect the validity of the lemma since a packing of a superset of

M can always be converted into a packing of M using the same number

of bins. It is also worth noting that the matrix A is not determined «a

priori but depends on the instance M.
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How easy is it to obtain this integer program? Note that the number

of constraints in ILP(M) is exponentially large in terms of § and m.
Howeverl'we are going to assume that both ¢ and m are constants

which are fixed independently of the length of the inputl’which is n.

Thusl'obtaining ILP(M) requires time linear in nl'given any instance
M of cardinality n.

How about solving ILP? Recall that the integer programming prob-

lem is NP-complete in general [15]. Howeverl'there is an algorithm due
to Lenstra [411'20I'56] which solves any integer linear program in time
linear in the number of constraintsI'provided the number of variables

1s fixed. This is exactly the situation in ILP: the number of variables

q 1s fixed independent of nl'as is the number of constraints which is

q + m. Thusl'we can solve ILP exactly in time which 1s independent

of n. (A more efficient algorithm for approximately solving ILP will
be described in a later section.) The following theorem results. Here
f(6,m) is some constant which depends only on § and m.

Theorem 3.1: Any instance of RBP|6, m] can be solved in time O(n+
£(5,m)).

3.1.2. Eliminating Small Items

In this section we present the second ingredient of the APAS devised

by Vega and Lueker. It is shown that if we have a packing of all

items except those whose sizes are bounded from above by éI'then it

1s possible to obtain a packing of all items which is not much worse in

its use of bins. This is summarized in the following lemma; the rest of

this section 1s devoted to the proof of this lemma.

Lemma 3.6: Fix some constant 6 € (0, 3]. Let I be an instance of
BIN PACKING and suppose that all items of size greater than ¢ have

been packed into [3 bins. Then it is possible to find in linear time a

packing for I which uses at most max{(, (1 +20) - OPT (I) + 1} bins.

Proof: The basic idea 1s to start with the packing of the “large”

items and to use the greedy algorithm First Fit to pack the “small”
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items into the empty space in the 3 bins. The implementation of this

scheme 1s not very important. For examplel'we could start by number-

ing the bins in an arbitrary fashion. Then the FF algorithm can be

run as usual using this ordering to decide where each small item will

be placed. If at some point the small items do not fit into any of the

currently available binsI'then a new bin is initiated.

The best case 1s where the small items can all be greedily packed

into the (# bins which were open initially. Clearlyl'the lemma is valid in

that case. Suppose now that some new bins were required for the small

items. We claim that at the end of the entire process each of the bins

used for packing I has at most 0 empty space in itI'with the possible

exception of at most one bin.

To see thisl'consider the case where there are two bins with more

than 0 wasted space. Let these bins be B; and B;I'with : < j under the
ordering defined by FF. It cannot be the case that either of these two

bins 1s from the set of 3 bins which were available initially. Otherwisel

we would have packed some small item into that bin before opening any

new binl'contradicting the assumption that new bins were required by
FF. On the other handI'if both bins are new bins then we would have

packed at least one of the items from B; into B; before the bin B; was
opened.

Let 3’ > [3 be the total number of bins used by FF. We are guaran-

teed that all the binsl'except onel'are at least 1—¢ full. This implies that

SIZE(I) > (1 = 6)(B' — 1). But we know that SIZE(I) < OPT(I)l
implying that

1

A < T—50PTU) +1 < (142) -OPT(1)+1
and we have the desired result.

[]

3.1.3. Linear Grouping

The final ingredient needed for the APAS 1s called Interval Partitioning

or Linear Grouping. This is a technique for converting an instance I of
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BIN PACKING into an instance M of RBP|§, m]['for an appropriate
choice of § and mI'without changing the value of the optimal solution
too much. Let us assume for now that all the items in I are of size

at least I'for some choice of § € (0,2]. All that remains is to show
how to obtain an instance where the item sizes take on only m different

values. Firstl'let us fix some parameter kI'a non-negative integer to be

specified later. We now show how to convert an instance of RBP|J, n]
into an instance of RBP[d, m|['for m = [n/k]|.

Definition 3.9: Given an instance I of RBP[d,n| and a parameter k,

let m = |n/k]. Define the groups of items Gi = Si_1)kt1--- Sik, for
r=1,....m, and let G11 = Smka1 Sp.

Here the group Gy contains the k largest items in I1'G5 contains

the next k largest items and so on. The following fact is an easy con-

sequence of these definitions.

Fact 3.1: G1 = Gy = --- >= Gi,

From each group Gi; we can obtain a new group of items H; by

increasing the size of each item in (7; to that of the largest item in that

group. The following fact is also obvious.

Definition 3.10: Lel v; = s(_1)r41 be the largest item in group Gi.
Then the group H; is a group of |G;| items, each of size v;. In other
words, H; = vv; ...v; and |H;| = |G].

The entire point of these definitions is to obtain two instances of

RB P|, m] such that their optimal solutions bracket the optimal solu-
tion for I. These instances are defined as follows.

Definition 3.11: Let the instance Io = HyHs... H,,11 and Igy; =

HHH...H,1.
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Note that [po is an instance of RBP|J, m|. Moreoverl'it is easy
to see that I =< Ig. We now present some properties of these three
instances.

Lemma 3.7:

OPT (Io) OPTI) OPT (Ig) OPT (Io) +k

SIZE(I1o) < SIZE) < SIZE) < SIZE(Ipo) +k

Proof: Firstl'observe that

Iro=HyHs... HH,1 XGiGy...G,,_1X,

where X is the any set of |H,,,1| items from G,,. The right hand side

of this inequality is a subset of [T'and this gives us that OPT (110) <
OPT (I) and SIZE(I0) < SIZE (I)lusing Lemma 3.3.

Observe now that Ig; = HiIro. Given any packing of Irol'we can

obtain a packing of Ir; which uses at most k extra bins. (Just pack
each item in Hj in a separate bin.) This implies that OPT (Igy) <

using Lemma 3.3 we get the remaining part of the desired result.
[]

It is worth noting that the result presented in this lemma is con-

structive. There is an O(nlogn) time algorithm which constructs the
Do you see how to Instances [rp and Iyrl'and given an optimal packing of Io it is possi-

retua ty find fio ble to construct a packing of I which meets the guarantee of the aboveand Igy, as we

as convert their lemma.
packing into a

packing of 1,

within the stated . .
time bound? 3.1.4,  APAS for Bin Packing

We now put together all these ingredients and obtain the APAS. The

algorithm A.I'for any e € (0,1]['takes as input an instance [ of BIN
PACKING consisting of n items.
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Algorithm A.:

Input: Instance I consisting of n item sizes {si,...,s,}.

Output: A packing into unit-sized bins.

1. 6 3

2. Set aside all items of size smaller than éI'obtaining an instance .J

of RBP[o,n'] with n’ = [J].

4. Perform linear grouping on J with parameter k. Let Jro be the

resulting instance of RBP[d, m] and Jy; = Hy U Jr ol'with

|Hi| = k and m = 2.

5. Pack Jro optimally using Lenstra’s algorithm on ILP(Jro).

6. Pack the & items in H, into at most & bins.

7. Obtain a packing of J using the same number of bins as in steps 6

and 7I'by replacing each item in Jy; by the corresponding

(smaller) item in J.

8. Using F F'I'pack all the small items set aside in step 2['using new

bins only if necessary.

How many bins does A, use in the worst case? Observe that we have

packed the items in Ji Thence the items in JTinto at most OPT (Jro)+
k bins. Consider the now the value of k in terms of the optimal solution.

Since all items have size at least ¢/2 in JI'it must be the case that
SIZE(J) > en’/2. This implies that

en’

k<——+1 <e- SIZE(J)+1<e-OPT(J)+1
Using Lemma 3.71" we obtain that J is packed into a number of bins

not exceeding

OPT (Jro) +k <OPT(J)+e-OPT(J)+1<(1+¢)-OPT(J)+1
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Finallyl'Lemma 3.6 implies thatI'while packing the small items at the

last stepl'we use a number of bins not exceeding

max{(l+¢€)-OPT(J)+1,(14+¢)-OPT(I)+1} <(1+4+¢)-OPT(I)+1

since OPT (J) < OPT(I). We have obtained the following theorem.

Theorem 3.2: The algorithm A. finds a packing of I into at most

(14+¢€)-OPT(I)+1 bins in time c(e)nlogn, where c(e) is a constant
depending only on e.

For the running timelnote that the only really expensive step in the

algorithm is the one where we solve ILP using Lenstra’s algorithm. As

we observed earlierI'that this requires time linear in nl'although it may

be severely exponential in 0 and m which are functions of e.

3.2. Asymtotic Fully Polynomial Scheme

Our next goal 1s to convert the preceding APAS into an AFPAS. The

reason that the above scheme 1s not fully polynomial is the use of the

algorithm for integer linear programming which requires time exponen-

tial in 1/¢. We now a describe a technique for getting rid of this step via
the construction of a “fractional” solution to the restricted bin packing

problemI’and a “rounding” of this to a feasible solution which 1s not

very far from optimal. This is based on the ideas due to Karmakar and

Karp.

3.2.1. Fractional Bin Packing and Rounding

Consider again the problem RBP[d, m|. By the preceding discussionl
any instance [ of this problem can be formulated as the integer linear

program [LP(I).

minimize 7.1

subject to
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Tz > 0

rT A=n

Notice that we are now using equality in the last constraint. Recall

that A is a ¢ x m matrixI'Z is a ¢g-vector and n is an m-vector. The bin

types matrix Alas well as nl'are determined by the instance I.

Consider now the linear programming relaxation of ILP([I). This
system LP([) is exactly the same as ILP([)l'except that we now relax
the requirement that ¥ be an integer vector. Recall that STZ FE(I) is
the total size of the items in [T'and that OPT([) is the value of the
optimal solution to ILP([I) as well as the smallest number of bins into
which the items of I can be packed.

Definition 3.12: LIN(I) is the value of the optimal solution to
LP(I), the linear programming relaxation of ILP(I).

What does a non-integer solution to LP([I) mean? The value of z;
is a real number which denotes the number of bins of type 7" which
are used in the optimal packing. One may interpret this as saying that

items can be “broken up” into fractional partsl’and these fractional

parts can then be packed into fractional bins. This in general would

give us a solution of value STZE(I)I'but keep in mind that the con-
straints in LP([) do not allow any arbitrary “fractionalization”. The
constraints require that in any fractional binI'the items packed therein

must be the same fraction of the original items. Thusl this solution

does capture some of the features of the original problem. We will refer

to the solution of LP([) as a fractional bin packing.

To analyze the relationship between the fractional and integral so-

lutions to any instance we will have to use some basic facts from the

theory of linear programming. The uninitiated reader is referred to any

standard text-book for a more complete treatmentl'e.g. see the book

by Papadimitriou and Steiglitz [48].

Consider the system of linear equations implicit in the constraint”

r.A = n. Here we have m linear equations in ¢ variablesI'where ¢ 1s

 *We will ignore the non-negativity constraints for now as they do not bear upon
the following discussion.
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much larger than m. This is an overconstrained system of equations.

Let us assume that rank(A) = m; it is easy to modify the following
Make sure you see analysis when rank(A) < m. Assumel'without loss of generalityl'that

row to handle ihe the first m rows of A form a basisl'i.e. they are linearly independent.
rank is smaller. The following are standard observations from linear programming the-

ory.

Definition 3.13: A basic feasible solution to LP is a solution =~

such that only the entries corresponding to the basis of A are non-zero.

In other words, x7 = 0 for all 1 > m.

Fact 3.3: Fvery LP has an optimal solution which is a basic feasible
solution.

We can now derive the following lemma which relates LIN(I) to
both SIZE(I) and OPT (I).

Lemma 3.8: For all instances I of RBP|d, m],

m + 1

SIZE(I)< LIN(I) OPTI) < LIN(I) + —5

Proof: The value of any solution Z to LP(I)is >.7| x;. It is easy to
see that the total number of times the item7 1s packed in any fractional

solution is exactly n;I'given the constraint of A. This implies the first
inequality. The second inequality follows from the observation that an

optimal solution to I'LP([I) is also a feasible solution to LP(1).

To see the last inequalityl'fix I and let y be some basic feasible

solution to LP([I). Since y has at most m non-zero entriesl'it uses only
m different types of bins. Rounding up the value of each component

of y will increase the number of bins by at most mI'and will yield a

solution to ILP. The bound promised in the lemma is slightly stronger

and may be observed as follows. Define the vectors w and Zz as below.
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The vector w 1s the integer part of the solution and z is the fractional

part. Let J denote the instance of RB P|, m] which consists of the
items not packed in the (integral) solution specified by w. The vector
z gives a fractional packing of the items in JI'such that each of the m

bin types is used a number of times which is a fraction less than 1. It

is easy to see that Z is an optimal fractional packing for J. It follows Prove that 7 is
that indeed an optimal

m fractional packing

SIZE(J)< LIN(J) <>) z <m of J.
1=1

By Lemma 3.2 we know that

OPT(J)<2-SIZE(J)+1

It is also obvious that OPT(J) < ml'since rounding each non-zero z;
up to 1 gives a feasible packing of J. ThusI'we have that

OPT (J) < min{m, 2 -SIZE(J)+ 1}

< SIZE(J)+ minim — SIZE(J), SIZE(J) + 1}

1

< SIZE(J) + me
We needed to bound OPT(I) in terms of LIN([) and mI'and this may
be done as follows

OPT(I) < OPT(I-J)+O0OPT(J)

i 1

< > w; + (S178) +a
1=1

i 1

< SN w+ LIN(I) + me
1=1

SES Sh
1=1 1=1 2

1

— LIN(I)+ hi
This completes the proof.
[]
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It 1s not very hard to see that all of the above is constructive. More

preciselyl'given the solution to LP([)['we can construct in linear time
a solution to [I such that the bound from the above theorem is met.

The only problem is that it 1s not obvious that we can solve the linear

program in fully polynomial timel'even though there exist polynomial

time algorithms for linear programming [33|I'unlike the general problem
of integer programming. The reason is that the number of variables is

still exponential in 1/¢. All we have achieved is that we no longer need
to solve an integer program.

Karmakar and Karp showed how to get around this problem by

resorting to the Ellipsoid method of Grotschell’ Lovasz and Schri-

jver [191'201'56]. In this methodl'it is possible to solve a linear program
with an exponential number of constraints in time which is polynomial

in the number of variables and the number sizesl'given a separation ora-

cle. A separation oracle takes any proposed solution vector ¥ and either

guarantees that it is a feasible solutionl'or provides any one constraint

which is violated by it. Karmakar and Karp gave an efficient construc-

tion of a separation oracle for LP(I). This would result in a polynomial
time algorithm for LP(I) if it had a small number of variablesl'even if it
has an exponential number of constraints. Unfortunatelyl'our situation

1s exactly the reverse: we have a small number of constraints and an

exponential number of variables. Howeverl'it 1s possible to get around

this problem by considering the dual linear program for LP(I). This
has the desired features of a small number of variablesI'and its optimal

solution corresponds exactly to the optimal solution of LP([).

One important detail is that that it is impossible to solve LP([)
exactly in fully polynomial time. Howeverl'it can be solved within an

additive error of 1 in fully polynomial time. Moreoverl'the implemen-

tation of the separation oracle is in itself an approximation algorithm.

The idea behind this is due to Gilmore and Gomory [17] who observed
thatl'in the case of an infeasible proposed solutionl'a violated constraint

can be computed via the solution of a knapsack problem. Since this is

NP-completel'one must resort to the use of an approximation scheme
for KNAPSACK. Due to all this the solution of the dual is not exact

but a close approximation. This was used by Karmakar and Karp to

obtain an approximate lower bound to the original problem’s optimal



3.2. ASYMTOTIC FULLY POLYNOMIAL SCHEME Page 69

value. Having devised the procedure for efficiently computing an ap-

proximate lower boundl they then used this to actually construct an

approximate solution.

This algorithm is rather formidable and the details are omitted as

it 1s outside the scope of this book. The following theorem results.

Theorem 3.3: There is a fully polynomial time algorithm A for solving

an instance I of RBP[6,m] such that A(I) < LIN(I)+ 2+ +1.

3.2.2. AFPAS for Bin Packing

We are now ready to present the AFPAS for BIN PACKING. We will

need the following variant of Lemma 3.7. The proof is almost the same
and 1s left as an exercise.

Lemma 3.9: Using the linear grouping scheme on an instance I of

RBP|4,n], we obtain an instance Io of RBP|d,m| and a group H,
such that, for Igy; = Hilo,

LIN(Ipo) SKLIN(I) < LIN(Ig;)  LIN(I1o) + Kk

The basic idea behind the AFPAS of Karmakar and Karp is very
similar to that used in the APAS. We first eliminate all the small itemsI’

and then apply linear grouping to the remaining items. The resulting

instance of RBP|J, m] is then formulated as an ILPl'and the solution
to the corresponding relaxation LP is computed using the Ellipsoid

method. The fractional solution is then rounded to an integer solution.

The small items are then added into the resulting packing exactly as
before.

Algorithm A.:

Input: Instance I consisting of n item sizes {si,...,s,}.

Output: A packing into unit-sized bins.
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1. 6 «5.

2. Set aside all items of size smaller than éI'obtaining an instance .J

of RBP[o,n'] with n’ = [J].

4. Perform linear grouping on J with parameter k. Let Jro be the

resulting instance of RBP[d, m] and Jy; = Hy U Jr ol'with

|Hi| = k and m = 2.
5. Pack the k items in H{ into at most & bins.

6. Pack Jpop using the Ellipsoid method and rounding the resulting
fractional solution.

7. Obtain a packing of J using the same number of bins as used for

JI'by replacing each item in Jr by the corresponding

(smaller) item in J.

8. Using F F'I'pack all the small items set aside in step 2['using new

bins only if necessary.

Theorem 3.4: The approximation scheme {A. : ¢ > 0} is an AFPAS
for BIN PACKING such that

1

Al) <(1+4+¢€)-OPT(I)+ 2 +3

Proof: The running time is dominated by the time required to solve

the linear programl’and we are guaranteed that this is fully polynomial.

The number of bins used to pack the items in Jj 1s easily seen to
be at most

m+ 1 |

(LIN(Jro) +1) + — < OPTI) + ) + 2
given the preceding lemmas and the choice of m. The number of bins

used to pack the items in Hy 1s at most kI'which in turn can be bounded

as follows using the observation that OPT(J) > SIZE (J) > en'/2.

nc



3.3. NEAR-ABSOLUTE APPROXIMATION Page 71

Thusl' the total number of bins used to pack the items in J cannot

exceed :
(1+¢)- OPTI) + 5 +3

The number of bins used after the addition of the small items can be

bounded using Lemma 3.6. This gives the desired result.
[]

3.3. Near-Absolute Approximation

We conclude by presenting a technique of Karmakar and Karp which

gives an approximation algorithm with an error that is bounded by a

slowly increasing function of OPT(I). This result is a step towards
devising an absolute approximation algorithm for BIN PACKING. In

fact'Johnson [29] had observed that the Vega-Lueker scheme could be
modified to construct an approximation algorithm with a performance

bounded by OPT (I) + O (OPT(1)!™°) [for some positive constant I’
by letting the value of € depend on the instance I. Here we will present

a new technique which leads to a performance bounded by OPT (I) +

O (log’OPT(I)).
The new technique 1s a variant of linear grouping called geometric

grouping. To motivate thisI'let us first try to pinpoint the exact sources

of sub-optimality in the preceding AFPAS. This scheme depends on

the grouping parameter kI'which leads to an instance with m different

item sizesI'where m =~ n/k. There are two main sources of error in
this scheme. The first 1s in the solution of the restricted bin packing

problemlI’ where the rounding error depends on the number of item

sizes m. Then there is an error due to the replacement of the original

instance by a discretized instance consisting of at most m different item

sizes. This last error is roughly the value of k. Since the small items

are easily handledI'we can assume that the value of STZFE(I) is at least
on. Thusl'we cannot choose the value of k to be greater than con. It

is then clear that choosing ¢ close to ¢ and k < e¢?nl'we will get the
desired approximation.

The way to improve this error is to reduce the value of k closer to
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a constant. But then the value of m will increase correspondingly and

we would not have gained anything. The key sight of Karmakar and

Karp was that it 1s not really necessary to pay the penalty of an error

of m in rounding the fractional solution. Recall that the solution to

LP(I) was broken up into an integral part @w and a fractional part Z.
After packing some of the items as specified by wI'the remaining items

were thought of as an instance JJ whose optimal fractional solution was

exactly the solution specified by Zz. The error of m came from the
brute force solution of the instance .J. The new idea was to iterate the

approximation algorithm on this instance J. This seems like a very

natural idea but the problem with implementing it 1s that we are not

guaranteed that the iterated process will terminate. Consider the linear

program defined by .Jl'one of its optimal solutions is exactly the vector

z. Thusl'iterating the process could keep giving us the same solution z

for JI'whose integral part is zero.

It 1s for this reason that Karmakar and Karp mtroduced the tech-

nique of geometric grouping. Their approach is to use a different group-

ingl'even a different parameter kl'at each stage of the iteration. More-

overl'the exact form of the grouping is heavily dependent on the distri-

bution of the item sizes in the instance. Thusl'a new grouping would

be used for JI'guaranteeing that the value of m decreases by a constant

fraction. This would imply a speedy termination. We give a more

formall'and less intuitivel'description of these ideas below.

Fix some instance [ of BIN PACKING and consider the following
definitions.

Definition 3.14: Let 6 = x, be the size of the smallest item in I, and

define A = log, 1].

Definition 3.15: Denote by I” the instance of BIN PACKING which

consists of the items in I whose sizes lie in the interval (55 +]. for
r=0,1,..., A.

This a geometric partitioning of the items in I into sets of items of

roughly the same sizel'i.e. within a factor of two. The formal definition

of geometric grouping is as follows.
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Definition 3.16: The geometric grouping of I, with parameter k, is

obtained by applying linear grouping to each instance I" using the pa-

rameter k., where k, = £2". Let IT, and I}; = GUI}, be the outcome

of the linear groupings, with |G%| = k.. Then the outcome of the ge-
ometric grouping consists of the instances Io and Igy = G1 U Io,

which are defined as follows.

Io =U,.1I;,

Ir =U. I};

Gy =U, GY

Notice that we are now defining Ig; = G1 U Irplinstead of Ig; =
H, U Io as before. This could well have been done in the earlier

arguments without affecting the analysis in any way. The following

lemma corresponds to Lemmas 3.7 and 3.9 that were proved for linear

grouping.

Lemma 3.10:

OPT (Io) OPTI) OPT (Ig) OPT (Io) + EA

LIN(Ipo) < LIN(I) < LIN(Ig;) < LIN(Ipo) + EA

SIZE(I1o) < SIZE) < SIZE(Igr) < SIZE(Ipo) + EA

Proof: The proof is very similar to the proof of Lemma 3.7. It is

easy to show that the following inequalities hold.

OPT (Io) OPTI) OPT (Ig) OPT (Io) + OPT(Gh)

We can easily show a similar series of inequalities for LIN and SIZE.

Now notice that GG; = U, GG and that each GG consists of k, items of

size at most 1/2" each. Clearlyl'the items in each GG can be packed into
k bins. ThusI'we obtain that SIZE (GY) < LIN(GY) < OPT(GY) < Ek.
Summing over all rI'this implies that

SIZE(Gy) < LIN(G1) OPT (Gh) < kA
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Plugging in these bounds gives the desired result.
[]

The next lemma is the crucial one — it shows that the number of

distinct item sizes after the geometric grouping is much less than the

size of the original input. Here we denote the number of distinct item

sizes in any instance X by m(X).

Lemma 3.11: m(Ipo) < 2-SIZE(I)+ A

Proof: Observe that

r r 1 r r 1
SIZE) 2 |I'].57 2 (mio) — 1) (R27) oom

Upon rearrangingl’'we obtain that

2

m1;,) < 7 SIZE(I") +1

Summed over all rI'this gives the desired result.
[]

We are now ready to describe the overall algorithm. This algorithm

is parametrized by the two values ¢ and kI'these will be specified later.

Algorithm A(4, k):

Input: Instance I consisting of n item sizes {si,...,s,}.

Output: A packing into unit-sized bins.

1. Discard all items of size smaller than d0l'obtaining an instance J of

RBP[6,n'] with n’ = [J].

2. while STZE(J) > 1+ 2 Int do begin
Perform geometric grouping with parameter £ to get Jiro

and Jr — (+4 U Jro.

Pack (4 into EA binsI'by putting each item into a

separate bin.
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Solve Jiro via the LP formulation and let i be the

optimal basic feasible solution obtained.

Define w and z as the integral and fractional partsl’

respectivelyl'of the solution y. Pack a subset of the items

in Jro as per the vector wl'and from this obtain a

packing of the corresponding items in J.
Redefine J to be the items left overl'i.e. those items

whose packing is specified by the fractional part Zz.

end ;

3. Pack the remaining items into at most 1 + a. In + bins.

4. Using F F'I'pack all the small items set aside in step 1['using new

bins only if necessary.

How much time will this algorithm take? Assume that we will

choose k to be a large constant. Let the t" iteration start with
the instance .J; and end with an instance J;,;;. By Lemma 3.11

we know that m(Jiy1) = O(SIZE(J:)/k). Moreoverl'we know that
SIZE(Ji11) < m(J;) since the fractional solution Zz uses each of the
m basic bin types at most once. From this it 1s easy to see that

m(J;) < SIZELh) We conclude that the number of iterations is
bounded by O(log SIZ FE(J)) or O(logn). Since each iteration and
every other step runs in fully polynomial timel'we have that the entire

algorithm runs in fully polynomial time.

We present only an overview of the analysis of the number of bins

used; the reader is referred to the original paper for complete details.

Note that the main source of error is the brute force packing of GG
into KA bins in each iteration. Since the number of iterations has

been bounded abovel we obtain that the total error in the packing

is O(kAlog SIZE(I)). Suppose we choose 6 = 1/SIZFE (I). Then
we have that the total error is O(log? SIZE(I)). This gives us the
following theorem.

Theorem 3.5: The algorithm A(6, k), fork > 2 and § = 1/SIZE(I),
will take an instance I of BIN PACKING and in fully polynomial time
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produce a solution such that

A(I) < OPT(I) + O (log*OPT(I))

3.4. Discussion

There are several variants of the bin packing problemI'all of which are

NP-complete. In most of these casesl'it is reasonably easy to come up
with bounded ratio approximations. These variants can be classified

under four different headings.

e packings in which the number of items per bin is bounded

e packings in which certain items cannot be packed into the same
bin

e packings in which there are constraints (e.g. partial orders) on
the way in which the items are packed

e¢ dynamic packings in which items may be added and deleted

There are also some generalizations of the basic packing problem. Some

examples are variable-sized bins and multi-dimensional bin packing. We

refer the reader to the survey article by Coflmanl’ Garey and John-

son [12] for further details. It is possible to devise approximation
schemes for some of these casesl'generally based on the ideas described

here. An example 1s the approximation scheme for the case of variable-

sized bins due to Murgolo [45]. Several open problems remainl most
notably in the case of on-line bin packing and multi-dimensional bin

packing. There is a big gap between the upper and lower bound on the

achievable ratios for multi-dimensional bin packing — it 1s exponential
in the dimension.

Problems _-.-. === 00
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3-1 Consider the VECTOR PACKING problem which is a multi-

dimensional version of the BIN PACKING problem.

Instance: A list of d-dimensional vectors I = {#,...,%,} such
that each component of each vector belongs to the interval

(0, 1].

Feasible Solution: A packing of these vectors into binsI'where

a bin can hold a collection of vectors if and only if the sum of

these vectors 1s dominated by the all-ones vectorsl'i.e. each

component of the sum 1s at most 1.

Goal: Minimize the number of bins used.

Using the techniques of Vega-Lueker (orl'Karmakar-Karp)I'pro-
vide a polynomial time algorithm with a performance ratio of
d + e¢. Notice that in the case of d = 1 this will reduce to the

result of Vega-Lueker.
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Chapter 4

Vertex Cover and Set Cover

SUMMARY: Some problems are considered for which it is possible to atl-

tain a bounded ratio, without being able to have Ryrry = 1 in either the

absolute or the asymptotic sense. These are a class of covering problems

— vertex cover for graphs and hypergraphs. For the unweighted vertex

cover problem in graphs, several algorithms are described which achieve

a ratio of 2. Similar bounds are then obtained for the weighted version

of this problem. The set cover problem turns out to be much harder to

approximate and only a logarithmic performance ratio is obtained for
il.

We have seen several problems which can approximated to any de-

ereel’i.e. have Ryn = 1 in either the absolute or the asymptotic sense.

Now we turn our attention to problems for which we can attain some

bounded ratiol'without being able to push this ratio all the way down

to 1. In most such cases the exact value of Epsrny 1s hard to pin down

preciselyl'all we can say 1s that it 1s bounded from above by some con-

stant. It would be great to find matching lower bounds on the value of
Barrn but such bounds are hard to obtain.

A vertex cover of a graph is a set of vertices which contains at least

one end-point of each edge. As we have seen earlierl'this is closely

related to cliques and independent sets. It will be convenient to view

an edge in a graph as subset of the vertex set. This is justified since

the graph 1s undirected. It enables us to unify the treatment of graphs

79
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and hypergraphs.

VERTEX COVER (VC)

e [Instance] Graph G(V, I).

e [Feasible Solutions] A subset ¢' C V such that for all e =
{u,v} € ET'en C #0.

e [Value] The value of a solution is the size of the cover |C'|I"and
the goal 1s to minimize it.

This problem is one of the standard NP-complete problems [15].
As a matter of factI'the problem remains NP-complete even when the

graph is planar [16]. There are more general versions of this problem
where we allow (G' to be a hypergraphl'or associate weights with vertices.

WEIGHTED VERTEX COVER (WVC)

¢ [Instance] Graph G(V, F) and a positive integer weight function
w:V — ZT on the vertices.

e [Feasible Solutions] A subset ¢' C V such that for all e =
{u,v} € ET'en C #0.

e [Value] The value of a solution is the weight of the cover w(C)*T’
and the goal is to minimize it.

SET COVER (SC)

e [Instance] Set V = {vy,vy,...,v,} and a family of sets F =
{e1,eq,..., 6, such that each ¢; CV.

e [Feasible Solutions] A subset ¢' C V such that for all ¢; € ET

*We will use the natural generalization of the weight function to a subset of its

domain, i.e. w(C) 2 >vec wW(v).
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e [Value] The value of a solution is the size of the cover |C'|I"and
the goal 1s to minimize it.

Notice that the last problem is exactly the vertex covering problem

for a hypergraph. There 1s a natural generalization of the SET COVER

problem to WEIGHTED SET COVERI'but we will not deal with that

problem in this book. It 1s obvious that all these generalizations of VC

are also NP-complete.

We present some observations about a vertex cover of a graph. The

first of these was posed as an exercise in Chapter 2. The second follows

from the observation that each edge in a matching has to be covered

by a distinct vertex in C'.

Fact 4.1: A set C' CV is a vertex cover for the graph G(V, I) if and
only if the complement set C' =V — (Cis an independent sel of vertices

in the graph GG. Moreover, C' ts a minimum vertex cover for G if and
only if C' is a maximum independent set of vertices in GG.

Fact 4.2: Let M C FE be a matching, or an independent set of edges,

in G'. Then GG cannot contain a vertex cover of size smaller than |M].

We will use the following notation with regard to any input graph

G(V, EF).

e n= |V]|and m = |E]|.

o I'(v) 2 {ue V|{u,v} € E} will denote the set of neighbors of
a vertex v € V.

od, = II'(v)| will denote the degree of the vertex v.

¢ A(G) will denote the maximum degree in the graph G.

e For any set U C VI'the induced graph GU] = (U, E[U]) will
consist of the vertices U and the edges in I which are incident

only on vertices in U.
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We will refer to any instance of the WVC problem as (G, w)['where
w denotes the weight function. This will be referred to as the instance

(+ if choice of the weight function is clear from the contextl'e.g. if the

eraph is unweighted.

Definition 4.1: Given any instance (G,w) of WVC, C*(G,w) will de-
note an optimal solution to the problem. This will be abbreviated to CF,
if weight function w is known from the context, and to C* if the graph

GG is also fixed by the context. The value of the optimal solution will be

denoted by ¢* = w(C™).

In the following sections we will present several approximation al-

gorithms for the above problems. We will be considering nearly a half-

dozen algorithms each of which is based on a distinct idea. One reason

for this overly extensive coverage of the various algorithms is that some

of the ideas appear to be extremely novel and may be exportable to

other problems. Moreoverl'as we will see laterl'even a small improve-

ment in the best-known approximation ratio for VC will have profound

implications. It 1s curiousl'thereforel'that we have several different al-

gorithms which all achieve the same ratio (asymptotically 2) but there
appears to be no way of improving this ratio at the present time.

4.1. Approximating Vertex Cover

We suggest that the uninitiated reader spend some time on trying to

devise heuristic algorithms for the vertex cover problem before reading

any further. It is probable that you will come up with most of the

simple and natural heuristics described below.

The most natural heuristic is a greedy algorithm which repeatedly

picks an edge that has not yet been coveredl'and places one of its end-

Did you think of points in the current covering set — call this Algorithm G1. Let G(V, FE)
this? Does it : :

pine 0" be any instance of the unweighted vertex cover problem.
ratio?

Algorithm G1:
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Input: Unweighted graph G(V, EF).

Output: Vertex cover C.

1. C « 0;

2. while IF # {) do begin
Pick any edge e € IY and choose an end-point v of e;

C+ C+ v;

E+ E\{ec Fl | vee};

end ;

3. return C.

We leave it as an exercise to show that this algorithm always outputs

a vertex cover. We claim that algorithm does not achieve any bounded

ratio. To see thisl'consider the bipartite graph B(L, R, E') depicted in
I'ig. 4.1. The vertex set L consists of r vertices. The vertex set R 1s
further sub-divided into r sets called E;I'...I'R,.. Each vertex in R;

has an edge to ¢ vertices in L and no two vertices in FE; have a common

neighbor in L; thusl'|R;| = |[r/¢|. (It is possible that not all vertices
of I have a neighbor in a particular R;.) It follows that each vertex in
L has degree at most r and each vertex in RR; has degree 1. The total

number of vertices n is O(r log r).

Consider now the behavior of the greedy algorithm on the graph B.

Suppose that (out of sheer bad luck) the algorithm considers all the
edges out of R, firstI'choosing their end-point in RE as the vertex to be

placed in the cover. Then it picks all the edges out of E,_iI'choosing

their end-points in R for the cover ('; andIl'so on. Therefore the vertex

cover chosen 1s (' = RK. But L is itself a vertex cover since the graph

is bipartite. It follows that the ratio achieved by this algorithm is no Is the vertes cover
better than |R|/|L| = Q(logn). A

How do we achieve a better ratio than this? Let us try the obvious graphy
strategy of modifying the Algorithm G1 to be less arbitrary in its choice
ol vertices to be included in the cover. A natural modification is to
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Figure 4.1: The graph B(L,R,FE) with r = 8. Only the sets Ry, Rs,
Rs and R4 are shown; the remaining sets Rs, Rg, Rr and Hg consist of
one vertex each.

repeatedly choose vertices which are incident to the largest number of

currently uncovered edges — call this Algorithm G2.

Algorithm G2:

Input: Unweighted graph G(V, EF).

Output: Vertex cover C.

1. C « 0;

2. while IF # {) do begin
Pick a vertex v € V of maximum degree in the current

graph;

C+ C+ v;

E+ E\{e|lv€e};

end ;
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3. return C.

Let us consider the behavior of this algorithm on the graph

B(L,R, FE). It should be easy to see that G2 could also output R
as a vertex cover. It could choose vertices from R, at the very first

stage. After thisI'it could choose vertices from R,._;. In generallit

would choose the highest degree vertices from RR at each stage. It 1s

very surprising that a seemingly much more intelligent heuristic does

no better than the rather simple-minded heuristic G1. Howeverl'as we

will see laterl'this algorithm is not totally useless. It will be shown

that it always achieves the ratio O(log n) for the much more general
problem of set cover [30I'43]I"and hence also for vertex cover.

We now describe a different heuristic which achieves a bounded ra-

tio for the vertex cover problem. The basic idea 1s to modify G1 by

placing both end-points of some uncovered edge into C'. Most people

find the fact that this algorithm performs better than G1 and G2 to

be very counter-intuitive at first. The surprisingly good performance of it may heip to
this algorithm can be better understood by considering an alternate de- consider his
scription. Pick any maximal matching M in the graph G(V, FE). Place algorithm on the
both end-points of each edge in M into the cover. We call this Algo- ¢?h BUH. E).
rithm MM. Note that a matching 1s maximal if it 1s not contained in

any larger matching. It can be computed greedily — repeatedly choose

an edge not incident on any currently matched vertex.

Algorithm MM:

Input: Unweighted graph G(V, EF).

Output: Vertex cover C.

1. Pick any maximal matching M C EF in GG

2. C+ {v|v is matched in M };

3. return C.
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Now let us try to see why this algorithm does welll'contrary to our

“intuition”. Recall Fact 4.2 which gives a lower bound on the size of

the optimal vertex cover in terms of the size of any matching. Algo-

rithm MM can be viewed as first finding a lower bound on the optimal

solutionl'and then constructing a solution which is provably within a

small constant factor of this lower bound. Reallyl'the goal of every

approximation algorithm is exactly this — find a solution and a lower

bound proof simultaneously. The “counter-intuitive” behavior of most

approximation algorithms can be explained via the observation that it

1s trying to prove near-optimality. We now analyze the performance of

M M:; this result is due to Gavril [16].

Theorem 4.1: Algorithm MM always computes a vertex cover in the

input graph G. Moreover, Ray = 2.

Proof: The fact that M is a maximal matching implies that all

edges in £/\ M are such that at least one of their end-points is matched
in M. Otherwisel'that edge could be added to M to provide a larger

matchingl'contradicting the assumption that M is maximal. This 1im-

plies that every edge in [If has at least one end-point that is matched
and hence that (1s a vertex cover.

To see that the ratio is 2I'consider the edges in M. To cover these

edges we need at least | M| verticesI'since no two of them share a vertex.
This implies that the optimal vertex cover has size at least |M|. The
cover (' contains exactly 2 - |M| vertices.
[]

Exercise 4.1: Show that there exist input graphs for which the perfor-

mance of MM is no better than a ratio of 2.

Exercise 4.2: Show that using a maximum matching instead ofa maz-

imal matching does not improve the worst-case performance of MM.

Another algorithm which achieves a ratio of 2 for this problem is

due to Savage [52]. This algorithmI'which we call DF STis as simple as



4.1. APPROXIMATING VERTEX COVER Page 87

the one outlined above. The basic idea 1s to find a depth-first search

tree in the graph G. The cover C' is then the set of non-leat nodes in

the tree. We leave the analysis of this algorithm as an exercise.

Exercise 4.3: Show that the DFS algorithm always finds a vertex

cover, and that its performance ratio is 2.

This 1s asymptotically the best upper bound we have for

Ryn(VC). Of coursel'it is entirely possible that one can find an
approximation scheme for VCI'but this is considered unlikely. We will

provide some evidence for this later on. We conclude by describing a

simple randomized algorithm due to Pitt [50] which also achieves the
ratio 2 for VCI'albeit in the expected sense. One good reason for
studying this algorithm is that it can be easily generalized to the case

of weighted vertex cover to yield a simple approximation algorithm with

an expected performance ratio of 2.

Once againl’ we suggest that the reader spend some time trying

to think of randomized heuristics for the vertex cover problem. The
most natural such heuristic 1s to consider the vertices in a random

orderI'placing each vertex into the cover if it 1s incident on a currently

uncovered edge. Unfortunatelyl'this performs very poorly. To see thisl’

consider the performance of this heuristic on the star graphl viz. a

eraph with one vertex of degree n — 1 connected to n — 1 vertices of

degree 1 each. A more reasonable heuristic is a randomized version of

(2. The idea is that instead of choosing the maximum degree vertex in

the residual graphI'pick a vertex at random such that the probability

that any particular vertex is chosen 1s proportional to the number of

uncovered edges incident on it. We leave it as an exercise to show

that even this heuristic will not guarantee an expected ratio which 1s

bounded. (Hint: Consider its performance on our old friendI'the graph
B(L,R,FE).)

T'We generalize the notion of a performance ratio to randomized algorithms in the
obvious manner. The expected ratio of a randomized approximation algorithm RA

on a fixed input [ is defined as Rpa([) 2 Muda where Exp|RA(I)] denotes
the expected value of RA’s output. The expected performance ratio Rra(Il) is
defined exactly as in the case of deterministic algorithms.
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Quite surprisinglyl’a simple modification of (G1 turns out to be the

right algorithm. The idea is to consider the edges in some arbitrary (but
fixed) order. If the edge currently under consideration is not already
coveredI'pick one of its end-points uniformly at random and add it to

the cover. We will refer to this new randomized algorithm as Algorithm
RA.

Algorithm RA:

Input: Unweighted graph G(V, EF).

Output: Vertex cover C.

1. Order the edges in FE arbitrarily;

2. while IF # {) do begin
Pick the next edge ¢ = {u,v} € F;
Flip a fair coin to choose x uniformly from {u,v};
C+ C+ x;

E+ E\{ec ll | x €e};

end ;

3. return C.

Before we formally analyze this algorithmlI'it is worthwhile to try

to understand at an intuitive level why this algorithm should perform

well. Observe that Algorithm (G1 added an arbitrary end-point to the

cover'while Algorithm MM added both end-points to the cover. One

would expect that this randomized algorithm would have an intermedi-

ate performancel’but it turns out to do as well as MM in the expected

sense. One reason is that it avoids making the wrong choice of an end-

Compare the point for an uncovered edgel'unlike Algorithm G'1. Moreoverl'a higher
behavior of RA . . .
oy degree vertex has more chances of being chosen by a random coin flip.
B(L,R, E).

Theorem 4.2: Algorithm RA always outputs a vertex cover and

Rra = 2.



4.2. APPROXIMATING WEIGHTED VERTEX COVER Page 89

Proof: It is easy to verify that this algorithm will always output a
Prove this for vertex cover.

yore Let us fix an input graph G/(V, E)I'the order in which the edges are
to be examined and some optimal cover C* C V. Suppose that this

algorithm outputs a cover C' with ¢ vertices in it. Clearlylthis algorithm

examines exactly ¢ edges and flips as many coins in the course of its

execution. Let us define the outcome of a coin flip as being good if

1t causes some vertex v € ('* to enter the cover ('. Note that every

edge has at least one end-point in C'* and so each coin flip is good with

probability at least a half.

But the number of good coin flips cannot exceed ¢* = |C*|['since by
then all the vertices of C'* are in (' and every edge in GG must be covered

by C'. ThusI'the total number of coin flips ¢ is stochastically dominated

by the number of unbiased coin flips needed to obtain ¢* good coin

flips. It follows that the expected number of coin flips needed is no

more than 2-¢*. This implies the desired bound on the expected value

of the performance ratio.
[]

4.2. Approximating Weighted Vertex
Cover

We now turn our attention to the weighted version of the vertex cover

problem. Let us start by considering all the obvious heuristics for this

problem; as usual readers are urged to try and think of their own heuris-

tics before proceeding any further.

Consider first the simple greedy heuristic which considers the ver-

tices in increasing order of their weightslplacing each vertex in the cover

if 1t 1s incident on an edge which is currently uncovered. This heuristic

becomes identical to Algorithm G1 when restricted to the case of un-

weighted graphs. Therefore it is not very surprising that it has a very

poor performance ratio. In factl'its performance 1s much worse than

that of GG1I'as illustrated by the following example. Consider the star

eraph where the vertex of degree n — 1 has weight 2 and the degree one
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vertices all have weight 1 each. It is easy to see that the cover chosen

by our heuristic will have weight n — 1I'as opposed to the optimal cover

which has weight 2.

Another obvious heuristic 1s a simple generalization of Algorithm

(2 which was presented in the previous section. The basic idea here is

to choose at each stage a vertex for with the smallest possible ratio of

weight to current degree. We will refer to this as Algorithm W G2.

Algorithm WG2:

Input: Graph G(V, FE) and weight function w on V.

Output: Vertex cover C.

1. C « {;

2. while IF # {) do begin

Pick any v € V which minimizes wie) with respect to the
current graph;

C+ C+ v;

E+ E\{e|lv€e};

end ;

3. return C.

It is easy to see that this is a generalization to the weighted case of

the heuristic G2 from the previous section. As suchl'it cannot be ex-

pected to have a performance ratio better than that of G2I.e. O(log n).
Howeverl'this is still a very natural heuristic and not without any merit.

In factI’Chvatal [10] has shown that it achieves this ratiol'and no better’
for the much more general problem of weighted hypergraph covering or

weighted set covering.

In the following sections we present several different approximation

algorithms forWVCT all of these achieve the ratio 2. The first is a sim-

ple randomized algorithm due to Pitt [50]. In the subsequent sections
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we describe two deterministic approximation algorithms for WVC. One

1s a simple intuitive algorithm which is not very eflicientI'while the other

achieves efficiency at the cost of being more mystifying. Some amount

of history is in order at this point. The very first approximation algo-

rithm for WVC was implicit in the work of Nemhauser and Trotter [46].
This algorithm was made explicit by Hochbaum [25]. Hochbaum [24]
had devised an approximation algorithm for the set cover problem with

a performance ratio equal to the size of the largest set. This implied

a factor of 2 approximation for vertex cover. Both these results made

extensive use of a linear programming formulation. The first purely

combinatorial analysis was due to Bar-Yehuda and Even [4] and this
was followed by the algorithm of Clarkson [11]. All of these algorithms
have essentially the same performance ratiol'l.e. asymptotically equal to

2. Some of these algorithmsl'e.g. the one due to Hochbaum [25|'achieve
a performance ratio of 2 — f(n)['where f(n) is a decreasing function
of n. The best such algorithm is due to Bar-Yehuda and Even [6]
as well as Monien and Speckenmeyer [44]"and it achieves a ratio of

2-0 (loglogn), This marginal improvement turns out to be quite cru-
cial as it leads to some strong results for graph coloring which will be

presented later. The first deterministic algorithm we present is derived
from the work of Nemhauser and Trotter['and the second 1s the one due

to Clarkson. Finallyl'we will describe the algorithm of Bar-Yehuda and

Evenl'and show how it encompasses most of the algorithms mentioned
above.

4.2.1. A Randomized Approximation Algorithm

In this section we generalize the randomized algorithm RA described

earlier to the weighted case. The basic idea remains the samel'the only

difference 1s in the bias of the coin flip made at each stage. We choose

an end-point of the edge in consideration with probability inversely pro-

portional to its weight. Notice that Algorithm W RA becomes exactly

the Algorithm RA when restricted to unweighted graphs.

Algorithm WRA.:
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Input: Graph G(V, FE) and weight function w on V.

Output: Vertex cover C.

1. Order the edges in FE arbitrarily;

2. while IF # {) do begin
Pick the next edge ¢ = {u,v} € F;
Choose = randomly from {u,v} such that

Prob|z = u] = EEE
C+ C+ x;

E+ FE —e;

end ;

3. return C.

Notice that this algorithm captures the advantages of Algorithm

W G2 without allowing the possibility of consistently choosing the

wrong end-point at each stage. In particularl’high degree vertices have

a higher chance of being chosen and at each stage the coin flip is biased

in favor of the lower weight vertex. ThusI'it 1s the ratio of the weight

to the current degree which determines the chances of a vertex being

selected at each stage. The following theorem is due to Pitt [50].

Theorem 4.3: Exp|[WRA(G,w)] < 2. (CG, w), and this bound is
tight.

The rest of this section is devoted to the proof of this theorem. Let

us fix the input instance (G, w)I'the order in which the edges are to be
examined and some optimal weighted vertex cover C* C V. Suppose

that we now execute Algorithm W RA and obtain the cover C' C V.

Here (' 1s a random subset of V and its distribution is totally deter-

mined prior to the execution of the algorithm.

Definition 4.2: For each vertex v, define the random variable X, as

follows.

vo w(v) ifved
C10 otherwise
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Let e, = Exp|X,| denote its expected value.

These denote the actual and expected contributions of the vertex

v to the cover (/. Againl'the distribution of X, and the value of e, 1s

totally determined prior to the execution of the algorithm. The value of

W RA’s output and its expected value can then be expressed as follows.

w(C) = dX,
veV

Explw(C)] = Ye,
veV

Our goal 1s to appropriately generalize the analysis of Algorithm
RA. There the idea was to consider vertices in ' which were from

C*T'and to show that these vertices formed a significant fraction of the

vertices in ('. We make use of a similar argument here.

Definition 4.3: Let C' = C* NC denote the vertices from the optimal
cover which were also chosen by WRA.

Since was fixed prior to the execution of the algorithmlit is clear that
w(C') = 3 ,ecx Xyl'and hence that Explw(C)] = 32, ecx €,. Moreoverl
since C' C C*I'it follows that

Explw(C)] < w(C7)

In the following lemma we show that the expected weight of the output
("1s at most twice the expected weight of ('I'and this combined with

the above inequality implies the result in the theorem.

Lemma 4.1: Exp[w(C)] < 2 - Explw(C)]

Proof: The proof is best described in terms of a game played on

the input graph. Suppose that each vertex v € V has e, dollars as

its initial capital. This capital 1s fixed prior to the execution of the

algorithm. The total money supply in the graph initially is exactly the

expected weight of the algorithm’s output.
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We assume for now that there exists a global strategy under which

each vertex can distribute its capital to the incident edges such that

each edge gets exactly the same amount of money from both its end-

points. Having collected this money from its end-pointsl’ each edge

returns partitions it equally among its end-points which actually belong

to the optimal cover C*. Thuslif both end-points belong to C* then the

edge just returns the amount it had received from each; on the other

handI'if only one end-point belonged to C* then it gets back twice the

amount of money it had initially handed over to this edge.

It 1s not very hard to see that at the end of these transactions each
vertex in C* has at most doubled its fortunel'while each vertex not in

C'* has become bankrupt. From this it follows that the total money

supply in GG 1s at most twice the initial money supply in the control of

the vertices from C. Recalling that each vertex v started off with a

sum of money equal to e,I'we can interpret this as

> e, <2 - > Ey
veV veC*

and this 1s equivalent to the statement of the lemma.

The only thing left to show is that the global strategy for distribut-

ing the capital to the edges exists. Why should such a strategy exist?

Consider any vertex v € V. This will be in the vertex cover if one of

its incident edges chooses to place it there. ThusI'the expected contri-

bution of v to the vertex cover’s weight 1s made up of the contributions

due 1ts incident edges selecting it to be in the cover. Moreoverl'each

edge contributes an equal amount for both its end-pointl’ given the

choice of bias of the coin flips. (The preceding argument merely uses
this “distribution strategy” to relate the weight of the cover C' to that

of the optimal cover in an obvious manner.)

We formalize the distribution strategy as follows. Call an edge crit-

ical 1f 1t 1s not yet covered by the time Algorithm W RA considers it.

It 1s the critical edges which will cause a coin flip and the addition of

a vertex to C. We say that a vertex u 1s chosen by a coin flip for the

(critical) edge {u,v} if the coin flip causes v to be added to C.

Definition 4.4: For each vertex u, and each v € I'(u), define the ran-
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dom variable

vo w(w) if u is chosen for C due to the critical edge {u,v}
“0 otherwise

Notice that for each edge {u,v}I'exactly one of X,, and X,, is
non-zero. Furtherl'for each vertex uw at most one of its incident edges

can “choose” it and so we have the following.

Xu — > Xu
vel (u)

From this we conclude that

e. = Exp[X,] = )  Exp[X,,]
vel (u)

While at most one of the X,,’s can be non-zero for each ul'every one
of the expectations of these could be non-zero since the expectation is

taken over all possible random choices made by W RA. Finallyl'we claim

that Exp|X,.] = Exp|X,.] for all edges {u,v}. This claim implies the
existence of the desired distribution strategy. This 1s because each

vertex u give can give a sum of money equal to Exp|X,,] to the edge
{u,v}l'and then each edge will receive the same amount of money from
both its end-points.

To validate the claim we observe that the choice of the bias in each

coin flip ensures symmetry between the expected contribution of the

critical edges’ two end-points. More formallyl’

Exp|X,.,] = w(u) x Prob[{u,v} is critical and chooses u]

CL w(v)
= w(u) xX Prob|{u,v} 1s critical] Xx ——————

CL w(w)
= w(v) Xx Prob[{u,v} is critical] x —————

= w(u) xX Prob[{u,v} is critical and chooses v]

= Exp[X,.]

[]
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4.2.2. The Nemhauser Trotter Algorithm

Nemhauser and Trotter considered an integer programming formulation

of the WVC problem. There is a variable for each vertex which takes

on values in {0,1}; each edge creates a constraint that the variables
associated with its end-points have sum at least 1. Any feasible solu-

tion to this set of constraints corresponds naturally to a vertex cover

of the graph G(V, FE). The objective function is simply the weighted
sum of the variablesI'where the weights are exactly the weights of the

corresponding vertices. They showed that the optimal solution to the

LP-relaxation of this problem has the semi-integral property. In other

wordsI' the basic feasible optimal solution to the corresponding lin-

ear programming relaxation would assign values to the variables which

would be drawn from the set {0, 2, 1}. The linear program’s optimal
solution could be interpreted as a fractional vertex cover — the value

of a variable denoted the fraction of the corresponding vertex which

should be placed in the cover. The constraints require thatl'for each

edgel'the total fraction of its end-points in a fractional cover should

exceed 1. It then follows that the semi-integral solution can be used

to obtain an approximation to the optimal integral cover by placing a

vertex in the cover if the corresponding variable was non-zero. It is not

very hard to see that the linear program can be solved via a maximum

flow computationl’and in the unweighted case it can be solved via a

maximum matching algorithm.

We now present a combinatorial interpretation of this process and

obtain an approximation algorithm which does not refer to the linear

programming formulation. (Actuallyl’the results of Nemhauser and
Trotter were much more general but this has no bearing on the approx-

imation of the WVC problem.)

Definition 4.5: A 2-cover of a graph G(V, FE) is a multiset S C V
such that for every edge e € KE, [en S| > 2.

Essentiallyl'a 2-cover is a multiset of vertices such that each edge

has either both its end-points or at least two copies of one end-point

in the multiset. We may assumel'without loss of generalityl'that each
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vertex occurs at most twice in a 2-cover since we can throw away any

further copies of a vertex without destroying the property of being a

2-cover. Observe that doubling the value of each variable in a semi-

integral solution to the above linear program will yield a 2-cover. The

relation between 2-covers and vertex covers 1s made explicit by the

following fact; its proof is left as an exercise.

Definition 4.6: Let S denote the set underlying the multiset S, i.e. the
set obtained by retaining exactly one copy of each element of S.

Fact 4.3: IfS is a 2-cover for GG then S is a vertex cover for (i.

We define the weight of a 2-cover in the obvious way — it is the sum

of the weights of the vertices in the 2-coverl'with each weight being

multiplied by the multiplicity of the corresponding vertex. An optimal

2-cover 1s a 2-cover of minimum weight. Notice that an optimal 2-cover

will never have more than two copies of any vertex. Thereforel'the set

underlying a 2-cover will have total weight at least half that of the 2-

cover itself. Moreoverl'taking a vertex cover and making two copies of

each vertex in the cover will yield a 2-cover of at most twice the weight.

We have proved the following lemma.

Lemma 4.2: The weight of an optimal 2-cover is alt most twice the

weight of an optimal vertex cover.

Thereforel'to find a 2-approximation to the optimal weighted vertex

cover in G1'1t suffices to find an optimal weighted 2-cover in GG. It turns

out that an optimal 2-cover can be found in polynomial time. The basic

idea behind this is to consider a bipartite version of the input graph

G(V, EF). In the bipartite graph there are two copies of each vertex in
V' of the same weight. one on each side of the bipartition. Each edge

of I creates two edges in the bipartite graph.

Definition 4.7: Let G(V, FE) be a graph and w a weight function on
its vertices. Define the bipartite graph Bg (L, R, F') such that
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° L={vk|v;eV}

o wv) =w(vf) = wv)

Given any set of vertices U CV in G, we will denote the copies of

these vertices in L as UY and the copies in R as UY; thus, L = V¥ and
R = VE. Further, the vertices in G corresponding to a set of vertices

SC LUR from B will be denoted by Sg; thus, Le = Rg = (LU R)g =
V.

Lemma 4.3: Any vertex cover of Bg can be converted into a 2-cover

ofG' of equal weight.

Proof: Let OC C LU R be a vertex cover of Bg. We can construct

a multiset C/ C V from C by replacing each vertex from L U R by a

copy of the corresponding vertex in V. Note that the underlying set

for C" is exactly Cg. For each edge e¢ € FE we had placed two edges in

I and both these edges must have at least one end-point each mn C.

This implies that e¢ has either both end-points or two copies of one of

its end-points in C"’. It follows that C' is a 2-cover of G7; its weight is

trivially equal to the weight of C.
[]

The next lemma proves the converse of Lemma 4.3.

Lemma 4.4: Any 2-cover C of G can be converted into a vertex cover

of Ba of equal weight.

Proof: Recall that we are only considering 2-covers which have at
most two copies of each vertex. Let (/; = C denote the set underlying

the multiset C'T'and define Cy = C'\ (] as the set of vertices in C' which
occur twice. Let C' = CFU CF consist of the vertices from L which
correspond to the vertices in (1T'as well as the vertices from R which
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correspond to the vertices in C5. Clearlyl'the sets C' and C” have equal

weights.

We now show that C' is a vertex cover of Bg. Consider any edge

e = {u,v} € FE. If both uw and v are in C'I'then both edges corresponding
to e in F' are covered as both uv” and v” are in C’. Otherwise assumel’

without loss of generalityl'that u occurs twice in (/. This means that

both wu’ and u’ are in C’ and once again both edges corresponding to
e in [' are covered.

[]

These two lemmas have shown that finding an optimal 2-cover of ¢

1s equivalent to finding an optimal vertex cover of By. Before we show

how the latter can be done in polynomial timel'let us summarize the

Nemhauser-Trotter algorithm as follows.

Algorithm NT:

Input: Graph G(V, FE) and weight function w on V.

Output: Vertex cover C.

1. Compute the graph B(L, R, I) from the input G(V, FE);

2. Compute an optimal weighted vertex cover Cj for B;

3. return C' = (C3) = {ve V]vhk e Cf or vf € Cf}.

The preceding lemmas imply that C' is a vertex cover for the graph

( and its weight is at most twice that of the optimal weighted vertex

cover for G. We have the following theorem. Can you show that
the bound given in

the theorem 15
Theorem 4.4: Ry = 2 tight?

We now briefly sketch an algorithm for finding an optimal weighted

vertex cover in a bipartite graph. The WVC problem restricted to bi-

partite graphs is polynomially solvable via a reduction to the maximum
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flow problem [38]. This works by constructing a directed network from
Be. Introduce a source s into Bg with an edge going to each vertex in

L of capacity equal to the weight of that vertex. Similarlylintroduce a

sink ¢ with an edge coming in from each vertex of R of capacity equal

to the weight of that vertex. Direct each edge in [I from L to R and

make 1ts capacity infinite.

The minimum (s,¢)-cut in the resulting network can be computed
via a maximum flow computation. MoreoverI'the minimum cut must

be finite since the net flow out of the source is finite. Thusl'no edge

of F' can cross that cut. In other wordsI'it cannot be the case for any

edge (vr, vit) that v¥ lies on the side of 5s and v¥ on the side of ¢. Thus
the set of vertices from L lying on the side of {I'together with set of

vertices from RI lying on the side of sI'forms a vertex cover for Bg.

FurtherI'the capacity of the cut is exactly equal to the weight of this

vertex cover. Similarlylit is also fairly easy to see that any vertex cover

implies a cut of capacity equal to the weight of the vertex cover. Thus’

the vertex cover determined by the min-cut must be a minimum weight
vertex cover.

4.2.3. Clarkson’s Algorithm

Consider once again the greedy algorithm W (G2 proposed earlier for

the WVC problem. The basic idea in this algorithm was to keep track

of the ratio between the weight and the current degree of a vertexI’

and at each stage it selected the vertex with smallest value of this

ratio. This seemed like the right thing to do at an intuitive level as

we would like to minimize the average increase in weight of the vertex

cover per edge being covered. Unfortunatelyl'this algorithm does not

achieve any bounded ratio. But can anything be salvaged from this

intuitively attractive heuristic? The answer 1s yesI'and this 1s exactly

the algorithm proposed by Clarkson [11]. His modified greedy algorithm
(MGA) follows basically the same approachl'except that the weights
of the vertices are also modified as the algorithm progresses. (Recall
that Algorithm WG2 was only modifying the degrees of the vertices

to account for the edges which were already covered.) In the following
description of Algorithm MGA ignore for now the edge cost function
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FE CT'this is merely an artifact of the algorithm’s analysis. We will use

W(v) and D(v) to denote the current weight and degree of the vertex
v at each point in the execution.

Algorithm MGA.

Input: Graph G(V, FE) and weight function w on V.

Output: Vertex cover C.

1. for all v € V do W(v) + w(v);

2. for all v € V do D(v) + d,;

3. for all e € FF do EC(e) + 0;

4. C + 0;

5. while I/ # () do begin

Pick a vertex v € V for which io) 1s minimized;
C+—C+Huv,Ve V—uw;

Wi(v) « 0;
for all edges ¢ = {u,v} € KF do begin

E+ FE —e;

Wu) «= W(u) — 52s D(u) «= D(u) — 1;
EC (e) « Xl.D(v)

end ;

end ;

6. return C.

This algorithm differs from W G2 only in that each time a vertex is

placed in the coverl'each of its neighbors has its weight reduced by an

amount equal to the ratio of the selected vertex’s current weight and

degree. This is exactly the cost of covering the edge between the two

vertices and the value of EC reflects this cost. (Note that the value of
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FEC is never used by the algorithm.) This may seem counter-intuitive in
that we are actually increasing the likelihood of picking a vertex whose

neighbor has just been included in the cover. But an approximation

algorithm is not trying to pick an optimal solution. Instead it tries to

pick a solution which is provably not very far from the optimumlIThe

reduction in the weights of the neighbors can be viewed as an attempt

to ensure that the “error” made by this algorithm is small. In factI'this

reduction in the weights 1s exactly what will enable us to argue that

the algorithm’s output 1s not too far from the optimal.

The argument presented below proceeds as follows. The edge cost

EC (e) is viewed as the cost of covering the edge e. The algorithm
assigns costs to the edges in a manner which guarantees that each

vertex in the cover partitions its weight amongst the incident edgesl’

and each edge gets assigned the same weight from both its end-points.

ThusI'the weight of the cover being produced is at most twice the net

cost of the edges. Under any such choice of the edge cost functionl’

it can be easily seen that an optimal cover must have weight at least

as large as the total of the edge costs. It should now be clear that

the “counter-intuitive” part of the algorithm is actually a device for

ensuring that the cover being produced does not stray too far from the

optimal cover. For a further discussion on this pointl'refer to the article

by Gusfield and Pitt [22].

Fact 4.4: For all vertices v € V and edges e € I

Wi(v)>0

EC(e) > 0

at all times during the execution of the algorithm.

Proof: The second inequality 1s obvious since the only modification

to the edge costs 1s the addition of a positive value. As for the first

inequalityl'notice that the current weight of a vertex is reduced only

when some other vertex (in factl'its neighbor) is selected. But this
implies that the selected vertex has a smaller weight to degree ratiol’

and the result of subtraction must be non-negative.
[]
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The next fact is easy to verily from the description of the algorithm.

Fact 4.5: [or all vertices v € V

wv) =W)+ > FCO(u,v)
uel (v)

at all times during the execution of the algorithm.

The next fact follows from the description of the algorithm and
Fact 4.5.

Fact 4.6: At the end of the algorithm’s execution

Yoel, wv)= > EC(u,v) (4.1)
uel (v)

Vod C, wv) > > EC(u,v) (4.2)
uel (v)

Irom the above facts we conclude the following lemma which relates

the weight of MG A’s output to the book-keeping variables of edge costs.

Lemma 4.5: w((C) <2-3 cg EC(e)

Proof: Observe that by the equation (4.1)

w(C) =>) whv)=>Y_ Y FEC(u,v)
ved veC uel (v)

Fach edge in F 1s counted at most twice in the last expressionlimplying
the desired result.

[]

The next step is to relate the edge costs to the value of the optimal
solution.

Lemma 4.6: np FC(e) < ¢* = w(C¥)
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Proof: Firstl'observe that

Y EC(e)< >. > EC(u,v)
e€El veC™* wel (v)

since the second expression must count each edge at least oncel'as C*

is a vertex cover. Using Fact 4.6I'we now have the desired result. O

Putting together these two lemmas] we have the result that the

weight of (' 1s at most twice optimal. It is fairly easy to see that the

entire algorithm can be efficiently implemented using standard data

structures. We have the following theorem; showing that the bound of

2 on the performance ratio is the best possible is left as an exercise.

Theorem 4.5: Algorithm MGA runs in time O(mlogn) time and has
Rarga = 2.

4.3. Improved Vertex Cover Approxima-
tions

In this section we present some algorithms which marginally improve

the approximation ratio for WVC (and VC). These algorithms do not
achieve a ratio which 1s better than 2 in the asymptotic sense. Their

performance ratios are of the type 2— f(n)['where f(n) is some decreas-

ing function of n. The function f(n) could be 1/1/(n) or 1/Al'where
A 1s the maximum degree in the input graph. The best such result 1s

due to Bar-Yehuda and Even [6]I'and Monien and Speckenmeyer [44];

they achieve a ratio of 2 — TEED (This improvement may seem very
minor but it leads to a significant improvement in the approximation

ratio for the graph coloring problem which will be considered in a sub-

sequent chapter.) For examplel'on graphs with at most 10'* vertices
the ratio achieved is 1.9. We will present the version of this result due
to Bar-Yehuda and Even.

In the following sections we will develop the main ideas behind

the this result in three parts. First we will return to the Nemhauser-

Trotter algorithm and show that it allows us to restrict ourselves to
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approximating WVC on graphs where the optimal solution has a large

weight. Then we will present a “Local-Ratio Theorem” which allows us

to strip off a certain kind of subgraph H from the input graph without

adversely affecting the approximability of the remaining graph. Finallyl’

we will show that in a graph without small odd cyclesI'the vertex cover

can be well approximated provided the optimum solution is of large

weight. The removal of odd cycles is performed by using the Local-
Ratio Theorem.

4.3.1. The Nemhauser-Trotter Algorithm Revis-
ited

We take a fresh look at the Nemhauser-Trotter algorithm presented in

Section 4.2.2 and conclude that it suffices to be able to approximate

WVC on instances where the value of the optimal solution is at most

Recall that the optimal weighted vertex cover in B(L, R, F') was C'5T
and that this could be computed in polynomial time. Let Cy contain

the vertices v € V such that both v" and »* are in this optimal cover’
and let Vj be the vertices v € V such that only one of v* and v" is in
the optimal cover.

Co = {ve V|{" oy CCl

Vo = {v ¢ Co | {v" 0" nC} # 0}
The following theorem is a re-statement of the results of Nemhauser

and Trotterl'and we provide a different proof from theirs. The first two

parts of the theorem are referred to as the local optimality conditions.

Theorem 4.6: The sets Cy and Vy produced by Algorithm NT have

the following properties.

1. IfD C Vy is a vertex cover for G|Vp|, then C= DUC is a vertex
cover for GG.

2. There exists some optimal cover C* for G such that Cy C OC.
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3. The optimal solution for G|Vy| has weight at least half as much

as the total weight of the vertices in Vg, i.e. ¢* (G[Vp],w) > 2a),

Proof:

1. We already know that CU Vj 1s a vertex cover for ¢. In factI'this

1s exactly the vertex cover which is produced by Algorithm NT

The set Vj only covers the edges in G which have at least one

end-point in Vy. Thereforel'Cy is a vertex cover for GV \ V4] and
it is clear that C' = Cy U D covers all edges in E[V \ Vo] U EV].

Consider any edge {x,y} in F such that x € V5 and y € V5. This
1s the only type of edge which could create a problem. Our choice

of x and y implies that only one of 2” and 2 is contained in C%.
Assumel'without loss of generalityl'that x” is the one contained
in Of. Then the edge {y”, zf*} in B could only have been covered
by C% by having y* € C%. Since y € Voit must be the case that
y € Cy. But this implies that ¢' = Co U D covers the edge {x,y}
and we are done.

2. Let S be some optimal cover for (G. We claim that C* = Co U(.5N
Vo) is also an optimal cover for (; this will validate the second
part of the theorem since Cy C€ C*. Observe that SN V4 1s a

vertex cover of GG[V;]| and sol'by the previous part of the theoremI’
we have that C'* is a vertex cover of (i.

To see the optimality of C*I'first observe that Cg = (Vp U Cy U
SYEU(SNCy)H is a vertex cover for B. Consider any edge {2%, y**}
in B. It is coveredby Cg ifx € Co UVaUS or ify € SN Ch.
Assume then that neither of these two conditions 1s met. Since

x & Co U VyI'the cover C5 must have covered the edges {z%, y**}
and {y”. 2} by containing both y* and y**. Then it must be the
case that y € Cy. Since y* & Cy N ST'we then have that y & S.
But this gives a contradictionI'since we now have both z,y & S
and the edge {x,y} is not covered by the vertex cover S of G.

Given that Cg 1s a vertex cover of BI'it follows that its weight
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cannot be less then that of the optimal cover C5.

w(Cp) < w(Cp)
=  w(V) +2 -w(Co) < w(Vo) + w(Coy) + w(S)—w(SN WW)
= w(Co) < w(S)—w(S NW)
= w(Co) +w(SNV) < ws)

This implies that the w(C*) < w(5)['and thus that C* is an
optimal cover for GG which contains Cj.

3. Let D* be an optimal cover for GG[Vg]. ThenI'by the first part
of the theoremI'Cy U D* 1s a vertex cover for (. It follows then

that (Co U D*)E U (Co U D*)# is a vertex cover for B. But this
must have weight at least as large as that of the optimal cover

CEl'which is exactly w(Vh) + 2 - w(Cy). Thereforel’

2 (w(Co) + (D7) = (V6) +2 (Co)

which implies that 2 - w(D*) > w(V).

[]

Let us try to understand the implications of this theorem. It shows

us how to computel'using a single max-flow computationl'a subset V4

of the vertices such that if we can compute an optimal vertex cover D*

in G[Vp]['then we can compute an optimal vertex cover in the graph G.
In factI'this optimal vertex cover of G is nothing but Cy U D*I'where the

set Cy 1s also provided by Algorithm NT. Of coursel'il we merely get Make sure you see

an approximation within a ratio r of the optimal cover of G[V5]I'then why he first to
that combined with Cy also gives us an approximation within the ratio imply these claims.

r for the entire graph (. We have established the following corollary.

Corollary 4.1: Let (G,w) be an instance of WVC. Algorithm NT
computes subsets Co, Vo CV such that ifD C Vy is an r-approximation

to the optimal weighted vertex cover in G[Vy], then Cy U Vg is an r-
approximation to the optimal weighted vertex cover in GG. Moreover,

the optimal solution for G|Vy]| has value at least half as large as w( Vp).
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By this corollaryl'we only need to worry about finding an approxi-

mation algorithm for instances of WVC where the value of the optimal

solution is at least hall of the total weight of the vertices. Notice that

a trivial 2-approximation for G[Vp] is simply the set of all vertices in
that graphl’which 1s V4. This gives us an approximation algorithm A

for WVC with ratio 2. The algorithm A is exactly the algorithm of
Nemhauser and Trotter!

4.3.2. A Local Ratio Theorem

We are now going to describe a new technique for obtaining an approx-

imation algorithm for WV CI'this is due to Bar-Yehuda and Even [416].
We first show that any partition of the weight function gives two in-

stances of WVC whose optimal solutions yield an optimal solution for

original instance.

Lemma 4.7: Let G(V, FE) be a graph and w, wy and wy be any three
weight functions on the vertex set of G, such that for all v eV

(0) > wo(v) + wy (0)

If CO, CF and C7 are optimal weighted vertex covers for the instances

(GL w), (G wy) and (G, wy), then

w(C7) 2 wo(Cy) + wi (CY)

Proof:

w(C) =) wv)
veC™

>) (wolv) + wi(v))
veC'*

= wo(C7) + wi (C7)

> wo(Cy) + wi (C7)

The last inequality follows from the observation that C™* is a vertex cover

for G and so its weight with respect to any weight function cannot be
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smaller than the weight of the optimal cover with respect to that weight
function.

[]

We apply this lemma as follows. Let H (Vy, Ef) be any fixed graph.
Suppose we find an induced subgraph of (G isomorphic to H. We can

determine the weight function w; such that it is non-zero only on the

vertices in that subgraphl'and the weight function wy is obtained by

subtracting wy from w. By the lemmalfinding optimal solutions with

respect to the new instances gives us an optimal solution for the original
instance. In factl’ we will show that for a suitable choice of H we

can make strong claims about the approximative behavior also. Let

Algorithm A be any approximation algorithm for WVC. Our approach

will be to run Algorithm A on the instance (G,wg)l'and handle the
instance ((, wy) separately. Let us formalize the decomposition as the
following algorithm which 1s parametrized by the choice of H.

Algorithm LOCAL(H):

Input: Graph G(V, EF) with weights w. It is assumed that H and A
have been fixed in advance.

Output: Vertex cover C.

1. Find a set of vertices U C V such that the induced subgraph G|U]
1s 1somorphic to H;

2. 0 + min,ey w(v);

3. Choose the weight function wg as follows:

Jwv)—6  fvel
Vv EV, wo(v) = w(v) otherwise

4. Run Algorithm A on instance (GG, wg) to obtain a vertex cover C
for G;

5. return C.
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At this point there are several questions which may arise in the

readers mind. How do we choose H and what is this Algorithm A? We

defer the answers to these questions. We first show that for any choice

of H and Al'the quality of the approximation produced by Algorithm

LOCAL(H) can be well characterized. Notice that we are not worrying
about the instance corresponding to (H, d) which is subtracted off from
(G,w). We are merely studying the ratio to the optimal of the cover
C' which is produced by the invocation of Algorithm A on the instance

(G, wp). Observe also that (H,¢) is really an instance of VC since all
the vertex weights are identically 9.

Definition 4.8: Given any fixed graph H, let |Vy| = ng and cj; be
the size of an optimal (unweighted) vertex cover of H. Define the local

ratio for H as ry = =.
H

For examplel'if the graph H is a cycle on 2k + 1 vertices then

ng =2k+ 1c; =k +1 and rg = 2 — TT The following theorem
bounds the approximative ratio of the cover (' produced by Algorithm

LOCAL(H).

Theorem 4.7: Ryocarm(G,w) < max{ry, Ra(G,wo)}

Proof: Let r be the larger of ry and R4(G, wg). Alsollet ¢ denote
the value of the optimal solution for the instance (GG, wg). Since |C' MN
V!' <|V'| = ngl'we have that

w(C) << we(C) + dng

< Ra(G wg) - cy + drpycy

< re (g+ocy)

< r-(G,w)

The last inequality can be obtained from the preceding lemma as fol-

lows. Observe that the value of the optimal solution for (H,¢) is simply
0 times the size of the optimal unweighted vertex cover for HI'1.e. oc}.
We claim that this is also the weight of the optimal solution for the
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instance (G,w)'where wy; = w — wy is non-zero only on vertices in
U. This is because the optimal cover for (G,w;) can be obtained by
augmenting the optimal unweighted cover of G[U] by all the vertices in
V \ UI'which are of weight 0. It follows that wl'wy and w; satisfy the
premise of the lemma.
[]

The last theorem 1s also referred to as the Local Ratio Theorem. It

1s not very hard to see that this idea can be generalized to any class of

eraphsl'rather than just one graph H. Let ‘H denote a family of graphs.

We define ry = max{ry | H € H}. We now present a new algorithm
called MLOCAL(H). The basic idea is to enumerate all induced sub-
eraphs of (G which are isomorphic to some graph in HI'and apply the

operation of reducing the weights exactly as in Algorithm LOCAL(H).
Finallyl'all vertices of weight 0 are set asidel'and Algorithm A is applied

to the remaining graph.

Algorithm MLOCAL(H):

Input: Graph G(V, EF) with weights w. It is assumed that ‘H and A
have been fixed in advance.

Output: Vertex cover C.

1. for all v € V do wy(v) + w(v);

2. for all U CV such that G[U] is isomorphic to some H € H do
begin

§ + min{wg(v) |v € U};
for all vertices v € U do wg(v) + wy(v) — 6;

end ;

3. C1 + {ve V]wy(v)=0};

5. Run Algorithm A on instance (G[Vi], wg) to obtain a vertex cover
Cy for GV];
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6. return C' = (C; U (5.

The exact implementation of the Step 2 1s deliberately left unspec-

ified. The intent 1s that the iterations be applied by using some enu-

meration of all induced subgraphs of isomorphic to graphs in H. The

exact ordering in the enumeration is irrelevant and can be chosen to

make the algorithm more efficient. One way to do this is to enumerate

all sets U CV such that |U| < max{nyg | H € H}I'and then to check if
G|U] is isomorphic to some graph in H. This can be done in polyno-
mial time provided the number of vertices in the graphs in ‘H is fixed

independent of |V|. We will see later that for a well-structured class of
eraphs H we can relax this requirement.

At the end of Step 2I'it will be the case that in every induced

subgraph isomorphic to a graph in HI'at least one vertex will have the

wo-weight equal to 0. This means that every such subgraph will have

at least one vertex in Cy. We conclude that the remaining graph G[V}]
cannot have any subgraph isomorphic to a graph in ‘H. It is now clear

why this algorithm 1s useful: for an appropriate choice of H 1t will be

easier to guarantee that a near-optimal cover can be easily found in

G[V1]. In other wordsI’Algorithm A has to perform well only on inputs
which do not have any subgraphs isomorphic to graphs in H. Notice

that there are two ways in which we are constrained in the choice of H:

1t must have ry < 2 and the enumeration in the Step 2 should be easy

to perform.

As for the quality of the approximation produced by this algorithmI

we present the following result called the Local Ratio Corollary. The

proof 1s by a simple induction on the number of iterations in the Step

2I'using the Local Ratio Theorem on each iteration. We leave the proof
as an exercise.

Corollary 4.2: Using any family H and any approximation algorithm
A

o Ryrocarmy(G,w) < maxiry, Ra(G[Vi],wo)}.

eo [Vi] does not have any subgraphs isomorphic to graphs in H.
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We now present several applications of this result. Consider first the

case where the family ‘H contains only the graph HI'and H 1s simply

an edge. It is then the case that ry = 2. Applying the above corollaryl’

we can show that Rrocarm) = 2. MoreoverI'the graph G/[Vi| must be
empty since 1t cannot have any induced subgraphs isomorphic to an

edge. There 1s no need for an Algorithm A in this case. The following

1s an equivalent description of the resulting algorithm. This is exactly

the linear time approximation algorithm with ratio 2 that was devised

by Bar-Yehuda and Even [4].

Algorithm MLOCAL(FEDGE):

Input: Graph G(V, FE) and weight function w on V.

Output: Vertex cover C.

1. while de € F with both end-points of non-zero weight do begin

Pick an edge {u,v} € E with both end-points of non-zero
weight;

6 + min{w(u),w(v)};
w(u) + wu) — 0;
w(v) + w(v) — 9;

end ;

2. return C = {v € V|w(v) = 0}.

Amazingly enoughl'almost every approximation algorithm (except
Algorithm NT) can be viewed as some version of MLOCAL(H).
For another examplel’ consider Algorithm MGA described in the

previous section. This can be thought of as a generalization of

MLOCAL(EDGE) which picks several copies of the graph H (which
is an edge) simultaneouslyl'all sharing a common vertex. The choice
of this common vertex 1s such that it 1s possible to subtract an equal

amount of weight from all other edges without making their new weights

negative. Clearlyl'this is merely an implementation detail and has no

bearing on the ratio achieved.
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Another application of the Local Ratio Theorem is in improving

the performance ratio of the algorithm devised by Hochbaum [24]. Her
algorithm was based on the following novel idea. FirstI'run Algorithm

NT to obtain an instance G[V| with an optimal solution of weight at

least half of w(V5). Suppose now that we can color the input graph
(G with k colors. Let I C Vi be the color class which has the largest

weight. Output ¢' = Vj — [ as the vertex cover. It is clear that C

1s a vertex cover since each color class is an independent setl'and the

complement of any independent set is a vertex cover. MoreoverI'by our

choice of ITw(I) > w(Vy)/k and this implies that

w(C) _ wl) — ul) _, 2
Te TAY RE

Prove that any ince any graph can be colored with A colorsI'it follows that we have

rah ve obtained an approximation algorithm with a performance ratio of 2— £.
In the special case of planar graphsl'we can improve the ratio to 1.5 by

noting that every planar graph can be 4-colored [2I'3].

We now observe that the approximate graph coloring algorithm of

Wigderson [60] (which we will see in a later chapter) will color a graph
using at most 2y/n colors provided it is triangle-free. This helps in
improving the algorithm of HochbaumlI'in conjunction with the use of

the Local Ratio Corollary. The idea is to choose ‘H containing only one

eraphl'viz. the triangle graph. Now we run MLOCAL on the input

graph GG to obtain a triangle-free graph. Next we run Algorithm NT to

obtain a graph which is both triangle-free and has an optimal solution

of value at least half of the total weight of the graph. At this point

we can run Wigderson’s algorithm to obtain a coloring using k = 2y/n

colors. This implies an approximation ratio of 2 — =. The details of
the analysis are fairly straightforward.

4.3.3. An Algorithm for Graphs Without Small

Odd Cycles

We have seen how Algorithm NT and MLOCAL(H) can be used to
obtain several approximation algorithms with performance ratios of 2



4.3. IMPROVED VERTEX COVER APPROXIMATIONS Page 115

or 2 — f(n). Bar-Yehuda and Even improved on all previously known
performance ratios by combining these two algorithms in a particular

fashion. The basic idea is to use MLOCAL(H) to eliminate all odd
cycles of small length. ThenI'by the use of Algorithm NT" we guarantee

that the graph has a large optimal vertex cover. Finallyl'a simple

algorithm is used to obtain a good approximation in the resulting graph.

We now present the latter algorithm.

Definition 4.9: An instance (G,w) of WVC is said to be k-proper if
the following conditions are satisfied.

o (2k — 1)" > n.

o (7 has no odd cycles of length smaller than 2k — 1.

o (CG w) > wi

For u,v € VIlet d(u,v) denote the distance from u to v in G(V, FE).
The sets D; represent the collection of vertices in V which are at a

distance ¢ from v. These can be determined in linear time by performing

a breadth-first search starting at wv.

Algorithm Cy. finds an approximation to WVC in an instance (G, w)
which 1s k-proper. The basic idea 1s to fix a vertex v and find sets B;
which contain all vertices at distance at most ¢ from vl'such that vertices

in B; are at an even distance from v if and only if ¢ 1s even. For ¢t < kI'it

1s clear that each pair of vertices in B; have an even length path joining

them and they cannot be adjacent without creating an odd cycle of

length at most 2k — 1. Since this is not possible for GI'we obtain that

B; must be an independent set. Note that X; = B;_1 U B; contains all

the vertices at distance at most ¢ from v. We now claim that for ¢t < kl’

B; covers all the edges which have at least one end-point in X,. The

algorithm chooses a value of ¢ for which it can be guaranteed that the

weight of w(B;) is a small fraction of w(X;). This is done by choosing
the smallest value of ¢ for which w(B;) < (2k — 1)w(B¢—1). The only
problem is that t is required to be at most £. But if the weight of v

1s largel’and the weight of each subsequent B; keeps increasing by a
factor of at least 2k — 1I'it follows that we will exhaust all the vertices
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in the graph by the time { = £. Now the set X; can be removed from

the graph if we ensure that B; is placed in the cover. The whole process

1s repeated till all the vertices have been removed.

Algorithm CY:

Input: Graph G(V, EF) and weight function w on VI'such that (G, w)
1s k-proper.

Output: Vertex cover C.

1. U + V;

2. C + 0;

3. while U # () do begin
Pick a vertex v € U such that w(v) = max, cp w(u);
for 0 <i:<kdo D;, + {we V|dv,w)=1};

for 0 << [5] do By + Ul_ Dy;
for 0 << Ed do Byii1 + Ul_gDaiyr;
f min{t|w(B;) < (2k — Dw(Bi-1)};
C+ Cu By;

end ;

4. return C.

It 1s obvious that this algorithm can be implemented to run in time

polynomial in the size of the input (G,w). We obtain the following
result about the output of this algorithm.

Theorem 4.8: The set C produced by Algorithm Cy is a vertex cover

forG and Ro, <2 — I.
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Proof: We first claim that f < k. To see thisI'note that for { < fT

w( By) > (2k — 1)w(B;—1) which implies that

w( By) > (2k — 1)'w (By) = (2k — 1)"w(v)

Nowl'if f > k then we have that w(By) > (2k — 1) w(v) > [VV] w(v) >
w(V) implying a contradiction.

Nextl'we claim that By_; is an independent set. Otherwisel there
would be two vertices x,y € By_; which are adjacent. But the distance
from v to and y 1s either both even or both oddI'given the definition

of B;. This implies the existence of an odd cycle containing v of length

at most 2k — 1T'which 1s not possible given that GG 1s k-proper.

Consider any edge e with at least one end-point incident on B;_; U

By. If both end-points of e are in B;_; U B;I'then B; covers this edge

since By_; 1s an independent set. On the other handI'if only one end-
point of e lies in B;_; U B;I'then it must lie in D; since otherwise the
other end-point would be at distance at most f from v and also lie in

B¢_1 U By. It follows that every edge incident on By_; U By is covered
by By. We now conclude that ¢’ must be a vertex cover for G.

It remains to bound the weight of this vertex cover. By definitionI’

w(Br) < (2k — Lw(By_y) or

1

w(By) < (1-5) (o(By) + w(By0))
Moreoverl'at each iteration the set B; is added to the cover while both

sets By and B;_; are deleted from the graph. It is now clear that

w(C) < (1—F) w(V).
[]

4.3.4. The Overall Algorithm

The overall vertex cover algorithm can now be specified in terms of

the algorithms MLOCAL(H)I'NT and C%. The following Algorithm
A takes as input any instance (G,w) of WVC. It can be thought of as
the algorithm A used by M LOC ALT although we present the overall
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algorithm in a slightly different manner. Let C, denote the graph which

consists of a cycle on r vertices.

Algorithm BE:

Input: Graph G(V, FE) and weight function w on V.

Output: Vertex cover C.

1. Let k be the smallest integer such that (2k — 1)F > n;

2. He {Chip |1 <i <k—1};

3. Run Algorithm MLOCAL(H) on (G,w) to obtain the C; CV and
a residual instance (G[Vi], wo);

4. Run Algorithm NT on (G[V1], wp) to obtain the sets Cy, Vo CV;

5. Run Algorithm C} on the (G[Vg], wo) to obtain the cover C;

6. return C U Cy U (.

It is fairly easy to see that the entire algorithm runs in polynomial

timel'provided that M LOC AL(H) can be implemented in polynomial
time. If we were to try and compute all possible odd cycles of length

upto 2k —1I'the running time of MLOCAL would be super-polynomial.

Insteadl'we present a strategy for enumerating a small number of odd

cycles such thatl'if at least one vertex in each such cycle has its weight

reduced to O0I'then there will not be any odd cycles of length at most

2k — 1 which contains only vertices of positive weight. Clearlyl'this 1s

a valid implementation of MLOCAL(H).

To enumerate these odd cyclesl'pick any node v of non-zero weight

and construct a breadth-first tree rooted at that node. Any odd cycle of

length 2r + 1 containing v must have two adjacent vertices at distance

r from v. This implies that there must be a pair of nodes at level r of

the tree which are adjacent. Moreoverl'any adjacent pair of nodes at

level r determine an odd cycle containing v of length 2r 4+ 1. If there
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exists any such pair of adjacent vertices at any level [ < k— 1I'compute

the nuique odd cycle of length 2/ 4+ 1 determined by the tree and these

two vertices. Reduce the weights as specified by MLOCAL. If there

1s no such odd cycle containing vI'then eliminate v from contention in

any future iteration. Now repeat the whole process outlined above.

The claim 1s that at each iteration at least one vertex is eliminated

from consideration as the root of a breadth-first treel'or at least one

vertex has its weight reduced to 0 and is also eliminated. It follows that
the number of iterations is at most n. Moreoverl'at the end of these

iterationsI'the graph does not contain any odd cycles of length at most

2k — 1 which do not have vertices of weight 0.

ThusI'the running time of the entire algorithm is polynomial in the

size of the input. In factI'the running time is dominated by Algorithm

NT which uses one max-flow computation.

It is also clear that this algorithm has a performance ratio of 2 — x.
This can be formally verified by using the results proved in the previous

sections for the algorithms NTT MLOCAL and (C}. Note that our

choice of £ 1s such that £ =O (oer). We have the following result.

Theorem 4.9: The algorithm BE computes a vertex cover in polyno-

maial time such that R4 = 2 — El

4.4. Approximating Set Cover

Let H(V,FE) be a hypergraph representing an instance of the (un-
weighted) set covering problem. We generalize the notion of the degree
ol a vertex to a hypergraph.

Definition 4.10: For all v € V, d, is the number of edges in E which

contain v. Also, let d = d(H) be the maximum degree in the hypergraph
H.

As usuall'a cover ' C V is a collection of vertices of the hypergraph

such that each edge in I contains at least one vertex from C'.
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Definition 4.11: 7(H) is the size of a minimum cover of the hyper-
graph H.

There 1s no known constant factor approximation for the minimum

cover of a hypergraph. In factl'there is some evidence to the effect

that such an approximation is impossible to find in polynomial time.

The best known approximation algorithm has a performance ratio of

O(log d)I"and this was independently discovered by Johnson [30] and
Lovasz [43]. A similar result was achieved for the case of weighted
hypergraphs by Chvatal [10]. We will present only the result for un-
weighted hypergraphs. The algorithm is essentially the greedy algo-

rithm G21" as generalized to hypergraphs. We will also refer to this

generalized algorithm as G2.

Algorithm G2:

Input: Hypergraph H(V, EF).

Output: Set cover C.

1. C « {;

2. while IF # {) do begin
Pick a vertex v € V of maximum degree in the current

hypergraph;

C+ C+ v;

E+ E\{e|lv€e};

end ;

3. return C.

The following presentation is based on that of Lovasz. We will need

some further notation in the course of analyzing (G2. A fractional cover

of a hypergraph is essentially a feasible solution to the LP-relaxation

of the integer programming formulation of the covering problem. It is

a choice of a fraction of each vertex such that for every edge the total
fraction of all its vertices selected is at least 1.
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Definition 4.12: A fractional cover of the hypergraph H is a weight

function w : V — RT such that for all edges ¢ € FE

> wv) >1
vee

Definition 4.13: Let 7*(H) denote the size of the optimal fractional
cover of H, i.e.

7" = min »_ w(v)
veV

A matching in a hypergraph 1s a natural generalization of a match-

ing in a graphl'i.e. it 1s a collection of independent edges. We can

further generalize this to the notion of a k-matchingl'as follows.

Definition 4.14: A k-matching in the hypergraph is a subset M C FE

such that each vertex v € V is contained in at most k edges from M.

In other words, it is a sub-hypergraph of degree at most k.

Definition 4.15: Let mp(H) denote the size (number of edges) of a
maximum k-matching in the hypergraph H.

For the sake of brevityl'we will omit the dependence of dI' 71" 7°

and my on the input hypergraph HI'assuming that the input H has

been fixed. We first present some elementary relations between these

quantities. The first of these follows from the observation that every
cover of H 1s also a fractional cover.

Fact 4.7: <r

The next fact follows from linear programming dualityl’but we pro-

vide an elementary proof.

Fact 4.8: For all k, my < kt~.
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Proof: Let M be a maximum cardinality k-matching; thenl'|M| =
my. Consider any optimal fractional cover w such that }°,cy w(v) = 7%.
Now we know that each edge in ET'and hence each edge in MT'has total

weight at least 1 under w. Thereforel'for all e € MT

D vee w(v) > 1
— D> ceM D vee w(v) > | M | — Mg

Butl'in the left-hand-side of the last inequality each vertex occurs at
most & times. Thereforel'we have that

d k-w(v) > my
veV

Noting that 7* = 3",cy w(v)['we have the desired result.
[]

We are now ready to show that Algorithm G2 has a performance

ratio of O(log d). Suppose that Algorithm G2 chooses the vertices vi’
vol’. ..I'vyI'in that orderI'to produce a cover of size t. The following

lemma bounds the value of¢ in terms of the matching numbers for H.

Pay particular attention to the last term in the series.

Lemma 4.8:

ma mo ms mdg— mq
A Hc TtA TA etSU Mic]

=T2723 34 "T@-nd 4d

Proof: Note that vy has maximum degree in HI'i.e. degree dl'and

that my = |F|. Observe that the number of new edges covered by
each successive v; 1s a non-increasing function of 1. We will refer to the

number of new edges covered by any such v; as its covering degree. Let

t, be the number of times that algorithm selects a vertex of covering

degree r in the course of its execution. Thusl'among the v;’sI'the first

ty of them have covering degree d eachl'the next t;_; of them have

covering degree d — 1 eachl'and so on. We conclude the following

t = tattaa+---+ia+th

E| = dtg+(d—1)tgq+ +2 + 1
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Let H;(V, E;) denote the hypergraph defined by the collection of un-
covered edges after t; + t4_1 + --- + {;41 vertices have been selected by

(2. Clearlyl'the maximum degree of each hypergraph H; is at most 1.

This implies that I; is an i-matching in H. Thereforel’

Notice that all the edges of H; were covered during the last ¢; + ¢;,_1 +

c++ + 15 4 ty iterations of G2. This gives us the following equation

img > Ei =i + (0 — Dior +--+ 28 + 4

or that |

m; > > jt;
7=1

Upon suitable algebraic manipulationl'this yields the inequality stated
in the lemma.

[]

We are now ready to prove the main theorem.

Theorem 4.10: Rg <1 + logd

Proof: From Facts 4.7 and 4.8'we have that

my < kt" < kT

Combining this with the previous lemmal'we obtain that

d-1
LT dr

P< SZ

S Xan td
d

1

i=1 "1

< (14logd)r

In other wordsI’

G2(H) < (1 +1logd)OPT(H)

implying the desired result.
[]
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Exercise 4.4: Show that the above bound on the performance ratio of

(G2 1s the best possible.

4.5. Discussion

Several of the algorithms described above seem to perform operations

which are counter-intuitive. A good example 1s MGA which actually

reduces the weights of the neighbors of the vertices already in the coverl’

thus increasing the likelihood that these neighbors are also selected to

be in the cover. See the paper by Gusfield and Pitt [22] for a partial
explanation of why such algorithms actually perform better than more

intuitive algorithms such as G2. This also gives a more unified view of

most of the algorithms considered above.

Hochbaum [25] gives bounded ratio approximation algorithms for
related problemsI'viz. independent sets and coloring in bounded degree

eraphs and planar graphs. A result that we did not cover is the ap-

proximation algorithm for weighted set cover due to Chvatal [10]. The
algorithm 1s a generalization of the greedy algorithm described above

for set cover. The result in the case of set cover may be viewed as

bounding the ratio of optimal integral cover and fractional cover for

hypergraphs. See the paper by Aharonil'Erdos and Linial for a more

general version of this resultli.e. a study of the ratio between the opti-

mal fractional and integral solutions to a class of integer programs. A

different version of the set cover was studied by Johnson [30]. Herel'as
beforel'the objective is to find a collection of vertices which cover all

the edges but the value of a cover is now defined to be the sum of the

degrees of the vertices in the coverl'rather than the size of the cover.

The results obtained are very similar to those described above for the

set cover problem.

Problems _-.-. === 00

4-1 Recall the result proved in an earlier chapter which showed that
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there is no absolute approximation algorithm for CLIQUEI as-

suming that P # ANP. Prove a similar result for SET COVER.

4-2 Consider the algorithm MGA for WEIGHTED VERTEX COV-

ERING due to Clarkson. Prove the following variation of the

result presented in class. Given an unweighted graph G(V, FE)
with maximum degree A such that the optimal vertex cover is of

size at most n/3I

Baaal(G) <2 — —MGA S Ao

4-3 We have seen the greedy algorithm of Lovasz guarantees a 1+4log d

factor approximation for the SET COVER problem. Prove that

this 1s the best bound possible in that there exist instances where

this bound is achieved by the greedy algorithm. Can you prove a

similar result for the greedy algorithm on WEIGHTED VERTEX
COVER?

4-4 Consider the problem called RECTANGLE COVERING or RC.

Instance: A collection of rectangles I = {Ry,...,R,} in the
plane such that each rectangle is aligned with the axes — all

sides are horizontal or perpendicular. Note that the rectan-

gles may overlap.

Feasible Solution: A collection of points P = {p1,..., pm,} such
that each rectangle in I contains at leas one point from P.

Goal: Minimize | P|.

Provide the best approximation algorithm you can for this prob-

lem. Can you say anything about the hardness of approximating

this problem?
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