Computer Science |

) Situation-Dependent Learning
for Interleaved Planning and Robot Execution

Karen Zita Haigh

February 1998
CMU-CS-98-108

660 50808661

DITIC QUALITY Liviesiiasi 1

Situation-Dependent Learning
for Interleaved Planning and Robot Execution

Karen Zita Haigh

February 1998
CMU-CS-98-108

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Manuela M. Veloso, Chair
Tom Mitchell
Reid Simmons
R. James Firby (Neodesic Corporation)

Copyright (¢) 1998 Karen Zita Haigh

This research is sponsored in part by (1) the National Science Foundation under Grant No. IRI-9502548, (2) by the
Defense Advanced Research Projects Agency (DARPA), and Rome Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-95-1-0018, (3) the Natural Sciences and Engineering Council of Canada (NSERC),
and (4) the Canadian Space Agency (CSA). The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of the NSF, DARPA, Rome Laboratory, the U.S. Government, NSERC or the CSA.

DTIC QUALITY INSPECTED 1 o

Keywords: Artificial intelligence, robotics, PRODIGY, Xavier, interleaving planning and exe-
cution, execution monitoring, asynchronous goals, machine learning, situation-dependent rules,
situation-dependent costs, plan quality, planning performance, execution performance, search con-
trol knowledge.

\,\—\‘\' O
oy egie
CAmeg
\C’\’\\: llon School of Computer Science
-
DOCTORAL THESIS
in the field of
COMPUTER SCIENCE

Situation-Dependent Learning for Interleaved
Planning and Robot Execution

KAREN ZITA HAIGH

Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

ACCEPTED:

Manuda 1. V%. 4[13/48

20T

APPROVED:

2R

Majj ,4’. quL

DEAN DATE

Abstract

This dissertation presents the complete integrated planning, executing and learn-
ing robotic agent ROGUE.

Physical domains are notoriously hard to model completely and correctly.
Robotics researchers have developed learning algorithms to successfully tune op-
erational parameters. Instead of improving low-level actuator control, our work
focusses instead at the planning stages of the system. The thesis provides tech-
niques to directly process execution experience, and to learn to improve planning
and execution performance.

ROGUE accepts multiple, asynchronous task requests, and interleaves task
planning with real-world robot execution. This dissertation describes how ROGUE
prioritizes tasks, suspends and interrupts tasks, and opportunistically achieves
compatible tasks. We present how ROGUE interleaves planning and execution
to accomplish its tasks, monitoring and compensating for failure and changes in
the environment.

ROGUE analyzes execution experience to detect patterns in the environment
that affect plan quality. ROGUE extracts learning opportunities from massive,
continual, probabilistic execution traces. ROGUE then correlates these learning
opportunities with environmental features, thus detecting patterns in the form of
situation-dependent rules. We present the development and use of these rules for
two very different planners: the path planner and the task planner. We present
empirical data to show the effectiveness of ROGUE’s novel learning approach.

Our learning approach is applicable for any planner operating in any physi-
cal domain. Our empirical results show that situation-dependent rules effectively
improve the planner’s model of the environment, thus allowing the planner to
predict and avoid failures, to respond to a changing environment, and to create
plans that are tailored to the real world. Physical systems should adapt to chang-
ing situations and absorb any information that will improve their performance.

Acknowledgements

It’s often said that the only important decision one makes in graduate school is who their
advisor will be. I have never doubted my choice. Without Manuela’s unending enthusiasm
and unfailing support, I would never have completed my PhD. Manuela’s vision and creativ-
ity made everything seem worthwhile. I thank her for giving me the freedom to pursue my
ideas and interests, while providing me with guidance through the tough parts.

[am indebted to everyone in the Xavier and PRODIGY research groups, especially Joseph,
Sven, Rich, Greg and Jim. Robotics research can be very frustrating, and Joseph’s cynical
humour made it a lot more fun. I thank Greg in particular for his many hours fixing the
robot and following it around to help me collect data.

[also thank Henry, Po, Arup, Darrell and the SCS facilities staff for keeping my machines
running, particularly after a few too many late nights and stupid errors.

Outside school, I want to thank the Dinner Co-op, particularly Sonia and Sanjiv, and
Barry and Ev. They kept me sane (or insane, depending on how you look at it), and
distracted me from the agony. Lisa kept me healthy, Will and Wayne kept me amused. Rob
has been a rock through all the turbulent waters, his love and unconditional support the
foundation upon which I build my dreams.

i

iv

Acknowledgements

Contents

1 Introduction ‘

1.1 Approach
1.2 The Domain e
1.2.1 Capabilities of the Robot

1.3 Task Planning L
14 Learning oo it e
1.4.1 Learning for the Path Planner

1.4.2 Learning for the Task Planner

1.5 Contributions L
1.6 Reader’s Guide,

2 The Task Planner

2.1 Planning and Execution Architecture
2.2 Planning for Asynchronous Requests
2.2.1 Receivinga Request,
2.2.2 Planning in PRODIGY4.0
2221 Operators e

2222 BuldingthePlan.

2.2.2.3 Search Control Rules

2.2.3 Suspending and Interrupting Tasks
2.2.4 Example: Asynchronous Requests

2.3 Execution and Monitoring L
2.3.1 Sensing in Control Rules
2.3.2 Executing Actions
2.3.2.1 PRODIGY4.0’s Mechanisms for Supporting Execution

2.3.2.2 Deciding When to Execute

2.3.2.3 ROGUE’s Execution Behaviour

2.3.3 Monitoring
2.3.4 Example: Sensing to Make Planning Decisions
2.3.5 Example of how ROGUE Handles Failures.
2.3.6 Example of how ROGUE Handles Side-effects

2.4 Alternative Approaches L.

S Ot = O =

vi

CONTENTS

25 SUMmMAary e e e e 47

Learning for the Path Planner 51

3.1 Architecture and Representation 52

3.1.1 The Path Planner 53

3.1.2 Navigation e 54

3.2 Features e 58

3.3 Events L 59

3.3.1 Identifying the Most Likely Traversed Markov Sequence 61

3.3.1.1 Problems with the Viterbi Sequence 64

3.3.1.2 Possible Modifications to Viterbi's Algorithm 65

3.3.1.3 Multi/Markov Viterbi 67

3.3.2 Identifying the Planner’s Ares 69

3.4 Costs . . . o e 73

3.5 Learning Algorithm k]

3.6 Updating the Path Planner 79

3.7 Experimental Results 79

3.7.1 Simulated World 1: Learning Patterns 80

3.7.1.1 Data and Rule Learning 81

3.7.1.2 Effect on Path Planner 84

3.7.2 Simulated World 2: Stability and Generalization 88

3.7.3 Simulated World 3: Learning Rates 91

3.7.3.1 Data e 91

3.74 Real Robot 91

3.7.4.1 31 July 1997 97

3.7.4.2 31 October 1997 97

3.8 Summary ... 99

Learning for the Task Planner 101

4.1 Features e 103

42 Events L 103

43 Costs . . o o o 104

4.4 Learning Algorithm 105

4.5 Creating Control Rules for the Task Planner 105

4.6 Experimental Results L 108

4.6.1 Experiment 1: Execution Features. 108

4.6.2 Experiment 2: High-level features 112
4.6.3 Experiment 3: Feature Costs & Combining High- and Execution-level

Features 117

4.7 Summary ... 119

CONTENTS

5 Related Work
5.1 Task Planning
9.2 Learning
5.2.1 Learning Action Costs
5.2.2 Learning Symbolic Descriptions of Actions
5.2.3 Learning Plan Quality
6 Conclusion
6.1 Important Issues
6.1.1 Planning
6.1.2 Learning
6.2 Other Applications
6.3 Future Research Directions
6.3.1 Improvements to the Task Planmer
6.3.2 Improvements to the Learning Architecture
Appendices

A Setting up PRODIGY4.0 with TCA

A.1 init.lisp.

......................................

A2 short-initlisp

B Sending Task Requests

C Changes to the Path Planner

D Collecting Execution Features
D.1 Data Structure for Execution Features
D.2 Querying for Execution Features.
D.3 Execution Feature Query Handler

E AmalgamViterbi
E.1 Markov Models with High Branching Factors
E.2 AmalgamViterbi
E.3 A Comparison of Viterbi Algorithms
E.4 AmalgamViterbi as a Heuristic

E.5 Summary

References

.....................................

vii

121
121
124
124
125
126

129
130
130
133
134
135
135
136

138

139
139
141

147
151

153
153
154
154

157
157
158
159
161
162

163

viii CONTENTS

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8
3.9
3.10

Xaviertherobot. L
Xavier's primary software layers.
ROGUE architecture.
Robot’s map (half of the 5th floor of our building).
Closeupof map.
A high-level view of a sample learned rule for the path planner.
A high-level view of two sample rules learned for the task planner.
Reader'sguide.
ROGUE task planning architecture.
User request interface.
Example representation of an incomplete plan in PRODIGY4.0.
Plan for single task problem.,
Calculating the priority rank of the deadline.
Plan for a two-task problem.
Partial plan after room 5309 has been observed.
Partial plan after backtracking and immediately before room 5311 has been observed.

Executed plan. L. L
Summary of ROGUE’s mediation between users, PRODIGY4.0 and Xavier.
Learning for the path planner.
Two paths fromAto B.,
Corridor representation which captures length uncertainty for the navigation module. .
An example of POMDP transition calculations.
Markov state probability distribution, (a) before and (b) after observing the wall at the

end ofthe corridor.
Extracting arc traversals from Markov state distributions.
A map showing why the most likely state sequence may be different from the most
likely states.
Viterbi transition calculations.

Fan-in: Example of how the map representation affects Viterbi's algorithm..
Fan-out: Example of how the map representation affects Viterbi's algorithm.
ix

(IS)

11
12
13
14

18
20
24
26
27
30
43
43
44
48

LIST OF FIGURES

3.11 The set of last sequences: Viterbi sequences generated from each of the possible Markov

states at the last time step in the execution trace, 7. 68
3.12 Map used in the example of how multiple sequences areused. 68
3.13 Different representations of afoyer. 71
3.14 Different representations of junctions incorridors. 71
3.15 Multiple arcs corresponding to multiple Markov nodes. 71
3.16 An example of when the greedy heuristic may fail. 72
3.17 Learned tree for arc 208 from the Exposition world described in Section 3.7.1. 76
3.18 The cross validation results forarc208. i
3.19 The learned tree from arc 208 after pruning. 78
3.20 Exposition world. 80
3.21 Arccost frequency. 82
3.22 Learned trees for the six arcsincorridor3. 83
3.23 Learned corridor cost (average over all arcs in that corridor) for Wednesdays. 84
3.24 Expensive arcs in corridor 2 for situation: Wednesday, 01:05am. 85
3.25 Expensive arcs in corridor 3 for situation: Wednesday, 01:05am. 85
3.26 Expensive arcs in corridor 8 for situation: Wednesday, 01:05am. 85
3.27 Expensive arcs for situation: Wednesday, 01:05am. 86
3.28 Expensive arcs for situation: Tuesday, 09:45am. 86
3.29 Comparison of path planner’s behaviour before and after learning. 87
3.30 Maximum node deviance vs. learned tree size. 89
3.31 Corridor cost (average over all arcs in that corridor) for Wednesdays. 89
3.32 Learned trees for the six arcsincorridor 3. 90
3.33 Corridor-switchworld. 92
3.34 Effect of window size on stability, learning rate and forgetting data. 93
3.35 Typical rule inside the crossover region, Z. 93
3.36 Window size: 20 trial runs. 95
3.37 Window size: 30 trial runs. 96
3.38 Distribution and length of robot running times, April-July 1997. 97
3.39 Learned costs for Wean Hall lobby on Wednesday, August 6. 98
3.40 Distribution and length of robot running times, April-October 1997. 98
3.41 Learned costs for Wean Hall lobby on Wednesday, November 11. 99
4.1 Regression trees learned for the “Should | wait?” task. 111
4.2 Expected and actual trees for door-open times. 116
4.3 Expected tree for door-open times with all features., 117
E.1 Groups, G of Markovstates. 160
E.2 Processing data from a trace collected on the real robot. 161
E.3 Viterbi's algorithm in the Maze World. 161
E.4 Viterbi's algorithm in the Exposition World. 162

E.5 An example of when AmalgamViterbi incorrectly estimates the most likely path. 162

List of Tables

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10

2.11

2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

Examples of Events, &, Features, 7, and Costs, C, for sample planners.
General approach for learning situation-dependent costs.

Request data structure for TCA.
Registering the request handler and connecting to TCA.
Integrating new task requests into PRODIGY4.0.
The primary operators in ROGUE's task planning domain.
PRODIGY4.0 algorithm and decision points.
Goal selection search control rule.

Final execution sequence.
The PRODIGY4.0/EXECUTE search algorithm.
The set of actions taken for executing the PRODIGY4.0 operator <GOTO-DELIVER-LOC
mitchell r-5309>. e e
Partial trace of ROGUE interaction, in which direct observation is used to make planning
decisions. L. e

An outline of the monitoring and recovery procedure used for the navigation operators.

The complete planning and execution cycle in ROGUE.

Bayesian probability updates. L L
Sample observation probabilities. L L L
Viterbi's Algorithm.
Small example of § and 7 probability distributions.
Multi/Markov Viterbi.
Events matrix. L
Identifying arc traversal events £ from the execution trace.
Text version of the learned tree forarc208.
Text version of the learned tree from arc 208 after pruning.
The average cost of all the arcs in each type of corridor.

Path length calculation for a path between room 231 and room 319.
Path length calculation for a variety of paths under three different situations.
General learning approach as instantiated for the path planner.

x1

LIST OF TABLES

4.1 ROGUE's learning approach as instantiated for the task planner. 102
4.2 Important tests for generating PRODIGY4.0 control rules from learned trees. 106
4.3 Asampletree.. L e e 107
4.4 Learned PRODIGY4.0 control rules for the tree in Table 43. 107
4.5 The meta-predicate function for current time. 108
4.6 The meta-predicate function for sonar readings. 108
4.7 Sampling from the events matrix for the “Should | wait?” task. 110
4.8 PRODIGY4.0 control rules generated for the learned pruned trees. 112
4.9 PRODIGY4.0 trace using the control rules of Table 4.8. 113
4.10 Sampling from the events matrix for the “Reject until...” task. 115
4.11 Timeout data between 10:00 and 20:00. 116
4.12 Learned tree for both high-level and execution-level features at cost 1.0. 118
4.13 Learned tree for high-level features at cost 1.0, execution-level features at cost 2.0. . . 118
4.14 Learned tree for high-level features at cost 1.0, execution-level features at cost 3.25. . 119

E.1 AmalgamViterbi. e 159

Chapter 1

Introduction

Robots that aim at fully operating in the real world need to be able to perform many
tasks autonomously. Reliability and efficiency are key issues. The robot must be able to
effectively deal with noisy sensors and actuators and consistently achieve its tasks. It must
create high-quality plans, and it must act efficiently, in real time, to deal with unexpected
situations.

Moreover, since most physical world domains are hard to model completely and correctly,
the robot should be able to learn from its experiences. The robot should be able to adapt
to a changing environment. A learning robot will be more flexible and adaptive than a
pre-programmed system. An office delivery robot, for example, would be able to move from
working in a university classroom building to a hospital with few, if any, design changes.
Since Shakey the robot [Nilsson, 1984], researchers have been trying to build autonomous
robots that are capable of planning and executing high-level tasks, as well as learning from
the analysis of execution experience.

This thesis addresses the concrete technical challenge of building a complete planning,
executing and learning robotic agent operating in the real world. We present a robotic
system which creates and executes plans for multiple, asynchronous, interacting tasks. We
alm at showing that a real robot can learn from execution experience to improve planning
and execution models, and therefore its performance.

The specific research foci are to investigate:

e real execution in a fully autonomous robot,
e challenging the agent with multiple interacting tasks,
e using planning and real execution as a source for learning.

One of the important scientific questions is to understand the interaction between an au-
tonomous agent and its environment, especially when there are many interdependent tasks
to be performed. The second important scientific question is to understand the impact of
using past experience to improve planning performance in a challenging domain. Our learn-
ing is applicable in any physical domain where the costs or probabilities of actions are hard
to capture or may change over time.

2 (HAPTER 1. INTRODUCTION

Figure 1.1: Xavier the robot.

1.1 Approach

In this dissertation we explore the interaction of perception, cognition, action and learning
in a complete integrated autonomous agent.

We have built a system called ROGUE [Haigh & Veloso, 1997; Haigh & Veloso, 1998a;
Haigh & Veloso, 1998b] that forms the task planning and learning layers for a real mobile
robot, Xavier!. One of the goals of the project is to have the robot move autonomously in
an office building, reliably performing office tasks, such as picking up and delivering mail
and computer printouts, picking up and returning library books, and carrying recycling cans
to the appropriate containers.

Xavier is a mobile robot being developed at Carnegie Mellon University [OSullivan et al.,
1997; Simmons et al., 1997] (sec Figure 1.1). It is built on an RWI B24 base and includes
bump sensors, a laser range finder, sonars, a color camera and a speech board. The software
controlling Xavier includes both reactive and deliberative behaviours, integrated using the
Task Control Architecture (TCA) [Simmons. 1994]. Much of the software can be classified
into five layers, shown in Figure 1.2: Obstacle Avoidance, Navigation, Path Planning. Task
Planning (provided by ROGUE), and the User Interface.

ROGUE provides a setup where users can post tasks for which the planner generates

'In keeping with the Xavier theme, ROGUE is named after the “X-men” comic-book character who absorbs
powers and experience from those around her. The connotation of a wandering beggar or vagrant is also
appropriate.

1.1. APPROACH 3

User Interface

(WWW, Zephyr, Special Purpose)

Interprocess Communication
and Synchronization (TCA)

Hardware / Servo-Control
(Commercial)

Figure 1.2: Xavier’s primary software layers. Reproduced from Simmons et al. [1997].

appropriate plans, delivers them to the robot, monitors their execution, and learns from
evaluation of execution performance.

ROGUE’s task planner is based on the PRODIGY4.0 planning and learning system [Veloso
et al., 1995]. The challenges for a task planner in this domain are due to the asynchronous
goals and the dynamics and uncertainty of the world. The task planner generates and exe-
cutes plans for multiple interacting goals, which arrive asynchronously and whose structure
is not known a priori. The task planner interleaves tasks, reasoning about task priority and
task compatibility. ROGUE enables the communication between the planner and the robot,
and controls the interleaved planning and execution process. ROGUE can detect execution
failures, side-effects (including helpful ones), and opportunities. The task planner controls
the execution of a real robot to accomplish tasks in the real world. The planning and ex-
ecution capabilities of ROGUE form the foundation for a complete, learning, autonomous
agent.

ROGUE uses a planner-independent learning approach that processes the execution data
to improve planning. The challenges for a learning system in a physical world include (1)
automatically extracting relevant learning information from the execution data, and (2)
correlating that information with features of the domain to improve planning models. Our
approach relies on examining the execution data to identify situations in which the planners’
behaviour need to change. It then correlates features of the domain with the learning
opportunities, and creates situation-dependent rules for each of the planners. The planners
then use these rules to select between alternatives to create better plans. We demonstrate
the generality of the approach in two different planners: Xavier’s path planner, and the task
planner. ROGUE learns situation-dependent rules that affect the planners’ decisions.

ROGUE’s overall architecture is shown in Figure 1.3. ROGUE exploits Xavier’s reliable

4 CHAPTER 1. INTRODUCTION

User requests

Task Planner Path Planner (Xavier)
{Model of environment:: " Task planning algorithm’ “Model of environment: Path planning algorithm
control knowledge (PRODIGY4.0) T arc costs (A%
............ R S S e e
Learning N
[}
Monitoﬁngé i
¢ Data ’ Navigation (Xavier)
; Compilation ; (POMDP)
Execution Processing

Figure 1.3: RoGUE architecture.

lower-level behaviours, including path planning. navigation. speech and vision. ROGUE
provides Xavier with a high-level task planning component. and a learning component. The
learning component extracts information from low-level execution data to improve high-level
planning.

1.2 The Domain

The office delivery domain provides a reasonably rich and challenging environment for a
robotic system, while remaining reasonably structured. Tasks include picking up printouts,
picking up and returning library books. and delivering mail and packages within the building.
User requests are, for example, “Pickup a package from my officc and take it to the mailroom
before 4pm today.” In general, requests involve acquiring an item at some location, and then
delivering it to another.

The domain requires a reliable, efficient, autonomous mobile robot. When the system is
not reliable, tasks are not successfully achieved. and users will not utilize the system. When
the system is not efficient, it misses deadlines and otherwise annoys users, and either users
only request nonessential tasks, or the set of authorized users must be restricted.

Task requests arrive asynchronously, the locations and details of which are not known a
priori. Plans for achieving tasks may interact; the task planner is responsible for finding an
appropriate ordering to interleave and combine compatible tasks.

We can expect the environment to be dynamic at two levels. At the navigation level,
temporary obstacles, including people and objects, may appear at any time. Permanent
obstacles or changes may also occur; for example the hallways in our building were recently

1.2. THE DOMAIN 5

carpeted and several doors added. These changes may lead to changes in navigation effi-
ciency, reliability or even achievability.

At the task planning level, temporary changes include, for example, people going to
meetings, or changing work hours. More permanent changes might include new staff, people
changing offices, or new task capabilities. For example, one goal of the system is to have the
robot identify and collect aluminium cans for recycling.

Creating a pre-programmed model of these dynamics would be not only time-consuming,
but very likely would not capture all relevant information. ROGUE can reduce the burden
on the programmer because its learning capabilities modify the existing domain model to
reflect real world experience. ROGUE extracts relevant information from the execution data
to create situation-dependent rules to improve default cost or probability estimates. ROGUE
learns patterns and identifies changes in the environment, creating situation-dependent rules
that the planners can then use to improve plan quality.

1.2.1 Capabilities of the Robot

The software controlling Xavier includes both reactive and deliberative behaviours. The
various software modules communicate with each other through the Task Control Architec-
ture (TCA) [Simmons, 1994; Simmons et al., 1990]. TCA provides facilities for scheduling
and synchronizing tasks, resource allocation, environment monitoring and exception han-
dling. The reactive behaviours enable the robot to handle real-time local navigation, ob-
stacle avoidance, and emergency situations (such as detecting a bump). The deliberative
behaviours include vision interpretation, maintenance of occupancy grids and topological
maps, and path planning and global navigation (an A* algorithm).

ROGUE exploits Xavier’s reliable lower-level behaviours, including path planning, nav-
igation, speech and vision. If Xavier were given other abilities, for example manipulation,
elevator riding, or extended vision skills, they could be easily incorporated into ROGUE.

The path planner creates plans for moving from one location in the environment to
another. The path planner uses a decision-theoretic A* algorithm on a topological map with
metric information [Goodwin, 1996]. The planner creates a plan with the best expected travel
time, taking into account distance, blockage probability, traversal weight, and recovery costs
(for, say, missing difficult turns).

ROGUE depends most heavily on Xavier’s reliable navigation module, which reaches its
destination approximately 95% of the time. Navigation is done using Partially Observable
Markov Decision Process Models (POMDPs) [Simmons & Koenig, 1995]. In the period
from December 1, 1995 to August 31, 1997 Xavier attempted 3245 navigation requests and
reached its intended destination in 3060 cases, where on average each job required it to move
43 meters, for a total travel distance of over 125 kilometers. Detailed navigation results are
presented elsewhere [Simmons et al., 1997].

Xavier does not currently have the ability to manipulate objects itself. It therefore relies
on humans in the environment to place or remove objects from its basket.

Xavier’s vision system is minimally used by researchers in the group. Current abilities

6 CHAPTER 1. INTRODUCTION

include face detection, door identification and door-label reading. The door identification
skill is used by ROGUE only indirectly — the navigation module uses it to centre the robot
in front of the door.

Xavier has a speech board that can convert ASCII English to recognizable accented
speech. ROGUE uses this speech capability to interact with users, for example, asking for
mail or verifying its location. To reply to ROGUE, users type on the keyboard.

In the near future, we expect that the robot will be able to autonomously ride the elevator
(it currently does so with assistance), and thereby increasing the variety of tasks the system
can perform.

1.3 Task Planning

The challenges for a task planner in this domain are due to the asynchronous goals and
the dynamics and uncertainty of the world. ROGUE’s task planner is based on PROD-
1GY4.0 [Veloso €t al., 1995], a domain-independent nonlinear state-space planner that uses
means-ends analysis and backward chaining to reason about multiple goals and multiple al-
ternative operators to achieve the goals. It has been extended to support real world execution
of its symbolic actions [Haigh et al., 1997b; Stone & Veloso, 1996]. ROGUE handles multiple
asynchronous task requests and controls the real-world execution of Xavier to achieve tasks
in this dynamic office delivery domain.

Any system operating in a dynamic world needs to be able to respond efficiently and
effectively to changes in the environment. Actions may fail. actions may have unexpected
side-effects (beneficial. irrelevant or harmful). and unexpected opportunities may arise. The
system must have mechanisms to detect and respond to such failures and changes.

Asynchronous goals can have a serious effect on both planning and execution efliciency.
The first important issue is that the system cannot delay execution until it has completed
planning for all goals; it must instead interlcave planning and erecution.

Interleaving planning with execution not only allows the system to start executing tasks
when requests arrive, but also allows the system to respond to changes in the environment
as well as to reduce its planning effort. An interleaved framework provides the planner
with feedback about execution, for example by pruning alternative outcomes of an action, or
noticing opportunities. For example, the planner can notice limited resources such as battery
power, or notice external events like doors opening and closing. The planner can remove
planned actions when exogenous events or side-effects unexpectedly make them irrelevant.

ROGUE controls the task planner to interleave planning with execution. Each time
PRODIGY4.0 generates an executable plan step, ROGUE maps the action into a sequence of
navigation and other commands which are sent to the Xavier module designed to handle
them. ROGUE then monitors the outcome of the action to determine its success or failure.
ROGUE can detect execution failures, side-effects (including helpful ones), and opportunities.

Since the office delivery domain involves multiple users and multiple tasks, another im-
portant issue is that the task planner be able to interleave compatible tasks but not get so

1.4. LEARNING 7

side-tracked that it gets nothing done. ROGUE provides PRODIGY4.0 with mechanisms to
reason about task priority and task compatibility, and successfully and competently inter-
leaves compatible tasks.

Because ROGUE interleaves planning with execution and handles asynchronous goals,
ROGUE’s ability to easily suspend and reactivate tasks is crucial. When important requests
arrive, ROGUE suspends the execution of lower priority tasks. Once the important request
has been fulfilled, ROGUE reactivates the less important task(s). Some systems respond to
asynchronous goals by restarting the planner, losing planning effort as well as placing high
demands on sensing to determine the current status of the environment and interrupted
tasks [Pell et al., 1997; Bonasso & Kortenkamp, 1996]. ROGUE, however, suspends and
reactivates tasks efficiently, without losing any of the prior planning information. It monitors
the environment to identify unexpected changes, such as side-effects and exogenous events,
that can affect the validity and applicability of plans.

The office delivery domain involves multiple users and multiple tasks in a dynamic world.
ROGUE interleaves planning and execution to create a task planner with the ability

to integrate asynchronous requests,

to prioritize goals,

to suspend and reactivate tasks,

to recognize compatible tasks and opportunistically achieve them,

to execute actions in the real world, integrating new knowledge which may help plan-
ning, and

e to monitor and recover from failure.

ROGUE can control the execution of a real robot to accomplish tasks in the real world.

1.4 Learning

A complete autonomous agent must learn from its experiences. Most physical worlds are
hard to model completely and correctly, and hence, regardless of the skill and thoughtfulness
of its creator, the agent is bound to encounter situations that have not been specified in its
design. The agent should adapt to these situations and absorb any information that will
improve its performance. As completely embodied autonomous agents, robots generally deal
with more complex environments than software or network agents do. The added modelling
difficulty and greater dynamics of these environments make learning an even more critical
component of a complete system.

The challenges for learning in a physical domain are primarily due to representation
differences between the planners and the executors. It is hard to extract information from
the execution data that will be relevant for planning, and hard to transform that data into
useful planning knowledge. Moreover, it is hard to design a learning mechanism that will be
flexible enough to acquire initial information about the environment, and then to modify it
to incorporate future changes in the domain.

8 CHAPTER 1. INTRODUCTION

Prior Learning Efforts for Robotics. Learning has been applied to robotics problems
in a variety of manners. Common applications include map learning and localization (e.g.
[Koenig & Simmons, 1996; Kortenkamp & Weymouth. 1991; Thrun. 1996]). or learning oper-
ational parameters for better actuator control (e.g. [Baroglio ¢t al.. 1996; Bennett & DelJong,
1996; Grant & Feng. 1989; Pomerleau. 1993]). Instead of improving low-level actuator con-
trol, our work focusses at the planning stages of the syvstem.

Artificial intelligence researchers have explored this area extensively, but have generally
limited their efforts to simulated worlds with no noise or exogenous events. Al research that
most closely resembles ours has explored how to learn and correct action models (e.g. [Gil,
1992; Pearson, 1996; Wang. 1996]). These systems observe or experiment in the environment
to correct action descriptions, which are then directly used for planning.

In the robotics community, closely related work comes from those who have explored
learning costs and applicability of actions (e.g. [Lindner et al., 19941: Shen. 1994; Tan, 1991]).
These systems learn improved domain models and this knowledge is then used by the system’s
planner, as costs or control knowledge. so that the planner can then select more appropriate
actions.

Situation-dependent Learning Approach. Current systems learn that each action has
an associated average probability or cost. However, actions may have diffcrent costs under
different conditions. Instead of learning a global description, we would like the agent to
learn the pattern by which these situations can be identified. The agent needs to learn the
correlation between features of the environment and the situations, so that its planners can
predict and plan for those situations. Hence we introduce the concept of situation-dependent
rules that determine costs or probabilities of actions.

We would like a path planner to learn. for example, that a particular highway is ex-
tremely congested during rush hour traffic. We would like a network routing planner to
learn, for example, that packets are more easily lost at a particular router when the network
is congested. We would like a task planner to learn. for example, that a particular secretary
doesn’t arrive before 10am, and tasks involving him can not be completed before then. We
would like a multi-agent planner to learn, for example, that every Monday heavy packages
arrive, requiring two agents to carry them. Once these patterns have been identified and
correlated to features of the environment, the planner can then predict and plan for them
when similar conditions occur in the future.

Learning consists of processing execution episodes situated in a particular task context,
identifying successes and failures, and then interpreting this feedback into reusable knowl-
edge. Our approach relies on examining the execution data to identify situations in which
the planner’s behaviour needs to change. Our approach requires that the execution agent
defines the set of available situation features. F, while the planner defines a set of relevant
learning events, £, and a cost function, C, for evaluating those events.

Fvents are learning opportunities in the environment for which additional knowledge
will cause the planner’s behaviour to change. Featurcs discriminate between those events,
thereby creating the required additional knowledge. The cost function allows the learner to

1.4. LEARNING 9

evaluate the event. We give some examples of events, costs and features in Table 1.1. The
learner then creates a mapping from the execution features and the events to the costs:

Fx&—=C.

For each event ¢ € £, in a given situation described by features F, this learned mapping
predicts a cost ¢ € C that is based on prior experience. We call this mapping a situation-
dependent rule.

Once the rules have been created, the learner then gives the information back to the plan-
ners so that they will avoid re-encountering the problem events. When the current situation
matches the features of a given rule, the planners will avoid (or exploit) the corresponding
event when appropriate.

These steps are summarized in Table 1.2. Learning occurs incrementally and off-line;
each time a plan is executed, new data is collected and added to previous data, and then all
data is used for creating a new set of situation-dependent rules.

In this incremental way, the planners can not only detect patterns in the environment,
but also notice when the environment changes. For example, the bottleneck router may be
replaced by new hardware so that it can handle more packets. The secretary may change
his work hours. The incremental learner can notice these changes and incorporate them into
the rules, thereby responding to the changing environment.

The approach is relevant for all planners that would benefit from feedback about plan
execution. Every planner can benefit from understanding the patterns of the environment

g F C

Path Planner o .
A highway is congested driving a highway
during rush hour.

time-of-day traversal time
day-of-week gas consumption

Network Router

acket loss rate
Packets are lost at a par- P

traffic volume throughput

routing packets

tzculm" router when the net- router tirme to-destination
work is congested.

Task Planner o location
A particular secretary achieving tasks secretary success rate
doesn’t arrive until 10am. time-of-day

Multi-Agent Planner
Heavy packages arrive on
Mondays, requiring two
agents.

number of agents
achieving tasks package weight
day-of-week

success rate
time-to-completion

Table 1.1: Examples of Events, £, Features, F, and Costs, C, for sample planners.

10 CHAPTER 1. INTRODUCTION

Create plan.

Execute; record the execution data and features F.
Identify events £ in the execution data.

Learn mapping: F x & — C.

Create rules to update each planner.

G o

Table 1.2: General approach for learning situation-dependent costs.

that affect task achievability. This situation-dependent knowledge can be incorporated into
the planning effort so that tasks can be achieved with greater reliability and efliciency.
Situation-dependent features are an effective way to capture the changing nature of a real-
world environment.

The approach is also relevant for planners and executors whose data representations differ
widely. Features are defined as by the executor and the task environment, while events and
costs are defined by the planner. These are mapped into an intermediate data representation
that is independent of both the executor and the planner. As a result, planners can be
designed independently from their hardware, thereby allowing designers to select the best
planner for a given task.

To demonstrate the effectiveness of the approach, we have implemented it in two planners:
Xavier’s path planner, and the task planner. ROGUE processes execution data to create
improved domain models for both of its planners, thereby allowing them to create better
quality, more efficient plans. ROGUE incorporates the situation-dependent learning approach
to equip a real robot with the ability to learn from its own execution experiences.

1.4.1 Learning for the Path Planner

Knowledge in the path planner is represented as a topological map of the robot’s navigation
environment. The map is a graph with nodes and arcs representing office rooms, corridors,
doors and lobbies, and is augmented with metric information. The path planner uses an
estimate of the arcs’ traversal costs to create path plans with the best expected travel
time. By learning appropriate arc-cost functions. ROGUE helps the path planner to avoid
troublesome areas of the environment when appropriate. Therefore events, £, for this planner
are arc traversals; features, F, include robot sensor data and high-level information such as
date and desired route; and costs, C, are travel time and position confidence.

Consider the following example. For Xavier, the most challenging region of its environ-
ment is the lobby of our building. Figure 1.4 shows the map of the main floor, and Figure 1.5
shows a closeup of the lobby area, with typical obstacles added for the reader’s henefit (since
they often change, the robot does not know where they are). The lobby contains two food
carts, several tables, and is often full of people. The tables and chairs are extremely difficult
for the robot’s sonars to detect, and the people are (often malicious) moving obstacles. As
a result, navigating through the lobby is challenging and expensive for the robot. During

1.4. LEARNING 11

Figure 1.4: Robot’s map (half of the 5th floor of our building).

Figure 1.5: Closeup of map; typical obstacles added for the reader: small obstacles indicate people,
while larger ones indicate tables and food carts.

peak hours (coffee and lunch breaks), it is virtually impossible for the robot to efficiently
navigate through the lobby.

In this example, we would like Xavier to learn when to avoid the lobby completely. A
direct path from the 5200 corridor to room 5409 is very short through the lobby, but when
the lobby is crowded, the robot takes a lot of time to arrive at its destination. When the
lobby is empty, the robot rarely has problems. A rule modifying the cost of the arc, such as
| the one shown in Figure 1.6, would force the planner to avoid the lobby during lunch break.

12 (HAPTER 1. INTRODUCTION

= arc in topological map
5409
Elevators Lobby
NG
if (12pm < current-time < 1:30pm)
5102 then high cost
else low cost

Figure 1.6: A high-level view of a sample learned rule for the path planner; ROGUE learns actual
traversal costs.

1.4.2 Learning for the Task Planner

Knowledge at the task planner level is represented and manipulated as symbolic information.
User requests are, for example. “deliver mail to the main office.” By learning rules that
govern the applicability of actions and tasks. ROGUE helps the task planner select, reject
or delay tasks in the appropriate situations. Events. £. useful for learning include missed
deadlines and time-outs (e.g. waiting at doors); features. F, include robot sensor data and
high-level information such as date and other tasks; while costs. C. can be defined by task
importance, effort expended (travel plus wait time). and how much a deadline was missed
by.

For ROGUE, an important aspect of achieving its tasks involves interacting with users.
For example, ROGUE needs to request that a person place or remove the desired object in
its carrying basket. If ROGUE has to wait for substantially long times before acquiring or
delivering objects, ROGUE’s efficiency is severely compromised.

In this example, we would like ROGUE to learn when people will be away from their
offices, and then to avoid the task during those times. For example, a particular user might
work 11am to 8pm, while another works 8am to 5pm. Rules guiding the task planner, like
the ones shown in Table 1.7, would help the task planner avoid tasks at appropriate times.

1.5 Contributions

This dissertation presents the full implementation of an integrated planning, executing and
learning robot system.

1.5. CONTRIBUTIONS 13

if (or (current-time < 1lam) if (or (current-time < 8am)
(current-time > 8pm)) (current-time > 5pm))
then reject goals involving roomi then reject goals involving room2

Figure 1.7: A high-level view of two sample rules learned for the task planner.

Before the addition of ROGUE to Xavier’s architecture, Xavier reliably performed actions
requested of it, but had no task planning or learning abilities. PRODIGY4.0, meanwhile, is
a complex task planner that had never been used interleaved with execution in the real
world; as such, it had never been used for asynchronous goals or in an environment where
the state spontaneously changes. In combining PRODIGY4.0 and Xavier, the challenges for
ROGUE included developing a communication mechanism for control and feedback, as well
as extending the planner to handle the dynamics of a real-world task.

In- extending ROGUE with learning capabilities, we have increased the flexibility and
efficiency of the system because it can adapt to its current environment and also respond to
changes in the environment. The challenges included developing techniques to overcome the
representation differences between the execution module and the planning modules, as well
as handling the massive, continual, probabilistic execution traces from this noisy domain.

The specific contributions of this thesis include:

e Task Planner:

o The transparent incorporation of asynchronous goals into planning.

o The ability to create plans for multiple interacting goals, taking into account task
priority and compatibility.

o The ability to suspend and reactivate tasks when necessary.

o The ability to detect and respond to failures, unexpected side-effects of actions,
and changes in the environment.

o The development of an interleaved planning and real robot execution procedure,
including the development of a communication mechanism between the planner
and the executor.

e Learning:

¢ The improvement of plans through examination of real-world execution data.

o The introduction of situation-dependent rules which set action costs or probabil-
ities at planning time as a function of situational features.

¢ The design of a general framework for learning across representations, in which
execution data representation differs widely from planning representations.

¢ The implementation and proof-of-concept of the planner-independent approach
for two different planners, along with extensive empirical results.

¢ The demonstration of system adaptability to a changing domain.

Additional technical contributions are described in Chapter 6.

14 CHAPTER 1. INTRODUCTION

1.6 Reader’s Guide

In Figure 1.8 we show which sections need to be read for full comprehension of each of the
main contributions of this thesis.

Task Planner: In Chapter 2, we present the task planner. We describe how ROGUE
handles multiple asynchronous goals to create plans that the robot executes. We describe
ROGUE’s mechanisms for determining task priority and compatibility. and for suspending
and interrupting tasks. We present ROGUE's interleaved planning and execution paradigm,
including the mechanisms ROGUE uses to monitor execution.

Situation-Dependent Learning: For an understanding of the general learning frame-
work only, we suggest reading the following Sections:

e Overview: 1.4

o Features: 3.2 and 4.1

o Events: the first paragraphs of 3.3 and all of 4.2
e Costs: 3.4 and 4.3

Learning: 3.5

Learning for the Path Planner: In Chapter 3. we instantiate the general learning
framework for Xavier’s path planner. We describe the mechanisms used to identify features.

Learning for the

Task Planning

Chapter 1
Chapter 2

(Section 5.1)

Learning for the
Path Planner

Chapter 1
Chapter 3

(Section 5.2)

Task Planner
Chapter 1
Section 2.2.2
Section 3.2
(Section 3.4)
Section 3.5
Chapter 4

(Section 5.2)

Figure 1.8: Reader’s guide. For each of the three topics of this thesis, relevant sections are listed. Bold
face indicates that the primary topic of the chapter matches that of the heading; parentheses indicate
less critical sections.

1.6. READER’S GUIDE 15

events and costs and then present the learning algorithm. We present detailed empirical
results showing the effectiveness of the system.

Learning for the Task Planner: In Chapter 4, we present our learning framework in
a prototypical instantiation for the task planner. We present two manners by which our
learning approach can be used for this planner: to improve planning performance, and to
improve execution performance. We present the techniques used to identify learning events
for this planner, and describe how events are evaluated. We present sample empirical results
showing the applicability of the approach to this planner.

One of the contributions of the thesis is our planner-independent learning approach,
therefore the structure of the chapter parallels that of Chapter 3. In Chapter 4, we emphasize
the differences between the two implementations, and do not repeat overlapping technical
content; cross references are provided where appropriate. Note that for full comprehension of
this chapter, we suggest reading Sections 2.2.2 (planning), 3.2 (features), 3.4 (costs) and 3.5
(learning) beforehand.

In Chapter 5 we describe related work. In Chapter 6 we present our conclusions. We
describe some arcas of future work, and provide an analysis of the general applicability of
the approach.

16

(HAPTER 1.

INTRODUCTION

Chapter 2

The Task Planner

In this chapter, we focus on presenting the techniques underlying the planning and execution
control in ROGUE. The planning and execution capabilities of ROGUE form the foundation
for a complete, learning, autonomous agent.

ROGUE generates and executes plans for multiple interacting goals which arrive asyn-
chronously and whose task requirements are not known a priori. ROGUE interleaves tasks
and reasons about task priority and task compatibility. ROGUE enables the communication
between the planner and the robot, allowing the system to successfully interleave planning
and execution to detect successes or failures and to respond to them. ROGUE controls the
execution of a real robot to accomplish tasks in the real world.

In Section 2.1, we present the ROGUE’s planning and executing architecture. In Sec-
tion 2.2, we describe PRODIGY4.0, describe how it plans for multiple asynchronous goals,
and introduce ROGUE’s mechanism for handling task priority and compatibility. We include
a detailed example of the system’s behaviour for a simple two-goal problem, when the goals
arrive asynchronously. In Section 2.3, we present execution and monitoring, in particular
how the system detects, processes and responds to failure. Finally we provide a summary of
ROGUE’s capabilities in Section 2.5. Related work can be found in Section 5.1.

2.1 Planning and Execution Architecture

ROGUE accepts tasks posted by users, calls the task planner, PRODIGY4.0, which generates
appropriate plans, and posts actions to the robot, Xavier, for execution. Figure 2.1 shows
the general architecture of the planning and execution part of ROGUE’s system.

ROGUE interfaces with Xavier through the Task Control Architecture (TCA) [Simmons,
1994]. TCA provides the communication network between each of the processes controlling
the robot’s behaviour, as well as facilities for scheduling and synchronizing tasks, resource
allocation, environment monitoring and exception handling. These processes include both
reactive behaviours and deliberative behaviours. Reactive behaviours include local naviga-
tion, obstacle avoidance, and emergency situations (such as detecting a bump). Deliberative

17

18 CHAPTER 2. THE TASK PLANNER

User Request |—Reauest g | . .
o [tcsume | ROGUE »! PRODIGY4.0

User Request "

Monitor
Plan Steps Execution fUser Interaction
Y
. TCA
Xavier (Task Contro! Architecture)
Plan Ste) SAY
Success/Fail
Base
Navigate (sonar,laser) Speech Vision

Figure 2.1: RoGUE task planning architecture.

behaviours include vision, occupancy grids and topological maps. and path planning and
global navigation.

PRODIGY is a domain-independent planner that serves as a testhed for machine learning
research [Carbonell et al., 1990; Veloso et al., 1995]. The current implementation, PROD-
1GY4.0, is a nonlinear planner that follows a state-space search guided by means-ends analysis
and backward chaining. It reasons about multiple goals and multiple alternative operators
to achieve the goals. It reasons about interacting goals. exploiting common subgoals and
addressing issues of resource contention. ROGUE provides appropriate search control knowl-
edge to the planner and monitors the outcome of execution.

There are several approaches for creating plans that can be executed. We take the
approach of interleaving planning with exrecution. Interleaving planning with execution can
create opportunities for the system as well as reduce the search space by removing alternative
outcomes of actions.

Two features inherent in PRODIGY4.0 are kev to allowing an interleaved planning and
execution paradigm:

e PRODIGY4.0 is capable of generating partial plans for execution in a continuous way,
and

e PRODIGY4.0 continuously re-evaluates the goals-to-be-achieved based on its current
state information.

The first feature allows ROGUE to interrupt the planning cycle and send actions for execution.
The second features allows ROGUE to incorporate sensor information from the real world so

2.2. PLANNING FOR ASYNCHRONOUS REQUESTS 19

that PRODIGY4.0 can respond to changes in the environment.
ROGUE’s interleaving of planning and execution can be outlined in the following proce-
dure for accomplishing a set of tasks:

1. Each time a user submits a request, and ROGUE adds the task information to PROD-
1GY4.0’s state.

2. PRODIGY4.0 creates a plan to achieve all current and new goals, constrained by
ROGUE’s priority and compatibility knowledge, taking into account any interactions
between the goals.

o Aseach action is selected for execution, ROGUE sends it to the robot for execution,
first confirming that its preconditions are valid, and suspending planning during
execution.

¢ ROGUE confirms the outcome of each action. ROGUE incorporates any new knowl-
edge into PRODIGY4.0’s state. In particular, if the action fails, ROGUE notifies
PRODIGY4.0 and forces replanning.

3. Continuously throughout planning, ROGUE monitors the environment for changes that
may affect decisions, and updates PRODIGY4.0’s state accordingly.

It is important to realize that PRODIGY4.0 does not continue planning while the robot
is executing an action. ROGUE sends only one action at a time to TCA, and PRODIGY4.0
waits until the action has completed (Section 2.3 describes how actions are selected for
execution). Requests, however, may enter the system while executing; ROGUE adds them
to PRODIGY4.0’s state description, but PRODIGY4.0 does not plan for them until planning
resumes.

In this chapter, we introduce each of these steps in detail. ROGUE’s scientific contribution
includes the development of this procedure and using it with a real planner on a real executor
for real user requests. Given that it currently cannot ride the elevator autonomously, it is
very limited in the actual tasks that it can do. ROGUE has made actual deliveries for several
users, but is not currently in general use in the department. ROGUE has been thoroughly
tested in the simulator, and when Xavier is given the ability to ride elevators we fully expect
an easy transition to the more complex environment.

2.2 Planning for Asynchronous Requests

The office delivery domain involves multiple users and multiple tasks. A planner functioning
in this domain needs to respond efficiently to task requests, as they arrive asynchronously.
One common method for handling these multiple goal requests is simply to process them
in a first-come-first-served manner; however, this method leads to inefficiencies and lost
opportunities for combined execution of compatible tasks [Goodwin & Simmons, 1992].

ROGUE is able to process incoming asynchronous goal requests, to prioritize them, and to
suspend lower priority actions when necessary. It successfully interleaves compatible requests
and creates efficient plans for completing all the tasks.

20 (CHAPTER 2. THE TASK PLANNER

2.2.1 Receiving a Request

User requests are standard office delivery tasks. For example. a user might make the request:
“Pickup a package from my officc and take it to the mailroom before Jpm today.” Important
information includes the user, the item. the pickup and delivery locations, and the deadline.
Users submit their task requests through one of three different interfaces: the World Wide
Web [Simmons et al., 1997], Zephvr [DellaFera et al.. 1988: Simmons et al.. 1997], or a
specially designed graphical user interface (Figure 2.2) [Haigh & Veloso, 1996].

The slots in this last interface are automatically filled in with default information related
to the task (e.g. FedEx delivery location) as well as information extracted from the user’s
plan file through a simple template-matching mechanism. The deadline time defaults to one
hour in the future. The interface can be extended with additional tasks at any time.

The user interface forwards the request to ROGUE by TCA messages. Table 2.1 shows
the data structures used by the user interface and the PRODIGY4.0 planner, along with an
example request. Appendix B shows sample code used to generate multiple tasks; it shows
the use of the data structures, and the TCA command used to create the request.

PRODIGY4.0 connects to TCA with the command sequence shown in Table 2.2. The
first command sets up a PRODIGY4.0 interrupt, (tcaProdigyCheckMessage), to check for
new requests. A PRODIGY4.0 interrupt is a function that is called once during each decision
cycle of the planner. It then connects to TCA, registers the request handler, and finally calls
(tcaProdigyListen), which is the top-level function that starts the planning cycle when
the first request arrives. Appendix A shows the full code of this initialization sequence.

When each new request comes in. either in the interrupt or in (tcaProdigyListen),
ROGUE adds it to PRODIGY4.0's list of unsolved goals. and updates the task model, as
shown in Table 2.3. The literal (needs-item <user> <item>) indicates that a request,
sent by user <user>, is pending. (7 is PRODIGY4.0’s list of fop-lcvel goals, the list of goals

.PJ Xavier Set Goal Information
Possible Goals:

User Information: Deadline time:

User identification: |mitchell
Pickup Location: [5303
................................ Delivery Location: |531 3
Deadiine time:]|14:33
.. Deadline date: Fri Dec 1

vl S Bnanand Snananl Sumamn!

0K I Cancel E Help

Figure 2.2: User request interface.

2.2. PLANNING FOR ASYNCHRONOUS REQUESTS 21

(tca::defstruct_tca (tcaRequest) struct {
(userid "" :type string) mitchell char *userid;
(rank 0 :type int) 3 int rank;
(task "" :type string) delivermail char *task;
(task-rank 0 : type int) 2 int taskrank;
(why "" :type string) " char *why;
(when-request "" :type string) Fri Dec 01 13:33 char *whenrequest;
(when-deadline "" :type string) Dec 01 14:33 char *whendeadline;
(where-pickup "" :type string) r-5303 char *wherepickup;
(where-deliver "" :type string) r-5313 char *wheredeliver;
) } prodigy_struct_ptrs;
(a) Lisp. (b) Example. ©C

Table 2.1: Request data structure for TCA, as defined for the C user interface and the Lisp planner.

;3 install PRODIGY interrupt handler to check the socket
(define-prod-handler :always #’tcaProdigyCheckMessage)

;3 register Request handler and connect to TCA
(tca::tcaConnectModule "Prodigy" (tca::tcaServerMachine))
(tca::tcaRegisterCommandMessage "Prodigy_PlanRequestCommand"

"{string,int,string,int,string,string,string,string,string}")
(tca::tcaRegisterHandler "Prodigy_PlanRequestCommand"

"PlanRequestHandler" ’PlanRequestHandler)

(tca::tcaEnableDistributedResponses)
(tca::tcaWaitUntilReady)

;3 wait for initial request to arrive
(tcaProdigyListen)

Table 2.2: Registering the request handler and connecting to TCA.

which need to be satisfied in the state before PRODIGY4.0 declares the planning cycle to
be complete; the literal (has-item <user> <item>) becomes satisfied when the request is
completed’. The function shown in Table 2.3 is domain-dependent because the literals
added relate strictly to this domain; however, the structure would be identical for any other
domain with asynchronous tasks.

It should be noted that new goals may arrive during execution, while PRODIGY4.0’s
planning cycle is suspended. PRODIGY4.0 will incorporate the new goals into the plan at
its next decision point. The example in Section 2.2.4 illustrates ROGUE’s behaviour when a

!Semantically, (has-item <user> <item>) might seem strange for a delivery task, or if a third person
made the request. However, the meaning of the symbol is irrelevant to the computer; humans should
consider it equivalent to “task for user <user> involving item <item> is complete, irrespective of who the
actual recipient is or where the item is located.

22 CHAPTER 2. THE TASK PLANNER

Define: (" ¢~ current state
Define: G « top-level goals

Let R be the list of pending unprocessed requests
For each request € R, turn request to goal:
-C < ('U{ (needs-item request-userid request-object)
(pickup-loc request-userid rcquest-pickup-loc)
(deliver-loc request-userid request-deliver-loc)
(deadline request-userid request-when-deadline) }
-G < (and (G (has-item request-userid request-object))
- request-completed < nil

Table 2.3: Integrating new task requests into PRODIGY4.0.

new goal arrives during execution.

There is currently no explicit mechanism for a user to rescind a request; however PROD-
1GY4.0 will no longer plan for (or attempt to apply operators for) the associated top-level
goal if it is simply removed from . Implementation details, such as reversing partially
executed plans when necessary, are left for future work.

2.2.2 Planning in PRODIGY4.0

PRODIGY4.0 creates a plan for its unsolved goals by selecting operators whose effects achieve
those goals. It continues adding operators to the incomplete plan until a solution to the
problem is found.

Planning involves specifying a task model including operators and search control rules.
Below, we describe the operator representation. and then present the planning algorithm,
and finally describe how control rules are used to guide the planner’s decisions.

2.2.2.1 Operators

A PRODIGY4.0 operator is defined by its preconditions and effcets, described by literals
that may contain variables. Variables may be typed, or may be constrained by arbitrary
functions. Preconditions in the operators can contain conjunctions, disjunctions, negations,
and both existential and universal quantifiers. Effects may be conditional. Variables may
also have delayed bindings, where the value is not selected until the operator is applied.
The operators in ROGUE’s task planning domain rely heavily on Xavier’s existing be-
haviours, including path planning. navigation, vision and speech. ROGUE does not reason,
for example, about which path the robot takes to reach a goal. or about obstacles in its way.
By abstracting each request to the robot, such as which path the robot takes, ROGUE can
more fully address issues arising from multiple interacting tasks, such as efficiency, resource

2.2. PLANNING FOR ASYNCHRONOUS REQUESTS 23

contention, and reliability.

Table 2.4 shows the primary operators used in this domain. In Table 2.4d, for example,
the robot cannot deliver a particular item unless it (i) has the item in question, and (ii) is
in the correct location. In Table 2.4a, we show how an operator represents that the robot
will not go to a pickup location unless it needs to pickup an item there. It does not matter
where the robot’s current location is; the variable <current-location> is only instantiated
when the operator is applied, namely when ROGUE knows where the robot is.

The representation of the operators, for example (GOTO-PICKUP-LOC) and (GOTO-DELIVER-
LOC), is not intrinsic to the task, but it can be relevant to planning efficiency. We have
an implementation of the domain with a single (GOTO-LOC) operator with less constrained
preconditions, which leads to more backtracking while the planner selects the correct order
of desired locations. We can also create a search control rule to guide the planning choices
(see below for a description); this is logically equivalent to separating the operators, but

with some additional match cost.

(operator GOTO-PICKUP-LOC
(params <user> <new-room>)
(preconds ((<user> PERSON)
(<item> ITEM)
(<newloc> ROOM))
(and (needs-item <user> <item>)
(not (robot-has-item <user> <item>))
(pickup-loc <user> <new-room>)))
(effects ((<current-location> ROOM))
((del (robot-in-room <current-location>))
(add (robot-in-room <new-room>)))))

(operator GOTO-DELIVER-LOC
(params <user> <new-room>)
(preconds ((<user> PERSON)

(<item> ITEM)
(<new-room> ROOM))

(and (needs-item <user> <item>)
(robot-has-item <user> <item>)
(deliver-loc <user> <new-room>)))

(effects ((<current-location> ROOM))
((del (robot-in-room <current-location>))
(add (robot-in-room <new-room>)))))

(a) Goto pickup location.

(b) Goto deliver location.

(operator ACQUIRE-ITEM
(params <room> <user> <item>)
(preconds ((<user>PERSON)
(<item> ITEM)
(<room> ROOM))
(and (needs—item <user> <item>)
(not (robot-has-item <user> <item>))
(pickup-loc <user> <room>)
(robot-in-room <room>)))
(effects ()
((add (robot-has-item <user> <item>)))))

c) Acquire ltem.
(c) Acq

(operator DELIVER-ITEM)
(params <room> <who> <item>)
(preconds ((<who> PERSON)

(<item> ITEM)
(<room> ROOM))

(and (needs-item <user> <item>)
(robot-has-item <user> <item>)
(deliver-loc <user> <room>)
(robot-in-room <room>)))

(effects ()
((add (has-item <user> <item>))
(del (needs-item <user> <item>))
(del (robot-has-item <user> <item>)))))

(d) Deliver ltem.

Table 2.4: The primary operators in ROGUE’s task planning domain.

24 CHAPTER 2. THE TASK PLANNER

2.2.2.2 Building the Plan

PRODIGY4.0 creates a plan for its unsolved goals by selecting operators whose effects achicve
those goals. It continues adding operators to the incomplete plan until a solution to the
problem is found. In Figure 2.3 we show a simple incomplete plan. An incomplete plan
consists of two parts, the head-plan and the tail-plan [Fink & Veloso. 1994].

The tail-plan is built by a backward-chaining algorithm. which starts from the list of goals,
G, and adds operators, one by one. to achieve its pending goals, i.e., to achicve preconditions
of other operators that are not satisfied in the current state. Adding operators to the tail-
plan is known as subgoaling.

When all the preconditions of a given operator are satisfied in the current state, PROD-
1GY4.0 can simulate the effects of the action by applying the operator, or moving an operator
from the tail-plan to the head-plan. The head-plan is a valid total-order plan, that is, a se-
quence of operators that can be executed in the initial state.

Each time an operator is applied. the current state is updated with the effects of the
action, effectively simulating the effects of the action. PRODIGY4.0 terminates planning
when each of the goals in (G are satisfied in the current simulated state. In ROGUE, we use
this simulation step to to actually execute the action. and maintain the simulated state as
closely as possible to the actual state: we describe this process in Section 2.3.2, along with
other possible methods for deciding when to execute.

Tail-Plan Head-Plan
022
Opl

G2

0l 02
Opl pre: G1,G2 | O1 pre: G11 | 02 pre: G21, G22 | 021 pre: — | 022 pre: —

add: G add: G1 add: G22 add: G2 add: G21

del: — del: — del: — del: — del: —

Figure 2.3: Example representation of an incomplete plan in PRODIGY4.0. G is the top-level goal,
and Opl is the operator that achieves it. (G1 and (G2 are two preconditions of Op1 that are not satisfied
in the current state, and are achieved by O1 and O2 respectively. Lines can be viewed as causal links.

2.2. PLANNING FOR ASYNCHRONOUS REQUESTS 25

The planning cycle involves several decision points, including

o whether to apply or to subgoal,
o which goal to select from the set of pending goals, and
e which applicable operator to apply.

Table 2.5 shows the PRODIGY4.0 planning algorithm, with its main decision consisting of
whether to subgoal or apply an operator. Back-Chainer shows the subgoaling decisions
made while back-chaining on the plan, and Operator-Application shows how an operator
is applied.

ROGUE runs under PRODIGY4.0’s SABA mode (Subgoal Always Before Apply) [Stone
et al., 1994]. SABA delays operator application until all subgoals have been expanded.
Essentially, this behaviour is equivalent to planning as far in advance as possible, but note
that the plan may not be complete, since parts of the plan may depend on having applied
other operators.

In ROGUE’s office delivery domain, PRODIGY4.0 takes the top level goal, (has-item
<user> <item>), and selects an operator that will achieve it. It continues building the plan

PRODIGY4.0
1. If the goal statement G is satisfied in the current state, terminate.
2. Either (A) Subgoal: add an operator to Tail-Plan (Back-Chainer), or
(B) Apply: move an operator from Tail-Plan to Head-Plan
(Operator-Application).
Decision point: Decide whether to apply or to subgoal.
3. Recursively call PRODIGY4.0 on the resulting plan.

Back-Chainer
1. Pick an unachieved goal or precondition g.
Decision point: Choose an unachieved goal.
2. Pick an operator op that achieves g.
Decision point: Choose an operator that achieves this goal.
3. Add op to Tail-Plan.
4. Instantiate the free variables of op.
Decision point: Choose an instantiation for the variables of the operator.

Operator-Application
1. Pick an operator op in Tail-Plan which is an applicable operator, that is
the preconditions of op are satisfied in the current state.
Decision point: Choose an operator to apply.
2. Move op from Tail-Plan to Head-Plan.
3. Update the current state with the effects of op.

Table 2.5: PRODIGY4.0 algorithm and decision points, adapted from Veloso et al. [1995].

26 CHAPTER 2. THE TASK PLANNER

recursively, adding operators for each precondition that is not satisfied in the state, until all
of the operators in the leaf nodes have no unsatisfied preconditions. yielding a network of
plan steps and goals such as the one shown in Figure 2.4.

The variable <current-location> in Table 2.4 is known as a dclayed binding. PROD-
1GY4.0 binds all free variables in step 4 of Back-Chainer (Table 2.5), when they appear
in the list of preconditions. By placing variables in the effects list of the operator, ROGUE
forces PRODIGY4.0 to delay binding them until the operator is applied. thereby eflectively
reducing backtracking effort.

(has-item mitchell delivermail)

I;eliver-ilem r-5313 mitchell delivermail I

(robot-has-item mitchel} delivermail) (mbot-in-morn r-5313 j

l acquire-item r-5303 mitchell delivermail I I goto-deliver-loc mitchell r-5313 I

robot-in-room r-5303

lgaro-pl‘ckup-lac mitchell r-5303 l

Figure 2.4: Plan for single task problem. Goal nodes are shown in ovals,
selected operators are shown in rectangles.

2.2.2.3 Search Control Rules

PRODIGY4.0 provides a method for creating search control rules that reduces the number
of choices at each decision point in Table 2.5 by pruning the search space or suggesting a
course of action while expanding the plan.

Control rules are if-then rules that indicate which choices should be made (or avoided)
depending on the current state and other meta-level information. In particular, control rules
can select, prefer or reject specific planning choices at every decision point [Carbonell €t al.,
1992]. Control rules can be used to focus planning on particular goals and towards desirable
plans. ROGUE primarily uses two tvpes of control rules: those that control goal decisions,
and those that control applicable operator decisions.

In Chapter 4, we describe mechanisms to learn control rules that aid the planner in
making decisions that reflect actual experiences encountered in the real world.

Goal Selection Rules: Each time PRODIGY4.0 examines the set of unsolved pending
goals, it fires its goal selection search control rules to decide which goal to expand. RO