
ON "PASCAL", CODE GENERATION, AND THE CDC 6000 COMPUTER

BY

NIKLAUS WIRTH

STAN-CS-72-257

FEBRUARY 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

EH/ He 13i

On "PASCAT", Code Generation, and the CDC 6000 Computer

: by Niklaus Wirth

Abstract:

"PASCAL" is a general purpose programming language with character-

| istics similar to ALGOL 60, but with an enriched set of program- and

data structuring facilities. It has been implemented on the CDC 6000

computer. Thic paper discusses selected topics of code generation,

in particular the selection of instruction sequences to represent

simple cperations on arithmetic, Boolean, ana powerset operands.

| Methods to implement recursive procedures are briefly described, ana

it is hinted that the more sophisticated solutions are not necessarily

also the best. The CDC 6000 architecture appears as a frequent source

of pitfalls and nuisances, and its main trouble spots are scrutinized

and discussed.

The preparation of this paper was made possible by support from the
: National Science Foundation, Grant number GJ-392, IBM Corporation,

and Xerox Corporation.

:

On "PASCAL", Code Generation, and the CDC 6000 Computer

i. Introduction

This set of notes has a dual purpose. It is on the one hand

directed to the user of the PASCAL compiler system who would like to

gain some insight into the machine code which is generated for various

basic operations. It is even recommended that he study these notes

carefully, because their understanding may prevent him from certain

pitfalls which are inherent in the use of the CDC 6000 computer [1].

On the other hand the notes may be of interest to compiler writers

in general, because they point out some problems and dilemmas and our

choices of solutions. It becomes apparent that the choice of the code

to be generated is crucial for a good compiler system, and that it is

far Tron tolvial as 10 wswall, Leriloevid.

The true purpose of a higher-level language is that it allows a

programmer to conceive his algorithms in terms of some convenient

abstractions. For instance, he is given the opportunity to think in

terms of familiar notions of numbers, of relations, and of repetitions,

instead of having to express his program in terms of bitstrings,

arithmetic instructions, and transfers of control. However, these

abstractions are only truly useful, if he can assume that his implemen-

tation observes all the properties which are commonly attributed to

these abstractions, or else if it automatically issues a warning. As

an example, when dealing with numbers in a high-level language, one

should like ta agsume 311 the common axioms of arithmetic to hold. OF

course this is not possible, since computers can only represent finite

ranges of values. £0 one expects to receive a warning, if an operation

1 |

has trespassed the limits imposed by the implementation and an

operation generates a result not in accord with the rules governing

the abstraction. So the system is expected to provide an error

indication, e.g. if an overflow occurs in an addition, if a value is being

| assigned which lies outside the specified range of values of variables,

| or if an array index is used which lies outside the defined limits.

Unfortunately, such potential warnings require the execution of

additional instructions, which in general is costly. As far as range

checking is concerned, they can be requested to be generated by the

compiler for run-time execution by enabling so-called options. (The

A-option generates assignment range checks, the X-option index checks.)

They are relatively costly, but may speed up the finding of logical

mistakes a great deal.

As far as irregularities of the arithmetic are concerned, one has

become used to receive these warning signals automatically from the

hardware, particularly because they are easily generated by the hardware,

whereas a solution to detect overflow by software is usually beyond any

reasonably economical feasibility. Unfortunately, the CDC computer

fails to satisfy even the most modest expectations in this respect, and

the effort to provide a system with security in the above sense was

therefore a series of constant frustrations. Equally disappointing are

some of the "features" of its floating-pcint arithmetic instructions.

One can go only a relatively short distance in trying to correct

mistakes of the hardware by means of software; otherwise a system

becomes ridiculously inefficient and will not be used by conscientious

programmers who are willing to take the peculiarities of a hardware

into account and guarantee safety of their algorithms by analytical

fat

rather than experimental means. And this would have been against the

intentions of PASCAL. So all that can reasonably be done is to

elucidate the shortcomings and limitations of the hardware that are

still transparent through the "software cover", and to make the programmer

fully aware of them. And this 1s the purpose of this note.

It concerns itself with the simple operations of integer and real

arithmetic, with Boolean operations and with powersets. The reader is

supposed to be familiar with the CDC COMPASS notation. The operands

are usually assumed to have been brought into the X1 and X2 registers.

(If they were loaded into other registers, a corresponding renumbering

is necessary which is, however, irrelevant to the operation itself).

Registers X1 -X5 are used as a stack for intermediate results, whereas

XO 1s used exclusively as local work register.

Section 6 deals with the topic of implementing recursive procedures

and the addressing of local variables. Although the general techniques

are well-known, analysis of possible solutions and thelr experimental

comparison yielded some noteworthy results. It is shown that attempts

to make full use of available hardware features such as base registers

may not necessarily lead to an optimal performance. Again, the

instruction set of the CDC computer is hardly optimal to implement

mechanisms for recursive procedures. Conspicuously absent is a sub-

routine jump instruction which leaves the code invariant (reentrant).

2. Integer Arithmetic

Datla of type integer or of subranges thereof are represented by

| fixed-point binary numbers. Addition and subtraction are represented

by the

| IXi Xj+ Xk

instructions. Other operations are implemented by short sequences of

instructions, as outlined below.-

2.1 Multiplication

Due to a recent change of the hardware, fixed-point multiplication

can be performed by a single

DX1 X1*¥X2

instruction. It should, however, be noted that this instruction is

essentially a floating-point instruction, and yields incorrect answers

for fixed-point operands with Ix| > 2" . This can be regarded as an
overflow condition which is, alas, neither trapped nor indicated by the

computer. A "safe code", checking against all imposed limits of operand:

and result, is quite elaborate and uneconomical by any standards, and wac

therefore not implemented.

If one of the operands is a constant C being representable as

either

I. c=2" (2, 4, 8, 16 ...)

2. oc To (3, 5, 6, 9, 10, 12 ...)m>n

3, cc =o". (7, 14, 15 ...)

L

then the compiler generates the following code for the multiplication

of X1 by c¢ :

1: 1X1 n multiply by 2°

2,58 IX n
| BXO X1

IX1 m-n

IX1 X1+ XO

Again, overflow conditions are simply ignored. Case 5 yields only

correct results, if |X1*2"] < 229

2.2 Division (div)

Integer division is represented by the instruction sequence

PX1 X1

PX2 X2 pack
NX2 X2

FX1 X1/X2 divide
UX1 B7,X1

LX1 B7,X1l
NYS XOXO

IX1 Y14X0) suppress neg. zero

and suffers from the same basic shortcoming as multiplication: an

operand |x| > 28 yields an incorrect result.
If the divisor is a constant c¢ = ott , the compiler again produces

an "optimized" code, performing division by shifting. Unfortunately,

a single right shift instruction is unsatisfactory, because it may

generate a "negative" zero as result. Negative zeroes, however, must

not be allowed to occur, since comparisons may yield wrong answers if

applied to them. Thus, the optimized division is implemented as

AX1 n divide by 2"
BXO XO0-XO suppress

IX1L X1+XO negative zero

Note that the unconditional generation and addition of a zero can be

0

accomplishedwith a code that is not only shorter than a conditional

jump, such as

| Xl on

NZ X1,L
SX1 BO

L | J J

put also avoids the insertion of padding instructions (NOPs) for word

boundary alignment.

The D-option provides an additional security measure against

division by zero. It causes the compiler to insert a

ZR X2, error

jump instruction preceding every division instruction. (This applies

to the Modulus operation as well.) It is particularly recommended in

the case of integer division, where the actual divide instruction

generates a "floating-point infinity" value, which 1s incorrectly

treatedby the subsequent conversion instructions and thereby represents

a senseless result.

2.5 Modulus (mod)

The modulus or remainder operation is defined as

xmod y =x=-(xdivy) ¥y

As it involves integer multiplicationand division operations, it

suffers again from the same deficiencies of the 6000 arithmetic. Its

corresponding code 1s:

XD X1

PX6 X2

| NX6 Xb
FX6 X0/X6
Xe B7,Xe
LX6 B7,X6
DX6 ~~ XO¥X2

X12 X1-X6

‘

2.4 Sign inversion

The use of one's complement representation for negative numbers

| makes again the most obvious choice of code

| BX1 -X1

unsatisfactory, because it might generate a "negative zero". So we use

BXO XO-XO

IX1 XO-X1l }

2.5 Comparisons

~ Since the computer does not offer a compare instruction, subtraction

has to be used; this has primarily the disadvantage of generating wrong

results in the case of overflow. The cases of testing for equality and

inequality are handled correctly, because the one's complement addition

generates an end-around-carry in the case of "negative overflow", thus

| maintaining a result indicating inequality. Note that the Boolean

subtraction

BX1 X1-X2

cannot be used, because a comparison of x1 and x2 = -x1 would yield

a zero result, thus indicating equality.

Whereas equality testing is "safe" with the

Xl X1-X2

instruction ignoring overflows, this is not the case for the tests of

ordering (x1 < x2) by subtraction and subsequent inspection of the

sign bit. The reason is that if overflow occurs, i.e., |x1 - x2| > p29 ,

then the sign bit will be the opposite of the true sign. This situation

ie guite hopeless, since overflow is in no simple way detectable on this

machine. In order to obtain a (sign) bit representing the relation

i!

x <y for any values X,y , the following algorithm can be used:

1. Compare the signs of the two operands. |

2. If they are different; then the result is cbvicus.

| 3. If they are equal, the subtraction x-y can be performed

without danger of overflow, and x-y <0 is the result.

A minimal instruction sequence to perform these operations and avoiding

the use of undesirable jump instructions is

BXO X1-X2 compare sign bits
IX2 X1-X2

BX1l XO*X1 if unequal, choose sign of X1
| | BX2 -XO0¥X2 if equal, choose sign of X1-X2 | |

BX1 X1+X2

Now the sign bit of X1 is 1, if X1 <X2 , and O otherwise. Still,

the effort to perform a faultless comparison is formidably cumbersome,

| and the PASCAL compiler does not generate it. The programmer is left

with the responsibility to verify that for everv comparison of x and

| |x-y| < 279

2.6 Taking the absolute value (ABS)

The code used to take an absolute value is designed to avoid jump

instructions, not only because they are long and slow, but because they

usually introduce NOP instructions for alignment.

BXO X1

AXC 59 generate 60 sign bits
BX1 XO-X1

2.7 Testing for even or odd (ODD)

vince one's complement representation is used for negative numbers,

the least significant bit of the operand must be compared with its sign

bit:

8

BXO X1

LX0 59
BX1l X1-XO

| This leaves the sign-bit of X1 equal to 1, if X1 was odd, and

0 otherwise. oo

The compiler "optimizes" in the case of ODD(x) with x being of

a subrange type with onlynon-negative values. It then generates the

single instruction |

LX1 59

2.8 Summary

The foregoing explanations reveal that the absence of any overflow

indication makes analytical verifications necessary that guarantee the

non-occurrence of these conditions. An effective aid in experimental

testing is the A-option, causing interval check instructions to be

| generated with every assignment to a variable that is declared to be of

a subrange type. The A-option is activated by the "comment"

{$A+ ... }

and causes the code for an assignment to a variable

VAR V: a..b

To become:

oX7T * location identification for error trap

OX 1 a
IX0 Xo0-X1

SX1 b

IX1 X1-X6
BXO X1+XO

NG XO, error Jump to error routine
SA6 Vv

7t should be noticed that unfortunately tne attractive and shorter code

sequence

9

oX7 ¥
SXO0 Xb6-a

SX1 X6-b-1

BXO -X1+XO

NG XO; error
SA6 V

cannot be used, because the instructions

SXi Xj+K

perform an 18-bit arithmetic ignoring the leading 42 bits of the

register Xj which -- of course -- is not in the spirit of a check.

This ignoring rather than checking of the leading bits in 18-bit

EE BE arithmetic is the reason why the so-called "increment" instructions oo

cannot be used by the PASCAL compiler, except in the following special

circumstance: if a variable x is declared of a subrange whose limits

are both less than ral in absolute value, then the assignment statement
X 1=X+Kk

| is compiled as

| SA1 x

SX6 Xl+k

SA6 x

1C

5. Floating-point Arithmetic

The PASCAL compiler uses the complete set of F-instructions for

arithmetic with values of type "real". Comparison is performed by

subtraction due to the lack of a compare instruction. This is possible

| without handicap since the occurrence of overflow generates a signed

"infinity"- value, but no immediate trap. Sign inversion is represented

by

BXO XO0-XO generate zero
Xl XO0-X1

and the absolute value function by

BXO Xi

AXO 59
BX1 XO0-X1

Arithmetic with the F-instruction possesses some peculiar properties

which will briefly be reviewed, and has for instance the consequence that

=~ 0 docs not metcoosarily imply, £ = yo, LP Lie Jilference ls

| computed by an Finstruction. The trouble arises from the fact

that F-arithmetic truncates without rounding, and F-addition truncates

without post-normalization. Every addition is therefore compiled into

two instructions:

FX1 X1+X2 add/subtract
NX1 X1 post-normalize

If the two values

a = 1720 Lo...00B = 1.0

b = 1717 17...77B = 1.0-2718

are compared by subtraction

FXO X1-X2 a-b

thie result is

11

1720 40... ...00 / 00 «.0 +... 0

“1720 3Teee ooo 77 / 80 oe Ll. 0

1720 00... ...00 / bo0O

where the slash marks the separation between the lower and the upper

half of the 96-bit accumulator. The result is O although the two

operands were different.

Notice that subtracting 0.5 from both a and b , and then |

computing their difference, yields

a - 0.5 = 0.5 : 1717 40... ... OO

b - 0.5 = 0.5.27 : 1716 TTeee oo. 76

1717 ho... ...00/ 00 ue Le. ©

1717 3Teee oes7 / 00 cee eee O

1717 00... ...01/ 000

| l1.e., a difference which is not zero. Thus the result does not only

depend on the true result, but also on the values of the operands.

This unpleasant property of the CDC F-arithmetic stems from the fact

that automatic post-normalization is absent.

5.1 Rounding

It was at one time hoped that this defect could be avoided by

letting the PASCAL compiler automatically generate R-instructions,

which include a certain kind of rounding. However, R-arithmetic

turned out to feature some even stranger properties, so that it was

decided not #0 use R-instructions. Tn order to point these features

cut, a brief review over R-arithmetic is necessary:

12

| The R-instructions differ from the F-instructions only insofar

as a 1l-bit is appended to normalized operands before the arithmetic

operation is performed. Thus for instance the subtraction of

| -18
b = 1.0-2 from a = 1.0 yields

{

1720 40... ...00/ 400
1-bits appended

-1720 AT eee coo J 60 os eo se O

| 1720 O0¢es ...00 / 60 «on eo 0

| which of course is still zero.

| The principal defect with "CDC-rounding", however, is that its

effect is unpredictably either the addition of 1/2 or 1/k in the

last position, because rounding takes place before instead of after

normalization (which must again be performed by a separate instruction).

The allowing avarmle illustvates this, which is shown orn hand of a
The flowing example illustrates this; which is showm on fb

five-bit number representation:

16 = 10000 / Le— inserted+17 = 10001 / 1 round-bits

53 = 100010 / ©
10001 / 0 = 34

31 = 11111 / 1 é—— inserted round-bit
+2 = 00010 / O

33 = 100001 / 1
10000 / 1 = 32

In the first case, the pre-rounding results in correct rounding of the

not exactly representable 33 to 324 , whereas in the second case

nre-rounding has no effect.

| The same phenomenon can be observed in the cases of multiplication

and division. The following example again uses a five-bit number

representation:

15

round-bit

}

15x12 = 11110 / 1 x 131000

| 11110 /—
: + 01111 / Ok

101101 / 11
10110 / 111 = 176

round-bizg

}

18 x10 = 10010 / 1 x 10100

oo | 10010 / —| |+ 100/ 101 «

10111 / 001 = 18k

In the first case, the rounding effect is nil, leaving the inexactly

representable value 130 be an unrounded 17; in the latter casc the

| rounding effect transforms 180 into the value 184. (Suitable adjust-

ment of exponents is not shown here.)

A method introducing proper rounding instead of "CDC-rounding"

relies on the use of the D-instruction set [2]. Whereas the F-instructions

vield the high-order 48 bits of the 96-bit accumulator, the D-instructions

vield the low-order 48 bits with a suitably adjusted exponent, thereby

allowing access to a double precision result.

Notice that it is an ingeniously efficient method to compute a

double precision result by

1. computing the DP-result and dispose of the low half

| (F-instruction), then
Ze computing the same again and dispose of the high half

(D-instruction). |

1h

This computer allows it to be done in no other way!

The PASCAL compiler will generate the following code for floating-

| point operations, depending on the choice of the R-option:

| R-option OFF ON

x+y FX1 X1+ X2 FXO X1+ X2
NX1 X1 NXO XO

DX1 X11 + X2
RX1 X1 + XO

NX1 X1

X ¥ vy FX1 X1* X2 FXO X1* X2
| DX1 X1 * X2

RX1 X1 + XO

x [vy FX1 X1 / xe RX1 X1 / xe

Examples of addition/ subtraction:

1. 1.0 5 1720 ho... ...00 / 00... ...0
1.0-2 1717 T7+ee «077 / 00a «oo O

| - 1720 (eee evo f / LO... I 0
1720 00.+s 4.00 / BO... +... 0

= 1640 40... «0.00 after addition of high
and low

-48
2. Take a = 1.0 and b =2 , then subtract a-Db :

F-subtraction yields

a = 1720 4O... ...00 / 00... eee O
b = 1720 O04 ee + 000 J UO... ees 0

1720 3Tee. oo.77 / WO.eo uo. O

which, after normalization, is

1717 Tl eee co. 76 - 1.0-0"H

R-subtraction inserts a 1l~bit after the slash in the first operand,

ana thug yieids the result

1720 ity "0 0 se LOU = 1.0 exactly

15

The combined use of F and D instructions yields the true result,

because the normalization instruction left shifts the high order

| result to

17L7 [Teese oee76

whereafter a "rounded"- addition is used to add the correction

+ 1717 OO... «..01

yielding |

1717 Teese oe J7 = 1.02748

3.2 Conversion from fixed to floating-point (integer to real)

Wherever a real operand is permissible, PASCAL allows the specifi-

cation of an operand of type integer as well. However, the compiler is :

then forced to generate the necessary representation conversion instruc-

| tions, which are not only time-consuming, but potentially hazardous.

Tt is therefore recommended to avoid "mixed-mode" arithmetic expressions

wherever possible. The generated conversion instructions are

PX1 BO,X1 pack with zero exponent
NX1 BO,X1 normalize

The result of this conversion is wrong, whenever the integer operand

in X1 dis larger or equal to oH in absolute value, since the

exponent hits are simply ignored by the P instruction. A test to verify

that the operand is within bounds could be compiled as

BXO X1

AXO U8

NZ X0, error

tut diz casily geen to be more cogtly than the conversion itcelf.

| 16

5.5 Conversion from floating to fixed-point (real to integer)

PASCAL does not provide for any implicit real to integer conversion.

| However, the standard function TRUNC(x) allows to truncate the

fractional part of a real number. The used code is:

UXl1 B7,X1
IX1 B7,X1
BX¥O XO0-XO avold

Xl X1+XO negative zero

The result of this conversion is again wrong, if |x| > HB .

17

L. Boolean Operations

The standard type Boolean is defined in PASCAL as

| lype Boolean = (false, true)

| Since the values of all scalar types are mapped onto the integers

0,1,2,... , the values false and true are represented by the numbers

O and 1 respectively.

The operations A and Vv are implemented by the Boolean AND and |

OR instruction, namely

oo El X12 and .
BX1 X1+X2

Negation is performed by

MXO 59
BX1 -X0-X1

If a relation has to be assigned to a Boolean variable, e.g.

bh i= vw <v

| then a sequence of instructions is necessary to obtain a O or 1

value. Again every effort is made to avoid the use of Jumps. The

following code is used in the above assignment; leaving a Boolean value

in X1 .

FX1 X1-X2 X-y
MXO 1

BX1 XO*X1 Extract sign bit

IXl1 1 move it to correct position

Analogous code is generated for the relations >, <, and > . But

unfortunately the equality relations cannot be reasonably implemented

without a jump; in the assignment

b :=x =v

the following instructions are generated:

18

FXO X1-X2

BX1 X0-XO

NZ X1,L
SX1 1

L «eo

Boolean comparisons, although occurring rather infrequently, are treated

as special cases, because a simpler and shorter code is applicable:

Pp <q BX1 ~X1¥X2

p <q BX1 -X2¥X1

MXO 59 }RY X0-x1 negation

P £9 BX1 X1-X2

The remaining three relations are compiled analogously.

19

5. Powerset Operations

PASCAL 6000 restricts powerset types to be built only on base sets

| with less than 59 components. This allows a powerset value S to be

| represented by one "word", in which the i-th bit indicates the presence

(1) or absence (0) of the element i in § .

5.1 Generation of the Singleton Set [i]

Assume that 1 is loaded into register X1, then

0BXL Co } I EE
SX1 1

IX1 BY7,Xl

Notice that the numbering of bits starts with OO at the low order end.

This choice was made in order to be able to load powerset constants

with small valued components (less than 18) by a single SXi instruction.

| >.2 Set Intersection, Union, and Difference

These three operations are implemented by a single instruction

intersection BX1l X1xX2

union - BX1 X1+X2

| difference BX1 ~X2%X1

5.5 Set Membership (in)

The relation 1 in 8 is implemented by shifting the bit representing

1 into the sign position which can be tested:

SB7 X11 i

AX1 B7,X2 S

IX1 59

11 the expression 1 is in the form of a constant c¢ , then the compiler

generates of course only the single instruction

LX1 59-¢

20

5.4 Set Comparison

Sets can be compared for equality and inclusion. Equality is

tested by a Boolean subtraction

BXO X1-X2

| and a subsequent zero test. Note that the peculiar property of the

zero test to recognize a word with either 60 zero-bits or 60 one-bits

as a zero is responsible for the restriction that powersets may contain

at most 59 instead of 60 elements. If sets with 60 components were

: allowed, then a full set and an empty set would not be distinguishable

oo : by a single subtraction followed by a zero-test.

Inclusion expressed as x <y and meaning X Cy, 1s implemented

by the single instruction

BXO0 -X1*X2

which is followed by a zero-test instruction. The same instruction is

used for the relation x >y , whereas strict inclusion (x cy) is not

implemented.

21

Some Exercises Addressedto the CDC 6000 Expert

1. Is the following code to represent the function trunc(X1)

acceptable? If not, why?

BXO XO-XO |
PXO XO

FX1 X1+XO

UxXl1 B7,X1

NZ BT, overflow |

2 Is the following code for X1 mod X2 acceptable? If so, prove it.

PX1 X1

PX2 X2

X6 Xe

FX6 X1/X6
BXO XO

FX6 X6+XO

DX6 XO6¥X2

FX6 X1-X6

UX1l X6

| 5. Why can the instructions

BXO X1-X2

ZR X0, equal

not ve used to represent a comparison Xl = X2 ? Prove that

IX0 X1-X2

ZR X0, equal

always yields the correct action.

22

0). Implementation of Recursive Procedures

The language PASCAL has been carefully designed so that dynamic

| storage allocation is not required, with the following two exceptions:

| 1. Variables local to procedures may be allocated storage only

when the procedure is called, and

2. Components of class variables are allocated storage by calling

the standard procedure "alloc". An area of store is allocated

to the entire class variable as soon as the procedure is

called to which the class is local. |

In this section we will briefly review the well-known techniques for

handling recursive procedure calls and of allocating storage to their

local quantities, and discuss the code selected to represent the

procedure call mechanism.

| Due to the first-in last-out nature of the hierarchy of activated

procedures a stack may be used to allocate local variables. This is of

great advantage, since storage retrieval is trivial in the case of

stacks, resulting in low storage management overhead. We consider the

set of local variables of each activated procedure as a record (often

called "data segment") in the stack. Since their lengths may all be

different, the most convenient method to thread the way back through

such a stack is by constructing a chain of pointers linking the records.

Every record then contains a "header" containing

1. the link to the previous record, and

2. the (frozen) program status (counter) of the calling procedure.

Variables are addressed relative to the origin of the record of

which they are a part. The origin address is unknown at compile-time,

and must he determined at run-time. This can be done by descending

through the link chain, until the desired record is reached. But how

: is the desired record recognized? The most straight-forward method

which interprets the scope rules of an ALGOL block structure correctly

| is probablythe following:

Method 1:

1. Define the level of an object to be 1 greater than the

level of the procedure to which it is local. The level of

| the main program is O . LL

2. Indicate the level of each record (equal to the level of its

components) in its heading.

3. Whenever an object on level 1 has to be accessed, the record

containing it is found by descending down the chain of links

until the first occurrence of a level indicator with value 1

is found.

This accessing method has the obvious drawback of inefficiency (and of

not being applicable in the case of parametric procedures). A slight

modification, however, improves efficiency and generalizes to parametric

procedures.

| Method ITI:

| Instead of indicating levels explicitly in the record headings,

a second link chain is constructed commnecting each record A with its

static ancestor, i.e., with the record B of the procedure in which A

was declared locally. In order to distinguish the two link chains, the

| former is called the "dynamic link" and the latter the "static link".

An example of a state of computation is shown below for a given --

admittedly not very realistic -- program.

24

var vO; stack

procedure QO (procedure X); .

rr a —H hid
procedure Ql; \
begin we := wltvO; X ER

begin Wl := vO; QL [[oo

end ; ——aexe

procedure PO; EEvar vl;

rocedure Pl; ECE. |
a INE.
begin v2 := vil+vO; QO(PO) a
end;

ERbegin vl := vO; Pl

begin {main program} vO := 0; PO

end. dynamic static
I link link

Method III:

Although the use of a high-speed index register to represent the

origin of the link chains improves access speed significantly, the

process of descending down the static chain to the record (data segment)

with the desired level is relatively time-consuming. An ingenious

device to reduce access time was introduced by Dijkstra [4] and is now

widely used in compilers for block-structured languages. The device

22

is an array of base addresses, called the Display D , which is at any

time a copy of the static chain. If an object at level i 1s to be

accessed, the origin address of its data segment is quickly obtained

as D, . The method is particularly attractive for computers with a

set of high-speed index registers which can be used as the Display.

The price for this increase in access speed -- apart from the reservation

of registers -- is the setting and updating of the Display each time a

procedure is called and terminated. To be more specific, the necessary

| actions are as follows: |

1. if an actual procedure of level 1 is called, Ds has to be

set;

2. if control is returned from a procedure at level 1 to one

at level Jj, (Jj >1) , D, +++ D, have to be reassigned;
2. if a formal procedure at level 1 is called from a procedure

| at level J , Ds «oo Dp have to be reassigned, where k is
the level on which the static link emerging from the calling

and the called procedures merge. Since k is not known at

the time the procedure declaration is compiled, k can be

chosen as zerc without significant loss in efficiency.

This scheme was used in the implementation of PASCAL 6000. It is

described in Reference 4. Registers Bl...B5 are used as the Display,

B5 is the origin of the link chains, and B6 is the pointer to the top

of the stack. The compiled instructions are the following:

26

Procedure call of P :

SX L save return address

134) P and jump
L SBJ B5

SAl BS]
| 5B(3-1) . update the display, if Jj > 1

SA X1]SBi X1

Procedure entry:

Po oB1 X1 prolog, entry for calls
SA1 X1 | of formal proceduresoo SB{i«1)XI .

SAL X1 update display
SB1 X1

P SAT B5+2 save return address in header
A SXT B(i-1)

SAT BE save static link
SXT B5 . .

SAT nér1] save dynamic link
SBi B6 new display entry

SBS B6 T
SB6 B6H+L top of stack, IL = data segment length

Procedure exit: |

SB6 B5 reset top of stack

SA1 B5+1 }SBS x1 reset T
SAL B5+2

SB X1 fetch return address and jump
JP B7+0

Notice that global variables in the main program are assigned absolute

addresses. Since BO = 0 , they can be considered as based on BO .

27

In the first half of 1971, Prof. C. A. R. Hoare and his collaborators

modified and bootstrapped the PASCAL compiler for the ICL 1966 computer [6].

One of the more significant alterations concerned the elimination of

the Display, due to the fact that the ICL computer has no set of index

registers that are available for a Display, and since the use of a

Display was not considered to be an advantage, in this case. During

a visit of Prof. Hoare in July 1971, he suggested that maybe even with

a register set available for the Display, the benefits gained should be

~~ investigated. His suggestion wascertainly valid, since variables

either global or local to the most recently called procedure could be

accessed with the same speed even without a Display. Thus the gain from

a Display is limited to faster access of objects at intermediate levels,

while the price is the updating at every call regardless of whether such

objects are accessed or not. A superficial look at the PASCAL compiler

| itself showed that accesses to such intermediate level objects were

indeed relatively rare, and it was decided to generate a version that

would not use a Display (Method II). This version still uses the address

register B5 as origin of the link chains (and base address of the most

local data segment) and B6 as pointer to the top of the stack. The

generated code is:

Procedure call P

¥ X6 := base of environment of P

SX7T L

EQ P

L ce

28

Procedure entry:

SXO0 BS

IX0 18 pack and store

BXT7T XT7+XO dynamic link and

SB5 B6 return address
| SAY B5t1

SB6 B7+L stack pointer
¥ SA6 BS static link |

Procedure exit:)

SA1 BS+1

SB6 BS fetch and unpack
SBY X1 dynamic link and

: CC IX1 he return address

SBS X11

JP BT7+0

Fetching an object x at level Jj from code at level 1 :

1) J = 0: SA1 ~~ BOtX

2) Jj = i: SA1l B5+x

3) 0 <j <i: SA1 BS
SA1 X1 repeated i-j-1 times
oAl X1+x

A comparison of the codes generated by the two compilers shows that gains

and losses of execution speed should be measured, but also those of code

length. The shorter codes for procedure entry (2 - oF words vs.
L - 6 words), procedure exit (2 vs. 3 words), and procedure calls

(no updating of display) are very attractive, particularly in a compiler

where space is more on a premium than time. (It should be noted that

the instructions marked with an asterisk can be omitted in the call or

the entry code of procedures declared on the first level). Of course

it must be kept in mind that the decision about which compiler is to be

| preferred depends not only on the weighting of space vs. time, but even

more on the programs to be processed. But it is obvious that if the

29

majority of these programs rarely use nested procedure declarations,

| and often call procedures on the same level, then the compiler without

Display is to be preferred. The compiler itself, although featuring

| nested procedure declarations, but seldom accessing intermediate level

variables, belongs to this class. Comparisons of code generated by the

two compiler versions produced the following results:

1. The efficiency of codes not using a Display is in the average

slightly higher (the compiler itself runs about 1.5% faster).

2. The size of codes not using a Display is smaller (by about

Ld measured on 25 sample programs, about 6% in the case of

the compiler's code).

Se The compller program itself is slightly less complex without

Display.

: This episode where a more sophisticated method was abandoned in favor

of a simpler and more direct technique could well be added to the list

of D. Knuth's examples of adverse influences of "computer science on

"computer usage" [5]. Their common characteristic is that improved

methods are adopted without closer inspection of the nature and direction

of the improvement, and without analysis of the circumstances to be

improved. An interesting fact is that the Burroughs B5500 computer --

specifically designed for ALGCL implementation -- did contain exactly

the two base registers required to efficiently address objects at

levels O and i . Unfortunately, addressing of intermediate level

objects was impossible du= to the software; this deficiency was

| justifiably criticized. The remedy adopted in the successor BO500 was,

however, not a correction of the deficient software, but the inclusion

of a full set of high-speed registers to serve as Display.

50

7. Summary of the Main Trouble Spots of the CDC 6000 Architecture

: 1. Use of one's complement arithmetic. In order to keep comparisons

simple and efficient, the occurrence of negative zeroes must be

| prohibited. (Note that PL and NG test the sign bit only.) Various

optimizations are more cumbersome and less effective, because |

negative zeroes must be suppressed by additional instructions.

Some instructions are themselves unsafe against the generation

of -0 !

| 2. No overflow check on fixed-point arithmetic. This lack 1s very

serious and may cause wrong restuls in totally unexpected

situations. Overflow check by software is prohibitive.

5. No compare instructions. The use of subtraction may cause wrong

results, unless expensive precautions are taken.

| L. Use of 48-bit multiplier and divider for fixed-point 60-bit numbers

without warning of possible "overflow" of operands.

5. Floating-point addition and subtraction without automatic post-

normalization.

6. Floating-point arithmetic with rounding of operands instead of

rounding postnormalized results.

Te No subroutine jump instruction depositing the program counter P

in an operand register, and no return Jump loading P from a general

operand register. This defect requires the use of 5 instructions

each to jump and deposit a return address, and to retrieve it and

return, whereas many other computers need only a single instruction

for these purposes.

51

Conclusions

When considering these complaints, the reader should bear in mind

| that this computer's architecture was conceived in the very early 1960%s.

The CDC 6600 machine was a very advanced design for a special purpose:

fast number crunching. The design relied heavily on the use of several

arithmetic units working simultaneously ("in parallel"). Integer

arithmetic was considered as almost dispensible, and overflow interrupts

as undesirable, because of the impossibility to mirror the present state

| of the entire machine by asimple program counter and of resuming compu-

tation. The use of simultaneously operating units 1s apparently also

made responsible for the otherwise incomprehensible absence of post-

normalization, namely because the unit for floaint-point addition does

not contain a left-shift circuitry. A few years later, the CDC 6400

(and 0500) computers were announced; they were to have the same instruction

set as the 6600, but only one conventional integrated arithmetic-logical

unit. Although the "reasons" for the absence of interrupts and post-

normalization had vanished, these "features" were retained in the name

of compatibility. It was apparently considered most important that

pitfall loaded programs could be transported to the new machines at no

extra cost. This policy of staying "upward compatible with all previous

mistakes" was sternly maintained when the successor to the 6000 series

was announced in 1971.

This attitude, which is by no means atypical among computer

| manufacturers, makes it doubtful whether any progress toward more

reliable and more efficient computing will ever be achievable. It

| does not seem so, until the computer consumers' attitudes will no longer

Justify the present manufacturers! policies. They, in turn, will not

32

change before they are made aware of the hidden cost involved in using

the present equipment. I am convinced that the cost incurred by the

| programmers having to discover bugs the hard way by reprogramming

| repeatedly, and having to reexecute programs many times until they

were believed to be correct, is incomparably higher than the reduction

in cost due to staying compatible with outdated architectures. The

project to develop the PASCAL compiler for the CDC 6000 computer

unfortunately provided ample support for this conviction.

Acknowledgments

I am grateful to W. Kahan for pointing out some additional problems

with the CDC floating-point arithmetic as well as the method for obtaining

correct rounding.

50

References

| [1] N. Wirth, "The programming language PASCAL", ACTA INFORMATICA,

vol. 1, 35-68 (1971). |

[2] D. S. Lindsay, "Arounded arithmetic FORTRAN compiler for CDC 6000

machines", U. of California, Berkeley, Dec. 1971.

[3] B. Randell and L. Russell, "ALGOL 60 implementation", Acad. Press,

196k. |

[L] N. Wirth, "The design of a PASCAL compiler", Software - Practice

and Experience, Vol. 1, 309-333 (1971). |

[5] D. E. Knuth, "The dangers of computer-science theory", unpublished

paper, August 1971.

[6] J. Welsh and C. Quinn, "A PASCAL compiler for ICL 1900 series

| computers", Dept. of Computer Science, Queen's University,

Belfast, Sept. 1971.

3h

005001 (3C+ Tit EXPRESSIONS AND ASSIGNMENTS 3}

005001 VAR I,J,K3 INTEGER}
005004 X,Y¥s2t REAL?

005007 Ng 0..9999)

005010 P,Q% BOOLEAN;
005012 BEGIN { REAL ARITHMETIC 1}

005076 X 8= 1,05 YY t= X + 3.141595 Z t= X*Y + X/Y)

005105 X t= X + (Y ¢ (Z + (1.0 + X)))3

0051412 X $= ABS(+Y)3 Y 8= SQR{(X)3 Z 3= =X;
005117 {$R+ ROUNDED REAL ARITHMETIC)
005117 X t= YY + 23 X 8= Y*Z3 X = Y/Z;
005127 { INTEGER ARITHMETIC }

005127 I t= 15 J 8= 1 + 1003 K 8=1 * J K s8= 1 DIV J;
005140 K t= (=J) MOD K;3 J t= SQR((J)}
085145 I 8= TRUNC(X)3 Z $= I; X 8= 1/4;

005154 P 8= TRUE; Q 8= P Aa (QVvP)}

005160 P t= X=Y; P t=1 = Jy Q t= P = Q3

005171 P t= X < Y;3 P 8=1 < J; Q t= P < Qj
005200 P t= X £Y; P t=1 €£ Jy Q@ = P < Q3

005210 Q t= 0DD(I)
005212 { OPTIMIZATION OF INTEGER ARITHMETIC 1}

005212 I 3= I*8+ J*10;
| 005216 J $= I DIV 8 = N OIv 2 K t8= | MID 16;

005223 N t= 1 + 100

005223 END .

005103

005074 SA3 80+005005
SA7 B85+80 FX2 X2/X3
SX7 85+80 FX1 Xi+¢X2
SA? B0+005000 005104

005075 NXb6 BO0,X1
S86 85+000001 SA6 B0+J005006
SA1 804005225 NO

005076 005105 -—775757mm

BX6 X1i SA1 80+005004
SA6 B0+005004& SA2 80+005005
NO 005106

cos5077 —mrmm—m—mm— SA3 B80+005006

SAi B0+00500¢4 | SAL B80+005225
SA2 B80+005226 005107 |

005100 SAS 80+005004

FX1 X1+X2 FX&4 X4+X5
NXb6 BO,X1 NX& B00, X4
SA6 80+005005 005110

g0510f —mM8W FX3 X3+X4

SA1 BO+005004 NX3 BOyX3
SA2 B0+005005 FX2 X2+X3

005102 NX2 BOyX2
FX1 X1*X2 005111

SA2 80+005004 FX1 X1+X2

NO NX6 B0,X1
| SAb BO+005004

35

SAL 80+005001

00%112 —/F/—/—/m/m/// 005130

SA1i 80+005005 SX0 BO+0001L&
BX0 X1 IX6 X1i+X0

| AXO 73 NO
005113 005131

BX6 X0-X1 SAH 80+005002

SAG B0+005004 SA1 804005001
NO 005132

00514 —75—7—7—— SAZ B0+005002
SA1 80+005004 DX1 X1%X2
FX6 X1*X1 8X0 X0=-X0
NO 805133

005115 IX6 X1+X0

SAS B0+005005 SAb BO+005003
SA1 80+005004& NO

| 005116 | 005134 — 7—7

BX0 X0=-X0 SA1 B0+005001
IXo6 X0-X1 SA2 B0+005002
SAb B0+005006 005135

005117 — 7—m—mm PX2 BO,X2
SA1 80+005005 NX2 BO, X2
SAZ2 B0+005006 PX1 BO,X1

005120 FX1 X1/7X2
| FX0 X14X2 005136

NX 0 BO, X0 Uxi B87, X1
DX1 X1+X2 LX1 B7,X1

| RX1 Xg+X1 BXO0 X0-X0
005121 IX6 X1+X0

NX6 B0,X1 005137

SAB BO0+00500 4 SA6 80+005003
NO SAi 80+005002

005122 ——— 005140

SA1 B0+005005 8X0 X0=X0
SAZ2 80+005006 IX1 X0-X1

005123 SA2 80+005003
FX0 X1#x2 005141

Oxi X1*X2 PX6 B0,X2
RXb Xg+X1 NX6 B80, X6
NO PX0 BO,X1

005124 FXb6 Xg/X¢
SAb B80+005004& 005142
SA1 B0+0050 05 UXé6 B74X6

005125 LXb B74 X6
SA2 804005006 0X6 X2*X06
RXb6 X1/X2 IX6 X1-X6
NO 005143

005126 SAb6 80+005003
SAb 80+00500¢4 SA1 80+005002
SX6 80+000001 005144

005127 DX6 X1*X1
SAH 80¢305001 SAb B0+0(C5002

| NO

36

005145 — NO —
SA1 B80+005004 005163

UX1 B7,X1 SAG B80+00501p
LX1 B7,X1 SAL B0+005004

005146 005164

BX0 X0=XO0 SA2 B0+005002

IX6 X1+X0 IX0O Xi=X2

SA6 B0+005001 MX6 00

005147 — 005165

SA1 80+005001 NZ X0,005166
8X6 Xi SX6 B0+000001
PX6 BD,X6 005166

005150 SAG 80+005010

NX6 B0yX6 SAL 80+005010
SA6 B0+305006 005167

005154 —— BX1 X1=X2

SA1 B0+005001 | MXO 73
SA2 80+005002 005170

005152 BX6 “X1=-X0

PX2 B0,X2 SA6 B0+005011

NX2 B0,X2 NO

PX1 BO,X1 005174 ———
NX1 BO,X1 SAL B0+005004

005153 SA2 B0+005005

RX6 ~~ X1/X2 005172

SA6 B0+005004 FX1 X1=-X2

NO MX0 01

005154 —— BX6 XDAX1
SX6 B0+000001 LX6 01

SA6 804005010 005173

005155 —— SA6 B0+005010
SA1 B0+005010 SAL 80+005001

SA2 B0+005011 005174

005156 SA2 B0+005002
SA3 B0+005010 IX1 X1=X2

BX2 X2vX3 MX0 01

MXO 73 005175

005157 BX6 X0aX1
8X2 “X2-X0 LX6 01

BX6 X1AX2 SA6 B80+005010
SA6 B0+005011 005176 ——

005460 —— SAL 804005010

| SA1 BO0+005004 SA2 B0+005011
SA2 B0+005005 005177

005161 BX6 “X1AX2
| IX0 X1-X2 SA6 B80+005011

MX6 00 NO

NZ X0,005163
005162

SX6 BO+000001

NO

57

g0%200 —F—F7Y7—mMmmm SAL 80+005001
SAL BO+005004 005216

| SA2 B80+005005 AX1 03 |
005201 8X0 X0=-X0

FX1 X2=X1 IX1 X1+XJ0
| MXO0 01 NO

BX6 “X1AX0 005217

LXb 01 SA2 80+005007
005202 AX2 01

SAb6 B0+0G5010 IX6 X1=X2
SA1 80+005001 005220

005203 SAb6 80+005002
SA2 B0+00S002 SA1 80+005001
IX1 X2=X1 005221

MXJ 01 BX0 X1

y | 005204 oo . - AXQ ay) .
BX6 *X1aX0 LX0 04

LX6 01 IX6 X1i=X0 |
SAS 80+005010 005222

005205 —7—/// SAb B80+005003
SA1 B0+005010 SA1 B0+005001
SA2 80+005011 005223

005206 SX6 X1i+0001i44
BX1 “X2a Xi | SAb6 B0+005007
MX0 73 005224 —m—

BXb ~X1i-X0 SAL B85+80
; NO S87 X1+80

005207 JP B7+000000
SAG BC+005011 005225 17204000000000000000
SA1 B0+005001 005226 17216220771740156064

005210

8X0 X1 |

LX0 73

8X1 Xi=-X0

MX{O 01
005211

8X6 X0aX1

L Xo 01

SAG 80+005011

pos22 ——/—/—mi00—Dm—mmm

SAi B0+005001

LX1 03

NO

005213

SA2 B0+005002

LX2 01

8x0 X2

005214

LX2 02

IX2 X2+X0

IX6 X1+¢X2

NO

005215

SA6 B0+005001

38

