ON "PASCAL", CODE GENERATION, AND THE CDC 6000 COMPUTER

BY

NIKLAUS WIRTH

STAN-CS-72-257
FEBRUARY 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

P e

FaofBIUNIOg

On "PASCAL", Code Generation, and the CDC 6000 Computer

by Niklaus Wirth

Abstract:

"PASCAL™ is a general purpose programming language with character-
istics similar to ALGOL 60, but with an enriched set of program- and
data struciuring facilities. It has been implemented on the CDC 6000
computer. Thic paper discusses selected topics of code generation,
in particular the selection of instruction sequences to represent
simple cperations on arithmetic, Boolean, and powerset operands.
Methods to implement recursive procedures are briefly described, ana
it is hinted that the more sophisticated solutions are not necessarily
also the best. The CDC 6000 architecture appears as a frequent source
of pitfalls and nuisances, and its main trouble spots are scrutinized

and discussed.

The preparation of this paper was made possible by support from the
National Science Foundation, Grant number GJ-392, IBM Corporation,
and Xerox Corporation.

On "PASCAL", Code Generation, and the CDC 6000 Computer

1. Introductlion

This set of notes has a dual purpose. It is on the one hand

directed to the user of the PASCAL compiler system who would like to

gain some insight into the machine code which is generated for various
basic operations. It is even recommended that he study these notes
carefully, because their understanding may prevent him from certain
pitfalls which are inherent in the use of the CDC 6000 computer [1].

On the other hand the notes may be of interest to compiler writers

in general, because they point out some problems and dilemmas and our
choices of solutions. It becomes apparent that the choice of the code

to be generated is crucial for a good compiler system, and that it is

oL [T ER— e, . - . R Y
A AL vl Ul LV A A EEN [ERCEPRw J [P I N e R
The true purpose of a higher-level language is that it allows a

programmer to conceive his algorithms in terms of some convenient

abstractions. For instance, he is given the opportunity to think in

terms of familiar notions of numbers, of relations, and of repetitions,
instead of having to express his program in terms of bitstrings,
arithmetic instructions, and transfers of control. However, these
abstractions are only truly useful, if he can assume that his implemen-

tation observes all the properties which are commonly attributed to

these abstractions, or else if it automatically issues a warning. As

an example, when dealing with numbers in a high-level language, one
should like tn agsume 3l1l the common avioms of arithmetic tco hold. OFf
course this is not possible, since computers can only represent finite

ranges of values. §So one expects to receive a warning, if an operation

1

has trespassed the limits imposed by the implementation and an
operation generates a result not in accord with the rules governing
the abstraction. ©So the system is expected to provide an ecrror
indication, e.g. if an overflow occurs in an addition, if a value is being
assigned which lies outside the specified range of values of variables,
or if an array index is used which lies outside the defined limits.
Unfortunately, such potential warnings require the execution of
additional instructions, which in general is costly. As far as range
checking is concerned, they can be requested to be generated by the
compiler for run-time execution by enabling so-called options. (The
A-option generates assignment range checks, the X-option index checks)

They are relatively costly, but may speed up the finding of logical

As far as irregularities of the arithmetic are concerned, one has
become used to receive these warning signals automatically from the
hardware, particularly because they are easily generated by the hardware,
whereas a solution to detect overflow by software is usually beyond any

reasonably economical feasibility. Unfortunately, the CDC computer

fails to satisfy even the most modest expectations in this respect, and
the effort to provide a system with security in the above sense was
therefore a series of constant frustrations. Equally disappointing are
some of the "features" of its floating-pcint arithmetic instructions.
One can go only a relatively short distance in trying to correct

mistakes of the hardware by means of software; otherwise a system

becomes ridiculously inefficient and will not be used by conscientious
programmers who are willing to take the peculiarities of a hardware

into account and guarantee safety of their algorithms by analytical

rather than experimental means. And this would have been against the
intentions of PASCAL. So all that can reasonably be done is to

elucidate the shortcomings and limitations of the hardware that are

still transparent through the "software cover", and to make the programmer
fully aware of them. And this i1s the purpose of this note.

It concerns itself with the simple operations of integer and real
arithmetic, with Boolean operations and with powersets. The reader is
supposed to be familiar with the CDC COMPASS notation. The operands
are usually assumed to have been brought into the X1 and X2 registers.
(If they were loaded into other registers, a corresponding renumbering
is necessary which is, however, irrelevant to the operation itself).
Registers X1 -X5 are used as a stack for intermediate results, whereas
X0 is used exclusively as local work register.

Section 6 deals with the topic of implementing recursive procedures
and the addressing of local variables. Although the general techniques
are well-known, analysis of possibie solutions and their experimental
comparison yielded some noteworthy results. It is shown that attempts
to make full use of available hardware features such as base registers
may not necessarily lead to an optimal performance. Again, the
instruction set of the CDC computer is hardly optimal to implement
mechanisms for recursive procedures. Conspicucusly absent is a sub-

routine jump instruction which leaves the code invariant (reentrant).

2. Integer Arithmetic

Data of type integer or of subranges thereof are represented by
fixed-point binary numbers. Addition and subtraction are represented
by the

IXi Xj + Xk
instructions. Other operations are implemented by short sequences of

instructions, as outlined below. -

2.1 Multiplication

Due to a recent change of the hardware, fixed-point multiplication

can be performed by a single
DX1 X1¥X2

instruction. It should, however, be noted that this instruction is
essentially a floating-point instruction, and yields incorrect answers
for fixed-point operands with ‘X‘.E 2”8 . This can be regarded as an
overflow condition which is, alas, neither trapped nor indicated by the
computer. A "safe code", checking against all imposed limits of operand:
and result, is quite elaborate and uneconomical by any standards, and was

therefore not implemented.

If one of the operands is a constant C ©being representable as

either

1. ¢ =2" (2, &, 8, 16 ...)

2. ¢ =2m+2n (5; 5 6} 9, 10, 12 "’)
m>n

3, c=2"-2" (7, 14, 15 ...)

then the compiler generates the following code for the multiplication

of X1 by c¢ :

1: IX1 n multiply by 2
2,5¢ IX1T n
BXO X1
IX1 m-n
IX1 X1+ X0

Again, overflow conditions are simply ignored. Case 5 yields only

correct results, if |x1*2%| <279 .

2.2 Division (div)

Integer division is represented by the instruction sequence

PX1 X1 }

PXe X2 pack

NX2 Xe

FX1 Xx1/x2 divide

UX1 B7,X1

IX1 B7,X1

BXC X0-XO

IX1 X1+X0 } suppress neg. zZero

and suffers from the same basic shortcoming as multiplication: an
operand |x| > 2h8 yields an incorrect result.

If the divisor is a constant c¢ = o , the compiler again produces
an "optimized" code, performing division by shifting. Unfortunately,
a single right shift instruction is unsatisfactory, because it may
generate a '"negative'" zero as result. Negative zeroes, however, must
not be allowed to occur, since comparisons may yield wrong answers if
applied to them. Thus, the optimized division is implemented as

AX1 n divide by 2"

BXO XO0-XO suppress
X1 X1+XO negative zero

Note that the unconditional generation and addition of a zeroc can be
g

accomplished with a code that is not only shorter than a conditional

Jump, such as

AX1 n

NZ X1,L

SX1 BO
L ...

but also avoids the insertion of padding instructions (NOPs) for word
boundary alignment.

The D-option provides an additional security measure against
division by zero. It causes the compiler to insert a

ZR X2, error

jump instruction preceding every division instruction. (This applies
to the Modulus operation as well.) It is particularly recommended in
the case of integer division, where the actual divide instruction
generates a "floating-point infinity" value, which is incorrectly
treated by the subsequent conversion instructions and thereby represents

a senseless result.

2.3 Modulus (mod)

The modulus or remainder operation is defined as
xmod y =x-(xdivy) ¥y
As it involves integer multiplication and division operations, it
suffers again from the same deficiencies of the 6000 arithmetic. TIts

corresponding code is:

D X1
6 X2
NX6 X6
FX6 X0/X6
U¥e o B7,Xe
X6 B7,X6
DX6 X6¥X2
IX1 X1-X6

2.4 Sign inversion

The use of one's complement representation for negative numbers

Bl -xa

unsatisfactory, because it might generate a "negative zero". So we use
BXO X0-X0
IX1 XO0-X1

2.5 Comparisons

Since the computer does not offer a compare instruction, subtraction
has to be used; this has primarily the disadvantage of generating wrong
results in the case of overflow. The cases of testing for equality and
inequality are handled correctly, because the one's complement addition
generates an end-around-carry in the case of "negative overflow", thus

maintaining a result indicating inequality. Note that the Boolean

subtraction
BX1 X1-X2
cannot be used, because a comparison of x1 and x2 = -x1 would yield

a zero result, thus indicating equality.

Whereas equality testing is "safe" with the

X1 X1-X2

instruction ignoring overflows, this is not the case for the tests of
ordering (x1 < x2) by subtraction and subsequent inspection of the
sign bit. The reason is that if overflow occurs, i.e., ‘xl-x2‘ > 029 ,
then the sign bit will be the opposite of the true sign. This situation
i quite hopeless, since overflow is in no simple way detectable on this

machine. In order to obtain a (sign) bit representing the relation

x <y for any values X,y , the following algorithm can be used:

1. Compare the signs of the two operands.

2. If they are different,; then the resu
3. If they are equal, the subtraction x-y can be performed
without danger of overflow, and x-y <O is the result.
A minimal instruction sequence to perform these operations and avoiding

the use of undesirable jump instructions is

BXO X1-X2 compare sign bits

X2 X1-Xx2

BX1 XO*¥X1 if unequal, choose sign of X1
BX2 -X0¥¥X2 if equal, choose sign of X1-X2
BX1 X1+X2

Now the sign bit of X1 is 1, if X1 <X2 , and O otherwise. Still,
the effort to perform a faultless comparison is formidably cumbersome,
and the PASCAL compiler does not generate it. The programmer is left
with the responsibility to verify that for everv comparison of x and

|x-y| < 259

2.6 Taking the absolute value (ABS)

The code used to take an absolute value is designed to avoid jump
instructions, not only because they are long and slow, but because they

usually introduce NOP instructions for aligmment.

BXO X1
AXC 59 generate 60 sign bits
BX1 X0-X1

2.7 Testing for even or odd (ODD)

Since one's complement representation is used for negative numbers,
the least significant bit of the operand must be compared with its sign

bit:

BXO X1
IXo 59
BX1 X1-XO
This leaves the sign-bit of X1 equal to 1, if X1 was odd, and

0 otheryise.

The compiler "optimizes" in the case of ODD(x) with x being of
a subrange type with only non-negative values. It then generates the
single instruction

IX1 59

2.8 Summary

The foregoing explanations reveal that the absence of any overflow
indication makes analytical verifications necessary that guarantee the
non-occurrence of these conditions. An effective aid in experimental
testing is the A-option, causing interval check instructions to be
generated with every assigmment to a variable that is declared to be of
a subrange type. The A-option is activated by the "comment"

{sa+ ... }

and causes the code for an assignment to a variable

VAR V: a..b
to become:
SX7o* location identification for error trap
SX1 a
IX0 X6-X1
SX1 b
IX1 X1-X6
BXO X1+XO
NG X0, error Jjump to error routine
SA6 v

it should be noticed that unfortunately tne attractive and shorter code

sequence

SXy ¥

SX0 X6-a

SX1 X6-b-1
BXO -X1+X0

NG X0; error
SA6 vV

cannot be used, because the instructions

SXi Xj+K
perform an 18-bit arithmetic ignoring the leading 42 bits of the
register Xj which -- of course -- is not in the spirit of a check.

This ignoring rather than checking of the leading bits in 18-bit
arithmetic is the reason why the so-called "increment" instructions
cannot be used by the PASCAL compiler, except in the following special
circumstance: if a variable x 1is declared of a subrange whose limits
are both less than 217 in absolute value, then the assignment statement

X t=X+k

is compiled as

SA1 X
SX6 Xl1+k
SA6 x

1c

3. Floating-point Arithmetic

The PASCAL compiler uses the complete set of F-instructions for
arithmetic with values of type "real". Comparison is performed by
subtraction due to the lack of a compare instruction. This is possible
without handicap since the occurrence of overflow generates a signed
"infinity" - value, but no immediate trap. Sign inversion is represented
by

BXO X0-XO generate zero
Xl X0-X1

and the absolute value function by

BXO X1
AXO 59
BX1 XO0-X1

Arithmetic with the F-instruction possesses some peculiar properties

which will briefly be reviewed, and has for instance the consequence that

~Seroe iy DTS T e WL L A B B B R T W T
R Y Al ey EEE N A] A4 Vil wdadToiTiiCe Lo

w-7 - 0 docs not ns
computed by an Finstruction. The trouble arises from the fact

that F-arithmetic truncates without rounding, and F-addition truncates
without post-normalization. Every addition is therefore compiled into

two instructions:

FX1 X1+X2 add/subtract
NX1 X1 post-normalize

If the two values

a = 172C L4o...00B 1.0

b = 1717 17...77B 1.0-2

are compared by subtraction
FXO X1-X2 a-b

Tthe result is

1720 40... ...00 / 00 «.. ...
~1720 370 W77 /80 oo . O

O

1720 00... ...00 / Lo . 0

fast LR] LIE I ALV, s @ e s

where the slash marks the separation between the lower and the upper
half of the 96-bit accumulator. The result is O although the two
operands were different.

Notice that subtracting 0.5 from both a and b , and then
computing their difference, yields

a - 0.5 = 0.5 : 1717 4o... ... 00

b - 0.5 = 0.5-2~ 2 1716 TTeee oo 76

1717 ko... ...00 /0000 O

1717 37eee 0ee77 / 00 vee ve. O

1717 00... ...01 /00 0

i.e., a difference which is not zero. Thus the result does not only
depend on the true result, but also on the values of the operands.
This unpleasant property of the CDC F-arithmetic stems from the fact

that automatic post-normalization is absent.

5.1 Rounding

It was at one time hoped that this defect could be avoided by
letting the PASCAL compiler automatically generate R-instructions,
which include a certain kind of rounding. However, R-arithmetic
turned out to feature some even stranger properties, so that it was
decided not to use R-instructions. Tn order to point these features

cut, a brief review over R-arithmetic is necessary:

The R-instructions differ from the F-instructions only insofar
as a 1-bit is appended to normalized operands before the arithmetic

operation is performed. Thus for instance the subtraction of

b = 1.0-2'h8 from a = 1.0 yields

l

1720 40... ...00 /%0 0
1-bits appended

1720 3Tvee o7/ B0 vee <0 O

1720 00.e. ..400 / 60 <ev ... O

which of course is still zero.

The principal defect with "CDC-rounding", however, is that its
effect is unpredictably either the addition of 1/2 or 1/4 1in the
last position, because rounding takes place before instead of after
normalization (which must again be performed by a separate instruction).
whickh is shown on hand of 2

The following evarmple illnustrates this

il

five-bit number representation:

16 = 10000 / 1 inserted
+17 = Jmml/l:::>rmm¢bﬂs
33 = 100010 / ©
10001 / 0 = 3k
31 = 11111 / 1 é=—— inserted round-bit
+2 = 00010 / 0
33 = 100001 / 1
10000 / 1 = 32

In the first case, the pre-rounding results in correct rounding of the
not exactly representable 33 to 34 , whereas in the second case
pre-rounding has no effect.

The same phenomenon can be observed in the cases of multiplication
and division. The following example again uses a five-bit number
representation:

1o

round-bit
!

15x12 = 11110 /1 x 11000

11110 / 1 e

+ 01111 / 01 ¢mmedl

101101 / 11
10110 / 111 = 176
round-bit
}
18 x10 = 10010 / 1 x 10100

10010 / 1 e——H

+ 100 / 101 ¢——
10111 / ooi = 18k

In the first case, the rounding effect 1s nil, leaving the inexactly
representable value 180 be an unrounded 17C; in the latter casc the
rounding effect transforms 180 into the value 184. (Suitable adjust-
ment of exponents is not shown here.)

A method introducing proper rounding instead of "CDC-rounding"
relies on the use of the D-instruction set [2]. Whereas the F-instructions
yield the high-order 48 bits of the 96-bit accumulator, the D-instructions
yvield the low-order 48 bits with a suitably adjusted exponent, thereby
allowing access to a double precision result.

Notice that it is an ingeniously efficient method to compute a
double precision result by

1. computing the DP-result and dispose of the low half
(F-ingtruction), then
computing the same again and dispose of the high half

(D-instruction).

1k

This computer allows it to be done in no other way!
The PASCAL compiler will generate the following code for floating-

point operations, depending on the choice of the R-option:

R-option OFF OoN
x+y FX1 X1+ X2 FXO X1 + X2
NX1 X1 NXO XO

DXL X1 + X2
RX1 X1 + XO
NX1 X1

X ¥y FX1 X1 * X2 FXO X1 * X2
DXL X1 * X2
RX1 X1 + XO

x/y FX1 X1/ xe RX1 X1/ X2

Examples of addition / subtraction:
1. 1.0 g 1720 kO... ...00 / 00...
1.0-2 1717 TTees =TT/ 00.e on.
- 1720 37eee ooof7 [/ H0eee ... O
1720 00... ++.00 / bO... ... 0
= 1640 40... «..00 after addition of high
and low

(ol @]

2. Take a =1.0 and b = 2_h8 , then subtract a-b :

F-subtraction yields

1720 40... ...00 / 00ee. ... 0
1720 00.a. .4.00 / 40.es <e. O

1720 37ee. «o.77 / BOoee ... O

a
b

which, after normalization, is

1T TTevr .u76 = 1.0-274T

R-subtraction inserts a 1-bit after the slash in the first operand,
ana thus yieids the result

1720 WO... ...00 = 1.0 exactly

15

The combined use of F and D instructions yields the true result,
because the normalization instruction left shifts the high order
result to
1717 TTeee «+.76
whereafter a "rounded" - addition is used to add the correction
+ 1717 00.,.. +..01
yielding

1717 TTeee o717 = 1,0..2‘1*8

3.2 Conversion from fixed to floating-point (integer to real)

Wherever a real operand is permissible, PASCAL allows the specifi-
cation of an operand of type integer as well. However, the compiler is
then forced to generate the necessary representation conversion instruc-
tions, which are not only time-consuming, but potentially hazardous.

It is therefore recommended to avoid "mixed-mode" arithmetic expressions
wherever possible. The generated conversion instructions are

PX1 BO,X1 pack with zero exponent
NX1 BO,X1 normalize

The result of this conversion is wrong, whenever the integer operand
in X1 is larger or equal to 2h8 in absolute value, since the
exponent bits are simply ignored by the P instruction. A test to verify
that the operand is within bounds could be compiled as

BXO X1

AXO L8
NZ X0, error

Tt iz nasily ceen to be more cogtly than the conversion iteelf.

16

3.5 Conversion from floating to fixed-point (real to integer)

PASCAL does not provide for any implicit real to integer conversion.

However, the standard function TRUNC(x)

fractional part of a real number.

UX1l
X1
B¥O
X1

The result of this conversion is again wrong, if

B7,X1
B7,X1
X0-X0
X1+X0

avoid
negative zero

17

The used code is:

allows to truncate the

L8

4. Boolean Operations

The standard type Boolean is defined in PASCAL as

e

Lype Boolean = (false, true)
Since the values of all scalar types are mapped onto the integers

0,1,2,... , the values false and true are represented by the numbers

O and 1 respectively.
The operations A and v are implemented by the Boolean AND and
OR instruction, namely

BX1 X1*¥X2 and

BX1 Xi+X2
Negation is performed by

MXO 59
BX1 -X0-X1

If a relation has to be assigned to a Boolean variable, e.g.

h = <y
then a sequence of instructions is necessary to obtaina O or 1
value. Again every effort is made to avoid the use of jumps. The

following code is used in the above assignment; leaving a Boolean value

in X1 .
FX1 X1-X2 X~y
MXO 1
BX1 XO*X1 Extract sign bit
IX1 1 move it to correct position
Analogous code is generated for the relations >, <, and > . But

unfortunately the equality relations cannot be reasonably implemented
without a jump; in the assignment
b :=x =y

the fcllowing instructions are generated:

18

FXO X1-X2

BX1 X0-XO
NZ X1,L
sX1 1

L ...

Boolean comparisons, although occurring rather infrequently, are treated

as special cases, because a simpler and shorter code is applicable:

p<aq BX1 -X1¥X2
r <gq BX1 -X2¥X1

%ig ?%O-Xl negation
PFEa BX1 X1-X2

The remaining three relations are compiled analogously.

19

5. Powerset Operations

PASCAL 6000 restricts powerset types to be built only on base sets
with less than 59 components. This allows a powerset value S to be
represented by one "word", in which the i-th bit indicates the presence

(1) or absence (0) of the element i in S

5.1 Generation of the Singleton Set [i]

Assume that 1 1is loaded into register X1, then

SB7. X1
SX1 1
IXi B7,X1

Notice that the numbering of bits starts with O at the low order end.
This choice was made in order to be able to load powerset constants

with small valued components (less than 18) by a single S8Xi instruction.

5.2 Set Intersection, Union, and Difference

These three operations are implemented by a single instruction

intersection BX1 X1xX2
union - BX1 X1+X2
difference BX1 -X2¥X1

5.5 BSet Membership (in)

The relation i in S is implemented by shifting the bit representing

i into the sign position which can be tested:

SB7 X1 i
AX1 B7,X2 S
IX1 59

Ii tne expression 1 is in the form of a constant ¢ , then the compiler
generates of course only the single instruction
IXl1 59-c

20

5.4 get Comparison

Sets can be compared for equality and inclusion. Equality is
tested by a Boolean subtraction
BXO X1-X2
and a subsequent zero test. Note that the peculiar property of the
zero test to recognize a word with either 60 zero-bits or 60 one-bits
as a zero is responsible for the restriction that powersets may contain
at most 59 instead of 60 elements. If sets with 60 components were
allowed, then a full set and an empty set would not be distinguishable
by a single subtraction followed by a zero-test.
Inclusion expressed as x <y and meaning X Cy , is implemented
by the single instruction
BXO -X1¥X2
which is followed by a zero-test instruction. The same instruction is
used for the relation X >y , whereas strict inclusion (xcy) 1is not

implemented.

21

Some Exercises Addressed to the CDC 6000 Expert

1. Is the following code to represent the function trunc(X1)

acceptable? If not, why?

BXO
PXO0
FX1
Uxl
Nz

X0-X0

X0

X1+X0

B7,X1

B7, overflow

2. Is the following code for X1 mod X2

PX1 X1

PX2 X2

NX6 X2

FX6 X1/%6

BXO XO

FX6 X6+X0

DX6 X6¥X2

FX6 X1-X6

UX1 X6

3. Why can the instructions

BXO X1-x2

ZR X0, equal

acceptable?

If so, prove it.

not be used to represent a comparison X1 = X2 ? Prove that

IXO
ZR

X1-X2
X0, equal

always yields the correct action.

. Implementation of Recursive Procedures

The language PASCAL has been carefully designed so that dynamic

storage allocation is not required, with the following two exceptions:

1. Variables local to procedures may be allocated storage only

when the procedure is called, and

2. Components of class variables are allocated storage by calling

the standard procedure "alloc". An area of store is allocated
to the entire class variable as soon as the procedure is
called %o which the class is local.
In this section we will briefly review the well-known techniques for
handling recursive procedure calls and of allocating storage to their
local quantities, and discuss the code selected to represent the
procedure call mechanism.

Due to the first-in last-out nature of the hierarchy of activated
procedures a stack may be used to allocate local variables. This is of
great advantage, since storage retrieval is trivial in the case of
stacks, resulting in low storage management overhead. We consider the
set of local variables of each activated procedure as a record (often
called "data segment") in the stack. Since their lengths may all be
different, the most convenient method to thread the way back through
such a stack is by constructing a chain of pointers linking the records.
Every record then contains a "header" containing

1. the link to the previous record, and

2. the (frozen) program status (counter) of the calling procedure.

Variables are addressed relative to the origin of the record of

which they are a part. The origin address is unknown at compile-time,

and must be determined at run-time. This can be done by descending
through the link chain, until the desired record is reached. But how
is the desired record recognized? The most straight-forward method
which interprets the scope rules of an ALGOL block structure correctly

is probably the following:

Method I:
1. Define the level of an object to be 1 greater than the
level of the procedure to which it is local. The level of
the main program is O .
2. Indicate the level of each record (equal to the level of its
components) in its heading.
3. Whenever an object on level 1 has to be accessed, the record
containing it is found by descending down the chain of links
until the first occurrence of a level indicator with value i
is found.
This accessing method has the obvious drawback of inefficiency (and of
not being applicable in the case of parametric procedures). A slight
modification, however, improves efficiency and generalizes to parametric

procedures.

Method ITI:

Instead of indicating levels explicitly in the record headings,
a second link chain is constructed connnecting each record A with its
static ancestor, i.e., with the record B of the procedure in which A
was declared locally. In order to distinguish the two link chains, the
former is called the "dynamic 1link" and the latter the "static link".
An examplc of a state of computation is shown below for a given --

admittedly not very realistic -- program.

24

var vO;

procedure Q0 (procedure X);

var wl;

procedure Q1;

var we;

begin w2 := wl+vO; X

end;
begin wl := vO; Q1
end;

procedure PO;

var vl;

procedure Pl;

var ve;

begin v2 := v1+v0; QO(PO)

end;
begin vl := vO; PL

end;

begin {main program} vO :

end.

Method IITI:

stack

Q0

PL

e

main

dynamic static
link link

Although the use of a high-speed index register to represent the

origin of the link chains improves access speed significantly, the

process of descending down the static chain to the record (data segment)

with the desired level is relatively time-consuming. An ingenious

device to reduce access time was introduced by Dijkstra [4] and is now

widely used in compilers for block-structured languages. The device

is an array of base addresses, called the Display D , which is at any
time a copy of the static chain. If an object at level 1 is to be
accessed, the origin address of its data segment is gquickly obtained
as Di . The method is particularly attractive for computers with a
set of high-speed index registers which can be used as the Display.
The price for this increase in access speed -- apart from the reservation
of registers -- is the setting andrupdating of the Display each time a
procedure is called and terminated. To be more specific, the necessar&
actions are as follows:

1. if an actual procedure of level 1 1is called, Di has to be

set;
2. if control is returned from a procedure at level i to one

at level j , (j>1i), D, ...Dj have to be reassigned;

AN
.

if a formal procedure at level 1 1s called from a procedure
at level j , Di ...Dk have to be reassigned, where k is
the level on which the static link emerging from the calling
and the called procedures merge. Since Kk 1is not known at
the time the procedure declaration is compiled, k can be
chosen as zero without significant loss in efficiency.

This scheme was used in the implementation of PASCAL 6000. It is
described in Reference 4. Registers Bl...B5 are used as the Display,

BS is the origin of the link chains, and B6 is the pointer to the top

of the stack. The compiled instructions are the following:

26

Procedure call of P :

SX7 L save return address
R P and jump
L SBjJ B5

SA1 B5]
SB(j-1) X1

update the display, if J > i

SAl X1]
SBi X1

Procedure entry:

P_ SBi X1 } prolog, entry for calls

Fosa1 X1] of formal procedures
SB(i-1) X1
SA1 X1 update display
SB1 X1
PA SAT B5+2 save return address in header
gﬁ,% gél-l) save static link
gﬁ%(ggﬂ-l save dynamic link
SBi B6 new display entry
SB5 B6 T
SB6 B6+L top of stack, I = data segment length

Procedure exit:

SB6 BS reset top of stack

211;35' iiﬂ' } reset T

SA1 B5+2

SBT X1 fetch return address and jump
JP B7+0

Notice that global variables in the main program are assigned absolute

addresses. Since BO = 0 , they can be considered as based on BO .

27

In the first half of 1971, Prof. C. A. R. Hoare and his collaborators
modified and bootstrapped the PASCAL compiler for the ICL 1966 computer [6].
One of the more significant alterations concerned the elimination of
the Display, due to the fact that the ICL computer has no set of index
régisters that are available for a Display, and since the use of a
Display was not considered to be an advantage, in this case. During
a visit of Prof. Hoare in July l9fl, he suggested that maybe even with
a register set available for the Display, the benefits gained should be
investigated. His sugggstion was qertainly va;id, since variables
either global or local to the most recently called procedure could be
accessed with the same speed even without a Display. Thus the gain from
a Display is limited to faster access of objects at intermediate levels,
while the price is the updating at every call regardless of whether such
objects are accessed or not. A superficial look at the PASCAL compiler
itself showed that accesses to such intermediate level objects were
indeed relatively rare, and it was decided to generate a version that
would not use a Display (Method II). This version still uses the address
register B5 as origin of the link chains (and base address of the most
local data segment) and B6 as pointer to the top of the stack. The

generated code is:

Procedure call P

* X6 := base of environment of P
L
P

28

Procedure entry:

SXO0 B5
IXo 18 pack and store
BX7 XT+XO j dynamic link and

SBS B6 return address

SAT B5+1

SB6 BT+L stack pointer
¥ SA6 BS static link

Procedure exit:

SA1 B5+1

SB6 BS fetch and unpack
SBY X1 dynamic link and
IX1 ke return address
SBS X1

JP B7+0

Fetching an object x at level j from code at level 1 :

1) J = 0: SAT BO+x

2) jo=1i: SA1 B5+x

3) 0<j<i: SA1 B5
SA1 X1 repeated i-j-1 times
SA1 X1ix

A comparison of the codes generated by the two compilers shows that gains
and losses of execution speed should be measured, but also those of code
length. The shorter codes for procedure entry (2 - 2% words vs.

L - 6 words), procedure exit (2 vs. 3 words), and procedure calls

(no updating of display) are very attractive, particularly in a compiler
where space is more on a premium than time. (It should be noted that
the instructions marked with an asterisk can be omitted in the call or
the entry code of procedures declared on the first level). Of course

it must be kept in mind that the decision about which compiler is to be
preferred depends not only on the weighting of space vs. time, but even

more on the programs to be processed. But it is obvious that if the

29

majority of these programs rarely use nested procedure declarations,
and often call procedures on the same level, then the compiler without
Display is to be preferred. The compiler itself, although featuring
nested procedure declarations, but seldom accessing intermediate level
variables, belongs to this class. Comparisons of code generated by the
two compiler versions produced the following results:
1. The efficiency of codes not using a Display is in the average
slightly higher (the compiler itself runs about 1.5% faster).
2. The size of codes not using a Display is smaller (by about
L4 measured on 25 sample programs, about 6% in the case of
the compiler's code).
5 The compiler program itself is slightly less complex without
Display.
This episode where a more sophisticated method was abandoned in favor
of a simpler and more direct technique could well be added to the 1list
of D. Knuth's examples of adverse influences of "computer science" on
"computer usage" [5]. Their common characteristic is that improved
methods are adopted without closer inspection of the nature and direction
of the improvement, and without analysis of the circumstances to be

improved. An interesting fact is that the Burroughs B5500 computer --

]

pecifically designed for ALGCL implementation -- did contain exactly
the two base registers required to efficiently address objects at
levels O and i1 . Unfortunately, addressing of intermediate level
objects was impossible du= to the software; this deficiency was
Justifiably criticized. The remedy adopbed in the successor BO500 was,
however, not a correction of the deficient software, but the inclusion

of a full set of high-speed registers to serve as Display.

7.

Summary of the Main Trouble Spots of the CDC 6000 Architecture

Use of one's complement arithmetic. In order to keep comparisons
simple and efficient, the occurrence of negative zeroes must be
prohibited. (Note that PL and NG test the sign bit only.) Various
optimizations are more cumbersome and less effective, because
negative zeroes must be suppressed by additional instructions.

Some instructions are themselves unsafe against the generation

of -0 !

No overflow check on fixed-point arithmetic. This lack is very
serious and may cause wrong restuls in totally unexpected
situations. Overflow check by software is prohibitive.

No compare instructions. The use of subtraction may cause wrong
results, unless expensive precautions are taken.

Use of 48-bit multiplier and divider for fixed-point 60-bit numbers
without warning of possible "overflow" of operands.

Floating-point addition and subtraction without automatic post-
normalization.

Floating-point arithmetic with rounding of operands instead of
rounding postnormalized results.

No subroutine jump instruction depositing the program counter P

in an operand register, and no return jump loading P from a general

operand register. This defect requires the use of 3 instructions
each to jump and deposit a return address, and to retrieve it and
return, whereas many other computers need only a single instruction

for these purposes.

21

Conclusions

When considering these complaints, the reader should bear in mind
that this computer's architecture was conceived in the very early 1960%s.
The CDC 6600 machine was a very advanced design for a special purpose:
fast number crunching. The design relied heavily on the use of several
arithmetic units working simultaneously ("in parallel"). Integer
arithmetic was considered as almoé% dispensible, and overflow interrupts
as undesirable, because of the impossibility to mirror the present state
of the entire machine by a simple program counter and of resuming compu-
tation. The use of simultaneously operating units is apparently also
made responsible for the otherwise incomprehensible absence of post-

normalization, namely because the unit for floaint-point addition does

not contain a left-shift circuitry. A few years later, the CDC 6400

(and G500) computers were announced; they were bto have the same instruction
set as the 6600, but only one conventional integrated arithmetic-logical
unit. Although the "reasons" for the absence of interrupts and post-

normalization had vanished, these "features" were retained in the name

of compatibility. It was apparently considered most important that

pitfall loaded programs could be transported to the new machines at no
extra cost. This policy of staying "upward compatible with all previous
mistakes" was sternly maintained when the successor to the 6000 series
was announced in 1971.

This attitude, which is by no means atypical among computer
manufacturers, makes it doubtful whether any progress toward more
reliable and more efficient computing will ever be achievable. It

does not seem so, until the computer consumers'! attitudes will no longer

change before they are made aware of the hidden cost involved in using

the present equipment. I am convinced that the cost incurred by the
programmers having to discover bugs the hard way by reprogramming
repeatedly, and having to reexecute prograﬁs many times until they
were believed to be correct, is incomparably higher than the reduction
in cost due to staying compatible with outdated architectures. The
project to develop the PASCAL comﬁiler for the CDC 6000 computer

unfortunately provided ample support for this conviction.

Acknowledgments

I am grateful to W. Kahan for pointing out some additional problems
with the CDC floating-point arithmetic as well as the method for obtaining

correct rounding.

53

(1]

(2]

(3]

(%]

(5]

References

N. Wirth, "The programming language PASCAL", ACTA INFORMATICA,
Vol. 1, 35-68 (1971).

D. 8. Lindsay, "A rounded arithmetic FORTRAN compiler for CDC 6000
machines", U. of California, Berkeley, Dec. 1971.

B. Randell and L. Russell, "ALGOL 60 implementation", Acad. Press,
196k,

N. Wirth, "The design of a PASCAL compiler", Software - Practice
and Experience, Vol. 1, 309-333% (1971).

D. E. Knuth, "The dangers of computer-science theory", unpublished
paper, August 1971.

J. Welsh and C. Quinn, "A PASCAL compiler for ICL 1900 series
computers", Dept. of Computer Science, Queen's University,

Belfast, Sept. 1971.

3k

005001 {3$C+
VAR I,J,K8 INTEGER)

005001
005004
005007
005010
005012
005076
005105
005112
005117
005117
005127
005127
005140
005145
005154
005154
005160
005171
005200
005210
005212
005212
005216
005223
005223

005074

005075

005076

005077

005100

005101

005102

Tis EXPRESSIONS AND ASSIGNMENTS
X;Y3;2Zt REALS
N8 0..9999;

P,Q% BOOLEAN}

3}

BEGIN { REAL ARITHMETIC 3}
X 8= 1,03 Y 8= X + 3.,14159; Z 3= X*Y + X/V}
X 8= X + (Y + (Z+ (1.0 + X))}
X 3= ABS(+Y); Y 3= SQR(X)} Z 3= -X3
{SR+ ROUNDED REAL ARITHMETIC}
X 8= Y + Z3 X 8= Y*23 X &= Y/Z}
{ INTEGER ARITHMETIC }
It=1; J 1= 1 + 1003 K 8= 1 * J3 K 8= I DIV J3
K 8= (=J) MOD K; J 8= SQR(J)}
I 1= TRUNC(X)} Z 3= I X 3= I/J}
{ BOOLEAN ARITHMETIC 2
P 3= TRUE; Q 8= P Ao ~(QvP)}
Ptz X=Y; P 3=1=J} Q=P = Q3
Pi=X <Y} P =1 <Jj Q=P < Q3
Pit=X<Y; P =1 <Jj Q=P < Q3
Q 1= 00D(D);
€ OPTIMIZATION OF INTEGER ARITHMETIC }
I 1= I*8 + J*10;
J 1= I DIV 8 = N OIV 25 K 8= I MID 16}
N 1= I + 100
END .
005103
SA3 B0+005005
SA7 BS5+80 FX2 X2/X3
SX7 85+80 FX1 X14X2
SA7 B0+005000 005104
NX6 BO,X1
SB6 _ B85+000001 SA6 BO+005006
SAL B80+005225 NO
005105
B8X6 X1 SAL B0+005004
SA6 BO+005004 SA2 80+005005
NO 005106
SA3 B0+005006
SA1 BO+005004 SA4 B0+005225
SA2 B0+005226 005107
SAS BO+005004
FX1 X1+X2 FX4 Xb+X5
NX6 BO,yX1 NX& B0y X4
SA6 B0+005005 005110
FX3 X34X& .
SA1 B0+005004 NX3 BO,X3
SA2 B0+005005 FX2 X2+X3
NX2 BO,X2
FX1 X1*X2 005111
SA2 B0+005004 FX1 X14X2
NO NX6 BO,X1
SA6 BO+005004

55

005112

005113

005114

005115

005116

005117

005120

005121

005122

005123

005124

005125

005126

005127

SA1 80+005005
8X0 X1

AXD 73

BX6 X0-X1

SA6 B80+005004
NO

SA1 804005004
FX6 Xi*x4

NO

SA6 80+005005
SA1 80+005004
BX0 X0-X0

IX6 X0-X1

SAb B0+045006
SA1 80+005005
SA2 B0+0805006
FX0 X1+X2

NXO0 B0, X0

DX1 X1+X2

RX1 X0+X1

NXb6 B0, X1

SAB B0+005004
NO

SA1 B0O+005005
SA2 80+005006
FX0 X1#x2

oxi X1¥x2

RX6 Xo+X1

NO

SA6 B0+005004&
SA1 B0+0050 05
SA2 B0+005006
RX6 X1/%x2

NO

SAb 80+005004
SXb6 B0+000001
SAb 8040050041

36

005130

005131

005132
805133
005134
005135
005136
005137
005140

005141

005142

005143

005144

" SA1 B80+005001
SX0 B0+000144
IX6 X1+X0
NO
SA6 B0+005002
SA1 B0+005001
SA2 BO+005002
DX1 X1%X2
B8X0 X0=-X0
IXe X1+X0
SA6 B0+005003
NO
SA1 BO+005001
SA2 BO+005002
PX2 B0yX2
NX2 80,X2
PX1 BO,X1
FX1 X1/X2
uxi1 B7,X1
LX1 B7,X1
BX0 X0-X0
IX6 X14X0
SA6 B80+005003
SA1 80+005002
8X0 X0=-X0
IxX1 X0-X 1
SA2 B80+005003
PX6 BO,X2
NX6 B0,X6
PX0 BO,X1
FX6 X0/XE€
UX6 B7,X6
LX6 B7,X6
DX6 X2*X6
1X6 X1-X6
SA6 B80+005003
SA1 80+005002
DX6 X1*X1
SA6 B0+0(C5002
NO

005145
005146
Q051h7
005150
005151
005152
005153

005154
005155

005156
005157

005160

005161

005162

SA1 804005004
Uxi B7,4X1

LX1 B74X1

8X0 X0-X0

IX6 Xi+X0

SAb B0+005001
SA1 80+005001
8xe xi

PX6 B0,X6

NX6 80, X6

SA6 B0+005006
NO -

SA1 80+005001
SA2 80+005002
PX2 B80,4,Xx2

NX2 B0,y X2

PX1 BOyX1

NX1 B0, X1

RXb6 X1/X2

SAb6 B0+005004
NO

SX6 80+000001
SA6 80+005010
SA1 80+005010
SA2 80+005011
SA3 B0O+005010
8x2 X2vX 3

MX0 73

8x2 ~X2-X0
8X6 X1aX2

SAb6 B0+0085011
SA1 80+005004
SA2 B0+005005
IXJ X1-X2

MX6 00

NZ X0,005163
SX6 80+000001

ND

DA A

57

005163

005164

005165

005166

005167

005170

005171

005172

005173

005174

005175

005176

005177

NO

SA6 80+005010
SA1 804005001
SA2 B0+005002
IXo X1-X2

MX6 00

NZ X0,005166
SX6 80+000001
SA6 80+005010
SA1 804005010
SA2 B80+005011
BX1 X1=-Xx2

MX0 73

B8X6 “X1-X0
SAb B0+005011
NO

SA1 80+005004
SA2 B0+035005
FX1 X1-X2

MX0 01

B8X6 X0aX1

LX6 01

SA6 80+005010
SA1 80+005001
SA2 B0+005002
IX1 X1=-X2

MX0 01

8X6 X0aXx1

LX6 01

SA6 80+005010
SA1 80+005010
SA2 80+005011
8X6 “X1aX2
SA6 80+005011
NO

005200

005201

005202

005203

005204

005205

005206

005207

005210

005211

005212

005213

005214

005215

SAL BO+005004
SA2 B0+005005
FX1 X2-X1

MX0 01

BX6 “X1AX0
LX6 01

SA6 B0+005010
SA1 80+005001
SA2 B0+005002
IX1 X2-X1

MX0 01

BX6 “X1AX0
Lx6 01

SA6 B0+005010
SA1 BO+005010
SA2 B0+005011
BX1 “X2aX4
MX0 73

BX6 “X1-X0

NO

SA6 _ B0+005011
SA1 B0+005001
8X0 X1

LXo 73

8X1 X1-X0

MX0 01

8X6 XDAX1

LX6 01

SA6 B80+005011
SAL B0+005001
LXy1 03

NO

SA2 B80+005002
Lx2 01

8X0 X2

LxX2 02

IX2 X2+X0

IX6 X1+4X2

NO

SA6 B0+005001

38

005216

005217

005220

005221

005222

005223

005224

005225
005226

SAL B80+005001
AX1 03

BX0 X0-X0

IX1 X1+X0

NO

SA2 804005007
AX2 01

IX6 X1=X2

SA6 B0+005002
SA1 80+005001
BX0 X1

AXD 04

LX0 o4

IX6 X1i=-X0

SAG 80+005003
SA1 B0+005001
SX6 X1+000144
SA6 B80+005007
SA1 85+80

sB7 X1+80

JP B7+000000
17204000000000000000
17216220771740156064

