THE EARLY DEVELOPMENT OF PROGRAMMING LANGUAGES

by

Donald E. Knuth
Luis Trabb Pardo

STAN-CS-76-562
AUGUST 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

The Early Development of Programming Languages

by Donald E. Knuth and Luis Trabb Pardo

Computer Science Department
Stanford University
Stanford, California 94305

Abstract.

This paper surveys the evolution of "high level" programming languages
during the first decade of computer programming activity. We discuss the
contributions of Zuse ("Plankalkil", 1945), Goldstine/von Neumann ("Flow
Diagrams", 1946), Curry ("Composition", 1948), Mauchly et al. ("Short Code",
1950), Burks ("Intermediate PL", 1950), Rutishauser (1951), Bohm (1951),
Glennie ("AUTOCODE", 1952), Hopper et al. ("A-2", 1953), Laning/Zierler .
(1953), Backus et al. ("FORTRAN", 195L4-195T7), Brooker ("Mark I Autocode",
1954), Kamynin/Liubimskii ("mr-2", 195k4), Ershov ("mm", 1955), Grems/Porter
("BACAIC", 1955), Elsworth et al. ("Kompiler 2", 1955), Blum ("ADES", 1956),
Perlis et al. ("IT", 1956), Katz et al. ("MATH-MATIC", 1956-1958),

Hopper et al. ("FLOW-MATIC", 1956-1958), Bauer/Samelson (1956-1958).

The principal features of each contribution are illustrated; and for
purposes of comparison, a particular fixed algorithm has been encoded

(as far as possible) in each of the languages. This research is based
primarily on unpublished source materials, and the authors hope that they
have been able to compile a fairly complete picture of the early
developments in this area.

This article was commissioned by the Encyclopedia of Computer Science

and Technology, ed. by Jack Belzer, Albert G. Holzman, and Allen Kent,

and it is scheduled to appear in vol. 6 or vol, 7 of that encyclopedia
during 1977.

The preparation of this paper has been supported in part by National
Science Foundation grant MCS 72-03752 AO3, by the Office of Naval Research
contract NOOOlL-76-C-0%30, and by IBM Corporation. Reproduction in whole
or in part is permitted for any purpose of the United States Government.

The Early Development of Programming Languages

It is interesting and instructive to study the history of a subject
not only because it helps us to understand how the important ideas were
born -- and to see how the "human element" entered into each development --
but also because it helps us to appreciate the amount of progress that
has been made. This is especially striking in the case of programming
languages, a subject which has long been undervalued by computer scientists.
After learning a high-level language, a person often tends to think mostly
of improvements he or she would like to see (since all languages can be
improved), and it is very easy to underestimate the difficulty of creating
that language in the first place. The real depth of this subject can
only be properly perceived when we realize how long it took to develop
the important concepts which we now regard as self evident. These ideas
were by no means obvious a priori, and many years of work by brilliant
and dedicated people were necessary before our current state of knowledge
was reached.

The goal of this paper is to give an adequate account of the early
history of "high level" programming languages, covering roughly the first
decade of their development. Our story will take us up to 1957, when the
practical importance of algebraic compilers was first being demonstrated,
and when computers were just beginning to be available in large numbers.

We will see how people's fundamental conceptions of algorithms and of the
programming process evolved during the years -- not always in a forward
direction -- culminating in languages such as FORTRAN I. The best languages
we shall encounter are, of course, very primitive by today's standards, but
they were good enough to touch off an explosive growth in language
development; the ensuing decade of intense activity has been detailed in
Jean Sammet's 785-page book [SA 69]. We shall be concerned with the more
relaxed atmosphere of the "pre-Babel" days, when people who worked with
computers foresaw the need for important aids to programming that did not
yet exist. In many cases these developments were so far ahead of their
time that they remained unpublished, and they are still largely unknown
today.

Altogether we shall be considering about 20 different languages, and
it follows that we will have neither the space nor the time to characterize
any one Bf'them completely; besides, it would be rather boring to recite
so many technical rules. The best way to grasp the spirit of a programming
language is to read example programs, so we shall adopt the following
strategy: A certain fixed algorithm -- which we shall call the "TPK
algoritm" for want of a better namer/ -- will be expressed as a program in
each language we discuss. Informal explanations of this program should
then suffice to capture the essence of the corresponding language,
although the TPK algorithm will of course not exhaust that language's
capabilities; once we have understood the TPK program, we will be able
to discuss the most important language features it does not reveal.

Note that the same algorithm will be expressed in each language,
in order to provide a simple means of comparison. A serious attempt
has been made to write each program in the style originally used by the
author of the corresponding langusge; and if comments appear next to the
program text, they attempt to match the terminology used at that time
by the original authors. Our treatment will therefore be something
like "a recital of Chopsticks as it would have been played by Bach,
Beethoven, Brahms, and Brubeck." The resulting programs are not truly
authentic excerpts from the historic record, but they will serve as
fairly close replicas; the interested reader can pursue each language
further by consulting the bibliographic references to be given.

The exemplary TPK algorithm which we shall be using so frequently
can be written as follows in a dialect of Algol 60.

1 TPK: begin integer i; real y; real array a[0:10];
2 real procedure £(t); iggivézizgigs t;

3 f := sqrt(abs(t)) +5 xt t3;

L for i :=0 step 1 until 10 do read(ali]);
P 29’1;1:=108tep—1m092

& begin y := f(a[il]);

1 if y > LOO then write(i, "TOO LARGE")
8 else write(i,y);

o end

10 end.

~~

*
—/Cf. "Grimm's Law" in comparative linguistics, and/or the word "typical",
and/or the names of the authors of this article.

3

(Actually Algol 60 is not one of the languages we shall be discussing,
since it was a later development, but the reader ought to know enough
about it to understand TPK. If not, here is a brief run-down on what
the above program means: Line 1 says that i 1is an integer-valued
variable, while y takes on floating-point approximations to real

values; and a 3875 eees8yq are also real valued. Lines 2 and 3 define

the function f(t) = VT;T + 5t3 ;s for use in the algorithm proper
which starts on line L. Line 4 reads in the values 8 8yseeesByg s
in this order; then line 5 says to do lines 6, 7, 8, 9 (delimited by
EE%EE and EEQ) for i =10,9,...,0 , in that order. The latter

lines cause y to be set to f(ai) , and then one of two messages is
written out. The message is either the current value of i followed
by the words "TOO LARGE" , or the current values of i and vy,
according as y > 400 or not.)

Of course this algorithm is quite useless; but for our purposes
it will be helpful to imagine ourselves vitally interested in the process.
Let us pretend that the function f(t) ==VTET + 5t5 has a tremendous
practical significance, and that it is extremely important to print out
the function values f(ai) in the opposite order from which the a;
are received. This will put us in the right frame of mind to be reading
the programs. (If a truly useful algorithm were being considered here,
it would need to be much longer in order to illustrate as many different
programming language features.)

Meny of the programs we shall discuss will have italicized line
numbers in the left-hand margin, as in the Algol code above. Such numbers
are not really part of the programs, they appear only so that the
accompanying text can refer easily to any particular line.

It turns out that most of the early high-level languages were
incapable of handling the TPK algorithm exaectly as presented above;
so we must make some modifications. In the first place, when a language
deals only with integer variables, we shall assume that all inputs and
outputs are integer valued, and that " sqrt(x) " denotes the largest
integer not exceeding VX . Secondly, if the language does not provide

for alphabetic output, the string "TOO LARGE" will be replaced by the
number 999 . Thirdly, some languages do not provide for input and
output at all; in such a case, we shall assume that the input values
84875 < r8y have somehow been supplied by an external process, and
that our job is to compute 22 output values bo,bl,...,b2l . Here
bo,bg,...,b20 will be the respective " i values" 10,9,...,0 , and the

alternate positions b ,b,,...,Db will contain the corresponding f(ai)
- P

21
values and/or 999 codes. Finally, if a language does not allow the
programmer to define his own functions, the statement " y := f(a[i]) "
will essentially be replaced by its expanded-out form

" y := sqrt(abs(a[i]l)) +5 xa[i] 13 ".

Prior develoEments.

Before getting into real programming languages, let us try to set
the scene by reviewing the background very quickly. How were algorithms
described prior to 19457

The earliest known written algorithms come from ancient Mesopotamia,

about

2000 B.C. Tn thigs case the written descriptionc contained only
sequences of calculations on particular sets of data, not an abstract
statement of the procedure; it is clear that strict procedures were
being followed (since, for example, multiplications by 1 were explicitly
performed), but they never seem to have been written down. Iterations
like " for i := 0 step 1 until 10 " were rare, but when present they
would consist of a fully-expanded sequence of calculations. (See [KN 72],
for a survey of Babylonian algorithms.)

By the time of Greek civilization, several nontrivial abstract
algorithms had been studied rather thoroughly; for example, see [KN 69,
P. 29%] for a paraphrase of Euclid's presentation of "Euclid's algorithm".
The description of algorithms was always informal, however, rendered
in natural language.

During the ensuing centuries, mathematicians never did invent a
good notation for dynamic processes, although of course notations for
(static) functional relations became highly developed. When a procedure
involved nontrivial sequences of decisions, the available methods for

precise description remained informal and rather cumbersome.

Example programs written for early computing devices, such as those

for Babbage's Calculating Engine, were naturally presented in "machine
language" rather than in a true programming language. Thus: (a) The

three-address code for Babbage's machine was to consist of instructions

v M 1

such as " Vh>(VO = VlO ', where operation signs like " x" would appear

on an Operation-card, and subscript numbers like (4, 0, 10) would appear

on a separate Variable-card. The most elaborate program developed by

Babbage and Lady Lovelace for this machine was a routine for calculating

Bernoulli numbers; see [BA 61, pp. 68, 286-297]. (b) 1In 1914, Leonardo

Torres y Quevedo used natural language to describe the steps of a short

program for his hypothetical automaton; and Helmut Schreyer gave an

analogous description in 1939 for the machine he had helped Konrad Zuse

to build [see RA 73, pp. 95-98, 167]. (c) An example MARK I program

given in 1946 by Howard Aiken and Grace Hopper [see RA 73, pp. 216-218]

shows that its machine language was considerably more complicated.
Although all of these early programs were in a machine language,

it is interesting to note that Babbage had noticed already on July 9, 1836

that machines as well as people could produce programs as output:

This day I had for the first time a general but very indistinct
conception of the possibility of making an engine work out algebraic
developments. I mean without any reference to the value of the
letters. My notion is that as the cards (Jacquards) of the

Calc. engine direct a series of operations and then recommence

with the first so it might perhaps be possible to cause the same
cards to punch others equivalent to any given number of repetitions.
But there hole [sic] might perhaps be small pieces of formulae
previously made by the first cards. [RA 73, p. 349]

To conclude this survey of prior developments, let us take a look at
A. M. Turing's famous mathematical paper of 1936 [TU 36], where the
concept of a universal computing machine was introduced for theoretical
rturposes, Turing's machine language was more primitive, not having a
bullt-in arithmetic capability, and he defined a complex program by
giving what amounts to macro-expansions or open subroutines, For example,

1"

here was his program for making the machine move to the leftmost " a'" on

its working tape:

not a

None

not a

None

behavior final m-config.
L £,(CB2)
L £(c,B,a)
C
R £,(CBa)
R f_(C,B,a)
~2 ~ ~
C
R £,(¢Ba)
R B

[In order to carry out this operation, one sends the machine to state

f(C,B,a) ; it will immediately begin to scan left (L) until first

passing the symbol 5 . Then it moves right until either encountering
the symbol a or two consecutive blanks; in the first case it enters
into state C while still scanning the a , and in the second case it
enters state: B after moving to the right of the second blank. Turing
used the term ~ "m-configuration" for state.]

Such "skeleton tables", as presented by Turing, represented the
highest-level notations for precise algorithm description that were
developed before our story begins -- except, perhaps, for Alonzo Church's
"\-notation" [CH 36] which represents an entirely different approach to
calculation. Mathematicians would traditionally present the control
mechanisms of algorithms informally, and the computations involved would
be expressed by means of equations. There was no concept of assignment
(i.e., of replacing the value of some variable by a new value); instead

1"

of writing " s « -s " one would write s = -5 giving a new name to

n+l
each quantity that would arise during a sequence of calculations.

zuse's "Plancalculus".
Lar e e a e ol gt gV oV B W oV WV D V)

Near the end of World War II, Allied bombs destroyed nearly all of
the sophisticated relay computers that Konrad Zuse had been building in
Germany since 1936. Only his Z4 machine could be rescued, in what Zuse
describes as a fantastic ["abenteuerlich"] way; and he moved the Zh to
a little shed in a small Alpine village called Hinterstein.

Tt wase unthinksa
1¢ was unthinkxsab

le to conti
my small group of twelve co-workers disbanded. But it was now a
satisfactory time to pursue theoretical studies. The Z4 Computer
which had been rescued could barely be made to run, and no
especially algorithmic language was really necessary to program
it anyway. [Conditional commands had consciously been omitted;
see [RA 73, p. 181].] Thus the PK [Plankalkil] arose purely as a
piece of desk-work, without regard to whether or not machines
suitable for PK's programs would be available in the foreseeable

future. [2U 72, p. 6].

Zuse had previously come to grips with the lack of formal notations
for algorithms while working on his planned doctoral dissertation
[ZU L4]. Here he had independently developed a three-address notation
remarkably 1like that of Babbage; for example, to compute the roots

2 .
and X5 of x +tax+b =0, given a=Vl and b—Ve,he

X
piepared the following Rechenplan [p. 26]:
Vl:2 = V3
V'B‘V3 = Vh
Vh-VE = V5
V5 =g
VB(-.'L) = V7

V7+V6 =V8 =Xl
V7-V6=V9=x2 .

He reelized that this notati straight-line prograus

a3
el v Saades sk (=

[so-called starre Plénel], and he concluded his previous manuscript with

the following remark:
Unstarre Rechenpléne constitute the true discipline of higher

combinatorial computing; however, they cannot yet be treated in
this place. [ZU k4, p. 31]

The completion of this work was the theoretical task Zuse set himself
in 1945, and he pursued it very energetically. The result was an amazingly
comprehensive language which he called the Plankalkiil [program calculus],
an extension of Hilbert's Aussagenkalkiil [propositional calculus] and
Pradikatenkalkiil [predicate calculus]. Before laying this project aside,
Zuse had completed an extensive manuscript containing programs far more
complex than anything ever written before. Among other things, there were
algorithms for sorting; for testing the comnectivity of a graph represented
as a list of edges; for integer arithmetic (including square roots) in

binary notation; and for floating-point arithmetic. He even developed

algorithms to test whether or not a given logical formula is syntactically
well-formed, and whether or not such a formula contains redundant
parentheses -- assuming six levels of precedence between the operators.
To top things off, he also included 49 pages of algorithms for playing
chess. (Who would have believed that such pioneering developments
could emerge from the solitary village of Hinterstein? His plans to
include algorithms for matrix calculations, series expansions, etc.,
had to be dropped since the necessary contacts were lacking in that
place; furthermore, his chess playing program treated "en passant
captures" incorrectly, because he could find no chess boards or people
to play chess with [ZU 72, pp. 32, 35]!)

Zuse's 1945 manuscript unfortunately lay unpublished until 1972,
although brief excerpts appeared in 1948 and 1959 [ZU 48, ZU 59]; see also
[BW 72], where his work was brought to the attention of English-speaking
readers for the first time. It is interesting to speculate about what
would have happened if he had published everything at once; would many
people have been able to understand such radical new ideas?

The monograph [ZU 45] on Plankalkiil begins with the following

statement of motivation:

Aufgabe des Plankalkiils ist es, beliebige Rechenvorschriften rein
formal darzustellen. [The mission of the Plancalculus is to

provide a purely formal description of any computational procedure.]

So, in particular, the Plankalkil should be able to describe the TPK
algorithm; and we had better turn now to this program, before we forget

what TPK is all about. Zuse's notation may appear somewhat frightening

at first, but we will soon see that it is really not difficult to understand.

10

1 A2 = (a9,AM)

2 Pl R(V) = R

3 vl o 0

L Al M M

2 ’\/|_V‘ +5 X V3 = R

6 vl o 0 0

T Al AL AL AL

8 m R(V) = R

9 v 0 0

10 Al 11xAl 11lx2

11 w2(11) rRl(v) = Z

12 v 0 0 0

13 K i

1k A AL

15 Z>h0 - (i,+®) = R r(lO-i)
16 v 0 o_J

17 K

18 A AL 9 2 9
19 z>40 =< (i,Z) = R ~(10-1)
20 s 0 0 0

21 K

22 A AL 9 a1 2 9

Line 1 of this code is the declaration of a compound data type, and
before we discuss the remainder of the program we should stress the richness
of data structures provided by Zuse's language (even in its early form
[ZU L4]). This is, in fact, one of the greatest strengths of the
Plankalkiil; none of the other languages we shall discuss had such a
perceptive notion of data, yet Zuse's proposal was simple and elegant.

He started with data of type SO, a single bit ["Ja-Nein-Wert"] whose
value is either " -" or "+"., From any given data types Tg? #+ 201 7

a programmer could define the compound data type (Uo,...,Gk_l) , and

11

individual components of this compound type could be referred to by
applying the subscripts 0 ,..., k-1 to any variable of that type.
Arrays could also be defined by writing mx 0 , meaning m identical
components of type 0 ; and this idea could be repeated, in order to
obtain arrays of any desired dimension. Furthermore m could be "O",
meaning a list of variable length, and Zuse made good use of such list
structures in his algorithms dealing with graphs, algebraic formulas, and
chessplay.

Thus the Plankalkiil included the important concept of hierarchically
structured data, going all the way down to the bit level. Such advanced
data structures did not enter again into programming languages until the
late 1950's, in IBM's Commercial Translator. The idea eventually
appeared in many other languages, such as FACT, COBOL, PL/I, and
extensions of ALGOL 60; cf. [CL 61] and [SA 69, p. 325].

Integer variables in the Plankalkiil were represented by type A9 .

Another special type was used for floating-binary numbers, namely

AM = (3x80,7x8S0,22x80) .

The first three-bit component here was for signs and special markers --
indicating, for example, whether the number was real or imaginary or zero; the
second was for a seven-bit exponent in two's complement notation; and

the final 22 bits represented the 23-bit fraction part of a normalized number,
with the redundant leading " 1" bit suppressed. Thus, for example, the

and it also could be written
(Lo, 1000, LOOLOO0O00000000000000)

[The +'s and -'s notation has its bits numbered 0,1,... from left-to-
right, while the L's and O's notation corresponds to the more familiar
binary notation, putting most significant bits at the left.] There was a
special representation for "infinite" and "very small" and "undefined"

quantities; for example,

12

+e = (LLO, LOOOO , 0) .

Note that the above program uses + » instead of 999 on line 15, since
such a value seems an appropriate way to render the concept "TOO LARGE" .
Let us return now to the program itself. Line 1 introduces the data
type A2 , namely an ordered pair whose first component is an integer
(type A9) and whose second component is floating-point (type AAl).
This data type will be used later for the 11 outputs of the TPK algorithm.
Lines 2 thru 7 define the function f(t) , and lines 8 thru 22 define the
main TPK program.

The hardest thing to get used to about Zuse's notation is the fact
that each operation spans several lines; for example, lines 1l thru ;& must
be read as a unit. The second line of each group (labelled " V") is used
to identify the subscripts for quantities named on the top line; thus

R, V, Z stands for the variables R
0O 0 O

primarily on output variables ["Resultatwerte'] R, , input variables

0 2 VO s Zo . Operations are done

["Variablen"] V. » and intermediate variables ["Zwischenwerte"] 2
The " K" line is used to denote components of a variable, so that, in

our example, V means component 1 of the input variable VO .

i
(A completely blank " K" line is normally omitted.) Complicated subscripts
can be handled by making a zig-zag bar from the K-line up to the top line,
as in line 17 of the above program where the notation indicates component
10-i of Ry - The bottom line of each group is labeled A or S, and
it is used to specify the type of each variable. Thus the "2" in line 18
of our example means that Ry is of type A2 ; the " Al " means that Z,
is floating-point (type AAl); and the " 9" means that i is an integer.
Thus each " A" in the left margin is implicitly attached to all types in
its line.,

Zuse remarked [ZU 45, p. 10] that the number of possible data types
was so large, it would be impossible to indicate a variable's type simply
by using typographical conventions as in classical mathematics; thus he
realized the importance of apprehending the type of each variable at
each point of a program, although this information is usually redundant.
This is probeably one of the main reasons he introduced the peculiar

multi-line format. Incidentally, a somewhat similar multi-line notation

13

has been used in recent years to describe musical notes [SM 73]; it is
interesting to speculate if this notation will evolve in the same way
that programming languages have,

We are now ready to penetrate further into the meaning of the above
code. Each plan begins with a specification part ["Randauszug"], stating
the types of all inputs and outputs. Thus, lines 2 thru L mean that Pl

is a procedure that takes an input V. of type AAlL (floating point) and

0

produces R, of the same type. Lines § thru 10 say that P2 maps VO of

0
type 11 xAAlL (namely, a vector of 1 floating-point numbers, the array ay

of our TPK algorithm) into a result R,

of 11 ordered pairs as described earlier).
The double arrow = , which Zuse called the Ergibt-Zeichen (yields-sign),

of type 11 xA2 (namely, a vector

was introduced for the assignment operation; thus the meaning of lines 5
thru 7 should be clear. As we have remarked, mathematicians had never
used such an operator before; in fact, the systematic use of assignments
constitutes a distinct break between computer-science thinking and
mathematical thinking. Zuse consciously introduced a new symbol for the

new operation, remarking [ZU 45, p. 15] that Z+1 = 7 was analogous to
3 3

to the more traditional equation Z +1 = 2 . (Incidentally, the
3.1 3,1+l

publishers of [2ZU 48] used the sign > instead of = , but Zuse never
actually wrote = himgelf,) Note that the variable receiving a new value
appears on the right, while most present-day languages have it on the left,
We shall see that there was a gradual "leftist" trend as languages
developed.

It remains to understand lines 1l thru 22 of the example. The notation
" w2(n) " represents an iteration, for i = n-1 down to O , inclusive;
hence W2(1l) stands for the second for loop in the TPK algorithm.
(The index of such an iteration was always denoted by i, or i.0 ; if
another iteration were nested inside, its index would be called i.l1l,
ete.) The notation gl(x) on line 11 stands for the result R, of

applying procedure Pl to input x . Lines 15 thru }Q of the program mean
"if Zy > 400 then RO[lO—i] := (i, +®) "; note Zuse's new notation -
for conditionals. Lines 19 thru 22 are similar, the bar over " Z, > Loo "

indicating the negation of that relation. There was no equivalent of

" n

else " in the Plankalkul, nor were there go to statements. Zuse did,

14

however, have the notation " Fin " with superscripts, to indicate a
Jjump out of a given number of iteration levels and/or to the beginning
of a new iteration cycle [cf. ZU 72, p. 28; zU L5, p. 32]; this idea
has recently been revived in the BLISS language [WR 71].
The reader should now be able to understand the above code completely.
In the text accompanying his programs in Plankalkiil notation, Zuse
made it a point to state also the mathematical relations between the

variables which appeared. He called such a relation an impliciter Ansatz;

we would now call it an "invariant". This was yet another fundamental
idea about programming; and, like Zuse's data structures, it disappeared
from programming languages during the 1950's, waiting to be enthusiastically
received when the time was ripe [HO 71].

Zuse had visions of using the Plankalkiil some day as the basis of a
programming language that could be translated by machine (ef. [2U 72,
pp- 5, 18, 33, 34]); but in 1945, he was considering first things first
-- namely, he needed to decide what concepts should be embodied in a
notation for programming. We can summarize his accomplishments by

aying that the Plankalliil incorporated Hany <avremely lmportant ldeas, out

n

it lacked the "syntactic sugar" for expressing programs in a readable
and easily writable format.

Zuse says he made modest attempts in later years to have the
Plankalkiil implemented within his own company, "but this project
necessarily foundered because the expense of implementing and designing
compilers outstripped the resources of my small firm." He also mentions
his disappointment that more of the ideas of the Plankalkiil were not
incorporated into Algol 58, since some of Algol's original designers
knew of his work. [2U 72, p. 7] Such an outcome was probably inevitable,
because the Plankalkul was far ahead of its time from the standpoint of
available hardware and software development. Most of the other languages
we shall discuss started at the other end, by asking what was possible
to implement rather than what was possible to write; and it naturally
took many years for these two approaches to come together and to achieve

a suiteble synthesis.

Flow Diagrams.

On the other side of the Atlantic, Herman H. Goldstine and John
von Neumann were wrestling with the same sort of problem that Zuse had
faced: How should algorithms be represented in a precise way, at a
higher level than the machine's language? Their answer, which was due
in large measure to Goldstine's analysis of the problem together with
suggestions by von Neumann, Adele Goldstine, and Arthur W. Burks [GO 72,
pp. 266-268], was quite different from the Plankalkil: they proposed a
pictorial representation involving boxes joined by arrows, and they called
it a "flow diagram". During 1946 and 1947 they prepared an extensive
and carefully worked out treatise on programming based on the idea of
flow diagrams [GV 47], and it is interesting to compare this work to
that of Zuse. There are striking differences, such as an emphasis on
numerical calculation rather than on data structures; and there are also
striking parallels, such as the use ot the term "Plan" in the titles of
both documents. Although neither work was published in contemporary
journals, perhaps the most significant difference was that the treatise
of Goldstine and von Neumann was beautifully "Varityped" and distributed
in quantity to the vast majority of people involved with computers at
that time. This fact, coupled with the high quality of presentation and
von Neumann's prestige, meant that their report had an enormous impact,
forming the foundation for computer programming techniques all over the
world. The term "flow diagram" became shortened to "flow chart" and
eventually it even became "flowchart" -- a word which has entered our
language as both noun and verb.

We all know what flowcharts are; but comparatively few people have
seen an authentic original flow diagram. In fact, it is very instructive
to go back to the original style of Goldstine and von Neumann, since
their inaugural flow diagrams represent a transition point between the
mathematical "equality" notation and the computer-science "assignment"
operation. Here is how the TPK algorithm would probably have looked,
if Goldstine and Von Neumann had been asked to deal with it in 1947:

16

1
@——-’—‘ (a,+]__0)o to 2

A.j 2730 (j = 0y.0s,10)
3
. .-10 .)))
A 2 ey (3 = 0y...,10) B.j by (3 = 0y...,19-21)
c.1 10.27° c.1 27%
2 (a+1o)o 2 (a+i)o
3 (), 5 (b+20-21), B.j by (J :0,...,21)‘
I I
102729 to c.1 . |
+
() to 3
2
111
20ty —wla |+ fa?) to D

O\

VII

272%1-1) to c.1

(ati-1), to 2 g =1 "
i - 999
(b+22-21), to 3 #| vy =
v, =Y
L 1 v 1} k.3
999-2720 o D"l
4.5
A
5
VI ¢l 2%
k t>20_2i=2’59ui to B.20-21 | 2 (ati),
5
b21_21=2'10vi to B.21-21i 5 (b+20-21),
D e'lovi

17

Several things need to be explained about this original notation,
and probably the most important consideration is the fact that the boxes
containing " 10 - i " and " i-1 - i " were not intended to specify any
computation. This amounts to a significantly different viewpoint than
we are now accustomed to, and the reader will find it worthwhile to
ponder this conceptual difference until he or she understands it. The

box "

i-1 - 1 " represents merely a change in notation, as the flow
of control passes that point, rather than an action to be performed by
the computer. For example, box VII has done the computatim necessary

to place 2-59(1-1) into storage position C.1l ; so after we pass the

" "

box " i-1 - i " and go thru the subsequent junction point to box IT,
location C.l1 now contains 2_591 . The external notation has changed
but location C.1 has not! This distinction between external and internal
notations occurs throughout, the external notation being problem-oriented
while the actual contents of memory are machine-oriented. The numbers
attached to each arrow in the diagram indicate so-called "constancy
intervals'", where all memory locations have constant contents and all
bound variables of the external notation have constant meaning.

A "storage table" is attached by a dashed line to the constancy intervals,
to show the relevant relations between external and internal values at
that point. Thus, for example, we note that the box " 10 - i " does

not specify any computation, but it provides the appropriate transition
from constancy interval 1.5 +to constancy interval 2 . (Cf. [GV 47,

§5 7.6, 7.71.)

There were four kinds of boxes in a flow diagram: (a) Operation
boxes, marked with a Roman numeral; this is where the computer program
was supposed to make appropriate transitions in storage. (b) Alternative
boxes, also marked with a Roman numeral, and having two exits marked +
and - ; this is where the computer control was to branch, depending on
the sign of the named quantity. (c) Substitution boxes, marked with a
and using the " - " symbol; this is where the external notation for
a bound variable changed, as explained above. (d) Assertion boxes, also
marked with a # ; this is where important relations between external
notations and the current state of the control were specified. The

example shows three assertion boxes, one which says " i = -1 ", and two

18

which assert that the outputs ug and vy (in a problem-oriented
notation) now have certain values. Like substitution boxes, assertion
boxes did not indicate any action by the computer, they merely stated
relationships which helped to prove the validity of the program and
which might help the programmer to write code for the operation
boxes.

The next most prominent feature about original flow-diagrams is
the fact that a programmer was required to be conscious of the scaling
(i.e., the binary point location) of all numbers in the computer memory.
A computer word was 40 bits long and its contents was to be regarded as a binary
fraction x in the range -1 < x <1 . Thus, for example, the above
flowchart assumes that 2-loaj is initially present in storage position
A.j , rather than the value aj itself; and the outputs bj are
similarly scaled.

The final mystery which needs to be revealed is the meaning of

" "

notations such as (a+i)O R (b)o , etc. In general, x, " was used

when X was an integer machine address; and it represented the number
2-l9x+2-39x , namely a binary word with x appearing twice, in obil
positions 9 to 20 and 29 to 4O (counting from the left). Such a
number could be used in their machine to modify the addresses of 20-bit
instructions that appeared in either half of a LO-bit word.

Once a flow diagram such as this had been drawn up, the remaining
task was to prepare so-called "static coding" for boxes marked with
Roman numerals. In this task a programmer would use his problem-solving
ability, together with his knowledge of machine language and the
information from storage tables and assertion boxes, to make the required
transitions. For example, in box VI one should use the facts that U, = i,
that storage D contains E-lovi , that storage C.l1 contains 2'391 y
and that storage C.3 contains (b +20 -2i)O [a word corresponding to
the location of variable B.20-2i] to carry out the specified assignments.
The job of box VII is slightly trickier: One of the tasks, for example,
is to store (b+22 -2i)0 ¢
to resolve this by adding 2-(2° 9-#2'39) to the previous contents of C.3 .

in location C.3 ; the programmer was supposed

In general, the job of static coding required a fairly high level of

artificial intelligence, and it was far beyond the state of the art in

19

in those days to get a computer to do such a thing. As with the
Plankalkil, the notation needed to be simplified if it was to be
suitable for machine implementation.

Let us make one final note about flow diagrams in their original
form: Goldstine and von Neumann did not suggest any notation for
subroutine calls, hence the function f(t) in the TPK algorithm has
been written in-line. In [GV 47, §12] there is a flow diagram for
the algorithm that a loading routine must follow in order to relocate
subroutines from a library, but there is no example of a flow diagram
for a driver program that calls a subroutine. An appropriate extension
of flow diagrams to subroutine calls could surely be made, but it would

have made our example less "authentic".
39

A Logician's AQRroach.

Let us now turn to the proposals made by Haskell B. Curry, who was
working at the Naval Ordnance Laboratory in Silver Spring, Maryland;
his activity was partly contemporaneous with that of Goldstine and
von Neumann, since the last portion of [GV 47] was not distributed until
1948.

Curry wrote two lengthy memoranda [CU 48, CU 50] which have never
been published; the only appearance of his work in the open literature
has been the brief and somewhat cryptic summary in [CU 50']. He had
prepared a rather complex program for ENIAC in 1946, and this experience
led him to suggest a notation for program construction that is more
compact than flowcharts.

His aims, which correspond to important aspects of what we now call

"structured programming', were quite laudable:

The first step in planning the program is to analyze the computation
into certain main parts, called here divisions, such that the
program can be synthesized from them. Those main parts must be

such that they, or at any rate some of them, are independent
computations in their own right, or are modifications of such

computations. [CU SO,CH 3L]

20

But in practice his proposal was not especially successful, because

the way he factored a problem was not very natural; his components

tended to have several entrances and several exits, and perhaps his
mathematical abilities tempted him too strongly to pursue the complexities
of fitting such pieces together. As a result, the notation he developed
was somewhat eccentric; and the work was left unfinished. Here is how

he might have represented the TPK algorithm:

F(t) = W|t| + 5t7:a)
I = {10:i} - {t = L(a+i)} - F(t) - {A:y}
- II - It7(o,i) - 0, &I,
IT = {x=L(b+20-21)} - {i:x} -~ III
~ {w=L(Mb+21-21)} - {y:w}
III = {y > koo} - {999:y}&01

The following explanations should suffice to make the example clear,
although they do not reveal the full generality of his language:

{E:x} means "compute the value of expression E and store it in
location x ".

A denotes the accumulator of the machine.

{x = L(E)] means "compute the value of expression E and substitute
it into all appearances of ' x' in the following instruction
groups" .

X - Y means "substitute instruction group Y for the first exit
of instruction group X ".

Ij denotes the j-th entrance of this routine, namely the beginning
of its j-th instruction group.

0, denotes the j-th exit of this routine (he used the words "input"

J

and "output" for entrance and exit).

" L4 1"
{x >y} -0 &0, means "if x >y , go to 0, , otherwise to 0, ".

It7(m,i) - 0; &0, means "decrease i by 1, then if i >m go

: 11"
to 02 » otherwise to Ol .

Actually the main feature of interest in Curry's early work is not

this programming language, but rather the algorithms he discussed for

21

converting parts of it into machine language. He gave a recursive
description of a procedure to convert fairly general arithmetic expressions
into code for a one-address computer, thereby being the first person to
describe the code-generation phase of a compiler. (Syntactic analysis

was not specified; he gave recursive reduction rules analogous to well-
known constructions in mathematical logic, assuming that any formula

could be parsed properly.) His motivation for doing this was stated in

[cu 50']:

Now von Neumaenn and Goldstine have pointed out that, as programs

are made up at present, we should not use the technique of program
composition [i.e., subroutines] to make the siwmpler sorts of programs
-- these would be programmed directly -- but only to avoid
repetitions in programs of some complexity. Nevertheless, there

are three reasons for pushing clear back to formation of the
simplest programs from the basic programs [i.e., machine language
instructions], viz.: (1) Experience in logic and in mathematics
shows that an insight into principles is often best obtained by a
consideration of cases too simple for practical use -- e.g., one
gets an insight into the nature of a group by considering the
permutations of three letters, etc. ... (2) Tt is quite possible
that the technique of program composition can completely replace

the elaborate methods of Goldstine and von Neumann; while this may
not work out, the possibility is at least worth considering.

(3) The technique of program composition can be mechanized; if

it should prove desirable to set up programs, or at any rate certain
kinds of them, by machinery, presumably this may be done by

analyzing them clear down to the basic programs.

The program he would have constructed for F(t) , if t5 were replaced by
tetet , is

{|t]:4} = {VA:4)} - {A:w} - {t:R} - {tR:A} - {A:R} - {tR:A}

- {A:R} - {5R:A} - {Atw:A} .

Here w 1is a temporary storage location, and R 1is a register used in

multiplication.

An Algebraic Interpreter.
L Y e a T a W oV Y e oY Y V)

The three languages we have seen so far were never implemented; they
served purely as conceptual aids during the programming process. Such
conceptual alds were obviously important, but they still left the
programmer with a lot of mechanical things to do, and there were many
chances for errors to creep in.

The first "high-level" programming language actually to be implemented
was the Short Code, originally suggested by John W. Mauchly in 1949.
William F. Schmitt coded it for the BINAC at that time. Late in 1950,
Schmitt recoded Short Code for the UNIVAC, with the assistance of
Albert B. Tonik, and J. Robert Logan revised the program in January of 1952.
Details of the system have never been published, and the earliest
extant programmer's manual [RR 55] seems to have been written originally
in 1952,

The absence of data about the early Short Code indicates that it
was not an instant success, in spite of its eventual historic significance.
This lack of popularity is not surprising when we considcr the swall
number of scientific users of UNIVAC equipment in those days; in fact,
the most surprising thing is that an algebraic language such as this was
not developed first at the mathematically-oriented centers of computer
activity. Perhaps the reason is that mathematicians were so conscious
of efficiency considerations, they could not imagine wasting any extra
computer time for something a programmer could do by himself. Mauchly

had greater foresight in this regard; and J. R. Logan put it this way:

By means of the Short Code, any mathematical equations may
be evaluated by the mere expedient of writing them down. There
is a simple symbological transformation of the equations into
code as explained by the accompanying write-up. The need for
special programming has been eliminated.

In our comparisons