
INSTRUCTION STREAM MONITORING OF THE PDP-II

by

Charles J. Neuhauser

May 1979

TECHNICAL NOTE NO. 156

Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, CA 94305

The work described herein was supported in part by the Army Research
Office - Durham under contract no. DAAG29-78-0205.

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, CA 94305

TECHNICAL NOTE No. 156

May 1979

INSTRUCTION STREAM MONITORING OF THE PDP-II

by

Charles J. Neuhauser

ABSTRACT

An instruction stream monitoring system based on the Stanford
Emulation Laboratory facilities is described. The particular target
machine analyzed is the PDP-II. Because the emulation facility is
efficient at the emulation task it is possible to support monitoring
an interactive system, such as UNIX, without unreasonable performance
degradation. Raw data from the monitor, in the form of "event counts",
is further processed by an off-line analysis program. The analysis
methods are described and an example of the results is given.

The work described herein was supported in part by the Army Research
Office - Durham under contract no. DAAG29-78-0205.

1. Introduction

1.1 Objectives

In this report we will describe a system currently in use at the
Stanford Emulation Laboratory which is capable of measuring limited
aspects of a dynamic PDP-11 instruction stream. Rather than measure a
"hard" realization of a PDP-11, an emUlation based technique is used
in which the image machine is nominally equivalent to a PDP-11/05 CPU.
Our purpose in this report is to describe the capability of our
current measurement system and to assess its scope and limitations.
The measurement system operates in conjunction with an analysis system
which summarizes the measured data. The methods of analysis will be
discussed in detail, but an in depth interpretation of the resulting
data will be left as the subject of a future report.

One of our objectives in the Stanford Emulation Laboratory is to
make data such as that described here available to a large population
of researchers and computer architects. We expect that in the near
future a tape library will be generated containing data from a series
of carefully selected experiments representative of the PDP-11
environment. At a lat~r point in time comparable data tapes for other
architectures (e.g. S/360, NOVA etc.) will be available.

1.2 General Description of the Measurement System

Measurements of the PDP-11 are made using an emulation technique
based on the resources of the Stanford EmUlation Laboratory [1,2].
Figure 1-1 shows a highly schematized drawing of the laboratory which
consists of two SUb-sections: the Emmy processor system and the PDP-11
processor system. In operation the Emmy processor, its micro-store
and its main memory provide the emulation base for the target (or
image) processor, in this case the PDP-11. Emulation of the PDP-11
has been described in detail in an earlier report [3].

Peripherals of the target system are emulated cooperatively by
the Emmy processor and the PDP-11 processor system. The PDP-11 system
supports the UNIX operating system. Operationally, the PDP-11 acts as
an IIO channel and handles device access requests on behalf of the
emulated target machines [4]. Peripheral devices are never accessed
directly by the ~~my processor. Note: even though the particular tar
get machine under discussion here is a PDP-11, the fact that the
laboratory support processor is a PDP-11 has no material effect on the
discussion. There is no particular system advantage to having identi
cal support and target processors, although in practice some opera
tional steps, such as establishing the emulated system, are expedited.

Figure 1-2 shows the overall flow of data in the measurement and
analysis system. During emulation of the target machine the emulator

2

based in the Emmy processor maintains event counters in the micro
store. These counters tabulate various events which occur at the
level of target machine instruction execution, for example type of
instruction executed. At the end of a test run the event counters are
frozen and dumped to a file. This file is analyzed by a Fortran pro
gram which is run under an emulated 370 system on the Emmy. An exam
ple of the output of the analysis program is shown in the appendix.

1.3 Assessment of the Approach

There are, of course, a wide spectrum of approaches by which the
data presented here might have been gathered. For example, hardware
monitors might be used, or alternatively a software monitor might be
employed to step the target program and examine the results at each
point. Over the range of monitoring methods many trade-offs must be
made. The most important of these involve the time and space consumed
by the method. At one extreme is hardware monitoring, which has lit
tle or no effect on image machine execution time, but has a high cost
in terms of space if one considers the fast, expensive hardware regis
ters and control necessary to carry out the measurement function. At
the other end of the spectrum is the software monitor which may be
relatively inexpensive in terms of resources but may decrease target
machine execution rate by factors of 1000 or more [5].

The emulation approach we have implemented lies, in a subjective
sense, between the two approaches mentioned above. In terms of time
the emulation monitor impacts the emulation of the target machine by
about 20%, although one must bear in mind that the use of an emulated
target has already slowed execution by a factor of five in the case of
the PDP-11. In terms of space, the monitor mechanism consumes about
half of the available control store in the Fmmy processor (SK out of
the available 16K bytes).

Aside from space and time there are also other limiting factors
involved in the use of a monitoring mechanism. In a general sense,
the purpose of a monitor is to capture some aspect of the target
machine state at each execution of a target machine instruction.
Hardware monitors can only retain a small part of the image machine
state. They are also limited in what fraction of the machine state
they may access. In contrast, the software monitor, which is already
heavily burdened in time can easily afford to capture the entire state
change brought about by target instruction execution. In fact, the
limiting case is the generation of a "trace tape" which is an exact
record of program execution. With the emulation approach the ~ntire
state transition of the target machine is available for examination,
but only a small part of the state may be retained.

When a software base monitor generating a trace tape is used all
analysis of the instruction stream may be deferred until the program

3

test run is complete. Other types of monitors, because they have lim
ited space available, must perform some data reduction during the data
collection operation. This means that one must make decisions before
the fact concerning the data to be produced by the experiment. Gen
erally, most of the information concerning target machine state will
be lost during the data collection phase. This happens in a way which
prevents its recovery later. Fortunately, most of the results we are
interested in are statistical in nature and are preserved through the
data collection process.

Emulator ~ .
Console

~1a i n t4emo ry

Emmy Processor L. ... PDP-li Processor
"

,

(UNIX)

Contra 1
Store

Schematic Organization of the Laboratory

Figure 1-1

~ DISK

TAPE

~

J-t.
r+ Term; nal s
~

Ernmy Function PDP-lor Functi on 5·

Mt·1

Emmy

CS

.l.
....,-

CS

~1H

Emmy

CS

Emulated
UNIX System

Emulates
PDP-ll/05

Emulator

0,

l
I ,

VP.CCESS
Emulates

I/O

~---.... 'JO- "DISK"

IICRT U

"KBOU

1---------

-L --

Event Counters
I

I Step 1: Monitoring UNIX Operation

I

I

-L
t

\ I
.-- I

t
~

I
Event Counters UNIX

I
I

Step 2: Dumping Event Counters .

I

Event File

Analysis
I "CARD RDRII

Program Event Fi le , V;\CCl::SS
Emulates ,
System 370 Emulates '·L IN;: PTR"

I I/O
I

Monitor
Ernul ator Summary

I - '--
Step 3: Analyzing MOfiitor Results

Sequencing of a Monitored Experiment

Figure 1-2

6-

2. Description of the Monitoring Technique

In this section we will discuss, in some detail, the techniques
used by the PDP-11 emulator and its associated monitor. We are
interested in two aspects of the monitor; first, the general approach
used and second, the special problems which arise in monitoring the
PDP-11. Many of these problems are related to monitor control and the
handling of emulated ("soft") interrupts by the system.

2.1 Basic Emulator Structure

The PDP-11 emulator used in the monitoring experiments has a
structure somewhat different from that described in a previous report
[3], in that the emulator described here is more capable and has a
more complex I/O system. Figure 2-1 shows the basic structure of the
PDP-11 emulator and I/O system. Code emulation is straightforward and
invol v~s a fetch/decode phase followed by an operand formation phase,
an execute phase and finally a phase in which data is written (if
required).

I/O in the emulator is handled somewhat independently of the code
emulation by a combination of I/O emulation routines in the Emmy and
an access program ("VACCESS") running on the PDP-11 under UNIX. When
data must be read or written during code emulation the I/O routines
are called into play. These routines emulate specific PDP-11 devices,
such as TTY and disk, and operate so that the code emulator functions
as if it were communicating with real PDP-11 peripherals. In response
to code emulator IIO read and write operations the IIO emulator formu
lates a readlwrite request and issues it to the VACCESS program via a
system of mailboxes. In essence, the requests placed in the mailboxes
are IIO channel commands and the VACCESS program acts as a simple IIO
channel.

Accesses to devices are completed by the VACCESS program through
normal UNIX device interfaces. When the requested operation is com
pleted VACCESS places a status indication in the mailbox and signals
the ~~my via an interrupt. A note: the actual data transfer
requested may take place directly to the Emmy main store or indirectly
through the mailbox.

"Hard" interrupts to Fmmy, that is interrupts directly from the
PDP-11 or the Emmy timer, are captured by the interrupt handler. This
routine sorts out the interrupts and signals the I/O emulator. After
examining the interrupt source and cause, the IIO emulator may issue a
"soft" interrupt to the code emulator, in effect allowing the emulated
PDP-11 to see a device interrupt. In other cases, the I/O emulator
may simply use the interrupt to sequence internally without notifying
the code emulator.

7

2.2 Basic Monitor Structure

To monitor instruction execution micro-code is added to the
PDP-11 emulator as shown in Figure 2-2. The additional code may be
divided into two parts: the monitor itself and "capture points". Dur
ing emulation of the PDP-11 the current instruction is broken down in
successive stages to select the appropriate emulator action. As each
piece of decoded information is produced it is saved by micro-code at
the appropriate capture point. Actually, all the information gathered
by the capture points is saved in one 32 bit Emmy register. In a
sense, the information in this register is an encoding of the actual
instruction which was executed.

The emulator monitor (if enabled) is entered before the next
instruction is executed. Here the encoded information from the cap
ture points is used to control the updating of the event counters.
For example, an event counter is maintained for each PDP-11 opcode.
Everytime the monitor is entered the appropriate opcode event counter
is incremented by one.

Event counters are maintained in control store which because of
its fast access time helps to minimize the impact of monitoring on
emulator operation. This also means that main memory is freed for the
exclusive use of the target machine, although this is not very impor
tant in the PDP-11 emulation, which uses only half of the available
physical Emmy main memory. Actually, in the current version of the
monitor about 480 operand counters are held in an unused area of Emmy
main memory_ These counters are associated with floating point opera
tions and are thus lightly used.

At the point that the monitor is entered the last PDP-11 instruc
tion has been completely decoded and executed. The information from
the capture points i.s in a form that is very efficient for the monitor
to decode and analyze. This makes the monitor action relatively sim
ple and reduces its impact on emulator performance. Furthermore, the
analysis programs can be simple since much of the instruction decoding
has already been done by the emUlator, running on the Emmy which is
specifically designed for such tasks.

2.3 Encoded Instruction Format

As instruction emulation proceeds the information gathered at the
capture points is encoded and saved in an Emmy register designated
here as the "information register". Figure 2-3 illustrates the format
of this 32 bit register. There is a different format for each basic
PDP-11 instruction format, which may be one of the following:

Format
Two operand
One operand
Branch
CCOP

Examples
MOV, ADD, BITB
INC, DECB, TST
BR t BPL, BEQ, SOB
CLN, SEN, NOP

Other RTS, EMT, Interrupt

The low twelve bits of the information register are common for all
formats and contain the control store address of the opcode counter
for the given instruction. This address is also used by the monitor
as a base to access other information such as the information register
format and secondary event counter addresses. Remaining fields of the
format (except for BOF) are taken directly from the target instruc
tion:

Field
Source Mode/Register
Destination Mode/Register
Branch Offset
CCOP Qualifier

Instruction Bi ts
11-06
05-00
07-00
03-00

One field, BOF (for Branch Outcome Flag) is used to encode dynamic
information related to instruction execution. The BOF flag is set if
the branch (conditional, unconditional or SOB) is successful and is
cleared otherwise. Excluding generated data and addresses, the BOF
flag is the only information generated by PDP-11 instruction execution
which is not explictly defined by the instruction itself.

2.4 Monitor Control

Enabling of the emulation monitor is controlled in two ways,
externally or by the execution of selected PDP-11 instructions.
External control is exercised by the PDP-11 console based on the Data
·point 2200. This console may activate or deactivate the monitor.
Provisions have also been made to reset the monitor event counters
from the console.

Although the console may activate the monitor in the sense of
"arming" it, the monitor will not operate until a selected instruction
stream event occurs. For monitor control during emulated PDP-11 exe
cution of UNIX we have elected to use bit 8 of the PDP-11 PS (Proces
sor Status). When this bit is set (i.e. "1 ") monitoring is disabled
even though it may be marked as "active" by the console. This feature
allows the monitoring of selected sections of the UNIX operating sys
tem. Note: bit 8 of the PS is undefined in the PDP-1/05 and thus may
be use for monitor control in the emulator.

Currentl y, our most important use of dynamic moni tor control is
to disable monitoring whenever an "illegal" PDP-11 instruction is

9

encountered. The basic PDP-11 emulator is an exact copy of the
PDP-11/05 [6]. Because much of the UNIX system code was written for
other PDP-11 models, especially the 11/34, many "illegal" instructions
are encountered. Illegal instructions cause processor traps, and spe
cial UNIX code is entered to emulate the function of these instruc
tions. This process is, of course, very expensive in terms of time.
By disabling the monitor when illegal instructions are being emulated
we may measure code execution on various PDP-11 models even though the
emulator supports only the model 11/05. Ideally, of course, these
illegal instructions would be implemented directly in micro-code.
However, using the PDP-11 based emulator code has allowed us to exe
cute code containing floating point operations immediately and avoid a
long period of micro-code construction and testing. The penalty,
unfortunately, is reduced performance of the PDP-11 emual tor by a fac
tor of two (for simple extended instructions like SXT and ASHC) to ten
(for floating point operations).

2.5 Details of Monitor Control

Figure 2-4 shows some of the details of the PDP-11 emulator moni
toring scheme. Almost all aspects of instruction monitoring can be
handled in a straight forward manner as described above. However,
events and instruction which cause a change to the processor status
require special attention since these events may cause bit 8 of the PS
to change and thus change the enabling of the monitor.

Actually, there are two "monitors" in the PDP-11 emulator.
Located before the code emulator is the instruction monitor, which
increments event counters associated with explicitly executed instruc
tions. In addition, located within the interrupt resolution logic, is
the "interrupt monitor" which increments the event counter for inter
rupts. Interrupts counted include interrupts due to device status
changes and to execution of illegal instructions. The interrupt reso
lution logic is entered anytime there is a potential change to the
PDP-11 status since such status changes may produce interrupts by
lowering the PDP-11 priority level. Potential sources of status
changes are:

1) Ordinary instructions (e.g. MOV, INC etc.) which modify device
registers and cause an immediate interrupt. This might happen
when an interrupt enable bit is turned on.

2) Ordinary instructions which modify the PS register.

3) Soft interrupts from the IIO emulator which may, depending on
the current priority, turn into real emulator interrupts.

4) RTI instruction execution.

10

5) Programmed interrupts from EMT, TRAP, BPT or lOT.

6) Illegal instruction interrupts.

Emulator action in the interrupt resolution logic evaluates each
interrupt or status change request and decides whether or not to exe
cute an interrupt. If an interrupt is executed the interrupt resolu
tion logic is entered recursively to check for possible status changes
which might generate new interrupts. Once the interrupt resolution
logic reaches a quiescent state, code emulation is resumed by entering
either the monitor or the code emulator. Usually events which might
cause an interrupt save the current monitor enable state before enter
ing the interrupt resolution logic, then on exit this bit is checked
to see whether the instruction which caused the interrupt should be
tabulated. Only interrupts which arise from "soft interrupts" bypass
the instruction monitoring since they will eventually be counted by
the interrupt monitor when they become "real" interrupts.

2.6 Modifications to UNIX to Support Dynamic Monitoring

Two minor modifications have been made to MINI-UNIX to facilitate
monitor control. First, the PS word which is loaded on CPU interrupts
is modified so that bit 8 of the new PS will be set. This inhibits
the monitoring of "illegal" instruction emulation by the target
machine. Second, a new instruction, "RETTRAP", is added (code
000007). This instruction is operationally equivalent to an RTI
instruction (and is counted as such), but it copies bit 8 of the
current PS word to the old PS word. The RETTRAP instruction replaces
a single RTI instruction used only in the UNIX machine exception
handler.

In UNIX a machine exception (e.g. illegal instruction, system
TRAP etc.) may cause execution of user supplied code which handles the
exception. This code is normally run whith the same PS as the code
which caused the exception and is entered by execution of an RTI
instruction operating with the old user PS and a user supplied PC. By
replacing the RTI with an RETTRAP user supplied code for illegal
instruction exceptions (this is always a floating point unit emulator)
operates with the monitor enabling specified by the illegal instruc
tion exception. This means that only floating point instructions exe
cution is counted and not the user supplied emulator code executing on
the target machine.

Real

"Request Complete" Timer

I

!
Interrupt
Handler

"Device
Status -z.....
Change"

(

VACCESS - - I/O - Mailboxes Handler Virtual
I/O

Channe'! .

I/O Devices

- -

t

Basic Emulator Structure
Figure 2-1

r " I I

i
"Perform
InterruptI! Instruction

...
Fetch & Decode

I/O Read Data
... Operand

Formation

Execution

I/O Write Data
Result
:Storage

"

- Capture Point
1 - Opcode
2 - Source Mode/Register
3 - Destination Mode/Register
4 - CCOP Qualifier
5 - Branch Offset
6 - Branch Outcome

CCOP
Qualifier
Decode

~
f1i sc. CCOP
Execution Execution

,

Man; tor

Fetch
&

Decode

Branch
Offset
Decode

5

Branch
Execution

Structure of Code Emulator with Monitor
Figure 2-2

12

,
Source
Operand
Formation

,

Destination
Operand
Formation

Execution
&.

Write

Instruction

Two Operand . -

One Operand -

Branch

CCOP

Other

Information Register Format

Fi gure 2-3

Opcode .
Event Counter
Base Address

-w

HOV

----::---

ASLB no

--------1
Device}p .

(2) ~~:~~~ ~ t Set
Soft ~.- -~I Interrupt
Intr Lps Flag

Write
RTI

TRAP

EMT

ill ° SXT • l~:r.erate Save
~xtended).. --1'-" I 11 ega 111 --i~---Ol d State

• Interrupt
SETL

Interrupt
r·1oni tor

Establish
New Stat~

Executable
"Interrupt.

·stablis
evice

Interrupt-
Vector

Interrupt Resolution Logic
Fi gure 2-4·

< ENB? >------......,

Ins true t i o. t--";M

Moni tor

yes

< OLD? ')--n-o----

no

yes # - Action
1 - OLD+ENB
2 - OLD+O
3 - ENB PS(8)

Emulator

1.5

3. Description of Raw MOnitor Data

At the termination of a monitored program run the Emmy control
store (and possibly main store) contain counters which have recorded
the occurrence of various events. In this section the semantics of
the event counters are discussed. Event counters are grouped as fol
lows:

Co un ter Type
Opcode
Operand mode/register
CCOP qualifier
Branch offset
Branch outcome

3.1 Opcode Counters

Number
97
78

2
256

16

Size
1

24
16

1
4

Total
97

1872
32

256
64

2321

There are 97 event counters used to tabulate the opcodes encoun
tered in the instruction stream. Usually there is an event counter
for each unique PDP-11 opcode, but there are a few exceptions. First,
double and single precision floating point operations are not dif
ferentiated. Thus, for example, ADDF and ADDD are counted together.
Second, WAIT, HALT and RESET are counted as one instruction, called
miscellaneous or MISC. Any unexpected event such as an I/O error or
non-emulated .illegal instruction code is counted as MISC also. A WAIT
instruction is counted only when first encountered so that the actual
time spent wai ting is not visible to the moni tor. All CCOP instruc
tions are counted by one of two counters: CCLR or CSET.

Interrupts to the emulator (i.e. "soft" interrupts which cause
breaks in the PDP-11 instruction stream) are counted as instructions
by the INTR event counter.

3.2 Operand Mode/Register Counters

Many PDP-11 instructions, such as MOV, ADD, and DEC, specify a
mode and register to be used in operand formation. Mode/register
information is specified by a six bit field (i.e. three mode bits and
three register bits). For instructions which operate explictly on two
operands there are two mode/register fields: one for the source and
one for the destination. ~

For each instruction which has mode/register fields the monitor
tabulate.s information pertaining to the field usage. Where an
instruction specifies both source and destination fields information
is tabulated independently for each field. Because a mode/register

16

field is six bits wide, 64 mode/register combinations are possible.
Approximately 70 instructions specify at least one mode/register
field. Tabulating all 64 possible mode/register combinations for each
such instruction would require an excessive amount of control store.
Therefore, register specifications are mapped into three counter
groups:

GR - General Register
SP - Stack Pointers
PC - Program Co un ter

- RO, R1, R2, R3 and R4
- R5 and R6
- R7

This mapping reflects the underlying UNIX register usage scheme
in which registers RO through R4 are user working registers (actually
RO and R1 are usually employed as temporaries) and R5 and R6 are used
to reference the system stack which contains dynamically allocated
data, subroutine arguments and generated temporaries. The net result
of the mapping above is to reduce the mode/register information for
each instruction operand to 24 counters (i.e. three register groupts
times eight modes). Preliminary examinabi-on of UNIX moni tor output
shows that R5 and R6 are used in much the same way and that grouping
these two register accesses together is reasonable.

3.3 CCOP Qualifier Counters

CCOP instructions are used to set or clear selected bits of the
PS condition codes. Although there are many CCOP mnemonic codes (e.g.
CLV, SEN, NOP etc.) there are actually only two CCOP instructions whe~
the low four bit field (bits 03-00) of the instruction is considered
as a modifier describing the condition code bits to be manipulated.
The two general CCOP codes are CSET (set selected bits) and CCLR
(clear selected bits). For each of these instruction codes one of
sixteen qualifier fields may be specified (i.e. any combination of the
'four condition code bits may be manipulated). Qualifier field usage
is tabulated separately for CCLR and CSET, thus consuming a total of
,32 counters.

3.4 Branch Qualifier (Offset) Counters

Branch instructions (conditional or unconditional) use an eight
bit field to specify the direction and distance of the branch target
relative to the current PC. If a branch is successful (i.e. the PC is
to be modified by the offset field) the monitor will increment a
counter corresponding to the offset field. There are 256 branch qual
ifiers which are used to tabulate the offset fields for all branch
instructions including SOB.

3.5 Branch Outcome Counters

For each branch instruction (BR, conditional branches and SOB)
four event counters are maintained relating to branch direction and
outcome:

Counter Direction Outcome
0 Forward Ignored
1 Forward Taken
2 Backward Ignored
3 Backward Taken

The branch direction is determined from the high bit of the branch
offset field (zero indicates a forward branch). There are 16 groups
of four counters each used in tabulating branch outcome information
for a total of 64 counters.

17

18

4. Output of Analysis Program

The analysis program described below operates on the raw monitor
data collected from one experimental program run. This program serves
two purposes: first, it organizes the raw input data and presents it
in a readable form. Second, it combines specific information about
the instruction syntax and semantics of the PDP-11 with the raw data
to evaluate simple aspects of the PDP-11 architecture. For example,
the analysis program determines the average length of a PDP-11
instruction from opcode counts and instruction syntax.

In the sections below the output of the analysis program is
explained and factors considered in generating this output are given.
The appendix gives the full output from a single analysis run. Page
numbers given with each section header refer to page numbers of the
appendix. Various tables following the current main section give the
syntactic and semantic information assumed about t e PDP-11 instruc
tion set.

4.1 Opcode Usage Summary- (page 1-1 and 1-2)

There are currently 97 opcode groups tabulated by the monitor.
As shown in table 2-1 some groups contain more than one PDP-11 opcode
mnemonic. The opcode usage summary gives the number of usages and
percent usage for each of the 97 opcodes. Opcodes are sorted by count
and presented in descending order. To augment the presentation per
cent usage is shown as a histogram with a \scale of 0% to 30%.

All PDP-11 opcodes have been placed in one of three groups which
reflect their primary usage [7]:

1) Functional - Makes an explicit transformation of data
2) Memory - Moves data or clears a storage gell
3) Procedural - Cause a potential break in the instruction

stream or modifies processor state.

Obviously, this classification is somewhat subjective. In classifying
an instruction only the opcode is considered; operand dependent seman
tics are ignored. For example, an ADD can be used in place of a TST
instruction if the source operand is set to zero, but the ADD is still
counted as a functional instruction. CLR and CLRB are counted as a
"memory" type instructions since their function is to move an implicit
zero to a storage cell.

Several ratios between class counts are tabulated:

Memory Instructions
Memory ratio =

Functional Instructions

19

Procedural Instructions
Procedural ratio =

Functional Instructions

Memory and Procedural Instructions
Non-Functional ratio =

Functional Instructions

These ratios provide a simple evaluation of architectural effective
ness in that larger ratios imply excessive consumption of machine
resources by instructions which do not transform data, the primary
goal of computation. "I eal" architectures have been proposed which
minimize or eliminate the" usage of explicit Memory and Procedural type
instructions [8].

4.2 Instruction Breakdown and Opcode Size (page 1-3)

By considering both opcode and operand usage counts it is possi
ble to estimate the length of an average PDP-11 instruction and also
the average allocation of bits wi thin an instruction which specify the
various instruction related functions. We consider each PDP-11
instruction (excluding interrupts) to be composed of two parts: a 16
bit required "base" and optional "extension lt fields of one or two 16
bit words. The instruction base may specify several pieces of infor
mation:

1) Opcode - the type and form of the operation
2) Operand - the method of forming instruction operands
3) Qualifier - either a branch offset or eeop code mask

Table 1 summarizes the allocation of bits to these functions for every
tabulated opcode. Average bit usage for each component is calculated
from the opcode usage data and this syntactic information.

In many cases a PDP-11 instruction which requires an operand will
use extension fields to either specify the operand or its address.
Extension field usage is a function of the mode/register specification
a follows:

Extension Usage Mode Registers
Index 6 RO - R6
Index Deferred 7 RO - R6
Immediate 2 R7
Absolute 3 R7
Relative 6 R7
Relative Deferred 7 R7

The opcode size summary tabulates the number of instructions
encountered which have a given opcode size. Interrupts (INTR) are

20

included and assigned an opcode size of zero. In terms of information
theory, an ideally constructed machine would have its shortest opcodes
most frequently used [9]. The opcode size summary gives a subjective
estimate of the coding efficiency of the PDP-11 instruction set.

4.3 Register and Memory Usage Summary (page 1-4)

Data presentation in the "Register and
i

Memory Usage" summary is a
assessment of the accessing burden placed on the register and memory
resources by the program being measured. Our approach is similar to
that use~ in the CFA study [10], except that in our analysis only
explicitly specified accesses are counted rather than all register
accesses required by the hardware to perform an instruction. For
example, we do not count the register accesses required to perform
auto-increment/decrement while the CFA approach does.

Figure 4-1 illustrates in a schematic manner the relationship
between the operator and operands specified by an instruction and the
storage resources of the processor for a two operand instructions such
as ADD. In forming an operand read accesses to storage resources will
be required. These accesses may be data for use by the operator or
addresses to be used in accessing the actual data (i.e. indirecting).
After the specified operation is complete the resul t is· wri tten to
storage resources under control of the generated destination address.
There are, of course, a wide range of operators in the PDP-11. Some
use only one source operand (e.g. INC), others have no destination
operand write (e.g. CMP) and so forth. In computing the accesses to
memory and registers we must consider both the operator and the actual
operand mode/register specification together.

4.3.1 Operand Specified Accesses

Below we define the access classes used in the storage usage sum
mary. This is done primarily on the basis of operand specification
field of the instruction although for some instructions (e.g. EMT t

TRAP etc.) certain storage accesses are implied. Except for "Instruc
tion" and "Displacement" accesses, both memory and register accesses
are defined for each class.

Instruction

Displacement

Data Read

- One memory access for each opcode encountered.

- One memory read access for every mode 6 or
mode 7 operand specification encountered.

- The word read from a cell is used directly as
data by an operator. Specifically:

Register Data Read - Mode 0 only

Data Wri te

Address

Misc. Read

Misc. Write

Memory Data Read - Modes 1 through 7

- The result of an operation is written to a
cell. Modes are counted as in "Data Read"
above.

21

- Data read from a cell is used as an address in
operand formation. Specifically:

Register Address Read - Modes through 7
Memory Address Read - Modes 3, 5 or 7

A cell is read implicitly because of the
opcode specification.

- A cell is written implicitly because of the
opcode specification.

The category" All Reads" includes read accesses related to Instruc
tion, Displacement, Data Read, Address and Miscellaneous Read
accesses. The remalnlng two catagories, Data Write and Miscellaneous
Wri te compr ise the "All Wri ten catagory.

4.3.2 Opcode Specified Accesses

In the above section we specified how the operand specification
in the mode/register field of an instruction should be interpreted in
counting potential storage accesses. This interpretation must be
further modified based on the operator part (i.e. opcode) of the
instruction. For example, for a eMP instruction no result is written
so accesses specified by the destination field should be counted as
reads only. All PDP-11 instructions have been placed into one of 26
catagories related to their "form", that is the way in which the
instruction uses its operands. Form numbers are shown in Table 2.

In Table 1 instruction forms are related to the access cata
gories. There are two sections to this table: operand specified
accesses and opcode specified accesses. Accesses marked in the
operand specified section will be counted only if the operand specifi
cation so designates. For example, if an "Address" access is marked an
access will be tabulated only if an operand field of the instruction
indicates an address access (e.g. register address access if the mode
is 1 through 7; memory address access if the mode is 3, 5 or 7).

Opcode specified accesses are counted independently of the
operand specification since they are implicit with respect to the
opcode used. Usually opcode specified acceses relate to state change
instructions, such as EMT, TRAP, RTI, or to extended and floating

22

point instructions where one operand is always a register.

4.3.3 Limitations in the Usage Summary

It was not possible to make access tabulation precise due to lim
itations in the emulator/monitor micro-code and in the size of the
analysis program. The essential limitations to our method are:

1) Accesses by byte oriented istructions are counted as full word
accesses.

2) All floating point accesses are counted as one word
regardless of the size (i.e. floating or double).

3) Double register accesses related to certain extended
operations are counted as single word accesses.

In general, we have measured the access burden on storage resources
due to the opcode/operand specification of the instruction indepen
dently of the data type (e.g. byte, word, floating or double).

4.4 Operand Usage Data (pages 1-5 through 1-14)

Raw data giving operand usage for each instruction which speci
fies a mode/register field is presented by the "Operand Usage" summary
in a readable form • Where an instruction, such as MOV, has two
operands (source and destination) the usage of each operand is tabu
lated independently. For a g .. iven operand, usage wi th respect to mode
and register is given as a percent of the total occurrence of the
instruction. Marginal percentages are calculated by mode and also by
register group. Register group data reflects that of the raw data in
that all references to certain registers are considered in common:

Group
GR - General Registers
SP - Stack Pointers
PC - Program Counter

Includes
RO, R1, R2, R3 and R4
R5 and R6
PC

This grouping reflects the basic usage of registers in code generated
by the ftC" compiler and applies to nearly all user state code in UNIX.

Operand usages are presented only if an instruction actually
occurs. The order in which the statistics appear results from the
internal organization of the opcode counters.

4.5 Operand Summary For Selected Instructions (page 1-15)

Operand usage information for frequently used instructions has
been summarized in one place by this analysis. Ten instruction
categories (word operand only) have been defined. Taken together
these catagories comprise a majority (usually 75% or more) of the
instructions encountered. The instructions in each catagory are as
follows:

Catagory
Move
Clear
Compare
Test
Arith2
Arith1
Logic2
Logic 1
Jump
Call

Instructions
MOV
CLR
CMP
TST
ADD,SUB
INC,DEC,NEG,ADC,SBC
BIS, BIC
COM, ROL, ROR,ASL,ASR, SWAB
JMP
JSR

Operands
2
1
2
1
2
1
2
1
1
1

23

Percentages are given on a per operand basis and are exactly the same
as those presented in the operand usage summary.

4.6 Register Usage Cross Comparison (page 1-16)

In the operand usage summary described above marginal percentages
for register usage were calculated. A simple graphical method has
been used to present this data on a per operand basis. The percent
usage for general registers (GR) and stack pointers (SP) is presented
on an X-Y plot where the X-axis represents stack pointer usage and the
Y-axis represents general register usage. By implication 45 degree
lines from upper left to bottom right may be drawn to ind icate PC
usage. The lower left corner of the graph would then represent 100%
PC related usage. Marginal values for register usage are calculated
for all modes for which the register is specified so the location of
the actual operand is not known precisely (e.g. the register might
have been used indirectly).

A data point has been placed on the plot for each operand (source
or destination) used. A different symbol has been used to represent
each combination of usage (source and destination) and instruction
form (one or two operand). Instruction names associated with a given
symbol are printed to the right of the plot in an order corresponding
to SP percent usage. Unfortunately, the line printer used to produce
the output quantizes the symbol position so that some information is
lost. The coordinates of a given point can be determined accurately,
if desired, directly from the operand usage data summary.

24

4.7 CCOP Qualifier Analysis (page 1-17)

For each of the two CCOP instructions (CSET and CCLR) the usage
of the qualifier is given. Percentages are calculated on the basis of
total CCOP usage (i.e. the sum of CSET and CCLR usage). Marginal sums
are given for usage by instruction and by code mask.

4.8 Summary of Branch Instructions (page 1-18)

In this summary all 14 conditional branches (except SOB) are con
sidered as one group. PDP-11 conditional branches are symetric, that
is each branch for the occurrence of a given condition has a
corresponding branch for its non-occurrence. In this presentation
branches have been paired on the basis of cortdition codes tested. The
column headed "0" corresponds to the left most conditional branch
named and to a test outcome of "0" or false. Marginal percentages
have been computed on the basis of test outcome and conditions tested.

Branches have been counted on the basis of their occurrence in
the I-stream without consideration given to their actual outcome.

4.9 Summary of I-stream Breaks (page 1-18)

All instructions (including interrupts) which may cause an expli
cit break in the PDP-11 instruction stream are tabulated in this sum
mary. Instructions in which the ocodes do not specify a break but in
which operand usage does are not considered. An example of such an
instruction would be a move immed iate to register R7. In the data
presentation the occurrence of each potential break instruction is
shown as a percentage of all instructions with break potential. Con
ditional and SOB instructions mayor may not cause a break depending
on their ourcome. Actual breaks to the instruction stream are cal
cuI ted by considering the outcome of these instructions.

The average length of an instruction run between breaks in the
I-stream is calculated by dividing ~He total number of instructions
executed by the number of instructions which are potential (or actual)
breaks.

Note: a small anomaly results from the monitor control mechanism
in that illegal instructions in the 11/05 implementation (such as
ASHC) are counted twice; once at the actual occurrence and again as an
illegal instruction interrupt (INTR). Furthermore, when the monitor
is setup to ignore emUlation of these instructions the illegal inter-
.rupt will be counted on entry but the associated RTI will not be
counted on exit. This artifact of monitoring will make the usage of
INTR and RTI appear unbalanced.

4.10 Branch Qualifier Statistics (page 1-19)

For each branch (conditional, unconditional or SOB) which is
taken an event counter associated with the branch offset value (one
out of 256) is incremented. In presenting this data branch offsets
(in words) ·are grouped logrithmicly, for example, 2-3, 4-7, 8-15 and
so forth. Percentages are calculated on the basis of all branches
taken and presented graphically as a histogram.

4.11 Conditional Branch Outcomes (page 1-20)

25

All branch instructions (conditional, unconditional and SOB) are
examined by the monitor which tabulates branch outcome and direction.
This information is presented on a per instruction basis. Percentages
are calculated on the basis of all branch type instructions encoun
tered, whether they were taken or not. Conditional branches have been
presented in pairs reflecting their use of particular condition code
bits. For each branch outcome (taken or ignored) the percentages
associated wi th branch direction have been summed. Further, the out
come percentages have been summed (i.e. the col umn marked "TOTAL") to
give a distribution of branch types for all branches encountered dur
ing emulation.

r------- -- --- --1
I I
t I
J--Destination I

I t

.~~ I
uperand ..

I Formation ~.-' Regi sters I

I • , I ---- -
I

I L_ Source • f1emory
I Operai1d .I

I . Formation ·
I I

if' ,

• •
I

I OPCODE· I SRC DST
Instruction

Data

- - - - Address

t. - Control

Operator and Operand Storage Accessing
Figure 4-1

26

27

5. Example of ~ .MOnitored Program

The appendix to this report gives the complete analysis of a sin
gle PDP-11 program run, the compilation of a 500 line "c" program.
The complete program consisted of about 8 million instructions and
consumed about 85 seconds of real time on the Emmy CPU. On the actual
PDP-11 this program consumed apout 520 seconds. The real time clock
in the emulated PDP-11 has been slowed down by a factor of six so that
clock related system activity consumes about the same fraction of sys
tem resources as it would on the actual PDP-11. To UNIX on the emu
lated system real time appears to pass at one-sixth the rate of actual
real time. With this modification the "time" reports from both PDP-11
systems when running the example are comparable:

User
System

Real Time

Actual
1: 02

:25

1: 27

Emulated
1:16

:18

1 : 34

,-8

6. Re ferences

[1] C. Neuhauser, "Emmy System Processor -- Principles of Operation",
Technical Note No. 114, Computer Systems Laboratory, Stanford
University, May 1977.

[2] C. Neuhauser, "Emmy Peripherals - Principles of Operation",
Technical Note No. 77, Computer Systems Laboratory, Stanford
University, December 1975.

[3] C. Neuhauser, "An Emmy Based PDP-11/20 Emulator", Technical Note
No. 110, Computer Systems Laboratory, March 1977.

[4] J. Huck, "A Virtual IIO System for the Stanford E.'nmy - VACCESS" ,
Technical Note No. 144, Computer Systems Laboratory, Stanford
University, May 1979.

(5] G. Rose, "Performance Evaluation Under UNIX and a Study of PDP-11
Instruction Usage", Operating Systems Review, Vol. 12, No .3, July
1978.

[6] PDP-11 04/05/10/35/40/45 Processor Handbook, Digital Equipment
Corporation-:- 1975:- - -

[7] M. Flynn, "Trends and Problems in Computer Architecture",
Proceedings of IFIP Congress 1974, North Holland Publishing Co.

[8J L. Hoevel and M. Flynn, "The Structure of Directly Executed
Languages: A New Theory of Interpretive System Design", Technical
Report No. 130, Computer Systems Laboratory, Stanford University,
March 1977.

[9] C. Foster, R. Gonter and E. Riseman, "Measures of Op-Code Utili
zation", IEEE Transactions on Computers, May 1971.

[10] S. Fuller and W. Burr, "Measurement and Evaluation of Alternative
Computer Archi tectures" , Computer, Vol. 10, No. 10, Oc tober 1977.

Table 1 - Instruction Characteristics

Key: Oc - Size of opcode in bits

Name

MISC
MOV
CMP
BIT
BIC
BIS
ADD
SUB

JMP
SWAB
JSR
CLR
COM
INC
DEC
NEG

ADC
SBC
TST
ROR
ROL
ASR
ASL
MOVB

CMPB
BITB
BICB
BISB
CLRB
COMB
INCB
DECB

Op - Size of operand fields in bits
Qa - Size of qualifier fields in bits
CN - Counter number

Type Oc Op Qa Form CN Includes

P 16 0 0 1 0 WAIT, HALT,
M 4 12 0 5 1
P 4 12 0 7 2
P 4 12' 0 7 3
F 4 12 0 6 4
F 4 12 0 6 5
F 4 12 0 6 6
F 4 12 0 6 7

P 10 6 0 8 8
F 10 6 0 2 9
P 7 9 0 9 10
M 10 6 0 4 11
F 10 6 0 2 12
F 10 6 0 2 13
F 10 6 0 2 14
F 10 6 0 2 15

F 10 6 0 2 16
F 10 6 0 2 17
F 10 6 0 3 18
F 10 6 0 2 19
F 10 6 0 2 20
F . 10 6 0 2 21
F 10 6 0 2 22
F 4 12 0 5 23

P 4 12 0 7 24
P 4 12 0 7 25
F 4 12 0 6 26
F 4 12 0 6 27
M 10 6 0 4 28
F 10 6 0 2 29
F 10 6 0 2 30
F 10 6 0 2 31

29

RESET

Table 1 - continued

Name Type Oc Op Qa Form CN Includes

NEGB F 10 6 0 2 32
ADCB F 10 6 0 2 33
SBCB F 10 6 0 2 34
TSTB P 10 6 0 3 35
RORB F 10 6 0 2 36
ROLB F 10 6 0 2 37
ASRB F 10 6 0 2 38
ASLB F 10 6 0 2 39

RTI P 16 0 0 13 40
BPT P 16 0 0 10 41
lOT P 16 0 0 10 42
INTR P 0 0 0 12 43 Any interrupt
EMT P 16 0 0 10 44
TRAP P 16 0 0 10 45
RTS P 13 3 0 11 46
CCLR P 12 0 4 14 47 CLN, CLZ, CLV, CLC

CSET P 12 0 4 14 48 SLN, SLZ, SLV, SLC
BR P 8 0 8 15 49
BNE P 8 0 8 15 50
SEQ P 8 0 8 15 51
BGE P 8 0 8 15 52
BLT P 8 0 8 15 53
BGT P 8 0 8 15 54
BLE P 8 0 3 15 55

BPL P 8 0 8 15 56
BMI P 8 0 8 15 57
BHI P 8 0 8 15 58
BLOS P 8 0 8 15 59
BVC P 8 0 8 15 60
BVS P 8 0 8 15 61
BHIS P 8 0 8 15 62
BLO P 8 0 8 15 63

SXT F 10 6 0 2 64
MUL F 10 6 0 16 65
DIV F 10 6 O. 16 66
ASH F 10 6 0 16 67
ASHC F 10 6 0 17 68
XOR F 10 6 0 16 69
SOB P 7 3 6 18 70
FMUL F 8 8 0 25 71 MULF, MULD

-:,1

Table 1 - continued

Name Type Oc Op Qa Form CN Includes

FMOD F 8 8 0 25 72 MODF, MODO
FADD F 8 8 0 25 73 ADDF, ADDD
FLD M 8 8 0 23 74 LDF. LDD
FSUB F 8 8 0 24 75 SUBF, SUBD
FCMP P 8 8 0 25 "76 CMPF, CMPD
FST M 8 8 0 24 77 STF, STD
FDIV F 8 8 0 25 78 DIVF, DIVD
STEX M 8 8 0 24 79 STEXP

STCC M 8 8 0 24 80 STCFI, STCFL, STCDI, STCDL
STCF M 8 8 0 24 81 STCFD, STCDF
LDEX M 8 8 0 23 82 LDEXP
LDCC M 8 8 0 23 83 LDCIF, LDCLF, LDCID, LDCLD
LDCF M 8 8 0 23 84 LDCDF, LDCFD
LDFP P 8 8 0 23 85 LDFPS
STFP P 8 8 0 23 86 STFPS
STST P 8 8 0 24 87

FCLR M 10 6 0 22 88 CLRF. CLRD
FTST P 10 6 0 21 89 TSTF, TSTD
FABS F 10 6 0 20 90 ABSF, ABSD
FNEG F 10 6 0 20 91 NEGF, NEGD
CFCC P 16 0 0 19 92
SETF P 16 0 0 19 93
SETI P 16 0 0 19 94
SETD P 16 0 0 19 95

SETL P 16 0 0 19 96

Table 2 - Instruction Form Definitions

Operand Specified:

RDR - Register Data Read
RDW - Register Data Write

Opcode Specified:

SR - Source Read
SA - Source Address

RMR - Register Misc. Read
RMW - Register Misc. Write

DR - D~stination Read
DW - Destination Write
DA - Destination Address

MMR - Memory Misc. Read
MMW - Memory Misc. Write

Form Examples

1
2
3
4
5

6
7
8
9

10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26

MISC
INC, DEC
TST
CLR
MOV

BIC, ADD
CMP, BIT
JMP
JSR
EMT, BPT

RTS
INTR
RTI
CCLR, CSET
BR, BNE

MUL, DIV
ASHC
SOB
SETF
FABS, FNEG

FTST
FCLR
LDEX, LDCF
STST, STEX
FADD, FMUL

FCMP

R R R R M M
D D M M M M S S D D D
RWRWRW RARWA

- - 1 101
- - 0 022

- - 1 1 1 0
- - 0 022
- - 0 020

1 1
2 2
1 1

o 1
1 0
1 1

o - - - -

o 0 0 0 0
00111
00101
00011
1 101 1

1 1 1
1 1 0 1
o 0 001
o 0 001

1 100 a
1 1 0 0 a
a 0 000
o a 000
o 0 1 1 1

1 1 a 0 0
a a 0 1 1
1 1 a 0 a
o 0 0 1 1
1 000

000

•
•

•

•
•

•

(11 may 79 #1 -- "cc emdump.em -- no emul.s) PAGE 1- 1

OPCODE FREQUENCY SUM~ARY

NAME
MOV
CMP
BNE
JSR
BEQ
'fS'r
DEC
CLR
R'fS
:HR
JMP
ADD
MOVE
BG'f
ELOS
'INC
BGE
BIC
BL'i'
'rS'fB
SUB
ASL
BRI
~LO
BI'r
EIS
C f1F i3
BlE
EISB
SOB
DIV
EBIS
ASR
CLRB
hOR
Rir I
SWAB
INTR
ASH
f1UL
BItB
NE·,}
ASHC
CCLl{
:HPL
ADC
SXT
INCB
MISC
ROL
Th:AP
SBC

COUNT
2482286

688342
539653
389146
368300
331729
311561
264353
260960
253089
251E12
194727
179998
124757
124315
116297

93684
62584
59208
54198
53~)94
53!:)16
50933
;:·8569
37399
308'72
29330
26250
2,0735
16225
15742
15136
14030
110966

7?49
7220
6476
6460
6169
4349
4;)32
3283
2962
2135
2,016
1856
1531
1123

E96
824
'-/59
600

PCT
32.55
9.03
7.08
5.10
4.83
4.35
4.09
3.4'7
3.42
3.32
3.30
2.55
2.36
1.64
1.63
1.52
1.23
0.82
0.78
0.71
0.70
0.70
0.67
0.51
0.49
0.40
0.38
0.35
0.27
0.21
0.21
0.20
0.18
0.14
0.10
0.09
0.08
0.08
0.08
0.06
0.06
0.04
0.04
0.03
0.03
0.02
0.02
0.01
0.01
0.01
0.01
0.01

CUt1M
32.55
41.57
48.65
53.75
58.58
62.93
67.02
70.48
73.90
77.22
80.52
83.08
85.44
87.07
88.70
90.23
91.45
92.28
93.05
93.76
9'1.46
95.17
95.83
96.34
96.83
97.24
97.62
97.97
98.24
98.46
98.66
98.86
99.05
99.19
99.29
99.39
99.47
99.56
99.64
99.69
99.75
99.79
99.83
99.86
99.89
99.91
99.93
99.95
99.96
99.97
99.98
99.99

0% 5% 10% 15% 20% 25% 30%
1 ••••••••• 1 ••••••••• 1 ••••••••• 1 ••••••••• 1 ••••••••• 1 ••••••••• 1
IMM
IPPPPPPPPPPPPPPPPPPP.
IPPPPPPPPPPPPPPP
IPPPPPPPPPPP
IPPPPPPPPPP
IPPPPPPPPP.
IFFl~'FFFFF •
IMM~MMMM
IPPPPPPP
IPPPPPPP
IPPPPPPP
IFFFFFF
IMMMMM
IPPPP
IPPPP
I FFFl!'
IPPP
IFF
IPP
IPP
IFF
IFF
IPP
IPP
IP
IF • •
IP
IP
IF
IP
IF
IP
IF
1M
IF
IP
IF
IP
IF
IF
IP
IF
IF
IP
IP
IF
IF
IF
IP
IF
IP
IF

,.
(11 may 79 #1 --

..
cc emdump.em -- no emul.s) PAGE 1- 2

• OPCODE FREQUENCY SUMMARY

• 0% 5% 10% 15% 20% 25% 30%
NAME COUN'r PCT CUM!1 I ••••••••• 1 ••••••••• 1 ••••••••• 1 ••.•••••• 1 ••••••••• 1 ••••••••• 1
BICB 410 0.01 99.99 IF • BVS 335 0.00 100.00 IP
DECB 244 0.00 100.00 IF
BMI 67 0.00 100.00 IP • COM 15 0.00 100.00 IF
CSE'l' 3 0.00 100.00 IP
COI"LB 0 0. 100.00 I • NEGB 0 0. 100.00 I
ADCB 0 0. 100.00 I
SBCB 0 0. 100.00 I • RORB 0 0. 100.00 I
ROLB 0 0. 100.00 1
ASRB 0 0. 100.00 I • ASLB 0 0. 100.00 I
BPT 0 0. 100.00 I
lOT 0 0. 100.00 I • EMT 0 0. 100.00 I
BVC 0 0. 100.00 I
XOIi 0 0. 100.00 I • FMUL 0 0. 100.00 I
FMOD 0 0. 100.00 I
FADD 0 0. 100.00 I • FLD 0 0. 100.00 I
}'SUB 0 0. 100.00 I
FCi'1P 0 0. 100.00 I • FS'f 0 0. 100.00 I
FDIV 0 0. 100.00 I
STEX 0 0. 100.00 I • s'rcc 0 0. 10~.00 I
S'l'CF 0 0. 100.013 I
LDEX 0 0. 1013.00 I • LDCC 0 0. 100.00 I
LDC}, 0 0. 100.00 I
LDFP 0 0. 100.00 I • s'rFP 0 0. 100.00 I
STST 0 0. 100.00 1
FCLR 0 0. 1100.00 1 • FTS'f 0 0. 100.00 I
FAbS 0 0. 100.00 1
FNEG 0 0. 100.00 1

~ Cr'CC 0 0. 100.00 I
SE'fF 0 0. 100.00 I
SE'fI 0 0. 100.00 I • SEl'D 0 0. 100.00 I
SETL 0 0. 100.00 I

• FUNCTIONAL fOrAl= 911249 % FUNC'f IONAL= 11.9
~EMORY TOTAL= 2937603 % MEr10R'f 38.5 M-RATIO= 3.22

it PROCEDURAL TOTAL= 3777678 % PROCEDURAL- 49.5 P-RATIO= 4.15
-----_ -,. GRAND 'fOTAL= 7626530 PERCEN'f 100.0 NF-RATIO- 7.37

~

o

•

•
•

•

.,

(11 may 79 #1 cc emdump.em -- no emul.s)

INSTRUCTION BREAKDOWN (NOT

COMPONENT

BASE OPCODE
OPERAND
QUILIFIER

. EXTENSION INDEX
INDEX DEFERRED
IMMEDIA'fE
ABSOLU'l'E
RELA'rI VE
RELATIVE DEF

INCLUDING

BI'fS

6.51
7.69
1.80

16.00

1.43
0.24
1.79
0.32
1.88
0.16

5.82

INTERRUPTS)

AVERAGE INSTRUCTION LENGTH 21.82 BITS

--

OPCODE SIZB SUMMARY (INCLUDING INTERRUPTS)

BITS NUMBER PERCENT

0 6460 0.08
4 3784609 . 49.62
7 434593 5.70
8 1696932 22.25

10 1431963 18.78
12 2138 0.03
13 260960 3.42
16 8b?5 0.12

'7626530 100.00

PAGE 1-:3

(11 may 79 #1 -- u cc emdump.em -~ no emul.s) PAGE 1- 4

REGISTER AND MEMORY USAGE (INCLUDING INTERRUPTS)

ACCESS REGISTER MEMORY
NUI'1BER PER INST NUI'1BER PER INST

INSTRUCTION 7626t>30 1.000
DI S.PLACF:MENT 1766650 0.232
DATA READ 2545185 0.334 3344412 0.439
DAlfA WRl'fl!; 2283027 0.299 1585012 0.208
ADDRESS 5233237 0.686 353575 0.046
MISC READ 650106 0.085 289838 0.038
MISC WRITE 650106 0.085 403584 0.053

•
ALL READS 8428528 1.105 13381005 1.755

• ALL WRITES 2933133 0.385 1988596 0.261
-------- ------ -------- ------

TOTAL 11361661 1.490 15369601 2.015 •
•

DATA READ/WRITE RAfIOS • WRITES
REG MEM

• READ REG 1.11 1.61
MEM 1.46 2.11

•
•

•
o

•

•

" (11 79 #1 -- ..
may cc erndurnp.em -- no emul.s PAGE 1- 5

• OPERAND USAGE SUMMARY

• ---

MOV - SRC R @R (R) + @(R)+ -(R) @-(R) X(R) @X(R) • GR 28.11 1.00 7.49 0. 12.33 0. 2.73 0.15 51.81
SP 20.89 0.03 8.57 0. 0. 0. 7.53 0.22 37.24

0
PC 0.00 0. 5.29 0.14 0. 0. 4.77 0.'15 10.95

48.99 1.03 21.35 0.14 12.33 0. 15.03 1.12 100.00

• MOV - DST R @R (R) + @,(R)+ -(R) @-(R) X(R) @X(R)

• GR 45.33 0.14 6.79 0.44 0.14 0. 1.27 0. 54.11
SP 16.49 4.62 0.08 0. 19.44 0. 1.53 0.06 42.22
PC 0. 0. 0. 0.22 0. 0. 2.96 0.49 3.66

• 61.82 4.75 6.88 0.66 19.58 0. 5.76 0.55 100.0-0

---• CMP - SRC R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)

• GR 39.36 0.41 12.35 0. 0.01 0. 1.28 0. 53.40
SP 0.02 0.89 3.23 0. 0. 0. 3.41 0. 7.55
PC 0. 0.43 36.75 0. 0. 0. 1.87 0. 39.05

. -----• 39.'38 1.73 52.32 0. 0.01 0. 6.56 0. 100.00

0 CMP - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 49.76 3.42 10.56 0. 5.10 0. 4.72 0.16 73.71
SP 0.20 0.80 3.77 0. 0. '" . 3.65 0.32 8.74 • PC 0. 0. 15.39 0.06 0. 0. 2.10 0. 17.55

(I
49.96 4.:2.2 29.72 0.06 5.10 0. 10.47 0.48 100.00

------~--

• :aIT - SRC R @R (R) + @(R)+ -(R) @-(R) X(R) @X(R)
GR 0.02 0. 0. 0. 0. 0. 0. 0. 0.02
SP 0. 0. 0. 0. 0. 0. 0. 0. 0. • PC 0. 0. 99.98 0. 0. 0. 0. 0. 99.98

0.02 0. 99.98 0. 0. 0. 0. 0. 100.00
0

BI'r - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X{R) • GR 29.49 24.27 0. 0. 0. 0. 20.73 0. 74.49
SP 0. 0. 0. 0. 0. 0. 12.25 0. 12.25
PC 0. 0. 0. 0. 0. 0. 13.27 0. 13.27 • 29.49 24.27 0. 0. 0. 0. 46.24 0. 100.00

~ ---

0

tt)

:fI)
(11 may 79 #1 cc emdump .em -- no emul .5) PAGE 1- 6 ,.
OPERAND USAGE SUMMARY

Iii ---
IlIC - SRC R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R) .. GR 0.01 0. 0. 0. 0. 0. 2.46 0. 2.47

SP 0. 0. 0. 0. 0. 0. 0. 0. 0.
PC 0. 0. 97.53 0. 0. 0. 0. 0. 97.53 • 0.01 0. 97.53 0. 0. 0. 2.46 0. 100.00

• :BIC - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 69.76 3.88 0. 0. 0. 0. 0.04 0. 73.68 • SP 0. 8.61 0. 0. 0. 0. 3.06 0. 11.66

. PC 0. 0. 0. 0. 0. 0. 14.65 0. 14.65 .. 69.76 12.48 0. 0. 0. 0. 17.75 0. 100.00

---~---• BIS - SRC R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 14.05 0. 0. 0. 0. 0. 0. 0. 14.05 • SP 0. 0. 17.76 0. 0. 0. 0.24 0. 18.00
PC 0. 0. 65.70 0. 0. 0. 2.25 0. 67.95

• 14.05 0. 83.46 0. 0. 0. 2.49 0. 100.00

• :BIS - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 31.97 10.32 0. 0. 0.18 0. 0.03 0. 42.50
SP 0. 12.73 0. 0. 0. 0. 2.51 0.32 15.57 • PC 0. 0. 0. 0. 0. 0. 41.93 0. 41.93

31.97 23.05 0. 0. 0.18 0. 44.47 0.32 100.00 • / ----_._---

• ADD - SRC R @R (R)+ @(R)+ -(R) @-(R) X{R) @X(R)
GR 15.91 0. 0. 0. 0. 0. 0.16 0. 16.06
SP 0.37 0. 0.78 0. 0. 0. 3.20 0. 4.36 • PC 0. 0.01 77.49 0. 0. 0. 2.08 0. 79.58

16.28 0.01 78.27 0. 0. 0. 5.45 0. 100.00 •
ADD - Ds'r R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R) • GR 64.66 1.91 0. 0. 0.01 0. 0.59 0. 67.17

SP 3.02 7.18 0. 0. 0. 0. 5.95 0.01 16.16
PC 0. 0. 0. 0. • 0. 0. 15.63 1.04 16.67

67.68 9.09 0. 0. 0.01 0. 22.17 1.05 100.00

• ---

•
-

• (11 may 79 #1 cc emdump.em -- no emul.s) PAGE 1- 7

OPERAND USAGE SUMMARY

• ---

• SUB - SRC R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 14.113 13.113 13. 13. 13 • 13 • 13.1313 0. 14.20
SP 13. 13. 0. 13. 0. 0. 6.26 13. 6.26

• PC 13 • 13. '76.97 13. 13 • 13. 2.5'7 13. '79.54

14.10 13.113 76.97 0. 13 • 0. 8.83 13. 1130.013

• SUB - DST R @R (R) + @(R)+ -(R) @-(R) X(R) @X(R)

o GIt 49.51 0.013 0. 13. 0. 0. '7.'73 0. 57.24
SP 26.54 3.25 13. 0. 13 • 13. 2.313 13. 32.09
PC 13. 13. 13. 0. 0. 13. 113.67 13. 113.6'7

• '76.135 3.25 13. 13. 13 • 13. 213!70 13. 1013.1313

-------~---

JMP - DST R @R (R)+ @(R)+ -(R) @-(R) l(R) @X(R)

• GR 13. 313.68 13. 13.131 13. 13. 13. 14.65 45.34
SP 13. 13. 13. 13. 0. 13. 13. 1.52 1.52
PC 0. 13. 13. '9.62 0. 13. 43.52 0. 53.14

13. 30.68 0. 9.63 13 • 0. 43.52 16.17 1130.1313

SWAB - DST R @R (R)+ @(R)+ -(R) @-(R) X(R} @X(R)

GR 1013.1313 13. 13. 13. 13 • 13 • 13. 13. 11313.1313 • SP 13. 13. 13. 13. 0. 13. 0. 13. 13.
PC 13 • 0. 0. 13. 0. 13. 13. 13. 13.

11313.1313 13. 13. 13. 13 • 13 • 13. 13. 11313.1313

JSR - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 13. 6.34 13. 0.44 13 • 13. 0. 13.130 6.78 o SP 13 • 13. 13. 0. 13. 0. 0. 13.213 13.213
PC 13. 0. 0. 313.25 0. 13. 62.'77 0. 93.01

13. 6.34 13. 313.68 13. 13. 62.'77 13.21 1130.1313

---• CLR - DST R. @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR. 21.72 13.0'7 48.46 0. 1.93 0.138 0.92 0. 73.18
SP 13.25 1.05 0. 0. 2.85 0. 2.12 0.131 6.28
PC 13. 13. 0. 13. 0. 0. 20.54 0. 213.54

21.9'7 1.12 48.46 0. 4.'78 0.138 23.59 0.131 100.013

(11 may 79 III cc emdump.em -- no ernul.s) PAGE 1- 8

OPERAND USAGE SUMMARY

o COM - DST it (m (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 100.00 0. 0. 0. 0. 0. 0. 0. 100.00
SP 0. 0. 0. 0. 0. 0. 0. 0. 0.
PC 0. 0. 0. 0. 0. 0. 0. 0. 0.

100:00 0. 0. 0. 0. 0. 0. 0. 100.00

INC - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X{R)

GR 7.42 0.84 0. 0. 0. 0. 34.42 0. 42.68
.SP 0. 0.06 0. 0. 0. 0. 10.43 0.03 10.53
PC 0. 0. 0. 0. 0. 0. 46.79 0. 46.79

7.42 0.90 0. 0. 0. 0. 91.65 0.03 100.00

DEC - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)

GR 64.08 0.00 0.01 0. 0. 0. 15.21 0.31 79.62
SP 1.46 0.01 0. 0. 0. 0. 2.78 0. 4.25
PC 0. 0. 0. 0. 0. 0. 16.13 0. 16.13

65.55 0.01 0.01 0. 0. 0. 34.12 0.31 100.00 · --------------------.---
NEG - DS'r R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)

• GR 97.81 0. 0. 0. 0. 0. 0. 0. 97.81
SP 13. 2.19 0. 0. 0. 0. 0. 0. 2.19
PC 0. 0. 0. 0. 0. 0. 0. 0. 0.

97.81 2.19 0. 0. 0. 0. 0. 0. 100.00

ADC - DST R @R (R) + @(R)+ -(R) @-(R) X(R) @X(R)

GR 0. 55.60 0. 0. 0. 0. 0. 0. 55.60
SP 0. 44.40 0. 0_ 0. 0. 0. 0. 44.40
PC 0. 0. 0. 0. 0. 0. 0. 0. 0.

0. 100.00 0. 0. 0. 0. 0. 0. 100.00

S :Be - DSf R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R) • GR 100.00 0. 0. 0. 0. 0. 0. 0. 100.00

SP 0. 0. 0. 0. 0. 0. 0. 0. 0.
PC 0. 0. 0. 0. 0. 0. 0. 0. 0.

100.00 0. 0. 0. 0. 0. 0. 0. 100.00

•

(11 may '79 #1 cc emdump.em -- no emul.s) PAGE 1- 9

OPERAND USAGE SUMMARY

• TST - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 12.31 2.33 23.57 0. 0.06 0. 2.89 0. 41.16
SP 0. 0.25 18.90 0. 24.24 0. 2.10 0.63 46.12

• PC 0. 0. 0. 0.23 0. 0. 12.49 0. 12.'72

12.31 2.58 42.47 0.23 24.30 0. 17.48 0.63 100.00

• ---

• ROR - DSf R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 100.00 0. 0. 0. 0. 0. 0. 0. 100.00
SP 0. 0. 0. 0. 0. 0. 0. 0. 0.

• PC 0. 0. 0. 0. 0. 0. 0. 0. 0.

100.00 0. 0. 0. 0. 0. 0. 0. 10a.00

• ROL - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 100.00 0. 0. 0. 0. 0. 0. 0. 100.00
SP 0. 0. 0. 0. 0. 0. 0. 0. 0.
PC 0. 0. 0. 0. 0. 0. 0. 0. 0.

100.00 0. 0. 0. 0. 0. 0. 0. 100.00

• ASR - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 90.42 0. 0. 0. 0: 0. 0. 0. 90.42
SP 0. 9.58 0. 0. 0. 0. 0. 0. 9.58
PC 0. 0. 0. 0. 0. 0. 0. 0. 0.

90.42 9.58 0. 0. 0. 0. 0. 0. 100.00

• ---~-----------------------------------~---------

ASL - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 99.74 0. 0. 0. 0. 0. 0. 0. 99.74
SP 0. 0. 0. 0. 0. 0. 0.26 0. 0.26
PC 0. 0. 0. 0. o • 0. 0. 0. 0.

99.74 0. 0. 0. 0. 0. 0.26 0. 100.00

• ..
(11 mdY 79 #1 -- cc emdump.em -- no ernul. s) PAGE 1-10

• OPERAND USAGE SUMMARY

• ---
MOVB - SRC R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R) eJ GR 13.59 3.91 20.23 0. '" . 0. 11.43 0.01 ! 49.17

SP 0. 0. 0. 0. 0. 0. 2~.86 6.25 30.10
PC 0. 0.00 1.87 0. 0. 0. 8.08 10.78 20.73

0
13.59 3.91 22.10 0. 0. 0. 43.37 17.03 100.00

t')
MOVB - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)

GR 53.87 0.86 18.25 0. 0.00 0. 1.38 14.54 88.90
o!J:) SP 0. 2.87 0. 0. 2.30 0. 2.54 0. 7.71

PC 0. 0. 0. 0. 0. 0. 2.27 1.12 3.39

(~ 53.87 3.73 18.25 0. 2.30 0. 6.19 15.66 100.00

fj

CMP.B - SRC R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 0. 19.73 12.48 0. 0. 0. 0.48 0. 32.69

" SP 0. 0.82 0. 0. 0. 0. 0. 0.00 0.82
PC 0. 0.88 56.63 0. . 0. 0. 2.04 6.93 66.49

• 0. 21.43 69.11 0. 0. 0. 2.52 6.93 100.00

.- CMPB - DS'f R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 0.15 33.86 23.56 0. 0.05 0. 22.07 0. 79.69
SP 0. 0. 0. 0. 0. 0. 1.48 3.91 5.39

• PC 0. 0. 7.75 0. 0. 0. 7.13 0.03 14.92

0.15 33.86 31.31 0. 0.05 0. 30.68 3.94 100.00

" --_._---

• BITB - SRe R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 10.18 0. 0. 0. 0. 0. 13. 0. 10.18
SP 0. 0. 0. 0. 0. 0. 0. 0. 0.

• PC 0. 14.66 75.16 0. 0. 0. 0. 0. 89.82

10.18 14.69 75.16 0. 0. 0. 0. 0. 100.00
$

BITB - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)

• GR 0. 31.74 0. 0. 0. 0. 31.00 0. (32.74
SP 0. 0. 0. 0. 0. 0. 0. 0. 0.
PC 0. 0. 0. 0. 0. 0. 37.26 0. 37.26

8
0. 31.74 0. 0. 0. 0. 68.26 0. 100.00

" ---

•
,I

(0
(11 may'79 #1 cc emdump.em -- no emul.s) PAGE 1-11

• OPERAND USAGE SUMMARY

• ---
BICB - SRC R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R) • GR 121. 121. 121. 121. 0. 121. 121. 0. 121.

SP 121. 121. 0. 0. 121. 121. 121. 121. 121.

• PC 121. 2.44 97.56 121. 121 • 121. 0. 0. 10121.121121

121. 2.44 97.56 0. 0. 0. 0. 0. 11210.00

• BlCB - Ds'r R @R (R) + @(R)+ -(R) @-(R) X(R) @X(R)
GR 121. 84.63 0. 0. 121 • 0. 15.37 0. 10121.1210 • SP 121. 121. 0. 0. 0. 0. 0. 121. 0.
PC 121. 121. 121. 0. 121 • 121. 121. 121. 121.

-----• 121. 84.63 121. 121. 121 • 0. 15.37 121. 1121121.121121

--------.---• BlSB - SRC R @R (R)+ @(R)+ -(R) @-(R) X(R} @X(R}
GR 121.35 121. 0. 121. 121 • 121. 121. 65.28 65.62 • SP 0. 121. 121. 121. 121. 121. 121. 121. 121.
PC 121. 121.18 3.51 121. 0. 121. 1.1216 29.64 34.38

• 0.35 121.18 3.51 121. 121 • 121. 1'.1216 94.91 11210.121121

e B1SB - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 94.91 4.15 121. 121. 121. 121. 0.64 0. 99.7121
SP 121. 0 • 0. 121. 121. 121. 0. 121.30 121.3121 .. PC 0. 121. 121. 0. 121. 121. 121. 121. 121.

• 94.91 4.15 0. 121. 121. 0. 121.64 121.30 10121.121121

----------------'---

• CLRB - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 121. 1.77 28.13 0. 0. 121. 2.65 0. 32.56
SP 0. 0. 0. 0. 0. 121. 121. 121. 121. • PC 121. 121. 121. 121. 121. 0. 63.55 3.89 67.44

"
121. 1.77 28.13 121. 121. 121. 66.2121 3.89 1121121.00

• INCB - DST R @R (R.)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 0. 121.18 0. 121. 0. 0. 26.54 121. 26.71
SP 0. 0. 0. 121. 0. 0. 0. 121. 0. • PC 0. 0. 121. 121. 121 • 0. 73.29 0. 73.29

121. 0.18 • 0. 0. 121. 0. 99.82 0. 1121121.1210

•
,~

• (11 rndY '79 111 cc erndump.em -- no emul.s) PAGE 1-12

• OPERAND USAGE SUMMARY

• ---
DECB - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)

GR 0. 0. 0. 0. 0. 0. 99.18 0. 99.18
SP 0. 0. 0. 0. 0. 0. 0. 0. "0.
PC 0. 0. 0. 0. 0. 0. 0.82 0. 0.82 • 0. 0. 0. 0. 0. 0. 100.00 0. 100.00

• ---------~---

• TSTB - nS'f R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 0. 7.46 6.90 0. 0. 0. 21.37 0. 3tl.73
SP 0. 0. 0. 0. 0. 0. 0. 2.49 2.49
PC 0. 0. 0. 0. 0. 0. 37.18 24.60 61.78 • 0. 7.46 6.90 0. 0. 0. 58.55 27.09 100.00

•
• SXT - nST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)

GR 100.00 0. 0. 0. 0. 0. 0. 0. 100.00
SP 0. 0. 0. 0. 0. 0. 0. 0. 0.
PC 0. 0. 0. 0. 0. 0. 0. 0. 0. • 100.00 0. 0. 0. 0. 0. 0. 0. 100.00 .. --.- ----------------------------------"--

• HUL - nSff R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 1.22 0. "0. 0. 0. 0. 0. 0. 1.22
SP 0. 0. 0.16 0. 0. 0. 0.25 0. 0.41
PC 0. 0. 90.80 0. 0. 0. 7.56 0 • 98.37 ..

1.22 0. 90.96 0. 0. 0. 7.82 0. 100.00

•
o DIV - DST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)

GR 0.10 0. 0. 0'- 0. 0. 0. 0. 0.10
SP 0. 0. 0.03 0. 0. 0. 0.06 0. 0.10

• PC 0. 0. 96.28 0. 0. 0. 3.53 0. 99.80

0.10 0. 96.31 0. 0. 0. 3.59 0. 100.00

• ---

• ASH - nST R @R (R)+ @(R)+ -(R) @-(R) X(R) @X(R)
GR 0.02 0. 0. 0. 0. 0. 0. 0. 0.02
SP 0. 0. 1.22 0. 0. 11'. 0. 0. 1.22
PC 0. 0. 98.77 0. 0. 0. 0. 0. 98.77

0.02 0. 99.98 0. 0. 0. 0. 0. 100.00

(11 may 7~ #1 -- "cc erodump.em -- nO emul.s) PAGE 1-13

• OPERAND USAGE SUMMARY

• ---
ASHe - DS'f R @R (R)+ @(R)+ -(R) @-on X(R) @X(R)

GR 0. 52.06 0. 0. 0. 0. 0. 0. 52.06
SP 0. 0. 0. 0. 0. 0. 0. 0. 0.

• PC 0. 0. 47.94 0. 0. 0. 0. 0. 47.94

0. 52.06 47.94 0. 0. 0. 0. 0. 100.00

•

•
•

e
to

(11 may 79 #1 -- cc emdump.em -- no ernul.s) PAGE 1-14

•
0 OPERAND SUMMARY FOR SELECTED INSTRUCTIONS

.1 MOVE CI,EAR COMPARE TEST ARITH2 ARITH1 LOGIC2 LOGICl JUMP CALL
SRC DS(l' DST SRC DST DS'l' SRC DST DST SRC DST DST nST nST

GR 28.11 45.33 21.72 39.36 49.76 12'.31 15.52 61.39 48.92 4.65 57.28 98.20 0. 0.
(GR) 1.00 0.14 0.07 0.41 3.42 2.33 0.02 1.50 0.46 0. 6.01 0. 313.68 6.34

(I (GR) + i 7.49 6.79 48.46 12.35 10.56 23.57 0. 0. 0.01 0. 0. 0. 0. 0.
@(GR)+ 0. 0.44 0. 0. 13. 0. 0. 0. 0. 0. 0. 0. 0.01 0.44
-(GR) 12.33 0.14 1.93 0.01 5.10 0.06 0. 0.00 0. 0. 0.06 0. 0. 0.

;,J) @-(GR) 0. 0. 0.08 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
X(GR) 2.73 1.27 0.92 1.28 4.72 2.89 0.12 2.13 20.16 1.65 0.04 0. 0. 0.

@X(3R) 0.15 0.
'0

0. 0. 0.16 0. 0. 0. 0.23 0. 0. 0. 14.65 0.00

SP 20.89 16.49 0.25 0.02 0.20 0. 0.29 8.10 1.05 0. 0. 0. 0. 0. () (SP) 0.03 4.02 1.05 0.89 0.80 0.25 0. 6.33 0.23 0. 9.97 1.63 0. 0.
(SP)+ 8.57 0.08 0. 3.23 3.77 18.90 0.61 0. 0. 5.87 0. 0. 0. 0.

@(SP)+ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
/~ -(SP) 0. 19.44 2.85 0. 0. 24.24 0. 0. 0. 0. 0. 0. 0. 0.

@-(SP) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
X(SP) 7.53 1.53 2.12 3.41 3.65 2.10 3.86 5.16 4.79 0.08 2.88 0.17 0. 0. • @X(SP) 0.22 0.06 0.01 0. 0.32 0.63 0. 0.01 0.01 0. 0.11 0. 1.52 0.20

• 0.00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0.43 0. 0. 0.00 0. 0. 0. 0. 0. 0. 0.

#N 5.29 0. 0. 36.75 15.39 0. 77.38 0. 0. 87.01 0. 0. 0. 0. • @IIA 13.14 0.22 0. 0. 0.06 0.23 0. 0. 0. 0. 0. 0. 9.62 30.25
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. • A 4.77 2.96 20.54 1.87 2.10 12.49 2.19 14.56 24.14 0.74 23.66 0. 43.52 62.77

@A 0.75 0.49 0. 0. 0. 0. 0. 0.82 0. 0. 0. 0. 0. 0.

• 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

•
•
•
•
•
0

e

"

• .. (11 ma.y 79 111 co emdump.em -- no em'ul.s PAGE 1-15

I)
REGIS'PER TYPE CriOSS CO,1PAH I SON - GR VS. SP

* = ONE OPERAND - DST
{) + = TWO OPERAND - DSf

o = TwO OPERAND - SRC

• 1013.* SXT BICB ROL ROR SBC COM SWAB
1':' DECB BISB ASL I ~(NEG

0 I
I . * ASR

" I + MOVB
I
I • I

813%.
I ';c CMPB DEC

" I
I + Bllr
I *++ CLR CMP BIC • I
I + ADD .. 10 BISB
1+ BITB

• 60%.
I
I + SUB
I .p:c MOV ADC 0 1* 0 ASHC CMP

GR . 0 MOV
I 0 MOVB

0 I
1* JMP
I * + INC BIS CD 40%. * TST
I
I e P!~ TSTB
10 CLRB CMP:B

• 1
I ~: INCB
I

0 I
20% •

• I
I 0 ADD
I 0 0 SUB BIS
I • .0 BITB
I
p:. JSR

0 I
10 ASH DIV MUL BICB BIC BIT

• I --------- I ----·-----1--------- I ---------1---------1
20% 42% SP 60% 80% 100%

t1)

• (11 may 79 #1 -- HCC emdump.em -- no emul.s) PAGE 1-16

•
• CCOP QUALIFIER ANALYSIS

CODE CCLR CSET SUM
NONE 0. 0. 0.
---C 99.86 0. 99.86

" --V- 0. 0.14 0.14
--vC 0. 0. 0.
-Z-- 0. 0. 0. • -Z-C 0. 0. 0.
-ZV- 0. 0. 0.
-zve 0. 0. 0. • N--- 0. 0. 0.
N--C 0. 0. 0.
N-V- 0. 0. 0. • N-VC 0. 0. 0.
NZ-- 0. 0. 0.
NZ-C 0. 0. 0. • NZV- 0. 0. 0.
NZVe 0. 0. 0.

------ ------ ------• 99.86 0.14 100.00

•

•
•
•
(')

•
•

•
•

(11 may 79 #1 -- cc emdump.em -- no emul.5) PAGE 1-17

SUMMARY OF BRANCH INSTRUCTIONS

• CONDITIONAL BRANCH SUMMARY (% OF CONDITIONALS ENCOUNTERED)

BRANCH£S TES'r 0 1
BPL BMI N--- 0.14 0.00 0.14

• BNE BEQ -z-- 37.38 25.51 62.88
BVC BVS --V- 0. 0.02 0.02
BBIS BLO ---c 1.05 2.67 3.72
BGE BL'f N-V- 6.49 4.10 10.59 .
BG'f BLE NZV- 8.64 1.86 10.50
BHI BlOS -Z-C 3.53 8.61 12.14

------ ------ ------
57.22 42.78 100.00

•
SUMMARY OF I-STREAM BREAKS

INS'fRUCTION POTEN'fIAL ACTUAL

• B-- 54.91 42.88
SOB 0.62 0.60

BRN 9.63 12.23 .. JMP 9.57 12.16
JSR 14.80 18.81
R'fS 9.93 12.61

TRAP 0.03 0.04

• EMf 0. 0.
BP'f 0. 0.
IO'r 0. 0.
INTR 0.25 0.31
R'tl 0.27 0.35

------ ------
100.00 100.00

I NS'rRUCT ION RUNS 2.90 3.69 INSTRUCTIONS

(11 may 79 #1 ~- cc emdump.em -- no ernul.s) PAGE 1-18

e BRANCH QUALIFI ER STATISTICS FOR BRANCHES TAKEN

0% 5% 10% 15% 20% 25% 30%
DISPLACEMENT

64 TO 127
PClf
1.21
3.57
7.37
7.17

1 ••.•.•..• 1 •.••.•••• 1 ••••••••• 1 ••••••••• 1 ••••••••• 1 ••••••••• 1 •
•

•
o

•

•

32 'fO 63
16 TO 31

8 TO 15
4 TO 7
2 TO 3

1
o

-1
-2 TO -3
-4 TO -7
-8 TO -15

-16 TO -31
-32 TO -63
-64 TO -128

12.29
15.04
0.68
0.
0.

20.68
19.40
5.26
2.25
4.05
1.03

100.00

I;:C** .
I ~: ;;0;: t,o;o',,~: I:: •

I)::"r**:;!:~~;!C);c*~~ ;!c~~***

I***************
1*************************
1*******************************
pc*
I
I
I**
1***************************************. I):d,,*.:c*.;;*t,,):c);; 1.<

p:c);;;;;:::o:C •

1'::******** •
I***

• ..
(ll may 79 #1 -- cc emdump.em -- no ernul.s) PAGE 1-19

•
~ CONDITIONAL BRANCH OUTCOMES

• !--------- IGNORED ---------1 !---------- TAKEN -------~--l
TYPE FORWARD BACKWARD SUM FORWARD BACKWARD SUM TOTAL

.. BR 0. 0. 0 • 4.61 10.16 14.77 14.77

BPL 0.08 0.00 0.09 0.03 0. 0.03 0.12 • :aMI 0.00 0. 0.00 0.00 0. 0.00 0.00

• ENE 3.10 2.58 5.67 8.36 17.47 25.83 31.50
BEQ 11.21 2.50 13.71 7.07 0.72 7.79 21.50

• BVC 0. 0. 0. 0. 0. 0. 0.
EVS • 0.02 0 .. 0.02 0 .. 00 0 .. 0.00 0 .. 02

BllIS 0.54 0.05 0.59 0.24 0.05 0.29 0.88 • BLO 0.62 0.02 0.64 1.46 0.16 1.62 2.25

• 1jGE 0.19 0.03 0.22 5.03 0 .. 22 5.25 5.47
BL't 2.37 0.69 3.06 0.39 0.00 0.40 3.46

• BGT 0.48 0.31 0.78 2.47 4.02 6.50 7.28
BLE 0.88 0.02 0.90 • 0.63 0.04 0.67 1.57

Bill 0.28 0.14 0.42 0.81 1.73 2.55 2.97 • BLOS 6.37 0.02 6.40 0.73 0.13 0.86 7.26

• SOB 0. 0.22 0.22 0. 0.73 0.73 0.95

• 26 .. 14 6.58 32.72 31 .. 84 35.43 67.28 100 .. 00

•
•
•
•
•
0

