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Preface

This book is an introduction to NeWS: the Networked, Extensible,
Window System from Sun Microsystems. It is oriented towards people
who have a basic knowledge of programming and window systems who
would like to understand more about window systems in general and NeWS
in particular. A significant portion of the book is devoted to an overview
and history of window systems. While there is enough detail here to allow
readers to write simple NeWS applications, the NeWS Reference Manual
[sung7a] should be consulted for a more complete treatment.

This book was written to refer to the NeWS 1.1 product, available
from Sun and also available from several non-Sun suppliers. Shortly after
this book is published, Sun will be releasing the next version of NeWS —
the X11/NeWS merged window system. Chapter 10 is dedicated to an
overview of that product, but X11/NeWS deserves a book of its own. All
the code examples in this book have been tested on both NeWS and the
X11/NeWS merge. Should there be another edition of this book, we will
discuss some of the new development being done in the user interface tool-
kit area on NeWS. Significantly, the NeWS Development Environment
(NDE) is now being developed at Sun; NDE promises to eclipse existing
user interface toolkit designs and window programming environments.

Before giving input on the many contributors to NeWS, the authors
wish to give special thanks to John Warnock and Chuck Geschke of Adobe
Systems. Without their design and implementation of the PostScript lan-
guage, NeWS would not have been possible. The PostScript language is the
future of printers and screens everywhere, and Adobe deserves the credit for
teaching computer users the value of quality imaging in the everyday world.

Many people deserve the credit for this book, and for making NeWS
a product. In the Sun window systems and user interface groups, the list of
contributors is long. Credit is due to Tony Hoeber for the excellent NeWS
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Technical Overview[SUN87b], to which this book owes much. Robin Schau-
fler’'s X11/NeWS paper[SCHAS8], is the basis for all of Chapter 10. Craig
Taylor built the first version of the NeWS interpreter with James; Jerry
Farrell designed and implemented NeWS input handling; Owen Densmore
single-handedly invented object-oriented, interactive programming in the
PostScript language. Steve Evans and his windows platform team are the
developers who have made NeWS and X11/NeWS a reality. We also
acknowledge the Portable Windows Group, led by Steve Isaac, Amy
Christen, and Steve Drach, as key contributors to the NeWS program and
success. Warren Teitelman, Eric Schmidt, and Jim Davis provided critical
management support and encouragement.

Our particular thanks go to our external contributors for Chapter 9.
Martin Levy and Marty Picco from Parallax are the authors of the Parallax
section. Mark Callow authored the Silicon Graphics contribution, and
returned excellent feedback as a reviewer of several drafts. Mark and Sili-
con Graphics, as our first portable NeWS customer, returned extremely
valuable feedback, which has improved the quality and design of today’s
product. Maurice Balick was responsible for the section on the NeWS 0OS/2
port done by Architech. Colleagues from SGI who contributed to Mark’s
paper were Peter Broadwell, Kipp Hickmann, Allen Leinwand, Rob Myers,
Michael Toy and Glen Williams. Maurice was ably aided by Anthony
Flynn, Marie B. Raimbault, Eddie Currie, and Sun’s Portable NeWS group.

Our patient reviewers deserve high acclaim for wading through pages
of code and syntax. S. Page deserves limitless credit for his tireless and
incomparable editing skills, as well as his knowledge of NeWS. Henry
McGilton gave us the benefit of his experience in writing and editing by his
detailed notes and commentary. Brian Raymor, Martha Zimet, Steve Evans,
Don Hopkins, Raphael Bracho, Sue Abu-Hakim, John Gilmore, Francesca
Freedman and Tim Niblett all spent time and energy giving us comments
and support.

Finally, we are grateful to Mark Hall and Gerhard Rossbach for
making the book happen. '

NeWS has been, and continues to be, a lot of fun. The interest and
enthusiasm of the many NeWS supporters and developers has made it all
worthwhile: our last thanks to you.
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1
Introduction

" If you ask the computer to help fix your broken lawnmower in the
language that comes naturally to you, by typing in, My lawnmower
won’t start. Can you help me fix it?, the computer will respond with
the same error message it would use if you had asked it to help you
create a good recipe for sweet-and-sour pork: 'WHAT ?”

The Cognitive Computer

1.1  The Computer as a Means, not an End

Imagine that you are a university student, viewing a chemistry textbook
in a window on a computer screen. There is an explanation of a certain
molecule, with an accompanying picture. Using the mouse, you point at the
molecule and rotate it slightly, then expand it, for a better view. Now you
open up another window, containing your physics text. There is a descrip-
tion of an experiment with a ball being dropped from a tower, with an
illustration. You push a button on the screen with your mouse, and the
experiment is depicted on the screen. Push another button and you see a con-
trol panel that allows you to alter various parameters of the experiment,
changing the gravity, height of the tower, density of the ball, and so on.

You are working on an inexpensive workstation in your dorm room, and
the programs implementing these interactive textbooks are actually running
on supercomputers located across campus, across the country, or even across
the world.

In another scenario, you are collaborating with a Japanese colleague to
develop a seminar series. She calls. Her video image appears in a window on
your screen. She sends you a copy of the invitation being designed for the
seminar: a window opens on your screen, displaying the invitation as you
speak. The invitation appears, changes its user interface style and fonts. It
adjusts for input devices from the original vertical text layout, Kanji, and
Kanji tablet, to a horizontal layout, Roman, and three-button mouse. You
insert your changes — sketching in alterations, changing words — and they
appear dynamically on your colleague’s screen (in the appropriate language
and user interface style) as you discuss them.
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Figure: 1.1.  Colleagues communicating between Japanese and English environ-
ments with the aid of video and graphic windows.

These two examples illustrate the changing role of the computer as a
tool. Today’s window systems and user interfaces combine graphics, video,
and highly dynamic interaction to enhance the presentation and understand-
ing of physical phenomena and to extend the capabilities of typical human
interaction. In the first scenario, the computer is acting as a window onto a
simulated natural world. Laws of interaction, representation, and reaction
are shown in three dimensions; light and color are represented realistically,
and in real time. Rather than extrapolating reality from a simulation, the
user sees “artificial reality” projected through the medium of his computer.
The second example shows the computer as an intelligent communicator,
transcending distance and culture and enhancing human interaction. Informa-
tion flows through a computer “filter” and is transformed for the
destination environment and user. Both examples assume the constant pres-
ence of an unseen, powerful computer network.

In many ways, the examples above are glimpses of the functions of com-
puters today. The computer workstation, with its high-resolution screen,
windows, and graphical capabilities, can realize these scenarios when
coupled with high-bandwidth networks. The decreasing price of computer
power and memory is making the power of a computer workstation accessi-
ble to the everyday business user and the university student, as well as to
technical professionals in every discipline. This power continues to increase



rapidly, while the costs to the computer user remain constant or decline.

Although the hardware capability is there, the software capability is lag-
ging. The process of building software that enhances productivity without
introducing complexity continues to be ill-understood, especially when
coupled with the variety and breadth of existing computer environments.
Computer networks complicate the problem. Networking is now the rule,
rather than the exception, yet the development of high-performance, dis-
tributed applications across varied networks is still an art, not a science.

Our use of computers has changed dramatically since their inception. We
have made the transition from machine language, paper tape, and computer-
research facilities, to the world of the video game, home computer, and con-
sumer goods based on the embedded microchip. Fourteen million personal
computers were bought worldwide in 1987; ten million in the United
States alone.! This proliferation of computers has taken place not only
because of technological advances in speed, size, and manufacturing of the
components, but also because our assumptions about interacting with com-
puters have fundamentally changed. Prospective computer users in the past
took it for granted that they would spend years learning specialized skills.
Access to computers was limited to a dedicated few. Today, application
developers and end-users are demanding that the computer learn to under-
stand them, even to the point of being able to think and react like a human
being. Computers are a means to attain an end, not as an end in themselves.

The typical computer user is no longer a computer expert, but the
“naive” common person. This type of user demands an intuitive, consistent,
and simple user interface. Increasingly powerful applications are required,
forcing application developers to construct software capable of adapting to
user preferences, languages, interface devices, and machine capabilities. Ease
of use for the end-user, and ease of development for the application
designer, are now expected system capabilities.

Here lies the domain of the window system.

1.2 Window Systems

Window systems have brought significant advances in mapping computer
interaction to a model of human thought processes. Windowed displays
show multiple applications at the same time, which fits with the human
capability of thinking about several things at once. Visual user interfaces,
with their menus, icons, and other graphical objects, are easier for users to
learn, use, and remember. Window systems are a young technology: the
trade-offs between simplicity and flexibility, the ability to make efficient
use of computer networks, the integration of text and realistic graphics, and
the minimization of the application development effort continue to be
major design issues.

1. International Data Corporation, January 1989.



1.2.1 Simplicity versus Flexibility

There is a natural conflict between simplicity and flexibility in window
system design. Everyone wants it simple. But simplicity for one person may
be inordinately complex for another. The relative nature of simplicity puts
the burden on flexibility. How flexible should the window system be?

How does flexibility impact the individual end-user? Scrollbars on the
left-hand side, rather than the right, may be more convenient for a left-
handed end-user. Near-sighted users want large default fonts. CAD users
prefer a cross-hair cursor to a moving arrow. Some may want their screen to
look like the factory floor machine it operates, others may want it to
mimic the board at the stock exchange; standard menus and toggles will not
serve their needs.

How does flexibility impact the application developer? Special window
system primitives may dramatically increase the performance of their appli-
cations. Corporate standards may dictate the “look and feel” of a
corporation’s applications. How can such companies change the appearance
and behavior of menus, panels, and buttons without decreasing application .
portability? Internationalized applications require different input devices
and language support. Can the window system take care of these adaptations
for the developer?

The window system framework must be capable of adapting to both antic-
ipated and unanticipated change. Today’s new user interface technologies. are
video, sound, gestures and eye tracking. Tomorrow’s are unknown, but can
we plan for their integration? Simplicity and flexibility combine to make
both user and programmer interfaces more accessible to a larger group of
people. However, physical, cultural, and application-specific differences,
and varying preferences between people strongly influence learning and
interaction techniques. The window system must reconcile these goals.

1.2.2  Networking

Networking and window systems are not generally related in users
minds. As more computers are connected via low or high bandwidth net-
works, applications begin to share resources across a network. Window
systems must support the development of these distributed applications.
Simulations running on a supercomputer can display graphic output on, and
receive user input from, a PC or workstation connected through a network.
Co-workers may be updating the same diagram on their separate computer
screens, while the software maintaining that diagram is resident on a third
computer. Group development means that throughput, interactive response,
data compression, and the ability to support different computer, software,
and network architectures in such interconnected computers are important
factors in the success of a window system in a networked environment.
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Figure: 1.2. Mathematica is a networked windowed applications that can be
distributed between NeWS workstations and supercomputers.

1.2.3 Sophisticated Graphics

Integration of text and high quality graphics has been a familiar problem
to graphic artists, but an unfamiliar concept to many computer applications.
In the past, most applications were limited to the output of simple text,
displayed on character-based terminals. Graphics, if any, were composed of
dashes, stars, or similar symbolic characters in a glowing green. The ASCII
encoding convention, which assigns a standard code to each of a limited set
of symbols, was (and still is) used to send character codes to the terminal,
which translated them directly into the plxels of the fixed character shapes
displayed on the screen.

Today, applications demand the equivalent output of the graphic artist’s
brush: continuous, complex curves, color, shading, and dimension. Text
must have the same flexibility as graphics: rotated, shaded, multiple styles,
and multi-dimensional. Scanned images bring photographs and printed



matter to the screen; these imported images should be manipulated as easily
as computer-generated graphics. Equivalently, computer-generated graphics
should “look as good as the technology allows” wherever it is displayed,

8] taugh
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Figure: 1.3. Sophisticated graphic design represented in PostScript and viewed in
a NeWS window.
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on screen or on paper. Computer-generated forms should be accurately trans-
formed to the printed page while taking also advantage of the superior
resolution, shading, or color capabilities of the printed media.

1.2.4 Application Portability

Application developers are often faced with the problem of delivering a
product on computer systems supplied by more than one vendor. The soft-
ware development effort to support several computer platforms varies
directly with the level of independence from the vendor that the developer
can maintain. Application developers suffer because the window systems
and operating systems supplied on these varying platforms differ. Window
systems can also depend on hardware, such as the type of graphics device
being used, or even the CPU architecture, which in turn further decreases
the portability of the application from one computer system to another. The
drive to minimize engineering development time has encouraged application
developers to demand standard, device-independent, window systems on
multiple platforms.

1.2.5 What is Needed?

Today, window-based applications lack the power and capability ex-
hibited in the scenarios described at the opening of this chapter. New
paradigms and techniques are needed. One of the elements required is a high-
level graphics model or imaging model capable of representing text,
graphical shapes, and images in a uniform, realistic, and device-independent
way. Such an imaging model is only one part of the picture — it must be
integrated with a window system capable of taking advantage of a heterogen-
eous computer network. The window system must be the medium for the
molding of computer functions to user needs: applications must be able to
adjust their appearance and interaction styles dynamically to conform to the
special needs of the user, and the computer capabilities available. And, until
the time when printers become obsolete through world-wide computer con-
nectivity, an application should be able to display graphics on a printed page
or within a window in exactly the same way, but not by adapting to the
lowest common denominators of these and other mediums. Finally, the
resulting technology should decrease the cost of developing software, and
increase the the developer’s ability to compete.

1.3 New Paradigms in Windows and Graphics

In the 1970s, researchers at Xerox Palo Alto Research Center developed a
powerful new model for describing images. In 1982, two of these
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researchers, Charles Geschke and John Warnock, formed Adobe Systems and
developed a page-description language based on this model. The language
was introduced in 1984 under the name PostScript. The PostScript language
is a high level programming language with powerful graphics primitives.

At the same time, researchers at Stanford, Camegie-Mellon, and MIT
began investigating a new approach to window systems: the window server,
also referred to as a network-based window system. Window servers allow
application programs running on one machine to use windows on another
machine’s display. Two window servers were built, the Andrew window
system at Carnegie-Mellon, and the X window system at MIT, demonstrat-
ing the feasibility of window servers.

In  October 1986, Sun  Microsystems announced  NeWS
(Network/extensible Window System), a synthesis of the window server
and page-description language technologies. NeWS makes the device-
independent, powerful imaging model of the PostScript language available
in a distributed window system. A key innovation is the use of the
PostScript language, together with NeWS extensions, as a window system
extension language, which makes possible a new level of interactive perfor-
mance and flexibility. NeWS provides a platform, independent of hardware
and operating system, on which highly diverse window applications and user
interfaces can be built. NeWS applications attain an unprecedented level of
visual quality, and exploit a coherency of network design new to window-
based applications.

1.4  Book Outline

In keeping with the philosophy of NeWS, the chapter sequence of the
NeWS Book is only intended to be a suggestion for reading order. Experi-
enced developers may choose to avoid the preliminary chapters in which the
basics of NeWS, window systems terminology and comparisons, and the
PostScript language are discussed. Less knowledgeable readers may find the
chapters discussing NeWS internals too detailed. The porting chapter should
be of interest to all readers; outside contributors from Silicon Graphics,
Architech, and Parallax describe interesting NeWS-based products. For
detailed programming information, the NeWS Manual [SUN87a] should be
consulted.

Chapter 2 gives some background and motivation to the development of
NeWS, and describes its basic design.

Chapter 3 outlines what a window system actually is, and how its layers
interact. This description will be useful not only to readers who have little
experience with these systems, but also to experienced developers, who
want to understand the terminology used throughout the book. In addition,
the chapter examines several historically important window systems.
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Chapter 4 offers an overview of the PostScript language, as defined by
Adobe Systems, with an emphasis on the areas that are of particular impor-
tance to NeWS.

The additional NeWS facilities created specifically for an interactive win-
dow system environment are described in Chapter 5. These elevate NeWS as
a PostScript language interpreter for the screen above PostScript language
interpreters for printers. Input events, multiple overlapping drawing sur-
faces (or canvases), and lightweight processes are among the NeWS
facilities available to the window system programmer.

Chapter 6 gives guidelines for programming the NeWS server by provid-
ing examples of functions and facilities which have been implemented inside
the server. NeWS provides mechanisms to encourage object-oriented, class-
based programming. The “Lite” toolkit is a user interface toolkit based on
these concepts. It has been used as the basis for several applications on
NeWS, and is described in detail.

Chapter 7 gives an overview of NeWS as a programming environment for
developing distributed window-based applications. The chapter describes the
responsibilities of a NeWS application and the NeWS server separated by a
network, concentrating on applications written in the C language.

Chapter 8 gives a tour through a NeWS application, and outlines some of
the techniques used to achieve good application performance

Chapter 9 briefly describes the steps that must be taken to port NeWS to
different hardware, framebuffer, and operating system architectures. This
chapter is mainly composed of three case histories of innovative NeWS
ports by NeWS licensees. Parallax Graphics, Inc, has ported NeWS to a dis-
play board which has the capability to display live video. Silicon Graphics,
Inc., did an early port of NeWS to a high-powered graphics workstation.
Architech Corporation has recently released a port of NeWS to the OS/2
operating system environment.

Chapter 10 introduces the . X11/NeWS merged window system. It
describes the design of this merged window system, and explores some of
the architectural issues that emerged during its design and implementation.






2
NeWS Overview

" A floor so cunningly laid that no matter where you stood it was
always under your feet.”

Spike Milligan and Eric Sykes

2.1  History

NeWS originated as a research project in 1984 at Sun Microsystems by
James Gosling, later joined by David Rosenthal: the authors of the Andrew
window system at Carnegie-Mellon University. NeWS, or SunDEW (Sun
Distributed Extensible Windows), as it was originally called, arose out of
an effort to examine some of the window system issues that both Andrew
and the newly emerging X Window System explored, without product
development constraints. What started as speculative research eventually
developed into a product, and all of the normal constraints emerged, but
not too early for NeWS to become an example of revolutionary window
system design.

2.2 The Design

NeWS runs on a machine with one or more bitmapped displays. NeWS is
designed to be portable between different computer systems and operating
systems. It runs on machines ranging from a low-cost machine, such as an
Atari or Amiga, to workstations based on powerful RISC architectures
incorporating specialized graphics processors such as those from Sun and
Silicon Graphics. NeWS acts as a window server, managing input and output
on its host machine. Application programs — called clients — send
messages causing NeWS to render images on the display. The clients may
reside anywhere on the network. Server-based window systems are often
called distributed window systems or network window systems because the
server and its clients may be distributed over the network. Figure 2.1 shows
one possible scenario in which the NeWS server, running on a workstation,
serves a remote client running on a specialized machine. Window servers are
often contrasted with kernel-based window systems, which are closely inte-
grated into the operating system on a specific computer system. (“Kernel”
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is frequently used as a synonym for the core of the UNIX operating
system). Kernel-based window systems do not allow the distribution of
window-based clients across the network; they have been the most common
window system architecture until only recently. Chapter 3 discusses the
evolution of window servers from the kernel-based window architecture.

The term window server is appropriate, but may have misleading connota-
tions. When people hear the word server they tend to think of a piece of
hardware in an air-conditioned room that supplies files or high-speed compu-
tation. Users of these resources are at other machines that are connected to
the server via a network. In contrast, a window server supplies access to the
display and the window system on its machine to other, connected machines
across the network. However, the location of the window server with
respect to the user is reversed: the server runs on the user’s machine, and the
clients run either locally or on remote (display-bearing or non display-
bearing) machines.

NeWS is based on a novel type of interprocess communication. Interpro-
cess communication is usually accomplished by sending messages from one
process to another via some communication medium. Messages are usually a
stream of commands and parameters. One can view these streams of com-
mands as a program in a very simple language. NeWS extends this to be a
general-purpose programming language. Programs then communicate by
sending programs that are interpreted by the receiver. This process has pro-
found effects on data compression, performance, and flexibility.

The PostScript programming language, as defined by Warnock and
Geschke at Adobe Systems, is used in this way as a communication mechan-
ism for printers. The PostScript language was conceived as a way to
communicate with a printer. Computers transmit PostScript programs to
the printer; these are then interpreted by a processor in the printer, and this
interpretation causes an image to appear on the page. The ability to define
functions allows the user to extend and alter the capabilities of the printer.

Compute :.Serv\er. .

i N
Application )

Network

Figure: 2.1.  Application running on a compute server, with NeWS running on a
workstation.
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Compute Server

Printer - Application

Figure: 2.2. Application sending a PostScript program to a printer, in order to get
a document printed.

This extension model has powerful implications within the context of
window systems. It provides a graceful way to make the system more flexi-
ble. It also offers elegant solutions to performance and synchronization
problems. For example, in drawing a grid, you do not transmit a large set
of lines to the window system, you merely send a program containing a
loop of commands. The client’s ability to send a program either locally or
over the network to execute within the NeWS server is referred to as down-
loading. The client’s ability to download programs into the NeWS server
makes it possible to execute complex tasks simply and quickly.

NeWS -uses the PostScript language as a window system extension
language. The PostScript language turns out to have been an excellent
choice. It is a simple, well-structured language, has a well-designed
graphics model, and it is compatible with many of today’s printers due to
the wide acceptance of the PostScript page description language as a standard.

NeWS is structured as a server process that contains many lightweight
processes (discussed in Chapter 5). These processes execute PostScript pro-
grams. Client programs talk to NeWS through byte streams. Each of these
streams generally has a lightweight process associated with it. Messages
pass between client processes (running somewhere on the network) and the
processes resident within the NeWS server. These processes can perform
operations on the display and receive events from the keyboard and the
mouse. They can talk to other processes within NeWS that, say, implement
menu packages.

The NeWS server is centered around the PostScript language as an exten-
sion language. NeWS is a set of mechanisms. Policies are implemented as
replaceable NeWS procedures. For example, NeWS has no window-
placement policy. It has mechanisms for creating windows and placing them
on the screen, given coordinates for the window.
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3

Network Connection Device Access

Figure: 2.3.  The NeWS server contains a number of lightweight PostScript pro-
cesses that send messages amongst themselves and to Unix processes
and devices. The messages sent from Unix processes (clients) are
PostScript programs that are executed by the server.

The choice of those coordinates is up to some PostScript program within
NeWS. If a user or programmer wishes to modify the behavior of window
placement behavior, he has only to download a new window placement pro-
gram into the NeWS server.

In the context of this book, for readability and convenience, when we re-
fer to PostScript programs running within NeWS, these programs and the
operators they use may include both standard PostScript graphics output
commands and NeWS interactive features structured on the PostScript
language model. Where the distinction is important, we will explicitly dif-
ferentiate NeWS functionality and PostScript language functionality.

2.3  Extensibility

Extensibility in the context of a window system bears explanation. There
is great diversity in the extent of flexibility, or tailoring, permitted by dif-
ferent window systems. At one extreme are systems like Andrew,
MSWindows, and the Macintosh window system, where little can be
changed in either the user or programmer interface. In the middle are sys-
tems such as the X Window System, which has provisions for new menu
packages or new layout managers, but in which adding significant new
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functionality to the window system (through the addition of new object
libraries) is difficult to do in a way that is independent of the X server
implementation. At the far end are open systems like Smalltalk, where it is
simple for a skilled user to modify any part of the system’s behavior. Some
of these systems will be discussed in more detail in the next chapter.

To illustrate the differences in window system flexibility, consider what
must be done to change the background grey pattern on the desktop. On the
Macintosh this is easy because the designers included this option as a config-
uration choice. On the other hand, changing the behavior of the up/down
buttons in the scrollbar is impossible. Andrew’s background grey is not a
configuration option; it cannot be changed without editing and re-compiling
the source code for the window server, an option that is not available to
ordinary users. Smalltalk makes it fairly easy since the component of the
window system that deals with the background grey is small and well-
contained, as is the component that deals with scrollbars, and it can be
replaced incrementally without disturbing surrounding modules. The
general difficulty is finding out which piece to replace and how it is speci-
fied. Smalltalk systems generally have the full source code available along
with a powerful browsing facility: this makes the task possible and easy,
but only for a skilled developer, not the general end-user.

NeWS tries to supply an extremely high level of flexibility to both the
end-user and the programmer. Two main features of NeWS contribute to its
extensibility. First, the PostScript language is an interpreted programming
language that permits the definition of new functions. Second, the NeWS
architecture allows clients to place PostScript code into the window server
at any time, even while the server is running. Together these features let
clients program the window server to meet their specific needs. Instead of
requesting the server to perform functions on their behalf, NeWS clients
pass the server code to execute.

2.4  Simplicity of User and Programmer Interface

Window systems have a wide range of complexity in their user jinter-
faces, such as how menu title bars are drawn, and whether or not the user
can stretch a window by clicking the left button in the upper right hand
corner of the window outline. Some, like the Macintosh, or the OPEN
LOOK user interface, have simple and consistent user interfaces that are easy
for novices to learn. The Andrew window system has a very simple style
that is easy to teach, use, and document. But Andrew’s simplicity comes at
the cost of rigidity, or loss of flexibility for the user that wishes to change
the user interface. In some window systems, experienced users find the help
and menu interaction cumbersome, while window systems tuned to expert
needs are often too complex for novices. However, systems are rarely
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rigidly fixed at one of these extremes. They usually have accelerators for
expert users and simple menu interfaces for novices.

NeWS makes no commitment to a particular user interface. It supplies
general and powerful mechanisms that allow the builder of a user-interface
toolkit or of an individual application to make the appropriate user-
interface trade-offs. A window manager and user-interface toolkit is
supplied with NeWS (described in Chapter 6); several window managers
and user interface toolkits are available for X11/NeWS. Each of the NeWS-
based window managers or toolkits can be modified or completely replaced
by implementing appropriate procedures in the PostScript language.

Figure 2.4 illustrates how NeWS can support multiple user interfaces for
an application, without any change being made to the application. Several
copies of the application are started one after another. A new user interface
package (a PostScript program, downloaded into the NeWS interpreter) re-
places the existing user interface package between successive copies of the
application. The look and feel of each copy varies — but the application is
unchanged. In addition to supporting multiple user interface styles, NeWS .
can impose a global user interface on applications while the applications are
running. This flexibility could allow end-users to determine the kind of
user interface they prefer and apply that to all of the applications they pur-
chase, without forcing the application developer to supply multiple user
interfaces. Corporations can impose a corporate-wide user interface stan-
dard, or they may have their administrators use an MSWindows-style
interface, while their engineers use an OPEN LOOK interface, and still per-
mit them to interchange the same applications and the same set of hardware.

Trade-offs of simplicity and complexity are also found in the program-
mer interfaces to window systems. Simple interfaces often make unusual
operations difficult. In the Andrew system, direct program manipulation of
bitmaps is almost impossible, while in the SunWindows system it is impos-
sible to avoid. Powerful programming interfaces tend to be complex, and
can contain so much functionality that they are hard to learn and use, as
well as to implement efficiently. This complexity is partly an inherent
problem, and partly due to the tendency of systems to accrete features as
they mature. The best compromise is an programming interface that can be
learned and used incrementally. The developer can begin simply, and
gradually progress to understand and use more complex functionality.

Because NeWS is based on an existing programming language and model,
the issue of the programmer interface specification was to some extent
avoided. The PostScript language has a simple, easy-to-understand design, in
part because of the constraints of the original target environment (printers).
The facilities NeWS adds for interaction and windows have been carefully
specified to give a superset of PostScript language functionality, rather than
conflict with the existing PostScript language constructs.
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Figure: 2.4. Several different window styles. These are implemented by packages
dynamically downloaded into NeWS between instantiations of the
programs.

Programming directly to NeWS (as opposed to programming to higher-
level toolkit or application interfaces) involves writing and understanding
PostScript programs. This is covered in Chapters 4-8.

2.5 Device Independence and Graphics Model

Window systems vary in their level of device independence. Many win-
dow systems are originally intended for a particular technological base, and
the assumptions built into that base often creep into the higher levels of the
design. When faced later with different technology, these assumptions can
cause serious problems. A common one is the use of the RasterOp or bitbit
graphics model (discussed in more detail in Chapter 3), which involves
direct manipulation of blocks of individual pixels on the screen. While bit-
blt works well with monochrome displays, it does not extend cleanly to
color. Boolean combination functions between color pixel values do not
make much sense. For instance, one often draws transient rubber band lines
by XOR-ing them with the image. XOR-ing colormap indices 8 to 24 bits
deep can lead to some pyrotechnic effects since the results have little logi-
cal meaning. Avoiding these effects requires careful control of pixel and
colormap values.
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Many window systems are initially built for a particular piece of hard-
ware. Decisions tend to be made less in favor of what is “right” and more
in favor of what fits in with the hardware at hand. A good example of this
is the X10 window system, which began as a window system for VAXes
with VS100 displays. The communication protocol between the X10 server
and client programs is based on C structures, whose internal representation
is very VAX-specific. VAX C structures do not map well to other
machines: byte ordering, size, and field alignment differ from machine to
machine. X10 has an imaging model that was determined by the microcode
in the VS100, and it uses the VS100 font format. Unfortunately, the
VS100 font format has some technical idiosyncrasies: for example, it isn’t
possible to draw a text string where adjacent characters overlap. This can be
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necessary, for example, when using an italic font. The “/” and “/” in the
italic pair “jj” overlap. The keyboard support in X10 was entirely deter-
mined by the DEC LK201 keyboard, so that porting X10 to a machine with
a different keyboard required emulation of the LK201. The next version of
the X window system, X11, fixed all of these problems.

Andrew is a good example of a window system that was designed with-
out a specific piece of hardware in mind. This result was an accident of the
political situation during development: its intended hardware did not exist,
had not even been designed and was conceived in relative isolation from the
design of Andrew. Andrew emerged as a design for a black box. All that
was known about the eventual system was that it would run Unix and that
it would have a bitmap display. At the time, these constraints created a
painful situation, but in retrospect they were a great blessing since they
resulted in an extremely hardware-independent, portable window system.

The correct choice of a graphics model is crucial to achieving device inde-
pendence. The more abstract the model, the more room there is for the
underlying implementation to accommodate different technologies.
Consider the representation of color. There are three common ways that col-
or is available for display devices: 1-bit black and white (constant small set
of colors); 8-bit color with a colormap (variable small set of colors); and
24-bit color (all possible colors available everywhere). Integrating these
three implementations of color is a thorny but important problem. Most
window systems support this by providing a different application program-
ming interface to set color for every hardware implementation. This makes
it difficult to write device-independent applications.

The choice of a graphics model is also critical to the graphics capabilities
of a window system. Many systems provide only RasterOp, vector drawing,
and simple text. On the other hand, systems such as the Macintosh, which
has a much richer graphics model, have a flair for more graphically interest-
ing applications. Richer models, however, are more difficult to implement
and more difficult to understand, providing the window system developer
with a difficult balancing act. The Macintosh is able to draw complex
curves, scale images, and even clip scaled images to regions bounded by
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complex curves. Andrew, X10 and X11 lack these capabilities, or rather,
they leave their implementation to the developer.

The NeWS graphics model is based on the stencil/paint model provided by
the PostScript language. This graphics, or imaging model, is at a high
enough level of abstraction to provide device independence along with a rich
set of graphics capabilities to NeWS-based applications. Applications are
not written in terms of specific hardware, therefore they need not be con-
cemned about the resolution of the display, or whether the display is
monochrome or color. Also, NeWS clients can automatically benefit from
special high-performance graphics hardware, since the imaging model maps
easily to many graphics accelerators. System vendors can provide accelera- -
tion through their NeWS server implementations while keeping the NeWS
programming and graphics interfaces constant.

NeWS applications are even isolated from whether the output device is a
printer or a display. Since NeWS contains a PostScript language interpreter
similar to the one found in laser printers, a given series of PostScript lan-
guage statements will render the same image whether sent to a NeWS
window or to a printer containing a PostScript language interpreter. Thus,
it is easy to preview printer output on the screen, or to send the contents of
a window to the printer.

The two images in Figure 2.5 demonstrate the device-independent nature
of the PostScript language. The image on the left was printed by sending a
PostScript program directly to the printer; the one on the left is a snapshot
of the same PostScript program rendered within a NeWS window.

2.6  Networking

In a distributed networked environment, accessing windows on another
machine should be as natural as transparently accessing remote files via
Sun’s Network File System (NFS). Workstations and, increasingly,
personal computers, are best used as elements in a heterogeneous environ-
ment, communicating over a network with other machines ranging from
low-cost terminals, through workstations, to supercomputers. NeWS puts
the resources of such a distributed computing environment on the screen.
NeWS client programs don’t have to run on the computer with the screen;
they may be distributed in different ways across both client and server
machines depending upon the resources available and the usage of the net-
work. Experiences with Andrew and X indicate that the flexibility of
client program location is valuable both for good local performance and an
efficient use of resources across the global network.

Real-time response over a network is difficult in a server-based window
system since the server usually has to pass messages to the client and wait
for a response from the client whenever input or output occurs requiring
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{ t hy is it no one ever sent me yet

One perfect limousine, do you suppose?
Ah no, it's always just my luck to get
One perfect rose.

—Dorothy Parker

Figure: 2.5. The device independence of NeWS lets one image appear as output on
multiple devices, such as printers and monitors. Notice that because
the printer has a higher resolution than the display, the image rendered
by the printer is smoother.

action from the client. The first window server designs suffered from poor
performance in interactive applications because of a communications bottle-
neck. Hundreds of messages flowing back and forth in interactive
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situations, such as dragging a slider, severely impacted performance.

NeWS eliminates this real-time bottleneck by using the PostScript lan-
guage as its means of communication with clients. Clients, instead of
making function calls, pass PostScript statements that are interpreted by
the server. Since PostScript is a general programming language, it allows
the use of repetitive programming constructs, such as loops, and permits
client-specific information storage in data structures inside the NeWS
server. Use of these features results in a denser encoding of client-specific
information than with a fixed, non-programmatic protocol. More informa-
tion can be passed to the server in a smaller number of messages, making
better use of network bandwidth. In addition, since the client can pass
arbitrary PostScript programs, critical functions requiring much updating of
the display can be programmed into the server, eliminating much of the com-
munication overhead between the client and the server.

Mouse motion

4—and display —p
update messages.

PostScript
process

: Window Server NeWS Server

Messages
that cross the—»
network.

~ Application

- Application

Figure: 2.6.  Network traffic when tracking the mouse. In the first scheme, messages
get sent over the net every time the mouse moves. In the sceond, used
by NeWS, the application has downloaded a piece of code that
handles mouse events for it.
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This gain from the elimination of network traffic overhead must be bal-
anced against the loss inherent in using an interpreter. PostScript programs
are generally slower than C programs. It is usually a mistake to do exten-
sive calculation or build large elaborate data structures by programming in
the PostScript language.

In Figure 2.6, an application is tracking the position of the mouse by
redrawing a spline curve every time the mouse moves. Monitoring the
mouse movements and repainting the spline is performed within the server
by a procedure downloaded by the application. This rubber-band spline is
not a necessary built-in function for a window system, but in NeWS appli-
cations (as in PostScript printers), an application can define new procedures.

2.7  Conclusion

This ubiquitous use of the PostScript language is a key feature of NeWS.
The PostScript language gives NeWS two things that distinguish it from
other window systems: an advanced imaging model and extensibility. NeWS
brings the powerful industry-standard, and device-independent PostScript
language imaging model to the display. NeWS dramatically expands the
solution space available to developers. At any time, they can extend the
capabilities of the server by defining new PostScript procedures. This exten-
sibility of the system is key to NeWS functioning well in a distributed
environment. Judicious use of this flexibility enhances performance, and
allows client-specific protocols and data compression on the communication
channel. The dynamic, interpretive server can act as the central authority for
system behavior, or, can allow applications to define a unique environment.
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Window System Architecture:
History, Térms and Concepts

" Architecture, in general, is frozen music.”
Friedrich Von Schellig

3.1 Introduction

This chapter defines and explains the terms that commonly describe win-
dow systems. It establishes a general level of understanding for future
chapters. The four parts of this chapter offer:

a layered model of window systems;

a historical survey of window systems, illustrating how a number of
systems fit into the model;

a detailed review of the components of the layered model;

an examination of the relationship between window system architectures
and their environments.

3.2 Anatomy of a Window System

The study of window systems is an emerging discipline, so terminology
is not well-defined. There is a model of the window system that has six
layers spanning the application to the hardware. Higher layers are closer to
the application, and, ultimately the user. Lower layers correspond to primi-
tive functions, finally ending in hardware components.

We will cover four layers of the model: the User Interface Toolkit, Win-
dow Manager, Base Window System, and Imaging/Graphics library.

Two confusing terms are Base Window System and Window Manager.
They are sometimes used interchangeably or are used with a broader scope.
In this book we use window manager to mean the part of the total window
architecture that deals with the user interface to windows: the borders
around them, the user commands to open, close, and move them around.
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Application

User Interface Toolkit The terms window system
and window manager are
sometimes used to refer to

Window Manager

Base Window System some subset of these middle
Graphics Library four layers.
Hardware
Figure: 3.1.  Four layers of the window system lie between applications an
hardware. : ,

We use base window system to mean the part of the Hichitecture that
deals with resource allocation, synchronization, communication between
graphics and higher levels, and input distribution. We use window system to
refer to some subset of these four layers. The NeWS window system con-
sists of the bottom two of the four layers; while the Micintosh window
system (the “Mac ROM?”) consists of all four layers

This layered window system model is useful, but it will break down in
some areas: today’s window systems have often grown “organically” rather
than in a strictly modular way. However, it does show one reason why com-
parisons between window systems can be confusing; they differ
dramatically in the number of layers they implement.

Note that the operating system is not included as a layer in our model;
this is because there are several ways in which the operating system can
interact with the window system. NeWS, and most other emerging window
systems are network- or server-based, which implies that they have the
status of a user-level process, and are not built into the operating system.
Until recently, most window systems have been kernel-based, or built into
the operating system core, or kernel. The following sections discuss several
examples of both types of window system architectures.

3.3 A Brief History of Window Systems

For the moment, you will have to take the model on trust. We will
cover each of the layers in detail later. We now make a brief historical sur-
vey of window systems to see how each fits into the layered model.
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3.3.1 Smalltalk

Smalltalk is the common ancestor of all window systems [GOLDS83]. It
was produced at Xerox PARC in the early 1970’s. Initially implemented on
the Alto[THACS8], a small machine with only 64K of memory, there have
been many subsequent implementations. The first practical one was on the
Dorado-class machine.

Smalltalk is a complete universe. It includes an operating system, a lan-
guage, a window system, and a variety of other tools. In the first versions
of Smalltalk the operating system was indistinguishable from the window
system. It all fit together in one address space on the bare machine. In later
implementations Smalltalk was still a complete universe, but it was
usually layered on top of an operating system.

Application

User Interface Toolkit Everything in one address
space, communicating with
procedure calls

Window Manager

Base Window System

Graphics Library

Hardware

Figure: 3.2.  The single address space, single process structure of Smalltalk.

This single-process, single address space structure leads to the simplest
window system architecture. There are few operating system problems. One
process has complete control and total access to the system. It has no need,
for example, to arbitrate among multiple processes for access to a display
processor. There is only one monolithic process.

The simplicity of systems like Smalltalk is their biggest limitation:

Users want to be able to perform muitiple tasks concurrently: read mail,
work on a document, and use other applications, all at the same time.
In a single process environment, these different applications have to be
fused together into one program. In some cases, tricks such as DOS’s
“terminate and stay resident” can be used to stitch together disparate
applications, but these are only suitable for small desktop accessories.

Because there is one address space, an application with a bug in it can
“crash” not just itself, but the entire computer system.
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These simple systems normally lack virtual memory. Without it, there is a
fixed limit on how large an application can grow, thereby limiting the
application functionality.

The Smalltalk language is based on object-oriented programming. It uses
classes to define the properties of objects that are operated on by methods.
The computer system is protected from crashes, even though everything is in
one address space, by linguistic controls that limit the damage that can be
caused by an errant program. These controls are possible because there is
only one language. One nice side effect of this makes Smalltalk the ultimate
in flexible systems. It provides a code browser that gives users access to
all the code of the entire system. Using the browser, the user can replace
any part of the system on-the-fly.

The Smalltalk graphics model is not very sophisticated. It was designed
for monochrome bitmap displays and was intended for text/terminal applica-
tions and not for graphics. Everything was centered around the RasterOp
graphics model: Smalltalk dealt strictly with lines, rectangles and text.
Since early versions only implemented rectangular clipping, they could only
draw in the uppermost window. The language was the focus, graphics was a
relatively minor consideration and portability was not a design goal.

The base window system in Smalltalk was very simple. It was imple-
mented using Smalltalk’s class mechanism. Because there was only one
address space and only one process, there were no synchronization or commu-
nication problems. The window manager was structurally intertwined with
the base window system.

The Smalltalk user interface broke a lot of new ground, introducing win-
dows, scrolling, pop-up menus, and the virtual desktop.

The toolkit level included a modeless editor that used cut-and-paste and
pop-up scrollbars. It introduced the Model/View/Controller (MVC)
paradigm, breaking up the user interface implementation into three compo-
nents. This division is still used by most modern toolkits. These are:

the model, which describes an application data structure, like a text file
or a drawing.

the view, which describes how that data structure maps onto the
display surface.

the controller, which describes how input events alter the model and view.

The MVC paradigm is used in the example program of Chapter 8.
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3.3.2 DLisp

DLisp was a version of Lisp developed in 1977 at PARC. PARC engi-
neers had a problem. They had smail and underpowered Altos which could
do graphics, and they had a big PDP-10 that could run Lisp. So they built
Display Lisp, or DLisp, which used a Lisp system on the PDP-10 that was
extended to communicate over the Ethernet to an Alto. This was the first
network window system. Like Smalltalk, DLisp was a one language, one
address space window system, although it did break new ground in develop-
ing network communications. In time DLisp was superseded by Interlisp-D.
It disappeared and is generally unknown.

The DLisp “graphics server” ran on the Alto (it was the only thing run-
ning on the Alto). The server depended upon a very low-level graphics
model that was essentially identical to Smalltalk’s. It supported only
RasterOp, lines and text. One big advance over Smalltalk’s graphics model
was that it implemented complicated clipping, allowing graphics operations
to be performed on windows other than the one on top. It also supported
the use of multiple fonts, which didn’t come until later in Smalltalk.

Ethernet
Application
PDP-10
User Interface Toolkit (MAXC)
Window Manager MAXC running Lisp
Base Window System
Graphics Library
Hardware Alto Alto running
display support
software

Figure: 3.3.  DLisp came in two parts; the lower levels on the Alto and the higher
levels on the PDP-10.

The rest of the DLisp system ran on the PDP-10 and contained most of
the window system, the user interface toolkit and the application. The PDP-
10 communicated across the Ethernet with the Alto using a custom proto-
col. Like Smalltalk, it was an experimental testbed: graphics were a minor
consideration.
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The DLisp user interface was implemented on the PDP-10; the Alto
merely performed graphics. The entire DLisp system was limited by commu-
nication performance constraints. Network round-trip times made changing
cursor shape and dragging images too slow, so these operations were not
supported by the base window system on the PDP-10. The user interface had
a multiple desktop scheme that was eventually abandoned, after the develop-
ers decided that icons were a much better idea. DLisp introduced another
interesting, but aborted, concept: windows “faded away” if not used by the
user for a period of time.

DLisp placed the window system in a user-level process. This structure
eases window system development and protects the computer system against
accidental or malicious destruction of internal data. The window system is
much easier to maintain and enhance as a user-level process, rather than as
part of the operating system kernel.

3.3.3 The Mesa Systems

After DLisp, Xerox PARC developed a number of window systems sup-
porting multiple processes in a single address space[LAMP88]. These were all
implemented in the Mesa programming language.

Application Application

Procedure Calls

User Interface Toolkit

Window Manager

Base Window System

Graphics Library

Hardware

Figure: 3.4.  Mesa supported multiple processes in a single address space.

When a single address space environment has multiple processes, concur-
rent applications like the two in figure 3.4 become possible. Multiple
concurrent applications introduce two problems: synchronization and
protection:
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The synchronization problem arises when client processes, running in
parallel, invoke the window system to manipulate windows and perform
graphic operations in them. As an example, the user sitting at the work-
station performs an operation that causes a window to move, and the
movement takes place while the client processes draw in their windows.
A process whose window becomes partially obscured can find itself
halfway through drawing a line with a window that is no longer in the
same place, or into a window that is not the same shape as when the
process was started. Drawing the line and moving the window must be
synchronized to avoid collisions of this type.

The protection problem is common to both the single-address-space,
multiple-process and the single-address-space, single-process model
described earlier. One misbehaving program can bring down the computer
system by manipulating the window system’s structures. In a multi-
process system, one program can also destroy all of the programs, as
well as the window system, unless there is some protection mechanism
or set of conventions that all programs follow. This can lead to a very
fragile system, where one bug in one program can drag everything down.

At PARC, both the synchronization and protection problems were solved
using the facilities of the Mesa and Cedar/Mesa languages and the Pilot
operating system. They have very good synchronization facilities, and guar-
antee that programs do not randomly destroy memory belonging to other
programs. This guarantee can be made because Mesa and Pilot check array
bounds and restrict the operations allowed on pointers. Many Lisp machines
deal with the protection problem in the same way.

Some linguistically protected systems, such as Smalltalk, go further and
do not support pointers at all. However, the urge to avoid protection is
such that these implementations typically have loopholes to allow program-
mers to get around the language protection and manipulate pointers directly.

3331 Tajo

Tajo (1977), another Mesa window system, was one of the first window
systems to deal with multiple processes in a single address space, and it was
the system that introduced icons. Tajo was also the first notification-based
system. The “inner event dispatch loop” wasn’t in the application, it was in
the window system. An application didn’t implement a main loop, it
simply registered procedures to be called when events occurred. The win-
dow system was in control, simplifying the system, but confusing many
programmers who were used to being in control.
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3.3.3.2 Docs

Docs (1980) was another multiple processes, one address space window
system implemented in Mesa under the Pilot operating system. One of its
real innovations was that it supported an advanced imaging model based on a
library known as “Cedar Graphics.” It supported scaling and rotation,
curves, images, and retained windows. The Cedar Graphics model evolved
and eventually became the basis for both Interpress and PostScript, which
are both languages for communicating with printers.

Like Smalltalk, Docs had an object-oriented toolkit based on the model/
view/controller paradigm. But it went a step further and attempted to inte-
grate documents into the toolkit. It defined a set of classes to implement
documents. Documents had methods for presenting themselves in windows
and they could contain subviews on other documents. There were many good
ideas in Docs, but it was too slow to be useful. Not until the Andrew win-
dow system was an integrated document model implemented as a part of a
toolkit that performed well enough to be generally used.

3.3.33 Star

Star (1981) was Xerox’s attempt to transfer the technology developed at
PARC to the market[LIPK82]. It retained the underlying window system
technology, but introduced a number of concepts to the user interface.
Among these were a consistent office model, with icons representing files
(documents) and directories (file cabinets), a consistent selection paradigm
for all visible objects, a consistent mechanism for altering the attributes of
visible objects through property sheets, and an omni-present editor. Editing
was not part of individual applications, it was a system-provided service.

3.3.34 Viewers

Viewers (1981) took a step backwards from Docs to regain the perfor-
mance that Docs lost. Initially, it backed out of the Cedar Graphics model
as being too expensive, but it was eventually reintroduced. From the Star
system it picked up the notion of tiling windows on the screen. Windows
could not overlap, but were laid out much like tiles on a wall.

334 NU

In 1981 at MIT, the advent of the Motorola 68000 led to an attempt to
build a workstation and its software environment called NU. Jack Test
built a simple window system entirely inside the UNIX kernel. It support-
ed overlapping windows, each of which behaved like a conventional terminal.

The kernel is often a convenient place to put device support and a central-
ized synchronization point in the interests of performance. But there are
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problems placing anything into the operating system. The debugging tools
are usually poor, and any bug that does escape detection threatens the
integrity of the entire system. Development cannot proceed in parallel with
other uses of the system. A large body of code is placed in memory, which
makes that memory unusable by other processes, since the kernel is
typically not paged (it is “wired-down”).

Application

User Interface Toolkit

Window Manager

Base Window System

UNIX Kernel

Graphics Library

Hardware

Figure: 3.5. The NU window system was built in the UNIX operating system.

The limits on the code that can be installed in the operating system meant
that the NU window system was too simple to be really successful. Its
capabilities were limited to terminal emulation, and simple graphics. Its
performance was limited by the fact that every window system operation
was a system call.

3.3.5 SunWindows

In 1983 Steve Evans of Sun Microsystems produced SunWindows[SUNS5].
It was the first widely used UNIX window system. As such, it was one of
the first window systems to deal with the problems of multiple processes
and multiple address spaces. Providing good performance for simple win-
dow operations, rather than fancy graphics, was the goal of the design. It is
now a mature and stable system, but it is showing its age.

Like NU, its implementation was entwined with the UNIX kernel. But
unlike NU, only a small part of the system resided there. The window hier-
archy database was kept in the kernel, along with system calls to
manipulate it and synchronization facilities to manage concurrent access.
Each application had the graphics device mapped into its address space and
accessed it directly — the actual device drivers were not in the kernel, they
were in the applications.
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Application 1 Application 2
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Figure: 3.6.  SunWindows is a multi-process, multi address-space system with syn-
chronization in the UNIX kernel.

With each client having direct access to the display hardware, one would
expect excellent performance. When performance is worse than expected,
there are several possible reasons, including synchronization, and paging
overheads:

Clients that directly access the display hardware must synchronize among
themselves. It is usually impossible for two processes to be accessing the
device registers in parallel. For example, before drawing a line a client
must make sure that no other client is drawing lines and only when the
hardware is idle can it finally draw the line. Checking and locking can be
expensive, sometimes as expensive as a kernel call, and can dominate
the expense of drawing the line. The per-operation locking cost can be
reduced by increasing the granularity; instead of locking on every line,
lock before drawing a group of lines, and unlock afterwards. Unfor-
tunately, putting the burden of choosing a suitable locking granularity on
the application programmer increases the chance for error.

If the hardware provides little support for graphics operations, as many
simple frame buffers do, then the graphics library that is replicated in
each client can become large. If there are many different display devices
and operations to be supported, the amount of replicated code can become
enormous. In systems with virtual memory, these large libraries can
cause substantial paging delays. If a large amount of code is being repli-
cated and its sheer bulk is causing problems, attempting to keep it small
appears attractive. But this often involves exploiting fewer special cases
and avoiding other optimizations involving more speed at the cost of



33

more space. The effect of this replication is eliminated if the operating
system supports shared libraries.

Aside from these performance issues, putting such a large body of code
into each client process also introduces logistical problems for operating
systems that do not support shared libraries:

It becomes much harder to make changes and fix bugs. Every client must be
relinked to access the new routines. This applies even more to third-party
software; it may take some time to get new libraries incorporated.

In this context, new display devices are, in effect, bugs. Because the device
drivers are linked into the clients, introducing a new display type has the
same problem as fixing a bug. Further, since an application has to contain
drivers for every device it may encounter, it will be bigger than necessary.

The SunWindows approach also requires that client programs are “well-
behaved.” Checking and locking are not enforced by the window system.
“Well-behaved” clients are expected to operate within the rules and use
these protection protocols for the benefit of their fellow clients.

As one might expect, SunWindows was implemented in stages from the
bottom up. The first releases provided only the base window system
(SunWindows) and a window manager (SunTools). The graphics model was
based on two libraries, Pixrects and Pixwins, implementing the Smalltalk
RasterOp model.

As the technology advanced, SunWindows had to evolve to match, and
this sometimes “broke” the low-level RasterOp model. With the introduc-
tion of color the uniform boolean operation model of RasterOp started to
break down. Colormaps introduced another resource allocation problem.
High performance accelerators demanded a higher level model that imple-
mented more advanced features like curves, polygons, and 3D. The short
term answer was to add device specific imaging models, but these caused
porting problems for applications which needed to support multiple devices.

Since the SunWindows user interface was all in the application’s address
space, it was theoretically changeable. But in reality, the early system came
without a toolkit, and the first toolkit was so complex that almost no one
made any changes.

Eventually SunView, an object-oriented toolkit, was layered on the exist-
ing system, hiding most of their complexities and making the construction
and modification of user interfaces much easier.
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3.3.6 Andrew

Andrew (1983) was developed by two of the authors (Gosling and
Rosenthal) at the Information Technology Center, a joint project of IBM
and Carnegie-Mellon University[MORRS6]. The goal of the project was to
produce a workstation for the masses. In the beginning, the machine did not
yet exist (it was to be the PC/RT), so Sun workstations were used as test-
bed hardware. The center’s goal was to produce applications for an educa-
tional environment. Producing a window system or toolkit was not a
specific objective, except as needed for these applications. But neither a con-
venient window system or a toolkit was available at that time. These
factors together led to a unusual set of goals:

The window system had to be portable and hardware independent. It was
being written for a machine that was not yet designed.

It had to be simple and quick to implement so that real application
development could begin as soon as possible.

It could not require changes to the UNIX kernel. The Sun operating system
was distributed in binary form and the target system did not yet exist.

The solution was to implement the window system as a separate UNIX
process. Applications communicated to this window server through UNIX
sockets, using the TCP/IP protocol.

All window-related client requests are performed by sending messages to
the server. With this scheme, all of the graphics and window management
code is placed in one process: the window server. The window layout
database, clipping regions, and all other relevant information is centralized,
solving many of the organizational problems of the other window system
architectures. In particular, the synchronization issue is solved by avoidance.
The window system has only one thread of control and complete access to
all information. Synchronization occurs by serializing the messages coming
into the window system process.

The TCP/IP network protocol was used because it was the only available
inter-process communication facility. It was expected to lead to poor per-
formance, since communication between client and window system via
message-passing can substantially increase the overhead of each operation.

The primary technique for achieving good network performance was batch-
ing, putting multiple client requests in each network packet. To make
batching more useful, two additional things were done. Wherever possible,
the requests did not return values, so that a round-trip between client and
server was not required. Also, if a procedure did not return a value, then

the call was not sent immediately, but was batched with successive
requests. With a large enough message size and a protocol specification that
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Figure: 3.7. Andrew puts everything except the User Interface Toolkit in a user
level server process. Applications never see the hardware.

requires few replies, the per-message setup cost (delay, processing cost of
constructing a message, network usage) becomes insignificant.

The other important technique in Andrew was to maintain a low ratio of
bits passed in messages to bits altered on the screen and thereby reduce the
cost per pixel of message passing. Designing a protocol that operated at a
high level of abstraction lowered this critical cost. As an example, it is pos-
sible to design a protocol that allows only bitmaps to be sent to the
window system from the client. Thus, when a client wants to draw a text
string, all the bits for all the characters must be sent. In this case, the win-
dow system has a complete, simple model, but it will have poor
performance. On the other hand, if the protocol includes notions like
“font” and “string” then text can be shipped down in a very compact form.
The more that the window system understands at an abstract level, the
more efficient client-server communication will be.

Andrew was the first practical UNIX networked window server. It
demonstrated that server-based systems were possible. It also performed
well and, unexpectedly, proved that the ability to use window applications
across the network was very valuable. Furthermore, it was the first win-
dow system to be ported to a significant number of different workstations
and displays. Andrew was initially developed on a Sun-1 monochrome sys-
tem and subsequently ported to a total of three CPU architectures and seven
display types: Sun-1 color and Sun-2 monochrome displays, monochrome
microVAXes, and PC/RTs with Vikings, APA-8s, and APA-16s.
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As experience was gained, porting got easier. The fastest port ever was to
the APA-16 display, which all told took three people less than four hours
to complete!

Andrew has a RasterOp based imaging model, like so many other sys-
tems. However, its font model was quite sophisticated.

The window manager and the toolkit’s menu package were in the server to
provide a unified user interface and to increase performance. They were
fixed, and it was impossible for an application to change them. Since one
goal of the workstation was to enforce a consistent user interface, this limi-
tation was acceptable. The window manager implemented a tiling window
layout policy, which proved efficient and popular, but controversial.

The window system was designed in tandem with a toolkit supporting a
high level document model, similar to Docs, which included a fancy WYSI-
WYG text editor. Although the support for text was excellent, many of
the applications showed the inadequacy of the graphics model.

In 1988, the Andrew toolkit, the applications, and the user interface
style it was used to develop have been ported to the X11 window system.

3.3.7 The Macintosh

The Macintosh (1984) from Apple Computer was designed to be a system
for the masses, a small machine with a high-quality user interface. It bor-
rowed heavily from the Xerox systems — primarily Smalltalk, Star, and
Tajo. The Mac was for users, not programmers. It was applauded for being
easy to use, but it was initially condemned for being hard to program.
Although it broke almost no new technical ground, it brought to the public
a new way of dealing with computers and raised their level of expectation.
It was a landmark in user interface design, proving that graphical interfaces
were not just a neat idea, they had value in the market.

In many ways the Mac was a throwback, being a single address-space,
single process machine with a very limited amount of memory. The various
layers of the system were all intertwined. Since the market was end-users,
not programmers, protection against buggy programs was not a large issue.
Apple assumed that by the time users got the machine there would be no
bugs. There really is no operating system on the Mac. The application is in
charge. Everything else is a subroutine library.

The graphics model is one area where the Mac broke new ground. Quick-
Draw(ESPI87], the graphics library, was based on the RasterOp model, but it
added fancier fonts, curves, non-rectangular clipping, and regions. It was
almost the first system that took graphical design seriously. Xerox’s Star
came earlier, but it didn’t get the same exposure. As the Mac has evolved,
it has shown strains of age analogous to SunWindows. For example, the ini-
tial color model was too simple and as hardware evolved the model had to
be superseded.
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Figure: 3.8.  The Macintosh is a single process, single address space system, with
much of the window system in ROM.

The problems of the single-address-space/single-process operating system
can be seen in their evolution — most are acquiring multiprocessing facili-
ties. On the PC, Microsoft Windows and GEM added explicit support for
multiple processes. On the Macintosh, the desk accessory mechanism, the
Switcher, and the Multifinder are heading in the same direction. Unfortu-
nately, multiprocessing is hard to graft onto a system once it is completed.
Because it is so important, many applications will include their own
limited form of multiple processes, and these private implementations will
interfere with the way the evolving system wants to implement processes.

3.3.8 The X Window System

X (1985) began as the W (1982) window system, developed by Paul
Asente and Brian Reid at Stanford University for the experimental V oper-
ating system. V was a high performance message passing system
implemented on Sun hardware. In 1983 it was ported to VAXes and the
VS100 display at the DEC Western Research Labs, but the slower message
passing of UNIX made W’s synchronous communication impractical. In the
summer of 1984, Bob Schiefler and Jim Gettys at Project Athena, the IBM-
and DEC- funded campus computing project at MIT, started work on a sys-
tem based on asynchronous communication like Andrew, and called it X.

The first widely available version was X10[GETT86,SCHES6]. The architec-
ture of X10 was almost identical to Andrew. Its major innovation was that
the window management user interface was moved outside of the window
system into a separaté UNIX process.

Unlike Andrew, X10 made no attempt to impose a user interface. The
user interface was provided by application libraries and special applications,
such as the window manager. X10 gained flexibility at the expense of per-
formance. Fortunately, it turned out that the performance cost was usually
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small. Like most network-based window systems, animated interactions in
X10 (menus, rubber band lines) can lead to heavy network traffic when the
server and application exchange messages each time that the mouse moves.

Since X10 was developed for VAXen with a VS100 display, the design
gave little thought to portability. The VS100 was a relatively unsuccessful
product and, even though MIT made the source code freely available, it is
likely that X would have remained an obscure University system had it not
been ported to more widely-available hardware. One of the most important
of these early ‘‘public domain’’ X10 ports was undertaken over the Christ-
mas 1985 holiday by two of the authors (Rosenthal and Gosling), who took
the initial MIT source, ported it to the various Sun' configurations, and
returned the results to MIT for distribution. The fact that the system was
freely available on a popular workstation like the Sun led to a rapid increase
in interest and a number of other ports.

Application 1 Application 2
Application Application
User Interface Toolkit User Interface Toolkit

Network Connections

Window Manager

Base Window System

Graphics Library

Hardware

UNIX Kernel

Figure: 3.9.  X10 was structured like Andrew, but the window manager was in a
separate process.

X11 (1987) arose out of the efforts to fix some of X10’s deficiencies.
X10 had some major limitations, including an imaging model derived
largely from the VS100’s microcode, a font model ill-suited to supporting
WYSIWYG editors, and several other VAX-specific features. So much in
X10 needed fixing that compatibility had to be sacrificed. X11[SCHES7,
SCHES8] was redesigned from a clean slate by a group of interested engineers,
led by Bob Schiefler and including one of the authors (Rosenthal). One
interesting aspect of X11 is that, unlike all the other systems mentioned in
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this chapter, a specification for it was written and intensively reviewed by
electronic mail before anything was implemented. A group at DEC imple-
mented a sample server based on this specification, and MIT distributed it
to selected groups for alpha-testing. During these early phases, a joint
effort between U. C. Berkeley and Sun made the first port of X11 (to Sun
hardware), developed a portable color framebuffer driver, and produced a
porting guide that enabled many other groups to get the sample server
operational on their hardware.

Although the overall architecture of X11 is very similar to X10, the
details are very different. In particular, portability and extensibility were
major design goals.

Portability across displays was provided by defining six generic display
types; applications are expected to adapt their behavior to whichever one of
these types they use.

Extensibility was addressed by reserving a set of protocol op-codes.
These op-codes can be used by code, linked into the server, implementing
additional functions. Also, X11 provides support for managing the name-
space of extensions, and an interface in the sample server to which exten-
sions must conform to be regarded as portable[FISH87].

3.39 NeWS

The history of NeWS (1986) was covered in the previous chap-
ter[GOSL86]. Fitting it into the layered model used in this chapter shows the
flexibility it gains by having a protocol defined as a full progrmming lan-
guage, which is then interpreted by a dynamic, extensible server. NeWS can
be regarded as a a programming language environment — applications can
interface to the system at any suitable level.

Applications can:

Be written entirely in PostScript, and reside in the single address-space,
multiple process world of the NeWS server, seeing an environment
similar to the Xerox PARC systems;

Access the system using raw PostScript imaging operators and NeWS input
operators, seeing a system that looks much like the X11 window system,
but with a more powerful imaging model;

Or access the system using a server-resident toolkit, seeing a system like
Andrew with much higher-level operators, in which the network
communication is in terms of objects such as menus and scrollbars.
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Figure: 3.10. NeWS allows applications to access the server at various levels.

34 The Layers' of the Window System Model

We now examine each of the layers of the model in turn, working from
the application towards the hardware.

3.4.1 User Interface Toolkit

User interface toolkits have high-level tools which a window-application
programmer can use to ease the development of a graphical user interface for
an application. By encouraging the re-use of user interface components,
toolkits establish uniformity among application user interfaces. A toolkit
shields the application developer from having to know the underlying de-
tails of the window system architecture, yet offers the capabilities
necessary for the design and implementation of a sophisticated user inter-
face. Cursor control, window management, input handling, and clipping of
graphical output are examples of low-level facilities that the toolkit hides
from the application developer.

A toolkit normally provides:

a core that lays out user interface building blocks (sometimes called
widgets) such as buttons and sliders, and handles input, routing it to
the code implementing the appropriate widget.
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a library of pre-defined widgets that can be attached to the core to provide a
complete user interface.

user interface prototyping tools, easing the process of attaching widgets to
the core.

The application developer forms the user interface with the prototyping
tools, selecting and positioning widgets from the library. The toolkit pro-
vides an application with the user interface look and feel determined by the
designers of the widget library. To change the look and feel, the widgets
must be changed. NeWS and its Lite toolkit, described in Chapter 6, are
unusual because they allow an application to dynamically change look and
feel without altering the implementation of the running application. In
most toolkits such changes can only be done by programming new widgets,
adding them to the library, and re-linking the application.

Most libraries offer widgets representing windows or frames, menus, and
control items (buttons, sliders, text fields, switches, meters, scrollbars,
and the like). When an instance of one of these components is attached to
the core, its location must be specified. Normally, a toolkit will provide
both for explicit positioning (put the record button at 200,160) and im-
plicit positioning (put the record button left of the stop button.)

Toolkits differ in the sophistication of the components in their widget
libraries. Some offer only simple components such as the buttons and slid-
ers in Figure 3.11. Other libraries, like Andrew’s in Figure 3.12, contain
very high-level application components such as text and graphic editors.
These powerful editors, allowing multiple fonts, formatting, cut-and-
paste, scrolling, and searching, are increasingly replacing character terminal
emulation as the major means of communication with applications, exploit-
ing the interaction capabilities of the mouse and bitmap display to present
text in a denser yet highly readable form. A toolkit allowing an application
developer to use such editors as components has obvious advantages.

Check Box Text ltem S@der Button
‘5] \\ fgﬁ/@l@agwmozpm 7 //

Phy!'hre\varl:l ‘;backSpeed_/‘}___

Record File /mnp/NeWS.journal

Playhack File /p/NeWs. joumal

€3N = REIRC)

RECORD STOP PLAY PAUSE

—

Figure: 3.11.  Toolkit components in a control panel.
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With a mouse, a large display, multiple windows and powerful editors as
the interface to applications, the ability to cut, copy and paste information
between windows becomes increasingly important. In this area, the toolkit
normally provides two things:

1 A consistent user interface, allowing the user to select part or all of
the information displayed by a widget, and invoke transfer operations.

2 A programming interface between the source and destination widgets
of a transfer operation, and the low-level selection service of the base
window system, which actually transfers the information.

Toolkit normally support either the “clipboard” user interface style
with operations like “Cut” (which moves information from a source wid-
get to the clipboard), “Copy” (which copies information from a source
widget to the clipboard), and Paste (which moves information from the
clipboard to a destination widget), or the “selection” user interface style,
(which transfers information directly between widgets without a clipboard-
style intermediary.)
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The programming interface to the base window system’s selection service
will normally provide only for the transfer of uninterpreted data. It is the
source widget’s responsibility to convert its internal data representation for
the selected information into a form that the destination widget can under-
stand in terms of its internal data representation.

Toolkit-level conventions are needed to make this process work between
the vast range of possible widgets, so that (for instance) cutting from a
music editor and pasting into a spreadsheet works as expected. Developing
suitable data transfer formats is the subject of current research, for example
in the National Science Foundation’s EXPRES project.

3.4.2 Window Manager

A window manager is the software and user interface for controlling the
location and status of windows in a window system. It can also be defined
as that portion of the user interface devoted to manipulating the presenta-
tion of multiple contexts, or windows, on behalf of the user. The window
manager generally allows the user to:

create, destroy, reposition, and resize windows,

adjust the depth order of windows (move to top: “expose”, or move to
bottom: “hide”),

change the state of windows (open or closed: “iconic”),

specify which window is to accept keyboard characters (the “listener” or
“input focus” window).

The user interface to these operations normally involves wrapping an
active border around the application window, which contain controls or
small icons that the user can click on or drag to invoke them.

The window manager will also implement a window layout policy. Two
common policies are overlapping and tiling:

An overlapping window manager will normally ask the user to size and
position a newly created window, perhaps by dragging out a rubber-band
rectangle. The new window will initially appear on top of the other
windows, but succeeding windows and user actions may cause it to be
hidden. This concept of overlapping 2-dimensional surfaces on the screen
is often called 2 1/2-D.

A tiling window manager, such as Star and Andrew, will normally assign a
size and position to newly created windows automatically, and perhaps
adjust the size or position of others, to ensure that no window overlaps
another.
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Figure: 3.13.  Example of an OPEN LOOK window with a border that is handled by
a window manager. The various regions in the border may be manipu-
lated by the user, and the window manager turns these into transfor-
mations on the window.

Different layout polices are largely a matter of aesthetics, and agreement
on them has proved hard to come by. As a result, recent window systems
such as NeWS and X11 are designed to support a wide range of policies, iso-
lating the policies in separate code that the user can easily replace[ROSES9].

3.4.3 Base Window System

The base window system has two fundamental purposes:

1 To provide the upper layers with abstractions of the physical
resources. For example, a window is an abstraction of the physical
screen resource.

2 To assign real physical resources to these abstract objects. For exam-
ple, the window system will assign real pixels to the visible part of
an abstract window.

These tasks are analogous to ‘those of an operating system. An operating
system provides its clients (applications) with abstractions of real resources
such as CPU and memory. A window system can be thought of as an operat-
ing system that provides the user interface with multiprocessing, by
providing multiple windows on-screen to communicate with multiple appli-
cations, and virtual memory, through multiple overlapping windows that
can provide more “virtual pixels” than physical pixels.

The resources which the base window system must manage include:

the pixels on the screen(s), and any additional memory used to hold
obscured parts of windows.
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the colormap(s) that convert pixels to colors during the video refresh
process.

the keyboard, mouse, and other input devices.

The base window system must assign these resources to multiple clients,
protect these clients so that one client’s use of the real resource does not in-
terfere with another’s, and allow clients to operate on the abstract
resources it gives them.

34.3.1 The Screen

The user wants multiple applications to share the screen. The goal of the

window system is to provide each application the illusion that it has sole
control over its window. To maintain this illusion, the window system pro-
vides mutual protection between windows. Ideally, applications do not
draw in the coordinate space of the screen, they draw in their own “logical”
coordinate space, which should correspond to the needs of the application,
rather than the hardware characteristics of the target screen. Less advanced
window systems make applications use pixel (“real”) coordinate spaces
within their windows, which decreases application portability between dif-
ferent display resolutions and sizes. The base window system should allow
applications to establish their own arbitrary coordinate space. It then maps
the application’s logical coordinate space into the physical device (display)
space, enforcing appropriate clipping as windows overlap.
Controlling access to the screen can be compared to the control of virtual
memory in a multitasking environment. In the case of virtual memory,
many applications are contending for a physical resource, the physical RAM
(Random Access Memory) into which the application code and data seg-
ments are loaded for execution. The sum of the memory requirements for
the simultaneous execution of all applications on the system may be much
too large for the amount of physical memory available. Therefore, a large
logical memory area is mapped into a smaller physical memory area “on
demand,” or as an application takes its turn to execute.

The window system provides a roughly similar mapping algorithm. First,
the window system must provide a logical-to-physical mapping for all visi-
ble applications at all times. Second, the window system needs to have a
response to applications whose logical resources (such as a coordinate space
of 3000 by 3000) have no possible one-to-one correspondence with the physi-
cal resources available (e.g., a window partially covering a 1000 by 1000
pixel screen). The logical screen space required can be stretched (or shrunk)
to fit the physical space available. Docs and NeWS are examples of systems
with such transform capabilities. Otherwise the user or the application has
to pan the window to cover the one-to-one logical to physical mapping.
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Figure: 3.14.  Partially visible window, A, being uncovered. The shaded area shows
the portion of the window which was damaged as a result.

Managing the screen area also includes managing damage repair. Applica-
tions may draw into windows which are completely or partly hidden by
other windows. If the obscuring window is removed, the pixels in the
newly revealed area must be changed from showing the image of the old
window to showing the image of the new window. The pixels are said to be
damaged. The process of re-painting them to show the new image is called
damage repair. ‘

The window system can use various strategies for damage repair:

It can maintain off-screen memory containing the obscured pixels, and copy
the damaged area to the screen from this buffer. This technique is called
“backing store” or “retained windows”.

It can maintain a display list, or other representation of the operations
needed to paint a window, and re-execute these operations when required
to paint the damaged area.

It can signal the appropriate client that damage has occurred and depend on
it to repaint the damaged area.

Each strategy has advantages and disadvantages:

Retaining windows is effective, simple and fast, but can consume large
amounts of memory. Retaining a 1024 by 1024 image in 8 bits deep color
requires a megabyte of memory. And retaining an off-screen image only
reduces damage. It cannot eliminate damage caused, for example, by
windows being resized.

Display lists are often a more compact encoding of the re-created image, but
may be slower. And some applications may not be able to represent their
damage repair as a display list.
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Depending on the client to repair the damage can cause problems for
applications, such as image-processing, which operate directly on the
pixels without maintaining an internal representation of the image.

Since none of the strategies is wholly satisfactory, window systems gen-
erally use a mix of them and allow each window to select the strategy that
works best for them. NeWS supports all three strategies. Windows can
optionally be retained, applications can down-load a program that knows
how to repair damage into the server (emulating a display list), or the appli-
cation can decide to repair the damage itself. If the client decides to repair
the damage itself, it can find out the exact shape of the damaged area, and
repaint only that part of the image to save time. In general, retaining win-
dows is the fastest but most expensive method, and direct client repair is
the simplest. Clients using retained windows will have to implement direct
repair as well, as a fall-back for cases such as resizing where retaining fails
to eliminate damage.

3432 The Colormap

There are additional components of typical graphics devices that the base
window system is responsible for managing. For example, many color dis-
plays have colormaps that convert the values stored in pixels into colors on
the screen. A color map is a table of color values that is indexed by a pixel
value. A typical color map has 256 entries, indexed by pixels that are 8 bits
deep. Each map entry has red, green, and blue components that determine the
actual color displayed for the corresponding pixel value. There are a limited
number of colors that may be displayed at one time, dictated by the number
of slots in the color map. This limit creates a resource allocation problem
that has to be managed.

The base window system will provide the upper layers of the system
with the abstraction of a number of virtual colormaps, and will implement
them by either handing out ranges of pixel values to clients, or statically
determining a set of good colors and restricting applications to using them.

X11 is an example of a system providing clients total control over the
colormap resource, whereas NeWS manages the resource internally. Chapter
10 describes how this conflict is resolved in the X11/NeWS merge.

3433 The Input Devices

The base window system is responsible for converting external events
into a canonical form. Events include up and down transitions of keys on
the keyboard or the mouse buttons, movements of the mouse, and perhaps
system-generated events such as time-outs. After being converted into
canonical form they are:
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1 serialized into a single stream in strict time sequence,

2 formatted into a uniform event report identifying the type of event,
3 stamped with the time of occurrence,

4 labeled with the mouse position (and the state of some or all of the

keys and buttons) at the time of occurrence,

5 distributed to the appropriate window.

Strict serialization is required to provide predictable behavior when the
system lags behind the user. Timestamping is required to support some user
interface styles, such as double-click selection, and for serialization. Deter-
mining the appropriate window can be a complex process; windows can
ignore certain classes of events, and can perhaps pre-empt other events even
if they do not occur within their bounds. The window receiving events is
often called the input focus.

In most base window systems, there are actually two input foci. One con-
trols the distribution of mouse (and normally menu) events, and the other
controls the distribution of keystrokes. Typically there are two ways of
managing these foci:

1 Both foci are tied together and all events are distributed to the
window under the mouse. This is often called the Focus-Follows-
Cursor policy.

2 Mouse events go to the window under the mouse, but keystrokes go
to some window that has been designated as the current input focus.
This is often called Click-to-Type, since the user usually clicks on a
window to transfer focus to it.

Input Event

In window A
or window B?

_{|Event handler for
application A.

Event handler for
application A.

Figure: 3.15.  General input distribution: input events being generated and select-
ively passed to applications. One of the applications has nominated its
own input handling routine by expressing interest in certain events.
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The window system provides the input focus, one of these mechanisms,
transparently to the toolkit. Applications are aiso generally unaware of the
mechanism by which the input focus is specified, though they must be able
to respond to the input focus being transferred to the application.

Many client applications allow the user to select objects. For example,
an editor allows users to select regions of text in their documents. Window
systems normally provide a mechanism help clients manage selections and
to rendezvous and transfer data among themselves. They normally support
several named selections, including the Primary and Secondary selections,
and clients can assert ownership of a selection by name. Clients that want
to retrieve the contents of a selection use the name to rendezvous with the
owner of the selection and ask it to supply the data.

3.4.4 Graphics Library

The lowest level in the window system is the graphics library. It pro-
vides the upper layers with an imaging model, a set of operations that can
be used to paint on the screen, and implements them in terms of the opera-
tions available from the display hardware. The operations available from
the graphics library must be powerful enough to support a wide range of
applications. However, implementing a powerful imaging model across a
wide range of different display hardware with good performance can be hard.

The three basic features of an imaging model are:

« the coordinate system(s) it uses,
« the drawing operations it provides,
« and the font capabilities it supports.

The simplest imaging models are the ones based on the RasterOp (Raster
Operation), also known as bitbit (bit block transfer) primitive. This model
operates in the hardware pixel coordinate system, performing a boolean com-
bination of the pixels in a source and a destination rectangle. Typical
operations are copying a rectangle of pixels from one place to another and
filling a rectangle with a color.

Early systems based on this imaging model, like the Alto, provided only
lines and RasterOp as drawing operations. Text was drawn using RasterOp.
Later systems, like the Macintosh, made the construction of graphically
interesting interfaces easier by enhancing the imaging model. The Quick-
Draw graphics library, though RasterOp based, supports curves and non-
rectangular operations. As a result, QuickDraw provides the ability to con-
struct more interesting interfaces at the cost of a somewhat more complex
application programmer interface.

Imaging models capable of dealing with curves and transformations can
render much more interesting images than those that just deal with straight
lines in pixel coordinates. The PostScript language graphics model provides
high-level graphics primitives, which give NeWS the ability to deal with
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curves, regions that have strange shapes, images, and arbitrary
transformations of them. In addition, this model operates in user-defined co-
ordinates (hiding the existence of pixels) and can efficiently span a wide
variety of devices.

A good example is the drawing of a rose in Figure 3.16. Without the abil-
ity to draw curves, an application would have to draw such an image using a
lot of small line segments. Besides being a performance problem, it is often
the case that if each individual application is left the task of supporting
curves on their own, most will do a poor job.

[ [ hy Is itno one ever sentine yer

One perfect limousine, do you, syppose?
Ak ng,y it"s adways fust my ukt?;et
Qne perfectrose.

—Dorofhy Parker

Figure: 3.16.  PostScript 2D graphics illustrating curves and scaling.
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Although PostScript provides the most advanced 2D graphics model avail-
able to date, it has no features for 3D. There are no window systems (yet)
that have well integrated 3D models, although some have extensions that
support some form of 3D.

The third important aspect of the window system’s imaging model is its
treatment of text and fonts. At a minimum, window systems provide facili-
ties for the definition of new fonts, opening and closing font libraries, and
writing character strings. More advanced systems provide altered spacing in
specified fonts, kerning, arbitrary baseline directions, and the ability to
handle extremely large fonts. Typically, window systems define fonts
based on collections of bitmap images, supporting only a limited set of
sizes and orientations. One of the interesting features that NeWS inherits
from PostScript is the ability to dynamically scan-convert outline font rep-
resentations into bitmaps, creating characters at arbitrary sizes and rotations.

3.5  Summary

The most important factors influencing window system architecture are
the addressing and multiprocessing structure. Operating systems can be cate-
gorized into three classes:

1 Single address space, single process.
2 Single address space, multiple processes.
3 Multiple address spaces, multiple processes.
The first class — single address space, single process — corresponds to

simple operating systems, such as those on personal computers. They are
simple and small, and are often just subroutine libraries. MS/DOS and the
Macintosh operating system fall under this category.

The second class — single address space, multiple processes — is often
found in dedicated language environments. Lisp machines, such as the Sym-
bolics computer, and the systems from Xerox PARC are good examples.
The NeWS server itself, when thought of as an “operating system,” is
another example of a system built under this principle.

The third class — multiple address spaces — corresponds to the operating
systems derived from or developed for multi-user machines. VM, VMS,
Multics, OS/2, and UNIX are all examples.

The first two classes share the advantage that every part of the system
can access every piece of memory. Data structures can be shared or accessed
merely by passing pointers. For instance, if an application builds a display
list of graphics commands, no data copying is necessary when the window
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systems renders it. The window system can access the display list directly.

The last two classes, multiple processes, share the disadvantage that they
have to cope with synchronization. There are shared resources that must be
accessed by the multiple processes and these accesses must be arbitrated.

In a multiple-address-space environment, window systems can be parti-
tioned by placing the bulk of their code in either the kernel, each client pro-
cess, or some separate server process. All three partitioning schemes require
that some information be passed between address spaces. A set of processes
is trying to cooperate; this cooperation has a price, and that price is the cost
of exchanging information. ’

Window systems that require each client to perform graphics operations
by directly accessing the hardware expect high performance, but often do
not achieve it due to unexpected synchronization problems. The centralized
window-server architecture solves most of these problems. It incurs an
added message passing cost, but the impact of this cost can be substantially
reduced by careful design of the protocol.



4
Introduction to the PostScript
Language

" PostScript is the future of words on paper.”
Arthur C. Clarke

This chapter gives a brief introduction to the standard PostScript lan-
guage, as implemented in NeWS and many thousands of PostScript printers.
This introduction is not particularly rigorous, but it should offer enough in-
formation for understanding the rest of the book. For a full description, see
the PostScript Language Reference Manual[ ADOB85a].

4.1 psh

The NeWS psh command, entered by the user to the system command
shell, provides an easy way to test the PostScript commands and programs
described below. If you have NeWS available to you, use psh to try out the
examples from the following sections: psh establishes a connection to the
NeWS server and sends the PostScript programs you type to the server, then
you can interactively program and debug the NeWS server. For the purposes
of this chapter, consider psh a way to preview standard PostScript programs
on the screen. However, psh is demonstrated in the chapters ahead as a
means to also test and run complex NeWS programs.

There are some differences between interacting with NeWS using the psh
command and interacting with a PostScript printer. First, some printer-
related commands, such as showpage, operate differently in the NeWS envi-
ronment. Second, the coordinate systems of a standard PostScript printer
and a NeWS window may differ. The default LaserWriter coordinate scheme
goes from (0,0) to (612,792), whereas a NeWS canvas can be any size.

Usually, you connect to the NeWS server using the psh command, then
you type the executive operator to start an executive, an interactive session
with the server. Commands are typed in as follows:
system prompt% psh
executive
Welcome to NeWS Version 1.1
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Once running an executive, you can type in arbitrary PostScript
commands.

4.2  Conventions

All the PostScript commands in this and following chapters can be tested
by typing them into the psh executive. In the psh examples, bold text indi-
cates indicates system response. Regular text indicates commands typed in
by the user. Unquoted bold text within the descriptive text denote NeWS
or PostScript operators. Newly defined words, variables and values are itali-
cized. These conventions are followed throughout the remainder of the book.

4.3  Syntax

A PostScript program is a stream of characters. This stream of characters
is broken up by the PostScript interpreter into a sequence of fokens. A
token is usually delimited by spaces, but a few special characters also delim-
it tokens (like braces and the percent sign). Tokens represent objects. So:

100 150 moveto (Hello world!) show

is made up of five tokens: the two numbers /00 and 150, the keyword move-
to, the string Hello world! and the keyword show. These tokens are
translated into integer, keyword and string objects. Objects are manipulated
internally by the PostScript language.

4.3.1 Numbers

Number tokens are just sequences of digits with an optional decimal
point and “E” format exponent, like you would see in Fortran or C. Some
valid numbers are 100, 100.75, 1.0075E2 and 1000E-1. Number tokens are
translated into number objects that are either of type integer or real.
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4.3.2 Strings

String tokens in PostScript are sequences of characters surrounded by
parenthesis: “(” and “)”. These character sequences are translated into
objects of type string. They follow the C language convention for special
characters, so that, for example:

(Hello!\n)

is a string that contains 7 characters, the last of which is a newline, indi-
cated by “\n”.

4.3.3 Comments

Everything from a “%” up until the end of the line is a comment. Com-
ments are completely ignored:

% this will be ignored

4.3.4 Keywords

Keywords tokens are sequences of characters that do not look like num-
bers, strings or comments. K, add, sum, this-thing, and jI0 are all
keywords. Keywords serve the purpose of identifiers in other languages.
Like Lisp atoms, they are real objects, not just compile-time symbols that
represent something else. A very important property of keyword objects is
that if two look the same, then they are the same — they are equal.

All objects have a flag that indicates whether or not they are executable.
The meaning of this will be explained later. Normally, on numbers and
strings the executable flag is off. For keywords, the flag is normally on. A
slash character (“/”) written in front of a keyword indicates that it should
not be executable. Thus, sum and /sum are the same keyword, except that
the first is executable, and the second is not.

4.3.5 Arrays

Array objects are linear collections of other objects, distinguished by
enclosing the array objects in either square brackets “[ ]”, or brace brackets
“{ }”. Arrays written with square brackets are not executable, and arrays
written with brace brackets are executable. As an example:

[ heinz 57 (tasty!) 1
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is a non-executable array that contains three objects: the executable key-
word heinz, the number 57 and the string fasty!. Similarly,

{ heinz 57 (tasty!) }

is the same array, now executable. There is a “catch” in the syntax of non-
executable arrays that will be explained later.

4.3.6 Other Data Types |

There are many other PostScript data types. The following list presents
the most important. Others will be mentioned in the pages that follow:

boolean The two special values true and false.

dictionary A table that associates values with keys. Keys in dictionaries
do not have to be keywords — they can be any PostScript
language object. See section 4.5.4 for more information about

dictionaries.

marker Objects which mark the stack to delimit groups of objects on
the stack.

null A unique value used to represent the null value or “nothing”.

operator Operator objects refer to operations that PostScript can
perform. For example, there is an operator to add two numbers
and one to draw a string.

4.4  Stacks

The PostScript language makes extensive use of several stacks. Stacks rep-
resent locations where objects are temporarily stored. Everything in the
PostScript language operates on these stacks, even variable definitions and
control statements. Operators take their operands from the stack, and push
the objects returned onto the stack. The language actually has four separate
stacks that store data (operand stack), commands (execution stack), local
storage context or lists of dictionary objects (dictionary stack), and graphic
settings (graphic state stack). The stack colloquially referred to as the
stack is the operand stack.
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4.5 Execution

Now that we have some background, we can talk about what PostScript
programs are and how they execute. A PostScript program is just a sequence
of PostScript objects. The expression 2 3 add is parsed into a sequence of
three tokens, which in turn become three PostScript objects: the integer 2,
the integer 3, and the keyword add. A sequence is executed by taking each
object in turn and executing the object individually. The execution of an
object depends on its type, according to the following rules:

An executable operator executes the action denoted by that operator.

An executable keyword is looked up in the dictionary stack. The dictionary
stack is a set of dictionaries that provide the naming context for a
PostScript program. After the keyword is looked up, the object found is
executed. A special case is made for executable arrays. The array is pushed
on the execution stack and is executed as a sequence of objects.

If the type of the object is neither a keyword nor an executable operator,
then the object is pushed on to the operand stack.

Let’s look more closely at the execution of ‘2 3 add’’. When the first
object, the number 2, is encountered, it is pushed onto the operand stack
since it is neither an executable operator nor an executable keyword. Pro-
cessing of 3 is identical. add is an executable keyword, so the second rule
applies: add is looked up in the dictionary stack. The dictionary at the top

of the stack is searched to determine if any value exists under the key add.
If no key exists, then the next dictionary down in the stack is examined,
until a key is found or the entire dictionary stack is examined. For this
example, we assume that a value is eventually found, and that it is an exe-
cutable operator. The PostScript interpreter executes this object, causing
some action to occur. In this case, the add operator (as opposed to the add
keyword) is the value found, and it pops the top two entries from the
operand stack and pushes their sum onto the operand stack.

Procedures in PostScript are simply executable arrays. When a keyword is
looked up in the process of executing a sequence of objects, and the value of
the keyword is an executable array, then that executable array gets executed
as a sequence of objects. It is important to remember that if an executable
array occurs in a sequence, it is not executed: it is only pushed on the oper-
and stack. It will only be executed if it is found as the value of a keyword
or if some operator explicitly executes it (more on this later).

The bottom element of the dictionary stack is normally a dictionary
known as systemdict. This dictionary contains all the operators defined by
the PostScript language. The second from the bottom is a dictionary known
as userdict that contains user defined local variables.
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4.6  The PostScript Language Operators

The PostScript language is commonly perceived as a graphics language,
but in fact it has a full set of general-purpose operators. These operators are
used for such varied purposes as arithmetic, manipulating data structures,
control flow, and, of course, for graphics.

4.6.1 Arithmetic

When an operator is defined it is presented in the following format:

i} iy...i, name o; 0,..0,
The operator name pops its input parameters iy, i5,...i,, from

the stack, performs some computation based on them and
pushes its output parameters o;, 05,...0,, onto the stack when

it is done. If the operator takes no inputs or returns no results,
then an em dash (—) will appear in the description.

Arithmetic operators -exist for all the commonly used arithmetic func-
tions. There are the binary operators add, sub, mul, div, idiv, and, or, xor
and mod. Unary operators include abs, round, floor, ceiling, truncate,
neg and not, and the relationals It, le, gt, ge, ne and eq.

abaddc Popsaand b from the stack and pushes c, their sum, on
to the stack.

absubc c¢=a-b

abmulc c=a*b

abdivec ¢ = a / b (real division).

abidive c=a/b (integer division).

abandc ¢ =a & b (bitwise and and boolean and).

aborc ¢ = a | b (bitwise or and boolean or).

abxorc ¢ =a " b (bitwise exclusive or and boolean exclusive or).
abmodc c¢=a % b (remainder after integer division).

aabsb b = lal (absolute value).

aroundb b =arounded to the nearest integer.

a floor b b = the largest integer less than or equal to a.



aceilingb b = the smallest integer greater that or equal to a.

atruncate b
b = a with its fractional part removed (truncate is equivalent
to floor if a is positive, and to ceiling otherwise).

anegb b=-a

anotb b = ~a (boolean not).

abltc ¢ = true if a<b, false otherwise.
ablec ¢ = true if a<b, false otherwise.
abgtc ¢ = true if a>b, false otherwise.
abgec ¢ = true if a=b, false otherwise.
abnec ¢ = true if a#b, false otherwise.
abeqc ¢ = true if a=b, false otherwise.

Let’s look at the execution of *“14 27 add 2 div round’’:

Operator Stack Comment

14 14 push the integer /4 onto the stack.
27 14 27 push the integer 27 onto the stack.
add 41 Looks up the keyword add. add

will be found in systemdict to be the
operator that replaces the top two

elements of the stack with their sum.

2 41 2 push the integer 2 onto the stack.
div 20.5 Divides 41 by 2.
round 21 Rounds 20.5 to the nearest integer.

4.6.2 Stack Manipulation

Some operators exist for the purpose of manipulating the stack only:

apop—  Removes the top element from the stack.

adupaa  Duplicates the top of the stack.

i..ignindexi ..iji
Duplicates the nth element from the top of the stack (0 index
is the same as dup).

59
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idgnicopy i..igi ..ig,
Duplicates the # elements on the top of the stack (1 copy is
the same as dup).

abexchba Exchanges the top two elements of the stack.

i..i mn roll i

mn+1!m 11-Im-n
Rotates the top m elements n places (2 I roll is the same as
exch.).

Let’s look at the execution of ‘‘(is) (now) exch 1 index 3 2
roll’’:

Operator Stack Comment
(is) (is) Push the string i s onto the stack.
(now) (is) (now)
Push the string now onto the stack.
exch (now) (is)
Exchange the top two elements
1 (now) (is) 1
Push the integer I onto the stack
index (now) (is) (now)
Duplicates the string now to the top
of the stack.
3 2 roll (is) (now) (now)
Rotate the top three elements of
the stack.

4.6.3 Dictionaries

A dictionary is a table that contains pairs of key-value objects. Dictionar-
ies are the ubiquitous way of storing and accessing information within the
PostScript language interpreter. Dictionaries act as databases for system and
program information. They are structured as groups of key-value pairs. A
key is usually a keyword object (such as /sum), although it may be any kind
of object, while a value may be any object. The PostScript language defines
a set of operators to manipulate the contents of dictionaries:

n dict dict Creates a dictionary with enough room for # pairs. Initially,
none will be in use.

dict object get value
Looks into the dictionary for the pair whose key is object and
returns the corresponding value.
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dict key value put —
Stores the pair key value in dict. If a pair with a matching key
already exists in the dictionary, it will be replaced.

The PostScript language interpreter maintains a dictionary stack that
stores the set of dictionaries in use. The order of the dictionaries on the
stack determines the order in which the dictionaries will be accessed. With
this mechanism PostScript programs can maintain a local set of data or pro-
gram definitions. The last dictionary pushed onto the stack is accessed first,
other dictionaries are accessed in their order on the stack if the reference is
not found. Therefore, if a user program redefines a key that already exists,
the new definition will be found in the topmost dictionary, stopping the
key search. The top dictionary on the stack is called the current dictionary,
and all keys referenced in a program are first searched for in the current dic-
tionary.

There are two standard dictionaries that are always present on the
stack — systemdict and userdict. All of the system operators are stored in
systemdict. Whenever a new PostScript user program begins, it is given a
new userdict dictionary where the bulk of user key-values are defined.

Here are some operators for dictionaries and the dictionary stack:

— currentdict dict
Returns the current dictionary: the dictionary on the top of the
dictionary stack.

dict begin —
Pushes dict onto the dictionary stack. dict becomes the current
dictionary.

—end —  Pops a dictionary from the top of the dictionary stack.

key value def —
Stores the pair key value in the current dictionary. It is
exactly equivalent to “currentdict key value put”. def is
the operator that is normally used to define variables.

key load value
Scans the dictionary stack for a dictionary that contains key and
pushes that value onto the operand stack. load is very similar
to normal variable access (keyword lookup in the process of
executing a sequence) except that it always pushes the value on
to the operand stack: load never tries to evaluate it.
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/a 5
dictionary stV o (bostr)
name value —
a 5 .
7
b (b-str) | [a
c (c-str) \\ “ (c-str)
systemdict
Figure: 4.1.  The name search for a newly defined variable — stack with system-

dict, userdict, and currentdict on the stack and an instance of the
redefinition of a key that is in two places.

Let’s look at another example “/sum 2 2 add def’:

Operator Stack Comment

/sum /sum push keyword, since /sum is non-
executable.

2 /sum 2 push integer 2.

2 /sum 2 2 push integer 2.

add /sum 4 Since add is executable, it gets

looked up in the dictionary stack, is
found in systemdict, and its operator
object gets executed to add the two
values.

def empty Stores the value 4 into the dictionary
on the top of the stack (currentdict)
under the key sum.

Without explaining all operator references, the following is an example
of dictionary use. Unlike previous examples, it is presented as a typescript
of a psh session:

% psh Invoke psh as a UNIX shell command.

executive Tell NeWS that we’re an interactive session, not a
program. Otherwise if we make any mistakes NeWS will
break the connection.

Welcome to NeWS Version 1.1

/mydict 10 dict def



Create a dictionary, name it mydict.
mydict == Print it out.
dict[ ] It is empty.
mydict /var 23 put

Associate the value 23 with the key var.
mydict ==  Once again print the dictionary.
dict[/var:23]}

Note that var is now defined in mydict.

mydict 23 /var put

This time, use 23 as the key rather than the value.

mydict == Look at the value again.
dict[23:/var
/var:23] Note the two entries.
mydict /var get ==
Get the value of var from the dictionary.
23 It is what was expected.
mydict begin
Push mydi ct onto the dictionary stack.

var Now normal variable lookups will look there.

23 The “variable” var comes from mydict.
/var 77 def Change the value of var.
/var2 23 def
Define a new keyword/value.
mydict == Look at mydict.
dict[23:/var
/var2:23 This is where var2 got defined.

/var:77] The value of var changed.

end Pop mydict from the dictionary stack.
var Access var as a simple variable.
* x kERROR* * *

Process: 0x3C783C Error: undefined

63
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Stack: dictionary[22]

var is undefined because the dictionary in which it is
defined is no longer anywhere on the dictionary stack.

Executing: var
At: Reading file(?,W,R)

*khkkk

A dictionary is a composite object; it is made up of other objects. Other
composite objects include arrays and strings. Composite objects behave dif-
ferently from simple objects in some cases. One of the most significant is
copying an object. When a composite object is copied, its data is not dupli-
cated. Only a pointer (or a reference) to the object is passed to the requestor
of the copy, which conserves memory and also allows data sharing to take
place easily among cooperating PostScript programs. This attribute encour-
ages the object-oriented structure of the NeWS Lite toolkit, discussed in
Chapter 6.

4.6.4 Arrays

An array object is simply a list of other objects. This array is indexed by
integers starting at 0. Here are some common array operators:

n array array
Creates an array of length n on the stack. All entries will
be null.

array n get value
Gets the nth element from array.

array n value put —
Puts value into the nth element of array.

array length len
Returns the number of elements in array.

The following simple example shows an interactive session using arrays:
% psh Connect to the NeWS server.

executive  Tell it we want an interactive session.
Welcome to NeWS Version 1.1
/arr 3 array def
Create a 3 element array and assign it to a variable.

arr == Print out the array.
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[null null null]
It starts out filled with null’s.
arr 0 (Hello) put
Put the string He 110 into the zeroth element.
arr ==
[ (Hello) null null]
Now it contains the string and the nulls.
arr 1 4 put

Fill in the other elements: 4 in second element (the first
element has index 0, the second has index 1, ...).

arr 2 /key put
Place /key in third element. Note the different types.
arr ==
[ (Hello) 4 /key]
arr 2 get ==
Fetch value at 2nd array element from the array.
/key The value is what we put there.

The catch in the syntax of non-executable arrays: “[” and “]” are actually
operators. “[” pushes a mark on the stack, and “]” takes everything on the
stack above the mark and makes an array out of them. The mark is removed
from the stack and the array is pushed on. The PostScript code between “[”

and “]” is therefore executed before the array is built. In contrast, “{” and
“}” are handled by the parser. Here is an example:

% psh
executive
Welcome to NeWS Version 1.1
{ 2 2 add } ==
Type in an executable array.

{2 2 add} Notice that when we print it, the array contains the
objects that we typed in.

[2 2 add] ==
Type almost the same thing, but using [ ] instead.

[4] Notice that 2 2 add was evaluated.
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4.6.5 Control flow Operators

The PostScript language has many operators that control the flow of exe-
cution. There is nothing that resembles a goto. Control flow is handled by a
mechanism that looks like procedure calls: the operators take executable
arrays (referred to as proc parameters) and execute their contents. Here are
some of them:

boolean proc if —
If boolean is true, proc, an executable array, will get executed.

boolean proc; proc, ifelse —

If boolean is true, proc; will get executed, otherwise proc,.

proc loop —
Executes proc forever —or until something in proc executes
the exit.

—exit —  Exits the innermost loop. It can be used to exit any kind
of loop.

n proc repeat —
Similar to loop except that it only executes proc n times.

lo inc hi proc for —
Pushes lo onto the stack, compares 4i to the current top of the
stack. If they are not equal, it executes proc and increments the
value on the top of the stack by inc. If inc is negative, then the
loop proceeds in the reverse order.

obj proc forall —
Executes proc for each element of obj.

4.7 A Small Example

So far we have presented some of the important non-graphic operators of
the PostScript language. The following PostScript function illustrates
them in action:
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/min {
2 dict begin

Create a dictionary for local storage and push it onto the
dictionary stack.

/a exch def
Save the top of the stack in a.
/b exch def
And the nextin b.
a b 1t
Compare a and b.
{ al
Code fragment to push a onto the stack.
{ b}
Code fragment to push b onto the stack.
ifelse

Execute the first code fragment if a is less than b, the
second otherwise.

end Remove the local variable dictionary from the stack.
} def Define min to be the preceding executable array.
Remember: executable arrays are procedures.
4 7 min Invoke our newly defined function.
== Print out the result.
4

This PostScript program defines a function called min by defining the key-
word min to have a code fragment as its value. The code fragment begins by
creating a dictionary and pushing it onto the dictionary stack (2 dict begin).
This creates a place for local variables. Next a and b are assigned the values
of the parameters to min which were passed to it on the stack. The variables
a and b are then compared (a b It) and either { a } or { b } is executed to
push the lesser of the two onto the stack. Finally end is used to remove the
local variables from the dictionary stack.

While the use of dictionaries for local variables is reasonably clear and
understandable, it is usually preferable to avoid them when possible and
just keep temporaries on the stack. Here is a significantly more efficient ver-
sion of the min function:
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/min {
2 copy gt
Compare a and b.
{ exch } if
if a is greater than b, exchange them, leaving the largest
on the top of the stack.
pop Pop the largest from the stack.
} def

4.8  The Stencil/Paint Imaging Model: Paths

The PostScript language implements the stencil/paint imaging model, incor-
porating the concept of a path. A path is an arbitrary sequence of points,
straight lines, and curves that describe some shape. This shape may be closed
and enclose a region, or it may be a line trajectory. Many operators can be
used to modify a path. Once a path is built, it can be filled with paint,
drawn as a line, or treated as a clipping boundary for further graphic opera-
tors. Like the current dictionary, the PostScript language maintains the
concept of a current path, which is the path currently being constructed and
manipulated. The current path can be explicitly or implicitly defined by the
user program. Some operators such as stroke, fill, and clip automatically
construct a new current path upon their completion. Otherwise, a new cur-
rent path can be started by using the newpath command. Unlike many other
graphics languages, every operator that needs a geometric description of an
outline as an argument gets it in exactly the same way — from the current
path. This principle guarantees consistency between the operators.

Paint Stencil Path Result

Figure: 4.2.  Paths and paint.
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One way to think of a path is as a silkscreen or a stencil. When drawing
an object, first construct a path (stencil) and apply color (ink) through it.
Figure 4.1 shows a large patch of color that is pressed through a path.
Images can be used as inks as well as uniform colors.

When a path is constructed, it is built from pieces by operators such as
lineto. lineto takes two parameters, the x and y coordinates of the endpoint
of the line. The line starts at the current point, defined with the moveto
command. After lineto has been executed, the endpoint becomes the start
point of the next line. By contrast, moveto sets the current point, but does
not add a line segment to the path. Here are a few of the path construction
operators:

— newpath —
Empties the current path.

X y moveto —
Set the current point to x,y.

x y lineto —
Add a straight line segment from the current point to x,y.

X yrasaearc—
Add an arc to the path whose center is at x,y and has radius r.
The arc starts at angle as and continues counterclockwise until
angle ae. Before adding the arc, a straight line segment is added
to the path that goes from the current point to the beginning
of the arc. After adding the arc, the current point will be at
the end of the arc.

x1 y1 x2 y2 x3 y3 curveto —
Adds a cubic bezier to the path which starts at the current
point and ends at x3,y3 whose two control points are x1,yl
and x2, y2.

— closepath —
Adds a straight line segment from the current point to the
beginning of the current segment — the point that was last
moved to with moveto.
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Current Path Current Clip Resulting Fill

Figure: 4.3.  Clipping.

Once a path is established, there are few simple things that can be done
with it:
—fill —  Fills the current path with the current color (see Section 4.11
for more discussion of color).

—clip— Intersects the current clip path with the current path,
Whenever a graphics operation is performed, it is constrained
to operate only within the current clip path. For example,
whenever you fill a path, that path will be intersected with
the current clip path to get the region to fill.

49  Transformation Matrices

The coordinates passed to these path construction operators are always
transformed using the current transformation matrix (CTM). The CTM
maps coordinates specified by a PostScript program into device coordinates.
This transformation can be used to scale, rotate, skew, and translate a path.
This transformation is always present; it is a fundamental concept of the
PostScript language imaging model. Although the transformation can never
be avoided, its overhead can be negligible, as in the case of the identity trans-
formation, where the coordinates specified by the PostScript program map
directly into device coordinates and no actual transformation is performed.
In the NeWS PostScript interpreter, nine different special forms of the
transformation matrices are recognized and optimized.

There are a number of operators that manipulate the CTM:

X y translate —
Move the origin of the coordinate system to x,y.
arotate — Rotate the coordinate system of the image by a degrees.

xf yf scale —
Scale the coordinate system by xf in the x direction and yf in
the y direction.
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Below is the code fragment that drew the rotated “Text” from figure 4.4:

10 10 scale Expand the coordinate system.
5 1 translate
Move the origin.
40 rotate  Rotate about the origin.
1 1 moveto Moveto 1, 1 inthe new coordinate system.

(Text) show Draw the string.

4,10 Color

The color model in the PostScript language is simple. Color is the paint
in the paint/stencil model. There is a current color that is used whenever
anything is filled or stroked. It can be defined in one of three ways:

n setgray —
Sets the current color to be a grey value determined by » which
ranges from 0, for black, to 1 for white.

r g b setrgbcolor —
Sets the current color to be a combination of read, green and
blue as measured by r, g and b (which range from O to 1).

h s b sethshbcolor —
Sets the current color to a specific hue, saturation and
brightness.

Figure: 44.  Text being rendered in a translated, scaled and rotated coordinate
system. The CTM is applied to everything.
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4.11 Imaging

The PostScript language supplies general facilities for displaying raster
images. Images are described in a way that is completely independent of the
kind of output device upon which the image will be displayed. They can be
scaled, rotated, and skewed so that they can be placed in an arbitrary
parallelogram on the page. The image operators base their actions on three
pieces of information:

The image. This consists of a specification of the width and height in pixels
of the image, the depth in bits of each pixel, and the pixels themselves.

The destination for the image: the parallelogram into which the image is
to be rendered. This is implicitly specified by the current transforma-
tion matrix: the image is rendered into the rectangle with the lower left
corner at user coordinate 0,0, and the upper right at 1,1. This unit
rectangle can be placed anywhere on the page by manipulating the
current transformation matrix.

A specification of how the pixels are to be rendered. This consists of both a
mapping from grey values in the image to grey values in the result, and
the layout of a halftone screen.

32 0 translate

27 rotate

135 108 scale

125 100 8

[125 0 0 100 0 -100]1 {...} image
data....

Figure: 4.5. Figure 4.5 shows an image being rendered in a rotated and scaled
coordinate system.
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w h d matrix proc image —
Renders an image measured wxhxd. proc is a procedure that
is repeatedly called by image to return the data for the pixels
of the image as a string. It need not return all of the pixels
at once: image will call it again if it needs more. The matrix
argument specifies a mapping from the unit square to the
pixels in the image: the first pixel is at coordinate 0,0 at the
lower left corner, the last pixel is w,h at the upper right
corner. A common use for the matrix argument is to flip the
image so that the top line, rather than the bottom line, comes
first in the data.

w h invert matrix proc imagemask —

This is similar to image except that the image is a 1 bit deep
mask that defines where paint (the current color) is to be
applied. If invert is true, 1 pixels are painted in the current
color, 0 pixels are not disturbed. Otherwise 0’s are painted,
and 1’s are not.

The program fragment begins by translating the origin, then scaling it up
by a factor of /00 in x and y, and then rotating it 27 degrees. An image is
then displayed inside the rectangle in the new coordinate system 0,0 to 1,1.

4.12 Composite Operations: Lines

Almost everything else in the PostScript language graphics model is
based on these three concepts: paths, transforms, and colors. Even line draw-
ing is expressed through these concepts. The stroke primitive is used for
drawing lines. It draws a line based on the current path according to the cur-
rent line style.

o~ o L

Figure: 4.6. Stroking a path.
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However, stroke is not conceptually a primitive; it is actually a combi-
nation of the strokepath and fill primitives. fill fills the region bounded by
a closed path; fill is used to press ink through a stencil. strokepath is an op-
erator (that can be written entirely in a PostScript program) that iterates
over the current path and replaces it with a path that encloses the current
path. For example, straight line segments are replaced by rectangles that
enclose the segment and are of the correct width.

4.13 Composite Operations: Text

Text is similarly based on paths and ink. When drawing a letter like “L”
a path is generated that bounds the character, and that path is then filled.
Text is based on paths, and paths are subject to transformations, which is
why text is always transformed in a way that can be predicted by looking at
the CTM.

The text model is not quite as simple as the illustration indicates. Each
character is actually represented by a procedure that is invoked when the
character needs to be drawn. The procedure will usually generate a path and
fill it, but it can also generate a path and stroke it, or use a bitmap image.

Since the text model sounds so general, it initially appears expensive,
too. In reality, there are many implementation tricks that increase efficiency
in all implementations of PostScript language interpreters. For example,
the text model allows a cache to be used that saves the execution results of
the character drawing procedures as bitmaps. When a character needs to be
rendered, this cache is checked first. If an earlier procedure call was made to
render that character, the cached results are used directly, without having to
again call the procedure defining that character. Similarly, when lines are
being drawn, if the transformed line width is less than or equal to the size
of a pixel, then specialized high-speed algorithms are used.

C‘L” ___’ ‘ ‘ _____’ I

Figure: 4.7.  Painting a character.
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The appearance of a character is defined by its font. Fonts are a special col-
lection of routines to draw the characters and symbols of a typeface such as
Times-Roman, Helvetica, Courier, Gothic, and Kanji. A font in the Post-
Script language is a dictionary. Like any other dictionary, the font
dictionary contains fields that describe the properties of the font: how to
render it, metrics, encoding information (e.g., ASCII or EBCDIC), its name
and other characteristics. Fonts are an extremely important, and complex,
part of the PostScript language model; the details are in the PostScript Lan-
guage Reference Manual[ ADOBS85a]).

The show operator is used to draw a string of characters. It takes the
string to be drawn as its only parameter. The string is drawn starting at the
current position using the current font and the CTM.

The current position, established by moveto, is advanced by show. The
current font is set by setfont, whose parameter is a font dictionary. Font
dictionaries may be obtained, given the font name, by findfont.

These are the font manipulation operators:

font setfont —
Sets the current font to font.

name findfont font
Looks up the named font object in a global dictionary called
FontDirectory: all defined fonts can be found there.
FontDirectory contains fonts whose height is 1.

font n scalefont font
Scales font by n.

key dict definefont font
Defines a new font in FontDirectory under the given key that is
described by the dictionary.

Using the above operators, a simple Times-Roman, 12-point character
string would be drawn as follows:
/Times—Roman findfont
Locate the font we want to use.
12 scalefont
Scale it to be 12 points high.
setfont Make it be the current font.
100 100 moveto

Set the current point.
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(Hello world!) show

Draw the string.

4.14 Graphics State Components

The various objects that are described by the graphics model are contained
inside an object called the graphics state. The current graphics state con-
tains the objects that are used by the graphics operators. So far we’ve seen a
few of the components of the graphics state:

The current path.
The current transformation matrix.

The current color.

Two primitives manipulate the entire graphics state as an object. gsave
saves a copy of the current graphics context on a special stack, and grestore
restores the graphics state from this stack. gsave and grestore are used
when you wish to (1) preserve the graphics state, (2) alter the current
graphics state in a way that is destructive, and then (3) restore the changed
graphics state. For example, suppose that you wanted to draw a circle that
was both filled with 50% gray and edged in black. Since the fill and stroke
operators leave the current path empty when they are done, you would have
to construct the circle twice. Creating the circle twice can be avoided by sav-
ing the state (including the path) before filling the circle, and restoring the
state before edging the circle, as shown in the following example:

newpath Make sure that the path is cleared.
400 400 200 0 360 arc
Construct the circular path.
gsave Save the state (including the current path).
.5 setgray fill
Fill the circle with 50% gray.
grestore Restore the state (especially the current path).
0 setgray stroke »
Edge the circle in black.
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Other important components of the graphics state are the following:

clip This is a second path, different from the “current” path. All
graphics operations are clipped against it. Note that since the
clip is a general path, you can clip to any shape at all.

dash pattern An array describing how a line is to be dashed.

flatness The accuracy of curves. This measures the maximum distance
that the rendered curve is allowed to deviate from the true
curve. More accurate curves (smaller values of flatness) are
generally slower to draw.

font The font used for text rendering.
halftone screen

Describes the shape, angle and frequency of the halftone screen
used to render greyscale values on black and white devices.

line cap Describes the shape of the cap at the ends of a stroked line
(0=>square butt ends, 1=>round ends, 2=>square ends
that project).

line join Describes the shape of the joint between line segments

(0=>mitered, 1=>rounded, 2=>beveled).

line width  The width of lines when they are stroked measured relative to
the CTM.

miter limit How long a miter can be before it is converted to a bevel
(when you have an acute angle, a mitered corner generates a
sharp projection that can get very long, in these cases the joint
can be converted to a bevel). '

position The current position is a coordinate in user space. It is
generally the last coordinate referenced by a path construc-
tion operator. '

transfer A function that maps user gray levels into device gray levels.
Along with these graphics state components, there is a set of operators to

manipulate them:

nsetlinecap / currentlinecap

nsetlinejoin / currentlinejoin

nsetlinewidth / currentlinewidth

n setmiterlimit / currentmiterlimit
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0 linejoin 1.0 linewidth 1 linejoin 10.0 linewidth

0 linecap 2 linecap
0 linejoin 10.0 linewidth 2 linejoin 10.0 linewidth
0 linecap 1 linecap

Figure: 4.8. A line rendered several times with different values of the various

parameters.

The line style parameters (dash, width, join, cap, and miter limit) are a

little hard to understand without an example. Figure 4.8 shows a line ren-
dered several times with different values of the various parameters.

4.15 A PostScript program

The following example program fills its clip path with a fan of lines. It

will be used in chapter 7 as the paint method for a window:

/fanoflines {

This draws a fan of lines from 0, O to the top and left
edges. The number of lines in the fan is passed on the top
of the stack.

gsave Preserve the graphics state.
0 setgray
Set the current color to black.
matrix currentmatrix
Push a copy of the current matrix onto the stack.

exch Exchange it with the number of lines parameter to get the
number of lines onto the top of the stack.

clippath pathbbox



Find the bounding box of the current c1ip path, which
will be the bounding box of the window. This leaves
the x and y of the lower left hand corner on the stack
followed by the width and height of the window.

scale Scale the coordinate system by the width and height.
This yields a coordinate system that ranges from O to 1
on both axes.

pop pop Ignore the lower left hand corner information, since we
know it’s zero (that’s the default).

newpath Clear out the current path.
01 3 -1 roll div 1 {

This is a loop that steps from 0, with an increment of
1/number of lines (the number of lines was on the
top of the stack; roll is used to move it around for
dividing it into 1), upto I.

0 0 moveto
1 1 index lineto

Draw a line from (0, 0) to (1, 1),leaving i on the
stack (1 is the index that for leaves on the stack).

0 0 moveto 1 lineto

Draw a line from (0, 0) to (i, 1), popping i off the
stack (or rather, using it, and not making a copy to
preserve it).

} for

0 0 moveto 1 1 lineto
Draw the diagonal line.

setmatrix

Set the coordinate system back to what it was before we
scaled it (the line matrix currentmatrix leftthe
current matrix on the stack).

stroke Draw the lines. We have to save and restore the current
matrix so that when we draw the lines they get the right
width.

grestore Restore the graphics context to what it was before. It is
usually good practice for functions to leave the graphics
context undisturbed.

} def

10 fanoflines
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Figure: 4.9. Graphic output of the fanoflines function.

4.16 NeWS and the PostScript Language

This chapter has reviewed the basics of the standard PostScript language,
designed primarily to describe the printed page. The NeWS interpreter stays
faithful to the PostScript language definition because compatibility between
the printer and the screen is important. Areas where NeWS differs from a
PostScript language interpreter for a printer are detailed in Appendix A.

However, NeWS is much more than a PostScript language interpreter;
NeWS is a window system. The next chapter explores these extensions.
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NeWS Facilities for an
Interactive World

"I know why there are so many people who love chopping wood.
In this activity one immediately sees the results.”

Albert Einstein

5.1 Introduction

The previous chapter described the PostScript language as defined by
Adobe Systems, originally designed to drive printers. With printers, only
one PostScript program is being executed at a time and output can only take
place to a single page at a time. In contrast, NeWS is a window system. It
requires that multiple application programs be able to concurrently access
the display, which is partitioned into separate regions for each application.
And it needs to handle input from a keyboard, a mouse, and the network.

For these added requirements, NeWS incorporates more than the basic
PostScript language, adding several facilities to satisfy the demands of an in-
teractive window system environment. For the most part these additions are
completely separate from the primitives defined by Adobe. The objective in
designing the added NeWS facilities was to avoid defining new imaging op-
erators, so that NeWS applications use only standard PostScript operators
for output.

The rest of this chapter describes these added facilities. Here are the
three most important new types. These new objects are all accessible as new
types of PostScript dictionaries, as described in Chapter 4:

canvases A canvas is a drawing surface. Multiple canvases can be
displayed and overlapped on the screen. Canvases can be
arranged in a hierarchy, and they may be mapped onto
other canvases.

processes A process is a thread of execution. NeWS uses what are
sometimes called lightweight processes. What this means is
that a NeWS process is inexpensive to create (in terms of
elapsed time, memory usage, and CPU usage) and that all
NeWS processes share the same address space.
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events Events are interprocess messages between lightweight
processes. The keyboard and mouse (and any other input
device) generate events.

Wherever possible, NeWS facilities are patterned after the PostScript lan-
guage structure. Consistency between the PostScript language and NeWS
makes it possible to minimize the number of new operators that have to be
defined. For example, many NeWS functions on these new types can be rep-
resented as either read or write accesses to fields in the type dictionaries.

Other NeWS facilities are described briefly at the end of this chapter. For
a full description of their features, you should read the NeWS
Manual[SUN87a].

5.2 Canvases

The basic objects a window system manipulates are windows. Windows
can be thought of as multiple drawing surfaces laid out like sheets of paper
on a desktop. Clients of the window system draw on one or more of these
windows, and the user moves them around on the desktop, typically bring-
ing the one of the most current interest to the top of the pile.

Canvases are the simple objects that underlie NeWS windows. A NeWS
canvas has the properties of an artists canvas: it is an unadorned surface
without a frame, to which paint is applied. It is often rectangular, but can
in fact be an arbitrary shape. Canvases are arranged in a hierarchy, and a can-
vas is created on top of its parent canvas. Normally, the object that a user
thinks of as a window will be made up of several canvases.

5.2.1 The Canvas Structure

A NeWS canvas is a drawing surface. In PostScript language terms, a can-
vas is a rectangular coordinate space with a boundary defined by a path.
Canvases are treated as normal PostScript data objects, and like the current
path and the current dictionary, there is the concept of a current canvas. The
current canvas is part of the current graphics state, and the PostScript
graphics operators apply to the current canvas, as they do to the current
path. Similarly, the current canvas is saved and restored along with the rest
of the state by gsave/grestore.

Ccv newcanvas canvas
Creates and returns a canvas whose parent is cv.
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cv setcanvas —
Makes cv be the current canvas. All further graphics
operations will refer to it.

—— currentcanvas cv
Retums the current canvas object.

Canvases can be transparent or opaque. Anything painted on a transparent
canvas is actually painted on its parent canvas. A transparent canvas has no
real surface of its own, it is actually a piece of another canvas. Transparent
canvases are useful for defining areas that are sensitive to input but that do
not interfere with drawing in other canvases. Opaque canvases are indepen-
dent surfaces. An opaque canvas will obscure those parts of other canvases
that lie beneath it.

A canvas may also be retained, upon request of the client that creates the
canvas (such as the window manager). While a canvas is being retained, an
off-screen copy of its contents is maintained, and updated as images are
drawn into the canvas. If the canvas is moved, or obscured portions of the
canvas are exposed, the offscreen copy is automatically moved onto the
screen. Retained canvases are more resistant to damage (see Section 5.2.4,
Damaged Canvases) and this can improve performance, but retaining can also
consume substantial storage particularly on color displays. In light of this,
the retained property of a canvas is only a hint; the server may decide at
times when memory is scarce to stop retaining a canvas. In general, retained
canvases should only be used if it is particularly time-consuming to regener-
ate the image in the canvas.

A canvas object is actually a dictionary. The internal attributes of the can-
vas are thus accessible as fields of the canvas dictionary. To set and inspect
the values of the various properties of a canvas, the standard dictionary oper-
ators can be used.

Creating a sample canvas and setting its properties could thus be done as
follows:

/cv framebuffer
newcanvas def
Create a canvas.
cv /Transparent false put
Make it opaque.
cv /Retained false put

Make it non-retained.
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5.2.2 The Canvas Tree

Canvases are arranged in a hierarchical tree structure, the root of which
is a device canvas, or the frame buffer itself. The root of the canvas struc-
ture is created by using the createdevice operator.

string createdevice cv
Creates and returns a device canvas. The string parameter is
interpreted in a system and device dependent manner. For
example, on a Sun workstation the string (/dev/fb) describes
the default frame buffer.

A canvas has some shape and position, whether visible or invisible. If a
canvas is to be visible on top of its parent, it must be mapped, which is
another canvas property. Mapped canvases sit on top of their parent canvas-
es. In effect, there are two separate trees of canvases, one tree containing all
canvases descended from a device canvas expressing their familial relation-
ship, and one tree containing only the potentially visible (i.e. mapped)
subset of these canvases, expressing their overlapping relationships.

/cv framebuffer newcanvas def

Create a child canvas of the framebuffer.

cv /Mapped true put
Map it onto the display.

In order for a canvas to be visible on a device, it and all of its ancestors
must all be mapped. This hierarchy is used to create what people normally
think of as windows: things with borders and titles and scroll bars. For ex-
ample take figure 5.1.

The various children of a canvas are ordered visually from- top to bottom.
In Figure 5.1, the frame is the parent of the client’s canvas. Assuming all
canvases are mapped and opaque, a canvas will obscure (appear to be on top
of) its parent, and some of its siblings. The children of a canvas are arranged
in a list from lowest to highest, and a canvas will obscure its siblings
lower in the list. NeWS provides several operators to manipulate the posi-
tion of a canvas in relation to its sibling and parent canvases; these
operators are used by the NeWS window manager as the user hides and
exposes overlapping windowed applications on the screen.



The open/close box

V The frame

to draw in

r The stretch box

Figure: 5.1. A window which is built out of four canvases. It has one large canvas
that provides the frame for the window, and three child canvases that
make up the subparts of the window. The window frame is, itself, a
child of a frame buffer canvas.

Examples of canvas manipulation operations are:

cv canvastobottom —
Make canvas cv the lowest (least visible) among its siblings.

cv canvastotop —
Make canvas cv the highest among its siblings.

S x y insertcanvasabove —
Position the current canvas above one of its siblings S, located
at (x,y) relative to its parent.

S x y insertcanvasbhelow —
Position the current canvas below one of its siblings S.

X y movecanvas —
Position a canvas cv at (x,y) relative to its parent.

cv getcanvaslocation x y
Discover the location of canvas cv relative to its parent
(returns x y).
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Menus are canvases too!

The canvas for the client
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Start B canvastobottom

ey

B canvastotop

Figure: 5.2.  Result of two of the operations above — canvastobottom and

canvastotop.

Note that the position (visibility) of the canvas is not determined by
whether it is the current canvas or not; these two characteristics are entirely

unrelated.

5.2.3 Canvas Shapes

Many window systems restrict their canvases to rectangular shapes, but
NeWS allows canvases to be of any shape that can be described with a path,

even one with holes or disconnected parts.
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Figure: 5.3. Non-rectangular canvases: the logo clock & the “‘round’’ clock on top

of the terminal emulator.
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cv reshapecanvas —
Sets the shape of cv to be the region outlined by the current
path. It also sets its default transformation matrix to match
the current transformation matrix.

In figure 5.3, the round canvas is defined by a circular path. The code
below paraphrases that part of the program that gives the canvas its round
shape. We use psh to create a canvas, make it round, and give it a coordinate
system with the origin in the center of the canvas.

shell prompt% psh
executive
Welcome to NeWS Version 1.1
/cv framebuffer newcanvas
def Create a canvas that is a child of the frame buffer.
framebuffer setcanvas
The current canvas is now the frame buffer.
300 300 translate

Change the coordinate system so that the origin is where
300, 300 used to be.

0 0 100 0 360 arc

Construct a circular path centered at the origin with radius
100 — remember that the origin has been translated.

cv reshapecanvas

Reshape the new canvas: it will be circular with the
origin of its default coordinate system being in the
center of the circle.

cv /Mapped true put
Make the canvas visible.
cv setcanvas

Make it be the current canvas. The CTM gets set to the
default coordinate system of the canvas, which in this case
puts the origin in the center of the canvas.

erasepage  Fill the canvas with white.
0 0 moveto 100 100 lineto stroke

Draw a line in the canvas. Notice that it starts in the
center of the canvas.
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Figure: 54.  The result of the sequence above; a round canvas with a line in it.

The output of a standard PostScript program sent to a printer is clipped
to the intersection of the shape of the page and the clip specified in the

graphics context, set by the clip or inmitclip operator. The analogy in NeWS
would be to clip to the intersection of the shape of the canvas and the cur-
rent graphics state clip path. In fact, NeWS provides one additional clip, a
clip that is a property of the canvas rather than the graphics state, and out-
put is clipped to the intersection of all three clips.

clipcanvas Set the current canvas’ clip to the current path.

clipcanvaspath

Set the current path to the current canvas’ clip.

You can see the effect of the canvas clip if we use it to restrict output to
the center of the round canvas in the previous example:

newpath Make a new path for the new clip.
0 0 50 0 360 arc
Construct a circle centered at the origin with radius 50.
clipcanvas Make the current canvas’ clip this path.
0 0 moveto -100 100 lineto stroke

Draw a line from the center to the edge of the canvas —
only the center part will be visible.
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Figure: 5.5.  The result of the sequence above, showing the canvas clip.

The canvas clip is used during damage repair, and at other times when out-
put must be restricted to only part of a visible canvas.

To remove the round canvas from the screen, all that is needed is to re-
move all the references to it.

/cv null def

Remove the reference from the process’ userdict. The
canvas will remain on the screen.

framebuffer setcanvas

Remove the reference from the process’ graphics state.
The canvas will vanish from the screen.

5.2.4 Damaged Canvases

Printed pages never change size and they retain their image no matter how
other pages obscure or reveal them in the pile on the desktop. Canvases on a
display are not so robust. The image in a canvas can vanish at any time. The
canvas can be reshaped, so that the image needs to be rescaled. The canvas can
be covered by another canvas, and the window system may not have retained
the obscured part of the image in off-screen memory. Retaining canvases con-
sumes memory, and there may not be enough memory available when more
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than a few canvases are displayed on the screen, or if the framebuffer is
more than one bit deep. .

A canvas is therefore damaged when some part of its image is invalid.
Damage can happen in many ways. When a canvas is first mapped, its entire
visible image is considered damaged (unless it is retained, in which case the
whole image is considered damaged when the canvas is created). Any time
that an obscured area of a canvas is exposed, by moving away an elder sib-
ling for example, one of two things happens: if the canvas is retained, the
saved part of the image is used to fill in the exposed part; if the canvas is
not retained, then the exposed part is damaged.

NeWS, like most other window systems, requires its clients to repair any
damage that may occur that it can’t repair itself. Exactly how a client man-
ages to reconstruct the contents of a damaged part of a canvas is up to that
client, but the basic mechanism by which damage is repaired is the same for
all. When damage occurs a message is sent to the client program using the
event mechanism. The client should eventually respond to the message and
repair the damage. If some damage occurs in the intervening time, the record
of the damaged area is simply enlarged to include the new damage. It is im-
portant to understand that the damage notification message does not include
the damage record, which describes the extent of the damage. The client pro-
gram must explicitly request the damage record from the window system
through the damagepath operator. This damage communication protocol is
used in order to avoid multiple damage repairs by the client. Since the client
and the window system may be asynchronous, the damage record is not
passed to the client until the window system knows that the client knows
that there is damage and can repair all damaged areas.

5.2.5 Canvas Dictionary

Like most of the new types NeWS defines, canvas objects are accessible as
dictionaries. The Canvas dictionary has the following fields:

Transparent
True if the canvases behind show through.

Mapped True if the canvas is visible.

Retained  True if the invisible parts of the canvas are being preserved in
off-screen memory. Retaining canvases helps prevent damage,
but does not eliminate it entirely.

SaveBehind
True if the obscured parts of canvases behind this one are being
preserved in off-screen memory. Setting SaveBehind True on
transient canvases, such as pop-up menus, helps prevent damage
to other canvases, but does not eliminate it entirely.
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Figure: 5.6. A damaged window on a screen, with a message going to the client to
request repair of the window.

Color True if the canvas can show colors other than black and white
or grayscale.
EventsConsumed

Three possible values, as follows. Events are explained in more
detail in Section 5.5.

AllEvents

This canvas prevents any events passing through to those behind.

MatchedEvents
This canvas prevents any events it matches passing through.

NoEvents

This canvas passes all events through to those behind.
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All these fields are read-write, and setting them will change the proper-

ties of the canvas, except for Color, which depends upon the properties of
the device on which NeWS is running.

5.2.6 Offscreen Canvases

NeWS also provides facilities to manipulate canvases that are not on a
screen. There are two ways to create such canvases.

width height bits/sample matrix proc buildimage cv
Constructs an offscreen canvas that is width pixels wide and
height pixels high. Each pixel is bits/sample bits deep. The
default matrix is specified by matrix. Proc is executed re-
peatedly to obtain the initial image data. Proc is expected to
return a string which contains the pixel values packed into its
bytes. The arguments to buildimage correspond exactly to
the arguments to the standard PostScript image operator. As
a special case, if proc is null the image is zeroed.

string readcanvas cv

file readcanvas cv
Constructs an offscreen canvas by reading its contents from the
file object or from the file named by string.

These canvases can be treated, for the most part, like other canvases: they
can become the current canvas and you can render into them. But you can’t
map them to the screen, or do any of the other operations that are particular
to screen canvases. There is an operator that will take one canvas and display
it on another.

cv imagecanvas —
Renders cv onto the current canvas. It is very similar to the
standard PostScript image operator, except that it gets the
image from a canvas object rather that from a user-defined
procedure. The standard PostScript image operator can be
broken into two pieces: one that constructs a canvas, and one
that renders it on another canvas. Image is exactly equivalent
to { buildimage imagecanvas }.

5.3  Lightweight Processes

A printer need only do one thing at a time, that is, print on the current
page. As a result, the standard PostScript language is a uniprocessing envi-
ronment. It supports only a single thread of PostScript execution. But in
the world of user interfaces, many different processes may be executing
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simultaneously. Concurrency is required. Luca Cardelli and Rob Pike ident-
ify the problem as follows:

" Providing a suitable graphical display is not especially difficult,
what causes problems is the complicated flow of control required
to deal with all the possible sequences of user actions with the
input devices.”’[CARDS5]

Cardelli, Pike, and others have demonstrated how much easier it is to
write a consistent user interface as a set of cooperating parallel processes,
rather than, for example, a single-threaded, finite state automaton.

NeWS supports parallel processing in the user interface by maintaining a
set of processes that each execute independent PostScript programs. UNIX
processes are heavyweight; they have their own contexts and are expensive
in terms of start-up time and consumption of system resources. NeWS pro-
cesses are said to be lightweight because they are inexpensive, easy to create
and switch among, and they all share the same address space. The NeWS
lightweight processes need no support from the operating system, and are
not scheduled by the operating system scheduler. Creating a new NeWS pro-
cess takes only a few hundred microseconds. Because NeWS lightweight
processes are so cheap, they may be used extensively (and are in the Lite
toolkit package). For example, each time a menu is invoked, the menu pack-
age creates a lightweight process to listen for input in the menu.
Lightweight processes communicate through a general interprocess communi-
cation (IPC) facility, implemented by events, described below. Each
individual thread of PostScript interpretation is represented as a process
object.

When NeWS is initialized, it creates a single process, or thread, which
executes the NeWS start-up file (normally init.ps), which may download
code into the NeWS server and start up many more lightweight processes.
All processes except this first one are the result of earlier processes execut-
ing the fork operator.

There are quite a few primitives associated with the process mechanism.
Here are a few of the most important:

proc fork process
Creates a new process that is executing the code in proc. When
proc returns, the process terminates. fork returns a process
object that may be used to manipulate the process. A newly
created process is the child process of the parent process that
created it. When a process starts it is running in an environ-
ment that is a clone of its parent process’ environment. The
dictionary stack, operand stack, and graphics state are copied
to the new process.
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process waitprocess return

Waits for process to terminate and then returns the value
that was on the top of its stack. If its stack is empty when
it terminates, null is returned.

— pause — Momentarily suspends the current process, letting other
processes execute. Once all other processes that want to run
have taken a turn, the current process resumes. This is used
for fine-grained control of scheduling.

process Killprocess —

Kills (terminates) process by causing the killprocess error to

occur in it.

— newprocessgroup —

Processes can be grouped together. When fork is executed,

parent and child are in the same process group.

newprocessgroup removes the current process from its process
group and creates a new process group that contains only the
current process.

process Killprocessgroup —

Like killprocess, except that it kills all processes in the same
group as process.

suspendprocess, breakpoint, and continueprocess are additional com-
mands that help debug the running NeWS process.

Each lightweight process has complete control over the extent to which
its name space is shared with other processes. This sharing is a consequence
of the fact that the PostScript language mechanism for resolving references

Dictionary stack /a 5 /x 37.2
n parent procesg’ /b (a-str) ly 25
7
——) | /a 7 -
~N /c (b-str) / =
\‘ systemdict

Dictionary stack
in child process.

Figure: 5.7.  The dictionary stacks of two processes, one the child of another. They
share two dictionaries, but each has a private dictionary on the top of

its stack.
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to data objects is based on a stack of dictionaries. As discussed in Chapter 4,
a dictionary is a table whose key-value elements are pairs of PostScript
objects. Each process has a stack of such dictionaries.

Names are bound to values by looking them up in each dictionary, start-
ing from the top of the stack. When a child process is forked, it inherits a
copy of its parent’s dictionary stack, so the child process starts with the
same name space as its parent. If one process defines a new name in some
dictionary in its shared stack, the other will see it.

However, the child process can push and pop dictionaries to and from its
private stack, thus controlling the extent that its name space is actually
shared with its parent and with other processes.

54  Monitors

Whenever a system has asynchronous processes that can share data, some
kind of mechanism is needed to keep them from accessing and trying to
change the same data at the same time: they need to be synchronized. The
PostScript language, having only a single thread of execution, does not need
any form of interlock to protect shared write access to data. NeWS, on the
other hand, requires some form of interlock to provide processes with con-
sistent access to shared data. It provides monitors for this purpose. A
monitor is an object that is restricted to being accessed by at most one pro-
cess at a time. It is similar to the monitors introduced by Hoare[HOAR7S].
There are three primitives that deal with them:

— createmonitor monitor
Creates a new monitor object.

monitor proc monitor —
Executes the code in proc with monitor locked (entered).
At most one process at a time can have a monitor locked. If
a process tries to lock a locked monitor, it is blocked until
the process which has it releases it. When proc returns or is
terminated by an error, the monitor is unlocked.

monitor monitorlocked bool
Returns true if monitor is locked, false otherwise.

Here is a simple example:

/mon createmonitor def
/value 0 def
/increment {

{
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mon { /value value 1 add def } monitor
} fork
} def

This defines mon to be a monitor object and value to be the integer 0.
increment is defined as a function that creates a process (fork) which locks
mon and, with mon locked, increments value. So, if we do the following:

increment Create a proéess,
increment create another just like it,

increment and another.

three processes are created executing in parallel all modifying value. Be-
cause of the monitor thére is no chance of one process modifying value
while another is doing the same, so the final value of value will be three:

value == Print out the value of ‘‘value’’.

3 Just as we expected.

Of course, since NeWS currently has non-preemptive scheduling and runs
on single-processor machines, and since increment doesn’t pause, the value
would have been three even without the monitor. But in the future, we ex-
pect NeWS to implement other scheduling policies, for which the use of
monitors will be essential.

5.5 Events

There are three types of communication that take place as NeWS runs.
First, as described previously in Chapter 2, and in more detail in Chapter 7,
client processes send PostScript byte streams to lightweight PostScript pro-
cesses within the server. Second, the server receives input from devices, such
as the keyboard and locator, and performs output on its display. Third, the
NeWS lightweight processes pass messages to each other.

The following diagram shows the communication paths between clients,
devices, and the lightweight processes within the server.
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Figure: 5.8.  All of the thick arrows in this drawing indicate communication through
events. This is essentially all interprocess communication and all com-
munication from the keyboard and mouse to processes.

Input and communication between lightweight processes are integrated in
NeWS through a general interprocess communication mechanism called
events. Events are NeWS objects which can be generated either by light-
weight processes, the server, or by external devices such as the mouse and
keyboard. They are received, translated, dispatched, and routed by the server
to its PostScript program clients. A process can send an event to itself or
any other process, or, it can place an event into the server’s event distribu-
tion mechanism, in which case it will be distributed just as if it had been
generated by an input device.

Event objects can represent one of three things:

1 A message from one lightweight process to another.

2 A description of some event external to all lightweight processes,
such as a mouse movement, or damage to a canvas.

3 A template against which other event objects are matched.

In fact, there is no way for a lightweight process receiving an event to
tell if it has come from an external event source or from another process;
to a receiving process the first two types of event are identical. This allows
processes, for example the NeWScorder journalling process, to simulate de-
vices and to drive NeWS clients just as a user would.

Events can be thought of as structured objects with a number of fields.
As with canvases and processes, these fields are accessed as if the event were
a dictionary and the fields were keys in that dictionary. Most of these fields
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are mentioned as they become relevant in this section. Among the most
interesting fields in an event are:

/Name The name of an event, it describes what happened. For instance,
it may be an integer ASCII character or keystation code. Or
it may be a keyword describing an abstract operation like
/AcceptFocus or /DeSelect.

[Action A modifier for the name field. It usually describes what
happened to the named thing. For instance, keyboard char-
acters usually have an action of either /DownTransition
or /UpTransition.

[TimeStamp

The time when an event happened. Events are delivered strictly
in order of their time stamp. No two events can have the same
timestamp.

/Canvas The canvas that the event “happened in” or is “directed to”.
The keyboard and the mouse typically set this to the uppermost
canvas that was under the cursor when the event happened.

5.5.1 Events as Templates

Internal interprocess events are used in two ways, as messages that are
sent to processes, and as templates that a process uses to describe the events
in which it is interested. A process specifies the kinds of events it would
like to receive by constructing events that look like these interesting events,
and expressing interest in them. These template events are called interests,
and as real events occur they are matched against these templates. Events
that match correctly will eventually be received by the process that ex-
pressed the interest.

Here are the most important of the event primitives:

— createevent event
Creates a blank event. All of its fields are null (when used in
an interest event, null matches anything).

event sendevent —
Sends event to all the processes that are interested in it.

— awaitevent event ~——————
Returns the next event sent to this process.
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event expressinterest —
Expresses interest in event. Further events that are generated
which match it will be sent to this process. Note: if a process
forks its children do not inherit its interests).

event revokeinterest —
Undoes an expression of interest.

event redistributeevent—
Sends event (which must have been received by awaitevent)
back to the distribution process to see if any other interest
might match it. Normally, when an event is sent it is received
by all processes that expressed interest in it. This can be
controlled by using the /Exclusivity and /Priority fields of
an interest event.

5.5.2 Event Distribution

Input events enter the system as they are generated by the NeWS server
or when a lightweight process executes sendevent or redistributeevent.
Events generated by the server are stamped with the time of their creation;
other events are given whatever time stamp is left by the process that sends
them (a process can use currenttime or lasteventtime to generate suitable
values). In any case, newly created events are sorted into a single event
queue according to their time-stamp values.

Events are removed from the head of the event queue one at a time as the
server schedules processes to be run. No event will be distributed before the
time indicated in its time stamp. Copies of events are distributed to all pro-
cesses whose interests it matches and each of those processes is given a
chance to run before the next event is taken from the queue.

A process gets its next input event by executing awaitevent. If no event
has been distributed to it, the process will block. If a distributed event is
waiting, awaitevent will return immediately with the new event on the top
of the operand stack.

5.5.3 Event Matching

No process wants to receive all the events that appear on the event queue.
Processes determine the events they will receive by constructing an event
that looks like an event they would like to receive, and expressing interest
in events that look like this template. Real events are matched against these
interest templates and, if they match, they are delivered to the process that
expressed interest.
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Figure: 5.9.  Events are removed from the queue, matched against interest templates,
and distributed to the processes that expressed the interests.

The matching process compares the following fields of the interest and
real event:

Name and Action. These fields are matched in the same ways according to
the following rules:

1 Null in an interest field matches anything in the corresponding field
of the real event.

2 If the value in the interest and the value in the real event are the
same, the match for that field succeeds. Typically, this will be the
case for simple values like booleans, keywords, or numbers.

3 An array or a dictionary in the interest field specifies a class of values
the real event may match. A real event value matches if it is any of
the elements of the array, or keys in the dictionary.

A null canvas matches events happening anywhere. If the Canvas field of
the interest is non-null, the match succeeds if the event happened when
that canvas was the current input focus, or if the event was sent with a
matching canvas field (as, for example, a Damaged event for that canvas).

The Process field of an interest is set by expressinterest to the process
expressing the interest. Normally, events being distributed have null in
their process fields and will be matched against interests without
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restriction. If an event has a specific process in its Process field, the
event will only match interests that have been expressed by that process.
It must still match the interest on Name, Action and Canvas.

If all the matching conditions are met, the event matches the interest.

Here’s a simple example. We create a process listening for /Hello events,
and printing them out. Then we create and send a /Hello event, and the lis-
tener prints it out:

{ Start defining a listener process.
createevent dup begin

Create and open an event to be a template.

/Name /Hello def
Listen for /Hello events.
end expressinterest
Express interest in /Hello events.
{ awaitevent == } loop

Print out each event as it arrives.
} fork Fork the listener process.
createevent dup begin

Create and open an event to send.

/Name /Hello def
Make ita /Hello event.
/Action /Mumble def

With Action /Mumble.
end sendevent

Send the /Hello event.

The listener process will wake up and print it.
event (0x3A7E44, [0,0], name(/Hello), action(/Mumble))
createevent dup begin

Create and open an event to send.

/Name /Goodbye def
Make it a /Goodbye event.
/Action /Mumble def
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With Action /Mumble.
end sendevent
Send the /Goodbye event.

No-one is listening for /Goobye events, so nothing
happens.

killprocess Kill off the listener process — its process object has been
on the stack all this time.

5.5.4 Special Events

The NeWS server autonomously generates a number of different input
events in response to external events, but unlike many other window sys-
tems NeWS events are of only one type. They are distinguished by the
values of the fields in the event dictionary. Keystrokes generally have
numeric values in their Name, but most others are identified by a keyword
in the Name. The most important of these keywords are:

Damaged Generated for a canvas whenever it is damaged. The total
damage is accessible with damagepath. The Action for a
damage event is null, and the Canvas field identifies the
affected canvas.

EnterEvent & ExitEvent
When the cursor is moved across a border between canvases,
multiple events are generated. In each event, the Name is
either EnterEvent or ExitEvent, depending on the direction

of the crossing. The Action field contains a more detailed
description between the canvas and the cursor.

MouseDragged, LeftMouseButton, MiddleMouseButton
&RightMouseButton
Manipulation of the mouse generates events with these names.
If the mouse moves, the event Name is MouseDragged and
the Action is null. If a mouse button is pressed or released,
the Name identifies which button is affected and the Action is
one of the keywords DownTransition or UpTransition.

As an example of the use of interests, the round canvas used earlier is cre-
ated and a line is drawn from the center to the place where the left mouse
button is clicked:
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% psh
executive
Welcome to NeWS Version 1.1
/cv framebuffer newcanvas
def Create a canvas that is a child of the frame buffer.
framebuffer setcanvas
The current canvas is now the frame buffer.
300 300 translate

Change the coordinate system so that the origin is where
300, 300 used to be.

0 0 100 0 360 arc

Construct a circle centered at the origin with radius 100
— remember that the origin has been translated.

cv reshapecanvas

Reshape the new canvas: it will be circular with the origin
of its default coordinate system being in the center of
the circle.

cv /Mapped true put
Make the canvas visible.
cv setcanvas

Make it be the current canvas. The CTM gets set to the
default coordinate system of the canvas, which in this case
puts the origin in the center of the canvas.

erasepage Fill the canvas with white.

{ Start defining a procedure that will eventually be forked
as a process printing out each event.

createevent dup begin

Create an event to serve as an interest, leave a reference to
it on the stack, and push the event on the dictionary stack.

/Canvas cv def

Set the Canvas field of the interest to the round canvas,
indicating that we’re interested only in events in the canvas.

/Name /LeftMouseButton def
/Action /UpTransition def

Set the Name and Action fields of the interest, indicating
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that we’re interested only in up transitions of the left
mouse button.

end expressinterest

Pop the interest off the dictionary stack, and use the
reference to it on the stack to express interest in events
that match it.

{ awaitevent == } loop
Loop forever, printing out each event that arrives.
} fork Take the procedure we’ve defined and make a process

running it.

Now, left-click once in the round canvas, and the process forked prints
the event describing the click. Try clicking the other mouse buttons, and
clicking the left button outside the round canvas. Notice that nothing
happens. These events don’t match the interest.

event (0x47FAB8, [435,467], name (/LeftMouseButton),
action(/UpTransition), canvas(201x201@300,400))

Next, we replace the printout process by one drawing a line to the click:

killprocess Destroy the printing process.

{ Start defining a procedure that will eventually be forked
as a process drawing lines in the canvas.

createevent dup begin

Create an event to serve as an interest, leave a reference to
it on the stack, and push the event on to the dictionary
stack.

/Canvas cv def
Set the Canvas field of the interest to the round canvas,
indicating that we’re interested only in events in the canvas.

/Name /LeftMouseButton def

/Action /UpTransition def

Set the Name and Action fields of the interest, indicating
that we’re interested only in up transitions of the left
mouse button.

end expressinterest

Pop the interest off the dictionary stack, and use the
reference to it on the stack to express interest in events
that match it.
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{ Start defining what we will do on each event.
awaitevent begin

Wait until we get an event, then push it on the dictionary
stack so that we can access its fields.

0 0 moveto
Start the line at the center of the canvas.
XLocation YLocation lineto stroke
End the line at the click, and stroke it out.
end  Finished with the event, so pop it off the dictionary stack.
} loop  Finish defining what we do on every event.
} fork Take the procedure we’ve defined and make a process

running it.

Now, left-click in the round canvas, and the process forked draws a line
from the center of the canvas to the mouse position for each click. Once
again, note that other buttons have no effect.

Remember to kill off the process drawing the lines and remove the refer-
ences from the psh process. If you don’t the round canvas will remain after
you exit from the psh.

Figure: 5.10.  The results of the example, a round canvas with lines where we clicked.
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killprocess Destroy the line-drawing process and its referen