. —_— -Punch along this edge f#Minsertion into a binder-

THE USERS' GROUP OFFICE HOURS (INCLUDING TELEPHONE SERVICE)

ARE M-W-F 9:00 AM to 2:00 PM Pacific Time

THE SYM USERS?® EROUP NEWSLETTER

VOLUME TV, NUMBER ! (ISSUE NO. 15) - SPRING6 1983 (JAN/FEB/MAR/APR)

SYM-PHYSIS is a thrice yearly publication of the SYM Users® Group, P. O.
Box 319, Chico, CA 95927. SYM-PHYSIS and the SYM Users’ Grou (SUG)
are in no way associated with Synertek Systems Corporation (S5C), and
SSC _has no responsibility for the contents of SYM-PHYSIS. SYM 1s a
registered trademark o SSE. SYM-PHYSIS from the Greek, means the
state of growing together, to make grow, to Bring forth.

We welcome for publication all articles dealing with any asgect of the
SYM-1, and its ‘very close relatives. Authors retain all commercial
cogyrlghts. Portions of SYM-PHYSIS may be reproduced by clubs and edu-—
cational institutions, and adaptations of programs for other computers
may be freely published, with full credit ?1ven and complimentary copies
provided to YM—PHYSIé and the ori?ina author (s). Please include a
self-addressed stamped envelope with all correspondence.

Editor/Publisher: K. R. “Lux” Luxenberg
Business/Circulation: Jean Luxenber
0ffice Staff: Joyce Arnovick, Denny Hal

SURSCRIPTION RATES: (Volume IV, 1983, Issues 15 - 17)

USA/Canada — $16.560 for a volume of three issues. Elsewhere — $14.60.
Make checks payable in US dollars to "SYM Users’ Group"”, P. 0. Box 319,
Chico, CA 95927, Telephone (916) 895-8751.

BACK ISSUES ARE AVAILABLE AS FOLLOWS:

Issues @ through 6 (Volume I 1979/86) are available for $12.00,
US/Canada, and $16.99, First Class/Airmail, elsewhere.

Issues 7 throu?h 16 (Volume 11 1981), are available for $16.56,
US/Canada, and $14.94, First Class/éirmail, elsewhere.

Issues 11 through 14 (Volume III, 1982) are available for $%10.5@,
US/Canada, and %$14.89, First Class/Alrmaii, elsewhere.

AN OUTSTANDING OFFER TO THE SYM COMMUNITY

Our lead article (starting in the page 2 "slot") is the first of a
series of guest columns by Jeff Lavin. Jeff is a relative newcomer to
the microcomputer field. He got a SYM-1 as a learning tool, called us a
few times when he had questions, then called us many times to give us
answers to questions we had often wondered about ourselves, but had
neither the time or expertise to answer for ocurself.

Jeff is a prolific writer and highly inventive. He has come up with
some extremely ingenious hardware and software for the SYM-1 (and other
systems as well). Some of these have been described in previous issues.
Several others, notably SYM/ELIZA, a truly efficient and versatile EPROM

Programmer, and a DUAL ACIA Board, will be described in the NEW PRODUCTS
section.

Jeff has two very useful software packages he wishes to contribute to
the SYM user community. These are BASIC TERMINAL CONTROL PATCH and RAE
TERMINAL CONTROL PATCH, both based largely on material published in
earlier issues of SYM-PHYSIS, but greatly enhanced by him. We have
tried them both, and they vastly improve the SYM's human interface,
making it truly pleasurable to use. BRoth patches include FDC-1 links.

He will provide complete RAE source code for both, on either cassette or
FDC-1 S 1/4" double density diskette (please state which!), to all who
wish copies, asking only a nominal $16.6¢ to cover media, handling, and
shipping charges. This is an offer you shouldn’t refuse!

SYM-PHYSIS 15- 1

ADDRESS DECODING, POR, and the SUPER SYM

By Jeff Lavin -
P.0. Box 1019
wWhittier, CA 90609

January 1983

The purpose of this article is to explain how the SYM-1 wuses
partial address decoding to select different devices, and how the
Power-on-reset (POR) circuitry operates. In the next installment this
concept will be expanded to show how the SYM may be converted to the
type of machine Lux described in the #13/1L4 issue of SYM-PHYSIS. 1f
there are any topics the reader would like to see covered (in this
column, drop a line to Lux or myself.

When power is first applied to the SYM, a 555 timer, connected as
a one-shot, applies a reset pulse to the processor and all the 1/0.
The 1/0 is 1left in a known condition; the processor must be
initialized, however. Quoting from the MOS Technology Programming
Manual:

" .. the only automatic operations of the microprocessor
during reset are to turn on the interrupt disable bit and
to force the program counter to the vector location
specified in locations FFFC and FFFD and to 1load the
first instruction from that location."

In the preceeding remark, the locations being referred to are
called VECTORS. A vector consists of two consecutive memory locations
containing the address of a routine in the format ADL - ADH, or three
locations with the first being a JMP ($4C). Vectors are responsible

for the power and flexibility of the SYM. If the ROM or EPROM
containing the RESET routine were to be located at the top of memory,
the vectors would be cast in silicon. In order to preserve the

usefulness of being able to point vectors to new routines, the vectors
in the ROM would need to point to vectors in RAM. At two bytes per
vector, this would waste a lot of memory. There are other ways to
accomplish this, however.

The ROM containing the RESET routine and RESET vector may be
called at the top of memory on power-up or user reset, and later be
replaced by RAM. This manipulation is the function of the POR
clrcuitry.

Refering to the diagram, a NAND gate (U8) creates the signal POR.
The two inputs to U8 are F8 and CA2 from VIA_#1. The RESET signal
causes CA2 to be HIGH. The inclusion of POR into U7, causes the
74LS145 decoder to select an output higher than #7 (Ul0 and Ull are
actually BCD to DECIMAL decoders). The result is that POR is made
LOW. U24 is an AND gate that controls the CS for the ROM, U20. An
interesting point is that an AND gate acts as_an OR gate for NEGATIVE
LOGIC. I.E.: If both A AND B = Y, then A ORB = Y. Therefore, if
either input of U24 is low, the ROM is selected. This causes the ROM
to be selected at the RESET vector. The purpose of including POR in
the address decoding done by Ull is to keep SYSTEM RAM from being
addressed. Since the SYM uses only outputs 0 - 7 of _Ull, anything
addressed at C000 or higher will not be selected while POR is active.

After the ROM is selected , the processor forces the program

SYM-PHYSIS 15— 2

counter to the address contained in the RESET vector, and loads the

instruction found there. In the case of the SYM, when the ROM s

selected at F000 instead of 8000, the two bytes normally addressed at

8FFC and 8FFD appear at FFFC and FFFD instead. The address of the L L v

reset routine is stored here , and the processor begins executing 1 T
I

uasg
6522
L5
sATop
vagq
6522
L
$acgy

csli
és1

instuctions at 8BL4A. Note that now , the ROM is being addressed at its
normal location.

The first thing that happens in the reset routine after the stack
and flag register is initialized, is to turn off POR.

vas

6522
52

sadog

8BLA A2 FF RESET LDX #$FF Initialize stack

8BLC 9A TXS point to $1FF

8BLD A9 CC POR LDA #$CC (%11001100)

8BLF 8D 0C AQ STA PCR1 Disable POR, tape off

—

$2
cs1
&2

Bits 3 - 1 control CA2. Loading #$CC into the Peripheral Control
Register (PCR, VIA #1; hence PCRL) wutilizes the bits inside the
brackets to control CA2: %1100[11Q] 0. The VIA programming card states
that this combination of bits sets CA2 LOW. This disables POR and
returns normal addressing. This concludes discussion of the POR
clircultry.

AT
e
A0 >—————————— 1 51
45Y
ey
23k
TYLPY
o

-

Alo
ARG

Note that the same signal used to select the ROM also is
connected to U7. This insures that when the TRACE function is used,
it will not operate in the Monitor and cause the system to crash.

+5

15y
33K

The address decoding for the 1/0 on the SYM is straightforward.
Full decoding is not used. The 6532 and 6522 #1 are selected on their
€S2 inputs by AAD ,giving them 2K of address space (A000 - A7FF). For
the RIOT, this is modified by CS1 being selected only when Al0 s
high, giving an address range of ALOO - A7FF. The RS input is used to
select RAM (L) or 1/0 (H). Connected to A9, 1/0 is selected at A400 -~
A5FF, and RAM at A600 - A7FF. For the VIA, the CS1 input is connected
to AIO, selecting this chip only when A10 is low (A000 - A3FF).

vaoe
23168
vy
T4Qo

The CS? inputs of VIAs #2 and #3 are both selected by AAZ , also
providing a 2K address space (A800 - AFFF). This is divided equally
by A10. CS1 of VIA #2 is connected to Al0, giving the lower 1K, and
Al0 gives VIA #3 the upper 1K.

SYNC

Fromy

TRACE
cimeviray

Earlier it was mentioned that SYSTEM RAM is selected at the top 4 A -ls

of memory, where the reset vector lives, but here it is stated that 18 ‘flﬁ oo rf
6532 RAM is addressed at A600. How can this be? Well, SYSTEM RAM s
actually addressed in both places. This is the famous ECHO. System
RAM, located at A600 -_A6FF is ECHOED at F800 - FFFF. This is
accomplished by tying AAO to F8 (Jumper T-21 and U-22). Anything
selected by one is also enabled by the other. You may note that this
wastes a lot of memory also. There is yet another way to provide
vectors on power-up AND not use pointers to RAM, AND not waste memory!

evee
sy#-212

S
An

O~nNAaTwen R LR

1]

> ~co ? g

80—~ 5

@lo -0 -
<[o & - ~

AXY NAMD ERTE
§522
& o1 || seary

THLENS
(2
WLLIYS

a

Te sececy 23168,
both T3, awd 3¢
hae To be fow.

TRVTH TA
For ruE

7YL$00Q
(4
Megio

X0
VissSitt
XK

In the next column, | will discuss modifying the things covered
above in order to create a really useful 6502 based computer with 56K
of contiguous RAM!!! Till then , happy computing. /4277

T/0 ApORESS DECODING and POWER -ON- RESET

4 ~c-0~-0~

bo--g8~~

6532

G5i cs1 R || seeacrs

~ = wVALID
(NoTWiNg SELecTed)

00066 «~~~

Ueode-mwm-x
Yalocoscese -

X = donr M

At
N2
A3
A
NS

SYM-PHYSIS 15- 3 SYM-PHYSIS 15- 4

Drs HoRe Luxenbera Jarnuary 25y 1983
SYM Users' Grous

F.0+ Bayx 319

Chicos CA 95927

Dear Ludy

A few weeks acoy I considered the eroblem of how to imelement
a8 CHAIN command orn the SYM-1. The rrocedure I came wur with is
based on the rower-on-reset to EASIC in Issue No., 10, It was only
necessary to investiecate some sroblems associated with USR calls to
different roints inm the machine lancuace =rosram and with the
transfer of dats between sroeram seements.

In wour answer to 3 letter in Issue No. 13/14y wou state that
CHAIN is available as rart of Jack Erown's enhancements,
Horefullyy my method can be rresented as a simele alternative.

The enclosed material consists of @ rrintout of the assembly
of the reecuired machine lanecuace rroaramy a8 srintout of four short
EASIC rroecrams used to illustrate the erocedureyr and a short
article exrlainine the rroblemsy solutionss and constraints.

All material is durlicated on the cassette., Firsty the RAE
file containing the source code is recorded twicer, as Fl1 and F2.
Nexts the four EASIC rFroarams are saved as AyEsyCy and D, Finallu,
the RAE file containine the text of the article (with arrrorriate
GWF-1 commands) is recorded as F3.

I have also enclosed a8 self-addressed stamred envelore for any
rerly gou would care to make., Should wou not consider the material
suitable for eublicationy there is rno need to return either the
hard cory or the cassette, I am horine that wou will be able to
use it,

Sincerely woursy
Dr. Edward Wwsocki CONTROLLED LOAD OF BASIC FPROGRAMS FROM TARE
?.U. Eox 6257 Dr. Edward Wusocki

: F.0, Box 6257
¥ 2 21206
Baltimore, MD 21 Ealtimore, MD 21206

There maw be times when wou want to rum & BASIC rroeram which
is too laree to fit in wour comruter's memorwd. Some comruter
sustems make use of 8 command called CHAIN s inm which the seements

of a larse rroaram can be automsticallw loaded into memorwy one
after another., Such 8 srovision aerears to be lackine in the 8YM.

The short machine lancuace sroeram rresented here rermits wou
to wse the closing commands in ome EASIC rroeram to cause the
loadineg of &8 new ®rocram, 0f courser wou must have computer
control of the cassette recorder and it must be in FLAY, The
#roaram is adarted from the orne in Issue No. 10 which rermits
rower—-on-reset into EBASIC or 2 runnine BASIC rroaram.

In each EASIC rroarams one uses the FOKE to chance the A in
the ASBCII strine 'LOAD A' to the name of the sroeram secment to be
loaded, The subroutine to be called the first time is REFLY1., For
each rroaram seement that followsr uwse REFLY1 or REFLYZ2 according
to 8 simrle rule. If the eresent seement has involved any insut
from the kewboard, use REFLY1; otherwise use REFLYZ.

SYM-PHYSIS 15- 5

The only sroblem which exists is the transfer of data from ore
Froaram seament to the next. When the SYM executes & LOADy it
first rerforms a NEW. Eut the NEW does not cause the actual
erasure of the rroeram or variables. It onlg resets the rointers
in locstions $7B throush $88 (See "A Deductive Storu", Issue
No. 7). If the rointers are reset a3t the becinnine of the rroacram
seament Just loadeds the variables maw be accessed.

There are rules to be followed in the transfer of data from
one sroaram to another!

1, The first rroeram seement must be the loncest.

2. All varisbles must be dimensioned and defined
in the first seamenty rossibly with dummwg values.

3, Simele strinesy those defined bw a eair of
auotesy cannot he rsassed between seaments.

4, Computed strinesy those created by orerations
on other strines or by an INFUT, can be rassed
betweern rroeram seaments.

If the first two rules are rot followeds the storase ares for

variables will be disturbed., 0One cannot rass simrle strines since
the rointer to such a8 string roints back to the eroeram storace
area. With 2 new rFrosram secement therer wou will cet some
charactersy but mot what wou exerected, Comruted strines are stored
eleswherea,

The tramnsfer of data mag be halted in any seament by not
resetting the rointers at its start. Data transfer mag be
restarted in any seement which follows. In such 38 casey the rules
recardinG seament lemath and defirnition of varisbles arrly to the
new startine seement.

The four samrle BASIC sroaerams showld be rlaced on tare 3s As
Ey C» and D, When wsed with the machine lancuace rFroerams they
should illustrate most of the srincirles involved. If gou relocate
the rroeramy don't foreet to chance the FOKE of the rroaram name as
well as the USR calls to REFLY1 and REFLYZ2,

0010 3 CONTROLLED LOAD OF A EASIC FROGRAM EY
0020 % ANOTHER EASIC FROGRAM
0030 5 EDWARD WYSOCKI - JANUARY 1,1983
0040 %
0050 3§
0060 RIN +DE $887E
0070 INVEC +DE $A660
0080 SCRA +DE $A63A
0090 TOUTFL +DE $A654
0100 +EA SLE0D
0110 .08
1E00- AD 62 Aé6 0120 REFLY1 LDA INVEC+2
1E03- 8D 3E A6 0130 STA SCRA+1
LE06- AD 61 A6 0140 LDA INVEC+1
1E09- 8D 3A A6 0150 STA SCRA
1E0C- A9 7E 0140 LDA #LyRIN
1EOE- 8D 61 A6 0170 STA INVEC+1
1Ei1- A9 88 0180 LDA #HsRIN
1E13~- 8D 6Z Aé6 0190 STA INVEC+2
lE16~ A9 28 0200 REFLYZ2 LDA #LsEXEC
1E18- 8D FA 00 0210 STA $FA

SYM-PHYSIS 15— 6

1ELE= A9 1E 0220
1EL1D- 8D FE 00 0230
1E20- A% 00 0240

LE22- 8D 54 A6 0250
1EZS~ 4C 40 D1 0260
1E28~ 4C 4F 41 0270 EXEC
1EZE~ 44 20 41

1E2E~ 0D

1E2F- 30 50 4F 0280
1E8Z= 4B 49 20

1E35- 34 32 385

IE38= 88 30 2C

1ESE~= 3l 34 34

1E3E= 0D
1E3F= 52 65 4E 0290
IE42= 0D
1E4G= 00 0300

0310

LDA #HyEXEC
STA $FE

LDA #600
STA TOUTFL.
JMF $D14C

JEY 'LOAD A'

+EBY ' OFOKE

JEY O 'RUN' 40D

JEY $00
+EN

2580144 40D

10 REM FROGRAM TO START LOAD SEQUENCE
20 X=0

30 DIM ACS)

bbbé

="ARCDEF" ID$="12345"

70 FOR I=1 TO S

80 INFUT ACI)

20 NEXT I

100 REM SAVE VARIAELE FOINTERS

110
120
130
140
150
160
170
180
190
0K

L.OAD
DK

10
20
30
40
50
60
70
80
20
100
110
120
130
140
150
160
0K

FOKE 8000FEEK(128) !FOKE
FOKE 8002yFEEK(127) IFOKE
FOKE 8004yFEEK(129) FOKE
FOKE 8006yFEEK(131) IFOKE
FOKE 8008yFEEK(133) IFOKE
REM FOKE FROGRAM NAME
FOKE 7728y66
X=USR(&"1E00"»&"0000")
END

ED

REM FIRST AUTO LOAD

REM RESTORE

FOKE 125,FEEK(8000) $FOKE
FOKE 127yFEEK(8002) IFOKE
FOKE 129FEEK(8004) {FOKE
FOKE 131yFEEK(8006) :FOKE
FOKE 133yFEEK(8008) :FOKE
REM OUTFUT

FOR I=1 TO 5

FRINT ACI)

NEXT I

FRINT E

FRINT CésDbsES

FOKE 772567
X=USR(&"1EL16"»&"0000")
END

8001 ,FEEK(126)
8003yFEEK(128)
8005y FEEK(130)
8007y FEEK(132)
8009y FEEK(134)

126y FEEK(8001)
128y FEEK(8003)
130 FPEER(B0O0S)
132yFEEK(8B007)
134yFEEK(8009)

SYM-PHYSIS 15—

7

LOADED
0K

10 REM SECOND AUTO LOAD
20 INFUT A%

30 FOKE 772568

40 X=USR(&"LEQ0"»&"0000")
50 END
OK

LODADED
DK

NAL AUTO L
o IT WORK

S0 You

20]
30 END
0K

NEW CMOS 65XX CPUS

The following information originally appeared in the February 1983 issue
of UPDATE ANNOUNCEMENTS, a monthly publication of the Professional
Update Committee of the IEEE Philadelphia Section, and is reprinted

here, with permission, for your general information.

Do any of our readers have "hands—on" experience with some of these
chips which they would like to share with others?

new

b GHEE TN CHE AR B BN BEE B SN AR RS N . B BN R
MICROCOMPUTER PRODUCTS OF INTEREST
1. From GTE Microcuits:

GTE is making CMOS versions of 6500 CPUs. They are making 18 CPUs,
ten that are pin compatiable with NMOS CPUs and eight that are new.
The CMOS 6500 CPUs have ten new instructions and two new addressing
modes. The CPUs do not have the glitches the NMOS CPUs have, for
example invalid op codes cause the NMOS CPUs to hang up while the
CMOS CPUs treat them as NOPs. The new CPUs which are pin compatible
with the NMOS CPUs are:

G65SC02
G65SC03

G65SC04
G65SCO05

G65SC06
G653C07

G65SC12
G65SC13

G63sC14
G658C15

The new CMOS CPUs which have DMA and multi-processor interfaces are:

G65SC102
G65sSC103

G658C104
G65SC105

G65SC106
G65SC107

G65SC112
G65SC115
For more information please contact: SEE ALSO PABES 15-33,34

! FOR ADDITIONAL INFORMATION
Harry Nash Associates

P.O. Box 188
Willow Grove, PA 19090
(215) 657-2213

* O A kR K R R R R ke e R

SYM-PHYSIS 15— 8

86

&D

s]
¥4

&E

8RB

Ab

Ab

A6

83
@2

8A

81

22
83

a2

5 05
ACCESS
ERLF

INCCMP
INBYTE
NEWLOC
OUTCHR
P2SCR
PARNR
SPACE
URCVEC

LINK

START

ouTP

GETPAT
GETP

STOLNG

COMP1
comMpP2

wr an ae we oae

aE an s ws wr oas

-BA

-DE
. DE
«DE
-DE
-DE
.DE
-DE
-DE
-DE
«DE

LDY

BNE

EXPANDED MEMORY SEARCH FOR SYM-1
By Richard R. Albers c 1981

To use this program, enter: G (LINK)CR.

Then enter: F (start addr)-(end addr)CR.

The program will prompt for the data to be
matched before entering the memory examine/
modify mode. Enter hex bytes, or ":" plus
ASCII characters, or combinations.

Enter 1 to 255 bytes. End input with a <CR>.

The program acts like .M with.3 parameters,
but needs a match of all the pattern bytes
before entering memory examine/modify mode.

$0200

+8R86
$834D
$82R2
$81D9
$8517
$8A47
$829C
$A649
$8342
$AL6C

ACCESS

#L, START
URCVEC+1
#H, START
URCVEC+2

Link to unrec. cmd vector

$F
ERROR
PARNR
#4002
ERROR

Our command?

#4060
CRLF
TABL, Y
GETPAT
OUTCHR

Clear index register
Clear line
Print “PAT ™

ouTP

#$00
INBYTE
STOLNG
ERROR
PATRN, Y
SPACE

Clear index register
Get a pattern byte
CR ends input
Non—-hex not allowed
Store pattern
Separate bytes

Count bytes

GETP Force end at 256
NBYTES
ACCESS
P2SCR Move P2 to FE,FF
#4909
($FE),Y
PATRN, Y
NEXT

Clear index register
Get a byte
And compare to pattern

No match
SYM-PHYSIS 15- 9

224D—
P24E-
#251-

#253—
a256—
@258-
@25A—

925C—
@25F—
9261—
B262—

#2263
a264—
#2265
8268—
B26A—
@26B—

EDITOR’S NOTE:

D200~
A203—
@205~
a2a8—
D20A—
@28D—

P20E—

cs
cC
99

20
9@
ce
D@

20
99
i8
[-17]

38
=12
1%
20

b6A

17 85
a9
47
a7

B2 82
E3

41 54
o9

BLEG
Be7d
G680
aL9a
790
a71a
A728
@738
a74a
B750
a760
@779
a780
a79a
2800
ag1a
2820

2833
a84a
@854

o313
aA2a
BA3G
BA4G
aASD
jalolo17]
BE78
2983
BE9@
aE95
G106
@161
@114
812a
@123
#1398
#1490
F156
a160
@173
9180
@194
A200

NEXT

QuUIT

ERROR
BACK
TABL

NBYTES
PATRN

;5 =08
ACCESS
CRLF

INCCMP
INBYTE
NEWLOC
OUTCHR
P2SCR
PARNR
SPACE
URCVEC

L INK

START

for example,

INY Match

CPY NBYTES End of pattern?

RCC COMP2 No; continue matching

JSR NEWLOC Enter mem examine/modify mode
BCC QUIT CR means return to SUPERMON
CMP #°G Go to next matched locn?
BNE ERROR Only "CR" or "G" allowed
JSR INCCMP Increment FE,FF

BCC COMP1 Not at end address yet

CLC End of search

RTS

SEC Error; return

RTS ReTurn to SUPERMON

-.BY "PAT ~ %29

-DS 1

.DS 235

-EN

The Expanded Memory Search Program listed below is more
"powerful" than that listed above in
This could be helpful,

that "wild cards" are allowed.
in finding all JSRs to a given page.

EXPANDED MEMORY SEARCH FOR SYM-1
By Richard R. Albers c 1983

s as

To use this program, enter: G (LINK)CR

Then enter: F (start addr)-(end addr)CR.

The program will prompt for the data to be
matched before entering the memory examine/
modify mode. Enter hex bytes, or ":" and
an ASCII character, or "?" as a wild card.
(a thru z ASCII is made upper case by MON).

Enter 1 to 255 bytes (wild cards = 2 bytes).

End input with a <CR>.

The program acts like .M with 3 parameters,
but needs a match of all the pattern bytes
(a wild card is a guaranteed match)
before entering memory examine/modify mode.

s s

W oar we e we e

-BA $6200

.DE $8B86
$834D
$82B2
$81D9
$8517
$8A47
$829C
$AR649
$8342
$A66C

ACCESS

#L,START
URCVEC+1
#H, START
URCVEC+2

Link to unrec. cmd vector

#°F Our command?

SYM-PHYSIS 15-108

AL

83
a2

8A

a2

81

22

a2
83

@2

a2

a2

85

82

ouTP

GETW

GETPAT
GETP

STO1

GET1

STOLNG

COMP1

COMP2

COMP3

COoMP4

NEXT

QuIT

ERROR

BNE

STY

JSR

LDY
LDX
LDA
BNE
INX
LDA
BNE
CMP
BNE
INX
INY
CPX
BCC

JSR
BCC
CMP
BNE

JSR
BCC
cLC
RTS

SEC

ERROR
PARNR
#$02

ERROR

#$90
CRLF

TABL, Y
GETPAT
OUTCHR

ouTP

#°2
ERROR
#$00
PATRN, Y

ERROR
#4091
ST01

#$O0
INBYTE

GETP

NBYTES
ACCESS
P2SCR

#$00
#5090
PATRN, X
CaMP3

PATRN, X
COMP4
($FE), Y
NEXT

NBYTES
comMpP2

NEWLOC
QUIT
#°G
ERROR

INCCMP
COMP1

Clear index register
Clear line
Print “PAT *

{Always)
Wild card?

Yes, indicate it

If PATRN too big
{Always)

Clear index register
Get a pattern byte
CR ends input
Non—hex maybe wild
Store pattern

Zero is special

If PATRN too big

Double zero matches zero only

Separate bytes on CRT
Count bytes
Force end at 256

Store number of bytes
in PATRN
Move P2 to FE,FF

Clear index registers
Get a byte of pattern
Check for wild card

Wild, skip match attempt
Compare to memory
No match

Match
End of pattern?
No; continue matching

Yes; examine memory

CR means return to SUPERMON
Go to next matched locn?
Only "CR" or "G" allowed

Increment FE,FF
Not at end address yet
End of search

return
SYM-PHYSIS 15-11

Errors

az289-

#28A—
#28D—

@28F—
B299—

B200—
D293
P204—
B206—
#2209
P20C—
a29F—
9212-
@215-
9218-
@21B—
@#21D—
G21F—
@9221—
@223-

G226—
a228—

=17}

20
D8
A7
8D
8D
8D
20
20
29
co
Fa
ce

4c

ce
0

86

o
4A
4B
FE
4D
20
42

24
38
4D
a3
a3

3a

S99 41 54
20 99

8RB

Ab
Ab
a2
83
83
83
8A

8d

1834
10403
1856

1860

BACK

TABL

1676 NBYTES
1688 PATRN

1690
aa18

ACCESS

START

RESTRT

D2H

RTS

- BY

-.DS
-.DS

ara

e ae as we s

Eas we as s A

-.DE
-DE

-DE
- DE
-DE
-DE
-DE
-DE
-DE
-DE
- DE
-DE

-BA

JSR
CLD
LDA
STA
STA
STA
JSR
JSR
JSR
JSR
CMP
BEQ
CMP
BNE
JMP

3 Convert

CMP
BCC

Return to SUPERMON

TPAT 7 %90

1

235 May be less; don’t overflow!

HEX TO DEC & DEC TO HEX CONVERTER

By Richard Albers

Uses modifications of routines
from Leo J. Scanlon’s
"6542 Software Design".

.6 206 to start a conversion.
Prefix hex with "$" ("+" from hexpad).
Input decimal with no prefix.

Output uses same hex indicator.

Limit is $FFFF or decimal 635535.

Test for overflow is only on decimal
input; hex input uses PARM.

End each number input with "CR".

Exit to MON with "M" (MEM from hexpad)
after prompt (?) for input.

See coments for changes for use with
hex keypad & LEDs.

$8BB6
8972
$834D
$8171
$8A1B
$82FA
$8A47
$8320
$8224
$A64A
$A64B
%8342
$80903

$200

ACCESS
Just in case ...
#4500 Clear storage & flag
P3L
P3H
ZFLAG
CRLF
ouTamM
SPACE
INCHR
#'%
H2D
#°M
D2H
WARM

Indicate ready
Prompt = ?

Get first char

Yes

Return to MON?

No, must be dec to hex
Yes, return

decimal to hexadecimal

#°0
ERROR

Test for valid decimal digit

SYM-PHYSIS 15-12

Hex to dec? (+ ($2B) for hexpad)

B22A—
@22C—-
@22E-
#231-
9234—
9236
9239-
B23B—
@23E-
@241—
@244 —
@a247—
B24N7—

924D—
G24E—
#9251—
#9254

P265-
B267—
2268-
B#26B—
B26E-
G270
D273~
@274—
@277
a278—
927B—
A27E—-
9280
29283
?286—
@288-
2289—
#28C—
928F—
a290—
9293~
#2295~
9298—
22997
929C—
B29F—
92A1—
92A4—
P2AT—
B2A9—

P2AA—
@2AC—
G2AD—
B2AF—

29
D@
20
20
4Cc

29
F1
4D
B1
a4

4a
4B
2Aa

4B
22

FD

oF
C

a2

83

8A

82
Ab

a2

89

az

82

a3

a2

Ab
A6

Ab

AL

A6
Ab

Ab

Ab
Ab

A6

Ab

(27-]
Ab

Ab
A6

ERROR

HZD

CONAZH

OVFLO

CcmpP
BCS
JSR
JSR
BNE
JSR
LDA
JSR
LDA
JSR
LDA
JSR
JMP

SEC
JSR
JSR
JMP

%7z
ERROR
CONAZH
INCHR
DZH
CRLF
#°%
OUTCHR
P3H
OuUTBYT
P3L
OUTBYT
RESTRT

BEEP
ERMSG
RESTRT

(ASCII "9"+1)

OK; convert to hex
Get next character
Not CR; continue

Print "$"("+"($2B) for LEDs)

Output hex value

Let monitor print
error message

And try again

5 Convert hexadecimal to decimal

JSR
BNE
JSR
JSR
JMP

PARM
ERROR
CRLF
CONH2A
RESTRT

Get hex to convert
Non-hex is not allowed
New line

And conveRt it

Get next # to convert

;5 Store ASCII-coded decimal as hex

AND
PHA
ASL
ROL
BCS
LDA
PHA
LDA
PHA
ASL
ROL
BCS

LDX

BNE

#$0F

P3L
P3H
OVFLO
P3H

P3L

P3L
P3H
OVFLO
P3L
P3H
OVFLO

P3L
P3L

P3H
OVFLO
P3H

P3L
P3l
#4099
P3H
P3H
OVFLO

#$FD

#$0F
ERROR

Convert to BCD
Save new digit
Multiply current hex by 2

Save 2 X current value

4 X current

8 X current

Retrieve 2 X
2X+8X-=10 X
current value

Now, get new digit
And add to 16 X
current value

Pick up any carry

Overflow; n > 65535
Clean-up stack

Code for "OVERFLOW"
(Always)

SYM-PHYSIS 15-13

1249
125@
@92B1—- AG @8 126@ CONH2A
@A2B3— A2 ad 12768 NEXTD
92B5— AD 4A A6 1286 SUBT
@2B8— 38 1296
g2B?— F9? FS 92 1300
@2BC— 8D 4A A6 1319
@2BF— AD 4B A6 1320
92C2—- 88 1334
#2C3—- F9 FS 92 1349
P2C6— 998 @7 1356
92C8— 8D 4B A6 1369
g2CB— C8 137¢
92CC—- E8 1386
@2CD—- D@ E6& 1396
1493
92CF—- C8 1416 ADJOUT
@2D@— AD 4A A6 1420
92D3— 79 FS 92 1436
@2D6— 8D 4A A6 1449
22D9— 8A 1450
@2DA—- D@ @5 1460
@2DC—- AE FE 92 1470
@2DF— F¢g @8 1489
$2E1—- EE FE @2 1494 ASCOUT
G2E4— 49 39 1560
G2E6— 20 47 BA 1519
@2E9— 88 1526 NOPR
92EA— 88 1534
@2EB— D@ C6 1549
92ED—- AD 4A A6 1559
@2F@— @9 3@ 1568
92F2—- 20 47 8A 1579
P2F5— 69 1589
1596
B2Fb6— 90 GA 1688 TABL
92F8— 00 64 1614
92FA—- 63 E8 1629
P2FC— 27 16 1636
164a
92FE—- 90 1656 ZFLAG
1666
1670

;3 Output hex

LDY
LDX
LDA
SEC
SBC
STA
LDA
DEY
SBC
BCC
STA
INY
INX
BNE

#4098
#5500
P3L

TABL-1,Y
P3L
P3H

TABL-1,Y
ADJOUT
P3H

SUBT

INY
LDA
ADC
STA
TXA
BNE
LDX
BEQ@
INC
ORA
JSR
DEY
DEY
BNE
LDA
ORA
JSR
RTS

P3L
TABL—1,Y
P3L

ASCOUT
ZFLAG
NOPR
IFLAG
#$30
OUTCHR

NEXTD
P3L
#4309
OUTCHR

-BY
«-BY
-BY
-BY

08 $0A0
00 $64
$93 $EB
$27 $19
-BY $606

-EN

as ASCII-coded decimal

Table pointer
Decimal -to-be
Hex value to convert

Subtract decimal value of
this digit from the hex
value stored in P3
until we exceed the hex
value, then add-back one

Here is where we count
in decimal (4 <= X <=
(Always)

A0

Add back 1 to P3L;
P3H was not changed

Move decimal to A
Suppress leading zeros
Test leading zero flag

Indicate found non-zero
Convert it to ASCII

And print it

Now adjust for next
decimal value

Unless this is the last?

Always print the last
digit, even if it’s zero

;Decimal 19

;Decimal 1969
;Decimal 1069
sDecimal 10069

sLeading zeros flag

FIGURE BELOW IS MORE FULLY DESCRIBED ON PAGE 15-21

Sample DIRECTORY listing f
which, it is hoped, can
equivalent of RAE-1 on the

0 WO NIRRT W 4

3
29
{7
22
1z
13
8
&
4
9

"MAE/DOSMD.EXEE4" FRG 3
"MAE. EXESS" PRG 11
"MICROMOM.EXEE4" PRG 23
"MAE.HOT" PRG 14
"WORDF.EXES4@2500" FPRG 8
"LIORDF.RELE4" SEQ 2
"WORDP. THZ" FRG 180
"REL.EXKESG4" PRG 12
"REL.REL&4" SEQ 3
"UART.CTL" PRG 5
"LUART.MA1" FRG 7

rom
be adapted to the
SYM-1.

"UART.M@2"
"URRT. MO3"
"FET.LIB CBM&4"
"IEEE.LIB"
"MLMACROS.MLIB"
"SWEET16.MLIB"
"SECTOR. CTL"
"SECTOR. PGM"
"PET SOURCES.BAS"
"STARWRITER.BAS"
"ASCII.BAS"
"GL.SORT.CTL"

VIC=2a/CBM-64

1541 Disk Drive System
SYM-1. “"MAE" is the CBM-64

ggg 5 "GL.SORT.MaaQ"

P?ﬁ 2? "GL.SORT.Ma1"

Pﬁa 12 "SM=SURT. ASI4"

Péé 1 "SORT.TEST . BAS"

FRG 2 "18525 PRINTER.BRS"

PRG 2€ "TAPEGE4.ASM"

PRG 3 "TRPES4.REL"

PﬁG = "TRFE.EXES4RE5000"

PRG 5 ”SCROLL.EXE§4"

PRG 3 "SCROLL.RELG4"

.~ 396 BLOCKS FREE.

FRG

SYM-PHYSIS 15-14

FRG
FRG
FRG
PRG
PRG
FRG
SEQ
PRG
FRG
SEQ

FDC—1 TECHNICAL NOTES - ISSUE 2

Number 2.1
The following letter, from David W. Lewis, 1424 N. Chigwell Lane,
Webster, NY 14584, contains some very helpful information on the FDC-1:

Luxs:

Enclosed you will find my edited 1listing of EDB. Normally I would
provide you with full source code. However, my system is not a standard
SYM and my EDB source is greatly modified for my parallel port keyboard,
memory mapped video, parallel port printer, and expanded I/0.

In the EDBR listing enclosed, you will find the code for the real time
clock is changed. This change prevents the clock from generating an IR
until it is enabled and the time is set with the .STIME command. If
this change +to EDR is made, it is not necessary to fix the IR@ bug in
FDC-1 code unless the clock function is need. This also 1lets EDB run
slightly faster. [Editor® s Note: The file described here, and listed
below, is a direct replacement for EDB File 54, for those of you who
have copies of Jack Brown’s EDB.1

EDB will patch in the disks when ever a cold or warm start is made (.G
2048, .G 203, or .G after a break to MON). I have tested all functions
and found no problems. However, there are probably bugs. If you find
arty, please let me know.

One area of concern I have not yet investigated is the variable file
loading when the BASIC source is enlarged. Also, I believe that there
is a problem if HIMEM is lowered (i.e., lowered to %4999 from $899¢) to
allow room for an assembly language program. The variable file may load
over the protected code.

Enclosed with the marked EDB source you will find the EDB FDC-1 patch
listing, the IRR and DC command listing. Also, on tape you will find
the following:

1) A copy of this letter, file F1
2) A copy of EDB FDC-1 disk handler EDB.1d, file F2
3) A copy of IR and DC patches, file F3

Regarding the problem of CRC disk errors, I am enclosing a copy of an
article on this type of disk controller. On my system with 44 track
drives with double density storage it is not unusual to get CRC errors
on the inner 5 tracks. I found that the 1791 was slowly degrading in
performance until the only way it would work was to cool it with freeze
spray. I found it impossible to get a Synertek 1791, so I replaced it
with a Western Digital chip. To do this the +5 vdc land to pin 46 was
cut. Then +12 vdc from my bus was provided to pin 46 of the 1791
through an unused pin on the PWB edge connector.

Another unusual error I originally had was lost data. Due to the delay
through my bus buffer card, the disk controller DRE was not detected.
The S.0. (set overflow) input of a 6582 must be synchronized with the
falling edge of the phase 1 clock. This was done on my bus interface
card with a D—flip flop 74LS74.

FDC—-1 IRG Interupt BUG

There is a bug in the FDC—-1 IRG software IRGRTN at $9C5D that prevents
any IRQ from being executed from the user UIRGVC location in system ram.
Any IRQ will be executed thru IRRVEC at $A&7E which points to the disk

SYM-PHYSIS 15-15

IREBRTN routine. This causes the system to hang up on user IR@’s or a
software BRK.

The reason for this is simple. Whenever the 1791 Disk Controller chip
is executing a command, the busy status bit is set and data transfers
are controlled by the DR2 (data request line) and the 6562 S.0. (set
overflow) input. After the command is complete, the busy bit goes low
and then the IRG goes high. Therefore, the disk IRQ can never occur
when the busy bit is set.

Examination of the IRGRTN code shows that the branch to the disk routine
is taken whenever the busy bit is low. This is true for all IR@’s.

The fix for this is to test a flag, not the busy bit in the status
register. Since the only entry to to disk handling routine is DISKIO at
$9804, the S calls to this routine can be pointed to a routine to set
and clear the disk IR@ flag. The address selected is $9784 (easy to
remember). If the modified IRGRTN routine is alsoc moved here, an added
bonus can be gained. The upper 2k of the disk handler can be simply
paged in memory with an 1/0 line, providing an extra 2k of memory space.

The only problem I see is finding a byte of RAM for the flag. On my
system I have 2 blocks of 512 bytes of RAM for disk use in the 1/0 space
(total 1k of RAM for disk use). So finding the the extra byte for
DISK.FLAG was no problem. I have included the software listing for this
bug fix.

FILE SAVE BUG

There is a bug in the file save routine. If the last byte of a file is
the only byte in the last sector, the byte will not be saved.

Example: Sector size 256, save 200 — 304.
Only 208 — 2FF will be saved.

The directory will show the full file range of 206 - 364d. I have not
looked into this, but I believe that the file size is computed by
END.ADDRESS — START.ADDRESS, which is 1 byte short. This has a 1 in 256
or 1 in 128 (etc.) chance of missing the last byte on random length
files.

Number 2.2

Here are several FDC-1 patches by Dave Lewis:

2730 R 2233322002232 300022333033 03 3333333332333 3332 823233
o020 3

9939 ;3 FDC—1 PATCHES FOR :

ga4a ;3 1) IR BUG

9956 ; 2) PAGING OF UPPER 2K BYTES OF FDC-1 EPROM

@969 ;3 3) DC COMMAND FOR RAE DISK AND TAPE

o978 ;3

aa8a 3 USAGE -

oB9B ;

@19@¢ ;DISK.FLAG -

@116 ; THIS FLAG IS USED TO TAKE CARE OF THE FDC-1 IRQ BUG.
@912¢ ; BIT @ OF THE FLAG IS SET TO INDICATE A DISK OPERATION
@138 ; IS IN PROGRESS. THE IRGRTN CHECKS THIS BIT, NOT THE
@149 ; 1791 DISK CONTROLLER CHIP, TO DETERMINE THE SOURCE OF
@g15¢ ; AN IR@. IF BIT & = 1, THEN A DISK IR@ HAS OCCURRED AND
@168 ; IRGRTN JUMPS TO IOCOMP AT $9C7D. IF BIT @ = @, A USER
#1768 ; IRE HAS OCCURRED AND IRBRTN JUMPS TO IRGBRK AT $809F.
218¢ ;

@199 ;;IRGRTN —

SYM-PHYSIS 15-16

5 THE VERSION OF IRGRTN HERE IS COPIED FROM $9CSD WITH SLIGHT
; CHANGES TO ALLOW I/0 PAGING OF THE UPPER EPROM WITH THE

; VIDEO PWB. IF PAGING IS NOT DESIRED, CHANGE THE LABEL

; STAREG TO DISK.FLAG IN LINE 407¢ OF THE ORIGINAL IRGRTN

; ROUTINE. I HAVE NOT DETERMINED THE BEST RAM LOCATION

5 FOR DISK.FLAG ON A STANDARD SYM-1 WITH FDC-1. IF PAGING IS
; USED, IRGRTN MUST BE MOVED DOWN INTO THE FIRST 2K AND THE
; THE IRGVEC INITIALIZATION IN DINIT AT $9886 MUST POINT

5 TO THE NEW ADDRESS.

H
H

60.DISK -

5 ALL CALLS TO DISKIO AT $98@6 (S CALLS) MUST NOW POINT TO

5 G0.DISK. GO.DISK WILL THEN SET DISK.FLAG, PAGE EPROM IF

5 DESIRED, CALL DISKIO AT $9894, THEN CLEAR DISK.FLAG BEFORE
RETURNING. THE STARTING ADDRESS OF $9784 WAS CHOSEN TO BE
EASILY REMEMBERED SINCE THIS IS THE NEW DISK HANDLER ENTRY
POINT (NO LONGER %9869 DISKIO).

H
3
3
3
;RAE.DC —

; THIS CODE USES THE DC (DISK COMMAND) FUNCTION OF RAE TO
; SWITCH BETWEEN TAPE AND DISK. IF TAPE LOADS AND STORES
; (NOT .CT TAPE ASSEMBLY) IS DESIRED, ENTER >DC T AND THE
; DISK FUNCTION IS DISABLED. TO SWITCH BACK TO DISK, ENTER
; >DC D.

; DC T : DISABLE DISK, ENABLE TAPE

; DC D : ENABLE DISK

; TO USE THIS FUNCTION, ADD THE FOLLOWING LINE INTO THE

; RAELINK CODE AT $971C.
; LINE 5566 JSR SET.DCVEC
H

s

L2222 20020 ettt e ettt is sy

-BA $9788
.MC $7780

£
G0.DISK PHA
LDA #85
STA $A113
STA DISK.FLAG
PLA
JSR DISKIO
PHA
LDA #0584
STA $A113
STA DISK.FLAG
PLA
RTS

s;disable video card, enable disk eprom
;video/FDC-1 eprom paging 1/0 address
sSET FLAG FOR DISK IR@

srun disk
;enable video, disable disk eprom

;video/FDC—1 eprom paging I/0 address
;CLEAR FLAG FOR USER IRQ@

IRE@ HANDLER

5 an an we

E]
IR@BRK -DE $860F smonitor IRQ handler
IocomP -.DE $9C7D
PAGE. 1 -DE $0109
BSYBIT .DE %61
STAREG .DE $FO00
|
IRGRTN PHP
PHA
TXA
PHA
TSX
LDA PAGE. 1+4,X
AND #%10 :MASK FOR B FLAG
BNE IRGRET s IF A BREAK INSTRUCTION

SYM-PHYSIS 15-17

#8509
2869
o879
2880
2890
[2edal]
@919
a92a
BIZG
@949
@958
G969
a97a
@980
@99a
1900
1919
1920
1939
1640
1950
1060
1478
1489
1990
1109
1119
1120
113a
1144
1150
1168
117a
1189
1199
1206
121@
1220
1230
1249

LDA #BSYBIT

BIT DISK.FLAG sCHECK FOR ACTIVE DISK

BE@ IRGRET ; IF DISK NOT ACTIVE, BRANCH & LET SYM HANDLE IRQ@
LDA STAREG ;CLEAR DISK IR®
JMP 10COMP ;DISK BUSY, JUMP TO DISK IR@ HANDLER
IRERET PLA ;BRK OR NON-DISK IR®
TAX
PLA
PLP
JMP IREBRK sLET SYM HANDLE IT

o e

s INITIALIZE DC VECTOR FOR RAE DISK COMMAND VECTOR

i
SET.DCVEC LDA #H,RAE.DC

STA X$ED

LDA #L,RAE.DC
STA ¥$EC

RTS

E]
sRAE DISK COMMAND DC HANDLER

s

RAE.DC LDY #@ spoint to start of RAE input buffer
JSR MVNEXT ;move past DC to next field
CPY #849 spast end of buffer?

BE@ NOT.GOOD
LDA $135,Y

sbranch if at buffer end
sget 1st char of 2nd field in buffer

CMP #°D s;is char a D for enable disk
BNE TAPE? sbranch if not D
DISK.DC LDA #1 ;yes, a D

STORE.DC STA $EE

TAPE? CMP #°T

NOT.GOOD JMP ERROROUT

salter DC vector flag

RTS j;finished

;is 1st char in 2nd field T
sbranch if not T

;disable disk,allows proper tape load
s;forced branch
schar not D or T,

BNE NOT.GOOD
LDA #2

BE@ STORE.DC
input error

Number 2.3

Here is Dave Lewis” FDC—-1/EDB-1 Link for users of Jack Brown’s
Disk BRasic

o019
aP20
217 s)
oO4G
2l 17)
BBLD
aa7a
2989
1202047
@103
2119
@129
@134
a149
a15a
a16@
@179
@189
G199

-

s s W as as s an

e e we we s

-

Extended
(EDB-1):

EDB. 14 9:36 PM MON FEB 21 1983

IFE DISK-1

1233830322023 3 0230033233 R i sttt ey
USAGE

. IN=2 set disk drive @ as input device
. IN=3 set disk drive 1 as input device
.0UT=2 set disk drive @ as output device
.0UT=3 set disk drive 1 as output device

Automatically reverts back to application drive 1
after any access on system drive @. If this is not
desired, remove the four lines in this file which
forces this function. Set default read/write device
numbers as desired in page 2 locations RDEV and WDEV.

SYM-PHYSIS 15-18

3 Real time clock IRQ must be disabled during disk calls.
; If it is desired that the clock always run after cold
; start, remove 2 lines of the CLK.FLAG check in this

; file. CLK.FLAG is set to $C@ during the .STIME routine
; when the clock IRE hardware is enabled. If the original
;5 EDB clock enble function is used, these lines must be
;5 removed and CLK.FLAG is not needed.

’

PRS2 3383303333338 33 3333332332833 3303 0833330233338 ¢803%94

]

;3 Extended Disk Basic. Parameters for FDC-1.

s

NAME.PTR .DE $FC

.

PARNR .DE $A649

P3 .DE $A64A

P3L .DE $A64A

P3H .DE $A64B

P2 .DE $A64C

P2L .DE $A64C

P2H .DE $A64D

Bl . DE $A64E

PIiL .DE $A64E

P1H .DE $A64F

H
MONENTRY -DE $9686
POINTNAM -DE $986&4

sinitialize FDC-1 vectors, to set IRA only
spoint XFC to NAME.BUF

AR2 .DE $948D sFDC-1 file load entry
NMBLANK .DE $9199 ;put spaces in NAM. BUF
S3CHECK -DE $92CA ;FDC-1 file save entry

H

H

H

DISK.SAVE JSR POINT.NAME
JSR ADJ.WRITE

sset ptr, clear buffer, move name
sget drive # with verify

STX P1L sset drive # for save with verify

JSR S3ICHECK+16 ;do save

LDA #3 sforce drive 1 after write access of drive @
STA WDEV ;set write device

JMP DISK.DONE scheck for clock before return
s
LOAD.NOREL LDA #1
BNE LOAD.FILE
DISK.LOAD LDA #2
LOAD.FILE STA PARNR
JSR POINT.NAME
JSR ADJ.READ

351 parm load file with no relocation
s forced branch

32 parm load file with relocation

;set up for 1 or 2 parm load

;set up NAME.BUF

sget drive # with verify

STX P2L ;set drive # for load

JSR AR2 ;do load

LDA #3 ;force drive 1 after read access of drive @
STA RDEV ;set read device

DISK.DONE LDA #$C@O
CMP CLK.FLAG

scheck clock flag
;flag = $C@ if clock on, else @
BNE DISK.RET sbranch if no clock
STA VIAIER senable clock IRE hardware in 6522 chip
DISK.RET RTS jireturn from disk command

3
POINT.NAME JSR POINTNAM ;point ¥FC to NAME.BUF
NAME . BLK JSR NMBLANK j;put spaces in NAME.BUF
MOVE.NAME LDY #9 3 move NAME to NAME.BUF
LDX %LABLOC
NAME.LOOP LDA PGONE,X ;:;move file name, 19 char max
BEQ NAME.END sdone if @
STA (NAME.PTR),Y sstore char in NAM.BUF
INY j;get next char
SYM-PHYSIS 15-19

@859 INX

o869 BNE NAME.LOOP ;forced branch

#8748 NAME.END CLC j3no error

@889 LDA #%49 sdisable clock IR at 6522 chip
29899 STA VIAIER 5 IR must be off during disk access
fod i) RTS jsnow do disk command, load or save file
9913 ;3

@92d ADJ.READ LDX RDEV sget read device, 2 or 3

a93@ BNE ADJ.WRITE+3 ;forced branch

#9244 ADJ.WRITE LDX WDEV ;get write device, 2 or 3

a95a INX j;adijust drive number, force verify

a96a INX ;drive @ = 4, drive 1 = 5

a979 RTS

9984

a99a Xxx

1988 3

19186 END.PGM -EN

Here are some comments by Dave Lewis on the proper use of the 6582 SO
line. He has annotated material on page 9-16 of Leventhal’s
(OSBORNE/McGraw—Hill) "4888 Assembly Language Programming."

[Note: That’s right, the 6888 book! Couldn’t find anything on the SO in

Leventhal’s 6582 book. Does anyone else have inputs on the need to
clock S@ with Phase 1 27?21

T Sauad Hhal Hhiy elegulE g v-cf,u:reef whe,
X ’u+ Mj Fbc -1 an M7 ex "-ChJ‘J bl‘f. r

Placed +he hardware on my bas (nterface card.
e H\c S.0. zﬁp(,d- ‘:S not in Q]n G Los+ DaTwe
Evvors ocCur, Iq"] use of the 5.0 (nput

vcg}u.‘res the P’T Synt-
iI)AU~Q l:euA(S

The Set Overflow flag (SO) signal can be used to set to 1 the Overflow bit of the
Status register. The SO input must make a high-to-low transition on the trailing edge of
the ®1 pulse in order for the Overflow bit of the Status register to be set to 1. This may
be illustrated as follows:

o

0 status flog = |

You cannot use the SO input signal in order to reset the Overflow bit of the Status
register to 0. Note that external logic must use the ®1 clock signal in order to synchron-
ize the SO high-to-low transition. A simple 7474 flip-flop can be used for this purpose

+5V

|

DR OUTAT g o—— 0 | e o

Loow Foe-1 SYym- 141 s.0.
7474 ‘:np“’+

%i c'ock ‘;NM — ® c I T

CPU om Sym- 1 T
SYM-PHYSIS 1520

THE SYM-1, THE CBM-&64, AND THE VIC=24

For many vyears the SYM-1 stood alone as the most cost-effective
6502-based single-board computer available. We felt that it was the
ideal beginner’s computer for those with a reasonable amount of hardware
background and some skill with hand tools, or who at 1least knew which
end of a soldering iron was the handle end.

We still believe this, especially since Lance Leventhal’s "Micro-
computer Experimentation with the Synertek SYM-1" is now available to go
along with it. Several factors which others might consider as short-
comings, we consider toc be advantages. As one example, we feel that the
initial absence of BASIC and a QWERTY keyboard is a strong plus for the
SYM-1, since the user is "forced” to learn machine language from the
outset. There is also no need to "tie up" a TV set in order to use the
computer.

The required power supply and cassette recorder add less than $58 to the
initial system cost, and the necessity for interfacing these items to
the SYM-1 is an integral part of the learning process. From this point
on. the S8SYM-1 is fully expandable in any direction(s) desired by the
user, and, in this sense, is the most "personal” computer available.

The absence of games, and a seeming "unfriendliness"” to non—technically
oriented users, makes the SYM-1 relatively non—-accessable for any
youngsters around the household. For this reason, as well as the desire
for color graphics and wealth of software availability, many SYM-1
owners have Apple II’s around as second f(or perhaps even first)
computers.

While we think highly of the Apple, and very soon will even have one
installed in our campus office, courtesy of a special arrangement to
provide all full-time computer science faculty with Apple IIE’s, we
never considered getting one for home use. On the other hand, we now
have one each VIC=26 and CBM-64, to supplement several of our SYM-1
systems. Here’s why:

The CBM-64 has probably the very best color graphics and music synthesis
capabilities available at anywhere near its low cost. We installed Carl
Moser’s "MAE" (Macro Assembler Editor, first cousin to RAE-1), as the
first order of business. As you can see from the printed "Directory
Listing" of the MAE disk, among the many utilities, is one called
"WORDP.EXE&4984604" . This we SYM-PHYSIS readers know under the name of
SWP! Hence, much of what we learned on the SYM-1 is directly applicable
to the CBM-64. [NOTE: Directory Listing is reproduced on page 15-14.1

MAE and RAE are also first cousins to ASSM/TED, long available on other
CBM systems, including the PET, and a tremendous amount of public domain
software is available, at $16 per diskette, from the ATUG (ASSM/TED
Users’ Group), including an excellent disassembler into MAE, similar to
Dessaintes’ Disassembler into RAE.

Thus, the CBM-64 is far more compatible with SYM-1 than is the Apple II,
thanks to the MAE/RAE relationship, at much lower cost (at this writing
in the neighborhopd of $35¢ in the US), and we intend to make it even
more compatible, as we shall describe below. We will be using our CBM-
64 primarily to develop teaching software for the VIC=28, again as
described below.

We have long felt that our computer science students were being trained
by 16th century methods, for the job market as it existed three years
ago {(dropping the editorial "we" for a few paragraphs, this is my
personal opinion, not necessarily shared by others on the faculty!).
This semester I am teaching an experimental course, "Small Computer
System Design", for Jjuniors and seniors with absclutely no hardware
SYM-PHYSIS 15-21

background. The objectives of the course include learning to read
schematics, understanding the use of TTLs, VIAs, RAMs, ROMs, etc., and
how to use a disassembler (which most of the students had never even
heard of') to probe the inner workings of a system.

In the hope that the students would be encouraged to buy their own
personal computer, I chose as the "Model System” the lowest cost system
available, the VIC=28. While the Timex/Sinclair had an apparently lower
initial cost, it was not considered as effective, since the VIC=28 has
more RAM (5K vs 2K), as well as built-in serial, parallel, and RS-232-C
interfaces, including both the hardware (two 6522s) and software drivers
(20K ROM vs 8K), all of which are extra cost options on the T/S.

Additionally, the VIC=2@ has a better keyboard, color graphics, the more
universal Microsoft BASIC, the easier to learn 6592 (vs the 1788), and
easier to learn 1logical design (specs on the inner workings of the
multipurpose main chip of the T/S are hard to come by and the knowl edge
gained from its study would not be applicable to other systems.

As the price of the VIC=20 dropped from $208 to $8¢ during the semester
more students purchased their own computers, and most say that they wish
they had started earlier. Next semester I will require that students
form small study groups, with each student having at least a one-third
share of a VIC=20, since this will actually cost them less than a text.
In addition I will place a collection of books on the VIC=26 on Library
Reserve for them to use.

Now to get back to the SYM-1' We removed the ROMs from our VIC=24, and
inserted them in place of the BAS-1 chip on one of our SYM-l1s. (We
don’t vyet have the disassembler into MAE running on the CBM—-64, and the
disassemblers available in the Machine Language Monitors for the CBM-64
are only simple one-pass versions.) We dissambled their contents and
edited the results, and provided copies of the listings to students for
their study and annotation. The I/0 management portion of the VIC=28 0S
is excellent, and the method of handling the disk via a simplified 1EEE
interface (serial vs parallel) is well worth adopting to the SYM-1.

The 1541 single disk drive, for BOTH the VIC=2@ and the CBM-64, is the
least expensive one we’ve ever seen f(around $35¢ discounted). The units
are self contained, and only two pages of RAM (for data buffers) are
required. Only the software driver is required to interface them to the
SYM-1! How’s that for hardware compatiblity?

Some readers will remember that we added color graphics to our SYM-1s,
first with Turpin’s ColorMate, then with one of the RCA VP33@1 Data Ter—
minals. Both are directly compatible with VCRs. The former has pixel
mapping (requiring 4K of the SYM-1’s RAM), the latter permits a user
specified graphics character set, and can be used on the SYM-1°s 20 mA
loop.

The VIC=2¢ with its built—-in RS-232-C interface (actually inverted TTL)
would make an inexpensive color terminal for the SYM-1. The VIC=28 has
an interlace mode permitting its output to be superimposed onto a video
image during editing of VCR recordings. Additionally, the KTM-2/88,
when interfaced via RS-232-C with either the VIC=26 or the CBM-64, would
add the 86 column display so nice for word processing.

The SYM-1 and/or the KTM-2/86 and either or both the VIC=2¢ and CBM-64
are natural go-togethers. No additional hardware elements (unlike the
Apples) other than connectors and cables are required for interfacing
them. Do you see why we are so excited by these two new low priced
systems?

All that is required is the time to do the software job!!!! We’ll be

SYM-PHYSIS 15-22

glad to work with any of our readers with VIC/SYM systems by providing
copies of our VIC disassemblies in RAE-1 readable format. The 1541 Disk
Drive software is almost directly usable in the SYM-1, providing the
timing loops are modified toc the ratio of the 1.622727 MHz to 1.00060060
MHz clocks (a 2% error), and that the appropriate IEEE protocol is
followed. Linkage to RAE through the DC command would be relatively
simple. Linkage tc BAS-1 could then be handled by a .DC command using
essentially the same subroutines, except for possible relocation of the
buffers.

A MORSE CODE KEYER

Here’s a program by our Number One Son, Jim Luxenberg, 949 Hensley, San
Bruno, CA 949466. He has been a SYMmer for about a year, and got his Ham
Ticket just a few months ago. His wife has been a Systems Analyst with
IBM for many years, so they now have an IBM Personal Computer in
addition to his SYM-1.

19 REM MORSE PROGRAM BY JIM LUXENBERG KA&WRZI 9 APRIL 1983

20 REM THIS PROGRAM ACCEPTS 3 LINES OF TEXT AND OUTPUTS MORSE CODE
25 REM THROUGH PORT PB#@. THIS PORT WILL DRIVE A RELAY WHICH CAN BE
3¢ REM USED TO KEY A TRANSMITTER OR CODE PRACTICE OSCILLATOR.

49 REM NOTE— PROGRAM WILL NOT ACCEPT A COMMA (,) AS INPUT. SOME OTHER
45 REM NOT COMMONLY USED PUNCTUATION MARKS HAVE BEEN LEFT OUT OF THE
56 REM PROGRAM BUT THEY CAN EASILY BE INCLUDED IF DESIRED.

163 CLEAR

1160 PRINTCHR$ (27)+"E":FORN=1T0O9: NEXT

120 PT=44@32

125 DIMCS (59)

":CH(31)="
:CH(36)="—

259 POKEPT+2,25
26¢ PRINT"COMPUTER GENERATED MORSE CODE PROGRAM"

27@ PRINT:PRINT:PRINT

280 INPUT"ENTER DESIRED CODE SPEED IN WPM ";S

299 S=INT(514/5)

3@@ PRINT"ENTER THE TEXT TO BE CONVERTED TO CODE"

316 FORB=1T03

326 INPUTA$(B)

338 A$=A$+AS (B)

349 NEXT B

35¢ FORE=1TOLEN(A%)

360 IFMID$(A%,E,1)=" "THENGOSUBS44:NEXTE

378 X$=MID%(A%,E, 1)

388 X=ASC(X$)

396 C$=C%$ (X—-43)

49@ FORI=1TOLEN(C$)

414 IFMID$(C$,I,1)="-"THENGOSUBS28

420 IFMID$(Cs$,I,1)="."THENGOSUBS1¢9

43@ NEXTI

449 FORD=1TO(3%S) :NEXTD

456 NEXTE

S99 END

516 POKEPT,255:FORN=1TOS: NEXTN: POKEPT, #: FORN=1TOS: NEXTN: RETURN
520 POKEPT,255:FORN=1TO(3%5) : NEXTN: POKEPT, #: FORN=1TOS: NEXTN: RETURN
549 FORN=1TO{(4%S) : NEXT: RETURN

SYM-PHYSIS 15-23

LANCE LEVENTHAL’S LATEST BOOK:

"MICROCOMPUTER EXPERIMENTATION WITH THE SYNERTEK SYM-1"

We have a whole bookcase {(actually several bookcases!) full of computer
boocks. There are books on computers in general, microcomputers in
general, microprocessors in general, particular computers, particular
microcomputers, particular microprocessors, languages in general,
particular languages, etc., etc. [Among the perks of teaching, of
course, are the review copies sent us for possible class adoption. But
we actually buy and pay for, out of our own pocket, more than half the
books we own.l

Most of the books we have skimmed, and placed on the shelves, never to
be 1loocked at again. Many of these boocks would be useful for beginners,
but not truly useful for reference. We have a new city/county
(Chico/Butte) library, and we are in the process of clearing out our
bookshelves so that we can donate literally scores of these books to
help fill the shelves of this new building.

To amuse ourselves during this process, we made a mental list of the top
twenty books, the ones we would never part with, at least not during our

lifetime. Five of our "Top 20" books are by Lance Leventhal; this
should give you some idea of our respect for Dr. Leventhal’s writing
abilities. We regret that we have not yet met him in person, but hope

that one day we will, now that we have found, through a brief exchange
of letters, that we have a mutual friend here at the university.

We have reviewed and highly recommended three of his books in earlier
issues. We now review and recommend his most recent book, "MICRO-
COMPUTER EXPERIMENTATION with the SYM-1", Prentice-Hall, Inc., 21983.
To do this S9¢ page book full justice and to illustrate its tremendous
breadth and depth of coverage of the SYM-1 would require far more time
than we have available and the few pages we can devote here. So, we’ll
just let the book speak for itself by reprinting its Table of Contents
on pages 15-25,26. You can then judge the value of the book to you for
yourselves. Surely there must be at least a few topics in that listing
that are "new" for each of us.

The book is organized into 16 "Laboratories", rather than chapters,
since the approach is meant to be "hands-on", not just casual reading.
The Laboratories are numbered 4, 1, 2, . . . , D, E, F (a nice touch,
that!). The material could easily be covered in a one day a week 15
week semester course, or squeezed into a two day a week quarter course.
The book is also definitely suitable for self-study.

The book is remarkably free of errors; we didn’t find any during our
quick examination {(of course, our proof-reading eye still needs some
minor repair work done to sharpen it up). We do have one very serious
complaint about the book, however! Why wasn’t it available two vyears
ago! Lt UL But then we would have had to wait for Leventhal’s 6869 and
Leventhal and Saville’s 6582 Subroutine books!

The "SYM-1" book is similar in format to Leventhal’s 1981 "MICROCOMPUTER
EXPERIMENTATION WITH THE MOTOROLA MEK 6899D2", which we examined to see
if we could build a course around the ten MEK 686@D2 kits which were
laying around, essentially unused, in one of the storerocoms. While the
boock was great, we didn’t feel that the -D2 kits were worth "rehabil-
itating" for laboratory use. Of course we do admit to having a strong
bias towards 6S@2-based systems, and when the MEK 6888D2 kits were
ordered (by another instructor, of course) we fought a losing battle to
convince "management" that the SYM—-1s would do more for less money.

THIS IS ONE BOOK WHICH EVERY SYM OWNER SHOULD HAVE!
SYM—-PHYSIS 15-24

PREFACE

LABORATORY 0-BASIC OPERATIONS

Overview

Resetting the Computer
Examining Memory
Changing Memory
Executing a Program
Key Point Summary

LABORATORY 1-WRITING AND RUNNING SIMPLE
PROGRAMS

Data Transfer Program

Entering and Running the Data Transfer Program
Processing Data

Logically ANDing Two Values

Examining Registers

Changing Registers

Common Operating Errors

Key Point Summary

LABORATORY 2—SIMPLE INPUT

6502 Input/Output Operations
Simple Input

Flags and Conditional Branches
Waiting for a Switch to Close
Special Bit Positions

Examining Flags

Waiting for Two Closures
Searching for a Starting Character

Calculating Relative Offsets with the CALC Command

Key Point Summary

LABORATORY 3—SIMPLE OUTPUT

Attaching the LEDs

6522 Input/Qutput Ports
Lighting an LED
Implementing a Time Delay
Lengthening the Delay

Bit Manipulation
Establishing a Duty Cycle
Key Point Summary

LABORATORY 4—PROCESSING DATA INPUTS

Handling More Complex Inputs
Waiting for Any Switch to Close
Debouncing a Switch

Counting Closures

Identifying the Switch

Using a Hardware Encoder

Key Point Summary

LABORATORY 5—-PROCESSING DATA OUTPUTS

Handling More Complex Outputs

Using the On-Board Seven-Segment Displays
Adding a Delay

Seven-Segment Code Conversion

Counting on the Displays

Switch and Light Program

Advantages and Disadvantages of Lookup Tables
Hardware/Software Tradeoffs
Key Point Summary

LABORATORY 6—PROCESSING DATA ARRAYS

Data Arrays

Processing Arrays with the 6502 Microprocessor
Sum of Data

Using a Terminator

Limit Checking

Displaying an Array

Varying the Base Address

Key Point Summary

LABORATORY 7—FORMING DATA ARRAYS

Standard Procedure for Forming Arrays
Clearing an Array

Placing Values in an Array

Entering Input Data into an Array
Accessing Specific Elements

Counting Switch Closures

Arrays of Addresses

Long Arrays

Key Point Summary

LABORATORY 8—DESIGNING AND DEBUGGING
PROGRAMS

Stages of Software Development
Flowcharting
Flowcharting Example 1—Counting Zeros
Flowcharting Example 2—Maximum Value
Flowcharting Example 3—Variable Delay
Debugging Tools
Breakpoints
Single-Step Mode
Debugging Example—Counting Zeros
A Second Breakpoint
Common Programming Errors
Key Point Summary

Note that much of the material is
directly applicable to 6562 systems
in general.

SYM-PHYSIS 15-2S5

LABORATORY 9—ARITHMETIC

Applications of Arithmetic

8-Bit Binary Sum

Binary-Coded-Decimal (BCD) Representation
8-Bit Decimal Sum

Decimal Summation

16-Bit Arithmetic

Rounding

Multiple-Precision Arithmetic

Arithmetic with Lookup Tables

Key Point Summary

LABORATORY A—SUBROUTINES AND

THE STACK

Rationale and Terminology

6502 Call and Return Instructions

6502 Stack and Stack Pointer

Guidelines for Stack Management

Subroutine Linkages in the Stack

Saving Registers in the Stack

A Delay Subroutine

An Input Subroutine

An Output Subroutine

Using the Monitor Subroutines

Using the Output Subroutines

Subroutines and the Decimal Mode Flag

Calling Variable Addresses

Key Point Summary

LABORATORY B—INPUT/OUTPUT USING

HANDSHAKES

Additional Factors in /O Transfers

Basic 1/0 Methods

Treating Status and Control Signals as Data

Using Data Lines for Status

Using Data Lines for Control

6522 Versatile Interface Adapter (VIA)

VIA Status Inputs

VIA Control Outputs

VIA Automatic Control Modes

Programmable 1/0 Ports

Key Paint Summary

LABORATORY C—INTERRUPTS

Functions, Advantages, and Disadvantages of Interrupts
Characteristics of Interrupt Systems

6502 Interrupt System

Interrupt-Related Instructions and Features
SYM Interrupts

Keyboard Interrupts

6522 VIA Interrupts

Handshaking with Interrupts

Communicating with Interrupt Service Routines
Buffering Interrupts

Changing Values in the Stack

Multiple Sources of Interrupts

Guidelines for Programming with Interrupts
Key Point Summary

LABORATORY D—TIMING METHODS

Timing Requirements and Methods
Generalized Delay Routines
Waiting for a Clock Transition
Measuring the Clock Period
Programmable Timers

6522 Interval Timers

Elapsed Time Interrupts

Real-Time Clock

Longer Time Intervals

Keeping Time in Standard Units
Real-Time Operating Systems
Key Point Summary

LABORATORY E—SERIAL INPUT/OUTPUT

Implementing Serial Interfaces
Serial/Parallel Conversion
Generating Bit Rates

Using the Real-Time Clock
Start and Stop Bits

Using the Set Overflow Input
Detecting False Start Bits
Generating and Checking Parity
Key Point Summary

LABORATORY F—MICROCOMPUTER TIMING
AND CONTROL

Special Problems in Microcomputer Hardware Design
Timing and Control Functions

System Clock

Tracing Instruction Execution

Execution of 6502 Addressing Modes

Decoding Address Lines

Multiple Addresses and Memory Expansion
Addressing 1/0 Devices

Key Point Summary

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5

6502 Microcprocessor Instruction Set
ASCI| Character Table

Brief Descriptions of 6502 Family Devices
Laboratory Interfaces and Parts Lists

REFERENCES

INDEX

Table of Contents from Leventhal’s
"MICROCOMPUTER EXPERIMENTATION WITH
THE SYNERTEK SyYM—-1"

SYM-PHYSIS 15-26

Summary of the SYM-1 Monitor (SUPERMON)

ON RECURSION TECHNIQUES - BY TOM GETTYS

Recursion is an extremely powerful programming technique, as those who
are versed in languages such as PASCAL and C know.

However, most do not realize that recursion can be used to benefit in
BASIC also! While it is up to the user to define and maintain the
parameter stack explicitly, the advantages of recursion can often still
be realized.

The first example is a routine which computes the factorial of an
integer. Notice how close the BASIC implementation matches the standard
recursive definition of N factorial {(note that no parameter stack is
needed here, due to the global nature of all BASIC variables).

The second example is a recursive solution to the ubiquitous Tower of
Hanoi probem. Here three arrays are used as a parameter stack. Each
time the routine is to call itself the current parameter values are
"pushed" on the stack.

I have used this technique to implement several algorithms which lend
themselves naturally to a recursive solution, e.g., tree traversal, the
QUICKSORT algorithm, etc.

Below you will find two algorithms which utilize recursion. You may
enjoy trying your hand at writing these as recursive BASIC programs.

The first searches the array A (of size N) for the first occurrence of
the value x. If Ati)=x then i is returned, otherwise @ is. The second
determines the greatest common divisor of the integers a and b, where
arb.

PROCEDURE SEARCH (i)
BEGIN
CASE
IF i>N THEN SEARCH=9
IF A(i)=x THEN SEARCH=i
ELSE SEARCH=SEARCH(i+1)
END

PROCEDURE GCD({a,b)
BEGIN
IF b=@
THEN GCD=a
ELSE GCD=GCD(b,a MOD b)
END

196 INPUT "Find the factorial of "; N
114 =

126 GOSUB 319

13¢ PRINT N "factorial is" F

149 :

154 END

19¢ REM The following routine computes the value of
208 REM of N factorial by the use of recursion.

229 REM A pseudo-code version of this routine is as follows:

249 REM PROCEDURE FACT (N)

256 REM BEGIN

260 REM IF N=1 THEN FACT=1

278 REM ELSE FACT=NXFACT (N-1)

284 REM END SYM-PHYSIS 15-27

&10
623
639
640
&59
669
&76
&80

IF N=1 THEN F=1 : RETURN
N=N—-1 : GOSURB 310

N=N+1 : F=NXF : RETURN
INPUT "Number of disks: "; N

DIM S$(N), I$(N), D${(N)
SE(N)="1left "
I$(N)="center"
D& (N)="right "

GOSUB 539

END

REM The following is a recursive routine which

REM solves the TOWER OF HANOI problem.

REM The underlying idea is this:

REM To move N disks from pole 1 to pole 3

REM 1) move N-1 disks from pole 1 to pole 2

REM 2) move the bottom disk from pole 1 to pole 3

REM 3) move the N-1 disks from pole 2 to pole 3!

REM The routine to move N disks simply calls upon itself
REM to solve the problem of doing steps 2 and 3, that of
REM moving N-1 disks!

REM An equivalent PASCALese version would lock something like:
REM PROCEDURE move (count, socurce,destination)

REM BEGIN

REM IF count=1

REM THEN WRITE (source,destination)

REM ELSE BEGIN

REM intermediate=NOT (source OR destination)
REM move (count—-1, source, intermediate)

REM WRITE (source,destination)

REM move (count—1,intermediate,destination)
REM END

REM END

IF N=1 THEN PRINT S$(N) " ==> " D#%{(N) : RETURN

5% (N—1)=5%(N)
I$(N-1)=D%(N)
D$(N-1)=I%$(N)
N=N-1

GOSUB 539

PRINT S$(N+1) " ==> " D%(N+1)

SE(N)=I%(N+1)
I%(N)=5%(N+1)
D$ (N)=D% (N+1)
GOSUB 5348

N=N+1 : RETURN SYM-PHYSIS 15-28

A 968@ BAUD TERMINAL PATCH

We received the following letter and program from Dr. A. J. Hissink
several years ago (!), promptly tested it, and then "lost" the program
somewhere in our almost unmanageable collection of cassettes and
diskettes! Tom Gettys supplied us with his copy, and we publish it now
because of the many requests we have received for it:

Dear Lu,

At last I'm getting around to putting a few thoughts on tape and sending
in a few of my utility programs. Most of them were developed from
programs in SYM-PHYSIS and adapted to my particular requirements. They
may be of interest to some of the SYMaddicts.

One utility will be of general interest to KTM-2 owners. I noted that
the KTM-2 terminal was capable of 9668 baud but the upper limit of the
MON 1.1 I/0 routines was 488¢ baud. I analysed the timing of "TOUT" and
“"TIN" and found that 9608 baud was possible but that these routines
would have to be rewritten. This was desirable from another viewpoint
too - the inclusion of parallel printer control.

My first attempt at the I/0 routine timing was a linear extrapolation of
the lower baud rate timings. However, I found that the loop delays were
more critical then they should have been so I calculated the times from
scratch and found that the 486¢ baud was not optimum but a compromise to
get the wide range of baud rates. I believe the timings in these
routines are optimum. They certainly aren’t critical and should work
first time in all terminals.

My routines are now built into a new reset program. However, this
program will work as is by "G" to the object code starting address. The
terminal will go dead. Switch the baud rate selector on the KTM-2 to
9608, do a CONTROL SPACE to reread the option switches and you will be
up and running. Note you don’t have to send a character to get things
going any more (another source of annoyance!).

Each call to the object code at label "PRINTER" will initialize the port
for a 7 data bit parallel printer with "BUSY" on bit 7 (ie the 8th bit)
and toggle the printer I/0 on and off. Note that it uses bit @ of
TOUTFL to determine the printer output status.

GALG 3 KRK

@@2@ ; kX% SYM—1 TERMINAL 1/0 — 9686 BAUD
BOZH 5 KKK

PO4G .BA $7F@0 ; (OR WHEREVER!)
@G58 ; .0S

GO .ES

oa7G

@984 ; ADDRESS DECLARATIONS

aa9G 3

@196 SAVER .DE $8188

@114 PBDA .DE $A4G2 ;TERM INPUT
@126 TOUTFL .DE $A&54

@134 TECHO .DE $A653

@146 INVEC .DE $A661

@156 OUTVEC .DE $A664

@160 ORB .DE $ABGS :PARALLEL PRINTER PORT
@178 DDRR .DE $A802

@186 PCR .DE $AB@C

@196 USRENT .DE $8935

92098 RESXAF .DE $81B8

@216 RESALL .DE $81C4

@220 ACCESS .DE $8R86&

@23G 3

@240

SYM—-PHYSIS 15-29

TFAG—

7TFO3—
TFA5—
7F@8—
7FaA—

7F@D—
7FOF-
7F12-
7F14-
7F17-

40
a3
a6
49
a7
FD

F9

DA
28

FD
9g
F9
FF
B8
F9

a1

8B

Ab

A&

Ab

Ab

81

A4

A4

Ab

7F
7F

7=

81

81

@250
B264
az7a
@280
a29a
AIAG
Ax1a
a3I2a
A3I3@
G340
[2s17]
BI6H
@379

C- s

rLsL

-
»»
Lod
*

wa

s kKX
;XXX
s XXX
INTCHR

LOOK

H
DMY1
TPl

SAVE

TLP3

H
TOUT

MACRO DEFN

-MD
LDA
STA
LDA
STA
- ME

JSR

(ROUTINE LINK) sSET LINK
#L,ROUTINE

LINK

#H, ROUTINE

LINK+1

VECTOR PATCH

ACCESS

SL (TOUT OUTVEC)

SL (INTCHR

RTS

SYM—1 TERMINAL

NOP
ROR
NOP
PHA
PLA
BCC
LDY
DEY
BNE
cLC
JSR
LDA
EOR
JMP

STA
JSR
LDA

SAVER
#a
X$F9
PBDA
TOUTFL

#4409
LOOK
#6

TLPZ2
PBDA
TOUTFL

#4640
TECHO
DMY1
ouT
SAVE
#7
TEP1

*x$F9

INVEC)

I1/0 — 9694 BAUD

s IN TERMINAL CHAR

sFIND LDG EDGE

331 uS DELAY

; TERMINAL BIT

;O0R BITS &,7 (TTY,CRT)
;ECHO BIT?

s TIMING — 8 uS DELAY

TIN
#8

TLP3

ouT
X$F9
#$FF
RESXAF

*x$F9
SAVER
#$01

sTIMING — 41 uS DELAY

s TERM CHR OUT

;CHECK FOR HARD COPY

15-39

AV s
TF6A—
7F6C—
YE6F—
TA R
7F74—
TF76—
TF79-
7F7B—
7F7D—
IFIE=
7F86—
7F83—
7F85-
7F86—
7F88-
AR
7F8A—
7F8B—
7F8D—
7F99—
7E21=
7F94—
TF96—
7F98-
7F9A—-
7F9D—
TFAG—
7FA1-

TFAZ2—-
7FA3—-
TFA6—
7FA9—
T7FAB—-
7FAE-
7FB@—
7FB3—
7FBS—
7FBB—
7FB9-

7FBC-
7FBD-
7FCo—
TRG2=
7FCS—

48
20
A9
2D
8D
A7
8D
8D
68
4C

F3
(o2]

a2
aF
@2
3@
54
a2

86

54
5S4
ag
ac

33

Ab
A8
A8

A4

TF

81

A4

Ab
A4

8B
Ab

Ab
A8
A8

84

8B

Ab

8B

AL
Ab

A8
A8

89

WAIT

TERM

ouTC

PHAKE

ouT

OUTONE

H
;REX
3

P

RINTER

PRIOUT

ARDON

ARDOFF

BIT
BEQ@
STA
BIT
BMI
LDA
STA
LDA
LDX
EOR
SEC
JSR
LDY
DEY
BNE
NOP
LSR
DEX
BNE
JMP
PHA
LDA
AND
BCC
ORA
AND
STA
PLA
RTS

PRINTER

PHA
JSR
LDA
EOR
STA
LDA
STA
LDA
STA
PLA
JMP

TOUTFL
TERM

ORB sSEND TO PRINTER
ORB ;IS PRINTER STILL BUSY?

WAIT

#4630 sSET FOR OUTPUT

PBDA+1 sDATA DIRECTION

X$F9 ; RECOVER CHR DATA

#$9B START BIT, 8 DATA, 3 STOP BITS
#$FF ;s INVERT DATA

ouT ;OUTPUT BIT FROM CARRY

#$0C

PHAKE

A

ouTCc
RESALL

s TERMINAL BIT OUT

PBDA
#$0F
OUTONE
#$30

TOUTFL sMASK OUTPUT

PBDA

CONTROL — ON/OFF

ACCESS
TOUTFL
#.00000001
TOUTFL
#7.10100000
PCR
#/01111111
DDRB

USRENT

PRINTER ON

PHA
JSR
LDA
ORA
JMP

ACCESS
#7.0000000 1
TOUTFL
PRIOUT

PRINTER OFF

PHA
JSR
LDA
AND
STA
LDA
STA
STA
PLA
JMP

-EN

ACCESS

#711111119

TOGGLE

sBIT @ IS PRINTER
3SET FOR ONE SHOT MODE

;BIT 7 IS "BUSY"

;TURN ON BIT @

TOUTFL sTURN OFF BIT &

TOUTFL
#a
PCR
DDRB

USRENT

SYM-PHYSIS 15-31

(MORE ON 65CXX, CIA AND SID - continued from page 15-34)

tain, and Release) control capabilities. "Hard Synch", "Ring Modula-
tion", and programmable filters are built—-in, and two A/D converters
(for reading potentiometers) are thrown—-in, for good measure! The SIDs
accept externally generated audio signals for processing, and may be
daisy-chained, or combined in various ways, for stereo, etc.

Our previous experience with sound effects chips has been with the TI SN
76477, which we built into a stand—-alone system with manually operated
switches and potentiometers, and with the GI AY-3-8918 chip, which we
interfaced to the SYM-1 through a VIA. Not only is the 6514 §SID far
nore versatile than either of these previous chips, it is ever so much
simpler to interface, and, because of the CBM-64 ‘"connection", there
will be 1lots of published software, both 6562 ML and Microsoft BASIC,
adaptable for it (only the PEEKs, POKEs, USRs, and SYSes need be
changed) .

Our CBM-64 has been lent to a colleague, so that we could concentrate on
the VIC=20. We expect him, in exchange for the loan, to show us how to
set the alarm in the CIA, and how to get the most out of the SID.

INFORMATION RETRIEVAL PROBLEMS

As part of the pre-preparation effort for this issue, we took several
days out to examine but a small fraction of the magnetic storage media
on hand. Here are the results of the review, and some of our conclu-—
sions:

While none of our own original materials are on cassettes, we do have a
collection of over three hundred cassettes sent in by readers. Most are
"neatly" organized in two attache-style cases, each holding 48
cassettes, and ten plastic cassette storage boxes, each holding 1S5
cassettes. The most recent arrivals, some 54 or so, have not vyet been
"archived", but will be, as scon as we get more storage containers.

The only indication as to the information contained on each cassette is
a small label on the visible edge of the cassette case with the name of
the sender. For the more prolific contributors the label also bears a
date and only a brief hint as to the contents.

Our conclusion? The inadequate indexing method makes information
retrieval nearly impossible. Why didn®t we do better, and what is the
solution? QOur excuse is that all cassettes were immediately transcribed
to (FODS) diskettes, and that the cassettes were needed only for backup.

We have never ever referred to the cassettes a second time. We should
have '"recycled" the cassettes and skipped buying the fancy storage
containers.

We now have over 20¢@ sequentially numbered FODS S 1/4" diskettes which
were in—house generated, plus some 3@ or so sent in by contributors. We
have some 20 CODOS 8" disks, both in—-house and contributed, and a dozen
or so FDC-1 5 1/4" diskettes. In the early days, we actually backed up
each diskette with another. We stopped doing this long ago, and plan to
reuse some 8@ backup disks for new materials.

With disks and diskettes retrieval problems still exist however. File
names are length limited, and the abbreviations are often much too
cryptic. After a few weeks the names no longer serve well as file
identifiers. Below, for example, are directory listings from each of
our three systems. It should be obvious, on examining these listings,
that many of the files are essentially "lost", and would take
considerable effort to recover. Only when strongly motivated to find a
particular file have we made the necessary effort!

tinued to page 15-35)
oA e SYM-PHYSIS 15-32

ertek.

PRELIMINARY

SY65C00

CMOS 8-Bit
Microprocessor Family

Features

High Performance O Hz to 4 MHz Operation
Low Power, 8 mA at 4 MHz, 10 Micro Amp
Standby at 5 Volts

Memory Lock (ML) Output During
Read-Modify-Write

Single 3 to 6 Volt Power Supply

On-Chip Oscillator

40 Pin or 28 Pin Versions

Bus Enable (BE) Allows DMA Operations

* RDY Input to Extend Data Access Times for Use
with Slow Memories

Sync Output Indicating Opcode Fetch
Improved Bus Timing

Earlier Valid Address Allows Use of Slower
Memories

27 New Instructions

Plug Compatible with NMOS 6502

Description

The CMOS 65C00 microprocessor is compatible with
the NMOS 6500 family of microprocessors. This 8-bit
microprocessor unit designed in Synertek's proprie-
tary high performance N-wel! silicon gate technology
offers higher performance than the original NMOS
6502 The design allows for operating frequencies up
to 4 MHz, and below 1 MHz further reducing its already
low power consumption

Block Diagram

Not only is the 65C00 a low power version of the
popular 6500 microprocessor. it also has these new
features Ability to tri-state the R/W line, address and
data bus for DMA applications. Improved Tacc specs
allowing use with slower memory devices. A new
optional output enhancing multiprocessing capabili-
ties. Two new addressing modes, and a larger
instruction set providing the user with more compact
programming capabilities

= ARGITER HCTION | CONTAOL HETION

avotss |
s

vy o

Lavemex

27 New Instructions

Hex Mnemonic Description

80 BRA Branch Relative Always

3A DEA Decrement Accumulator

1A INA Increment Accumulator

DA PHX Push X on Stack

5A PHY Push Y on Stack

FA PLX Pull X from Stack

7A PLY Pull'Y from Stack

- Tod S1Z Store Zero (Absolute}

9E s1Z Store Zero (Absolute.X)

64 s1Z Store Zero (Zero Page)

74 s1Z Store Zero (Zero Page, X)

1C TRB Test and Reset Memory Bits
with Accumulator (Absolute)

14 TRB Test and Reset Memory Bits
with Accumulator (Zero Page)

oc S8 Test and Set Memory Bits with
Accumulator {Absolute)

04 S8 Test and Set Memory Bits with
Accumulator (Zero Page)

89 Bit Test Immed:ate with
Accumulator

3c Bit Test Memory Bits with
Accumulator (Absolute.X)

34 Bit Test Memory Bits with

Accumulator (Zero Page.X)

New Addressing Modes

7€ JMP Jump (Indirect Absolute,X)

72 ADC Add Memory to Accumulator
with Carry (indirect)

32 AND “AND" Memory with
Accumulator (Indirect)

02 CcmP Compare Memory and
Accumulator (Indirect)

52 EOR “Exclusive OR" Memory with
Accumulator (Indirect)

82 LDA Load Accumulator with
Memory (Indirect)

12 ORA “OR" Memory with Accumula-
tor (Indirect)

F2 N: (o Subtract Memory from
Accumulator with Borrow
(Indirect)

92 STA Store Accumulator in Memory
(Indirect)

Indexed Absolute Indirect
(JUMP)

The contents of the second and third instruction bytes
are added to the X register The result is a 16-bit
memory address that contains the low-order eight bits
of the effective address The next memory location con-
12ins the high order eight bits of the effective address.

Indirect

In indirect addressing the second byte of the instruction
points to a memory location on page zero whose con-
tents is the low order byte of the effective address. The
next location on page zero contains the high order byte
of the effective address.

Miscellaneous Instruction
Changes

Indexed Addressing across the page boundaries will
retain the last byte of instruction address rather than an
invald page address.

Processor Hangup on certain invaiid opcodes has been
eliminated.

Jump Indirect across page boundaries will now incre-
ment the page address instead of wrapping around on
itself If a page boundary is crossed the instruction cycle
time will increase by one.

Decimal operations involving addition and subtraction
will take an additional cycle time. The NMOS Z\N and V
flags were invalid, the CMOS flags will be valid
Read-Modify-Write cycles will be flagged by the ML
output

RDY transitioning low will cause the CPU to halt even
during write operations The NMOS version allowed
transitions only during read cycles

DMA Operations on the CMOS 6502 are possible by
pulling BE low, thus tri-stating the address and data bus
and R/W line.

Decimal Mode Flag condition defaults to the binary
mode upon a reset The NMOS version the flag was
random

New Signals

Memory Lock (ML 1 an output, active low, indicates the
need to defer the rearbitration of the next bus cycle to
insure integnity of read-modify-write cycles in a mul-
tiprocessor environment

Bus Enable (BE) an input, when true allowing normal
operation of the microprocessor, when low tri-states
R/W, address and data lines, allowing true DMA opera-
tions. An improvement over the NMOS version, in that
DBE when pulled low would only tri-state the data lines.

Applications Areas

The CMOS version of the 6502 is ideally suited for any
low power application or application where noise
immunity and potential swings on V¢ might occur. It
is well suited for automotive, industrial, business.
harsh environment ' high temp and communications
markets Not only does it fill the typical CMOS niche. it
also is an upgraded version of the NMOS part, provid-
ing the new inputs and outputs, better bus timing and
27 new instructions.

MORE ON THE 65CXX MICROPROCESSOR CHIPS

ALSO, THE CIA AND THE SID

Synertek is an alternate source for the 65CXX family. We reprint above
portions of three pages of descriptive material on the microprocessor
members of the family. [We regret that the only material available to
us for reproduction was a 79%Z reduction from the original 8 1/2" x 11"
sheets, and that the additional 7@% reduction factor in our publication
process will produce final copy at half-size of the original, so that
you may need a magnifying glass to read it!1]

The material is from the 1983 issue of the Synertek "Data Manual", which
is obtainable through Synertek Distributors, Sales Representatives, and
International Sales Offices. The "Data Manual" is fascinating reading,

and well worth getting. SYM-PHYSIS 15-33

Leaving the CMOS technology for the moment,
NMOS 6526 CIA (Complex Interface
Interface Chip),
not yet from Synertek,

are used in the Commodore 64.

Device Pinouts

The CMOS 65C00 family offers the same full line of 10
microprocessor pin configurations as the NMOS family.
In addition to those, the CMOS family offers user selec-
table metal mask options for selection of clock circuitry
and bus control input options. Below are the various pin
configurations and additional mask options available for
all devices.

Optional Pull-Up for:

RDY, IRQ, NMI, S.O., RES and DBE/BE inputs, each
individually selectable by user

Pin Configurations
4X CLK/OsC

8Y85C4aX02

41X CLK/OSC
SY85CX02
vy 7 wpees
rov[]2 » e, 0um
s, ound upso
[Li]e B 3 18, N1
wo (s 3 [osememc,
e 3 [0sc (ouT)
sywe]? ufaw
Vec (o 33 [oso
aso(]s 2 oer
as(] 10 » Pos2
a2 n » [Joss
a8}z = [Joss
asa(] 13 28 [J 085
ass(] 1e 27 [Dose
ABs] 18 2 [Jo87
as10] 18 2 [ants
ass] 7 20 asre
ase] e 23[J a8
anol] 10 2P asn
asn[] 2 £ o

let us remind you that the

Adaptor) and the 4581 SID (Sound
available from Commodore’s MOS Technology Division, but
are very easily interfaceable to the SYM-1. Both

The 6526 CIA in an enhancement of the 6522 VIA; the most important new

feature

alarm.

the 24 hour (AM/PM)

time—of—-day clock with programmable
Thus, you no longer need worry about interrupt driven real time

clocks which may lose time during cassette or tape or even RS-232-C 1/0

operations.

The 6581 SID is a full—fledged, three voice, synthesizer with each voice
own Tone Oscillator/Waveform Generator, Envelope Generator,

having

and Amplitude Modulator,

(continued to page 15-32)

with a broad range of ADSR (Attack, Decay, Sus—

SYM-PHYSIS 15-34

(INFORMATION RETRIEVAL - continued from page 15-32)

»de dir 2

@1 :SCOLE 10@@ 16DC @1 @1 @2 +FILE2 1099 IFE4 @1 15
g3 :FILE1 1@@@ I7DF 67 1S @4 :RAEDI 1a@@ 2AC6 12 15
@5 ZLBASLU 600@ &99A 16 @5 @6« BANE @241 1D97 17 @9
@7 1Q6@@R @REE 12D@ 21 @1 @8 tMTEST @209 @9E7 23 @3
#9 JHANOI @201 @67AF 24 @3X 14 .FACT @201 @3FS 24 15
11 .GETS @201 @315 25 @3 12 :RECUR @2¢0@ #8BE 25 @6
13 :HILUX @200 @9ES 26 @4 14 .BREAkK @201 @930E 27 #4
15 :HISS1 @2a@ @ARD 27 @7 16 :HISSZ @209 $AFA 28 @9

17 :RECR2 @20¢ 9927 29 11

NEXT: T3¢ S14¢

FIGURE 1: Directory of FODS Diskette from Tom Gettys

IDIR X.731
Cons .z i1 L 21 MAR 83 $0018E3 kA
SYSERRMSG. Z t1 L 21 MAR 83 $0007A5 ZWANDIDEMO ~0200-0A5E~0201
SVCPROC.Z 1 L 21 MAR 83 $00021C UELIZA ~0200~5RCA-0212
CODX.A t1 L 21 MAR 83 $008BE13 ACLKDRVR2 ~0200-
DIR.C 11 L 21 MAR 83 $000209 ZACTADRVR ~0200~07
STARTUF.J 11 L 21 MAR 83 $00008F ZEFROGRAMR~0200-3CEA~0AL3
conx.c t1 L 21 MAR 83 $000FFD AKTM/8O0ROM~0200-3CF3~0FE11
RAE X t1 L 21 MAR 83 $002014 70 i A |
COOXSIGNON.T t1 L 21 MAR 83 $00035E ZFDC/F1 =1000-4A484-0201
WORDIX + A 11 L 21 MAR 83 $O008FCR ZFDC/F2 =1000-8SE7+0510
WORDX.C 1 L 21 MAR 83 $001000 ZBTCF/1+46 ~1000~ ~0A13
WORDXSIGNON.T 1 L 21 MAR 83 $00038D ABRTCF/1+66G~1000-54B5~0F 0A
WORDXSWF . A t1 L 21 MAR 83 $005107 ZRTCF/1+4 ~1000-22DA~131C
WORDXSWF . C f1 L 21 MAR 83 40008350 ARTCF/1.4G~1000-2019-1506
LUXLETTER.T t1 - XUNDATEDX $00111R

FIGURE 2: Directory of CODOS Disk FIGURE 3: Directories of FDC~1

from A. M. Mackay Diskettes from Jeff Lavin

What are we doing to solve the problem? For FODS (the majority of our
diskettes) we keep a notebook in which each page contains a directory
printout. Each printout is fully hand—-annotated with sufficient
information to fully identify each file, and where the supporting
hard-copy documentation (if any) may be found. This we have only begun
to do recently; for the older diskettes we make annotations only as we
have occasion to refer back to them. {Several readers have inquired
about materials which would require many hours of search time to locate
on old diskettes. We regret that we cannot find enough time to satisfy
their requests.)

Since we have fewer of these, for CODOS and FDC-1 disks the directory
listings are tucked into the storage envelopes. It is coincidental that
an 8 1/2"x11" sheet of paper folded to quarter-size fits just right into
the 5 1/4" envelopes.

We already have a half—-dozen or so diskettes, each, for the VIC=28 and
the CBM-64, and expect another batch to be provided with or for the
soon—to-be-installed office Apple IIE, and pledge never to let these get
out of control! Since we have so many types of systems running at once,
each of our S5 1/4" diskettes now bears a bright color coded big dot to
help prevent us from installing them in the wrong system.

SYM-PHYSIS 15-35

COMPUTER SPEECH FOR THE SYM

We have been comparing the costs and capabilities of two approaches to
speech synthesis for the SYM-1. One is the VOTRAX SC-@1-A chip, the
other is the Speak & Spell (S%5) interface mentioned in earlier issues
(VOTRAX we tested on the VIC=286, S%S on the SYM-1).

The costs are roughly equal. The VOTRAX chip does permit a more compact
unit, but the S&5 interface provides for greater versatility, and
besides, the S%5 is fun to play with, all by itself!

The inputs to the VOTRAX system are sequences of phoneme code numbers
($09—-$3F) to access predetermined phonemes. On the other hand, the
inputs to the S%5 system are coded sequences for the necessary energy,
pitch, and filter parameters to produce as many allophones as desired
(allophenes are phoneme variants which differ in pitch, inflection,
accent, duration, etc).

Studying this approach will provide a deeper insight into what is
actually going on during the synthesis process. Also, working at this
"lower—level" permits for introducing subtle nuances into the spoken
output, including real "singing".

For those who wish to try the S&S approach with their SYM-1s, a complete
documentation package is available through the Users® Group. All items
described below are by John P. Cater of S.pee.k UP Software.

MANUALS:

"LPC Hardware Manual” — This manual fully describes the theory of
operation of the Speak & Spell (including a full schematic!), and
provides schematic and construction details for a very simple (three
chips — 74165, 7415175, and NESSS5 — plus one transistor, one diode, two
resistors, and two capacitors) interface between the S%8 and only one
port of a 6522 VIA. Primitive driver software is included.

"6592 Phonetic Generator Software” — This manual provides more advanced
software and a hex dump listing of a phoneme table for the hardware
system above. [NOTE: This manual and the manual described below were

originally written to accompany Dave Kemp’s S&S interface to the SYM-1,
which is no longer available, to the best of ocur knowledge, but the
software is easily convertable to Cater’s S&S interface.]

"6562 Experimenter Package" — This manual provides still more advanced
software and tables of frame data for phonemes, the alphabet, and
selected words.

CASSETTE:
"Demonstration Tape"” — This is an AUDIO tape which illustrates the
capabilities of the system.

BOOK:

"Electronically Speaking: Computer Speech Generation” - An excellent
introduction to the theory and practice of voice output. Howard W. Sams
% Co., Inc. Paperbacke.

We have been using the Kemp S%S Interface for several years now. This
was a two—way interface, and permitted getting frame data from the S&S
ROMs into the SYM°s RAM for analysis. As such it was more versatile
than the Cater Interface, but more complicated, in hardware, software,
and interfacing. Once the analysis is available, and published, as in
the manuals above, the two-way feature is no longer a vital necessity.
In the future we will be building several of the Cater Interfaces, since
only a different connector plug and a VIA address change are necessary
in switching the speech synthesis system between 6592 computers!

SYM-PHYSIS 15-36

NEW PRODUCTS

The following new hardware and software products are now available
through the SYM Users’s Group:

HARDWARE

PRG—-1/S EPROM PROGRAMMER — — ALTERNATIVE ENERGY PRODUCTS

COM-1/S DUAL ACIA BOARD — ALTERNATIVE ENERGY PRODUCTS

We’ll describe both of the above together, not because they are in any
way interdependent, but because of their "common" method of interfacing
to the SYM-1.

As you know, part of the power of the SYM-1 is in its built-in I/0
capabilities, with two 6522 VIAs and one 6532 RIOT. While this is far
more than is available on any other system, we have found that we need
much, much, more (we find that we need added I/0 far more than added RAM
for the kinds of things we do). In any event, the problem was solved
for us with the 1/0X-122 1I/0 Expansion Board, which adds up to four
additional VIAs in the 1K address space assigned to VIA #2 (Device
uUz28-User Supplied), $AB@@-$ABFF, and provides additional decoding for
other devices, such as the ACIAs on the Dual ACIA Roard.

One of our SYMs has an I1/0X-122 installed. We run the Epson off VIA #2,
a CLK-1/S clock off one of the added VIAs, the PRG-1 from two of the
added VIAs, and a cute little "toy", given us as a get-well gift, by
Jeff Lavin, a so called "Magic Wand", from the fourth added VIA. The
COM-1 mounts on edge fingers on the 1/0X-122, and gets its chip selects
from the "extra" decoding lines.

What Lavin has done is to provide an integrated approach to adding I/0
capability to the SYM-1 which is inexpensive and elegantly simple.
[Jeff 1lent us a beautiful little accessory board for the expansion port
of the VIC=2¢ which contained 11K of RAM (6-2214s + 4-4616s) and two
more 6522s. This was a beautiful hand wired package, not a finished,
"for sale" product.]

Now that you know how the devices are most simply interfaced to the
SYM—-1, although other methods may be used, let’s describe the devices,
themsel ves:

THE "PROMMER"
The PRG-1/S comes complete with ALL software and ALL hardware, and ALL
"personality” modules needed to "burn" the widest variety of (+3V only)
EPROMS you might consider using (only the 3-9V alkaline batteries are
not included). The software is beautifully "human—engineered", and the
programming overhead time is almost trivial, at most a second or two for
any size EPROM. No time is spent on "$FF" bytes, either!

So far we have burned only 2716s, a dozen or so, but we expect to try
some 2732s next. The best way to illustrate the versatility, and ease
of use of the system is to reproduce some of the terminal "dialog".
Whenever a prompt is displayed, entry of a "?" for "help" will give you
your “menu". Impossible entries are rejected, especially on addressing
ranges, where an "explanation" is given. Seldom have we seen a better
designed hardware/software package at any price, and NEVER at such a low
price as this one.

PRINTED RECORD OF EPROM BURNING SESSION
M. ToUs CODOS 1.2
ENTER DATE (EXAMFLE:04-JUL-76)7= OU-MAY-83

SYM-PHYSIS 15-37

EFROM FROGRAMER V1.0 COFYRIGHT 1983
ALTERNATIVE ENERGY FRODUCTS
TYFE *?" FOR HELF

FEFROM TYPET Here we entered: 7?<cr>

68764
= FOR CURRENT TYFE
£C = GO TO MON

EFROM TYFET?
NOT DEFINED

Here we entered: 2716<cr>, by mistake!

EFROM TYFE? Here we entered: 7<cr>

INSERT MODULE # 2716

ANDRESSE

Here we entered: 7?<cr>

TYFPE IN YOUR ADDRESSES IN THIS FORMATS

SR

FFFPFPyS585»EEE

18 EFROM STARTING ADDRE
18 BUFFER STARTING ADDRESS
IS BUFFER ENDING ADDRESGS
16 A CARRIAGE RETURN

FOR CURRENT ADDRESSES

1 GO TO TYFE INFUT
Te GO TO MON
ALNRES Here we entered: 9,2000,3FFF<{cr>, to annoy the system!

Q

$2000 BYTESy EFROM END=$1FFF I8 T0OO HIGH

ANDRESSES?
#1000 RYTES

Here we entered: @,200@,2FFF<cr>, to annoy the system!
y EFROM END=$OFFF I6 TOO HIGH

ANDRESSEST Here we entered: @,2000,27FF<{cr>
H0800 BYTESy EFROM END=%07FF

REAIY FOR NEXT EFROM

COMMAND? Here we entered: 7?<cr>
SYM-PHYSIS 15-38

= VERIFY EFROM AREA ERASED

= VERIFY ENTIRE EFROM ERASED
= READ EFROM INTO RBUFFER
COMFARE EFROM TO BUFFER

< WRITE BUFFER INTO EFROM
TOGGLE ERROR FRINTOUT

= GO TO ADDRESS INFUT

= GO TO TYFE INFUT

= GO TO MON

COMMAND? Here we entered: N<{cr?>
EFROM IS ERASED 40800 RYTES

READY FOR NEXT EFROM

COMMAND'? Here we entered: R<cr>
READY FOR NEXT EFROM

COMMAND? Here we entered: W<cr>

Note that asterisks are printed at regular intervals

FPROGRAMING to inform you that something, at least, is happening.
A0 K 3K ok KK K K 3K K K K 3K 3K K K K KK 3K K 3K K K 3K 3K 3K oK K K 3K 3K K K K K 3K 3K 3K KK oK Kk K K
COMFARING A "compare" is routinely made, and an error report is

automatically given.
NO ERRORS $0800 EYTES
READY FOR NEXT EFROM

COMMAND? Here we entered: 4C<cr>
047043

THE "COMMUNICATIONS" CARD —— COM-1
We have not yet had the time to do more than read over the spec sheets
on this device and check over the physical unit, but we have been kept
well posted as to the progress of the product development. As usual
with AEP products, we know we will soon wonder how we ever got along
without it. We plan to have it "up—and-running" within a day or two af-—
ter this issue goes into the mail.

While the SYM-1 has both a 20 mA current loop and an (inverted TTL equi-
valent) RS-232-C interface, we have often felt the need for a second RS-
232-C channel for modem use. Now, we even feel the need for a third, to
interface with our VIC=26 and CBM-64. We’re therefore especially
pleased to get two-in—one with this new card, and at just the right
time, too. [We prefer to leave the 20 mA current loop intact, because
our decwriter I1I (with 28 mA card) can then be switched from system to
system for hard copy without requiring a special printer patch, by
simply using a ".J 1" to switch to TTY Input/Output, at 114 baud.l]

We print below a few extracts from the seven pages of documentation
{including a source code 1listing of the required software driver)
supplied with each unit to give you some ideas on both its use and the
thoroughness of the documentation:

The COM-1 is a serial communication board designed to perform, in
hardware, the 1/0 functions previously executed in software, It is
especially important to relegate this task to hardware when using data
1inks (a modem for example). The COM-1 supports all asynchronous

SYM-PHYSIS 15-39

serial communication (RS232), uses a crystal controlled clock to
generate all standard baud rates from 58 to 19,288 and may be used at
non-standard baud rates with an external clock. The actual
parallel/serial conversion is done by two 6551 ACIAs, providing two
full duplex 1/0 channels. This configuration eliminates much overhead
for the computer and .allows 1/0 to proceed much faster than when done
in software. As received from the factory, the COM-1 comes with Line
Receivers, and is set up to transmit TTL level signals, but has the
capacity to support RS232C with the addition of Line Drivers (plug
compatible) and an external source of +/- 12V, This board is
specifically designed to interface to our 1/0 Expansion Board, but may
be adapted to other installations.

X ¥ X X X X x x ¥ xx

Ac previously mentioned, the COM-i comes from the factory equipped
with Quad Line Recievers. This is done so that, if it is inadvertantly
connected to equipment operating at RS232C voltage levels, the COM-1 would
not be damaged. The transmit section employs 74L588 ICs, which are plug
compatible with Quad Line Drivers, but transmit TTL level signals (+5V and
ground), There are few modern data communication devices employing RS232C
specification that will not work with TTL 1level signals, However, some
older pieces of equipment may reed ihe Jifferent voltage levels to function
properly. 1f RS232C operation is desired, three wires from the power
supply must be brought to the three pads located between the two 1/0

connectors. X X kK X X kK X X X X X

The simplest method of serial communication is the 3-wire interface
(see Fig. 3a). A 3-wire interface provides transmit data, recieve data,
and a signal ground. It does not provide for handshaking. The effect of
this is that both ends transmit blindly - with no indication that the
reciever is recieving or, in fact, is there at all, The ACIA handily
overcomes this problem by providing for handshaking signals

¥ X X X X X Xx¥xxx

It is not possible in tnis small user’s manual to fully describe the
RS232(C) specifications; our intent is to give you enough information to be
able to intelligently connect and use the COM-1 serial communication board.
If you are unfamiliar with the terms used in this discussion, turn to
Appendix B for a glossary.

The COM-1 has two complete and separate full duplex communication
channels that are compatible with the RS232 specification. Each channel
can transmit and receive at a user definable baud rate and format
simul taneously. In the programming section, we will describe how to select
these formats, The ACIAs handle parallel/serial and serial/paraliel
conversion, communications control (handshaking), and detection of overrun,
framing and parity errors. The ACIAs can also be used for interrupt driven
1/0. The outputs from the ACIAs are buffered and inverted by TTL (or Line
Drivers - user installed option) and the inputs to the ACIAs are buffered
and inverted by Line Recelvers. The RS232 standard defines two types of
communications equipment: Data Set and Data Terminal. These designations
determine the connections to the standard DB-25 connector BY POSITION. For
example, pin #2 is defined as signal BA and described as ‘"data from
terminal®. This means that if the equipment were a Data Terminal, this

line would be an output; if the equipment were a Data Set, the 1line would
be an inout. The COM-1 is configured as a Data Terminal.
SOF TWARE

ELIZA — JEFF LAVIN = —==—————

ELIZA is the, by now, "classical", public domained, AI (Artificial In-—
telligence) demonstration program originally written in LISP (LISt
Processor), by Joseph Weitzenbaum of MIT to emulate a "human" psycho-—
analyst. (We understand that Professor Weitzenbaum now regrets having
published ELIZA beacuse of its "misuse" by those who allege that the
program "proves"” that machines can be programmed to "think".)

SYM-PHYSIS 15-49

According to Turing, a "system" demonstrates Al if a user cannot be sure
whether he is dealing with a "man” or a "machine". Based on Turing’s

criterion, ELIZA is "intelligent"”, since whenever we deal with "her" we
find ourself getting as emotionally involved and as frustrated with her
probing questions and occasional evasive "behaviour" as we probably

might feel when dealing with a real "shrink".

Jeff Lavin has prepared a truly delightful SYM-1 version of ELIZA,
written wholly in 6582 ML code. You will need at least 12K to hold the
object code. Lots of RAM is required to store the large vocabulary at
ELIZA’s command. Only object code will be provided initially, on either
cassette or FDC-1 diskette. RAE-1 source code will be available
(requires 32K) in the near future, again, in both media.

FORTH FOR THE FDC-1 —— BILL WHARRIE

This is a full implementation of fig—FORTH, completely integrated with
the FDC-1 system. It will be supplied either on 5 1/4" FDC-1 diskettes,
18624 byte per sector, double density, format, or, for those with 8"
systems, on cassette (perhaps by the time you are ready for FORTH, we
will have completed ocur arrangements to have Joe Hobart generate 8" disk
copies). A variety of FORTH utility "SCREENS" will also be provided.

Below is a copy of its "VLIST" for your evaluation. This is followed by
(partial) "VLIST"s for the EDITOR and ASSEMBLER VOCABULARIES. Note the
“conditionals" built into ASSEMBLER, to permit "structured" programming.
If you like FORTH, you®ll LOVE Bill’s FDC-1 implementation'! We’'re going
to install an FDC-1 controller on ocur SUPER-SYM with this FORTH as our
main language.

G 9006

L3
FORTH2,1
+G 200

FIG-FORTH 1.0

VLIST

CODE ASSEMELER 28WAF 20UP 2DR0OF WHERE EDITOR LINE

TEXT W-START C-START ECHO-0FF U< 8000~ COLD (R-V)
REFLACED,RBY WORI'. IN Ux R/W ERRCNT DISKIO CASSETTE DISK
FLAGS BUFAD SEC# TRK# UNIT# n/c CSAVE CLOAD CLMSG

MON VLIST TRIAD INDEX LIST i . +R o. JUR #5

¥ SIGN ¥ it SPACES WHILE ELSE 1F REFEAT AGAIN

END UNTIL +LOOP L.OOP Do THEN ENDIF BEGIN BACK FORGET
¢ LOADC R/W ~RCD SAVE i LOAD MESSAGE +LINE (LINE)
ELOCK BUFFER OR1 DRO EMFTY-BUFFERS FLUSH UFDATE +BUF
FREV USE M/MOD X/ X/MOD MOD 74 /Mon * M/ MxX

MAX MIN DARS ARS Dt- 4= S~=D coLD ABORT QUIT

(DEFINITIONS FORTH VOCABULARY IMMEDIATE INTERPRET ?PSTACK
DLITERAL LITERAL CCOMFILE] CREATE In. ERROR (ABORT)

~FIND NUMEER (NUMEER) UPPER WORD FAD HOLD BLANKS

ERASE FILL QUERY EXPECT Yo ") ~TRAILING TYFPE

COUNT NOES:: <RUILDS +COLE (3 CODE) DECIMAL HEX SMUDGE

1 L COMFILE PLOADING PCSP TFAIRS PEXEC PCOMP PERROR
ICSP FFA NFA CFA LFA LATEST TRAVERSE ~TIUP SPACE

ROT > % U< = C Cy ’ ALLOT HERE 2+ 1+ HLD

& CHF FLD DFL HBASE STATE CURRENT CONTEXT OFFSET

SCR ouT IN BLK VOC-LINK nF FENCE WARNING WIDTH

TIR +ORIGIN B/SCR B/BUF LIMIT FIRST c/L BL 3 2

-
1 0 USER VARIABLE CONSTANT i ' c! | ce @ TOGGLE
+ 1 DU SWAF DROF OVER DIMINUS MINUS o+) O 0=
R R =R LEAVE S RP ! SP! sre X0R OR AND us

UxX CMOVE CR PTERMINAL KEY EMIT ENCL.OSE (FIND) DIGIT
i no) (+L00P) (L.OOP) OERANCH ERANCH EXECUTE CLIT
LIT OK
SYM-PHYSIS 15-41

EDNITOR OK

VLIST

UNDER NEW +BS NULL™? ENTER ENTER? TILL X E F N
G DELETE FIND 1LINE MATCH -TEXT COFY CLEAR TOF

I B R L T M o S E H ~MOVE ¥LAG $LEAD #L0OCATE
ASSEMELER OK

VLIST

ENDO-CODE w= 0 0= s NOT ELSE» THEN IF, UNTIL»
REGINy RIT» JMFy JSR STYy LDY s LDXy CFYy CFXs

STX» ROR s ROL » LSRKy INCy DEC» ASL y STAy SEC» ORA>»
LDAYy EOR» CMF» ANIly AlC» M/CFU TYA TXS» TXA» TSX»
TAY y TAXy SEIs SEDy SECy RTS» RTI, FLFPy FLAY FHF »

FHA NOF'» INYy INXy DEY» DEX» CLVy GLIy CLDy CL.Cy
ERK» CFU UFMODE RF) SEC EOT))Y X) Y X MEM
$ A MODE INDEX SETUF NEXT FUSHOA FUSH FUT FOFTWO
FOF N IF UF W XSAVE

P.S. For those of you with at least 24K of RAM and no FDC-1 as vyet,
note that this FORTH can ALSO be used on a CASSETTE based system. Full
instructions for modifying the object code are provided. You can get
started on the cassette version and add the FDC-1 later. Actually, both
cassette and FDC—-1 can be used interchangeably. Note that the FORTH
words DISK and CASSETTE appear in the FORTH VOCABULARY. These are used
to select the desired 1I/0 medium. Just be sure to specify that you need
the cassette format.

HELICOPTER —— DANIEL WUETHRICH

This is another interactive video graphics game by the author of SYMMAN.
Like SYMMAN, it requires a Visible Memory and an "Atari" compatible
joystick. Supplied as RAE source code on cassette. Requires 32K for
assembly.

We found this to be even more fun than SYMMAN. Here are the rules, as
extracted from the game "manual”:

Move the helicopter with the joystick. Pressing the ACTION button makes
the helicopter fire. Down on the ground gas tanks and enemy bases are
generated by random control, slowly at the beginning and then faster and
faster. Hitting one of the bases counts the following points:

— small base : 2¢ points
— medium base: 16 points
— large base : 5 points

The bases fire at you as you fly overhead, attempting to dodge (U, D, L
or R) their fire, while firing at them in return.

Your helicopter uses 2 units of gas per second. You start the game with
an initial 164 units. Getting more gas is done by touching a gas tank
on the ground with your helicopter. This gives 1 to 26 units of gas,
according to how full the gas tank is and how fast the game is already.
Because the gas tanks have holes, the gas flows out in about 26 seconds.
Hitting a gas tank counts points from @ (full tank) to S5 (empty tank).
An empty gas tank is removed automatically after 4 seconds.

You start the game with S lives. One life is lost when the helicopter
is hit or when you run out of gas. Each time you lose a life, you get
an additional 20 units of gas. If high—-score is reached
nRPPPP????????" is displayed. Now enter your name and fill with spaces
tna ER or LE).

If you wish to save the high—-score and the name after the game, then
simply save the whole program back to disk or cassette.
SYM-PHYSIS 15-42

SWP 2.5 — A. M. "SANDY" MACKAY

SWP—-1 has been the most popular word processor for the SYM-1. It is
essentially a text FORMATTER for text files edited under RAE-1. At the
time it was initially released there were a number of known "weak-—
nesses". The demand for a word processor was so urgent that it was
released "as—is", without a real user manual, with only a sample text
file and the fully commented source code to guide the purchaser in its
use.

Because all users had RAE-1 installed, and hence had a reasonable
knowledge of 6502 assembly language, they were able to "figure-out" the
workings from a study of the source code. This knowledge led many of
them to customize SWP—-1 to fully meet their own personal requirements.
We sent a copy of our own "upgrading" to Sandy Mackay as "SWP-2", and he
returned it to us, with further embellishments, as "SWP-2.35". The
weaknesses of SWP—-1 have been removed, and a number of new features
added.

It is so much stronger than SWP—-1 that we are making it available as an
added cost option to all past and future purchasers of SWP-1.

SOME EXPANDING IDEAS — JAMES E. TRUESDALE

April 1, 1983

Dear Luxs

I just expanded my Sym—-| to 32K of RAM for less money than
anything else that I have seen for the Sym or {t’s relatives.
1 thought that you and other Symmers might be interested 1in
hearing about it.

I bought John Bell Engineering’s 81-330 RAM/EPROM Memory
Board and built it myself. Here are a few of the board’s
features. The board is PIN FOR PIN compatable with the Sym’s
expansion connector, all I had to do was wire up the
connectors. It uses 6116 Rams (2K X 8) and/or 2716 EPROMS in
any combination. 6116 Rams are getting pretty cheap now, [’ve
seen them for $4.28 each. All lines are buffered (I“ve had N0
problems), and the board only draws 500ma at 5v. The board is
a standard size of 4.,5" X 6.5" and has a gold card edge
connector. It also seems to fit ok in my father’s MTU card
cage for his Kim.

I built the board in a few hours and it worked the first
time that I tried it (after I hooked it up to the expansion
connector instead of the applications connector of the Sym,
Boy was THAT a debuaging problem! What one will do when one is
in a hurry!).

The cost pbreakdown looks like this =

I 141.5244 150 1 +50
I 741.5245 1,50 1.50
I 74LS10 «35 «35
I 74L5365 .50 «50
2 7415138 1.00 2.00
3 16 Pin IC Sockets » 115 2425
| 14 Pin IC Socket .20 .20
2 20 Pin IC Sockets N/C N/C
16 24 Pin IC Sockets .40 6.40

SYM-PHYSIS 15-43

10 Monolithic .1 mfd. Caps. 12 1.20
16 6116 150ns Memory Chips 4,38 70.08
| 32K Memory Board 52.45 52,45

Total $138.43

======

I bought the 24 Pin sockets at a local electronics Junk
house and the rest of the extra chips, caps, and sockets from

my father or from my junk box. [used monolithic caps because
they take up less space than standard disc caps.

I bought the 6116 chips from Microprocessors Unlimited in
Beggs, Oklahoma. They are FAST and reliable and sell only top
quality chips. We ordered these chips over the phone on a
Sunday and had them the following Friday. Since we had ordered
from them before, they just billed us. Qur first order was by
credit card, and was equally fast. They advertise in The
Computer Shopper, but call for the latest prices since they
change so fast.

Enclosed is a copy of some literature.for a connector that
I bought for the memory board that I am going to use to build a
“card cage" (The MTU card cage is WAY to expensive for me) for
the memory board and the Sym (I will use standard connectors
for Sym). [intend to mount them both vertically and put them
either inside of my surplus CRT terminal that I use as a
monitor for my KTM-2/80, or else mount them free standing
behind the terminal.

Sorry that this letter isn’t in RAE format, but I composed
this letter on my father’s Radio Shack Color Computer using the
Telewriter-64 Text Editor. It is just sooono neat! I printed
it on my surplus GE Terminet 300 Terminal. The Co-=Co is really
an impressive machine even with this funky keyboard.

) Well, I Just wanted to tell you and other Symmers about
this (in my opinion) great way to expand a Sym for less.

CEDITOR’S NOTE]

y We have discovered a way to create
Sincerely, camera-ready copy from materials typed
with o0ld, tired ribbons. We copy them

g :jxuﬁmvzdwﬁ on our office copier with the control

amio > set to darken the copy. We go through
several generations until the contrast

James E. Truesdale is sufficiently enhanced. Image quality
1400 Hudson Road is not degraded, since the electrostatic
Ferguson, M) 63135 copying process inherently provides
"edge enhancement". Unfortunately, the

process does not incorporate spelling or

grammar correcting features, so a RAE

readable tape is still preferable.

RAE .CT PROBLEMS

A number of readers have had problems with the .CT pseudo—op “bug” in
RAE-1. The first printing of the RAE-1 Reference Manual provided the
correct fix (a patch in page zero) but all later printings put the patch
in page $9E. This is OK for a 4K SYM-1, but the patch conflicts with
text or label files which extend beyond the original 4K of RAM. You may
wish to correct page 16-2 of your RAE-1 Reference Manual to read as

follows: SYM-PHYSIS 15-44

The patch shown below is placed .at_the—end 1 have included (separate page) a copy of the hardware modification

fetrotr—tabet—fite:

m Pﬂrﬁe Zerd, Al e = used to bring the TTY port around to a CST way of thinking. For the
LOCATION CONTENT CONIENT A3 8 Store 0 into inverter, I used a 4049 CMOS inverter which allows up to 18 volt inputs
E st 1o location $110 with 5 volt (vdd level) output. I mount this inverter external to
EE ol Enter flag A“! B ol the SYM 1 in the break out box built to house the CRT port connector,
F6 P4 Ad Enter veetor o A{f:; 4C Jump back into the PRINTER port connector (or second CRT port), and tape I/0.
p . y YASSEMBLED LISTING:
¥ L Y B 2&) il v ot f010 5400 B FIE VITW PRINTER TA TAKSER REQEST (TR SRICH 9
A s 25 A9 parchis 3 0030 § Hd.FORR IR, =
A\—tFe i ¢¢ e To install the patch, perform the following: gg;g : 12/14/ H. 3 Forr ar.
EEZ ' 1. Enter RAE-] Type: G BOO-O} 3893 1 7 CW Industries
Be- 2. Exit RAE s
g e, Type: B.Pj gggg ;
3. Use M command three times to g{?g i PROGRAN DEFINITIONS :
LOTS gii IDEAS FROM HARRY FORR modify EE, F6-F7, and mf’_' 0120 LTR DE $40 &
0130 PBDA JDE $A402 =
Here are some extracts from a recent letter which describe several 0140 PRINTER .DE $20 3 =
useful modifications to SUPERMON, implemented by replacing the original g%zg ?35‘%& g% :gzgf E ‘g
2332 ROM with your own 2532/2732 EPROM. The major modification is to a 0170 § - s 2
9668 baud CRT data rate. %iggil E g
H = g
Harry also describes a simple current loop to RS-232-C "converter". We %g‘;g’; :‘J g
haven®t studied his mods enocugh to figure out why they produce the loss 0220 } DON'T CONVERT TO UPPER CASE. = =
of RAE-1°s CTRL C and BRK exits to SUPERMON. His reference to the RU 0230 SAC = 3
$99@3 "fixing" the problem, is based on this being the RAE-1 "patch" to gggg 'ag :IAZC e ; e =
FDC—-1, and this patch does modify a goodly number of vectors. 0240 § =2 e = o
Dear Lux: BA2C- 7F 3%8 ; BY §7F ; § E g e
0290 3 3 Bl G
In the last issue of SYM-PHYSIS there was a little 0300 & s £ E S=2
gem tucked away on 13/14-0 and 331, ###% Modified Supermon ### %%58, TURN PRINTER ON WITH CONTROL-0 g SiE e 35;’
by Paul L. Beaupre . 0330 .BA $8A31 = =t
0340 WG $1A31 - S == =
This was all the help I neaeded to finish my "System patch® BA31- AD 54 A %%2%‘ LDA TOUTFL §§§§ B 8% 2]
converting my SYM 1 to run communcations at 9600 baud. I had been 8A34- 49 20 0370 EOR #PRINTER JTOGGLE PRINTER ! oo=a w oS = 222 =
altering Supermon to allow lower case in basic by NOFing out the 8A36- BD 54 A6 0380 STA TOUTFL B ® -0 o -
AND #$DF now it is just a #$7F and the old AND command. But now, 18 o = e
MY dream of a 94600 baud system has taken shape. ouo'; s
ggg l INTERRUPT "TOUT* TO WAIT FOR DTR. g
Modifications include: : . R e e
%’lgg :‘é 1?22% JEPROM BURNING BUFFER. 2282 s2ESTBESSERIRRETES
1. TTY port becomes a printer port with DTR. 0450 §
(DTR line is not checked if printer flag "TOUTFL" is not set.) BAAZEHCIE3EA 0470- VWAL B3
0480 ; co@mn
0490 § TaE -
2. 1 stop bit instead of 2 [note: SYM 1 documentation gg?g' ?‘.‘8‘?‘? 7
error, page 26 of the SUPERMON FROGRAM states "start bit, 8 Data, 3 Stops" 0520; CHANGE NUMBER OF STOP BITS 10 1. géég =
but the Zero loop is not executed, therefore ... 2 stops.] 0330 § Do 5
0340 BA $8ABO
3. Default value changed to start up I/0 CRT only. ggzg‘ AN
BABO- 0A 0370 BY $0A } | START, 8 DATA, 1 STOP BIT(S).
4. Lower case enable to BASIC. ggggll
S. Control O toggles on/off output to printer. lEbzgg; NEW DELAY HALF [DLYH] FOR 9600 BAUD RATE.
i
Now that the sales pitch is over, there is a bug. (isn’t there %ﬁg :?: :?:E; JEPRON BURNING BUFFER.
always?) When first entering RAE with a .G BOOO cr., the control C 0630 §
(ctrl c) to exit to the monitor will not work. Nor will the BRK BAET- EA 0660 NOP
command function. This problem went unnoticed for awhile since the BAER- 60 010 RS
0680 §
cure for the bug is RU $9003 cr. I have had no problems in BASIC. 0690 §
Foking a 144 (CRT only) or 160 (printer only) into 42580 ($A&654 TOUTFL) g;‘{g';
turns the printer on and off, leaving the'break key enabled on the CRT. 0720 ; PRINTER DELAY DATA TRANSFER REQUEST (DTR]
_ Like Mr. Beaupre I have been burning an EPROM (2532) ana — g;}g daitar L ga el
then just replacing the monitor chip. References are made in the BAEE- 29 20 0750 AND $PRINTER JPRINTER ON ?
program for moving the object code to the buffer I use to program the B8AFO- FO 07 0 BEQ DONEWAIT iNO, SO 60.

740
EPROM. SYM-PHYSIS 15-45 B BTN STk EE SYM-PHYSIS 15-46

HARDWARE MODIFICATIONS

THESE HARDWARE MODIFICATIONS WILL GIVE THE SYM-1
A SECOND "CRT" PORT.

SYM CONNECTOR CRT CONNECTOR

~ ‘ 3 F\'ECQVE DATA
T-12 J\
W

3300
%vu'”'

2 TRAMEMIT DATA

T-10 |

e e AR B e 1 GRIOUND

| O SR e —_—— ———— ===& DATA SET READY
(L R T —— 7 LOGIC GROUNLD

| oy A L GATE GND PIN #3

e B o o e e s o e e e GATE VDD FPIN #1

44,” i HE caceice Dédeet

RAE.DOS AND RELATED TOPICS

Many months ago Jack Brown (Saturn Software) sent us a collection of
five diskettes with a note saying "Here is some software to play with!"
Two manuals, entitled "RAE.DOS" and "MEAN14" came along with the
package. We really did have fun following his suggestion.

“MEAN14" we have described earlier, but "RAE.DOS" is really something
else! It is a truly elegant DOS designed to supercede FODS, but does
require the HDE disk controller and the FODS bootstrap loader to get it
operational. Jack provides a special ROOT disk running under FODS and
the FODS boot to load—-in and execute RAE.DOS. The BOOT disk 1is then
removed and from that point on only RAE.DOS generated disks are used.

We booted up as per instructions, and came up in what, at first glance,
appeared to be RAE, and can, in effect, be treated as RAE. An
examination of the accompanying manual showed however, that this was now
RAE with a powerful new line editor and a truly elegant new DOS; with a
very versatile and "user—friendly" command structure.

We then removed the BOOT diskette from the System Drive and replace it
with the RAE.DOS UTILITY disk, which contained all sorts of “"goodies”,
in both .0OBJ (machine language run—-time code) and .TXT (RAE source code
form). The other three diskettes contained source and object code for
RAE.DOS itself, MEAN14, etc, etc, etc.

The entire package was a real pleasure to use and examine. RAE.DOS is

one of the best software development packages we have ever seen. We
commend it to all FODS users. It was with regret that we put it away,
never to look at it again until today. The reason we set it

aside? Because it is difficult to "shift" mental "gears" between
DOSes, and we are already having enough problems remaining proficient in
CODpos, FODS, and FDC-1 simultanecusly.

Why are we looking at it again? Because we received a RAE.DOS
diskette today from one of our long—time readers. We reprint portions
of his letter below for general interest, and also a few samples of his
printer outputs, so that you can see its versatility (he forgot to set
>F0 C before printing!).

SYM-PHYSIS 15-47

P.0.Box 257,
Lindfield,
N.S.W. 2070.
Australia.
Dear Jean and Lux, 15.April, 1983.

For some time I’ve been looking around for a
second computer but finding it very difficult to make up my mind as
to which one it should be. I°m very attracted to the BBC but am a
bit disappointed that some of the add-ons are so slow in appearing.
Also that, with the exception of games programs, there is not much to
run on it that can be bought off the shelf. And that is mainly why
I’m thinking of another machine - to have access to ready made
programs, particularly of the VisiCalc kind. I can have all the
programming (and hardware) fun I can find time for with the SYM.

My main purpose in getting in touch with you at
this time is to send you this diskette. It is probably of little use
for "SYMPHYSIS", partly because it contains a number of routines from
Jeff Holtzman’s "MONEX/SYM-BUG", (although whether or not he would
mind I don’t know), partly because the MX89FT III printer routines
are probably not compatible with the EPSON sold in your country with
the same model number, (I know they differ but I don’t know how)
and also because of its hardware requirements. However I thought
you, personally, might find some of it interesting.

You may also be interested in a few details of the
extensions I’ve added to the SYM lately and which are used by the
programs on this diskette. An additional 6532 has ben added at $A500

with its RAM at $A700-$A77F. This is mounted on a separate board
with room for several more 1/0 chips. The processor, a 6502A, has
been removed from the its usual position and relocated on another
board where its data and address lines are buffered, and which also
has decoding and bank switching logic for four banks of (hardware)
switch selectable RAM (411é6s) or ROM (2716s) at $9000 — $97FF. There
are also 6116s at $9800 — $9FFF and $F000 — $F7FF. Later I hope to
replace the 2716s with 2532s and to have both SWP and XRF in the one
chip. XRF will be called in somewhat the same way as SWP is at
present.

I’ve started on a board to put RAM at $BoQO -
$EFFF and hope to finish it before too long. However I’m continually
distracted by playing with FORTH. I wonder whether you’ve tried Leo
Brodie’s “Quick Text Formatter’” described fairly recently in ’FORTH
DIMENSIONS® 7? 1Its really magic to be able to add words to meet
special requirements just as one needs them.

Just in case you don’t have RAE.DOS readily
available I’11 print this letter and enclose it with the diskette.

With very best wishes to you both,

I've started on a board to put RAN at 98000 - SEFFF and
ape to ¢inish Lt betore tae leng. Howaver I’ continually
unun-- 0§ LER FORTH. |1 wonder whether yeu've siars MZQ,
tried Lea *Buick Text Foraatter’ describad riha

s reall 1
ectal rnqulrunzt"‘ = -Du Feu

fa v
e e agTe oe Lae yerds to sest
sust as one needs thea

Just in case you den’t have RAE.DOS reedily avatlabdle
1'11 print thie lettsr end enclese (t with the disketts.

they differ but I don’t know how)
and also because of its hardware
requiresents. However I thought you,
of it interesting.

arm you both? Well I trumt, and @njoyil
Of yOou receant eye coperatiomnm Lux.

oarw going along fine here and leately I
time to mpend with the SYM.

For mome time I°ve been lo okir\g sround
o

but finding it very, difficult macm o cssCOntinued
one it mhodld Se rm very sttracted to
diwmeappointed th‘t mome of the add-onws

26 73 63 3 ~left margin
3 70 63 3 “~left margin
o 359

Almo that, with the edception of geamem
much to run on 1t that can be bought o4

SYM-PHYSIS 15-48

ROBOTICS

Quite a few of our readers are heavily into robotics. Several have sent
us photographs and reprints of technical articles which they have had
published elsewhere. We 1list below their names and addresses and the
names of their robots, so that your robots may correspond directly with
theirs!

LCDR BART EVERETT, Assistant for Robotics, (SEA-96M3), Naval Sea Systems
Command, Washington, DC 26362, sent an 8x1¢ (non—autographed!) glossy of
"ROBART", whose specs, particulary in the sensor area, are very impres—
sive. ROBART could easily serve as a night watchman, on the lookout for
intruders, fire, smoke, floods, etc.

GENE OLDFIELD, Robot Repair, 816 1/2 21st Street, Sacramento, CA 95814,
sent us similar information on "ENTROPY". Since ENTROPY "lives" only
some 99 miles from us, we hope to visit him (her?) early this summer.

RICK KIRSCHBROWN, 595 Hunter Lake Drive, Reno, NV 89569, sent us a color
photo of "HOMER" (HOME Robot). Rick was a student at CSUC several years
ago.

JIM GRAHAM, a current student, and our Lab Assistant, at CSUC, is
working on an as yet un—named robot based on the Milton Bradley toy "Big
Track"” as the "vehicle" and the Polarcid Camera Ultrasonic Rangefinder
as the principal sensor. The idea is to use the little "beastie" to map
out strange rooms. We will keep you posted on the progress of this one.

RAM-BL INGS

First a few personal notes for those who were kind enough to write and
ask: The eye problems are finally resolved. Didn’t get a wide—angle
lens implant in one eye and a telephoto in the other (medical technology
is not at that point, yet) but one eye is set for near vision, the other
for far, so that I can drive or read without glasses by mental selection
of the "dominant” eye. With bifocals both eyes are 26/26, and 1 can
actually see well enough to solder again. The muscles which change the
shape of the natural lens for focusing are now “in training" to move the
plastic implants to-and—fro for focusing.

Now that my vision is back to the days of my youth,
a rather distorted right wrist, badly shattered in a +fall from a bar
stool (no, I was sober, and standing on it to reach a high shelf) some
years ago, rebuilt, to restore its "youthful"” dexterity. No it is not a
hang—up on vyouth, but it would be nice to regain the hand-eye
coordination necessary to be a high scorer in SYMMAN, HELICOPTER, and
the arcade type games on the VIC=26 and CBM-44. It is very frustrating
to have nearly everyone I know able to beat my "lifetime high scores”
after only a few minutes of practice.

I am tempted to have

As usual, we have fallen behind in answering the mail, and getting the
newsletter out on time; for this we apologize again. At 1last, though,
we do see a solution, beginning next year. We will retire from our
teaching position, to become the Computer Science Department’s first
Professor Emeritus, effective 1 June, 1983. We will continue to teach
one semester (fall) each academic year, but will then have eight months
free each year for travel and personal research. We hope to be able to
visit many of our European readers next spring.

We have no scheduled lectures or teaching assignments this summer, so
that we will have a full "uninterrupted" three months to get caught up
on unanswered mail and unfinished projects. We plan that the 1984 vol-
ume of SYM-PHYSIS will include most of the software and articles that
have backlogged on us, and will start "organizing" for that this summer.

SYM-PHYSIS 1549

PRODUCT REVIEWS

A 64K MEMORY BOARD WITH BANK SWITCHING

Bob Peck sent us, for evaluation and review, a sample of the 64K DRAM
(Dynamic RAM) Board he is marketing for the SYM-1, SYM-2, and the AIM
65. It is a very well designed, compact package, using 8 OKI M3764-20RS
DRAMs, a Motorola MC6883 as the "main” chip, sockets for a pair of 2114s
for the lowest 1K of RAM (since thia area may NOT be bank switched),
buffers, a handful of TTLs and a "customizing” PROM (for either AIM or
SYM memory maps). It also includes a 16.866 MHz crystal (which in
effect replaces the SYM’s 1.0660 crystal.

The board is installed extending out from the Expansion Connector (or it
may be tucked under). The SYM’s 6562 and all on—-board RAM are removed.
The 6592 is reinstalled in a special header socket cabled from the DRAM
board to get the new clock signal.

The "new" memory map is as shown below, with bank switching accomplished
with the machine language sequences indicated. To "initialize the
system, 1log on, then .G 7680@. SYM will then respond "64K ONLINE!"™ with
a blinking cursor, waiting for a second log-on. It’s quite a thrill to
see this, almost unbelievable!

FFFF bommmmmmmmm o +
! !
I ROM + I/0 !
! !
! SPACE !
8000 fommmmmmmmmmmmnee ! $mmmecmmmmm—mae +
7FFF ! 31K RAM ! ! 31K RAM !
1 1 |
! BANK ! ! BANK !
! | (===) !
! 0 ! ! 1 !
0400 F il = mminim o= + 4ocem e e &
03FF I 1K STATIC (2114)!
0000 Fomonmn e m +
LDA $FFD5 LDA $FFD4
STA $FFD5 ;switch to bank 1 STA $FFD4 ;switch to bank 0

A retrofit kit is being planned for this card to provide Motorola 6847
Color Graphics. This will require installing a 14.3818 MHz Crystal in
place of the 16.966 MHz one, but a "replacement” SUPERMON EPROM will
also be supplied correcting all time dependent parameters to conform to

the 127 slower clock rate.

The board comes with a well written Installation and User Manual, and is
one of a new line of products Bob’s company, BYTE Microsystems Corpora-—
tion, of Sunnyvale, CA, is introducing for the SYM/KIM/AIM family.

PROGRAMS BY TOM GETTYS

Tom Gettys wrote us recently that he has been 1looking over his
collection of programs for the SYM-1. He sent us quite a few, two of
which appear in this issue, and is "polishing” them up for distri-
bution. Write to him directly at the address below for a 1listing of
programs available, and prices for either cassette or FODS diskette
versions.

His programs include utilities, such as COMPACT, which removes spaces
and REMs, from BASIC programs, games such as "BAME OF LIFE", and a wide
variety of applications programs which he developed for his own use, and

SYM-PHYSIS 15-50

for use in teaching. His "catalog" includes programs in both BASIC and
65602 Source Code. He prepared for Jean’s use an ACCOUNTS PAYABLE pro-—
gram (running under Saturn Software’s Extended Disk BASIC) for handling
some of her book—-keeping chores.

Tom Gettys, 4539 Beachcomber Court, BRoulder, CO 8¢381

COLORMATE II BY MICROMATE

Dick Turpin, of MicroMate, has been at the Unversity of California,
Davis (UCD), on sabbatical from his hame campus, for the past year.
During a recent visit he showed us the spec sheets for a new product
which should be available early this fall.

It will incorporate an INTEL 8831 single-chip microprocessor for serial
interface to the host computer, with custom firmware in EPROM. It will
also include two GI AY-3-8916 Programmable Sound Generators, a National
Semiconductor ADCABE9-based fast (166 usec) 8-bit, 8-channel multiplexed
A/D conversion subsystem, twenty I/0 lines, and 1last but not least,
extra-ordinary color graphics, as follows:

A Texas Instruments 9918A Video Display Frocessor
supports four modes of color video ranging from
twenty—four 40-character rows of text to 256 X 192
resolution graphics, with 15 unique colors plus
transparent, 35 display planes, and I2 sprites. 16k
bytes dynamic RAM are dedicated to the video display.
The output is composite video.

Contact MicroMate at P.0. Box 58111, Indianapolis, IN 46256, for further
information on the ColorMate II.

PROGRAM CORRECTION

Bob Peck informs us that the "FORCED CASSETTE TAPE READ ROUTINE" on page
13/14-57,58 is missing the following line:

@265 BNE INCDUN

Fortunately, the error and fix are sufficiently obvious that most
readers spotted it at once, so little damage done!

MILES E. ANDERSON, KBSUW, passes along the following suggestion to make
ROM/EPROM interchanging less painful:

A HARDWARE NOTE. If all the ROM addressing jumpers 1-18,
46-47, A-M are removed from the SYM board and the holes
cleaned withy a solder sucker, the board will then accept

two l6-pin DIP sockets. Headers in these sockets will permit
endless jumper changes without danger of damage to the board.
I made up separate sets for the two-chip versions of BAS and
RAE and can now switch from one to the other in less than
half a minute. An 8-pin socket to the left of the crystal
will provide similar flexibility in write-protect changes.
This socket scheme is not original. My son, David, (also

a Symmer) suggested it to me.

A CALL FOR HELP

We reprint in the next column portions of a letter that we did not have
time to answer in the detail it deserved. Can any of 9ur Eur9pean
(PAL/SECAM areas) readers help provide the answers to their questions?

Thanks, if you will. SYM-PHYSIS 15-51

Moorsele, 6 March 1983
Dear Lux:

We are three computer amateurs {(or should it be amateur computerists?)
and we would very much welcome it if you could answer a few questions:

Our main problem is the following: We are designing and building our
own 63562 based computer system and we have been looking for a suitable
video controller. So far we haven’t had any success. {One thing we
found was the AMI S68@47 VDG, video display generator, from the magazine
Microcomputing, February 1986, put this chip doesn’t seem to be avail-
able in Europe. Would it be possible to purchase it through the SYM-1
Users® Group?)

We would like to know if you could tell us about any system that has at
least 8 color capability and preferably a 256 by 256 dot display (of
course 6562 compatible). We have been looking for information all over
Belgium, but we didn’t find anything. You’re our only hope. So please
send us information about a Color Video Display system we could build,
or a CRT controller chip we might be able to use. We would be very
grateful. We hope it isn”t much trouble and we very much hope you could
help us.

Yours sincerely,
/s/ Kris Coolsaet, Jacques Buyse, Henri Deleplanque (member of SUG)

M. Buyse’s address is: M. De Tayelann 33, B854¢ Moorsele, Belgium.
M. Deleplanque’s address is: Stokerijstraaat 24, B8559 Iwevegem,
BRelgium.

MISCELLANEA

cology, Victoria General Hospital, Halifax, Nova Scotia, B3H 2Y9, would
very much 1like to get in touch with other SYM users who have developed
applications programs in areas related to medical physics.

Several readers have been kind enough to send in Indexes to SYMPHYSIS.
These include CHUCK HARRISON of Groton, CT, who submitted a RAE cassette
version which permits using RAE’s FInd to locate the proper issue number
and page number. It is arranged serially by issue and page, and he has
used lots of "KEYWORDS" for each article. It is best used for machine
retrieval, and after we bring it up to date we’ll release it on
cassette. We publish as an addendum to this issue an alphabetic index
contributed by BORIS GOLDOWSKY; we thank him for the many hours he put
in on this difficult task.

Our regular printer will only handle the newsletter in multiples of
eight pages, sc we sent him the first 48 pages to do, and are sending
these last four pages to a "jiffy" printer. We point this out, just in
case you are wondering why the extra "loose" sheet. Besides, it gave us
an extra week to finish up this issue.

The hardest part is the last part, where we worry about not being able
to include everything we wanted to. There is as much good material
still in our backlog pile as was put in. Our summer vacation starts
next weekend. We plan to spend a month getting caught up on unfinished
projects, then the next month getting started on Issue 16. We’ll spend
some time in relaxing, too, with a few trips within California.

If all goes as scheduled, you should receive Issue 16 early in
September. A happy summer (winter to our down—under friends) from Jean,
Joyce, Denny, and . . « & =

s SYM-PHYSIS 15-52

