Tandem NonStop™ & NonStop II™ Systems

PATHWAY™ Programming Manual

ABSTRACT: This manual describes the SCREEN COBOL language used
in the PATHWAY Transaction Processing System by
PATHWAY application programmers.

PRODUCT VERSION: PATHWAY E06

OPERATING SYSTEM VERSION: GUARDIAN A05 (NonStop II System)
GUARDIAN EO06 (NonStop System)

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, California 95014-2599

April 1983
Part No. 82059 E00 Printed in U.S.A.

PRINTING HISTORY
82059 A00 December 1980 Original printing.
B00 October 1981 Revised.
Co0 April 1982 Rewritten.
D00 October 1982 Revised.

E00 April 1983 Revised.

Copyright © 1983 by Tandem Computers Incorporated.

All rights reserved. No part of this document may be reproduced in any form, including photocopying or translation to another
language, without the prior written consent of Tandem Computers Incorporated.

The following are trademarks or servicemarks of Tandem Computers Incorporated:

AXCESS ENABLE EXPAND PERUSE TMF
BINDER ENCOMPASS GUARDIAN TANDEM TRANSFER
CROSSREF ENFORM INSPECT TAL XRAY

DDL ENSCRIBE NonStop TGAL XREF
DYNABUS ENVOY NonStop II THL

EDIT EXCHANGE PATHWAY TIL

INFOSAT is a trademark in which both Tandem and American Satellite have rights.
HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines Corporation.

NEW AND CHANGED INFORMATION

This revision adds the following new information:

the RECEIVE clause that causes SCREEN COBOL programs to accept data from devices other
than the terminal keyboard (applies only to the T16-6530 terminal)

for T16-6530 terminals, a SCREEN COBOL program can assign a RETURN KEY function
through the SPECIAL-NAMES paragraph

the RECONNECT MODEM statement that manages PATHWAY terminal connections across a
dial-in switched line

the SEND statement UNDER PATHWAY and AT SYSTEM phrases that enable communication
between PATHWAY processes running in separate PATHWAY systems or on separate Tandem
systems

the STOP RUN statement that stops an executing program

the SCREEN COBOL compiler command SYMBOLS that causes the SYMSERYV process to build
a program symbol table used by INSPECT

the BINDER program is now used to store the user-defined checking and conversion
procedures.

iii

CONTENTS
PREF ACE . . e XV
SYNTAX CONVENTIONS IN THIS MANUAL i e xvii
SECTION 1. PATHWAY ORGANIZATION e 11
System Components 11
PATHWAY Monitor Process i i e 1-2
PATHOCOOM Processottt et e e e e e e e 1-2
SCREEN COBOLo e e e 1-2
Terminal Control Process i i e e 1-3
Server Process 1-3
Transaction Monitoring Facility 1-3
PATHWAY Programming Aids i e e 14
CROS S REF .. . 1-4
INSPECT ... e 1-4
Application Configuration 1-5
Communication Between Processes i ... 15
Transaction Messages e 1-7
Transaction Replies e 1-7
Developing the Application 1-7
SCREEN COBOL Programming Techniques to Reduce Terminal Context 1-12
SECTION 2. SCREEN COBOL SOURCE PROGRAM ..., 2-1
Program Operating Modes i e 21
Block Mode Program e e e e 2-1
Conversational Mode Program i i 2-2
Program Organization e 2-2
Language Elements e 2-3
Character Sett e e 2-3
Editing Characters i 2-4
Punctuation Characters 2-4
DAL A 0TS . . . ottt 24
SCREEN COBOL WoOrdsottt ettt e 2-5
Reserved Words o i 2-5
User-Defined Words i i e 2-5
System Names o e 2-6

O
[}
=
-
(3
-
-
[

Contents

Laterals o 2-6
Numeric Literals e 2-6
Nonnumeric Literals 2-6
Figurative Constants 2-6

Reference Format e 2-7

Tandem Standard Reference Format, 2-8

ANSI Standard Reference Format R 29

Comment Liines e 2-10

Continuation Lines e 2-10

Compiler Command Lines 2-10

Arithmetic Operations e 2-10

Arithmetic EXpressions 2-11

Arithmetic Operators e 2-11

Evaluation of Expressions 2-12
Multiple Results 2-13
Intermediate Results 2-13
Incompatible Data e 2-15

Conditional EXPressionso ittt e 2-15

Simple Conditions e 2-15
Class Condition 2-15
Condition-Name Condition e 2-16
Relation Condition 2-16
Comparison of Numeric Operands ity 2-17
Comparison of Nonnumeric Operands i, 2-17
Comparison of Equal Sized Operands i, 2-17
Comparison of Unequal Sized Operands i, 217
Sign Condition e 2-17

Complex Conditions e e e 2-18
Negated Simple Condition 2-18
Combined and Negated Combined Conditionscoou... 2-18
Abbreviated Combined Relation Conditions 2-19

Condition Evaluation Rules 2-19

Tables . . .o 2-20
Data Reference e 2-21

Qualification 2-21

SUbSCripling 2-23

Using Identifiers e 2-24

Using Condition Names 2-24

Data Representation e 2-25
Standard Alignment 2-25
Optional Alignment 2-25

SECTION 3. IDENTIFICATION DIVISION 31
PROGRAM-ID Paragraph e 3-2
DATE-COMPILED Paragraph e e e 3-2
SECTION 4. ENVIRONMENT DIVISIONt e et 4-1

Configuration Section 4-2

SOURCE-COMPUTER Paragraph 0t 4-2

OBJECT-COMPUTER Paragrapht e 4-2

SPECIAL-NAMES Paragraph e 44

Input-Output Section 4-7

vi

Contents

SECTION 5. DATA DIVISION e 5-1
Data Division Sections e 5-2
Working-Storage Section e 5-2
Linkage Section 5-2
Sereen Section e 5-3
Data Structure 53
Level Numbers 01-49 5-3
Level Numbers 66, 77, and 88 54
Data Description Entry 5-4
JUSTIFIED ClaUS€ottt ittt et e e e e e e e e 5-6
OCCURS Clause . ..ottt e 5-7
PICTURE ClausSeot e e e e 5-8
PICTURE Character-String Symbols i, 5-8
Item Size 59
Categories of Data 59
Alphabetic Data e 59

Numeric Data e 5-10

Alphanumeric Data 5-10
REDEFINES Clause e 5-10
RENAMES Clauset e 5-11
SIGN Clause . .. oot e 5-13
SYNCHRONIZED Clause e e 5-14
USAGE Clause e 5-16
VALUE Clause e 5-17

VALUE Clause for Data Initialization 5-18

VALUE Clause for Condition-Name Entries 5-19

Screen Description Entry 5-20
Base SCreen 5-23
Screen Overlay Area 5-24
Overlay Sereen 5-25
SCreen GTOUPot 5-26
Screen Field 5-27
Input Control Character Clauses i, 5-29

ABORT-INPUT Clauset e 5-29

END-OF-INPUT Clauset e e 5-30

FIELD-SEPARATOR Clause it i 5-31

GROUP-SEPARATOR Clause e 5-32

RESTART-INPUT Clause o e 5-33
Field Characteristic Clausest e 5-34

ADVISORY Clauset e e e 5-34

AT Clause 5-34

FILL Clause e e 5-35

LENGTH Clause e e e e e 5-35

mnemonic-name Clause 5-36

MUST BE Clauset e e e e e e 5-36

OCCURS Clauseot ottt e 5-37

PICTURE ClausSe e e 5-39

PICTURE Character-String Symbols i . 5-40

Item Size 5-41

PROMPT Clauseo e e e e e e 5-41

PROMPT Clause for Block Mode e 5-41

PROMPT Clause for Conversational Mode coiviinn. 5-42

RECEIVE Clause e e e e e e 5-43

REDEFINES Clause e e e e e 5-44

vii

Contents

SHADOWED Clause e e e e e 5-44
TO, FROM, USING Clauses e 5-46
UPSHIFT Clause e e e e e i 5-47
USER CONVERSION Clauset 5-47
VALUE Clauseot e e s 5-47
WHEN ABSENT/BLANK Clause0 .t B, 5-48
WHEN FULL Clause e e e 5-49
Terminal Considerations i 5-49
IBM-3270 Considerations i R 5-49
T16-6510 Considerations it 5-51
T16-6520 Considerations 5-52
T16-6530 Considerations 5-54
Conversational Mode Considerations i, 5-55
Special Registers e 5-65
DIAGNOSTIC-ALLOWED Special Register i i, 5-55
LOGICAL-TERMINAL-NAME Special Register 5-55
NEW-CURSOR Special Register i, 5-56
OLD-CURSOR Special Register e 5-56
REDISPLAY Special Register 5-56
RESTART-COUNTER Special Register i, 5-57
STOP-MODE Special Register e 5-57
TELL-ALLOWED Special Register i, 5-58
TERMINAL-FILENAME Special Register 5-58
TERMINAL-PRINTER Special Register 5-68
TERMINATION-STATUS Special Register i . 5-58
TERMINATION-SUBSTATUS Special Register 5-59
TRANSACTION-ID Special Register i 5-59
SECTION 6. PROCEDURE DIVISION i 6-1
Division Structure 6-1
Declarative Procedures 6-3
S CtIONS .. . 6-3
Paragraphs 6-3
Sentences and Statements 64
Procedures 6-4
Procedure Division Statements 6-4
ABORT-TRANSACTION Statement i 6-6
ACCEPT Statement 6-6
Timeout Accept Operation i 6-9
Block Mode Accept Operation i 6-9
Conversational Mode Accept Operationo, 6-10
ACCEPT DATE/DAY/TIME Statement0 . 6-12
ADD Statements 6-13
ADD T ..o 6-13
ADD GIVING ... 6-13
ADD CORRESPONDING e e c e, 6-14
BEGIN-TRANSACTION Statement i, 6-15
CALL Statement i 6-17
CHECKPOINT Statement s 6-21
CLEAR Statement 6-21
COMPUTE Statement e et 6-22
COPY Statement 6-23
DELAY Statement 6-25

viii

Contents

DISPLAY Statements e e e e e 6-26
DISPLAY BASE . 6-26
Block Mode DISPLAY BASE e 6-26
Conversational Mode DISPLAY BASE i e i 6-27
DISPLAY OVERL AY ... e 6-27
DISPLAY RECOVE RY e e e e 6-28
DISPL AY .. e e 6-28

DIVIDE Statements i e e e e e e e e 6-30
DIVIDE INTO ... e e e e 6-30
DIVIDE GIVING ... s 6-30
DIVIDE BY GIVING e e e 6-31

END-TRANSACTION Statementttt e 6-32

EXIT Statements e e 6-32
B X o 6-32
EXIT PROGRAM ... e 6-33

GO TO Statementsot e e e e e 6-33
GO TO .o 6-33
GO TODEPENDING e e 6-34

IF Statemento e e e e e 6-34

MOVE Statementsot e e e 6-36
MOV E e 6-36
MOVE CORRESPONDING i e e e e e e e e 6-37
Move Restrictions e e 6-39
Move Conventionsttt e e e e e 6-39

MULTIPLY Statements it et e e s 6-40
MULTIPLY BY .o e e e 6-41
MULTIPLY GIVING B 6-41

PERFORM Statementsttt e e e 6-41
PEREFORM . o 6-42
PERFORM TIMES ... 6-43
PERFORM UNTIL e e 6-44
PERFORM VARYING e e e e e 6-44
PERFORM ONE . .. e 6-46

PRINT SCREEN Statement it e 6-46
I/O Performed by the PRINT SCREEN Statement 6-48 -
Diagnostic SCreens it e 6-48
IBM-3270 Attached Printerst i e e e e 6-49

RECONNECT MODEM Statementuitintintit ittt 6-49

RESET Statement e 6-50

RESTART-TRANSACTION Statement . .v.....coouuniriinate i 6-51

SCROLL Statement e e e e 6-52

SEND Statement e 6-52

SET Statement i e e e e e e 6-59

STOP RUN Statementttt e e e e et e 6-60

SUBTRACT Statementsottt e e e e e e 6-60
SUBT R A CT .. i 6-60
SUBTRACT GIVING ... e e e e e 6-61
SUBTRACT CORRESPONDINGttt e 6-61

TURN Statement i e et e et et e e et e 6-63

USE Statement e e 6-64

ix

Contents

SECTION 7. COMPILATION ... e 71
Using the Compiler 7-1
Compiler Commandso 7-3

ANSI Command 7-5
COMPILE Command ittt e e 7-5
CROSSREF/NOCROSSREF Command P 7-5
ENDIF Command e 7-7
ERRORS Command e e 77
HEADING Command e 77
IF Command 7-8
IFNOT Commando .t e e e e 7-8
LINES Command e e 79
LIST/NOLIST Commando s 79
MAP/NOMAP Commandtuni ittt 7-10
OPTION Command ittt e e e 7-10
RESETTOG Command e 7-11
SECTION Commandttt e e e e 7-11
SETTOG Command e e e e e e 7-11
SYMBOLS/NOSYMBOLS Command i, 7-12
SYNTAX Command e 7-12
TANDEM Commandttt e e 7-12
WARN/NOWARN Command e 7-12
Compilation Statistics 7-13
Stopping the Compiler 7-14
Conserving Disc Space e 7-14

SECTION 8. PATHWAY APPLICATION EXAMPLE 81
PATHMON and PATHCOM Process Creation i, 8-3
SCREEN COBOL Program for Block Mode i 84
SCREEN COBOL Program for Conversational Mode 8-10
Server Program in COBOL 818

APPENDIX A. MESSAGES A-1
AdVISOTY MESSAZOS . . o . ot ettt ettt e e A-l
Diagnostic Sereens e A4

Diagnostic Screen MesSsagesttt A4
Diagnostic Message Generation Procedure A-5
SCREEN COBOL Compiler Diagnostic MeSSagesttt AT

APPENDIX B. SCREEN COBOL SYNTAX SUMMARY B1
Identification Division B1
Environment Division e B1
Data Division B-2
Data Description Clauses i B-2
Input Control Clauses it e e e B-3
Screen Description Clauses e B4
SCREEN COBOL Compiler Defined Special Registers B-5
Procedure Division B-5
Procedure Division Statements B-6
Compiler Control Commands B B9

APPENDIX C. SCREEN COBOL RESERVEDWORDS0 i, C1

Contents

APPENDIX D. USER CONVERSION PROCEDURES D1
Input Procedures e D-2
OULPUL Procedures o e D-3
32T0 Key Mappingot D-5
APPENDIX E. PATHWAY PROGRAMMINGFORTMF E-1
Task OVeIVIEWt e e e e E-2
TMF Application Structure E-3
TMF and PATHWAY Application Characteristics i, E-3
TMF Restrictions e e E4
PATHWAY Programs Using TMF e E4
Transaction Mode Use i e E4
TMF and SCREEN COBOL Verbs e e E4
ABORT-TRANSACTION USEo ittt e e e e e e E-5
BEGIN-TRANSACTION Usecoit it e e E-5
END-TRANSACTION USE\ttt e e e et E-7
RESTART-TRANSACTION USE . . .ottt ittt e e E-7
TMF and Special Registers i i E-7
TRANSACTION-ID . ..ot e e e e e E-8
TERMINATION-ST A TUS .. e e e E-8
RESTART-COUNTER e e e e e e E-8
TMF Programming Considerations E-8
Accessing Audited DataBase Files E9
Record Locking oo E-10
Repeatable Reads E-12
Opening Audited Files i i E-12
Reading Deleted Records E-12
Batch Updates E-12
COdiNg SOIVELS . . . oottt e e E-13
Deadlocko E-14
Backout Anomalies e E-18
Application Conversion Considerations i i E-19
Audited Fileso o E-19
Record Locking COnversionttt e e E-20
Grouping Transaction Operations i i i E-20
Transaction Control e E-21
NONStOPD SO VeSS . . oottt et E-21
Deadlock and Conversionttt E-22
PATHWAY Interaction with TMF E-22
SET SERVER Command and TMF i E-23
SET TERM and SET PROGRAM Commands and TMF E-23
Effects of the TMF Parameter on PATHWAY Send Operations E-23
TCP Checkpointing Strategy e E-25
Precautions for Using TMF Parameters i E-25
APPENDIX F. GLOSSARY o e e e e F-1

IN D E X Lt Index-1

xi

Contents

11
1-2
1-3
14
1-5
1-6
1-7
21
22
2-3
3-1
4-1
5-1
52
5-3
5-4
5-5
5-6
6-1
6-2
6-3
7-1

Al
D-1
D-2
D-3
D4
D-5
E1
E-2
E-3
E-4

E-6
E-7
E-8
E9
E-10

xii

FIGURES
SCREEN COBOL FUunCtionsovttitt ettt ittt e 1-2
PATHWAY System Structure e 1-6
Developing Screen Definitions with PATHAID i, 1-7
Building SCREEN COBOL Program Units with EDIT 1-8
Producing SCREEN COBOL Object Filescccoiiiii i, 19
SCREEN COBOL Object Files — Including a Symbol Table 1-10
Managing SCREEN COBOL Object Files with SCUP 1-11
Tandem Standard Reference Format i, 2-8
ANSI Standard Reference Format [29
Sample Table Structure it e 2-21
Identification Division Format 31
Environment Division Format 4-1
DataDivision Format e 5-1
Level Numbering Within a Structure 54
Data Description Entry Skeleton 5-5
Screen Description Entry Skeleton e 5-20
Input Control Character Clauses i 5-21
Screen Field CharacteristicClauses i, 5-22
Procedure Division Format 6-1
Procedure Division Structure i e 6-2
Sample Diagnostic Screen 6-49
Sample Compilation Statistics i 7-13
PATHWAY Application Example Sereen i, 8-2
DIAGNOSTIC-FORMAT Parameter for Diagnostic Message Generation A-6
Input Procedure Declaration for NumericDataItems D-2
Input Procedure Declaration for Nonnumeric DataItems D-2
Output Procedure Declaration for NumericDataltems D3
Output Procedure Declaration for NonnumericDataItems D4
Procedure Declaration for 3270 Key Mappingc.oiiiiiiiiniiiien.. D-5
PATHWAY Programming for TMF i, E-2
Accessing and Changing Audited and Nonaudited Files E9
Record Locking for TME e E-10
Record Locking by Transaction Identifier E-11
NONQUEUINE SEIVETttt et et e e e e e e e E-13
Deadlock Caused by DeletingaRecord E-14
Deadlock Caused by Insertinga Record E-15
Deadlock Caused by a Process Switching Transaction Identifiers E-15
Deadlock Caused by Multiple SEND Statements E-16
AvoidingDeadlock E-17

2-1
2-2
2-3
2-4
2-5
2-6
2-7
4-1
5-1
5-2
5-3
5-4
6-1
6-2

6-4

6-5

6-7
7-1
A-l
A2
A-3
E-1

Contents

TABLES

SCREEN COBOL Character Set oo 2-3
Editing Characters i e 24
Punctuation Characters i e 24
S DAL A oS . .. e e e e e e 2-5
Figurative Constants 2-7
Arithmetic Operators 2-11
Logical Operatorst i 2-18
Function Key and Display Attribute System Names 4-6
Screen Types and Allowable Field CharacteristicClauses 5-28
Minimum Separation (in Characters) Between Screen Elements for the IBM-3270 5-51
Minimum Separation (in Characters) Between Screen Elements for the T16-6510 5-52
Minimum Separation (in Characters) Between Screen Elements for the T16-6520 5-54
Classification of Statements it 6-5
TIMEOUT Conversions for ACCEPT Statement 6-9
'TERMINATION-STATUS Error NUmbersc.oiiuriianniieinaanneann.. 6-17
TERMINATION-STATUS/TERMINATION-SUBSTATUS Error Codes

for CALL Statement e 6-19
Move Summary Table e 6-40
TERMINATION-STATUS Error Codes for PRINT SCREEN Statement 6-47
SEND Statement Errors i 6-567
Compiler Commandsouunttnt ittt e e 74
AdVISOry MeSSagesottt A2
Diagnostic Screen Messages A-5
SCREEN COBOL Compiler Error Messagesouutunirninnennenenennan. A-8
SEND Operations With TMF e E-24

xiii

PREFACE

This manual is one of three manuals that describe the three major tasks associated with the
PATHWAY Transaction Processing System. These manuals and tasks are:

o PATHWAY Operating Manual — Configuring the PATHWAY environment.

e PATHWAY Programming Manual — Programming the application that runs within the
PATHWAY environment.

e PATHWAY Programming Aids — Using the utilities provided to create and modify screen
definitions and to control application program object files.

This manual, which concerns PATHWAY application programming only, describes the SCREEN
COBOL language. Section 1 presents an overview of the PATHWAY transaction processing
environment. Section 2 describes the organization of a SCREEN COBOL source program and
details the various rules of the language. Sections 3 through 6 describe the four sections that com-
prise a SCREEN COBOL program. Section 7 describes source program compilation. Section 8
illustrates a sample PATHWAY application.

The manual is for personnel who are responsible for developing a SCREEN COBOL requester pro-
gram to define and control terminal displays in the PATHWAY environment. It is recommended
that readers using this manual have a knowledge of Tandem system programming concepts.

The following publications contain information related to PATHWAY:

CROSSREF User’s Manual

INSPECT Interactive Symbolic Debugger User’s Guide
GUARDIAN Operating System Programming Manual
PATHWAY Operating Manual

PATHWAY Programming Aids

Transaction Monitoring Facility (TMF) Reference Manual

Transaction Monitoring Facility (TMF) System Management and Operations Guide for
NonStop Systems

Transaction Monitoring Facility (TMF) System Management and Operations Guide for
NonStop II Systems

XV

SYNTAX CONVENTIONS IN THIS MANUAL

The following is a summary of the characters and symbols used in the syntax notation in this

manual.
Notation

UPPERCASE
LETTERS

lowercase
letters

Brackets []

Braces {}

Ellipses ...

Ellipses
preceded by a
comma ,...

Punctuation

Meaning

Uppercase letters represent keywords and reserved words.

Lowercase letters represent variable entries to be supplied by the user.

Brackets enclose optional syntax items. A vertically aligned group of items
enclosed in brackets represents a list of selections from which one, or none, can
be chosen.

Braces enclose required syntax items. A vertically aligned group of items
enclosed in braces represents a list of selections from which exactly one must
be chosen.

Ellipses immediately following a pair of brackets of a pair of braces indicate
the enclosed syntax can be repeated any number of times.

Ellipses preceded by a comma and immediately following a pair of brackets or
braces indicate that the enclosed syntax can be repeated a number of times

and requires a comma separator before each repetition.

All punctuation and symbols other than those described above must be
entered precisely as shown.

xvii

SECTION 1

PATHWAY ORGANIZATION

SCREEN COBOL is a principal component of PATHWAY, the ENCOMPASS product that
simplifies the development and control of on-line transaction processing applications. A transaction
is a basic unit of work defined by the organization that uses the computer system. Transactions
typically originate at computer terminals and require access to a data base, either to search for in-
formation or to modify existing information. A terminal operator in the PATHWAY transaction
processing environment enters queries and data from a terminal according to a specific screen for-
mat; the format is defined and controlled internally by the SCREEN COBOL application program.

A warehouse inventory system represents a typical transaction processing application. A terminal
operator performs read transactions when querying the inventory data base to determine the quan-
tity on hand of specific items. As new items are received and existing items are shipped, a terminal
operator performs update transactions when modifying data in the data base to reflect current
inventory.

A transaction to be processed within the PATHWAY system is entered from a terminal and passed
to a requester process. The requester sends messages to a server process to perform functions on
the data base. The server completes the requested data base function and replies to the requester.
The requester can, in turn, send a reply back to the terminal as acknowledgement that the trans-
action has completed.

As a SCREEN COBOL programmer, you develop the requester program that defines the screen for-
mats and controls for terminals operating within the PATHWAY environment.

SYSTEM COMPONENTS
The following are components of a PATHWAY system:

¢ PATHWAY Monitor process (PATHMON)—The central controlling process for PATHWAY.
e PATHCOM process —The command interface to PATHMON.

e SCREEN COBOL—The procedural language that is used to define and control terminal
displays.

e Terminal Control Processes (TCPs)—The requesters that interpret SCREEN COBOL object
code and send messages to server processes.

1-1

P
b
z
B
< ¢
o
S
3
5
=
g

PATHWAY Organization

e Server Processes —The processes that implement data base oriented requests and send replies
to the requesters.

¢ Transaction Monitoring Facility (TMF)—The data management product that is available for use in
PATHWAY to maintain the consistency of a data base and provide the tools for data base recovery.

¢ PATHWAY Programming Aids—The utility program, PATHAID, that you use to create or
modify screen definitions. The utility program, SCUP, you use to access and manipulate com-
piled programs in SCREEN COBOL object files.

e INSPECT —The interactive symbolic program debugging tool that you can use to examine and
modify SCREEN COBOL programs.

PATHWAY Monitor Process

The PATHWAY Monitor (PATHMON) is the Tandem-supplied process that supervises and controls
the PATHWAY system. This process controls the existence, the state, and the interrelations of the
other processes and devices within PATHWAY. PATHMON assumes responsibility for the life of
each process, from definition and start-up through operation and termination.

PATHMON maintains configuration and status information, starts and stops TCPs, starts and stops
server processes, and grants links from the TCPs to the server processes.

PATHCOM Process

PATHCOM is the Tandem-supplied process that provides the command interface to PATHMON.
PATHCOM executes the file of commands that are entered by the PATHWAY system designer to
describe terminals, TCPs, and servers to the PATHWAY system. These commands describe which
terminals are controlled by each TCP, describe the capacity of the PATHWAY system by indicating
the maximum number of entities that can exist, indicate the starting and stopping of processes and
terminals, and request the display of status and statistical information.

SCREEN COBOL

SCREEN COBOL is the language you use to write the requester program. Your program defines
the display format, the application of editing checks and data conversion, the relationships between
screen fields and data items, and the flow of messages to PATHWAY servers. You always design
the SCREEN COBOL program as if to control a single terminal.

A SCREEN COBOL program performs three basic functions:

¢ Displays screens and data through execution of DISPLAY statements.
¢ Allows data to be entered from the terminal through execution of an ACCEPT statement.
¢ Sends messages to a server process through execution of a SEND statement.

These functions are illustrated in Figure 1-1.

<«+— DISPLAY screen
» ACCEPT data
SEND message to server >
Receive reply -
DISPLAY data

Figure 1-1. SCREEN COBOL Functions

1-2

PATHWAY Organization

Terminal Control Process

A Terminal Control Process (TCP) is a Tandem-supplied program that interprets the code
generated by the SCREEN COBOL compiler for multiple SCREEN COBOL programs. A TCP
assumes responsibility for the physical terminal 1/O operations, performs field validation based on
edit patterns in the SCREEN COBOL application program, maintains separate data areas and con-
trol information for each terminal under its control, handles the conversion of data between exter-
nal and internal representations, and sends messages to sever processes on behalf of the SCREEN
COBOL application.

Server Process

A server process is a program written in COBOL, FORTRAN, MUMPS, or the Tandem Transaction
Application Language (TAL) to implement the data base oriented requests and replies in the form
of transaction messages. These messages are generated by the SCREEN COBOL application and
sent by a TCP. You design the server to receive and interpret the requests, perform data base I/0
functions according to these requests, and send appropriate replies back to the TCP.

A server is configured to be a member of a particular server class. The server class itself has
specific characteristics that are defined within the PATHWAY configuration. Individual servers
within a server class are simply copies of a single program; PATHCOM creates new servers from a
single server program according to configuration criteria.

Transaction Monitoring Facility

The Transaction Monitoring Facility (TMF) is a data management product that maintains the con-
sistency of a data base and provides the tools for data base recovery. TMF requires that monitored
data files be flagged for auditing. TMF audits a file by maintaining before and after images of
changes to these files. These images provide the basis for transaction backout, which cancels the
effects of a partially completed transaction, and data base rollforward, which restores a data base to
a consistent state after a catastrophic failure.

PATHWAY systems that use TMF must have server classes configured to operate on audited files.
Servers that are configured as TMF servers can read, lock, and change records in audited files.
Servers that are not configured as TMF servers can only read audited files.

Terminal program units that communicate with TMF servers via the SCREEN COBOL SEND verb
must be configured in PATHCOM for TMF. TMF is invoked by execution of a SCREEN COBOL
BEGIN-TRANSACTION verb, at which time the terminal program enters what is called trans-
action mode. The terminal program remains in transaction mode until execution of a SCREEN
COBOL END-TRANSACTION (or ABORT-TRANSACTION) verb. These verbs start and end a
sequence of operations that are treated as a single transaction by TMF. An additional verb is
available to restart a transaction. When transaction mode begins, TMF assigns the transaction a
unique identifier called a TRANSID. When concurrent terminal programs are in transaction mode,
TMF distinguishes transactions by TRANSIDs.

For information about TMF, refer to the Introduction to Transaction Monitoring Facility (TMF)
and the Transaction Monitoring Facility (TMF) Users Guide.

1-3

PATHWAY Organization

PATHWAY Programming Aids

PATHWAY programming aids include the PATHAID screen builder and the SCREEN COBOL
Utility Program (SCUP). The PATHAID screen builder allows you to create and modify screen
definitions for use in PATHWAY applications. SCUP allows you to manipulate SCREEN COBOL
object files; you can issue commands to display information about programs, change the accessi-
bility of programs, copy programs from one object file to another, delete programs, and reclaim file
space by compressing object files.

For information about PATHWAY programming aids, refer to the PATHWAY Programming Aids
publication.

CROSSREF

CROSSREF is a program development tool that produces a list of program references used by
SCREEN COBOL programmers to aid in debugging programs. This list contains screen names,
paragraph names, data variables, and other program identifiers. In addition, this list describes
where and how the identifiers are used throughout the program. The SCREEN COBOL compiler
produces the CROSSREF listing and writes it to the output file for the compile.

To obtain a CROSSREF listing, compile your SCREEN COBOL program with the CROSSREF com-
piler command. The CROSSREF compiler command is described in the “Compilation” section of this
manual.

For a complete description of how to use CROSSREF, refer to the CROSSREF Users Manual.

INSPECT

INSPECT is an interactive symbolic program debugging tool that you can use to examine and
modify SCREEN COBOL programs. INSPECT runs as a separate process that communicates
through the TCP with the SCREEN COBOL program running on a PATHWAY terminal. By issuing
commands to INSPECT you can control and modify an executing program.

INSPECT uses a symbol table file for the SCREEN COBOL program. To generate a symbol table
file when the program is compiled, you must specify the SYMBOLS compiler command either in the
program source code or in the compiler run command. The SYMBOLS compiler command is
described in the “Compilation” section of this manual.

Before you can use INSPECT, the PATHWAY system must be configured for communication with
INSPECT. The PATHCOM commands that let the TCP and the terminals communicate with
INSPECT are described in the PATHWAY Operating Manual.

For a complete description of how to use INSPECT, refer to the INSPECT Interactive Symbolic
Debugger User’s Guide.

14

PATHWAY Organization

APPLICATION CONFIGURATION

A PATHWAY system appropriate for executing an application is configured through PATHCOM
commands. These commands are issued by the PATHWAY application designer to define the
capacity and the environment of the PATHWAY system and describe the characteristics and start-
up information of the PATHWAY processes and devices. PATHMON maintains this information in
a file called PATHCTL.

PATHMON builds the PATHCTL file the first time PATHWAY is configured. PATHMON always
uses this file when starting a PATHWAY system after a normal shutdown or a total system failure.

The structure of a PATHWAY system is illustrated in Figure 1-2. The various components and files
that comprise the processing environment are briefly described as follows:

¢ Commands are input to PATHCOM from a terminal, obey file, or another process to initiate
PATHMON and establish the PATHWAY configuration.

e PATHMON controls the interrelations of the processes and devices. PATHMON also reports

errors and changes in status to a log terminal or log file according to logging commands submit-
ted to PATHCOM.

e The TCPs perform application operations according to the SCREEN COBOL object program,
provide general control of the assigned terminals, and route messages to available servers.

e The servers access and update the data base files and reply to messages.

When TMF is configured and terminals are operating in transaction mode, data files auditing is
performed.

COMMUNICATION BETWEEN PROCESSES

TCPs and servers communicate with each other by exchanging transaction messages and trans-
action replies through an interprocess file. Messages and server classes are referenced in the
SCREEN COBOL SEND statement, which is executed by the TCP.

When a SCREEN COBOL program communicates with a server class in a different PATHWAY
system, the program becomes location sensitive. That is, the SCREEN COBOL SEND statement
must indicate the Tandem system on which the external server is running and the name of the
external PATHMON (the PATHMON running in a different PATHWAY system from the re-
questing SCREEN COBOL program) controlling the server class.

Specifying the system name and the PATHMON name makes communication possible among multi-
ple PATHWAY systems on the same Tandem system and on different Tandem systems.

PATHWAY Organization

Command
Terminal

PATHCTL
File

TCP !

SCREEN
COBOL
Object I
/
/

TCP

SCREEN

COBOL
Object

SERVER CLASS A

|
[
|
|
l
[
|
I
I
[
| \
|
I
|
|
|
[
I
|
I
!
|

SERVER CLASS B

Server

Figure 1-2. PATHWAY System Structure

1-6

PATHWAY Organization

Transaction Messages

A transaction message is sent by a SCREEN COBOL program to a server. This message consists of
data supplied by the SCREEN COBOL SEND statement. The data in the message is a list of
SCREEN COBOL data items. Each data item begins immediately after the last byte of the
preceding data item. This list can include variable length data items. It should be noted, however,
that a message containing a variable length data item cannot be easily decomposed by a server writ-
ten in COBOL; the only exception is when the variable length data item is the last item of the
message.

If a server is to process more than one type of message, a data item of the message should contain a
field that identifies the type of transaction unless the content of the data itself determines the
transaction type.

Transaction Replies

A transaction reply is sent by the server to the TCP. This reply consists of a two-byte binary inte-
ger reply code value plus the data. Upon receipt of this reply, the TCP compares the reply code
value to the list of reply code values given in the SCREEN COBOL SEND statement. The TCP
determines which reply was received and, consequently, determines the structure of the data. (The
SEND statement declares the data structure that is associated with each valid reply code value.)
The TCP then copies the reply into the SCREEN COBOL program.

DEVELOPING THE APPLICATION

Transactions are processed with requesters and servers. The development of an application
involves the design of the entire application and the partitioning of work load between the
requester and the servers. The functions of the requester should be kept as simple as possible.
SCREEN COBOL requester program development is illustrated in Figures 1-3, 1-4, and 1-5.

PATHAID, the PATHWAY screen builder illustrated in Figure 1-3, can be used to design
PATHWAY screens by first laying out a picture of the screen on your terminal. Data field display
attributes can be assigned after you design the screen. PATHAID then generates the associated
screen description source code for the screen layout from the terminal. You can edit the screen
source code and copy the screen definitions directly into a SCREEN COBOL program unit or store
the screen code in a screen library file.

PATHAID

SCREEN | Build a library
COBOL | of screen definitions

Terminal

Figure 1-3. Developing Screen Definitions with PATHAID

1-7

PATHWAY Organization

Figure 1-4 illustrates general SCREEN COBOL program development. You create an edit file in
which to build the SCREEN COBOL source code. This file can contain the source code for an entire
SCREEN COBOL program or can contain COPY statements that insert other SCREEN COBOL
program units when the source code is compiled.

;@

Terminal

Figure 1-4. Building SCREEN COBOL Program Units with EDIT

1-8

PATHWAY Organization

Figure 1-5 illustrates the SCREEN COBOL compiler output. The SCOBOL run command invokes
the SCREEN COBOL compiler which produces the object code according to the compiler commands
specified in the run command and specified in the source code. There are three processes associated
with the SCREEN COBOL compiler (SCOBOL, SCOBOL2, and SYMSERV). The SCOBOL and
SCOBOL2 processes produce two object files—a director file and a code file. The TCP interprets
the object code produced by the compiler when the program is executed.

If you specify the CROSSREF compiler command, the compiler produces a cross-reference listing
for your program and includes the listing in the output file.

Library of

SCREEN initi

i initi screen definitions
poples screen d_eflnmons COBOL

into program unit Source

SCREEN
COBOL
Compile

SCOBOL2
SCOBOL ’

SCREEN Program unit

COBOL
Source

Terminal

Directory

SCREEN
CcOBOL
Object

Cross-Reference
Listing

Figure 1-5. Producing SCREEN COBOL Object Files

19

PATHWAY Organization

The third process associated with the SCREEN COBOL compiler is SYMSERYV. This process can be
used to produce the program symbol table that is used by the INSPECT utility during program
debugging. To obtain a symbol table file, you must specify the SYMBOLS compiler command.
Figure 1-6 illustrates the output from the SCREEN COBOL compiler including a symbol table file.

Library of
SCREEN screen definitions
COBOL

Source

Copies screen definitions
into program unit

Ny
SCREEN v‘

COBOL
Compiler

SCREFN Program unit

COBOL
Source

Terminal

SCREEN
COBOL
Object

Figure 1-6. SCREEN COBOL Object Files—Including a Symbol Table

1-10

PATHWAY Organization

Each time a SCREEN COBOL program is successfully compiled, the new version of the object file is
added to the previously compiled versions. You can use the SCREEN COBOL Utility Program

(SCUP), illustrated in Figure 1-7, to manage your SCREEN COBOL object files in the following
ways:

e to display information about the program units in the SCREEN COBOL object files
* +to0 delete previously compiled program versions from the object files

* to build a new SCREEN COBOL object file by copying programs from one SCREEN COBOL
object file to another

* to reclaim file space by compressing object files.

SCOBOL2

SCREEN
COBOL
Compiler

\‘

Terminal

Directory

SCREEN
COBOL
Object

Terminal

Figure 1-7. Managing SCREEN COBOL Object Files with SCUP

1-11

PATHWAY Organization

General rules concerning SCREEN COBOL requester program development are given in the
following list:

Design simple screens.

Keep the operator informed of task completion, errors, the next step, and what the system is
doing at all times.

Design screens to display initial values and thus reduce keying of data. If no initial value is
declared for a screen field, a default value can be established by moving a value into the data
name associated with the field; this default value will be changed only if the operator enters
data into the field or the program moves another value into the field.

Protect crucial screen fields; for example, protect primary key.

Reduce errors on crucial screen fields by using check digits. Check digit processing can be per-
formed by the SCREEN COBOL program or by user conversion procedures as described in
Appendix D.

Keep context information in the requester and never in the server. Context is any information
that is required by a process to continue operating in a previously existing envircnment.

Use a modular program design for ease of maintenance.

Refer to the PATHWAY Operating Manual for information about configuring a PATHWAY
application.

SCREEN COBOL Programming Techniques to Reduce Terminal Context

Terminal context in the PATHWAY environment is composed of data that must be maintained for
each active terminal (that is, entered data, data base records, file position data, or program data)
and data that is required by the TCP to execute the program units. PATHWAY provides the TCP
to manage this data so that SCREEN COBOL program units can be written for a single terminal
and servers can be written context free.

The following SCREEN COBOL programming techniques can be used to reduce terminal context:

Whenever possible, limit program functions to the following:

Accept data from the screen

Send information to a server

Receive data from a server

Display data on the screen

Call another SCREEN COBOL program

Evaluate whether a function should be performed in a SCREEN COBOL program or in a server.
For example, putting a large table of user logons in a server reduces the amount of context in
the SCREEN COBOL program. The trade-off is between context in the SCREEN COBOL pro-
gram and an I/O to the server.

Accept data into the server request message and display data from the server reply message.
When data is accepted from the screen into one area of working storage then moved to the
request message, context data is wasted and unnecessary move instructions are used.

1-12

PATHWAY Organization

Whenever possible, pass parameters instead of defining the same record definitions or data
items in multiple SCREEN COBOL programs. The parameters appear in the Linkage Section of
the called program. A Linkage Section in a SCREEN COBOL program unit contains pointers
back to the calling program data area; the data is not duplicated.

When appropriate, use the REDEFINES clause. Sometimes it is possible to redefine requests or
replies that are not used simultaneously. In the case where one send can yield multiple replies, it
might be possible to redefine the replies so they use the same storage area. Make sure the data
description that matches the current reply code is the data description that is used. Use the
DDL COBLEVEL command to set the correct level number in the record description.

Use a shared request/reply buffer. In many SCREEN COBOL applications a one screen per pro-
gram module structure is suggested. This sometimes means there will be at least one send per
program module and possibly multiple record definitions for requests and replies. If the
operator follows the program modules down the tree structure, the separate request/reply buf-
fers consume additional context.

By changing the design so that a reply area is passed from the first program unit in the Linkage
Section to each program unit down the tree structure, the context space is reused as a global
buffer. This change in design could cause some additional programming to save data that is
needed when returning to certain modules. If the amount of data needed to be saved is equal to
the buffer, nothing is gained by the use of a shared buffer. If the amount of data is less than the
buffer, context is saved. This approach, however, more closely couples the program units, which
might not be desirable.

1-13

SECTION 2

SCREEN COBOL SOURCE PROGRAM

The SCREEN COBOL procedural language is used to define and control the terminal displays. The
syntax of the language enables you to:

e define the characteristics of the display screen

¢ indicate how the data is to be converted and how editing checks are to be applied to the data
* specify transaction messages to be sent to the server process

¢ control how input or output is to be accepted and displayed on the terminal screen.

SCREEN COBOL is available for use on the T16-6510, T16-6520, T16-6530, the IBM-3270, and those
devices operating as conversational mode terminals as recognized by the GUARDIAN File System.

A SCREEN COBOL program is always designed as if to control a single terminal. The Terminal
Control Process (TCP) that interprets the object code generated by the SCREEN COBOL compiler,
however, can perform multiple executions of the same code for each terminal under its control.

PROGRAM OPERATING MODES

Generally, a SCREEN COBOL program displays formatted information, receives data entered from
a terminal, and performs some action based on the data. SCREEN COBOL enables you to write pro-
grams that perform these operations in either of two modes: block mode (full screen accept and
display operations) or conversational mode (line by line accept operations). To support both of these
modes, some of the SCREEN COBOL statements and clauses act differently in block mode from con-
versational mode. These differences are summarized below and deseribed in detail throughout the
following sections.

Block Mode Program
To execute in block mode, a SCREEN COBOL program must run on a block mode terminal. The

screen definitions for any SCREEN COBOL program are restricted by the characteristics of the
specific type of terminal on which your program runs.

2-1

(%24
o
X
m
m
&
[+
Q
o
Q
- ¢
(7
©
c
=
0
]
3
o
Q
-
o
3

SCREEN COBOL Source Program

A SCREEN COBOL program running in block mode performs as follows:

e displays a full screen of information on the terminal

® accepts data entered from the terminal one screen at a time

® recognizes a specific terminal type

e recognizes function keys and associates each with a particular function (for example, pressing
the F1 function key might might be associated with exiting from a screen).

Conversational Mode Program

A SCREEN COBOL program written for conversational mode operation can run on either a block
mode terminal or a conversational mode terminal. Once a program is specified as conversational,
that program performs according to the restrictions for a conversational terminal regardless of the
type of terminal on which the program runs.

A SCREEN COBOL program running in conversational mode performs as follows:

¢ displays information on the terminal during an ACCEPT statement, one line at a time

® accepts data entered from the terminal one line at a time

¢ responds to a set of input control characters when the terminal is enabled to accept data
* recognizes only keyboard characters, carriage return, and line feed (not function keys)

e restricts the display field attributes to bell and hidden.

PROGRAM ORGANIZATION

A SCREEN COBOL program is organized into four divisions that must be written in the following
order:

Identification Division
Environment Division
Data Division
Procedure Division

The Identification Division identifies the program. Comments such as the name of the programmer,
the date the program was written, and a description of the program can be declared in this division.

The Environment Division specifies the program execution environment. Display error attributes,
processing options, computer equipment, and terminal equipment can be described in this section.

The Data Division defines the program data structures in terms of their formats and usage. The
Screen Section that appears in this division describes the structure of the data moving to and from

the terminal.

The Procedure Division specifies the processing steps of the program.

2-2

SCREEN COBOL Source Program

LANGUAGE ELEMENTS

The SCREEN COBOL language elements fall into one of two categories: character strings and
separators. Character strings are strings of contiguous characters. Separators are characters that
separate one character string from another character string.

The language elements that comprise the SCREEN COBOL source program are described in the
following paragraphs.

Character Set

The SCREEN COBOL character set is a subset of the ASCII character set and consists of 52
characters. These characters are listed in Table 2-1.

Table 2-1. SCREEN COBOL Character Set

0-9 Digits , Comma
A-Z Letters ; Semicolon
Space (blank) . Period (decimal point)
+ Plus sign ” Quotation mark
—~ Minus sign (hyphen) (Left parenthesis
* Asterisk) Right parenthesis
/ Stroke (slash) > Greater than
= Equal sign < Less than
$ Currency sign @ Commercial at

The following definitions apply to the SCREEN COBOL character set:

¢ Alphabetic characters include letters A through Z and space.

¢ Numeric characters include digits 0 through 9.

¢ Special characters include all characters except letters A through Z, space, and digits 0 through 9.

¢ Alphanumeric characters include any character in the character set.

The full ASCII character set can be used in comments and literals.

2-3

SCREEN COBOL Source Program

Editing Characters

Editing characters are symbols that can be used in PICTURE clauses to format screen data. Editing
characters are listed in Table 2-2.

Table 2-2. Editing Characters

A Alphabetic or space - Minus

B Space insertion CR Credit

P Decimal position (scaled) DB Debit

V Decimal position (fixed) * Check protect

X ASCII character $ Currency symbol

Z Zero suppress , Comma (decimal point)
0 Zero . Period (decimal point)
9 Numeric digit | Stroke (right slash)

+ Plus

Punctuation Characters

Punctuation characters are used to separate words, sentences, or special clauses, and to group
arithmetic relationships. Punctuation characters are listed in Table 2-3.

Table 2-3. Punctuation Characters

, Comma

;. Semicolon

. Period

” Quotation mark

(Left parenthesis

) Right parenthesis
Space (blank)

= Equal sign

Separators

Separators are strings of one or more punctuation characters; they can have leading or trailing
blanks. Separators are listed and defined in Table 2-4.

SCREEN COBOL Source Program

Table 2-4. Separators

space A space separates language elements.

s . A comma, semicolon, or period immediately followed by a space is a separator. A
period can appear as a separator only when it terminates headers, entries, and
sentences as defined by the syntax. A comma or semicolon is treated as a space
when used as a separator.

() Right and left parentheses enclose certain parts of character strings. Although they
must appear in balanced pairs, each is considered a separator.

Quotation marks are used to enclose nonnumeric literals. The characters appear in
balanced pairs except when the literal is continued across a line. The first quotation
mark must be preceded by a space, and the second one must be followed by a
separator other than another quotation mark.

Some character strings include punctuation characters, in which case those characters do not act as
separators. Any character in the ASCII character set can appear in a nonnumeric literal, provided
the character does not have special meaning to a hardware device.

SCREEN COBOL Words

A SCREEN COBOL word is a character string that forms a reserved word, user-defined word, or
system name. A word can have a maximum of 30 characters.

RESERVED WORDS. A reserved word has special meaning for the compiler. A reserved word can-
not be used as a data item name or a system name. Reserved words are any of the following:

Keywords
Special registers
Figurative constants

Reserved words must be spelled correctly and can be used only as specified in syntax.
USER-DEFINED WORDS. A user-defined word can consist of any of the following characters:
Letters A through Z

Digits 0 through 9
The hyphen character (-)

A user-defined word must have at least one alphabetic or numeric character, must not begin or end
with a hyphen, and must not contain embedded spaces. User-defined words are used for the follow-
ing types of items:

Procedure name Program name
Data name Library name
Mnemonic name Text name

Condition name

SCREEN COBOL Source Program

SYSTEM NAMES. A system name is a SCREEN COBOL word that identifies part of the Tandem
operating environment. System names are defined for equipment and operating system access. Use
of each system name is restricted to a specific category, such as terminal function key or display
attribute.

Literals

A literal is a character string whose value is implied either by a set of characters or by a reserved
word that represents a figurative constant. A literal is numeric or nonnumeric.

NUMERIC LITERALS. A numeric literal is one or more digits (0-9), a plus or minus sign, and an
optional decimal point. The value of the literal is the value of the digits. The following rules apply to
numeric literals:

¢ A numeric literal can have a maximum of 18 digits.

¢ One sign character is allowed and must be the first character. The absence of a sign character
indicates the literal is a positive number.

e A numeric literal can have one decimal point, which can appear anywhere within the literal
except as the last character. The absence of a decimal point indicates the literal is an integer.

The following examples illustrate numeric literals:

Integer Numeric Literals NonlInteger Numeric Literals
+601 +601.1
—234116 89.6
0 0.0051
15 -1

NONNUMERIC LITERALS. A nonnumeric literal is any ASCII character string enclosed in quota-
tion marks. The value of the literal is the string of characters between the quotation marks. The
following rules apply to nonnumeric literals:

e Nonnumeric literals can have a maximum value of 120 characters, not including the surrounding
quotation marks.

e If a quotation mark is part of the literal, it must be represented in the string as two contiguous
quotation marks. The additional quotation mark is not included in the character count.

The following example illustrates a nonnumeric literal:
“THIS IS A NONNUMERIC LITERAL"”
“12345 THIS IS A NONNUMERIC LITERAL ALSO”
The following example illustrates a nonnumeric literal with an embedded quotation mark:
“A “” 1S PART OF THIS NONNUMERIC LITERAL”
FIGURATIVE CONSTANTS. A figurative constant is a constant that has been prenamed and
predefined by the SCREEN COBOL compiler so that it can be written in the source program

without having to be defined in the Data Division. Figurative constants do not require quotation
marks.

2-6

Figurative constants are listed and defined in Table 2-5; singular and plural forms are equivalent in

SCREEN COBOL Source Program

meaning:
Table 2-5. Figurative Constants

ZERO Depending on the context, represents the numeric value 0 or a string

ZEROS of one or more of the character 0.

ZEROES

SPACE Represents one or more ASCIl space characters (blanks).

SPACES

HIGH-VALUE Represents one or more of the characters that have the highest

HIGH-VALUES position in the ASCII character set.

LOW-VALUE Represents one or more of the characters that have the lowest

LOW-VALUES position in the ASCII character set.

QUOTE Represents one or more quotation mark characters. Neither of

QUOTES these words can be used in place of quotation mark characters
around a nonnumeric literal string.

ALL literal Repeats the value of literal. Literal must be a nonnumeric literal or
figurative constant other than ALL literal. When a figurative con-
stant is used, the word ALL is redundant and is used only for
readability.

The following rules apply to figurative constants:

e When a figurative constant represents multiple characters, the length of the string is deter-
mined by the compiler.

e A figurative constant can be used wherever a literal appears in a format; when the literal must
be numeric, only ZERO, ZEROS, or ZEROES are permitted.

e When a figurative constant is moved or compared to another data item, the figurative constant
is repeated on the right until its size is equal to the size of the data item. This happens inde-
pendently of a JUSTIFIED clause for the data item.

REFERENCE FORMAT

A SCREEN COBOL source program can be written in Tandem standard or ANSI standard reference
format. The Tandem standard reference format has no sequence number field (columns 1-6), has no
identification field (columns 73-80), and is restricted to lines of up to 132 characters.

Although the SCREEN COBOL compiler assumes Tandem format, a SCREEN COBOL program can
be written completely in either format or in a combination of both. Refer to the source text options
in Section 7 for information regarding format specification,

27

SCREEN COBOL Source Program

Tandem Standard Reference Format

Lines in Tandem standard reference format are not fixed length; they can have up to 132
characters. Lines longer than 132 characters are truncated; trailing blanks are ignored. For each
line, Margin R is set to follow the last nonblank character in the line, regardless of the Margin R
location in any previous line.

Trailing blanks from a previous line and initial blanks on a continuation line are ignored.

The Tandem standard reference format is illustrated in Figure 2-1.

Margin
R
1 2 3 4 5 6 7 8 9 10 . . . 132
Area A Area B
Indicator

Field
Text not required
to begin in Area A
begins in Area B.

Division, section, and paragraph headers
must begin in Area A. The first sentence of
a paragraph can begin on the same line as
the paragraph header, provided at least one
space follows the period terminator of the
paragraph name.

Level numbers 01 and 77 must begin in
Area A.

Level numbers 02-49, 66, and 88 can begin
in either Area A or Area B.

Area A of a continuation line should always
be left blank.

An * or/ in the indicator field indicates a comment; a - indicates continuation; a ? in-
dicates a compiler command line. If any other character appears in the indicator field,
the last character in the preceding line is assumed to be followed by a space.

Figure 2-1. Tandem Standard Reference Format

SCREEN COBOL Source Program

ANSI Standard Reference Format

Each line in ANSI Standard reference format has 80 characters. The SCREEN COBOL compiler

assures this by truncating lines over 80 characters, or adding blanks to fill out short lines.

A literal string that exceeds one line must fill the line on which it begins; otherwise, any trailing

blanks are included as part of the literal before the continued characters.

The sequence number area (1 through 6) assigns a number to each line of code or labels a line with

any combination of ASCII characters.

The positions following Margin R (73 through 80) represent the identification field. Their contents,
which can include any ASCII character, are treated as a comment, and have no effect on the mean-

ing of the program.

The ANSI standard reference format is illustrated in Figure 2-2.

Margin
R
12 3 45 6 7 8 9 10 11 12 13 . . . 72 73 . . . 80
l |
Sequence Number Area A Area B Identification
Area Field
Indicator
Field Text not required

to begin in Area A
begins in Area B.

Division, section, and paragraph headers must begin in
Area A. The first sentence of a paragraph can begin on the
same line as the paragraph header, provided at least one
space follows the period terminator of the paragraph
name.

Level numbers 01 and 77 must begin in Area A.

Level numbers 02-49, 66, and 88 can begin in either Area A
or Area B.

An * or/ in the indicator field indicates a comment; a - indicates continuation; a ? in-
dicates a compiler command line. If any other character appears in the indicator field,
the last character in the preceding line is assumed to be followed by a space.

Figure 2-2. ANSI Standard Reference Format

29

SCREEN COBOL Source Program

Comment Lines

Comment lines can appear anywhere in a SCREEN COBOL program. Comment lines are indicated
by a special character in the indicator field, which is column 1 in the Tandem standard reference for-
mat and column 7 in the ANSI standard reference format. The characters and their functions are as
follows:

* An asterisk in the indicator field indicates the entire line is a comment.

/ A slash in the indicator field indicates the entire line is a comment. When a listing of the
program is printed, a page eject is performed before printing the comment line.

Continuation Lines

Any word or literal in a SCREEN COBOL program can be continued. Continuation lines are in-
dicated by the hyphen character in the indicator field.

If the previous line has a nonnumeric literal without a closing quotation mark, the first nonblank
character in Area B of the continuation line must be a quotation mark. The continuation begins with
the character immediately following that quotation mark.

Compiler Command Lines

Compiler command lines are indicated by the question mark character in the indicator field. The
line is an instruction for the SCREEN COBOL compiler.

Normally, a compiler line in ANSI standard reference format is identified by a question mark in col-
umn 7; however, the SCREEN COBOL compiler interprets any line with a question mark in column
1 as a compiler command, even when the ANSI standard reference format is being used. In this
special case, the line is treated as beginning with the indicator field; no sequence number area ex-
ists. Refer to Section 7 for detailed information regarding compiler commands.

ARITHMETIC OPERATIONS

Arithmetic operations are specified in the Procedure Division with the ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT statements. These operations have the following common features:

¢ The data descriptions of the operands do not have to be the same. Any necessary conversion and
decimal point alignment is supplied throughout the calculation.

* The maximum size of each operand is 18 decimal digits.

¢ Each arithmetic operation is evaluated using an intermediate data item. If the size of the result
being developed is larger than this intermediate data item, the SCREEN COBOL program will
be suspended by the TCP with an arithmetic overflow error. The contents of the intermediate

data item are moved to the receiving data item according to the rules of a MOVE statement.

When a sending and receiving item in an arithmetic statement share part of their storage areas, the
result is undefined.

2-10

SCREEN COBOL Source Program

Arithmetic Expressions

An arithmetic expression is one of the following:

¢ A numeric elementary item

¢ A numeric literal

¢ A numeric elementary item and a numeric literal separated by arithmetic operators

* An arithmetic expression enclosed in parentheses

Data items and literals appearing in an arithmetic expression must be either numeric elementary
items or numeric literals on which arithmetic operations can be performed. Any arithmetic expres-
sion can be preceded by a plus or minus sign.

Arithmetic Operators

Four binary arithmetic operators and two unary arithmetic operators are used in arithmetic ex-
pressions. These operators are represented by specific characters, and must be preceded and

followed by a space. Arithmetic operators are listed in Table 2-6.

Table 2-6. Arithmetic Operators

Binary Arithmetic
Operators Meaning

+ Addition

- Subtraction
Multiplication
/ Division

Exponentiation

Unary Arithmetic
Operators

+ The effect of
multiplying by +1

- The effect of
multiplying by —1

2-11

SCREEN COBOL Source Program

When a plus or minus sign immediately precedes a numeric literal (with no intervening spaces) the
sign becomes a part of that literal, making it a signed numeric literal. The sign is neither a binary or
unary operator. For example:

X +2is equivalent to X, +2
X, +2 is two separate expressions.

A plus sign in any other situation is treated as a binary operator if it is preceded by an operand, and
treated as a unary operator if it is not preceded by an operand. For example:

X + 2and X + + 2 are equivalent expressions.
Evaluation of Expressions

Parentheses can be used to specify the order in which the operations of an arithmetic expression
are performed. Expressions within parentheses are evaluated first. Evaluation of expressions
within nested parentheses proceeds from the innermost set to the outermost set. When paren-
theses are not used, or expressions in parentheses are at the same level, the order of execution is as
follows:

1st — Unary plus and minus
2nd — Multiplication and division
3rd — Addition and subtraction

Parentheses are used to eliminate ambiguities in logic or to modify the normal sequence of execu-
tion in expressions where it is necessary to have some deviation. When the sequence of execution is
not specified by parentheses, the order for consecutive operations at the same level is from left to
right. The following example illustrates the normal evaluation order in the absence of parentheses:

a+b/le+d*f-g

would be interpreted as:

@+ m/eh +d*f) — g

with the sequence of operations proceeding from the innermost parentheses to the outermost.
Expressions ordinarily considered ambiguous, such as:

a/b*c,al/b/c
are permitted in SCREEN COBOL. They are interpreted as if they were written:

(a/b)*e,(a/b)/ec

Data items and literals appearing in an arithmetic expression must represent either numeric
elementary data items or numeric literals.

2-12

SCREEN COBOL Source Program

MULTIPLE RESULTS. The ADD, COMPUTE, MULTIPLY, and SUBTRACT statements can have
multiple results. Such statements behave as though they had been written in the following way:

1.

One statement performs all necessary arithmetic to arrive at a result, and stores that result in a
temporary storage location.

A sequence of statements transfers or combines the value of this temporary location with each
result. These statements are considered to be written in the same left-to-right sequence that
the multiple results are listed.

For example,the result of the following statement:

ADD a, b, ¢ TO c, d(c), e
is equivalent to:

ADD a, b, c GIVING temp

ADD temp TO ¢

ADD temp TO d (c)

ADD temp TO e

where temp is the temporary storage location.

INTERMEDIATE RESULTS. Intermediate results are maintained by SCREEN COBOL during the
evaluation of arithmetic expressions. The maximum number of digits held for an intermediate
result is 18. If this limit is exceeded, arithmetic overflow occurs.

The following abbreviations are used to explain intermediate operations:

IR

is the number of integer places carried for an intermediate resulit.

DR is the number of decimal places carried for an intermediate result.

OP1 is the first operand in an arithmetic expression, which has the form 9(I1)V9(D1), where I1

is the number of integer places carried and D1 is the number of decimal places carried for
the first operand.

oP2 is the second operand in an arithmetic expression, which has the form 9(I12)V9(D2), where

I2 is the number of integer places carried and D2 is the number of decimal places carried
for the second operand.

OPR is the desired result, which has the form 9(IR)V9(DR), where IR is the number of places

carried for the integer result and DR is the number of places carried for the decimal
result.

Operation Decimal Places

OP1 { + or — } OP2 DR is the greater of D1 or D2.

IR is the lesser of (the greater of I1 or I2) or 18 — DR.

OP1 * OP2 DR is the greater of D1 or D2.

IR is the lesser of (I1 +12) or 18 — DR.

2-13

SCREEN COBOL Source Program

OP1/ OP2 DR is the greater of D1 or 1.
IR is the lesser of (I1 +D2) or 18 —DR.

If (I1 + D2 + DR) is greater than 18, the low order digits of the quotient are
lost; in other words, any part of the quotient less than 10(+D2+DR-18)
is lost.

A normal divide computation proceeds as follows:
Example 1
03 A1 PIC S9(9)V9(9) VALUE 2.

03 A2 PIC S9(9)V9(8) VALUE 3.
03 AR PIC sSV9(9).

DIVIDE A1 BY A2 GIVING AR.

where:

3.00000000 | 2.000000000
is computed as:

00000000000000000.6
000000003.00000000 000000002.000000000

then moved to AR as: .600000000
Example 2
03 A1 PIC S9(2)V9(9) VALUE 2.

03 A2 PIC S9(2)V9(8) VALUE 3.
03 AR PIC SV9(9).

DIVIDE A1 BY A2 GIVING AR.

where:

3.00000000 | 2.000000000
is computed as:

000000000.666666666
03.00000000 [02.0000000000000000

then moved to AR as: .666666660

When a division operation in an arithmetic expression involves a COMPUTE statement or a rela-
tional expression, the intermediate results are evaluated in two steps:

1. the actual division

2. the adjustment of that result for use in further computations

2-14

SCREEN COBOL Source Program

Example 3
With
COMPUTE AX = A1/A2 + A3 * A4,
or
IF A1/A2 + A3 * A4 LESS THAN AX GO TO ...
the division is performed before further evaluation of either of the above statements. The in-
termediate result is then adjusted to fit the conceptual PICTURE derived by examining the other
operands in the expression.
INCOMPATIBLE DATA. An incompatible data condition occurs when a data item is referenced in
the Procedure Division and that item contains characters not permitted by its PICTURE clause.
For example:
If a position in a display numeric item contains an alphabetic character, A, and that item is
used as an operand in an ADD statement, an incompatible data condition occurs. The result of

this reference is undefined.
The class condition test is an exception to this rule because its purpose is to determine whether or
not items contain legal data.
CONDITIONAL EXPRESSIONS

Conditional expressions identify conditions that are tested by the program to select between alter-
nate paths of control. Conditional expressions are specified in the IF and PERFORM statements.

The two categories of conditions for conditional expressions are: simple conditions and complex con-
ditions. Either kind of condition can be enclosed within any number of paired parentheses without
changing the category of the condition.

Simple Conditions

Simple conditions are: class, condition-name, relation, and sign conditions. A simple condition has a
truth value of true or false. Parentheses can enclose a simple condition without changing the truth
value of the condition.

Simple conditions are described in the following paragraphs.

CLASS CONDITION. The class condition determines whether a DISPLAY item value is numeric or
alphabetic.

Class condition syntax is:

data-name [IS 1 [NOT 1 NUMERIC
ALPHABETIC

When NOT is included, the test condition is reversed. NOT NUMERIC tests for a field being non-
numeric; NOT ALPHABETIC tests for a field being nonalphabetic.

2-15

SCREEN COBOL Source Program

The NUMERIC test cannot be used with an item described as alphabetic. The NUMERIC test can-
not be used with a group item composed of elementary items with data descriptions that include
operational signs. If the data item being tested is signed, the item is numeric only if the contents are
numeric and a valid sign is present. If the item is not signed, the item passes the test only if the con-
tents are numeric and no sign is present. Valid signs for items with SIGN IS SEPARATE clause are
+ and —.

The ALPHABETIC test cannot be used with an item described as numeric.

CONDITION-NAME CONDITION. A condition-name condition determines whether or not the value
of a conditional variable is equal to one of the values predefined for the condition-name.

Condition-name condition syntax is:

condition-name

The condition-name must be a level 88 item defined in the Data Division and given a value or a range
of values.

The condition is true if the value of the conditional variable is equal to one of the condition-name
values or falls within one of the ranges of values (including both ends of the range) given with the
condition-name.

RELATION CONDITION. A relation condition causes a comparison of two values. Each value can be
a data item, a literal, or a value resulting from an arithmetic computation; both values cannot be

literals. A relation condition has a truth value of true if the relation exists between the values.

Relation condition syntax is:

value-1 IS ([NOT 1 {LESS [THAN]} vatue-2
<
ltnor {EQUAL[TO]} }
[NOT 1 {GREATER [THAN J}
>

The relational operators < = > determine the type of comparison made. A space must precede and
follow each word of the relational operator. When NOT is included, the word NOT and the next
keyword or relation character are one operator. NOT EQUAL is a truth test for an unequal com-
parison; NOT GREATER is a truth test for an equal or less comparison.

Two numeric values can be compared regardless of their usage (as defined by a USAGE clause). For

all other comparisons, however, the values must have the same usage. If either of the values is a
group item, nonnumeric comparison rules apply.

2-16

SCREEN COBOL Source Program

Comparison of Numeric Operands. Comparison of numeric operands is made with respect to the
algebraic value of the operands. The length of the literal or arithmetic expression operands, in
terms of the number of digits represented, is not significant. Zero is considered a unique value
regardless of the sign.

Comparison of these operands is permitted regardless of the manner in which their usage is
described. Unsigned numeric operands are considered positive.

Comparison of Nonnumeric Operands. Comparison of nonnumeric operands, or one numeric and
one nonnumeric operand, is made with respect to the ASCII collating sequence of characters. The
size of an operand is its total number of characters.

A noninteger numeric operand cannot be compared to a nonnumeric operand.

Numeric and nonnumeric operands can be compared only when their usage is the same. The follow-
ing conventions apply:

¢ The numeric operand must be an integer data item or an integer literal.

e If the nonnumeric operand is an elementary data item or a nonnumeric literal, the numeric
operand is treated as though it were moved to an elementary alphanumeric data item of the
same size as the numeric data item; the content of this alphanumeric data item is then compared
to the nonnumeric operand.

e If the nonnumeric operand is a group item, the numeric operand is treated as though it were
moved to a group item of the same size as the numeric data item; the content of this group item
is then compared to the nonnumeric operand.

Comparison of Equal Sized Operands. If the values of operands are equal in size, characters in cor-
responding positions are compared starting from the high order end. This continues until either a
pair of unequal characters is found or the low order end is reached. The values are equal when all
pairs of characters are the same through the last pair.

The first pair of unequal characters is compared to determine their relative position in the collating
sequence. The value having the character that is higher in the collating sequence is the greater
value,

Comparison of Unequal Sized Operands. If the values of operands are unequal in size, comparison
proceeds as though the shorter operand were extended on the right by sufficient spaces to make the
operands equal in size.

SIGN CONDITION. The sign condition determines whether or not the algebraic value of an
arithmetic expression is greater than, less than, or equal to zero.

Sign condition syntax is:

arithmetic-expression [IS 1 [NOT 1 POSITIVE
NEGATIVE
ZERO

Arithmetic-expression must have at least one variable.

2-17

SCREEN COBOL Source Program

When NOT is included, the word NOT and the next keyword specify one sign condition that defines
the algebraic test to be executed for truth value. NOT ZERO is a truth test for a nonzero, positive,
or negative value. An item is positive if its value is greater than zero, negative if its value is less
than zero, and zero if its value is equal to zero.

Complex Conditions

Complex conditions are formed by using simple conditions, combined conditions and/or complex
conditions with logical connectives AND or OR, or negating these conditions with keyword NOT.
The truth value of a complex condition, whether or not the value is enclosed in parentheses, is that
truth value which results from the interaction of all the logical operators on the individual truth
values of simple conditions, or on the intermediate truth values of conditions connected or negated.

Logical operators and their definitions are listed in Table 2-7.

Table 2-7. Logical Operators

Logical Operator Definition

AND Logical conjunction—the truth value is true if both conditions
are true, and false if one or both are false.

OR Logical inclusive OR—the truth value is true if one or both of
the conditions is true, and false if both conditions are false.

NOT Logical negation or reversal of truth value—the truth value is
true if the condition is false and false if the condition is true.

The logical operators must be preceded by a space and followed by a space.

NEGATED SIMPLE CONDITION. A simple condition is negated through the use of the logical
operator NOT. The negated simple condition effects the opposite truth value for a simple condition.
Parentheses enclosing negated simple condition do not change the truth value.

Negated simple condition syntax is:

NOT simple-condition

COMBINED AND NEGATED COMBINED CONDITIONS. A combined condition results from con-
necting conditions with AND or OR. Each condition can be a simple condition, a negated condition, a
combined condition or negated combined condition, or a combination of these.

Combined and negated combined condition syntax is:

condition { {AND} condition }
OR

2-18

SCREEN COBOL Source Program

ABBREVIATED COMBINED RELATION CONDITIONS. In a relation where one item is compared
to several others, the relation can be abbreviated by leaving out the subject item name after the
first reference to it. If the relational operator is the same as the previous operator, the operator can
also be omitted.

Abbreviated combined relation condition syntax is:

condition{ {AND} [not 1 [operator 1 object}
OR

If NOT appears within the abbreviated condition and is not followed by an operator, the keyword
negates that portion of the condition, but does not automatically carry forward to the next relation.

The following examples illustrate abbreviated combined relation conditions and their expanded
equivalents.

Abbreviated Combined

Relation Condition Expanded Equivalent
a > b AND NOT < ¢ OR d ((a > b) AND (a NOT < c¢)) OR
(a NOT < dD
a NOT EQUAL b OR ¢ (a NOT EQUAL b) OR (a NOT EQUAL c)
NOT a = b OR ¢ (NOT (a = b)) OR (a = ¢)
NOT (a GREATER b OR < ¢) NOT ((a GREATER b) OR (a < ¢))

NOT (a NOT > b AND c AND NOT d) NOT (((Ca NOT > b) AND
(a NOT > c)) AND
(NOT (a NOT > d)>))

(a + b - c¢c) >d AND NOT < e OR f (a + b - ¢c) > d AND
(a + b - c) NOT < e OR
(a + b - ¢c) NOT < f

Condition Evaluation Rules

Parentheses are used to change the order in which individual conditions are evaluated when it is
necessary to depart from the standard precedence. Conditions within parentheses are evaluated
first. When conditions are within nested parentheses, evaluation goes from the innermost condition
to the outermost condition.

When parentheses are not used or when conditions in parentheses are at the same level, the follow-
ing order of evaluation is used until the final truth value is determined:

1. Values are established for arithmetic expressions.

2. Truth values for simple conditions are established in the following order:
relation
class

condition-name
sign

2-19

SCREEN COBOL Source Program

3. Truth values for negated simple conditions are established.

4. Truth values for combined conditions are established:

AND logical operators, followed by OR logical operators.
5. Truth values for negated combined conditions are established.

6. When the sequence of evaluation is not completely specified by parentheses, the order of
evaluation of consecutive operations of the same hierarchical level is from left to right.

TABLES

Tables of data are common in data processing problems. For example, a data structure might have
20 total fields, described as twenty identical data items named total-one, total-two, ..., total-twenty.
This would mean twenty different names, which could obscure the interrelated nature of the totals
and make references awkward. A table structure simplifies this problem.

Tables are defined by using an OCCURS clause in their data description. This clause specifies that
an item is repeated as many times as stated. The item is considered to be a table element, and its
name and description apply to each repetition. As an example, the one-dimensional table mentioned
in the preceding paragraph could be defined with this entry:

02 total OCCURS 20 TIMES ...

In the Screen Section, a table must be an elementary item. In the Working-Storage Section and
Linkage Section, the elements of a table can be groups of subordinate structures, some of which can
also be tables. Thus, the previous example might appear in greater detail as:

02 total-g OCCURS 20 TIMES.
03 total-a ...
03 total-b OCCURS 3 TIMES ...

The expanded example describes total-a as a one-dimensional table, and describes total-b as a two-
dimensional table because an OCCURS clause is applied to an item subordinate to the first
OCCURS clause. If the description of a data item subordinate to total-b also had an OCCURS clause,
the item would be a three-dimensional table. SCREEN COBOL allows a maximum of three dimen-
sions in the Working-Storage Section and Linkage Section.

Frequently, tables are built in Working-Storage with constant values that a program needs in addi-
tion to the data from external sources. An example of coding for a table containing the full calendar
month names is shown in Figure 2-3.

2-20

SCREEN COBOL Source Program

WORKING-STORAGE SECTION.

01 month-name-table.

05 FILLER PIC X(9) VALUE ''JANUARY'".
05 FILLER PIC X(9) VALUE "FEBRUARY".
05 FILLER PIC X(9) VALUE '"MARCH'".

05 FILLER PIC X(9) VALUE "APRIL".

05 FILLER PIC X(9) VALUE '"MAY",

05 FILLER PIC X(9) VALUE '"JUNE".

05 FILLER PIC X(9) VALUE "JuLY".

05 FILLER PIC X(9) VALUE "AUGUST".
05 FILLER PIC X(9) VALUE "SEPTEMBER".
05 FILLER PIC X(9) VALUE "OCTOBER'.
05 FILLER PIC X(9) VALUE '"NOVEMBER'".
05 FILLER PIC X(9) VALUE '"DECEMBER'".

01 month-name—-table REDEFINES month-name-table.
05 month-name OCCURS 12 times PIC X(9).

Figure 2-3. Sample Table Structure

The term FILLER is a keyword that takes the place of a data name when it is unimportant to name
an item. Because occurrences of a table element do not have individual names, a reference to an oc-
currence must give its position number along with the data name of the table. The method of giving
the position number, called subscripting, is described later in this section.

DATA REFERENCE

All items must be named so they can be referenced. Items given unique names can be referenced
with no difficulty, but many programs contain items that do not have unique names. All elements of
a table, for example, share a single name. Also, the same name can be used for more than one data
item, and the same paragraph name can be used in different sections of the Procedure Division.

Names must be unique or made unique through qualification or subscripting.

Qualification

Every name must be unique, either because no other name has the same spelling and hyphenation,
or because the name is subordinate to a unique name. In the latter case, including one or more of the
higher level names qualifies the subordinate item and makes it unique. Although enough qualifica-

tion must be present to make a name unique, it is not necessary to include all levels.

For data name references, group names can be used for qualification. Level 01 names are the
most significant qualifiers, then level 02, and so forth.

For condition-name references, the name of the condition variable can be used as qualification,
even if the variable is an elementary item.

For paragraph name references, the section name is the only qualifier available. References to
paragraphs within the same section never require qualification.

2-21

SCREEN COBOL Source Program

For copy text references in COPY statements, the copy text name must be qualified if the text
library that defines it is not the default library for the compilation.

Level 01 names and section names must be unique because they cannot be further qualified.
Regardless of available qualification, a name cannot be both a data name and a procedure
name.

An item is qualified by following a data name, a condition-name, a paragraph name, or a copy text
name by one or more phrases composed of a qualifier preceded by connective IN or OF. IN and OF

are equivalent.

Qualification syntax is:

data-name OF qualification-name
condition—-name IN
paragraph-name OF section-name
IN
copy-text [%OF} Library-name]
IN

Qualification rules are as follows:

* Each qualifier must be at a higher level than the previous one, and must stay within the same
structure of the name it qualifies.

e The same name cannot appear at different levels in a structure; otherwise, the name could
qualify itself.

* If a data name or a condition-name is assigned to more than one data item, the data name or
condition-name must be qualified each time it is referenced (except in the REDEFINES clause
where, by context, qualification is unnecessary).

e A paragraph name cannot be duplicated within a section. Within its own section a paragraph
name does not require qualification. When a section name is used to qualify a paragraph name,

the word SECTION is not part of the name.

¢ A data name used as a qualifier is not subscripted, even if the data name is described with an
OCCURS clause.

¢ A pame can be qualified even when the name is unique.

e If more than one combination of qualifiers is available to make a name unique, any combination
can be used.

2-22

SCREEN COBOL Source Program

In the following example, all data names except prefix are unique. Qualification must be used to
reference either prefix item.

01 transaction-data ... 01 master-data
03 item-no ... 03 code-no .
05 prefix ... 05 prefix
05 code ... 05 suffix

03 quantity ... 03 description

Using the same example, any of the following sentences could be used to move the contents of one
prefix to the other prefix:

MOVE prefix OF item-no TO prefix OF code-no.

MOVE prefix OF item-no TO prefix OF master-data.

MOVE prefix OF transaction-data TO prefix IN code-no.
MOVE prefix IN transaction-data TO prefix IN master-data.

Subscripting

Subscripts are used to reference elements in a table. Subscripts are needed because all table
elements have the same name.

The subscript can be an integer numeric literal or a data item that represents a numeric integer.
When the subscript is a data item, the data item name can be qualified, but not subscripted itself.
The subscript can be signed and, if signed, it must be positive.

The lowest possible subscript value is 1. This value selects the first element of a table. The other
elements of the table are selected by subscripts whose values are 2, 3, 4, and so forth. If a subscript
value greater than the size of the table is used, the result is undefined.

The subscript, or set of subscripts, is enclosed in parentheses and appended to the element name of
the table. When more than one subscript is required, they are written in the order of most signifi-

cant value to least significant value.

Subscript syntax is:

data-name (sub-1 [, sub-2 [, sub-3 1 1)
condition-name

The following examples illustrate subseripting:
MOVE total(8) TO report-total-8.
MOVE day of date(3) TO print-line-date.
MOVE month-name(month-number) TO report-month.

MOVE matrix(row, column) TO output-display-Lline.

2-23

SCREEN COBOL Source Program

Using Identifiers

An identifier is a data name made unique by qualifiers, subscripts, or qualifiers and subscripts. A
data name being used as a subscript or qualifier cannot itself be subscripted.

Identifier syntax is:

data-name-1 [;0F§ data-name—z]
IN

[¢ sub-1 [, sub-2 [, sub=-3 11) 1]

The following examples illustrate specification of identifiers:
unique-identifier
item-1 OF group-a
element OF name-table OF master-data (master-num)

Using Condition Names

Items are tested frequently by a program. Assigning a condition-name to an item is a convenient
way to reference the item and determine its value.

Every condition-name must be unique or capable of being made unique through qualification and/or
subscripting. If qualification is used to make a condition-name unique, the conditional variable can
be used as the first qualifier. The containing data names of the conditional variable can also be used
as qualifiers. If references to a conditional variable require subscripting, then any of its condition-
names must have the same subscripting.

The following example illustrates a condition-name called restricted-use:

01 inventory.
02 part-number OCCURS 100 TIMES

03 prefix PIC 99.
03 use-code PIC 9.

88 restricted-use VALUE 1.
03 supplier-suffix PIC 99.

The condition-name, restricted-use, might be referenced as:

IF restricted-use OF use-code IN part-number (30)
NEXT SENTENCE,
ELSE...

2-24

SCREEN COBOL Source Program

DATA REPRESENTATION

In the Working-Storage Section and Linkage Section, data items are stored in a certain number of
bytes; each byte is an 8-bit unit of storage. Bytes are grouped in pairs to form words.

Data items whose usage (as defined by a USAGE clause) is DISPLAY occupy one byte per
character. Data items whose usage is COMPUTATIONAL occupy storage as follows:

PICTURE Size in Digits Storage Occupied
1to 4 2 bytes
5to 9 4 bytes
10 to 18 8 bytes

In the Screen Section, items do not have individual storage assigned; storage of these items is of no
consequence to SCREEN COBOL programming.

Standard Alignment

The standard rules for positioning data within an elementary item depend on the category of the
receiving item. The rules are as follows:

o If the receiving data item is described as numeric, the sending data is aligned either by decimal
point with zero fill on either end of the value or by truncation on the low end, as required. Trun-
cation on the high end is not permitted, and if required, causes suspension of the program. When
no decimal point is specified, the receiving data item is treated as if it had an assumed decimal
point immediately following the rightmost character.

e If the receiving data item is described as alphanumeric or alphabetic, the sending data is aligned
at the leftmost character position in the data item with space fill or truncation to the right as re-
quired.

Optional Alignment

Standard data representation and alignment rules are not always appropriate, so provisions exist
to override them. The JUSTIFIED clause can be used in the data description to right justify data
within a data item.

Sometimes a server requires that data items in messages be aligned on word boundaries. Data
items aligned on word boundaries are said to be synchronized. Synchronization typically is achieved
by organizing and describing data so that item boundaries coincide with word boundaries. This task
can be eliminated by using the SYNCHRONIZED clause to force alignment of data items to their
natural boundaries.

2-25

3
il
=
8
=
O 4
5
9
=
@,
e
3

SECTION 3

IDENTIFICATION DIVISION

The Identification Division identifies the SCREEN COBOL program. The division has one required
paragraph and five optional paragraphs. If other paragraphs are present, they are treated as com-
ments.

The format of the Identification Division is shown in Figure 3-1.

IDENTIFICATIONDIVISION.
PROGRAM-ID. program—-unit-name.
[AUTHOR. [comment-entry 1 1
[INSTALLATION. [comment-entry 1 1
[DATE-WRITTEN. [comment-entry 1 1
[DATE-COMPILED. [comment-entry 1 1

[SECURITY. [comment-entry 1 1

Figure 3-1. Identification Division Format
The division header is
IDENTIFICATION DIVISION.
The header must begin in Area A and must be terminated with a period separator.
Optional paragraphs AUTHOR, INSTALLATION, DATE-WRITTEN, and SECURITY are included
for documentation purposes only. The comment-entry parameter for these paragraphs can be any

combination of characters from the SCREEN COBOL character set and represents text describing
each paragraph heading.

31

Identification Division

PROGRAM-ID PARAGRAPH
The required PROGRAM-ID paragraph names the SCREEN COBOL program unit.

The syntax of the PROGRAM-ID paragraph is:

PROGRAM-ID. program-unit-name
where
program-unit-name

is the name of the SCREEN COBOL program unit; the name can have from 1 through 30
alphanumeric characters. The name can differ from the file name of the source code or
the object file. This name is used in a CALL statement when the program is referenced in
another SCREEN COBOL program unit. This name is also used by the PATHCOM SET
TERM INITIAL command.

DATE-COMPILED PARAGRAPH

The optional DATE-COMPILED paragraph causes the compiler to generate the current date and
time and insert it in this line of the source listing.

The syntax of the DATE-COMPILED paragraph is:

DATE-COMPILED. [comment-entry 1
where
comment-entry
is any combination of characters from the SCREEN COBOL character set.

When this paragraph is included, the compiler generates the current date and time, replacing
the DATE-COMPILED line and any comment-entry with this line:

DATE COMPILED. yy/mm/dd - hh:mm:ss

yy is the year range 00-99
mm is the month range 01-12
dd is the day range 01-31
hh is the hour range 00-23
mm is the minute range 00-59
ss is the second range 00-59

32

SECTION 4

ENVIRONMENT DIVISION

The Environment Division declares the operating environment of the program unit and provides
optional error reporting for screen input operations. The division has two sections: a required Con-
figuration Section and an optional Input-Output Section.

The format of the Environment Division is shown in Figure 4-1.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. comment-entry

OBJECT-COMPUTER. object-computer-entry
[SPECIAL-NAMES. special-names—-entry 1]

[INPUT-OUTPUT SECTION. input-output-entry 1

Figure 4-1. Environment Division Format

The division header is:
ENVIRONMENT DIVISION.

The header must begin in Area A and must be terminated with a period separator.

4-1

m
=
s
£
=]
: i
3
[
=
2
=
=,
)
(=]
=

Environment Division

CONFIGURATION SECTION

The required Configuration Section declares the operating environment of the program unit. These
declarations can include terminal type characteristics and screen display attributes.

The section header is:

CONFIGURATION SECTION.
The header must begin in Area A and must be terminated with a period separator.
The Configuration Section contains three paragraphs:

SOURCE-COMPUTER paragraph (required)

OBJECT-COMPUTER paragraph (required)

SPECIAL-NAMES paragraph (optional)

SOURCE-COMPUTER Paragraph

The required SOURCE-COMPUTER paragraph names the computer system by which the program
unit is compiled. The SCREEN COBOL compiler assumes the system is a Tandem system and treats
any name given as a comment.

The SOURCE-COMPUTER paragraph syntax is:

SOURCE-COMPUTER. comment-entry.
where
comment-entry

is one or more words. comment-entry cannot be blank or null characters.

OBJECT-COMPUTER Paragraph
The required OBJECT-COMPUTER paragraph names the computer system on which the object

program runs. The SCREEN COBOL compiler assumes the system is a Tandem system and treats
the name given as a comment.

4-2

Environment Division

The OBJECT-COMPUTER paragraph syntax is:

OBJECT-COMPUTER. comment-word,
[TERMINAL IS terminal-type 1
[CHARACTER-SET IS character-set-type 1
where
comment-word
is a single word only.
TERMINAL IS terminal-type

specifies the type of terminal for which the program is intended. The terminal type entry
is one of the following keywords:

T16-6510 These keywords denote a Tandem product number
T16-6520
T16-6530

IBM-3270 } This keyword denotes a terminal that is one of the IBM-3270 family, or a
terminal that is program-compatible with such a terminal.

Program units compiled for a T16-6520 terminal can be run on a T16-6530 terminal. If
T16-6520 is specified as terminal-type and the program unit runs on a T16-6530 terminal,
features unique to the T16-6530 are prohibited.

CONVERSATIONAL) This keyword denotes that a terminal operates in conversational
mode regardless of the terminal type.

Program units compiled for conversational mode can be run on T16-6510, T16-6520, and
T16-6530 terminals or on any device operating as a conversational mode terminal as
recognized by the GUARDIAN File System. Features unique to the block mode terminal
types are not recognized by the conversational mode SCREEN COBOL program.

If the TERMINAL IS specification is omitted, the program can run on all of the terminal
types listed above. Features unique to a particular terminal cannot be used.

CHARACTER-SET IS character-set-type

provides limited support of national use characters, that is, foreign character sets that
are not USASCII. This parameter can be used only with the T16-6530 terminal and if
specified, must follow the TERMINAL IS specification.

character-set-type is one of the following keywords:

USASCII US ASCII
FRANCAIS-AZ French AZERTY
FRANCAIS-QW French QWERTY
DEUTSCH German/Austrian
ESPANOL Spanish

UK United Kingdom
SVENSK-SUOMI Swedish/Finnish
DANSK-NORSK Danish/Norwegian

If the CHARACTER-SET specification is omitted, USASCII is used.

4-3

Environment Division

If the CHARACTER-SET specification is included and the character set type differs from the cur-
rent setting in the terminal or the terminal setting is unknown, the terminal is signalled the
character set type at the first DISPLAY BASE statement in a program unit. After the program
unit completes execution, the terminal is reset to its original character set.

Programmatic support of national use characters is in the following areas:

o field characteristic clause UPSHIFT —Lowercase national use characters are upshifted to their
uppercase equivalents.

e class condition—The condition ALPHABETIC checks for characters in the national use
characters.

e symbol A in PICTURE clauses— A check is made for characters in the national use character
set.

Programmatic support of national use characters does not affect the following areas:

e field characteristic clause MUST BE —Range tests are not supported for national use
characters.

* tests that involve collating sequence matters—Any comparison tests, such as less-than or
greater-than relations, are not supported for national use characters.

SPECIAL-NAMES Paragraph

The optional SPECIAL-NAMES paragraph allows you to select names and have those names
assigned to certain system names. The paragraph also matches features of a specific terminal with
the words used in the program to refer to those features. With careful use of the correspondences
established in this paragraph, you can remove much of the dependence on terminal type from the
body of the program unit.

The SPECIAL-NAMES paragraph syntax is:

SPECIAL-NAMES.

mnemonic-name IS system-name PR
({ system-name } ,...) ;

[, CURRENCY [SIGN 1 IS Literal-1 1
[, DECIMAL-POINT IS COMMA 1]
where

mnemonic-name
is an identifier you select to be associated with a system-name. The mnemonic-name can
be used later in the Screen Section or the Procedure Division of the program to refer to a
function key or display attribute indicated by system-name.
A list of system-names can be equated to a single mnemonic-name only if the system-

names refer to display attributes; this causes the mnemonic-name to represent the com-
bination of the display attributes. —_—

Environment Division

system—name

specifies a function key or display attribute available on the terminal. Table 4-1 lists the
function keys and display attributes that can appear as a system-name.

CURRENCY [SIGN 1 IS literal-1

specifies a literal to be used instead of the dollar currency sign ($). Literal-1 must be a
single character and cannot be any of the following:

Digits 0 through 9

Characters A B CDULUPRS V X Z space

Special * -, L)y m o=
DECIMAL-POINT IS COMMA

exchanges the function of comma and period in PICTURE character strings and numeric
literals in the remainder of the program.

4-5

Environment Division

Table 4-1. Function Key and Display Attribute System Names

Function Key

Allowed Allowed Allowed Allowed Allowed
System-Name (1) for 6510 for 6520 for 6530 for 3270 for Conv. (4)
CLEAR (2) X
ENTER X
F1 - F16 (unshifted) X X X
SF1 - SF16 (shifted) X X X
NEXT-PAGE X X
PA1 - PA3 (2) X
PA4 - PA10 X
PF1 - PF24 X
PREV-PAGE X X
RETURN-KEY (3) X
ROLL-DOWN X X
ROLL-UP X X
Display Attribute
BELL X
BLINK X X X
BRIGHT X
DIM X X
HIDDEN X X X X X
MDTOFF X X X
MDTON X X X
NOBELL X
NOBLINK X X X
NOREVERSE X X
NORMAL X X X X
NOTHIDDEN X X X X X
NOUNDERLINE X X
NUMERIC-SHIFT X
PROTECTED X X X X
REVERSE X X
UNDERLINE X X
UNPROTECTED X X X X
NOTES:

(1) System-name words are not reserved words.

(2) Used in ESCAPE clause of ACCEPT statement only.

(3) If the SCREEN COBOL program is to run on a Tandem 6530 terminal, a return key function can be defined
in the SPECIAL-NAMES paragraph of the program. When the RETURN key is pressed a function code will
be transmitted. If a function is not defined, no return key function code exists—pressing the return key
will cause a forward tab action.

A return key function is local to a program unit. The first DISPLAY BASE statement of the program unit
causes the terminal to adjust the RETURN key operation to the setting indicated by the executing pro-
gram unit.

(4) Applies for any terminal specified CONVERSATIONAL in the OBJECT-COMPUTER paragraph.

Environment Division

The following example illustrates the SPECIAL-NAMES paragraph:

SPECIAL-NAMES.
ENTER-KEY IS F1,
EXIT-KEY IS F16,
INPUT-ATTR IS UNDERLINE,
SIGNAL-ATTR IS (REVERSE, NOUNDERLINE).

INPUT-OUTPUT SECTION

The optional Input-Output Section provides error reporting for screen input operations. If this sec-
tion is omitted, the error display attribute is dependent on the terminal type specified in the Con-
figuration Section.

The section header is:
INPUT-OUTPUT SECTION.
The header must begin in Area A and must be terminated with a period separator.

The Input-Output Section syntax is:

SCREEN-CONTROL.

ERROR-ENHANCEMENT [IS 1 mnemonic-name [IN ‘FIRST}]
ALL

[WITH [NO 1 AUDIBLE ALARM 1 .
where
ERROR-ENHANCEMENT [IS 1 mnemonic-name
specifies the display attribute with which fields found to be in error are to be enhanced.
The BLINK attribute is used for the T16-6510, T16-6520, and T16-6530 terminals; the
BRIGHT attribute is used for the IBM-3270 terminal.
IN FIRST
enhances the first field that is found to be in error.
IN ALL
enhances all fields that are found to be in error.
NOTE
For terminals operating in conversational mode, IN FIRST is the only
recognized enhancement option. If IN ALL is specified, the phrase is ig-
nored and the first field containing an error is enhanced.

WITH [NO 1 AUDIBLE ALARM

enables or disables the audible indicator when an error is detected.

4-7

Environment Division

Procedure Division ACCEPT statement processing checks the contents of input fields against the
requirements of a PICTURE clause and any constraints, such as those imposed by a MUST BE field
characteristic clause. ACCEPT processing attempts to indicate which field is in error. The ERROR-
ENHANCEMENT option allows you to control some aspects of the error processing.

4-8

SECTION 5

DATA DIVISION

The Data Division describes the data that the program creates, accepts as input, manipulates, or
produces as output. The division has three sections: a Working-Storage Section, a Linkage Section,
and a Screen Section. Each section is optional and is included only when the type of data the section

defines is used in the program.
Data described in the Data Division falls into two categories:

¢ Data formatted for display on a terminal or received as input from a terminal.

¢ Data developed internally by the program and placed in temporary areas described in the

Working-Storage Section or Linkage Section.

The format of the Data Division is shown in Figure 5-1.

DATA DIVISION.
[WORKING-STORAGE SECTION.
data-description-entries 1]
[LINKAGE SECTION.
data-description-entries 1

[SCREEN SECTION.

screen—-description-entries 1

input-control-entries <~--- For conversational mode only.

Figure 5-1. Data Division Format
The division begins with a division header. The format of the header is:
DATA DIVISION.

The header must begin in Area A and must be terminated with a period separator.

5-1

Q
©
-
B
g
<, 3
a.
=]
3

Data Division

DATA DIVISION SECTIONS

Three sections comprise the Data Division: Working-Storage Section, Linkage Section, and Screen
Section. When all three sections are included in a program, they must be written in the order shown
in Figure 5-1. Items within each section can be written in any order.

Each section describes a different type of data. Sections are defined as follows:

* Working-Storage Section—This section describes the structure of local data developed within
the program. Data entries in this section are initialized each time the program unit is called;
therefore, values are not retained between calls.

* Linkage Section—This section describes the structure of parameter data passed to a sub-
program by a CALL statement. Items described in the calling program are referenced in the
USING clause of the Procedure Division of a called program.

® Screen Section— This section describes the types and locations of fields in screens that can be
displayed on the terminal. Screens described in the Screen Section are those that are referenced
in the Procedure Division of the program.

Working-Storage Section

The Working-Storage Section defines records and miscellaneous data items that are used for inter-
nal purposes. Data entries in this section can be set to initial values. When local data items or in-
termediate storage is not necessary, this section can be omitted.

The section begins with a section header. The format of the header is:
WORKING-STORAGE SECTION.
The header must begin in Area A and must be terminated with a period separator.

Data description entries for individual items follow the header. All item names must be unique.
Subordinate data names can be duplicated as long as they can be qualified.

Linkage Section

The Linkage Section describes data that is passed from one program to another and is available to
both programs. This section is required when a program is called from another program. No local
data is used in the called program for these items; the calling program item is used during execution
of the called program.

The section begins with a section header. The format of the header is:
LINKAGE SECTION.

The header must begin in Area A and must be terminated with a period separator.

A Procedure Division reference in the called program accesses the location in the calling program.
Statements within the Procedure Division of the called program can only reference Linkage Section
items given in the Procedure Division header USING clause of the calling program. Subordinate
data items and condition names can be used. The called program is invoked by a CALL statement
with a USING clause corresponding to the USING clause of the calling program.

The structure of the Linkage Section is the same as that of the Working-Storage Section except the
VALUE clause is prohibited for items other than level 88 items.

5-2

Data Division

Screen Section

The Screen Section describes the screens that are referenced in the Procedure Division. The struc-
ture of the Screen Section is similar to that of the Working-Storage Section. The section makes pro-
vision for two types of screens: base and overlay.

The section begins with a section header. The format of the header is:

SCREEN SECTION.

The header must begin in Area A and be terminated with a period separator.

DATA STRUCTURE

Data is described through a set of entries that name the components of a structure, describe the at-
tributes of those components, and describe the structure into which the components are organized.
Each entry has a level number followed by a data name, and possibly a series of independent
clauses. The level numbers depict the structure, dividing the data further and further down to its
smallest parts.

The lowest subdivisions of a structure, that is, those not further subdivided, are called elementary
items. A structure can be a single elementary item or a series of elementary items.

Sets of elementary items can be referenced by combining them into groups. Groups, in turn, can be
combined into groups; an elementary item, therefore, can belong to more than one group.

Level Numbers 01-49

Level numbers 01 through 49 describe the hierarchy of data items. The structure itself is assigned
level number 01.

The system of level numbers shows the relationship of elementary items to group items. Data items
within a group are assigned level numbers higher than that of the group item. Level numbers
within the group need not be consecutive, but they must be ordered so that the higher the level
number the lower the entry in the hierarchy.

A group includes all group and elementary items following it until a level number less than or equal
to the level number of that group is encountered. All items or groups immediately subordinate to a
given group item must be described using identical level numbers greater than the level number of
that group item.

Data Division

Working-Storage or Linkage Section

An example of level numbering is shown in Figure 5-2.

01 address-data.
05 office-number.
10 district PIC 99.
10 region PIC 999.
05 office—address.
10 street PIC X(25).
10 city PIC X(15).
10 state PIC X(5).
10 zip-code PIC 9(5).
01 personnel-data.
05 office-manager PIC X(35).
05 no-of-employees PIC 9(4).
05 tax-groups.
10 hourly PIC 9(3).
15 part-time PIC 99.
15 full-time PIC 99.
10 exempt PIC 9(4).
Figure 5-2. Level Numbering Within a Structure

Level Numbers 66, 77, and 88

Three additional types of data entries can exist in the Working-Storage Section and Linkage Sec-
tion: level 66, level 77, and level 88 data entries. Entries that begin with these level numbers do not

define the hierarchy of the item described. Entries are defined as follows:

DATA DESCRIPTION ENTRY

A data description entry defines the characteristics of a data item. The entry can be used in the
Working-Storage Section or Linkage Section of the SCREEN COBOL program.

Several forms are available to describe items for various purposes. Some entries cause the creation
of items (memory space is allocated), while others supply alternative descriptions or reference
points for already existing data. Others supply specification of value ranges for later testing.

A skeleton of the data description entry is shown in Figure 5-3.

Level 66—A level 66 data entry specifies elementary items or groups introduced by a
RENAMES clause. These entries are used to regroup contiguous elementary data items.

Level 77— A level 77 data entry is an independent data item that is not a subdivision of another
data item. The data item is not itself subdivided.

Level 88— A level 88 entry defines a condition name, including a value or range of values that
define the condition to be tested.

Data Division
Working-Storage or Linkage Section

WORKING-STORAGE SECTION.
or

LINKAGE SECTION.

Format 1

Ltevel-number data-name-1}
FILLER

[JUSTIFIED clause 1

[OCCURS clause 1

[PICTURE clause 1]

[REDEFINES clause]

[SIGN clause 1

[SYNCHRONIZED clause 1

[USAGE clause 1]

[VALUE clause] <----- For WORKING-STORAGE SECTION only.
Format 2

[66 new-name [RENAMES clause 1]

Format 3

[88 condition—-name , [VALUE clause] 1

Figure 5-3. Data Description Entry Skeleton

Format 1 of Figure 5-3 describes data of levels 01 through 49 and level 77. The data-name-1 entry is
the name of the storage area defined by the subordinate items. In the following example, store-
address references everything from street through zip-code.

01 sample-record.
05 store-id.

10 store-number PIC 999.
10 store-region PIC X.
05 store-manager PIC X(35).
05 store-address.
10 street PIC X(25).
10 city PIC X(15).
10 state PIC X(2).
10 zip-code PIC 9(5).
05 FILLER PIC X(14).

5-5

Data Division
Working-Storage or Linkage Section

The FILLER keyword takes the place of a data name when it is unimportant to name an item.
FILLER is commonly used when building Working-Storage records, such as error messages, where
most of the text is groups of constants. The text groups can be separated by the filler. In the follow-
ing example, FILLER defines an area in storage that cannot be referenced in the program except as
part of the enclosing item, first-record:

01 first-record.

05 record-code PIC 99.
05 record-type PIC XX.
05 FILLER PIC X(30).

05 division-code PIC 999.

A level 77 entry cannot itself be subdivided. Level 77 entries, like level entries 01 through 49, must
be immediately followed by a data name or keyword FILLER. For example:

01 first-record.

05 record-code PIC 99.

05 record-type PIC XX.
77 temp-1 PIC XC(4).
77 temp-2 PIC X(3).

Various examples of level 77 items appear in Section 6.

Format 2 of Figure 5-3 describes a level 66 entry, which renames one or more contiguous elemen-
tary items. In the following example, the group card-codes is renamed code:

05 card-codes.

10 store-code PIC 9.

10 state-code PIC 9(4).
66 code RENAMES card-codes.

Format 3 of Figure 5-3 describes a level 88 entry, which assigns condition-name values. In the
following example, item tax-code is defined with a range of values:

05 tax-code PIC 99.
88 tax-range VALUES ARE 01 THRU 20.

JUSTIFIED Clause
The JUSTIFIED clause causes nonstandard positioning of data within a receiving item. The clause
can only appear in the data description of an elementary item; the clause cannot be used for a data

item that is described as numeric.

The syntax of the JUSTIFIED clause is:

JUST RIGHT
JUSTIFIED

When a receiving data item is described with the JUSTIFIED clause, the standard alignment rules
do not apply. If a sending item is too big for the receiving item, the sending item is truncated on the
left. If the sending item is smaller than the receiving item, the rightmost character of the sending
item is aligned with the rightmost character of the receiving field and the value is extended to the
left with space characters.

Data Division
Working-Storage or Linkage Section

When the JUSTIFIED clause is omitted, standard alignment rules dictate that alignment is left
justified and truncation or padding, when necessary, occurs on the right.

NOTE

The JUSTIFIED clause is ignored when initializing an item with the literal given in a
VALUE clause.

OCCURS Clause

The OCCURS clause defines tables and other sets of repeating items, thus eliminating the need for
separate item entries. These tables can be a fixed number of elements or can vary within given
limits. An OCCURS clause is illegal in an 01 level.

The syntax of the OCCURS clause is:

Format 1 (fixed length table)
OCCURS max [TIMES 1
where

max

is an integer that represents the number of elements in the table.

Format 2 (variable length table)
OCCURS min TO max [TIMES 1 DEPENDING [ON] depend
where

min

is an integer that represents the smallest number of elements in the table at any time.
The integer must be greater than or equal to zero, and less than or equal to max.

max

is an integer that represents the greatest number of elements the table can have at any
time.

depend

is an integer data item that controls the size of the table. As the value of the depend item
increases or decreases, the number of elements in the table increases or decreases. When
the table size decreases, those elements beyond the new depend limit are lost even if the
next statement increases the table to include them. When the table size increases, you
must assign values to the new elements before using them.

The following example illustrates the OCCURS clause:

01 table-group.
02 activity-count PIC 99.
02 activity-table OCCURS 10 TO 20 TIMES
DEPENDING ON activity-count.
05 activity-entry PIC 999.

Data Division
Working-Storage or Linkage Section

When using the data name that represents a table item, you must use subsecripts to access the item.
You can use the data name without subscripts only when you want the entire table (for example, in
a MOVE statement). If the data name is a group item, you must use subseripts for all items belong-
ing to the group whenever they are used as operands. Subordinate data names used as objects of a
REDEFINES clause are not considered operands and, therefore, cannot be subscripted.

A data description entry with an OCCURS DEPENDING ON clause can only be followed, within its
data description, by descriptions of subordinate items. In other words, only onc table with a
variable number of occurrences can appear in a single data description, and the data items contained
by the table must be the last data items in the data description.

Data items subordinate to an entry described with an OCCURS clause can themselves contain an
OCCURS clause. Tables can consist of such multiple occurrences of subordinate tables for a max-
imum of three levels. A data description entry containing either format of the OCCURS clause can
be followed by subordinate entries containing a fixed length table OCCURS clause; however, a data
description entry with an OCCURS DEPENDING ON cannot be subordinate to a group entry
described with either format of the OCCURS clause.

PICTURE Clause
The PICTURE clause defines the characteristics of an elementary item.

The syntax of the PICTURE clause is:

{PIC } [J IS 1 character-string
PICTURE

where
character-string

is one or more symbols that determine the category of an elementary item and place
restrictions on values assignable to the item.

A maximum of 30 characters is allowed in character-string. When the same PICTURE character
repeats, you can write it once followed by an unsigned integer enclosed in parentheses. The integer
indicates how many times that character is repeated. For example:

PIC 9(5) is equivalent to PIC 99999.

Although only 30 characters can make up a character string, you can use the repetition technique to
define items longer than 30 characters.

The character-string symbols that are defined in the following paragraphs are used to describe a
data item.

PICTURE CHARACTER-STRING SYMBOLS. Each symbol that is used to describe a data item has a
specific function. The symbols are as follows:

A represents a character position for a letter of the alphabet or a space character. The symbol
is counted in the size of the data item.

Data Division
Working-Storage or Linkage Section

P indicates scaling when the decimal point is not among or adjacent to the digits of the data
item stored. The symbol is counted in determining the maximum number of digit positions in
numeric items (the maximum is 18). One or more P symbols can appear only as a contiguous
string to the left or right of all other digit positions in the PICTURE string. Since P implies
an assumed decimal point, the P symbol is redundant when used with the V symbol.

If an operation involves conversion of data from one form of internal representation to
another and the data item being converted is described with the P symbol, each digit posi-
tion described by a P is considered to have the value zero; the size of the data item includes
those digit positions.

S represents a signed numeric value. The symbol is counted in the size of the item only if a
SIGN IS SEPARATE clause is used.

\Y% represents the decimal point location in noninteger numeric items. The symbol is not
counted in the size of the item.

X represents a character position that can have any character from the ASCII character set.
The symbol is counted in the size of the item.

9 represents a character position for a digit. The symbol is counted in the size of the item.

ITEM SIZE. The size of a data item is determined by the symbols in its PICTURE string. Each A, X,
and 9 is counted as one character position. An S is counted as one character only if the item is sub-
ject to a SIGN IS SEPARATE clause.

If a data item is described as DISPLAY in a USAGE clause, the size of the item includes the PIC-
TURE string symbols. If the item is described as COMPUTATIONAL, the size of the item is com-
puted differently, as described under the USAGE clause.

CATEGORIES OF DATA. The PICTURE clause can describe three categories of data: alphabetic,
numeric, and alphanumeric. The results of most statements in the Procedure Division depend on
the categories of the data items. Some statements require certain categories for some or all of their
operands. In some cases, a statement can take different actions depending on the category of the
data items.

In the discussion that follows, 9 and A symbols within the PICTURE string are described as
representing character positions that have only numbers or letters and spaces. For reasons of effi-
ciency, the SCREEN COBOL compiler does not always enforce this restriction. Characters other
than those permitted can be moved into these positions if they appear in the corresponding group
positions of a sending data item. SCREEN COBOL considers every group item to be alphanumeric.
Manipulations on group items ignore all PICTURE strings. For example, a move operation into a
group item can cause any position of an item to contain any ASCII character.

Alphabetic Data. An alphabetic data item can have only A symbols in the PICTURE string. The
contents of this type of item are represented externally as some combination of the 26 letters of the
alphabet and the space character.

Data Division
Working-Storage or Linkage Section

The following examples illustrate alphabetic data:

05 package-code PIC AAA.
05 dept-id PIC AA(6)AA.
05 dept-code PIC AA(2)AA.

Numeric Data. A numeric data item can have 9, P, S, and V symbols in the PICTURE string. The
number of digits described must be greater than zero and not more than 18. The contents of this
type of item are represented externally as a combination of digits 0 through 9.

If the item is signed, a plus or minus is included when the data is moved to a screen item, or when a
SIGN IS SEPARATE clause is specified. In all other instances, the sign is encoded within one of the
digits.
The following examples illustrate numeric data:

05 division-total PIC S9(10)Vv99.

05 fraction-amount PIC PP99.
Alphanumeric Data. An alphanumeric data item can have combinations of A, X, and 9 symbols in
the PICTURE string, but the item is treated as if the string contained all X symbols. The contents
of the item can be any combination of ASCII characters. A PICTURE string of all A symbols or all 9
symbols is not an alphanumeric item.
The following examples illustrate alphanumeric data:

10 stock-item—-name PIC X(25).

10 zone-id PIC A(4)99.
REDEFINES Clause
The REDEFINES clause allows the same computer storage area to be described in more than one
way. This capability is valuable for such tasks as input data validation when tests require different
descriptions of the data. This capability is convenient when some portions of a record are constant,

while other portions vary.

The syntax of the REDEFINES clause is:

REDEFINES data—-name-2
where
data-name-2

is the data item being redefined.

5-10

Data Division
Working-Storage or Linkage Section

The REDEFINES entry must immediately follow the entry for the data item being redefined or
must immediately follow the last item subordinate to that data item. The level number of the
REDEFINES entry must be the same as the item being redefined by the clause.

The following rules apply to the REDEFINES clause:

Level numbers 66 and 88 cannot be redefined.
The redefined data item cannot have an OCCURS clause or REDEFINES clause.
The data name of the redefined item cannot be subscripted or qualified.

Neither the original definition nor the redefinition can include an item whose size is variable due
to an OCCURS clause of a subordinate entry.

A VALUE clause cannot be included.

When the level number is not 01, the redefinition cannot be greater than the number of
character positions (bytes) in the data item you are redefining.

The redefined item can be subordinate to an item with an OCCURS clause or a REDEFINES
clause.

The REDEFINES entry can be followed by subordinate data entries. Redefinition continues un-
til the appearance of a level number less than or equal to that of the data name being redefined
or until the ending of the current section of the Data Division.

The REDEFINES clause redefines a storage area, not the data items occupying the area. Multiple
redefinition of the same area is permitted, but all definitions must begin with a REDEFINES clause
containing the data name of the entry that originally defined the area.

The following example illustrates the REDEFINES clause:

WORKING-STORAGE SECTION.

01 record-in.

05 record-code PIC 9.
05 record-detail PIC X(30).
05 record-subtotal PIC 9(3)V99.
01 record-total REDEFINES record-in.
05 total-1 PIC 9(5)V99.
05 total-2 PIC 9(5)V99.
05 total-3 PIC 9(5)V99.
05 total-4 PIC 9(5)V99.
05 total-5 PIC 9(6)V99.

05 total-5-sub REDEFINES total-5 PIC X(8).

RENAMES Clause

The RENAMES clause assigns a new data name to one or more contiguous elementary items within
a data description. RENAMES does not cause any allocation of storage. The clause can only be used
with a level 66 entry.

5-11

Data Division
Working-Storage or Linkage Section

The syntax of the RENAMES clause is:

66 new-name RENAMES old-name [{THROUGH} end—name] .
THRU

where
new-name
is the new name for a group item or elementary item.
old-name
is a group item, an elementary item, or the first of several items to be given a new name.
end-name

is the last group item or elementary item to be included in the new name.

The RENAMES clause merely renames a group of existing data items and does not redescribe any
of their characteristics; therefore, no other clauses can be used. One or more RENAMES entries
can be written for a structure; these entries can occur in any order, but must immediately follow the
last data description entry of the structure.

When the THROUGH option is not specified, new-name merely renames old-name. New-name is a
group item only if old-name is a group item.

When the THROUGH option is specified, the following rules apply:

¢ Old-name and end-name must be data areas within the same structure.

® Old-name and end-name cannot have the same names, but the names can be qualified.

e Old-name and end-name cannot be the names of data entries with level number (1, 77, 66, or 88.

e Old-name and end-name cannot be described by an OCCURS clause in their definitions, and they
cannot be subordinate to an item described by an OCCURS clause.

¢ End-name cannot name an item that occupies character positions preceding the beginning of the
area described by old-name.

e FEnd-name cannot name an item that is subordinate to old-name.

¢ Items within the renamed area cannot be described by an OCCURS clause.

5-12

Data Division
Working-Storage or Linkage Section

When the THROUGH option is specified, new-name is a group item that includes all elementary
items within the bounds established by old-name and end-name. The following defines the begin-
ning and end of the group:

o If old-name is an elementary item, the new group item begins with old-name.

o If old-name is a group item, the new group item begins with the first elementary item of old-
name.

e If end-name is an elementary item, the new group item ends with end-name.
¢ If end-name is a group item, the new group item ends with the last elementary item of end-name.

The following example illustrates the RENAMES clause:

05 <card-codes.

10 store-code PIC 9.

10 state-code PIC 9(4).
05 account-number PIC 9(6).
05 <check-digit PIC 9.

66 card-number RENAMES card-codes THRU check-digit.

SIGN Clause

The SIGN clause specifies the position and mode of an operational sign for a numeric data item. The
clause can only be used for items that are described as DISPLAY in a USAGE clause and have an S
symbol in the PICTURE string.

The syntax of the SIGN clause is:

SIGN [IS 1 {LEADING } [SEPARATE [CHARACTER 1 1
TRAILING

where
LEADING
indicates the sign is at the beginning of the item.
TRAILING
indicates the sign is at the end of the item.
SEPARATE [CHARACTER 1

specifies the sign becomes a separate character and is counted in the size of the item. A
+ for positive and a — for negative is placed at the beginning or end of the item value.

If this phrase is omitted, the sign is at the end of the item and is not counted in the size of
the item.

The following example illustrates the SIGN clause:

05 WS-subtotal-value PIC S9(02) SIGN IS TRAILING SEPARATE.

5-13

Data Division
Working-Storage or Linkage Section

SYNCHRONIZED Clause

The SYNCHRONIZED clause forces alignment of an elementary item on the most natural computer
storage boundary.

The syntax of the SYNCHRONIZED clause is:

{svnc RIGHT]
SYNCHRONIZED LEFT

where
RIGHT and LEFT

have no effect in SCREEN COBOL.

A VALUE clause must not appear for any group item that has a subordinate item described with
the SYNCHRONIZED clause.

In most cases the alignment supplied automatically by the compiler is also the most natural;
however, use of the SYNCHRONIZED clause has an effect in a few special cases. Alignment con-
siderations are as follows:

Alignment requirements can cause SCREEN COBOL to generate implicit FILLER data. The ex-
istence of this generated data must be accounted for in certain situations.

DISPLAY items are composed of one or more character positions and are stored as an equal
number of 8-bit bytes. The byte boundary is also their natural storage boundary; therefore, the
SYNCHRONIZED clause has no effect on DISPLAY item alignment.

COMPUTATIONAL items are stored as an even multiple of bytes. Their most natural storage
unit is some multiple of the 16-bit computer word, each of which contains two bytes. The
SCREEN COBOL compiler automatically aligns COMPUTATIONAL items to word boundaries.
This is also the natural boundary for small COMPUTATIONAL items (those items with PIC-
TURES containing up to four 9s).

Larger COMPUTATIONAL items (those items with PICTURES containing five or more 9s) are
naturally stored as one or two 32-bit double-words. The SYNCHRONIZED clause is effective for
these items because it forces their alignment on a double-word boundary.

5-14

Data Division
Working-Storage or Linkage Section

e All level 01 and level 77 items in the Working-Storage Section and Linkage Section are
automatically allocated by the SCREEN COBOL compiler so they begin on a word boundary.
The compiler logic treats these items as simultaneously beginning on a byte, word, and double-
word boundary. Thus, each level 01 and level 77 Working-Storage Section or Linkage Section
item is inherently aligned to its most natural storage boundary.

e Words begin on two-byte boundaries and double-words begin on four-byte boundaries. Align-
ment, either automatic or as requested by use of the SYNCHRONIZED clause, generates im-
plicit FILLER data in some cases.

— If an odd number of character positions precedes a word-aligned item within a record, the
compiler inserts one character position (byte) of FILLER before the item to complete
allocation of the preceding word.

— If the number of character positions preceding a double-word aligned item within a
record is not a multiple of four, the compiler inserts the amount of FILLER (1, 2, or 3
bytes) needed to complete allocation of the preceding double-word. These extra bytes are
not part of the data item.

— If a group item contains two items separated by implicit FILLER bytes, these bytes are a
part of that group item. However, a group item always begins with the first character
position of its first elementary item, ignoring any implicit FILLER bytes that were
generated to properly align that item. Thus, the initial character positions of a group
item are never implicit FILLER.

¢ Special considerations apply when aligning an elementary data item that is described with an
OCCURS clause, is subordinate to a group item described with an OCCURS clause, or both. In
these cases all occurrences of the data item must be aligned uniformly.

— The first occurrence of the item is aligned to the required storage boundary (if the
elementary item also begins a containing table’s first occurrence, that table’s first occur-
rence is defined to begin at the first character position of the item). When the aligned
item is itself a table, the first occurrence will end on the appropriate storage boundary

(byte, word, double-word) and the remaining occurrences follow without additional
FILLER bytes.

— When the aligned item (or table of aligned items) belongs to a higher level table, further
adjustment might be necessary. If the elementary item is word-aligned and the contain-
ing group occurrence consists of an odd number of character positions, the compiler in-
serts one byte of FILLER after each group occurrence. If the item is double-word aligned:
and the size of the containing group occurrence is not some multiple of four, the compiler
inserts the appropriate amount of FILLER (1, 2, or 3 bytes) after each group occurrence.
In all cases, inserted bytes are not part of the containing occurrences themselves, but are
included in group items that contain the complete table. The preceding sequence is
repeated for each higher level table.

5-15

Data Division
Working-Storage or Linkage Section

The following example illustrates alignment as it applies to multiple OCCURS clauses:

01 master.
02 table-1 OCCURS 5 TIMES.
03 table-2 OCCURS 5 TIMES.
04 table-3 OCCURS 5 TIMES.

05 item—-a PIC 999 COMPUTATIONAL.
05 item-b PIC X.
04 item-3 PIC X.
03 item-2 PIC X.

Master appears to occupy this many bytes:
(((2+1)*5+1)*5+1)* 5 = 405 bytes

but it actually occupies
((2+1+1)*5+1+1)*5+1+1)*5 = 560 bytes

due to the alignment requirement for the COMPUTATIONAL item.

Implicit FILLER bytes must be accounted for in several situations. These bytes are counted when
determining the size of group items that contain them. Thus, when a data item contains implicit
FILLER bytes, the character positions of the bytes are included in the allocation requirements of
the item. Also, implicit FILLER bytes must be included among the character positions redefined if
a containing group item appears as the object of a REDEFINES clause.

Automatic alignment or requested alignment of data items described by redefinition of character
positions (through use of the REDEFINES clause) follows the rules described in the preceding
paragraphs. However, when the first data item allocated by a redefinition requires word or double-
word alignment, the data item being redefined must begin on the appropriate boundary. In other
words, SCREEN COBOL does not permit redefinitions that require insertion of implicit FILLER
bytes before the first data item of the redefinition. Any bytes inserted at other places within the
redefinition are counted when determining the redefinition size.

USAGE Clause

The USAGE clause defines how a data item is stored within the Tandem system, and normally af-
fects the number of character positions used. The USAGE clause does not restrict how the item is
used; however, some statements in the Procedure Division require certain usages for their
operands.

The syntax of the USAGE clause is:

{ USAGE [IS 1 1 comp
COMPUTATIONAL
DISPLAY

where
COMP or COMPUTATIONAL
indicates a numeric data item that is suitable for computations.
DISPLAY

indicates a data item value that is stored in the standard data format as a sequence of
ASCII characters.

If the clause is omitted, the default is DISPLAY.

5-16

Data Division
Working-Storage or Linkage Section

A USAGE clause can be written at any level. A USAGE clause written at the group level applies to
each elementary item in the group. The usage of an elementary item cannot contradict the USAGE
clause of a group to which the item belongs. Note, however, that a group item is always considered
to be alphanumeric by SCREEN COBOL; thus, the USAGE clause of a group item might not always
apply to the manipulation of the item.

A COMPUTATIONAL item has a value suitable for computations and, therefore, must be numeric.
The PICTURE string of the item can have only the symbols 9, S, V, and P. Two to eight bytes are
selected for a COMPUTATIONAL item, depending on the number of 9 symbols in the PICTURE as
follows:

Number of 9 symbols Size of Data Item

1to 4 2 bytes
5to 9 4 bytes
10 to 18 8 bytes

Declaration of a group item as COMPUTATIONAL implies that all subordinate items in the group
are COMPUTATIONAL. The group item itself cannot be used in computations.

A DISPLAY item has a value that is stored in the standard data format as a sequence of ASCII
characters. The characteristics of the item are given in the PICTURE string.

If the PICTURE string of a numeric item contains an S symbol, the item has an operational sign. If a
SIGN IS SEPARATE clause is not specified, the operational sign is maintained as part of either the
leading or trailing digit; the affected character position will contain a non-digit ASCII character.

VALUE Clause

A VALUE clause specifies an initial value of a Working-Storage item or the value of a level 88
condition-name.

The syntax of the VALUE clause is:

Format 1 (data initialization)
VALUE [IS 1 Lliteral
where

literal

is the initial value to be assigned to a data item. The value can be a figurative constant.

—

517

Data Division
Working-Storage or Linkage Section

Format 2 (condition name entries)

88 condition—-name VALUE [IS 1 }
VALUES [ARE 1

value-1 { THROUGH value-2
THRU

where
condition-name
is the name of the condition value.
value-1

is either a single literal value or the first of a range of literal values tested by the condi-
tion.

value-2

is the final literal value in a range of literal values tested by the condition. The value
must be greater than value-1.

VALUE CLAUSE FOR DATA INITIALIZATION. Format 1 of the VALUE clause is used to assign an
initial value to a Working-Storage item at the time the program is entered. The VALUE clause
must not conflict with other clauses in the data description of an item, or in the data descriptions of
other items within the hierarchy. The following rules apply:

¢ If an item is numeric, all literals of the VALUE clause must be numeric and must be in the range
of values set by the PICTURE string. Truncation of nonzero digits is not allowed. A signed
numeric literal only applies to a signed numeric PICTURE. Initialization follows standard align-
ment rules.

e If an item is nonnumerie, all literals of the VALUE clause must be nonnumeric and must not ex-
ceed the size of the PICTURE. JUSTIFIED clauses are ignored.

o The VALUE clause is not permitted in a data description entry that meets the following
criteria:

— The entry contains an OCCURS or REDEFINES clause.
— The entry is subordinate to an entry containing an OCCURS or REDEFINES clause.
— The entry has a variable size due to an OCCURS clause in a subordinate entry.
e If the VALUE clause is used for initialization at the group level, the literal must be a figurative
constant or a nonnumeric literal. The group area is initialized without consideration for the in-
dividual elementary or other group items within this group. Thus, the group should not have

items with descriptions that include JUSTIFIED or USAGE IS COMPUTATIONAL clauses. A
VALUE clause cannot appear at the subordinate levels within this group.

5-18

Data Division
Working-Storage or Linkage Section

The following example illustrates the VALUE clause used for data initialization:

WORKING-STORAGE SECTION.

01 main-heading.

05 FILLER PIC XX VALUE SPACES.

05 FILLER PIC X(8) VALUE "DIVISION".
05 FILLER PIC XX VALUE SPACES.

05 FILLER PIC X(6) VALUE "REGION'".

01 counters.
05 no-of-reads PIC 9(5) VALUE ZEROS.
05 no-of-writes PIC 9(5) VALUE ZEROS.

VALUE CLAUSE FOR CONDITION-NAME ENTRIES. Format 2 of the VALUE clause is used with
condition-name entries. A data item assigned in the Data Division using the special level number 88
is a condition-name; the item under which the 88 appears is the condition variable. A value or a
range of values can be defined within this variable for testing. Each entry under a condition
variable includes a condition-name with a VALUE clause specifying a value or a range of values for
that condition-name.

All condition-name entries for a particular condition variable must immediately follow the entry
describing that variable. A condition-name can be associated with any data description entry, even
if specified as FILLER, with the following exceptions:

* A condition-name cannot be associated with a level 66 or 77 item.

* A condition-name cannot be associated with a group item with a JUSTIFIED or USAGE IS
COMPUTATIONAL clause.

A single value, several values, or a range of values can be given for a condition-name entry.

The following example illustrates single values for condition-names:

05 return-code PIC 99. condition variable
88 end-of-file VALUE 01.
88 error-on-read VALUE 02. condition-names
88 permanent-error VALUE 03.
88 error-on-write VALUE 04.

A statement using one of these condition-names might look like this:

IF end-of-file,
PERFORM end-up-routine.

The following example illustrates a range of values for a condition-name:

05 tax-code PIC 99.
88 tax-range VALUES ARE 00, 03, 07 THROUGH 11.

A statement testing tax-code for being in the range of 00, 03, 07, 08, 09, 10, 11 might look like
this:

IF NOT tax-range
PERFORM tax—-error-routine.

519

Data Division
Screen Section

SCREEN DESCRIPTION ENTRY

A screen description entry declares the characteristics of a screen format. The entry is used in the
Screen Section of the SCREEN COBOL program.

A screen can be composed of any combination of literal fields, input fields, output fields, input-
output fields, and overlay areas. Each of these items can be combined into logically related groups.
A group declaration provides easy reference to related fields, but it is not required.

The two types of screens are: base and overlay.

¢ Base screen—A base screen can be displayed independently. This type of screen can contain
overlay areas upon which overlay screens can be displayed.

* Qverlay—An overlay screen is displayed in an overlay area of a base screen. This allows a base
screen (with, for example, a constant header section) to be used with various overlay screens.

The structure of the screen description entry is similar to a data description entry. The screen
description entry is a series of declarative sentences, each beginning with a level number to indi-
cate the hierarchy. A higher number indicates that the entry is subordinate to the previous entry.
The 01 level is the highest statement in the paragraph. Subordinate entry levels can be any number
from 02 through 49.

A skeleton of the screen description entry is shown in Figure 5-4.

SCREEN SECTION.

01 base-screen-name [BASE 1 [SIZE clause 1
[input-control-character clauses 1 <--- For conversational
mode only.
[field-characteristic clauses 1

screen group .
screen field
[screen overlay area 1

[01 overlay-screen-name OVERLAY SIZE clause [field-
characteristic clauses]

{screen group }
screen field

Figure 5-4. Screen Description Entry Skeleton

Level 01 introduces a screen description entry. This level defines the name of the screen, a name by
which the screen is known throughout the program; defines the size of the screen; and indicates
whether the screen is a base or overlay screen. The intermediate levels define groups of items. The
highest numbered levels define the characteristics of the screen fields.

The screen description can have the following parts: screen name, screen overlay area, screen

group, and screen field. Each of these parts defines a specific attribute of the screen. The following
example illustrates a screen description entry.

5-20

SCREEN SECTION.

01 ENTER-AMT BASE SIZE
05 FILLER AT
05 FILLER AT
05 FILLER AT
05 FILLER AT
05 LINE1-HEADER AT
05 OVER1 AREA AT
01 OVER1-SCREEN OVERLAY
05 LINE1-OVERLAY AT

Data Division
Screen Section

12, 80.
1, 12 VALUE "ORDER DETAIL ENTRY'".
2, 1 VALUE "CUSTOMER".
4, 1 VALUE "ITEM".
4, 10 VALUE "QUANTITY".
5, 1 VALUE '"MENU LIST".
6, 1 SIZE 10,80.
SIZE 10,80.
2 10 VALUE "1 DISPLAY PREVIOUS ORDER'".

The input control character clauses are available for terminals in conversational mode. These
clauses define the specific input control characters to be used during execution of an ACCEPT
statement. The input control character clauses, which are referenced in text and described in detail

later in this section, are summarized

in Figure 5-5.

[BASE 1

01 screen—-name
OVERLAY

[ABORT-INP

END~-OF-IN

FIELD-SEP
GROUP-SEP

RESTART-I

[SIZE clause 1
SIZE clause
ut [I8 1 "nonnumeric-literal"]
numeric-literal
[,numeric-literal 1
OFF
PUT [IS 1] "nonnumeric-literal"]
numeric-literal
[,numeric-literal 1
OFF
ARATOR [IS 1 "nonnumeric—-literal"]

numeric-Lliteral
OFF

"nmonnumeric-literal"
numeric-literal
OFF

ARATOR [IS 1

NPUT [IS 1] "nmonnumeric-Literal"
numeric-Lliteral
[,numeric-literal 1

OFF

Figure 5-5.

Input Control Character Clauses

5-21

Data Division
Screen Section

A number of field characteristic clauses are available to define the characteristics of screen fields.
These clauses, which are referenced in text and described in detail later in this section, are sum-
marized in Figure 5-6.

Llevel-num field-name [AT 1 line-spec, column-spec
FILLER REDEFINES field-name-2
[ADVISORY 1]

[FILL nonnumeric-Lliteral 1]

literal-1 THROUGH literal-2|! ,...
THRU ’

[LENGTH [MUST BE)

[mnemonic-name 1 ...

MUST [BE 1 literal-1 THROUGH literai-2 .o
THRU

[OCCURS lines-phrase [columns-phrase 1]
columns-phrase [lines-phrase 1

[DEPENDING [ON 1 data-name-1]]

[fp1cC [IS 1 character-string
[\PICTURE

[PROMPT screen-field 1

RECEIVE [FROM 1 | ALTERNATE
ALTERNATE OR TERMINAL
TERMINAL
TERMINAL OR ALTERNATE

L
[REDEFINES field-name-2 1]

[SHADOWED [BY] data-name-1 1

-

T0 data-name-1
FROM
L USING
" UPSHIFT INPUT
OUTPUT
1-0

INPUT-0UTPUT

[USER [CONVERSION 1 numeric-literal 1

[VALUE nonnumeric—-Lliteral 1

WHEN ABSENT} CLEAR}
BLANK SKIP
[[WHEN 1 FULL TAB }
LOCK

Figure 5-6. Screen Field Characteristic Clauses

5-22

Data Division
Screen Section

Base Screen

A base screen is a screen that is initially displayed on the terminal and is used to establish the current
screen for each program unit. In contrast to an overlay screen that is displayed in the overlay area of
a base screen, the base screen can be displayed independently.

The base screen syntax is:

01 screen-name [BASE] [SIZE lines, cols 1
[field-characteristic-clause 1
where
screen-name
is the name given to the base screen.
SIZE lines, cols

indicates the size of the screen. The number of lines and columns can each range from 1
through 255. The size can be no larger than the physical limits of the terminal screen for
base screens.

If this option is omitted, the default is 24 lines, 80 columns.
field-characteristic-clause

is one or more clauses that define default characteristics for all fields subordinate to the
screen unless these characteristics are explicitly overridden for a particular group or
field. The clauses that can appear here are:

FILL

mnemonic-name
UPSHIFT

USER CONVERSION
WHEN ABSENT
WHEN BLANK
WHEN FULL

5-23

Data Division
Screen Section

Screen Overlay Area

A screen overlay area defines an area of a base screen within which an overlay screen can be
displayed. When overlay screens are used in a program, a screen overlay area must be defined in
the base screen description entry.

The screen overlay area syntax is:

level-no area-name AREA AT line, col SIZE lines, cols
where

level-num

is a numeric literal that indicates the hierarchy. The value must be within the range of 2
through 49. Subordinate entries are not allowed.

area-name
is the name given to the screen overlay area.

AREA AT Lline, col

specifies the position of the upper left-hand corner of the area relative to the boundaries
of the screen.

SIZE lines, cols

determines the number of lines and columns included in the area. The entire area must lie
within the boundaries of the base screen, and no fields can overlap the area.

For T16-6510 terminals, the cols value must be the same as the number of columns
declared for the base screen.

5-24

Data Division
Sereen Section

Overlay Screen
An overlay screen is a screen that is displayed in an overlay area of a base screen.

The overlay screen syntax is:

01 screen—-name OVERLAY SIZE lines, cols
[field-characteristic-clause 1]
where
screen-name
is the name given to the overlay screen.
SIZE lines, cols

indicates the size of the overlay screen. The size can be no larger than the size of the
overlay area into which it is to be placed. For the T16-6510, the width must be exactly the
same as the base screen.

field-characteristic-clause

is a clause that defines default characteristics for all fields subordinate to the screen
unless explicitly overridden for a particular group or field. The clauses that can appear
here are:

FILL

mnemonic-name
UPSHIFT

USER CONVERSION
WHEN ABSENT
WHEN BLANK
WHEN FULL

5-25

Data Division
Screen Section

Screen Group

A screen group is a combination of fields that are grouped together to provide collective references
to the subordinate fields and to define the common characteristics of the fields. A screen group can
contain subordinate groups.

The screen group syntax is:

level-num group-name [AT] Lline, column
FILLER

[field-characteristic—-clause 1

screen-field .
screen—-group

where
level-num

is a numeric literal that indicates the hierarchy. The value must be within the range of 2
through 48.

group-name
is the name given to the group.
FILLER
is a keyword that takes the place of group-name.
AT Line, column

specifies the home position of the group relative to the boundaries of the screen. The line
number and column number must be within the size specified for the screen. The posi-
tions of subordinate fields can be given relative to the home position; this allows you to
move groups easily.

If this clause is omitted, group relative addressing is not allowed in the group.
field-characteristic clause

is one or more clauses that define default characteristics for all fields subordinate to the
group unless these characteristics are explicitly overridden for a particular field. The
clauses that can appear here are:

FILL

mnemonic-name
UPSHIFT

USER CONVERSION
WHEN ABSENT
WHEN BLANK
WHEN FULL

5-26

Data Division
Screen Section

Screen Field
A screen field is a single elementary item.

The screen field syntax is:

level-num {field—name} [field-characteristic-clause 1...
FILLER

where
level-num
is a numeric literal within the range of 2 through 49 that indicates the hierarchy.
field-name
is the name given to the field.
FILLER
is a keyword that takes the place of field-name. FILLER must be used for a literal field.
field-characteristic-clause

is one or more clauses that define a characteristic of the field. The clauses that can appear
here depend on the field type.

The four types of screen fields are determined by the data association clauses TO, FROM, and
USING. Screen field types and the clauses that can be used with each are listed in Table 5-1.

527

Data Division
Screen Section

Table 5-1.

Screen Types and Allowable Field Characteristic Clauses

Screen Type

Determined By

Required
Clauses

Optional
Clauses

Literal

No TO, FROM, or
USING clause

AT
VALUE

mnemonic-narme

Input

TO clause only

AT or REDEFINES
PICTURE

FILL

LENGTH
mnemonic-name
MUST BE
OCCURS
RECEIVE
SHADOWED
UPSHIFT

USER CONVERSION
VALUE

WHEN ABSENT
WHEN BLANK
WHEN FULL

Output

FROM clause only

AT or REDEFINES
PICTURE

ADVISORY

FILL
mnemonic-name
OCCURS
SHADOWED
UPSHIFT

USER CONVERSION
VALUE

Input-Output

USING clause or
TO and FROM clause

AT or REDEFINES
PICTURE

ADVISORY

FILL

LENGTH
mnemonic-name
MUST BE
OCCURS
RECEIVE
SHADOWED
UPSHIFT

USER CONVERSION
VALUE

WHEN ABSENT
WHEN BLANK
WHEN FULL

5-28

Data Division
Screen Section

Input Control Character Clauses

Input control character clauses are for terminals operating in conversational mode. These clauses
define the characters used during the execution of an ACCEPT statement to perform the following:

¢ delimit a screen field or a group of screen fields described with an OCCURS clause
¢ terminate or abort the processing of an ACCEPT statement
¢ restart the processing of an ACCEPT statement

These clauses, which are recognized only by terminals in conversational mode, are described in the
following paragraphs.

ABORT-INPUT CLAUSE. The ABORT-INPUT clause defines the characters used to terminate the
processing of the current ACCEPT statement with an abort termination status. The ABORT-
INPUT clause is recognized only by terminals operating in conversational mode.

The syntax of the ABORT-INPUT clause is:

ABORT-INPUT [IS 1 "nonnumeric-Lliteral"
numeric-literal [, numeric-literal 1
OFF

where

"nonnumeric-Lliteral"
is one or two alphanumeric characters enclosed in quotation marks.
numeric-literal

is one or two integers. Each integer must be within the range of 0 through 255. numeric-
literal is the decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the 8-bit
pattern (two numeric literals convert to a 16-bit pattern) as a non-keyboard character.

OFF
specifies that ABORT-INPUT is not available for the current screen.

If this clause is omitted, the abort input characters are @ @.

If used, the ABORT-INPUT clause must be specified at the 01 screen level. A character defined for
ABORT-INPUT cannot be specified for another input control character.

If the abort input character is entered during an ACCEPT statement ne values in the Working-
Storage Section are changed by that ACCEPT statement.

5-29

Data Division
Screen Section

END-OF-INPUT CLAUSE. The END-OF-INPUT clause defines the characters used to indicate the
end of the last input field for the current ACCEPT statement. The END-OF-INPUT clause is
recognized only by terminals operating in conversational mode.

The syntax of the END-OF-INPUT clause is:

END-OF-INPUT [IS 1] "nonnumeric-literal"
numeric-Lliteral [, numeric-literal]
OFF

where

“"nonnumeric-literal"
is one or two alphanumeric characters enclosed in quotation marks.

numeric-Lliteral

is one or two integers. Each integer must be within the range of 0 through 255. numeric-
literal is the decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the 8-bit
pattern (two numeric literals convert to a 16-bit pattern) as a non-keyboard character.

OFF
specifies END-OF-INPUT is not available for the current screen.

If this clause is omitted, the end of input characters are //.

If used, the END-OF-INPUT clause must be specified at the 01 screen level. A character defined for
END-OF-INPUT cannot be specified for another input control character.

5-30

Data Division
Screen Section

FIELD-SEPARATOR CLAUSE. The FIELD-SEPARATOR clause defines the character used to
separate one screen field from another during an ACCEPT statement. If a screen field description
includes an OCCURS clause, each occurence is treated as one field. The FIELD-SEPARATOR
clause is recognized only by terminals operating in conversational mode.

The syntax of the FIELD-SEPARATOR clause is:

FIELD-SEPARATOR [IS] "nonnumeric-literal
numeric-literal
OFF

where

"nonnumeric-Lliteral"
is one alphanumeric character enclosed in quotation marks.
numeric-literat

is one integer that must be within the range of 0 through 255. numeric-literal is the
decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the 8-bit
pattern as a non-keyboard character.

OFF
specifies that FIELD-SEPARATOR is not available for the current screen.

If this clause is omitted, the field separator character is a comma (,).

If used, the FIELD-SEPARATOR clause must be specified at the 01 screen level. The character
defined for FIELD-SEPARATOR cannot be specified for another input control character.

In the following example, the FIELD-SEPARATOR clause defines S as the keyboard character to
be used.

SCREEN SECTION.

01 EMP-RECORD-SCREEN BASE SIZE 24, 80
FIELD-SEPARATOR IS "S"

5-31

Data Division
Screen Section

GROUP-SEPARATOR CLAUSE. The GROUP-SEPARATOR clause defines the character used dur-
ing the processing of an ACCEPT statement to indicate the following:

o the last item in an OCCURS clause
» the end of a field, if the field preceding the group separator has no multiple occurences.

The GROUP-SEPARATOR clause is recognized only by terminals operating in conversational
mode.

The syntax of the GROUP-SEPARATOR clause is:

GROUP-SEPARATOR [IS 1 ""nonnumeric—-literal"
numeric-literal
OFF

where

"nonnumeric-literal"
is one alphanumeric character enclosed in quotation marks.
numeric-literal

is one integer that must be within the range of of 0 through 255. numeric-literal is the
decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the 8-bit
pattern as a non-keyboard character.

OFF
specifies that GROUP-SEPARATOR is not available for the current screen.

If this clause is omitted, the group separator character is a semicolon (;).

If used, the GROUP-SEPARATOR clause must be specified at the 01 screen level. The character
defined for GROUP-SEPARATOR cannot be specified for another input control character.

5-32

Data Division
Screen Section

RESTART-INPUT CLAUSE. The RESTART-INPUT clause defines the characters used to restart
input processing during the current ACCEPT statement. The RESTART-INPUT clause is recog-
nized only by terminals operating in conversational mode.

The syntax of the RESTART-INPUT clause is:

RESTART-INPUT [IS 1] "nonnumeric-literal"
numeric-literal [, numeric-literal 1]
OFF

where

"nonnumeric-Lliteral"
is one or two alphanumeric characters enclosed in quotation marks.
numeric-Lliteral

is one or two integers. Each integer must be within the range of 0 through 255. numeric-
literal is the decimal value of an 8-bit binary number.

If a process is responding in place of a terminal, SCREEN COBOL interprets the-8 bit
pattern (two numeric literals convert to a 16-bit pattern) as a non-keyboard character.

OFF
specifies that RESTART-INPUT is not available for the current screen.

If this clause is omitted, the restart input characters are !l

If used, the RESTART-INPUT clause must be specified at the 01 screen level. A character defined
for RESTART-INPUT cannot be specified for another input control character.

If the current ACCEPT statement is restarted, the data entered before the restart input characters
does not change the values of the associated data items in working-storage. If data is entered on the
same line following the restart input characters, the data is ignored.

The following example illustrates the input control character clauses:
SCREEN SECTION.
01 CUSTOMER-REC-SCREEN BASE SIZE 24, 80
FIELD-SEPARATOR ","

* Documents the default field separator character.

GROUP-SEPARATOR OFF

ABORT-INPUT AT
* Defines the keyboard abort input characters as Al

END-OF-INPUT 64, 64
* Defines the keyboard end of input characters as @ @.

RESTART-INPUT nan

* Defines the keyboard restart input character as 2.

5-33

Data Division
Screen Section
Field Characteristic Clauses

Field characteristic clauses specify various characteristics of screen fields. These clauses are
described in the following paragraphs.

ADVISORY CLAUSE. The ADVISORY clause identifies a single output or input-output field as the
one to be used for informational and error messages generated by the TCP.

The syntax of the ADVISORY clause is:

ADVISORY

Every base screen should have an advisory field. The field should be alphanumeric with a size of at
least 35 characters. Error messages that appear in this field are described in Appendix A.

An overlay screen must not have an advisory field.

For terminals in conversational mode, an advisory field must be defined for the screen or the stand-
ard advisory messages will not appear on the terminal.

AT CLAUSE. The AT clause specifies the location of the field.

The syntax of the AT clause is:

AT line-spec, column-spec
where
line-spec
specifies the line in which the field begins.
column-spec
specifies the column in which the field begins.
Both line-spec and column-spec can appear in the following forms:

numeric-literal This form represents the line or column relative to the
beginning of the screen.

* [+ numeri c—Literal] This form represents a location relative to the current
- numeric-literal position. The current position begins at line 1, column 1
and is advanced to the first available position following a

field after that field is declared.

d [+ numeric-literal This form represents a location relative to the home
- numeric-litera L] position of the group containing the field declaration.
The home position is the first data character of the field

and is specified for the group with the AT clause.

Either the AT or the REDEFINES clause must be included in every screen field declaration. If both
clauses appear in the screen field declaration, they must both refer to exactly the same position.

5-34

Data Division
Screen Section

FILL CLAUSE. The FILL clause declares a padding character for the field. When output to the field
does not fill the full width specified, the padding character fills in to the right of the field.

The syntax of the FILL clause is:

FILL nonnumeric-literal
where
nonnumeric-literal
is one character long.

If this clause is omitted, the fill character is SPACES.

On input, the trailing FILL characters are removed from the input string before the input is
analyzed for errors and converted. If a TO clause contains a numeric field, the leading and trailing
FILL characters are removed before the input is processed. FILL characters embedded within a
field are not removed.

LENGTH CLAUSE. The LENGTH clause specifies the acceptable number of characters that can be
entered into a screen input field. The number of characters input is determined before conversion,
but after the fill characters are removed.

The syntax of the LENGTH clause is:

LENGTH [MUST BE 1 literal-1 [;THROUGH} literat-z]
THRU

where
literal-1 and literal-2

are numeric values from 0 through the field size. If literal-2 is included, its value must be
greater than lLiteral-1.

The maximum value allowed by the compiler is 255.

If this clause is omitted, any number of characters are allowed within the constraints of the
picture.

The following example specifies that FLD1 is optional (length can be 0), but must be five characters
long if it is entered; FLDZ2 is required, but 1 through 5 characters can be entered.

04 FLD1T AT 1, 1 TO X PIC A9999 LENGTH 0, 5.
04 FLD2 AT 2, 1 TO Y PIC ZZZZ9 LENGTH 1 THRU 5.

When a field is optional and no characters are input, the value of the associated data item is changed
by the ACCEPT statement according to the WHEN ABSENT/BLANK field characteristic clause.

5-35

Data Division
Screen Section

mnemonic-name CLAUSE. The mnemonic-name clause allows display attributes to be specified for
a screen field. The mnemonic-name is associated with the attributes by a declaration in the

SPECIAL-NAMES paragraph of the Environment Division.

The syntax of the mnemonic-name clause is:

mnemonic-name

The display attributes combined with the default values for unspecified attributes determine the
display attributes for the field when the field is displayed initially; display attributes can be
restored by a RESET statement, as described in Section 6.

The default value for the protection attribute depends on the screen field type. If the field is an
input or input-output field, the default is UNPROTECTED. If the field is an output field, the default
is PROTECTED.

MUST BE CLAUSE. The MUST BE clause specifies the acceptable values for an input screen field.

The syntax of the MUST BE clause is:

MUST [BE 1 Literal=1 {THROUGH} literal-2
THRU

where
Literal-1 and Lliteral-2
are numeric literals for numeric items and nonnumeric literals for alphanumeric items.

Any figurative constant except ALL can be specified.

The literals used in this clause must match for the screen field and the associated data item or an
error is generated. For example, if a screen field receives alphanumeric character data, that data
must go into a data item that is defined with a nonnumeric PICTURE clause.

Numeric items are compared numerically; alphanumeric items are compared left to right according
to the ASCII character set. For example:

An input string 9 is less than 10 if the screen PICTURE clause is numeric.

An input string “9” is greater than “10” if the screen PICTURE clause is nonnumeric.
When the MUST BE clause is processed a numeric literal is scaled to match the PICTURE clause
defined for the associated data item. For example, if a data item is defined with a PICTURE 999.99

and the value 100 is received from the terminal, the input value is scaled two places and stored into
the data item as 100.00.

5-36

Data Division
Sereen Section

OCCURS CLAUSE. The OCCURS clause specifies multiple occurrences of screen fields. This clause
can define a column, a row, or a rectangular array of fields. Each occurrence of the field is identical
except for location, and each is associated with a particular occurrence of a Working-Storage data
item having an OCCURS clause.

The syntax of the OCCURS clause is:

OCCURS lines—-phrase [columns-phrase 1
columns-phrase [lines-phrase]

[DEPENDING [ON 1 data-name-1 1
where columns-phrase is
IN literal-1 COLUMNS {OFFSET } { literal-k > ,...
SKIPPING
where lines-phrase is
ON Lliteral-2 LINES [SKIPPING literal-3 1
where

IN COLUMNS, ON LINES

determines the number of field occurrences, the location of each field occurrence, and the
ordering of the field occurrences.

literal-1

is a numeric literal that specifies the number of field occurrences on a line.
literal-k

is a numeric literal that specifies the horizontal spacing of the field columns.

When OFFSET is specified, literal-k is the number of spaces between the first column of
a field occurrence (literal-1) and the first column of the next field occurrence (literal-1 +1)
on the same line.

When SKIPPING is specified, literal-k is the number of spaces between the last column
of a field occurrence (column k) and the first column of the next field occurrence (column
k +1) on the same line. There can be at most (literal-1) — 1 separations. If there are fewer
separations, the last literal-k is used repeatedly. No separation is required after the last
literal.

literat-2
is a numeric literal that specifies how many lines contain occurrences.
literal-3

is a numeric literal that specifies how many lines are skipped between each line that con-
tains occurrences of the field. —

5-37

Data Division
Sereen Section

DEPENDING
indicates that the number of occurrences is variable.
data-name-1

is the unsubscripted name of an elementary numeric item where the current number of
occurrences is defined. This item must be defined in the Working-Storage Section or
Linkage Section. On input (execution of an ACCEPT statement), this item is set. On output
(execution of a DISPLAY statement), this item is used to define the number of values
output.

The following conventions apply to the OCCURS clause:

5-38

When the IN phrase is omitted, a single occurrence on each line is indicated.

The order of the phrases determines the order in which the occurrence numbers are assigned to
the occurrences.

— If the ON phrase is specified first, the occurrences are numbered sequentially from line
to line down a column.

— If the IN phrase is specified first, the occurrences across a line are numbered sequentially.

A screen field described with an OCCURS clause and associated with a data item by a TO,
FROM, or USING clause, must define the same maximum number of occurrences in the
OCCURS clause as is specified in the associated data item OCCURS clause. The following exam-
ple is a working storage data item associated with the screen field.

WORKING-STORAGE SECTION.
01 GAME-SCHE-REC.

05 TABLE-A PIC X(8) OCCURS 4 TIMES.
SCREEN SECTION.

05 FIELD-A AT 6, 10 PIC X(8) USING TABLE-A
OCCURS IN 4 COLUMNS SKIPPING 1.

If the data item named in the TO, FROM, or USING clause has subordinate items and contains
multiple OCCURS clauses, the maximum number of occurrences for each OCCURS clause must
match the maximum number of occurrences specified in the corresponding screen field
descriptions.

A single screen description can have any number of variable length tables. The restriction of
one per structure that applies to the Working-Storage Section and Linkage Seection does not
apply to screens.

A screen field that is described with an OCCURS clause must be referenced without a subscript
when the field is used as one of the screen identifiers in an ACCEPT statement. In other
statements where screen identifiers can be used, a screen field that is described with an
OCCURS clause can appear with or without a subscript. A reference without a subscript refers
to all occurrences of the table. A reference that includes a subscript refers only to the occur-
rence selected by the value of the subscript.

Data Division
Sereen Section

When a screen field described with a DEPENDING phrase is referenced in an ACCEPT state-
ment, part of the input processing is the determination of the size of the table —the value to be
stored into data-rname-1. All occurrences of the field are examined and data-name-1 is set to the
occurrence number of the last occurrence that was entered. If the field is also a required field, all
preceding occurrences of the field must also be entered. Failure to do this causes a PREVIOUS
FIELD MISSING error message to be displayed for the terminal operator.

Several tables on the same screen might have the same data-name-1 in their DEPENDING
phrase. If the tables are referenced in the same ACCEPT statement, the value of data-name-1 is
set to the maximum of the values that would be computed when considering each table sepa-
rately. If this causes the value of data-name-1 to be set greater than the highest supplied occur-
rence of a table whose fields are required, the input is in error and a REQUIRED FIELD
MISSING or EARLIER FIELD MISSING (depending on the order of the fields) message is
displayed for the terminal operator.

When a field described with a DEPENDING phrase is referenced without a subscript in any
statement other than an ACCEPT statement, the reference is to all occurrences within the cur-
rent size of the table, as specified by the value in data-name-1.

The following example illustrates the OCCURS clause:

05 FLD-A AT 6, 10 PIC X(8) FROM TBL-A
OCCURS IN 4 COLUMNS OFFSET 10.

An equivalent OCCURS clause would be:

OCCURS IN 4 COLUMNS SKIPPING 2.

PICTURE CLAUSE. The PICTURE clause defines the format in which the data appears on the ter-
minal screen.

The syntax of the PICTURE clause is:

PIC [IS 1 character-string
PICTURE

where
character-string

can take the same form as described in the data description entry with the following
exceptions:

The symbol S cannot appear in the picture.

Numeric edited and alphanumeric edited forms are allowed.

Generally, input from a screen field is performed in a manner that is inverse to normal editing func-
tions implied by the picture. The input editing always correctly reconverts a value using the same
picture for input and output.

5-39

Data Division
Screen Section

The input editing process is different for the two classes of the input item:

e Alphanumeric input—Only the left-hand portion of the picture corresponding to the actual
number of input characters must be matched. The remaining portion of the picture is ignored.

¢ Numeric input —Leading and trailing spaces and fill characters are first removed irom the input
data string. Then an attempt is made to match each character in the picture with a character in
the input data, proceeding from right to left. If a match cannot be made, the data is considered to
be in error.

Some picture symbols are special in that the positions they represent might be omitted from the
input data string. Symbols that can be included in this category are Z, comma, multiple plus and
minus signs, CR, DB, and multiple currency signs. If a mismatch occurs with an input character of
this type, and if a space would be acceptable at that point in the input string, the data is not con-
sidered in error; the picture symbol is replaced by a space and the editing attempis to match the
input character with the next picture symbol.

PICTURE Character-String Symbols. Each symbol that is used to describe a screen data item has a
specific function. The symbols are as follows:

A

5-40

represents a character position for a letter of the alphabet or a space character. If the
character is not a letter or a space, it is flagged as an error.

represents a character position where a space must occur in the input. The space is deleted
during conversion into its associated data item. This character should not be used as the
rightmost character of a numeric picture because trailing spaces are removed before con-
version.

indicates an implicit decimal position (with value zero) to be used in aligning the decimal
point in the numeric result. Refer to the description of the V symbol for cautions.

indicates the decimal point location in a numeric item in which the termina! operator will
not enter an explicit decimal point. The alignment takes place from the last character
entered in the field by the terminal operator. This symbol should be used with care
because the variable length nature of terminal operator input could cause unintended
alignments to occur. It is recommended that the LENGTH clause be used to require full
length entry whenever a picture with implicit decimal places and potentially absent posi-
tions (for example, positions defined with the Z symbol) is used.

represents a character position that can have any character from the ASCII character set.

represents a position that must be a digit or must be a space if no digits appear to the left
of the symbol. The symbol is replaced by a space during editing only when it is one of a set
of multiple Z symbols. A space is equivalent to a zero for purposes of conversion.

represents a character position that must be a digit.

represents a character position where a zero must appear. The zero is deleted during con-
version into the associated data item.

represents a character position where a right slant must appear. The / is deleted during
conversion into the associated data item.

represents a character position where a comma must appear if any digits appear to the left
of it. If no digits appear to the left of the symbol, the character must be a space (or other
floating insertion character). The comma is deleted during conversion into the associated
data item.

Data Division
Screen Section

represents a character position where a period must appear and indicates decimal point
alignment. The period is deleted during conversion into the associated data item.

+ represents a position where either a plus or a minus sign must appear. Multiple plus signs
represent positions that must contain some number of digits preceded by a single plus sign
or a single minus sign, preceded by spaces. The symbol is replaced by a space during
editing only when it is one of a set of multiple plus signs.

- represents a position where either a space or a minus sign must appear. Multiple minus
signs represent positions that must contain some number of digits preceded by an optional
minus sign, preceded by spaces. The symbol is replaced by a space during editing only
when it is one of a set of multiple minus signs.

CR represents two positions that must contain the characters CR, or spaces. These symbols
are replaced by spaces during editing if the value is nonnegative.

DB represents two positions that must contain the characters DB, or spaces. These symbols
are replaced by spaces during editing if the value is nonnegative.

* represents a position that must be a digit or an asterisk. If the position is a digit, the digit
must be to the left of all asterisks.

$ represents a position where a currency symbol must appear. Multiple currency symbols
represent positions that must contain some number of digits preceded by a currency sym-
bol, preceded by spaces. The symbol is replaced by a space during editing only when it is
one of a set of multiple currency symbols.

Item Size. The size of a data item is determined by the symbols of its PICTURE string. The
character-string symbols DB and CR are each counted as two character positions. Symbols V and P
are not counted. All others are counted as one character position.

PROMPT CLAUSE. The PROMPT clause associates a named screen item for output with a screen
field for input. During the processing of an ACCEPT statement the contents of a named screen item
can be displayed (to assist the terminal operator) before the screen input is read.

The syntax of the PROMPT clause is:

PROMPT screen-field
where
screen-field
is the name of a previously defined screen field. The contents of screen-field can be
described in the Screen Section with a VALUE clause or in a working storage data item

and output with a FROM clause. The contents of screen-field are used as a prompt for the
screen field described with the PROMPT clause.

PROMPT Clause for Block Mode. For terminals operating in block mode, a screen-field described
in the Screen Section is displayed during the ACCEPT statement.

If a PROMPT clause is specified, the value of screen-field is displayed during the ACCEPT state-
ment.

5-41

Data Division
Screen Section

PROMPT Clause for Conversational Mode. For terminals operating in conversational mode,
screen-field is used as a signal for input. In the Screen Section, a screen field description must
precede the associated PROMPT clause in the same screen description.

During execution of the ACCEPT statement, the value specified in the prompt screen field is
displayed before the terminal is able to receive input. The prompt value is always displayed in the
first column of a screen line.

The following example illustrates a PROMPT clause with screen-field described in the Screen
Section. When the associated ACCEPT statement executes, LAST NAME appears on the screen
followed by a set of parentheses (delimiting the field size) and the cursor.

SCREEN SECTION .
01 ADDCUST-SCREEN BASE SIZE 24, 80 .
05 NAME1-PROMPT AT 3, 2 VALUE "LAST NAME: " .
05 LAST-NAME-FIELD AT 3, 13 PIC X(10) USING CUST-LAST-NAME
LENGTH MUST BE 1 THRU 10
PROMPT NAME1-PROMPT .

The next example illustrates a PROMPT clause with screen-field described in the Working-Storage
Section and output with a FROM clause.

WORKING-STORAGE SECTION.
01 NEWCUST-REC.
05 NEW-LAST-NAME PIC X(10) VALUE SPACES.

01 WS-PROMPT-VALUE PIC X(11) VALUE '"LAST NAME: '.

SCREEN SECTION.
01 NEWCUST-SCREEN.
05 LAST-NAME-PROMPT AT 3, 2 PIC X(11) FROM WS-PROMPT-VALUE.
05 LAST-NAME-FIELD AT 3, 13 PIC X(10) USING NEW-LAST-NAME
LENGTH MUST BE 1 THRU 10
PROMPT LAST-NAME-PR OMPT.

If the PROMPT clause is defined with a FROM or USING phrase, the value currently stored in the
associated working-storage data item is displayed in parentheses following the prompt. For exam-
ple, if LAST NAME (Brown) appears, Brown was the value entered during the last ACCEPT state-
ment for this field.

If the PROMPT clause is defined with a TO phrase, the parentheses are not displayed.

5-42

Data Division
Sereen Section

RECEIVE CLAUSE. The RECEIVE clause specifies whether screen field data can be accepted from
a terminal, another kind of device, or both. This option is supported only for applications running on

Tandem 6530 terminals with version C00 (or later) microcode and Tandem 6AI (revision A00)
firmware.

The syntax of the RECEIVE clause is:

RECEIVE [FROM 1 [ALTERNATE
ALTERNATE OR TERMINAL
TERMINAL
TERMINAL OR ALTERNATE

where

ALTERNATE

causes data to be accepted from a device other than the terminal. The other devices that
PATHWAY supports are:

— optical character recognition reader
— optical bar code reader
— magnetic string reader for badges or cards

ALTERNATE OR TERMINAL

causes data to be accepted from one of the alternate devices listed above and from the
terminal keyboard.

TERMINAL
causes data to be accepted only from the terminal keyboard.
TERMINAL OR ALTERNATE

causes data to be accepted from one of the alternate devices listed above and from the
terminal keyboard.

If this clause is omitted, data can be accepted only from the terminal keyboard.

The RECEIVE clause restricts input from the terminal keyboard for screen fields defined with the
ALTERNATE option. These fields can accept data only from an alternate device that is plugged
into a Tandem 6530 terminal.

You can use the SCREEN COBOL TURN statement to change this attribute to a previously defined
option.

An example of the RECEIVE clause is:

SCREEN SECTION.
01 INVENTORY-REC-SCREEN BASE SIZE 24, 80.

05 PROD-FIELD AT 5, 28 PIC X(10) RECEIVE FROM ALTERNATE
USING WS-PROD-ID.
05 COUNT-FIELD AT 7, 28 PIC X(10) RECEIVE FROM

ALTERNATE OR TERMINAL
TO WS-PROD-COUNT.

5-43

Data Division
Screen Section

REDEFINES CLAUSE. The REDEFINES clause specifies that the screen field being defined is an
alternate interpretation of a previously defined field.

The syntax of the REDEFINES clause is:

REDEFINES field-name-2
where
field-name-2
is the previously defined field.

The two fields must be identical in size and display attributes.

The REDEFINES clause allows an ACCEPT statement to be issued for a given physical field using
different rules. An example would be postal codes in the U.S. and in the U.K.

05 z1iP-uUs AT 10, 10 PIC 999999 LENGTH O, 5 TO ZIP-US-WS.
05 ZIP-UK REDEFINES ZIP-US PIC XXXXXX LENGTH 0, 6 TO ZIP-UK-WS.

Either the REDEFINES or the AT clause must be included in every screen field declaration. If both
clauses appear in the screen field declaration, they must refer to exactly the same position.

SHADOWED CLAUSE. The SHADOWED clause associates a secondary Working-Storage data
item with a nonliteral screen field. This additional field can be used to determine whether input was
supplied for the screen field or to control selection of the field for output statements.

The syntax of the SHADOWED clause is:

SHADOWED [BY] data-name-1
where
data-name-1

is the data item to be associated with a nonliteral screen field. The size of the data item is
one byte with a description of PIC X or PIC 9 COMP.

The rightmost bit of data-name-1 is the SELECT bit for the sereen field. This bit is examined by the
DISPLAY, TURN, RESET, and SET NEW-CURSOR statements that include the SHADOWED
modifier; when this modifier is used in the statement, a field listed in the statement will not be
affected unless the SELECT bit in its SHADOWED item is set to 1.

| ... | RETURN | ENTER | SELECT |
The bit to the left of the SELECT bit is the ENTER bit. When a screen field is specified in an

ACCEPT statement, a 1 or a 0 is stored into this bit. If data is present in the field, a 1 is stored in the
ENTER bit. If spaces, fill characters, or nothing is entered in the field, a 0 is stored in this bit.

5-44

Data Division
Screen Section

The bit to the left of the ENTER bit is the RETURN bit. If a shadowed field is specified in an
ACCEPT statement, a 1 or a 0 is stored into this bit. If data, fill characters, or spaces are present in
the field, a 1 is stored in the RETURN bit; otherwise, a 0 is stored in this bit. If operating on a
T16-6510 terminal, the RETURN bit always contains a 1 for a shadowed field.

The values stored in the RETURN and ENTER bits depend on the following information received
from the terminal:

¢ If the screen field is tabbed across (contains nothing), the values stored are:

RETURN bit = 0 ENTER bit = 0
e If the screen field contains fill characters or spaces, the values stored are:

RETURN bit = 1 ENTER bit = 0
e If the screen field contains normal data, the values stored are:

RETURN bit = 1 ENTER bit = 1
If the ESCAPE clause is executed during the ACCEPT statement (for example, an abort input is
specified for a terminal operating in conversational mode), the settings for the RETURN bit and the
ENTER bit are undefined.
If the screen field to which the SHADOWED clause applies has an OCCURS clause, data-name-1
given in the SHADOWED clause should be the data item having an OCCURS clause with the same
maximum number of occurrences to match the occurences in the OCCURS clause of this corres-
ponding field in the Screen Section.

An example of the SHADOWED clause is:

SCREEN SECTION.
01 LOCATION-REC-SCREEN BASE SIZE 24, 80.

05 STATE-FIELD AT 5, 28 PIC X(2) USING WS-STATE
SHADOWED BY WS-DATA-ITEM.

5-45

Data Division
Screen Section

TO, FROM, USING CLAUSES. The TO, FROM, USING clauses are collectively referred to as data
association clauses. These clauses specify a Working-Storage Section or Linkage Section data item
that is associated with the screen field for moving data to and from the screen field. The clauses
determine the general type of a field.

The syntax of the TO, FROM, USING clauses is:

T0 data-name-1
FROM
USING

where

T0

specifies that data is to be moved from the screen field into the data-name-1 area; this is
an input association.

FROM

specifies that data is to be moved from the data-name-1 area into the screen field; this is
an output association.

USING
is equivalent to specifying both TO and FROM with the same data name.
data-name-1

is a working-storage data item associated with an elementary screen field; the field can-
not be a subscripted item.

The following rules apply:
e A TO, FROM, and USING clause can be specified only with an elementary screen field.

¢ The TO and FROM clauses can both be specified for a screen field. If both clauses are specified,
the data names can differ.

e If a data association clause is specified for any field, a PICTURE clause must also be specified
for that field.

* The category of the screen field must be compatible with the associated data item in the
Working-Storage Section or Linkage Section. A numeric edited field must be associated with a
numeric data item, and an alphabetic edited field must be associated with an alphabetic or
alphanumeric data item.

The data movement occurs in connection with the execution of a DISPLAY or ACCEPT statement.
The statements explicitly or implicitly name the screen field containing the data association clause.

5-46

Data Division
Sereen Section

UPSHIFT CLAUSE. The UPSHIFT clause specifies that lowercase alphabetic characters are to be
translated to uppercase characters for input and output.

The syntax of the UPSHIFT clause is:

UPSHIFT INPUT
OUTPUT
{INPUT—OUTPUT}
I-0

If UPSHIFT appears by itself, INPUT-OUTPUT is assumed.

If the clause is omitted, lower case alphabetic characters for the field remain in lower case.

USER CONVERSION CLAUSE. The USER CONVERSION clause gives a user-defined number to
be passed with the field to a conversion procedure.

The syntax of the USER CONVERSION clause is:

USER [CONVERSION] numeric-literal

The USER CONVERSION clause is used only if the application makes use of a user conversion pro-
cedure. Refer to Appendix D for details regarding user conversion procedures.

VALUE CLAUSE. The VALUE clause specifies the initial value of a screen field. The initial value is
displayed during a DISPLAY BASE or OVERLAY statement, during a RESET DATA statement,
and during screen recovery. The VALUE clause is required for literal screen fields.

The syntax of the VALUE clause is:

VALUE nonnumeric-Lliteral
where
nonnumeric-literal
is the character form of the specified value. The nonnumeric-literal must not be longer

than the size specified for the field in the PICTURE clause; if it is shorter, the
nonnumeric-literal is left justified and padded with the fill character.

The value does not have to be valid according to conversion and checking restraints for input fields.
However, if the value is not valid and the value comes in from the terminal during ACCEPT state-
ment processing, the field is in error.

The VALUE clause cannot be used for a field using the OCCURS clause.

547

Data Division
Screen Section

The following example illustrates the VALUE clause:

SCREEN SECTION.
01 ORD-DETAIL-SCRN SIZE 12, 40.
05 FILLER AT 1, 12 VALUE "ORDER DETAIL ENTRY'".
05 FILLER AT 2, 1 VALUE "CUSTOMER".
05 ENTRY-GROUP AT 5, 4.
10 FILLER AT a, @ VALUE "ITEM".
10 FILLER AT a, @ + 9 VALUE "QUANT".

WHEN ABSENT/BLANK CLAUSE. The WHEN ABSENT/BLANK clause controls the disposition
of working storage associated by TO or USING clauses with absent or blank fields.

The syntax of the WHEN ABSENT/BLANK clause is:

WHEN ABSENT CLEAR
BLANK SKIP

where
ABSENT
indicates that the disposition is for absent fields, that is, fields for which no data is
returned from the terminal. An absent field is possible only if the terminal has a Modified
Data Tag (MDT). (Refer to the paragraph Terminal Considerations in this section for in-
formation regarding the MDT.)
BLANK

indicates that the disposition is for fields containing blanks, null characters, or fill
characters.

CLEAR

sets the working storage to zero for numeric items and to spaces for alphabetic or
alphanumeric items.

SKIP
leaves the working storage unaltered.

If this clause is omitted, absent fields are skipped and blank fields are cleared; that is, WHEN
ABSENT SKIP and WHEN BLANK CLEAR.

5-48

Data Division
Screen Section

WHEN FULL CLAUSE. The WHEN FULL clause specifies the action to be taken when the last posi-
tion of an input screen field is filled and additional characters are keyed into the terminal.

The syntax of the WHEN FULL clause is:

[WHEN 1 FULL {TAB %
LOCK

where
TAB
causes the cursor to advance to the next input field.
LOCK
causes the terminal to lock the keyboard.

If the clause is omitted, the default is LOCK.

The WHEN FULL clause is only effective for terminals that support more than one alternative ac-
tion. Currently those terminals are the T16-6520, T16-6530, and the IBM-3270.

TERMINAL CONSIDERATIONS

For dial-in terminals, the TCP issues a wait for modem connect immediately after the terminal file
is opened. At terminal start-up time no program unit or data area is attached to the terminal;
therefore, the terminal is using a minimum of TCP resources while waiting for modem connect.
When the terminal is stopped, the terminal file is closed. The close causes the modem to disconnect
if no other process has the terminal file open.

Tandem currently supports the IBM-3270, the T16-6510, the T16-6520, the T16-6530, and any device
operating as a conversational mode terminal as recognized by the GUARDIAN File System. Each
terminal set has unique requirements. These requirements are described in the following
paragraphs.

IBM-3270 Considerations

The supported IBM-3270 terminals have a number of different physical screen sizes. In general, a
screen can be used on any model that has a physical size at least as large as the logical size of the
screen definition. However, a field that wraps from one line to the next in the logical screen defini-
tion does not wrap (or wraps differently) if the physical screen width exceeds the logical screen
width; this is because the field goes to the next line only at the end of the physical line. This is an im-
portant consideration if a screen is intended to run on both 40- and 80-character width displays.

All nonliteral fields must reserve a character position immediately before the field. For example:

If a field is at line 2, column 2, and is one character long, then 2,1 and 2,2 are reserved for the
field. A second field cannot be at 2,3 because both fields would attempt to use location 2,2.

A field cannot be at 1,1 because the character before 1,1 does not exist and thus cannot be
reserved.

5-49

Data Division

The IBM-3270 terminal has a Modified Data Tag (MDT) associated with this character that im-
mediately precedes the field. If the MDT is on when a read modified operation is performed, the
data in the field is sent to the computer; if the MDT is not on, data is not sent. The MDT can be set
or reset from the computer or from the keyboard. In normal operation, the MDT is reset by the com-
puter and set by the terminal after data is entered into the field.

In SCREEN COBOL, the MDT is treated syntactically as a display attribute, even though the MDT
affects data transmission rather than the display. Normally, MDTs are not referenced by a
SCREEN COBOL program, but they can be manipulated by the program. One possible method is to
specify MDTON as an initial display attribute of a field that has a VALUE clause; this causes the in-
itial value to be returned as if entered by the terminal operator even though the terminal operator
does not change anything in the field.

The TCP controls the MDT's in the same way it controls display attributes with two important ex-
ceptions:

¢ When a TURN TEMP statement selects an input field for changing of display attributes, the
MDT bit is always set.

¢ When a RESET TEMP statement selects an input field for resetting of display attributes, the
MDT bit is set, regardless of the initial MDT attribute of the field.

These two exceptions apply only to the TURN and RESET statements that have the TEMP
modifier.

These MDT rules allow fields to be handled correctly when they contain errors. When an error is
detected in a field, a TURN TEMP of a display attribute is normally performed on that field,
whether explicitly by the program or implicitly by the action of the ACCEPT statement. As in-
dicated by the preceding rules, the MDT will be set also, thus guaranteeing that the field will again
come in from the terminal on the next read operation. After that next read operation, a RESET
TEMP is performed, which removes the flagging display attribute while again forcing the MDT bit
on. The latter setting of the MDT is necessary because a further read of the same data might be per-
formed if another field is found to be in error, and the data in the field that was RESET must come
in once again and be properly accepted.

SCREEN COBOL supports the program attention (PA) keys 4 through 10. A user-replaceable pro-
cedure that lets the PATHWAY Terminal Control Process (PATHTCP) support these keys is
described in Appendix D.

The PROTECTED display attribute is allowed for IBM-3270 terminals (refer to Table 4-1 of Section 4).
This attribute is a control that determines whether or not a field is protected against terminal
operator entry. Normally, all input fields are unprotected, and all others are protected. The pro-
gram can use the PROTECTED attribute to dynamically control the protection of 3270 fields; care
must be taken to ensure the field has the appropriate protection during sensitive operations, for ex-
ample, during ACCEPT statement processing.

The minimum separation between screen elements for the IBM-3270 is indicated in Table 5-2.

5-50

Data Division

Table 5-2. Minimum Separation (in Characters) Between
Screen Elements for the IBM-3270
Second
Element . . Overlay End of
First Field Literal Area Screen

Element
Start of base screen 1 1 0 0
Start of overlay 1 1 0 0
screen occupying an
overlay area that does
not have the same
width as its base
screen (a)
Field 1 1 0 0
Literal 1 1 0 0
Overiay Area 1 1 0 0
NOTE (a):
When an overlay screen occupies an overlay area that does not have the same width as
its base screen, an overlay field cannot wrap from one line to the next.

T16-6510 Considerations

When defining screen declarations for display on a T16-6510, the following restrictions should be
noted:

e The following fields must have one reserved character immediately before the field and one im-
mediately following the field:

— All input fields
— Output fields and literals with BLINK or HIDDEN attributes
— Output fields referred to in a TURN or RESET statement

Note that none of the above named fields can begin in line 1, column 1 because the character
before 1,1 does not exist.

® The last position of the screen (line 24, column 80) cannot be used, including use as a reserved
character as specified in the previous restriction.

e The PROTECTED attribute of a field cannot be changed. The PROTECTED attribute deter-
mines the intensity; therefore, any other intensity specifications are ignored.

5-51

Data Division

¢ QOverlay areas must have the exact same width as the base screen.

e Screens occupying an overlay area that is scrolled cannot contain any input fields.

¢ Fields cannot wrap from the bottom to the top line of the screen.

o The RETURNED bit is always set for a SHADOWED field.

The T16-6510 terminal does not support Modified Data Tags (MDT).

The minimum separation between screen elements for the T16-6510 is indicated in Table 5-3.

Table 5-3. Minimum Separation (in Characters) Between
Screen Elements for the T16-6510

Second
Element In/Attr Out/NoAttr Overlay End of
First (a) (a) Area Screen

Element
Start of Screen 1 0 0 1
In/Attr (a) 2 1 1 2
Out/NoAttr (a) 1 0 0 1
Overlay Area 1 0 0 1
NOTE (a):

The space requirements of fields and literals depend upon certain characteristics. Two
groupings can be made, identified above as In/Attr and Out/NoAttr. A field or literal can
be classified as follows:

Out/NoAttr: Output-only fields or literals that do not have BLINK or HIDDEN attri-
butes and that are not used in a TURN or RESET statement.

In/Attr: All other fields and literals.

T16-6520 Considerations
All nonliteral fields must reserve a character immediately before the field. For example:

If a field is at line 2, column 2, and is one character long, then 2,1 and 2,2 are reserved for the
field. A second field cannot be at 2,3 because both fields would attempt to use location 2,2.

A field cannot be at 1,1 because the character before 1,1 does not exist and thus cannot be
reserved.

5-52

Data Division

The T16-6520 terminal has an MDT associated with this character that immediately precedes the
field. The TCP uses the read modified data operation when reading the screen. If the MDT is on
when a read modified operation is performed, the data in the field is sent to the computer; if the
MDT is not on, data is not sent. The MDT can be set or reset from the computer or from the

keyboard. In normal operation, the MDT is reset by the computer and set by the terminal after data
is entered into the field.

In SCREEN COBOL, the MDT is treated syntactically as a display attribute, even though the MDT
affects data transmission rather than the display. Normally, MDTs are not referenced by a
SCREEN COBOL program, but they can be manipulated by the program. One possible method is to
specify MDTON as an initial (default) display attribute of a field that has a VALUE clause; this
causes the initial value to be returned as if entered by the operator even though the operator does
not change anything in the field.

During execution of a SCREEN COBOL program, the TCP controls the MDTSs in the same way it
controls display attributes with two important exceptions:

e When a TURN TEMP statement selects an input field for changing of display attributes, the
MDT bit is always set.

e When a RESET TEMP statement selects an input field for resetting of attributes, the MDT bit
is set, regardless of the initial MDT attribute of the field.

These two exceptions apply only to the TURN and RESET statements that have the TEMP
modifier. When the TURN and RESET statements do not have the TEMP modifier, these
statements treat the MDT attributes like normal display attributes.

These MDT rules allow fields to be handled correctly when they contain errors. When an error is
detected in a field, a TURN TEMP of a display attribute is normally performed on that field,
whether explicitly by the program or implicitly by the action of the ACCEPT statement. As indi-
cated by the preceding rules, the MDT will be set also, thus guaranteeing that the field will again
come in from the terminal on the next read operation. After that next read operation, a RESET
TEMP is performed (normally only implicitly as part of the ACCEPT action), thus removing the
display attribute set by the TURN TEMP statement while again forcing the MDT bit on. The latter
setting of the MDT is necessary because a further read of the same data might be performed if
another field is found to be in error, and the data in the field that was RESET must come in once
again and be properly accepted.

The PROTECTED display attribute is allowed for T16-6520 terminals (refer to Table 4-1 of Section 4).
This attribute is a control that determines whether or not a field is protected against terminal
operator entry. Normally, all input fields are unprotected, and all others are protected. The pro-
gram can use the PROTECTED attribute to dynamically control the protection of T16-6520 fields;
care must be taken to ensure the field has the appropriate protection during sensitive operations,
for example, during ACCEPT statement processing.

A limit is placed on the number of fields that can exist on a screen. This is due to a space limitation
with the internal Data Attribute Table within the terminal. Each field requires at least one entry in
the table; fields that have more than one character position separating them and fields that are
followed by literal values require two entries in the table. The table has a maximum of 332 entries.
Thus, a screen can have at most 166 fields if the fields meet the requirement for two entries in the
internal Data Attribute Table.

Fields cannot wrap from the bottom to the top line of the screen.

The minimum separation between screen elements for the T16-6520 is indicated in Table 5-4.

5-53

Data Division

Table 5-4. Minimum Separation (in Characters) Betweern
Screen Elements for the T16-6520

Second
Element . . Overlay End of

First Field Literal Area Screen
Element
Start of base screen 1 1 0 0
Start of overlay 1 1 0 0
screen occupying an
overlay area that does
not have the same
width as its base
screen (a)
Field 1 1 0 0
Literal 1 Oor1 0 0

(b)
Overlay Area 1 1 0 0
NOTES:
(a) When an overlay screen occupies an overlay area that does not have the same width
as its base screen, an overlay field cannot wrap from one line to the next.
(b) If two successive literals have the same attributes, then no separation is necessary;
otherwise at least one position must separate them.

T16-6530 Considerations

The T16-6530 terminal is upward compatible with the T16-6520 terminal. Considerations listed for
the T16-6520 also apply to the T'16-6530.

Program units compiled for a Tandem 6520 terminal can be run on a 6530 terminal. 7'716-6520 must
be specified as the terminal-type in the OBJECT-COMPUTER paragraph of the Environment Divi-
sion and the program unit must be run on a 6530 terminal. Those features unique to the Tandem
6530 terminal will not function.

The additional secreen memory of the Tandem 6530 (relative to the Tandem 6520) is used to retain
screen format information in the terminal. Redisplaying a screen from the terminal memory
reduces time utilization. If the terminal screen memory is full and a screen is to be displayed for the
first time, PATHWAY uses a least-recently-used algorithm to select the screen for replacement.

5-b4

Data Division

PATHWAY can enable a return key function when a SCREEN COBOL program takes control
of a Tandem 6530 terminal. For a return key function to become effective, the program’s
SPECIAL-NAMES paragraph must contain a RETURN-KEY phrase as the system-name
parameter. The return key function is local to a SCREEN COBOL program and must be defined in
the program or no return key function will exist. To use this function in a program that was
previously compiled, you must recompile the program and include the RETURN-KEY phrase. If a
program is defined for a Tandem 6520 terminal and run on a Tandem 6530 terminal, you cannot use
a return key function.

The T16-6530 terminal enables the use of other devices to input data into screen fields. Refer to the
RECEIVE clause earlier in this section.

Conversational Mode Considerations

A conversational terminal is any device that operates as a conversational mode terminal as
recognized by the GUARDIAN File System. The TCP assumes that this device can process carriage
return, line feed, and bell operations. If the data entered during accept processing exceeds the size
of the I/0 buffer, a field prompt is simply redisplayed without an advisory error message.

SPECIAL REGISTERS

Special registers are data items defined automatically by the SCREEN COBOL compiler, not by the
program. Each special register has a particular purpose, and should be used only in the manner
outlined in its description.

DIAGNOSTIC-ALLOWED Special Register

The DIAGNOSTIC-ALLOWED special register indicates whether or not diagnostic screens are to
be displayed to inform the terminal operator if an error or termination condition occurs. A copy of
this register is local to each program unit.

The register is initialized to the value specified by the DIAGNOSTIC parameter of the PATHCOM
SET TERM command each time the program unit is called. If the DIAGNOSTIC parameter has not
been specified on the SET TERM command, the default value is YES, which enables display of
diagnostic screens. The program can move the value NO into the register to disable display of
diagnostic screens.
The register has an implicit declaration of

01 DIAGNOSTIC-ALLOWED PIC AAA.

For additional information regarding the use of diagnostic screens, refer to Section 6 and Appendix A.
LOGICAL-TERMINAL-NAME Special Register

The LOGICAL-TERMINAL-NAME special register contains the name of the terminal executing
the program unit. The name of the terminal is defined in PATHCOM through the FILE parameter
of the SET TERM command. A single copy of this register is global to the program units. The
register is initialized when the terminal is first started.

The register has an implicit declaration of

01 LOGICAL-TERMINAL-NAME PIC X(16).

5-55

Data Division

NEW-CURSOR Special Register

The NEW-CURSOR special register controls placement of the cursor in the next accept operation.
A single copy of this register is global to the program units.

If the register value is not a valid screen position when an accept operation begins, the cursor is
positioned to the first field of the ACCEPT statement. At the end of any accept operation, the
register is set to zero; this causes the default position for the next acecept operation to be the first
field of that ACCEPT statement.

The register has an implicit declaration of

01 NEW-CURSOR.
02 NEW-CURSOR-ROW PIC 9999 COMP.
02 NEW-CURSOR-COL PIC 9999 COMP.

OLD-CURSOR Special Register

The OLD-CURSOR special register indicates the row and column occupied by the cursor at the last
accept operation. A single copy of this register is global to the program units. The register is set by
each ACCEPT statement executed by a program unit; the program unit can subsequently access
the register.

The register has an implicit declaration of

01 OLD-CURSOR.
02 OLD-CURSOR-ROW PIC 9999 COMP.
02 OLD-CURSOR-COL PIC 9999 COMP.

REDISPLAY Special Register

The REDISPLAY special register can prevent unnecessary moving of an entire screen into ter-
minal memory. This register indicates to the TCP whether or not a screen must be sent to the
terminal during processing of a DISPLAY statement. The REDISPLAY register affects only the
DISPLAY statement.

This register supports T16-6520 and T16-6530 terminals that store multiple screens in terminal
memory and can display these screens upon command. This register does not support terminals
operating in conversational mode.

A single copy of the REDISPLAY register is global to the SCREEN COBOL program units. The
register is set to NO when the terminal is first started. The SCREEN COBOL program can move
YES into the register for specific DISPLAY statements. When entering or returning from a called
program, the value of the REDISPLAY register is undefined.

When the REDISPLAY register is set to NO (the normal setting) and a DISPLAY statement is
executed, the following occurs:

1. The TCP checks whether the screen is in the terminal memory and whether any data fields
have been entered since the previous display operation. If the screen is present and no changes
have been made to the data items, the TCP displays the screen.

2. If a data item has been changed since the previous display operation, the variable data items
associated with the screen are moved from the Working-Storage Section to the terminal
memory. This operation takes place only when redisplaying a screen, not when displaying a
base screen or menu screen.

5-56

Data Division

When the register is set to YES and a DISPLAY statement is executed, the TCP checks whether
the screen is in the terminal memory and the following occurs:

e If the screen is present, the TCP displays the screen from the terminal memory. No data items
are moved from the Working-Storage Section.

e If the screen is not present, the TCP moves the variable data items associated with the screen
from the Working-Storage Section to the terminal memory, as if the register had been set to
NO. Then, the screen is displayed.

The register has an implicit declaration of
01 REDISPLAY PIC AAA.

An example of the REDISPLAY special register is:

PROCEDURE DIVISION.

MOVE "YES" TO REDISPLAY.
DISPLAY EMPLOYEE-REC-SCREEN.

RESTART-COUNTER Special Register
The RESTART-COUNTER special register contains the number of times a transaction has been
restarted during transaction mode. The first time the BEGIN-TRANSACTION verb executes, the
register is set to zero. This number is incremented immediately following each execution of the
BEGIN-TRANSACTION verb.
The register has an implicit declaration of

01 RESTART-COUNTER PIC 9999 COMP.

STOP-MODE Special Register

The STOP-MODE special register can prevent interruption of multiple step transactions. A single
copy of this register is global to the program units.

The register is set to zero when the terminal is first started, and the value is subsequently under
program control. Most programs will continue with a value of zero.

When the value is nonzero, several PATHCOM commands are affected. The effect of the STOP
TERM, SUSPEND TERM, and FREEZE SERVER commands is delayed until the register value
returns to zero. The SUSPEND and FREEZE commands can be issued in a form that causes the
STOP-MODE value to be disregarded.

The register has an implicit declaration of

01 STOP-MODE PIC 9999 COMP.

5-57

Data Division

TELL-ALLOWED Special Register

The TELL-ALLOWED special register can be set by the program to control the issuing of tell
messages during ACCEPT statement processing.

A copy of this register is available to each program unit. The register is initialized to YES each time
the program unit is called. The program can move NO into the register to prevent tell messages
from being displayed during succeeding accept operations.

When this register is set to YES and a tell message is waiting, the following occurs:

e When the TCP is about to complete an accept operation, it displays the tell message (prefixed by
the word MESSAGE:) in the ADVISORY field.

e The TCP waits for any function key from the terminal operator, then resets the field and com-
pletes the accept operation.

When this register is set to NQ, display of the tell message is postponed.
The register has an implicit declaration of

01 TELL-ALLOWED PIC AAA.
TERMINAL-FILENAME Special Register
The TERMINAL-FILENAME special register contains the internal form of the file name for the
terminal executing the program unit. A single copy of this register is global to the program units.
The register is initialized when the terminal is first started.
The register has an implicit declaration of

01 TERMINAL-FILENAME PIC X(24).
TERMINAL-PRINTER Special Register
The TERMINAL-PRINTER special register contains the external form of the file name for the
printer that is associated with the terminal executing the program unit. If no associated printer is
defined in PATHCOM, this register contains blanks. A single copy of this register is global to the
program units. The register is initialized when the terminal is first started.
The register has an implicit declaration of

01 TERMINAL-PRINTER PIC X(36)
TERMINATION-STATUS Special Register
The TERM