
TE K REFERENCE
MANUAL

First Printing DEC 1984

Part No. 070-5604-00
Product Group 18

4404
ARTIFICIAL
INTELLIGENCE
SYSTEM

Please Check for
CHANGE INFORMATION
at the Rear of this Manual

COMMTTED 10 EXCEli.ENCE

Copyright @ 1984 by Tektronix, Inc., Beaverton, Oregon. Printed in
the United States of America. All rights reserved. Contents of this
publication may not be reproduced in any form without permission
of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one or
more U.S. or foreign patents or patent applications. Information
provided upon request by Tektronix, Inc., P.O. Box 500, Beaverton,
Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix,lnc.

Smalltalk-80 is a trademark of Xerox Corp.

UniFLEX is a registered trademark of Technical Systems Consult
ants, Inc.

Portions of this manual are reprinted with permission of the copy
right holder, Technical Systems Consultants, Inc., of Chapel Hill,
North Carolina.

The operating system software copyright information is embedded
in the code. It can be read via the "info" utility.

WARRANTY FOR SOFTWARE PRODUCTS

Tektronix warrants that this software product will conform to the specifications set forth herein, when
used properly in the specified operating environment, for a period of three (3) months from the date of
shipment, or if the program is installed by Tektronix, for a period of three (3) months from the date of
installation. If this software product does not conform as warranted. Tektronix will provide the
remedial services specified below. Tektronix does not warrant that the functions contained in this soft
ware product will meet Customer's requirements or that operation of this software product will be
uninterrupted or error-free or that all errors will be corrected.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the
expiration of the warranty period and make suitable arrangements for such service in accordance with
the instructions received from Tektronix. If Tektronix is unable, within a reasonable time after receipt
of such notice. to provide the remedial services specified below, Customer may terminate the license
for the software product and return this software product and any associated materials to Tektronix for
credit or refund.

This warranty shall not apply to any software product that has been modified or altered by Customer.
Tektronix shall not be obligated to furnish service under this warranty with respect to any software pro
duct a) that is used in an operating environment other than that specified or in a manner inconsistent
with the Users Manual and documentation or b) when the software product has been integrated with
other software if the result of such integration increases the time or difficulty of analyzing or servicing
the software product or the problems ascribed to the software product.

TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE. TEKTRONIX RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE
WHEN SPECIFIED, REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS THE
SOLE AND EXCLUSIVE REMEDY PROVIDED TO CUSTOMER FOR BREACH OF THIS WARRAN
TY. TEKTRONIX WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSE
QUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX HAS ADVANCE NOTICE OF
THE POSSIBILITY OF SUCH DAMAGES.

MANUAL REVISION STATUS

PRODUCT: 4404 Artificial Intelligence System

This manual supports the following versions of this product: Serial Numbers 8010100 and up.

REV DATE DESCRIPTION

DEC 1984 Original Issue

4404 Reference Manual i

CONTENTS

Section 1 INTRODUCTION

About This Manual •••••••••
Where to Find Information. . . .
Manual Syntax Conventions. · ..

Section 2 USER COMMANDS AND UTILITIES

asm •••• ...
backup •• · .. · · · · ..

...... · ·
· . · . . · ..

· · .. ·

·

· • • 1-1
.1-11-2

••• 2-1
· . . . • •••••••••••••• 2-3 ·2-9
· .. · ... · . . • .2-11 · . . · . • .2-12 · ... · . . • •••••• 2-15 · · . . .2-17 ·

cc ••••••
chd ••••
commset.
compare.
conset.
copy ••••
crdir •••
crea te.
da te ••
de bug ••

· · • .2-19
.2-23

di r ••••
dperm ••
dump ••••••••
echo ••
edit.
find ••
forma t •••
free ••••
headset •••
he Ip ••
info.
int •••
jobs.
libgen.
libinfo.
link.
list ••

. . .

load •••••••
login.
move •••
owner ••
password •••
pa th •••••
perms ••••
relinfo.
remote ••

· . · • ••••• 2-25
. . . . · · .. · ·2-26

.2-28
· .. · ..

· . · . .
.

....

· · . . . · • .2-38
..2-42 ~ ~ ~ ~ . ~

· . . ·
· .

· . . · · .. · .

· . . · · . . .
• •••••••••••• 2-44

•• 2-46 · · . • ••••• 2-47
· . . · · . ~ · ·

• •• 2-50
•••••• 2-53
••••• 2-55
••••• 2-57 · · · · · .

•• 2-62
.2-64

..2-66 · .. ·
·

. · . ·
· .
• ••••• 2-70
· . . .2-71

..2-74 · · 2-76
· .. · .. · · · . . · . .

·
· · · .. · . .

·2-78
..2-80

• •• 2-85
..2-87
• .2-91 · · . . · . ..2-93

• •••••• 2-96 · . . ·2-97 · · . . . • .2-100 · .. · • •• 2-102

4404 Reference Manual ii

remove ••
rename.
restore.
script.
shell ••
status.
stop ••
strip.
tail ••
touch.
upda te ••
wait ••••

Section 3

.
·

· . . .
"SYSTEM" UTILITIES

. ...

• .2-104
• .2-107
• .2-109
• .2-115
.2-129

• •••• 2-139
.2-143

• .2-144
.2-145

• •••••• 2-146
..2-148
.2-152

•••• 3-1
. 3-4

• .3-5

adduser.
blockcheck.
deluser ••
devcheck ••
diskrepair.
fdncheck ••

. 3-7

makdev ••••••••
moun t ••••
unmount.

. . . . · . . .
Section 4 4404 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

Introduction •••••••••••
System Calls Overview ••

How 4404 Programs Run ••
Introduction to System Calls.

The "Sys" Instruction.
System Call Example •••
Indirect System Calls.

System Errors ••••••••••
The Task Environment ••
Address Space ••••••••
Ar gumen ts •••••••••••••

Initiating and Terminating Tasks.
Terminating a Task ••••••
The "Wait" System Call.
The "Exec" System Call.
The "Fork" and "Vfork" System Calls.

4404 File Handling ••••••••••

.

.

General File Definitions. . ..
Device Independent I/O.
File Descriptors •••
Standard Input and Output •••••••••

Opening, Closing, and Creating Files.
The "Open" System Call •••••••••••••

.3-9
• •• 3-19

. 3-20
.3-22

• ••••• 3-24

......• . 4-1
• 4-1

• •• 4-1
• • 4-2
.4-2
.4-4
.4-5
.4-6
.4-7

• • 4-7
• • 4-8
• • 4-10
..4-11

.4-11
• •• 4-12

......... . 4-14
.4-15
.4-15

..4-15
••••••• 4-16

· .4-16
• .4-17
.4-17

iii 4404 Reference Manual

The " C los e" S y s t em Ca 11 ••
The "Create" System Call.

Reading and Writing ••••••••
The "Read" System Call ••
The "Write" System Call ••
Efficiency in Reading and

Seeking •••••••••••••••••

· ·

Writing.

File Status Information ••••••
Directories and Linking ••••••••

· . . · ..
Other System Functions ••••

The "Break" Function.
· . . ·

· .. · .
· ... · . . ·

.4-18
· •••••• 4-18

.4-19
•• 4-19

· 4-21
· . · ... • •••• 4-23

• •••••••• 4-23
· 4-25

· . ·4-28 · • •••••• 4-30 · •• 4-30
The "Ttyset" and "Ttyget" Functions • · . . • ••••• 4-30

Raw I/O Mode •••••••••••••••
Echo Input Characters ••••••••••
Expand Tabs On Output. · ..
Map Upper/Lower Case •••••••
Auto Line Feed •••••••••••••
Echo Backspace Echo Character.
Single Character Input Mode ••
Ignore Control Characters.

Pi pe s .•.••.•••.•••••••••••••
Program Interrupts •••••••••••

· · · ·
.4-32

•• 4-33
. 4-33
• ••••• 4-33 .. · . . ·4-34

.4-34 ·
· . · . . ·

• •••••• 4-34
..4-34
.4-35

•••••• 4-36
Sending and Catching Program Interrupts •••4-37

..4-44
.4-44

• •• 4-46
.4-46

Interrupted System Calls •••••
Locking and Unlocking Records.

· ..
Shared Text Programs •••••••••

General Programming Practices.
Starting Locations ••••••• . . . · Stack Considerations ••••
Hardware Interrupts and Traps ••
De la ys System "Lib" Files Provided.
Generating Unique Filenames ••••••
De buggi ng •••••••••••••••

Programming Example ••••
Sample "Strip" Utility ••••••

4404 Reference Manual

· ...
...

. . .

·
· . . ·

· . . · · ·
••••••• 4-46

..4-46
.4-47

• •••••••••••••• 4-47
· . · . . · .. ·

.4-47

.4-48
• ••• 4-48

.4-48
• •••••• 4-51

iv

Section 5 THE ASSEMBLER AND LINKING LOADER

v

Introduction •••••••••••••
Invoking the Assembler ••

The Command Line ••••••
Multiple Input Source Files.
Specifying Assembly Options.
Order for Specifying Filenames, Options,

and Parameters •••••••••••••••••
Sending Output to a Hardcopy Device ••

Examples: ••••••••••••••••••••••••••••••
Assembler Operation & Source Line Components.

Source Statement Fields ••
Label or Symbol Field.
Opcode Field ••
Operand Field ••
Comment Field ••

Register Specification.

.

Expressions •••••••••••••
Item Types •••••••••••••

Types of Expressions ••

. . . .

.5-1

.5-1
· .5-1
.5-2

• •• 5-3

• •• 5-4
• •• 5-5
• .• 5-5

.5-6
• •• 5-7

.5-7

.5-9
· ••••.•• 5-9

• .• 5-10
.5-10

. •••.• 5-10
• .5-11
.5-12

Expression Operators. • •• 5-13
.5-15 Instruction Set Differences.

The Instruction Set ••
Programming Model.
Addressing Modes •••
The Assembler Instruction

Syntax •••••••••••••••••
Instructions •••••••••••
Convenience Mnemonics.

Set.

Standard Directives or Pseudo-Ops.
dc.
ds.
equ •••
err.
even.
fcb.

fdb ••
fqb ••
info.
lib.
log ••
opt.
page •
rab.
rmb ••
rzb.
set ••
spc.

. ..

. . .

• •• 5-16
.5-16
.5-17
.5-21

• •• 5-21
• •• 5-23

.5-30
• ••••••• 5-30

.5-31
• •• 5-32
• •• 5-32
• •• 5-33

.5-33
· .5-33

.5-35
• .•••• 5-35

.5-35
· .5-36

....... 5-36
.5-37

• •• 5-37
• ••••••• 5-38

• •••••••••• 5-38
• .5-38

• •••••••• 5-39
• .5-39

4404 Reference Manual

sttl ••
sys •••
ttl •••

Conditional Assembly.
The "If-Endif" Clause.
The "If-Else-Endif" Construction ••

Special Features ••••••••••••••
End of Assembly Information.
Excessive Branch Indicator ••••••••••
Auto Fielding.
Fix Mode ••••••
Local Labels •••

Object Code Production.
Relocatable (Segmented) Object Code
The Base and Struct Directives.
Global •••••••••••••
Define and
Extern.
Name •••

Enddef •• · . . .

·
.5-39
.5-40
.5-40 • .5-40

••• 5-41

Fi les.

.5-41
..5-42

• •••••••• 5-42

.
•••• 5-43

• .5-43
..5-44
..5-44

· 5-44

·
·

• .5-44
.5-46
.5-47

..5-48 • ••••• 5-48
••••• 5-48

Common and Endcom. · • •••• 5-49
•••• 5-50 Error and Warning Messages. ·

Possible Non-Fatal Error Messages.
Possible Fatal Error Messages.

The Linking Loader ••••••••
Terminology •••••••••••••

Linking Loader Input •••••••••••
Linking Loader Output •••••••••••
The Standard Environment File •••

Invoking the Loader ••
Valid Options ••

Libraries •••••••
Introduction.
Library Generation ••••

Examples ••••••••••••••

.
. . .

Segmentation and Memory Assignment.

.

· ••• 5-50
..5-57
• .5-58

· 5-58
· 5-59

·
· . . .' ..

.5-59

.5-60
• .5-60

• •• 5-61
• .5-65
.5-65

..5-66

..5-67
.5-68

• .5-68
• •••••• 5-68

Relocatable and Executable Files.
Relocatable Modules ••••••••
Executable Programs ••••••••••••
Shared Text Programs •••••
Non-Shared Text Programs ••

. • .5-69

Load and Module Maps •••••
Load Map ••••••••••
Module Map •••••••••
The Module Map of a Relocatable Module ••

Miscellaneous ••••••••••••••••••••••••••••
Transfer Address •••••••••••••••••••••••

. . . .

·

• •• 5-69
• .5-72

• •• 5-72
• •• 5-72

• .5-72
• •• 5-72
• •• 5-75

Resolution of Externals With Library Modules.
• ••• 5-75

.5-75
ETEXT, EDATA, and END ••••••
Error Messages ••••••••••••••

Non-Fatal Error Messages ••••
Fatal Error Messages ••••••

4404 Reference Manual

.5-75
•• 5-76
· .5-76
..5-77

vi

Section 6 SYSTEM CALLS

vii

Introduction.
Overview •••••

System Errors.
System Definitions •••

Details of System Calls •••••
alarm. · ..
break.
chacc.
chdir ••
chown.
chprm.
close ••
cpint.
crea te ••••
crpipe ••••
crtsd ••
defacc ••

·

· .. · · ..
· ..

· .
dup •••••••• · ...
dups. · .
exec.

.
.

· ..

· . .

· ..
. . . .

. .

· .

...... . 6-1
· 6-1
· .. ·

· . . . · ... ·

.6-3

.6-6
• •• 6-7

• .6-7
• .6-8
• .6-8
• .6-8

· 6-9 · • .6-9
• •• 6-10

• ••••• 6-10
• .6-12

· . .6-13 · • .6-13
• .6-14
• .6-15
• .6-15 • ••• 6-16

filtim.
fork ••
gtid.

. · . • ••• 6-17

·
guide
ind •••••••••
indx. · link.
lock.
lrec.
memman.
mount •••
ofsta t ••

. . · · · open ••••
phys ••••
profile.
read •••
seek •••

.
·

· . · . ·

. ..
. ...

. .

• .6-17
• .6-18

• ••• 6-18
.6-18 · • .6-19 • •• 6-19
.6-20
.6-20

·
....

. ..

·• . 6-21
•••••• 6-21

· ..
•• 6-22
.6-22

• •••• 6-23
·6-23

• •• 6-24
•• 6-25

• •••••••• 6-25
.6-26

• .6-26
• ••••••• 6-27

..6-28

se tpr.
spin t ••
stack •••••
sta tus ••
stime.
stop.
suid.

· • •• 6-28
.6-29

term ••
time.

·
· . . • .6-29

.6-30

4404 Reference Manual

truncate.
ttime •••
ttyget ••
ttynum ••
ttyset ••
unlink ••
unmnt •••
upda te ••
urec ••
vfork.
wait ••••
wr i te.

.

· . . .
.
. ·

Section 7 THE 4404 C COMPILER

Invoking the "C" Compiler.
Overview.

· · ...

· .

.

·6-30
• .6-31

· 6-31 ·
. ..

· ..

.6-33
..6-33
.6-33

••• 6-34
• •••••••••• 6-34 ·6-35

• •••• 6-35
• ••••• 6-366-36

.•••.••. 7-1
· . . .7-1

Syntax ••• • •••••••••••• 7-1
Options Available ••••

Detailed Description of
The 'a Option.
The 'c' Option.
The 'D' Option •••••
The 'f' Option ••
The 'i Option.
The 'I Option ••••
The '1 Option.
The 'L' Option.
The f m' Option ••
The 'M' Option ••

Options •••
·

· ·

· ..

· . . • .7-1
.7-3
.7-3

• •••• 7-3
..7-3

• ••••••••••• 7 - 3 · ·7-4
.7-4

· 7-4 · 7-5

·
The 'n' Option •• ·

•• 7-5
.7-5
.7-5

..7-5 The 'N' Option.
The '0' Option ••
The '0' Option ••
The 'q' Option ••••
The 'r' Option ••
The 'R' Option ••
The's' Option.

.

The 't' Option •••••
The 'U' Option •••••
The 'v' Option •••••••
The 'WI Option ••

· .. · . ·

· .. · . . .
.

The 'x' Option.
Examples ••••••••••

· ·

· . ·7-5 ·
· . .

• •••• 7-6
.7-6

..7-7

..7-7
............... . 7-7 ·7-7

· . . · 7-77-8
· . • •• 7-8

• •• 7-8 · 7-8
Language Description.7-9

Object Sizes ••••••••
Register Variables ••••

abort •••
access ••
acct .•••

.

4404 Reference Manual

·

· . . . • •• 7-97-10

· • .7-11
.7-12

..7-14 · ...

viii

ix

alarm.
brk •••
cdata .•••••••
chdir ••
chmod.
chown ••
chtim ••
close.
crea t.
dup •••••

. . . .

. ·
.

.
.
· ... ·

·

.7-16
• .7-17

• ••••••• 7-18
• .7-19

••• 7-21
• •• 7-23
..7-25

• ••••• 7-27
· . . .

dup2 •••
execl.
execlp.
execv •••

· · ...
• .7-28

• ••• 7-31
•• 7-32

• ••• 7-34
..7-37
.7-40
.7-43

· .
· . . · ... execvp.

fork ••
fsta t.
ftime.
ge teuid ••
getpid.
getuid.
gtty •••••
kill.
link.
lock ••
lrec •••••••••
lseek.
memman.
mknod.
moun t.
nice ••••••
open.
pause.
phys ••
pipe ••
profil •••••••
read •••
sbrk •••
set ftm.
setuid ••
signal ••••••
s ta ck •••
sta t ••
stime.
stty ••••••

. . .

.
. ...

· . . .
· .. · . . .
· .
· . . . · . . · . .

· ..
· sync.

time ••
times.
truncf.
ttyslot ••

.

. · ...
· . . · .

· ...

· 7-46
•• 7-48

• •• 7-51
.7-53

· 7- 54
• .7-55

. 7-56
.7-61

.
..7-64
.7-66
.7-67

..7-69

· ...

· ...

. · ...

· .. · . . · ·

· .
• .7-71 ·7-73 · ... · 7-76 · . . .7-79

......... . 7-80

· .

·

.

.7-82
• •••••• 7-83

· . · .

.7-85

.7-87

.7-89
~7-91

..7-93
• .7-95
..7-96
..7-100
• • 7 -101

.7-104
• •••••• 7-105

.7-109

.7-110
• •••••• 7-1 1 1
• •••••• 7-113

• ••• 7-115

4404 Reference Manual

umask ••
umoun t.
unlink •••
urec •••
u time •••
vfork ••

.
wa it ••••••••••
wr i te.

· . · .. · .
· ...

. . . .

· . .
· . · . .

· .
Special Support Libraries ••• · . .

The 'C' Library •••
a bs •••••••
asctime. · .
atoh.

atoi •••
.

a to 1 •••••••••

· · · ·
· ...

· • .7-116 · . . . · · · . .
•••••••• 7-117

• ••••• 7-119
. ..•...••.......••.. 7-121

• •••••••• 7-123
• •••.•••••••••••• 7-125
· . . · . · . · ·

· ... · · ·

• .7-127
.7-129

•••••• 7-131 · . . · . . ••• 7-131
•••• 7-132

• ••••••• 7-133 · . . . · . . .7-134
..7-135

• •••••••. 7-136
a too •• · . . . · · •. 7-137

-a tos ••
calloc.
clearerr ••
crypt ••••

ctime •••••
daylight ...
endpwen t ••
endu ten t ••
exit ••

. .
. . .

fclose ••••••••
fdopen.
feof ••••
ferror.
fflush.
f ge tc ••••••••
fge ts •••
fileno ••
fopen ••
fpu tc ••
fputs.
fread •••
free •••
freopen.
fscanf ••
fseek.
ftell •••••••
fwr i te ••
ge tc •••
getchar.
ge tcwd •••
getpass.
ge tpw
getpwent ••
getpwnam ••

. .
. ..

4404 Reference Manual

·
·

· · .. · .. · . · . . ·
· ... · . .

.. . .. · · ·
.. ..

· ... · ·

·
· . ·

·

• ••••••••.• 7-138

· . · • .7-139
••• 7-140

••••••• 7-141
• ••••• 7-142

· • 0

.7-143
.••• 7-144

.7-145
• ••• 7-146 · • • 7 -147

..... · .. . · • .7-148
.7-150

.. • .7-151 · ••••••• 7-152 · ... ••••• 7-153
.. · ·

· .. · ·
.7-154
.7-155
.7-156

· · . .
• ••• 7-158

.7-159
• ••• 7-160

.7-161
·

· ...

· ...

. .. . · · ... · . · · . · . . . · • .7-162
.. · . . · ...

· .. ·
· • •••••••• 7-164

..................... 7-165
· ... ·

· · . . · .
.7-167
.7-168

•••• 7-170 ·
·

· · ... · · ... · ·

••••••••• 7-171

·7-172
.7-173

• •••• 7-175 · . . . • .7-176
.7-179

x

xi

getpwuid.
ge ts •••••
getutent.
ge tu tl ine
getw ••••
gmtime.
index •••
isalnum ••
isa Ipha ••
isascii ••

. ... ; .. · . .
iscntrl ••••••••••
isdigit ••
isgraph ••
islower •••••
isprint.

.
ispunct.
isspace.
isupper.

.
isxdigit.

i tostr ••
-12tos •••••••
13tol ••

....... . . · 14tol •••
Iocaltime.
longjmp •••
Ito13 ••••

· .
Ito14 •••

-ltostr.
· .. ·

rna 11 oc •••••••••••••••••••••

.

· . .

· ..
...

.7-181
• •• 7-183

.7-184
• .7-186
• .7-188

• •••.• 7-189
.7-'191

• .7-192 • .7-193
• .7-194
• .7-195

• ••••••••• 7-196

. . .
.

• •• 7-197
.7-198
.7-199

• .7-200
.7-201
.7-202
.7-203
.7-204

• •• 7-205
• •• 7-206

.7-207
• •• 7-2087-210

.

• .7-211
..7-212

• •• 7-213
.7-214
.7-215

• •• 7-216
memccpy.
memchr ••
memcmp ••
memcpy ••
memse t ••
mktemp ••

. • .7-217
.7-218

• ••• 7-219
.7-220

ge tc •••••••••
strtol.
printf ••
pu tc ••••
putchar ••
putpwent ••
puts ••••
putw ••

· ·
.

·
· . . ·

qsort. · ·
. ...

.
· . · . . .

• .7-221
..7-222
.7-224

..7-226
• ••• 7-227

..7-228

..7-230 ·7-231
•• 7-232

.7-233
..7-234

.
• ••••• 7-235

·7-236 . .

rand •••
realloc ••••••
rewind.
rindex ••
rrand •••••
scanf ••• · . • .7-237

.7-238

4404 Reference Manual

setbuf ••
setjmp ••
se tpwen t ••
setutent ••
sleep •••
sprintf.
srand ••••••••••
sscanf ••

.

....

. ...
· ... · .. · ..

....

. .

. ..

.
. . .

sto12.
strca t ••
strchr ••
strcmp ••
strcpy ••
strcspn.
strlen •••
strncat.
s trncmp ••
strncpy.
strpbrk.
strrchr.
strspn ••
strtoi ••

strtok ••••••
strtol ••
timezone ••
toascii ••
tolower.

-toupper.
ttyname.
tzname ••
tzse t •••
ungetc.

. .
. .

. ..
The Graphics Library ••
#include Files ••••••••

4404 Reference Manual

. ..

. . .

·

.•••••• 7-240
• ••• 7-241
••• 7-242

.7-243
• •••• 7-244

• •• 7-245
.7-247

• •••••• 7-248
• ••• 7-250

• .7-251
••• 7-252

• •••• 7-253
• ••••••• 7-254 • ••••• 7-255

.

• ••• 7-256
· 7-257

.

• .7-258
••• 7-259
..7-260
.7-261

..7-262

..7-263
. 7-265

· .
••• 7-267

• ••••• 7-269
• .7-270

•••••••• 7-271
• .7-272

• ••• 7-273
••• 7-274
• •• 7-275

• ••• 7-276
• .7-277

• •••• 7-283

xii

Section 8 4404 HARDWARE SUPPORT

Introduction ••.••• 8-1
De vic e Dr i ve r s ••••••••••••••••••••••••••••••••••.••••••••••••• 8-1

Scsi Peripherals ••••••••••••••••••••••••••.••••••••••••• 8-1
Console Device •••••••••••••••••••••••••••••••.•••••••••••••• 8-2
Communications Port ••• 8-2
Sound Generator •••••••••••••••••••.••••••••••••••••••••••••• 8-2

Controlling the Sound Device •••••••••••••••••••••••••••••• 8-2
"/dev/Sound" Operation and Commands ••••••••••••••••••••••. 8-3

Sound Examples •• 8-10
Set the Tempo to Be 1 Beat Per Second (1000

Millisec/Beat) •••••••••••••••••••••••••••••••••••••• 8-10
Set the Frequency for Voice 2 to Be 440 Hz •••••••••••••••• 8-11
Play Voice 2 at Full Volume for 1 Beat •••••••••••••••••••• 8-11
Turn the Volume of Voice 2 Down by 12 Db

and Play for 2 Beats •••••••••••••••••••••••••••••••• 8-12
Turn Voice 2 Off ••• 8-12
Play White Noise (Hissing Sound) •••••••••••••••••••••••••• 8-12
Turn Down the Volume 18 Db and Hold for 2

Beats ••• 8-13
Turn Noise Off •• 8-13

Printer Port •• 8-13
Other Devices ••• 8-14

Display, Mouse, and Keyboard Support •••••••••••••••••••••••••• 8-14

xiii

Display Panning ••• 8-15
Cursor and Mouse Tracking ••••••••••••••••••••••••••••••••••• 8-15
Display Access Functions •••••••••••••••••••••••••••••••••••• 8-15

Display Function 0: cursorOn •••••••••••••••••••••••••••••• 8-16
Display Function 1: cursorOff ••••••••••••••••••••••••••••• 8-16
Display Function 2: cursorLink •••••••••••••••••••••••••••• 8-16
Display Function 3: cursorUnlink •••••••••••••••••••••••••• 8-16
Display Function 4: cursorPanOn ••••••••••••••••••••••••••• 8-16
Display Function 5: cursorPanOff •••••••••••••••••••••••••• 8-16
Display Function 6: displayOn ••••••••••••••••••••••••••••• 8-16
Display Function 7: displayOff •••••••••••••••••••••••••••• 8-16
Display Function 8: joyPanOn•....•..••...•.... 8-16
Dis P lay Fu n c t ion 9: joy Pan 0 f f • 8 - -j 7
Display Function 10: timeoutOn •••••••••••••••••••••••••••• 8-17
Display Function 11: timeoutOff ••••••••••••••••••••••••••• 8-17
Display Function 12: blackOnWhite ••••••••••••••••••••••••• 8-17
Display Function 13: whiteOnBlack ••••••••••••••••••••••••• 8-17
Display Function 14: terminalOn ••••••••••••••••••••••••••• 8-17
Display Function 15: terminalOff •••••••••••••••••••••••••• 8-17
Display Function 16: getMousePoint •••••••••••••••••••••••• 8-17
Display Function 17: setMousePoint •••••••••••••••••••••••• 8-17
Display Function 18: getCursorPoint ••••••••••••••••••••••• 8-18
Display Function 19: setCursorPoint ••••••••••••••••••••••• 8-18
Display Function 20: getButtons ••••••••••••••••••••••••••• 8-18
Display Function 21: setSource •••••••••••••••••••••••••••• 8-18

4404 Reference Manual

Display
Display
Display
Display
Display
Display
Display
Display
Display
Display
Display

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

setDest •••••••••••••••••••••••••••••• 8-18
updateComplete ••••••••••••••••••••••• 8-19
getCursorform •••••••••••••••••••••••• 8-19
setCursorform •••••••••••••••••••••••• 8-19
getViewport •••••••••••••••••••••••••• 8-19
setViewport •••••••••••••••••••••••••• 8-19
getDisplayState •••••••••••••••••••••• 8-19
setKeyboardCode •••••••••••••••••••••• 8-19
getMouseBounds ••••••••••••••••••••••• 8-20
setMouseBounds ••••••••••••••••••••••• 8-20
XYtoRC ••••••••••••••••••••••••••••••• 8-20

Display Function 32: RCtoXY ••••••••••••••••••••••••••••••• 8-20
Keyboard and Mouse Event processing ••••••••••••••••••••••••••• 8-21

Event Manager Functions ••••••••••••••••••••••••••••••••••••• 8-21
Event Function 40: eventsEnable ••••••••••••••••••••••••••• 8-21
Event Function 41: eventsDisable •••••••••••••••••••••••••• 8-21
Event Function 42: eventSignalOn •••••••••••••••••••••••••• 8-21
Event Function 43: eventMouseInterval ••••••••••••••••••••• 8-22
Event Function 44: getEventCount •••••••••••••••••••••••••• 8-22
Event Function 45: getNewEventCount ••••••••••••••••••••••• 8-22
Event Function 46: getNextEvent ••••••••••••••••••••••••••• 8-22
Event Function 47: getMillisecondTime ••••••••••••••••••••• 8-22
Event Function 48: setAlarmTime ••••••••••••••••••••••••••• 8-22
Event Function 49: clearAlarm ••••••••••••••••••••••••••••• 8-22

Event Manager Key Codes ••••••••••••••••••••••••••••••••••••• 8-23
Floating Point Support •• 8-25

Floating Point Functions •••••••••••••••••••••••••••••••••••• 8-25
Fp Function 0: FADD ••••••••••••••••••••••••••••••••••••••• 8-25
Fp Function 1: FSUB ••••••••••••••••••••••••••••••••••••••• 8-25
Fp Function 2: FMUL •......•.•........•.••••............... 8-25
Fp Function 3: FDIV ••••••••••••••••••••••••••••••••••••••• 8-25
Fp Function 4:
Fp Function 5:
Fp Function 6:
Fp Function 7:
Fp Function 8:
Fp Function 9:
Fp Function 10:
Fp Function 11:
Fp Function 12:
Fp Function 13:
Fp Function 14:
Fp Function 15:
Fp Function 16:
Fp Function 17:
Fp Function 18:
Fp Function 19:
Fp Function 20:
Fp Function 21:
Fp Func tion 22:

4404 Reference Manual

FCMP ••••••••••••••••••••••••••••••••••••••• 8-25
FNEG ••••••••••••••••••••••••••••••••••••••• 8-25
FABS ••••••••••••••••••••••••••••••••••••••• 8-26
FItoF •••••••••••••••••••••••••••••••••••••• 8-26
FFtoIr ••••••••••••••••••••••••••••••••••••• 8-26
FTto It ••••••••••••••••••••••••••••••••••••• 8-26

FFto It •••••••••••••••••••••••••••••••••••• 8-26
FFtoD ••••••••••••••••••••••••••••••••••••• 8-26
FDtoF ••••••••••••••••••••••••••••••••••••• 8-26
FDADD ••••••••••••••••••••••••••••••••••••• 8-26
FDSUB ••••••••••••••••••••••••••••••••••••• 8-26
FDMUL ••••••••••••••••••••••••••••••••••••• 8-26
FDDIV ••••••••••••••••••••••••••••••••••••• 8-26
FDCMP ••••••••••••••••••••••••••••••••••••• 8-26
FDNEG ••••••••••••••••••••••••••••••••••••• 8-26
FDABS ••••••••••••••••••••••••••••••••••••• 8-27
FItoD ••••••••••••••••••••••••••••••••••••• 8-27
FDto Ir •••••••••••••••••••••••••••••••••••• 8-27
FDtplt •••••••••••••••••••••••••••••••••••• 8-27

xiv

Fp
Fp
Fp

Function 23:
Function 24:
Function 25:

FDtoIt ••••
FsetSta t.
Fge tSta t ••

Floating Point Returns ••
Memory Utilization •••••• · . .

Overall Address Space •••••
Physical Memory ••••••••••••••••
Display Memory ••••••••
I/O and ROM Memory Space.

Processor Board I/O •••
Peripheral Board I/O •••

. ..

·
·

.8-27

.8-27
•• 8-27
•• 8-27
.8-28
.8-28
.8-28

..8-28
• •• 8-28

.8-29

.8-29

Section 9 "edit" THE TEXT EDITOR

xv

Introduction •••••••••••••••• · • .9-1
Ca lling the

Calling
Calling

Editor •••••••••••••••••••••• . •.• 9-1
the Edi tor Wi th a Fi Ie Name ••••••••
the Editor With Two File Names ••

... ·9-1
..9-2
.9-3 Options ••••••••••••••••

Operating System Interface.
Backspace Character ••••
Escape Character ••••
Line Delete Character ••

· ... Horizontal Tab Character.
Control-D: Keyboard Signal for
Control-C: Keyboard Interrupt.
Control- "Quit" Signal •••••

The Editor's Use of Disk Files.
Creating a New File ••••••••••
Editing an Existing File ••••
Command Input From a File •••••

.
·
· · ...

End-Of-File ••
· . · · ...

• .9-4
.9-4
.9-4
.9-4

• .9-4
• .9-5
.9-5
.9-5
.9-6

· 9-6 ·9-6
• •• 9-7

Fa ta I Er r 0 r s ••• . . . · • .9-7
Editor Commands.

Using Strings •• :
Specifying a Column Number ••
Using the Don't-Care Character.
The Command Repeat Character:

. ..
.

• .9-8
• .9-8

• •• 9-10 · • .9-10
• ••••••• 9-11 . . Using the EOL Character ••

Using Tabs: ••••••••••
Length of Text Lines ••

.9-11
.9-11
.9-12

Commands ••••••••••••
Environment Commands ••••

dk1 •••
dk2 •••

. esave.
ese t •••
header ••

.
k 1 ••••••• • 0 •

k2. . .
Ik1. . . .

. . .

· · ...
· . . · · · . . .

e • e •

· . ·

· ·9-12
• .9-13
.9-13

• ••••••• 9-13
• •••••• 9-14

. 9-15

·
• •.•••.. 9-15

· .9-16
• .9-16
.9-16

4404 Reference Manual

Ik2 ••••••
numbers ••••••••••
renumber ••
se t •.•••
ta b •••••
verify.
zone ••••

System Commands ••
· abort •••

edit.
log ••
stop.
u ••••
wai t.
x ••••

"Current Line"
bottom.
find.

.... Movers.

· ... ·

· ...

· ·
next.
position.

.
top ••••••••••••••••

Editing Commands ••••••
append.
break ••
change.
cchange.
copy •••
delete.

.
expand ••••••••
insert.
insert.
merge •••
move •••
overlay •••••••••
overlay •••••••
print ••••
replace ••
text •••••
null ••••

Disk Commands.
Flush. ·
new •••••••

·

· .
· . .

· . .
.

..

· . . . ·

· . . .

·

· . .
· . . . · . .

·

read.
wr i te •• ·

Editor Messages •••

4404 Reference Manual

· 9-17
• ••••••••••• 9-17

.
.

.9-18

.9-18
• .9-19
•• 9-19
.9-20
.9-21
.9-21

. . . • 9-21
• .9-22

• •••••• 9-22
.9-23
.9-23 ·9-24
.9-25 •••• 9-25

• ••••••• 9-25
..9-26
•• 9-27

· . • ••••••• 9-27
• •••••••••••• 9-28

..9-28 ·9-28
•• 9-29
.9-30

••• 9-31

..

·
•••• 9-30

• ••••• 9-32
•••• 9-30

. 9-33
.9-33

• •••• 8 ••••• • 9-34

· ..

.9-35
..9-35

• •.• 9-36
•••••• 9-36

..9-37
• ••••••• 9-37

.9-38
• .9-38

• •• 9-38
. 9-39 ·9-39

.9-40

xvi

Section 10 TERMINAL EMULATION

Overview ••• • •• 10-1
Description •••••••••••••••••••••••••••••••

Compliance With ANSI and ISO Standards ••
Compatibility With the DEC VT-100 •••••••
Compatibility With Tektronix Terminals •••

Interface to the Operating System •••••••••••

• ••• 10-1 · .. • .10-1
• .10-2
• .10-2

• 10-2
Supported ANSI Commands ••••••••••••••••••••••• .10-3

xvii

<ACK> Acknowledge Character (Char #6) ••
<BEL> Bell Character •••••••• ·
<BS> Backspace Character •••••••••••••••••
<CAN> Character (#24) ••••••••
<CBT> Cursor Backward Tab ••••••

·

• .10-3
• .10-3
..10-3
• .10-3

• ••• 10-4
<CHT> Cursor Horizontal Tab...... • ••••••••••• • ••• 10-4
<CPR> Cursor Position Report ••••••••••••• • ••• 10-4
<CR> Carriage Return Character....... • •••• • ••• 10-5
<CRM> Control Representation Mode............ • ••••• 10-5
<CUB> Cursor Backward ••••••••••••••••••••••••••••••••••••• 10-6
<CUD> Cursor Down •••••••••• . •••• 10-6

•••• 10-6 <CUF> Cursor Forward ••••••••••••••••••••••••••••
<CUP> Cursor Position •••••••• · • ••••••• 10-7
<CUU> Cursor Up ••••••••••••••••• • ••••••• 10-7 ·10-7

· • •• 10-8 · • •• 10-8
• •• 10-8

<DA> Device Attributes •••••
<DC1> Character (Char #17) ••••
<DC2> Character (Char #18) •••••
<DC3> Character (Char #19) ••••
<DC4> Character (Char #20) ••••
<DCH> Delete Character ••••••••
 Character (Char #127) ••

· • •• 10-8
••• 10-9

<DL> Delete Line •••••••••••••
<DLE> Character (Char #16).
<DMI> Disable Manual Input ••
<DSR> Device Status Report •••
<ECH> Erase Character ••••••

· · .
· ·

<ED> Erase in Display ••••••••••••••••••••••••••
<EL> Erase in Line ••••••••
(EM) Character (Char #25).

Enable Manual Input ••
Character (Char #5) •••••

. .. · · ...

• .10-9
• ••••• 10-9
• ••••• 10-9

• ••••••• 10-10
• .10-10

• •••••••• 10-11
••••••• 10-11
• •••••• 10-11

• •••••••• 10-12
• .10-12

Character (Char #4) ••••••••••••••••• ••••••••••••• 10-1 2

<EMI>
<ENQ>
<EOT>
<ESC>
<ETB>
<ETX>
<FF>
<FS>
<GS>

Character (Char #27) •••••••••••••••••••••••••••••••• 10-12
Character (Char #23) •••••••••••••••••••••••
Character (Char #3) ••••

Form Feed Character •••
.

• •••• 10-13
• •• 10-13
• •• 10-13

Character (Char #28) ••••••••••••••••••••••••••••••••• 10-13
Character (Char #29) •••••••••••••••••••••••

<HT) Horizontal Tab Character •••••••••••••
<HTS> Horizontal Tab Set •••••••••••••••••••
<HVP> Horizontal and Vertical Position ••••

• •• 10-13
• •• 10-14
• •• 10-14

• •••• 10-14

4404 Reference Manual

<ICH> Insert Character •••••••••••••••••••••••••••••••••••• 10-14
<IL> Insert Line •• 10-15
<INO> Index ••• 10-15
<IRM> Insertion/Replacement Mode •••••••••••••••••••••••••• 10-15
<KAM> Keyboard Action Mode •••••••••••••••••••••••••••••••• 10-16
<LF> Line Feed Character •••••••••••••••••••••••••••••••••• 10-16
<LNM> Line-Feed/New-Line Mode ••••••••••••••••••••••••••••• 10-16
<NAK> Character (Char #21) •••••••••••••••••••••••••••••••• 10-17
<NEL> Next Line ••• 10-17
<NUL> Character (Char #0) ••••••••••••••••••••••••••••••••• 10-17
<PU1> Private Use 1 ••••••••••••••••••••••••••••••••••••••• 10-17
<REPORT-SYNTAX-MODE> •••••••••••••••••••••••••••••••••••••• 10-17
<RI> Reverse Index •• 10-18
<RIS> Reset to Initial State •••••••••••••••••••••••••••••• 10-18
<RM> Reset Mode ••• 10-18
<RS> Character (Char #30) ••••••••••••••••••••••••••••••••• 10-20
<SCS> Select Character Set •••••••••••••••••••••••••••••••• 10-20
<SELECT-CODE> ••• 10-21
<SGR> Select Graphic Rendition •••••••••••••••••••••••••••• 10-21
<SI> Shift in Character ••••••••••••••••••••••••••••••••••• 10-22
<SM> Set Mode ••• 10-22
<SO> Shift Out Character •••••••••••••••••••••••••••••••••• 10-23
<SOH> Character (Char #1) ••••••••••••••••••••••••••••••••• 10-24
<SP> "Space" Character •••••••••••••••••••••••••••••••••••• 10-24
<SRM> Send/Receive Mode ••••••••••••••••••••••••••••••••••• 10-24
<STX> Character (Char #2) ••••••••••••••••••••••••••••••••• 10-24
<SUB> Character (Char #26) •••••••••••••••••••••••••••••••• 10-25
<SYN> Character (Char #22) •••••••••••••••••••••••••••••••• 10-25
<TEC> Tabulation Clear •••••••••••••••••••••••••••••••••••• 10-25
<TEKARM> Auto-Repeat Mode ••••••••••••••••••••••••••••••••• 10-26
<TEKAWM> Auto-Wrap Mode ••••••••••••••••••••••••••••••••••• 10-26
<TEKCKM> Cursor Key Mode •••••••••••••••••••••••••••••••••• 10-26
<Tekgcrep> Graphic Cursor Position Report ••••••••••••••••• 10-27
<TEKIO> Identify Terminal ••••••••••••••••••••••••••••••••• 10-27
<TEKKPAM> Keypad Application Mode ••••••••••••••••••••••••• 10-28
<TEKKPNM> Keypad Numeric Mode ••••••••••••••••••••••••••••• 10-28
<TEKMBREP> Mouse Button and Graphic Cursor

Position Reporting •••••••••••••••••••••••••••••••••• 10-30
<TEKOM> Origin Mode ••••••••••••••••••••••••••••••••••••••• 10-31
<TEKRC> Restore Cursor •••••••••••••••••••••••••••••••••••• 10-31
<TEKREQTPARM> Request Terminal Parameters ••••••••••••••••• 10-31
<TEKRGCR> Request Graphic Cursor Position

Report •• 10-32
<TEKSC> Save Cursor ••••••••••••••••••••••••••••••••••••••• 10-32
<TEKSCNM> Screen Mode ••••••••••••••••••••••••••••••••••••• 10-32
<TEKSGCRT> Select Graphic Cursor Report Type •••••••••••••• 10-32
<TEKSTBM> Set Top and Bottom Margins •••••••••••••••••••••• 10-33
<US> Character (Char #31) ••••••••••••••••••••••••••••••••• 10-34
<VT> Vertical
ANSI Terminal

4404 Reference Manual

Tab Character ••••••••••••••••••••••••••••••• 10-34
Emulator Mouse Button and Position

xviii

Reporting ••••••••••••••••••••••••••••••
<TEKSGCRT) Select gr9phic cursor report type

(Tek-Privat~) •••••• : •••••• : •••••• : •••••
<TEKRGCR) Request Graphic Cursor Position

Report (Tek Private) •••••••••••
Keyboard De ta i 1 s ••••••••••••••••••••••

Shift, Ctrl, and Caps Lock Keys ••••
Default ANSI Mode Meanings of Keys.

Alphanumeric Keys ••••••
Numeric Pad Keys.
Joydisk Keys •••••••
Function Keys •••••
Special Function Keys ••

.

......

.

. ...

.10-34

.10-35

• •• 10-35
.10-36

• • 10-36
• ••• 10-36

• • 10-36
• • 10-39

•••••• 10-4010-41
• .10-42

xix 4404 Reference Manual

Appendix A ASCII CODE CHART

INDEX

TABLES

Table

2-1
2-1
2-2
2-3
4-1
8-1
8-2
8-3
8-4
8-5
8~6
8-7
8-8
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9

10-10
10-11
10-12

Description

Possible Interrupts •...•••••••..•....••••.•..••••••••••• 2-66
"Shell" Editing Keys and Functions ..••.••..•••.••••••••• 2-129
"Shell" Commands ••..•••••••••••.•.••••••••.••.•••••.•••• 2-135
Possible Task Priorities ••.••••.•..••.••.••••••••••••••• 2-139
4404 Program Interrupts ••••...•.•....•••.••••••••••••••• 4-39
Frequency Selection (Byte 1)•...... S-4
Frequency Selection (Byte 2)•.• S-5
Attenuation Control .•••••.••••••.•.••••••.•••••••••••••• S-6
Attenuation Byte Bit Assignments •.••.••••••••••••••••••• 8-7
Noise Feedback Control •••••...•••••••.•••••••.•••••••••• 8-S
Noise Frequency Control •.•..••••.•.••••••••••••••••••••• S-S
Noise-Control-Byte Bit Assignments ••••••••••••.••••••••• S-9
Control Register Addresses •...••..•••••••••••••••••••••• 8-10
Parameter Meanings ••..•••••••••••.•.••••••••••••••••.••• 10-10
Valid Reset Mode Parameters •••••••••.••••••••••••••••••• 10-19
Character Set Selection ..••.••..•..•••••••••.••••••••••• 10-20
Set Mode Parameters ••••••••••••••••••••••••••••••••••••• 10-23
Alternate Joydisk Meanings ••••.•.••.••••.••••••••••••••. 10-27
Keypad Application Mode Key Meanings •••.•••..•.••••••••• 10-29
Mouse Button Reports ••.••••••.•.•••••••••.•••••••••••••• 10-30
ANSI Meanings of Alphanumeric Keys •..••••••••••••••••••• 10-37
Applications Mode (Tekkpam) Meanings of Keypad

Keys •• 10-39
ANSI Joydisk Key Meanings •..••.•••••.••••••••••••••••••• 10-40
ANSI Meanings of Function Keys .•..•••••..•••••••.•.••••• 10-41
ANSI Meanings of Special Function Keys ••••.••••.•••••••• 10-42

4404 Reference Manual xx

Section 1

INTRODUCTION

ABOUT THIS MANUAL

This manual is the primary user's and programmer's reference to
the 4404 operating system and hardware support. This manual
contains concise summaries of the commands and utilities included
with your 4404 as standard software, and a summary of how to
invoke and use each command. This manual does not attempt to
show you how to put commands together to perform a task; that
information is covered in the 4404 User's Manual. The User's
Manual also contains a complete list of the other manuals
available for the 4404.

WHERE TO FIND INFORMATION

You have several important sources of information on the 4404:

o This manual, the 4404 Reference Manual, contains the
syntax and details of commands and utilities. This manual
also contains the details of the assembler, linking loader,
'e' compiler, and the remote terminal emulator.

o 4404 User's Manual The User's manual contains basic
information on system installation, startup, installing
software, and the other "how to put commands together"
discussions. See the index of the User's manual to find how
to perform particular tasks.

o The on-line "help" utility, which contains a very brief
description of the syntax of user commands.

o The Introduction to Smalltalk-80(tm) manual, which contains
details and a short tutorial on the Smalltalk-80 programming
language.

o The reference manuals for the optional languages available
on the 4404.

4404 Reference Manual @ 1-1

SECTION 1
introduction

MANUAL SYNTAX CONVENTIONS

Throughout this manual, the 4404 User's Manual, and in the
on-line Help files, the following syntax conventions apply:

1. Words standing alone on the command line are keywords.
They are the words recognized by the system and should be
typed exactly as shown.

2. Words enclosed by angle brackets ("<" and ,,>") enclose
descriptions that you must replace with a specific argument.
If an expression is enclosed only in angle brackets, it
is an essential part of the command line. For example, in
the line:

addusr <user name>

you must specify the name of the user in place of the
expression <user_name>.

3. Words or expressions surrounded by square brackets ("[" and
,,],,) are optional. You may omit these words or expressions
if you wish.

4. If the word "list" appears as part of a term, that term
consists of one or more elements of the type described in
the term, separated by spaces. For example:

1-2

<file name list>

consists of a series (one or more) of file names separated
by spaces.

@ 4404 Reference Manual

Section 2

USER COMMANDS AND UTILITIES

You can use the commands and utilities in this section from any
Qser account. Some options, however, reqQire special privileges.
These options are mentioned in the detailed description of each
command or utility.

asm

The "asm" command is the 68000/68010 relocating assembler.

SYNTAX

asm <file name list> [+befFILnosStu]

DESCRIPTION

b Suppress binary output.
e Suppress summary information.
f Disable field formatting.
F Enable "fix" mode. (Comments that begin with

a semicolon, '; f, are assembled.)
I Produce a listing of the assembled source.
L Produce listing of input file during the

first pass.
n Produce decimal line numbers with the listing.
o~<file name> Specifies the name of the binary file.
s Produce a listing of the symbol table.
S Limit symbols internally to 8 characters.
u Classify all unresolved symbols as external.

EXAMPLES

1. asm asmfile
2. asm test.a +euo~test.r
3. asm test.a test2.a test3.a +blns

The first example assembles the source file "asmfile" and
produces the relocatable binary file "asmfile.r". The assembler
sends summary information to standard OQtput, but produces no
source listing. Any errors detected are sent to standard output.

4404 Reference Manual @ 2-1

SECTION 2
User Commands

The second example assembles the file "test.a" and produces the
relocatable file "test.r". No summary information is produced,
and all unresolved references are classified as external. If the
assembler detects no errors during the assembly, the user sees no
output from this command.

The third example assembles the three files, but produces no
binary output. A listing with a symbol table is sent to standard
output. The listing includes decimal line nwmbers.

SEE ALSO

Section 5, The Assembler a~~~in~~~~~~ad~~

2-2 @ 4404 Reference Manual

backup

SECTION 2
User Commands

Copy files from the file system to the floppy device.

SYNTAX

backup [+ AbBdlp] [+ a= days] [+ t [= filename]] [file ...]

DESCRIPTION

The "backup" command is used to create and maintain archival
backups of files or directories on the system. It can operate in
two distinct modes, selected by options: create mode, and append
mode. Create mode copies the specified files or directories to
the backup device, and destroys any data that is already on the
backup device. Append mode adds the specified files or
directories to existing files on the the backup device. Thus, it
is possible to append, to an existing backup file, a file whose
path and file names are identical with one already backed up.

The "backup" command stores files and directories on the flexible
disk drive ("/dev/floppy"). The "backup" command uses a unique
file structure, which is completely different from the standard
operating system file structure. Therefore, "/dev/floppy" must
not be mounted onto the file system using the "mount" command.
The only way to read devices written by "backup" is to use
"restore." The only other command that you should use on a
backup device is "devcheck".

The backup disk should generally be formatted before the back up
operation begins. Although the file structure created by the
format command is destroyed by "backup", the raw track formatting
is essential. During the back up process, you can request that
"backu-p" format disks before writing to them by pressing "f"
rather than "Return" when backup prompts you to "enter C/R."

Back ups may extend over more than one volume of the backup
mediu-m. There are no restrictions on the sizes of files copied.
If necessary, "backup" breaks files into segments and stores each
segment on a different volume.

4404 Reference Manual @ 2-3

SECTION 2
User Commands

Arguments

<file name list> List of the names of files and
directories to process. Default is the
working directory.

If you specify a directory name as an argument in create or
append mode, the program processes only the files within that
directory. If you also specify the 'd' option, the program
restores all files within the given directory and its
subdirectories.

Options Available

a=<days> Copy only those files that are no older than
the specified number of days. A value of 0
specifies files created since midnight on the
current day; a value of 1 specifies files
created since midnight of the previous day,
and so forth.

A Append to a previous backup.

b Print sizes of files in bytes.

B Do not back up files that end in ".bak".

d Back up entire directory structures.

1 List file names as they are copied.

p Prompt you with each file name to
determine whether or not the backup
procedure should be performed on that
p A. r tic tll a r f i 1 e .

t[=<file_name>] Back up only files that have been
created or modified since the date in
the specified file. When the backup is
finished, update the date in the file
(see NOTES). If you do not
specify a file, the default is
".backup.time".

With no options, "backup" is quiet. The '1' option allows you to
see what the program is actually doing.

2-4 @ 4404 Reference Manual

SECTION 2
User Commands

If you specify the 't' option, but the "backup time" file
specified as its argument does not yet exist, "backup" copies all
the files and directories listed on the command line. Thus, a
user may obtain a full backup (either without the 't' option or
with a nonexistent "backup time" file) or a partial backup, which
includes only those files created since the last backup.

EXAMPLES

1 . backup +1

2. backup +ld file1 file2 dir1 dir2

3· backup +ld file1 file2 dir1 dir2 +a=5

4. backup +It

5 · backup +lAt=backup_ time

The first example backs up all files in the working directory to
the device "/dev/floppy". The file names are listed as they are
copied to the device.

The second example copies (in order) the files "file1" and
"file2", then all files and directories contained in the
directories "dir1" and "dir2".

The third example performs the same function as the second
example, except that it copies only those files that are five
days old or less.

The fourth example creates the same backup as the first example,
but only copies the files created or modified after the time
contained in the file ".backup.time". If this file does not
exist, all the files are copied.

The fifth example adds a set of files to a previously created
backup. In particular, it adds exactly the files that were
created or modified since the creation of the file "backup_time".

NOTES

o When using append mode, you must place the final diskette in
the backup device. Because the "backup" command always
expects to receive the diskettes in order, it issues a message
saying that you have inserted the wrong volume and prompts
for permission to continue. In this case you want the last
volume in the drive and should respond with a 'y' to the
prompt. The program then appends files to that volume,
requesting new volumes as necessary.

4404 Reference Manual @ 2-5

SECTION 2
User Commands

o When files are restored, they are generally restored to the
same directory location as you specified when they were
backed up. As files are backed up, "backup" makes an
indication of the path name for each file. When files are
restored, the program uses the path name to place the file
in its proper directory location. If the path name is
relative (i.e., does not begin with 'I'), the path name of
the restored directory is also relative. Thus, files backed
up with a relative path name may be restored to a directory
location different from the one in which they were created.

An example should make this clear. If the working directory
is backed up, either by specifying no source files or by
using the directory name'.', the files are backed up with a
relative path of '.'. When these files are restored, they
are placed in the directory'.', which might not be the same
directory they originally came from. This feature allows
the manipulation of entire file systems in a general fashion.
To specify a unique directory location for a file, you
should specify its entire path name, starting with 'I'.

MESSAGES

Several of the following messages prompt you for a positive
or negative response. The program interprets any response that
does not begin with an upper or lowercase In' as a positive
response.

Backup to "<file name>"
Update backup on-"<file_name>"

These messages are printed when "backup" begins. They notify
you of the function about to be performed.

,., _ ~ ~~ ,,/..c.:, ~ _ ~ _ ~ '"" I __ I _ \ '"
VU}J'Y '.L.L.J..~ Hi::1111~/ \.YI H)!

If you specify the 'pI option, the program prints this prompt
before it takes any action. A response of tn' or 'N' indicates
that the operation should not be performed for the given file.
Any other response is interpreted as "yes".

Device model name?

You should respond to this prompt with "TEK4404".

2-6 @ 4404 Reference Manual

SECTION 2
User Commands

Do you wish to abort "append" function and create a new backup?

This message is printed at the initiation of the "append"
operating mode if an invalid header (indicating a bad backup
format) is detected. You have the option of aborting from
"append" mode and switching to "create" mode.

Format program name?

This prompt is issu.ed in response to a "format" request for the
next volume. It indicates that the program could not find a
format program name in the file "/etc/format.control." You
should respond with "format" since you are backing up on the
flexible disk drive.

Insert next volume - Hit C/R to continue:

This prompt is issued when the program needs a new backup disk.
You should type a carriage return only when the next disk has
been placed in the drive. When creating new backups or when
appending to an old one, you may enter the character 'f',
followed by a carriage return. If the program is in append mode,
it automatically switches to create mode and starts a new backup.
The 'f' indicates that the disk has been inserted in the drive,
but that it must be formatted before continuing. In this case the
program first checks the file "/etc/format.control" for a format
program name, and if found formats the disk. If it cannot find
this file, it then prompts you for the format program necessary
to format the disk. Subsequent format operations use the same
information; thus, all disks that were not previously formatted
must have the same characteristics (e.g. double-sided,
double-density) .

The program prints these messages as it takes the corresponding
action during a creation operation.

This is Volume #<number_1> -- Expected Volume #<number_2>
Continue?

The program expects you to insert volumes in sequential order.
If a volume appears out of order, "backupll prints this message.
If you type anything except an 'n' or an 'N' as the first
character of the response to the message, "backup" ignores the
fact that the volumes are out of order and continues with the
backup. Otherwise, it prompts you for another volume.

4404 Reference Manual @ 2-7

SECTION 2
User Commands

Volume name?

Each set of backQP volQmes has a name.
"TEK4404" in response to this prompt.
many as forty characters.

Volume <number> of "<vol name>"

YOQ shoQld enter the name
The name may contain as

Whenever a new volQme is inserted and properly validated, the
program prints this message, which indicates the name of the
backup volQme and its seqQence number.

ERROR MESSAGES

*** Invalid Volume Header -- Not a "backup" disk ***

The program validates each backup volume before using it. If
this validation fails, the program prints this message to
indicate that something is wrong. You then have another chance to
insert the proper disk and continue. If validation fails while
the program is in append mode, you may abort from append mode and
create a totally new backup instead.

Write error! - file "<file name>"

An I/O error occurred during the transfer of a file to the
backup. An aQxiliary message is printed indicating the nature of
the error. The program tries to continue for all errors.

Unknown option: <char>

The option specified by <char> is not a valid option to the
"backup" command.

** Warning: directory "<dir name>" is too large!
** Some directories were ignored
**Warning: directory "<dir name>" is too large!
** Some files were ignored

The program uses some internal tables durin~ the back up process.
If the limits of these tables are exceeded (highly unlikely),
these messages are printed.

SEE ALSO

2-8

format
restore

@ 4404 Reference Manual

SECTION 2
User Commands

cc

Invoke the rc' compiler.

SYNTAX

cc <file_name_list> [+acDfiIlLmMnNoOqrRtUvwx]

where <file name list> is a list of the names of the files to
compile.

Options Available

a Produce as output assembly language source
files with a ".a" extension.

c Put comments in the assembly language
file.

D<name>[=<defn>] Command line "#define".

f Produce an output module suitable for
firmware.

I Produce as output intermediate language
files with a ".i" extension.

i=<dir name> Specify a directory for "#include" files.

l=<lib name> Specify a library name to be passed to the
loader.

L Produce a source listing and write it to
standard output.

m Produce load and module maps from the
loader.

M Leave the combined output as one ". r"
file.

N Produce a listing without expanding
"#include" files.

n Run the first pass only, do not produce
any code.

o Run the assembly language optimizer.

4404 Reference Manual @ 2-9

SECTION 2
User Commands

o=<file name>

q

R

r

s

S

t

U

v

w

x=<ldr_option>

Specify the output file name.

Produce code that does calculations on
"char" and "short" variables without
first converting to "int".

Produce as output relocatable modules
with a ".r" extension, and an executable
module.

Produce as output relocatable modules
with a ".r" extension.

Produce code that does not do stack
growth checking.

Generate code that does do stack growth
checking.

Produce a shared-text, executable output
module.

Produce a line-feed character ($OA) for
, n' rather than the default of carriage
return ($OD).

Show each phase of the compilation
process (verbose mode).

Warn about duplicate "#define"
statements.

Pass the information following the '='
on to the loader for processing.

For a full discussion of the 'C' compiler, refer to Section 7 of
this manual.

2-10 @ 4404 Reference Manual

SECTION 2
User Commands

chd

Change the Qser's working directory.

SYNTAX

chd [<dir_name>]

DESCRIPTION

The "chd" command, which is part of both the shell and script
programs, changes the user's working directory to the directory
specified on the command line. If no directory is specified, the
default is the user's home directory (the directory entered on
logging in). The user must have execute permission in the
directory specified.

Arguments

<dir name>

EXAMPLES

1. chd /mark
2. chd book
3. chd

The name of the directory to use as the
working directory. Default is the user's
home directory.

The first example changes the working directory to the directory
"/mark".

The second example changes the working directory to the directory
"book", which resides in the current working directory.

The third example changes the working directory to the user's
home directory.

ERROR MESSAGES

Cannot change directories.

The operating system returned an error when the shell program
tried to change directories. This message is preceded by an
interpretation of the error produced by the operating system.

SEE ALSO

shell
script

4404 Reference Manual @ 2-11

SECTION 2
User Commands

commset

Set configuration of communications port.

SYNTAX

commset [options ...]

DESCRIPTION

This utility allows you to examine or set certain I/O options on
the RS-232 communications port. With no argument, it reports the
current setting of the options.

Options Available

The option strings are selected from the following set:

2-12

baud=nnn
=external
=nnn.mmm
=default

flag=dtr

flag=input

flag=output

flag=inout

flag=none

flag=default

@

Set the transmit and receive baud rates.
Valid values are 50, 75, 110, 134, 150, 300,
600, 1200, 1800, 4800, 9600, 19200 and
38400. The keyword "external" specifies
that the external clock should be used for
the baud rate. The default of 9600 is used
if the keyword "default" is entered. If two
values are entered, then the first specifies
the transmit rate and the second specifies
the receive rate, otherwise both rates are
set to the same value.

Set the type of flagging to be used. The
keyword "dtr" specifies that the DTR and CTS
signals should be used to flag input and
output full conditions. The keywords
"input" and "output" specify that
CTL-S/CTL-Q flagging should be used for
input and output, respectively. The keyword
"tandem" specifies that CTL-SiCTL-Q flagging
should be used for both input and output.
The keyword "none" disables flagging. The
default is inout flagging.

4404 Reference Manual

parity=even

pari ty=odd

pari ty=high

parity=low

parity=none

parity=defatllt

stop=n

stop=defatllt

reset

show

SECTION 2
User Commands

Set the type of parity to be tlsed. The
keyword "even" specifies that even parity be
llsed. The keyword "odd" specifies that odd
parity be llsed. The keyword "high"
specifies that the parity bit shoald always
be a one. The keyword "low" specifies that
the parity bit shoald always be a zero. The
keyword "none" specifies that the parity bit
is treated as data. The defaalt is low
parity.

Set the namber of stop bits to be ased.
Valid valaes are 1 and 2. The defaalt is
one stop bit.

Reset the commanications port, flashing any
pending data and setting all options to
their defatllt valtles.

Display the carrent settings for the
options. This is the same as if no option
is specified.

lei IMPLEMENTATION NOTES

The "commset" command ases the "ttyset" and "ttyget" system calls
to commanicate option settings to the commllnications port device
driver. The format of the 6-byte baffer llsed with these calls is
defined differently than for standard tty devices. The inclade
file "comm.h" contains definitions for the following stractares
and constants.

strllct commbaf { char c com, c valae, c_parity, c_flag, c_ospeed,
c_ispeed-}; -

The c com field is ased to reqaest variOllS commands to be
execllted by the device driver dllring ttyset and ttyget calls.
Valid vallles for this field are defined as follows:

RESET COMM
SETUP-COMM
EXCL COMM
or reset
BREAK COMM
secona
NOBLOCK COMM
BLOCK COMM
DTRLOW COMM
DTRHIGH COMM
RTSLOW COMM
RTSHIGH COMM

1
2
3

4

5
6
7
8
9
10

4404 Reference Manaal

Reset the commllnications port
Set parity, flags and baad rates
Do not accept open reqaest antil closed

Send break signal for c_valae tenths of a

Read calls do not block
Read calls do block (defalllt)
Set DTR signal low
Set DTR signal high (defalllt)
Set RTS signal low
Set RTS signal high (defalllt)

@ 2-13

SECTION 2
User Commands

The SETUP COMM request causes the parity type and number of stop
bits to be set according to the value in the c parity field.
Valid values for this field are defined as follows:

LOW PARITY
HIGH PARITY
EV:EN-PARITY
ODD PARITY
NO PARITY
TWO STOP BITS
stop bit-

o
1
2
3
4
Ox80 if msb set then two stop bits, else one

The SETUO COMM request also causes flagging to be set by the
value in the c flag field. Valid values for this field are
defined as follows:

NO FLAG 0
INPUT FLAG 1
OUTPUT FLAG 2
TANDEM-FLAG 3
DTR FLAG 4

By default, read calls will block if no input is available. If
any data is available, it is read into the caller's buffer (up to
the requested number of bytes) and the number of bytes read is
retQrned. If NOBLOCK COMM is requested, then read calls will not
block and a zero count is returned if no bytes are available.

The following constants are used in the c ospeed and c ispeed
fields to indicate the transmit and receive baud rates:

EXTERNAL 0
C50 1
C75 2
"",,,,"'1""'\.

3 v I IV

C134 4
C150 5
C300 6
C600 7
C1200 8
C1800 9
C2400 10
C4800 1 1
C9600 1 2
C19200 1 3
C38400 14

SEE ALSO

conset

2-14 @ 4404 Reference Manual

compare

SECTION 2
User Commands

Compare two text files line by line and report the differences.

SYNTAX

compare <file name 1> <file name 2> [+<window_size>]

DESCRIPTION

The "compare" command compares two text files and indicates how
they differ. The information provided is usually sufficient to
allow the user to change one file into the other. By default,
the "compare" command considers that it is in the same place in
each of the files if three lines match.

The output from the command reports sets of lines which have been
deleted from, added to, or changed in either file. These
messages are written from the point of view of how to change
the first file into the second file. For instance, the message

File "<file name>" lines deleted

means that if the lines following the message are deleted from
<file_name>, the two files will be the same.

The program also reports the presence of additional lines in a
file with the following message:

File "<file name>" has additional lines

This message is not from the point of view of changing one file
into the other. Rather, it means that the file mentioned in the
message is the file that contains additional lines.

If a set of lines is deleted from one file and the following line
is changed as well, "compare" reports all those lines as lines
that have been changed rather than inserted or deleted.

The "compare" command can handle files of any size, but can only
process 250 lines at a time. If the files differ in any spot by
250 lines, the program reports 250 lines changed in each file and
continues comparing them.

4404 Reference Manual @ 2-15

SECTION 2
User Commands

Arguments

<file name 1> The name of the first file to Qse.
<file-name-2> The name of the file to compare to

<file name 1>

Options Available

<window size> Use the integer <window size> as the nQIDber
of matching lines reqQired before considering
the files synchronized. The nQIDber specified
mQst be between 1 and 250. The defaQlt is 3.

EXAMPLES

1. compare /michael/test /cathy/test
1. compare test test.bak +5

The first example compares the file "test" in the directory
"/michael" to the file "test" in the directory "/cathy".

The second example compares the two files "test" and "test.bak"
in the working directory. The window size for the comparison is
five lines.

ERROR MESSAGES

The "compare" command expects exactly two argQments. This
message indicates that the argQIDent cOQnt is wrong.

2-16 @ 4404 Reference ManQal

conset

SECTION 2
User Commands

Set or examine the configuration of the console port.

SYNTAX

conset [options ...]

DESCRIPTION

The u.tility "conset" allows you to examine and set certain I/O
options on the console port. With no argument, it reports the
current setting of the options.

Options Available

The option strings are selected from the following set:

+ raw
- raw

+ echo
- echo

+ tabs
- tabs

+ becho
- becho

+ schar
- schar

+ xon
- xon

+ any
- any

chardel= n

linedel= n

Set or clear the raw mode.

Enable or disable character echoing.

Automatically expand tabs or don't.

Echo space/backspace to erase on backspace or
don't.

Enable or disable single character mode.

Enable or disable ctrl-S/ctrl-Q flagging to
suspend output.

Allow or don't allow any character to restart
suspended output.

"n" is a hex number specifying a character to
be used as the delete character.

"n" is a hex number specifying a character to
be used as line delete character.

+ screensave
- screensave

Enable or disable screen blanking after 10
minutes.

+ video
- video

Normal video (black on white) or inverse video.

4404 Reference Manual @ 2-17

SECTION 2
User Commands

+ CQrsor Make graphic CQrsor visible or invisible.
- CQrsor

+ track
- track

+ mOQsepan
- mOQsepan

+ diskpan
- diskpan

show

Enable or disable graphic CQrsor tracking the
mOQse.

Enable or disable mOQse panning of the
viewport.

Enable or disable joydisk panning of
viewport.

Display the CQrrent settings for the options.
This is the same as if no option is specified.

'0' IMPLEMENTATION NOTES

The conset command Qses the "ttyset" and "ttyget" system calls to
commQnicate the raw, echo, tabs, becho, schar, xon, any, chardel,
and linedel option settings to the console port device driver and
it Qses system traps to implement the screensave, video, CQrsor,
track, mOQsepan, and diskpan options.

SEE ALSO

commset

2-18 @ 4404 Reference ManQal

SECTION 2
User Commands

copy

Copy a file or directory to the specified file or directory, or
copy one or more files to the specified directory.

SYNTAX

copy <file name 1> <file name 2> [+dbncotBplLDP]
copy <file-name-list> <dTr name> [+dbncotBplLDP]
copy <dir_name_T> <dir_name_2> [+dbncotBplLDP]

DESCRIPTION

Three forms of the "copy" command exist. The first form makes a
copy of a file and gives it the specified name. The second form
makes one copy of each specified file and places all copies in
the specified directory. The last component of each file name is
preserved in the new directory. The third form copies the
contents of one directory to another.

In any case, if no file exists which has the same name as the
name specified for the new copy, the "copy" command creates one.
If a file with that name does already exist, it is deleted and
recreated before copying takes place. Thus, the contents of the
file are lost and replaced by the contents of the file being
copied. In addition, any links to that file are broken.

The new file has the same permissions as the original file. The
owner of the new file is always the user who executes the
command. The user must have execute permission in the directory
in which copies are to be made. He or she must also have write
permission for the file being copied to and, unless the '0' option
is specified, in the directory that is to contain the new copy.

Arguments

<file name 1> The name of the file to copy.

<file name 2> The name of the new copy of the original
file.

<file name list> A list of the names of the files to copy
to the specified directory.

<dir name> The name of the directory in which to place
all copies.

4404 Reference Manual @ 2-19

SECTION 2
User Commands

Options Available

d Copy directory structure for all named directories.

b Do not copy a file unless it already exists in the
destination directory.

n Copy a file if it is newer than the copy in the
destination directory. If no copy exists, perform the
copy.

c Do not copy a file if it already exists in the
destination directory. Cannot be used with "n."

o Retain original file ownership.

t Don't create top level directories at destination.

B Don't copy files ending in ".bak".

p Prompt for permission to copy files.

1 List the name of each file as it is copied and the name
of the new copy.

L Don't unlink the destination file.

P Preserve the modification time of the source file.

EXAMPLES

1. copy parts parts.bak
2. copy letter /mark/letter +p
3. copy test_1 test_2 memo /mark +los

The first example copies the file named "parts" to a file named
"parts.bak". If a file named "parts.bak" already exists, it is
deleted and recreated before copying takes place.

The second example copies the file "letter" in the working
directory to the file "/mark/letter". If a file named
"/mark/letter" already exists, the "copy" command prompts for
permission to alter its contents before proceeding. If the user
denies permission, no copy is made. For the command to succeed
the user must have both write and execute permission in the
directory "/mark" as well as write permission for the file
"/mark/letter".

2-20 @ 4404 Reference Manual

SECTION 2
User Commands

The third example copies the files "test 1", "test 2", and "memo"
to the directory "/mark". The last component of each file
name is preserved in the new directory. ThQs, the file
specifications of the new files are "lmark/test 1",
"/mark/test 2", and "/mark/memo". If a file with one of
these names-already exists, the "copy" command overwrites its
contents withoQt warning (the Qser does not need write permission
in the directory "/mark"). The name of each file and the
name of the new copy are listed as copying takes place. The
command aborts immediately if it encoQnters an error (e.g., one
of the files listed does not exist).

Each copy created by these commands has the same permissions as
the original file. The owner of all copied files is the Qser
execQting the command.

ERROR MESSAGES

Entry does not exist: <file name>

The Qser asked for a copy of a nonexistent file.

file name 1> and <file name 2> are the same file

A file may not be copied onto itself. Both <file name 1> and
<file name 2> refer to the same file. (If their names-are not
the same, they are links to the same file.)

May not copy a directory: <dir name>

The Qser asked for a copy of a directory. Directories may not be
copied.

May not copy a special file: <file_name>

The Qser asked for a copy of a block or character file. SQch
files may not be copied.

MQst be a directory: <file name>

The form of the "copy" command being Qsed reqQires the last
argQffient to be an existing directory; <file name> is not an
existing directory.

Path cannot be followed: <file name>

One or more of the directories which make QP the name of the file
do not exist.

Permissions deny access to file: <file name>

4404 Reference ManQal @ 2-21

SECTION 2
User Commands

The permissions associated with <file name> or with the path
leading to <file_name> prevent the user from accessing the file.

Read error on file: <file name>

A physical read error occurred while reading <file_name>.

Syntax: copy <file name 1> <file name 2> [+lops]
copy <file=name=list> <dTr_name> [+lops]

The "copy" command expects at least two argwnents. This ~essage
indicates that the argument count is wrong.

Write error on file: <file name>

A physical write error occurred while writing to <file name>.

SEE ALSO

2-22

link
move
rename

@ 4404 Reference Manual

Create a directory.

SYNTAX

crdir <dir name list)

DESCRIPTION

crdir

SECTION 2
User Commands

The "crdir" command creates a directory for each name listed as
an argwnent to the command. The Qser mQst have write
permission in the parent directory (the directory in which the
new directory is created) of each directory created. Each new
directory_contains the entry".", which represents the directory
itself, and the entry" .. ", which represents its parent
directory.

By default, "crdir" creates a directory with "rwxrwx"
permissions. However, any defaQlt permissions set by the
"dperm" command override these permissions. The owner may, of
COQrse, change the permissions at any time by using the "perms"
command.

Arguments

dir name list) A list of the names of directories to create.
All directories used in the name, except the
last component of the name, must already
exist.

EXAMPLES

1. crdir book
2. crdir /sarah/book

The first example creates the directory "book" in the working
directory.

The second example creates the directory "book" in the directory
"/sarah". If the directory "/sarah" does not already
exist, the command fails.

4404 Reference ManQal @ 2-23

SECTION 2
User Commands

ERROR MESSAGES

Error creating "<dir name>": <reason>

The operating system returned an error when "crdir" tried to
create the specified directory. This message is followed by an
interpretation of the error returned by the operating system.

Error linking "<dir_name>If to its If." file": <reason>

The operating system returned an error when "crdir" tried to link
the "." entry to the directory itself. This message is followed
by an interpretation of the error returned by the operating
system.

Error linking " .. " to parent of "<dir_name>": <reason>

The operating system returned an error when "crdir" tried to link
the newly created directory to its parent. This message is
followed by an interpretation of the error returned by the
operating system.

Error setting owner for "<dir_name>If: <reason>

Initially, the "crdir" command creates the new directory with the
owner "system". It then changes the owner to the user who
executed the command. In this case, the operating system
returned an error when "crdir" tried to change the owner of the
directory. This message is followed by an interpretation of the
error returned by the operating system.

Syntax: crdir <dir_name_list>

The "crdir" command expects at least one argument. This message
indicates that the argument count is wrong.

SEE ALSO

2-24

dperm
perms
remove

@ 4404 Reference Manual

SECTION 2
User Commands

create

Create an empty file for each file name on the command line.

SYNTAX

create <file name list>

DESCRIPTION

The "create" command creates an empty file for each name
specified on the command line. If the file does not exist, it is
created with "rw-rw-" permissions, and the owner is the user who
executes the command. If the file already exists, the owner and
permissions remain intact. However, the file is truncated to a
length of o.

Arguments

<file name> The name of the file to create. The last
component of a file name may not contain more
than fourteen characters. The "create"
command ignores any additional characters.

EXAMPLES

1. create test
2. create /julie/test

The first example creates the file "test" in the user's working
directory.

The second example creates the file "test" in the directory
" / j ul i e" .

ERROR MESSAGES

Error creating "<file name>": <reason>

The operating system returned an error when "create" tried to
create <file name>. This message is followed by an
interpretation of the error returned by the operating system.

Syntax: create <file_name_list>

The "create" command requires at least one argument. This
message indicates that the argument count is wrong.

SEE ALSO

edit

4404 Reference Manual @ 2-25

SECTION 2
User Commands

date

Display or set the time and date.

SYNTAX

date [[<mm>-<dd>-<yy>] <hr>:<min>[:<sec>]] [+s}

DESCRIPTION

The "date" command has two forms: one with an argu.ment and one
withollt. Any user may execlIte the "date" command withollt an
argument. In response, the system retlIrns the clIrrent date and
time. The lIser "system" may also lIse the "date" command with an
argument to set the system date and time. If the lIser "system"
lIses the "+s" option, the system reads the hardware clock and
sets the date and time accordingly.

Arguments

<mm> A number from 1 to 12 inclllsive representing the
month.

<dd> A number from 1 to 31 incllIsive representing the
day.

<yy> A two-digit number representing the last two
digits of the year.

<hr> A number from 0 to 23 inclusive representing the
hour. (Time must be expressed as 24-hour-clock
time.)

/_'!_'-
'dll.l.1J./

<sec>

A flllffiber from 0 to 59 representing minutes past
the hour.

A number from 0 to 59 representing seconds past
the minute. The default is O.

Options Available

s

2-26 @

The "s" option allows the tlser "system" to set the
system date for the internal hardware clock.

4404 Reference Manual

EXAMPLES

1. date 7-13-84 15:47:28
2. date 11:53
3. date 7-13 17:5
4. date
5. date +s

SECTION 2
User Commands

The first example sets the date to Jaly 13, 1984, and the time to
3:47:28 P.M.

The second example sets the time to 11 :53 A.M. The date defaalts
to the date stored in memory.

The third example sets the date to Jaly 13 and the time to 5:05
P. M. The valae for the year defaalts to the stored valae, and
the value for seconds defaults to O.

The fourth example displays the date and time currently stored in
memory.

The fifth example sets the date and time to correspond to that in
the system hardware clock.

ERROR MESSAGES

Invalid <arg> specified.

The valae specified for the argument shown in the error message
is not within the acceptable range.

Only the system manager may change the date!

The aser who tried to change the date is not the system manager.

Syntax: date [[<mm>-<dd>-<yy>J <hr>:<min>[:<sec>J]

The syntax of the command line is incorrect. Most probably, the
arguments specifying the time are missing.

4404 Reference Manual @ 2-27

SECTION 2
User Commands

debug

"debug" invokes a machine-language debu.gging system.

SYNTAX

DESCRIPTION

The "debug" command is u.sed to aid in the testing and debugging
of machine-language programs. Because all programs are
ultimately translated into machine language, any program may be
debugged using "debug."

The "debug" command is used to examine or modify the image of a
machine-language program. This image can be (1) a post-mortem
memory dump of a program which has been aborted by the operating
system, (2) a program image file, or (3) a program which is
currently executing under the control of "debug". If no image
file is specified on the command line, the default is the file
"core" in the working directory. The "debug" command examines
the file to determine whether it is a "core" image or an
executable image file. If it is neither, "debug" issues the
message "Invalid image type" and terminates. The third type of
image may be created only by specifying the name of an executable
image on the command line, followed by executing 'x' command to
create the controlled task.

The commands available with "debug" allow the user to examine
memory locations within the program image, to modify memory
locations, to set breakpoints, to execute single instructions (to
single step through the program), to examine and change
registers~ and more. Some commands, such RS singJe step1 are
applicable only when "debug" is being used to control the
execution of a task. However, most commands are available for
use with all image types.

Arguments

<image_file name>

2-28 @

The name of the file to debug. The
default is the file "core" in the
working directory.

4404 Reference Manu.al

SECTION 2
User Commands

Commands Available

The "debug" command normally works in an interactive environment.
The basic command structure is designed to be simple to use
and to remember. In general, each command name is a single
character, which may be followed by one or more expressions.

Expressions may include the operators '+' and '-', which are
evaluated from left to right Qnless parentheses are used.
Expressions may also include any of the following terms:

$<num> The hexadecimal value of <num>.

<num> The hexadecimal value of <num>. If this form is
used, the number must start with a digit. If it
starts with a character, "debug" interprets it as
a symbol.

<num> The decimal value of <num>.

<symbol> The value of the specified symbol. Symbol names
must be completely specified -- that is, all char
characters are significant.

<register> The contents of the specified register. The
register may be DO through D7, AO through
A7, SR, or PC. The letters used in
specifying a register may be either upper- or
lowercase. The last memory address
accessed.

"debug" includes these commands:

+ Execute a shell command.

= Display the value of an expression in multiple formats.

? Display the "help" menu.

b Set a breakpoint.

B List the breakpoints that are currently set.

c Clear one or all breakpoints.

4404 Reference Manual @ 2-29

SECTION 2
User Commands

d Dump a section of memory.

g Continue execution of a program.

G Execute the program until reaching a branch or a
breakpoint.

i Disassemble instructions.

I Initialize symbol table.

k Terminate the currently executing task.

K Remove any pending signals for the controlled task.

m Modify bytes in memory.

M Display the current memory map.

n Display the command line for the task.

q Terminate" debug" .

r Display the contents of all registers.

R Set the contents of a register.

s Execute a single instruction.

S Set a temporary breakpoint at the instruction following
the current instruction and execute the current
instruction.

T Trace instructions until reaching a branch or a
"'" " 1,."" " ; V\ ~ IJ J. o;;:;o..n.,PU .J.J..1 1.1 •

x Create a task to be executed under the control of
"debug" .

The following paragraphs describe "debug" commands in more
detail:

+ <shell command)

This command allows the user to execute a single shell command
without exiting "debug".

2-30 @ 4404 Reference Manual

= <expression>

SECTION 2
User Commands

This command displays the value of the expression symbolically,
in hexadecimal, and in decimal.

?

This command displays a menll of commands available from "debllg".

b <location> [<collnt>]

The 'b' command sets a breakpoint at the given location. When
the program is execllted, the instruction at the given location is
replaced by a special instruction which indicates to the
operating system that the llser wants to break the flow of the
program. When this instrllction is executed in the program, the
operating system suspends the program and notifies "debug", which
prints the location of the breakpoint and returns to command
mode. If the user specifies a cOllnt, the breakpoint is executed
<count> times before execution is hal ted and "debug" notified.
Once the cOllnt is exceeded, execution is halted every time the
breakpoint is encountered unless it is reset by another 'b'
command or cleared.

B

The 'B' command lists each breakpoint which is cllrrently set as
well as the corresponding <collnt> if it is nonzero.

c [<address>]

If the user does not specify an address, the 'c' command prompts
for permission to clear all breakpoints that are cllrrently set.
If the user does specify an address, it clears the breakpoint at
that address.

d <address_1> [<address_2_or_count>]

The 'd' command dllIDps the hexadecimal contents and the ASCII
eqllivalents of a range of memory locations. Memory is displayed
sixteen addresses to a line. Nonprintable characters are
represented in ASCII by a period,

If the user specifies only one argllIDent, the command displays the
contents of the specified address. If the llser specifies two
argllments and the second one is greater than the first, the
command interprets the second argument as an address. It
displays the contents of memory from the first specified address
to the second, inclllsive. If the llser specifies two argllIDents

4404 Reference Manllal @ 2-31

SECTION 2
User Commands

and the second one is less than or equal to the first, the
command interprets the second argument as a count. It displays
the contents of memory beginning at the first address and
continuing for the number of addresses specified by the second
argument.

The dump may be aborted by typing the return key during the dump.
Control-C does not abort the command.

g

The 'g' command continues the execution of a controlled task.
Execution continues until the program terminates, receives a
signal or encounters a breakpoint. The user may use this command
only when executing a controlled task.

G

The 'G' command executes the program until it encounters any
branch instruction, any call instruction, or any breakpoint.

The Ii' command displays the contents of memory from the first
specified address to the second, inclusive. If the user
specifies two arguments and the second one is less than or equal
to the first, the command interprets the second argument as a
count. The Ii' command interprets the specified location or
range of locations as machine-language instructions and advances
the location counter to the start of the last complete
instruction within the specified range. If the user specifies no
second argument or if the range specified by the second argument
is shorter than the complete instruction, the command displays
the instruction which begins at the starting address but does not
move the location counter. A carriage return by itself is
equivalent to the command "i .", except that the location counter
is advanced to the beginning of the next instruction.

I

The 'I' command initializes debug's internal symbol table. The
symbol table is ~sed to interpret symbolic addresses and values.
The 'I' command prompts for the name of the file containing the
symbol table to use. The file must be a binary image file. This
command is normally for use with a core image file, because such
files do not contain any symbolic information. Once the symbol
table is initialized, however, a core image file can be
interpreted symbolically.

2-32 @ 4404 Reference Manual

k

SECTION 2
User Commands

The 'k' command terminates execution of the current controlled
task. If no controlled task exists, the command is not allowed.
This command need not be used, because the 'x' command implicitly
kills any controlled task before creating another.

K

When a task running ilnder the control of "debug" receives a
signal, the operating system notifies "debug" and suspends the
task. The "debug" program then enters command mode, allowing the
user to execute any "debug" command. A user who wishes to ignore
the signal may do so by entering the 'K' command. A user who
wishes the signal to take effect should simply continue the
program with the 'g' (or a similar) command.

m <address>

he 'mY command modifies the contents of one or more memory
locations in the image file. In response to this command,
"debug" first displays the specified address and its contents.
The user may change the contents by entering any expression, may
leave the contents as is by entering a period, or may terminate
the command by entering just a carriage return. Unless the user
terminates the command, "debug" modifies the contents if
appropriate, displays the next address with its contents, and
waits for input from the user.

If the image file is a core dump or an executable file, the file
itself is modified. If the image file is a controlled task
(i.e., an 'x' command has been executed), only the memory of that
task is altered. The executable file from which "debug" created
the task is not changed. Therefore, when patching code the user
should be aware that patches are applied only to the executing
image file.

M

The 'M' command displays a map of the logical addresses available
to the task image. If the image is either a core dump or a
controlled task, the map contains the ranges of addresses being
used by the program. These ranges may change whenever the
program executes a "break" or a "stack" system call. If the
image is an executable file, the 'M' command displays the ranges
of the addresses of the TEXT and DATA/BSS segments.

4404 Reference Manual @ 2-33

SECTION 2
User Commands

n

The In' command displays the command line which was used to
create the task. This is merely a display of the command
arguments passed to the program when it was created. In most
cases the command line consists of the shell command used to
invoke the program. The command line for a controlled task looks
just like the command line entered with the 'x' command that
created it, except that the 'x' is replaced by the program name.

r

The 'r' command displays the contents of the registers for the
image file, as well as the address of the program counter and the
instruction located at that address. For a core dump it displays
the contents of the registers at the time the program was aborted
by the system and the location of the program counter at that
time. The instruction displayed is the instruction that was in
progress when the program was aborted. For a controlled task,
the 'r' command displays the contents of the registers as they
will be when execution resumes, the address at which execution
will resume, and the instruction at that address. The registers
for an executable file are undefined. For an executable file,
the 'r' command displays the contents of the registers as zeros
and the address and contents of the entry point of the program.

R <register_name> <expression>

The 'R' command, which may be used only if the image file is a
controlled task, alters the contents of a register. The register
may be DO through D7, AO through A7, SR, or PC. The letters used
in specifying a register may be either upper- or lowercase. The
supervisor portion (the upper byte) of the status register may
not be altered.

s

The's' command executes a single machine-language instruction.
When the instruction is complete, "debug" displays the state of
the task (including the new program counter) and the next
instruction to be executed. The's' command uses system
facilities provided by the operating system. Thus, the user may
safely single-step through macro operations such as system calls.

2-34 @ 4404 Reference Man~al

SECTION 2
User Commands

S

The'S' command sets a temporary breakpoint at the instrQction
following the cQrrent instrQction. This breakpoint is removed as
soon as it is encoQntered. If another'S' command is execQted
before the breakpoint is encoQntered, it removes the original
breakpoint. This command may be Qsed with any instrQction, bQt
it is normally used with a call to a subroQtine.

T

The 'T' command execQtes the program until it encoQnters any
branch instrQction, any call instrQction, or any breakpoint.
After the execQtion of every instruction, "debQg" displays the
address of the next instrQction and the instrQction itself.

x [<argwments>] [<I/O_redirection>]

The 'x' command creates a controlled task from an image file. In
order to execute this command, the llser must first invoke "debQg"
with the name of an execQtable image file as the argwment. The
task is halted before execution of its first instruction, so that
"debQg" can accept commands to control its execQtion.

I/O redirection may be accomplished QSing the character ,<, to
redirect standard inpQt, ,>, to redirect standard OQtput, and ,%,
to redirect standard error. No provisions are made for Qsing
either append mode ("»") or implied mapping (">%").

NOTE

The more breakpoints yOQ set, the longer the
program takes to execute.

ERROR MESSAGES

Breakpoint table fQII!

The Qser has already set the maximwm nwmber of breakpoints.

Can't access core/image "<image_file name>"

The operating system retQrned an error when "debug" tried to
access the specified file. Most probably, either the file does
not exist or the Qser does not have read permission in the file.

4404 Reference Man~al @ 2-35

SECTION 2
User Commands

Can't open "<file_name>"

The "debug" command was unable to open the file which the user
specified as the file containing the symbol table to use. Most
probably, either the file does not exist or the user does not
have read permission in the file.

Can't write "<image_file_name>"

The user tried to use the 'm' command to modify the contents of a
memory location in the image file, but "debug" was unable to
write to the file. Most probably, the user does not have write
permission in the file.

Command too complicated

The user tried to use the '+' command to execute a shell command
from "debug", but the command line was too long for "debug" to
interpret.

Error during EXEC - <error_num>

The operating system returned an error when the user tried to
create a controlled subtask using the 'x' command. This message
is followed by the error number returned by the operating system.

Error in expression

The expression used contains a syntax error.

Illegal address

The address specified is not in the user's address space.

Illegal command, <char>, - ignored

The command specified by <char> is not a valid command for
"debug". The character is ignored, and "debug" prompts the user
for another command.

Illegal file type

The 'I' command cannot determine the file type of the image file
and, consequently, ignores the file. All previously defined
symbols are no longer defined.

2-36 @ 4404 Reference Manual

SECTION 2
User Commands

Illegal register name

The register name specified by the user is not a valid register
name. The register name mllst be one of the following: DO through
D7, AO throllgh A7, SR, or PC. The letters used may be upper- or
lowercase.

image_file name>" is not executable

The llser does not have execute permission in the specified image
file.

Invalid image file "<file name>"

The file specified to the "debug" command mllst be either an
executable file or a core dump.

No command line

The file being debugged is not a core file, and was not invoked
with the 'x' command. Therefore, no command line exists for the
file.

Not executing a task!

The command specified can exec lIte only if the user has previollsly
executed the 'x' command.

Sorry, can't execllte a "core" file

The 'x' command cannot be executed on a core file.

** Syntax error

The 'x' command cannot parse the specified command line.

Undefined symbol

An expression contains a term which appears to be a symbol
(starts with a letter or an underscore character, ' ,) but is not
in the symbol table. Hexadecimal vallles used in expressions must
begin with a digit (a leading 0 is accepted) or a dollar sign,'$'.

4404 Reference Manual @ 2-37

SECTION 2
User Commands

dir

List either the contents of a directory or information about a file.

SYN!rAX

dir [<file_name_list>] [+abdflrsSt]

DESCRIPTION

The "dir" command is used to list either the names of the files
in the specified directory or, if the argument is not a
directory, information about the specified file. By default, the
names of the files in a directory are listed in alphabetical
order with several names per line.

Format of the O~tp~t

The information given about a file is presented on one line,
which contains several fields. These fields are described here
in the order in which they appear.

2-38

<fdn num> The number of the file descriptor node (fdn) which
describes the file in question. This field is not
present unless the user specifies the 'f' option.

<file name> The name of the file being described.

<size> The size of the file in blocks. If the file is a
device, "dir" places the major and minor device
numbers in this field.

<file_type> A single character specifying the type of
file. The character 'b' represents a block
device; 'c', a character device; and 'd', a
directory. If the field is blank, the file
is a regular file.

<perms>

@

This field, which is composed of six columns,
indicates what permissions are associated with the
file. The first three columns represent
permiSSions for the user who owns the file; the
last three for other users. Permissions are
always presented in the order read, write, and
execute. They are represented by the letters 'r',
A hyphen in a column means that the corresponding
permission is denied. For example, if the
permission field contains the sequence "rwxr-x",
the user who owns the file may read, write, and
execute the file, whereas other users may only
read and execute it.

4404 Reference Manual

< link count>

SECTION 2
User Commands

The link count is the number of directory
entries which point to a file. The link
count for a directory is always at least 2
because the "." entry within the directory
itself points to the same fdn as the
directory entry for that file in its parent
directory.

<owner> The user name of the owner of the file.

<last mod time> The time and date at which the file was
last modified.

Arguments

<file name list> A list of the names of files to process.
The default is the working directory.

Options Available

a List all files in a directory, including those whose
names begin with a period, '.'. This option has no
effect if the specified file is"not a directory.

b List the file size in bytes rather than blocks. This
option implies the '1' option.

d If the file being processed is a directory, list the
names of all files it contains. Continue this process
for all descendant directories. This option allows the
user to see the entire directory structure.

f List the number of the file descriptor node for each
file. This option implies the 'I' option.

1 If the specified file is a directory, give detailed
information about each file in the directory. This
option has no effect if the specified file is not a
directory because in such a case the information is
automatically given.

r If the specified file is a directory, reverse the order
in which the files would otherwise be listed.

4404 Reference Manual @ 2-39

SECTION 2
User Commands

s If the specified file is a directory, list one file
name on each line. This option is useful for creating
a file which contains the names of all the files in a
directory.

S Print a summary of the information after listing all
files.

t Sort files by the time of their most recent
modification. By default, the most recently modified
file is listed first.

EXAMPLES

1. dir +1
2. dir /jay +abdfS
3. dir memo +f
4. dir /marcy +rt
5. dir /marcy +s

The first example lists information about each file in the
working directory (except those whose names begin with a period).

The second example lists information about all files, including
those whose names start with a period, in the directory
"/jay" (the 'f' and the 'bY option both imply the '1'
option). In addition, the command displays a list of the files
in each subdirectory that is a descendant of "/jay". The
information includes the fdn number of each file. The size of
each file is shown in bytes. At the end of the output is a
summary showing the total number of directories processed, the
total number of nondirectory files processed, and the total
number of blocks used by all the files.

The third example displays information about the file "memo" in
the working directory. The information includes the fdn number
of the file.

The fourth example lists the names of those files in the
directory "/marcy" which do not begin with a period. The
names are sorted by the time of the last modification with the
sense of the sort reversed so that the most recently modified
file is the last one in the list.

The fifth example lists the names of those files in the directory
"/marcy" that do not begin with a period. One name appears
on each line.

2-40 @ 4404 Reference Manual

SECTION 2
User Commands

ERROR MESSAGES

Unknown option: <char>

The option specified by <char> is not a valid option to the "dir"
command.

** Warning: directory "<dir name>" is too large!
** Some directories were ignored

The "dir" command cannot process a file if the total
directories in every directory between that file and
directory specified on the command line exceeds 50.
make the command succeed, the user should start at a
in the directory tree.

** Warning: directory "<dir name>" is too large!
** Some files were ignored-

number of
the
In order to
lower point

The "dir" command cannot list more than 500 file names from a
single directory. In order .to make the command succeed, the user
should split the offending directory into two or more
directories.

4404 Reference Manual @ 2-41

SECTION 2
User Commands

dperm

Set the default permissions for the creation of files by the current
shell program or by tasks generated by the current shell program.

SYNTAX

dperm [<perms_list>]

DESCRIPTION

Every time a user creates a file, the operating system assigns it
a set of permission bits which determines whether the file's
owner and other users may read, write, or execute the file. The
permissions assigned depend on the command used to create the
file. The editor, for example, creates all files with "rw-rw-"
permissions, which allow the user who owns the file, as well as
other users, to read and write, but not execute, the file. The
default permission for "crdir" are "rwxrwx"; for "create",
"rw-rw-"; for "makdev" , "rw-r--".

The "dperm" command, which is part of the shell program, is used
to set the default permissions for the creation of a file. It
allows the user to instruct the system always to deny certain
permissions, independent of how the file is created. It is
possible to independently turn off any of the permission bits for
the file's owner and other users. If the user specifies no
arguments, the operating system removes the existing default
permissions.

It is only possible to deny permissions with the "dperm" command.
The "perms" command may be used to add permissions to individual
files. "perms" overrides the defaults set by "dperm".

Arguments

Format for Arguments

2-42 @

A list defining the permission bits to be
used as defaults.

The first character of an element in a
permissions list specifies if the argument
applies to the user who owns the file ('u')
or to other users ('0'). The second
character must be a minus sign, '-', which
indicates that the following permiSSions are
to be denied. The minus sign is followed by
one, two, or three of the characters 'r',
'w', and 'x' (for read, write, and execute).

4404 Reference Manual

SECTION 2
User Commands

EXAMPLES

1. dperm o-rwx
2. dperm Q-W o-wx
3. dperm

The first example sets the defaalt permissions so that the
operating system denies all permissions to other asers whenever
it creates a file.

The second example sets the defaalt permissions so that the
operating system denies write permission to the aser who owns the
file, and both write and execate permission to other asers
whenever it creates a file.

The third example removes all default permissions.

NOTE

The "dperm" command is only effective while
the shell program under which it is invoked
is ranning. The default permissions for
files created by the login shell can be
permanently altered by placing the
appropriate command in the file ".login" in
the aser's home directory. This file is
aatomatically execated each time the user
logs in.

ERROR MESSAGES

Error in permissions specification.

The format of the permissions list is incorrect. Most likely,
the aser has specified a plas sign, '+', instead of a minas sign,
or has ~sed an invalid character.

SEE ALSO

perms

4404 Reference Manaal @ 2-43

SECTION 2
User Commands

dump

Send both a hexadecimal and an ASCII listing of a file to
standard output.

SYNTAX

dump <file name> [+i]
dump [<file_name_list>]

DESCRIPTION

The "dump" command sends a hexadecimal and an ASCII listing of a
file to standard output. The two versions of the file appear
side by side. A line of output consists of the address in the
file at which that line starts, the hexadecimal contents of the
byte at that address and of the following fifteen bytes, and the
sequence of characters represented by these bytes. A
nonprintable character appears as a period, '.', in the ASCII
part of the listing.

The user may interrupt the "dump" command at any time by typing a
control-C. Normally, a control-C returns the user to the shell
program. However, if the "dump" command is in interactive mode
and is actually displaying information when the user types a
control-C, "dump" stops the output and prompts for another
address.

Arguments

<file name> The name of the file to dump. The default is
standard input.

Options Available

2-44

i Enter interactive mode. The Ii' option may be used
only if exactly one file name appears on the command
line. If the user specifies the' i' option, the "dump"
command prompts for the address at which to begin. The
address is relative to the first byte in the file,
whose address is O. An address preceded by a period is
a decimal address; otherwise it is a hexadecimal
address. The user may specify a single address, a
range of addresses (two addresses separated by a

@ 4404 Reference Manual

SECTION 2
User Commands

hyphen, or an initial address and an offset (an address
followed by either a comma or a space, followed by a
number) . In the first case, the "dllIDp" command
displays sixteen bytes of information, beginning with
the specified address. In the second case, it displays
all the bytes from the first to the second address
incl:.lsive. In the third case, it begins displaying
bytes at the address specified and continues for as
many bytes as the following number dictates.

EXAMPLES

1. dump memo /cynthia/letter
2. dllIDp letter +i
3. dllIDp testprog >test.dllIDp

The first example sends both a hexadecimal and an ASCII listing of
the file "memo", which is the working directory, and the file
"letter", which is in the directory "/cynthia", to standard output.

The second example enters interactive mode and prompts the user for
the address at which to begin the dumping the file "letter".

The third example sends a hexadecimal and ASCII listing of the
file testprog via redirected I/O to the file test.dllIDp.

ERROR MESSAGES

Cannot interactively dllIDp multiple files.

The 'if option may not be used if more than one file name appears
on the command line.

Cannot interactively dllIDp standard input.

If the user specifies no file name on the command line, the
default is standard input. The 'i' option may not be used in
sllch a case.

Error opening "<file_name>": <reason>

The operating system retllrned an error when "dllIDp" tried open
<file name>. This message is followed by an interpretation of
the error retllrned by the operating system.

Invalid option '<char>': ignored.

The option specified by <char> is not a valid option to the
"dllIDp" command. The command ignores it.

4404 Reference Manual @ 2-45

SECTION 2
User Commands

echo

Write the arguments on the command line to standard oatpat.

SYNTAX

echo [<arg_list>J [+lJ

DESCRIPTION

The "echo" command writes the argaments in <arg list> to standard
oatput. A space character appears after each string argament; no
space appears after a hexadecimal argament; while the last
argament is followed by a carriage return. Yoa can use "echo" to
non-destractively show how the "shell" or "script" programs
evalaate special characters in the <arg_list>.

Arguments

A list of argaments to write to standard oatput.

Format for Arguments

Each element in <arg list> consists either of
a string or of a hexadecimal number preceded
by a plas sign, '+'.

Options Available

I Do not write a carriage retarn after echoing the
argament list.

EXAMPLES

1. echo This is a test!
2. echo This is a test! +7 +1 >/dev/console

The first example writes the string "This is a test!" to standard
oatpat, which defaalts to the aser's terminal.

The second example writes the string "This is a test!", followed
by a bell character (hexadecimal 7), to standard oatpat.
Standard oatput is /dev/console (the 4404 display). The oatput
is not followed with a carriage return. (The "+1" is the option
"plas el", not the hexadecimal argament "plus one".)

2-46 @ 4404 Reference Manual

edit

SECTION 2
User Commands

Invoke the text editor in order to create a new text file or edit
an existing one.

SYNTAX

edit [<file_name_1> [<file_name_2>]] [+bny]

DESCRIPTION

The "edit" command may be used with zero, one, or two arguments.
With one argument, "edit" opens the specified file for editing,
creating it if necessary, and reads as much of the file as
possible into the edit buffer. At the end of an editing session
of a pre~existing file, the editor renames the original file by
appending the letters ".bak" to its name. If this addition would
resQlt in a file name of more than fourteen characters (the
maximum allowed by the operating system), the editor shortens
the original name before adding the suffix. If a backup file
already exists, the editor prompts for permission to delete it.

If the user specifies no arguments, the editor prompts for the
name of the file at the end of the editing session, before
returning control to the operating system. It does not accept
the name of an existing file.

If the user specifies two file names, the operating system makes
a copy of the first file specified, gives it the name specified
by the second argument, and opens it for editing. If a file with
that name already exists, the editor prompts for permission to
delete it before proceeding. In such a case, the editor creates
the new file with the same permissions as the old file.

Files created by the editor have permissions of "rw-rw-."

Arguments

<file name 1> The name of the file to open for editing, or,
if two file names are specified, the name of
the file to copy.

<file name 2> The name to give to the copy of the file
specified by <file name 1>. It is this copy
that is opened for-editIng.

4404 Reference Manual @ 2-47

SECTION 2
User Commands

Options Available

b Do not save the original copy of the fil~ as a back~p
file at the end of the editing session.

n Do not read any text into the edit bQffer. This option
allows the Qser to make large insertions at the
beginning of a file.

y If only one argQIDent appears on the command line, at
end of the editing session aQtomatically replace any
existing backQP file with the original copy of the file
being edited. If two argQIDents appear on the command
line and the second file specified already exists,
delete that file at the beginning of the editing
session.

EXAMPLES

1. edit test +ny
2. edit test oldtest

The first example opens the file "test" in the working directory
bQt does not read any of it into the edit bQffer. If the file
does not exist, the editor creates it. At the end of the
session, "edit" aQtomatically replaces any existing backQP file
with the original copy of "test".

The second example makes a copy of the file "test", names it
"oldtest", and opens it for editing. If a file named "oldtest"
already exists, the editor asks for permission to delete it.

MESSAGES

Delete existing copy of new file?

The file specified by <file name 2> already exists. If the Qser
responds with a 'y', the edTtor aeletes the existing copy of the
file and opens the new file for editing. If the Qser responds
with an 'n', the editor leaves the existing file intact and
retQrns the Qser to the operating system.

File already exists
File name?

The "edit" command was execQted with no argQIDents on the command
line. At the end of the editing session, when the editor
prompted for the name of the file, the Qser specified an existing
file. Under these circQIDstances, the editor does not accept the
name of an existing file.

2-48 @ 4404 Reference ManQal

ERROR MESSAGES

Cannot create new file

SECTION 2
User Commands

The editor cannot open the. file specified by <file name 2>. Most
probably, either the Qser specified a path name that COQld not be
followed or the Qser does not have the permissions necessary to
open the file.

Cannot open edit file

The editor cannot open the file specified by <file name 1>. Most
probably, either the Qser specified a path name that COQld not be
followed or the Qser does not have the permissions necessary to
open the file.

Cannot read edit file

The editor encoQntered an I/O error trying to read the specified
file.

Edit file does not exist

The Qser has specified two file names on the command line, bQt
<file name 1> does not exist.

New file is the same as the old file

Both <file name 1> and <file name 2> refer to the same file. (If
their names are-not the same: they are links to the same file.)

Too many file names specified.

The "edit" command reqQires zero, one, or two argQffients. This
message indicates that the argQffient cOQnt is wrong.

Unknown option specified

An option on the command line is n9t a valid option to the "edit"
command. The command ignores the option and proceeds.

SEE ALSO

dperm
Section 9, EDIT, The Text Editor

4404 Reference ManQal @ 2-49

SECTION 2
User Commands

find

Search for a string in a file or in standard input.

SYNTAX

find [+cu] <str_1>[&<str_2>] [<file_name_list>]

DESCRIPTION

The "find" command looks in the specified file for the specified
string. By default, lowercase characters and uppercase
characters are distinct.

Arguments

<str 1 > The string to search for.

<str 2> The second string to search for (only if '&', the
"and" operator, is used).

<file name list> A list of the names of files to search.
The default is standard input.

Specifying a String

The user may completely specify a string or may take advantage of
the matching characters recognized by the "find" command.
Because some of these matching characters also have special
meanings to the shell program, strings which use them must be
enclosed in single or double quotation marks.

2-50

\ When used just before any matching character, including
itself, the backslash character negates the matching
ability of the character.

? The question mark matches any character except a new-line
character.

< A left angle bracket specifies that the following
string must be found at the beginning of a line. It
loses its matching ability if it is not the first
character of the string.

> A right angle bracket specifies that the preceding
string must be found at the end of a line. It loses
its matching ability if it is not the last character of
the string.

@ 4404 Reference Manual

SECTION 2
User Commands

& The "and" operator maybe used between two strings (see
the syntax statement). The "find" command reports only
those lines on which both strings occur.

[J Square b~ackets enclose a list or a range of characters
from which the "find" command can choose when looking
for a string. A list of characters consists of
adjacent characters. A range consists of two
characters separated by a hyphen.

The exclamation point may be used in conjunction with
the square brackets. If it is the first character
inside the brackets, the "find" command can choose from
all characters not specified in the brackets when
looking for a string.

Options Available

Any options used with the "find" command must appear immediately
after the command name.

c Instead of writing the lines that contain the specified
string to standard output, report the number of lines
containing the string.

u Do not distinguish between upper- and lowercase.

EXAMPLES

1. find +u syntax test
2. find +u "<syntax" test trial
3. find +u 'syntax&statement' test
4. find +c " <" test
5. find +u '[a-eJnd' test

The first example writes to standard output all lines from the
file "test" which contain the string "syntax". The command does
not distinguish between upper- and lowercase.

The second example writes to standard output all lines from the
files "test" and "trial" which contain the string "syntax" at the
beginning of the line. The command does not distinguish between
upper- and lowercase. Because matching characters are used to
specify the string, the string must be enclosed in either single
or double quotation marks.

The third example writes to standard output all lines from the
file "test" which contain both the string "syntax" and the string
"statement".

4404 Reference Manual @ 2-51

SECTION 2
User Commands

The fourth example writes to standard output the number of lines
in the file "test" which contain a left-hand angle bracket. The
matching ability of the angle bracket is negated because of the
backslash character which precedes it.

The fifth example writes to standard output all lines from the
file "test" which contain any of the following strings: "and",
"bnd", "cnd", "dnd", or "end".

ERROR MESSAGES

Error opening "<file name>": <reason>

The operating system returned an error when "find" tried to open
the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error processing "<file name>": <reason>

The operating system returned an error when "find" tried to
process the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Invalid option: '<char>'. Command aborted.

The option specified by <char> is not a valid option to the
"find" command.

Syntax: find [+cu] <str 1>[&<str_2>] [<file_name_list>]

The "find" command expects at least one argument. This message
indicates that the argument count is wrong.

SEE ALSO

2-52

shell
script

@ 4404 Reference Manual

format

SECTION 2
User Commands

Format a flexible disk for Qse on the 4404 flexible disk drive.

SYNTAX

format [+fFqv]

Options Available

f:::<blocks> Establish <blocks> blocks for file descriptor
nodes (fdns).

F Logical format only. No physical format performed.

q Use quiet mode.

v Verify the disk after formatting.

DESCRIPTION

The "format" command formats a flexible disk for Qse in the
4404's flexible disk drive, "/dev/floppy." The device model name
is "TEK4404" ·which formats the disks as dOQble-sided,
dOQble-density, 40 TPI, with eight 512-bit sectors per track.

DETAILED DESCRIPTION OF "FORMAT" OPTIONS

The If' Option

Formatted disks Qse fdn blocks (each fdn block contains eight
fdns) to hold information aboQt files on the disk. By defaQlt,
"format" Qses 3% of the total disk space for fdn blocks. YOQ can
ovveride this defaalt value with the 'f' option and specify the
decimal nQmber of fdn blocks to establish on the disk. At least
one block must be allocated for fdns on every formatted disk.

The IFI Option

The 'F' option does not physically format the disk. It performs
a logical format only and erases all data on the disk.

The Iq' Option

Before actaally starting to format the disk, "format"- normally
sends a prompt to ask if the user is ready to continue. The 'q'
(quiet) option sappresses this prompt and inhibits all
informative messages from "format" if no errors are encountered
during formatting.

4404 Reference Manual @ 2-53

SECTION 2
User Commands

The 'v' Option

The 'v' (verify) option instructs "format" to verify the media
after formatting. If this option is specified, "format"
individually verifies every sector on the disk. It first
writes an arbitrary pattern to each sector; then reads and
verifies each one. Because verification of a large disk may take
a long time, the "format" command prints symbols to indicate its
progress. It prints an asterisk, '*', each time it finishes
writing fifty sectors; a dollar sign, '$', each time it finishes
reading and verifying fifty sectors. It reports any sectors
which fail this test to the user.

The option is often desirable when the user is formatting a
floppy disk because floppies do not automatically verify all
written data.

2-54 @ 4404 Reference Manual

SECTION 2
User Commands

free

Report the amount of free space available on the specified
devices.

SYNTAX

free <dev name list> [+d]

DESCRIPTION

The "free" command reports the amount of free space remaining on
the specified device. It reports both the total number of free
blocks available for use in files and the total number of file
descriptor nodes (fdns) available. The number of fdns available
tells the user how many more files can be created on the device
(assQming that sufficient free blocks remain for use in the
files). If the number of available fdns drops to 0, no more
files can be created on the disk, no matter how many free blocks
remain"

Arguments

<dev name list> A list of the names of the devices to
report on. The devices may be either
mounted or unmounted.

Options Available

d Provide more detailed information with the output.
This extra information includes the names of the file
system and the volume if they were specified when the
disk was formatted, as well as the amount of swap space
on the disk.

EXAMPLES

1. free /dev/disk

2. free /dev/floPPY

The first example reports both the number of fdns available and
the number of free blocks on the standard winchester hard disk.

The second example reports the same information on a mounted
flexible disk.

4404 Reference Manual @ 2-55

SECTION 2
User Commands

ERROR MESSAGES

Cannot open <dev name>

The specified device does not exist; the specified device exists,
but no hardware is connected to it; or the device exists and
hardware is connected to it, but no disk is in the device.

<dev name> is not a block device.

The specified device must be a block device.

Unknown option: <char>

The option specified is not a valid option to the "free" command.

2-56 @ 4404 Reference Manual

headset

SECTION 2
User Commands

Change information in the binary header of an execQtable file.

SYNTAX

headset <file name list> [+aAbBcCdSt]

DESCRIPTION

The "headset" command can alter certain portions of the binary
header of an executable object modQle. Features such as whether
or not the modQle is shared-text, whether or not the module can
produce a core dump, and the initial stack size can be altered
without reloading the modQle.

The characters used for options are identical to those Qsed when
invoking the loader with the "load" command. Those options
which do not take an argument can be disabled by preceding the
character with a minQs sign, '_', instead of the QSQal plQS sign,
,+, .

Arguments

<file name list> A list of the names of the files to
process.

Options Available

Specifies the mlnlmum number of pages to
allocate to this task at all times. The
minimQm valQe for the argument is 0; the
maximum, 32767. The defaQlt is O. The
operating system tries to honor the specified
number, bQt if it cannot, it Qses as many
pages as it needs.

Specifies the maximQm number of pages to
allocate to this task at all times. The
minimQm valQe for the argwnent is 0; the
maximwn, 32767. The defaQlt is O. The
operating system tries to honor the specified
nwnber, bQt if it cannot, it Qses as many
pages as it needs.

4404 Reference ManQal @ 2-57

SECTION 2
User Commands

2-58

b=<task size> Specifies the maximum size to which the task
may grow. The argument <task size> may be
"128K", "512K", "2048K", "8192K", "2M", or
"8M". The default is "128K". The letters
'M' and 'K' can be either upper- or
lowercase.

c=<source type>

C=< config_ num>

S=<hex num>

@

If the task size specified by the user is not
large enough to hold the code from all the
modules being loaded, "headset" automatically
adjusts the size to the smallest value that
can contain all the code.

Set a bit in the binary header of the output
module which tells the operating system to
zero neither the bss space nor any memory
al19cated while the task is running.

Sets a flag in the binary header of the
output module which indicates the type
of source code from which the module was
created. The argument <source type> may
be "ASSEMBLER" or "C". The names can be
specified in either upper- or lowercase.

By default, the loader uses the
configuration number of the current
hardware. The user may, however, use
the 'c' option to specify a
configuration number which overrides the
default. This option is useful when
loading a module for a machine other
than the one on which it is running.

Q 0 + + ". '" " " " ... " ,::j, ~ " 1.-.. ~ +- ~ "" +- 1,.. ~ ~ - - ---
Uv U UJ.!v .LJ.V ,,",VL v U~lI U.L lJ .LU lJ!.1C U.LUc:l.1.Y

header.

Specifies the initial stack size, which is
written into the binary header of the module
produced by the loader. The hexadecimal
number is the number of bytes to reserve.
The default is 0, in which case the system
assigns the default stack size of 4K.

Produce a shared-text executable module.

4404 Reference Manual

SECTION 2
User Commands

EXAMPLES

1. headset mathtest +t -d +S=2000

2. headset ran 1 ran 2 +tB +a=10

The first example makes the execatable obj ect modale "mathtest" a
shared-text modale. It tarns off the "no core damp" bit, so that
the program can prodace core damps, and sets the initial stack
size to hexadecimal 2000.

The second example changes the headers in the files "ran 1" and
"ran 2". Both modales become shared-text modales. The operating
system will zero neither the bss space nor any memory allocated
while the task is ranning. The minimam page allocation is set to
ten pages.

NOTES

o The aser may make a change in a header which resalts in an
inconsistent header. In such a case the "headset" command
makes whatever adjastments are necessary in the fields which
were not changed to remove the inconsistency. The aser is
notified of these adjastments.

o For example, if the aser alters the initial stack size, the
task size might have to be changed. If this change is
necessary, "headset" notifies the aser and adjasts the task
size to the appropriate valae. Adjastments may also be made
when either the minimam or maximam page allocation is
altered.

o If the task size specified by the aser is not large enoagh
to hold the code from all the modales being loaded,
"headset" aatomatically adj asts the size to the smallest
valae that can contain all the code.

o If the user changes either the mlnlmam or the maximam valae
for page allocation so that the minimam is greater than the
max imam , "headset" aatomatically adj asts them according to
the following rales.

o The valae for the maximam is always greater than or
eqaal to the valae for the minimam.

o The value for the maximum can be 0, but if it is
greater than 0, it mast be at least 4.

4404 Reference Manaal @ 2-59

SECTION 2
User Commands

MESSAGES

File "<file_name>": changed max page allocation to <num>.

The user specified a minimum page allocation that was above the
current maximum page allocation. The utility set the maximum
equal to the minimum.

File "<file name>": changed min page allocation to <num>.

The user specified a maximum page allocation that was below the
current minimum page allocation. The utility set the minimum
equal to the maximum.

File "<file name>": task size set to <task size>.

The "headset" command had to adjust the task size either because
the user specified an initial stack size that made the module
larger, or because the task size specified on the command was too
small for the calculated size of the module.

ERROR MESSAGES

Error opening "<file name>": <reason>

The operating system returned an error when "headset" tried to
open the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error processing "<file name>": <reason>

The operating system returned an error when "headset" tried to
process the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error reading "<file_name>": <reason>

The operating system returned an error when "headset" tried to
read the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error seeking in "<file name>": <reason>

The operating system returned an error when "headset" tried to
seek in the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error writing to "<file name>": <reason>

The operating system returned an error when "headset" tried to
write to the specified file. This message is followed by an
interpretation of the error returned by the operating system.

2-60 @ 4404 Reference Manual

SECTION 2
User Commands

File "<file name>" is not a binary file.

The specified file does not contain a binary header.

File "<file name>" is not a regular file.

The specified file is either a device or a directory.

File "<file name>" is not executable.

The specified file is not an executable binary file.

Illegal configuration specified.

The configuration type must be between 0 and 255 inclusive.

Illegal hex number: <hex_num>.

The number specified is not a valid hexadecimal number.

Illegal maximum page allocation specified.

The maximum page allocation must be between 0 and 32767
inclu.sive.

Illegal minimum page allocation specified.

The minimum page allocation must be between 0 and 32767
inclu.sive.

Illegal task size specified.

The argument specified is not a valid argument to the 'b' option.

Invalid option: '<char>'.

The option specified by <char> is not a valid option to the
"headset" command.

Minimum page allocation greater than maximum.

Both the 'a' and 'A' options appeared on the command line, but
the minimum page allocation specified was greater than the
maximum .

Unknown source type specified.

The argument specified is not a valid argument to the 'c' option.

4404 Reference Manual @ 2-61

SECTION 2
User Commands

help

Display a brief description of the ase and syntax of the
specified command.

SYNTAX

DESCRIPTION

The "help" command displays a brief description of the ase and
syntax of the specified command. To obtain this information, it
looks for a file in the "/gen/help" directory with the same name
as the specified command. Descriptions of most 4404 commands are
available. If YOll enter "help help" or "help" with no argwnents,
the "help" command displays a list of all the commands it can
help with and prompts for the name of a specific command. Typing
a carriage retllrn terminates the command.

Arguments

<command name list) A list of the names of commands abollt
which the llser wants information.

EXAMPLES

1. help copy remove
2. help

The first example displays brief descriptions of the llse and
syntax of the "copy" and "remove" commands.

The second example displays a list of all the commands that the
"help" command can help with, followed by a prompt for the name
of a specific command.

NOTES

o The llser may add files to "/gen/help". When the "help"
command is execllted, it simply looks for the specified file
in "/gen/help", reads the contents, and writes it to
standard OlltPllt.

o If the file specified is a directory, the "help" command
lists the contents of the directory and asks what command
the llser woald like help with. If the command specified is
not in that directory, "help" prompts for permission to
search "/gen/help".

2-62 @ 4404 Reference Manaal

ERROR MESSAGES

Cannot help with <command name>.

SECTION 2
User Commands

No description of the specified command is available to the
"help" command.

Error opening "<file name>": <reason>

The operating system returned an error when "help" tried to open
the file <file name>, which describes the specified command.
This message is followed by an interpretation of the error
returned by the operating system.

Error reading "<file_name>": <reason>

The operating system returned an error when "help" tried to read
the file <file name>, which describes the specified command.
This message is followed by an interpretation of the error
returned by the operating system.

Too many files in directory.

The "help" command cannot function if the directory "/gen/help"
contains more than 500 entries.

4404 Reference Manual @ 2-63

SECTION 2
User Commands

info

Display the contents of the information field associated with the
specified binary file.

SYNTAX

info <file name list>

DESCRIPTION

A binary file may have an "information field" that stores textual
information associated with the file. This information can
include things like the version number and release date of the
file, as well as other useful information pertaining to the file.
The "info" command displays the contents of the information
field.

Arguments

<file name list> A list of the names of the files for
which to display the information field.

EXAMPLES

1. info /system.boot
2. info /bin/edit /bin/info

The first example displays the version number, release date, and
copyright information for the file "/system.boot", the operating
system itself.

The second example displays version numbers, release dates, and
copyright information for the text editor ("/bin/edit") and the
"info" command ("/bin/info").

ERROR MESSAGES

Error opening "<file name>": <reason>

The operating system returned an error when "info" tried to open
the file <file name>. This message is followed by an
interpretation-of the error returned by the operating system.

Error processing "<file name>": <reason>

The operating system returned an error when "info" tried to
process the file <file name>. This message is followed by an
interpretation of the error returned by the operating system.

2-64 @ 4404 Reference Man~al

Error reading "<file_name>": <reason>

SECTION 2
User Commands

The operating system retllrned an error when "info" tried to read
the file <file name>. This message is followed by an
interpretation-of the error returned by the operating system.

Error seeking in "<file name>": <reason>

The operating system retllrned an error when "info" tried to seek
to the appropriate location in <file name>. This message is
followed by an interpretation of the-error retllrned by the
operating system.

Error writing to "standard output": <reason>

The operating system retllrned an error when "info" tried to write
the OlltPllt of the "info" command to standard Olltput. This
message is followed by an interpretation of the error returned by
the operating system.

file name>" has no information field.

The optional information field is not present in the specified
file.

file_name>" is not a binary file.

The specified file lacks the header which identifies it as a
binary file. The argument to the "info" command must be a binary
file.

file name>" is not a reglllar file.

The specified file is a directory or a special file (a block or
character device). The argument to the "info" command must be a
reglllar file.

Syntax: info <file name list>

The "info" command reqllires at least one argument. This message
indicates that the argument count is wrong.

SEE ALSO

add info
Section 5, The Assembler and ~~nking~oade~

4404 Reference Manual @ 2-65

SECTION 2
User Commands

int

Send a program interrupt to another task.

SYNTAX

int <task ID> [+<int_num>J

DESCRIPTION

The "int" command sends the specified interrupt to the task
identified by the task ID on the command line. If the user does
not specify an interrupt, a termination interrupt (SIGTERM) is
sent. A task ID is reported by the shell program whenever the
user executes a task in the background. An ID can also be
determined by the "jobs" command.

Arguments

<task ID>

Name

: SIGHUP

: SIGINT

: SIGQUIT

: SIGEMT

: SIGKILL

l SIGPIPE

2-66 @

The task ID of the task to interrupt. A task
ID of 0 specifies all tasks associated with
the user's terminal and owned by the user.
+<int num> The number associated with the
interrupt the user wishes to send. The plus
sign, '+', is necessary to distinguish the
number of t~e interrupt from the task ID.
Table 2-1 shows a list of the possible
interrupts.

Table 2-1

POSSIBLE INTERRUPTS

: Number : Description : A C D I R :

: Hangup : + + - + +- :

2 : Keyboard : + + - +- + :

3 l Quit : + + + + +- :

4 : EMT $Axxx emulation : + + + + + :

5 : Task kill : + - - - + :

6 l Broken pipe l + + - + + :

4404 Reference Manual

I SIGSWAP 7

I SIGTRACE 8

I SIGTIME 9

I SIGALRfJf 10

I SIGTERM 1 1

: SIGTRAPV 1 2

I SIGCHK 1 3

: SIGEMT2 14

I SIGTRAP1 1 5

I SIGTRAP2 1 6

: SIGTRAP3 17

I SIGTRAP4 18

I SIGTRAP5 1 9

I SIGTRAP6 20

I SIGPAR 21

I SIGILL 22

I SIGDIV 23

I SIGPRIV 24

I SIGADDR 25

I SIGDEAD 26

I SIGWRIT 27

I SIGEXEC 28

I SIGBND 29

4404 Reference ManQal

I Swap error

I Trace

I Time lImit

I Alarm

I Task terminate

: TRAPV instruction

I CHK instruction

I EMT $Fxxx emulation

I TRAP #1 instruction

I TRAP #2 instruction

I TRAP #3 instruction

I TRAP #4 instruction

I TRAP #5 instruction

I TRAP #6-14 instruction

I Parity error

I Illegal instruction

I DIVIDE by 0

I Privileged instruction

I Address error

: Dead child

SECTION 2
User Commands

I + - - - + I

I + + - + - I
I I
I + + + - + I

I + + - + + I

I + + - + + I

I + + + + + I

: + + + + + I

: + + + + + :

I + + + + + I

I + + + + + I

I + + + + + I

I + + + + + I

I + + + + + I

I + + + + + I
I I
I + - + - + I

I I
I + - + - + I

I + + + + + I
I I
I + - + - + I

I I
I + - + - + I

I I
I - + - + + I

I Write to READ-ONLY memory I I
I + - + - + I

I Execute from STACK/DATA space : + - + - + I

I Segmentation violation

@

I I
I + + + - + I

2-67

SECTION 2
User Commands

: SIGUSR1

: SIGUSR2

I SIGUSR3
I
I

Notes

30

31

: 32
I 33-63

: User-defined interrQpt #1

I User-defined interrQpt #2

: User-defined interrQpt #3
I Vendor-defined interrQpts

A
C

=
=

DefaQlt state is "abort" (otherwise, "ignore")
InterrQpt can be caaght

D = Produces a core dump
I = Interrupt can be ignored
R = Resets to default state when triggered

EXAMPLES

1. int 263
2. int +5 1 49
3. int 149 +5

: + + - + + :

I I
I + + - + + I

I I
I + + - + + I
I I
I I

The first example sends a termination interrQpt (SIGTERM) to task
number 263.

The second example sends a SIGKILL interrupt to task 149. No
program can trap or ignore a SIGKILL interrupt.

The third example is identical to the second one. The order of
the arguments is irrelevant.

ERROR MESSAGES

Error sending interrupt: <reason>

The operating system retQrned an error when "int" tried to send
the interrapt. This message is followed by an interpretation of
the error returned by the operating system.

Illegal interrupt specified: <int_num>

The number specified mQst be an integer between 1 and the number
of signals, inclQsive. At the time of this writing the number of
signals is 32.

2-68 @ 4404 Reference ManQal

Illegal task ID specified: <task_ID>

SECTION 2
User Commands

The task ID specified contains some characters that are not
digits. A legal task ID contains only digits.

Syntax: int <task_ID> [+<int_num>J

The "int" command expects exactly one task ID and no more than
one interrupt number. This message indicates that the argument
count is wrong.

SEE ALSO

jobs

4404 Reference Manual @ 2-69

SECTION 2
User Commands

jobs

Report the task IDs and starting times of all background tasks
originated by the user from the current shell program.

SYNTAX

jobs

DESCRIPTION

The "jobs" command, which is part of the shell program, reports
the task IDs and starting times of all background tasks
originated by the user from the current shell program. (If
"script" is running as the shell, the task IDs are preceded by
the letter 'T' for task. This letter is not part of the task
ID.)

EXAMPLES

jobs

This example is the only valid form of the "jobs" command. It
reports the task ID and starting time of all active background
tasks originated by the user from the current shell program.

MESSAGES

No tasks active.

The user has no active tasks in the background.

SEE ALSO

int

2-70 @ 4404 Reference Man~al

libgen

SECTION 2
User Commands

Create a new library or update an existing one.

SYNTAX

libgen o=<old lib> n=<new lib> [u=<update>] [<del_list>] [+al]

DESCRIPTION

The "libgen" command creates a new library of relocatable or
executable modules or updates an existing library. Each module
in a library must have a name. The name is assigned to a module
by either the "name" pseudo-op in the relocating assembler or the
'N' option of the linking loader. The "libgen" command does not
accept a module without a name.

As it runs, "libgen" produces a report describing the action that
it takes for each module in the library. The report includes the
name of the module and the file from which it was read (the old
library or one of the update files).

Arguments

o=<old lib>

n=<new lib>

The name of an existing library file that was
previously created by the "libgen" command.
"libgen" is being called to update an
existing library rather than to create a new
one. Either the "o=<old lib>" or
"n=<new lib>" argument, or both, must appear
on the command line.

The name of a new library. If a file with
this name already exists, "libgen" deletes it
without warning before writing the new
library. If the user does not specify a name
for the new library, it defaults to the name
of the old library. In such a case
"libgen" puts the new library in a scratch
file, deletes the old library, and renames
the scratch file with the name of the old
library. Either the "o=<old lib>" or
" n=<new lib>" argument, or both, must appear
on the command line.

4404 Reference Manual @ 2-71

SECTION 2
User Commands

:.1= < update>

del list>

The name of a file containing modules to add
to the library. Modules of the same name are
replaced by modules from the update file.
The user may specify up to nine update files
by repeating the "u=<update>" argument for
each one.

A list of the names of modules to delete from
the old library.

Options Available

a Produce an abbreviated report that contains information
only about modules that were replaced, added, or
deleted.

I Suppress the production of a report.

EXAMPLES

1. libgen n=binlib u=one u=two u=three
2. libgen o=binlib u=new +a
3. libgen o=binlib u=newmods n=newlib transpose add +1

The first example creates a new library named "binlib" that
contains all the modules from the files "one," "two," and
"three."

The second examp-le tlpdates the library "binlib" by adding or
replacing modules from the file "new." The command produces an
abbreviated report.

The third example updates the library "binlib" by adding or
replacing modules from the file "newmods" and by deleting the
mod ules named "transpose" and "add". The updated library is
written to the file "newlib". The old library is deleted.

ERROR MESSAGES

An old or new library name must be specified.

Either the "o=<old lib>" or "n=<new lib>" argument, or both, must
appear on the command line.

2-72 @ 4404 Reference Manual

No index fOQnd in <lib name>

SECTION 2
User Commands

The "libgen" command creates every library with an index. This
message indicates either that the file specified is not a library
or that it is a library, bQt has been badly damaged, and can no
longer be tlsed.

Record not fOQnd in <modQle name>

One of the files in the list of modQles to delete from the old
library was not fOQnd in that library. The command ignores that
file name and continues.

Record with no name fOQnd in <module name>

Every relocatable or execQtable modQle that goes into a library
"n:J.st have a name. The Qser shoQld remake the specified module
and give it a name.

Unknown argument: <str>

The argument specified by <str> is not a valid argQment to the
"libgen" command.

Unrecognizable record in <module name>

All modules in a library mQst be either execQtable or
relocatable.

SEE ALSO

ISection 5, The Assembler and Linking Loader
libinfo

4404 Reference Manual @ 2-73

SECTION 2
User Commands

lib info

Display information about a library.

SYNTAX

libinfo <library_name_list> [+emM]

DESCRIPTION

The "libinfo" command lists the entry points and module names
contained in a library produced by the "libgen" command. The
user can optionally display only the entry points or only the
module names. Information about a particular module within a
library can also be displayed.

Arguments

<library_name list> A list of the names of the
libraries to report on.

Options Available

e Display only entry points in the specified library.

m Display only module names in the specified library.

M=<mod name> Display information about module <mod name>.
This option is incompatible with both the 'e'
and 'm' options. If the user specifies
incompatible options, "libinfo" uses the 'M'
option and ignores any others.

EXAMPLES

1. libinfo testlib
2. libinfo runlib +m
3. libinfo /lib/mathlib +M=Arctan

The first example lists all entry points and module names in the
library "testlib."

The second example lists all the module names contained in the
library "runlibo"

The third example displays the entry points and module names in
the module "Arctan" in the library "/lib/mathlib."

2-74 @ 4404 Reference Manual

ERROR MESSAGES

Error opening "<file name>" : <reason>

SECTION 2
User Commands

The operating system retllrned an error when "libinfo" tried to
open the specified file. This message is followed by an
interpretation of the error retllrned by the operating system.

Error reading "<file_name>" : <reason>

The operating system retllrned an error when "libinfo" tried to
read the specified file. This message is followed by an
interpretation of the error retllrned by the operating system.

Error seeking to <location> in "<file name>" : <reason>

The operating system retllrned an error when "libinfo" tried to
seek to the specified location (in hexadecimal) in the specified
file. This message is followed by an interpretation of the error
retQrned by the operating system.

"<file name>" is not a library!

The file specified does not have the correct format for a library
created with the "libgen" command.

** 'M' taken, others ignored ***
The 'm' and 'e' options are incompatible with the 'M' option. If
the llser specifies incompatible options, "libinfo" llses the 'M'
option and ignores any others.

Unknown option '<char>' ignored.

An Qnknown option was fOllnd and ignored.

SEE ALSO

libgen
relinfo

4404 Reference Manual @ 2-75

SECTION 2
User Commands

link

Establish a new link to an existing file.

SYNTAX

link <file name 1) <file name 2)

DESCRIPTION

The "link" command establishes a new link to an existing file.
If the command is successful, both <file name 1) and
<file name 2) refer to the same file. - -

The user must have write permission in the parent directory in
which the new link is created, and must have execute permission
in the directory containing the original copy of the file. Only
the system manager may make a link to a directory. A link cannot
cross a volume boundary.

Arguments

<file name 1) The name of the existing file to which to
establish a link.

<file name 2) The name to link to the existing file.

EXAMPLES

link /susan/.editconfigure .editconfigure

This example creates a file named ".editconfigure" in the tlser's
working directory and links it to the existing file
".editconfigtlre" in the directory "/susan".

ERROR MESSAGES

Cannot link across devices

The specified file names reside on different volumes and,
therefore, cannot be linked.

Entry already exists: <file name 2)

The file specified by <file name 2) mtlst be a nonexistent file.

2-76 @ 4404 Reference Mantlal

Entry does not exist: <file_name_1>

SECTION 2
User Commands

If the file to which the link is to be made does not exist, it is
impossible to link the files.

Entry is a directory: <file_name 1>

The existing file specified is, in fact, a directory. Only the
system manager can link to a directory.

Invalid option: <char>

The "link" command supports no options.

Path cannot be followed: <file name>

One or more of the directories that make up the name of the file
do not exist.

Permissions deny acc~ss: <file~name>

The user does not have permission to access the specified file.
If the file is the existing file, <file name 1>, the user does
not have execute permission in the parent directory- If the file
is <file name 2>, the user does not have write permission in the
parent directory.

Syntax: link <file name 1> <file name 2>

The "link" command expects exactly two arguments. This message
indicates that the argument count is wrong.

SEE ALSO

copy
move

4404 Reference Manual @ 2-77

SECTION 2
User Commands

list

Write the contents of the specified file to standard output.

SYNTAX

list [<file_name_list>] [+l<nQID>]

DESCRIPTION

The "list" command writes the contents of the specified file to
standard OQtput. If the user specifies more than one file, the
files are listed one after the other with no space between them.

The default file name is standard input. A plQS sign, '+', may
also be used as an argument to indicate standard input.

Arguments

<file name list>

Options Available

A list of the names of the files to
write to standard OQtput. The defaQlt
is standard input.

1 Include line numbers in the listing.

<num> The number of the line at which to begin listing
the file.

EXAMPLES

1. list test

The first example writes the file "test" to standard output.

The second example also writes the file "test" to standard
output. However, in this case standard output is redirected so
that the listing is appended to the contents of the file
"test.out". The listing is accompanied by line numbers and
starts at line 20 of the file.

The third example writes the files "part 1" and "part 2",
followed by the text entered from standard input, followed by
"part_3", to the file "whole_ thing" .

2-78 @ 4404 Reference Manual

SECTION 2
User Commands

ERROR MESSAGES

Error listing "<file name>": <reason>

The operating system returned an error when "list" tried to write
<file name> to standard output. This message is followed by an
interpretation of the error returned by the operating system.

Error opening "<file_name>": <reason>

The operating system returned an error when "list" tried to open
the file <file name>. This message is followed by an
interpretation-of the error returned by the operating system.

Error reading "<file_name>": <reason>

The operating system returned an error when "list" tried to read
the file <file name>. This message is followed by an
interpretation-of the error returned by the operating system.

Invalid option: '<char>'. Command aborted!

The option specified by <char> is not a valid option to the
"list" command.

Invalid starting line number. Command aborted!

The string ~sed to specify the starting line of the listing
either is not a string of digits or is too large.

4404 Reference Man~al @ 2-79

SECTION 2
User Commands

load

The "load" command is the linking loader.

SYNTAX

load <file name list> [+aAbcCdDeFilLmMnNoPrsStTilUJ

DESCRIPTION

The "load" command takes as inpilt one or more relocatable binary
modilles and prodilces as OiltPilt either a relocatable modille or an
execQtable modQle. The relocatable modQles used as inpQt shoQld
have been prodQced by the relocating assembler or the linking
loader. Options are available for prodQcing load and modQle maps
as well as a global symbol table. Starting addresses for text
and data segments can be adjQsted for the particQlar hardware
being used. The page size can also be adjQsted. The loader can
search libraries prodQced by the "libgen" atility in order to
resolve external references.

The Qser can place all desired options in a file specified with
the "load" command's 'F' option rather than specifying them
individQally on the command line. The operating system comes
wi th one such file, the file "/libl std env", which describes the
hardware environment. The loader always reads this file before
processing any other options. It then processes options in the
order in which they appear on the command line. If an option is
specified more than once (e.g., once in a file and once on the
command line), the last specification overrides all others.

Arguments

file name list> A list of files to load.

Options Available

A=<num>

2-80 @

Specifies the mlnlmQm nQIDber of pages to allocate
to this task at all times. The defaQlt is O. The
operating system tries to honor the specified
nQmber, bQt if it cannot, it uses as many pages as
it needs.

Specifies the maximQm nQIDber of pages to allocate
to this task at all times. The default is O. The
operating system tries to honor the specified
nQIDber, but if it cannot, it uses as many pages as
it needs.

4404 Reference Manual

SECTION 2
User Commands

b=<task size> Specifies the size of the task, where

c=<module type>

<task size> is "128K", "512K", "2048K",
"8192K", "2M", or "8M". The default is
"512K". If the argument specified by the
user is not large enough, the "load" command
adjusts it to the smallest possible size.
The letters 'M' and 'K' can be either upper
or lowercase.

Specifies the source code of the
modules, where <module type> is
" ASSEMBLER", "C", "COBTIL", "FORTRAN", 0 r
"PASCAL". The names can be specified in
either upper- or lowercase.

C=<configuration> By default, the loader uses the
configuration number of the current
hardware. The user may, however, use
the 'C' option to specify a
configuration number which overrides the
default. This option is useful when
loading a module for a machine other than
the one on which it is running.

d Sets the "no core dump" bit in the binary header.

D[=<hex_num>] Specifies the starting address of the data
segment. If the user does not specify the
option or specifies the option without an
argument, the data segment immediately
follows the text segment.

e Prints each occurrence of any unresolved external. By
default, the loader prints only the first occurrence.

Specifies the name of a file of options
to process. The default file name is
"ldr opts". The 'F' option may be used
repeatedly but may not be nested.

i Writes all global symbols to the symbol table of the
binary file.

4404 Reference Manual @ 2-81

SECTION 2
User Commands

2-82

l=<library_name> Specifies the name of a library to
search. The loader first searches the
working directory, then the "lib"
directory in the working directory, and
finally the directory "/lib." Libraries
are searched in the order specified on
the command line. Up to five libraries
may be specified in this manner. By
default, unless the user specifies five
libraries on the command line, the
library "/lib/Syslib68k" is the last one
searched.

L Does not search any libraries for unresolved externals.

m Produces load and module maps and writes them to standard
output (see the 'M' option).

M=<file name> Specifies the name of the file in which to
put the output of the 'mY option (load and
module maps) and the's' option (a global
symbol table). This information is purely
textual. The user may edit or list the file
like any other text file. If the 'mY or's'
option is used without the 'M' option, the
loader sends the information to standard
output.

n Produces an executable module with separate instruction
and data space.

N=<module name> Specifies the name to give to the file
containing the module.

o=<file name> Spec ifies the name to give to the b inar'y
file.

P=<hex num>

@

Specifies the page size. The hexadecimal
number should always be a power of 2;
otherwise, the results are unpredictable.
The "load" command uses the page size to
determine the starting address of the data
segment when it immediately follows the text
segment (the data segment starts at the next
page boundary). The default is 0 (i.e., the
loader rounds the starting address to the
next even location after the end of the text
segment) .

4404 Reference Manual

SECTION 2
User Commands

r Produces a relocatable module as output. Do not search
any libraries.

s Writes the global symbol table to standard output (see
the 'M' option).

S=<hex num) Specifies an initial stack size where the
hexadecimal nQffiber is the nQffiber of bytes to
reserve. The default is 0 (the system
determines the size of the stack).

t Produces a shared-text executable module~

T=<hex num) Specifies the starting address of the text
segment. Default is O.

u Does not print any unresolved messages when producing a
relocatable module.

EXAMPLES

Sets the trap nQffiber for system calls. The
default is hardware-dependent. The Qser can
specify the argQffient as either "TRAP n" where
'n' is a number between 0 and 15 inclusive,
or as a string of four hexadecimal digits
which represent a bit pattern to use as an
instruction instead of the system call.

1. load *.r +F=/lib/ldr environ +t +l=Clib +o=tester
2. load t1.r t2.r +T=20000 +iN=mod +P=2000 +c=C +o=test
3. load sqrt +msM=loadmap +l=mathlib +i
4. load temp?r +reo=combined.r
5. load t1.r t2.r +a=10 +A=100 +b=2M +l=testlib +do=test

The first example loads all files whose names end with ".r" in
the working directory. The loader reads the file
"/lib/ldr environ" and processes the options therein. It uses
the library "Clib" to resolve externals. The executable output
module, which is a shared-text module, is named "tester".

The second example loads the the files specified and produces a
binary file named "test". The internal module-name is "mod".
The text segment begins at 20000 hexadecimal, and the data
segment follows it at the next page boundary (page size 2000
hexadecimal). The source code is "C". All global symbols are
inserted in the symbol table of the binary file.

4404 Reference Manual @ 2-83

SECTION 2
User Commands

The third example loads the file "sqrt" and prodllces an
execlltable modllle named "sqrt.o". The loader searches the
library "mathlib" for unresolved externals. It prodllces load and
modllle maps, as well as a symbol table, and writes them to the
file "loadmap". All global symbols are added to the sym.bol table
of the binary file.

The fOllrth example loads the files in the working directory whose
names match the pattern "temp?r" and prodllces a relocatable
module named "combined.r". The loader prints each occtlrrence of
all unresolved externals rather than only the first occurrence of
each. Because the 'r' option is specified, the loader does not
search any libraries.

The fifth example loads the files "t1.r" and "t2.r" and prodllces
the binary file named "test". The minimum page allocation is set
to 10; the maximum, to 100. The task size of the module is set
to 2 Megabytes. The execlltable module does not produce a core
dump.

NOTES

o If the file "/lib/std env" contains information about the
starting address of the text segment, the data segment, or
both, and if the tlser wishes to override this standard
configllration, starting addresses for both text and data
segments ShOllld be specified.

o If the user specifies page allocation valtles that don't make
sense, the loader alltomatically adjust them according to the
following rtlles:

The vallle for the maximum is always greater than or equal to
the vallle for the mlnlmllm. The vallle for the maximllm can be
0, bllt if it is greater than 0, it mllst be at least 4.

SEE ALSO

Section 5, The Assembler and Li~king Loader

2-84 @ 4404 Reference Manual

login

SECTION 2
User Commands

Give a Qser access to the operating system.

SYNTAX

login (Qser name>

DESCRIPTION

The "login" command gives a tlser access to the operating system.
If the Qser does not have a password, the system atltomatically
honors the command. If the tlser does have a password, the system
reqtlests it. If it is entered correctly correctly, the tlser is
given access to the operating system. Otherwise, the system
rettlrns an error message, followed by a login prompt.

Arguments

(tlser name>

EXAMPLES

login leslie

The name of the tlser to ptlt in contact with
the operating system. If no (tlser name> is
stlpplied, the system prompts for it.

This example tells the operating system to give the tlser whose
Qser name is "leslie" access to the operating system.

4404 Reference Mantlal @ 2-85

SECTION 2
User Commands

BOTES

o The "login" command creates a file called ".home?" in the
user's login directory. This file contains the full path
name of the login directory, which is defined in the
password file, "/etc/log/password". If the login program
(also defined in the password file) is the shell program, it
reads this file and deletes it. Thus, it knows what the
user's home directory is. If the login program is not the
shell program, the file ".home?" remains intact. This
short file (it uses one block) does not affect the rest of
the system.

ERROR MESSAGES

Login incorrect!

The combination of the user name specified and the password
entered is invalid. This message is followed by a login prompt.

No "login" name specified.

The user did not specify a user name on the command line.

SEE ALSO

2-86

log
script
shell

@ 4404 Reference Manual

move

Rename a file or move a file to another directory.

SYNTAX

move <file name 1> <file name 2> [+klps]
move <file-name-list> <dIr name> [+klps]

DESCRIPTION

SECTION 2
User Commands

The "move" command moves or renames one or more files. The first
form of the command renames <file name 1> to <file name 2>. The
second form moves each file named-in <file name list> to
<dir name>. In either case, if there is already a file with the
same-name as the file created by the "move" command, it is
overwritten without warning.

Directories and special files (block devices and character
devices) may not be moved. The user must have write and execute
permissions in the parent directory of each file being moved and
in the directory to which the files are moved. Each original
file is removed.

A file may not be moved from one device to another unless the
user has read permission on the file. A file may not be moved to
itself.

Normally the "move" command links the new file to the original
file and deletes the original one. Thus, a link between files on
different devices is not permitted; if you attempt to "move" a
file to a different device, the original file is copied to the new
file, then the original file is deleted.

4404 Reference Manual @ 2-87

SECTION 2
User Commands

Arguments

<file name 1> The name of the file to move or rename.

<file name 2> The name of the file to which to move
<file name 1>.

<dir name> The name of the directory to which to move
all the specified files.

Options Available

k Do not delete the original file.

1 List the name of each file as it is moved.

p Prompt for permission to replace existing files.

s stop as soon as an error is encountered.

EXAMPLES

1. move test oldtest +1
2. move test /elaine
3. move test /elaine/oldtest +kp
4. move * /elaine +s

The first example renames the file "test" in the working
directory; the new name is "oldtest." The "move" command issues
a message describing the move.

The second example moves the file "test" from the working
directory to the directory "/elaine". The last component of
the file name is preserved, so the name of the new file is
"/elaine/test".

The third example moves the file "test" from the working
directory to the directory "/elaine" and renames it
"oldtest." If the file "/elaine/oldtest" already exists, the
user is prompted for permission to delete the file. If
permission is denied, the move does not take place. Even if the
move takes place, the original files remain intact.

The fourth example moves all the files in the working directory
to the directory "/elaine". The last component of each file
name is preserved. The command aborts if it encounters an error.

2-88 @ 4404 Reference Manual

SECTION 2
User Commands

MESSAGES

<file_name _1 >" copi ed to ,,< file _ name_ 2>"

This message is produced only if both the '1' and 'k' options are
specified. It means that <file name 1> has been copied to
<file name 2>, but that the original-file remains intact. This
message indicates that the two files are on different devices.

"<file name 1>" linked to "<file name 2>"

This message is produced only if both the '1' and 'k' options are
specified. It means that the two files have been linked but that
the original file remains intact (the user specified the 'k'
option).

"<file name 1>" moved to "<file name 2>"

This is the normal message issued by the "move" command. It
means that <file name 1> has been either linked or copied to
<file_name_2> , and that <file name 1> has been deleted.

ERROR MESSAGES

Cannot move a block special file: <file_name>

The file <file name> is a block special file (block device) and
may not be moved.

Cannot move a character special file: <file_name>

The file <file name> is a character special file (character
device) and may not be moved.

Cannot move across devices: <file name>

The file <file name> is read-protected and, therefore, cannot be
moved across devices.

Directory is not accessible: <dir name>

The Qser does not have the necessary permissions (write and
execQte) to move a file to <dir name>.

4404 Reference Manual @ 2-89

SECTION 2
User Commands

"<file name 1)" and "<file name 2)" are the same file.

The user tried to move a file to itself, which if allowed would
destroy the file. If <file name 1) and <file name 2) are
different, they are links to the-same file.

Permissions deny access: <file_name)

The user does not have write permission in the parent of the
specified directory.

SEE ALSO

2-90

copy
link

@ 4404 Reference Man~al

SECTION 2
User Commands

owner

Change the owner of a file.

SYNTAX

owner <new owner> <file name list>

DESCRIPTION

The "owner" command changes the owner of the specified file.
Only the system manager may execQte this command.

Arguments

<new owner> The Qser name or Qser ID of the new owner of
the file.

<file name list>

EXAMPLES

A list of the names of the files for
which to change the owner.

1. owner system /john/*

2. owner 110 /john/*

The first example changes the owner of all the files in the
directory "/john" to "system".

The second example changes the owner of all the files in the
directory "/john" to the Qser whose ID is 110.

ERROR MESSAGES

Error changing owner for "<file name>": <reason>

The operating system retQrned an error when "owner" tried change
the owner of the specified file. This message is followed by an
interpretation of the error retQrned by the operating system.

,,< name>" is not a val id Qser name.

The specified name is not in the password file and, therefore, is
not a valid Qser name.

<nQm> is not a valid user identification nwnber.

4404 Reference ManQal @ 2-91

SECTION 2
User Commands

The specified number is not in the password file and, therefore,
is not a valid user ID.

Syntax: owner <new_owner> <file name list>

The "owner" command expects at least two arguments. This message
indicates that the argument count is wrong.

You mllst be system manager to run "owner".

Only the system manager may execute the "owner" command.

2-92 @ 4404 Reference Manual

password

SECTION 2
User Commands

Set or change a Qser's password.

SYNTAX

DESCRIPTION

The "password" command sets or changes a Qser's password. Only
the system manager may change another Qser's password. When a
Qser other than the system manager invokes the command, the
operating system prompts for the existing password (if there is
one). If the password is entered correctly, the system prompts
for the new password. Generally, a password shoQld contain
between five and eight random charactersG After the new password
is entered, the system prompts for it again to verify it. If the
second entry agrees with the first, the password is entered in
the password file. In order to maintain the secrecy of the
password, the operating system does not echo the characters typed
in response to the prompts for either the existing or the new
password.

To remove a password, enter a carriage retQrn for the new
password.

Arguments

< Qser name> The name of Qser whose password is being
changed. The default is the user invoking
the command.

EXAMPLES

1. password
2. password greg

The first example changes the password of the user who invoked
the command.

The second example Qses the command form that can be used only by
the system manager. It changes the password associated with the
\lser name "greg".

4404 Reference Manual @ 2-93

SECTION 2
User Commands

ERROR MESSAGES

Cannot find "<user name>" in the password file.

The file "/etc/log/password" does not contain an entry for the
user <user name>.

Cannot find your name in the password file.

The file "/etc/log/password" does not contain an entry for the
user issuing the command. This situation is extremely unlikely to
occur.

Error linking "/tmp/pswd" to "/etc/log/password": <reason>

The operating system returned an error when "password" tried to
link the new version of the password file to the old password
file. This message is followed by an interpretation of the error
returned by the operating system.

Error opening "<file_name>": <reason>

The operating system returned an error when "password" tried to
open the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error unlinking "<file name>": <reason>

The operating system returned an error when "password" tried to
unlink the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error writing "<file_name>": <reason>

The operating system returned an error when "password" tried to
write to the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Only the system manager may change another's password.

Use of the form of the "password" command that takes an argument
is limited to the system manager.

Password not correct. Permission denied!

The user did not enter the existing password correctly.

Retry different password unchanged.

2-94 @ 4404 Reference Manual

SECTION 2
User Commands

The first and second entries of the new password were not
identical. The password command aborts, leaving the original
password in place.

Syntax: password [<user_name>]

The "password" command expects no more than one argument. This
message indicates that the argument count is wrong.

System busy - try again later.

The file "/tmp/pswd", which must be created by the "password"
command already exists. Either someone else is using the command
or it was interrupted before it had a chance to delete the
temporary file. If no one is using the command, you should
login as "system" and delete the file "/tmp/pswd".

4404 Reference Man~al @ 2-95

SECTION 2
User Commands

path

Write the path name of the working directory to standard OQtput.

SYNTAX

path

DESCRIPTION

The "path" command writes the path name of the working directory,
followed by a carriage retQrn, to standard OQtpQt. The path
name, also called the file specification, is the QniqQe path from
the root directory throQgh the directory tree to the file in
qQestion.

EXAMPLES

path

This example is the only valid form of the "path" command. It
writes the name of the working directory, followed by a carriage
retQrn, to standard OQtpQt, which defaQlts to the user's
terminal. Of cOQrse, the Qser may redirect standard OQtput.

ERROR MESSAGES

Directory strQcture is corrQpt

The directory path from the root directory, 'I', to the working
directory is corrupt. Therefore, the "path" command cannot
determine the path name of the working directory.

SEE ALSO

chd

2-96 @ 4404 Reference ManQal

perms

Change the permissions associated with a file.

SYNTAX

perms <perms_list> <file name list>

DESCRIPTION

SECTION 2
User Commands

Every time a Qser creates a file, the operating system assigns it
a set of permission bits which determines whether or not the
file's owner and other users may read, write, or execute the
file. The permissions assigned depend on the command used to
create the file. The editor, for example, creates all files
with "rw-rw-" permissions, which allow the user who owns the
file, as well as other users, to read and write, but not execute,
the file. The default permission for "crdir" are "rwxrwx"; for
create, "rw-rw-"; for "makdev" , "rw-r--".

Read permission allows a regular file to be read. A user cannot
execute commands such as "list" and "copy" without read
permission on the file in question. Write permission allows a
file to be modified. Execute permission allows the name of the
file to be used as a command.

Permissions for directories are similar to those for normal
files. Read permission allows the user to read file names that
are actQally in the directory. Write permission allows the user
to create and delete files in the directory. Execute permission
allows the directory to be searched for a name used as part of a
file specification or file name~ The user must have execute
permission to successfQlly use a directory as the argument to the
"chd" command.

In addition to these permissions, each file has associated with
it a Qser ID bit. If this bit is set for a given file, any user
executing the file has- the same privileges as the file's owner
for the duration of the task.

The "perms" command changes the permission bits associated with a
file. Only the owner of a file or the system manager may change
the permissions associated with it.

4404 Reference ManQal @ 2-97

SECTION 2
User Commands

Arguments

The list of permission bits to alter.
Permission bits not mentioned are not
changed.

<file name list) A list of the names of the files for
which to alter the permissions.

Format for Arguments

The first character of an element in the
permissions list specifies whether the
argument applies to the Qser who owns the
file ('Q') or to others ('0'). The second
character specifies whether to add ('+') or
remove ('-') the permissions in qQestion.
The second character is followed by one, two,
or three of the characters 'r', 'w', and 'x'
(for read, write, and execQte). The user ID
bit is set or cleared with one of the
following arguments: "s+" or ItS_fl.

EXAMPLES

1. perms o-wx inventory
2. perms o+x Q+X script
3. perms o-rw o+x s+ inventory script

The first example removes write and execQte permissions for other
users from the file "inventory" in the working directory.

The second example gives execQte permissions on the file "script"
to both the Qser who owns it and to other Qsers.

The third example removes read and write permissions for others
from the files "inventory" and "script". It also sets execute
permissions for others, as well as the user ID bit. ThQs,
although other Qsers may neither read from nor write to the
files, they may execute them. While they are execQting them, they
have the same permissions on all files as the owner of these
files does.

2-98 @ 4404 Reference Manual

ERROR MESSAGES

SECTION 2
User Commands

Error changing permissions for "<file name>": <reason>

The operating system rettlrned an error when "perms" tried change
the permissions on the specified file. This message is followed
by an interpretation of the error rettlrned by the operating
system.

Error processing "<file_name>": <reason>

The operating system rettlrned an error when "perms" tried to determine
the original permissions on the file. This message is followed by an
interpretation of the error rettlrned by the operating system.

Syntax: perms <perms_list> <file_name_list>

The "perms" command expects at least two arguments. This message
indicates that the argument cOtlnt is wrong.

Unrecognizable character, '<char>', fotlnd in permissions list.
Command aborted!

A character following a plus or mintls sign in an element in the
permissions list was not an 'r', 'w', or 'x'. The command aborts
without altering any permissions.

SEE ALSO

dir
dperm

4404 Reference Manual @ 2-99

SECTION 2
User Commands

reI info

Display information about an object file.

SYNTAX

relinfo <file name list) [+ehrs]

DESCRIPTION

The "relinfo" command examines an object file or all the modules
in a library and displays information about the binary header,
the symbol table, and both the relocation and external records.
Normally, "relinfo" displays all the information. The available
options restrict the display to the specified information.

Arguments

<file name list) A list of the names of files to report on.

Options Available

e Display only information about external records.

h Display only information about the binary header.

r Display only information about relocation records ..

s Display only information about the global symbol table.

EXAMPLES

1 • relinfo tester
2. relinfo ilibimathlib +h
3. relinfo reporter +se

The first example displays information about the binary header,
the symbol table, and both the relocation and external records in
the object file "tester" in the working directory.

The second example displays the information about the binary
headers from all the modules in the library "/lib/mathlib".

The third example displays the information about both the
relocation and external records in the file "reporter" in the
working directory.

2-100 @ 4404 Reference Manual

ERROR MESSAGES

Error opening "<file name>" : <reason>

SECTION 2
User Commands

The operating system returned an error when "relinfo" tried to
open the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error reading "<file_name>" : <reason>

The operating system returned an error when "relinfo" tried to
read the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error seeking to <location> in "<file name>" : <reason>

The operating system returned an error when "relinfo" tried to
seek to the specified location (in hexadecimal) in the specified
file. This message is followed by an interpretation of the error
returned by the operating system.

file name>" is not a binary file!

The specified file does not have a valid binary header.

Unknown option '<char>' ignored.

An unknown option was found and ignored.

SEE ALSO

libgen
libinfo
load
asm

4404 Reference Manual @ 2-101

SECTION 2
User Commands

remote

Communicate with a host computer via the RS-232 port,
"/dev/comm."

SYNTAX

remote [+1= filename [+n]]

DESCRIPTION

The utility "remote" allows the 4404 to be used as a terminal to
a remote host computer connected to the "/dev/comm" port.

"Remote" allows you to capture both sides of a session with a
host into a disk file for later editing and review. In addition,
this utility also allows file transfers to and from the host
under control of a host program.

Options Available

+1= filename

Output from the host will be directed to the specified file in
addition to being sent to the terminal emulator and appearing on
the screen. This function can be toggles on and off using
function key F3. +n This options specifies that linefeed
characters be ignored when directing to the file specified by the
+1 option. The +1 option must be specified for this option to
have any meaning.

FUNCTION KEY ACTIONS

F1 Terminates remote.

F2 Create and enter a subshell. Any executing file
transfers will continue uninterrupted.

F3 Toggles output to file specified by the +1 option on
and off.

FILE TRANSFERS

Remote supports a file transfer protocol which works in
conjunction with a program running on the remote host. The 'C'
source code for a sample of such a program, which will run under
the Unix<tm> operating system, may be found in "/samples/xfer.c"

2-102 @ 4404 Reference Manual

CONFIGURING THE COMMUNICATIONS PORT

SECTION 2
User Commands

The "commset" command is used to set the various parameters of the
communications port. For example, the baud rate of the part may
be set with a command like:

commset baud=9600

See the documentation on the "commset" command for further
information on configuring the communications port.

4404 Reference Manual @ 2-103

SECTION 2
User Commands

remove

Remove the specified file from the system.

SYllTAX

remove <file name list) [+dklpw]

DESCRIPTION

The "remove" command removes the specified file, which may be any
type of file, from the file system. The aser mast own the file,
mast have write permission in the parent directory of the file
being removed and, by defaalt, mast also have write permission in
the file itself. Restrictions on deleting a directory are
discassed with the options.

Arguments

<file name list) A list of the names of files to remove
from the file system. The list may
inclade regalar files, special files,
and directories.

Options Available

2-104

d If the specified file is a directory and it is empty,
delete it. By defaalt, the "remove" command does not
delete directories.

k If the specified file is a directory, delete it and all
the files it contains.

1 List the name of each file as it is removed.

p Prompt for permission to remove each file. The file is
removed if the aser responds to the prompt with a 'y'.

w Prompt for permission to remove files for which the
aser does not have write permission. By defaalt, the
"remove" command does not delete sach files. The file
is removed if the aser responds to the prompt with a
'y' .

q Qaiet mode. Do not issQe messages.

@ 4404 Reference Manaal

SECTION 2
User Commands

EXAMPLES

1. remove first file dir file second file +w
2. remove first-file dir-file second-file +dp
3. remove first-file dir-file +kl

The first example removes the files "first file" and
"second file", prompting for permission to-do so if the llser does
not have write permissions in the file. The file "dir file" is
not removed becallse it is a directory.

The second example prompts for permission to remove "first file"
and "second file" (assuming the llser has the proper permissions).
It also prompts for permission to remove "dir file" if the
directory is empty. -

The third example removes "first file" and "dir file" from the
file system. In addition, it descends the directory strllctllre of
"dir file", deleting the directory itself as well as every file.
The command lists the name of each file as it is deleted.

CAUTION

The "remove" command, especially when
execllted with the 'k' option, is an extremely
powerflll and potentially destrllctive command.

ERROR MESSAGES

Cannot delete the root directory: ,,/"

The llser tried to delete the root directory.

Directory "<dir name>" is not empty.

The "remove" command cannot delete a nonempty directory unless
the user specifies the 'k' option.

Error deleting "<file_name>": <reason>

The operating system retllrned an error when "remove" tried to
delete <file name>. This message is followed by an
interpretation of the error retllrned by the operating system.

4404 Reference Manaal @ 2-105

SECTION 2
User Commands

Error deleting "." in "<dir_name>": <reason>

The operating system returned an error when "remove" tried to
delete the "." entry in <dir name>. This message is followed by
an interpretation of the error returned by the operating system.

Error getting status for "<file name>": <reason>

The operating system returned an error when "remove" tried to
read the fdn for <file name>. This message is followed by an
interpretation of the error returned by the operating system.

Error removing "<file_name>": <reason>

The operating system returned an error when "remove" tried to
remove <file name>. This message is followed by an
interpretation of the error returned by the operating system.

Invalid option: '<char>'

The option specified by <char> is not a valid option to the
"remove" command.

Syntax: remove <file name list> [+dklpw]

The "remove" command expects at least one argument. This message
indicates that the argument is wrong.

You do not own "<file name>".

The user may not delete a file that is owned by someone else.

SEE ALSO

deluser

2-106 @ 4404 Reference Manual

SECTION 2
User Commands

rename

Change the name of the specified file.

SYNTAX

rename <file name 1> <file name 2>

DESCRIPTION

The "rename" command changes the name of the specified file. If
a file named <file name 2> already exists, it is deleted withoat
warning.

ARGUMENTS

<file name 1> The name of an existing file.

<file name 2> The new name for <file name 1>.

EXAMPLES

1. rename test oldtest
2. rename test /elaine/oldtest

The first example changes the name of the file "test" in the
working directory to "oldtest". If a file named "oldtest"
already exists, it is deleted without warning.

The second example changes the name of the file "test" in the
working directory to "/elaine/oldtest".

ERROR MESSAGES

Error renaming "<file name 1>": <reason>

The operating system ret~rned an error when "rename" tried change
the name of <file name 1>. This message is followed by an
interpretation of-the error returned by the operating system.

Error renaming to "<file_name_2>": <reason>

The operating system retllrned an error when "rename" tried to
assign the new file name. This message is followed by an
interpretation of the error retllrned by the operating system.

4404 Reference Manual @ 2-107

SECTION 2
User Commands

Error unlinking "<file name 1>": <reason>

The operating system returned an error when "rename" tried to
unlink <file name 1> from the new file. This message is followed
by an interpretatlon of the error returned by the operating
system.

File "<file name 1>" does not exist!

The first name on the command line must be the name of an
existing file.

File "<file_name>" is a directory!

The "rename" command can neither rename a directory nor assign a
directory name to an existing file.

The "rename" command expects exactly two argwnents. This message
indicates that the argument count is wrong.

SEE ALSO

move

2-108 @ 4404 Reference Manual

restore

SECTION -2
User Commands

Catalog or Copy files from the floppy-device back onto the file
system.

SYNTAX

restore [+ bBCdLlnp] [+ a =days] [file ...]

DESCRIPTION

The "restore" command is used to copy backup files from the
floppy device back onto the file system. Although the program is
named Restore, it can operate in two distinct modes, selected by
options: catalog mode and restore mode. Catalog mode lists the
contents of the backup device in much the same format as that
tlsed by the "dir" and "Is" commands. Restore mode retrieves
files or directories from a backup device.

The "restore" command retrieves backup files and directories from
/dev/floppyonly. You should not attempt to "mount" a backup
diskette; the only way to read disks written by "backup" is to
use the "restore" command. The only other command that you
should use on a backup diskette is "devcheck".

Arguments

<file name list> List of the names of files and
directories to process. Default is the
working directory.

If you specify a directory name as an argument in restore mode,
the program processes only the files within that directory. If
you also specify the 'd' option, the program restores all files
within the given directory and its subdirectories.

Options Available

a::<days>

b

B

Restore only those files that are less than
the specified number of days. A value of 0
specifies files created since midnight on the
current day; a value of 1 specifies files
created since midnight of the previous day,
and so forth.

Print sizes of files in bytes.

Do not restore files that end in ".bak".

4404 Reference Manual @ 2-109

SECTION 2
User Commands

C

d

1

L

n

p

Print a catalog of the files on an existing
backQP. If yOQ specify the 'C'
option, "backllp" ignores all the names in
<file name list>.

Restore entire directory strQctures~

List file names as they are restored.

Do not unlink files before restoring.

Only restore a file if the copy on the back
QP device is newer than the copy at the
destination. If the destination file does
not exist, the program restores the file
(unless prohibited by another option, sllch as
the 'B' option). The 'n' option may be llsed
only in restore mode.

Prompt yOQ with each file name to
determine whether or not the restore
procedure ShOllld be performed on that
particular file.

"restore" normally works in a quiet mode. The '1' option allows
you to see what the program is actllally doing.

EXAMPLES

1. restore +lR

2. restore +lRn file1 dir2

3. restore +C >catalog

The first example restores all of the files, excluding
subdirectories and their contents, from the backup diskettes you
are prompted to insert in the flexible disk drive.

The second example restores the file "file1" from the backllp. It
then restores the files contained in "dir2" on the backu.p,
creating the directory "dir2" if necessary. This example does
not restore any subdirectories in "dir2" or any files or
directories contained in subdirectories in "dir2".

The third example catalogs the files on the backu.p set and stores
i t in a file called "catalog."

2-110 @ 4404 Reference Manllal

NOTES

SECTION 2
User Commands

o In restore mode, file names or directory names on the
command line are used to select the files or directories to
be restored. The program searches the entire backup for
each argument specified. If multiple files satisfy the
restoration criteria, the program restores them all,
destroying the older version as the new one is restored.
Thus, to ensure profer restoration, you must provide
all backup volumes ,in order) for each argument.

o When files are restored, they are generally restored to the
same directory location as you specified when they were
backed up. As files are backed up, "backup" makes an
indication of the path name for each file. When files are
restored, "restore" uses the path name to place the file
in its proper directory location. If the path name is
relative (i.e., does not begin with '/'), the path name of
the restored directory is also relative. Thus, files backed
up with a relative path name may be restored to a directory
location different from the one in which they were created.

An example should make this clear. If the working directory
is backed up, either by specifying no source files or by
using the directory name'.', the files are backed up with a
relative path of '.'. When these files are restored, they
are placed in the directory'.', which might not be the same
directory they originally came from. This feature allows
the manipulation of entire file systems in a general fashion.
To specify a unique directory location for a file, you
should specify its entire path name, starting with '/'.

o It is possible to restore backed up data onto the device
currently being used as the root device or system disk. Two
possible problems arise, however. First of all, if the
operating system is restored from a backup, the result is
not bootable. In such a case, the file must be copied from
the original master diskette and installed in order to allow
booting. The second problem occurs if the shell program or
the device "ttyOO" is restored over the current shell or
"ttyOO". This operation leaves unreferenced files in the
file system. Unreferenced files must be corrected with the
"diskrepair" command. In general, it is always a good idea
to run "diskrepair" on the root device after restoring
backed-up data to it.

4404 Reference Manual @ 2-111

SECTION 2
User Commands

MESSAGES

Several of the following messages prompt yOQ for a positive
or negative response. The program interprets any response that
does not begin with an upper or lowercase 'n' as a positive
response. '

Catalog of backQP on "<file name>"
Restore backQP from "<file_name>"

These messages are printed when "backup" begins. They notify
you of the function aboQt to be performed.

Restore "<file_name>" (Yin)?

If you specify the 'p' option, the program prints one of these
prompts before it takes any action. A response of 'n' or 'N'
indicates that the operation shoQld not be performed for the
given file. Any other response is interpreted as "yes".

Insert next volume - Hit CIR to continue:

This prompt is issued when the program needs a new backup volume.
You should type a carriage return only when the next volume has
been placed in the device.

link "<file name 1>" to "<file name 2>"
copy "<file-name)""
Copying from "<dir_name>"

The program prints these messages as it takes the corresponding
action during a creation operation.

This is Volume #<number_1> -- Expected Volume #<number_2>
Continl.l.e?

The program expects you to insert volumes in sequential order.
If a volume appears out of order, "backup" prints this message.
If you type anything except an 'n' or an 'N' as the first
character of the response to the message, "backup" ignores the
fact that the volumes are out of order and continues with the
backup. Otherwise, it prompts you for another volume. It is
important to insert volumes sequentially because "backup" cannot
correctly restore files that are broken across volumes if the
vol umes are _inserted out of order.

2-112 @ 4404 Reference Manual

Volume <nllmber> of" <vol name> tr

SECTION 2
User Commands

Whenever a new voltlme is inserted and properly validated, the
program prints this message, which indicates the name of the
backllp volume and its seqllence ntlmber.

ERROR MESSAGES

dev name>" is not a block device

The destination device for the backllp mllst be a block device.
This message indicates that the specified device (that is always
the first argllffient) is not sllch a device.

file_name>" not located - try again?

When llsing the program in restore mode, YOll may specify which
files or directories to restore. If the program cannot find a
specified file or directory after searching the entire backllp, it
prints this message. If the response is not 'n' or 'N', the
program searches the entire archive again. This option is
allowed because voltlmes need not be inserted in order of their
creation when the program is in restore mode. If one volllffie is
left Ollt or if the final volllffie is inserted before the entire
archive has been processed, some files might not be processed.
Note that if YOll specify more than one file name or directory
name, the program processes the entire archive for each file
before proceeding to the next one.

Formatting not allowed dllring Catalog/Restore

YOll may not format a disk if the program is in either catalog or
restore mode.

Read error! - file "<file name>"

An I/O error occllrred dllring the transfer of a file either to or
from the backllp. An allxiliary message is printed indicating the
nature of the error. The program tries to continlle for all
errors except "device fllll" dllring restore mode.

4404 Reference Manllal @ 2-113

SECTION 2
User Commands

Unknown option: <char>

The option specified by <char> is not a valid option to the
"backup" command.

** Warning: directory "<dir name>" is too large!
** Some directories were ignored
**Warning: directory "<dir name>" is too large!
** Some files were ignored

The program uses some internal tables during the back up process
(not during restore or catalog). If the limits of these tables
are exceeded (highly unlikely), these messages are printed.

SEE ALSO

backup

2-114 @ 4404 Reference Manual

The script execution shell.

DESCRIPTION

script

SECTION 2
User Commands

The program named"script" is a command interpreter used primarily
to execute commands from a file. It can be run as an interactive
interface, but does not support aliases, history, and
env ironmental var iables that are available ilnder "shell."

If you run "script" as an interactive shell, it collects and
interprets your commands and executes some bililt-in commands
("chd", "dperm", "jobs", "log", "login", "time", and "wait")
itself. It passes others to the operating system kernel which,
in tilrn, performs the operations requested.

A "script" command line consists of a command name, which may be
followed by arguments, options, or both. All elements of the
command line must be separated by either spaces or commas. The
command may be one of the commands supplied with the operating
system, the name of a binary file produced by either the
assembler or a compiler, or the name of a text file (with execute
permission turned on) which contains a series of commands to
execute. In all cases the script program spawns a child-task which
executes the specified command or commands.

Search Path

The list of directories searched by the script program is known
as the search path. Because most commands reside on disk, the
script program must locate the command before executing it. By
defaillt, the script program sequentially searches the following
directories: your working directory, "<home dir>/bin", and
"/bin". If you are the system manager, the-system also searches
the directory "/etc" immediately after searching
"<home_dir>/bin". (The home directory is your login directory,
as specified in the password file.)

4404 Reference Manual @ 2-115

SECTION 2
User Commands

Background Tasks

If yoa follow a command with an ampersand, '&', the script
program, as aStlal, spawns a child-task 'which execates the
command. However, in this case the script does not wait for the
task to complete. Thas, yoa may start another command while the
first one is execating. A single script program can sapport a
maximwn of five of these "backgroand tasks". Each time yoa send
a task to the backgroand, the script program reports the task ID
assigned to that task, preceding it with a 'T', which is not part
of the task ID. The aser may need the task ID to execate the
"wait" or "int" command. The task ID may also be obtained by
execating the "jobs" command, which retarns the task ID and
starting time of all backgroand tasks originated by yoa at the
carrent terminal from the script program. The ampersand may be
ased following a single command or separating one task from
another on the command line.

Multiple Commands on a Line

Yoa may specify more than one command on a command line by
separating them with any of several special symbols.

The script program seqaentially execates commands that are
separated by a semicolon, '; '. If a task terminates abnormally,
the script program stops execating the command line.

Two additional command separators, the conjanction operator
("&&") and the d isj anction operator ("::"), are available. Wi th
these separators, execation of the command following the operator
is dependent on the oatcome of the command preceding it. A
command is "trae" if it terminates with a termination stattls of
zero, indicating saccessfal completion, and "false" if it
terminates with a nonzero termination statas, indicating failare.
When two commands are separated by the conjanction operator, the
script program execates the second one only if it completes the
first one saccessfu.lly (it is "trae"). When two commands are
separated by the disjanction operator, the script program
execates the second one only if the first one fails (it is
"false").

Normally, the command line is evalu.ated from left to right;
however, parentheses may be ased to groap commands. Commands in
parentheses are treated as a single command. Commands separated
by a pipe (see Redirected I/O) are also treated as one command.

2-116 @ 4404 Reference Manu.al

SECTION 2
User Commands

The processing of the command separators may be summarized as
follows:

&& If the command preceding the conjunction operator
succeeds, the script program tries to execute the next
command. If the command preceding the conjunction
operator fails, the script program looks for a
disjunction operator. If it finds one, it tries to
execute the command which follows it. If it does not
find one, processing of the command line ceases.

: I If the command preceding the disjunction operator
succeeds, the script program looks for a semicolon,
'; '. If it finds one, it tries to execute the command
which follows it. If it does not find one, processing
of the command line ceases. If the command preceding
the disjunction operator fails, the script program
tries to execute the next command.

If the command preceding a semicolon succeeds, the
script program tries to execQte the next command. ~I
the command preceding a semicolon fails, processing of
the command line ceases.

& Whether the command preceding a single ampersand
succeeds or fails, the script program processes the
next command on the command line.

Consider the following example:

<task 1> && <task_2> I I <task_3> && <task 4>

The script program first tries to execute <task 1>. If the task
is unsuccessful, the script skips <task 2> and proceeds to
<task_3>. If <task_3> fails, the script program skips <task 4>;
if <task 3> succeeds, it tries to execute <task 4>. If, however,
<task 1>-succeeds, the script program tries to execute <task 2>.
If <task 2> also succeeds, the script program skips the rest-of
the command line. If, after the successful execution of
<task 1>, <task 2> fails, the script tries to execute <task 3>.
If and only if <task_3> succeeds, it goes on to <task_4>. -

The use of parentheses can change the interpretation of the same
set of commands separated by the same operators:

<task 1> && (<task 2> I I <task_3>) && <task 4>

4404 Reference Manual @ 2-117

SECTION 2
User Commands

In this case, the script once again begins by trying to execu.te
<task 1>. If it fails, the script program skips the remaining
tasks~ If, on the other hand, <task 1> is successf~l, the script
program spawns a subshell (because of the presence of the
parentheses). This subshell tries to exec~te <task 2> and, if
and only if it fails, it tries to execute <task 3>.- If <task 2>
silcceeds, it ret~rns a termination statils of "tr~e" to its parent
script. If <task 2> fails b~t <task 3> s~cceeds, it also retilrns
a termination stat~s of "tr~e". If ,-however, both <task 2> and
<task 3> fail, the termination stat~s ret~rned is "false". If
the termination stat~s ret~rned by the subshell is "tr~e", the
parent script tries to exec~te <task_4>.

Termination Status

Normally, the script program does not report the termination
status of a command it exec~tes ilnless the task terminates
abnormally (because of a program interrupt). A list of the
possible program interrupts appears in the documentation of the
"int" command. The script program does, however, always report
the termination statils of a background task, even if it
terminates normally.

Redirected I/O

The script program associates three files with every command it
executes: standard inp~t, standard output, and standard error.
Standard input is the file from which a command takes its input.
Standard output is the file to which a command sends its output.
Standard error is the file to which many error messages are
directed. By default, the system uses your keyboard as
standard input and your terminal as both standard output
and standard error. However, you can direct the script to
~se another file for any of these standard files. This process
is known as I/O redirection.

The symbol '<I tells the script program to take its standard
input from the file whose name follows the symbol. Similarly,
the symbols I>' and" are used to send standard output and
standard error to a file. The file to which standard inp~t is
redirected must already exist. However, if the file to which
standard output or standard error is redirected does not exist,
the system creates it. In fact, if the file does already exist,
the syRtem deletes the contents of the file before executing the
command. To avoid this effect, you may ilse the "»,, symbol to
direct the script program to append data to the file specified as
standard error or standard output. For example, yo~ might add
the resillts of the "compare" command to one of the pre-existing
files.

2-118 @ 4404 Reference Man~al

SECTION 2
User Commands

It is also possible to redirect standard OQtpQt or standard error
(or both) to another task. This form of redirection is
accomplished by Qsing a "pipe". A pipe is a fQnction that
connects programs so that the OQtpQt from one program becomes the
inpQt for another. Standard OQtpQt is piped from one task to
another by Qsing one of the symbols' I' or ,A, For instance,
the following example lists all the files in the working
directory, formats the listing with the "page" command, and
prints the listing on the printer "/dev/printer."

Is . I page I /dev/printer

Similarly, you can redirect standard error with either of
the symbols "I" or "A"

AlthoQgh you can place many pipes on the command line, a single
task can support only one pipe. Thus, you cannot pipe standard
error and standard output to separate tasks. It is possible,
however, to dQplicate standard error onto standard output and to
redirect them both to the same task. You have a choice of
symbols for duplicating standard error onto standard output: u>%"
or "%>". Neither of these symbols takes an argument. After
dQplicating standard error onto standard OQtput, you redirect
standard outpQt to a file or a task in the QSQal way. Whenever
standard error and standard output are routed to the same
destination, their contents may be intermingled. For instance,
you can get a listing of all the files in the working directory,
redirect both standard error and standard OQtput to the "page"
command, and print the results on the printer "/dev/printer" with
the following command:

Is . > I page I /dev/printer

Finally, the following constructions redirect I/O from or to the
null dev ice, "/ dev / nQII": "<-" for standard input, ">-" for
standard output, and "_" for standard error. If either standard
OQtpQt or standard error is redirected to the null device, its
contents are lost. If the nQII device is used as standard input,
an end-of-file character is read.

4404 Reference ManQal @ 2-11 9

SECTION 2
User Commands

Continuation of the Command Line

Command lines may be continued across more than one physical line
by terminating each line, except the last, with a backslash
character, " ," immediately followed by a carriage return. As an
interactive shell, "script" uses the prompt "+>" to indicate that
the line being entered is a continuation of the previous line.
When the script program processes the line, it replaces the
backslash and the carriage return with a space. Typing a
line-delete character (control-U) only affects the physical line
being typed. You may delete previous lines of a continued
command line by typing a keyboard interrupt (control-C), which
deletes the entire command line.

Pattern Matching Characters

The operating system recognizes several characters, known as
pattern matching characters, which allow you to specify files
with similar names without typing each name individually. The
special characters are the asterisk, '*'; the question mark, The
script program matches these special characters to characters in
the filenames in the specified directory. If the matching
character appears in the last component of the file name, the
script tries to match it to the names of all files in the
specified directory (by default, the working directory). If the
matching character appears in any other position in the file
name, the script tries to match it to the names of directories
only.

An asterisk in a command line matches any character or
characters, including the null string but not including a leading
period. Thus, the command

list *.bak

lists all files in the working directory whose names end in
".bak" and do not begin with a period.

The question mark matches any single character except the null
character or a leading period. For example, the command

list chapter_?

lists all files whose names begin with the string "chapter" and
end with a single character other than the null character.-

You can use more than one matching character at a time. For
instance, the command

list *.?

2-120 @ 4404 Reference Manual

SECTION 2
User Commands

lists all files in the working directory whose names end with a
period followed by a single character (except those whose names
begin with a period).

Square brackets allow you to specify a set of characters to use
in the matching process. The set of characters is defined by
listing individual characters or by specifying two characters
separated by a hyphen. In the former case, the script program
looks for all file names which use anyone of the enclosed
characters in the appropriate place. In the latter, the two
characters specify a class of characters containing the two
characters themselves and any characters which lexically fall
between them in the ASCII character set. For example, if your
working directory contains nine files named "chapter1",
"chapter2", "chapter3", and so forth, the following command lists
the first three chapters, the fifth chapter, and the last three
chapters:

list chapter[1-357-9]

If the script program cannot find a match for any of the
arguments containing matching characters, it aborts the command.
If it finds a match for at least one argument containing matching
characters, it ignores any other arguments containing matching
characters for which it cannot find a match.

If a filename actually contains one of the matching characters or
either a space or a comma, you must enclose the name in single or
double quotation marks. In such a case the script program passes
the arguments to the command without performing any character
matching.

"script" Scripts

A "script" script is a file that contains a list of commands for
the script program. Such a file might consist of a list of
commands that are frequently executed in sequence, or of a
single, lengthy command that is often used. If you set
execute permissions on such a file, the name of the file can be
used as a command.

You may add to the versatility of a "script" script by using
arguments within the script. The arguments are specified within
the script as "$1", "$2", "$3", and so forth. The argument "$0"
specifies the name of the calling program. These arguments may
appear anywhere in a command argument.

4404 Reference Manual @ 2-1 21

SECTION 2
User Commands

If an argument being passed to a command actually contains an
ampersand, the argument must be enclosed in single quotation
marks so that the script program does not try to perform any
substitution. Note that single quotation marks prevent both
sQbstitution of arguments and the expansion of matching
characters, whereas dOQble quotation marks prevent the expansion
of matching characters bQt allow the sQbstitQtion of argQffients.

The script program supports several commands that are used
exclusively with "script" scripts. These commands--"verbose",
"exit", "proceed", and "sabort"--are discussed in the following
paragraphs.

"verbose"

When the script program execQtes a script file, it does not
normally echo the commands being execQted. The "verbose" command
caQses the script program to echo commands from a script file as
they are execQted. Each line that is echoed is preceded by two
hyphens and a space character.

The "verbose" command may be called withoQt argQments or with one
argQffient, which mQst be one of the strings "on" or "off". If
called wi thoQt an argument, the defaQI t is "on". The command may
be execQted by the login script or may be part of a script
script. The verbose attribQte is always passed from a parent
script program to a child shell, bQt never from a child to a
parent.

"exit" and "proceed"

"script" permits a limited amount of control over the processing
of script files. "shell" sequentially processes commands in a
script file until one of the commands fails or it reaches the end
of the file. If a command fails, "script" begins to search the
remainder of the script file for a line that contains one of the
commands "exit" or "proceed". If it encoQnters one of these
commands, "script" reSQmes processing the script after that
command. The only difference between "exit" and "proceed"
commands is that dQring successful execution of a script file
"script" stops processing the file if it encoQnters an "exit"
command, whereas it ignores a "proceed" command. The search for
both these commands takes place before both the substitQtion of
any argQffients and the expansion of any matching characters.
ThQs, the sc.ript program does not see an "exit" or "proceed"
command that is created as the result of either of these
processes.

2-122 @ 4404 Reference Manual

Here's an example of the "proceed" command:

/etc/mount /dev/floPPY /usr2
/ usr2 runj ob
echo "Successful execution."
proceed
7etc/unmount /dev/floPPY

SECTION 2
User Commands

In this example, "script" mounts a disk and tries to execute the
command "/usr2/runjob" on that disk. If the command succeeds,
"script" echoes the message, "Successfill execution." and proceeds
to unmount the disk. If the command fails, "script" skips all
commands between the one that failed and the "proceed" command.
It resumes execution with the "unmount" command. Thus, if
"/usr2/runjob" fails, your disk is unmounted, but no message is
sent to standard output.

By adding an "exit" command YOll can modify this example to notify
you of either successful or unsuccessful execution:

/etc/mount /dev/floPPY /usr2
/ usr2 / runj ob
/etc/unmount /dev/floPPY
echo "Stlccessful execution."
exit
/etc/unmount /dev/floPPY
echo "Unsuccessfill execution."

Here, if "/usr2/runjob" succeeds, the script program continues
execution with the "unmount" command and echoes the string
"Successful execution." to standard output. The "exit" command
then causes the script program to stop processing the script
because it encounters the "exit" command during normal execution.
If "/usr2/runjob" fails, the script program skips all commands
until it encounters the "exit" command. It then resumes
execution with the "unmount" command and echoes the string
"Unsuccessftll execution." to standard output.

"sabort"

The "sabort" command can be used to turn off the search for
either an "exit" or "proceed" command, thus forcing execution of
every command in the script, regardless of the failure of a
command.

4404 Reference Manual @ 2-123

SECTION 2
User Commands

It sa b 0 r t " may be call e d wit ho II tar gum en t s 0 r wit h 0 n ear gum en t ,
which must be one of the strings "on" or "off". When "sabort" is
"on", "script" looks for an "exit" or "proceed" command whenever
a command in the script fails. When "sabort" is off, "script"
processes every command in the script. If you execu.te the
"sabort" command wi thotlt an argument, it both rescinds the effect
of any previou.s "sabort on" and fails. Thu.s, if "script" is
executing a script, "script" immediately begins looking for an
"exit" or "proceed" command.

The "sabort" command may be execu.ted by a login shell (if you. u.se
"script" as your shell) or may be part of a "script" script. The
attribute is always passed from a parent program to a child shell,
bu.t never from a child to a parent.

The system also su.pports startu.p files for individu.al u.sers.
Whenever a u.ser logs in u.sing "script" as an interactive shell,
the script program looks for a file named" .startup" in your home
directory (as defined in the password file). If the file exists
and you have read permissions in it, "script" executes the file
before issuing the system prompt.

The script program can also be used as a command in its own
right. This form is used primarily to execute a "script"
scriptfile for which execute permissions are not set, to call the
script program from another program, or in the password file.

SYNTAX

script [abclnvx] [<argument_list>]

DESCRIPTION OF THE "SCRIPT" COMMAND

If the "script" command is execu.ted withou.t any options or
arguments, the oPerating system simply spawns another shell for
you.. This script program fu.nctions as a normal shell, bu.t
because it is the child of the shell or script program from which
the command was executed, it does not know what you.r home
directory is. The "log" command terminates the child shell and
returns control to the parent script.

The "script" command can also be executed with options only.
This form of the command also spawns a script program that
interacts with YOll. If used in the password file, the
command should be executed with the '1' option (see Options
Avai lable) .

@ 4404 Reference Manual

SECTION 2
User Commands

Finally, the "script" command can be executed with argu.ments or
with both options and argu.ments. This form may be used, for
example, to execute a "script" script for which you do not
have execute permissions. Either of the following commands
executes the file "scriptfile":

script scriptfile
script <scriptfile

"script" first checks to see that the file specified as an
arg~ent is actually a file that contains commands. If it is
not, "script" executes it only if you specify the 'c' option (see
Options Available).

Arguments

<argument_list>

Options Available

A list of arguments to pass to the
script command. Each element in the
argu.ment list consists of a command name
followed by the appropriate argu.ments
and options. The elements in the list
must be se~arated by a valid command
separator \";", "&", "&&", or ": I"). If
any separator characters are used, the
entire argu.ment list must be enclosed
in s or double qQotation marks.

Options specified to the script program mu.st appear immediately
after the name "script" on the command line, so that they are not
conf~sed with options that pertain to the argu.ments passed to the
script.

a Start execution with the "sabort" attribute off.
b Ignore control-C and control-\.
c Process the .argu.ment list as a command.
I Run as a login shell. A login shell tries to find the

name of the user's home directory by looking in the
file" .home?". It also automatically executes the file
".startup" in the working directory.

v Start execution with the verbose attribute on.
x On the next command, do not fork unless necessary.

This option is Qsed only when calling a script program
from another program.

NOTE

It is impossible to specify a n~ll string as
an argu.ment to a command beca~se the script
program removes null strings from the command
line.

4404 Reference Manual @ 2-125

SECTION 2
User Commands

ERROR MESSAGES

Built-in commands may not use pipes.

Input to or Olltp~t from the script bllil t-in commands ("chd,"
"dperm," "jobs," "log," "login," and "wait") may not be routed
through a pipe.

Cannot execllte "<cmd name>".

The operating system was llnable to execute the specified command.
Either the command does not exist or you do not have execute
permission.

Cannot initialize tables.

This error, which should not OCCllr, is usually indicative of a
hardware failure. If it does occur, contact your Tektronix
field office.

Cannot open I/O redirection file.

The operating system returned an error when the script program
tried to open the file specified for I/O redirection. Most
probably, the path specified cannot be followed (one of the
directories does not exist) or YOll do not have the permissions
necessary for opening the file. This message is preceded by an
interpretation of the error produced by the operating system.

Cannot open pipe.

The operating system returned an error when the script program
tried to open the specified pipe. This message is preceded by an
interpretation of the error produced by the operating system.

Error opening a file.

The operating system returned an error when the script program
tried to open the specified file. This message is preceded by an
interpretation of the error produced by the operating system.

Error reading a file.

The operating system returned an error when the script program
tried to read the specified file. This message is preceded by an
interpretation of the error prodllced by the operating system.

Error writing a file.

2-126 @ 4404 Reference Manual

SECTION 2
User Commands

The operating system retQrned an error when the script program
tried to write to the specified file. This message is preceded
by an interpretation of the error produced by the operating
system.

I/O redirection conflict.

You tried to redirect standard input, standard output, or
standard error to more than one place.

I/O redirection error.

The operating system returned an error when the script program
tried to perform the specified I/O redirection. This message is
preceded by an interpretation of the error produced by the
operating system.

Memory overflow.

There is not enough memory available to perform the specified
command. Most probably, the expansion of the matching characters
used on the command line, for which many matches were possible,
caused the error.

Missing "J" or invalid character range.

Either the right square bracket is missing from the specification
of a range of matching characters, or the range specified is
invalid.

No matching file names found.

Matching characters appear on the command line, but no file names
match the specified pattern.

Parenthesis usage error.

The parentheses used on the command line are unbalanced.

Too many tasks.

The script program tried to fork, but too many tasks were running
at the time. The limit to the number of tasks allowed either to
the individual user or to the operating system as a whole was
reached.

4404 Reference Manual @ 2-127

SECTION 2
User Commands

Unknown error.

This error should not occur. If it does, contact your Tektronix
field office.

Unrecognized argument to built-in command.

The argument specified is not a valid argument to the built-in
command in question.

Unterminated string.

The quotation marks used on the command line are unbalanced.

SEE ALSO

2-128

chd
dperm
jobs
log
login
time
wait

@ 4404 Reference Manual

shell

DESCRIPTION

SECTION 2
User Commands

"shell". is an interactive command language that gives you many
conveniences when working with the 4404 operating system. When
llsing "shell" as the command langllage, you can do command line
editing, as certain editing keys are defined as in the EMACS text
editor.

Editing and History

"shell" remembers a limited nllmber of commands. YOll can llse the
shell command "history" to retrieve a list of commands that
"shell" accepted. YOll can then llse control (or fllnction) keys to
recall and modify commands.

YOll enter commands one character at a time, editing the command
line (either with backspace and re-typing or with the command
editor) and press the retllrn key to execute the command.

Table 2-1 shows the keys or key seqllences associated with the
"shell" editing ftlnctions and a brief description of those
f:1nctions.

Table 2-1

"SHELL" EDITING KEYS AND FUNCTIONS

: Key

: 1\ P
I
I

: I\F
\
I

: 1\ B
I
I

: I\D
I
I

: AH or
: DEL

: Function

: llP
I
I

\ right
I

: left
I
I

I erase
I character

backspace

4404 Reference Manual

: Description

: Recalls the previolls command with
I the same prefix.

\ Moves the cursor right one
I character.

I Moves the ctlrsor left one
I character.

: Erases the character at the
I Cllrsor.

: Erases the character preceding
: the ctlrsor.

@ 2-129

SECTION 2
User Commands

I ESC-F I word right
I I
I I

: ESC-B I word left
I I
I I

: ESC-D : erase word
I I
I I

: ESC-H : erase back
: or A W : word

I A A
I
I

I AT
I
I

: AQ
I
I

: begin line
I
I

I end line
I
I

: erase to end
I
I

I erase line
I
I

I transpose
I
I

I redisplay

: qllote
I
I

I RET I retarn
! 1"\ TO T.1il I
I V.L .LJ.J. I

I Moves the Cllrsor to the right to
I the start of the next word.

I Moves the Cllrsor to the left to
I the start of the nearest word.

I Erases to the end of the word at
I or following the Cllrsor.

: Erases the word before the Cllrsor. I
I I
I I

I Moves the Cllrsor to the beginning
I of the line.

I Move the Cllrsor to the end of the
I line.

I Erase characters from the Cllrsor
I to the end of the line.

I Erase (or restore) the entire
I line.

I Transpose the previolls two
I characters.

I Redisplay the cllrrent line.

I Enters the key vallIe of the
: following key.

I Execlltes the command.
I
I

When editing, the characters YOll insert will appear at the Cllrsor
position and the following characters will shift to the right.

The most commonly command llsed with "history" is "LIp." If YOll do
not have the Cllrsor positioned at the start of a line, sllccessive
calls to "LIP" recall only commands that begin with the same
non-blank character string as that preceding the Cllrsor. For
example, if YOll have the Cllrsor after the string "help" (where
YOll had llsed the "help" command) pressing A p will take YOll back
to the previolls command where YOll llsed "help."

2-130 @ 4404 Reference Manllal

SECTION 2
User Commands

ENVIRONMENT VARIABLES AND ALIASES

A list of name-value pairs called environment variables is
kept by "shell." When "shell" encounters a--str"ing that it
recognizes as an environment variable, it emits the value it has
stored for that variable. You may define or modify an
environment variable by writing a quoted string of the form:
"name=value" to "shell." For example to define the variable
COMMAND as Ibin, type the string "COMMAND::::/bin." Then, to change
your working directory to Ibin, type "chd $COMMAND."

You can delete environment variables with "unset," used as "unset
COMMAND." The "set" command displays the currently listed
environment variables.

Search Path

The environment variable "PATH" defines the search path for the
directory containing the command. Each alternative directory
name is separated by a colon. If the command name contains a
II I", the search path is not used. Otherwise, each directory in
the path is searched for an executable file. If the file has
execute permission, but is not a binary file, it is assumed to be
a file containing shell commands. A subshell (i.e., a separate
process) is spawned and the script shell "script" is used to read
and execute it. A command contained within parentheses is also
executed in a subshell.

Variable Arguments

Variables may contain argument designators to extract arguments
from commands (such as used when defining aliases). The argument
designators are:

$0 The first word of the command (the command itself)
$n The nth argument of the command
$A The first argument of the command (equivalent to $1)
$$ The last argument of the command
$x-y The range of arguments from x to y (such as $3-5)
$-y Abbreviation of $O-y
$* Abbreviation of $A_$ ($1 $2 ... $$)
$n* Abbreviation of $n-$
$n- Abbreviation of $n-($-1) (omits last argument)
$- Abbreviation of $0-($-1) (omits last argument)

When evaluating aliases, these argument designators extract the
arguments from the command line to pass to the aliased commands.

4404 Reference Manual @ 2-131

SECTION 2
User Commands

Aliases

"shell" maintains a list of aliases, or command redefinitions.
When you enter a command line, "shell" checks the first word of
the command to see if it is an alias. If so, "shell" execlltes
the text of the alias and can llse argument designators to extract
the argllments to the aliased command.

You can create or modify an alias with the "alias" command. YOll
can delete an alias with the "unalias" command. You can see the
currently defined aliases by entering the "alias" command without
any argllments.

For example, if a Unix<tm> programmer were to want the command "11"
to perform the action of the operating system command "dir +1,"
that person could create that alias by typing (without the double
quotes) "alias 11 'dir +1 $*'''. Then typing "II/bin" wOllld have the
same effect as typing "dir +1 /bin."

Function Keys

The fllnction keys and joydisk are represented by special
environment variables. By defining these variables, you can
cause the joydisk and fllnction keys to perform actions. When you
press a function key or the joydisk, "shell" echoes the string
defined for that variable.

You can insert special characters into fllnction key and joydisk
variable definitions by using the quote character, AQ. The
following

The twelve fllnction key variables are $F1 - $F12 and the joydisk
variables are $JOYUP, $JOYDOWN, $JOYLEFT, and $JOYRIGHT. The
"Break" key is bound to the variable $BREAK, and the arrow key
(. -- - -,.: - b ~ - j;I , - - __ 1... -, oJ \ .: - 1... - • - - oJ ~ _ d> II D D ("\i.T ~ '" ~ <1' Cf II D D ("\1.T .po ,... + 1,.. ""
\ u'll!,l::::l lol€S III Vol l\.t;:JUVc1.1 U) .Lt) UVU,l1U lIV ~.tul.l.\vn Cl.UU ljJUl1..l.UlVn .LV.I. vue;

shifted arrow key.

COMMAND SYNTAX

A command is either a simple-command or a list.

A simple-command is a sequence of non blank words separated
by blanks (a blank is a tab or a space). The first word
specifies the name of the command to be execllted. Except as
later specified, the remaining words are passed as arguments to
the invoked command. (The command name is passed as argument 0.)

2-132 @ 4404 Reference Manual

SECTION 2
User Commands

A list is a seqQence of one or more pipelines separated by
";-n--or "&", and optionally terminated by";" or "&". ";" and "&n
have eqQal precedence. A semicolon caQses seqQential execution;
an ampersand causes the preceding pipeline to be executed without
waiting for it to finish. Newlines may appear in a list, instead
of semicolons, to delimit commands.

A pipeline is a sequence of one or more commands separated by
":-"-.-The standard output of each command but the last is
connected by a pipe to the standard input of the next command.
Each command is rQn as a separate process; the shell waits for
the last command to terminate.

Command S~bstit~tion

The standard output from a command enclosed in a pair of back
quotes (") may be ased as part or all of a word; trailing
newlines are removed.

"Wild Card" Characters

Following substitution, each command word is scanned for the
characters "*", n?" and" [". If one of these characters
appears, the word is regarded as a pattern. The word is replaced
with alphabetically sorted file names that match the pattern. If
no file name is found that matches the pattern, the word is left
Qnchanged. The character "." at the start of a file name or
immediately following a "/", and the character "/,,, must be
matched explicitly.

The special characters match in this manner:

*
?

[· · ·]

Matches any string, including the null string.

Matches any single character.

Matches anyone of the characters enclosed. A
pair of characters separated by "_,, matches any
character lexically between the pair.

An additional special character is the tilde. When a tilde is
the first character in a filename, "shell" expands it by
replacing it by the home directory of the named user. For
example, if Qser sandra has a home directory (defined in the
password file) of /public /sandra, the filename ""'sandra/file"
expands to "/public/sandra/file."

4404 Reference Manual @ 2-133

SECTION 2
User Commands

Quoting

The following characters have a special meaning to the shell and
cause termination of a word unless quoted.

";" "&" "(,, ")" "newline" "space" "tab"

A character may be quoted by preceding it with a "\".
"\newline" is ignored. All characters enclosed between a pair
of single quote marks (, ,), except a single quote, are quoted.
Inside double quotes (" ") parameter and command substitution
occurs and "\" qu.otes the characters "\", "''','''', and "$".

Execution

Each time a command is executed, the above substitutions are
carried out.

You can run commands in the background by inserting a "&" as
either the first or last nonblank character on a command line.
"shell" prints the name and process ID for each background task
when it begins, and again when it terminates.

You can group commands for a subshell with parentheses, put the
subshell in the background by following the closing parentheses
with "&," and redirect I/O for the subshell.

You can time execution of a command by using "%" as the first or
last nonblank character on a command line. "shell" prints the
real, user, and system times for the command's execution.

To quickly access the script shell, "script," use "!" as the
first non-blank character on a line. To pass the remaining
characters to "script" uninterpreted, use the +c option.

Redirecting Input and Output and Error

To redirect standard output, use ">" and "»." ">,, directs
standard output of a preceding command into the filename
following it, writing over an old file. "»,, appends the
standard output of a preceding command into the filename
following it.

To redirect standard input into a command, follow the command
with "<,, in front of the command that will generate the input for
the first command.

2-134 @ 4404 Reference Manual

SECTION 2
User Commands

To redirect standard error, use ""," and ""A,, as you would
standard output redirection. You can combine redirection of
standard input, outp~t, and error to a file by using a
combination of symbols. For example you can redirect both
standard error and output to the file "temp" with n")temp." You
can also connect both standard output and error to a pipe with
"AI"

I •

SUMMARY OF "SHELL" COMMANDS

Table 2-2 lists the commands (followed by a brief description)
that are part of "shell." You cannot redirect I/O for these
commands.

: Command [arguments]

alias [name][string]

: chd [arg]
I
I

dirs

I dperm [u-rwx][o-rwx]
I
I

: history

: jobs
I
I

: login [arg]
I
I

I logout

I exit

4404 Reference Manual

Table 2-2

"shell" COMMANDS

: Description

With no arguments, prints the names
of all defined aliases. With one
argument, prints the associated
alias. With two arguments, the
second argument is defined to be an
alias for the first.

: Change current directory (default to I
I user's home directory) I

I Lists the current working directory
I and the directory stack. Lists the
I directory stack.

: Sets default permissions for file
I creation.

I Displays saved command history

I Lists currently executing background I
I jobs for present user. I

I Terminate this interactive session
: and start the login process.

I Terminate this interactive session.

I Terminate a subshell.

@ 2-135

SECTION 2
User Commands

popd

pushd [dir]

set [file]

I llnalias [name]
I
I

wait

2-136 @

: Changes the working directory to the
lone whose name is on the top of the
I directory stack.

Pushes the name of the working
directory on the directory stack and
changes to the specified directory.
With no argument, this command
exchanges the top of the directory
stack and the Cllrrent working
directory.

Wi thout an argument, "set" displays
the cllrrent state of the shell and
the valQes of the defined
environment variables. If YOll
specify a file, it executes the
commands in it as if you had typed
them. Use this option to set
environment variables and the llser
file creation mask. "set"
terminates an inpllt line and cannot
be used as an alias.

I Deletes the named alias from the set I
I f 1· I loa lases. I

Waits for all backgrollnd processes
to terminate and reports their
termination statlls. If the !lwai tIt
command is interrllpted, then a list
of cllrrently active processes is
displayed.

4404 Reference Manllal

SYNTAX

SECTION 2
User Commands

shell [+l][+h~<filename>][+c <string>][+i][<filename>]

DESCRIPTION OF THE "SHELL" COMMAND

If you call "shell" wi th no arguments, it spawns a stlbshell wi th
which you then interact until you issue either the "exit" or
"logout" commands. This shell executes commands in the file
".shellbegin" in Yotlr home directory, but does not store the name
of your home directory. When you exit the subshell, control
ret~rns to the parent shell.

Options and Arguments

1 The "1" option tells "shell" to run as a login shell.
This option causes shell to exec~te commands from the
files ".login" and ".shellbegin" (in your home
directory) when it begins execution, and from the file
".logout" when it terminates. The "exit" command
terminates a stlbshell, use "logout" to end a session
with the login shell.

h::::<filename>

<filename>

c <string>

i < filename>

This option causes "shell" to initialize
its state from that saved in <filename>.
When "shell" terminates it saves its history,
environment variables, and aliases into this
file. Without this option, "shell" reads and
writes its state into the file
" . shellhistory" in yo ur home directory. To
prevent state recovery and saving, use "none"
as the <filename> (+h=none).

If "shell" is followed by a filename without
the "c" or "i" options, it assumes that the
file is a command script. "shell" passes
control and the argument to the script shell,
"script."

The "c" option causes "shell" to aSSllme the
next string of characters is a shell command,
to execute that command and then terminate.

The "i" option ca~ses "shell" to process the
commands contained in <filename> and then
terminate, rather than passing the commands
to "script."

4404 Reference Manual @ 2-137

SECTION 2
User Commands

DIAGNOSTICS

"shell" gives error messages similar to other messages detailed
in this manual whenever directories and files cannot be opened,
whenever it detects a syntax error, and when it reaches its
memory limits.

LIMITS

"shell" has the following limits:

o 256 environment variables
o 30 saved commands (history)
o 16 entries on the directory stack
o 128 characters per command line
o Command expansion cannot exceed 512 arguments and 5120

characters

SEE ALSO

script

2-138 @ 4404 Reference Manual

status

SECTION 2
User Commands

Display the statQs of running tasks.

SYNTAX

statQs [+alswx]

DESCRIPTION

The "statQs" command reports, to standard OQtpu.t, the statu.s of
tasks ru.nning on the system. By defau.lt, this report does not
inclu.de shell or login programs and is restricted to tasks
belonging to the u.ser who execu.tes the command. The command is
not always completely accu.rate du.e to the dynamic natu.re of the
operating system. By defau.lt, the "statu.s" command reports on
the following parameters:

Task-id

Mode

tty

Prio

I Priority

I bu.f

I disk

: file

: hal t

The nu.mber assigned to the task by the operating
system.

Indicates whether the task is in memory ('c') or
has been swapped to the disk ('s').

The nu.mber of the terminal from which the task
originated. An "xx" in the field indicates that
no terminal is associated with the task.

If the entry in this field is a nu.mber, it
indicates the priority of the task. A higher
nu.mber indicates a higher priority. Other
priorities are described in Table 2.3.

Table 2-3

POSSIBLE TASK PRIORITIES

I Meaning

I Waiting for a system bu.ffer.

I Waiting for some disk activity.

I Waiting for some file activity.

I Halted by another task.

4404 Reference Manaal @ 2-139

SECTION 2
User Commands

I in

lout
I
I

I pipe

I upd

I sIp

I swap

I sys

I wait

Time

Command

I Waiting for input from the terminal.

I Waiting for output to the terminal to
I end.

I Waiting for pipe data (usually input)

I Updating an fdn.

I Sleeping (not executing).

I Being swapped to or from the disk.

I Highest possible priority.

I Waiting for another task to end.

If the command is "System", this parameter is the
amount of unused CPU time since the system was
booted. Otherwise, it is the total CPU time that
a particular task has used.

The command which originated the task. By
default, the "status" command shows the first
thirty-five characters of the command line; the
rest are truncated. The command "System" is the
operating system. The command "/etc/init"
executes the login program. If the "status"
command cannot determine what was on the command
line, this field contains the entry"???".

Options Available

2-140

a List all tasks on the system, not just those belonging
to the user.

I Produce a more detailed description of the status of
each task.

s Produce a statistical summary of the use of the
operating system.

w· r = < n tIm> I
'- ...J

@

Wait <num> seconds after reporting the
status; then produce another report. The
command repeats 100 times. The default is
thirty seconds.

4404 Reference Manual

SECTION 2
User Commands

x List all tasks (a normal listing does not inclQde shell
programs, the "System" command, or the command
"/etc/init").

If the user specifies the '1' option, the following additional
items are inclQded in the report:

Stat lIS

User

Parent

Size

Res

The statQs of the task. Possible valQes inclQde rQn
(task is rQnning), sleep (task is waiting for some
thing to happen), and term (the task has terminated).

The Qser name of the person who owns the task. If
two or more Qser names share the same Qser ID,
"stat lIS" Qses the name that appears first in the
password file.

The task ID of the parent task. If the parent
task in no longer active, the ID shown in this
field is 1.

The amoQnt of memory that the task is using.

A rOQgh meaSQre of the amoQnt of time a task has
been in memory or swapped OQt to the disk. Each
Qnit represents fOQr seconds. The largest nQIDber
that is ever displayed is 255. This nQIDber is set
to 0 whenever a task is swapped into or OQt of
memory.

If the user specifies the's' option, the following statistics
are incllIded in the report. They represent activity on the
system since the time the system was booted.

Total block I/O transfer attempts.

The nQIDber of times the system has tried to access a disk block
in the cache.

Total disk I/O operations.

The nQmber of times the system has had to access the disk. This
statistic does not inclQde swap operations.

4404 Reference ManQal @ 2-141

SECTION 2
User Commands

Total blocks freed.

The number of blocks that have been released from a file to the
free list. If the same block has been released more than once,
each release is counted.

total system calls
total PAGE IN operations
total PAGE OUT operations
total pages stolen

EXAMPLES

1. status +s
2. status +alxw=15

The first example displays the defa~lt information about the
status of all tasks except shell programs that belong to the
user. A s~mmary of the use of the operating system is included
in the output.

The second example displays detailed information about the status
of all tasks on the system. It waits fifteen seconds, then
issues another report. The command repeats 100 times ~nless the
user interrupts it by typing a control-C.

2-142 @ 4404 Reference Manual

stop

SECTION 2
User Commands

Stop the system and prepare to shQt off the power or reset.

SYNTAX

stop

DESCRIPTION

The command "stop" terminates any backgroQnd processes, closes
open files, flQshes bQffers to the disk, and does the general
hOQsekeeping necessary to perform an orderly system shQt-down.

YOQ shoQld always rQn "stop" before tQrning off the power to the
4404 or pressing the Reset BQtton.

EXAMPLES

stop

This is the only form of this command.

MESSAGES

When "stop" is finished, it prints the message:

... System shQtdown complete ...

At this point, the system has been completely shQt down and it is
safe to tQrn off the power or to reset the system.

4404 Reference ManQal @ 2-143

SECTION 2
User Commands

strip

Remove the symbol table from an executable binary file.

SYNTAX

strip <file name list>

DESCRIPTION

The "strip" command removes the symbol table from an executable
binary file.

Arguments

A list of files to process.

EXAMPLES

strip testprog

This example removes the symbol table from the executable binary
file "testprog".

ERROR MESSAGES

Error creating "<file name>": <reason>

The operating system retu.rned an error when "strip" tried to
create the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error opening "<file_name>": <reason>

The operating system retu.rned an error when "strip" tried to open
the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Error unlinking "<file name>": <reason>

The operating system returned an error when "strip" tried to
unlink the specified file. This message is followed by an
interpretation of the error returned by the operating system.

File "<file name>" cannot be located.

The specified file does not exist.

File "<file name>" is a device or a directory.

The specified file is not a regular file.

2-144 @ 4404 Reference Manual

tail

SECTION 2
User Commands

Print a specifiable nwnber (up to 250) of characters from the end
of a text file.

SYNTAX

tail file [n]

DESCRIPTION

This utility prints the last "n" characters in a text file. If
"n" characters from the end of the file happens to fall in the
middle of a line, the line will be preceded by" ... " to show that
only a part of the line has been printed. Whole lines are
printed as they appear in the file.

Special characters such as carriage returns and tabs are counted
as part of the "n" characters.

Arguments

file The file from which characters are to be printed.

n The number of characters from the end to start
printing. The default is 250 characters. If "n"
exceeds the number of characters in the file, the
whole file is printed.

EXAMPLES

1. tail .shellbegin

2. tail testfile 30

The first example will print the last 250 characters of
".shellbegin", or the entire file if it contains less than 250
characters.

The second example prints the last 30 characters from the file
"testfile."

SEE ALSO

head

4404 Reference Manual @ 2-145

SECTION 2
User Commands

touch

Set the time of the last modification of a file to the current
date and time.

SYNTAX

toach <file name list>

DESCRIPTION

The "touch" command sets the time of last modification for the
specified file to the current date and time. The user must have
read and write permission in a file in order to "touch" it. This
command is often used in conjunction with the "update" command.
It is also useful for correcting the last modification time of a
file which was created or modified when the system time was
incorrect.

Arguments

<file name list>

EXAMPLES

touch letter memo

A list of the names of the files to
modify.

This example changes the modification time of the "letter" and
"memo" files to the current date and time.

ERROR MESSAGES

Error seeking to beginning of file ~~<file_name> ii: <reason>

The operating system returned an error when "touch" tried to seek
to the beginning of <file name>. This message is followed by an
interpretation of the error returned by the operating system.

2-146 @ 4404 Reference Manual

Error to uc hing " < file_name>": <reason>

SECTION 2
User Commands

The operating system returned an error when "touch" tried to
change the last modification time of <file name>. This message
is followed by an interpretation of the error returned by the
operating system.

File "<file name>" does not exist!

The "touch" command could not find <file name> in the file
system.

SEE ALSO

date
update

4404 Reference Manual @ 2-147

SECTION 2
User Commands

update

Process a set of files, performing the specified operation on
each file if it is newer than the file it is compared to. _

SYNTAX

update [<make_file_name>] [+q]

DESCRIPTION

The "update" command reads the specified "makefile", which
must conform to a special format, and conditionally performs
the command or commands in that file. By default, the
"update" sends informative messages to standard output
telling the user what it is doing. The command is most often
used to recompile programs whose sources have been updated.

Arguments

<make file name>

Format of the "make file"

The name of the file to read for
instructions. This file must be in a
special format (see Format of the
"makefile"). The default is the file
"makefile" in the working directory.

The "makefile" is composed of modules, each of which is
terminated with a percent sign, '%', in col~n 1. A module
itself is composed of up to two parts. The first part specifies
the process that "update" is to perform. The format for this
first part is as follows:

[<item-one>::<item_two>;]<command_sequence>

where <item one> and <item two> are the names of files; "::" is
the "is newer than" operator; and the semicolon, ';', separates
the file names from the command sequence.

The command sequence is composed of one or more operating system
commands. The "update" command replaces any sequence of more
than one space character with a single space. Multiple commands
are separated by additional semicolons. If the commands do not
fit on one line, the user must begin and end the sequence with an
exclamation point, '!', which serves to delimit the entire
command sequence. If the first portion of the module uses more
than one line, the second exclamation point marks the boundary
between the first and second portions of the module. The command
sequence is executed if <item 1> is newer than <item 2>.

2-148 @ 4404 Reference Manual

SECTION 2
User Commands

The ~ser may sQbstitQte an ampersand, '&', for any character or
seq~ence of characters in <item one>, <item two>, or the command
seq\lence. In sllch a case the "lipdate" command SQbsti tutes
for all ampersands the strings specified in the second portion of
the module. If the second portion of the file is absent, no
command seq\lence is performed. This portion consists of one or
more lines, each of which contains a single string to sQbstitQte
for the ampersands. The "Qpdate" command replaces each
OCCQrrence of an ampersand with the string on the first line of
the second portion of the modQle and performs the command
seq~ence if <item one> is newer than <item 2>. It then replaces
all ampersands with the string from the second line, continQing
in this fashion Qntil it reaches the end of the second portion of
the module (marked by a percent sign in col~n 1).

If the file represented by <item two> does not exist,
"Qpdate" considers that <item one> is newer than <item two>.
If the file represented by <item one> does not exist, or if
neither the file represented by <item one> nor <item two> exists,
<item one> is not considered to be newer than <item two>.

For instance, consider the following "makefile":

&::&.b;asm & +sly
file 1
fi1e-2

file n
%

An "u.pdate" command which references this file makes the
following translation:

If "file 1 " is newer than "file 1 . b" , execQte the command
"asm file 1 +sly". -

If "fi 1 e 2" is newer than "file 2.b", execQte the command
"asm file 2 -+sly".

It continues in this fashion until "file n" is processed.
The percent sign in colwnn 1 marks the end of the module,
and becau.se it is the only modQle in the file, the
":.1pdate" command terminates.

More than one set of commands can be processed with a single
"makefi le" if the Qser includes more than one module in the file.

4404 Reference Man~al @ 2-149

SECTION 2
User Commands

Options Available

q Do not send informative messages to standard OQtp~t.

NOTES

o The "chd" command has no effect in a "makefile".

o The" Qpdate" command always tries to sllbsti tQte the
strings strings specified in the second portion of a modQle
for all ampersands which appear in the first portion. ThQs,
the command seqQence itself cannot contain an ampersand.
Consequ.ently, tasks specified in a "makefile" cannot be
execQted in the backgroQnd (al thoQgh the "Qpdate"
command itself may be sent to the backgroQnd).

ERROR MESSAGES

*** Can't access Makefile "<file name>" aborted!

The operating system retQrned an error when "u.pdate" tried to
open <file name> for reading. Most probably, the file
specificatIon is incorrect, the file does not exist, or the Qser
does not have read permission for the file.

a*** Error: Command too complicated.
<command_seqQence>

After substittltion for the am~ersands has taken place, the
command sequence is too long (the limit is 512 characters).

*** Error: Pattern too complicated.
<command_sequence>

The pattern for the command seqQence (before SUbS~l~u~lon for
ampersands takes place) is too long (the limit is 512
characters) .

Makefile syntax error aborted

The "update" command was u.nable to interpret the "makefile".

@ 4404 Reference ManQal

SECTION 2
User Commands

Syntax: update [<make_file_name>] [+q]

The "llpdate" command reqllires exactly one argllIDent. This
message indicates that the argllIDent count is wrong.

Unknown option: <char>

The option specified by <char> is not a valid option to the
"update" command.

SEE ALSO

tOllch

4404 Reference Manllal @ 2-1 51

SECTION 2
User Commands

wait

Wait for a backgroQnd task to complete before accepting any more inp~t.

SYNTAX

wait [<task_ID>]
wait any

DESCRIPTION

The "wait" command, which is part of the shell program, tells the
shell program not to accept any more commands until the specified
backgroQnd task is complete. The termination statQs of the task
is reported when the task is complete. If the Qser does not
specify a task ID, the shell program waits for all active
backgroQnd tasks that are children of the shell program that
issQed the "wait" command to finish before accepting any new
commands. The Qser may interrQpt the "wait" command with a
control-C.

Arguments

<task ID>

any

EXAMPLES

1. wait 495
2. wait
3. wait any

The ID of the task to wait for. The shell
program reports the ID when it sends a task
to the backgroQnd. The ID may also be
obtained by execQting either the "jobs" or
the "statQs" command.

If the Qser specifies the argwnent "any", the
shell program waits for anyone backgroQnd
task that is one of its children to finish
before accepting a new command.

The first example tells the shell program to accept no further
commands until task 495 is complete.

The second example tells the shell program to accept no further
commands from the Qser Qntil all backgroQnd tasks belonging to
that shell program are complete.

The third example tells the shell program to accept no further
commands from the user Qntil one backgroQnd task belonging to
that shell is complete.

2-152 @ 4404 Reference Manual

ERROR MESSAGES

No tasks rQnning in the background.

SECTION 2
User Commands

The shell program has no tasks running in the background.

Specified task not running in the background.

The task specified either is not a child of the current shell
program or does not exist.

SEE ALSO

jobs
shell
statQs

4404 Reference ManQal @ 2-153

Section 3

"SYSTEM" UTILITIES

These utilities are generally reserved for the user logged in as
"system." They tend to be either powerfu.l ~tilities, with great
potential for misuse, or utilities that should be reserved to a
limited number of u.sers where many accounts are set up.

User "system" generally has the directory "/etc" defined in the
search path, and needs only enter the name of the utility to
invoke it. The full path name is given here, however, to
emphasize the special purpose of these utilities.

addl1ser

Add a new user to the system.

SYNTAX

/etc/addu.ser <user name>

DESCRIPTION

The "addQser" command is used to add a new ~ser to the system.
The specified user name must be unique to the system. It must be
between one and eight letters long. All letters must be
lower-case. Only the "system" user may invoke this command.

The "adduser" command performs the following tasks:

1. Adds the new name to the end of the password file,
"jete/log/password".

2. Assigns a user ID to the user.

3. Creates a home directory owned by the new user with
"rwxr-x" permissions. The name of this directory is
"j < user_name>" .

The "system" user or the new user should use the "password"
command to enSQre protection of the new Qser's files.

4404 Reference Manual @ 3-1

SECTION 3
"system" Commands

Arguments

< u.ser name> A u.niqQe name assigned to the new Qser for
ase in response to the login prompt.

EXAMPLE

/etc/addQser chris

This example adds the u.ser name "chris" to the bottom of the file
"/etc/log7password", assigns a u.ser ID, and creates the directory
"/chris"--which is owned by "chris" and has permissions
"rwxr-x".

ERROR MESSAGES

Error adding "<u.ser_name>" to password file: <reason>

The operating system retu.rned an error when "addu.ser" tried to add
"<u.ser name>" to the password file. This message is followed by
an interpretation of the error retu.rned by the operating system.

Error assigning owner to "/<u.ser_name>": <reason>

The operating system retu.rned an error when "addQser" tried to
make the specified u.ser the owner of the file "/<u.ser name>".
This message is followed by an interpretation of the error
retu.rned by the operating system.

Error creating "/<u.ser_name>": <reason>

The operating system retu.rned an error when "addu.ser" tried to
create the file "/<u.ser name>". This message is followed by
an interpretation of the error retu.rned by the operating system.

Error creating "." file: <reason>

The operating system retu.rned an error when "addaser" tried to
create the file ".". This message is followed by an
interpretation of the error retu.rned by the operating system.

Error creating " .. " file: <reason>

The operating system retarned an error when "addu.ser" tried to
create the file " .. ". This message is followed by an
interpretation of the error retu.rned by the operating system.

Name mu.st be 1 to 8 lowercase letters.

3-2 @ 4404 Reference Manu.al

SECTION 3
"system" Commands

The specified user name must be between one and eight letters
long. All letters must be lowercase.

Syntax: /etc/addQser <user_name>

The "addQser" command expects exactly one argu.ment. This message
indicates that the argu.ment count is wrong.

The name "<user name>" is already in use.

The specified Qser name must be unique to the system.

You must be system manager to run "addllser".

Only the "system" user may execute the "addQser" command.

SEE ALSO

deluser
password
perms

4404 Reference Manllal @ 3-3

SECTION 3
"system" Commands

blockcheck

Check the integrity of the allocation of all blocks used in files
and of the free list on the specified device.

SYNTAX

/etc/blockcheck <dev name>

DESCRIPTION

"blockcheck" checks the integrity of the block allocation used in
the files and free list on the specified device. It locates
problems stlch as duplicate blocks, missing blocks, and invalid
block addresses.

This command is primarily intended for use by the "diskrepair"
utility, which calls it. It may also be used on its own as a
diagnostic utility; however, "blockcheck" can only check the
disk; it cannot repair it. If "blocheck's" output suggests that
the disk is damaged, use "diskrepair" on the disk.

You should only use "blockcheck" if no other tasks are active on
the system; otherwise, the results are unpredictable.

Arguments

<dev name>

EXAMPLES

The name of the device to check. It mllst be
a block device.

/etc/blockcheck /dev/floppy

This example checks the integrity of the the allocation of blocks
on the floppy disk.

SEE ALSO

3-4

devcheck
diskrepair
fdncheck

@ 4404 Reference Manual

SECTION 3
"system" Commands

deluser

Remove a user from the system.

SYNTAX

/etc/deluser <user name> [x]

DESCRIPTION

The "deluser" command removes the specified user from the system.
It removes the corresponding entry from the file
"jetc/log/password" and destroys files and subdirectories in
the user's home directory that are owned by that user. It also
deletes the home directory itself if it is empty after all the
deletions are complete. Only the "system" user may execute this
command.

Arguments

< user name>

Options

The name of the user to delete from the
system.

x Delete the user, but do not delete the user's files
from the system.

EXAMPLES

/etc/deluser chris

This example deletes the line containing the entry for the user
name "chris" from the file "/etc/log/password". It also deletes
all files and subdirectories in the directory "/chris," as
well as that directory itself.

CAUTION

This command should be used with great care
as it may recursively descend the user's
directory tree, deleting all files within it
that are owned by the specified user.

4404 Reference Manual @ 3-5

SECTION 3
"system" Commands

ERROR MESSAGES

Cannot delete a ~ser with an ID of 0 or 1.

The "deluser" command cannot delete user ID 0 (system) or 1
(public).

Cannot exec~te "remove".
<user name>" not removed from system.

The "remove" command, which is called by "delllser" is not in
"/bin" or "/bin". The command aborts without editing the
password file.

Name mllst be 1 to 8 lowercase letters.

The specified llser name m~st be between one and eight letters
long. All letters must be lowercase.

Syntax: /etc/deluser <user_name>

The "delllser" command expects exactly one argument. This illessage
indicates that the argument count is wrong.

<user name>" is not in the password file.

The file "/etc/log/password" does not contain an entry for the
specified user name.

You must be system manager to run "delJ.ser".

Only the "system" llser may execute the "del:.lser" command.

SEE ALSO

3-6

adduser
remove

@ 4404 Reference Manllal

devcheck

Check a device for I/O errors.

SYNTAX

/etc/devcheck <dev name> [+fsv]

DESCRIPTION

SECTION 3
"system" Commands

The "devcheck" command checks the specified device for I/O
errors. As it checks the device, it prints informative messages,
which tell the user what part of the device is being checked. It
always checks the boot sector and the system information record
(SIR). By default, it also checks the fdn space, the swap space,
and the volume space.

Every time it finds a bad block, it prints a mBssage giving the
address of the block in hexadecimal. When it is finished,
"devcheck" prints a message reporting the total nu.mber of bad
blocks on the disk.

If a floppy disk contains one or more bad blocks, it should
probably be discarded. If a hard disk contains one or more bad
blocks, it should be reformatted with the addresses of all bad
blocks placed in the file ".badblocks". It is wise to rlln this
command immediately after formatting a disk.

Arguments

The name of the device to check. It mllst be a block device.

Options

o Check only the fdn space.

o Check only the swap space.

o Check only the volume space.

EXAMPLES

1. /etc/devcheck /dev/floPPY

2. /etc/devcheck /dev/floppy +v

The first example checks the entire disk in the floppy drive for
I/O errors.

4404 Reference Manual @ 3-7

SECTION 3
"system" Commands

The second example checks the boot sector, the SIR, and the
volQme space of the disk in the floppy drive for 1/0 errors.

MESSAGES

Badblocks file too large - continQing withoQt list.

"Devcheck" cannot read a ".badblocks" file that has more than 138
bad blocks in it. CQrrently, this theoretical limitation on the
nQmber of bad blocks is unlikely to present a practical
limitation. The nQmber of bad blocks on a disk shoQld not even
approach 138.

Can't open character device '<dev name>'.

The "devcheck" command cannot open the character device which
corresponds to the block device specified on the command line.
Most probably, either the device does not exist or the Qser does
not have the permissions necessary to open it. In SQch a case
the command continQes, bQt it may report the blocks in the file
" . badblocks" as bad.

Can't read' .badblocks' file - continQing withoQt list.

The "devcheck" command encoQntered an I/O error when it tried to
read the file ".badblocks".

File' .badblocks' not fOQnd - continQing with check.

The device specified does not contain a file named ".badblocks",
or due to damage in the logical structure of the disk, "devcheck"
cannot locate the file.

ERROR MESSAGES

Can't open '<dev_name>'.

The "devcheck" command cannot open the device specified on the
command line. Most probably, either the device does not exist or
the user does not have the permissions necessary to open it.

File '<file name>' is not a block device.

The "devcheck" command can only check a block device.

Unknown option '<char>' - option ignored.

The option specified by <char> is not a valid option to the
"devcheck" command.

SEE ALSO

blockcheck diskrepair fdncheck

3-8 @ 4404 Reference Manual

SECTION 3
"system" Commands

diskrepair

Check and, optionally, repair inconsistencies in the logical
structure of a disk.

SYNTAX

/etc/diskrepair <dev name list> [+bfmnpqruv]

DESCRIPTION

The "diskrepair" utility checks the structure of the disk or
disks specified in <dev name list>. The structure of the disk
refers to the layout of-and the connections among files,
directories, free space, swap space, and other information that
makes up the file system. Any inconsistencies in the structure
are reported and, optionally, repaired. "Diskrepair" does not
check or repair media errors (I/O errors).

Related Utilities

While it is operating, "diskrepair" calls two other utilities-
"blockcheck" and "fdncheck", which are both located in the
directory "/etc".

o "Blockcheck" is concerned with the allocation of blocks on
the disk. It locates problems such as duplicate blocks,
missing blocks, and invalid block addresses.

o "Fdncheck" is concerned with the directories on the disk.
It locates problems such as unreferenced files, file names
with invalid associated files, and so forth.

Major Modes of Operation

There are two major modes of operation, simple and verbose.

o The simple mode is selected by default; the verbose mode is
selected by the 'v' option.

o In the verbose mode "diskrepair" reports all detected
errors. In the simple mode it reports only those errors
which require the deletion of files or of directory entries.

o If executed in simple mode, "diskrepair" issues a message
upon completion which informs the user whether or not the
disk is in need of repair. By default, all detected errors
are automatically repaired (if possibl~).

4404 Reference Manual @ 3-9

SECTION 3
"system" Commands

Options

Two options ('n' and 'p') exist to alter the handling of errors.

o The 'n' option instructs "diskrepair" not to repair any
errors. The 'p' option instructs "diskrepair" to prompt the
Qser for permission to repair the errors it reports.

o In verbose mode the 'pi option causes "diskrepair" to prompt
the user regarding all errors. In the simple mode, the user
is prompted only for those errors which require the deletion
of files or of directory entries; all other errors are
automatically repaired without prompting.

NOTE

Most repairs result in a loss of data. The
user can generally infer which data have been
lost from the messages displayed.

o When using the command in simple mode (without the
'v' option), the user need not Qnderstand what
types of checks are made by "diskrepair". The
only decisions required are whether or not to
delete the reported files. In verbose mode, much
more information is given to the user.

While this document is not intended to give full details of this
information, the following list shows most of the inconsistencies
in disk structure for which "diskrepair" checks. First, however,
a few definitions are in order.

Definitions

o A iifile descriptor node" (ot' fdn) is an area on the disk
which contains all the information the system needs about a
file. There should always be one fdn per file on the disk.

o A 4404 directory entry is simply a file name and a
pointer to the proper fdn. There may be multiple directory
entries pointing to the same fdn (multiple names for the
same file).

o Each pointer to an fdn is called a "link" to that file. If
there is a file with no links, it is considered to be
"unreferenced". "Out-of-range" refers to a pointer to a
disk block or to an fdn which is beyond the valid number of
blocks or fdns for the disk being tested.

3-10 @ 4404 Reference Manual

Inconsistencies

SECTION 3
"system" Commands

Here now, is a partial list of inconsistencies that "diskrepair"
checks for:

o Blocks dQplicated in files or free list

o OQt-of-range blocks or fdns

o Missing blocks

o Bad free list

o Unreferenced files

o Inactive fdns

o Unknown fdn type

o Incorrect link cOQnts

o Incorrect free block or free fdn cOQnt

o Invalid sizes in System Information Record

Unreferenced Files

These are handled in one of two ways:

1. An attempt is made to give the file a name by PQtting it
into the directory "lost+foQnd" in the root directory of the
disk being tested. The name given to the file is of the
form "file<fdn)", where <fdn) represents the fdn nQIDber of
the file.

In order for this procedQre to work, the directory
"lost+foQnd" mQst already exist on the disk being checked,
and it mu.st have room for the entry. The program "crdisk"
creates this directory, but if for any reason it has been
deleted, the user shoQld recreate it before running
"diskrepair". The user must must also create empty slots
for entries by creating a nQmber of files and then deleting
them.

2. If it is not possible to pu.t the unreferenced file into the
"lost+found" directory (because there is either no directory
"lost+found" or no room in it), "diskrepair" deletes the
file (or prompts for permission to delete it if 'pI was
specified).

4404 Reference Manual @ 3-11

SECTION 3
"system" Commands

Fdn Error Data

If an error is associated with an fdn, a display of pertinent
data from that fdn is printed. The display incl~des the fdn
nQmber of the file, its size in bytes, its owner, the time of its
last modification, and one of the following types:

b ::: block device
c :::! character device
d ::: directory
f ::: file
i - inactive
u ::: Qnknown

The "diskrepair" Qtility shoQld generally be rQn only on an
otherwise inactive system. It shoQld never be rQn on an active
disk. If the "n' option is not specified (the disk may be
written to), "diskrepair" attempts to QnmoQnt the disk being
tested. If the disk being tested is the system disk, and if a
repair is made which requires writing to the System Information
Record (block nQmber 1), "diskrepair" stops the system upon
completion and issues an appropriate message instrQcting the Qser
to reboot the operating system. This procedure is necessary to
prevent conflicts between the written data and similar data kept
in memory.

Options

'b' Option

'f' Option

'm' Option

3-12 @

The 'b' option instrQcts 'diskrepair' to rQn
only the 'blockcheck' portion of the Qtility.
This procedQre is often considerably faster,
bQt still provides a fairly complete
assessment of the validity of the disk
strQctQre.

The 'f' option instrQcts "diskrepair" to rQn
only the "fdncheck" portion of the Qtility.
This option is Qseful if a problem is
sQspected in the directory strQctQre, bQt the
resQlt is by no means a thoroQgh check of the
strQcture of the disk.

The operating system maintains a list of
blocks available for Qse called the free
list. A missing block is any block in the
volQme space which is not a part of any file
and is not in the free list. The existence
of such blocks is a harmless error in the
structure of the disk.

4404 Reference Manual

In' Option

'pi Option

SECTION 3
"system" Commands

"Diskrepair" generally places missing blocks
in the free list. The 'm' option, however,
instru.cts "diskrepair" not to rebuild the
free list solely on accou.nt of missing
blocks. This option reduces the time
requ.ired for "diskrepair" to ru.n if missing
blocks are the only problem in the free list.

The In' option tells "diskrepair" to report
all errors bu.t to make no attempt to fix
them. Therefore, "diskrepair" opens the
device for reading only. This option is
u.sefu.l for checking the stru.ctu.re of a disk
withou.t risking the loss of data du.ring
repairs.

If the u.ser specifies the 'pi option,
"diskrepair" reports each error, followed by
a prompt requ.esting permission for the
proposed repair. All prompts require an
answer of either 'y' (ilyes li

) or tn' ("no").

NOTE

Many repairs resu.lt in the loss of data.
(You. can generally infer what has been lost
from the messages "diskrepair" displays.)
Ju.dicious u.se of the In' and 'pi options not
only allows you. to assess the damage to the
disk and decide which information you. are
willing to sacrifice during the repair
process; it also gives you. the opportu.nity to
try to salvage the data before repairing the
disk.

'q' Option

'r' Option

This option inhibits certain warnings and
messages from "diskrepair". Several
conditions exist which, while not technically
errors in disk stru.ctu.re, may cau.se problems.
These conditions u.su.ally resu.lt in a warning
message; the 'q' option inhibits them.

By defau.lt, if "diskrepair" finds that the
free list is in error, it rebu.ilds it. The
'r' option instru.cts "diskrepair" to rebu.ild
the free list whether or not it contains
errors. This option is llsefu.l if the free
list is known to be bad or if the u.ser wants
to redu.ce fragmentation within the list.

4404 Reference Manu.al @ 3-13

SECTION 3
"system" Commands

, u' Option

'v' Option

EXAMPLES
.. /etc/diskrepair I •

2. /etc/diskrepair

3· /etc/diskrepair

4. /etc/diskrepair

5 • /etc/diskrepair

The 'u' option generates a report on the
block ~sage of the specified device. This
report is printed at the end of the
"diskrepair" operation, and contains
statistics on the following: (1) the number
of each type of file in the file system and
the total number of files in the system; (2)
the number of unused blocks and the number of
used blocks, including a breakdown of how the
used blocks are allocated; (3) the number of
free fdns and the number of fdns in use.

"Diskrepair" operates in one of two modes:
simple or verbose. Simple mode is selected
by default; verbose mode is selected by the
'v' option. In simple mode, "diskrepair"
reports only those errors which require the
deletion of either files or directory
entries. In verbose mode, all errors are
reported. In addition, informative messages
are printed describing what phase
"diskrepair" is performing.

In verbose mode the 'p' option causes
"diskrepair" to prompt for permission
regarding all errors. In simple mode the
user is prompted only for those errors which
require the deletion of either files or
directory entries; all other errors are
automatically repaired without prompting.

/dev/disk

/dev/disk +n

/dev/floppy +pv

/dev/floppy +ru

/dev/disk +mq

The first example checks the logical stru.cture of the system
disk. By default, "diskrepair" tries to fix every error it
encounters. These repairs may result in the loss of data from
the disk.

3-14 @ 4404 Reference Manual

SECTION 3
"system" Commands

The second example checks the logical structure of the system
disk, reports those errors which reqQire the deletion of either
files or directory entries, but performs no repairs.

The third example checks the logical structure of the disk in the
floppy drive. "Diskrepair" reports all errors it finds and
prompts for permission before making any repairs.

The fourth example checks the logical structure of the disk in
the floppy drive. "Diskrepair" rebuilds the free list no matter
what and prints a summary of block usage when it is finished.

The fifth example also checks the logical structure of the disk
in the floppy drive. It does not rebuild the free list solely on
account of missing blocks; neither does it print the warnings and
messages which result from problems not technically errors in the
struct~re of the disk, but which may cause problems.

NOTES

"Diskrepair" cannot solve all the problems your disk may have.
For example, it cannot fix physical media problems. As for
problems with the logical structure of the disk, "diskrepair" can
only repair an error if the damaged information is redundant -
that is, if there is some way of determining what the information
should be.

"Diskrepair cannot, for instance, fix a badly damaged SIR; nor
can it repair a disk if the root directory is severely damaged.
It is therefore imperative that up-to-date backups of all
important files be maintained.

ERROR MESSAGES

Blockcheck terminated ~bnormally.

"Blockcheck" received a program interrupt from the operating
system. The user cannot determine the source of such an error;
however, it is not indicative of a problem with either
"diskrepair" or the device. "Diskrepair" should be rerun, for
the problem may not recur.

Can't call /etc/blockcheck.

"Diskrepair" cannot read or execute the file "/etc/blockcheck".

Can't call /etc/fdncheck.

"Diskrepair" cannot read or execute the file "/etc/fdncheck".

4404 Reference Manual @ 3-15

SECTION 3
"system" Commands

Can't read System Information Record.

The SIR is so badly damaged physically that "diskrepair" cannot
read it. The Qser may be able to salvage some information from
the disk, bllt m~st event~ally reformat it.

Can't stat root.

"Diskrepair" cannot read the fdn which describes the root
directory. The llser may be able to salvage some information from
the disk, bllt mllst event~ally reformat it.

Can't stat std. Olltp~t.

"Diskrepair" cannot read the fdn of whatever file is opened as
standard OlltPllt. The llser shollld rerlln "diskrepair" with
"/dev/console" as standard OlltPllt.

Conflicting options.

The options specified on the command line conflict with each
other.

Device is bllsy.

Any alterations that "diskrepair" makes must be made when the
disk is not in llse. Therefore, "diskrepair" determines whether
or not the specified disk is mOllnted, and, ~nless the llser
specifies the 'n' option, it tries to llnmollnt a mOllnted disk
before proceeding. This error message means that either some
user's working directory is on the specified disk or some task is
accessing a file on that disk.

Disk needs repair!

The strllcture of the disk is not logically sOllnd. The llser
ShOllld rerun "diskrepair" to correct the problems.

Error reading block <block nllm).

Error reading fdn <fdn nllmber) in block <block nllm).

Error writing block <block nllm).

Error writing fdn <fdn num) in block <block nllm).

"Diskrepair" encou.ntered a physical error on the disk. If either
the 'p' or 'n' option is in effect, "diskrepair" prompts for
permission to continue. If the user chooses to continue when the

3-16 @ 4404 Reference Man~al

SECTION 3
"system" Commands

'n' option is not in effect, the resalts are entirely
~npredictable. They depend on precisely which block is damaged.
Continaing with "diskrepair" may caase f~rther damage to the
disk, bat in some cases, it may be the desired coarse of action.

NOTE

The first time "diskrepair" reports an I/O
error, answer "no" to the offer to continae
and immediately reran "diskrepair". It is
possible, thoagh Qnlikely, that the I/O error
is a soft one and will not recar.

Error apdating SIR. Disk is bad!

"Diskrepair" encoantered an I/O error when it tried to make the
necessary changes in the SIR. The aser shoald try again to
execate "diskrepair". If the error persists, the aser cannot
salvage any of the data on the disk.

/etc/blockcheck is invalid.

The version of the "blockcheck" command is not the correct one.

/etc/fdncheck is invalid.

The version of the "fdncheck" command is not the correct one.

Fdncheck terminated abnormally.

"Fdncheck" received a program interrapt from the operating
system. The aser cannot determine the soarce of sach an error;
however, it is not indicative of a problem with either
"diskrepair" or the device. "Diskrepair" shoald be reran, for
the problem may not recar.

Intentional system stop. Reboot system.

If the SIR of the root device mQst be apdated, "diskrepair" kills
all tasks ranning on the system and locks QP the system so that
no new tasks can begin. It then modifies the SIR. This
procedare is necessary to prevent conflicts between the written
data and similar data kept in memory. After apdating the SIR,
"diskrepair" stops the system and prints this error message. The
aser mQst reboot the system before proceeding.

No device specified.

The aser did not specify a device on the command line.

4404 Reference Manual @ 3-17

SECTION 3
"system" Commands

No such device.

The user specified a nonexistent device on the command line.

Not a block device.

"Diskrepair" can only operate on block devices.

Output directed to device under test.

When testing the structure of a disk, it is impractical to try to
redirect the output (the results of the test) to a file on the
disk being tested. The user should reexecute "diskrepair"
without redirecting the output or redirecting it to a different,
mounted device.

Permission denied.

A user who executes "diskrepair" without the 'n' option mllst have
both read and write permission on the specified device. A llser
who executes "diskrepair" with the 'n' option needs only read
permission.

Problems encountered. Diskrepair should be rerun.

"Diskrepair" may encounter more problems than it can fix during
one run. For example, it can only handle a certain n~ber of
duplicate or out-of-range blocks. If "diskrepair" cannot fix all
the errors it encounters, or if it encounters an I/O error but
continues operation, it prints this error message when it
finishes.

Unknown option: '<char>'

The option specified by <char> is not a valid option to the
"diskrepair" command.

Unmount error: <error num>

"Diskrepair" encountered some problem other than a busy device
when it tried to unmount the device. The accompanying error
number is the number of the 4404 error that caused the
failure. The user should consult the operating system manual for
an explanation of the error.

SEE ALSO

blockcheck
fdncheck

3-18 @ 4404 Reference Manual

SECTION 3
"system" Commands

fdncheck

Check the integrity of the structure of the file descriptor nodes
(fdns) on the specified disk.

SYNTAX

/etc/fdncheck <dev name>

DESCRIPTION

The "fdncheck" command checks the integrity of the structure of
the file descriptor nodes (fdns) on the specified disk. An fdn
contains all the information that the operating system needs to
know about a file.

This information includes, but is not limited to, the type of
file, the owner of the file, the size of the file, and the
addresses of all the blocks that are a part of the file. The
"fdncheck" command locates problems such as unreferenced files,
directory entries with invalid associated files, and so forth.

This command is primarily intended for use by the "diskrepair"
utility, which calls it. It may also be used on its own.
However, "fdncheck" can only check the structure of the disk; it
cannot repair it. If the output from the command suggests that
the structure of the fdns is damaged, the user should execute
"diskrepair" on the disk.

The "fdncheck" command should be executed only when no other
tasks are active on the system. Otherwise, the results are
unpredictable.

Arguments

The name of the device to check. It must be a block device.

EXAMPLES

/etc/fdncheck /dev/floppyO

This example checks the structure of the fdns on the disk in
floppy drive O.

4404 Reference Manual @ 3-19

SECTION 3
"system" Commands

makdev

Create a special type of file, representing a device.

SYNTAX

DESCRIPTION

The "makdev" command creates a special type of file which
represents a device. This type of file allows the user to access
the device drivers for the corresponding physical device. Only
the "system" user may invoke this command.

Arguments

<file name>

<dev_type>

<min dev num>

EXAMPLES

The name of the file to create. For a block
device, the last component of the file name
must consist of a string of letters followed
by a string of digits. For a character
device, the last component of the file name
m~st consist of the same string of letters,
followed by the letter 'c', followed by the
same string of digits.

A letter designating whether the device is a
block device, (b), or a character device,
(c) •

A number which tells the operating system
which set of device drivers to use for the
specified device.

A number which tells the operating system
which physical device to associate with
<file name>.

1. /etc/makdev /dev/floppy bOO

2. /etc/makdev /dev/floppyc c 3 0

The first example creates a special file named "/dev/floppy", which
represents a block device. C~rrently, all block devices have the
same major device number, O. The first four (beginning with 0)
minor device numbers for this major device number designate
floppy disk drives 0 through 3. Thus, this command tells the
operating system to use the device driver for block devices and
to associate the file with the floppy drive.

3-20 @ 4404 Reference Manual

SECTION 3
"system" Commands

The second example creates a special file named "/dev/floppyc",
which represents the character device associated with the block
device "/dev/floppy". The major device number for a character
device associated with a floppy disk drive is 3. The first four
(beginning with 0) minor device numbers for this major device
number designate floppy disk drives 0 through 3. Thus, this
command tells the operating system to use the device driver for a
character device associated with a floppy disk drive and to
associate the file with the floppy drive.

NOTES

o Every disk device requires both a block device and a
corresponding character device in order to function
properly.

ERROR MESSAGES

'<char>' is not a valid type of device.

The argument <dev type> must be either 'b', for a block device,
or 'c', for a character device.

Error creating "<file_name>": <reason>

The operating system returned an error when "makdev" tried to
create the special file <file name>. This message is followed by
an interpretation of the error returned by the operating system.

Invalid major device number: <num>

The number specified as the major device number is invalid.

Invalid minor device number: <num>

The number specified as the minor device number is invalid.

Syntax: /etc/makdev <file name> <dev type> <maj_dev_num>
<min dev num> -

The "makdev" command expects exactly four arguments. The command
line does not conform to the syntax.

You mtlst be system manager to run "makdev".

Only the "system" user may execute the "makdev" command.

4404 Reference Mantlal @ 3-21

SECTION 3
"system" Commands

mount

Insert a block device at a node of the directory tree structure.

SYNTAX

/etc/mount <dev name> <dir name> [rJ

DESCRIPTION

The "mount" command temporarily inserts a block device at a node
of the directory tree structure. As long as the device is
mounted, any references to <dir name> actually access the root
directory of the device mounted-there. Any files in the
directory at which the device is mounted are inaccessible while
the device is mounted.

Arguments

<dev name>

<dir name>

The name of the device to mount. It must be
a block device.

The name of the directory on which to mount
the specified device.

Options Available

r Mount the device for reading only. This option must
not be preceded by a plus sign. It is useful when
trying to salvage data from a damaged disk because it
prevents inadvertent writing to the disk, which could
make matters worse.

1. /etc/mount /dev/floppy /usr2

2. /etc/mount /dev/disk1 /usr2 r

The first example mounts the disk in the floppy drive on the
directory "/usr2". References to "/usr2" now access the root
directory of that disk.

3-22 @ 4404 Reference Manual

SECTION 3
"system" Commands

The second example mounts an accessory hard disk drive, disk1, as
"/usr2". Because the 'r' option appears on the command line, no
user may write to the disk.

NOTE

When a user's working directory is the root
directory of a mounted device, the command
"chd .. " does not change the working
directory.

ERROR MESSAGES

<dev name>" is not a block device.

The device specified either does not exist or is not a block
device. Only block devices may be mounted.

Error mounting "<dev name>" on "<dir name>": <reason>

The operating system returned an error when "mount" tried to
insert the specified device in the directory tree. This message
is followed by an interpretation of the error returned by the
operating system.

Only read option allowed for mode.

The only acceptable option is the 'r' option, which must not be
preceded by a plus sign.

Syntax: /etc/mount <dev_name> <dir_name> [rJ

The "mount" command expects exactly two arguments and,
optionally, the single option 'r'. This command indicates that
the command line does not conform to the syntax.

SEE ALSO

llnmount

4404 Reference Manual @ 3-23

SECTION 3
"system" Commands

unmount

Unmount a previously mounted device from the file system.

SYNTAX

/etc/unmount <dev name>

DESCRIPTION

The "unmount" command unmounts the specified device from the file
system. Once the device is unmounted, the files in the directory
on which it was mounted become accessible. Only the system
manager may execute this command.

Arguments

dev name> The name of the device to unmount.

EXAMPLES

/etc/unmount /dev/floppy

This example unmounts the floppy drive.

ERROR MESSAGES

Error unmounting "<dev name>": <reason>

The operating system returned an error when ":.lnmount" tried to
unmount the specified device. This message is followed by an
interpretation of the error returned by the operating system.

Q ""+ " .• I +,..I .. ""_,...~_+ /.:J ~~ _ _ '-
IJJ.u IJCLA. / C IJIV/ U,.uWUu,u I.J '- uc v ua.Wt/

The "unmount" command expects exactly one argument. This message
indicates that the argument count is wrong.

SEE ALSO

mount

3-24 @ 4404 Reference Man:.lal

Section 4

4404 ASSEMBLY LANGUAGE PROGRAMMER'S GUIDE

INTRODUCTION

This section, the 4404 Programmer's Guide provides a general
introduction to 68000/68010 assembly langQage programming on the
4404. This section includes a sample 4404 utility program that
you can type in and execute.

For detailed information on system calls, see Section 6, System
Calls. For detailed information on the 68000/68010 assembler,
see Section 6, The Assembler and Linking Loader. System
programming in C is aescribed in Sec{ron-7~-H~4404 C COMPILER, while
programming in other languages is described in the reference
manuals for those languages.

SYSTEM CALLS OVERVIEW

The following paragraphs give an overview of assembly language
programs on the 4404: how they run, how they perform system
function calls, how they handle errors, and what the task
environment is like.

HOW 4404 PROGRAMS RUN

Most programs or utilities are run by the user's typing the name
of such a program in response to a prompt from the shell. The
shell assumes the name which was typed is a file containing an
executable binary program. (There are exceptions such as command
text files and others, but we will ignore those for now). This
binary program is loaded into memory and executed. If desired,
this program can obtain parameters from the calling line. When
it is finished, the program terminates, passing control back to
the shell.

Every program that runs on the system is a task. Many tasks may
be active at once, but in reality only one task is running at any
given instance. The system switches from task to task so rapidly
that the appearance is that all of the tasks are executing
concurrently. If you were to freeze the system at some point in
time, you would see a single task or program in the cpu's address
space. The task may not have all of RAM aSSigned to it, but it
WOQld have the entire address space available. Other tasks may
be resident in other memory, but that memory is not mapped into
the cpu's space. When the task terminates, its allocated memory
is ret~rned to the system, and control is passed to the parent
task (the task which created or initiated the terminating
task).

4404 Reference Manual @ 4-1

SECTION 4
Programmer's GQide

This section discQsses how to write the program which the
shell can load and execQte, how this program can commQnicate
with the Qser, system, other tasks, etc, and how to terminate
the program's execQtion.

INTRODUCTION TO SYSTEM CALLS

When a Qser's program commQnicates with the user, a disk file,
another task, or anything else in the system, It Qses calls to
the operating system. The operating system is essentially
another task, is always available, that has built in routines to
perform a multitude of system oriented functions. These
fQnctions include reading files, writing files, seeking to file
locations, setting permissions, creating pipes, reporting id's,
creating tasks, terminating tasks, mounting devices, reporting
the time, and so on. A user program can execute these functions
by making a call to the system with a proper function code and
input parameters. The techniqQe of making the call in the
assembler code is the "sys" instruction recognized by the
assembler.

THE "SYS" INSTRUCTION

The assembler has a built-in instruction to make system calls.
It is the "sys" instruction and has the following format:

sys <function),<parameter1),<parameter2), ...

The only required portion of the operand is the <function), which
is simply a numeric code for the desired function. The
parameters required depend on the particular function. There may
be no parameters or as many as four. The function code is a
16-bit value; while parameters are always 32-bit values. Many
system functions also reqQire certain valQes or parameters to be
in one or more of the 68010 cpurs registers before execQting a
"sys" instruction. When some parameters are required in
registers, it is the programmer's responsibility to see that the
proper values are loaded before calling on the system.

When the "sys" instrQction has completed execution, control
generally passes to the next instruction in the program. In some
cases, the system function returns one or more values to the
calling program, by placing the values in selected cpu registers.
In some cases the returned value or values will be placed at a
location specified as one of the inpQt parameters.

4-2 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Section 7, System Calls, describes the operating system
f~nctions. Along-W'IT11the description, the necessary parameters
and ret~rned values are specified. For example, look at the
"read" system call in that section. Under the USAGE heading you
will see the following:

<file descriptor in DO)
sys read,buffer,count
<bytes read in DO)

This shows that before executing the read function call, you must
ensure that the desired "file descriptor" must be loaded into the
68010's DO register. In addition to the read function code
itself, you must supply a buffer address (32-bit address of a
buffer to read into) and a count (32-bit count of how many
characters to read). After the read function has been executed,
the actual number of bytes read will be returned in the 68010's
DO register.

All user-accessible 68010 registers except for the DO, AO, and CCR
registers are left intact across system calls. The contents of
the DO, AO, and CCR registers upon return from a system call vary
depending on the particular call.

The actual system function code numbers in the "sysdef" file
located in the "I lib" directory. This file is provided on disk
so that you can include those definitions in your program by
including the "sysdef" file in your source via a "lib sysdef"
instruction.

Briefly, the "sys" function works by generating a software
interrupt. When this interrupt occurs, the handling routine maps
the calling task out of the cpu's address space and maps the
operating system code in. This system code then performs the
requested function. It obtains the function number and
parameters from the code directly following the software
interrupt itself. When the system function has completed, the
operating system is mapped out, and the task is mapped back in to
continue with its instructions.

4404 Reference Manual @ 4-3

SECTION 4
Programmer's Guide

SYSTEM CALL EXAMPLE

Before cluttering things up, let's try a sample program that
includes a system function call. The simplest program would be
one which did nothing at all: as soon as it is initiated, it will
immediately terminate. Thus the only system function we will
need to call is the "term" fllnction. The description of "term"
in Section 7, System Calls shows that there are no parameters
required on the-"sys"-fnstruction itself (besides the function
code), but that you must put a status value in the DO register
before performing the call. If there are no errors this status
should be zero. Thus you can write an extremely simple program
that looks like the following:

start
lib
move.l
sys
end

sysdef
#O,dO
term
start

Get status in DO
Terminate task

The first line includes the definitions of all system fllnction
codes so that we can specify the term function as a symbol
("term") and not have to type in the particular number for that
function. The second line puts the status in DO, as required by
the "term" fllnction, and line 3 terminates the program. In the
case of the "term" function, control is not returned to the
calling program after execution of the call. Of course, that is
the reason for the function; it terminates the current task (the
task which made the call) and returns control to that task's
parent. Notice that the program's end statement includes the
symbol "start". This tells the assembler the beginning location
for execution and also induces the assembler to make the
resulting code executable by setting the permission bits.

Let's assume you call the source file "nothing.txt" and assemble
it with the following command:

++ asm nothing. txt +ls +o=nothing.r
++ load nothing.r +o~nothing

The result would be a binary file which when executed by the
command:

++ nothing

would load, run, and immediately return to the shell. This is,
of course, a meaningless example, but it does show the
rudimentary steps in writing, assembling, and executing a 4404
assembly language program.

4-4 @ 4404 Reference Manual

SECTION 4
Programmer's GQide

INDIRECT SYSTEM CALLS

In order to Qse the "sys" instrQction directly, all the
parameters mQst be defined at assembly time. When parameters are
not known at assembly time (becaQse they will be determined or
changed dQring the execQtion of the program), yOQ mQst Qse
indirect system calls. There are two types of indirect
system calls -- "ind" and "indx" -- and they are themselves
system fQnctions called with the normal sys instrQction. They
permit the programmer to tell the system that the parameters do
not actQally follow the software interrupt, but instead are
placed at some other specified location in memory. This memory
location, specified by the programmer, can be in an area of
memory containing data and not program code.

The first of these indirect system call fQnctions is called
"ind" . Its format is:

sys ind,label

The "label" is the address of the memory locations that will
contain the actual desired function code and parameters. Thus,
when this function is executed, the system goes to location
"label" and picks up the desired fu.nction code and any necessary
parameters. The system executes that function and returns
control to the statement following the "sys ind,label"
instruction.

To illustrate, let's assume a program that needs to read from a
file, but does not know how many characters to read until it is
executing. Somewhere in the first part of the executing program,
the number of characters to be read is determined and stored in a
label called "rcount." The indirect fu.nction call is used:

iread

buffer

move.l
move.l
sys

dc.w
dc.l
dc.l
ds.b

rcount,iread+6
fd,dO
ind,iread

Get count to read
Get file descriptor
Do indirect read call

READ function code
Read buffer location
Read count (unknown)

read
buffer
o
$4000 Space for read buffer

(At this point we're not concerned with details of how the read
really works or what the file descriptor is, we simply want to
show how the indirect system call is made.)·

4404 Reference Manual @ 4-5

SECTION 4
Programmer's Guide

The second form of indirect system call is the "indx" fJ.nction,
and is very similar to the "ind" function. The difference is
that the call to "ind" inclJ.des a parameter ("label") that points
to the parameters in memory; with the "indx" ftlnction the pointer
to the parameters in memory is in the AO register. To see how
this works, we can modify the above sample by changing the
instruction "sys ind,iread" to:

lea
sys

iread,aO
indx

Get address of parameter
Do indirect read call

An obvious use of indx is to push the parameters onto the system
stack and point AO to it, thereby eliminating the need for the
parameter buffer in memory. For example:

move.l r c 0 un t , - (a 7) Setcount to read
move.l #buffer, - (a7) Set buffer address
move. w #read,-(a7) Set read fJ.nction code

move .1 fd,dO Get file descriptor
move.l a7,aO Point to parameters on

stack
sys indx Do indirect read call
lea 10 (a7) ,a7 Clean parameters off

stack

buffer ds.b $4000 Space for read buffer

Note the importance of the order in which the parameters are
pushed onto the stack. Also note the "lea 10(a7),a7" instruction
following the function call. It removes the parameters which
were pushed onto the stack so that the stack is where it was
before the system call section.

SYSTEM ERRORS

Upon completion, system calls return to the calling program with
an error flag. This flag is the carry bit in the condition code
register. If the bit is zero on return, it implies that no error
occurred. If the bit is set (a one), then an error has occurred
and the DO register contains an error number. The assembler
supports two ·special mnemonics for testing the error status on
return from a system call: "bes" for "branch if error set" and
"bee" for "branch if error cleared." These are equivalent to the
standard mnemonics "bcs" and "bcc."

4-6 @ 4404 Reference Manual

SECTION 4
Programmer's GQide

Section 7, System Calls, contains a list of the error
nQmbers and their meanings. There is also a file of eqQates
called "/lib/syserrors" which assign standard labels to the error
nQmbers. These can be Qsed in a program by simply inclQding the
file with a "lib syserrors" instrlIction. Note that the operating
system does not report errors directly to the Qser. Error
numbers are retlIrned from system calls and it is entirely QP to
the Qser's program to report SQch errors or handle them as
required by the specific application.

THE TASK ENVIRONMENT

A "task" is a single program which has complete Qse of the cpu's
directly-accessible address space. It can calIon functions in
the operating system, blIt is essentially a single, stand-alone
program. Each time a program is rQn, a new task is generated and
the program becomes that task. Whenever that execQting task
performs some I/O or system call that will reqQire it to wait,
the task is mapped Ollt so that another waiting active task may be
mapped in and executed. If the execQting task does not perform
any type of system call which WOQld cause it to be mapped OQt, it
will eventually rQn into a time-slice interrupt which will force
the task Ollt so that other tasks can get some execution time.

In this manner, multiple tasks can be rlln at what seems like the
same time. To assist in keeping track of all the active tasks,
the operating system assigns a QniqQe "task idYl nQIDber to each
task. This is a 15 bit unsigned valQe that can be Qsed to
llniquely identify a particlIlar task. The "gtid" system call
allows a task or program to obtain this task id if desired.

ADDRESS SPACE

The addresses which can be generated by a program make QP what is
known as the logical address space. Under hardware memory
management, these logical addresses are not presented directly to
the system memory. Instead, they are rOllted throlIgh the hardware
memory manager, which translates the logical addresses into
physical addresses. Memory management allows programs which
reside at a particQlar logical address to actually load into
system memory at a different physical address. The total range
of physical addresses makes up the physical address space.

4404 Reference ManQal @ 4-7

SECTION 4
Programmer's Guide

Although it would be possible to pass the addresses generated by
the program directly to the system memory, the use of a hardware
memory manager provides several benefits. First, and perhaps
foremost, it prevents one task from reading from or writing to
the memory allocated to another task. In addition, it allows
multiple tasks to reside in physical memory without the need for
each task to reside in a different area in the logical address
space. Thus, all programs can be written to execute at the same
fixed logical address. No matter where those programs are loaded
into physical memory when they are executed, the memory .
management unit converts the logical addresses used by the
program to the proper physical addresses.

The 4404's logical address space is divided into three sections:
text, data, and stack. The program itself resides in the text
section. This section cannot be written to during execution of
the program. The data section contains any data used by the
program. It can be both read from and written to during
execution. The system stack is located in the stack section.
The memory management unit allocates a certain amount of memory
to each section when the task is initiated. The amount of memory
assigned to each section is determined by the size of the task
and its needs. It is also possible, as we shall see later, for a
task to add more memory to the data or stack section during
execution.

ARGUMENTS

It is often desirable to pass arguments or parameters to a
program when you begin its execution. The "exec" system call
pro vi des t hi s a b iIi t Y . " ex e c " is the call w hi chi s us edt 0

begin execution of a program or binary file.

Arguments are passed to a program by leaving them on the system
stack. When the program is initiated, the system stack pointer
(A7) is left pointing at SOfie unknown location in the stack page.
Any arguments passed to the program are found in a special format
just above where the stack pointer points. The arguments
themselves are simply strings of characters which the program
must know how to use. In order to easily find these strings, the
system provides a list of pOinters to the beginning of the
strings. In addition, the system provides a count of how many
arguments have been passed. This argument information is laid
out as follows:

4-8 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

1. The stack pointer is pointing to the argument count. It is
a 4 byte value and should always be greater than zero.

2. Just above the argument count (higher addresses in memory)
is the list of pointers to the argument strings. These
pointers are 32 bit addresses of the actual strings.

3. At the end of the pointer list are four bytes of zero to
signify the end of the list. (A null pointer.)

4. The actual string arguments begin above the zero bytes.
Each argument string is the string of characters that make
up the argument followed by a zero byte.

Let's look at an example. Assume that whoever started our task
passed us three parameters: the name of our program, a file name,
and an option which starts with a plus sign. The system always
passes the name of the program or command being executed as the
first argument (argument number 0). Assume the program name is
"pile", the specified file name is "data2", and the option is
"+b". Our argument count will be three. Let us arbitrarily say
the system stack pointer is at $FFFFFDEO. We should see the
following data on the stack:

item location contents

arg 2 terminator $FFFFFE01 $00
argument 2 $FFFFFDFF '+b'
arg 1 terminator $FFFFFDFE $00
argument 1 $FFFFFDF9 'data2'
arg 0 terminator $FFFFFDF8 $00
argument 0 $FFFFFDF4 'pile'
arg list terminator $FFFFFDFO $00000000
pointer to arg 2 $FFF}'FDEC $FFFFFDFF
pointer to arg 1 $FFFFFDE8 $FFFFFDF9
pointer to arg 0 $FFFFFDE4 $FFFFFDF4
argument count $FFFFFDEO $00000003

Thus if we want to get the second argument (argument number 1),
we read the pointer stored at the stack pointer + 8. This value,
$FFFFFDF9, is the pointer to the argument string itself. At the
location to which the pointer points is the string of characters
"data2" followed by a zero byte.

4404 Reference Manual @ 4-9

SECTION 4
Programmer's Guide

• In general, the programs or utilities that a system programmer
writes will be initiated by the shell. Specifically, they will
be started when the user types the name of that program in
response to the shell's prompt. The shell starts the program by
performing an "exec" system call. The arglIments that the shell
sets LIP for the exec (which are those passed to the program) are
the argllments that are typed on the shell command line after the
program name. By convention, the shell sets arglIment 0 to be the
command or program name itself. The arglIments after the program
name are then nlImbered sequentially beginning with one. If our
"pile" program above were an execlItable binary file, the
arglIments described above wOlIld reslllt from a shell command line
that looked like this:

++ pile data2 +b

The shell performs pattern-matching before passing the arguments
to the command. For example, consider the command:

++list file*

The shell does not pass "file*" as an arglIment to list, blIt
rather searches the directory for all filenames that match and
passes them all as individlIal arglIments. Thus, the list program
would see fOlIr arguments:

argument 0 -> list
argument 1 -> file1
argument 2 -> file2
argllment 3 -> filename

(Recall that argument nlImber zero is always the name of the
program or command being execlIted.)

INITIATING AND TERMINATING TASKS

In a mlIlti-tasking environment, one task can spawn or start a new
task. There must, of cOlIrse, also be means for terminating tasks
and for the parent of a terminating task to be informed of that
termination. The following discussion covers these techniqlIes.

4-10 @ 4404 Reference Manual

TERMINATING A TASK

SECTION 4
Programmer's Guide

Tasks or programs are terminated with the "term" system call.
When this fQnction is executed, the task is halted and its memory
is relinquished to the system. Before calling the "term"
function, the programmer is required to place an error status
value in the DO register. When the task terminates, this value
is passed back to the task's parent. If there is no error on
termination, this error status should be zero to indicate a clean
termination. If the task terminates due to a system error such
as an I/O error, the error value returned by that system call
should be used as the error status for the term function. If
the task terminates due to an error defined by the program (for
example, the program expects an argument but none was supplied),
the recommended value to return is $OOOOOOFF. By convention the
parent task would recognize this as a user defined error. The
parent would know some error had occurred that caused the program
to terminate, but would not be able to determine the exact
nature of the error. A user-defined error should not return a
termination status of greater than $OOOOOOFF.

THE "WAIT" SYSTEM CALL

The "wait" system function is issued by a task when it wants to
wait for one of the children tasks it has spawned to terminate.
It is through the wait command that the parent task receives the
termination status from its child . "wait" has the following
syntax:

sys wait

When the system call returns, the termination status is in the AO
register and the terminated task's id is in the DO register.

If there are no children tasks when a wait call is issued, an
error will be returned. If a child task is still running when
the parent issues a wait, the parent will be put to sleep until
the child task has terminated. If a child task terminates before
its parent has issued a wait, the system will save the child's
task id and termination status until the parent does issue a
wait. If several children tasks have been spawned, the parent
must issue a wait call for each one individually.

4404 Reference Manual @ 4-11

SECTION 4
Programmer's GQide

The termination status is a two-byte valae that is returned in
the lower half of the AO register. The lower byte (bits 0-7 of
AO) is the low-order byte of the statQs valQe passed by the
"term" system call. If this byte is non-zero, some sort of error
condition caused termination. Under normal termination
conditions, the higher byte of the termination statQs (bits 8-15
of AO) is zero. If non-zero, the task was terminated by some
system interrupt, and the least significant seven bits of this
byte contain the interrupt number. If the most significant bit
of this byte is set, a core dump was produced as a result of the
termination. (Interrupt numbers and core dumps will be described
later.)

THE "EXEC" SYSTEM CALL

At times, a user-written program may wish to load and execQte a
program by itself without going back to the shell. The tool Qsed
to load and execQte another program or binary file is the "exec"
system function. That is the very fQnction which the shell uses
when it loads and executes a program. (Remember the shell itself
is just another program.)

The program which makes the exec call is thrown away and the new
program (a binary file) is loaded into memory and execQted. The
same task id number is retained. If the exec is successful (i.e.
no errors such as the file not existing), there will be no retQrn
to the calling program. The calling program is thrown away,
making it impossible to retQrn. If, however, there is an error
in attempting to perform the "exec" function, the system will not
load the new program but will retQrn an error status to the
calling program which is still intact. Thus a properly written
program will follow any "sys exec" call with error handling code.

The "exec" call requires two arguments: a pointer to the name of
the file to be execQted and a pointer to a list of arguments to
be supplied to the new program. "exec's" format is:

sys exec,fname,arglist

The "fname" is the pointer to the filename. This filename is a
string of appropriate characters located somewhere in memory and
terminated by a zero byte. The "arglist" is the pointer to a
list of argument pOinters. In other words, "arglist" is an
address at which we will find a list of pointers. This list of
pOinters is consecutive 4-byte addresses or pointers to the
actQal argument strings. The list is terminated by fOQr bytes of
zero (which could be considered a pointer to zero). Each pointer
in the list is the address of the actual argument string also
terminated by a zero byte. When the exec function is complete,
the new program will have these arguments available in the exact
format previoQsly described.

4-12 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Let's try an example of the use of exec. As you know the "Is"
command can be run by typing the name and possible arguments on
the shell command line. The shell actually starts execution of
Is by performing an exec. As an exercise, let's write our own
program that executes the Is command automatically, always
providing an argument of "+ba". This will provide a long
directory with file sizes specified in bytes and which includes
all files. We will not specify any specific directory, so our
command will always perform the directory command on the current
directory. The filename to exec should be "/bin/ls," and there
will be two arguments, "Is" and "+ba". We supply "Is" as
argwnent zero because by convention argument number ° is the
command name. Our program looks like this:

lib sysdef

start sys exec,filen,args

* This point is reached only if the exec fails. There
* would normally be error handling code here, but to keep
* things simple, we will just terminate if an error.
* Note the DO register already has the error from exec.

sys term

* strings and data

filen fcc '/bin/ls' ,0
argO fcc 'Is' ,0
args fcc '+ba' ,0
args ds.l argO,arg1,0

end start

If we called this utility "Is-batt, after assembling we could
execute it by typing "ls-ba" as a command to the shell. Our
program would be loaded and executed by the shell, and it would
in turn load and execute the Is command with a "+ba" option.
Thus typing "ls-ba" would produce the same results as typing "Is
+ba".

4404 Reference Manual @ 4-13

SECTION 4
Programmer's GQide

THE "FORK" AND "VFORK" SYSTEM CALLS

The "fork" and "vfork" system calls are llsed to spawn a new task,
and are the only way to create new tasks. They create a new
task which is almost identical to the old (the old task is still
arollnd). This new task has the same memory and stack allocation,
same code in the memory space, same open files, pointers, etc.
ThllS, immediately after a fork, there are essentially two
identical tasks or programs rllnning on the system. Usually YOll
want the new task to do something different, so in most cases the
new task will immediately perform an "exec" call to load some
program from disk and execllte it. This is the techniqlle llsed by
the shell to start backgrollnd jobs. When the shell sees a
command ending with an ampersand ("&"), instead of directly doing
an "exec" it does a fork to create a second shell. Now the newly
created shell will do an "exec" of the desired command, while the
old shell is still arollnd to accept fQrther commands.

The syntax of either fork command is simply:

sys fork -- or
sys vfork

The tricky part of the fork call is in how the two
almost-identical tasks know which is which. If the two tasks
have the same code, how can the new one do an exec while the old
one does not? The answer is in the retllrn from a fork call.
After the fork operation, execlltion will reSllme in each of the
two programs. The difference is in where that execlltion
reSllmes. In the new task, execlltion reSllmes in the instrllction
immediately following the fork system call. The old task reSllmes
execlltion at a point two bytes past the system call. In this
manner, the same program can be run in two tasks via a fork and
yet do different things after the fork. Since the new task
reSllmes directly after the fork call and the old task reSllmes two
bytes after the fork call, it is obviollS that the first
instrllction in the new task mllst be a short branch instrllction
(which reqllires only two bytes). Note that the new task's id is
made available to the old task by sllpplying the id in the DO
register llpon retllrn from the fork. If an error OCCQrs when
attempting a fork, the new task will not be created, and an error
statlls will be retllrned to the old task (still two bytes past the
fork system call).

The following section of code will help illustrate the fork:

sys fork spawn new task

4-14 @ 4404 Reference Manllal

SECTION 4
Programmer's G~ide

* new task begins exec~tion here

bra.s newtsk branch to code for new task

* old task res~mes exec~tion here

prwait

newtsk

bes
move.l
sys
cmp.l
bne.s

sys
sys

bra

frkerr check and branch if error
dO, d 1 save new task's id
wait wait for child task
dO, d 1 right one?
prwait wait some more if not

continlle code for old task

term
exec,name,args new task probably

does exec
excerr branch if error in exec

In this example, the "wait" system call at "prwait" makes the old
task wait for the new one (itis child) to finish before
continlling. Note that the "wait" system call returns the
terminated task's id in the DO register.

4404 FILE HANDLING

This topic describes the manipulation of files, terminals,
directories, printers, and other devices on the 4404.

GENERAL FILE DEFINITIONS

Before delving into the actual manipulation of files on the 4404,
we need to define and describe some of their characteristics.

Device Independent I/O

Under the 4404 operating system, anything olltside the program's
memory to which the program can write or from which it can read,
is treated the same. A file on disk, a terminal, a pipe, and a
printer spooler are treated the same way. This concept, termed
"device independent I/O" means YOll can develop a program that
sends its outp~t to a terminal, and that same program, without
change, will also be able to Olltput to a disk file, printer
spooler, pipe, or any other device on the system. This feature
lends a great amount of versatility to the system and makes
program development and updating mllch smoother.

4404 Reference Manllal @ 4-15

SECTION 4
Programmer's GQide

This device independence is made possible by device driver
rOQtines -- the system rOQtines that take care of the specifics
of the device for which they are written, creating a standard
interface to the device. There is a rOQtine to open the device
and one to close it. These permit the system to do anything
necessary to prepare the device for reading and writing and to
finalize anything necessary when all I/O is complete. The two
most important device driver rOQtines are the "read" and "write"
rOQtines, which permit the caller to read or write data from the
device.

File Descriptors

A file desc.~~pto£ informs the system which file to operate
on. (We Qse the term "file", bQt becaQse of device independence,
the file descriptor can refer to a disk file, terminal, pipe, or
any other device). The file descriptor is a fOQr-byte nQmeric
representation of a specific file or device. This nwnber is
assigned to the file by the system when that file is opened or
created. The operating system then keeps track of the file
descriptors and the files to which they are assigned. In this
way, the Qser SQPplys a nQmber instead of an entire file name
each time the file is to be referenced.

For example, the "read" system call reqQires a file descriptor
valQe in the DO register before making the call. In general ase,
we would have saved the file descriptor nwnber of the file we
wish to read when it was opened. Now, to do the read, we need
only load the DO register with that nwnber.

File descriptor nwnbers begin with 0 and extend up to the maximum
possible number of open files on the system. This maximum will
vary depending on the system configuration, but generally will be
around 12-25.

Standard Input and Output

When the shell begins execution of a task, it automatically
assigns input and output files to that task. Generally the input
file is the user's keyboard, and the 'output file is the user's
display. In fact, when a task begins execution, it can always
count on three input/output files being already opened, assigned
a file descriptor, and ready for reading or writing: "standard
input," "standard output," and "standard error output." Standard
input is an open file ready for reading and is always assigned a
file descriptor of O. Generally the standard inpQt file is the
4404 keyboard. Standard outpQt is an open file ready for writing
to and is always assigned a file descriptor of 1. Generally the
standard output file is the 4404 display. Standard error output
is an open file ready for writing to and is always assigned a

4-16 @ 4404 Reference ManQal

SECTION 4
Programmer's GQide

file descriptor of 2. This OQtpQt file is reserved for reporting
error messages. It is almost always the 4404 display.

BecaQse these standard inpQt and OQtpQt files are already opened
and assigned a file descriptor, the Qser program does not have to
perform any "open" or "create" calls in order to perform I/O
activities on them. As soon as a task begins rQnning, it can
perform a read with a file descriptor of 0 (standard inpQt) or
write with a file descriptor of 1 or 2 (standard OQtput and error
OQtpQt) .

Standard inpQt and OQtpu.t can be "redirected" wi thoQt any change
to the program. In other words, a program which OQtputs some
message to the Qser's terminal can also OQtpQt the message to a
disk file withoQt any modifications. This I/O redirection is
accomplished from the shell by Qse of the "<,, and ">,, operators
(redirected inpQt and OQtpQt, respectively). If the shell
desires, it can provide a standard inpQt or OQtpQt file to the
program which is different from the Qser's terminal. The Qser
program need not be concerned with what the standard inpQt or
outpQt is pointing to. BecaQse of device independence and the
fact that the program knows that the file or device (whatever it
may be) has been previoQsly opened, the program simply performs
the I/O and doesn't care where it's going.

OPENING, CLOSING, AND CREATING FILES

Before a file or device can be read from or written to, it mQst
be opened. When a program has completed all its inpQt and OQtpQt
to a file, it shoQld generally close that file. A Qser program
may also need the ability to create new files on the system.
This topic addresses those operations in detail.

The "open" System Call

The format of an "open" system call is:

sys open,fname,mode

The "fname" is a pointer to a zero-terminated string containing
the name of the file to be opened. The "mode" is a nwnber (0, 1,
or 2) which sets the read/write mode. If 0, the file is opened
for reading only. If 1, the file is opened for writing only. If
2, the file is opened for both reading and writing.

On retQrn from the open call, register DO will contain the 4-byte
file descriptor nQmber assigned to that file. All fQtQre
references to the file will be made via this file descriptor.

4404 Reference ManQal @ 4-17

SECTION 4
Programmer's Guide

An error will be returned from this call if the file to be opened
does not exist, if the task opening the file does not have proper
permissions, if too many files are already opened, or if the
directory path leading to the file cannot be searched.

The "close" System Call

When a task terminates, the operating system automatically closes
any files that remain open. It is wise, however, to manually
close files within a program whenever possible. There are two
reasons for doing so. First, since the system has a finite
number of files which may be open at one time, closing a file
will free up a slot in which another file may be opened. Second,
in case of a system crash, you will be better off having closed
any files which no longer require I/O. The "close" system call
is performed by loading register DO with the file descriptor of
the file you wish to close, then performing a "sys close".

The "create" System Call

The "create" system call is used to create disk files. Other
system calls are used to create directories, pipes, devices, etc.
The format of create is:

sys create,fname,perm

Once again, "fname" is a pointer to a zero-terminated string
containing the name of the file to create. The file will be
created in the default directory unless a directory is explicitly
specified in the file name. The "perm" is a value which permits
the user to set the desired permissions on the new file. (Refer
to Section 7, System Calls for details of setting these
permissions.) .

Note that if the file already eXists,in the specified directory,
it will be truncated to zero length tall existing data deleted).
In addition, the original permissions will be retained regardless
of the "perm" value supplied to the create call. In other words
if the file "fname" already exists, the "perm" parameter on the
create call will be ignored.

If the file does not exist, permission setting will be subject to
any default permission settings the file owner has- previously
specified. The "perm" parameter in the "create" call allows you
to deny permissions which the default permissions grant, but does
not let you grant permissions that the default permissions deny.
You can think of this as a logical AND of the "perm" parameter and
the default permission byte.

4-18 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

Every task has associated with it a default permissions byte. If
that task attempts to create any new tasks, the new tasks are
created with at least those default permissions. As we saw
above, additional permissions may be denied by the "perm" valile
specified to a "create" call. Additionally, the new task is
started with the same default permission byte (for creating more
tasks) as it's parent. In normal use, a user may set the default
permissions in his copy of the shell upon first logging on. If
the defaalt permissions are not changed by the user or any task
he rans, any files the user creates will have those default
permissions. (Note that the user can change default permissions
with the "dperm" command and for a task to change its own default
permissions with the "defacc" system call.

READING AND WRITING

Perhaps the most heavily used system calls are "read" and
"write." It is by these fanctions that a program communicates
with the user, disk files, printers, other tasks, and anything
else in the outside world. Reading and writing permits great
versatility in how files are accessed. For example, with a disk
file, the user can begin at any particular point in the file
(right down to a specific character) and read or write as many
characters as desired from that point. This makes both
sequential and random access of the files qaite simple.

The "read" and "write" system calls assume a "file position
pointer" has already been set. This is a pointer which the
system maintains to show the current position for reading and
writing in a file. The discussion on "seeking," later in this
section, shows how it can be set. The only parameters required,
then, are the file descriptor to specify which file, the count of
characters to be read or written, and a memory buffer address to
read into or write from.

The "read" System Call

To execute a "read" call, the programmer must first load register
DO with the file descriptor number. Then he or she makes the
"read" call with the following syntax:

sys read,buffer,count

4404 Reference Manilal @ 4-19

SECTION 4
Programmer's GQide

The "bllffer" parameter is an address in the llser program's
memory. It specifies where the data read from the file shollld be
placed in memory. The" cOllnt" is the maximllm number of
characters the programmer wants the system to read. We say
maximllID because, depending on the situation, the system may not
actually read as many characters as reqllested. Upon retllrn from
the read system call, register DO contains the nllmber of bytes
that was actually read.

When dealing with a regular disk file, the system will always
read "collnt" bytes if possible. There are only two reasons that
the system wOllld read less than that nllmber from a reglllar disk
file: a physical I/O error occurs, or the specified count forces
the system to attempt to read past the end of the file. For
example, if a file has only 120 characters and a "read" call is
issued with a "collnt" parameter of 256, the read will take place
and return with no error, but will show that only 120 characters
were actually read. After this call the file position pointer
will be left pointing at the end of the file. Any subsequent
read call will retllrn with no error, bllt with the nllIDber of bytes
read equal to zero. This is in fact how a llser program should
detect an "end of file" condition: a retllrn from a read system
call with no error bllt with the actual nllmber of characters read
being zero.

Reading and writing to terminals is handled with the same system
calls as when reading and writing disk files. There is a
difference in the result of a read call, however, in that if the
file being read is a terminal, only one line will be returned at
most. By one line we mean all the characters typed since the
last carriage return, terminated by a carriage return. Thus,
even though we execute a call with a desired "collnt" of 1024
characters to be read, if the user at the terminal types the
letters "halt" followed by a carriage return, the read call would
return with an actual-bytes-read cOllnt of only five. If the user
has not typed anything when the call is issued, the calling
program must wait until something is typed.

As with reglllar disk files, it is possible to detect an "end of
file" condition from a terminal by performing a "read" and
receiving no error and no characters. An "end of file" condition
from a terminal is prodllced by typing a Control-D. Note that the
Control-D character itself is not actually passed on to the
operating system, only the "end of file" condition.

4-20 @ 4404 Reference Manual

SECTION 4
Programmer '·s GlIide

As an example of the lIse of the read call, let's examine a
section of code that attempts to read 1024 bytes of data, placing
them in a blIffer called "blIffer". We ass lIme the file has already
been opened for reading and the file descriptor is stored at
"fdsave" .

blIffer

move.l
sys

bes.l
tst.l
beq.l
add.l
move.l

ds.b

fdsave,dO get file descriptor
read,blIffer,1024 read 1024 bytes into

rderr
dO
endof
#blIffer,dO
dO, b lIfend

1024

b lIffer
branch if error
end-of-file-condition?
special handling if so
point to end of data
save blIffer end pointer

Upon retu.rn from the "read" system call, we first check for a
retu.rned error statlIS. If an error occlIrred, we assume the
program handles it properly at "rderr". If no error, we check
for an "end of file" condition. Recall that an "end of file"
condition is recognized by a program as zero characters read when
there was no error. If we are at the end of the file, the
program jumps to "endof," where we again assume that such a
condition is properly handled. If we did not receive an error
and were not at the end of the file, our program calculates a
pointer to one past the last byte read into the blIffer and stores
that pointer at "bufend". Normally this pointer should be
"blIffer+1 024", blIt if the read call retlIrned less than 1024 bytes
it would be lower.

The "write" System Call

The "write" function is executed by
first loading register DO with the file descriptor number and
then isslling the "write" call:

sys write,blIffer,colInt

4404 Reference Manual @ 4-21

SECTION 4
Programmer's G~ide

The "buffer" parameter is the address of the location in the user
program's memory where the data to be written is located. The
"count" is the nllmber of characters to be written to the file.
Upon retllrn from the "write" system call, the DO register will
contain the actual byte cOllnt written (if there is no error). It
is not necessary to compare this value to the reqllested cOllnt to
be written becallse if there was no error, YOll can be Sllre the
entire write function took place properly.

Let's look at a complete program to send the message "Hello
there!" to the standard output file. If there is an error in
writing to that file, we will then send the message "Error
wr i ting standard output." to the standard error output file.
(Recall that the standard output is assigned file descriptor
number 1 and standard error output is assigned file descriptor
number 2.)

lib sysdef include system definitions

* start of main program

sayhi

done
done2

* strings

hello
hlng
erm
elng

move .1
sys
bec.s
move.l
move.l
sys
move .1
bra.s
move.l
sys

fcc
equ
fcc
equ

end

#1,dO write to standard. outPllt
write,hello,hlng send message
done exit if no error
dO,-(a7) else, save error nu.mber
#2,dO write to std. error OlltPllt
write,erm,elng send error message
(a7)+,dO restore error nu.mber
done2
#O,dO
term terminate program

'Hello there!' ,$d,O
*-hello compute length of string
'Error writing standard output.' ,$d,O
*-erm compute length of string

sayhi give "starting address

There is no "open" system call because we know that the standard
output and standard error output files are already' opened and
ready for writing when the program begins execution. Note the
convenient method of providing the count of characters to be
written. Also note that we did not look for an error after the
system call to write to the standard error olltput. We really
have no good recourse if an error does occur while reporting an
error, so we simply terminate.

4-22 @ 4404 Reference Manual

Efficiency in Reading and Writing

SECTION 4
Programmer's Guide

There are several things a system programmer can do to achieve
efficient reading and writing of files on the 4404. The first
and most obvious of these is to read or write as much of a disk·
file as possible with a single call. There is much less system
overhead in executing one call to read 4096 characters than in
executing 32 calls to read 128 characters each. The most
efficient reads and writes are those made in multiples of 512
bytes. This is, of course, due to the fact that the 4404 disk
block size is 512 bytes. Due to the way memory mapping works,
additional efficiency can be gained by placing all read and write
buffers on 512 byte address boundaries in memory.

By all means do not perform single character I/O with system
calls for each character. If single-character I/O is required,
the user program should handle the necessary buffering so that
system calls are made only on a buffer full of characters.

SEEKING

For each open disk file, the operating system maintains a pointer
that indicates the current position for reading or writing in
that file. This pointer can point to any place in the file,
right down to any specific character position. The user does not
have direct access to this pointer, but use the "seek" system
call position it to any desired spot in a file. The format of
the seek call is:

sys seek,offset,type

Before making a system call to "seek", the user must load the
desired file descriptor in register DO. Seeks are done on a
relative basis. That is, a seek amount is supplied to the call
and the seek is to be that amount relative to some reference
point. (This reference point is the "type" parameter shown
above.)

There are three possible reference points: the beginning of the
file, the current position in the file, and the end of the file.
The "type" value should be as follows:

type

o
1
2

starting position or reference point

beginning of the file
current position in file
end of the file

4404 Reference Manual @ 4-23

SECTION 4
Programmer's Guide

The argument "offset" is a four-byte 2's complement offset that
represents the amount of offset to be added to the reference
point to find the new position in the file. A positive number
indicates forward in the file; a negative number indicates
backward into the file. On return from the "seek" call, the new
current position is left in register DO. This is the current
position relative to the start of the file. To find the current
position in a file, you could use a system call of "sys
seek,0,1", finding the result in DO.

As an example, let's construct a simple random access routine.
Assume we have a data file with fixed-length records of 256
characters per record. We know we will never have more than
32000 records in our file, so the record number can be
represented in 16 bits. We want to write a subroutine that will
read the record specified by the record number in register aO and
leave the data at the location specified by the AO register. The
basic procedure will be to find the starting position of the
desired record in the file by multiplying the record number by
the record size of 256. Then we seek to that position and read
256 bytes. Our routine looks like this:

4-24 @ 4404 Reference Manual

getrec move.l
ext.l
Isl.l

* seek to record

move.l
move.l
sys
bes.l

aO, i read+2
dO
#8,dO

dO,iseek+2
fd,dO
ind,iseek
skerr

SECTION 4
Programmer's Guide

save address for read
make record number long
record*256 is offset

set seek address parameter
assume file descriptor at fd
indirect call to seek
branch if error

* file pointer positioned, now read record

code

iread

move.l
sys
bes.l
rts

dc.l
dc.l
dc.w
dc.l
dc.l

iseek

fd,dO
ind,iread
rderr

o
o
read
o
256

dc.w

get file descriptor
indirect call to read
branch if error
all finished

seek seek fllnction

seek address (unknown)
type 0: position from begin
read fu.nction code
buffer location (unknown)
character count to read

Notice that we llsed indirect calls to "seek" and "read," because
at assembly time we do not know what address we will need to seek
nor where in memory to place the data we read. By using indirect
calls, we can set aside an area of memory (at "iseek" and
"iread") where these values can be stored as the program
executes.

FILE STATUS INFORMATION

The "stat:.ls" and "of stat" calls are llsed to obtain information
about each file or device. "of stat" is llsed to obtain
information abollt a previollsly opened file while "statlls" obtains
information from an unopened file. The format for of stat is:

<file descriptor in DO>
sys of stat , buffer

The llser mllst load register DO with the file descriptor of the
previollsly opened file.

4404 Reference Manllal @ 4-25

SECTION 4
Programmer's Guide

The format for status is:

sys status,fname,buffer

With "status", the file is specified by providing the "fname"
parameter, which is a pointer to a zero-terminated string
containing the desired file name. In both commands the "buffer"
parameter is a pointer to a buffer in memory or an area of memory
into which the information about the file can be placed. This
buffer must be at least 22 bytes long. When the "statu.s" or
"of stat" call is completed, this buffer will contain all the
information available for the file in the format described below.

Assuming the buffer begins at some location called "buf", the
information in the buffer is as follows:

Name Location Field Size Information in Field

st dev buf 2 device number
st-fdn buf+2 2 fdn number st fil
buf+4 1 spare (for word alignment)
st mod buf+5 1 file mode
st=prm buf+6 1 permission bits
st cnt buf+7 1 link count
st-own buf+8 2 file owner's user id -st siz buf+10 file bytes 4 size in
st-mtm buf+14 4 time of last file modification
st=spr buf+18 4 reserved for future use

The device number is a number assigned to the device on which the
file resides. The fdn number is the number of the "file
descriptor node" associated with the file. The file descriptor
node is a block of information about the file and where it
resides on the disk. It is from the fdn that "status" and
"of stat" obtain their information.

The link count is the number of directory entries that are linked
to the fdn or actual file. More information on linking can be
found later in this section in the discussion titled "Directories
and Linking." The file owner's user id is a two-byte id that was
assigned to the user by the system manager when the user was
given a user name. The file size in bytes is the exact number of
characters in the file. The time of last modification is the
internal representation of the last time the file was written to.

4-26 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

The file mode and permission bytes each hold several bits of
information. This is done by assigning single bits within the
file mode to particular file types and within the permission byte
to the various possible permission types. The state of the
particular bit (0 or 1) indicates which type of file mode or
whether permission is given or denied. The file mode looks like
this:

file mode (st_mod):

:716: 5: 4: 3: 211 I 0 I
I I

block device
character device
directory

Notice that only three bits are used in this byte. Only one of
the three bits should be set at a time and it indicates the file
type. If the file is a regular disk file, none of the bits will
be set. A block device is a device such as a disk drive which
handles data in 512 byte blocks. A character device is one such
as the sound device (jdev/sound) that handles data single
character at a time.

The permisiions byte shows what permissions are granted or denied
for the file. Its format is as follows:

permissions (st_prm):

: 716: 5: 4: 3: 211: 0:

owner read permission
owner write permission
owner execute permission
others read permission
others write permission
others execute permission
user id bit for execute

In this byte, any or all of the permission bits may be set at one
time. If a bit is set, that type of permission is granted. If
cleared, permission is denied.

4404 Reference Manual @ 4-27

SECTION 4
Programmer's GQide

The "Qser id" permission bit reqQires fllrther clarification. If
this bit is set, it gives the llser of a file the same permissions
as the owner while that file is execllting. As an example of the
QsefQlness of this featQre, consider a Qser, "joe", who has a
database program which manipQlates a large data file. Now "joe"
does not want anybody on the system to be able to directly read
or write his data file, so he denies read and write permissions
on that file to others. (Of COQrse, he grants read and write
permissions for himself.) Even thoQgh he does not want anyone to
be able to read and write his data file directly, "joe" wou.ld
like for other Qsers to be able to rQn his database program,
which manipulates the data file. All he need do is set the "user
id" permission bit in his database program . With the "user id"
bit set, anyone who rQns the database program has the same
permissions as "joe," which allows them to manipulate the data
file while rQnning the database program. As soon as the database
program is terminated, however, the other user no longer has the
permissions of "joe," the owner.

Another example of the use of the "user id" bit can be seen in
the "crdir" or "create directory" command. A directory is a
special type of file, and the only way to create a directory is
with the "crtsd" system call. That call may only be executed by
the system manager. Without the "Qser id" bit, the only person
who COQld Qse the "crdir" command (which contains a "crtsd"
system call) WOQld be the system manager. The "crdir" program
has the "Qser id" bit set, however, so that anyone who rQns it
temporarily has the same permissions as the owner. The owner of
"crdir" is the system manager; thQS any user can create a
directory.

DIRECTORIES AND LINKING

A directory entry is nothing more than the name of a file and a
single pointer to the file descriptor node (fdn) for the file.
This fdn is a small unit on the disk; it contains various
information about a particQlar file. There is one and only one
fdn on a disk for each file which resides on the same disk. It
is possible, however, to have more than one directory entry point
to the same fdn. Two different Qsers COQld have an entry in
their own directory which pointed to the same fdn and therefore
the same file. This feature is called a "link" and you can see
it is possible to have many "links" to the same file.

4-28 @ 4404 Reference Manllal

SECTION 4
Programmer's G~ide

A long directory listing (Is +1) shows the number of directory
entries which point to or are linked to each file. This is
always "1" or greater; if it ever goes to zero no one is linked
to the file and it will be deleted. In fact when yo~ "remove" a
file, the command merely removes that name from the directory.
This decrements the link co~nt in the associated fdn. If that
coant is still non-zero, someone else is linked to the file and
it is not deleted from the disk. If the coant does go to zero,
no one else is linked to the file and it is deleted.

An example of linking can be seen in every directory on a 4404
disk. Recall that there are two entries, "." and " .. ," in each
directory. (They don't appear in a "Is" listing ~nless yo~ lIse
the "+a" option.) The "." entry represents the directory in
which that entry is fo~nd; " .. " represents the parent directory
of the directory in which it is fo~nd. Th~s typing "." as a
directory name is eq~ivalent to typing the entire path name for
the c~rrent directory. Typing " .. " is eqaivalent to typing the
path name for the parent directory of the c~rrent directory.
These directory entries are not separate files, b~t are links to
the carrent directory file and the parent of the carrent
directory. That is why YOll see a link co~nt of more than one for
every directory on the system.

The "link" and "~nlink" system calls allow the programmer to link
to files and ~nlink from files, respectively. The "link"
f~nction is quite straightforward: one specifies a pointer to the
name of the' file to be linked to, and a pointer to the new name
that will be pat into the directory. The "anlink" call is
eqaally straightforward: the programmer simply provides a pointer
to the filename or directory entry to be anlinked. This "anlink"
call is the method of deleting files, the "remove" command calls
on the "anlink" fanction to perform the file deletion. Note that
a file is not deleted by an "anlink" call anless the call removes
the last link to the file.

If a file is open when an "anlink" call is made, the link is
removed, bat the file will not be deleted or closed by the
operation. The aser can still read or write to the file as long
as it is left open. The 4404 operating system waits antil the
file is actually closed and then checks the link cOlInt to see if
it shoald be deleted from the disk. This creates interesting
possibilities for a program. A file can be opened and then
immediately anlinked. As long as the program leaves that file
open, it can read from it or write to it. When the program is
finished with the file, it has only to close it. If no one else
is linked to the file, it will be immediately deleted.

4404 Reference Man~al @ 4-29

SECTION 4
Programmer's GQide

OTHER SYSTEM FUNCTIONS

This discussion describes several features and f~nctions
available to the system programmer that are somewhat specialized.
Specific calling formats and parameters will not always be given;
for this refer to Section 7, System_Q~!!~.

THE "BREAK" FUNCTION

Earlier, we learned that when a task is started, it is allocated
text, data, and stack memory according to the program size. It
is possible for a rQnning task to change the amount of memory
allocated to it's data or stack spaces. It is also possible to
relinquish allocated memory back to the system, that is to
deallocate data or stack memory. The means of performing this
dynamic memory or stack allocation and deallocation are the
"break" and "stack" commands. An address is supplied to break
and the system attempts to allocate memory to be sure there is
RAM up through the specified address. Memory is allocated in
sections, so depending on the address specified there may be some
memory beyond the address. If an address is specified which
falls below the amount of program memory already allocated, that
memory is relinquished or returned back to the system.

THE "TTYSET" AND "TTYGET" FUNCTIONS

The 4404's "ttyset" and "ttyget" functions provide a way to alter
and examine several configuration parameters of devices. (The
communications port and console devices differ slightly in
format.) These parameters include such things as the line-cancel
character, the backspace character, adjustable delay after
carriage returns, mapping of upper to lower case, tab expansion,
etc. The configuration of all these parameters is represented in
six bytes of data. These six bytes can be read with the "ttyget"
system call to examine the current configurations, or can be set
with the ttttyset" system call to alter the current configuration.
A six-byte buffer must be established in memory to hold the
desired configurations for "ttyset" or to receive the current
configuration information for "ttyget." If we assume this buffer
begins at "ttbuf", the data has the following format:

Name

tt fIg
tt-dly
tt-cnc
tt-bks
tt-spd
tt=spr

4-30

Location

ttbuf
ttbuf+1
ttbuf+2
ttbuf+3
ttbuf+4
ttbuf+5

@

Contents

Flag byte
(reserved)
Line cancel character (default is Ctrl-U)
Backspace character (defaQlt is Ctrl-H)
Terminal speed
Stop outpQt byte

4404 Reference Manual

SECTION 4
Programmer's Guide

The Terminal Speed byte presently implements only one bit. It is
the high order bit (bit 7) and, if set, indicates that the
terminal has input characters waiting for the program. This bit
is meaningfQl only when read, i.e. the input-ready condition
cannot be set via this bit and "ttyset." The byte looks like
this:

Terminal Speed byte (tt_spd):

: 7:6:5 :413121110 I

unllsed
unused
unused
unused
unllsed
unused
unused
input ready

Under normal input operations, the "Input Ready" bit is not set
llntil an entire line has been input and terminated by a carriage
return. There are special input modes which can be established,
however, where the "Input Ready" bit will be set as soon as a
single character is input. These are the "raw I/O mode" and the
"single character input mode", and are described later in this
section. .

The Stop Olltput byte contains bits which control the stopping and
starting of output to terminals. There are two methods by which
a user can stop and start output to a terminal: the escape key
and XON/XOFF processing. The escape key method permits a user to
type an escape character (hex 1B) to stop output. A subsequent
escape character restarts the output. The XON/XOFF method
permits a user to type an XOFF character (hex 13) to stop output
and a subsequent XON character (hex 11) to restart it. Many
terminals produce XON and XOFF characters automatically to
prevent the computer from sending too many characters to the
terminal at once. The escape and XON/XOFF mechanisms can be
independently enabled or disabled by setting or clearing the
proper bits in the "tt_spr" byte. The byte looks like this:

4404 Reference Manual @ 4-31

SECTION 4
Programmer's Guide

Stop Output byte (tt_spr):

17161514131211101

unused
unused
unused
unused
unused
any character restarts output
enable XON/XOFF for output
disable ESC for stopping outp~t

When set, "Any Character Restarts Output" bit instructs the
terminal drivers to restart the output if it has been stopped by
either an escape or XOFF.

The eight bits of the Flag byte represent eight different modes
of operation for the terminal. When set, they imply that the
indicated mode is in operation. The format is as follows:

Flag byte (tt_flg):

1716151413121110 I

Raw I/O mode
Echo input characters
Expand tabs on output
Map upper/lower case
Auto line feed
Echo backspace echo char.
Single character input mode
Ignore control characters

The following paragraphs describe each of these modes.

Raw I/O Mode

In "raw mode", the terminal drivers effectively do no special
processing of the input or output characters. Each and every
character typed on the terminal is directly input, including
backspace characters, line cancel characters, tab characters,
Ctrl-C characters, and so on. Similarly, every character output
to the termirial is output directly: no tab expansion is
performed, no line feeds are appended to carriage returns, etc.
In addition, the parity bit is not stripped on either input or
output.

4-32 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

In "raw mode," the executing program has complete control of
every character input or output and the program must perform any
special processing itself. Under raw mode a "read" system call
will not have to wait for an entire line to be input before it
can read characters. If there is a single character available,
the "read" call will return with just that character. It is
still possible for a single "read" call to read more than one
character, but only if the characters have already been typed
into the input buffer before the call is made.

Echo Input Characters

If this mode is enabled, each character typed on the terminal
will be echoed to the display device. In such a case, the
terminal should be operating in full-duplex. An example of this
mode occurs when a user logs in and is asked for his password.
The login program writes the "Password:" message and then turns
the "echo input characters" bit off while the password is
entered. In that way the password is not echoed to the screen.
This mode is on by default.

Expand Tabs on Output

If the terminal does not have hardware tab expansion, this bit
can be set to allow the terminal driver software to automatically
expand tabs on output. Tab stops are assumed to be at 8 column
intervals. In other words, if this bit is on, then each time a
horizontal tab character ($09) is output, the system will space
over to the next column which is a multiple of 8 (unless it is
already at such a column). This mode is on by default.

Map Upper/Lower Case

The 4404 assumes that the terminal has upper and lower case
capability and that the user will type most commands and input in
lower case. It is possible, however, to lIse an "upper case only"
terminal by instructing the terminal drivers to map all typed
input characters from upper to lower case and to map all output
characters from lower to upper case. This is done by turning on
the "Map Upper/Lower Case" bit in the ttyset flag byte. When
this mode is on, then mapping is done in both directions. By
default, this mode is off (assumes lower case capability). It is
automatically turned on, however, if a user logs in with upper
case characters for his name. In this wayan "upper case only"
terminal can be connected to the 4404 without special
considerations.

4404 Reference Manual @ 4-33

SECTION 4
Programmer's GQide

Auto Line Feed

When this mode is on, the terminal drivers will aQtomatically
OQtpQt a line feed ($OA) after each carriage retQrn is OQtpQt.
This mode is on by defaQlt.

Echo Backspace Echo Character

If this mode is on and the backspace character is defined to be a
Ctrl-H ($08), the terminal drivers will echo the Ctrl-H, then
OQtpQt a space, and then OQtpQt another Ctrl-H. This will erase
the incorrect character for terminals which do not do so
aQtomatically. This mode is on by defaQlt.

Single Character Input Mode

"Single Character InpQt Mode" allows a program to inpQt one
character at a time withoQt having to wait for a carriage retQrn.
When not in the single character inpQt mode, a call to read a
single character WOQld have to wait Qntil an entire line
terminated by a carriage retQrn had been typed before it wo~ld
have access to a single character within the line. If single
character inpQt mode is on, the program can read a character as
soon as it has been typed. Note that it is still possible to
read mQltiple characters while in the single character inpQt
mode, if they are available. While in the single character inpQt
mode, the parity bit is stripped off of inpQt characters, but
only Ctrl-C, Ctrl-D, and Ctrl- are treated as special
characters. In other words, tabs, backspaces, and line cancels
are ignored and shoQld be processed by the Qser's program if
desired. This mode is off by defaQlt.

Ignore Control Characters

When this mode is on, the system will ignores all control
characters except for the following:

a Carriage Re't~rn
a Horizontal Tab
0 Ctrl-C
a Ctrl-D
0 Ctrl-
a Backspace Character

(if defined to be a control character)
a Line Cancel Character

(if defi'ned to be a control character)

Those control characters which are ignored will still be echoed
if the echo inpQt characters mode is also on. This mode is off
by defaQlt.

4-34 @ 4404 Reference Manual

PIPES

SECTION 4
Programmer's GQide

A pipe is a mechanism that permits. a task to commQnicate with
a child task.

A pipe allows commQnication in one direction only; it allows one
task to send information to another, bQt not to receive. If a
pair of tasks need two-way commQnication, two pipes mQst be
established; one to send from the first task to the second and
one to send from the second task to the first. Once the pipe is
established, the first task sends information to the second by
Qsing the "write" system call, jQst as it WOQld in writing to any
other device. The second task receives information from the
first by Qsing the "read" system call. The file descriptor
nQmbers for these write and read operations are provided by the
system when the pipe is created.

The pipe mechanism works sort of like a holding tank with a valve
on the inpQt and OQtpQt lines. If the tank is not fQII, the
writing task can PQmp data into it even thoQgh the reading task
has the OQtpQt valve closed (is not actively reading). Likewise,
if the tank is not empty, the reading task can drain information
OQt of it even thoQgh the writing task has the inpQt valve closed
(is not cQrrently writing). If the tank is fQII, the writing
task is forced to wait Qntil the reading task has emptied it
before being permitted to PQmp in more data. If the tank is
empty, the reading task mQst wait Qntil the writing task has
PQmped in some data. This" holding tank" is a 4K disk bQffer.
There is a bQffer for each pipe, bQt none show QP in any
directory. These pipe bQffers are placed on the disk Qnit which
has been configQred as the pipe device.

The following section of code establishes a pipe between a task
(A) and its child task (B). First, Task A calls "crpipe" to
create the pipe. Next, we immediately fork to create Task B, and
then set QP the file descriptors so that we will be writing from
task A to task B. The code WOQld look something like this:

4404 Reference ManQal @ 4-35

SECTION 4
Programmer's Guide

* now

sys
bes.l
move.l
move.l
sys
bra.s
bes.l
move.l
move.l
sys
move.l

Task A can

sys

* code for Task B

crpipe create pipe system call
piperr branch if error
dO,rdfd save read file descriptor
aO,wrtfd save write file descriptor
fork fork to spawn task B
child new task B here
frkerr task A checks for error
dO,tskBid save task id of child
rdfd,dO pipe read file descriptor
close close read (A only writes)
wrtfd,pipefd save pipe write file descriptor

write to pipe using pipefd

term end of task A

child move.l wrtfd,dO pipe write file descriptor
sys close close write (B only reads)
move.l rdfd,pipefd save pipe read file descriptor

* now Task B can read from pipe Qsing pipefd

Notice that each task closes the portion of the pipe that it
cannot Qse. As previoQsly stated, a pipe allows data to be
transmitted in only one direction. After performing the fork,
both tasks have open read and write pipe files. Now it is
assumed that the writing task will eventQally close the write
pipe file, and the reading task will eventQally close the read
pipe file. However, we must be sure that the writing task closes
the read file and the reading task closes the write file. In
fact, these files shoQld be closed as soon as possible, before
any reads or writes to the pipe are performed.

PROGRAM INTERRUPTS

Program interrQpts provide a way to interrQpt tasks Qnder
software control. One program or task can send a program
interrQpt to another task. This permits timing and
synchronization among the tasks in the system. It also gives the
programmer the ability to terminate tasks prematurely Qnder
software control.

4-36 @ 4404 Reference Manual

SECTION 4
Programmer's GQide

Sending and Catching Program Interrupts

Here is an example of how a program sends an interrQpt.

move.l
sys
bes.l

#327,dO
spint,SIGQUIT
error

get task number in DO
send qQit interrQpt

AssQming the effective Qser id of the task execQting the above
code matches that of task number 327 or that the above task is
owned by the system manager, a "qQit" interrQpt will be sent to
task 327. (We will define the qQit interrQpt and other
interrQpts in a moment.) Notice the system call Qsed to send
program interrQpts is "spint". It is also possible for a program
to send an interrQpt to all tasks associated with the terminal
which execQted the program. ConsQlt the "spint" description in
Section 7, Sys~em Call~ for details.

The "cpint" (for "catch program interrQpt") provides a way for a
task to "catch" or intercept a program interrQpt when it is
received. The task may then permit the interrQpt to complete its
defaQlt action (QsQally task termination), may ignore the
interrupt completely, or may take some special user-defined
action.

In effect, "cpint" permits the user to set up an interrupt vector
address, so that if a program interrupt is received, control is
vectored to that address. The programmer may place a rOQtine at
that address which handles the interrQpt in some special way.
Two addresses, $000000 and $000001, are special. If the address
specified for the caught interrupt is $000000, the default action
of the interrupt will be allowed to occQr, much as if the
interrupt had not been caught at all. If the address specified
is $000001, the interrQpt will be ignored, mQch as if the
interrupt had not even been sent. Note that no code is actually
placed at these addresses. The "cpint" function recognizes them
as special valQes and performs the indicated interrQpt handling
withoQt ever jumping to or Qsing them as real addresses. Any
other address sQPplied to "cpint" is assumed to be a valid
program memory address, and control is passed to that location.
There, the programmer places the desired interrQpt handling
routine; this rOQtine mQst be exited with an RTR instrQction, so
that control is resumed at the same point in the program where
the interrupt occurred.

4404 Reference Manual @ 4-37

SECTION 4
Programmer's Guide

Once a program interrupt has been caught and processed, the
system resets itself back to the default condition, and
interrupts are no longer intercepted. Therefore, to continue
catching program interrupts, the programmer must issue a new
"cpint" call after each interrupt is processed.

Table 4-1 shows the program interrupts that are available on the
4404.

4-38 @ 4404 Reference Manual

Table 4-1

4404 PROGRAM INTERRUPTS

SECTION 4
Programmer's Guide

I Name I Number I Description : Comments

: SIGHUP

: SIGINT
I
I

I 1

: 2
I
I

I SIGQUIT I 3

I SIGEMT
I
I

I 4
I
I

I SIGKILL I 5
I I
I I

I SIGPIPE : 6
I I
I I

I SIGBUS : 7

: SIGALRM : 10

: SIGTERM
I
I

: 1 1
I
I

: SIGTRAPV I 1 2

: SIGCHK

: SIGEI~T2
I
I

I SIGTRAP1
I
I

I 1 3

: 14
I
I

I 1 5
I
I

I SIGTRAP2 I 1 6
I I
I I

SIGTRAP3 17

4404 Reference Manual

I hangup interrupt

I keyboard
I interrupt

I quit interrupt

I EMT $AXXX
I emulation int.

: produces core dump

: produces core dump
I
I

: task kill
: interrupt

: can't be caught/ignored I
I I
I I

: write broken pipe :
I • t I
I ln · I

I bus fault

: alarm interrupt

I task termination
I interrupt

: TRAPV instruction I produces core dump

I CHK instruction

: EMT $FXXX
: emulation int.

: TRAP #1
I instruction

I TRAP #2
: instruction

I TRAP #3
I instruction

: produces core dump

: produces core dump
I
I

I produces core dump
I
I

I produces core dump
I
I

produces core dump

@ 4-39

SECTION 4
Programmer's GQide

: SIGTRAP4 I 18
I I
I I

I SIGTRAP5 I 1 9
I I
I I

I SIGTRAP6 : 20
I I
I I

: SIGILL
I
I

: SIGDIV

I SIGPRIV
I
I

: 22
I
I

I 23

I 24
I
I

I SIGADDR : 25

: SIGDEAD
I
I

: SIGWRIT
I
I

: SIGBND
I
I

: SIGUSR1
I
I

I SIGUSR2
I
I

i SIGUSR3
!
I

: 26
I
I

: 27
I
I

: 29
I
I

: 30
I
I

\ 31
I
I

I 32
I
I

: TRAP #4
: instrQction

: TRAP #5
: instrQction

: TRAP #6
: instrQction

: illegal
: instruction

: divide by zero

: privilege
: violation

I address error

: dead child task
I interrupt

I write to
I read-only memory

: segmentation
: violation

: user-defined
: interrQpt #1

\ Qser-defined
: interrQpt #2

I llser-defined
: interrllpt #3

: prodQces core dump
I
I

: prodQces core dQmp
I
I

: prodQces core damp
I
I

: prodQces core damp
I
I

: prodQces core damp

i prodQces core damp
I
I

I produces core damp

: ignored by default
I
I

I prodQces core damp
I
I

: produces core damp
I
I

If not caQght or ignored, all of these program interrQpts (except
SIGDEAD) by defalllt callse termination of the task to which they
are sent. As listed above, some also produce a "core damp". A
"core dump" is a disk file which contains a mirror image of the
contents of memory. Each byte in the program and stack space are
written to a disk file immediately after receipt of the
interrupt. This file can be examined to determine the state of
memory at the time the interrllpt was received. This is often
Qseful for diagnostic purposes.

4-40 @ 4404 Reference Manllal

SECTION 4
Programmer's GQide

Many of the interrQpts are initiated by 68010 exception
processing. The caQse of those interrQpts can be Qnderstood by
st~dying the docQillentation of the 68010 microprocessor. Certain
interrupts in the list are not directly initiated by the 68010
and "need f~rther definition.

1. Hangup InterrQpt: Generated by the operating system when a
terminal driver loses the carrier that it had previoQsly
established for modem operation. This interrQpt caQses the
user associated with the terminal to be aQtomatically logged
off. Certain programs (sQch as the editor and BASIC)
intercept this interrupt and take proper actions to save
current files before logging off.

2. Keyboard Interrupt: Generated by typing a Ctrl-C on the
terminal. This interrQpt terminates the foregroQnd task of
the associated terminal.

3. Quit InterrQpt: Generated by typing a Ctrl-Backslash on the
terminal. This interrQpt is jQst like the Keyboard
InterrQpt except that it additionally prodQces a core dQillP.

4. EMT $AXXX EmQlation InterrQpt: Generated by the 68010 when
an instrQction with the pattern 1010 in bits 15 throQgh 12
is encoQntered.

5. Task Kill InterrQpt: Always kills the task to which it is
sent. A task may not catch or ignore this interrQpt.

6. Write Broken Pipe InterrQpt: Generated when a pipe between
two tasks is broken. This OCCQrs when the reader is closed
and the writer attempts f~rther writing.

10. Alarm InterrQpt: Generated by the "alarm" system call after
the specified nQillber of seconds. Unless caQght or ignored,
this interrQpt will terminate the task.

11. Task Termination InterrQpt: This interrQpt is the normal
means of interrQpting and terminating a task. Unlike the
Task Kill InterrQpt, the Task Termination InterrQpt may be
caQght or ignored.

14. EMT $FXXX EmQlation Interrupt: Generated by the 68010 when
an instrQction with the pattern 1111 in bits 15 throQgh 12
isencoQntered.

4404 Reference ManQal @ 4-41

SECTION 4
Programmer's GQide

26. Dead Child Task InterrQpt: When a task terminates, it sends
an interrQpt to its parent task, informing the parent that
the child has terminated. This interrQpt is ignored by
defaQlt--it mQst be explicitly caaght by the parent in order
to fQnction. At the time of this writing, the Dead Child
Task InterrQpt is not implemented.

27. Write to Read-Only Memory: An attempt was made to write to a
section of memory which has been reserved as Read-Only by
the memory management system.

29. Segmentation Violation: An attempt was made to access memory
which is oQtside the address space allotted to a task.

30-32. User-Defined InterrQpts: These interrQpts are additional
interrQpts which a Qser program or set of programs may
issQe and catch for whatever PQrpose they wish.

On retLlrn from a "cpint" call, register DO contains an address.
This address is the address which the system was Qsing on receipt
of program interrQpts. In other words, it is the address which
was provided in the previoQs "cpint" call. This old address can
be Qsed to tell what kind of action a program was taking on
receipt of program interrQpts before the cQrrent "cpint" call.
For example, aSSQme we have a program that is ignoring qQit
interrQpts. If we now issQe the instrQction:

sys cpint,SIGQUIT,O

(which says to take the defaQlt action on receipt of a qQit
interrQptJ we WOQld find "1" retQrned in the DO register. That
is the address which was previoQsly being Qsed, and we know that
an address of 1 says to ignore the interrQpt.

Knowing what type of program interrQpt action is cQrrently being
taken can be very QsefQI in the case where one task starts
another. If one task is ignoring some particQlar interrQpt and
that task starts some new task rQnning, the new task shoQld
Qsually also ignore the interrQpt. Assume we Program A starts
Program B by doing a "fork" and "exec". Also assume Program B
normally wishes to catch keyboard interrQpts (Ctrl-Cs) and
process them in a special way. Program B shoQld be written to
first check how Program A was handling keyboard interrQpts. If
Program A was not intercepting keyboard interrQpts or was
catching them, Program B may go ahead and catch them and process
them as desired. If, however, Program A was ignoring keyboard
interrQpts, then Program B shoQld also ignore them. The code for
Program B to handle all this properly would be:

4-42 @ 4404 Reference Manual

contin

sys
cmp.l
beq
sys

cpint,SIGINT,1
#1 , dO
contin
cpint,SIGINT,handle

SECTION 4
Programmer's Guide

Start by ignoring
Was program A ignoring?
If so, then so should we
If not, catch it

Note that by ignoring the keyboard interrupt while checking what
Program A was doing, we avoid a potential chance for a keyboard
interrupt to come through and be improperly handled.

As an example of program interrupt catching, let's examine a
portion of code that would put a program to sleep for 30 seconds.
The technique will be to send an alarm interrupt with the "alarm"
system call, then put the task to sleep with the "stop" system
call. In order to catch the "alarm" interrupt and continue
properly in our program, we will use the "cpint" system call.

wake

sys
move.l
sys
sys

rtr

cpint,SIGALRM,wake
#30,dO
alarm
stop

catch alarm & goto wake
delay 30 seconds

wait for alarm interrupt
continue with program

do nothing with interrupt

The "cpint" system call tells the task to catch any alarm
interrupts and handle them as specified by the code at "wake".
In this example the code at "wake" does absolutely nothing but
retQrn. That is because when the alarm is received we want to
simply continue execution of the program where we left off (just
after the "stop" system call).

4404 Reference Manual @ 4-43

SECTION 4
Programmer's Guide

Interrupted System Calls

Most system calls cannot be interrupted by a program interrupt.
That is, once a system call is executing, it will finish
regardless of whether a program interrupt is pending. Once that
system call is completed, the user's program will then see any
waiting program interrupt. There are a few calls, however, which
may be terminated by a program interrupt. In particular, those
system calls which may be interrupted are "read" and "write" (if
the device being read or written is a slow device such as a
terminal or printer) and the "stop" and "wait" calls. A "read"
or "write" call to a fast device, such as a disk file, will never
be terminated by a program interrupt.

If a program interrupt does get through to one of the system
calls, the following action takes place. First, the system call
is immediately terminated, and control is passed to the program
interrupt handling code if the interrupt is being caught. Then,
when the interrupt handling code is complete, control is passed
to the instruction immediately following the interrupted system
call and an error status is returned. This error status is
accompanied by an "EINTR" error (number 27). In this way, the
program which made the system call can detect that it was
interrupted and re-issue the system call if desired.

As an example, consider a program which prompts the user for a
line of data from the terminal. If a program interrupt is sent
to that program while a "read" system call is getting the data
from the terminal, that call may be prematurely terminated; i.e.
not all the data may be returned. Once the program interrupt
handling code was complete, our program would continue right
after the "read" call, but would show an "EINTR" error. Our
program may choose to treat the EINTR error like any other and
terminate with an error message. An alternative, however, would
be to recognize that it was an EINTR error and loop back in our
code to re-iSSlle the prompt and the Hread ii system call to input
the data again.

LOCKING AND UNLOCKING RECORDS

The "lrec" and "urec" system calls provide a record locking
mechanism that prevents more than one task attempting to access a
file at one time. A program or task can "lock" a record of data
until such time as it is ready to "unlock" or release it for
others to use. While that record is locked, no other task would
be able to access it.

4-44 @ 4404 Reference Manual

SECTION 4
Programmer's Gaide

The operating system maintains a table showing what records are
locked in the system. These records may be of any length, as
specified by the task which performs the lock. Note that a
single task may lock only one record in a file. However, other
tasks can lock other records in that same file, and a single task
can lock a record in more than one file at a time.

When a task issaes an "lrec" call to lock some record within a
file, the system first checks the locked record table to see if
the calling task already has a record locked in this file. If
so, any sach record is unlocked before the new record lock can be
made. Next, the system checks to see if the record to be locked
is available or if some other task may have previoasly locked
some portion of it. If available for locking, the system makes
an entry in the locked record table and retarns to the calling
task. If the desired record overlaps some portion of an already
locked record, the system retarns with an ELOCK error. At this
point, the calling program coald take some appropriate action.

There are three ways for a task to anlock a record. The first is
throagh ase of the "arec" system call, which anlocks whatever
record may have been locked by the calling task for the specified
file. The second is by closing a file. Upon closing, any
records locked by the task that opened the file are aatomatically
anlocked. The third is by locking another record in the same
file; this will aatomatically anlock any record which is
carrently locked.

Having said this, we mast back ap and tell yoa that "locking" a
record does not really prevent another task from accessing it.
Any program that wishes to can still read or write the data which
some other program has locked in a record. In order for locking
to provide the desired results, all programs mast take apon
themselves the responsibility of avoiding reading or writing to a
locked record. This may be accomplished by attempting to lock
records before reading or writing them. If the record is
available, no error is retarned, and we can go ahead with the
read or write. If an error is retarned (ELOCK error), we know
that someone else already has the record locked and we shoald
take some other action. One possibility is to pat oar task to
sleep for a few seconds (with the "alarm" and "stop" system
calls), and then try locking the record again. Proper ase of the
lock and anlock calls will yield the same resalt as if locking
actaally did prevent another task from reading or writing. Note
that locking and anlocking will not be necessary in all cases,
only in those where a data file is shared and conflicts can
occ ar.

4404 Reference Manaal @ 4-45

SECTION 4
Programmer's Guide

SHARED TEXT PROGRAMS

The 4404 operating system lets you separate an assembly language
program into two sections, a "text" segment for nonchanging
memory or memory which will only be read, and a "data" segment
for memory which can be changed by writing into it. When a task
runs this program, a section of memory will be assigned to each
segment. If a second task runs the program at the same time, the
system will recognize the fact that it already has a copy of the
text segment in memory and will only load the data segment into
memory for the second task. The system will then map the same
memory that contains the text segment for the first task into the
address space for the second task when it runs. For more details
on how to produce a shared text type program, refer to Section 5,
The Assembler and Linking Loader.

GENERAL PROGRAMMING PRACTICES

This discussion covers several general programming practices that
are recommended when writing assembly language programs to run
on the 4404.

STARTING LOCATIONS

Assembly language programs should not have specific origin
addresses. Rather, the load addresses for the text and data
sections of a program (as well as the stack established by the
system) should be specified at load time. These addresses can be
explicitly specified to the loader, but should generally assume
the defau.lt values found in the file "/lib/ std env". This file
contains the proper addresses for the hardware memory manager and
is automatically read by the linking-loader.

STACK CONSIDERATIONS

When a program begins execution, it is assigned a portion of
memory to contain the program stack. The cpu's system stack
pointer (register A7) is left pointing to some location within
this memory. The user's program should not write into locations
in memory higher than this initial stack pointer location. The
~assed parameters which lie directly above the stack pointer
(higher in memory) may be read, but nothing should be written
above the initial stack pointer location.

4-46 @ 4404 Reference Manual

SECTION 4
Programmer's Guide

HARDWARE INTERRUPTS AND TRAPS

In general, a user program need not perform any hardware
interrupt or trap handling. Some traps can be handled in the
same fashion as program interrupts by using the "cpint" system
call.

DELAYS

To maintain system efficiency, a user's program should not
contain delay routines which tie up the processor for long
periods of time. Because of task switching, a delay loop does
not provide accurate timing delays anyway. The preferred method
is to use the "alarm" system call followed by a "stop" system
call. The program must also then use the "cpint" system call to
catch the "alarm" interrupt and continue with the desired code.

SYSTEM "LIB" FILES PROVIDED

Several system library files are provided for the convenience of
the assembly language programmer. Located in the "/lib"
directory, these files contain definitions for several system
related calls, tables, buffers, etc. The programmer may include
these definitions in his programs by simply using the "lib"
instruction in the 68010 assembler. These files include:

sysdef
sysdisplay
syserrors
sysints
sysstat
systim
systty

System call definitions
System display and event definitions
System error definitions
Program interrupt definitions
Status and of stat buffer layout
Time and ttime buffer layouts
Ttyget and ttyset buffer layout

An additional file is provided for use by the linking-loader. It
is called by the linking loader and should not be included in an
assembler program.

std env Standard environment for linking-loader

4404 Reference Manual @ 4-47

SECTION 4
Programmer's Guide

GENERATING UNIQUE FILENAMES

Often, it is necessary for a program to generate a filename. A
typical example is when a program wishes to create a scratch file
of some sort. In a single-task environment, the program could
just use some name defined at assembly time. In a multi-task
environment, however, more caution is required. If the program
which generates the filename is run as more than one task
(background/foreground for example) there may well be conflicts
since each copy of the running program would be attempting to
create and manipulate the same file. The proper technique to
avoid this problem is to have the program include the current
task id as part of the filename. Since each executing copy of
the program has a different task id, they will each generate
different filenames. Use the "gtid" system call to obtain the
task id number, then convert it to ASCII and include it as part
of the filename.

DEBUGGING

Assembly language debugging on the 4404 is accomplished via the
"debug" command. This command provides tools such as memory
dumps, breakpointing, and single-stepping. Refer to Section 2,
User Commands and Utilities, for documentation on the "debug"
utility.

PROGRAMMING EXAMPLE

The following sample utility demonstrates several of the calls
and techniques in writing assembly language utilities on the
4404. This utility reads a file {or list of files) and strips
out all control characters except for carriage returns ($Od) and
horizontal tabs ($09). The syntax of the command line is as
follows:

strip [file] ...

The square brackets indicate that the file name specification is
optional. If no filename is supplied, "strip will read the
standard input. The three periods (" ... ") indicate. that it is
possible to supply more than one file name. In such a case,
strip will read all the files in order and write the stripped
output to the standard output.

4-48 @ 4404 Reference Manual

SECTION 4
Programmer's GQide

OQr basic task, then, is to read either a list of files or the
standard inpQt, strip the necessary control characters, and write
the resQlt to the standard OQtpQt device. In order to handle any
size file(s), we shall read and write the data into a bQffer. We
know that for efficiency, the bQffer shoQld be an even mQltiple
of 512 bytes, bQt how big a mQltiple? The code to implement this
Qtility will obvioQsly be qQite small, SQch that the program and
the bQffer COQld easily fit in 4K of memory. Since this Qtility
will probably not be freqQently Qsed, we decided to limit the
program memory Qtilization to only 4K. We will make the
read/write bQffer as large as possible within that 4K space,
while keeping it a mQltiple of 512 bytes.

The first step, after titling and describing the program, is to
inclQde the system definitions with the "lib" instrQction on line
17. Next we actQally begin the code section of OQr program with
the "text" statement in line 23. In line 27 we load the "a6"
register with a pointer to the list of filename arguments. The
list is nQII if no filename was specified. Notice that we skip
eight bytes, fOQr containing the argument cOQnt and fOQr
containing argument 0 which is the name of the command itself.

Lines 28 throQgh 31 check to see if a file or files were
specified on the command line. If so, the argument cOQnt (what
the system stack is pointing to) will be greater than 1 becaQse
argument 0 (the command name) cOQnts as one. If the argument
cOQnt is 1, no file was specified, so we mQst read the standard
inpQt. The file descriptor for standard inpQt is 0, so that
valQe is saved in "ifd" and we jump ahead to process that inpQt.
If a file was specified, we enter a loop to read throQgh all
specified files.

In line 35 we obtain the pointer to the next file in the list and
store it at "opname". If that pointer is zero (a nQII pointer),
we have reached the end of the list, and we jQmp off to the exit
code at "done." If it is non-zero, it mQst be the address of a
filename string. Lines 40 throQgh 42 open that file for read and
save the file descriptor in "ifd". Note that the open is done
via an indirect system call. This is necessary becaQse when the
program is written, we do not know what filename to specify in an
open call. The pointer to the name of the file to be opened is
only discovered as we rQn the program. When we stored the
filename pointer at "opname" in line 35, we were acttlally storing
the filename pointer in the parameter list for the QPcoming
indirect open system call.

4404 Reference ManQal @ 4-49

SECTION 4
Programmer's Guide

In line 46 we call a subroutine named "strip" to read through the
file whose descriptor is in "ifd," strip out the control
characters, and write the result to standard outPJ.t. Line 47
branches back to the top of the loop to look for another possible
input file.

The "strip" subroutine is where the control characters are
actually stripped. In lines 67 through 69 we read "BUFSIZ"
characters into memory at "buffer." Lines 73 and 74 check for
end-of-file. If we were at the end of the file, we jJ.mp to
"strip9" and exit the subroutine. If not, we go on to lines 80
through 91, where the control characters are stripped from the
buffer. Note that after the control characters are stripped, the
resulting data is left in the same bJ.ffer. Because some
characters may have been stripped out, the location of the end of
the data in the buffer may be lower than before the stripping.

After the stripping, we fall into lines 96 through 101, where the
stripped data is written out to standard output. Lines 96 and 97
calculate the number of characters to write. It is equal to the
difference between the pointer to the end of the data in the
buffer and the pointer to the beginning of the buffer. The
result is stored in the parameters for an indirect write call.
In line 98 we obtain the file descriptor for the standard output
file. Lines 99 and 100 carry out the indirect write system call.
In 101 we jump back to the beginning of the subroutine to read in
another buffer of data.

Lines 113 through 134 contain the error handling code. If an
error occurs, we simply write an appropriate message to the
standard error output (file descriptor 2). The important thing
to note about this code is that we save the error status so that
it may be passed on to the "term" system call.

Lines 144 through 158 contain temporary storage and buffers.
First are the parameter lists for the indirect open and write
calls mentioned earlier. Line 153 reserves storage space for the
current input file descriptor. Lines 155 through 158 reserve the
read/write buffer. The buffer starts on a 512 byte boundary and
the end of the buffer is the end of the 4K memory page. Recall
that read/write efficiency is gained not only by a buffer size
which is a multiple of 512 bytes, but also by beginning the
buffer on a 512 byte boundary. Line 157 establishes the buffer
size b¥ calculating the difference between the end of the 4K page
($1000) and the beginning of the btlffer. The "end" statement on
line 161 specifies the utility starting address in its operand
field.

4-50 @ 4404 Reference Manual

SAMPLE "STRIP" UTILITY

SECTION 4
Programmer's Guide

1
2

*

3 * Sample "strip" Utility
4 *
5 *
6 *
7 *

Copyright (c) 1984 by
Technical Systems Consultants, Inc.

8 * Utility to strip all meaningless control characters from
9 * input file and write stripped version to standard output.
10 * Accepts list of input files or defaults to standard input.
11 * For the purpose of this utility, "meaningless control
12 * characters" are all characters with qnd ASCII value between
13 * $00 and $1F inclusive except carriage return ($OD) and
14 * horizontal tab ($09).
15 ***
1 6
17
18
1 9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

lib sysdef read system definitions

* start of main program

text begin text segment

* start by seeing if any input files were specified

start lea
cmp .1
bhi.s
move .1
bra.s

8 (a7) ,a6
#1 , (a7)
main2
#0, ifd
main4

set arg ptr past count & argO
file specified only if argcnt)1
branch if filenames present
else use standard input
go process std. input

* check to see if any more files specified

main2 move.1
beq.s

(a6)+, opname
done

* open specified file for read

sys
bes.s
move .1

ind,iopen
opnerr
dO, ifd

get next argument in list
branch if no more args

do indirect open call
branch if error
save input file descriptor

* strip control characters from this file

main4 bsr.s
bra.s

strip
main2

subroutine to strip CTRLs
look for more files

* finished all input files, terminate task

done move.1
sys

#O,dO
term

show normal termination

4404 Reference Manual @ 4-51

SECTION 4
Programmer's Guide

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

* s~broutine to strip meaningless control characters
* from the file specified by file descriptor in "ifd*
* and write result to standard output.

*begin by reading a buffer full

strip move .1
sys
bes.s

ifd,dO get input file descriptor
read, buffer,BUFSIZ read buffer fQll
rderr branch if read error

* check for end of file (0 characters read)

tst .1
beq.s

dO
strip9

end of input file?
exit if so

* do actual stripping of control characters. This will
* be done in place in the buffer by collapsing the data
* as meaningless control characters are stripped.

move .1
move .1
bra.s

strip4 move.b
cmp.b
bhi.s
cmp.b
beq.s
cmp.b
bne.s

strip5 move.b
strip6 dbra

#buffer ,aO
aO,a 1
strip6
(aO)+, d 1
$#1F,d1
strip5
#$OD, d 1
strip5
#$09~d1
strip6
d1,(a1)+
dO,strip4

point to source buffer
point a1 to destination buffer
enter DBcc loop
get a character into d1
a control character?
go keep character if not
a carriage return
keep if so
a tab?
if not, don't keep
put char. in buffer
decrement count; loop if more

* finished stripping, a1 ~oints to end of buffer of
* stripped data ready to be written

sub .1
move .1
move .1
sys
bes.s
bra.s

strip9 rts

#buffer, a 1
a1,wrtcnt
#1 ,dO
ind,iwrite
writerr
strip

find no. of chars to write
store in parameters
write to standard output
do indirect write
branch if error
go read another section

exit routine

4-52 @ 4404 Reference Manual

SECTION 4
Programmer's GQide

107
108
109 **
110
111 * error handling rOQtines
11 2
113 opnerr
114
11 5
11 6
11 7 rderr
118
11 9
120
121 wrterr
122
123
124
125 err
126
127
128
129 opners
130opner1
131 rderrs

move.1
move.1
sys
bra.s
move .1
move.1
sys
bra.s
move .1
move .1
sys

move .1
sys

fcc
eqtl
fcc

132 rderr1 eqQ
133 wrters fcc
1 34 wrter1 eqtl
135
136

dO,-(a7) save error stattls on stack
#2,dO standard error OQtpQt
write,opners,opner1
err
dO,-(a7) save error statQs on stack
#2,dO standard error OQtpQt
write,rderrs,rderr1
err
dO,-(a7) save error stattls on stack
#2,dO standard error OQtpQt
write,wrterr,wrter1

(a7)+,dO
term

PQII error statQs from stack
exit program

"Can't open inpQt file.",$d,O
*-opners
'Error reading inpQt file.' ,$d,O
*-rderrs
'Error writing OQtpQt file.' ,$d,O
*-wrters

137 **
138
139 * temporary storage and bQffers
140
1 41
142

data begin data segment

143 * indirect open system call parameters
144 iopen dc.w open open f~nction code
145 opname dc.1 0 name of file to open
146 opmode dc.1 0 open mode 1 (reading)
147
148
149
150
1 51
152

* indirect write system call parameters
iwrite dc.w write write f~nction code
wrtbQf dc.1 bQffer bQffer to write from
wrtcnt dc.1 0 byte cOQnt to write

153 ifd
154

ds .1 inptlt file descriptor

155
1 56 btlffer
157 BUFSIZ
158

ds.b
eqQ
eqQ

512-24
*
$1000-512

reserve tlp to 512-byte bOQndary
start on 512-byte boundary
mQltiple of 512 bytes

ds.b BUFSIZ reserve space for btlffer
159
160
1 61 end start

4404 Reference Mantlal @ 4-53

Section 5

THE ASSEMBLER AND LINKING LOADER

INTRODUCTION

The 4404's assembler supports conditional assembly as well as
numerous other directives for convenient assembler control. The
assembler executes in two passes and can accept any size file so
long as sQfficient memory is installed to contain the symbol
table. Output from the assembler is in the form of a relocatable
object file.

This section describes the operation and use of the Assembler and
Linking Loader. The Assembler accepts most of the Motorola
standard mnemonics for instructions, and fully supports the
68000/68010 instruction set. This section describes differences
between the Motorola standard for instructions and those
supported by the assembler.

This section is not intended to teach the reader assembly
language programming nor the full details of the 68000
instruction set. It assumes the user has a working knowledge of
assembly language programming and a manual describing the 68000
instruction set and addressing modes in full.

Throughout this section angle brackets ("<,, and ">,,). are often
used to enclose the description of a particular item. The angle
brackets to show that it is a single item even though the
description may require several words. In addition, square
brackets ("[" and "J") are used to enclose an optional item.

Details of the instruction set, assembler syntax, and addressing
modes were obtained from "M68000 16/32-Bit Microprocessor
Programmer's Reference Manual", Copyright 1984 by Motorola
Incorporated.

INVOKING THE ASSEMBLER

Assembler text files must be standard text files with no line
numbers or control characters (except for carriage returns and
tabs). Once you have both the assembler and the edited source
file on a disk or disks which are inserted in a powered-up
system, you are ready to begin.

The Command Line

The minimum command line necessary to assemble a source file is:

++ asm sourcefile

4404 Reference Manual @ 5-1

SECTION 5
Assembler and Loader

When parameters are omitted, the assembler will aSSQme default
parameters. Two types of outp~t are available from the
assembler: object code output and assembled source listing
output. (The options regarding the assembled source listing
output will be described a little later.) Object code is written
into a operating system file. It is also possible to disable
production of the object code file. Since no specifications are
made concerning object code output in the above example, the
assembler will assume the default case, which is to produce an
object file. Since no name was specified, the object file will
assume the same name as the input source file specified but with
the characters ".r" appended. If there is not room to append
those two characters, the last one or two characters of the input
file name will be truncated to make room. In our above example,
the created binary file would be named "sourcefile.r". Should a
file exist with the same name, it will be automatically deleted
with no prompting.

If you wish to create an object file with another name, you may
do so by placing the desired file specification on the command
line as follows:

++ asm sourcefile +o=objectfile

The "+0=" is an option to the assembler which specifies that an
object file is being created with the specified name. This
example would produce an object file named "objectfile". Again,
if a file by that name already existed, it would be deleted to
permit creation of the new object file.

Multiple Input Source Files

The 4404 assembler is capable of accepting more than one file as
the source for assembly. If multiple input files are specified,
they are read in the calling order and assembled together to
produce a single output file. This permits the user to break
source programs down into more convenient size source files which
may then be assembled into one object file. As mentioned, the
files are read sequentially in the calling order with the last
line of source from the current file ·being followed immediately
by the first line of the ensuing file. All "end" statements in
the source are effectively ignored and the assembly is terminated
when the last line of the last source file is read.

There are two ways to specify multiple input files to the
assembler: by· entering the name of each file and by a match list
in a file specification. Entering each filename would look like
this:

++ asm file1 file2 file3 file4

5-2 @ 4404 Reference ManQal

SECTION 5
Assembler and Loader

Using a match list in the file specification we might have:

++ asm file[1 -4]

In this example, the sqllare brackets do not denote an optional
item, bllt rather are the method of specifying a list of match
characters. Both of the above examples wOllld prodllce the same
reslllt. Note -that in these examples an object file wOllld be
created by defalllt and wOllld be called "file1.r" (the name is
taken from the first inpllt file). As before, we can also specify
an object file name as follows:

++ asm file1 file2 file3 file4 +o~command

which wOllld reslllt in an object file called "command".

Specifying Assembly Options

Now we shall go one step fllrther and add a set of single
character option flags which may be set on the command line as
follows:

++ asm sOllrcefile +options

The pIllS sign is reqllired to separate the option(s) from the file
specification(s). In this example, the word "options" following
the pIllS sign represents a single character option flag or list
of character option flags which either enable or disable a
particlllar option or options. In all cases, they reverse the
sense of the particlllar option from its defalllt sense. Any
nllmber of options may be specified and they may be specified in
any order. There may not be spaces within the option list.

Following is a list and description of the available options:

+b Do not create a binary file on the disk, even if an
binary file name is specified. This is llseflll when
assembling a program to check for errors before the
final program is completed or when obtaining a printed
SOllrce listing.

+e Sllppress end sllmmary information. At the end of the
assembly, the assembler may report the size of the
segments and the total cOllnt of errors, warnings and
excessive jllmps. Often the llser does not wish to have
any OlltPllt generated at all; the +e option will
sllppress this sllmmary information. If this is llsed
withollt selecting the +1 and +s options, then it is

4404 Reference Manllal @ 5-3

SECTION 5
Assembler and Loader

5-4

possible that no listing OQtpQt will be generated.
However, if there are any errors reported in the
modQle, this sQmmary information will not be
sQPpressed.

+f Disables the aQto-fielding featQre of the assembler
SQch that assembled OQtpQt lines appear in the exact
form as fOQnd in the inpQt file.

+F Enable debQg or "fix" mode. There are two forms of
line comments. One begins with an asterisk (*) the
other with a semicolon (;), both in the first colwnn of
the source line. If the comment begins with a
semicolon, the +F option will instrQct the assembler to
ignore the semicolon and process the line as thoQgh the
semicolon never existed. The asterisk in the first
colwnn of a source line will always denote a comment
regardless of the state of this option.

+1 ProdQce the assembled listing OQtpQt. If specified,
the assembler will output each line as it is assembled
in the second pass, honoring the 'lis' and 'noll
options (see the 'opt' directive). Those lines
containing errors will always be printed, regardless of
whether or not this option is specified.

+L Produce a listing of the file during the first pass of
the assembler. The assembler prints unformatted lines
(exactly as read) to standard output.

+n Enables the printing of decimal line numbers on each
output line. These numbers are the consecQtive nwnber
of the line as read by the assembler. Error lines are
always output with the line number, regardless of the
state of this option.

+s Produce the symbol table OQtput. If this option is
specified, the assembler will produce a sorted symbol
table at the end of an assembly. Note that the '1'
option will not prodQce the symbol table OQtput, jQst
the SOQrce listing. In the symbol table, global
symbols are preceded by an '*,' and other symbols by a
blank.

+S Limit each symbol to only eight characters internally.
Normally, the Qser can define and Qse symbols that
contain 63 uniqQe characters. However, in some cases,
it may be necessary to limit the uniqueness of the
symbols to only eight characters.

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

+t Produce object code for the 68000 rather than the
68010. This option affects only the code generation
for the "Move from CCR n instruction. Normally the
assembler produces the 68010 version of this
instruction. If this option is specified, the
assembler produces the 68000 "Move from SR" instruction
(Privileged on the 68010), in its place.

+u Set all undefined symbols as external. In some cases
the ~ser may wish to assemble a module that has some
undefined external symbols. The +u option will treat
all ~ndefined references as external references. The
+Q option should not substitute for the good
programming practice of listing all external symbols in
the operand field of the "extern" directive.

+0 file Allows specification of an ou.tput object file name
(in this example "file").

Order for Specifying Filenames, Options, and Parameters

Inpu.t filenames, options, and command line parameters can be
specified to the assembler in any order. The assembler scans the
input command line twice, once to pick ou.t all options and
parameters (they all begin with a plus sign) and then again to
pick out all file specifications. Place order is significant
only when multiple input files are specified. They will be
assembled in the order entered on the calling line.

Sending Output to a Hardcopy Device

The assembler uses the facilities of the 4404's operating system
to send the assembled listing to a hardcopy device. The most
common means are to route the standard output to a file that may
later be spooled or to pipe the standard output to a spooler.

EXAMPLES:

++ asm test

Assembles a file called "test" and creates an binary file called
"test.r" in the same directory. No listing is output (except for
any lines with errors) and no symbol table is outp~t.

++ asro test +ls

Same as before except that assembled listing is output to the
terminal, as is the symbol table.

4404 Reference Manual @ 5-5

SECTION 5
Assembler and Loader

++ asm test +o=/bin/test +ls

Assembles a file called "test" in the cllrrent directory and
prodllces an object file in the "bin" directory called "test".
The listing and symbol table are OlltPllt to the terminal, and if a
file by the name of "test" already resides in the "bin"
directory, it will be alltomatically deleted before the assembly
starts.

++ asm /john/main +bnl

This command assembles the file "main" in John's directory bllt
does not prodllce a binary file. The assembled listing is OlltPllt
with line numbers. No symbol table is printed.

++ asm file[1-4] +bln

This command assembles all files beginning with "file" and ending
with a 1, 2, 3, or 4. No binary or symbol table is OlltPllt, and
line nllmbers are tllrned on.

++ asm +ll dumper +nel

This command demonstrates the fact that the filenames, and
options can come in any desired order on the command line. The
file to be assembled is called "dumper". The assembled listing
is OlltPllt with line nllmbers. All llndefined references will be
made external, no sllmmary information will be OlltPllt, and no symbol
table is prodllced.

ASSEMBLER OPERATION & SOURCE LINE COMPONENTS

The 4404 assembler is a two-pass assembler. In Pass One a
symbolic reference table is constrllcted and, in Pass Two the code
is actllally assembled, and a listing and object code are prodllced
if reqllested. The SOllrce may be sllpplied in free format, as
described below. Each SOllrce line consists of the actual SOllrce
statement, terminated with a carriage retllrn (OD hex). The
SOllrce mllst be comprised of ASCII characters with their parity or
8th bit cleared to zero. Special meaning is attached to many of
these characters as will be described later. Control characters
($00 to $FF) other than the carriage retllrn ($OD) and horizontal
tab ($09) should not be in the actllal SOllrce statement part of
the line. Their inclllsion in the SOllrce statement will prodllce
llndefined reslllts.

5-6 @ 4404 Reference Manllal

SECTION 5
Assembler and Loader

Each source line consists of up to four fields: Label, Opcode,
Operand, and Comment. With two exceptions, every line must have
an opcode while the other fields mayor may not be optional.
These two exceptions are:

1. "Comment Lines" may be inserted anywhere in the source and
are ignored by the assembler during object code production.
Comment lines may be either of two types:

a. Any line beginning with an asterisk (hex 2A) or
semicolon (hex 3B) in column one.

b. A null line or a line containing only a carriage
return. While this line can contain no text, it is
still considered a comment line as it causes a space in
the output listing.

2. Lines which contain a label but no opcode or operand field.

SOURCE STATEMENT FIELDS

The following pages describe the four source statement fields and
their format specifications. The fields are free format which
means there may be any number of spaces separating each field.
In general, no spaces are allowed within a field.

Label or Symbol Field

This field may contain a symbolic label or name that is assigned
the instruction's address and may be called upon throughout the
source program.

1. Ordinary Labels

a. The label must begin in column 1 and must be unique.
Labels are optional. If the label is to be omitted,
the first character of the line must be a space.

b. A label may consist of letters (A-Z or a-z), numbers
(0-9), or an underscore (or 5F hex). Note that upper
and lower case letters are not considered equivalent.
Thus "ABC" is a different label from "Abc".

c. Every label must begin with a letter or underscore.

d. Labels may be of any length, but only the first 63
characters are significant.

e. The label field must be terminated by a space, tab, or
a return.

4404 Reference Manual @ 5-7

SECTION 5
Assembler and Loader

2. Local Labels

5-8

a. Local labels follow many of the same rules as ordinary
labels. They must begin in column one and they must be
terminated by a space, tab or return.

b. Local labels consist of a number from 0 to 99. These
numbers may be repeated as often as desired in the same
source module; they need not be in numerical order.
Note that the labels "00" and "0", "01" and "1", etc.,
are unique labels.

c. Local labels may be treated as ordinary labels;
however, they cannot be global or external. They may
not be used in the label field of an "equ" or "set"
directive.

d. Local labels are referenced by using the local label
number terminated with an 'f' for first forward
reference found or a for' the first backward reference
found. A backward or forward reference can never refer
to the same line that it is found on. For example,

2
2
2

beq 2f
jsr xx
bra 2b

"2f" => next occurrence of "2"
both branches point here
"2b" => previous occurrence of "2"

e. Local labels should be used primarily (but not
necessarily exclusively) for branching or jumping
around some sections of code. In most cases, branching
around a few lines of code does not warrant the use of
an ordinary label. When making a reference to a nearby
location in the program there is often no appropriate
name with much significance; therefore, programmers
have tended to use symbols like 11,12, etc. This can
lead to the danger of using the same label twice.
Local labels have freed the programmer from the
necessity of thinking of a symbolic name of a location.
Furthermore, local labels require less storage
internally and lookup is faster than with ordinary
labels. A maximum of 500 local labels may be used in
one module.

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

Opcode Field

This field contains the opcode (mnemonic) or a pse~do-op. It
specifies the operation that is to be performed. The pse~do-ops
recognized by this assembler are described later in this section.

1. The opcode is made ~p of letters (A-Z or a-z). In this
field, apper and lower case may be ~sed interchangeably.

2. This field m~st be terminated by a space or tab if there is
an operand or by a space, tab, or ret~rn if there is no
operand.

3. The opcode may have a length specification associated with
it. This length specification indicates whether the
operation is to take place on bytes, words, or long words.
The defa~lt is words. The specification consists of a
period followed by one of the letters "b", "w", "1", or "s".
Upper case letters are also permitted. The following
s~mmarizes the specifications:

b or .B
w or .W
1 or .L
s or . S

Operand Field

bytes (S-bits)
words (16-bits, the defa~lt)
long words (32-bits)
short specification (for branches)

The operand provides data or address information req~ired by the
opcode. This field mayor may not be reqaired, depending on the
opcode. Operands are generally combinations of register
specifications and mathematical expressions. See the heading of
Expressions, later in this section for the r~les for forming
valid expressions.

1. The operand field can contain no spaces or tabs.

2. This field is terminated with a space, tab, or ret~rn.

3. Any of several types of data may make ~p the operand:
register specifications, n~eric constants, symbols, ASCII
literals.

4404 Reference Man~al @ 5-9

SECTION 5
Assembler and Loader

Comment Field

The comment field may be used to insert comments on each line of
source. Comments are for the programmer's convenience only and
are ignored by the assembler.

1. The comment field is always optional.

2. This field must be preceded by a space or tab.

3. Comments may contain any characters from SPACE (hex 20)
through DELETE (hex 7F) and the tab character.

3. This field is terminated by a carriage return.

REGISTER SPECIFICATION

Many opcodes require that the operand following them specify one
or more registers. Both lower and upper case are allowed. The
following are possible register names:

DO-D7
AO-A7
A7, SP
USP
CCR
SR
VBR
SFC
DFC

EXPRESSIONS

Data Registers
Address Registers
System stack pointer of the active system state
User stack pointer
Condition Code Register (Part of SR)
Status Register
Vector Base Register (68010)
Source Function Code Register (68010)
Destination Function Code Register (68010)

Many operands must inclade an expression. This expression may be
one or more items combined by any of four operator types:
arithmetic, logical, relational, and shift.

Expressions are always evaluated as full 32-bit operations. If
the result of the operation is to be fewer bits, the assembler
truncates the upper part.

An expression must not contain any embedded spaces or tabs.

5-10 @ 4404 Reference ManQal

ITEM TYPES

SECTION 5
Assembler and Loader

The item or items in an expression may be any of the four types
listed below. These may stand alone or may be intermixed by the
use of the operators.

1. NUMERICAL CONSTANTS: Numbers may be supplied to the
assembler in any of the four number bases shown below. The
number given will be converted to 32 bits truncating any
numbers greater than that. If smaller numbers are required,
the 32-bit number will then be further truncated to the
proper size. To specify which number base is desired, the
programmer must supply a prefix character to a number.

BASE PREFIX CHARACTERS ALLOWED

Decimal
Binary
Octal @
Hexad ec imal

none 0 thru 9
% 0 or 1
o thru 7
$ 0 thru 9, A thru F

If no prefix is assigned, the assembler assumes the number
to be decimal.

2. ASCII CONSTANTS: ASCII constants may be specified in
expressions by enclosing the string in single or double
quotation marks. The string must consist of one to four
characters, depending on the desired size attribute. The
specified characters may not include control characters
(must be between 20 hex and 7F hex inclusive).

3. LABELS: An expression may contain labels which have been
assigned some address, constant, relocatable or external
value. As described above under the label field, a label
consists of letters, digits, and underscores beginning with
a letter or underscore. The label may be of any length, but
only the first 63 characters are significant. Any label
used in the operand field must be defined elsewhere in the
program. Local labels may also be used in the operand
field. None of the standard register specifications should
be used as a label.

4. PC DESIGNATOR: The asterisk (*) has been set aside as a
special PC designator (Program Counter). It may be used in
an expression just as any other value and is equal to the
address of the current instruction. The value of the PC
designator is relocatable in the text, data or bss segments;
its value is given at load time.

4404 Reference Manual @ 5-11

SECTION 5
Assembler and Loader

Types of Expressions

Three types of expressions are possible in the 4404 assembler:
absolute, relocatable and external expressions.

Absolute Expressions. An expression is absolute if its
value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable symbols, under both
of the following conditions:

1. The expression contains an even number of relocatable
elements.

2. The relocatable elements must cancel each other. That is,
each relocatable element (or multiple) in a segment must be
canceled by another element (or multiple) in the same
segment. In other words, pairs of elements in the same
segment must have signs that oppose each other. The
elements that form a pair need not be contiguous in the
expression.

For example, text1 and text2 are two relocatable symbols in the
text segment; the following examples are absolute expressions.

text1-text2
5*(text1-text2)

Relocatable Expressions. An expression is relocatable
if its value is affected by program relocation in a relocatable
module. A relocatable expression consists of a single
relocatable symbol or, under all three of the following
conditions, a combination of relocatable and absolute elements.

1. The expression does not contain an even number of
relocatable elements.

2. All the relocatable elements but one must be organized in
pairs that cancel each other. That is, for all but one
segment, each relocatable element (or multiple) in a segment
must be canceled by another element (or multiple) in the
same block.

3. The uncancelled element can have either positive or negative
relocation.

5-12 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

For example, text1 and text2 are symbols from the text segment,
data1 and data2 are symbols from the data segment, and bss1 and
bss2 are symbols from the bss segment; the following examples are
relocatable:

-bss2+3*5~(data2-data2) negative relocation from bss segment
text1+(data1-data2)+(bss2-bss1) relocation from text segment
data1-(bss2-bss1) relocation from data segment
* (PC Designator) relocation from carrent segment

External Expressions. An expression is external if its
value depends apon the valae of a symbol defined oatside of the
carrent soarce modale. An external expression can consist of a
single external symbol, or, ~nder both of the following
conditions, an external expression may consist of an external
symbol, relocatable elements and absolute elements:

1. The expression contains an even namber of relocatable
elements

2. The relocatable elements mast cancel each other. That is,
each relocatable element (or maltiple) in a segment mast be
canceled by another element in the same segment. In other
words, pairs of elements in the same segment mast have signs
that oppose each other.

For example, if ext1 is an external symbol, text1, text2, data1,
data2, bss1, bss2 all have the same meaning as above in the
previoas examples; then the following examples are external:

(text1-text2)+ext1-(data2-data1)
5+ext1-3
3/(text2-text1)-ext1

Expression Operators

Operators permit operations sach as addition or division to take
place daring the assembly, and the resalt becomes a permanent
part of yoar program. Many of these operators will only apply to
absolate symbols and expressions. It does not make sense to
mQltiply a relocatable or external value at assembly-time! Only
the + and - operators can apply to relocatable and external
symbols and expressions.

4404 Reference Manaal @ 5-13

SECTION 5
Assembler and Loader

Arithmetic Operators. The arithmetic operators are:

Operator

+

*
/

Meaning

Unary or binary addition
Unary or binary s~btraction
MQltiplication
Division (any remainder is discarded)

Logical Operators. The logical operators are:

Operator Meaning

&

»
«

Logical AND operator
Logical OR operator
Logical NOT operator
Shift right operator
Shift left operator

The logical operations are f~ll 32-bit operations. In other
words for the AND operation, every bit from the first operand or
item is individually ANDed with its corresponding bit from the
second operand or item. The shift operators shift the left term
the number of places indicated by the right term. Zeroes are
shifted in and any bits shifted out are lost.

Relational Operators. The relational operators are:

Operator

=
<
>
<>
<=
>=

Meaning

Equal
Less than
Greater than
Not equal
Less than or eq~al
Greater than or eq~al

The relational operations yield a true-false res~lt. If the
evaluation of the relation is true, the resulting value be all
ones. If false, the resulting value-will will be all zeros.
Relational operations are generally used in conjunction with
conditional assembly, as shown in that discussion.

5-14 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

Operator Precedence. Certain operators take precedence
over others in an expression. This precedence can be overcome by
the use of parentheses. If there is more than one operator of
the same precedence level, and no parentheses indicate the order
in which they should be evaluated, then the operations are
carried out in left to right order.

The following list classifies the operators in order of
precedence (highest priority first):

1) Parenthesized expressions
2) Unary + and -
3) Shift operators
4) Maltiply and Divide
5)
6) Relational Operators
7) Logical NOT Operator
8) Logical AND and OR Operators

INSTRUCTION SET DIFFERENCES

This discussion describes the differences in the instruction
mnemonics accepted by the assembler and the Motorola standard.
The standard is assumed to be that defined in the "MC68000 16-Bit
Microprocessor User's Guide," published by Motorola Semiconductor
Products, Inc. It is assumed that the reader is familiar with
the contents of the "Instruction Set Details" portion of that
manual. In particular, the user should be familiar with the
description of the assembler syntax that accompanies the
discussion of the individual instructions.

The assembler recognizes the standard instruction set with the
exception of some of the so-called "variations". Having a
specific opcode for these variations is not necessary, because
the assembler can infer their existence from an analysis of the
operands and generate the proper code. This relieves the
programmer from the need for remembering the opcodes, and the
particulars of each. The variations that are handled in this
manner are: address, quick, and immediate. Note that the
"extend" variation is still supported. Thus, the following
instructions are not specifically recognized by the Assembler:

ADDA, ADDQ, ADDI Use ADD instead
ANDI Use AND instead
CMPA, CMPl, CMPM Use CMP instead
EaRl Use EaR instead
MOVEA, MOVEQ Use MOVE instead
ORI Use OR instead
SUBA, SUBQ, SUB I Use SUB instead

4404 Reference Manual @ 5-15

SECTION 5
Assembler and Loader

Remember that even thoQgh these mnemonics are not recognized, the
assembler can and does generate code for address, qQick, and
immediate instrQctions. The proper instruction is selected
aQtomatically after analyzing the operands.

The defaQlt data size is "word". InstrQctions that can
manipQlate more than one size of data item may be modified by
postfixing a data length specification to the opcode. The data
length specifications are:

I or .L
w or .W
b or .B

For long word (32 bits)
For word (16 bits, the defaQlt)

THE INSTRUCTION SET

PROGRAMMING MODEL

The 68000 microprocessor has 16 32-bit general PQrpose registers,
a 32-bit program cOQnter, and an 8-bit condition code register.
The registers are:

DO-D7
AO-A6
A7
CCR
PC

Data registers
Address registers
Stack pointer (Also available as "SP")
The condition code register
Program cOQnter

The sQpervisor programmer's model also inclQdes:

SSP SQpervisor stack pointer
SR StatQs register
VBR Vector base register (68010)
SFC Source function code rAQistAr (68010)
DFC Destination fQnction ~~d~ ~~gi~ter (68010)

The data registers can be Qsed for 8-bit, 16-bit, or 32-bit
operations. The address registers can be Qsed for 16-bit or
32-bit operations as can base address registers. All registers
can be Qsed as index registers.

5-16 @ 4404 Reference ManQal

SECTION 5
Assembler and Loader

ADDRESSING MODES

Twelve addressing modes are av'ailable on the 68000, divided into
six categories. Each assembled instruction takes a minimum of
one word of storage. The different addressing modes use
different amounts of storage depending on what information is
needed to form the specified effective address. The maximum
storage required by any addressing mode is two words. The amount
of extra storage required by an addressing mode, called extension
words, is stated with each description. In the descriptions,
registers are specified as "Dn", "An", or "Rn", referring to data
register 'n', address register or either data or address register
respectively. The 'D' and 'A' in the register specification can
be either upper- or lowercase. must be nwnber from to inclusive.

1. Data Register Direct The operand is in the data register
specified.

Assembler Syntax: Dn

Example: EXT.L DO Sign-extends data register 0 to 32-bits.

2. Address Register Direct The operand is in the address
register specified.

Assembler Syntax: An

Example: ADD.L A1,A2 Add the contents of address
register 1 to address register 2.

3. Address Register Indirect The address of the operand is in
the address register specified.

Assembler Syntax: (An)

Example: SUB.L D5,(A4) SQbtract the contents of data
register 5 from the long operand
at the address in address register
4.

4. Address Register Indirect With Postincrement

The address of the operand is in the address register
specified. After the operand address is used, it is
incremented by one, two, or four depending on whether the
size of the operand is byte, word, or long.

Assembler Syntax: (An)+

4404 Reference Manual @ 5-17

SECTION 5
Assembler and Loader

Example: CLR.W (A5)+ Zero the word at the address in
address register five, then increment
the register by two.

5. Address Register Indirect With Predecrement

The address of the operand is in the address register
specified. Before the operand address is used, it is
decremented by one, two, or four depending on whether the
size of the operand is byte, word, or long.

Assembler Syntax: -(An)

Example: CLR.B -(A3) Decrement address register 3 by one,
then zero the byte at the address now
in address register three.

6. Address Register Indirect With Displacement

The address of the operand is the sum of the address in the
address register and the sign-extended displacement
specified. The displacement must be an absolute, 16-bit
expression. This addressing mode requires one word of
extension.

Assembler Syntax: displacement(An)

Example: MOVE.L 6(AO),D1 Move the four bytes at address
register zero plus six into
data register one.

7. Address Register Indirect With Index

5-18

The address of the operand is the sum of the address in the
address register, the sign-extended displacement specified,
and the contents of the index register. The displacement
need not be specified, in which case it is assumed to be
zero. The displacement, if specified, must be an absolute,
8-bit expression. Either the entire 32 bits of the index
register (".L" extension), or the sign-extended low-order,
16 bi ts may be llsed (". WIt extension). The defaul t is to llse
the low-order 16 bits and the 'W' and 'L' may be upper- or
lowercase. One word of extension is reqllired by this
addressing mode.

Assembler Syntax: displacement(An,Rn.W)
displacement(An,Rn.L)

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

Example: CLR.L $A(A1 ,D1.W) Zero the fOQr bytes at address
register 1 plQS the low-order 16
bits of data register 1 plus $A
(1 0 dec imal) .

TST.L (A2,A3.L) Test the fOQr bytes at address
register 2 plus address register
3.

8. Absolute Short Address

The address of the operand is the absolute or relocatable
displacement specified. The 16-bit address is Sign-extended
before it is used. This addressing mode requires one word
of extension. The assembler reqQires that only program
labels be used wi th the ":W" extension.

Assembler Syntax: label:W

Example: JSR sqrt:W Jump to the sllbroQtine "sqrt" using a
16-bit address.

9. Absolute Long Address

The address of the operand is the absolute or relocatable
displacement specified. This addressing mode requires two
words of extension.

Assembler Syntax: label or displacement

Example: JSR sqrt JQmp to the sQbroQtine "sqrt" Qsing a
32-bit address.

JSR $400300 Jump to the sQbroQtine at hex
location 400300.

10. Program Counter With Displacement

The address of the operand is the sum of the address in the
program cOQnter and the sign-extended displacement integer.
The displacement mQst be a 16-bit expression and is formed
by subtracting the valQe of the program cOQnter from the
address of the label specified. The label specified mQst be
relocatable, and must be in the same segment as the cQrrent
program cOQnter. The operand field for branch instrQctions
reqQires only a label; all other instrQctions wishing to Qse
this addressing mode must follow the syntax below, to
distinguish this addressing mode from the absolQte long
addressing mode. This addressing mode reqQires one word of
extension.

4404 Reference Manual @ 5-19

SECTION 5
Assembler and Loader

Assembler Syntax: label(PC)

Example: MOVE.L table(PC),A1 Move the fOQr bytes at the
program cOQnter plQS the
difference between the address
of "table" and the program
cOQnter into address register 1.

11. Program Counter With Index

The address of the operand is the SQm of the address in the
program cOQnter, the sign-extended displacement integer, and
the contents of the index register. The displacement is
calculated by subtracting the program counter from the
address of the label specified in the instruction. This
displacement must be an 8-bit expression. The label
specified must be relocatable, and must be in the same
segment as the current program counter. Either the entire
32 bits of the index register (".L" extension), or the
sign-extended, low-order, 16 bits may be llsed (fI.W"
extension). The default is to use the low-order 16 bits.
The 'W' and 'L' may be upper- or lowercase. One word of
extension is required by this addressing mode.

Assembler Syntax: label(PC,Rn.W)
label(PC,Rn.L)

Example: MOVE.L table(PC,D1.L),A3 Move the four bytes at
the program cOllnter plus
the difference between
the address of "table"
and the program cOQnter,
plQS the contents of data
register 1 into address
register 3.

12. Immediate Data

5-20

The operand is the immediate valQe specified. This
addressing mode reqQires one or two words of extension,
depending on the size of the operation.

Assembler Syntax: expression

Example: MOVE.W 4096,D2 Move 4096 into data register 2.

@ 4404 Reference ManQal

SECTION 5
Assembler and Loader

The following table shows how each addressing mode falls
into the six categories.

Category Addressing Modes
1 2 345 6 789101112

Data Addressing Ix
Control Addressingl
Alterable I X
Data Alterable Ix
Memory Alterable I
Control Alterable I

lxlx
lxl

xlxlx
lxlx
lxlx
Ixl

xlxlxlxlxlxlxlxl
IXIXIXIXIXIXI I
I I I I I I I I

X IXIXIXIXI I I I
I I I I I I I I

X IXIXIXIXI I I I
I I I I I I I I

X IXIXIXIXI I I I
I ~ I I I I I I I

THE ASSEM~LER INSTRUCTION SET

Syntax

This sections contains a brief alphabetical listing of all the
mnemonics accepted by the assembler. The following notational
conventions will be Qsed:

An
Dn
Rn
Rc
<disp>
<disp(8»
<disp(16»
<disp(32»
<ea>
<data>
<data(8»
<data(16»
<data(32»
<vector>
<qQick>
<label>

Address register 'n'
Data register tn'
Either data or address register tn'
Control register, address or data
8-, 16- or 32-bit displacement valQe
8-bit displacement valQe
16-bit displacement valQe
32-bit displacement valQe
Effective address
8-, 16- or 32-bit data valQe
8-bit data valQe
16-bit data valQe
32-bit data valQe
Vector number from 0 through 15
A data valQe from 1 through 8 (qQick valQe)
A label in the source file

4404 Reference Manual @ 5-21

SECTION 5
Assembler and Loader

<bit mask> A 16-bit mask specifying which registers to
move in a "MOVEM" instruction. Using the
pre-decrement addressing mode, the bit correspondence
is:

Bit 0 Address register 7
Bit 1 Address register 6

Bit 7 Address register 0
Bit 8 Data register 7
Bit 9 Data register 6

Bit 1 5 - Data register 0

Using all other addressing modes, the bit
correspondence is:

Bit 0 Data register 0
Bit 1 Data register 1

Bit 7 Data register 7
Bit 8 Address register 0

Bit 1 5 - Address register 7

Bits are numbered with the rightmost bit being number
o and the leftmost being number 15.

<register_list>

5-22

A register list is used for the "MOVEM" instruction.
Register lists can be formed two ways. Registers can be
separated by a 'I' such as:

D1/D3/D5/A2/A3

to specify individual registers to be moved. Register lists
can also be specified by separating two registers with a '-'
such as:

D1-D5/A1-A3

to specify that registers D1 through D5 inclusive and
registers A1 through A3 inclusive should be moved.

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

Instrllctions

ABCD Add decimal with extend
Assembler Syntax: ABCD Dy,Dx

ABCD -(Ay),-(Ax)
ADD Add binary

Assembler Syntax: ADD <ea>,Dn
ADD Dn,<ea>
ADD <ea>,An
ADD <data> ,< ea>

Source Effective Address: All addressing modes
Destination Effective Address: Data alterable addressing modes

ADDX

AND

Add extended
Assembler Syntax:

AND logical
Assembler Syntax:

ADDX Dy,Dx
ADDX -(Ay),-(Ax)

AND <ea>,Dn
AND Dn, <ea>
AND <data>, < ea>
AND <data(8»,CCR
AND <data(16»,SR

Source Effective Address: Data addressing modes
Destination Effective Address: Data alterable addressing modes

ASL Arithmetic shift left
Assembler Syntax: ASL Dx,Dy

ASL <quick>,Dn
ASL <ea>

Source Effective Address: Memory alterable (word only)

ASR Arithmetic shift right
Assembler Syntax: ASR Dx,Dy

ASR <quick>,Dn
ASR <ea>

Source Effective Address: Memory alterable (word only)

4404 Reference Manual @ 5-23

SECTION 5
Assembler and Loader

Bcc Branch conditionally
Assembler Syntax: Bcc <label>
Legal Branches:

BCC Branch on carry clear
BCS Branch on carry set
BEQ Branch on eqllal
BGE Branch on greater or eqllal
BGT Branch on greater
BRI Branch on high
BRS Branch on high or same (BCC)
BLE Branch on less or eqllal
BLO Branch on low (BCS)
BLS Branch on low or same
BLT Branch on less than
BMI Branch on minus
BNE Branch on not equal
BPL Branch on plus
BRA Branch always (unconditionally)
BVC Branch on overflow clear
BVS Branch on overflow set
BCRG Test a bit and change

Assembler Syntax: BCRG Dn,<ea>
BCRG <data(S»,<ea>

Destination Effective Address: Data alterable addressing modes

BCLR Test a bit and clear
Assembler Syntax: BCLR Dn,<ea>

BCLR <data(S»,<ea>
Destination Effective Address: Data alterable addressing modes

BSET Test a bit and set
Assembler Syntax: BSET Dn,<ea>

BSET <data(S»,<ea>
Destination Effective Address: Data alterable addressing modes

BSR Branch to subroutine
Assembler Syntax: BSR <label>

BTST Test a bit
Assembler Syntax: BTST Dn,<ea>

BTST <data(S»,<ea>
Destination Effective Address: Data addressing modes

CHK Check register against bounds
Assembler Syntax: CHK <ea>,Dn
Source Effective Address: Data addressing modes

5-24 @ 4404 Reference Manllal

CLR Clear an operand
Assembler Syntax: CLR <ea>
So~rce Effective Address:

SECTION 5
Assembler and Loader

Data alterable addressing modes

CMP Compare

DBcc

DIVS

DIVU

EOR

Assembler Syntax: CMP <ea>,Dn
CMP <ea>,An
CMP <data> ,< ea>
C M P (Ay) + , (Ax) +

SOurce Effective Address: All addressing modes
Destination Effective Address: Data alterable addressing modes

Test condition, decrement, and branch
Assembler Syntax: DBcc Dn,<label>
Legal Decrement and branches:
DBCC Decrement and branch on carry clear
DBCS Decrement and branch on carry set
DBEQ Decrement and branch on equal
DBF Decrement and branch on false (unconditionally)
DBGE Decrement and branch on greater or equal
DBGT Decrement and branch on greater
DBHI Decrement and branch on high
DBLE Decrement and branch on less or equal
DBLS Decrement and branch on low or same
DBLT Decrement and branch on less than
DBMI Decrement and branch on minus
DBNE Decrement and branch on not equal
DBPL Decrement and branch on pI us
DBRA Decrement and branch always (DBF)
DBT Decrement and branch on tr lIe
DBVC Decrement and branch on overflow clear
DBVS Decrement and branch on overflow set

Signed divide
Assembler Syntax: DIVS <ea>,Dn
Source Effective Address: Data addressing modes

Unsigned divide
Assembler Syntax: DIVU <ea>,Dn
Source Effective Address: Data addressing modes

Excl~sive OR logical
Assembler Syntax: EOR

EOR
EOR
EOR

Destination Effective

Dn, <ea>
< data> , < ea>
<data(S»,CCR
<data(16»,SR

Address: Data alterable addressing modes

EXG Exchange registers
Assembler Syntax: EXG Rx,Ry

4404 Reference Manual @ 5-25

SECTION 5
Assembler and Loader

EXT Sign extend
Assembler Syntax: EXT Dn

ILLEGAL Illegal instruction
Assembler Syntax: ILLEGAL

JMP Jump
Assembler Syntax: JMP <ea>
Source Effective Address: Control addressing modes

JSR JQmp to subroutine
Assembler Syntax: JSR <ea>
Source Effective Address: Control addressing modes

LEA Load effective address
Assembler Syntax: LEA <ea>,An
Source Effective Address: Control addressing modes

LINK Link and allocate
Assembler Syntax: LINK An, <disp(16»

LSL Logical shift left
Assembler Syntax: LSL Dx,Dy

LSL <quick>,Dn
LSL <ea>

Source Effective Address: Memory alterable (word only)

LSR Logical shift right
Assembler Syntax: LSR Dx,Dy

LSR <qLlick>,Dn
LSR <ea>

Source Effective Address: Memory alterable (word only)

MOVE Move data from source to destination

MOVEC

5-26

Assembler Syntax: MOVE <ea>,<ea>
MOVE CCR,<ea>
MOVE <ea>,CCR
MOVE <ea>,SR
MOVE SR,<ea>
MOVE USP,An
MOVE An,USP

Source Effective Address: All addressing modes
Destination Effective Address: Data alterable addressing modes

On "MOVE TO CCR/SR":
Source Effective Address:

Move to/from control register
Assembler Syntax: MOVEC Rc,Rn

MOVEC Rn,Rc

@

Data addreSSing

4404 Reference Manual

MOVEM

MOVEP

MOVES

MULS

MULU

NBCD

NEG

NEGX

Move multiple registers

SECTION 5
Assembler and Loader

Assembler Syntax: MOVEM <register list>,<ea>
MOVEM <ea>,<reglster list>
MOVEM <bit mask>,<ea>
MOVEM <ea>,-<bit mask>

Source Effective Address: Control addressing and postincremeJ
Destination Effective Address: Control alterable and predecrement

Move peripheral data
Assembler Syntax: MOVEP Dx,<disp(16»(Ay)

MOVEP <disp(16»(Ax),Dy

Move to/from address space
Assembler Syntax: MOVES Rn,<ea>

MOVES <ea>,Rn
Source Effective Address: Memory alterable addressing modes
Destination Effective Address: Memory alterable addressing modes

Signed multiply
Assembler Syntax: MULS <ea>,Dn
Source Effective Address: Data addressing modes

Unsigned multiply
Assembler Syntax: MULU <ea>,Dn
Source Effective Address: Data addressing modes

Negate decimal with extend
Assembler Syntax: NECD <ea>
Source Effective Address: Data alterable addressing modes

Negate
Assembler Syntax: NEG <ea>
Source Effective Address: Data alterable addressing modes

Negate with extend
Assembler Syntax: NEGX <ea>
Source Effective Address: Data alterable addressing modes

NOP No operation

NOT

Assembler Syntax: NOP

Logical complement
Assembler Syntax: NOT <ea>
Source Effective Address:

4404 Reference Manual

Data alterable addressing modes

@ 5-27

SECTION 5
Assembler. and Loader

OR Incl~sive OR logical

PEA

RESET

ROL

ROR

ROXL

nA"V"n
nUAn

RTD

RTE

RTR

5-28

Assembler Syntax: OR <ea>,Dn
OR Dn, <ea>
OR <data>, <ea>
OR <data(S»,CCR
OR <data(16»,SR

SOQrce Effective Address: Data addressing modes
Destination Effective Address: Data alterable addressing modes

P~sh effective address
Assembler Syntax: PEA <ea>
SOQrce Effective Address: Control addressing modes

Reset external devices
Assembler Syntax: RESET

Rotate left
Assembler Syntax: ROL Dx,Dy

ROL <qQick>,Dn
ROL <ea>

SOQrce Effective Address: Memory alterable (word only)

Rotate right
Assembler Syntax: HOR Dx,Dy

ROR <qQick>,Dn
ROR <ea>

Source Effective Address: Memory alterable (word only)

Rotate left with extend
Assembler Syntax: ROXL Dx,Dy

ROXL <qu.ick>,Dn
ROXL <ea>

Source Effective Address: Memory alterable (word only)
n _ .L. _ .L. _ _ ~ _ 1_ .L. __ ..! .L.,_ _ __ .L. ___ .J

nu l,c:1lJtj r .qSlllJ W.l lJLl tjx lJtjuu

Assembler Syntax: ROXR Dx,Dy
ROXR <quick>,Dn
ROXR <ea>

SOQrce Effective Address: Memory alterable (word only)

RetQrn and deallocate parameters
Assembler Syntax: RTD <disp(16»

RetQrn from exception
Assembler Syntax: RTE

Return and restore condition codes
Assembler Syntax: RTR

@ 4404 Reference ManJal

RTS

SBCD

Scc

RetQrn from subroutine
Assembler Syntax: RTS

Subtract decimal with extend
Assembler Syntax: SBCD Dy,Dx

SBCD -(Ay),-(Ax)

Set according to condition
Assembler Syntax: Scc <ea>

Legal Sets:
sec Set on carry clear
SCS Set on carry set
SEQ Set on eqllal
SF Set on false
SGE Set on greater or eqllal
SGT Set on greater
SHI Set on high
SLE Set on less or eqllal
SLS Set on low or same
SLT Set on less than
Sr~I Set on minus
SNE Set on not eqllal
SPL Set on pIllS
ST Set on trlle (llnconditionally)
SVC Set on overflow clear
SVS Set on overflow set

SECTION 5
Assembler and Loader

SOllrce Effective Address: Data alterable addressing modes

STOP Load statlls register and stop
Assembler Syntax: STOP <data(16»

SUB SQbtract binary
Assembler Syntax: SUB <ea>,Dn

SUB Dn,<ea>
SUB <ea>,An
SUB < data> , < ea>

SOllrce Effective Address: All addressing modes
Destination Effective Address: Data alterable addressing modes

SUBX

SWAP

Subtract with extend
Assembler Syntax: SUBX Dy,Dx

SUBX -(Ay),-(Ax)

Swap register halves
Assembler Syntax: SWAP Dn

4404 Reference Manllal @ 5-29

SECTION 5
Assembler and Loader

TAS Test and set an operand
Assembler Syntax: TAS <ea>
Source Effective Address: Data alterable addressing modes

TRAP Trap

TRAPV

TST

UNLK

Assembler Syntax: TRAP <vector>

Trap on overflow
Assembler Syntax: TRAPV
Test an operand
Assembler Syntax: TST <ea>
Source Effective Address:

Unlink
Assembler Syntax: UNLK An

Data alterable addressing modes

Convenience Mnemonics

CLC

CLN

CLV

CLX

CLZ

SEC

SEN

SEV

SEX

SEZ

Clear carry condition code bit

Clear negative condition code bit

Clear overflow condition code bit

Clear extend condition code bit

Clear zero condition code bit

Set carry condition code bit

Set negative condition code bit

Set overflow condition cod

Set extend condition code bit

Set zero condition code bit

STANDARD DIRECTIVES OR PSEUDO-OPS

Besides the standard machine language mnemonics, the assembler
supports several directives or pseudo-ops. These are
instructions for the assembler to perform certain operations, and
are not directly assembled into code. There are three types of
directives in this assembler: those associated with conditional
assembly, those associated with macros, and those which generally
can be used anywhere which we shall call "standard directives".

5-30 @ 4404 Reference Manual

The standard directives

dc log
ds opt
eqll pag
err rab
even rmb
fcb rzb
fcc set
fdb spc
fqb sttl
info sys
lib ttl

are:

SECTION 5
Assembler and Loader

Other types of directives are explained in other sections, bllt
are listed here for completeness:

DC

Conditional
Directives

if
ifn
else
endif

Relocation
Directives

base
bss
common
end com
data
define
enddef

end
extern
global
name
strllct
text

The "dc" or Define Constant directive defines one or more
constants in memory. A size specification may be postfixed to
the directive to indicate that the constant is to be stored in
bytes, words, or long words. The defalllt is "words". If
mllltiple operands are specified, the effect is as thOllgh the
operands appeared in conseclltive "de" directives. The operands
may be actual values (constants or ASCII strings) or expressions.
ASCII strings must be enclosed in single quotation marks.

4404 Reference Man~al @ 5-31

SECTION 5
Assembler and Loader

The constant is aligned on the proper bOQndary, depending on the
size specification (byte boundary for ".b", word bOQndary for
".w", and long word boundary for ".1"). When ASCII strings are
specified with a word or long word size specification, the string
will be padded on the right with zero bytes if there are not
enoQgh characters to exactly fill the last word or long word. If
an ASCII string is specified with a byte size specification, and
the instruction or directive following the "dc.b" directive
requires word or long word alignment, then zeroes will be
appended to the character string to force sLlch alignment. Some
examples:

DS

labe11 dc.b 3,7,'String'

labe12 dc.w 123,'abc' ,98 The 'abc' will be padded with
a zero byte

dc.l 'a' ,131072 The 'a' will be padded with 3 zero bytes

The "ds" or Define Storage directive reserves areas of memory.
The reserved memory is not gQaranteed to be initialized in any
way. A size specification may be postfixed to the directive to
indicate that bytes, words, or long words are to be reserved. If
words or long words are specified, the reserved memory will be
properly aligned. A single operand indicates how many bytes,
words, or long words are to be reserved. If a label is present,
its valQe will be the address of the lowest memory location
reserved. If the value of the operand is zero, no space will be
reserved; however, alignment will take place if "ds.w" or "ds.l"
is specified. Some examples:

EQU

ds.b 20
ds 10
ds.l 5
ds.l 0

reserve 20 bytes
reserve 10 words
reserve 5 long words
force alignment on long word bOQndary

The "equ" or Equate directive equates a symbol to the expression
given in the operand. No code is generated by this statement.
Once a symbol has been equated to some value, it may not be
changed at a later time in the assembly. The form of an equate
statement is

<label> equ <nonexternal expression>

5-32 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

The label is strictly reqaired in eqaate statements. Absolate or
relocatable expressions are allowed; external expressions are
illegal. If the expression is relocatable, both the valae and
the attribate will be assigned to the label.

ERR

The "err" directive may be llsed to insert llser-defined error
messages in the oatput listing. The error coant is also
incremented by one. The format is:

err <message to be printed>

All text past the "err" directive (exclading leading spaces) is
printed as an error message (preceded by three asterisks) in the
oatpat listing. Note that the "err" directive line itself is not
printed. A common ase for the "err" directive is in conjanction
with conditional assembly, to report aser-defined illegal
conditions.

EVEN

The "even" directive is ased to force the program coanter to an
even address (word boandary).

FeB

The 'fcb' or Form Constant Byte directive is ased to set
associated memory bytes to some valae as determined by the
operand. 'fcb' may be llsed to set any number of bytes, as shown
below:

[<label>] fcb <expr. 1>,<expr. 2>, ... ,<expr. n>

<expr. x> stands for some absolute, relocatable or external
expression. Each expression given (separated by commas) is
evaluated to 8 bits, and the resalting qu.antities are stored in
sllccessive memory locations. The label is optional.

4404 Reference Manaal @ 5-33

SECTION 5
Assembler and Loader

FCC

The 'fcc' or Form Constant Character directive allows the
programmer to specify a string of ASCII characters delimited by
some non-alphanumeric character such as a single quote. All the
characters in the string will be converted to their respective
ASCII values and stored in memory, one byte per character. Some
examples:

labe11 fcc
labe12 fcc

fcc

'This is an fcc string'
.so is this.
/Labels are not required./

There is another method of using 'fcc' which is a deviation from
the standard Motorola definition of this directive. This method
allows you to place certain expressions on the same line as the
standard 'fcc' delimited string. The items are separated by
commas and are evaluated to 8-bit results. In some respects this
is like the 'fcb' directive. The difference is that in the 'fcc'
directive, expressions must begin with a letter, number or dollar
sign, whereas in the cb' directive any valid expression will
work. For example, %10101111 is a valid expression for a 'fcb'
but not for a 'fcc' since the percent-sign would look like a
delimiter and the assembler would attempt to produce 8 bytes of
data from 8 ASCII characters which follow (a 'fcc' string).
The dollar sign is an exception to allow hex values such as $OD
(carriage return) to be inserted along with strings. Some
examples:

intro fcc
fcc
fcc

'This string has CR & LF',$D,$A
'string 1 ' ,0, 'string 2'
$04,extlabel,/delimited string/

Note that more than one delimited string may be placed on a line
as in the second example.

5-34 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

FDB

The "fdb" or Form Double Byte directive is used to create 16 bit
constants in memory. It is exactly like the "fcb" directive
except that 16 bit quantities are evaluated and stored in memory
for each expression given. The form of the statement is:

label>] fdb <expr. 1>,<expr. 2>, ... ,<expr. n>

Again, the label field is optional. The generated data is
guaranteed to be on a word boundary (see the "dc" directive).

FQB

The "fqb" or Form Quad Byte directive is used to create 32-bit
constants in memory. It is exactly like the "fdb" directive,
except that 32-bit quantities are evaluated and stored in memory
for each expression given. The form of the statement is:

label>] fdb <expr. 1>,<expr. 2>, ... ,<expr. n>

Again, the label field is optional. The generated data is
guaranteed to be on a word boundary (see the "dc" directive).

INFO

The "info" directive allows the user to store textual comments in
a binary file. A 4404 user can execute the command 'info' and
view the text the screen. The assembler's 'info' directive
places all text following the 'info' command (excluding leading
spaces) into a temporary file called '/tmp/asmbinfoxxxxx', where
xxxxx represents the current task number. At the end of the
assembly, all text stored in this temporary file is appropriately
copied into the normal binary file, and the temporary file is
then deleted. Syntax is as follows:

info This is a comment for the binary file.

info It is a convenient way of inserting version nos.

info Version X.XX - Released XX/XX/XX

Any number of 'info' directives may be inserted at any point in
the source listing. No label is allowed, and no actual binary
code is produced.

4404 Reference Manual @ 5-35

SECTION 5
Assembler and Loader

LIB

The "lib" or Library directive allows the llser to specify an
external file for inclllsion in the assembled SOllrce OlltPllt.
Under normal conditions, the assembler reads all inpllt from the
file(s) specified on the calling line. The 'lib' directive
allows the llser to temporarily obtain the SOllrce lines from some
other file. When all the lines in that external file have been
read and assembled, the assembler reSllmes reading of the original
SOllrce file. The proper syntax is:

lib <file spec>

where <file spec> is a standard 4404 file specification.

The assembler first looks for the specified file in the cllrrent
directory. If the file isn't fOllnd in the cllrrent directory, the
assembler then looks for a directory named "lib" in the Cllrrent
directory. If it finds sllch a directory, the assembler attempts
to find the specified file in that "lib" directory. If not fOllnd
there, the assembler makes a third and final attempt to find the
specified file by looking in the directory "/lib". If the file
is not fOllnd in any of these three directories, the assembler
gives IIp and reports an error.

Any "end" statements fOllnd in the file called by the 'lib'
directive are ignored. The "lib" directive line itself does not
appear in the OlltPllt listing. Any number of "lib" instrllctions
may appear in a SOllrce listing. It is also possible to nest
'lib' files IIp to 4-6 levels.

LOG

The "log" directive is used to calculate the log, base 2, of an
absolllte expression. The reslllt is 32 bits. The statement acts
like a "set" statement, in that the label specified can be
redefined with other "log" directives or "set" directives. The
form of the statement is:

[<label>] log <absolllte expression>

The label field is strictly reqllired.

5-36 @ 4404 Reference Manllal

OPT

SECTION 5
Assembler and Loader

The "opt" or Option directive allows the user to choose from
several different assembly options. These options are generally
related to the format of the output listing and object code. The
options which may be set with this command are listed below. The
proper form of this instruction is:

opt <option 1>,<option 2>, ... ,<option n>

Note that any number of options may be given on one line if
separated by commas. No label is allowed, and no spaces or tabs
may be embedded in the option list. The options are set during
Pass Two. If contradicting options are specified, the last one
on the command line takes precedence. If a particular option is
not specified, the default case for that option takes effect.
The default cases are signified below by an asterisk.

The allowable options are:

con print conditionally skipped code
noc* suppress conditional code printing

lis* print an assembled listing
nol suppress output of assembled listing

The "lis" and "nol" options may be used to selectively turn parts
of a program listing on or off as desired. If the "+1" command
line option is specified, however, the "lis" and "nol" options
are overridden and no listing occurs.

PAG

The "pag" directive causes a page eject in the output listing and
prints a header at the top of the new page. Note that the "pag"
option must be enabled in order for this directive to take
effect. It is possible to assign a new number to the new page by
specifying such in the operand field. If no page number is
specified, the next consecutive number will be used. No label is
allowed and no code is produced. The "pag" operator itself will
not appear in the listing unless some sort of error is
encountered. The proper form is:

pag [<expression>]

4404 Reference Manual @ 5-37

SECTION 5
Assembler and Loader

The expression is optional. The first page of a listing does not
inclQde the header and is considered to be page O. ThQs, all
options, title, and sQbtitle may be set ~p and followed by a
"pag" directive to start the assembled listing at the top of page
1 withoQt the option, title, or sQbtitle instrQctions being in
the way.

RAB

The 'rab' or Reserve Aligned Bytes directive is Qsed to reserve
areas of memory for data storage. The bytes are forced to a word
bOQndary. The nQIDber of bytes specified by the expression in the
operand are skipped dQring assembly. No code is prodQced in
those memory location and therefore the contents are Qndefined at
rQn time. The proper Qsage is shown here:

[<label>] rab <absolQte expression>

The label is optional, and the absolQte expression is a 32-bit qQantity.
"rab" directives fOQnd in the text or data segments act like "rzb", and
prodQce code which is gQaranteed to be on an even bOQndary.

RMB

The 'rmb' or Reserve Memory Bytes directive is Qsed to reserve
areas of memory for data storage. The nQIDber of bytes specified
by the expression in the operand are skipped dQring assembly. No
code is prodQced in those memory locations and therefore the
contents are Qndefined at rQn time. The proper Qsage is:

[<label>] rmb <absolQte expression>

The label is optional, and the absolQte expression is a 32-bit
qQantity. Any "rmb" directives fOQnd in the text or data segments
act like "rzb", and prodQce code.

RZB

The 'rzb' or Reserve Zeroed Bytes directive is Qsed to initialize
an area of memory with zeroes. Beginning with the cQrrent PC
location, the nQIDber of bytes specified will be set to zero. The
proper syntax is:

[<label>] rzb <absolQte expression>

where the absolQte expression is a 32-bit expression. This
directive does prodQce object code. Any "rzb" directives fOQnd in
the bss segment act like "rmb".

5-38 @ 4404 Reference ManQal

SET

SECTION 5
Assembler and Loader

The "set" directive sets a symbol to the vallle of some
expression, mllch as an "eqll" directive. The difference is that a
symbol may be "set" several times within the SOllrce (to different
vallles), bllt may be "equated" only once. If a symbol is "set" to
several vallles within the SOllrce, the cllrrent vallle of the symbol
will be the vallle last "set". The statement form is:

<label> set <nonexternal expression>

The label is strictly reqllired, and no code is generated.

SPC

The "spc" or Space directive inserts the specified number of
spaces (line feeds) into the OlltPllt listing. The general form
is:

spc [<space count>[,<keep count>]]

The space cOllnt can be any number from 0 to 255. If the page
option is selected, "spc" will not callse spacing past the top of
a new page. The <keep cOllnt>, which is optional, is the number
of lines to keep together on a page. If there are not enough
lines left on the current page, a page eject is performed. If
there are <keep count> lines left on the page (after printing
<space count> spaces), output will continue on the current page.
If the page option is not selected, the <keep count> will be
ignored. If no operand is given, the assembler will default to
one blank line in the output listing.

STTL

The "sttl" or Subtitle directive is used to specify a subtitle to
be printed just below the header at the top of an output listing
page. It is specified much as the "ttl" directive:

sttl <text for the subtitle>

The subtitle may be up to 52 characters in length. If the page
option is not selected, this directive will be ignored. As with
the "ttl" option, any number of "sttl" directives may appear in a
SOllrce program. The subtitle can be disabled or turned off by an
"sttl" command with no text following.

4404 Reference Manual @ 5-39

SECTION 5
Assembler and Loader

SYS

The 'sys' or system call directive allows the programmer to
setQP a system call.
Such a call consists of a TRAP#15 instruction followed by
a two byte function code optionally followed by 32-bit
parameter values.
This directive automatically inserts the TRAP, then obtains
the fanction code and any other parameters from the operand field.

sys <function),<parameter1),<parameter2), ...

The <function) and <parameter) valQes may be any legal absolate,
relocatable or external expression. <function) will be stored as
16 bits, all <parameters) will be stored as 32-bits.

TTL

The 'ttl' directive allows the user to specify a title or name to
the program being assembled. If the "pag" option is also
selected, this title is then printed in the header at the top of
each output listing page. If the page option is not selected,
this directive is ignored. The proper form is:

ttl <text for the title)

All the text following the 'ttl' directive (excluding leading
spaces) is placed in the title buffer. Up to 32 characters are
allowed, with any excess being ignored. It is possible to have
any number of 'ttl' directives in a source The latest one
encountered will always be the one used for printing at the top
of the following page(s).

CONDITIONAL ASSEMBLY

The assembler supports conditional assembly -- the ability to
assemble only certain portions of your source program depending
on the conditions at assembly time. Conditional assembly is
particularly useful in situations where you might need several
versions of a program with only slight changes between versions.

As an example, suppose we required a different version of some
program for four different systems whose output routines varied.
Rather than prepare four different source files, we could prepare
one that would assemble a different set of output routines
depending on some variable which was set with an "equ" directive
near the beginning of the source. Then it would only be
necessary to change that one "equ" statement to produce any of
the four final programs.

5-40 @ 4404 Reference Manual

THE "IF-ENDIF" CLAUSE

SECTION 5
Assembler and Loader

In its simplest form, conditional assembly is performed with two
directives: "if" and "endif". The two directives are placed in
the SOQrce listing in that order with any number of lines of
SOQrce between. The assembler evalQates the expression
associated with the "if" statement (we will disCQSS this
expression in a moment), and if the resQlt is trQe, assembles all
the lines between the "if" and "endif" and then continQes
assembling the lines after the "endif". If the resu.lt of the
expression is false, the assembler will skip all lines between
the "if" and "endif" and reSQme assembly of the lines after the
"endif". The syntax of these directives is:

if <expression)

conditional code goes here

endif

The "endif" directive requires no additional information, but the
"if" directive requires an expression. This expression is
considered FALSE if the 32-bit result is eqQal to zero. If the
result is not equal to zero, the expression is considered TRUE.

THE "IF-ELSE-ENDIF" CONSTRUCTION

An "else" directive may be placed between the "if" and "endif"
statements. In effect, the lines of source between the "if" and
"endif" are split into two groups by the "else" statement. Those
lines before the "else" are assembled if the expression is true;
those after (up to the "endif") are ignored. If the expression
is false, the lines before the "else" are ignored while those
after it are assembled. The "if-else-endif" construct appears as
follows:

if <expression)

this code is assembled if the expression is true

else

this code is assembled if the expression is false

endif

The "else" statement does not reqQire an operand. There may be
only one "else" between an "if-endif" pair.

4404 Reference ManQal @ 5-41

SECTION 5
Assembler and Loader

It is possible to nest "if-endif" clallses (inclllding "else"s).
That is, an "if-endif" clallse may be part of the lines of SOllrce
fOllnd inside another" if-endif" clause. YOll must be careflll,
however, to terminate the inner clause before the outer.

Another form of the conditional directive, "ifn" ("if not")
functions just like "if," except that the sense of the test is
reversed. Thus, the code immediately following is assembled if
the reslllt of the expression is NOT TRUE. An "ifn-else-endif"
clallse appears as follows:

ifn

else

endif

<expression)

this code is assembled if the expression is FALSE

this code is assembled if the expression is TRUE

NOTE

In order for conditionals to function
properly, they must evalllate to the same
reslllt in Pass One and Pass Two. Thus if
labels are used in a conditional expression,
they must be defined in the source before the
conditional directive is encountered .

. SPECIAL FEATURES

END OF ASSEMBLY INFORMATION

Upon termination of an assembly and before the symbol table is
output, three items of information may be printed: the total
number of errors encountered, the total number of excessive
branches encollntered, and the sizes of the text, data and bss
segments.

The number of errors is printed in the following manner:

o Errors detected.

5-42 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

Excessive branches (a long branch Qsed where a short branch will
saffice) are printed after the error count, for example:

1 Error detected.
3 Excessive branches detected.

The size of the segments are displayed as follows:

SEGMENT SIZES
TEXT SEGMENT =
DATA SEGMENT =
BSS SEGMENT

00002C
00010A

= 000006

All of this information may be suppressed by using the '+e'
command line option; however, if errors are detected, this
information will be displayed anyway.

EXCESSIVE BRANCH INDICATOR

To allow size and speed optimization of the final code, the
assembler places a greater-than sign jast before the address of
any long branch instruction which could be replaced by a short
branch. The total count is reflected in the end-of-assembly
information previoasly described. The following section of code
shows just how it looks:

000000
000000 4A80
>000002 6600 0006
000006 4A81
000008 6602
OOOOOA 2601 lab1
OOOOOC 2800 lab2
OOOOOE

Note how the ".s" postfix was used

AUTO FIELDING

text
tst.l

bne
tst.l
bne.s
move.l
move.l
end

to create

dO
lab1

d1
lab2
d 1 ,d3
dO,d4

a short branch.

The oatpat assembly listing automatically places the four fields
of a soarce line (label, mnemonic, operand, and comment) in
columns. This allows the programmer to edit a condensed source
file withoQt impairing the readability of the assembled listing.
The common method of doing this is to separate the fields by only
one space when editing. The assembled oatpQt places all labels
in colQIDn 25, all opcodes in colQIDn 34, and all operands in
column 42 and comments start in colQIDn 56 unless the operands
field extends into the comments. There are a few cases where
this automatic fielding can break down (sach as lines with
errors), but these cases are rare and generally cause no problem.
Labels that are longer than 8 characters are printed on a line by
themselves (above the code they were with -- if any).

4404 Reference Manual @ 5-43

SECTION 5
Assembler and Loader

FIX MODE

Comment lines may begin with either an asterisk (*) or a
semicolon (;). If a semicolon is used, the "+F" option of the
assembler will assume that the "comment" is a valid instruction
to be assembled. Therefore, the assembler will act as though the
semicolon did not exist at all; the rest of the information on
that line will be assembled. For example:

;labe11 move.l #2,dO
; sys term

With the "+F" option invoked, these two lines will be normally
assembled. This aides in the debugging process.

LOCAL LABELS

Local labels are available in the assembler. These local labels
allow the programmer to reuse labels; in this way meaningless
labels can be replaced with local labels. For more information
on local labels, refer to the description of the label field in
the Assembler Operation and Source Line Components discussion
earlier in this section.

OBJECT CODE PRODUCTION

The object code output from the 4404 assembler is a standard 4404
relocating binary file for relocatable modules. This object code
output can be turned on or off via the '+b' option on the calling
line. The relocatable output module always requires processing
by the linking loader to be executed. For more information about
relocatable modules, refer to the discussion of the linking
loader, later in this section.

RELOCATABLE (SEGMENTED) OBJECT CODE FILES

The 4404 operating system supports "segmentation" of binary
files. It permits binary files to be broken into three segments
of code: called "text", "data", and "bss." Each assembly module
must contain one of these directives before any instructions that
produce object code can be processed. The assembler does not
default to any given segment when assembling a file.

Any code in a "text" segment is assumed by the operating system
to be read-only. That is, it will only read code in a "text"
segment and will not attempt to write into it.

5-44 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

The "data" segment is sometimes referred to as "initialized
data". It is code which has been produced by the assembler and
which can be either read or written. For example, the data
segment might contain a temporary variable that requires an
initial value. At any point, the variable could be read or
re-written.

The "bss" segment is an area of reserved memory where no actual
code has been produced by the assembler. It is sometimes
referred to as "uninitialized data". The binary file does not
contain any code to be placed in this section of memory, only a
size value for this segment. Its main purpose is to tell the
operating system that memory is required in this area, but it
does not need to be initialized to any valLles. The "bss" segment
or area of memory can be read or written.

Breaking the binary file into these three sections provides
several benefits. The "text" segment is known to be read-only.
This implies the code will never be altered as long as the
program runs. The operating system can make use of this fact by
sharing this segment of memory in the event that more than one
users wish to run the program at the same time. This can mean a
considerable increase in efficiency of the system. The "data"
section must be different for each user running the program. It
is information (actual instructions or data) which must be
initialized or loaded, but which can be altered at some later
point. The "bss" segment really contains no code or data in the
binary file. It is just a signal to the operating system that
when the file is loaded it needs memory allocated in the area
specified. The program should not assume that the memory in this
segment will be initialized to any particular value.

The assembler performs segmentation by maintaining three distinct
location counters or program counters (PC's). At any point in
the assembly, only one of these PC's is in effect. Any code
generated by an instruction at that point is assembled at the
address in the PC currently in effect. It is possible to switch
to a different PC by use of one of the following three directives
in the opcode field:

text
data
bss

4404 Reference Manual @ 5-45

SECTION 5
Assembler and Loader

It is necessary to state the segment that is desired before any
executable code is produced. It is possible to change which
segment code is currently being generated into at any time. In
other words, YOll could begin with a "text" directive, enter 10
lines of code, then switch to the data segment with a "data"
directive, enter 10 lines of code, then switch back to the text
segment with another "text" directive, etc. To resume with the
last address used by a particular segment, enter the segment
directive:

text
move.l 10,dO
data
temp fcb 0
text
move.l temp,aO
end

It is not possible to generate code in a "bss" segment. Any
attempt to do so will result in an error.

Code generated into the "data" segment is actually written to a
temporary file called '/tmp/asmbdataxxxxx' (xxxxx represents the
current task number). At the end of the assembly, this data is
copied onto the end of the text code found in the main outpJt
file, and the temporary file is immediately deleted.

THE BASE AND STRUCT DIRECTIVES

Two other directives related to PC's and segmentation are "base"
and "struct." These directives are used almost exactly like a
segment PC directive (especially the "bss" segment) but serve a
different purpose. They are really just extra PC's which can be
set and maintained for the purpose of establishing offsets from
some fixed address in an area outside the three segments.
Generally they are used in conjunction with storing information
on a stack. Symbols declared in these segments can be absolute
or relocatable, depending on the attributes of the operand.
Symbols declared in a "struct" segment can be reused just as if
they had been defined using the "set" directive. Symbols
declared in a "base" segment may be used only once, like any
other label. A short example program may be the best
illustration:

5-46 @ 4404 Reference Manual

stack equ

base
temp ds.w
saved ds.l
junk ds. b

text
start move.l
8 move.l

add.l
move.l
bne.s
end

$EFOOOO

$000000
1
2
1

stack,aO
j un k (aO) ,d 2
temp(aO) ,d2
d 2 , sa v ed (aO)
8b

SECTION 5
Assembler and Loader

In this example, the "base" directive allowed us to set up the
variables "temp", "saved", and "junk," which are offsets from the
base location of the stack. Had a "struct" directive been used
in place of the "base" directive, we could have reused the
variables "j unk", "temp" and "saved" in other stack str uctures.
The "struct" directive is extremely u.seful in defining stack
structures in subroutines, where names such as "ret address",
"frame ptr", "arg1", etc., can be used over and over again
without conflict. These directives do not actually create a
segment, they merely set up a new PC which can be temporarily
used to establish offset variables. These directives have most
of the same permissions and restrictions as the "bss" segment;
they default to location $000000 if first called without an
operand. No code may be generated while the "base" or "struct"
PC's are in effect, and new "base" or struct addresses are
allowed. The segments end when a new segment begins.

GLOBAL

The "global" directive is used in relocatable modules to inform
the assembler that the symbols declared global should be passed
on to the linking loader. The syntax of the 'global' directive
is:

global <labeI1>[,<labe12>, · · .]

"labe11", "labe12", etc. represent the symbolic names of the
labels to be declared as global; each label should be separated
by a comma. The global directives must occur before the use or
definition of the symbol. Normally, global symbols are declared
at the beginning of the source module. Local labels cannot be
declared global.

4404 Reference Manual @ 5-47

SECTION 5
Assembler and Loader

DEFINE AND ENDDEF

These convenience directives work much the way "global" works.
The "define" directive informs the assembler that all labels
declared in the label field will also be declared as global
symbols. This "define" mode will be in effect \.lntil a "enddef"
directive is encou.ntered. For example,

data
define
temp1
start
enddef

fdb O,$FFFF
move.l 1 , d 1

This example simply defines the two labels "temp1" and "start" as
global. This directive works well when many symbols must be
declared as global while they are initialized to various values.

EXTERN

The "extern" directive declares symbols to be external to this
particular module. Local labels cannot be declared external.
The syntax of the "extern" directive is:

extern <labe11 >[,<labe12>, · · ·]

"labeI1," "labeI2," etc. are ordinary labels as in "global;"
labels should be separated by a comma. When the assembler
encounters a label declared external in the operand field,
external records will be written out to the binary O\.ltpu.t module.
With the "global" directive, the "extern" directive should appear
before the actual \.lse of the external symbol, \.lsually at the
beginning of the source module. These external records will be
used by the linking loader.

NAME

Each binary outpu.t module can be given a module name with the
"name" directive. The module name is used by the linking loader
in reporting errors and address information; it is strongly
recommended to give each module a name. The syntax of the "name"
directive is:

name <name of the module>

The module name can be a maximum of 14 characters. If more than
one "name" directive occurs in the source module, the last name
given will be the name assigned to the module.

5-48 @ 4404 Reference Manllal

COMMON AND ENDCOM

SECTION 5
Assembler and Loader

It is possible to establish common blocks in the assembler.
These can only be named and Qninitialized common blocks.

<name> common

A common block declaration is terminated by the Qse of the
"endcom" directive. The only directives allowed between the
"common" and "endcom" are "rmb" and "ds," which define the size
of the common block. Labels may be associated with each "rmb" or
"ds" within the common block. For example:

test
temp1
temp2

common
ds.w
ds.l
endcom

5
10

This common block is named "test," has two variables ("temp1" and
"temp2") associated with it, and is 50 bytes long.

A common block and its variables are considered external by the
assembler. Only one common block of a particQlar name shoQld
appear in a modQle. BecaQse common blocks are treated as
externals, the linking-loader handles the resolQtion of
references to the common blocks aQtomatically. For example:

text
test common
temp1 rmb 4
temp2 rmb 2

endcom
start move.l temp1,dO

. . .
Common blocks are QsefQI for passing parameters and keeping
common information aroQnd. FQrthermore, the common block will
have the name of the common block as its modQle name; this is
done aQtomatically by the assembler. Common blocks mQst be
accompanied by execQtable code in the same modQle that is, a
common block cannot be the only item in a single SOQrce modQle.

4404 Reference ManQal @ 5-49

SECTION 5
Assembler and Loader

ERROR AND WARNING MESSAGES

The assembler issQes two types of error messages: fatal and
non-fatal. A fatal error is one SQch as a disk file read error,
which causes an immediate termination of the assembly. A
non-fatal error resQlts in an error message being inserted into
the listing and some sort of defaQlt code being assembled if the
error is in a code producing line. The assembly is allowed to
continue on non-fatal errors. Error messages may not be
suppressed.

All messages are output as English statements, not as error
numbers. These messages announce violations of any of the rules
and restrictions set forth in this manual and are essentially
self-explanatory. Non-fatal error messages are preceded by with
three asterisks, making them easy to locate.

Fatal error messages are sent to the standard error output. They
are issued in the form:

Last Line = <last line read>
Line Number <line-num>-
Fatal Error - <error_message_reported_here>

The messages which may come in the third line are listed later in
this section. The last line processed is not reported on read,
write, open or seek errors.

POSSIBLE NON-FATAL ERROR MESSAGES

16-bit expression expected.

A 16-bit expression was required in the operand field and the
expression found cannot be represented in 16 bits.

8-bit expression expected.

An 8-bit expression was required in the operand field and the
expression found cannot be represented in 8 bits.

A label declared 'global' was not found in the program.

All labels declared via the "global" directive must be defined in
the module.

Absolute expression reqQired.

An absolQte expression is reqQired in this context.

5-50 @ 4404 Reference ManQal

SECTION 5
Assembler and Loader

Branches not allowed across segment boundaries.

Branches cannot be made to labels in other segments or to
externals.

Can't subtract two relocatables from different segments.

Subtraction of relocatables is no.t allowed if they are from
different segments.

Couldn't evaluate expression.

The expression could not be evaluated.

Couldn't evaluate expression in pass1.

Assembler directives such as "ds" and "rmb" must be evaluated in
both passes of the assembler. Only a constant operand is legal,
and forward references are not allowed.

Couldn't find that local label.

The local label specified in the expression was not defined.
Note that the local labels '0' and '00' are two distinct labels.

Data register required.

A data register is required as one of the operands for the
instruction specified.

Duplicate label found.

The label on this line has been defined more than one time.

Evaluator : attempt to divide by zero.

The divisor of an expression evaluated to zero.

Evaluator : more than one external found in an expression.

Only one external variable can be used per expression.

Evaluator: must shift by positive, non-zero quantity.

Only non-negative shift amounts are legal.

4404 Reference Manual @ 5-51

SECTION 5
Assembler and Loader

Evaluator: not a valid operation for 2 reloc's or extern's.

The assembler detected an attempt to add to relocatables or
externals. Only absolute expressions can be added to externals
or relocatables.

Evaluator : operator only valid for absolutes.

The following operations can be performed on absolute expressions
only: and, or, exclusive or, not, multiply, divide, shifts and
the logical operators.

Evaluator: unbalanced expression (wrt segments).

The expression evaluator found an expression involving
relocatables from different segments. In expressions containing
relocatables, the relocatables must be paired and canceling. A
relocatable expression can only be relocated relative to one
segment.

Evaluator : unbalanced parenthesis.

The parentheses in the expression were not balanced properly.

External expression not allowed.

An external expression is not allowed in this context.

External symbol not allowed in this context

In some of the directives, an external symbol is not allowed.
For example, the "equ" cannot have an external symbol in the
operand field; a symbol cannot be equated to an external symbol.

Extra arguments found.

Only two operands were expected for this opcode, but more were
found.

Found zero branch length on short branch.

A short branch cannot be made to the immediately following
instruction.

Forced short but long expression found.

The expression which was forced short (via ":W") could not be
fitted into a word.

5-52 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

IFDEF contained expression that couldn't be evaluated in
Pass 1.

In conditional assembly, the assembler must be able to evaluate
the condition in both passes. This expression can therefore not
involve a forward reference to any variables.

Illegal addressing mode for instruction.

An addressing mode (specified in an operand) was is not legal for
this instruction.

Illegal character in label.

Labels must consist only of alphabetic characters, digits and the
underscore character.

Illegal expression or missing operand.

An expression could not be successfully parsed by the expression
evaluator.

Illegal nesting of conditionals has occurred.

Conditional assembly rules have been broken. Conditionals can
only be nested 20 levels deep and certain rules apply to their
use. See the discussion of conditional assembly for a detailed
description.

Illegal op-code for this segment.

Certain instructions cannot appear in some segments. For
instance, no code can be generated in the BSS segment.

Illegal operand.

An error has been detected in the operand field.

Illegal register list for 'movem'.

The register list specified could not be interpreted. See the
discussion of the instruction set for details on register list
specification.

Illegal size for instruction.

The size specified by the .b/.w/.l extension is not allowed for
this instruction.

4404 Reference Manual @ 5-53

SECTION 5
Assembler and Loader

Illegal special register for instrQction.

The special register (USP,CCR,SR,VBR, ...) specified as an operand
is not legal for this instrQction.

Immediate size does not match instrQction size.

The immediate operand was larger than the size specified in the
instrQction, or implicit in the instrQction.

InstrQction expects only one operand.

The instrQction specified has only one operand bQt more than one
was fOQnd.

Invalid binary header flag.

The operand of the "bhdr" directive is not a known binary header
flag. The legal binary header flags are:

ExecQtable $04
Relocatable $05

Invalid local label - 0 thrQ 99 only.

Local labels mQst be in the range 0 throQgh 99. Local labels
may be reQsed in the same modQle.

Invalid option specified.

The only legal options to the "opt" directive are "con," "noc,"
"lis," "nol." See the discQssion of pseQdo-ops and directives
for more details.

Invalid transfer address fOQnd (external).

External transfer addresses are not sQPported.

Label reqQired.

The directives, set, eqQ and log reqQire a label to be specified
on the same line.

Negative valQe not allowed.

A negative valQe cannot be specified in this instrQction.

Nested COMMON's not sQPported.

Common blocks cannot be nested.

5-54 @ 4404 Reference ManQal

No closing delimiter fOQnd.

SECTION 5
Assembler and Loader

The assembler fOQnd the EOL character before finding a closing
delimiter in a string expression.

No ENDCOM directive fOQnd.

A common block declaration mQst be bracketed by the two
directives "common" and "endcom". Another segment was entered
withoQt an "endcom" being specified.

Odd branch address fOQnd.

A branch to a label on an odd address was detected. InstrQctions
must always begin on an even bOQndary. (The assembler takes care
of this.) This can happen if a label is on a line by itself
after some odd nQIDber of bytes of data, or the label is on a line
with data that does not need to be aligned.

Overlapping register list specified.

The register list in the "MOVEM" instrQction contains registers
that have been specified more than once. The assembler issQes
this more as a warning than as an error, bQt the register list
shoQld be corrected.

Phasing Error.

The two passes of the assembler do not agree on the address of
the label on the cQrrent line. This error can be caQsed by other
errors in the assembly and shoQld not appear as the only error in
a given modQle. Only the first phasing error is reported, and
checks are made only on lines containing labels.

Quicknwnber (1-8) expected.

The instrQction specified reqQires a "qQick" cOQnt in the
immediate operand field, and the expression fOQnd was not between
1 and 8 inclQsive.

Relocatable displacement from the same segment reqQired.

For PC relative code, the relocatable displacement mQst be from
the same segment as the PC.

Relocatable displacement not allowed.

A relocatable displacement is not allowed in this context.

4404 Reference ManQal @ 5-55

SECTION 5
Assembler and Loader

Relocatable expression required.

A relocatable expression is required in this context.

Symbol found in 'extern' also found as program label.

A symbol declared external to a module via the 'extern' directive
cannot be defined in the same module.

The string was too long for the size specified.

The size specified in the instruction is smaller than the size of
the immediate string specified as the first operand.

Too far for a branch instruction.

The target of a branch instruction must be within the constraints
of a 16-bit expression. A jump will have to be used.

Too far for a short branch.

The target of a short branch must be within the constraints of an
eight-bit expression. A long branch will have to be used here.

Undefined symbol found.

A symbol in an expression has not been defined.

Unknown addressing mode.

The addressing mode specified could not be interpreted by the
assembler.

Unknown opcode.

The opcode on this line is not a known opcode. See the
discussion of instructions and format for details.

Unknown size specified.

The only legal size extensions on instructions are's', 'b', 'w',
and '1.' A size other than this was specified.

Word operand required on system call name.

The system call specified is not a legal system call.
The system call number must fit in 16 bits (word).
See Section 6, System Calls for more information.

5-56 @ 4404 Reference Manual

POSSIBLE FATAL ERROR MESSAGES

Library file "<file_name>" not fOlInd

SECTION 5
Assembler and Loader

The specified library file cOlIld not be located. The assembler
searches first in the clIrrent directory, then in a directory
called "lib" in the clIrrent directory, and finally in the
directory "/lib".

Library nesting too deep

Libraries may be nested only IIp to seven levels deep.

Local label table overflow

The maximum nlImber of local labels allowed in a SOlIrce file is
500.

No file specified

The assembler fOlInd no SOlIrce files on the command line.

Opening "<file_name>": <reason>

The assembler received an error from 4404 while opening the
specified file. An explanatiori of the error message is given.

Ollt of space

The assembler's symbol table is grown dynamically and grew to the
limits of the size restrictions imposed by the 4404. The
SollItion is to break the SOlIrce into mlIltiple modlIles and
assemble them separately.

Reading "<file_name>": <reason>

The assembler received an error from the operating system while
reading the specified file. An explanation of the error message
is given.

Seeking in "<file name>": <reason>

The assembler received an error from the operating system while
seeking in the specified file. An explanation of the error
message is given.

4404 Reference ManlIal @ 5-57

SECTION 5
Assembler and Loader

U requi res label

The 'U' option requires a label as its argument. See the section
on options for more details.

Unknown option '<char>'

The character specified is not a known option.

Wr it ing to " < file_name>": < reason>

The assembler received an error from the operating system while
writing to the specified file. An explanation of the error
message is given.

THE LINKING LOADER

TERMINOLOGY

The remainder of this section describes the linking loader. The
following additional terms are used:

loading

module

module name

The placement of instructions and data into memory
in preparation for execution. This preparation
includes linking (the matching of symbolic
references and definitions), and relocation of
symbols and address expressions.

A subprogram which has been assembled using the
assembler.

The name given to a module by the programmer by
using the "name" directive of the relocating
assemoJ..er. If the tinameii directive was not used,
the module name is the same as the file name in
which it is contained. Therefore, several modules
may have the same name. The output module of the
loader may be given a name by use of the "N"
option.

relocatable object-code module
Equivalent to "mod ule" .

5-58 @ 4404 Reference Manual

Linking Loader Input

SECTION 5
Assembler and Loader

The Linking Loader accepts independently assembled, relocatable
object-code modules as input. Relocatable object-code is
generated by the assembler "asm" in such a way that addresses are
not bound to absolute locations at assembly time; this binding of
the address fields will be accomplished by the Linking Loader.
The "load" command binds the addresses at the time the
object-code segments are combined to produce an executable
program. The binding or adjustment of the address fields is
termed" relocation". Relocation is necessary when an
instruction expects an absolute address as an operand. The
address field of this instruction must be increased by a
"relocation constant". The relocation constant is the address at
which the module is loaded for execution.

Address fields which do not require relocation are absolute
addresses; their values remain the same regardless of the
position of the object code segment in memory. Since the loader
does not have access to the source text, it cannot determine if
an address field is absolute or relocatable. In fact, it cannot
distinguish addresses from data or opcodes. Therefore, the
assembler must indicate to the loader which address fields
require relocation. This communication is accomplished through
"relocation records," which are appended to the object-code file
produced by the assembler. Such a file is called a "relocatable
object-code module."

Often it is desirable for parts of a program (called modules) to
be developed separately. Each module must be assembled
separately prior to final merging of all the modules. During
this merging process, it is necessary to resolve references which
refer to addresses or data defined in another module. The
resolution of these "external references" is called linking. The
assembler must provide information to the loader, in a manner
similar to relocation records, concerning the address fields
which must be resolved.

Linking Loader Output

As output, "load" produces an obj ect-code module, a load map, a
module map, and a global symbol table. The object-code module
can be either relocatable or executable. A relocatable module
produced by the loader cannot be distinguished from a relocatable
module produced by the assembler. Only the loader, however, can,
transform multiple relocatable modules into an executable
program.

4404 Reference Manual @ 5-59

SECTION 5
Assembler and Loader

The Standard Environment File

An environment file, "/ lib/std env" is sllpplied with every 4404.
The loader uses this file to get the information necessary to
load a given module. The environment file is just an options
file (described earlier in this section) which is processed
before any other options on the command line. This file contains
hardware-specific information so the user will not need to
specify these things each time a file is loaded. Information
such as the hardware page size and the starting address of the
text or data segments is typically found here.

INVOKING THE LOADER

The linking loader accepts as input previously assembled,
relocatable object-code modules and produces as output either:

1. A link-edited, relocatable, object-code module or
2. A link-edited, relocated, executable program.

The command line necessary to invoke the linking loader is:

++ load <relocatable_modules> [+options]

The two plus signs are the system's ready prompt, and "load" is
the name of the linking loader command file.

"<relocatable modules>" is a list of one or more file names,
separated by blanks, which contain relocatable object-code
modules you wish to load. The object-code modules will be loaded
in the order specified.

"options" is a list of options which must start with a plus sign
("+") and may not contain any embedded spaces. More than one
list of options may be specified, but each list must start with a
plus sign. Some of the options are single characters, while
others require an argument. Those that are single letters may be
grouped together; for example: +sm. Those that require arguments
may either stand alone or be the last of a group of options; for
example: +smT=400000 (the "T=400000" is an option with an
argument). The equal sign is not required in options with an
argument. Therefore, "+T=400000" is equivalent to "+T400000".

5-60 @ 4404 Reference Manual

Va~id Options

+a=<minimum number_of_pages>

SECTION 5
Assembler and Loader

The 'a' option specifies the mInImum number of pages to
be allocated to this task when executing. The number
of pages specified must be a nonnegative decimal
number.

+A=<maximum_number_of_pages>

The 'A' option specifies the maximum number of pages to
be allocated to this task when executing. The number
of pages specified must be a nonnegative decimal
number, and should be greater than or equal to the
minimum specified. The loader automatically adjusts
"ridiculous" page counts.

The 't' option tells the operating system of the
largest size that this task may grow to while
executing. The maximum logical task sizes currently
supported are:

128K
512K
2048K (or 2M)
8192K (or 8M)

For example

+b=512K
+b=2M
+b=8192K

The letters 'M' and 'K' may be in upper- or lowercase.
The default task size is 512K. The loader
automatically adjusts the task size if it finds that
the size specified by the user or the default size is
too small for the modules being loaded.

4404 Reference Manual @ 5-61

SECTION 5
Assembler and Loader

5-62

+c=<source module type>

The 'c' option allows the user to specify from what
type of source file this module was created. This
information is placed in the binary header for use in
debugging. The source module types currently
recognized are:

ASSEMBLER
C

and are specified as follows:

+c=ASSEMBLER
+c=C

Only uppercase letters may be used.

+D[=<start_of_data_segment>]

The 'D' option specifies the "data" segment bias to add
to all "data" references (i.e., the starting address of
the data segment). The number specified as the start
of the data segment must be in hex and is machine
dependent. If no starting data address is given, the
data segment will follow the text segment. The 'D'
option with no argument forces the data segment to
follow the text segment (the default). This may be
necessary if the "std env" file contains data and/or
text starting addresses and the user wishes to load a
module for execution on another machine with different
hardware requirements.

+e By defaul t, "tne loader WIl.l. noti!"y the user only once
about each unresolved external symbol. This option
forces it to report every occurrence of every unresolved
external symbol, showing in which module it was
Llnresolved.

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

+F[=<options file name>]

This option allows the user to place loader command
line options in a file rather than listing them each
time on the command line. The file is read by the
loader, and options are set from there as well as from
the command line. The last occurrence of an option
always overrides previous occurrences, so if the options
file is specified first, any options found on the
command line will override the same option in the
options file. Nested options files are not supported.

The options specified in the options file must be
separated by one or more spaces, may be on multiple
lines, and must begin with a '+' just as they do on the
command line. Only options may be specified in this
file, not modules to be linked. The loader discards
all characters up to a '+,' so comments may be inserted
before the first option on a given line. For example,
the following is a valid options file.

System XYZ Loader Optioris File
Data and Text Biases +D=400000 +T=O
Produce Maps +msM=mapout
Produce Shared Text +t

If the 'F' option is specified without an argument, the
loader looks for the file called "ldr opts" in the
current directory, and uses it as the-option file.

+i The "i" option includes all internal symbols in the
symbol table for symbolic debugging. If the "i" option
is not specified, only global symbols are included in
the relocatable, object-code module.

+l=<library file name>

A maximum of five libraries may be specified by
repeated use of the "1" option. If fewer than five
libraries are specified, the system library is also
searched in addition to the user libraries. Libraries
are searched only when an executable output program is
produced (not when 'r' is specified). In the following
example, an effort is made to resolve externals not
found in the user's modules by searching the three
libraries "lib1," "lib2," and "Syslib:"

4404 Reference Manual @ 5-63

SECTION 5
Assembler and Loader

5-64

++ load echo[1-3].r +1=lib1 +1=lib2

For more information concerning the formation and ~se
of libraries, see the discussion of libraries later in
this section.

+L Do not search the libraries for unresolved externals.

+m Print the load map and the module map. The load map
provides information as to the type of output file
produced, the length of the resulting o~tput
object-code module, the number of input modules, and
the transfer address. The module map describes the
load address and object-code length for each input
module.

+M=<map output file>

The load map, module map and symbol table are written
by default to standard output. This option specifies a
file name to which this information is to be written,
rather than standard o~tput.

+n Produces an exec~table output module with totally
separate instruction and data spaces. This option
informs the operating system that hardware s~pport for
separate instruction and data spaces is available and
to handle addressing accordingly.

+N =<mod ule name>

Specifies the name to be given to the output module of
the loader (in a manner similar to the "name" directive
of the assembler). Since the loader does not propagate
the module names of the relocatable input modules to
the output module, the "N" option must be used to
assign a name to a module. If the "N" option is not
used, the module name will default to the name of the
file in which it is contained. Both executable
programs and relocatable modules can receive module
names. The name is limited to a maximum of 14
characters.

+o=<file name>

Specifies the file name for of the output binary file.
If the "0" option is not specified, the output file
will be named "file name.o" in the current directory.
If a file by this name already exists, it will be
deleted.

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

+r The fir" option specifies that the loader's binary
OQtp~t is to be a relocatable object-code module. The
effect of this option is as if all the modules were
contained in one source file and assembled with the
assembler.

+s The "s" option directs the loader to print the global
symbol table. If specified, the loader will print each
global symbol and its address.

+S=<initial stack size>

This option informs the operating system that a task
needs some amount of stack space when it begins
execQtion. The operating system, by default, sets up a
4K-byte stack for each user task. This mechanism
allows the task to begin execution with possibly more
than the normal amount of stack space (but never less
-- the operating system will always round up to the
next 4K-byte boundary).

+t The "t" option specifies that the loader's binary
outpQt is to be a shared text, executable program. For
more information, see "Shared Text Programs" in the
discQssion on segmentation.

+T=<start of text segment>

This option specifies the "text" segment bias to be
applied to all text references. The starting address
must be in hex; it defaults to 0 when the 'T' option is
not specified. The text bias is machine dependent.

+~ This option tells the loader not to print the
"unresolved external" message when producing a
relocatable output module.

LIBRARIES

Introduction

A library is a special collection of relocatable modules. When
an external cannot be resolved from the user's modules, the
libraries are searched in an effort to resolve it. The loader
will search the Qser defined libraries in the order specified on
the command line before searching the system library. This '
allows the user to redefine a system library module or entry
point. The search for an external can be summarized as follows:

1. Can the external be resolved from the user's modules?

4404 Reference Manual @ 5-65

SECTION 5
Assembler and Loader

2. Can it be found in the user specified libraries?

3. Can the external be resolved from the system library?

When an external is resolved from a module contained in a
library, that module is loaded and is then considered to be
a "user" module. Because of this, library modules can
reference other library modules.

The loader can search a maximum of five libraries when externals
cannot be resolved from the user's modules. Usually, these
libraries consist of up to four user libraries and the system
library. The user can, however, specify five libraries on the
command line. When five libraries are specified, the fifth one
takes the place of the system library.

When searching for a library, the loader first looks for the
specified file in the current directory. If the file is not
found, the loader then looks for the "lib" directory in the
current directory. If it finds that directory, the loader
attempts to find the specified file. If not found, the loader
makes a third and final attempt to find the specified file by
looking in the directory "/lib". If the file is not found in any
of these three directories, an error message is issued and the
loader aborts. This process also is followed when searching for
the system library.

Library Generation

The "libgen" utility is used to create new libraries and update
existing libraries. All modules in a library m~st have a
name. The name is assigned to a module by the "name" pseudo-op
in the assembler or by the "N" option of the loader. It is the
responsibility of the programmer to ensure that all modules in a
library have names. The iilibgenii utility will not accept a
module without a name.

The syntax for the "libgen" utility is:

libgen o=<old>,n=<new>,u=<updates>,<options>,<deletions>

The arguments may be specified in any order.

The argument "o=<old>" specifies the name of an existing library
file. This library file must have been created previously by
"libgen". If "libgen" is begin called to create a new library
(instead of updating an existing one), this argument should be
omitted.

5-66 @ 4404 Reference Manual

SECTION 5
Assembler and Loader

The argument "n=<new>" specifies the name of the new library. If
this file already exists, it will be deleted before the new
library is written. This argument need not be specified when
updating an existing library. In this case, "libgen" will put
the new library in a scratch file, delete the old library file,
and rename the scratch file, giving it the name of the old
library. The command line must include either the "o=<old>" or
"n=<new>" argument, or both.

The argument "u=<updates>" specifies the name of a file
containing modules that are to be added to the library, replacing
existing modules in the library if necessary. More than one
Llpdate file may be specified by repeating the "u=" argument. Up
to nine files may be specified in this way.

As "libgen" runs, it produces a report, describing the action
that it has taken for each module in the library. The report
includes the module name and the file from which it was read (the
old library or one of the update files). The options are used to
eliminate or shorten this report. If the "+1" option is
specified, no report will be produced. If the u+a" option is
specified, the report will only contain information about those
modules that were replaced, added, or deleted. No information
about modules copied from the old library will be given.

The "<deletions>" argument is a list of module names to be
deleted from the old library. The names may be separated by
commas or spaces. If a name is specified that cannot be found in
the old library, a warning message is issued. If the "+1" option
was specified, no warning is issued.

EXAMPLES

1. Create a new library with the name "binlib" containing
modules from the files "one", "two", and "three:"

libgen n=binlib u=one u=two u=three

Since a new library is being created, the "o=<old>" argument
was omitted. Note that the "u=" argument was repeated for
each update file.

2. Update the library named "binlib", adding or replacing
records from the file "new." Produce an abbreviated report:.

libgen o=binlib u=new +a

Since no new library was specified, the new library will be
given the name of the old library.

4404 Reference Manual @ 5-67

SECTION 5
Assembler and Loader

3. Update the library named "binlib", deleting the modllles
named "diagonal" and "transpose;" add new modllles from
the file "xyz" and write the new library in the file
"newlib:"

libgen obinlib ll=xyz n=newlib transpose diagonal

SEGMENTATION AND MEMORY ASSIGNMENT

Relocatable and Executable Files

The loader can produce either an execlltable program or a
relocatable modllle. By default, the loader prodllces an
executable module: use of the 'r' option callses the loader to
produce a relocatable module. The loader can produce two types
of executable files: shared text and non-shared text. The next
sections will discuss how "load" produces the relocatable modllles
and the two types of executable programs.

Relocatable Modules

Relocatable modules prodllced by the assembler have distinct text,
data, and bss segments. All of the text object-code appears in
the binary file first, followed by all of the data object-code.
Since there is no object-code in the bss segment, it is thought
of as following the data segment. The loader maintains these
distinct segments by combining the text segments of all the
relocatable input modules, followed by the concatenation of data
segments, and then (conceptually) all the bss segments. In
addition, the module segments are loaded in the order in which
the modules are specified on the command line.

Common blocks (which contain only bss) are not combined with the
bss segments of the other modules when producing a relocatable
outPllt module. Instead, common blocks retain their identity as
separate modules and are appended to the resulting relocatable
output module. Common areas will be combined with the bss
segments of other modules only when producing an executable
program.

Relocatable modules can be given module names by the use of the
"name" directive of the assembler. This name is llsed when
printing the module map. If no name was given to a module by use
of the "name" directive, the name of the file in which it is
contained is printed. When producing a relocatable outPllt
module, the loader does not propagate any of these module names
to the output. To assign an output modllle a name, llse the "N"
option when invoking the loader.

5-68 @ 4404 Reference Manllal

SECTION 5
Assembler and Loader

Unlike module names, "info" fields are collected from the input
modules and carried over to the relocatable output module and
~ltimately to the executable program.

Executable Programs

When loading modules to produce an executable program, the loader
loads modules in the order specified on the command line. Common
areas (which contain only uninitialized data) are loaded after
the last module specified on the command line. Libraries are
loaded after the last common block, or after the last user module
on the command line if there are no common blocks.

The two types of executable programs the loader is capable of
producing are shared text and non-shared text.

Shared Text Programs

Shared text programs have three distinct segments. The "text"
segment is assumed to be read-only. This implies the code
contained in the text segment will not be altered as long as the
program runs. We can take full advantage of this fact by
"sharing" this segment among several ;lsers who are running the
program concurrently. This can mean a considerable increase in
the efficiency of the system.

The "data" segment is also referred to as "initialized data". It
is information (actual instructions or data) which must be
initialized or loaded, but which can be altered at some later
pOint. For example, counter variables which must be initialized
to zero but will later be incremented should be placed in the
data segment. At any time, the variable could be read or its
value changed. Each user would then need his or her own copy of
the data segment.

The "bss" segment, like the data segment, is also a read/write
area. Since a module does not contain any object code to be
loaded into this section of memory, it is also referred to as
"uninitialized data". The module does contain the size of the
bss segment, however, in order to inform the operating system
that memory is required in this area but does not need to be
initialized.

4404 Reference ManQal @ 5-69

SECTION 5
Assembler and Loader

When producing a shared text program, the loader collects all the
text segments from the relocatable input modules and loads them
at the location specified by the 'T' option, or at 0 if no
starting text address was given. All of the data segments are
then placed either at the address specified in the 'D' option or,
if no 'D' was given, immediately following the last text address,
rounded up to the granularity specified in the 'P' option (or the
next even byte if no 'P' was specified). Memory for the bss
segments will be allocated immediately following the data
segments at the time the program is executed.

There are drawbacks to using shared text. The text portion of a
shared text file is always swapped to disk. Therefore, programs
which are used infrequently, or those that only one task would be
running at a time, would make better use of the system resources
if they were non-shared.

The following memory map illustrates how the segments are loaded
in relation to other segments and modules. The module numbers
are the order in which they appear on the command line; "m" is
the last module specified. Common blocks 1-x and library modules
1-n, which are loaded to complete the program, are also
represented.

5-70 @ 4404 Reference Manual

Hardware
Dependent -->

Hardware
Dependent -->

Text of mod 1
Text of mod 2

Text of mod m
Text of library 1
Text of library 2

Text of library n
<--+

<--+

Data of mod 1
Data of mod 2

Data of mod m
Data of library 1
Data of library 2

Data of library n
Bss of mod 1
Bss of mod 2

Bss of mod m
Bss of common 1
Bss of common 2

Bss of common x
Bss of library 1
Bss of library 2

Bss of library n

4404 Reference Manual

SECTION 5
Assembler and Loader

Depends on 'P' option.
Hardware Dependent.

@ 5-71

SECTION 5
Assembler and Loader

Non-shared Text Programs

A non-shared text program has the same form as shared text
program except that it is simply not shared. The non-shared text
programs do not incur the overhead of having their text segments
swapped immediately to disk at execution time. The memory map
for a non-shared text program is the same as for a shared text
program.

LOAD AND MODULE MAPS

Load Map

The 'm' option controls the printing of the module and load maps.
The load map provides information about the type of output
produced, the length of the resulting output object code module,
the number of input modules, and the transfer address.

Modllle Map

Use of the 'm' option also selects printing of the module map.
The module map describes the load addresses and object code
length for each of the inp~t modules.

The Mod~le Map of a Relocatable Mod~le

When producing a relocatable module, both the assembler and the
loader do not "bind" or tie addresses to absolute locations; they
are made relative to the base of the segment to which they refer.
The following example assembled by the assembler will illustrate
this point.

1
2 000000
3 +000000 ~U(v 0000 uuuu
4 X000006 4EB9 0000 0000
5 +OOOOOC 207C 0000 OOOA
6 +000012 23C8 0000 0012
7 X000018 4EB9 0000 0000
8 00001E 4E75

Start

lab1

extern pdata
text
move.l
jsr
move.l
move.l
jsr
rts

#msgi ,aO
pdata
#msg2,aO
aO,msgaddr
pdata

* Start of DATA segment
10
1 1
12

14
1 5
1 6

18

5-72

000000
000000 4D65 7373 6167 msg1
OOOOOA 4D65 7373 6167 msg2

* Start of

data
fcc "Message 1",0
fcc "Message 2",0

BSS segment
bss
rmb 18

000000
000000
000012 msgaddr rmb 4

* Set transfer address
0000 0000 end Start

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

All of the segments start at address 0 (lines 2, 10, and 14).
This is called the base address. Because of this, it is possible
for two labels in different segments to have the same address
(offset from the segment base). "lab1" and "msgaddr" are
examples of this occurrence. All labels defined in a segment are
relative to its base address. For example, "lab1" is 18 bytes
from the beginning of the text segment, and "msg2" has an offset
of 10 bytes from the base of the data segment. Throughout the
linking process, the distance between "start" and "lab1" will
remain constant. No assumptions, however, can be made about the
distance between two labels that reside in different segments.

To produce a relocatable module from several input modules, the
loader mQst combine all like segments. In other words, all text
segments are concatenated starting with the text segment of the
first input module, followed by the text of the second module,
and so on. By doing so, however, the base address of all modules
except the first will be changed. The loader automatically
adjusts any addresses which refer to symbols in these modules
which have been "relocated."

A small 'C' program was compiled, assembled and loaded, producing
the following load and module maps:

* LOAD MAP *

Produced - executable, not overlapped TEXT and DATA.
Module is not shared text.
Starting TEXT address = 000000
Starting DATA address = 400000
Initial stack size = 000000
Granularity = 000000
Binary transfer address = 000B38
Number of input modules = 5

* MODULE MAP *

TEXT DATA BSS MODULE NAME
000000 400000 400204 test
000050 40000C 400204 Long MUI/Div
00032A 40000C 400204 C System Calls
000B04 4000AO 400204 strlen
000B38 4000AO 400204 C Wrapper

FILE NAME
test.r
flib/Clib
/lib/Clib
/lib/Clib
/lib/Clib

000B52 400204 400604 * Final Segment Addresses *

4404 Reference Manual @ 5-73

SECTION 5
Assembler and Loader

The maps show the text segments from each of the modules are
combined and relocated to form the text segment of the final
executable module. The starting text address was specified as O.
The starting data address was 400000. From looking at the module
map we can see that all modules have text segments, the "Long
Mul/Div" and the "strlen" modules have no data segments, and only
the tIC Wrapper" module has bss. Note also that the bss segment
follows immediately after the data segment. The library
"/lib/Clib" was searched successfully for the routines called
directly and indirectly by the module "test". One can see that
the binary transfer address is located in the "c Wrapper" module
(Address $000B38).

The following map was produced using the same file as the
previous map. No starting address for the data segment was
specified, therefore the data segment follows the text segment.
Since a granularity was specified as $1000 (The 'P' option), the
data segment starts at the end of the text segment (rounded up to
the next $1000 boundary). The executable module is to be shared
text.

5-74

* LOAD MAP *

Produced - executable, not overlapped TEXT and DATA.
Module is shared text.
Starting TEXT address = 000000
Starting DATA address = 000000
Initial stack size = 000000
Granularity = 001000
Binary transfer address = 000B38
Number of input modules = 5

* ivIODULE iVIAP *

TEXT DATA BSS MODULE NAME
000000 001000 001204 test
000050 00100C 001204 Long Mul/Div R
00032A 00100C 001204 C System Calls
OOOB04 0010AO 001204 strlen
000B38 0010AO 001204 C Wrapper

OOOB52 001204 001604 * Final Segment

FILE NAME
test.r
/lib/Clib
/lib/Clib
/lib/Clib
/lib/Clib

Addresses *

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

MISCELLANEOUS

Transfer Address

A transfer address is the location at which execQtion is to start
when the program is invoked. The 'end' directive in the
relocating assembler can be Qsed to indicate a transfer address.

Only one relocatable modQle to be inclQded in a program shoQld
contain a transfer address. If more than one modQle has a
transfer address, the loader prints an error message and aborts.

Resolution of Externals With Library Modules

The loader resolves externals in the following manner:

1. Combine all user modules.

2. Search libraries sequentially resolving all refe~ences that
the user modules make to the library modules. (Primary
references)

3. Search libraries again, this time resolving any external
references made by the library modules brought in during
step 2. (Secondary references)

When resolving externals with library modules, the loader always
processes the libraries in the order specified on the command
line. When resolving secondary references (step 3 above), if
bringing in another library module introduces more unresolved
externals, then the library search begins from the beginning
again. This way, even though the same module may appear multiple
times in different libraries, only the first occurrence of each
module (as defined by the order of the libraries on the command
line) is used.

ETEXT, EDATA, AND END

In certain applications, it is desirable to know the last
location contained in a particular program segment (text, data,
or bss). Due to the manner in which these modules are loaded, it
would be very difficult to determine these locations in an
applications program. To alleviate this difficQlty, the loader
has three global symbols which are always available and contain
the location of the end of a segment. These three globals are
ETEXT, EDATA, and END; they correspond to the ends of the text,
data, and bss segments respectively.

4404 Reference Manual @ 5-75

SECTION 5
Assembler and Loader

ETEXT, EDATA,
and END may be ased like any other aser-defined global
symbols. Since they behave like user-defined globals, they
will always appear in the global symbol table listing. When
used in a module, they should be defined as external. These
special symbols are pre-defined, so users should not give these
names to their own global symbols.

ERROR MESSAGES

The loader produces both fatal and non-fatal error messages.
Fatal error messages are of the form:

Fatal Error: <description of error>
Loader aborted! - -

Non-fatal errors are produced in different forms for different
messages.

Non-Fatal Error Messages

Warning: "/lib/std_env" not found.

The "/lib/std env" file is supplied with every 4404. It is an
options file which contains hardware-specific information so that
the user does not need to enter them for each load. If you have
not deleted or renamed the file purposely, you should contact
your Tektronix service representative.

"<symbol_name>" unresolved in module "<module name>".

The specified symbol was referenced in the specified module, but
the symbol could not be located in any of the user supplied
modules or in the libraries (if libraries are being searched).
This may be expected if a relocatable file is being produced. If
an executable file is being produced it is an error.

Symbol name clash: "<symbol_name>" in module module name>".

The specified symbol has been globally declared in more than one
module. The module specified is the one containing the second
declaration of the symbol. The name of the global symbol will
have to be changed in one of the modules, and the module will
have to be reassembled.

5-76

Integer overflow in module "<module name>".
Segment = <segment>.
Offset in module = <offset>.

@ 4404 Reference Manual

SECTION 5
Assembler and Loader

When relocating a field in the module specified, the loader
detected overflow out of the size field being adjusted. This may
not always be an error. The address of the field relative to the
specified segment is also reported. Subtracting from an external
in a module can result in this message being produced when in
fact the result of the subtraction is exactly as it should be.
The user should look carefully at the code being loaded to
determine if the error message should be ignored or not.

Two-Byte address overflow in module "<module name>".
Segment = <segment>.
Offset in module = <offset>.

This error message is similar to the preceeding one, but with one
slight difference. A two-byte address (absolute word addressing
mode from the assembler) must be a positive, 16-bit expression to
be a valid address, whereas the previous overflow message
requires only that the result be an unsigned 16-bit expression.
This message definitely indicates an error. An address was
forced to absolute short in the assembler when it can not be.

Fatal Error Messages

Illegal minimum page allocation!

The minimum page allocation must be a positive integer. The
number specified on the command line is illegal.

Illegal maximum page allocation!

The maximwn page allocation must be a positive integer. The
number specified on the command line is illegal.

Too many libraries!

A maximum of five libraries may be specified on the command line
to the loader.

Nested IF' options!

Option files cannot be nested. Multiple option files can be
specified on the command line though.

Illegal configuration specified!

The configuration specified is not a known configuration. See
the 'C' option for more information.

4404 Reference Manual @ 5-77

SECTION 5
Assembler and Loader

Illegal option '<char>'!

The character specified is not a known loader option. See the
"options" discussion for more details.

Relocatable, but data/text start specified.
Conflicting options!

When producing a relocatable file as output, no starting text or
data addresses can be given.

Opening "<file_name>": <reason>

The loader received an error from the operating system when it
tried to open the specified file. An explanation of the error is
given.

Reading "<file name>": <reason>

The loader received an error from the operating system while
trying to read the specified file. An explanation of the error
is given.

Writing to "<file name>": <reason>

The loader received an error from the operating system while
trying to write to the specified file. An explanation of the
error is given.

Seeking to <location> in "<file name>": <reason>

The loader received an error from the operating system when it
tried to seek to the specified location in the specified file.
An explanation of the error is given.

Unknown module type!

The module type specified on the command line is not a legal
type. The loader only recognizes "FORTRAN", "C", "PASCAL",
"COBOL", and "ASSEMBLER". See the options discussion for more
details.

Illegal task size!

The task size specified on the command line is illegal.
Allowable task sizes are: 128K, 512K, 2048K, 8192K, 2M, or 8M.
See the options discussion for more details.

5-78 @ 4404 Reference Man~al

SECTION 5
Assembler and Loader

No files given!

The loader fOQnd no files on the command line.

Illegal inpQt file " <file_name>" !

The specified file is not a legal relocatable file prodQced by
the assembler or the loader.

Library "<library_name>" not fOQnd!

The library specified COQld not be located in the cQrrent
directory, a directory called "lib" in the cQrrent directory, or
in the "/lib" directory. .

Bad library format for "<library_name>"!

The library specified did not have the correct format for a
library created by the "libgen" Qtility.

MQltiple transfer addresses!

Only one modQle can contain a binary transfer address. The loader
fOQnd two Qser-specified modQles with transfer addresses.

Illegal relocation!

This message is an internal consistency check and shoQld not be
issQed. If this message is ever reported, contact yOQr
Tektronix service representative.

BSS instrQction segment!

This message is an internal consistency check and shoQld not be
issQed. If this message is ever reported, contact yOQr
Tektronix service representative.

BSS transfer address!

This message is an internal consistency check and shoQld not be
issQed. If this message is ever reported, contact yOQr
Tektronix service representative.

4404 Reference ManQal @ 5-79

Section 6

SYSTEM CALLS

INTRODUCTION

Sections 4 and 5 provided an introduction to the 4404 system
calls and the use of "asm" and "load." This section describes
each of the system calls, including errors that may be returned
after the system call. This section is meant to be used with the
assembler. If you want to make system calls from a high-level
language, see the documentation for that language.

OVERVIEW

Assembly language programs on the 4404 interface to the operating
system through system calls, perform functions such as file
manipulation and task control. The calls are implemented with
the TRAP #15 opcode followed by a one word function code which
defines the call to be performed. Up to four 32-bit values
(longs) may follow the function code, depending on the particular
call. The 4404 assembler supports the "sys" pseudo-op which sets
up the appropriate machine code for a system call. Its syntax
is:

sys function[,argO,arg1,arg2,arg3J

where "f~nction" is the system call number or name. This pseudo-op
produces the TRAP code for the call, a single word for the
function, and 32-bit values for each argument.

The arguments to system calls fall into three categories:
numbers, pointers, and buffer addresses. Numbers .may be bit
patterns (as in the "chprm" call) or mode codes such as in
"open". A 32-bit value is used, even if the number required will
fit in 16 bits or less. Pointer arguments are used for calls
which require a name or ASCII string (such as file names for
"open" and "create"). The pointer is simply the address of the
location of the string in memory. The string should always be
null terminated (a 00 byte). A buffer address is used for calls,
such as "status", that require a place in the caller"s address
space to place data generated by the call. A buffer address is
simply a 32-bit address pointing to the start of the data buffer
to be used. Some calls also extract data from a caller-supplied
buffer.

4404 Reference Manual @ 6-1

SECTION 6
System Calls

Some system calls require information to be passed in registers
as well as through arguments. Most calls use the DO register,
but a few use AO as well. All registers are preserved through a
system call unless a value is returned in the register. An error
generated in a call always returns the error number in the DO
register.

Condition codes are also preserved through a system call with the
exception of the error bit. The error bit is the same as the
carry, and the assembler supports the "bes" and "bec" mnemonics
("branch if error set" and "branch if error clear"). These
mnemonics are synonymous with "bcs" and "bcc," respectively. The
error bit will always return cleared if no error resulted from
the call; otherwise it will be set and the error response code
will be in DO. The usage of each system call will be described
in a similar manner. To illustrate, here is an example of the
"read" system call:

<file descriptor in DO>
sys read,buffer,count
<bytes read in DO>

The information in the angle brackets preceding the call shows
the data the system expects to find in the registers. In this
example, the DO register should contain the file descriptor
number of the file to be read. Next is the actual system call as
it would appear in the assembler source listing. The system
function is "read" and it has two arguments, "buffer" and "count".
Following the call is information regarding the data to be found
in the changed registers. In this example, the DO register will
contain a count which represents the actual number of bytes read
from the specified file. Other registers will be unchanged.

6-2

NOTE

If a system call returns data to a buffer, it
may not return it into the "text" segment of
a program; it must be return the data to the
"data" or "stack" segments. For example, the
"buffer" in "read", and "tbuf" in "time" may
not reside in the "text" segment.

NOTE

The "ind," system call signals an address
error if the indirect target area is in the
text segment. Keep the target area for
indirect system calls in the data or stack
segments.

@ 4404 Reference ManQal

SECTION 6
System Calls

SYSTEM ERRORS

When the system returns from a system call with the error (carry)
bit set, register DO contains the number of the resulting error.
Here is a list of all system error numbers and their respective
meanings:

EIO I/O error.

This can result from a CRC error, hardware malfunction, or
defective media problem while reading or writing a device.

2 EFAULT System fault.

System faults are detected by the hardware and vary from system
to system.

3 EDTOF Data section overflow.

This error can result from a "break" system call if the data
section of a program is growing and overflows into the stack
section.

4 ENDR Not a directory.

The file name specified is not a directory but the system call
requires it to be one.

5 EDFUL Device full.

The device currently being written has no more available space.

6 ETMFL Too many files.

Each task is permitted a maximum of 16 open files at anyone
time.

7 EBADF Bad file.

The file descriptor given does not refer to an open file, or the
file mode is not correct for the operation (e.g., the file is
open for read and a write is attempted).

8 ENOFL No file.

The file name specified could not be found.

4404 Reference Manual @ 6-3

SECTION 6
System Calls

9 EMSDR Missing directory.

One of the directory elements specified in a pathname did not
exist.

10 EPRM No permission.

An attempt was made to perform an action (such as file access)
for which permission was denied.

11 EFLX File exists.

The system call requires the file to be previously non-existent.

12 EBARG Bad argument.

A bad argument was presented to a system call. This usually
implies a number which is out of range or a non-existent mode
code.

13 ESEEK Seek error.

An attempt was made to seek beyond the beginning of a file or
beyond the physically possible maximum size of a file.

14 EXDEV Crossed devices.

An attempt was made to link to a file on a different device than
the existing file.

15 ENBLK Not a block special file.

The file name specified was not a block special file, and the
system call referenced requires it to be a block device (e.g.
mount) .

16 EBSY Device busy.

The device specified in an "unmount" is currently being used.

17 ENMNT File not mounted.

The file specified to an unmount call was not previously mounted.

18 EBDEV Bad device specified.

The system call requires a device type file as an argument.

6-4 @ 4404 Reference Manual

SECTION 6
System Calls

19 EARGC Too many arguments.

Too many arguments were presented to an "exec" system call and
the argument space overflowed. There is an upper limit of
approximately 3000 bytes for arguments.

20 EISDR File is a directory.

The file specified is a directory, and the system call requires it
to be a regular type file.

21 ENOTB File is not binary.

An attempt was made to execute a file that was not an executable
binary file.

22 EBBIG Binary file too big.

The binary file specified to "exec" exceeds the physical address
space limits.

23 ESTOF Stack overflow.

The stack space overflowed into the task"s data or text space.

24 ENCHD No children living.

A "wait" system call was executed with no living "child" tasks
to wait for.

25 ETMTS Too many tasks active.

In attempting to fork a new task, the system exceeded its task
limit. This error will also result if the system task table
becomes fu.ll.

26 EBDCL Bad system call.

A system call f~nction code was encountered that does not
represent an existing system call.

27 EINTR Interrupted system call.

One of the program interrupts that the current task was catching
occurred during the system call.

28 ENTSK No task found.

The task id referenced in the system call did not represent an
active task in the system.

4404 Reference Manual @ 6-5

SECTION 6
System Calls

29 ENTTY Not a tty.

The system call ("ttyget" or "ttyset") requires the specified
file to represent a tty type device.

30 EPIPE Write to broken pipe.

The system attempted to write data to a pipe that did not have an
active read channel open.

31 ELOCK Record lock error.

The specified record can not be locked by this task. Another
task has the requested record locked.

32 ETXOF Text segment overflow.

The program"s text segment has exceeded the original specified
size.

33 EVFORK Illegal operation in "vforked" task.

See "vfork" for more details.

34 EDIRTY Mounted disk is dirty.

The disk you attempted to mount was not unmounted before system
shutdown. Run diskrepair to clean up the disk.

SYSTEM DEFINITIONS

Several files containing system definitions reside in the "/lib"
system directory. Use these files as "library" files in the
assembler whenever the appropriate definitions are required.
Here"s a general description of each file:

o sysdef System call definitions. All of the system call
names are defined in this file.

o sysdisplay System display and event fanction code
definitions. This file contains the
information returned by the "getDisplayState"
system call.

o syserrors System errors. All standard system error names
and their eqaated error numbers appear in this
file.

6-6 @ 4404 Reference Manual

o sysstat

o systim

o systty

o syscomm

o sysints

alarm

Usage

SECTION 6
System Calls

File stat~s block. This file contains the block
definition for the information returned by the
"status" and "of stat" system calls.

Time buffer definitions. The "time" and "ttime"
system calls return their information in a caller
provided buffer. These buffers are defined in
this file.

TTY buffer for the console device. The "ttyget"
and "ttyset" require a b!1ffer for their data
transferal. The contents of this buffer is
defined here.

TTY buffer for the communications device. Similar
for "systty," but defined for the US-323C host
communications port.

System program interrupts. All program interrupt
names are equated to their respective numbers in
this file.

DETAILS'OF SYSTEM CALLS

<seconds in DO>
sys alarm
<previous seconds in DO>

Description

Alarm will cause an alarm interrupt to be issued after the number
of seconds specified. At alarm time, the program interrupt
SIGALRM will be sent to the task. Unless this interrupt is
ca~ght or ignored, it will terminate the task. This system call
ret!1rns immediately to the caller after execution.

Diagnostics

No errors are possible from this call.

4404 Reference Man!1al @ 6-7

SECTION 6
System Calls

break

Usage

sys break, address

Description

Break changes the amount of memory associated with the task. The
"address" specifies the highest address to be used by the task
for data. If the address specified is already in the assigned
data space, any memory beyond it will be released back to the
system.

Diagnostics

An error is issued if more memory is requested than is physically
possible on the system.

chacc

Usage

sys chacc,fname,perm

Description

Chacc checks the accessibility of file "fname". The "perm"
argument should be "1" for read check, "2" for write check, or
"4" for execute check. Any combination of these may be used
(e.g. 3 checks read/write). If "perm" is 0, "chacc" checks if
the directories leading to the file may be searched and if the
file actually exists.

Diagnostics

Ret~rns an error if the file does not exist, the directory path
cannot be searched, or if the permission is not granted.

chdir

Usage

sys chdir,dirname

Description

"chdir" changes the current user directory to that specified by
"dirname", which points to the actual name. The caller mLlst have
execLlte permission in the specified directory.

6-8 @ 4404 Reference ManQal

SECTION 6
System Calls

Diagnostics

Issues an error if the name specified is not a directory or
cannot be searched.

chown

Usage

sys chown,fname,ownerid

Description

chown" changes the owner of the file name pointed at by "fname".
Ownerid should have a maximum of 16-bit significance. Only the
system manager may execute this call.

Diagnostics

Returns an error if the caller is not the system manager.

chprm

Usage

sys chprm,fname,perm

Description

chprm" changes the access permission bits associated with the
file name pointed at by "fname". The new permission bits "perm"
will replace the old. The allowable permissions are:

FACUR => %00000001
FACUW => %00000010
FACUE => %00000100
FACOR => %00001000
FACOW => %00010000
FACOE => %00100000
FXSET => %01000000

Diagnostics

($01)
($02)
($04)
($08)
($10)
($20)
($40)

owner read permission
owner write permission
owner execute permission
others read permission
others write permission
others execute permission
set id bit for execute

Issues an error if the file does not exist, or the caller is not
the file owner or system manager.

4404 Reference Manual @ 6-9

SECTION 6
System Calls

close

Usage

file descriptor in DO)
sys close

Description

close" closes the file represented by the specified file
descriptor. Files are automatically closed when the task that
opened them terminates, but it is wise to close them manually
whenever possible.

Diagnostics

Returns an error if the file descriptor is not valid, or if the
file has already been closed

cpint

Usage

sys cpint,interrupt,address
<old address in DO)

Description

cpint" tells the system what action it should take when
"interrupt" occurs. If the specified address is 0, the default
action will occur (usually task termination). If the address is
1, the interrupt will be ignored. An even address will be taken
to be a valid user program address where control should be passed
upon interrupt interception.

After interception, the interrupt number will be in the DO
register. The user"s code should exit the interrupt code via an
RTR instruction. Following the return, the task will continue at
the point it was interrupted.

After processing an intercepted interrupt, the system resets it
back to the default condition; therefore, to continue catching
the interrupt, it is necessary to re-issue a new "cpint" call
each time the interrupt occurs. It should be noted that the
SIGKILL interrupt cannot be ignored or caught. All interrupts
retain their status after a "fork," but xec" resets all caught
interrupts back to their default state. The system calls for
"read" and "write" when referencing a slow device (like a
terminal), and the calls "stop" and "wait" may return prematurely
if a caught interrupt occurs during the system"s handling of

6-10 @ 4404 Reference Manual

SECTION 6
System Calls

them. If this hap~ens, it will look as if the system call
returned an error lEINTR), and the call can be re-issued if
desired.

In the following list of system interrupts, those marked with
cause a core dump if not caught or ignored.

SIGHUP
SIGINT
SIGQUIT
SIGEMT
SIGKILL
SIGPIPE
SIGSWAP
SIGTRACE
SIGTIME
SIGALRM
SIGTERM
SIGTRAPV
SIGCHK
SIGEMT2
SIGTRAP1
SIGTRAP2
SIGTRAP3
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGPAR
SIGILL
SIGDIV
SIGPRIV
SIGADDR
SIGDEAD
SIGWRIT
SIGEXEC
SIGBND
SIGUSR1
SIGUSR2
SIGUSR3

Diagnostics

1
2
3*
4*
5
6
7
8
9*

10
11
12*
13*
14*
15*
16*
17*
18*
19*
20*
21*
22*
23*
24*
25*
26
27*
28*
29*
30
31
32

Hangup
Keyboard
Quit
EMT $Axxx emulation
Task kill
Broken pipe
Swap error
Trace
Time limit
Alarm
Task terminate
TRAPV instruction
CHK instruction
EMT $Fxxx emulation
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6-14 instruction
Parity error
Illegal instruction
DIVIDE by 0
Privileged instruction
Address error
Dead child
Write to READ-ONLY memory
Execute from STACK/DATA space
Segmentation violation
User-defined interrupt #1
User-defined interrupt #2
User-defined interrupt #3

Issues an error if the interrupt specified is out of range.

4404 Reference Manual @

n*"

6-11

SECTION 6
System Calls

create

Usage

sys create,fname,perm
<file descriptor in DO>

Description

"create" creates a new file with the
access permissions specified in "perm".

The permissions are the same as in the "chprm" call, and are:

FACUR => %00000001 ($01) owner read permission
FACUW => %00000010 ($02) owner write permission
FACUE => %00000100 ($04) owner execute permission
FACOR => %00001000 ($08) others read permission
FACOW => %00010000 ($10) others write permission
FACOE => %00100000 ($20) others execute permission

If the file already exists, its length will be truncated to zero
(all data deleted) but the original permissions and owner will be
retained. In either case, the file is ultimately opened for
writing. It is not necessary to specify write permission even
though the file will ultimately be opened for writing. This
allows a task to create a file and disallow others from writing
the file until the task has been completed.

Diagnostics

Issues an error issued if too many files are open, if the files
path can not be searched, or if the directory it resides in
cannot be written.

6-12 @ 4404 Reference Manual

crpipe

Usage

sys crpipe
<read file descriptor in DO>
<write file descriptor in AO>

Description

SECTION 6
System Calls

This call creates a pipe for inter-task communication.
This call should be used before a "fork" operation, to allow the
output of the original task to be used as input by the forked
task. Up to 4096 bytes of output may be written into the pipe
before the task will be suspended. Once the task doing the
reading has read all of the data written, the writing task will
again be run. If the writing task closes the file (file
descriptor from AO) and the reading task consumes all of the
data, an end-of-file condition will result.

Diagnostics

Issues an error if too many files are opened.

crtsd

Usage

sys crtsd,fname,desc,address

Description

This call creates a special file (device) or a new directory.
"fname" specifies the name of the new file; "desc" is a 16-bit
descriptor that describes the file"s type and permissions. If
the file being created is a special file, the "address" argument
specifies the internal device number. The descriptor has the
"type" as the most significant byte and the "permissions" as the
least significant byte. Their definitions follow:

4404 Reference Manual @ 6-13

SECTION 6
System Calls

Types

TPBLK => %00000010
TPCHR => %00000100
TPDIR => %00001000

Permissions

FACUR => %00000001
FACUW => %00000010
FACUE => %00000100
FACOR => %00001000
FACOW => %00010000
FACOE => %00100000
FXSET => %01000000

Diagnostics

($02)
($04)
($08)

($01)
($02)
($04)
($08)
($10)
($20)
($40)

block type device
character type device
directory type file

owner read permission
owner write permission
owner execute permission
others read permission
others write permission
others execute permission
set id bit for execute

issues an error if the file already exists or if the caller is
not the system manager.

deface

Usage

sys defacc,perm

Description

"defacc" set the default access permissions as specified by
"perm". Normally, when a file is created, it is given the
permissions specified in the "create" system call. The value
specified by "create" is ANDed with the one"s-compliment of a
per-task value known as the default permissions. This process
will turn off or disable the permissions contained in the default
permissions byte, no matter what the specified permissions are in
the create call. The "defacc" call is used to set the default
permissions. All "forks" and "execs" pass on the existing
default value. See "chprm" for a list of the permission bits.

Diagnostics

No errors generated.

6-14 @ 4404 Reference Manual

SECTION 6
System Calls

dup

Usage

<file descriptor in DO)
sys dup
<file descriptor in DO)

Description

"dup" duplicates the specified file descriptor; in other words, the
file associated with the file descriptor is opened again and
given another descriptor, which is returned. The new file is
opened with the same mode as the original (e.g., if the original
was open for "read", so will the new one).

Diagnostics

Issues an error if too many files are opened or the
file descriptor is invalid.

dups

Usage

<file descriptor in DO)
<specified descriptor in AO)
sys dups
<file descriptor in DO)

Description

This call is like "dup" except the caller may specify the file
descriptor of the duplicated open file. If the specified
descriptor is already open, it is closed before being duplicated.

Diagnostics

Issues an error if too many files are open, or if the file
descriptors are invalid.

4404 Reference Manual @ 6-15

SECTION 6
System Calls

exec

Usage

sys exec,fname,arglist

fname fcc " ",0

arglst fqb argO,arg1, ... ,0
argO fcc " ",0
ar g1 fcc " ", °

Description

The "exec" system call executes a binary file. "fname" specifies
the file to be executed. The calling task will be terminated and
the new one started up. There is no return from a successful
exec. A return indicates an error condition. All open files
remain open through the exec. Interrupts that are being ignored
will stay in that state, but those that are being caught are
reset to their default state.

When the file starts executing, the following arguments are
available:

... highest address in task space

°
argO: <argO >

° argn

argO
sp -> argcnt

low memory

The stack pointer is pointing at a 4-byte argument count. Above
that is a list of pOinters to the actual arguments, which are at
the highest part of memory. Two zero bytes are left at the very
top of the task address space.

Diagnostics

Results in an error (and a return to the caller of exec) if the
file does not exist, it was not executable binary, there were too
many arguments (approximately 3,000 bytes max), or the memory
space was exceeded.

6-16 @ 4404 Reference Manual

SECTION 6
System Calls

filtim

Usage

<time in DO>
sys filtim,fname

Description

"filtim" sets the "last modified time" of the specified file to
the value contained in the DO register. Only the system manager
may execute this call.

Diagnostics

Returns an error if the file does not exist, if the file is
currently open by another task, or if the caller is not the
system manager.

fork

Usage

sys fork
<new task returns here>
<old task here (pc+2), new task id in DO>

Description

"fork" creates a new task. The new task inherits a copy of the
caller's core image, all open files, and file pointers. The new
task is identical to the original except that the old task
returns 2 bytes past the system call and has the newly created
task"s id in the DO register.

Diagnostics

Issues an error if too many tasks have been created or the system
task table is full.

4404 Reference Manual @ 6-17

SECTION 6
System Calls

gtid

Usage

sys gtid
<task id in DO)

Description

This call retllrns the rllnning task"s system ide This nllIDber may
be llsed to generate llniqlle file names.

Diagnostics

No errors are retllrned.

gllid

Usage

sys gllid
<actllal llser id in DO)
<effective llser id in AO)

Description

"guid" returns both the actual user id (which identifies the
person who actually logged on the system) and the effective id
(which defines the cllrrent access permissions of the rllnning
task) .

Diagnostics

No errors are possible.

ind

Usage

sys ind,label

Description

The "ind" system call is llsed where it is necessary to create
system calls or their argllIDents on the fly (in the rllnning
program). The "label" points to an address that contains the
actllal call and its argllIDents. The task reSllmes execlltion after

6-18 @ 4404 Reference Manllal

SECTION 6
System Calls

the "sys ind" and not after the labeled code. Another "ind" or
"indx" call may not be called from "ind."

Diagnostics

Issues an error if the value at the "label" is not a valid system
call, or if it is an indirect call.

indx

Usage

sys indx

Description

This call is similar to "ind," but allows the system function code
and arguments to be anywhere in memory, including the stack.
Where "ind" had a label pointing to the system call and
parameters, this call requires AO to point to the call and
parameters. One application of "indx" is to push the arguments
and system call code on the ~tack, point to the call, then issue an
"indx" call. Another "ind" or "indx"
call may not be called from "indx."

Diagnostics

Reports an error if the system function is not a valid system
call, or if it is another indirect call.

link

Usage

sys link,fname1,fname2

Description

This call links "fname1" to "fname2". After the link, reference
to "fname2" will access the contents of "fname1". The files
contents and attributes are not changed in any way.

Diagnostics

Issues an error if "fname1" does not exist, if "fname2" already
exists, if "fname2's" directory is write protected, if "fname1"
is a directory, or if the file names are on different devices.

4404 Reference Manual @ 6-19

SECTION 6
System Calls

lock

Usage

sys lock, flag

Description

"lock" keeps a task from being swapped (that is, it locks a task
in memory). Only the system manager may execute this call. If
"flag" is non-zero, the task will be locked; if it is zero, the
task will be unlocked.

Diagnostics

Issues an error if the caller is not the system manager.

lrec

Usage

<file descriptor in DO)
sys lrec,count

Description

"lrec" makes an entry in the system"s locked record table.
Before the new entry is made, all other entries in the table
associated with the calling task and the specified file will be
removed. "count" represents the number of bytes in the file
(record size) to be locked from the current file position. If
the specified record overlaps any part of another task"s entry in
the lock table for the same file, an error will result (ELOCK).
Only regular files may be referenced (e.g., no devices, pipes, or
directories). Closing a file will remove the lock table entry
created as the "urec" system call will. Note that the part of
the file specified is not actually "locked" from other's use, but
proper use of the "lrec" and "urec" calls will have the same
effect.

Diagnostics

Produces an error if there is no file for the specified
descriptor, the file is not a regular file, the record is locked
by another task, or the lock table is temporarily full.

6-20 @ 4404 Reference Manual

SECTION 6
System Calls

memman

Usage

sys memman,f~nction,start_address,end_address

Description

The "memman" system call is used to control regions of memory. The
region of a task"s logical address space is specified by
"start address" and "end address". The "fJ.nction" argument
defines the control activity:

Function Operation

o Clear the "dirty bit"
1 Lock the region in memory
2 Unlock the region from memory
3 Write disable the region
4 Write enable the region
5 Release the storage associated with the region

In all cases, the region operated on is a set of "pages" and may
actQally exceed the address'range specified. As an example, if
the range (hex) 1020 - 10aO was specified, the region affected
would be 1000 - 1fff.

Diagnostics

Issues an error if the function number is not valid, the address
range specified is out of the task"s address space, or if the
"start address" is greater the the "end address".

mount

Usage

sys mount,sname,fname,mode

Description

"mount" mounts a special file on the file system. The file
"fname" should be a directory; after the mount, any reference to
"fname" will reference the root directory of the special file
(block device) "sname". The "mode" is normally 0; if it is
non-zero, the device is mounted as "read only" (i.e. writing not
permitted).

4404 Reference Manual @ 6-21

SECTION 6
System Calls

Diagnostics

Issues an error if "sname" is not an appropriate file, if it is
already mounted, if "fname" does not exist, or if too many
devices are currently mounted.

of stat

Usage

<file descriptor in DO>
sys of stat , buffer

Description

This call returns the status of an open file. The file is
referenced by its file descriptor (obtained when the file was
opened or created). The status information is returned in the
user space pointed at by "buffer". See the "status" call for a
description of the returned information.

Diagnostics

Returns an error if the file descriptor is not valid (i.e. the
file is not open or the descriptor is out-of-range).

open

Usage

sys open,fname,mode
<file descriptor in DO>

Description

"open" opens an existing file. The file is opened for reading if
"mode" is 0, for writing if "mode" is 1, or for both reading and
writing if "mode" is 2. The file name opened is "fname". "open"
returns a file descriptor that must be used for future file
references.

Diagnostics

An error will be issued if the file does not exist, the path
directories cannot be searched, too many files are open, or the
permissions do not grant the requested mode.

6-22 @ 4404 Reference Manual

phys

Usage

sys phys,object
<logical base address in DO>

Description

SECTION 6
System Calls

The "phys" system call permits access to certain system
resources. Resources represented by "object" are:

Object
1
2
3
4

Resource
128K bit map
Shared 4K page
Shared 4K page 2
Time of day clock

The object numbers are defined above. If the number is positive,
the resource will be mapped into the task"s address space. If
the number is negative, it will be mapped out. An object number
of 0 will unmap all previously mapped in resources. The logical
address of the base of the mapped in resource will be returned in
DO.

Diagnostics

Returns an error if the object number is not valid.

profile

Usage

sys profil,prpc,buffer,bsize,scale

Description

The "profile" call sets up a buffer and parameters that the
system uses to profile a running task. If profiling is enabled,
each time a clock tick occurs (every tenth second) a word in the
"buffer" that corresponds to the current value of the program
counter in the running task will be incremented. The "prpc"
value represents the lowest address in the running task to be
profiled. The argument "buffer" specifies the address of the
profile buffer, and "bsize" specifies its size. The buffer size
also determines the highest address in the running task to be
profiled since pc addresses too large to be mapped into the
buffer are ignored.

4404 Reference Manual @ 6-23

SECTION 6
System Calls

The "scale" value is used to scale the task program counter and
must be a power of 2 (maximum size is 128). Profiling may be
disabled by setting "scale" to 0 or 1.

Here's what happens when a clock interrupt occurs during
execution of a task for which profiling is enabled:

1. The profile value "prpc" is subtracted from the task's
current program counter, and the result is divided by the
scale factor.

2. This value is then multiplied by 2 to form an offset into
the "buffer".

3. If this offset is less than "bsize", the 16 bit word
residing at "buffer"+"offset" is incremented by one.

Diagnostics

No errors are issued.

read

Usage

<file descriptor in DO)
sys read,buffer,count
<bytes read in DO)

Description

This call reads the file represented by the specified file
descriptor. The memory in the user"s space pointed to by
"buffer" is filled with data from the file. A maximum of "count"
bytes will be read. All bytes requested will not necessarily be
returned. If the file is a terminal, at most, one line will be
returned. If the returned byte count is zero and no error is
reported, the end-of-file has been reached.

Diagnostics

Issues an error if a physical i/o error occurred, or if a bad file
descriptor or bad count was specified.

6-24 @ 4404 Reference Manual

seek

Usage

<file descriptor in DO)
sys seek,position,type
<position in DO)

Description

SECTION 6
System Calls

"seek" positions a file's read/write pointer to the specified
file location. The file is specified by the file descriptor.
The argument "position" represents a four-byte, signed offset.
The starting point for this offset is determined as follows by
the "type" argument:

type starting position

° Position from the beginning of the file
1 Position from the current position
2 Position from the end of the file

The returned value is the resulting position of the file.

If a "seek" is performed past the end of the file when writing, a
gap in the file will be created (no actual device space will be
allocated). This gap will be read as zeros. To determine the
current position in the file, use sys seek,0,1".

Dia.gnostics

Retllrns an error if a file descriptor is invalid or if the "seek"
is attempted on a pipe.

setpr

Usage

<priority in DO)
sys setpr

Description

"setpr" sets the priority bias used by the system scheduler. The
value specified is subtracted from the normal user priority, so
the effect is that of lowering the task"s priority. Only the
system manager may specify negative arguments (which will
increase the task"s priority). The priority bias specified
should be in the range of 25 to -25.

4404 Reference Manual @ 6-25

SECTION 6
System Calls

Diagnostics

No errors are issued.

spint

Usage

<task number in DO)
sys spint,interrupt

Description

This call sends a program interrupt to a task. The task is
specified by its task number; the receiving task must have the
same effective user id unless the caller is the system manager.
The "interrupt" argument specifies which interrupt to send. See
"cpint" for a list of interrupts.

If the specified task number is zero, the interrupt will be sent
to all tasks associated with the caller"s control terminal. If
the task number is -1 and the caller is the system manager, the
interrupt is sent to all tasks in the system with the exception
of tasks 0 and 1 (the scheduler and the initializer).

Diagnostics

Issues an error if the specified task does not exist or if the
effective user id" s do not match.

stack

Usage

<address in AO)
sys stack

Description

The system will extend the user"s stack memory to include the
address specified. If the address is higher than what is
currently allocated, all lower memory will be released to the
system. A task initially starts with stack space between 100 and
3000 bytes depending on the number of arguments passed from exec.

Diagnostics

Issues an error if the request for memory overflows into the data
segment.

6-26 @ 4404 Reference Manual

statlls

Usage

SECTION 6
System Calls

sys status,fname,buffer

Description

The file "fname" has its status read and returned to the user in
the space specified by "buffer". The data returned by this call
(as well as "of stat") has the following format:

* buffer begin *
st dev
st-fdn
st-fil
st-mod
st-prm
st-cnt
st-own
st siz
st-mtm
st-spr

* mode

rmb
rmb
rmb
rmb
rmb
rmb
rmb
rmb
rmb
rmb

codes

2
2
1
1
1
1
2
4
4
4

FSBLK => %00000010
FSCHR => %00000100
FSDIR => %00001000

* permissions

FACUR => %00000001
FACUW => %00000010
FACUE => %00000100
FACOR => %00001000
FACOW => %00010000
FACOE => %00100000
FXSET => %01000000

Diagnostics

device number
fdn number
filler for alignment
file modes - see below -
permission bits - see below -
link count
file owner"s user id
file size in bytes
last time file was modified
futlIre lIse only

($2) block device
($4) character device
($8) directory

($01) owner read permission
($02) owner write permission
($04) owner execute permission
($08) others read permission

~$1°l others write permission
$20 others execute permission

($40 set id bit for execute

Issues an error if the file does not exist or the directory path
cannot be searched.

4404 Reference Manual @ 6-27

SECTION 6
System Calls

stime

Usage

<time in DO>
sys stime

Description

This call sets
the system time and date. The time is measured in seconds
from 0000 UTC January 1, 1980. Only the system manager may
execute this call.

Diagnostics

Reports an error if the caller is not the system manager.

stop

Usage

Usage

sys stop

Stop halts a task until a program interrupt is received from
"spint" or "alarm". When stop returns, it will always have an
error (EINTR).

Diagnostics

See above.

6-28 @ 4404 Reference Manual

suid

Usage

<user id in DO>
sys suid

Description

SECTION 6
S Y s te m Ca 11 s

This call sets the effective and actual user ide This call may
be executed only if the actual user id matches the id in the
argument, or if the caller is the system manager.

Diagnostics

Issues an error if the caller is not the system manager or if the
actual user id does not match.

term

Usage

<status in DO>
sys term

Description

"term" terminates a task. The status specified is made available
to the parent task. The status is usually zero if there were no
errors in the terminating task. A non-zero status should
indicate some error condition. This system call does not return
to the caller.

Diagnostics

No errors reported.

4404 Reference Manual @ 6-29

SECTION 6
System Calls

time

Usage

sys time,tbuf

Description

The "time" call returns the system's current time. Internally,
the time is kept as a four-byte number, representing the number
of seconds that have elapsed since 0000 January 1, 1980 UTC. The
time information is placed at the address specified by "tbuf" and
has the following format:

tm sec
tm-tik
tm-dst
tm-zon

rmb 4
rmb 1
rmb 1
rmb 2

Time in seconds
Ticks in current second (tenths)
Daylight savings flag
Time zone

The "tm tik" value may be used for finer measurements. The
time zone word is the number of minutes of time westward from
Greenwich (eastward would be a negative number). If "tm dst" is
non-zero, it implies that the local time zone should be altered
for Daylight Savings during the appropriate part of the year.

NOTE

The "time" system call does not permit the
result buffer to reside in the text segment.
An attempt to do so results in an address
error exception. Put the buffer in the data
or stack segment.

Diagnostics

No errors are issued.

truncate

Usage

<file descriptor in DO>
sys truncate

Description

The truncate system call truncates an existing file's
size. The file must be open for write and the file descriptor
passed in DO. The file will be truncated at the current file

6-30 @ 4404 Reference Manual

SECTION 6
System Calls

position. To truncate at a specified location, it is necessary
to use the "seek" system call prior to truncate.

Diagnostics

Returns an error if the file descriptor is not valid or the file
is not open for write.

ttime

Usage

sys ttime,buffer

Description

This call is used to obtain the accounting time information about
a task. All times are represented in tenths of seconds. The
information is returned to the user at "buffer" and has the
following format:

ti usr
ti-sys
ti-chu
ti-chs

rmb 4
rmb 4
rmb 4
rmb 4

Task's user time
Task's system time
Children's user time
Children's system time

The child times shown are the totals of all children tasks
spawned by this task and its children.

Diagnostics

No errors are issued.

ttyget

Usage

<file descriptor in DO)
sys ttyget,ttbuf

Description

This call returns information about a terminal. The
information returned is put in the 6-byte buffer pointed to by
"ttbuf". The following formats describe the data:

4404 Reference Manual @ 6-31

SECTION 6
System Calls

* ttbuf *

tt fIg rmb 1
tt-dly rmb 1
tt-cnc rmb 1
tt-bks rmb 1
tt-spd rmb 1

Flags byte - see below -
Delay byte - see below -
Line cancel char (default is AX)
Backspace character (default is AH)
Terminal speed - see below -

tt=spr rmb 1 Stop output byte - see below -

* flags

RAW => %00000001
ECHO => %00000010
XTABS => %00000100
LCASE => %00001000
CRMOD => %00010000
BSECH => %00100000
SCHR => %01000000
CNTRL => %10000000

* delays

DELNL => %00000011
DELCR => %00001100
DELTB => %00010000
DELVT => %00100000
DELFF => %00100000

* speeds

INCHR => %10000000

* stop output

XANY => %OO-iOOOOO
XONXOF => %01000000
ESCOFF => %10000000

($01)
($02)
($04)
($08)
($10)
($20)
($40)
($80)

($03)
($OC)
($10)
($20)
($20)

($80)

, _--,
I..~LU)

($40)
($80)

Raw i/o mode
Echo input characters
Expand tabs on output
Map upper->lower on input and vice versa
Output cr and If for cr
Echo backspace echo char
Single character input mode
Ignore control characters mode

New line delay
Carriage return delay
Tab delay
Vertical tab delay
Form feed (same as DELVT)

Input ready to be consumed

Accept any character to restart output
Enable XON/XOFF for start/stop output
Disable ESC for start/stop output

Diagnostics

Returns an error if the specified file is not a character device.

6-32 @ 4404 Reference Manual

ttynum

Usage

sys ttynum
<terminal number in DO>

Description

SECTION 6
System Calls

This call returns the number of the calling task"s terminal. For
example, "tty02" returns $0002 in the DO register.

Diagnostics

No errors are issued.

ttyset

Usage

<file descriptor in DO>
sys ttyset,ttbuf

Description

This call sets the terminal information described in "ttyget".
The data in "ttbuf" is exactly as described in "ttyget".

In normal use, you would first execute a "ttyget" system call to
obtain the existing configuration. Next, use the logical
operators AND or OR to set or clear the desired bits. (Be
careful not to alter any bits other than those that must be
changed.) Finally, execute the "ttyset" system call.

Diagnostics

Issues an error if the file specified is not a character device.

unlink

Usage

sys unlink,fname

Description

"unlink" removes the "fname" entry from a directory. If this is

4404 Reference Manual @ 6-33

SECTION 6
S Y s te m Ca 11 s

the last link to the file, the file will be deleted and its
device space will be freed. If the file is open, it will not be
destroyed until the file is closed.

Diagnostics

Issues an error if the file does not exist, the directory cannot
be written, or the directory path cannot be searched.

unmnt

Usage

sys unmnt,sname

Description

This call unmounts a special file "sname" from the system. The
file associated with the special file reverts to its ordinary
interpretation (see mount).

Diagnostics

Issues an error if the file system specified is busy or is not
mounted.

update

Usage

sys update

Description

"update" updates all information on the disks; it writes out all
data that is in memory waiting to be written to the disks.

Diagnostics

No errors are reported.

6-34 @ 4404 Reference Manual

SECTION 6
System Calls

urec

Usage

<file descriptor in DO>
sys urec

Description

"urec" removes an entry in the system"s lock table (previously
installed by "lrec"). All entries associated with the calling
task and specified file are removed.

Diagnostics

Issues an error if the specified file descriptor is bad.

vfork

Usage

sys vfork
<new task returns here>
<old task here (pc+2), new id in DO>

Description

Vfork is a more efficient "fork" operation and is only available
on virtual memory systems. Its operation is identical to fork
but instead of the child task receiving new memory, it uses the
same memory as the parent. After a vfork, the parent is halted
until the child task either terminates or execs another file.

There are several restrictions placed on the child task created
by vfork. The system will not let the child change its memory
size or execute the system calls memman, fork, or vfork. The
user of vfork should make sure the child task does not alter the
stack frame in any way or change data that the parent is not
expecting changed.

Diagnostics

Issues an error if too many tasks have been created or if the
system task table is full.

4404 Reference Manual @ 6-35

SECTION 6
System Calls

wait

Usage

sys wait
<task id in DO>
<term status in AO>

Description

This call is used to wait for a program interrupt or the
termination of a child task. A "wait" must be executed for each
of a task's children. The task id of the terminated task is
returned, as well as its termination status. The low byte of
this status is the value passed by the "term" system call. A
non-zero value here usually represents some sort of error
condition. The high byte of the status is zero for normal
termination. If non-zero, this byte will contain the interrupt
number that caused it to terminate. If the most significant bit
of the status is set, a core dump was produced as a result of
termination. Consult "cpint" for a list of interrupt numbers.

Diagnostics

Issues an error if there are no children tasks.

write

Usage

<file descriptor in DO>
sys write,buffer,count
<byte count written in DO>

"write" writes "count" bytes of data from location "buffer" to
the file specified by the file descriptor. If the returned byte
count does not equal the requested count", it should be considered
an error. Writes that are multiples of 512 bytes and begin on
512 byte address boundaries are the most efficient.

Diagnostics

Issues an error if the file descriptor is invalid or if a
physical i/o error resulted.

6-36 @ 4404 Reference Manual

Section 7

THE 4404 C COMPILER

INVOKING THE "C" COMPILER

OVERVIEW

The "C" compiler, invoked by the "cc" command, accepts as input
"c" source files, assembly language source files and relocatable
modules. "c" source files must end in ".c", assembly language
source files must end in ".a" and relocatable modules must end in
".r". If assembly language source files are specified on the
command line, then only relocatable files can be produced.

The compiler can produce as output intermediate language files,
assembly language files, relocatable modules, an executable
module, or a "c" source listing.

The "c" compiler is fully compatible with the System V He H
compiler.

SYNTAX

The syntax for invoking the "C" compiler is:

cc <file_name_list> [+acDfiIlLmMnNoOqrRstUvwx]

where <file name list> is a list of the names of the files to
compile.

Options Available

a Produce as output assembly language source
files with a "a" extension.

c Put comments in the assembly language
file.

D<name>[=<defn>] Command line "#define".

f Produce an output module suitable for
firmware.

I Produce as output intermediate language
files with a ".i" extension.

i=<dir name> Specify a directory for "#include" files.

4404 Reference Manual @ 7-1

SECTION 7
'C' Compliler

l=<li b name>

L

m

M

N

n

0

o=<file name>

q

R

r

s

t

u

v

w

x=<ldr_option>

7-2 @

Specify a library name to be passed to the
loader.

Produce a source listing and write it to
standard 0 lItput .

Prod lIce load and module maps from the
loader.

Leave the combined output as one" .r"
file.

Produce a listing without expanding
"#include" files.

Run the first pass only, do not produce
any·code.

Run the assembly language optimizer.

Specify the output file name.

Prod lIce code that does calculations on
"char" and "short" variables without
first converting to "int".

Produce as Olltput relocatable modules
with a ".r" extension, and an execlItable
module.

Produce as Olltput relocatable modlIles
with a ".r" extension.

Produce code that does not do stack
growth checking.

Produce a shared-text, executable output
module.

Produce a line-feed character ($OA) for
, n' rather than the defalIlt of carriage
return ($OD).

Show each phase of the compilation
process (verbose mode).

Warn abollt duplicate "#define"
statements.

Pass the information following the '='
on to the loader for processing.

4404 Reference ManlIal

DETAILED DESCRIPTION OF OPTIONS

The 'a' Option

SECTION 7
'C' Compliler

The 'a' option instructs the compiler to produce files containing
assembly language source code as output. These files have
the same name as the "C" source files on the command line except
that the extension ".a" replaces the extension ".c". If more
than one file is specified on the command line, then a ".a" file
is produced for each file.

The 'e' Option

The 'c' option tells the compiler to insert comments into the
assembly language file produced during the code generation phase
of the compilation. The comments mark the beginning of each
expression plus variable names and associated offsets. The 'c'
option only makes sense when used in conjunction with the 'a'
option.

The 'D' Option

The 'D' option allows the user to define variables on the command
line as if they were defined in everyone of the "C" source files
by using the preprocessor command "#define". The syntax for this
option is:

D=<name>[=<defn>]

where <name> is the name of a variable defined for the "C"
preprocessor, to be replaced by <defn> in the source code. If no
<defn> is provided, the value of the <name> is one. The
definition is valid over all source files on the command line.
If a source file does not wish to include this definition it can
be "undefined" by using the preprocessor command n#undef". The
variable is redefined though at the beginning of every source
file. There is no limit to the nwnber of 'D' options that can be
specified on the command line.

The If' Option

The 'f' option instructs the compiler to produce code suitable
for firmware use. The code produced by the compiler is placed in
only two segments, TEXT and ESS. All code and strings are
generated in the TEXT segment. All global variables are placed
in the ESS segment. No initialized global variables are allowed
since they would have to appear in the DATA segment.

4404 Reference Manual @ 7-3

SECTION 7
'C' Compliler

The Ii' Option

The 'i' option allows the user to specify directories to be
searched for "#include" files. The syntax for this option is

i=<dir name>

where <dir name> is the name of a directory to be searched. The
search procedure for "#include" files is

1. Search in the directory of the source file.
2. Search in the cQrrent directory (exactly as specified).
3. Search in a directory called "include" in the current

directory.
4. Search in the directory "/lib/include".
5. Search in the directory "/usr/include".

If the file name specified to the "#include" command is enclosed
in "<>", the directory of the source file is not searched. If
the file name specified begins with a 'I' no searching takes
place and the file name specified is used as the "#include" file.

The 'i' option specifies directories to be searched after the
current directory but before the other "standard" places. There
is no limit to the number of 'i' options on the command line.

The 'I' Option

The 'I' option instructs the compiler to produce files containing
intermediate language as output. These files have the same name
as the "C" source files on the command line except that the
extension ".i" replaces the extension ".c". If more than one
file is specified on the command line, then an. i;; 111.e is
produced for each file. The intermediate language file is not
readable text.

The 'I' Option

The '1' option allows the user to specify libraries to be
searched by the loader for resolution of external references.
The syntax for this option is

l=<lib name>

where <lib name> is the name of a library to be searched. The
libraries are searched in the order specified on the command line
and are searched before the standard library "/lib/clib". No
more than eleven libraries should be specified on the command
line.

7-4 @ 4404 Reference Manual

The 'L' Option

SECTION 7
'C' Compliler

The 'L' option instructs the compiler to produce a "c" source
listing. "#include" files are included in the listing. The
listing is sent to standard output and contains line numbers.

The 'm' Option

The 'm' option tells the compiler to obtain load and module maps
from the linking loader, "load". The maps are explained in
detail in Section 5, The Assembler and Linking Loader. The
maps are sent to standard output.

The 'M' Option

The 'M' option instructs the compiler to compile, assemble and
link, the source files specified on the command line. The output
produced is one relocatable module. The name of the output
module is the name specified with the '0' option, or if none is
specified, the name "output.r" is given to the file.

The tn' Option

The In' option tells the compiler to perform only a syntax check
of the "c" source code files specified on the command line. No
code is generated.

The 'N' Option

The 'N' option instructs the compiler to produce
listing without expanding the "#include" files.
files are still read, but their contents are not
source listing. The listing is sent to standard
contains line numbers.

The '0' Option

a source code
The "#include"
shown in the
output and

The '0' option specifies the name of the file containing the
executable module produced by the compiler. The syntax for this
option is:

o=<file name>

If the user does not specify the '0' option, the name of the file
can be one of two things: if only one file is specified on the
command line, and the file is a "c" source file, the name of the
file produced is the name of the source file without the "~c"
extension. Otherwise the name of the file is "output" in the
working directory. If a file by this name already exists, it is
deleted without warning. The '0' option can not be used in
conjunction with the 'r' or 'a' options.

4404 Reference Manual @ 7-5

SECTION 7
'C' Compliler

The '0' Option

The '0' option instructs the "cc" command to run the assembly
langauge optimizer. The optimizer should not be run on hand
written assembly language source files since it makes certain
assumptions about the source files it reads, and it replaces the
input file with its output file. The optimizer is not run on
assembly language source files specified on the command line.

The 'q' Option

The 'q' option tells the compiler to generate code which does
numeric and logical operations on variables of type "char" and
"short". The "C" language requires that before any operations on
variables of these types are performed, the variables must be
converted to type "int". This conversion in most cases is
totally useless and the resulting code is both larger and slower
than it has to be. An example should make this clearer. For
example:

ch1 = ch2 « 3;

where "ch1" and "ch2" are of type "char". The code resulting
from this statement would be,

(1) Convert "ch2" to type "int". (sign extend)
(2) Shift the result of the conversion left 3 places.
(3) Convert the result of the shift to type "char".
(4) Assign the previous result to "ch1".

The conversions done in the code generated are superfluous.
Overflow is ignored in "C", and the code generated without the
conversions would have the exact same effect. The user should be
carefQl though about places where the automatic conversion to
"int" is assumed and is necessary for the correct results. If
the statement above was actually,

in1 = ch2 « 3;

where "in1" is of type "int", then the 'q' option could cause the
wrong code to be generated, depending on what was intended by the
programmer and what the value in "ch2" is. If the 'q' option was
specified, the variable "ch2" would not be converted to type
"int" before the shift operation. Any overflow out of "ch2"
would be lost. If the 'q' option was not specified, "ch2" would
be converted to "int" before the shift, and any overflow would be
retained for the assignment to "in1". An explicit cast of "ch2"

7-6 @ 4404 Reference Manual

SECTION 7
'C' Compliler

into type "int" would solve this problem. In practice, using the
'q' option does make the code smaller and faster but care should
be taken in its use. It is recommended that a program be
thoroughly debugged before attempting to use the 'q' option.
After compiling with the 'q' option the program should once again
be thoroughly checked out.

The 'r' Option

The 'r' option instructs the compiler to produce as output files
containing .relocatable mod ules. These files have the same name
as the "c" source files on the command line except that the
extension ".r" replaces the extension ".c". If more than one
file is specified on the command line, then a ".r" file is
produced for each file. This option may not be used in
conjunction with the '0' option.

The 'H' option

The 'R' option tells the compiler to produce as output files
which contain relocatable modules and to produce an executable
file. The relocatable files have the same name as the "C" source
files specified on the command line except that the extension
".r" replaces the ".e" extension. The executable file's name is
as described in the '0' option.

The's' Option

The compiler, by default, checks with the operating system to see
if it needs to produce code which performs checks whenever it
requires space on the stack. If not enough space is available, a
runtime routine is called to grow the stack. The's' option
tells the compiler to produce stack checking code. This option
is never needed for the 4404.

The It' Option

The 't' option tells the compiler to produce a shared-text
executable file as output. This option is merely passed on to
the loader. Shared-text files are discussed in detail in Section
5, The Assembler and Linking Loader.

The 'U' Option

The 'U' option instr~cts the compiler to produce a linefeed
character ($OA) for the "c" character constant' n'. The defa~lt
is to produce carriage-ret~rn ($OD).

4404 Reference Manual @ 7-7

SECTION 7
'C' Compliler

The 'v' Option

The 'v' option tells the compiler to show each step of the
compilation process. The "command line" for each step of the
process is shown, with file name arguments and options sent to
each command.

The ,we Option

The 'w' option instructs the "C" preprocessor to warn the user
about duplicate definitions of variables. Redefining a
preprocessor variable is perfectly legal, but it can lead to some
very difficult to find bugs.

The 'x' Option

The 'x' option is used to pass options directly to the linking
loader, "load". The syntax for this option is,

x=<ldr_option>

where <ldr option> is some valid option to the "load" command.
No '+' is allowed in front of <ldr_option>. An example of its
use is,

x=F=/lib/nonstd_env

where 'F' is a legal "load" option specifying an options file.

EXAMPLES

The following examples illustrate some of the uses of the "cc"
command.

1 . cc test.c

2. cc math.c float.c driver.c +o=testmath +Owsq

3· cc list.c +Ln

4. cc games.c help.c +D=DBG=1 +o=play +l=gamelib +t

5 • cc prog.c +Nvqca

The first example compiles, assembles and links the file
"test .c", producing as output the executable module "test".

7-8 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The second example compiles, assembles and links the three files
specified producing as output the executable module "mathtest".
The assembly language optimizer is run, short and character
operations are done without conversion to integers, and no stack
checking code is produced. The compiler warns the us~r about
duplicate definitions.

The third example compiles the file "list.c" but generates no
code. A listing of the "C" source file is sent to standard
output.

The fourth example compiles, assembles and links the file
"games. c" and "help. c" prod uc ing as 0 utput the exec utable mod ule
"play". The variable "DBG" is defined on the command line and
the library "gamelib" is searched before the standard libraries.
The output module is shared text.

The fifth example compiles the file "prog.c" and produces as
output the assembly langauge source file "prog.a". A listing is
also produced and sent to standard output. The "#include" files
are not included in the listing. Short and character operations
are performed without conversion to integer and comments are
included in the assembly language source file. Verbose mode is
turned on.

LANGUAGE DESCRIPTION

The "c" compiler is fully compatible with Bell Laboratories
System V "C" compiler. Advanced features such as " enumeration"
types, passing, returning and aSSigning structures/unions and bit
fields are supported. The types "unsigned char", "unsigned
short", and "unsigned long" are all supported.

Object Sizes

Each variable defined in a "C" program requires some specific
amount of space. The sizes of the basic types in bytes are:

Type Size
=====================

char 1
short 2
int 4
long 4
"painters" 4
float 4
double 8

4404 Reference Manual @ 7-9

SECTION 7
'C' Compliler

The qualifier "unsigned" does not affect the size of the
variable, and can be applied to variables of type "char",
"short", "int", and "long". "Short" implies "short int", "long"
implies "long int", and "unsigned" implies "unsigned int".

Register Variables

The storage class "register" may be applied to variables of all
basic types except "float" and "double". Invalid "register"
declarations are ignored and the storage class is made "auto".
Up to four pointer variables and five data variables can be
declared per function.

7-10 @ 4404 Reference Manual

abort

SECTION 7
'C' Compliler

Send a task-abort ~-ignal to the current task, causing the task to
terminate immediately.

SYNOPSIS

void abort();

Arguments

None

Retu.rns

Never

DESCRIPTION

This function sends a task-abort signal to the current task,
which causes the task to terminate immediately. The task-abort
signal can not be caught or ignored. The function never returns
to the caller.

ERRORS REPORTED

None

NOTES

The termination status received by the parent of the current task
contains an exit code of zero, a termination code indicating that
the task terminated because of a task-abort signal, and a flag
that indicates if a core-image file was produced.

SEE ALSO

System Call: signal(), wait()

Command: int

4404 Reference Manual @ 7-11

SECTION 7
'C' Compliler

access

Check the accessibility of a file.

SYNOPSIS

include <errno.h>
int access(path, perms)

char *path;
int perms;

Arguments

path The address of a character-string containing a
pathname for the file whose accessibility the
function is to check

perms A value indicating the type of access to check

Returns

Zero if access is permitted, otherwise -1 with "errno" set to the
system error code indicating the reason for denying access

DESCRIPTION

This function checks the accessibility of the file reached by the
pathname in the character-string referenced by <path>e The value
<perms> determines the type of access to be checked. The
function returns zero as its result if the file exists and grants
the requested access. Otherwise, it returns -1 with "errno"
indicating the reason the access is denied.

The f~nction returns -1 if the path could not be followed, a part
of the path is not a directory, the pathname does not reach a
file, or the file does not grant the effective user the requested
access permissions.

The value <perms> is a bit-string which tells the function what
types of access to check. It may be any combination of the
following values:

Ox01 Read
Ox02 Write
Ox04 Execute (search)

A zero <perms> value tells the function to check the path to the
file and the existence of the file.

7-12 @ 4404 Reference ManQal

SECTION 7
'C' Compliler

ERRORS REPORTED

EACCES The file's permissions do not grant the reqQested
access type

EMSDR

SEE ALSO

The path to the file co~ld not be followed ENOENT
The pathname does not reach a file ENOTDIR A part
of the path is not a directory

NOTE

If the c~rrent effective ~ser is the owner of
the specified file, the function examines the
permissions granted by the file for its owner
to determine accessibility. Otherwise, it
examines the permissions granted for ~sers

other than its owner.

System Call: chmod(), stat()

4404 Reference Man~al @ 7-13

SECTION 7
'C' Compliler

acct

Initiate or terminate system accoQnting.

SYNOPSIS

inclQde <errno.h>
include <sys/acct.h>
int acct(path)

char *path;

Arguments

path The address of a character-string containing a
pathname for the file to which to write accounting
records, or (char *) NULL

Returns

Zero if successflll, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

If <path> is not (char *) NULL, this function initiates system
accounting. While system accounting is active, the system writes
a system accounting record (described below) to the file reached
by the pathname in the character-string referenced by <path>
every time a task terminates. The referenced file must already
exist. If <path> is (char *) NULL, the fllnction terminates
active system accounting, if any.

This fQnction returns zero if it successflllly performs its
f:lnction, otherwise it returns -1 with "errno" set to the system
error code. This function requires that the current effective
user-ID be that of the system manager.

The function fails if <path> is not (char *) NULL and the path in
the pathname can't be followed, a part of the path is not a
directory, the pathname does not reach a file, or system
accounting is already active. The function also fails if the
current effective user is not the system manager.

The following structure describes the record written by the
system to the specified file each time a task terminates.

7-14 @ 4404 Reference Manllal

SECTION 7
fC' Compliler

struct acct
{

} ;

short
long
long
char
char
'.Ins igned int
char
char
lnsigned int
char
char

ac uid;
ac - strt;
ac-end;
ac-syst[3J;
ac -I.Isrt [3];
ac-stat;
ac=tty;
ac mem;
ac-blks;
ac - spare [2] ;
ac = nam e [8] ;

The "ac uid" entry contains the user-ID n'.Imber associated wi th
the task, "ac strt" contains the system-time at the start of the
task, "ac end" contains the system-time at the end of the task,
"ac syst"-(a three-byte integer) contains the number of
CPU-=seconds llsed by the system on behalf of the task, "ac usrt"
(a three-byte integer) contains the nwnber of CPU-seconds-used by
the task, Hac stat" contains taskis termination status, "ac tty"
contains the task's controlling terminal nu.mber, "ac mem" -
contains the maximum number of 1028-byte blocks of memory ever
allocated to the task at one time, "ac blks" contains the number
of I/O !.Ini ts used by the task, "ac spare" is currently unused,
and "ac name" contains the first elght characters of the command
which initiated the task.

ERRORS REPORTED

EACCES

EEXIST

EMSDR

ENOENT

ENOTDIR

NOTES

The current effective user is not the system
manager
System accounting is already active

The path to the file could not be followed

The pathname does not reach a file

A part of the path is not a directory

The f~nction does not report an error if the <path) is (char *)
NULL and system accounting is not currently active.

The operating system writes accounting records to the end of the
specified file.

SEE ALSO

Command: /etc/sysact

4404 Reference Man~al @ 7-15

SECTION 7
'C' Compliler

Set the task's alarm clock.

SYNOPSIS

unsigned int alarm(sec)
unsigned int sec;

Arguments

alarm

sec The number of seconds to elapse before sending an
alarm signal to the current task

Returns

The number of seconds remaInIng from a previous alarm clock
request or zero if none

DESCRIPTION

If <sec> is not zero, this f~nction arms the task's alarm clock
so that the system sends an alarm signal to the current task
after <sec> seconds has elapsed. If the alarm clock was already
armed, the function cancels the previous alarm clock req~est. If
<sec> is zero, the function cancels the previous alarm clock
request.

This function returns as its result the number of seconds
remaining on a previous alarm clock request, or zero if there was
no previous request.

ERRORS REPORTED

None

NOTES

An alarm signal causes the current task terminate unless it
explicitly catches or ignores alarm signals.

The act1lal amount of time that elapses before the system sends
the alarm signal may be slightly less than the requested time
since the system tics occur on one-second intervals.

SEE ALSO

7-16

C Library: sleep()
System Call: pause(), signal(), wait()
Command: sleep

@ 4404 Reference Manlal

brk

Change the task's data segment memory allocation.

SYNOPSIS

include <errno.h>
int brk(addr)

char *addr;

Arguments

SECTION 7
'C' Compliler

addr The requested end-of-segment address for the data segment

Retllrns

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function changes the amount of memory allocated to the data
segment so that the data segment's end-of-segment address is
<addr>. If the function succeeds, it returns zero as its result.
Otherwise, it returns -1 with "errno" set to the system error
code describing the reason for the function's failure.

The function fails if the address <addr> is less than the lowest
address in the data segment, or if it could not allocate enough
memory to satisfy the request. If the requested end-of-segment
address is higher than the data segment's current end-of-segment
address, the function allocates memory to the segment. If the
requested end-of-segment address is lower than the data segment's
current end-of-segment address, the function releases memory from
the segment.

ERRORS REPORTED

ENOMEM There is not enough memory available

NOTES

A segment's end-of-segment address is the lowest logical address
that is higher than the highest logical address of memory
allocated to the segment.

SEE ALSO

C Library: calloc(), EDATA, free(), malloc(), realloc()

System Call: cdata(), sbrk()

4404 Reference Manual @ 7-17

SECTION 7
'C' Compliler

cdata

Change the task's data segment memory allocation.

SYNOPSIS

include <errno.h>
int cdata(addr)

char *addr;

Arguments

addr The requested end-of-segment address for the data
segment

Retllrns

Zero if successfal, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function changes the amount of memory allocated to the data
segment so that the data segment's end-of-segment address is
<addr>. If the function allocates memory to the data segment, it
allocates memory that is physically contiguous to the last page
of memory allocated to that segment. If the function succeeds,
it returns zero as its result. Otherwise, it returns -1 with
"errno" set to the system error code describing the reason for
the function's failure.

The function fails if the address <addr> is less than the lowest
address in the data segment, or if it could not allocate enough
contiguous memory to satisfy the request.

If the requested end-of-segment address is higher than the data
segment's current end-of-segment address, the function allocates
memory to the segment that is physically contiguous to the last
page of the segment. If the requested end-of-segment address is
lower than the data segment's current end-of-segment address, the
function releases memory from the segment.

7-18 @ 4404 Reference Manual

SECTION 7
'C' Compliler

ERRORS REPORTED

ENOMEM There is not enough memory available

NOTES

A segment's end-of-segment address is the lowest logical address
that is higher than the highest logical address of memory
allocated to the segment.

On virtual memory systems, this function is functionally
equivalent to the "brk()" function.

SEE ALSO

C Library: calloc(), EDATA, free(), malloc(), realloc()

System Call: brk(), sbrk()

4404 Reference Manual @ 7-19

SECTION 7
'C' Compliler

chd1r

Change the working directory.

SYNOPSIS

include <errno.h>
int chdir(path)

char *path;

Arguments

path

Retu.rns

The address of a character-string containing a
pathname to the directory to be the new working
directory

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function changes the working directory to the directory
reached by the pathname in the character-string referenced by
<path>. It returns zero as its result if it successf~lly changes
the working directory to the specified directory. Otherwise, it
returns -1 with "errno" set to the system error code.

The function fails if the pathname could not be followed or a
part of the pathname is not a directory.

ERRORS REPORTED

ENOTDIR

SEE ALSO

The path to the file could not be followed

A part of the path is not a directory or the file
reached by the pathname is not a directory

C Library: getcwd()

Command: chd

7-20 @ 4404 Reference Manual

chmod

Change a file's access permissions.

SYNOPSIS

include <errno.h>
include <sys/modes.h>
int chmod(path, perms)

char *path;
int perms;

SECTION 7
'C' Compliler

Arguments

path The address of a character-string containing a
pathname to the file whose access permissions are
to change

perms

Retllrns

A bit-string describing the permissions to set on
the file

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function changes the access permissions of the file reached
by the pathname in the character-string referenced by <path> to
those described by the bit-string <perms>. The function requires
that the current effective user be the owner of the file or the
system manager. The function returns zero as its result if it
successfully changes the access permissions of the file.
Otherwise, it returns -1 with "errno" set to the system error
code.

The fanction fails if the path could not be followed, a file in
the path is not a directory, the pathname does not reach a file,
or the current effective user is not the owner of the file or the
system manager.

4404 Reference Manual @ 7-21

SECTION 7
'C' Compliler

The valQe <perms) is a bit-string which describes the permissions
to set on the file. The incl'J.de-file "<sys/modes.h)" defines the
following constants which describe the meanings of each bit Qsed
by the fQnction in the bit-string:

S IREAD
S-IWRITE
S-IEXEC
S-IOREAD
S-IOWRITE
S-IOEXEC
S-ISUID

Ox01
Ox02
Ox04
Ox08
Ox10
Ox20
Ox40

The valQe S IREAD grants reading permission to the owner of the
file, S WRI~E grants writing permission to the owner, and S IEXEC
grants searching permission to the owner if the file is a -
directory, otherwise it grants execQtion permission. The val:.le
S IOREAD grants reading permission to Qsers other than the owner
of the file, S IOWRITE grants writing permission to others, and
S EXEC grants searching permission to others if the file is a
dIrectory, otherwise it grants execQtion permission. The val:.le
S ISUID caQses the effective user-ID to be changed to that of the
owner of the file whenever the program contained in the file is
executed. The results of the function are undefined if bits
other than those defined above are set in the bit-string <perms).

ERRORS REPORTED

EACCES

EMSDR

ENOENT

ENOTDIR

SEE ALSO

The current effective user is not the system
manager or the owner of the file

The path to the file could not be followed

The pathname does not reach a file

A part of the path is not a directory

System Call: chown(), fstat(), stat()

Command: Is, perms

7-22 @ 4404 Reference Manual

Change the owner-ID of a file.

SYNOPSIS

include <errno.h>
int chown(path, uid)

char *path;
int uid;

Arguments

chown

SECTION "7
'C' Compliler

path the address of a character-string containing a
pathname to the file whose owner-ID is to change

uid The user-ID to be new owner-ID of the file

Retllrns

Zero if sllccessful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function changes the owner-ID of the file reached by the
pathname in the character-string referenced by <path> to the
value <uid>. The owner-ID of a file is the user-ID of the user
which is the owner of the file. The function requires that the
current effective user be the system manager. The function
returns zero as its result if it successfully changes the
owner-ID of the specified file. Otherwise, it returns -1 with
"errno" set to the system error code.

The function fails if the path could not be followed, the path
contains a file which is not a directory, the path does not reach
a file, or the current effective user is not the system manager.

4404 Reference Manual @ 7-23

SECTION 7
'C' Compliler

ERRORS REPORTED

EACCES The current effective user is not the system manager

EMSDR The path to the file could not be followed

ENOENT The pathname does not reach a file

ENOTDIR A part of the path is not a directory

NOTES

The user-ID <uid> need not be found in the system password file.

SEE ALSO

System Call: chmod(), fstat(), stat()

Command: Is, owner

7-24 @ 4404 Reference Manual

chtim

SECTION 7
ICY Compliler

Change a file's modification date and time.

SYNOPSIS

include <errno.h>
int chtim(path, time)

char *path;
long time;

Arguments

path The address of a character-string containing a
pathname to the file whose modification date and
time is to change

time

Returns

The system-time value to set as the file's
modification date and time

Zero if successfu.l, otherwise -1 wi th "errno" set to the system
error code

DESCRIPTION

This function changes the modification date and time of the file
reached by the pathname in the character-string referenced by
<path> to the system-time value <time>. The fQnction can't
change the modification date and time of a file that is currently
open by another task and it expects the current effective user to
be the system manager. The fQnction returns zero as its result
if it successfully changes the specified file's modification date
and time. Otherwise, it returns -1 with "errno" set to the
system error code.

The function fails if the path could not be followed, the path
contains a file that is not a directory, the path does not reach
a file, the file is cQrrently open by another task, or the
current effective Qser is not the system-manager.

4404 Reference Manual @ 7-25

SECTION 7
'C' Compliler

ERRORS REPORTED .

NOTES

EACCES

EBSY

EMSDR

ENOENT

ENOTDIR

The effective current user is not the system
manager

The specified file is currently open by another
task

The path to the file could not be followed

The pathname does not reach a file

A part of the path is not a directory

The function does not demand the system-time value <time> be
between the creation date of the file and the current
time-of-day.

The system represents time as the number of seconds that has
elapsed since the epoch. The system defines the epoch as 00:00
(midnight), January 1, 1980, Greenwich Mean Time.

Other functions which change a file's modification date and time
are "chmod()", "chown()", "creat()", "link()", "open()", and"
unlink()".

SEE ALSO

System Calls:

Command: touch

7-26 @

chmod(), chown(), creat(), link(), open(),
J.lnlink()

4404 Reference Manual

SECTION 7
'C' Compliler

Close an open file.

SYNOPSIS

include <errno.h>
int close(fildes)

int fildes;

close

Arguments

fildes A file descriptor for the file to close

Returns

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function closes the file referenced by the file descriptor
<fildes>. The function returns zero as its result if it
successfully closes the file, otherwise it returns -1 with
"errno" set to the system error code.

The function fails if the file descriptor <fildes> is out of
range or does not reference an open file.

ERRORS REPORTED

EBADF The file descriptor is out of range or does not
reference an open file

NOTES

The system automatically closes all files that a task has open
when that task terminates.

SEE ALSO

C Library: fclose(), fopen()

System Call: creat(), dup(), dup2(), open(), pipe()

4404 Reference Manual @ 7-27

SECTION 7
'C' Compliler

creat

Create a new file or truncate an existing file.

SYNOPSIS

include <errno.h>
include <sys/modes.h>
int creat(path, perms)

Arguments

path

perms

Retur.ns

char *path;
int perms;

The address of a character-string containing a
pathname for the file to create or truncate

A bit-string describing the access permissions to
set on the created file

If successful, a file descriptor for the created or truncated
file, otherwise -1 with "errno" set to the system error code

DESCRIPTION

If no file is reached by the pathname in the character-string
referenced by the arg1JIDent <path>, this function creates an empty
file, assigns the current effective user-ID as the file's
owner-ID, assigns the access permissions described by anding the
bit-string <perms> with the one's complement of the current
file-creation mask as the file's access permissions, and links
the specified pathname to the file. It then opens the file for
writing access ignoring the fileis access permissions, setting
the current file position to the beginning of the file.

If the pathname in the character-string referenced by <path>
reaches a file, the fQnction truncates the file so that its
length is zero and opens the file for writing access, setting the
current file position to the beginning of the file. It does not
change the file's access permissions or file's owner-IDe

7-28 @ 4404 Reference Manual

SECTION 7
'C' Compliler

If the function succeeds, it returns as its result a file
descriptor for the opened file. Otherwise, it returns -1 with
"errno" set to the system error code. The function fails if the
path could not be followed, the path contains a file that is not
a directory, no more files can be created on the device to
contain the file, or no more files can be opened by the task.
The function also fails if the pathname does not reach a file and
the directory reached by the path does not grant the current
effective user writing permission, or the pathname reaches a file
and that file doesn't grant the current effective user writing
permission.

The value <perms) is a bit-string which describes the permissions
to set on the file. The include-file "<sys/modes.h)" defines the
following constants which describe the meanings of each bit used
by the function in the bit-string:

S IREAD
S-IWRITE
S-IEXEC
S-IOREAD
S-IOWRITE
S-IOEXEC
S-ISUID

Ox01
Ox02
Ox04
Ox08
Ox10
Ox20
Ox40

The value S IREAD grants reading permission to the owner of the
file, S WRITE grants writing permission to the owner, and S IEXEC
grants searching permission to the owner if the file is a -
directory, otherwise it grants execution permission. The value
S IOREAD grants reading permission to users other than the owner
of the file, S IOWRITE grants writing permission to others, and
S EXEC grants searching permission to others if the file is a
dIrectory, otherwise it grants execution permission. The value
S ISUID causes the effective user-ID to be changed to that of the
owner of the file whenever the program contained in the file is
executed. The results of the function are undefined if bits
other than those defined above are set in the bit-string <perms).

4404 Reference Manual @ 7-29

SECTION 7
'C' Compliler

ERRORS REPORTED

NOTES

EACCES

EMFILE

EMSDR

ENOSPC

ENOTDIR

The existing file or the directory to contain the
link to the new file does not grant the user
writing permission

The maximum number of files are open

The path to the file could not be followed

The are no available file description nodes on the
device which was to contain the specified file

A part of the path is not a directory

This function opens the created file for writing even if the
access permissions assigned to the file do not grant writing
permission to the current effective user

If the task has the maximum number of files open and the
specified file doesn't exist, this function creates the file, but
does not open it.

SEE ALSO

C Library: fcreat(), fopen()

System Call: chmod (), chown (), open (), l.lmask()

Command: create

7~30 @ 4404 Reference Manual

SECTION 7
'C' Compliler

Duplicate a file descriptor.

SYNOPSIS

include <errno.h>
int dup(fildes)

int fildes;

dup

Arguments

fildes The file descriptor to duplicate

Returns

If successful, the duplicate file descriptor, otherwise -1 with
"errno" set to the system error code

DESCRIPTION

This function duplicates the file descriptor <fildes>. The
effect is that of opening again the file referenced by <fildes>,
using the same open-mode and positioning to the current file
position. If the function successfully duplicates the file
descriptor <fildes>, it returns the duplicate file descriptor.
Otherwise, it returns -1 with "errno" set to the system error
code.

The function fails if the task can't open any more files or the
file descriptor is out of range or does not reference an open
file.

ERRORS REPORTED

EBADF The file descriptor is out of range or does not
reference an open file

EMFILE The maximum number of files are open

NOTES

The function always uses the lowest numbered available file
descriptor.

SEE ALSO

System Call: close(), creat(), dup2(), open(), pipe()

4404 Reference Manual @ 7-31

SECTION 7
'C' Compliler

dup2

Duplicate a file descriptor onto a specific file descriptor.

SYNOPSIS

include <errno.h>
int dup(src, dest)

int src;
int dest;

Arguments

src The file descriptor to duplicate

dest The target file descriptor

Returns

If successful, the duplicate file descriptor <dest>, otherwise
-1 with "errno" set to the system error code

DESCRIPTION

If the file descriptor <dest> references an open file, this
function closes that file. The function then duplicates the file
descriptor <src> onto the specified file descriptor <dest>. The
effect is that of opening again the file referenced by <src>,
using the same open-mode and positioning to the current file
position. If the function successfully duplicates the file
descriptor <src> onto the file descriptor <dest>, it returns the
file descriptor <dest>. Otherwise, it returns -1 with "errno"
set to the system error code.

The functIon fails if either of the file descriptors are out of
range or the file descriptor <src> does not reference an open
file.

ERRORS REPORTED

EBADF

7-32 @

One or both of the file descriptors are out of
range or the file descriptor <src> does not
reference an open file

4404 Reference Manual

SECTION 7
'C' Compliler

NOTES

If the file descriptors <src> and <dest> are the same file
descriptor, the function returns <dest> without checking either
file descriptor for validity.

If the file descriptor <dest> references an open file, the
function doesn't close that file if the function fails.

SEE ALSO

System Call: close(), creat(), dup(), open(), pipe()

4404 Reference Manual @ 7-33

SECTION 7
'C' Compliler

execl

Execute a program found in an executable binary file.

SYNOPSIS

include <errno.h>
int execl(path, [argO, [arg1, ... ,[argn,]]] nullp)

Arguments

path

argO

arg1

argn

nullp

Returns

char *path;
char *argO, *arg1, ... , argn;
char *nullp;

The address of the character-string containing a
pathname for the file containing the program to
execute

The address of the character-string containing the
argument to the new program which is referenced as
argument zero (by convention this is the name of
the command)

The address of the character-string containing the
first argument to the new program

The address of the character-string containing the
last argument to the new program

A null-address ((char *) NULL) which ends the list
of addresses of character-strings containing
arguments to the new program

Never if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function requests that the operating system replace the
program currently executing with the program found in the
executable binary file (the new program) reached by the pathname
in the character-string referenced by <path>, that it pass as
arguments to the new program the character-strings referenced by
the values passed to this function following the argument <path>
through but not including the argument <nullp>, if any, and that
it begin executing the new program at its transfer address.

7-34 @ 4404 Reference Manual

SECTION 7
'C' Compliler

When the new program begins, it inherits the following attribQtes
and reSOQrces from the calling program:

The task's priority
The task-ID nQmber
The parent task-ID nQmber
The Qser-ID nQIDber
The controlling terminal nQIDber
The file-creation permissions-mask
The time remaining on an armed alarm-clock
The working directory
All open files
System and Qser time information

The new program inherits the effective Qser-ID Qnless the file
has the set-user-ID mode-bit set, in which case the new program
gets as its effective Qser-ID that of the owner-ID of the file.
The operating system sets QP the new program's signal-handling
mechanism like that of the calling program, except that all
signals caught by the calling program are set up so that they
caQse their defaQlt action. The operating system disables
profiling in the new program.

The operating system sets QP the new program's stack so that the
nQmber of argQIDents, represented by an int, is on the top of the
stack, followed by addresses of character-strings which contain
copies of those character-strings referenced by the argQIDents of
this fQnction, followed by the nQll-address ((char *) NULL),
followed by the copies of the character-strings referenced by the
argQIDents of this fQnction.

This function only retQrns to the caller if the operating system
reports an error. If it reports an error, the fQnction retQrns
-1 with "errno" set to the system error code.

The function fails if the path COQld not be followed, the path
contains a file that is not a directory, the pathname does not
reach a file, the file is a directory, or the file's access
permissions do not grant the cQrrent effective Qser execQtion
permission. It also fails if the argQIDents to the program take
up too mQch space (the maximQID is system dependent bQt is always
at least 2048 bytes) or the program in the file is too largee

4404 Reference ManQal @ 7-35

SECTION 7
'C' Compliler

ERRORS REPORTED

NOTES

E2BIG

EACCES

EBBIG

EISDR

EMSDR

ENOENT

ENOEXEC

ENOTDIR

Too many argQments are specified

The file's permissions do not grant the reqQested
access type

The execQtable file is too large

The file is a directory

The path to the file COQld not be followed

The pathname does not reach a file

This file is not execQtable

A part of the path is not a directory

The fQnction does not flQsh or close standard I/O streams opened
in the calling program before reqQesting that the new program be
execQted. All bQffered data is lost.

All programs written in a high level langQage for this system
expect their arguments in the form described above. For example,
all C programs set QP their stack so that the argument cOQnt is
referenceable by the first argument to the main procedQre
"main()" and the address of the list of addresses of arguments is
referenceable by the second argument to that procedQre.

SEE ALSO

7-36

C Library: system()

System Call: execlp(), execv(), execvp(), fork(),
profil(), signal(), vfork()

Command: shell, script

@ 4404 Reference Man~al

execlp

SECTION 7
'C' Compliler

Execute a program found in an executable binary file.

SYNOPSIS

include <errno.h>
int execlp(path, [argO, [arg1, ... ,[argn,]]] nullp)
char *path;
char *argO, *arg1, ... , argn;
char *nullp;

Arguments

path

argO

arg1

argn

nullp

Retu.rns

The address of the character-string containing a
pathname for the file containing the program to
execute

The address of the character-string containing the
argument to the new program which is referenced as
argument zero (by convention this is the name of
the command)

The address of the character-string containing the
first argument to the new program

The address of the character-string containing the
last argument to the new program

A null-address ((char *) NULL) which ends the list
of addresses of character-strings containing
arguments to the new program

Never if successfu.l, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function requests that the operating system replace the
program currently executing with the program found in the
executable binary file (the new program) reached by the pathname
in the character-string referenced by <path>, that it pass as
arguments to the new program the character-strings referenced by
the values passed to this function following the argument <path>
through but not including the argument <nullp>, if any, and that
it begin executing the new program at its transfer address.

4404 Reference Manual @ 7-37

SECTION 7
'C' Compliler

When the new program begins, it inherits the following attributes
and resources from the calling program:

The task's priority
The task-ID number
The parent task-ID number
The user-ID number
The controlling terminal number
The file-creation permissions-mask
The time remaining on an armed alarm-clock
The working directory
All open files
System and user time information

The new program inherits the effective user-ID unless the file
has the set-user-ID mode-bit set, in which case the new program
gets as its effective user-ID that of the owner-ID of the file.
The operating system sets up the new program's signal-handling
mechanism like that of the calling program, except that all
signals caught by the calling program are set up so that they
cause their default action. The operating system disables
profiling in the new program.

The operating system sets up the new program's stack so that the
number of arguments, represented by an int, is on the top of the
stack, followed by addresses of character-strings which contain
copies of those character-strings referenced by the arguments of
this function, followed by the null-address ((char *) NULL),
followed by the copies of the character-strings referenced by the
arguments of this function.

This function only returns to the caller if the operating system
reports an error. If it reports an error, the function returns
-1 with "errno" set to the system error code.

The function fails if the path could not be followed, the path
contains a file that is not a directory, the pathname does not
reach a file, the file is a directory, or the file's access
permissions do not grant the current effective user execution
permission. It also fails if the arglAments to the program take
up too much space (the maximum is system dependent but is always
at least 2048 bytes) or the program in the file is too large.

7-38 @ 4404 Reference Man~al

ERRORS REPORTED

E2BIG Too many arguments are specified

SECTION 7
'C' Compliler

EACCES The file's permissions do not grant the requested access
type

EBBIG The executable file is too large

EISDR The file is a directory

EMSDR The path to the file could not be followed

ENOENT The pathname does not reach a file

ENOEXEC This file is not executable

ENOTDIR A part of the path is not a directory

NOTES

The function does not flush or close standard I/O streams opened
in the calling program before requesting that the new program be
executed. All buffered data is lost.

All programs written in a high level language for this system
expect their arguments in the form described above. For example,
all C programs set up their stack so that the argument count is
referenceable by the first argument to the main procedure
"main()" and the address of the list of addresses of arguments is
referenceable by the second argument to that procedure.

This function is exactly like "execl()" and is included only for
compatibility with other systems. On other systems, this
function follows the current search rules to locate the file
containing the program to execute. This system doesn't support
the notion of search rules except in the context of the shell, so
the complete behavior of this function can't be fully
implemented.

SEE ALSO

C Library: system()

System Call:

Command: shell

execl(), execv(), execvp(), fork(), profil(),
signal(), vfork()

4404 Reference Manual @ 7-39

SECTION 7
'C' Compliler

execv

Execute a program found in an executable binary file.

SYNOPSIS

include <errno.h>
int execv(path, argv)

Arguments

path

argv

Retllrns

char *path·
char *argvLJ;

The address of a character-string containing a
pathname for the file containing the program to
execute

The address of a list of addresses of to
character strings to pass as arguments to the new
program

Never if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function requests that the operating system replace program
currently executing with the program found in the executable
binary file (the new program) reached by the pathname in the
character-string referenced by <path>, that it pass as arguments
to the new program the character-strings referenced by the
addresses in the array referenced by <argv>, if there are any,
and that it begin executing the new program at its transfer
address.

The argument <argv> is the address of an array of (char *)
containing the addresses of the character-strings which are
arguments to new program, followed by the null-address (char *)
NULL.

7-40 @ 4404 Reference Manual

SECTION 7
'C' Compliler

When the new program begins, it inherits the following attribQtes
and resources from the calling program:

The task's priority
The task-ID number
The parent task-ID number
The Qser-ID nQmber
The controlling terminal number
The file-creation permissions-mask
The time remaining on an armed alarm-clock
The working directory
All open files
System and user time information

The new program inherits the effective user-ID unless the file
has the set-user-ID mode-bit set, in which case the new program
gets as its effective user-ID the owner-ID of the file. The
operating system sets up the new program's signal handling
mechanism like that of the calling program, except that all
signals caught by the calling program are set QP so that they
cause their default action. The operating system disables
profiling in the new program.

The operating system sets up the new program's stack so that the
number of arguments, represented by an int, is on the top of the
stack, followed by addresses of character-strings which contain
copies of those character-strings referenced by the values in the
list of references, followed by the null-address ((char *) NULL),
followed by the copies of the character-strings referenced by the
addresses in the array referenced by <argv>.

This function only returns to the caller if the operating system
reports an error. If it reports an error, the function retQrns
-1 with "errno" set to the system error code.

The function fails if the path could not be followed, the path
contains a file that is not a directory, the pathname does not
reach a file, the file is a directory, or the file's access
permissions do not grant the current effective user execution
permission. It also fails if the arguments to the program take
up too much space (the maximum is system dependent but is always
at least 2048 bytes) or the program in the file is too large.

4404 Reference Manual @ 7-41

SECTION 7
'C' Compliler

ERRORS REPORTED

NOTES

E2BIG

EACCES

EBBIG

EISDR

EMSDR

ENOENT

ENOEXEC

ENOTDIR

Too many arguments are specified

The file's permissions do not grant the requested
access type

The executable file is too large

The file is a directory

The path to the file could not be followed

The pathname does not reach a file

This file is not executable

A part of the path is not a directory

The function does not flush or close standard I/O streams opened
in the calling program before requesting that the new program be
executed. All buffered data is lost.

All programs written in a high level language for this system
expect their arguments in the form described above. For example,
all C programs set up their stack so that the argument count is
referenceable by the first argument to the main procedure
"main()" and the address of the list of addresses of arguments is
referenceable by the second argument to that procedure.

SEE ALSO

7-42

C Library: system()

System Call: execl(), execlp(), execvp(), fork(),
profil(), signal(), vfork()

Command: shell, script

@ 4404 Reference Manual

execvp

SECTION 7
IC' Compliler

Execute a program found in an executable binary file.

SYNOPSIS

#include <errno.h>
int execvp(path, argv)

Arguments

path

argv

Returns

char *path·
char *argv[];

The address of a character-string containing a
pathname for the file containing the program to
execute

The address of a list of addresses of to
character strings to pass as arguments to the new
program

Never if succeSSftll, otherwise -1 wi th "errno" set to the system
error code

DESCRIPTION

This function requests that the operating system replace program
currently executing with the program found in the executable
binary file (the new program) reached by the pathname in the
character-string referenced by <path>, that it pass as arguments
to the new program the character-strings referenced by the
addresses in the array referenced by <argv>, if there are any,
and that it begin executing the new program at its transfer
address.

The argument <argv> is the address of an array of (char *)
containing the addresses of the character-strings which are
arguments to new program, followed by the null-address (char *)
NULL.

4404 Reference Manual @ 7-43

SECTION 7
'C' Compliler

When the new program begins, it inherits the following attributes
and resources from the calling program:

The task's priority
The task-ID number
The parent task-ID number
The user-ID number
The controlling terminal number
The file-creation permissions-mask
The time remaining on an armed alarm-clock
The working directory
All open files
System and user time information

The new program inherits the effective user-ID unless the file
has the set-user-ID mode-bit set, in which case the new program
gets as its effective user-ID the owner-ID of the file. The
operating system sets up the new program's signal handling
mechanism like that of the calling program, except that all
signals caught by the calling program are set up so that they
cause their default action. The operating system disables
profiling in the new program.

The operating system sets up the new program's stack so that the
number of arguments, represented by an int, is on the top of the
stack, followed by addresses of character-strings which contain
copies of those character-strings referenced by the values in the
list of references, followed by the null-address ((char *) NULL),
followed by the copies of the character-strings referenced by the
addresses in the array referenced by <argv>.

This function only returns to the caller if the operating system
reports an error. If it reports an error, the function returns
-1 with ~errno~ set to the system error code.

The function fails if the path could not be followed, the path
contains a file that is not a directory, the pathname does not
reach a file, the file is a directory, or the file's access
permissions do not grant the current effective user execution
permission. It also fails if the arguments to the program take
up too much space (the maximum is system dependent but is always
at least 2048 bytes) or the program in the file is too large.

7-44 @ 4404 Reference Manual

SECTION 7
'C' Compliler

ERRORS REPORTED

NOTES

E2BIG

EACCES

EBBIG

EISDR

EMSDR

ENOENT

ENOEXEC

ENOTDIR

Too many arguments are specified

The file's permissions do not grant the requested
access type

The executable file is too large

The file is a directory

The path to the file could not be followed

The pathname does not reach a file

This file is not executable

A part of the path is not a directory

The fQnction does not flush or close standard I/O streams opened
in the calling program before requesting that the new program be
executed. All buffered data is lost.

All programs written in a high level language for this system
expect their arguments in the form described above. For example,
all C programs set up their stack so that the argument count is
referenceable by the first argument to the main procedure
"main()" and the address of the list of addresses of arguments is
referenceable by the second argument to that procedure.

This function is exactly like "execv()" and is included only for
compatibility with other systems. On other systems, this
function follows the current search rules to locate the file
containing the program to execute. This system doesn't support
the notion of search rules except in the context of the shell, so
the complete behavior of this function can't be fully
implemented.

SEE ALSO

C Library: system()

System Call: execl(), execlp(), execv(), fork(), profil(),
signal(), vfork()

Command: shell, script

4404 Reference Manual @ 7-45

SECTION 7
'C' Compliler

Create a new task.

SYNOPSIS

include <errno.h>
int fork()

Arguments

None

Returns

fork

If successful, the child's task-ID to the parent (calling) task
and zero to the child (created) task, otherwise -1 with "errno"
set to the system error code

DESCRIPTION

This fQnction creates a new task (the child task) that is an
exact copy of the current task (the parent task). If the
function succeeds, it returns the child task's task-ID to the
parent task and returns zero to the child task. Otherwise, it
returns -1 with "errno" set to the system error code.

The child task is identical to the parent task in that it has the
same task priority, user-ID, effective user-ID, controlling
terminal information, file-creation permissions-mask, working
directory, signal handling set-up, and profiling information.

The child task differs from the parent task in that its task-ID
is different, its parent task-ID is the task-ID of the parent
task, the data in its memory is an exact copy of that in the
parent task's memory, its file descriptors are exact copies of
those in the parent task, and its system and user CPU times are
reset to zero.

7-46 @ 4404 Reference Manual

ERRORS REPORTED

EAGAIN

EVFORK

NOTES

SECTION 7
'C' Compliler

The maximum number of tasks for the user are
active or there are no available entries in the
system task table

The task shares its memory with its parent and may
not call this function

A task-ID is a non-negative integer.

Flushing or closing streams opened for write or append access at
the "fork()" call may result in data being duplicated onto the
file attached to the stream since buffers are copied to the child
task by "fork()".

SEE ALSO

C Library: exit(), exit()

System Call: execl(), execlp(), execv(), execvp(), vfork(), wait()

4404 Reference Manual @ 7-47

SECTION 7
'C' Compliler

fstat

Get the status of an open file.

SYNOPSIS

inclQde <errno.h>
inclQde <sys/stat.h>
int fstat(fildes, bQfad)

int fildes;
strQct stat *bQfad;

Arguments

fildes A file descriptor for the open file to examine

bQfad

Returns

The address of the strQctQre to contain the file's
status

Zero if sQCCeSSflll, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function examines the file referenced by the file descriptor
<fildes> and writes information describing the statQs of that
file into the strQcture whose address is <bufad>. The function
returns zero as its result if it successflllly gets the status of
the open file. Otherwise, it returns -1 with "errno" set to the
system error code.

The fQnction fails if the file descriptor <fildes> is out of
range or does not reference an open file.

The following structure is defined in the inclQde-file
"<sys/stat.h>" and defines the format of the data describing the
statQs of the open file:

7-48 @ 4404 Reference Manual

SECTION 7
'C' Compliler

struct stat

} ;

short
short
char
char
char
char
short
long
long
long

st dev;
st-ino;
st-filler;
st-mode;
st-perm;
st-nlink;
st-uid;
st-size;
st-mtime;
st=spr;

The value "st dev" is the device number of the device containing
the file; "st-ino" is the file descriptor number (FDN) on the
device describing the file; "st filler" is an unused byte;
"st mode" is a bit string descrlbing the type of the file,
described below; "st perm" is a bit-string describing the
permissions of the fTle, described below; fIst nlink" is the
number of links to the file; "st uid" is the owner-ID of the
file; "st size" is the size of the file, in bytes; "st mtime" is
the last modification date and time for the file, in system-time;
and "st_spr" is unused.

The following constants, defined in the include-files
"<sys/stat.h>" and "<sys/modes.h>", define the data in the
bit-string "st_mode" which describes the file's type:

S IFMT Ox4F
S-IFREG Ox01
S-IFBLK Ox03
S-IFCHR Ox05
S-IFDIR Ox09
S-IFPIPE Ox41

The constant S IFMT is a mask that when anded with the value
"st mode" yields the file type. After anding with the constant
S IFMT "st mode" produces S IFREG if the file is a regular file,
S-IFBLK if-the file is a block-special file (block device),
S-IFCHR if the file is a character-special file (character
device), S IFDIR if the file is a directory, or S IFPIPE if the
file is a pipe.

4404 Reference Manual @ 7-49

SECTION 7
'C' Compliler

The following constants, also defined in the include-files "<sys/
stat.h>" and "<sys/modes.h>", define the data in the bit-string
"st_perms" which describes the file's access permissions:

S IREAD Ox01
S-IWRITE Ox02
S-IEXEC Ox04
S-IOREAD OxOS
S-IOWRITE Ox10
S-IOEXEC Ox20
S-ISUID Ox40

The value S IREAD grants reading permission to the owner of the
file, S WRI~E grants writing permission to the owner, and S IEXEC
grants searching permission to the owner if the file is a -
directory, otherwise it grants execution permission. The value
S IOREAD grants reading permission to users other than the owner
OI the file, S IOWRITE grants writing permission to others, and
S EXEC grants searching permission to others if the file is a
dIrectory, otherwise it grants execution permission. The value
S ISUID causes the effective user-ID to be changed to that of the
owner of the file whenever the program contained in the file is
executed.

ERRORS REPORTED

EBADF

NOTES

The file descriptor is out of range or does not
reference an open file

The include-file "<sys/modes.h>" need not be included if the
includefile "<sys/stat.h>" since "<sys/stat.h>" includes
"<sys/modes.h>".

SEE ALSO

System Call:

Command: Is

7-50 @

creat(), dup(), dup2(), open(), pipe(),
stat(), utime()

4404 Reference Manual

ftime

Get the operating system's current time statistics.

SYNOPSIS

#include <sys/timeb.h>
int ftime(tbufaddr)

struct timeb *tbufaddr;

Arguments

SECTION 7
'C' Compliler

tbufaddr The address of a structure to get the operating
system's current time infor.mation

Retu.rns

Zero
DESCRIPTION

This function writes the operating system's current time
statistics into the structure whose address is <tbufaddr>. The
function always returns zero as its result.

The following structure definition describes the data written to
the structure whose address is <tbufaddr>:

struct timeb
{

} ;

long
char
char
short

time;
tm tik;
dstflag;
timezone;

The value "time" is the current system-time; "tm tim" is the
number of ticks (tenths of a second) that have passed since the
last change in the system-time; "dstflag" is non-zero if
converting to time coordinates of the local time zone requires
the U. S. A. Standard Daylight Savings Time conversion, zero
otherwise; and "timezone", if positive, is the number of seconds
the local time zone is west of Greenwich Mean Time (GMT),
otherwise its absolute value is the number of seconds east of
GMT. The include-file "<sys/timeb>" contains definitions
defining this structure.
ERRORS REPORTED

None

4404 Reference Manual @ 7-51

SECTION 7
'C' Compliler

NOTES

The system represents time in system-time, which is the number of
seconds that has elapsed since the epoch. The system defines the
epoch as 00:00 (midnight) on Jan~ary 1, 1980, Greenwich Mean Time
(GMT) .

SEE ALSO

7-52

C Library: gmtime(), localtime(), tzset()

System Call: stime(), time()

Command: date, udate

@ 4404 Reference Man~al

geteuid

Get the current task's effective user-ID number.

SYNOPSIS

int gete uid ()

Arguments

None

Returns

The current task's effective lIser-ID nlImber

DESCRIPTION

SECTION 7
'C' Compliler

This f~nction gets the clIrrent task's effective lIser-ID nlImber
and returns that vallIe as its reslIlt.

ERRORS REPORTED

None

SEE ALSO

System Call: getlIid(), setuid()

Command: who

4404 Reference Manual @ 7-53

SECTION 7
'C' Compliler

getpid

Get the current task's task-ID number.

SYNOPSIS

int getpid()

Arguments

None

Retllrns

The current task's task-ID number

DESCRIPTION

This function gets the current task's task-ID number and returns
that value as its result.

ERRORS REPORTED

None

SEE ALSO

System Call: exec(), fork()

Command: status

7-54 @ 4404 Reference ManQal

getllid

Get the current task's user-ID number.

SYNOPSIS

int get uid ()

Argwnents

None

Retllrns

The current task's user-ID number

DESCRIPTION

SECTION 7
'C' Compliler

This function gets the current task's user-ID number and retllrns
that value as its result.

ERRORS REPORTED

None

SEE ALSO

System Call: geteuid(), setuid()

Command: who

4404 Reference Manual @ 7-55

SECTION 7
'C' Compliler

gtty

Get the characteristics of an open character-device.

SYNOPSIS

#include <errno.h>
#include <sys/sgtty.h>
int gtty(fildes, buf)

int fildes;
struct sgttyb *buf;

Arguments

fildes The file descriptor of the open character-device
to examine

buf

Returns

The address of the structure to contain the
characteristics of the character-device

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function obtains the current characteristics of the open
character-device referenced by the file descriptor <fildes> and
writes information describing those characteristics into the
structure referenced by <buf>. The function returns zero as its
result if it successfully obtains the characteristics of the open
character-device. Otherwise, it returns -1 with "errno" set to
the system error code.

The function fails if the file descriptor is out of range, does
not reference an open file, or does not reference an open
character-device.

7-56 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The fQnction call expects <buf) to be the address of a structure
which is defined as follows:

struct sgttyb
{

} ;

u.nsigned char
l.l.nsigned char
llnsigned char
;lns igned char
Qnsigned char
l.l.nsigned char

sg flag;
sg-delay;
sg=kill;
sg erase;
sg-speed;
s~prot;

The bit-string "sg flag" describes the current mode of the
terminal. The values in the bit-string are as follows:

RAW Ox01
ECHO Ox02
XTABS Ox04
LCASE Ox08
CRMOD Ox10
SCOPE Ox20
CBREAK Ox40
CNTRL Ox80

If RAW is set, the operating system considers the
character-device to be in raw mode. In raw mode, the operating
system suspends all processing of input and output. If clear,
the operating system considers the character-device to be in
non-raw mode (sometimes called "cooked mode"). In this mode, the
operating system processes characters dependent upon the setting
of the other bits in the bit-string.

If ECHO is set, the operating system echoes characters read to
the character-device. If clear, the operating system doesn't
echo characters to the device. If XTABS is set, the operating
system expands tab characters to spaces during output operations
so that the next character written to the device is written to a
column number that is an even multiple of eight. If clear, the
operating system writes tab-characters to the character-device
with no expansion. Tab-characters are defined by the system to
be Ox09 and are defined by the C compiler as ' t'.

4404 Reference Manual @ 7-57

SECTION 7
'C' Compliler

If LCASE is set, the operating system changes all upper-case
characters to lower-case characters during input operations and
changes all lowercase characters to upper-case characters during
output operations. If clear, the operating system disables this
feature. If CRMOD is set, the operating system writes a
line-feed character to the character-device after every
carriage-return character written. If clear, the operating
system disables this feature.

If SCOPE is set, the operating system writes a
backspace-character (Ox08) followed by a space-character followed
by another backspace characters to the character-device whenever a
character-cancel character is read from the character-device. If
clear, the operating system disables this feature. If CBREAK is
set, the operating system considers the terminal to be in
single-character mode. In this mode, the operating system reads
data from the device one character at a time, passing each
character to the calling task. If clear, the operating system
considers the terminal to be in line mode, where it reads data
from the device one line at a time, passing data to the calling
task whenever a terminator is read.

If CNTRL is set, the operating system ignores all characters read
from the character-device that are outside of the range Ox20
through Ox7E inclusive, except for the line-terminator character
(carriage return), the keyboard-interrupt character
(control-'c'), the quit-interrupt character (control-' ,), the
character-cancel character, the line-cancel character, and the
output-stop and output-start characters if any.

The bit-mask "sg delay" indicates which characters, if written to
the character-device, causes the operating system to pause before
writing another character to the character-device. The values in
that bit string are as follows:

DELNL
DELCR
DELTB
DELVT
DELFF

Ox03
OxOC
Ox10
Ox20
Ox20

If DELNL is set, the operating system pauses it writes a new-line
character to the character-device. If DELCR is set, it pauses
after a carriage-return character, if DELTB is set, it pauses
after a horizontal-tab character, if DELFF is set (which is equal
to DELVT), it pauses after a form-feed character.

1-58 @ 4404 Reference Manual

SECTION 7
'c' Compliler

The "sg kill" value defines line-cancel character for the
character device. The operating system treats this character like
any other character if the character-device is in
single-character or raw mode. The default line-cancel character
is control-'x' (Ox1S).

The "sg erase" value defines the character-cancel character for
the character-device. The operating system treats this character
like any other character if the character-device is in
single-character or raw mode. The default character-cancel
character is the backspace-character (control-'h', OxOS, ' h').

The value "sg_speed" is currently unused.

The bit-string "sg prot" defines the type of start-stop protocol
expected by the operating system for the character-device. The
values defined in that bit-string are as follows:

ESC
aXON
ANY
TRANS
IXON

OxSO
Ox40
Ox20
Ox10
OxOS

If ESC is set, the operating system stops writing to the
character device when it reads an escape-character (Ox1B) from the
device. It resumes writing to the character-device when it reads
another escape-character from the device. If aXON is set, the
operating system stops writing to the character-device when it
reads an xoff-character (Ox13). It resumes writing to the
character-device when it reads an xon-character (Ox11). If ANY
is set, the operating system uses any character read from the
character-device as a substitute for the xon character. If TRANS
is set, the operating system does not echo the escape-character,
xoff-character, or xon-character to the the character-device. If
IXON is set, the operating system writes a xoff character to the
character-device whenever its internal buffers are full and it
can't accept another character. It writes an xon-character to
the character-device when space comes available for more
characters.

The include-file "<sys/sgtty.h>" contains the structure and data
definitions described above.

4404 Reference Manual @ 7-59

SECTION 7
'C' Compliler

ERRORS REPORTED

EBADF

ENOTTY

SEE ALSO

The file descriptor is OQt of range or does not
reference an open file

The file is not a character device

System Call: creat(), dQP(), dQP2(), open(), pipe(),
stty()

Command: ttyset

7-60 @ 4404 Reference ManQal

SECTION 7
'C' Compliler

Send a signal to a task.

SYNOPSIS

#include <errno.h>
#include <sys/signal.h>
int kill(taskid, signum)

int taskid;
int signum;

Arguments

kill

taskid The task-ID number of the task to receive the
signal signum The signal to send the task

Returns

Zero if sllccessful, otherwise -1 with "errno" set to the
system error code

DESCRIPTION

This f~nction sends the signal numbered <signum> to the task
whose task-ID number is <taskid>. A task may send a signal to
another task only if its effective user is the system manager or
it matches that of the specified task. The function retllrns zero
if it successf~lly sent the task the specified signal, otherwise,
it returns -1 with "errno" set to the system error code.

The function fails if the signal number <signum> is out of range,
there is no task with a task-ID number <taskid>, or the effective
user of this task is not the system manager or does not match
that of the specified task.

4404 Reference Manual @ 7-61

SECTION 7
'C' Compliler

The include-file "<sys/signal.h>" defines the following constants
and their meaning:

SIGHUP 1 Hang-'-lp
SIGINT 2 Keyboard
SIGQUIT 3 Quit
SIGEMT 4 EMT OxA??? trap
SIGKILL 5 Task kill
SIGPIPE 6 Broken pipe
SIGSWAP 7 Swapping error
SIGTRACE 8 Trace
SIGALRM 10 Alarm
SIGTERM 11 Task terminate
SIGTRAPV 12 TRAPV instruction
SIGCHK 13 CHK instruction
SIGEMT2 14 EMT OxF??? emulation
SIGTRAP1 1 5 TRAP #1 instruction
SIGTRAP2 1 6 TRAP #2 instruction
SIGTRAP3 17 TRAP #3 instruction
SIGTRAP4 18 TRAP #4 instruction
SIGTRAP5 1 9 TRAP #5 instruction
SIGTRAP6 20 TRAP #6 instruction
SIGPAR 21 Parity error
SIGILL 22 Illegal instruction
SIGDIV 23 Division by zero
SIGPRIV 24 Privileged instruction
SIGADDR 25 Addressing error
SIGDEAD 26 A child task has died
SIGWRIT 27 Write to read-only memory
SIGEXEC 28 Execute from stack or data space
SIGBND 29 Segmentation violation
SIGUSR1 30 User defined signal #1
SIGUSR2 31 User defined signal #2
SIGUSR3 32 User defined signal #3
C'lT("'C II TIl"'lnm 77 Program abort tJ.LIJ.H.DVfi.l. :J:J
SIGSPLR 34 Spooler signal
SIGSYS3 35 System defined signal #3
SIGSYS4 36 System defined signal #4
SIGSYS5 37 System defined signal #5
SIGSYS6 38 System defined signal #6
SIGSYS7 39 System defined signal #7
SIGSYS8 40 System defined signal #8
SIGSYS9 41 System defined signal #9
SIGSYS10 42 System defined signal #10
SIGSYS11 43 System defined signal #11
SIGSYS12 44 System defined signal #12
SIGSYS13 45 System defined signal #13
SIGSYS14 46 System defined signal #14
SIGSYS15 47 System defined signal #15
SIGSYS16 48 System defined signal #16

7-62 @ 4404 Reference Manual

SECTION 7
'c' Compliler

SIGVEN1
SIGVEN2
SIGVEN3
SIGVEN4
SIGVEN5
SIGVEN6
SIGVEN7
SIGVEN8
SIGVEN9
SIGVEN10
SIGVEN11
SIGVEN12
SIGVEN13
SIGVEN14
SIGVEN15

ERRORS REPORTED

EACCES

EINVAL

ESRCH

SEE ALSO

49 Vendor defined signal #1
50 Vendor defined signal #2
51 Vendor defined signal #3
52 Vendor defined signal #4
53 Vendor defined signal #5
54 Vendor defined signal #6
55 Vendor defined signal #7
56 Vendor defined signal #8
57 Vendor defined signal #9
58 Vendor defined signal #10
59 Vendor defined signal #11
60 Vendor defined signal #12
61 Vendor defined signal #13
62 Vendor defined signal #14
63 Vendor defined signal #15

The current effective user is not the system
manager or the it does not match that of the
specified task

The signal number is out of range

Invalid task number

System Call: signal()

Command: int

4404 Reference Manual @ 7-63

SECTION 7
'C' Compliler

link

Create a link to a file.

SYNOPSIS

#include <errno.h>
int link(path, newlink)

char *path;
char *newlink;

Arguments

path The address of a character-string containing a
pathname for an existing file

newlink

Retllrns

The address of a character-string containing the
pathname of the link to create

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function establishes a link to the file reached by the
pathname in the character-string referenced by <path> called by
the pathname in the character-string referenced by <newlink>.
The pathname <path> must exist and the file it reaches may not be
a directory unless the current effective user is the system
manager. The pathname <newlink> must not exist. The device for
<newlink> must be the same as that for <path>. The directory for
<newlink> must give the current effective user writing
permission. The function returns zero as its result if it
successfully establishes the link. Otherwise, it returns -1 with
"errno" set to the system error code.

The function fails if either the path in <path> or <newlink> can
not be followed or contains a file which is not a directory, the
pathname <path> does not exist, the pathname <newlink> already
exists, the file reached by <path> is a directory and the current
effective user is not the system manager, the directory for
<newlink> does not grant the current effective user writing
permission, or the link crosses devices.

7-64 @ 4404 Reference Manual

ERRORS REPORTED

NOTES

EACCES

EEXIST

EISDR

EMSDR

ENOENT

ENOTDIR

EXDEV

SECTION 7
'C' Compliler

The directory for <newlink> does not give the
current effective user writing permission

The pathname <newlink> already exists

The file reached by <path> is a directory and the
current effective user is not the system manager

The path can not be followed for either <path> or
<linkname>

The pathname <path> does not exist

The path in either <path> or <linkname> contains a
file which is not a directory

Attempting to link across devices

Linking to a file changes the last-access time of that file.

SEE ALSO

System Call: unlink()

Command: link, rename

4404 Reference Manual @ 7-65

SECTION 7
IC' Compliler

lock

Lock a task in memory or Qnlock a locked task.

SYNOPSIS

#inclQde <errno.h>
int lock(flag)

int flag;

Arguments

flag A flag which indicates lock or Qnlock

Returns

Zero if sQccessfQI, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

If the valQe <flag> is not zero, this function locks the cQrrent
task in memory, preventing the operating system from swapping the
task to the system swap space. Otherwise, it Qnlocks the current
task, permitting the operating system to swap the task to the
system swap space if necessary. The cQrrent effective Qser mQst
be the system manager.

The function retQrns zero if it succeeds, otherwise, it retQrns
-1 with "errno" set to the system error code. The fQnction fails
if the cQrrent effective user is not the system manager.

ERRORS REPORTED

EACCES

NOTES

The CQrrent effective Qser is not the system
manager

Unlocking a task that is not locked is not an error.

SEE ALSO

System Call: memman()

7-66 @ 4404 Reference Manual

lrec

Add an entry to the operating system's lock table.

SYNOPSIS

#include <errno.h>
int lrec(fildes, count)

int fildes;
int co lInt;

Arguments

SECTION 7
'C' Compliler

fildes The file descriptor for the file containing the
record to lock

COl.lnt

Retllrns

The nllIDber of bytes to lock from the clIrrent file
position

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function adds an entry to the operating system's lock table
for the open file referenced by the file descriptor <fildes>,
locking a record beginning at the current file position
containing <count> bytes. If the current task has an existing
entry in the operating system's lock table for the same file
descriptor, the function removes that entry. The function
retlIrns zero as its result if it successflllly locks the record,
otherwise it returns -1 with "errno" set to the system error
code.

The function fails if the operating system's lock table contains
an entry made by another task for the file referenced by <fildes>
and the record locked by that entry contains all or part of the
record this function is trying to lock or the operating system's
lock table is full. It also fails if the file descriptor
<fildes> is out of range, does not reference an open file, or
references a file that is not a regular file.

4404 Reference Manual @ 7-67

SECTION 7
'C' Compliler

ERRORS REPORTED

EBADF

ELOCK

NOTES

The file descriptor is out of range, does not
reference an open file, or references a pipe,
character-special file (character-device), or a
block-special file (blockdevice)

The record specified could not be locked because
there already exists a lock on all or part of that
record or the operating system's lock-table is
fQII

Locking a record only prevents others from locking it. This and
other tasks may read or modify the record and may alter the file
containing the record.

The function removes any existing lock table entry made by the
current task for the specified file without regard to the
eventual outcome of the function.

The function only permits one entry in the system lock table for
each file a task has open.

The operating system removes all lock table entries made by a
task when that task terminates.

SEE ALSO

System Call:

7-68 @

creat(), dup(), dup2(), open(), pipe(),
urec()

4404 Reference Manual

lseek

Change the current file position of an open file.

SYNOPSIS

#include <errno.h>
long lseek(fildes, offset, type)

int fildes;
long offset;
int type;

Arguments

SECTION 7
'C' Compliler

fildes The file descriptor of the file to reposition
offset A count describing the offset of the new
position type A value describing the offset type

Returns

The new offset from the beginning of the file if successful,
otherwise -1 with "errno" set to the system error code

DESCRIPTION

This function changes the current file pointer in the file
descriptor <fildes>, dependent upon the values <offset> and
<type>. If <type> is 0, the function interprets <offset> as an
absolute byte-count from the beginning of the file. If <type> is
1, it interprets <offset> as a byte-count relative to the current
file position. If <type> is 2, it interprets <offset> as a
byte-count relative to the end of the file. If the function
successfully changes the current file pointer, it returns the new
file position, which is the offset relative to the beginning of
the file. Otherwise, it returns -1 with "errno" set to the
system error code.

The function fails if the file descriptor <fildes> is out of
range, does not reference an open file, or references a file
which can't be repositioned, such as a pipe or a
character-special file. It also fails if the requested position
is before the beginning of the file or the value <type> is not
valid.

4404 Reference Manual @ 7-69

SECTION 7
'C' Compliler

ERRORS REPORTED

NOTES

EBADF

EINVAL

ESEEK

The file descriptor is o~t of range or does not
reference an open file

The val~e <type> is not valid

The req~ested file position is before the
beginning of the file or the file descriptor
<fildes> references a file which can't be
repositioned

The function call "lseek«fildes>,0,1)" ret~rns as its res~lt the
file's current position.

The function does not change the file's c~rrent position if the
function reports an error.

If the new position is beyond the current end of the file, the
function creates a gap in the file which contains zeros if read.
The function does not allocate any new blocks of media if the
file resides on a block-device.

SEE ALSO

C Library: fseek()

System Call: creat(), d~p(), dup2(), open(), pipe()

7-70 @ 4404 Reference Man~al

SECTION 7
'C' Compliler

memman

Perform a memory management operation.

SYNOPSIS

#include <errno.h>
int memman(fcn, loaddr, hiaddr)

int fcn;
char *loaddr;
char *hiaddr;

Arguments

fcn A value indicating the memory management function
to perform

loaddr

hiaddr

Retu.rns

The lowest address of memory to affect by the
function

The highest address of memory to affect by the
function

Zero if successflll, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function performs a memory management operation on the
region of memory whose lowest address is <loaddr> and whose
highest address is <hiaddr>. The value <fcn> selects which
operation the function performs. The operations performed by
this function are machine-dependent and may be different for the
various implementation of the operating system. This function
expects the current effective u.ser to be the system manager. The
function retllrns zero if it successflllly performs the memory
management function on the specified region of memory.
Otherwise, it returns -1 with "errno" set to the system error
code.

4404 Reference Manual @ 7-71

SECTION 7
'C' Compliler

The function fails if the function code <fcn> is out of range, if
the high memory address <hiaddr> is lower than the low memory
address <loaddr>, or if the current effective user is not the
system manager. The function may also fail for reasons peculiar
to the machine-dependent implementation of the function. The
function has the following operations for the Tektronix 4044:

o Clear the region's dirty-bit
1 Lock the region in memory
2 Unlock the region
3 Set write-protection on the region
4 Remove write-protection from the region
5 Release the memory allocated to the region

ERRORS REPORTED

EACCES

EINVAL

EVFORK

7-72 @

The current effective user is not the system
manager

The function type is invalid or the starting
address <loaddr> is higher than the ending address
<hiaddr>

The task shares its memory with its parent and may
not call this function

4404 Reference Manual

mknod

SECTION 7
'C' Compliler

Add an entry to the file-system that is a directory, a character-special
file, or a block-special file.

SYNOPSIS

#inclade <errno.h>
int mknod(path, desc, devnum)

Arguments

path

char *path;
short desc;
short devnum;

The address of a character-string containing a
pathname to the entry to create

desc A bit-string describing the type of entry to
create and the access permissions to assign to it

devnum

Retllrns

The major and minor device numbers to assign to
the character-special or block-special file

Zero if saccessflll, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This fanction adds an entry to the file-system that is a
directory, a character-special file, or a block-special file. It
gives the new entry the name fOllnd in the character-string
referenced by <path>. The fllnction determines the type of entry
it creates from the bit-string <desc>. It assigns to that entry
the access permissions described by the bit string <desc>, and if
the entry is a character-special or block-special file, the
fllnction assigns to it the major and minor device numbers defined
in the vallle <devnum>. The fllnction ignores the argument
<devnum> if it is creating a directory. The fllnction reqllires
that the Cllrrent effective llser be the system manager. The
fllnction retllrns zero if it sllccessflllly creates the entry in the
file-system. Otherwise, it retllrns -1 with "errno" set to the
system error code.

4404 Reference Manllal @ 7-73

SECTION 7
'C' Compliler

The function fails if the pathname already exists, the path can't
be followed, the path contains a file which is not a directory,
the disk is full. It also fails if either the <desc> or <devnum>
arguments are invalid, or the current effective user is not the
system manager.

The bit-string <desc> describes the new entry's file type and its
access permissions. It is defined as follows:

Ox0001
Ox0002
Ox0004

Ox0008
Ox0010
Ox0020

Ox0040

Ox0200
Ox0400
Ox0800

Grant reading permission to the file's owner
Grant writing permission to the file's owner
Grant execution (or searching) permission to
the file's owner
Grant reading permission to other users
Grant writing permission to other users
Grant execution (or searching) permission
to other users
Set the task's effective user-ID to the owner-ID
of the file if it is executed
Make the file a directory
Make the file a character-special file
Make the file a block-special file

The function requires that the bit-string <desc> contain exactly
one of the bit-values describing the file's type. It allows the
bit-string to contain any of the bit-values defining the
permissions, in any combination.

The argument <devnum> contains the major and minor device numbers
to assign to the character-special or block-special file. The
most significant byte contains the major device number, the
least-significant byte contains the minor device number. This
argument is ignored if the function creates a directory.

7-74 @ 4404 Reference Manual

SECTION 7
'C' Compliler

ERRORS REPORTED

EACCES

EEXIST

The c~rrent effective ~ser is not the system
manager

The pathname already references a file

EINVAL The file description <desc> or the device number
<devno> is not valid

NOTES

EMSDR

ENOSPC

ENOTDIR

The path to the file co~ld not be followed

The device is f~ll

A part of the path is not a directory

A character-special file is ~s~ally attached to a
character-oriented device. Likewise, a block-special file is
~s~ally attached to a block-oriented device.

The third argument <devnum> sho~ld be specified as zero if <desc>
indicates that the new entry is a directory.

SEE ALSO

System Call: creat()

Command: crdir, makdev

4404 Reference Manual @ 7-75

SECTION 7
'C' Compliler

mount

Mount a block-special file onto the file-system.

SYNOPSIS

#inclQde <errno.h>
int mOQnt(spcnam, dirnam, rwflag)

char *spcnam;
char *dirnam;
int rwflag;

Arguments

spcnam

dirnam

rwflag

Returns

The address ofa character-string containing a
pathname to the block-special file to mOQnt

The address of a character-string containing a
pathrtame to the directory to which to mOQnt the
blockspecial file

A valQe indicating the type of accessing to permit

Zero if sQccessfQl, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function mOQnts the block-special file reached by the
pathname in the character-string referenced by <spcnam> onto the
directory reached by the pathname in the character-string
referenced by <dirnam>. If the value <rwflag> is 0, the fQnction
mounts the file permitting reading and writing access. If
<rwflag> is not 0, the fQnction mOQnts the file so that it does
not permit writing access. The fQnction retQrns zero if it
sQccessfQlly mOQnts the specified block-special file onto the
specified directory. Otherwise, it returns -1 with "errno" set
to the system error code.

7-76 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The ftlnction fails if it can't follow the path in <spcnam> or
<dirnam>, the path in <spcnam> or <dirnam> contains a file which
is not a directory, or either <spcnam> or <dirname> don't exist.
It also fails if the file reached by <spcnam> isn't a
block-special file, the file reached by <dirnam> isn't a
directory, the block-special file reached by <spcnam> is already
mounted, the directory reached by <dirnam> already has a
block-special file mounted onto it, the operating system's mount
table is full, or the current effective user is not the system
manager. It also fails if the media associated with the
block-special file was not unmounted correctly, or the media can
not be read.

There is a block device associated with a block-special file.
After mounting the block-special file, references to the
directory onto which the file has been mounted now reference the
root-directory of the media contained within that block device.
If the file is being mounted permitting reading and writing
access, the function sets an indicator on the media in the device
associated with the file, indicating that the media is currently
mounted. The "umount()" function clears this indicator.

ERRORS REPORTED

EACCES

EBUSY

EDIRTY

EEXIST

EIO

EMSDR

ENOENT

ENOTDIR

The current effective user is not the system
manager

The operating system's mount table is full or a
device is already mounted on the specified
directory <dirnam>

The specified file <spcnam> was not properly
unmounted and may be corrupt

The specified file <spcnam> is already mounted

The operating-system can not read the data on the
device associated with the block-special file
specified by <spcnam>

The path can not be followed for either <spcnam>
or <dirnam>

There is no entry in the file-system for either
<spcnam> or <dirnam>

The specified file <dirnam> is not a directory or
the paths in either <spcnam> or <dirnam> contain a
file that is not a directory

4404 Reference Manual @ 7-77

SECTION 7
'C' Compliler

ENOTBLK

NOTES

The specified file (spcnam) is not a block-special
file

If this fQnction reports EIO or EDIRTY errors, Qse
"/etc/diskrepair" to try to salvage the data on the media that
COQld not be mounted.

The fQnction reports an EIO error if there is no media in the
device associated with the block-special file, or if that media
is not formatted correctly.

Disks written by the "backQP" command can not be mounted.

SEE ALSO

7-78

System Call: mknod(), umount()

Command: /etc/backup, /etc/diskrepair, /etc/moQnt,
/ etc/ unmoQnt

@ 4404 Reference Manual

nice

Change the task's scheduling priority.

SYNOPSIS

#include <errno.h>
int nice(incr)

int incr;

Arguments

incr The value to add to the task's priority

Retllrns

SECTION 7
'C' Compliler

Zero if successftll, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function changes the task's scheduling priority by adding
the signed increment <incr> to it. The function permits the
increment <incr> to be negative if the current effective user is
the system manager. The function returns zero if it successfully
changes the task's scheduling priority, otherwise -1 with "errno"
set to the system error code.

The function fails if the increment <incr> is negative and the
current effective user is not the system manager.

ERRORS REPORTED

EACCES

NOTES

The increment <incr> is negative and the current
effective user is not the system manager

The function sets the task's scheduling priority to the maximum
priority if the increment <incr> causes the priority to exceed
the maximum. Likewise, the fllnction sets the priori ty to the
minimum priority if the increment causes the it to be less than
the minimum.

4404 Reference Manual @ 7-79

SECTION 7
'C' Compliler

Open an existing file.

SYNOPSIS

#include <errno.h>
#include <sys/fcntl.h>
int open(pathnam, mode)

char *pathnam;
int mode;

open

Arguments

pathnam The address of a character-string containing a
pathname to the file to open

mode

Retllrns

A value describing the requested access
permissions

If successful, the file descriptor of the opened file, otherwise
-1 with "errno" set to the system error code

DESCRIPTION

This function opens the file reached by the pathname in the
character string referenced by <pathnam>, sets up access
permissions described by the value <mode>, and sets the current
file position to the beginning of the file. If the function
succeeds, it returns as its result a file descriptor which
references the open file. Other functions use this descriptor to
reference the file opened by this function, such as "read()",
"write()", "lrec()", and "fstat()", which manipulate files and
their data. If the function fails, it returns--1 with "errno set
to the system error code.

The function fails if the pathname can't be followed, the path
contains a file which is not a directory, the pathname doesn't
exist, the file doesn't grant the requested access permission to
the current effective user, the task has the maximum number of
files open, or the requested access permissions are invalid.

7-80 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The valQe <mode> describes to the fQnction the reqQested access
permissions. If <mode> is 0 RDONLY, the fQnction opens the file
for reading access. If <mode> is 0 WRONLY, the fQnction opens
the file for writing access. If <mode> is 0 RDWR, the fQnction
opens the file for both reading and writing access. The
inclQde-file "<sys/fcntl.h>" contains definitions for the
constants O_RDONLY, O_WRONLY, and 0 RDWR.

ERRORS REPORTED

EACCES The file's permissions do not grant the reqQested
access type

NOTES

EINVAL

EMFILE

EMSDR

ENOENT

ENOTDIR

The valQe <mode> is invalid

The maximQID nQIDber of files are open

The path to the file COQld not be followed

The pathname does not reach a file

A part of the path is not a directory

A file descriptor is a non-negative integer that the operating
system Qses to reference an open file. It is an index into the
operating system's open file table.

SEE ALSO

C Library: fclose(), fdopen(), fopen(), freopen()

System Call: close(), dQP(), dQP2(), fstat(), lrec(),
pipe(), read(), write()

4404 Reference ManQal @ 7-81

SECTION 7
'C' Compliler

Suspend the current task.

SYNOPSIS

include <errno.h>
int pallse ()

Arguments

None

Retllrns

pause

This fllnction always returns -1 with "errno" set to the error code
EINTR

DESCRIPTION

This function suspends the cllrrent task indefinitely. This
function returns only if the task receives a signal, catches that
signal and returns from the function handling that signal, either
explicitly using the return statement or implicitly by falling
off the end of the function. It does not return if the task
receives a signal that causes the task to terminate. Signals
that the task ignores do not affect this function.

If the function returns it always returns -1 as its result with
"errno" set to the system error code EINTR.

ERRORS REPORTED

EINTR The task received a signal, causing it to resume
execution

SEE ALSO

C Library: sleep()

System Call: alarm(), kill(), signal()

Command: sleep

7-82 @ 4404 Reference Manual

phys

Access or release a system resource.

sn
#include <errno.h>
char *phys(code)

int code;

Arguments

code A value identifying the resource

Retarns

SECTION 7
'C' Compliler

If successful and accessing a resource, it returns the logical
address of the memory associated with the resource; if successful
and releasing a resource, it returns (char *) -1; otherwise it
returns (char *) NULL

DESCRIPTION

If the value <code> is greater than zero, this function accesses
the resource identified by that value. If it successfully
accesses the requested resource, it returns the logical address
of the memory mapped for that resource as its result. Otherwise,
it returns (char *) NULL as its result.

If the value <code> is less than zero, this function releases the
resource identified b*y the absolute value of <code> and returns
as its result (char) -1.

If the value <code> is zero, this function releases all of the
resources allocated by the current task through this function and
returns as its result (char *) -1.

The resources that this function makes available depend on the
particular implementation of the operating system, so the meaning
of the value <code> differs from implementation to
implementation. The following table describes the meaning of the
absolute value of <code> for the Tektronix 4044:

1 The 128K bit-map
2 The first shared 4K page
3 The second shared 4K page
4 The time-of-day clock

4404 Reference Manual @ 7-83

SECTION 7
'C' Compliler

ERRORS REPORTED

EINVAL The valQe <code> is OQt of range

NOTES

This function ignores requests to release reSOQrces that have not
been allocated to the task. Likewise, it ignores requests to
allocate resources that are already allocated by the task.

7-84 @ 4404 Reference ManQal

Create a pipe.

SYNOPSIS

#inclQde <errno.h>
int pipe(fds)

int (*fds)[2];

Arguments

pipe

SECTION 7
'C' Compliler

fds The address of a two-element array of integers to
receive the pipe's inpQt OQtpQt file descriptors

Returns

Zero if sQccessfQl, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This f~nction creates a pipe, which is a first-in, first-out I/O
mechanism typically Qsed to send data from one task to another.
It saves the pipe's inpQt file descriptor in the first element of
the array referenced by <fds> and it saves the pipe's OQtput file
descriptor in the second element of that array. The fQnction
returns zero if it sQccessfQlly creates a pipe, otherwise -1 with
"errno" set to the system error code.

The f~nction fails if the task has more than two less the
permitted maximum number of open files.

Reading from a pipe whose bQffers are not full and whose input
file descriptor has not been closed suspends the task until the
pipe is filled or the pipe's outpQt file descriptor is closed.
Writing to a pipe whose buffers are fQll suspends the task Qntil
all of the data written to the pipe has been read.

Reading from a pipe whose bQffers contain no data and whose
OQtpQt file descriptor is closed caQses the fQnction attempting
to read data from the pipe to report an end-of-file error.
Writing to a pipe whose input file descriptor has been closed
causes the function attempting to write the data to the pipe to
report a broken pipe error.

4404 Reference Manual @ 7-85

SECTION 7
'C' Compliler

Typically, a task creates a pipe using this function, then the
task then executes a "fork()", duplicating the pipe's inpllt and
output file descriptors for the child (created) task. The
sending task (the task that is to send data through the pipe)
closes the pipe's input file descriptor and writes data to the
pipe's output file descriptor. The receiving task (the task that
is to receive data from the pipe) closes the pipe's output file
descriptor and reads data from the pipe's input file descriptor.

ERRORS REPORTED

EMFILE The task has too many files open to create a pipe

NOTES

Undefined behavior results if a task attempts to use both the
input file descriptor and the output file descriptor.

SEE ALSO

System Call: close(), fstat(), open(), read(), write()

Command: shell, script

7-86 @ 4404 Reference Manual

profil

SECTION 7
'C' Compliler

Start or stop monitoring the current task.

SYNOPSIS

int profil(bufad, bufsiz, scale, lowpc)
char *bufad;
int bufsiz;
int scale;
int lowpc;

Arguments

bufad The address of the buffer to contain monitoring
information

bufsiz

scale

lowpc

Retl.lrns

Zero

DESCRIPTION

The nwnber of bytes in the buffer whose address is
<bufad>

A value indicating the monitoring granularity

The lowest address to monitor in the task

If <scale> is not 0 or 1, this function requests that the
operating system begin monitoring the current task, using the
buffer whose address is <bufad> and contains <bufsiz> bytes, as
the monitor buffer, beginning at the program address <lowpc>,
with a granularity of <scale>. If <scale> is 0 or 1, this
function requests that the operating system stop monitoring the
current task. The function always returns zero as its result.

While monitoring a task, the operating system examines the task
at each tick on the system clock, which occurs every tenth of a
second. It takes the task's current program counter, subtracts
from it the value <lowpc>, divides the result by <scale>, then
multiplies the quotient by two. If the product is less than the
value <bufsiz>, it adds the product to the address of the buffer
<bufad>, then increments the word at that resulting address by
one.

ERRORS REPORTED

None

4404 Reference Manual @ 7-87

SECTION 7
'C' Compliler

NOTES

The b~ffer containing the values incremented at each clock tick must
begin at an even address.

The operating system's monitoring mechanism only uses the
least significant byte of the <scale> argument. After checking for 0 or
1, if <scale> is not a power of 2, it rounds the value up to the
next power of 2 and uses that val~e as the scaling factor.

The argument <lowpc> is an address that has been cast into an int.
The operating system automatically stops monitoring a task when that
task calls the "exec()" function.

The operating system does not automatically stop monitoring a task
when that task calls the "fork()" f~nction.

SEE ALSO

C Library: monitor()

System Call: exec(), fork()

Command: cc

7-88 @ 4404 Reference Manual

read

Read data from an open file.

SYNOPSIS

#inclQde <errno.h>
int read(fildes, bQfad, nbytes)
int fildes;
char *bQfad;
int nbytes;

SECTION 7
'C' Compliler

Arguments

fildes A file descriptor for the open file from which to
read data

nbytes

Returns

The address of a bQffer to contain the data read

The maximQrn nQffiber of byte to read

The nQffiber of bytes read if sQccessfQl, otherwise -1 with "errno"
set to the system error code

DESCRIPTION

This fQnction reads data from the open file referenced by the
file descriptor <fildes>, beginning at the cQrrent file position,
reading a maximQrn of <nbytes> bytes, writing the data read into
the bQffer whose address is <bQfad>. The fQnction reads data
Ilntil it reads the maximQrn nQffiber of bytes , it reaches the end of
the associated file, or, if the associated file is a
character-special file (terminal), the fQnction reads an
end-of-line character. If the associated file is one that can be
repositioned, the fQnction changes the cQrrent file position to
that of the data immediately following the last byte read.

If the fQnction s'lccessfQlly reads data, it retQrns the nQrnber of
bytes it read as its resQlt. If the fQnction encoQnters the end
of the file before reading any data, it retQrns zero as its
resQlt. Otherwise, it retQrns -1 as its resQlt and sets "errno"
to the system error code describing the error.

4404 Reference ManQal @ 7-89

SECTION 7
'C' Compliler

The f~nction fails if the file descriptor <fildes> is o~t of
range, does not reference an open file, or references an open
file that is not open for reading. It also fails if an I/O error
occurs while reading data or the requested count <nbytes> is
negative. The f~nction also fails if the task receives and
catches a signal while reading data from a slow device, s~ch as a
terminal.

ERRORS REPORTED

NOTES

EACCES

EBADF

EBARG

EINTR

EIO

The specified file is not opened for reading

The file descriptor is out of range or does not
reference an open file

The value <nbytes> is not valid

The task received and caught a signal while the
function was reading from a slow device

The operating system reports an I/O error

The data in the buffer may change if the f~nction reports an I/O
error.

SEE ALSO

C Library: fread()

System Call:

7-90 @

creat(), dup(), dup2(), open(), pipe(),
write()

4404 Reference Manual

sbrk

Change the data segment's memory allocation.

SYNOPSIS

#inclQde <errno.h>
char *sbrk(incr)
int incr;

Arguments

SECTION 7
'C' Compliler

incr The nQIDber of bytes to enlarge or shrink the data
segment

Retllrns

The data segment's end-of-segment address before it was enlarged
or shrQnk if sQccessfQl, otherwise (char *) -1 with "errno" set
to the system error code

DESCRIPTION

This fQnction enlarges or shrinks the memory allocation of the
cQrrent task's data segment by <incr> bytes. If <incr> is
positive, it enlarges the segment. If <incr> is negative, it
shrinks the segment. If <incr> is zero, it does not change the
segment's memory allocation. If the fQnction sQcceeds, it
retllrns as its resQl t the end-of-segment address for the data
segment before the fQnction changed the segment's memory
allocation. If <incr> is positive, this is the address of the
first byte of newly allocated memory. If <incr> is negative,
this address meaningless since it references memory that is OQt
of the task's address space. If <incr> is zero, this address is
the cQrrent end-of-segment address of the data segment.
Otherwise, it retQrns (char *) -1 with "errno" set to the system
error code indicating the error.

The fQnction fails if it cOQldn't allocate enoQgh memory to make
the data segment larger by <incr> bytes. It also fails if <incr>
is negative and the absolQte valQe of <incr> is larger than the
nQmber of bytes allocated to the data segment.

4404 Reference ManQal @ 7-91

SECTION 7
'C' Compliler

ERRORS REPORTED

ENOMEM

NOTES

The function can't allocate enough memory to
enlarge the data segment by <incr> bytes, or there
isn't enough memory allocated to the segment to
shrink it by the requested nQIDber of bytes

The function does not change the data segment's memory allocation
if it reports an error.

The end-of-segment address is the lowest address that is higher
than the highest address of memory allocated to the segment.

The function returns the current end-of-segment address without
changing the segment's memory allocation if <incr> is zero.

SEE ALSO

7-92

C Library: calloc(), EDATA, free(), malloc(), realloc()

System Call: brk(), cdata()

@ 4404 Reference Manual

set ftm

Change a file's last-modification time.

SYNOPSIS

#include <errno.h>
int set ftm(pathnam, ptime)
char - *pathnam;
long *ptime;

Arguments

SECTION 7
'C' Compliler

pathnam The address of a character-string containing a
pathname for the file whose modification time is
to change

ptime

Retllrns

The address of the value to set as the file's
modification time

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function changes the last-modification time for the file
reached by the pathname in in the character-string referenced by
<pathnam> to the system-time value referenced by <ptime>. The
function requires that the current effective user be the system
manager. The function returns zero if it successfully changes
the file's modification time, otherwise -1 with "errno" set to
the system error code.

This function fails if the path in <pathnam> can't be followed or
contains a file which isn't a directory. It also fails if the
pathname doesn't exist, the file reached by the pathname is
currently open, or the current effective user isn't the system
manager.

4404 Reference Manual @ 7-93

SECTION 7
'C' Complil~r

ERRORS REPORTED

NOTES

EACCES

EBADF

EBUSY

ENOENT

ENOTDIR

The current effective user is not the system
manager

The file descriptor is out of range or does not
reference an open file

The specified file is currently open

The pathname does not reach a file

A part of the path is not a directory

This function is obsolete and is included only for compatibility.
New applications should use "utime()".

The operating system measures time as a count of seconds since
the epoch. It defines the epoch as 00:00 (midnight) on January
1, 1980, Greenwich Mean Time.

This function does not compare the new modification time with the
creation time or the current time, so it is possible to set the
file's modification time to before it's creation date or to some
time in the future.

SEE ALSO

System Call: fstat(), stat(), utime()

Command: Is

7-94 @ 4404 Reference Manual

setllid

Change both the user-ID and the effective user-ID.

SYNOPSIS

#include <errno.h>
int set uid (uid)
int uid;

Arguments

SECTION 7
'C' Compliler

uid The user-ID of the new user and effective user

Retu.rns

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function changes the task's current user-ID and the task's
current effective user-ID to <uid>. The function expects either
the current user or the current effective user to be the system
manager. The function returns zero as its result if it
successfully changes the task's user-ID and effective user-ID.
Otherwise, it returns -1 with "errno" set to the system error
code.

This function fails if neither the current user nor the current
effective user is the system manager.

ERRORS REPORTED

EACCES Neither the current user nor the current effective
user is the system manager

SEE ALSO

System Call: geteuid(), getuid()

Command: login, who

4404 Reference Manual @ 7-95

SECTION 7
'C' Compliler

signal

Change the signal-handling address for a specific signal in the
c lIrrent task.

SYNOPSIS

#incllIde <errno.h>
#incllIde <sys/signal.h>
int (*signal(signum, handler))()
int signum;
int (*handler)();

Arguments

signum The signal number for which signal handling is
being changed

handler

Returns

The new signal-handling address for the specified
signal

The previolls signal-handlin~ address for the specified signal if
successflIl, otherwise (int (*)()) -1 with "errno" set to the
system error code

DESCRIPTION

This flInction changes the signal-handling address for the
specified signal <signum> in the clIrrent task to the flInction
whose address is <handler>. If it slIcceeds, it retlIrns as its
reslIlt the previolls signal-handling address for the specified
flInction. If it fails, it retlIrns as its reslIlt (int (*)()) -1
with "errno" set to the system error code"

The vallIe SIG IGN is a special signal-handling address which, if
passed to this flInction as the signal-handling address <handler>,
tells the flInction that the task is to ignore the specified
signal. If the flInction retlIrns this vallIe, the task was
ignoring the specified signal. The vallIe SIG DFL is a special
signal-handling address which, if passed to this flInction as the
signal-handling address <handler>, tells the function that the
task is to terminate if it receives the specified signal. If the
flInction returns this vallIe, the task wOlIld have terminated if it
received the specified signal. The incllIde-file "<sys/signal.h>"
contains the definitions for SIG IGN and SIG DFL.

7-96 @ 4404 Reference Manual

SECTION 7
'C' Compliler

That include-file also defines constants for each of the
sixty-three signals defined by the operating system. These
constants and the signal associated with the constants are as
follows:

SIGHUP
SIGINT
SIGQUIT
SIGEMT
SIGKILL
SIGPIPE
SIGSWAP
SIGTRACE
SIGALRM
SIGTERM
SIGTRAPV
SIGCHK
SIGEMT2
SIGTRAP1
SIGTRAP2
SIGTRAP3
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGPAR
SIGILL
SIGDIV
SIGPRIV
SIGADDR
SIGDEAD
SIGWRIT
SIGEXEC
SIGBND
SIGUSR1
SIGUSR2
SIGUSR3
SIGABORT
SIGSPLR
SIGSYS3
SIGSYS4
SIGSYS5
SIGSYS6
SIGSYS7
SIGSYS8
SIGSYS9
SIGSYS10
SIGSYS11
SIGSYS12
SIGSYS13
SIGSYS14

1
2
3
4
5
6
7
8

10
11
12
13
14
1 5
1 6
17
18
1 9
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

4404 Reference Manual

Hang-up
Keyboard
Quit
EMT OxA??? trap
Task kill
Broken pipe
Swapping error
Trace
Alarm
Task terminate
TRAPV instruction
CHK instruction
EMT OxF??? emulation
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6 instruction
Parity error
Illegal instruction
Division by zero
Privileged instruction
addressing error
A child task has died
Write to read-only memory
Execute from stack or data space
Segmentation violation
User defined signal #1
User defined signal #2
User defined signal #3
Program abort
Spooler signal
System defined signal #3
System defined signal #4
System defined signal #5
System defined signal #6
System defined signal #7
System defined signal #8
System defined signal #9
System defined signal #10
System defined signal #11
System defined signal #12
System defined signal #13
System defined signal #14

@ 7-97

SECTION 7
'C' Compliler

SIGSYS15 47 System defined signal #15
SIGSYS16 48 System defined signal #16
SIGVEN1 49 Vendor defined signal #1
SIGVEN2 50 Vendor defined signal #2
SIGVEN3 51 Vendor defined signal #3
SIGVEN4 52 Vendor defined signal #4
SIGVEN5 53 Vendor defined signal #5
SIGVEN6 54 Vendor defined signal #6
SIGVEN7 55 Vendor defined signal #7
SIGVEN8 56 Vendor defined signal #8
SIGVEN9 57 Vendor defined signal #9
SIGVEN10 58 Vendor defined signal #10
SIGVEN11 59 Vendor defined signal #11
SIGVEN12 60 Vendor defined signal #12
SIGVEN13 61 Vendor defined signal #13
SIGVEN14 62 Vendor defined signal #14
SIGVEN15 63 Vendor defined signal #15

ERRORS REPORTED

EINVAL The value < signum> is not a valid signal number

NOTES

The function "signal()" is a function returning a pointer to a
function returning an int.

The argument <handler> is a pointer to a function returning an
int.

The function does not verify the argument <handler> to ensure
that no memory-violation or bus-error occurs if the specified
signal is caught.

7-98 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The operating system produces a core image in a file called
"core" in the working directory if the default action
(termination) is taken by a task on receipt of certain signals
and other conditions are met. Those certain signals are:
SIGABORT, SIGADDR, SIGBND, SIGCHK, SIGEMT, SIGEMT2, SIGDIV,
SIGEXEC, SIGILL, SIGQUIT, SIGPAR, SIGPRIV, SIGSWAP, SIGTRAP1,
SIGTRAP2, SIGTRAP3, SIGTRAP4, SIGTRAP5, SIGTRAP6, SIGTRAPV,
SIGWRIT. The operating system generates a core image file only
if user-ID and the actual user-ID of the task receiving the
signal are the same and there there is an existing file in the
working directory called "core" which gives the current effective
user writing permission or the working directory gives the
current effective user writing permission. The operating system
does not permit tasks to catch or ignore some signals. Those
signals are: SIGABORT, SIGKILL.

SEE ALSO

System Call: kill()

Command: int

4404 Reference Manual @ 7-99

SECTION 7
'C' Compliler

stack

Check and expand memory allocated to the task's stack segment.

SYNOPSIS

#inclade <errno.h>
int stack(nbytes)
int nbytes;

Arguments

nbytes

Returns

The nwnber of bytes that the stack is expected to
grow

Zero if the stack segment has enoagh space to contain a program
stack enlarged by <nbytes> bytes, otherwise -1 with "errno" set
to the system error code

DESCRIPTION

This fanction gaarantees that the the task has enoagh memory
allocated to its stack segment so that the program stack can
expand by <nbytes> bytes. If the segment is not large enoagh,
the fanction allocates enoagh memory to the segment so that the
stack can expand by the specified amoant. The fanction retarns
zero if the stack segment has enoagh space allocated to it to
contain a program stack enlarged by.<nbytes> bytes. Otherwise,
it retarns -1 with "errno" set to the system error code.

The fanction fails if can't allocate more memory to the task's
stack segment.

ERRORS REPORTED

NOTES

ESTOF

EVFORK

The task's stack segment is as large as it can get

The task shares its memory with its parent and may
not call this fanction

Unless otherwise directed, the C-compiler aatomatically generates
code which ensares stack integrity.

SEE ALSO

Command: cc

7-100 @ 4404 Reference Manaal

Get the stat~s of a file.

SYNOPSIS

#incl~de <errno.h>
#inclade <sys/stat.h>
int stat(pathnam, bafad)
char *pathnam;
stract stat *bafad;

Arguments

stat

SECTION 7
'C' Compliler

pathnam The address of a character-string containing a
pathname for the file to examine

bafad

RetlJ.rns

The address of the stractare to contain the file's
status

Zero if saccessful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This f~nction examines the file reached by the pathname in the
character-string referenced by <pathnam> and writes information
describing the statas of that file into the stractare whose
address is <bafad>. The fanction retarns zero as its resalt if
it saccessfally gets the statas of the file. Otherwise, it
ret~rns -1 with "errno" set to the system error code.

The fllnction fails if the path in <pathnam> can't be followed or
if it contains a file which isn't a directory. It also fails if
the pathname doesn't reach a file.

4404 Reference Manllal @ 7-101

SECTION 7
'C' Compliler

The following strQctQre is defined in the include-file
"(sys/stat.h>" and defines the format of the data describing the
status of the file:

strQct stat

{
short
short
char
char
char
char
short
long
long
long
} ;

st dev;
st-ino;
st-filler;
st-mode;
st-perm;
st-nlink;
st-Qid;
st-size;
st-mtime;
st=spr;

The valQe "st dev" is the device nwnber of the device containing
the file; "st-ino" is the file descriptor nwnber (FDN) on the
device descrioing the file; "st filler" is an QnQsed byte;
"st mode" is a bit string descrIbing the type of the file,
described below; "st perm" is a bit-string describing the
permissions of the fTle, described below; "st nlink" is the
nQmber of links to the file; "st uid" is the owner-ID of the
file; "st size" is the size of tne file, in bytes; "st mtime" is
the last modification date and time for the file, in system-time;
and "st_spr" is unused.

The following constants, defined in the include-files
"(sys/stat.h>" and "(sys/modes.h>", define the data in the
bit-string "st_mode" which describes the file's type:

S IFMT Ox4F
S-IFREG OxO 1
S-IFBLK Ox03
S-IFCHR Ox05
S-IFDIR Ox09
S-IFPIPE Ox41

The constant S IFMT is a mask that when anded with the value
"st mode" yields the file type. After anding with the constant
S IFMT "st mode" produces S IFREG if the file is a regular file,
S-IFBLK if-the file is a block-special file (block device)~
S-IFCHR if the file is a character-special file (character
device), S IFDIR if the file is a directory, or S IFPIPE if the
file is a pipe.

7-102 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The following constants, also defined in the incl~de-files "<sys/
stat.h>" and "<sys/modes.h>", define the data in the bit-string
"st_perms" which describes the file's access permissions:

S IREAD Ox01
S-IWRITE Ox02
S-IEXEC Ox04
S-IOREAD Ox08
S-IOWRITE Ox10
S-IOEXEC Ox20
S-ISUID Ox40

The valQe S IREAD grants reading permission to the owner of the
file, S WRITE grants writing permission to the owner, and S IEXEC
grants searching permission to the owner if the file is a -
directory, otherwise it grants execQtion permission. The valQe
S IOREAD grants reading permission to Qsers other than the owner
of the file, S IOWRITE grants writing permission to others, and
S EXEC grants searching permission to others if the file is a
dIrectory, otherwise it grants execution permission. The val~e
S ISUID causes the effective ~ser-ID to be changed to that of the
owner of the file whenever the program contained in the file is
executed.

ERRORS REPORTED

NOTES

EMSDR

ENOENT

ENOTDIR

The path to the file co~ld not be followed

The pathname does not reach a file

A part of the path is not a directory

The include-file "<sys/modes.h>" need not be incl~ded if the
includefile "<sys/stat.h>" since "<sys/stat.h>" includes
"<sys/modes.h>".

SEE ALSO

System Call:

Command: Is

creat(), dup(), d~p2(), fstat(), open(),
pipe(), 1.1time()

4404 Reference ManQal @ 7-103

SECTION 7
tC' Compliler

Set the system-time value.

SYNOPSIS

#include <errno.h>
int stime(ptime)
long *ptime;

Argwnents

stime

ptime The address of the value to set as the new
system-time value

Retu.rns

Zero if successflll, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function changes the operating system's system-time value,
its time-of-day value, to the value referenced by <ptime>. The
function requires that the current effective user be the system
manager. The function returns zero as its result if it
successfully sets the system-time value. Otherwise, it returns
-1 with "errno" set to the system error code.

The function fails if the current effective user is not the
system manager.

ERRORS REPORTED

EACCES

NOTES

The current effective user is not the system
manager

The operating system represents the time of day as the number of
seconds that has elapsed since the epoch. It defines the epoch
as 00:00 (midnight) on January 1, 1980, Greenwich Mean Time.

SEE ALSO

System Call: time(), times()

Command: date

7-104 @ 4404 Reference Manual

stty

Set the characteristics of an open character-device.

SYNOPSIS

#inclade <errno.h>
#inclade <sys/sgtty.h>
int stty(fildes, buf)
int fildes;
struct sgttyb *baf;

SECTION 7
'C' Compliler

Arguments

fildes A file descriptor for the open character-device
buf The address of the stracture to contain the
new characteristics

Retllrns

Zero if saccessflll, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This fanction changes the characteristics of the open
character-device referenced by the file descriptor <fildes> and
to those described by the data in the stracture referenced by
<baf>. The fanction retarns zero as its result if it
saccessflllly changes the characteristics of the open
character-device. Otherwise, it retarns -1 with "errno" set to
the system error code.

The fllnction fails if the file descriptor is out of range, does
not reference an open file, or does not reference an open
character-device.

The fanction call expects <buf> to be the address of a structare
which is defined as follows:

struct sgttyb
{
llnsigned char
1,1nS igned char
i.lnS igned char
ansigned char
i.lnS igned char
:.lns igned char
} ;

sg flag;
sg-delay;
sg=kill;
sg erase;
sg-speed;
sg=prot;

4404 Reference Manaal @ 7-105

SECTION 7
'C' Compliler

The bit-string "sg flag" describes the current mode of the
terminal. The values in the bit-string are as follows:

RAW Ox01
ECHO Ox02
XTABS Ox04
LCASE Ox08
CRMOD Ox10
SCOPE Ox20
CBREAK Ox40
CNTRL Ox80

If RAW is set, the operating system considers the
character-device to be in raw mode. In raw mode, the operating
system suspends all processing of input and output. If clear,
the operating system considers the character-device to be in
non-raw mode (sometimes called "cooked mode"). In this mode, the
operating system processes characters dependent upon the setting
of the other bits in the bit-string.

If ECHO is set, the operating system echoes characters read to
the character-device. If clear, the operating system doesn't
echo characters to the device. If XTABS is set, the operating
system expands tab characters to spaces during output operations
so that the next character written to the device is written to a
column number that is an even multiple of eight. If clear, the
operating system writes tab-characters to the character-device
with no expansion. Tab-characters are defined by the system to
be Ox09 and are defined by the C compiler as ' t'.

If LCASE is set, the operating system changes all upper-case
characters to lower-case characters during input operations and
changes all lowercase characters to upper-case characters during
output operations. If clear, the operating system disables this
feature. If CRMOD is set, the operating system writes a
line-feed character to the character-device after every
carriage-return character written. If clear, the operating
system disables this feature.

7-106 @ 4404 Reference Manual

SECTION 7
'C' Compliler

If SCOPE is set, the operating system writes a
backspace-character (Ox08) followed by a space-character followed
by another backspace character to the character-device whenever a
character-cancel character is read from the character-device. If
clear, the operating system disables this feature. If CBREAK is
set, the operating system considers the terminal to be in
single-character mode. In this mode, the operating system reads
data from the device one character at a time, passing each
character to the calling task. If clear, the operating system
considers the terminal to be in line mode, where it reads data
from the device one line at a time, passing data to the calling
task whenever a terminator is read.

If CNTRL is set, the operating system ignores all characters read
from the character-device that are outside of the range Ox20
through Ox7E inclusive, except for the line-terminator character
(carriage return), the keyboard-interrupt character
(control-'c'), the quit-interrupt character (control-' ,), the
character-cancel character, the line-cancel character, and the
output-stop and output-start characters if any.

The bit-mask nsg delay" indicates which characters, if written to
the character-device, causes the operating system to pause before
writing another character to the character-device. The values in
that bit string are as follows:

DELNL
DELCR
DELTB
DELVT
DELFF

Ox03
OxOC
Ox10
Ox20
Ox20

If DELNL is set, the operating system pauses it writes a new-line
character to the character-device. If DELCR is set, it pauses
after a carriage-return character, if DELTB is set, it pauses
after a horizontal-tab character, if DELFF is set (which is equal
to DELVT), it pauses after a form-feed character.

The "sg kill" value defines line-cancel character for the
character device. The operating system treats this character like
any other character if the character-device is in
single-character or raw mode. The default line-cancel character
is control-'x' (Ox18).

The "sg erase" valLIe defines the character-cancel character for
the character-device. The operating system treats this character
like any other character if the character-device is in
single-character or raw mode. The default character-cancel
character is the backspace-character (control-'h', Ox08, ' hi).

4404 Reference Manual @ 7-107

SECTION 7
'C' Compliler

The val,le "sg_ speed" is c Ilr ren tly un Ilsed .

The bit-string Hsg prot" defines the type of start-stop protocol
expected by the operating system for the character-device. The
values defined in that bit-string are as follows:

ESC Ox80
OXON Ox40
ANY Ox20
TRANS Ox10
IXON Ox08

If ESC is set, the operating system stops writing to the
character device when it reads an escape-character (Ox1B) from the
device. It resllmes writing to the character-device when it reads
another escape-character from the device. If OXON is set, the
operating system stops writing to the character-device when it
reads an xoff-character (Ox13). It resllmes writing to the
character-device when it reads an xon-character (Ox11). If ANY
is set, the operating system Ilses any character read from the
character-device as a sllbstitllte for the xon character. If TRANS
is set, the operating system does not echo the escape-character,
xoff-character, or xon-character to the the character-device. If
IXON is set, the operating system writes a xoff character to the
character-device whenever its internal bllffers are filII and it
can't accept another character. It writes an xon-character to
the character-device when space comes available for more
characters.

The inclilde-file "<sys/sgtty.h>" contains the structl1re and data
definitions described above.

ERRORS REPORTED

EBADF

ENOTTY

SEE ALSO

The file descriptor is
reference an open file

The file is not a character device

System Call: creat(), dup(), dllp2(), gtty(), open(),
pipe ()

Command: ttyset

7-108 @ 4404 Reference Manual

Update the file-system.

SYNOPSIS

int sync()

Arguments

None

Retu.rns

Zero

DESCRIPTION

sync

SECTION 7
'C' Compliler

This fQnction updates the file-system so that the media match the
internal description of the file-system. The function always
ret~rns zero as its result.

ERRORS REPORTED

None

SEE ALSO

Command: "lpdate

4404 Reference Manual @ 7-109

SECTION 7
'C' Compliler

time

Get the cQrrent system-time value.

SYNOPSIS

long time(ptime)
long *ptime;

Arguments

ptime The address of the long to receive the system-time
valQe or (long *) NULL

RetlJ.rns

The cQrrent system-time value.

DESCRIPTION

This function gets the cQrrent system-time valQe, the cQrrent
time- of-day valQe, from the operating system and retQrns that
valQe as its resQlt. If <ptime) is not (long *) NULL, the
function stores the system-time valQe at the location referenced
by <ptime).

ERRORS REPORTED

None

NOTES

The operating system represents time as the nwnber of seconds
that has elapsed since the epoch. It defines the epoch as 00:00
(midnight) JanQary 1, 1980 Greenwich Mean Time.

SEE ALSO

System Call: stime(), times()

Command: date

7-110 @ 4404 Reference ManQal

times

Get the current task's CPU-usage information.

SYNOPSIS

#include <sys/times.h>
int times(ptimes)
struct tms *ptimes;

Arguments

SECTION 7
'C' Compliler

ptimes The address of the structure to receive the task's
current CPU-usage information

Returns

Zero

DESCRIPTION

This f~nction gets the current task's CPU-usage information and
places that information in the structure whose address is
<ptimes>. The Cpu usage information includes measurements of the
task's Central Processing Unit (CPU) use, the operating system's
CPU use on behalf of the task, the task's children's total CPU
use, and total operating system's Cpu use on behalf of the task's
children. The system measures CPU use in hundredths of a second.
The f~nction always returns zero as its result.

The function expects <ptimes> to be the address of a structure
which is defined as follows:

struct
{
long
long
long
long
} ;

tms

tms utime;
tms-stime;
tms-cut ime;
tms= cstime;

The value "tms utime" contains CPU-time used by the current task,
"tms stime" contains the CPU-time used by the operating system in
behalf of the current task, "tms cutime" contains the total
CPU-time used by all of the taskTs descendants which have
terminated, and "tms cstime" contains the total CPU-time used by
the operating system-in behalf of all of the task's descendants
which have terminated. The include-file "<sys/times.h>" defines
this struct ure.

4404 Reference Manual @ 7-111

SECTION 7
'C' Compliler

ERRORS REPORTED

None

NOTES

The operating system updates the task's CPU-usage information for
its descendants whenever a direct descendants task terminates. The
operating system continuously updates the task's CPU-usage
information for itself.

SEE ALSO

System Call: fork(), time(), vfork()

Command: script, shell

7-112 @ 4404 Reference Man~al

tru.ncf

SECTION 7
'C' Compliler

Set the size of an open file.

SYNOPSIS

#include <errno.h>
int truncf(fildes)
int fildes;

Arguments

fildes

Retu.rns

A file descriptor for the file whose size is to
change

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function sets the size of the open file referenced by the
file descriptor <fildes> so that its end-of-file is the current
file position. If that position is before the existing
end-of-file, the function truncates the file. If that position
is beyond the existing end- of-file, the function extends the
file. The function returns zero as its result if it successfully
sets the size of the specified file. Otherwise, it returns -1
with "errno" set to the system error code.

The function fails if the file descriptor <fildes> is not a valid
file descriptor, does not reference an open file, or does not
reference a file that has been opened for writing.

ERRORS~REPORTED

EACCES

EBADF

NOTES

The file descriptor references a file that is not
open for writing

The file descriptor is out of range or does not
reference an open file

If the function truncates the file, all data beyond the new end
of-file is lost.

4404 Reference Manual @ 7-113

SECTION 7
'C' Compliler

If the function extends the file, it does so without allocating
to the file any blocks of the medillm on which the file resides.
Functions reading from the extended space read zeros.

SEE ALSO

System Call: creat(), dup(), dup2(), open(), pipe()

7-114 @ 4404 Reference Manual

ttyslot

SECTION 7
'C' Compliler

Get the terminal nwnber of the task's controlling terminal.

SYNOPSIS

int ttyslot()

Arguments

None

Retllrns

The terminal nwnber of the task's controlling terminal or zero if
none

DESCRIPTION

The fQnction gets the terminal nwnber of the task's controlling
terminal and retQrns that valQe as its resQlt. If the task has
no controlling terminal, the fQnction retQrns zero as its resQlt.

ERRORS REPORTED

None

NOTES

The operating system detaches a task from its controlling
terminal if the task closes its standard inpQt file, its standard
OQtpQt file, and its standard error file.

SEE ALSO

C Library: ttyname()

4404 Reference ManQal @ 7-115

SECTION 7
ICI Compliler

umask

Change the task's file-creation permissions mask.

SYNOPSIS

int umask(perms)
int perms;

Arguments

perms

Returns

A bit-string containing the new file-creation
permissions mask

The previous value of the file-creation permissions mask

DESCRIPTION

This function changes the task's file-creation permissions mask
to the low-order six bits of the bit-string <perms). It returns
as its result the previous value of the task's file-creation
permissions mask.

The file-creation permissions mask describes the permissions that
may not be applied to a created file. The file-creation
function, "creat()", ands the onels-complement of the task's
file-creation permissions mask with the bit-string describing the
permissions for the file being created, and applies the resulting
permissions bit-string to the created file.

ERRORS REPORTED

None

NOTES

A task inherits its file-creation permissions mask from its
parent.

SEE ALSO

System Call: creat(), fork(), fstat(), stat(), vfork()

7-116 @ 4404 Reference Manual

Unmount a mounted device.

SYNOPSIS

#include <errno.h>
int Qmount(pathnam)
char *pathnam;

umount

Arguments pathnam A character-string containing a
pathname to the device to unmount

Returns

SECTION 7
'C' Compliler

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function unmounts the mounted device reached by the pathname
in the character-string referenced by <pathnam>. The function
returns zero if it successfully unmounts the device, Otherwise,
it returns -1 with "errno" set to the system error code.

This function fails if the path in the pathname <pathnam> can't
be followed or contains a file which isn't a directory. It also
fails the pathname doesn't reach a file, the file it reaches
isn't a device, the device is not mounted, or the device is busy.

ERRORS REPORTED

EBDEV

EBUSY

EMSDR

ENMNT

ENOENT

The pathname <pathnam> reaches something other
than a device

The device is busy

The path in the pathname <pathnam> can't be
followed

The specified device is not mounted

The pathname <pathnam> does not reach a device

4404 Reference Manual @ 7-117

SECTION 7
'C' Compliler

NOTES

A device that was mOQnted for read and write access bQt was not
QnmoQnted correctly can't be mOQnted again Qntil it is repaired
by"/etc/diskrepair".

A device-bQsy error (EBUSY) QSQally indicates that a file on the
specified device is cQrrently open or that a task has as its
working directory a directory on the device.

SEE ALSO

System Call: mOQnt()

Command: /etc/diskrepair, /etc/moQnt, /etc/QnmoQnt

7-118 @ 4404 Reference ManQal

llnlink

SECTION 7
'C' Compliler

Remove a link to a file.

SYNOPSIS

#inclllde <errno.h>
int llnlink(pathnam)
char *pathnam;

Argwnents

pathnam

Retllrns

The address of a character-string containing the
pathname of the link to be removed

Zero if sllccessflll, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This fllnction removes the pathname in the character-string
referenced by <pathnam>. If that pathname is the last that
reaches the associated file, the operating system deletes the
file. The fllnction retllrns zero as its reslllt if it sllccessflllly
removes the pathname. Otherwise, it retllrns -1 with "errno" set
to the system error code.

The fllnction fails if the path in the pathname <pathnam> can't be
followed or it contains a file which isn't a directory. It also
fails if the pathname doesn't exist the directory containing the
pathname doesn't grant the cllrrent effective llser writing
permission.

ERRORS REPORTED

EACCES

EMSDR

ENOENT

ENOTDIR

The directory containing the specified file
doesn't grant writing permission to the cllrrent
effective llser

The path to the file cOllld not be followed

The pathname does not reach a file

A part of the path is not a directory

4404 Reference Manllal @ 7-119

SECTION 7
'C' Compliler

NOTES

This fQnction can remove any entry in any directory which grants
writing permission to the cQrrent effective Qser. That entry can
be a directory which is not empty and can be the directories "."
and " .. ".

If this fQnction removes the pathname to an open file, the
operating system postponed deleting that file Qntil it is closed.

SEE ALSO

System Call: creat(), link()

Command: create, kill, link

7-120 @ 4404 Reference ManQal

tlrec

SECTION 7
'C' Compliler

Remove an entry from the operating system's lock table.

SYNOPSIS

#include <errno.h>
int urec(fildes)
int fildes;

Arguments

fildes

Rettlrns

The file descriptor whose lock table entry the
function is to remove

Zero if successful, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This function removes from the operating system's lock table the
task's entry for the file referenced by the file descriptor
<fildes>. The function returns zero if it successfully removes
the entry, otherwise -1 with "errno" set to the system error
code.

The f~nction fails if the file descriptor <fildes> is not a valid
file descriptor or does not reference an open file.

ERRORS REPORTED

EBADF The file descriptor is out of range or does not
reference an open file

4404 Reference Manual @ 7-121

SECTION 7
'C' Compliler

NOTES

The fQnction retQrns zero as its resQlt if there is no entry in
the operating system's lock table for the specified file
descriptor.

The operating system permits only one lock per file descriptor
for each task.

Placing a lock on a portion of a file stops other tasks from
placing a lock on the same portion of that file. It does not
stop reading from and writing to that portion of the file.

SEE ALSO

System Call: lrec()

7-122 @ 4404 Reference ManQal

utime

Change a file's last-modification time.

SYNOPSIS

#incl~de <errno.h>
int ~time(pathnam, ptime)
char *pathnam;
long *ptime;

SECTION 7
'C' Compliler

Arguments

pathnam The address of a character-string containing a
pathname for the file whose modification time is
to change

ptime

Returns

The address of the the val~e to set as the file's
modification time

Zero if s~ccessf~l, otherwise -1 with "errno" set to the system
error code

DESCRIPTION

This f~nction changes the last-modification time for the file
reached by the pathname in in the character-string referenced by
<pathnam> to the system-time val~e referenced by <ptime>. The
fQnction req~ires that the c~rrent effective ~ser be the system
manager. The f~nction ret~rns zero if it successf~lly changes
the file's modification time, otherwise -1 with "errno" set to
the system error code.

This f~nction fails if the path in <pathnam> can't be followed or
contains a file which isn't a directory. It also fails if the
pathname doesn't exist, the file reached by the pathname is
c~rrently open, or the c~rrent effective ~ser isn't the system
manager.

4404 Reference Man~al @ 7-123

SECTION 7
'C' Compliler

ERRORS REPORTED

EACCES

EBADF

EBUSY

ENOENT

ENOTDIR

NOTES

The cQrrent effective Qser is not the system
manager

The file descriptor is OQt of range or does not
reference an open file

The specified file is cQrrently open

The pathname does not reach a file

A part of the path is not a directory

The operating system meaSQres time as a count of seconds since
the epoch. It defines the epoch as 00:00 (midnight) on JanQary
1, 1980, Greenwich Mean Time.

This function does not compare the new modification time with the
creation time or the cQrrent time, so it is possible to set the
file's modification time to before it's creation date or to some
time in the futQre.

SEE ALSO

System Call: fstat(), stat()

Command: Is

7-124 @ 4404 Reference ManQal

Create a new task.

SYNOPSIS

#inclQde <errno.h>
int vfork()

Arguments

None

Retu.rns

vfork

SECTION 7
'C' Compliler

If sQccessfal, the child's task-ID to the parent (calling) task
and zero to the child (created) task, otherwise -1 with "errno"
set to the system error code

DESCRIPTION

This fQnction creates a new task (the child task) that is an
exact copy of the carrent task (the parent task). If the
fQnction sacceeds, it retarns the task-ID of the child to the
parent task and retarns zero to the child task. Otherwise, it
retl.lrnS -1 wi th "errno" set to the system error code.

This fanction fails if the carrent aser can't allocate another
task, the system task table is fall, or if the carrent task may
not call this fanction.

This fanction differs from the "fork()" fanction call in that it
generates the new task more efficiently on a virtaal memory
system. Instead of making a copy of the data in the parents
memory, the child task inherits the memory allocated to the
parent task. The child task isn't allowed to call the "fork()",
"memman()", or "vfork()" fanctions or any fanction that may
change the memory configaration sach as "sbrk()" or "stack()"
antil after it executes a program using the "execl()", It

execlp()", "execv()", or "execvp()" fanctions. The function
doesn't return to the parent task until the child task terminates
or executes a program.

The child task is identical to the parent task in that it has the
same task priority, user-ID, effective aser-ID, controlling
terminal information, file-creation permissions mask, working
directory, signal handling set-up, profiling information, and
allocated memory.

4404 Reference Manual @ 7-125

SECTION 7
'C' Compliler

The child task differs from the parent task in that its task-ID
is different, its parent task-ID is the task-ID of the parent
task, its file descriptors are exact copies of those in the
parent task, and its system and Qser CPU times are reset to zero.

ERRORS REPORTED

EAGAIN

EVFORK

NOTES

The maximQID nQIDber of tasks for the Qser are
active or there are no available entries in the
system task table

The task shares its memory with its parent and may
not call this fQnction

A task-ID is a non-negative integer.

This fQnction is the same fQnction as "fork()" on systems which
aren't virtQal memory systems.

The child task shares its stack with its parent so it shoQldn't
retQrn from the scope which calls the "vfork()" fQnction.

SEE ALSO

C Library: exit(), exit()

System Call:

7-126 @

execl(), execl~(), execv(), execvp(), fork(),
memman(), wai t()

4404 Reference ManQal

wait

SQspend the task Qntil a child task terminates.

SYNOPSIS

#incl Qd-e < errno. h>
int wait(ptaskid)
int *ptaskid;

SECTION 7
'C' Compliler

Arguments

ptaskid The address of the int to get the termination
status of the child task that terminated

Returns

The task-ID of the terminated task or -1 with "errno" set to the
system error code

DESCRIPTION

This fQnction suspends the current task until a child task
terminates. When a child task terminates, the function puts the
termination status of the terminated child into the value
referenced by <ptaskid> and returns as its result the task-ID of
the terminated child task.

If the function returns -1, it didn't wait for a child task to
terminate. The function returns without a child task terminating
if there are no active child tasks or the task catches a signal.

The termination status contains the child task's exit code, the
signal number that caused its termination, and a flag that
indicates that it produced a core image file (a core dump).
Anding the termination status with OxOOFF extracts from it the
child task's exit code. This is the low-order 8-bits of the
argument to "exit()" (or" exit()") which terminated the task and
typically indicates an error if it is not zero. Anding the
termination status with Ox7FOO extracts from it the signal number
that caused its termination. This is only non-zero if the child
task did not terminate using the "exit()" or " exit()" functions.
Anding the termination status with Ox8000 extracts from it the
core-image flag. If the flag is not zero, the child task
produced a core image file when it terminated. Otherwise, it did
not produce a core image file.

4404 Reference Manual @ 7-127

SECTION 7
'C' Compliler

ERRORS REPORTED

ECHILD

EINTR

SEE ALSO

There are no child tasks active

The task caught a signal and that caQsed this
fQnction to end abnormally

C Library: sleep()

System Call: alarm(), fork(), kill(), paQse(), signal()

Command: int, wait

7-128 @ 4404 Reference ManQal

write

Write data to an open file.

SYNOPSIS

#inclade <errno.h>
int write(fildes, bafad, nbytes)
int fildes;
char *bafad;
int nbytes;

Arguments

SECTION 7
'C' Compliler

fildes A file descriptor for the open file to which the
data is to be written

bafad

nbytes

Retllrns

The address of the baffer containing the data to
write

The namber of bytes of data to write

The nwnber of bytes of data written to the file or -1 if none
with "errno" set to the system error code

DESCRIPTION

This fanction writes data to the file referenced by the file
descriptor <fildes>. It writes data to the file from the baffer
whose address is <bufad> <nbytes> bytes of data. The fanction
sLlccessfl.llly writes the data, it returns as its result the number
of bytes of data that it wrote. Otherwise, it returns -1 with
"errno" set to the system error code.

The function fails if the file descriptor is out of range,
references a file that isn't open for writing, or references a
broken pipe. The fanction also fails if the disk is full or the
operating system reports an I/O error while writing the data to
the media. The fanction may write less data than requested if it
is writing to a slow device such as a terminal and the task
catches a signal.

4404 Reference Manual @ 7-129

SECTION 7
'C' Compliler

ERRORS REPORTED

NOTES

EACCES

EBADF

EINTR

EIO

ENOSPC

EPIPE

The file descriptor references a file that isn't
open for writing

The file descriptor is OQt of range or does not
reference an open file

The task caQght a signal and that caQsed this
function to end abnormally

The operating system reports an I/O error

The device is fQII

Attempting to write to a broken pipe

This operation is most efficient when <bQfad> and <nbytes> are
evenly divisable by 512.

A broken pipe is one which has been closed for reading.

SEE ALSO

C Library: fwrite()

System Call:

7-130 @

creat(), dQP(), dllp2(), open(), pipe(),
read ()

4404 Reference ManQal

SPECIAL SUPPORT LIBRARIES

SECTION 7
'C' Compliler

The 4404 comes with several special libraries to support the 4404
hardware. These libraries may be used with programs written
either in C or 68000 assembly language. The functions in the
libraries conform to C calling conventions.

THE 'C' LIBRARY

The standard rc' library, "clib" which contains the standard 'c'
functions for the the 4404 resides in the directory "/lib". The
following 'C' functions are available: .

4404 Reference Manual @ 7-131

SECTION 7
'C' Compliler

abe

Absolute value f~nction.

SYNOPSIS

int abs(i)
int i;

Arguments

il Value whose absolute value is to be calculated

Returns

The absolute value of the argument <i>

DESCRIPTION

This fl~nction calclllates the absolute vallle of the argllIDent < i>.
It returns the calclllated value as its result.

NOTES

If <i> is the largest negative number, "abs()" returns that vall~e
as its result.

7-132 @ 4404 Reference Manual

Generate a time stamp.

SYNOPSIS

#inclQde <time.h)
char *asctime(dttm)
strQct tm *dttm;

asctime

SECTION 7
'C' Compliler

Arguments

dttml The address of a strQctQre containing date and time
information

Retl.lrns

The address of the generated time stamp

DESCRIPTION

This fQnction generates a time stamp representing the date and
time information in the strQctQre reference by <dttm>. It
retQrns the address of the time stamp as its resQlt.

A time stamp is a 26-character string of characters (including
the terminating null-character) consisting of the day of the
week, the month of the year, the day of the month, the hOQr,
minute, second, and year. The time stamp is generated by the
"sprintf()" format:

"%3s %3s %2.2d %2.2d:%2.2d:%2.2d %4.4d n"

NOTES

The character-string referenced by the resQlt of this function is
in static memory and is overwritten by sQbseqQent calls to this
ftlnction and "ctime()".

SEE ALSO

C Library: ctime(), gmtime(), localtime(), sprintf()

System Call: time()

Command: date

4404 Reference ManQal @ 7-133

SECTION 7
'C' Compliler

atoh

Convert a string of hexadecimal characters to an integer.

SYNOPSIS

long atoh(str)
char *str;

Arguments

strl The address of the character-string to convert

Retu.rns

The integer generated from the character-string referenced by
<str>

DESCRIPTION

This fQnction generates a long from the character-string
referenced by <str>. It retQrns that valQe as its resQlt. The
function ex~ects the character-string to contain optional
whitespace (see "isspace()"), which is ignored, followed
optionally by a ('0') and an ('x') or ('X'), which are ignored,
followed by a string of hexadecimal digits (see "isxdigit()").
It continues converting until it reaches the end of the string or
it finds inappropriate character.

NOTES

The function ignores overflow errors. The conversion is
performed by strtol(str, (char **) NULL, 16)

SEE

C Library: atoi(), atoo(), atol(), atos(), strtol()

7-134 @ 4404 Reference ManQal

SECTION 7
'C' Compliler

atoi

Convert a string of decimal characters to an integer.

SYNOPSIS

int atoi(str)
char *str;

Argwnents

strl The address of the character-string to convert

Retllrns

The integer generated from the character-string referenced by
<str>

DESCRIPTION

This function generates an int from the character-string
referenced by <str>. It returns the generated value as its
result. The function expects the character-string to contain
optional whitespace (see "isspace()"), which is ignored, followed
by a string of decimal digits (see "isdigit()"). It continues
converting until it reaches the end of the string or it finds an
inappropriate character.

NOTES

Overflow errors are ignored. The conversion is performed by
(int) strtol(str, (char **) NULL, 10)

SEE ALSO

C Library: _atoh(), _atoo(), atol(), atos(), strtol()

4404 Reference Manual @ 7-135

SECTION 7
'C' Compliler

atol

Convert a string of decimal characters to an integer.

SYNOPSIS

long atol(str)
char *str;

Arguments

strl The address of the character-string to convert

Retl1rns

The integer generated from the character-string referenced by
<str>

DESCRIPTION

This fanction generates a long from the character-string
referenced by <str>. It retarns that valae as its resalt.
The fanction expects the character-string to contain optional
whitespace (see "isspace()"), which is ignored, followed by a
string of decimal digits (see "isdigit()"). The fanction
converts antil it reaches the end of the string or it detects an
inappropriate character.

NOTES

Overflow errors are ignored. The conversion is performed by
strtol(str, (char **) NULL, 10)

SEE ALSO

C Library: atoh(), atoi(), atoo() , atos(), strtol()

7-136 @ 4404 Reference ManQal

SECTION 7
'C' Compliler

atoo

Convert a string of octal characters to an integer.

SYNOPSIS

long atoo(str)
char *str;

Arguments

strl The address of the character-string to convert

Retu.rns

The integer generated from the character-string referenced by
<str>

DESCRIPTION

This fanction generates a long from the character-string
referenced by <str>. It retarns that valae as its result. The
f~nction expects the character-string to contain optional
whitespace (see "isspace()"), which is ignored, followed by a
string of octal digits ([0-7J). The function continues until
it reaches the end of the string or it finds an inappropriate
character.

NOTES

Overflow errors are ignored. The conversion is performed by
strtol(str, (char **) NULL, 8)

SEE ALSO

C Library: _atoh(), atoi(), atol(), atos(), strtol()

4404 Reference Manual @ 7-137

SECTION 7
'C' Compliler

atos

Convert a string of decimal characters to an integer.

SYNOPSIS

short
char

Arguments

atos(str)
*str;

str\ The address of the character-string to convert

Retu.rns

The integer generated from the character-string referenced by
<str>

DESCRIPTION

THis function generates a short from the character-string
referenced by <str>. It returns that value as its result. The
function ex~ects the character-string to contain optional
whitespace (see "isspace()"), which is ignored, followed by a
string of decimal digits (see "isdigit()"). The function
converts until it reaches the end of the string or it finds an
inappropriate character.

NOTES

Overflow errors are ignored. The conversion is performed by
(short) strtol (str, (char **) NULL, 10).'

SEE ALSO

C Library: _atoh(), atoi(), atol(), atoo(), strtol()

7-138 @ 4404 Reference Manual

Allocate memory.

SYNOPSIS

char *calloc(num, size)
uns igned num;
llnsigned size;

Arguments

calloc

numl
sizel

The number of units to allocate
The size of a unit

Retl.lrns

SECTION 7
'C' Compliler

The address of the allocated block of memory or (char*) NULL if
no memory is available

DESCRIPTION

This function allocates <num)*<size) bytes of memory from the
arena of available memory. It retllrns the address of the first
byte of the allocated memory or (char*) NULL if no memory is
available. The first byte of the allocated memory is aligned for
any !lse.

NOTES

Return allocated memory to the arena of available memory by I.lsing
"free()".

SEE ALSO

C Library: free(), malloc(), realloc()

System Call: brk(), cdata(), sbrk()

4404 Reference Manual @ 7-139

SECTION 7
'C' Compliler

clearerr

Clear the stream's error-indicator.

SYNOPSIS

#include <stdio.h>
int clearerr(stream)
FILE *stream;

Arguments

streaml The standard I/O stream

Retu.rns

Undefined

DESCRIPTION

This function clears (resets) the error-indicator on the standard
I/O stream <stream>.

NOTES

This function is implemented as a macro. Macro side-effects are
not possible since the macro references its argwnent only once.
The function "ferror()" tests a stream's error-indicator.

SEE ALSO

C Library: fdopen(), ferror(), fopen(), stderr, stdin, stdout

7-140 @ 4404 Reference Manual

Encrypt a character-string.

SYNOPSIS

void crypt(crypw, pw)
char *crypw;
char *pw;

Arguments

_crypt

SECTION 7
'C' Compliler

crypwl The address of the target bQffer to get the encrypted
string

pwl The address of the character-string to be encrypted

Returns

Void

DESCRIPTION

This fQnction encrypts the first eight characters of the
character-string referenced by <pw> Qsing the standard UniFLEX
encryption algorithm, generating a character-string containing
sixteen characters. It copies the generated character-string to
the the target bQffer referenced by <crypw>.

If <pw> references a nQll-string, it copies a nQll-string to the
target bQffer referenced by <crypw>.

NOTES

The fu.nction prodQces Ilnpredictable resQl ts if the character-string's
length is greater than eight characters.

SEE ALSO

Command: password

4404 Reference ManQal @ 7-141

SECTION 7
'C' Compliler

Generate a time stamp.

SYNOPSIS

#inclQde <time.h)
char *ctime(pclock)
long *pclock;

ctime

Arguments

pclock: The address of the system-time valQe

Returns

The address of the generated time stamp

DESCRIPTION

This function generates a time stamp representing the date and
time in the local time zone from the system time value referenced
by <pclock). It returns the address of the generated time stamp.

A time stamp is a 26-character string of characters (including
the terminating nUll-character) consisting of the day of the
week, the month of the year, the day of the month, the hour,
minute, second, and year. The time stamp is generated by the
"sprintf()" format:

"%3s %3s %2.2d %2.2d:%2.2d:%2.2d %4.4d n"

NOTES

The result of this function is in static memory. Subsequent
calls to "ctime()" or "asctime()" overwrite that memory. This
fun c t ion call s "t z set ()" w h i c h set s up "d ay I i g h t", " tim e z 0 n e" ,
and "tzname". A system time value is a long containing the
number of seconds since the epoch. The epoch is 00:00 GMT
(midnight) on January 1, 1980. If the system time value
referenced by <pclock) is less than "timezone", "ctime()" will
generate a time stamp for 00:00 on Janu- ary 1, 1980, locally.

SEE ALSO

C Library: asctime(), daylight, gmtime(), localtime(), sprintf(),
timezone, tzname, tzset()

System Call: time

Command: date

7-142 @ 4404 Reference Manual

Daylight savings time flag.

SYNOPSIS

#include <time.h>
extern int daylight;

DESCRIPTION

daylight

SECTION 7
'C' Compliler

This variable is non-zero if and only if U. S. A. Standard
Daylight Savings Time is being observed and should be applied
to all conversions of time to be expressed in the local time
zone. Otherwise, it is zero.

This variable is initialized automatically by "localtime()" and
"ctime()" and may be initialized explicitly by "tzset()". The
value is zero before initialization.

SEE ALSO

C Library: ctime(), localtime(), timezone, tzname, tzset()

System Call: ftime()

4404 Reference Manual @ 7-143

SECTION 7
'C' Compliler

End password-file handling.

SYNOPSIS

#include <pwd.h)
void endpwent();

Arguments

None

Returns

Void

DESCRIPTION

endpwent

This function ends password-file handling initiated by
"getpwent () ", "getpwnam () ", or "getpw1lid () " . It fr ees the
resources allocated to and closes the files opened by those
routines.

NOTES

This fllnction does nothing if "getpwent()", "getpwnam()", or
"getpwuid()" has not been called or "endpwent()" has been called
since the last call to one of these functions.

SEE ALSO

C Library: getpwent(), getpwnam(), getpw;.lid(), setpwent()

7-144 @ 4404 Reference ManQal

endutent

End mQlti-Qser login-file handling.

SYNOPSIS

#inclQde <Qtmp.h)
void end Qtent () ;

Arguments

None

Returns

Void

DESCRIPTION

SECTION 7
rcr Compliler

This fQnction ends mQlti-Qser login-file handling initiated by
"getiltent()" or "getQtline()". It frees the reSOQrces allocated
to and closes the files opened by those rOQtines.

NOTES

This filnction does nothing if neither "getlltent()" nor
"get'ltline()" has been called or "endutent()" has been called
since the last call to one of these functions.

SEE ALSO

C Library: getQtent(), getutline(), setutent()

4404 Reference ManQal @ 7-145

SECTION 7
'C' Compliler

Exit the program.

SYNOPSIS

void exit(code)
int code;

Arguments

exit

codel The value to give to the operating system to use as the
task-termination code

Returns

Void

DESCRIPTION

This function ends execution of the program by terminating the
task, giving <code> to the operating system to use as the
task-termination code.

NOTES

This function does not return to the caller. The standard I/O
streams open at the call to this function will be closed but the
any data in buffered streams opened for writing will not be
flushed to the attached file. To flush these buffers, exit the
program using "exit()".

SEE ALSO

C Library: exit()

System Call: fork(), wait()

7-146 @ 4404 Reference Manual

Close a stream.

SYNOPSIS

#include <stdio.h>
int fclose(stream)
FILE *stream;

Arguments

fclose

streaml The standard I/O stream to close

Returns

Zero if successful, EOF otherwise

DESCRIPTION

SECTION 7
'C' Compliler

This function closes the standard I/O stream <stream> and frees
any resources which were automatically allocated to the stream.
If the stream is opened for writing and is buffered, it flushes
any buffered data to the associated file.

The function returns EOF if it encounters an error while closing
the stream, otherwise it returns zero.

SEE ALSO

C Library: fdopen(), fflush(), freopen(), fopen(), stderr, stdin,
stdout

System Call: close(), open()

4404 Reference Manual @ 7-147

SECTION 7
'C' Compliler

fdopen

Attach an open file to a stream.

SYNOPSIS

#include <stdio.h>
FILE *fdopen(fildes, mode)
int fildes;
char *mode;

Arguments

fildesl
model

A file descriptor for the file to attach

Returns

The address of a character-string describing the
requested open mode

The standard I/O stream to which the open file has been attached,
or (FILE *) NULL if the function detected an error

DESCRIPTION

This function attaches the file referenced by the file descriptor
<fildes> to a standard I/O stream. An open file descriptor is
returned by the system-call functions "creat()", "dup()",
"dup2()", "open()", and "pipe()". Valid open modes are "r", "w",
or "a" for read, write, and append access. Read and write access
begins at the current position in the file, append access begins
at the end of the file. This function is typically used to
permit standard I/O functions on a file opened by some means
other than the standard I/O function "fopen()".

The function returns the standard I/O stream to which the file
has been attached, or (FILE *) NULL if there was an error.
Possible errors include a bad file descriptor <fildes>, an
unknown open mode, or attempting to exceed the maximum
open-stream limit.

7-148 @ 4404 Reference Manual

NOTES

SECTION 7
'C' Compliler

The access mode is suppose to match the open mode of the file.
This is not currently checked since there is no way to coax the
open mode from the operating system given an open file number.
This function does not yet support the UNIX System V access modes
of "r+", "w+", or "a+".

Files attached to streams using this routine should be closed
using "fclose()" to ensure that the resources automatically
allocated to the stream are released to the system and that any
data gets flushed.

SEE ALSO

C Library: fclose(), freopen(), fopen()

System Call: close(), dupe), dup2(), open(), pipe()

4404 Reference Manual @ 7-149

SECTION 7
'C' Compliler

feof

Test a stream's end-of-file indicator.

SYNOPSIS

#include <stdio.h>
int feof(stream)
FILE *stream;

Arguments

streaml The standard I/O stream

Returns

Non-zero if the end-of-file indicator on the stream is set (on);
zero otherwise.

DESCRIPTION

This function tests the end-of-file indicator on the standard I/O
stream <stream>. It returns a non-zero value if the indicator is
set, other- wise it returns zero.

A standard I/O function sets a stream's end-of-file indicator
when it attempts to read data from the stream produce no data and
no errors.

NOTES

This function is implemented as a macro. Macro side-effects are
not possible since the macro references its argument only once.

SEE ALSO

7-150

C Library: fdopen(), ferror(), fopen(), stderr, stdin,
stdout

@ 4404 Reference Manual

ferror

Test a stream's error-indicator.

SYNOPSIS

#include <stdio.h>
int ferror(stream)
FILE *stream;

Arguments

streaml The standard I/O stream

Returns

SECTION 7
'C' Compliler

Non-zero if the error-indicator on the stream is set (on); zero
otherwise.

DESCRIPTION

This function tests the error-indicator on the standard I/O
stream <stream>. It returns a non-zero value if the indicator is
set, otherwise it returns zero.

A standard I/O function sets a stream's error-indicator if it
attempts to perform I/O on the stream and the operating system
reports an error. The function "clearerr()" clears a stream's
error-indicator.

NOTES

This function is implemented as a macro. Macro side-effects are not
possible since the macro references its argument only once.

SEE ALSO

C Library: clearerr(), feof(), fdopen(), fopen(), stderr, stdin,
stdout

4404 Reference Manual @ 7-151

SECTION 7
'C' Compliler

fflush

Flush a stream opened for write access.

SYNOPSIS

#include <stdio.h>
int fflush(stream)
FILE *stream;

Arguments

streaml The standard I/O stream to flush

Returns

Zero if successful, EOF otherwise

DESCRIPTION

This function flushes any buffered data written to the standard
I/O stream <stream>. The stream must be opened for write or
append access. The function returns EOF if it encounters an
error flushing the stream, otherwise it returns zero.

SEE ALSO

C Library: fclose(), fdopen(), freopen(), fopen(), stderr, stdin,
stdout

7-152 @ 4404 Reference Manual

fgetc

Read a character from a stream.

SYNOPSIS

#include <stdio.h>
int fgetc(stream)
FILE *stream;

Arguments

streaml The standard I/O stream to read from

Returns

The character read if successful, otherwise EOF

DESCRIPTION

SECTION 7
'C' Compliler

This function reads the next character from the standard I/O
stream <stream>. If it succeeded, it returns that character as
its result, cast into an int with no sign extension, otherwise it
returns EOF. ---

NOTES

The character read is considered to be an unsigned char so there
i9 no sign extension when converting the character to an integer
value for returning.

SEE ALSO

C Library: fdopen(), fopen(), fputc(), fread(), getc(), getchar(),
stdin

4404 Reference Manual @ 7-153

SECTION 7
rc' Compliler

fgets

Read a character-string from a stream.

SYNOPSIS

#include <stdio.h>
char *fgets(ptr, count, stream)
char *ptr;
int count;
FILE *stream;

Arguments

ptrl
countl
streaml

The address of the target buffer
The size of the target buffer
The standard I/O stream to read from

Returns

The argument <ptr> if successful, (char*) NULL otherwise

DESCRIPTION

This function reads characters from the standard I/O stream
<stream> un til it reads <count>-1 characters, it reads an
end-of-line character, or it reaches the end of the file. It
writes these characters to the buffer whose address is <ptr>. It
appends a null-character (' 0') onto the characters read, making
a character-string, then returns <ptr> as its result.

If it detects an error, the function returns (char*) NULL and
does not alter the target buffer.

SEE ALSO

C Library: fdopen(), fgetc(), fopen(), fputs(), gets(), stdin

7-154 @ 4404 Reference Manual

SECTION 7
'C' Compliler

fileno

Get a file descriptor for the file attached to a stream.

SYNOPSIS

int fileno(stream)
FILE *stream;

Arguments

streaml A standard I/O stream

Returns

A file descriptor for the file attached to the stream

DESCRIPTION

This function returns a file descriptor for the file attached to
the stream <stream>. This file descriptor can be used by various
system-call functions, such as "read()", and "write()".

NOTES

The function's results are undefined if <stream> does not
reference an open stream.

SEE ALSO

C Library: fdopen(), fopen(), stderr, stdin, stdout

System Call: dup(), dup2(), open(), read(), write()

4404 Reference Manual @ 7-155

SECTION 7
'C' Compliler

fopen

Open a file and attach it to a standard I/O stream.

SYNOPSIS

#include <stdio.h>
FILE *fopen(pathnam, mode)
char *pathnam;
char *mode;

Arguments

pathnaml The address of a character-string containing a
path-name to the file to open

model The address of a character-string containing the
open mode

Returns

If successful, the stream to which the open file has been at
tached, otherwise (FILE *) NULL

DESCRIPTION

This function opens the file reached by the pathname in the
character- string referenced by <pathnam>. The character-string
referenced by <mode> describes to the function the access type
desired by the program. The function then attaches the open file
to a standard I/O stream.

If the function succeeds, it returns the standard I/O stream as
its result. Otherwise, it returns (FILE *) NULL. The function
fails if If the operating system reports an error, the program
has the maximum number of streams open, or the open mode is not
valid. If the operating system reports an error, "errno" will
contain the system error code.

The open mode describes the type of access requested for the
file. Valid open modes are "r", "w", or "a", for read, write, or
append access, respectively.

If the open mode is "r", the function opens the file for reading
if the file already exists, setting the current position at the
beginning of the file. If the pathname <pathnam> doesn't reach a
file, the function fails.

7-156 @ 4404 Reference Manual

SECTION 7
'C' Compliler

If the open mode is "w", the function opens the file for writing.
If the file already exists, the function truncates the file to a
length of zero. Otherwise, it creates a file with a length of
zero. It sets the current position at the beginning of the file.

If the open mode is "a", the function opens the file for writing.
If the file doesn't exist, the function creates a file with a
length of zero. It sets the current position at the end of the
file.

NOTES

These open modes are not currently supported: "r+", "w+", "a+".
The include-file "(stdio.h)" defines the data type "FILE". This
data type is a structure containing all of the information about
an open stream. For brevity, this and other manual pages discuss
a pointer to the data type "FILE" as simply a "stream", instead
of calling it a pointer to a structure defining the
characteristics of a stream.

SEE ALSO

C Library: fclose(), fdopen(), fgetc(), fgets(), fputc(),
fputs(), fread(), freopen(), fwrite()

System Call: close(), open()

4404 Reference Manual @ 7-157

SECTION 7
'C' Compliler

Write a character to a stream.

SYNOPSIS

#include <stdio.h>
int fputc(c, stream)
char c;
FILE *stream;

Arguments

fputc

The character to write cl
streaml The standard I/O stream to write to

Returns

The value written if successful, EOF otherwise.

DESCRIPTION

This function writes the character <c> to the standard I/O stream
<stream>. The function returns the character written as its
result if it successfully writes the character to the stream,
otherwise, it re- turns EOF.

NOTES

If the stream is buffered but not line-buffered, standard I/O
does not write the character to the attached file until the
stream's buffer is full or the stream is closed. If the stream
is line-buffered, standard I/O does not write the char- acter to
the attached file until one of the following conditions: an
end-oi-line character (EOL) is written to the stream, a standard
I/O function attempts to read data from a terminal, the stream's
buffer is full, or the stream is closed.

If the function succeeds, it returns the value of the char
argument <c> converted to int as though <c> were an
unsigned char. ---

SEE ALSO

7-158

C Library: fdopen(), fgetc(), fopen(), fputs(), putc(),
putchar()

@ 4404 Reference Manual

SECTION 7
'C' Compliler

fputs

Write a character-string to a stream.

SYNOPSIS

#include <stdio.h>
int fputs(s, stream)
char *s;
FILE *stream;

Arguments

sl The address of the character-string to write to
the stream

streaml The standard I/O stream to write to

Returns

Zero if successful, EOF otherwise

DESCRIPTION

This function writes the characters in character-string
referenced by <s> to the standard I/O stream <stream>. The
function returns zero as its result if it successfully writes the
characters to the stream, otherwise it returns EOF.

NOTES

The function does not write to the stream the null-character
terminating the character-string.

If the stream is buffered but not line-buffered, standard I/O
does not write the characters to the attached file until it fills
the stream's buffer or closes the stream.

If the stream is line-buffered, standard I/O does not write the
character to the attached file until it writes an end-of-line
character (EOL) to the stream, attempts to read data from a
terminal, fills the stream's buffer, or closes the stream.

SEE ALSO

C Library: fdopen(), fgets(), fopen(), fputc(), puts()

4404 Reference Manual @ 7-159

SECTION 7
'C' Compliler

fread

Read data from a stream.

SYNOPSIS

#include <stdio.h>
int fread(ptr, size, count, stream)
char *ptr;
int size;
int count;
FILE *stream;

Arguments

ptr\
sizel
count I
streaml

Address of the buffer to contain the data read
The size of an item to read
The maximum number of items to read
The standard I/O stream

Returns

The number of complete items read, if any

DESCRIPTION

This function reads at most <count> items of <size> bytes from
the I/O stream <stream>, placing the data read into the buffer
whose address is <ptr>. The function reads data until it reads
the requested number of data items, reaches the end of the file,
or detects an error on the input stream. The function returns as
its result the number of complete items read from the stream.

NOTES

If the function reaches the end of the file or encounters an
error while reading a data item, it writes that partial item to
the target buffer but does not count that partially read item in
the count of items read, which it returns as its result. The
target buffer needs no special boundary alignment. If <count> is
less than or equal to zero, the function does not attempt to read
any data and returns zero as its result.

SEE ALSO

7-160

C Library: fdopen(), fopen(), fwrite()

System Call: read(), write()

@ 4404 Reference Manual

free

Free a block of allocated memory.

SYNOPSIS

void free(ptr)
char *ptr;

Arguments

SECTION 7
'C' Compliler

ptrl The address of the block of memory to free

Returns

Void

DESCRIPTION

This function returns the block of memory whose address is (ptr>
to the arena of available memory. The block of memory must have
been allocated by "malloc()", "calloc()", or "realloc()".

NOTES

If the argument (ptr> is the address of a block that has already
been freed, or is some value other than one returned by
"malloc()", "calloc()", or "realloc()", the function corrupts the
arena of available memory and makes subsequent calls to
"malloc()", "calloc()", "realloc()", and "free()" behave
unpredictably.

SEE ALSO

C Library: calloc(), malloc(), realloc()

System Call: brk(), cdata(), sbrk()

4404 Reference Manual @ 7-161

SECTION 7
'C' Compliler

freopen

Reopen an open stream.

SYNOPSIS

#include <stdio.h>
FILE *freopen(pathnam, mode, stream)
char *pathnam;
char *mode;
FILE *stream;

Arguments

pa thnam I

model

streaml

Returns

The address of a character-string containing a
path-name to the file to open and attach to the
stream

The address of a character-string containing the open
mode

The standard I/O stream to reopen

The argument <stream> if successful, (FILE *) NULL otherwise

DESCRIPTION

This function closes the standard I/O stream <stream>, opens the
file reached by the pathname in the character string referenced
by <pathnam>, with the open mode specified by the
character-string referenced by <mode>, and attaches the newly
opened file to the stream.

If the function succeeds, it returns the standard I/O stream
<stream> as its result. Otherwise, it returns (FILE *) NULL.
The function fails if If the operating system reports an error,
the stream is not open, the program has the maximum number of
streams open, or the open mode is not valid. If the operating
system reports an error, "errno" will contain the system error
code.

The open mode describes the type of access requested for the
file. Valid open modes are "r", "w", or "a", for read, write, or
append access, respectively.

7-162 @ 4404 Reference Manual

SECTION 7
'C' Compliler

If the open mode is "rn, the function opens the file for reading
if the file already exists, setting the current position at the
beginning of the file. If the pathname <pathnam> doesn't reach a
file, the function fails.

If the open mode is "w", the function opens the file for writing.
If the file already exists, the function truncates the file to a
length of zero. Otherwise, it creates a file with a length of
zero. It sets the current position at the beginning of the file.

If the open mode is "a", the function opens the file for writing.
If the file doesn't exist, the function creates a file with a
length of zero. It sets the current position at the end of the
file.

NOTES

This function is typically used to attach files to automatically
opened streams, such as "stdin", "stdout", and "stderr". The
file that was originally attached to the stream <stream> is
closed without regard to the eventual outcome of the function
call.

SEE ALSO

C Library: fclose(), fdopen(), fopen(), stderr, stdin, stdout

System Call: close(), open()

4404 Reference Manual @ 7-163

SECTION 7
'C' Compliler

fscanf

Read and interpret formatted data from a stream.

SYNOPSIS

#include <stdio.h>
int fscanf(stream, format [, addrlist])
FILE *stream;
char *format;

Arguments

streaml
formatl

The standard I/O stream to read from

Returns

The address of a character-string containing a
format description

The number of items in the address-list <addrlist> that it
successfully assigns or EOF if an error occurs before it as
signs any data

DESCRIPTION

This function reads and interprets data from the standard I/O strea~
<stream> according to the format description in the character-string
referenced by <format).

7-164 @ 4404 Reference Manual

fseek

Reposition a stream.

SYNOPSIS

#include <stdio.h>
int fseek(stream, offset, type)
FILE *stream;
long offset;
int type;

Arguments

SECTION 7
'C' Compliler

stream!
offset!
type!

The standard I/O stream to reposition

Returns

A value indicating the desired position, in bytes
A value indicating type of positioning

Zero if the positioning was successful, EOF otherwise.

DESCRIPTION

This function changes the current offset into the stream
referenced by <stream>. If <type> is 0, the value <offset> is a
byte offset from the beginning of the stream. If <type> is 1,
the value <offset> is a byte offset from the current position in
the stream. If <type> is 2, the value <offset> is a byte offset
from the end of the stream.

The function returns zero if it successfully repositioned the
stream, otherwise it returns EOF.

4404 Reference Manual @ 7-165

SECTION 7
'C' Compliler

NOTES

o If the function is not successful, "errno" will contain the
UniFLEX error code indicating the error.

o A file may be extended by requesting a seek relative to the
end of the file with a positive offset.

o A file may not be positioned before its beginning. Calling
this function undoes any effect of "ungetc()".

o A stream attached to terminal may not be repositioned.

SEE ALSO

7-166

C Library: fdopen(), fopen(), ftell(), rewind()

System Call: lseek()

@ 4404 Reference Manual

ftell

Get the current position of a stream.

SYNOPSIS

long ftell(stream)
FILE *stream;

Arguments

streaml A standard I/O stream

Returns

The current position of the stream, in bytes

DESCRIPTION

SECTION 7
'C' Compliler

This function examines the standard I/O stream <stream>,
determines its current position relative to the beginning of the
stream, and returns a value indicating that position.

If the stream is opened for read access, the current position
contains the next character that is read. If the stream is
opened for write or append access, the current position is where
the next character is written.

NOTES

This function is not affected by a character pushed onto the
stream by "ungetc()".

This function will takes into account I/O buffering, which means
it may return a different position than the UniFLEX system call
"lseek()".

SEE ALSO

C Library: fdopen(), fopen(), fseek(), rewind()

System Call: lseek()

4404 Reference Manual @ 7-167

SECTION 7
'C' Compliler

fwrite

Write data to a stream.

SYNOPSIS

#include <stdio.h>
int fwrite(ptr, size, count, stream)
char *ptr;
int size;
int count;
FILE *stream;

Arguments

ptr! The address of the buffer containing the data to
write

size!
count!
stream!

Returns

The size of an item to write
The number of items to write
The standard I/O stream to write data to

The number of complete items written, if any

DESCRIPTION

This function writes <count> items of <size> bytes from the
buffer whose address is <ptr> to the standard I/O stream
<stream>. The function writes data until it writes the requested
number of data items, or it detects an I/O error.

The function returns as its result the number of complete items
written to the stream.

7-168 @ 4404 Reference Manual

NOTES

SECTION 7
'C' Compliler

o The data buffer whose address is <ptr> needs no special
boundary alignment.

o If <count> is less than or equal to zero, the function does
not attempt to write any data and returns zero as its
result.

o If the stream is buffered but not line-buffered, standard
I/O does not write the character to the attached file until
the stream's buffer is full or the stream is closed.

o If the stream is line-buffered, standard I/O does not write
the character to the attached file until an end-of-line
character (EOL) is written to the stream, a standard I/O
function attempts to read data from a terminal, the stream's
buffer is full, or the stream is closed.

SEE ALSO

C Library: fdopen(), fopen(), fread()

System Call: read(), write()

4404 Reference Manual @ 7-169

SECTION 7
'C' Compliler

getc

Read a character from a stream.

SYNOPSIS

#include <stdio.h>
int getc(stream)
FILE *stream;

Arguments

streaml The standard I/O stream to read from

Returns

The character read if successful, otherwise EOF.

DESCRIPTION

This function reads the next character from the standard I/O
stream <stream>. If it succeeded, it returns that character as
its result, cast into an int with no sign extension, otherwise it
returns EOF. ---

NOTES

The character read is considered to be an unsigned char so there
is no sign extension when converting the character to an integer
value for returning. This function is exactly like "fgetc()" and
is included for compatability with other systems.

SEE ALSO

7-170

C Library: fdopen(), fgetc(), fopen(), fputc(), fread(), getchar(),
stdin

@ 4404 Reference Manual

getchar

Read a character from the standard input stream.

SYNOPSIS

#include <stdio.h>
in t g e tc ha r ()

Arguments

None

Returns

The character read if successful, otherwise EOF

DESCRIPTION

SECTION 7
'C' Compliler

This function reads the next character from the standard I/O
stream "stdin if • If it succeeded, it returns that character as
its result, cast into an int with no sign extension, otherwise it
returns EOF. ---

NOTES

The character read is considered to pe an unsigned char so
there is no sign extension when converting the character to an
integer value for returning.

SEE ALSO

C Library: fdopen(), fgetc(), fopen(), fputc(), fread(), getc(),
stdin

4404 Reference Manual @ 7-171

SECTION 7
'C' Compliler

getcwd

Get the pathname of the working directory.

SYNOPSIS

char *getcwd(ptr, size)
char *ptr;
int size;

Arguments

ptrl The address of the buffer to receive the pathname
of the working directory, or (char *) NULL

size I Size, in bytes, of the target buffer

Returns

The address of the character-string containing the pathname to
the working directory

DESCRIPTION

This function generates a character-string containing the
complete path-name of the working directory. If the length of
that string is greater than <size>, the function returns (char *)
NULL. If <ptr> is equal to (char *) NULL, the function allocates
a buffer using "malloc()", copies the generated character-string
into the allocated buffer, and returns as its result the address
of the allocated buffer. Otherwise, it copies the generated
character-string into the buffer whose address is <ptr> and
returns <ptr> as its result.

NOTES

The function returns (char *) NULL if <ptr> is (char *) NULL and
"malloc()" is unable to allocate <size> bytes of memory. If
<ptr> is (char *) NULL, the buffer allocated by "getcwd()" may be
freed using "free()". This function generates the complete
pathname of the working directory, beginning at root of the
device containing the directory. Someday, the complete pathname
will begin at the root directory on the root device.

SEE ALSO

7-172

C Library: malloc(), free()

System Call: chdir()

Command: path

@ 4404 Reference Manual

SECTION 7
'C' Compliler

getpass

Get a password using a prompt.

SYNOPSIS

char *getpass(prompt)
char *prompt;

Arguments

promptl The address of the character-string containing the
prompt

Returns

The address of a character-string containing the password
read, or (char *) NULL if there was an error

DESCRIPTION

This function writes the characters in the character-string
referenced by <prompt> to the standard I/O output stream
"stderr".

o It clears the echo attribute on the terminal associated with
the standard I/O input stream "stdin", then reads characters
from "stdin" up to the first end-of-line character (EOL) or
to the end of the file.

o It saves the first eight characters in a static buffer,
discarding the remaining characters, if any, and the
end-of-line character, if any.

o It restores the echo attribute on the terminal to its
original state, terminates the characters saved with a
null-character, completing the character-string, then
returns the address of that character-string as its result.

o If the function encounters an error, it restores the
terminal to its original state and returns (char *) NULL as
its result.

NOTES

This function uses standard I/O and may enlarge a program more
than expected.

4404 Reference Manual @ 7-173

SECTION 7
'C' Compliler

Nothing is written to "stderr" if <prompt) is (char *) NULL. The
function catches keyboard, quit, alarm, and hang-up signals. If
it catches a signal, it resets the terminal to its original
configuration and then resignals the signal so the calling
program may handle that signal. If the function returns
indicating an error, "errno" contains the system error code.

The character-string referenced by the result of this function is
in static memory and is overwritten by subsequent calls to this
func- tion.

The standard I/O output stream "stderr" must be attached to a
terminal unless <prompt) is (char *) NULL. Otherwise, the
function will return (char *) NULL with "errno" set to ENOTTY.
The standard I/O input stream "stdin" must be attached to a
terminal or the function will return (char *) NULL with "errno"
set to ENOTTY.

SEE ALSO

C Library: fputs(), gets(), stderr, stdin

7-174 @ 4404 Reference Manual

getpw

Get a password-file entry based on a user~ID.

SYNOPSIS

int getpw(uid, ptr)
int uid;
char *ptr;

Arguments

uidl The user-ID number to search for

SECTION 7
'C' Compliler

ptrl The buffer to contain the record found

Returns

Zero if a record was successfully found, EOF otherwise.

DESCRIPTION

This function searches the system's password-file for the first
correctly formatted record with a user-ID field equivalent to
<uid>. If one is found, it copies that record, including the
terminating end-of-line character (EOL), into the buffer whose
address is <ptr> and returns zero as its result. Otherwise, it
leaves the buffer whose address is <ptr> unchanged and returns
EOF as its result.

NOTES

This function is obsolete but was included for compatability with
older systems. New applications should use "getpwuid()".

The caller is responsible for ensuring that the buffer whose
address is <ptr> is large enough to hold the data. This function
uses standard I/O and may make the calling program larger than
expected. The system's password file is "/etc/log/password".

SEE ALSO

C Library: getpwent(), getpwuid(),

Command: password

4404 Reference Manual @ 7-175

SECTION 7
'C' Compliler

getpwent

Get and decode the next entry in the system password file.

SYNOPSIS

#include <pwd.h>
struct passwd *getpwent();

Arguments

None

Returns

The address of the structure containing information from the
record read, or (struct passwd *) NULL if no record was read

DESCRIPTION

This function reads and decodes the next correctly formatted
entry in the system password file. The information is saved in a
static structure (defined below) and the address of that
structure is returned as the its result. If it couldn't read a
record from the system password file, the function returns
(struct passwd *) NULL as its result.

If no previous "getpwent()", "getpwnam()", or "getpwuid()" has
been successfully attempted, or "endpwent()" has been called
since the last call to "getpwent()", "getpwnam()", or
"getpwuid()" this function opens the system password file and
positions it to the first record in the file. After the function
completes, the system password file remains open and is
positioned to the record immediately following the record read~
or to the end of the file if no record was successfully read.

The function "endpwent()" closes the system password file. Task
termination also closes the file. The function "setpwent()"
rewinds the system password file, positioning it to the first
record of the file.

7-176 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The include-file "<pwd.h>" defines structures and constants used
when manipulating the data in the system password file. The
format of the struct passwd structure referenced by the result of
this function is as follows:

struct passwd
{
char
char
int
char
char
} ;

Where:

*pw_name;
*pw passwd;

pw-uid;
*pw-dir;
*pw=shell;

o "pw name" is the address of a character-string containing
the-user-name.

o "pw_passwd" is the address of a character-string containing
the encrypted password.

o "pw_uid" contains the user's identifying number (user-ID).

o "pw dir" is the address of a character_string containing the
user's home directory.

o "pw shell" is the address of a character- string containing
the-sheIl-command for the first program to run after logging
on.

A null-string as the encrypted password indicates that the user
has no password, and a null-string as the shell-command indicates
that the initial program is the standard shell.

4404 Reference Manual @ 7-177

SECTION 7
'C' Compliler

NOTES

The structure referenced by the result of this function and the
character-strings referenced by the values in that structure are
in static memory and are overwritten by subsequent calls to
"ge tpwen t () ", "ge tpwnam () ", and "ge tpwuid () " .

The function ignores improperly formatted records in the system
password file. This function uses standard I/O and will enlarge
more than expected a program not otherwise using standard I/O.
The function will return (struct passwd *) NULL if the user does
not have permission to access the password file, the current
position on the system password file is end-of-file, or the user
has the maximum number of standard I/O streams open and can not
open another. The system password file is "/etc/log/password".

SEE ALSO

7-178

C Library: endpwent(), getpw(), getpwnam(), getpwuid(),
putpwent(), setpwent()

Command: password

@ 4404 Reference Manual

getpwnam

SECTION 7
'C' Compliler

Get and decode the next entry in the system password file
containing the given user-name.

SYNOPSIS

#include <pwd.h>
struct passwd *getpwnam(name)
char *name;

Arguments

name I The address of a character-string containing the
user-name

Returns

The address of the structure containing the information in the
record read, or (struct passwd *) NULL if no record was read

DESCRIPTION

This function reads and decodes the next correctly formatted
entry in the system password file that contains a user-name
matching that in the character-string referenced by the argument
<name>. The information is saved in a static structure (defined
below) and the address of that structure is returned as the its
result. If it couldn't find a record in the system password file
containing the specified user-name, the function returns (struct
passwd *) NULL as its result.

If no previous "getpwent()", "getpwnam()", or "getpwuid()" has
been successfully attempted, or "endpwent()" has been called
since the last call to "getpwent()", "getpwnam()", or
"getpwuid()" this function opens the system password file and
positions it to the first record in the file. After the function
completes, the system password file remains open and is
positioned to the record immediately following the record read,
or to the end of the file if no record was successfully read.

The function "endpwent()" closes the system password file. Task
termination also closes the password file. The function
"setpwent()" rewinds the system password file.

4404 Reference Manual @ 7-179

SECTION 7
'C' Compliler

The include-file "<pwd.h>" defines constants and structures used
when manipulating entries in the system password file. The
format of the struct passwd structure referenced by the result of
this function is as follows:

struct
{
char
char
int
char
char
} ;

passwd

*pw name;
*pw-passwd;
pw-uid;

*pw-dir;
*pw=shell;

The entry "pw name" is the address of a character-string
containing the user-name, "pw passwd" is the address of a
character-string containing the encrypted password, "pw_uid"
contains the user's identifying number (user-IO), "pw_dir" is the
address of a character-string containing the user's initial
home-directory, and "pw shell" is the address of a
character-string containing the shell-command for the first
program to run after logging on.

A null-string as the encrypted password indicates that the user
has no password. A null-string as the shell-command indicates
that the initial program is the standard shell.

NOTES

The structure referenced by the result of this function and the
character-strings referenced by the values in that structure are
in static memory and are overwritten by subsequent calls to
"getpwent()", "getpwnam()", and "getpwuid()".

The function ignores improperly formatted records. This function
uses standard i/o and will enlarge more than expected a program
not otherwise using standard I/O. The function will return
(struct passwd *) NULL if the user does not have permission to
access the password file, if the current position on the system
password file is end-of-file, or if the user has the maximum
number of standard I/O streams open and can not open anoth- ere
The system password file is "/etc/log/password".

SEE ALSO

7-180

C Library: endpwent(), getpw(), getpwent(), getpwuid(),
putpwent(), setpwent()

Command: password

@ 4404 Reference Manual

getpwuid

SECTION 7
ICY Compliler

Get and decode the next entry in the system password file
containing the given user-ID number.

SYNOPSIS

#include <pwd.h>
struct passwd *getpwuid(uid)
int uid;

Arguments

uidl The user-ID number to search for

Returns

The address of the structure containing the information in the
record read, or (struct passwd *) NULL) if no record was read

DESCRIPTION

This function reads and decodes the next correctly formatted
entry in the system password file that contains a user-ID number
matching the user-ID number <uid>. The information is saved in a
static structure (defined below) and the address of that
structure is returned as the its result. If it couldn't find a
record in the system password file con- taining the specified
user-ID number, the function returns (struct passwd *) NULL as
its result.

If no previous "getpwent()", "getpwnam()", or "getpwuid()" has
been successfully attempted, or "endpwent()" has been called
since the last call to "getpwent()", "getpwnam()", or
"getpwuid()" this function opens the system password file and
positions it to the first record in the file. After the function
completes, the system password file remains open and is
positioned to the record immediately following ,the record read,
or to the end of the file if no record was successfully read.

The function "endpwent()" closes the system password file. Task
termination also closes the file. The function "setpwent()"
rewinds the system password file, positioning it to the beginning
of the first record in the file.

4404 Reference Manual @ 7-181

SECTION 7
'C' Compliler

The include-file "<pwd.h>" defines structures and constants used
when reading and manipulating entries in the system password
file. The format of the struct passwd structure referenced by
the result of this function is:

struct passwd
{
char *pw name;
char *pw-passwd;
int pw-uid;
char *pw-dir;
char *pw=shell;
} ;

The entry "pw name" is the address of a character-string
containing the user-name, "pw passwd" is the address of a
character-string containing the encrypted password, "pw uid"
contains the user's identifying number (user-ID), "pw dlr" is the
address of a character-string containing the user's initial
home-directory, and "pw shell" is the address a character-string
containing the shell-command for the first program to run after
logging on.

A null-string as the encrypted password indicates that the user
has no password, and a null-string as the shell-command indicates
that the initial program is the standard shell.

NOTES

The structure referenced by the result of this function and the
character-strings referenced by the values in that structure are
in static memory and will be overwritten by subsequent calls to
"getpwent()", "getpwnam()", and "getpwuid()".

Improperly formatted records in the system password file are ignored.

This function uses standard I/O and will enlarge more than
expected a program not otherwise using standard I/O. The
function will return (struct passwd *) NULL if the user does not
have permission to access the password file, the current position
on the system password file is end-of-file, or the user has the
maximum number of standard I/O streams open and can not open
another. The system password file is "/etc/log/password".

SEE ALSO

7-182

C Library: endpwent(), getpw(), getpwent(), getpwnam(),
putpwent(), setpwent()

Command: password

@ 4404 Reference Manual

SECTION 7
'C' Compliler

gets

Read a character-string from the standard input stream.

SYNOPSIS

#include <stdio.h>
char *gets(ptr)
char *ptr;

Arguments

ptrl The address of the target buffer

Returns

The argument <ptr> if successful, (char *) NULL otherwise

DESCRIPTION

This function reads characters from the standard I/O input stream
"stdin" until it reads an end-of-line character, or reaches the
end of the file. It places the characters in the buffer whose
address is <ptr>. If the last character read was an end-of-line
character, it replaces that character with a null-character,
otherwise, it appends a null-character onto the characters read,
making a character-string.

If it is successful, meaning it read at least one character, it
returns <ptr> as its result, otherwise it returns (char *) NULL
as its result and does not alter the target buffer.

SEE ALSO

C Library: fdopen(), fgets(), getc(), puts(), stdin

4404 Reference Manual @ 7-183

SECTION 7
'C' Compliler

getutent

Get and decode the next entry in the system's multi-user login
fi Ie.

SYNOPSIS

#include <utmp.h>
struct utmp *getutent();

Arguments

None

Returns

The address of the structure containing the information in the
record read, or (struct utmp *) NULL) if no record was read

DESCRIPTION

This function reads and decodes the next valid entry in the
system's multi-user login file. It saves the information in that
reco~d in a static structure (defined below) and it returns the
address of that structure as its result. If the function fails
to read a record from the system's multi-user login file, the
function returns (struct utmp *) NULL) as its result.

If no previous "getutent()" or "getutline()" has been
successfully attempted, or "endutent()" has been called since the
last call to "getutent()" or "getutline()" this function opens
the system's multi-user login file and positions it to the first
record in the file. After the function reads a record, it keeps
~ne ll1e open and positions the file to the record immediately
following the record read, or to the end of the file if it read
no record.

The function "endutent()" closes the system's multi-user login
file. Task termination also closes the file. The function
"setutent()" rewinds the file so that its current position is the
first byte of the first record of the file.

7-184 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The include-file "<utmp.h)" contains structure and constant
definitions used to manipulate data in the system's multi-user
login file. The format of the struct utmp structure referenced
by the result of this function is as follows:

struct utmp
{
char
char
char
unsigned long
} ;

ut user[8];
ut-id[4];
ut-line[12];
ut=time;

The array "ut user" contains the login-name of the user, "ut id"
is the entry number (the line number in the file), "ut line"
contains the login device name, and "ut time" is the system-time
when the user logged on. The entries "ut user" and "ut line" are
only terminated with a null- character if-the value contains less
than the maximum number of charac- terse The "ut id" entry is
always four characters.

NOTES

The structure referenced by the result of this function is in
static memory and will be overwritten by subsequent calls to
"getutent()" and "getutline()".

This function uses standard I/O and will enlarge more than
expected a program not otherwise using standard I/O. The
function will return (struct utmp *) NULL) if the user does not
have permission to access the multi-user login file, the current
position is end-of-file, or the user has the maximum number of
standard I/O streams open and can not open another. The system's
multi-user login file is "/atc/utmp".

SEE ALSO

C Library: endutent(), getutline(), setpwent()

Command: who

4404 Reference Manual @ 7-185

SECTION 7
'C' Compliler

getutline

Get and decode the next entry in the system's multi-user login
file that has specific "ut line" value.

SYNOPSIS

#include <utmp.h>
struct utmp *getutline(line)
char *line;

Arguments

linel The address of a character-string containing
the"ut line" value to search for

Returns

The address of the structure containing the information in the
record read, or (struct utmp *) NULL if no record was read

DESCRIPTION

This function reads and decodes the next valid entry in the
system's multi-user login file which has the login-device name
("ut line" entry) contained in the character-string referenced by
<line>, beginning with the record read by the most recent
"getutent()" or "getutline()" call, if any. The function saves
the information in a static structure (defined below) and returns
the address of that structure as its result. If it couldn't read
a record from the system's multi-user login file, or couldn't
find a record with a matching login-device name, the function
returns (struct utmp *) NULL as its result.

If no previous "getutent()" or "getutline()" has been
successfully attempted, or "endutent()" has been called since the
last call to "getutent()" or "getutline()" this function opens
the system's multi-user login file and positions it to the first
record in the file. After the function completes, it leaves the
system's multi-user login file open, positioned to the first byte
of the next record following the record read, or to the end of
the file if none was read.

The function "endutent()" closes the system's multi-user login
file. Task termination also closes the file. The function
"setutent()" rewinds the file.

7-186 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The include-file "<utmp.h>" defines structures and constants used
to manipulate information in the system's multi-user login file.
The format of the struct utmp structure referenced by the result
of this function is as follows:

struct utmp
{
char
char
char
unsigned long
} ;

ut user[8];
ut-id[4];
ut-line[12];
ut=time;

The array "ut_user" contains the login-name of the user, "ut_id"
is the entry number (the line number in the file), "ut_Iine"
contains the login device name, and "ut time" is the system time
when the user logged on. The entries "ut_user" and "ut_Iine" are
only terminated with a null-character if the value contains less
than the maximum number of characters. The "ut id" entry is
always four characters.

NOTES

The structure referenced by the result of this function is in
static memory and will be overwritten by subsequent calls to
"getutent()" and "getutline()".

This function uses standard I/O and will enlarge more than
expected a program not otherwise using standard I/O. The
function will return (struct utmp *) NULL if the user does not
have permission to access the multi-user login file, the current
position is end-of-file, or the user has the maximum number of
standard I/O streams open and can not open another.

This function begins its search with the most recently read by
"getutent()" or "getutline()". To avoid finding the same line
again, repeated searches using the same login-device name must
first void the "ut line" entry in the structure referenced by the
most recent call to "getutent()" or "getutline()" by setting it
to a null-string. The system's multi-user login file is
"/act/utmp".

SEE ALSO

C Library: endutent(), getutline(), setpwent()

Command: who

4404 Reference Manual @ 7-187

SECTION 7
'C' Compliler

getw

Read a word from a standard I/O stream.

SYNOPSIS

int getw(stream)
FILE *stream;

Arguments

streaml The standard I/O stream to read from

Returns

The value read if successful, EOF otherwise

DESCRIPTION

This function reads the next sizeof(short) bytes from the stream
<stream>, assigns them to a short, casts that short into an int,
and returns that value as its result. If the function detecrs-an
error or reaches the end of the stream, it returns EOF.

NOTES

The value EOF is a valid value to read, so the functions
"ferror()" and "feof()" should be used to check for error and
end-of-file conditions on the stream. The function ignores odd
bytes at the end of the stream. The function has no boundary
alignment requirements.

SEE ALSO

C Library: fdopen(), fopen(), getc(), putw()

7-188 @ 4404 Reference Manual

gmtime

SECTION 7
fC r Compliler

Break down a system-time value into units in the Greenwich Mean
Time zone.

SYNOPSIS

#include <time.h)
struct tm *gmtime(pclock)
long *pclock;

Arguments

The address of a system-time value

Returns

The address of the structure describing the system-time value

DESCRIPTION

This function takes the system-time value referenced by the
argument <pclock) and breaks it down into the year, month of the
year (0-11), day of the month (1-31), day of the week (0-6,
Sunday is 0), day of the year (0-365), hour (0-23), minute
(0-59), and second (0-59). It saves that information in a
structure and returns as its result the address of that
structure.

The include-file "<time.h)" defines the structure referenced by
the result of this function. That structure is:

struct tm
{
int
int
int
int
int
int
int
int
int
} ;

tm sec;
tm-min;
tm-hour;
tm-mday;
tm-mon;
tm-year;
tm-wday;
tm-yday;
tm=isdst;

4404 Reference Manual @ 7-189

SECTION 7
'C' Compliler

The "tm sec" entry is the number of seconds into the minute and
ranges from 0 to 59, "tm min" is the number of minutes into the
hour and ranges from 0 t~ 59, "tm hour" is the number of hours
into the day and ranges from 0 to-23, "tm mday" is the day of the
month and ranges from 1 to 31, and "tm man" is the month of the
year and ranges from 0 to 11. The "tm-year" entry is the number
of years since 1900, "tm wday" is the number of days into the
week and ranges from 0 t~ 6, "tm yday" is the number of days into
the year and ranges from 0 to 365, and "tm isdst" is always zero.

NOTES

The system-time value is expressed in seconds since the epoch.
The operating system defines the epoch as 00:00 (midnight) GMT,
January 1, 1980.

The structure referenced by the result of this function is in
static memory and is modified by subsequent calls to "ctime()",
"gmtime()", or "localtime()".

SEE ALSO

7-190

C Library: asctime(), ctime(), localtime()

System Call: time()

Command: udate

@ 4404 Reference Manual

SECTION 7
'C' Compliler

index

Find the first occurrence of a character in a character-string.

SYNOPSIS

char *index(s, c)
char *s;
char c;

Arguments

sl The address of the character-string to search
cl The search character

Returns

The address of the first occurrence of the character in the
string, or (char *) NULL if the string does not contain the
character

DESCRIPTION

This function searches the character-string referenced by <s> for
the first occurrence of the character <c>. If the string
contains the character, the function returns as its result the
address of the first occurrence of the character in the
character-string. Otherwise, it returns (char *) NULL.

NOTES

This function is obsolete. It is only included for compatability
with older UniFLEX C libraries. New applications should use
"strchr()".

SEE ALSO

C Library: rindex(), strchr(), strrchr()

4404 Reference Manual @ 7-191

SECTION 7
'c' Compliler

isalnum

Determine if a value is an alphabetic character or a decimal
digit.

SYNOPSIS

#include <ctype.h>
int isalnum(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is an alphabetic character or a decimal
digit, zero otherwise

DESCRIPTION

This function examines the value <c> and determines if it an
alphabetic character or a decimal digit. Alphabetic characters
are the characters ('A'-'Z') and ('a'-'z') inclusive. Decimal
digits are the characters ('0'-'9 ') inclusive. If <c> is an
alphabetic character or a decimal digit, the function returns a
non-zero value, otherwise it returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII char- acter or EOF. The argument <c> will be cast
into an int if it is not already of that type.

SEE ALSO

7-192

C Library: isalpha(), isascii(), iscntrl(), isdigit(),
isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(),
tolower(), _tolower(), toupper(), _toupper()

@ 4404 Reference Manual

SECTION 7
'C' Compliler

isalpha

Determine if a value is an alphabetic character.

SYNOPSIS

#include <ctype.h>
int isalpha(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is an alphabetic character, zero otherwise

DESCRIPTION

This function examines the value <c> and determines if it an
alphabetic character. Alphabetic characters are the characters
('A'-'Z') and ('a'-'z') inclusive. If <c> is an alphabetic
character, the function returns a non-zero value, otherwise it
returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII character or EOF. The argument <c> will be cast into
an int if it is not already of that type.

SEE ALSO

C Library: isalnum(), isascii(), iscntrl(), isdigit(),
isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(),
tolower(), _tolower(), toupper(), _toupper()

4404 Reference Manual @ 7-193

SECTION 7
'C' Compliler

isascii

Determine if a value is an ASCII character.

SYNOPSIS

#include <ctype.h>
int isascii(c)
int c;

Arguments

cl The value to examine

Returns

1 if <c> is a valid ASCII character, 0 otherwise

DESCRIPTION

This function examines the value <c> and determines if it a valid
ASCII character. Valid ASCII characters are the values between
OxOO and Ox7F (decimal values 0 through 255) inclusive. If <c>
is a valid ASCII character, the function returns 1, otherwise it
returns O.

NOTES

This function is implemented as a macro. However, it will have
no side-effects and produces a valid result for all values in the
range of an int. The argument <c> will be cast into an int if it
is not already of that type.

SEE ALSO

7-194

C Library: isalnum(), isalpha(), iscntrl(), isdigit(),
isgraph(), islower(), isprint() ispunct(),
isspace(), isupper(), isxdigit(), toascii(),
tolower(), _tolower(), toupper(), _toupper()

@ 4404 Reference Manual

SECTION 7
'C' Compliler

iscntrl

Determine if a value is a control character.

SYNOPSIS

#include <ctype.h>
int iscntrl(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is a control character, zero otherwise

DESCRIPTION

This function examines the value <c> and determines if it a
control character. Control characters are the values OxOO
through Ox3F inclusive and Ox7F. If <c> is a control character,
the function returns a non-zero value, otherwise it returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII character or EOF. The argument <c> will be cast into
an int if it is not already of that type.

SEE ALSO

C Library: isalnum(), isalpha(), isascii(), isdigit(),
isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(),
tolower(), _tolower(), toupper(), _toupper()

4404 Reference Manual @ 7-195

SECTION 7
'C' Compliler

isdigit

Determine if a value is a decimal digit.

SYNOPSIS

#include <ctype.h>
int isdigit(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is a decimal digit, zero otherwise

DESCRIPTION

This function examines the value <c> and determines if it a
decimal digit. Decimal digits are the characters ('0'-'9')
inclusive. If <c> is a decimal digit, the function returns a
non-zero value, otherwise it returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII character or EOF. The argument <c> will be cast into
an int if it is not already of that type.

SEE ALSO

7-196

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper()~ isxdigit(), toascii()~
tolower(), _tolower(), toupper(), _toupper()

@ 4404 Reference Manual

SECTION 7
'C' Compliler

isgraph

Determine if a value is a graphics character.

SYNOPSIS

#include <ctype.h>
int isgraph(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is a graphics character, zero otherwise

DESCRIPTION

This function examines the value <c> and determines if it a
graphics character. Graphic characters are alphabetic
characters, decimal digits, and punctuation characters which are
not white-space characters. If <c> is a graphics character, the
function returns a non-zero value, otherwise it returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII character or EOF. The argument <c> will be cast into
an int if it is not already of that type.

SEE ALSO

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(),
tolower(), tolower(), toupper(), _toupper()

4404 Reference Manual @ 7-197

SECTION 7
'C' Compliler

islower

Determine if a value is a lower-case alphabetic character.

SYNOPSIS

#include <ctype.h>
int islower(c)
int c;

Arguments

c\ The value to examine

Returns

Non-zero if the value is a lower-case alphabetic character, zero
otherwise

DESCRIPTION

This function examines the value <c> and determines if it a
lower-case alphabetic character. Lower-case alphabetic
characters are the charac- ters ('a'-'z') inclusive. If <c> is a
lower-case alphabetic character, the function returns a non-zero
value, otherwise it returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII character or EOF. The argument <c> will be cast into
an int if it is not already of that type.

SEE ALSO

7-198

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), isgraph(), isprint() ispunct()
isspace(), isupper(), isxdigit(~, toascii(~,
tolower(), _tolower(), toupper(), _toupper()

@ 4404 Reference Manual

SECTION 7
'C' Compliler

isprint

Determine if a value is a printable character.

SYNOPSIS

#include <ctype.h>
int isprint(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is a printable character, zero otherwise

DESCRIPTION

This function examines the value <c> and determines if it a
printable character. Printable characters are alphabetic
characters, decimal digits, and punctuation characters. If <c>
is a printable character, the function returns a non-zero value,
otherwise it returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII character or EOF. The argument <c> will be cast into
an int if it is not already of that type.

SEE ALSO

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), isgraph(), islower(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(),
tolower(), tolower(), toupper(), _toupper()

4404 Reference Manual @ 7-199

SECTION 7
'C' Compliler

ispunct

Determine if a value is a punctuation character.

SYNOPSIS

#include <ctype.h>
int ispunct(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is a punctuation character, zero otherwise

DESCRIPTION

This function examines the value <c> and determines if it a
punctuation character. Punctuation characters are all characters
which are not alphabetic characters, decimal digits, white-space
characters, or control characters. If <c> is a punctuation
character, the function returns a non-zero value, otherwise it
returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII character or EOF. The argument <c> will be cast into
an int if it is not already of that type.

SEE ALSO

7-200

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), isgraph(), islower() isprint()
isspace(), isupper(), isxdigit(~, toascii(~,
tolower(), _tolower(), toupper(), _toupper()

@ 4404 Reference Manual

SECTION 7
IC' Compliler

isspace

Determine if a value is a white-space character.

SYNOPSIS

#include <ctype.h>
int isspace(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is a white-space character, zero otherwise.

DESCRIPTION

This function examines the value <c> and determines if it a
white-space character. White-space characters are the
space-character the horizontal-tab character (I t'), the
end-of-line character (EOL, ' r', ' n'), and the line-feed
character (OxOA). If <c> is a white-space character, the
function returns a non-zero value, otherwise it returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII character or EOF. The argument <c> will be cast into
an int if it is not already of that type. The C compiler
translates the character' n' to the line-feed character if the
"cc" command is called with the n+u " option.

SEE ALSO

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), isgraph(), islower(), isprint(),
ispunct(), isupper(), isxdigit(), toascii(),
tolower(), _tolower(), toupper(), _toupper()

Command: cc

4404 Reference Manual @ 7-201

SECTION 7
'C' Compliler

isupper

Determine if a value is an upper-case alphabetic character.

SYNOPSIS

#include <ctype.h>
int isupper(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is an upper-case alphabetic character,
zero otherwise

DESCRIPTION

This function examines the value <c> and determines if it an
upper-case alphabetic character. Upper-case alphabetic
characters are the characters ('A'-'Z') inclusive. If <c> is an
upper-case alphabetic character, the function returns a noo-zero
value, otherwise it returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII character or EOF. The argument <c> will be cast into
an int if it is not already of that type.

SEE ALSO

7-202

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), isgraph(), islower() isprint()
ispunct(), isspace()~ isxdigit(), toascii()~
tolower(), _tolower(), toupper(), _toupper()

@ 4404 Reference Manual

SECTION 7
'C' Compliler

i8xdigit

Determine if a value is a hexadecimal digit.

SYNOPSIS

#include <ctype.h>
int isxdigit(c)
int c;

Arguments

cl The value to examine

Returns

Non-zero if the value is a hexadecimal digit, zero otherwise

DESCRIPTION

This function examines the value <c> and determines if it a
hexadecimal digit. Hexadecimal digits are the characters
('0'-'9'), ('a'-'f'), and ('A'-'F') inclusive. If <c> is a
hexadecimal digit, the function returns a non-zero value;
otherwise, it returns zero.

NOTES

This function is implemented as a macro. It will have no
side-effects but its behavior is unpredictable if <c> is not a
valid ASCII char- acter or EOF. The argument <c> will be cast
into an int if it is not already of that type.

SEE ALSO

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), toascii(),
tolower(), _tolower(), toupper(), _toupper()

4404 Reference Manual @ 7-203

SECTION 7
'C' Compliler

itostr

Convert an int to a character-string.

SYNOPSIS

char
int
int
char
int

*_itostr(i, base, digits, psign)
i ;

Arguments
• 1
11

basel
digitsl
psignl

Returns

base;
*digits;
*psign.;

The value to convert
The base to use while converting
The digits to use while converting
The address of a flag to set to indicate the sign of
the value or (int NULL if none

The address of the generated character-string

DESCRIPTION

This function converts the int value <i> to its value represented
in the base <base> using the-digits in the character-string whose
address is <digits>. If <psign> is (int *) NULL, the conversion
is an unsigned conversion. Otherwise, the value referenced by
<psign> is set to zero if <i> is equal to or greater than zero,
non-zero otherwise.

The function returns as its result the address of the
character-string it generated, or (char *) NULL if the function
detects an error. Possible errors are a <base> less than or
equal to one, or not enough digits in the character-string
referenced by <digits> for the base.

NOTES

The character-string referenced by the result is in static memory
and is overwritten by subsequent calls to this or other
conversion functions. The longest character-string this function
can generate is 32 charcters.

SEE ALSO

C Library: atoi(), ltostr()

7-204 @ 4404 Reference Manual

SECTION 7
IC' Compliler

l2tos

Convert two-byte integers to short integers.

SYNOPSIS

void l2tos(sp, cp, n)
short- *sp;
char *cp;
int n;

Arguments

spl The address of the buffer to contain the short
integers

cpl The address of the buffer containing the two-byte
integers

nl The number of values to convert

Returns

Void

DESCRIPTION

This function converts <n> two-byte integers packed in the array
of char referenced by <cp>, saving the converted values in the
array of short referenced by <sp>. The function returns no
result.

NOTES

This function is typically used to avoid addressing problems
resulting from misaligned addresses.

SEE ALSO

C Library: l3tol(), l4tol(), lto13(), _lto14(), _sto12()

4404 Reference Manual @ 7-205

SECTION 7
'C' Compliler

13tol

Convert three-byte integers to long integers.

SYNOPSIS

void 13tol(lp, cp, n)
long *lp;
char *cp;
int n;

A.rguments

lpl
cpl

The address of the buffer to contain the long integers
The address of the buffer containing the three-byte

integers
nl The number of values to convert

Returns

Void

DESCRIPTION

This function converts <n> three-byte integers packed in the
array of char referenced by <cp>, saving the converted values in
the array-or-Iong referenced by <lp>. The function returns no
result.

NOTES

This function is typically used to avoid addressing problems
resulting from misaligned addresses.

SEE A.LSO

C Library: _12tos(), 14tol(), ItoI3(), _ltoI4(), _stoI2()

7-206 @ 4404 Reference Manual

Convert four-byte integers to long integers.

SYNOPSIS

void 14tol(lp, cp, n)
long - *lp;
char *cp;
int n;

Arguments

SECTION 7
'C' Compliler

lp\ The address of the buffer to contain the long integers
cp\ The address of the buffer containing the four-byte

integers
nl The number of values to convert

Returns

Void

DESCRIPTION

This function converts <n> four-byte integers packed in the array
of char referenced by <cp>, saving the converted values in the
array of long referenced by <lp>. The function returns no
result.

NOTES

This function is typically used to avoid addressing problems
resulting from misaligned addresses.

SEE ALSO

C Library: _12tos(), 13tol(), ItoI3(), ItoI4(), _stoI2()

4404 Reference Manual @ 7-207

SECTION 7
tC' Compliler

localtime

Break down a system-time value into units in the local time zone.

SYNOPSIS

#include <time.h>
struct tm *localtime(pclock)
long *pclock;

Arguments

The address of a system-time value

Returns

The address of the structure describing the system-time value

DESCRIPTION

This function takes the system-time value referenced by the
argument <pclock> and breaks it down into the year, month of the
year (0-11), day of the month (1-31), day of the week (0-6,
Sunday is 0), day of the year (0-365), hour (0-23), minute
(0-59), and second (0-59) in the current time zone, applying the
standard U. S. A. daylight-savings time conversion if necessary.
It saves that information in a structure and returns as its
result the address of that structure.

The include-file "(time.h>" defines the structure refered to by
the result of this function. That definition is:

7-208

struct tm
f
l

int
int
int
int
int
int
int
int
int
} ;

@

tm sec;
tm-min;
tm-hour;
tm-mday;
tm-mon;
tm-year;
tm-wday;
tm-yday;
tm=:isdst;

4404 Reference Manual

SECTION 7
'C' Compliler

The "tm sec" entry is the number of seconds into the minute and
ranges from 0 to 59, "tm min" is the number of minutes into the
hour and ranges from 0 to 59, "tm hour" is the number of hours
into the day and ranges from 0 to-23 , "tm mday" is the day of the
month and ranges from 1 to 31, and "tm mon" is the month of the
year and ranges from 0 to 11. The "tm-year" entry is the number
of years since 1900, "tm wday" is the number of days into the
week and ranges from 0 to 6, "tm yday" is the number of days into
the year and ranges from 0 to 365, "tm isdst" is one if the
standard U. S. A. daylight-savings time conversion was applied,
zero otherwise.

NOTES

The system time value is expressed in seconds since the epoch.
The operating system defines the epoch as 00:00 (midnight) GMT,
January 1, 1980. The structure referenced by the result of this
function is in static memory and is modified by subsequent calls
to "ctime()", "gmtime()", or "local time()".

The function applies the standard U. S. A. daylight-savings time
conversion only if the current system configuration indicates
that daylight-savings time is in effect. If standard U. S. A.
daylight-savings time is in effect, the function adds an hour to
the time if the time falls between 02:00 AM on the last Sunday in
April and 01:00 AM on the last Sunday in October.

This function calls "tzset()" if necessary, setting the global
vari- abIes "daylight", "timezone", and "tzname".

SEE ALSO

C Library: asctime(), ctime(), daylight, gmtime(),
timezone, tzname, tzset()

System Call: time()

Command: date

4404 Reference Manual @ 7-209

SECTION 7
'C' Compliler

Perform a non-local goto.

SYNOPSIS

#include <setjmp.h>
void longjmp(env, val)
jmp buf env;
int - val;

Arguments

longjmp

envl Contains environmental information about the
target of the non-local goto

vall The value to return as the apparent result of the
"setjmp()" associated with <env>

Returns

Never

DESCRIPTION

This function restores the program execution environment to that
described by the argument <env>. The effect is that of a goto to
the "setjmp()" call which saved the environmental information in
the argument <env>; with <arg>, if <arg> is not zero, or 1;
otherwise, as the apparent resul t of the "setjmp()" call.

NOTES

Statements following the call to this function will never be
executed. The scope containing the "setjmp()" call which set up
the <env> argument must not have executed a return or the result
of this function is unpredictable. All variables allocated to a
register are restored to their value at the "setjmp()" call.

SEE ALSO

C Library: setjmp()

7-210 @ 4404 Reference Manual

Ito13

Convert long integers to three-byte integers.

SYNOPSIS

void lto13(cp, lp, n)
char *cp;
long *lp;
int n;

Arguments

SECTION 7
'C' Compliler

cpl The address of the buffer to contain the three-byte
integers

lpl The address of the buffer containing the long integers
nl The number of values to convert

Returns

Void

DESCRIPTION

This function converts <n> long integers in the array referenced
by <lp> to three-byte integers, saving the converted values
packed into the array of char referenced by <cp>. The function
returns no result.

NOTES

This function is typically used to avoid addressing problems
resulting from misaligned addresses.

SEE ALSO

C Library: _12tos(), l3tol(), _14tol(), lto14(), sto12()

4404 Reference Manual @ 7-211

SECTION 7
'C' Compliler

lto14

Convert long integers to four-byte integers.

SYNOPSIS

void ItoI4(cp, lp, n)
char - *cp;
long *lp;
int n;

Arguments

cpl The address of the buffer to contain the four-byte
integers

lpl The address of the buffer containing the long integers
nl The number of values to convert

Returns

Void

DESCRIPTION

This function converts <n> long integers in the array referenced
by <lp> to four-byte integers, saving the converted values packed
into the array of char referenced by <cp>. The function returns
no result.

NOTES

This function is typically used to avoid addressing problems
resulting from misaligned addresses.

SEE ALSO

7-212

C Library: sto12(), 12tos(), 13tol(), 14tol(), ItoI3(),
stol2 ()

@ 4404 Reference Manual

Itostr

Convert a long to a character-string.

SYNOPSIS

char
long
int
char
int

Arguments
• 1
11

*_ltostrCi, base, digits, psign)
i;
base;

*digits;
*psign;

The value to convert
The base to use while converting
The digits to use while converting

SECTION 7
ICI Compliler

basel
digitsl
psignl The address of a flag to set to indicate the sign

or (int *) NULL

Returns

The address of the generated character-string

DESCRIPTION

This function converts the long value <i> to its value
represented in the base <base> using the digits in the
character-string referenced by <digits>. If <psign> is (int *)
NULL, the conversion is an unsigned conversion. Otherwise, the
value referenced by <psign> is set to zero if <i> is equal to or
greater than zero, non-zero otherwise.

The function returns as its result the address of the
character-string it generated, or (char *) NULL if the function
detected an error. Possible errors are a <base> less than or
equal to one, or not enough digits in the character-string
referenced by <digits> for the base <base>.

NOTES

The character-string referenced by the result is in static memory
and is overwritten by subsequent calls to this or other
conversion functions. The longest character-string this function
can generate is 32 charcters.

SEE ALSO

C Library: atoIC), _itostrC)

4404 Reference Manual @ 7-213

SECTION 7
'C' Compliler

Allocate memory.

SYNOPSIS

char *malloc(nbytes)
unsigned nbytes;

malloe

Arguments

nbytesl The number of bytes to allocate

Returns

The address of the allocated block of memory or (char *) NULL if
none was available

DESCRIPTION

This function allocates <nbytes> bytes of memory from the arena
of available memory. It returns the address of the first byte of
the allocated memory or (char *) NULL if none was available.

The first byte of the allocated memory is properly aligned for
any use.

NOTES

The function "free()" returns allocated memory to the arena of
available memory.

SEE ALSO

7-214

C Library: calloc(), free(), realloc()

System Call: brk(), cdata(), sbrk()

@ 4404 Reference Manual

memccpy

Copy memory.

SYNOPSIS

#include <memory.h>
char *memccpy(ptr1, ptr2, c, n)
char *ptr1;
char *ptr2;
int c;
int n;

Arguments

ptr1 1
ptr21
cl
nl

Returns

The target buffer address
The source buffer address
The stop-value
The maximum number of bytes to copy

SECTION 7
'C' Compliler

The address of the byte following the copy of the stop-value <c>
in the target buffer, or (char *) NULL if <c> was not found

DESCRIPTION

This function copies bytes from the buffer whose address is
<ptr2> to the buffer whose address is <ptr1> until either the
value <c> is copied or the requested number of bytes has been
copied, whichever comes first. It returns as its result the
address of the byte following the copy of the value <c> in the
target buffer, or (char *) NULL if that value was not found.

NOTES

The behavior of overlapping copy operations is not defined and
may behave differently on different systems. If <n> is less than
or equal to zero, the function copies no data and returns (char
*) NULL as its result. The include-file "<memory.h>" defines
this and other block memory functions.

SEE ALSO

C Library: memchr(), memcmp(), memcpy(), memset()

4404 Reference Manual @ 7-215

SECTION 7
'C' Compliler

memchr

Find a value in a block of memory.

SYNOPSIS

#include <memory.h>
char *memchr(ptr, c, n)
char *ptr;
int c;
int n;

Arguments

ptr\ The address of the buffer to search
c\ The value to search for
n\ The maximum number of bytes to search

Returns

The address of the first byte with the value <c>, or (char *)
NULL if <c> was not found

DESCRIPTION

This function searches the first <n> bytes in the buffer whose
address is <ptr> for the value <c>. If the value is found, it
returns the address of that value as its result. Otherwise, it
returns (char *) NULL.

NOTES

If <n> is less than or equal to zero, the function always returns
(char *) NULL. The include-file "<memory.h>" defines this and
other block memory functions.

SEE ALSO

C Library: memccpy(), memcmp(), memcpy(), memset()

7-216 @ 4404 Reference Manual

SECTION 7
'C' Compliler

memcmp

Compare two blocks of memory.

SYNOPSIS

#include <memory.h>
int memcmp(ptr1, ptr2, n)
char *ptr1;
char *ptr2;
int n;

Arguments

ptr1 I
ptr21
nl

Returns

The address of the first buffer to compare
The address of the second buffer to compare
The maximum number of bytes to compare

A value less than, equal to, or greater than zero, if the buffer
referenced by <ptr1> is lexicographically less than, equal to, or
greater than the buffer referenced by <ptr2>

DESCRIPTION

This function lexicographically compares the buffer referenced by
<ptr1> with the buffer referenced by <ptr2> and returns as its
result a value which indicates the result of that comparison.
That value is less than, equal to, or greater than zero,
indicating that the buffer referenced by <ptr1> is
lexicographically less than, equal to, or greater than the buffer
referenced by <ptr2>.

NOTES

If <n> is less than or equal to zero, the result of this function
is always zero. A non-zero result is the result of subtracting
the differing character in the buffer referenced by <ptr1> from
the differing character in the buffer referenced by <ptr2>. The
include-file "<memory.h>" defines this and other block memory
functions.

SEE ALSO

C Library: memccpy(), memchr(), memcpy(), memset()

4404 Reference Manual @ 7-217

SECTION 7
'C' Compliler

memcpy

Copy memory.

SYNOPSIS

#include <memory.h>
char *memcpy(ptr1, ptr2, n)
char *ptr1;
char *ptr2;
int n;

Arguments

ptr1 1
ptr21
nl

Returns

<ptr1>

DESCRIPTION

The target buffer address
The source buffer address
The number of bytes to copy

This function copies bytes from the buffer whose address is
<ptr2> to the buffer whose address is <ptr1> until the requested
number of bytes has been copied. It returns as its result the
address of the target buffer <ptr1>.

NOTES

The behavior of overlapping copy operations is not defined and
may behave differently on different systems. If <n> is less than
or equal to zero, the function copies no data. The include-file
"<memory.h>" defines this and other block memory functions.

SEE ALSO

C Library: memccpy(), memchr(), memcmp(), memset()

7-218 @ 4404 Reference Manual

Set a block of memory.

SYNOPSIS

#include <memory.h>
char *memset(ptr, c, n)
char *ptr;
int c;
int n;

Arguments

memset

ptrl The address of the buffer to set
cl The value to set
nl The number of bytes to set

Returns

<ptr>

DESCRIPTION

SECTION 7
'C' Compliler

This function sets <n> bytes of memory beginning at the address
<ptr> to the value <c>. It returns as its result its argument
<ptr>.

NOTES

If <n> is less than or equal to zero, the function modifies no
memory. The include-file "<memory.h>" defines this and other
block memory functions.

SEE ALSO

C Library: memccpy(), memchr(), memcmp(), memcpy()

4404 Reference Manual @ 7-219

SECTION 7
'C' Compliler

mktemp

Generate a unique pathname from a template.

SYNOPSIS

char *mktemp(template)
char *template;

Arguments

template I The address of the character-string containing
the template for the temporary pathname

Returns

Its argument <template) if it successfully generated a unique
pathname, (char *) NULL otherwise

DESCRIPTION

This function generates a unique pathname from the template
pathname in the character-string referenced by <template). A
unique pathname is one which does not reach a file but which
contains a path that can be followed. It returns <template) as
its result if successfully generated a pathname for a file that
does not exist, or (char *) NULL otherwise.

If the template pathname ends in six 'x' or 'X' characters, it
replaces those characters with an 'A' followed by the
five-character representation of the current process-IDe It then
checks the filesystem for that pathname. If that pathname
doesn't exist, it returns its argument <template). If that
pathname already exists, it changes the 'A' to a 'B' and retrys,
continuing until it generates a pathname that does not reference
an existing file or it exhausts the upper- and lower-case alphabet.

If the template pathname does not end in 'x' or 'X' characters,
the function returns <template) if it is a unique pathname, or
(char *) NULL if it is not.

NOTES

If the path in the template pathname can not be followed, or
contains a file that is not a directory, the function returns
(char *) NULL. If the function returns (char *) NULL, the
variable "errno" contains the system error code describing the error.

SEE ALSO

System Call: getpid(), read()

7-220 @ 4404 Reference Manual

getc

Fetch a character from a stream.

SYNOPSIS

#include <stdio.h>
int getc(stream)
FILE *stream;

Arguments

SECTION 7
'e' Compliler

streaml The standard I/O stream from which a character is
to be fe tched

Returns

The character read if successful, otherwise EOF.

DESCRIPTION

This function reads the next character from the standard I/O
stream opened for input referenced by <stream>. It returns that
character (as an int) if it was successful, otherwise it returns
EOF.

NOTES

The character read is considered to be an unsigned char so there
is no sign extension when converting the character to an integer
value for returning.

SEE ALSO

C Library: fgetc() getchar() putc()

4404 Reference Manual @ 7-221

SECTION 7
'C' Compliler

strtol

Convert a character-string to a long integer.

SYNOPSIS

long strtol(str, ptr, base)
char *str;
char **ptr;
int base;

Arguments

strl

ptrl

base I

Returns

The address of the character-string to convert to
a long integer

The address of the char * to contain the address
of the character which terminates the conversion,
or (char**) NULL if no assignment is to be made

Indicates the base of the digits

The value generated from the character-string

DESCRIPTION

This function converts the character-string pointed to by <str>
to a long integer. It converts using the base specified by
<base> and assigns the address of the character ending the
conversion to the char * referenced by <ptr>. The character that
ends the conversion is either the null-character terminating the
string or the first character that was inconsistent with the
base. If <ptr> is (char **) NULL, no assignment is made.

7-222 @ 4404 Reference Manual

SECTION 7
'C' Compliler

if the base <base> is greater than 0 and less than or equal to
36, it describes the base of the digits in the character-string.
(For bases between 11 and 36, the alphabetic characters, in
order, are used as di- gits.) If the base is 0, the function
examines the character-string to determine the base. If
following the optional white-space and sign is "Ox" or "OX", the
base is assumed to be 16. Otherwise, if a '0' follows the
optional white-space and sign, the base is assumed to be 8.
Otherwise, the base is assumed to be 10. If the base is less
than 0 or greater than 36, the base is assumed to be 10.

NOTES

Overflow conditions are ignored.

SEE ALSO

C Library: _atoh() atoi() atol() _atoo() _atos() _strtoi()

4404 Reference Manual @ 7-223

SECTION 7
'C' Compliler

printf

Wri te formatted data to "stdout".

SYNOPSIS

#include <stdio.h>
int printf(format [,arglist])
char *format;

Arguments

formatl The address of a character-string containing a
format description

Returns

The number of characters written to "stdout" or EOF if an er- ror
occurred

DESCRIPTION

This function generates characters from the format description in
the character-string referenced by <format> and the arguments in
the argument-list <arglist>, if any, and writes these characters
to the standard I/O output stream "stdout". It returns as its
result the number of characters written to "stdout".

The format description in the character-string referenced by
<format> contains literal characters and field descriptions. The
function writes literal characters to "stdout" with no
interpretation. The function interprets field descriptions to
determine what characters it generates, what type of argument it
consumes~ if any~ from the argument list <arglist>, and the type
of conversion it performs. The number of arguments and the type
of the arguments in the argument list <arglist> depends on the
format description. The argument list can be omitted.

For a complete description of the <format> argument, see the
manual page for "fprintf()".

7-224 @ 4404 Reference Manual

NOTES

SECTION 7
'C' Compliler

The function writes characters to "stdout" using "fputc()". If
"stdout" is buffered, standard I/O does not write characters to
the file attached to the stream until it fills the stream's
buffer or closes the stream. If "stdout" is line-buffered
(buffered and attached to a file that is a terminal), standard
I/O does not write characters to the file attached to the stream
until it fills the stream's buffer, closes the stream, writes an
end-of-line character (EOL) to the stream, or reads data from a
terminal. The include-file "(stdio.h)" defines the functions and
constants available in standard I/O. This file must be included
in the C source before the first reference to this function.

SEE ALSO

C Library: ecvt(), fcvt(), fdopen(), fopen(), fprintf(),
fputc(), fscanf(), gcvt(), scanf(), sprintf(),
sscanf(), stdout

4404 Reference Manual @ 7-225

SECTION 7
fC' Compliler

Write a character to a stream.

SYNOPSIS

#include <stdio.h>
int putc(c, stream)
char c;
FILE *stream;

Arguments

putc

The character to write cl
streaml The standard I/O stream to write to

Returns

The value written if successful, EOF otherwise.

DESCRIPTION

This function writes the character <c> to the standard I/O stream
<stream>. The function returns the character written as its
result if it successfully writes the character to the stream,
otherwise, it returns EOF.

NOTES

If the stream is buffered, standard I/O flushes the buffered data
whenever the buffer fills or the stream closes. If the stream is
line-buffered (buffered and attached to a character-special
device), standard I/O flushes the buffered data whenever the
buffer fills, the stream closes, a standard I/O function writes
an EOL character to the stream, or a standard I/O function reads
data from a character-special device (a terminal).

SEE ALSO

C Library: fdopen(), fopen(), fputc(), getc(), putchar()

7-226 @ 4404 Reference Manual

SECTION 7
rc' Compliler

putchar

Write a character to "stdout".

SYNOPSIS

#include <stdio.h>
int putchar(c)
cha r c;

Arguments

cl The character to write

Returns

The value written if successful, EOF otherwise.

DESCRIPTION

This function writes the character <c> to the standard I/O
standard output stream "stdout". The function returns the
character written as its result if it successfully wrote the
character to "stdout", otherwise, it returns EOF.

NOTES

If the stream is buffered, standard I/O flushes the buffered data
whenever the buffer fills or the stream closes. If the stream is
line-buffered (buffered and attached to a character-special
device), standard I/O flushes the buffered data whenever the
bUffer fills, the stream closes, a standard I/O function writes
an EOL character to the stream, or a standard I/O function reads
data from a character-special device (a terminal).

SEE ALSO

C Library: fdopen(), fopen(), fputc(), getchar(), putc(),
stdout

4404 Reference Manual @ 7-227

SECTION 7
'C' Compliler

putpwent

Format and write a system password-file record.

SYNOPSIS

#include <pwd.h>
int putpwent(ptr, stream)
struct passwd *ptr;
FILE *stream;

Arguments

ptrl Address of a structure containing the information
to write

streaml The standard I/O stream to write to

Returns

Zero if the record was successfully written, EOF otherwise.

DESCRIPTION

This function generates a character-string from the information
in the structure referenced by <ptr> and writes that
character-string to the standard I/O output stream <stream>. It
generates the character-string in the format required by the
system-password file. The function returns zero as its result if
it successfully formats and writes the record, otherwise it
returns EOF.

The function generates the character-string using the following
"sprintf()" format-string:

"%s:%s:%d:%s:%s nff

The format of the structure referenced by the result of this
function is defined by the include-file "<pwd.h>" and is defined
as follows:

struct passwd
{
char *pw_name;
char *pw passwd;
int pw-uid;
char *pw-dir;
char *pw=shell;
} ;

7-228 @ 4404 Reference Manual

SECTION 7
'C' Compliler

The entry "pw name" is the address of a character-string
containing the user-name, "pw passwd" is the address of a
character-string containing the encrypted password, "pw uid"
contains the user's identifying number (user-ID), "pw dlr" is the
address of a character-string containing the user's initial
home-directory, and "pw shell" is the address of a
character-string containing containing the shell-command for the
first program to run after logging on.

A null-string as the encrypted password indicates that the user
has no password, and a null-string as the shell-command that
indicates the initial program is the standard shell.

NOTES

This function uses standard I/O and will enlarge more than
expected a program not otherwise using standard I/O. The
"pw passwd" and "pw shell" entries in the structure referenced by
<ptr> may be (char *) NULL. If so, the function uses a
null-string when generating the system password record.

SEE ALSO

C Library: endpwent(), getpw(), getpwent(), getpwnam(),
getpwuid(), setpwent()

Command: password

4404 Reference Manual @ 7-229

SECTION 7
'C' Compliler

puts

Write a character-string to "stdout".

SYNOPSIS

#include <stdio.h>
int puts(s)
char *s;

Arguments

sl The address of the character-string to write

Returns

Zero if successful, EOF otherwise.

DESCRIPTION

This function writes the character-string referenced by <s>,
followed by an end-of-line character (EOL), to the standard I/O
standard output stream "stdout". The function returns zero as
its result if it successfully writes the character-string to
"stdout", otherwise, it returns EOF.

NOTES

The function does not write the null-character terminating the
character-string to "stdout".

SEE ALSO

7-230

C Library: fdopen(), ropen(), fputs(), gets(), putchar(),
stdout

@ 4404 Reference Manual

putw

Write a word to a stream.

SYNOPSIS

int putw(wd, stream)
int wd;
FILE *stream;

Arguments

wd\
stream\

The value to write
The standard I/O stream

Returns

The value written if successful, EOF otherwise

DESCRIPTION

SECTION 7
'C' Compliler

This function casts the int argument <wd> into a short then
writes that short to the-standard I/O output stream referenced by
<stream>. It writes the high-order byte first, then the
low-order byte. It then casts the short written into an int and
returns that value as its result. If it detects an error~t
returns EOF as its result.

NOTES

The value EOF is a valid value to write, so the functions
"ferror()" and "feof()" should be used to check for error and
end-of-file conditions for the stream. There are no boundary
alignment requirements for writing a word to the stream.

SEE ALSO

C Library: fdopen(), fopen(), getw(), putc()

4404 Reference Manual @ 7-231

SECTION 7
'C' Compliler

qsort

Sort data.

SYNOPSIS

int qsort(base, nel, width, compar)
char *base;
unsigned int nel;
unsigned int width;
int (*compar)();

Arguments

basel
nell
widthl
comparl

The address of the data to sort
The number of records in the data

Returns

The number of bytes in a record of data
The address of a function to use to compare two
records

o if it successfully sorted the data, -1 otherwise

DESCRIPTION

This function sorts in place the data at the address <base>. The
data contain <nel> records with each record <width> in length.
It uses the function whose address is <compar> to compare two
records of data. The function returns 0 as its result if it
successfully sorted the data, otherwise it returns -1 as its
result.

The function wnOHe address is ,compar/ lS a function returning an
int with two arguments, both addresses of records of data. The
function returns a value less than, equal to, or greater than
zero if the record referenced by the first argument is less than,
equal to, or greater than the record referenced by the second
argument.

NOTES

The only possible condition resulting in a result of -1 is a
record size <width> larger than the maximum. The maximum is
currently 256 bytes. The argument <base> should be a
pointer-to-element cast into a (char *).

SEE ALSO

Command: sort

7-232 @ 4404 Reference Manual

Generate a random number.

SYNOPSIS

int rand();

Arguments

None

Returns

A random number

DESCRIPTION

rand

SECTION 7
'C' Compliler

This function generates a random number and returns that value as
its result. The number is between 0 and 32767 inclusive.

This function is a pseudo-random number generator, generating the
next number in a sequence. The previous number in the sequence
is the seed set automatically at the start of the program, the
seed set explicitly by the "rrand()" or "srand()" functions, or
the previously generated random number.

NOTES

The sequence of numbers generated by this function from a
particular seed is always reproducable.

SEE ALSO

C Library: rrand(), srand()

4404 Reference Manual @ 7-233

SECTION 7
fC' Compliler

realloc

Reallocate an allocated block of data.

SYNOPSIS

char *realloc(buf, size)
char *buf;
unsigned int size;

Arguments

bufl
sizel

The address of the allocated buffer to reallocate
The requested new size of the buffer, in bytes

Returns

The address of the reallocated buffer

DESCRIPTION

This function changes the size of the allocated buffer whose
address is <buf> to the <size> bytes. If the space allocated to
the buffer is large enough to accomodate <size> bytes, the
function returns from the buffer as much space as possible to the
arena of available memory and returns <buf> as its result.
Otherwise, it returns the buffer <buf> to the arena of available
memory and allocates a buffer of <size> bytes. If successful, it
copies the data in the original buffer to the newly allocated
buffer and returns the address of the allocated buffer as its
result. Otherwise, it returns (char *) NULL as its result.

NOTES

The original block is destroyed if the function returns (char~)
NULL.

SEE ALSO

7-234

C Library: calloc(), free(), malloc()

System Call: brk(), cdata(), sbrk()

@ 4404 Reference Manual

Rewind a stream.

SYNOPSIS

#include <stdio.h>
int rewind(stream)
FILE *stream;

Arguments

rewind

streaml The standard I/O stream to rewind

Returns

Void

DESCRIPTION

SECTION 7
rcr Compliler

This function rewinds the stream referenced by <stream>.
Rewinding a stream positions the stream to the beginning of its
attached file.

NOTES

This function undoes the effect of an rrungetc()rr function. This
function does not rewind a stream that is attached to a
character-special file (terminal).

SEE ALSO

C Library: fdopen(), fopen(), fseek(), ftell()

System Call: lseek()

4404 Reference Manual @ 7-235

SECTION 7
'C' Compliler

rindex

Find the last occurrence of a character in a character-string.

SYNOPSIS

char *rindex(s, c)
char *s;
char c;

Arguments

sl The address of the character-string to search
cl The character to search for

Returns

The address of the last occurrence of the character in the
string, or (char *) NULL if the string does not contain the
character

DESCRIPTION

This function searches the character-string whose address is <s>
for the last occurrence of the character <c>. If the string
contains the character, the function returns as its result the
address of the last occurrence of the character. Otherwise, it
returns (char *) NULL.

NOTES

This function is obsolete. It is only included for compatability
with older UniFLEX C libraries. New applications should use
"_,1 1 '\ ..

.. 0 l,,1' l' c.;nr ~) II •

SEE ALSO

C Library: index(), strchr(), strrchr()

7-236 @ 4404 Reference Manual

rrand

SECTION 7
tCt Compliler

Set the seed of the random number generator to a value generated
from the current system-time value.

SYNOPSIS

void rrand(seed);

Arguments

None

Returns

Void

DESCRIPTION

This function sets the seed of the pseudo-random number generator
to a value generated from current system-time value. The value
generated is that of the low 15 bits of the system-time value.

NOTES

The system-time value is the current time expressed in the number
of seconds since the epoch. The system defines the epoch as
00:00 (midnight) on January 1, 1980, Greenwich Mean Time. The
seed is the value from which the next random number is generated.
The random number generating function "rand()" always generates
the same sequence of random numbers from a particular seed.

SEE ALSO

C Library: rand(), srand()

System Call: time()

4404 Reference Manual @ 7-237

SECTION 7
rc' Compliler

scanf

Read and interpret formatted data from "stdin".

SYNOPSIS

#include <stdio.h>
int scanf(format [, addrlist])
char *format;

Arguments

formatl The address of a character-string containing a
format description

Returns

The number of items in the address-list <addrlist> that it
successfully assigns or EOF if an error occurs before it assigns
any data

DESCRIPTION

This function reads and interprets data from the standard I/O
stream "stdin", according to the format description in the
character-string referenced by <format>. Following the argument
<format> in the argument list, the function expects a list of
address of variables to receive the values it generates from the
data it reads from "stdin", if any. The function returns as its
result the number of assignments is makes, or EOF if it
encounters an error before making the first assignment.

The argument <format> is a character-string containing a format
description, which describes the format of the data read from
"stdin". The format description consists of literal characters,
white-space characters, and field descriptions, in any sequence.

Literal characters are all characters which are not white-space
characters (as defined by "isspace()"), and not part of field
descriptions. A literal character tells the function to match
that character with the next character read from "stdin". If it
does not match exactly, the function ends.

White-space characters are the space (' '), end-of-line (' n'),
horizontal-tab (' t'), form-feed (' f'), and carriage-return
(' r) characters. A white-space character tells the function to
read and consume characters from "stdin" until it reaches a
character which is not a white-space character or it reaches the

7-238 @ 4404 Reference Manual

SECTION 7
'C' Compliler

end of the data. The next character available from "stdin n is
the next character which is not a white-space character. The
function does nothing with a white-space character in the format
description if the next character from "stdin n is not a
white-space character.

A field description tells the function how to interpret the next
character or characters read from nstdinn. It tells the function
the maximum number of characters to read, the form of the
characters read, the type of value to assign any result to, and
whether to perform an assignment. A field description has the
following syntax:

%[*][<width>][<flags>]<type>

Where

o The '%' character introduces the field description.

o The '*' character tells the function to suppress assigning
the interpreted value to a variable.

o The <width> part tells the function the maximum number of
characters to read to satisfy the field (including leading
white-space characters, if the field type skips leading
white-space characters).

o The <flags> part alters the type of assignment made by the
function, and may be either the 'hI or the '1' character.

o The <type> part defines the type of the field and may be any
one of the characters in the following string:

rrcdefgosux%[n.

For a complete description of the function's field types, see the
manual pages for the standard I/O function nfscanf()".

NOTES

The most common mistake made when using this function is passing
to the function the values of the variables to receive the
results of this function, instead of the addresses of those
variables. The include-file n<stdio.h>" defines this function,
other functions, macros, and constants used by standard I/O.

SEE ALSO

C Library: fdopen(), fopen(), fprintf(), fscanf(), printf(),
sprintf(), sscanf(), stdin

4404 Reference Manual @ 7-239

SECTION 7
fC' Compliler

setbuf

Set buffering attributes of a stream.

SYNOPSIS

#include <stdio.h>
void setbuf(stream, buf)
FILE *stream;
char *buf;

Arguments

streaml The standard I/O stream whose buffer
characteristics are being set

bufl

Returns

Void

DESCRIPTION

The address of the buffer to use as the stream's
buffer, or (char *) NULL if the stream is to be
unbuffered

This function sets the buffering characteristics for the standard
I/O stream referenced by <stream>. If <buf> is (char *) NULL,
the stream is set for unbuffered I/O. Otherwise, the stream is
set for buffered I/O with <buf> set as address of the buffer to
use for the buffered I/O.

NOTES

The buffer whose address is <buf> is assumed to contain at least
BIG- BUF bytes. The include-file <stdio.h> contains this and
other definitions for standard I/O. This function should only
be used before any I/O is performed on the stream. If I/O has
been performed on the stream, the current buffering will be lost.

SEE ALSO

C Library: fdopen(), fopen()

7-240 @ 4404 Reference Manual

Setup for a non-local goto.

SYNOPSIS

#include <setjmp.h>
int setjmp(env)
jmp_buf env;

Arguments

setjmp

SECTION 7
'C' Compliler

envl The value to receive the current environmental
information

Returns

Zero when returning from "setjmp()", non-zero when the result of
a "longjmp()"

DESCRIPTION

This function saves the current environmental information in the
argument <env> so that a subsequent call to "longjmp()" with
<env> as its argument will result with execution continuing as
though the "setjmp()" call had returned. The effect of a
"longjmp()" using <env> as its argument is that of a goto from
the "longjmp()" call to the "setjmp()" call.

A 0 result indicates that "setjmp()" is returning after setting
the argument <env> with the current environmental information. A
non-zero result indicates that "longjmp()" was called with an
argument <env>.

NOTES

The scope calling this function must not have returned by the
time "longjmp()" is called with the argument <env> or the result
of the "longjmp()" call will be unpredictable. Values residing
in registers (those defined as register variables that have had
registers assigned to them) will revert to their value at the
time of the "setjmp()" call when "longjmp()" is called with the
argument <env>.

The argument <env> is actually the address of a structure for the
current environmental information. The include-file <setjmp.h>
contains the typedef for "jmp_buf" and other information used by
"setjmp()" and "longjmp()".

SEE ALSO

C Library: longjmp()

4404 Reference Manual @ 7-241

SECTION 7
'C' Compliler

setpwent

Reset password-file handling.

SYNOPSIS

#include <pwd.h)
void se tpwen t () ;

Arguments

None

Returns

Void

DESCRIPTION

This function resets password-file handling initiated by
"getpwent()", "getpwnam()", or "getpwuid()". It reini tializes
the resources allocated by, and rewinds the files opened by,
those routines.

NOTES

This function does nothing if "getpwent()", "getpwnam()", or
"getpwuid()" has not been called or "endpwent()" has been called
since the last call to one of those routines.

SEE ALSO

C Library: endpwent(), getpwent(), getpwnam(), getpwuid()

7 ·~242 4404 Reference Manual

setutent

Reset multi-user login-file handling.

SYNOPSIS

#include <utmp.h)
void setutent();

Arguments

None

Returns

Void

DESCRIPTION

SECTION 7
'C' Compliler

This function resets multi-user login-file handling initiated by
"getutent()" or "getutline ()". It reini tializes the resources
allocated to and rewinds the files opened by those routines.

NOTES

This function does nothing if neither "getutent()" nor
"getutline()" has been called or "endutent()" has been called
since the last call to either of those routines.

SEE ALSO

C Library: endutent(), getutent(), getutline()

4404 Reference Manual @ 7-243

SECTION 7
rc' Compliler

sleep

Suspend execution for an interval.

SYNOPSIS

unsigned int sleep(time)
unsigned int time;

Arguments

timel The maximum number of seconds to suspend execution

Returns

The number of seconds remaining in the requested interval

DESCRIPTION

This function requests that the execution of the current task be
suspended for the number of seconds specified by the argument
<time>. It returns after the requested interval has passed or an
alarm-, hangup-, keyboard-, or quit-interrupt has been caught.
It returns as its result the number of seconds remaining in the
requested sleep interval.

This function is implemented using the "alarm" system call. It
requests that an alarm-interrupt be sent to the current task in
<time> seconds, then pauses using the "pause()" function, waiting
for a signal. The function knows about an alarm-interrupt
request armed before the function is called.

If the armed alarm-interrupt request is scheduled to take place
during the sleep interval, the function pauses for time remaining
on the armed alarm-interrupt request. Then, if that interval
passes completely, it resignals the alarm-interrupt so the user
can handle it. Otherwise, or if the armed alarm-interrupt
request is scheduled to take place after the sleep interval is
complete, upon return from the "pause()" function, the function
rearms the alarm-interrupt for the time remaining, and restores
the signalling information for the alarm- interrupt to the state
before the function was called.

NOTES

Requesting a sleep interval <time> of 0 results in the task
pausing until the next signal.

SEE ALSO

System Call: alarm(), signal(), waite)
Command: sleep

@ 4404 Reference Manual

SECTION 7
IC' Compliler

sprintf

Generate a character-string containing formatted data.

SYNOPSIS

#include <stdio.h>
int sprintf(string, format [,arglist])
char *string;
char *format;

Arguments

stringl The address of a buffer to contain the generated
string

format: The address of a character-string containing a format
description

Returns

The number of characters written to "stdout" or EOF if an er- ror
occurred

DESCRIPTION

This function generates characters from the format description in
the character-string referenced by <format> and the arguments in
the argument-list <arglist>, if any, writes these characters into
the buffer whose address is <string>, then appends a
null-character onto those generated characters in that buffer.
It returns as its result the length of the generated
character-string.

The format description in the character-string referenced by
<format> contains literal characters and field descriptions. The
function copies literal characters to character-string with no
interpretation. The function interprets field descriptions to
determine what characters it generates, what type of argument it
consumes, if any, from the argument list <arglist>, and the type
of conversion it performs. The number of arguments and the type
of the arguments in the argument list <arglist> depends on the
format description. The argument list can be omitted.

For a complete description of the <format> argument, see the
manual page for "fprintf()".

4404 Reference Manual @ 7-245

SECTION 7
'C' Compliler

NOTES

The function assumes that the buffer whose address is <string> is
large enough to hold the character-string it generates. The
include-file "<stdio.h>" defines this function and other
functions and constants available in standard I/O. This file
must be included in the C source before the first reference to
this function.

SEE ALSO

7-246

C Library: ecvt(), fcvt(), fdopen(), fopen(), fputc(),
fscanf(), gcvt(), printf(), scanf(), sprintf(),
sscanf(), stdout

@ 4404 Reference Manual

srand

Set the seed of the random number generator.

SYNOPSIS

void srand(seed)
int seed;

Arguments

seedl The seed for the random number generator

Returns

Void

DESCRIPTION

SECTION 7
'C' Compliler

This function sets the seed of the pseudo-random number generator
to a value generated from the argument <seed>. The value
generated is that of the low 15 bits of the argument.

NOTES

The seed is the value from which the next random number is
generated. The random number generating function "rand()" always
generates the same sequence of random numbers from a particular
seed.

SEE ALSO

C Library: rand(), rrand()

4404 Reference Manual @ 7-247

SECTION 7
'C' Compliler

sscanf

Interpret formatted data from a character-string.

SYNOPSIS

#include <stdio.h>
int sscanf(string, format [, addrlistJ)
char *string;
char *format;

Arguments

stringl
formatl

The string containing data to interpret

Returns

The address of a character-string containing a
format description

The number of items in the address-list <addrlist> that it
successfully assigns or EOF if an error occurs before it as
signs any data

DESCRIPTION

This function interprets data from the character-string
referenced by the argument <string>, according to the format
description in the character-string referenced by <format>.
Following the argument <format> in the argument list, the
function expects a list of address of variables to receive the
values it generates from the characters in the data
character-string, if any. The function returns as its result the
number of assignments is makes, or EOF if it encounters an error
before making the first assignment.

The argument <format> is a character-string containing a format
descrip- tion, which describes the format of the characters in
the data character-string. The format description consists of
literal characters, white-space characters, and field
descriptions, in any sequence.

Literal characters are all characters which are not white-space
charac- ters (as defined by "isspace()"), and not part of field
descriptions. A literal character tells the function to match
that character with the next character in the data
character-string. If it does not match exactly, the function
ends.

7-248 @ 4404 Reference Manual

SECTION 7
'C' Compliler

Whi te-space characters are the space (' '), end-of-line (' n'),
horizontal-tab (' t'), form-feed (' f'), and carriage-return
(' r) characters. A white-space character tells the function to
skip characters in the data character-string until it reaches a
character which is not a white-space character or it reaches the
end of the data. The next character available from the data
character-string is the next character which is not a white-space
character. The function does nothing with a white-space
character in the format description if the next character from
the data character-string not a white-space character.

A field description tells the function how to interpret the next charac
ter or characters from the data character-string. It tells the functior
the maximum number of characters to get, the form of those characters,
the type of value to assign any result to, and whether to perform an as
signment. A field description has the following syntax:

%[*][<width>][<flags>]<type>

The '%' character introduces the field description. The '*'
character tells the function to suppress assigning the
interpreted value to a variable. The <width> part tells the
function the maximum number of characters to get to satisfy the
field (including leading white-space characters, if the field
type skips leading white-space characters). The <flags> part
alters the type of assignment made by the function, and may be
either the 'h' or the '1' character. The <type> part defines the
type of the field and may be anyone of the characters in the
following string: "cdefgosux%[".

For a complete description of the function's field types, see the
manual pages for the standard I/O function "fscanf()".

NOTES

The most common mistake made when using this function is passing
to the function the values of the variables to receive the
results of this function, instead of the addresses of those
variables. The include-file "<stdio.h>" defines this function,
other functions, macros, and constants used by standard I/O.

SEE ALSO

C Library: fdopen(), fopen(), fprintf(), fscanf(), printf(),
scanf(), sprintf(), stdin

4404 Reference Manual @ 7-249

SECTION 7
'C' Compliler

stol2

Convert short integers to two-byte integers.

SYNOPSIS

void sto12(cp, sp, n)
char - *cp;
short *sp;
int n;

Arguments

cpl The address of the buffer to contain the two-byte
integers

spl The address of the buffer containing the short
integers

nl The number of values to convert

Returns

Void

DESCRIPTION

This function converts <n> short integers in the array referenced
by <sp> to two-byte integers, saving the converted values packed
into the array of char referenced by <cp>. The function returns
no result.

NOTES

This function is typically used to avoid addressing problems
resulting from misaligned addresses.

SEE ALSO

C Library: l2tos(), l3tol(), l4tol(), lto13(), Ito14()

7-250 @ 4404 Reference Manual

SECTION 7
'C' Compliler

strcat

Concatenate one character-string onto another.

SYNOPSIS

#include <string.h>
char *strcat(s1, s2)
char *s1;
char *s2;

Arguments

s1 1 The address of the target charact~r-string
s21 The address of the character-string to concatenate

onto <s1>

Returns

<s1>

DESCRIPTION

This function appends a copy of the character-string referenced
by <s2> onto the character-string referenced by <s1>. It returns
<s1> as its result.

NOTES

The resulting character-string is always terminated with a
null-character. The include-file "<string.h>" defines the
string-handling functions in the C library.

SEE ALSO

C Library: strncat()

4404 Reference Manual @ 7-251

SECTION 7
'C' Compliler

strchr

Find the first occurrence of a character in a character-string.

SYNOPSIS

#include <string.h>
char *strchr(s, c)
char *s;
char c;

Arguments

sl The address of the character-string to search
cl The character to search for

Returns

The address of the first occurrence of the character in the
string, or (char *) NULL if the string does not contain the
character

DESCRIPTION

This function searches the character-string whose address is <s>
for the first occurrence of the character <c>. If the string
contains the character, the function returns as its result the
address of the first occurrence of the character. Otherwise,
it returns (char *) NULL.

NOTES

The include-file "<string.h>" defines the string-handling
functions in the C library.

SEE ALSO

C Library: index(), strrchr()

7-252 @ 4404 Reference Manual

SECTION 7
'C' Compliler

strcmp

Compare two character-strings.

SYNOPSIS

#include <string.h>
int strcmp(s1, s2)
char *s1;
char *s2;

Arguments

s1 1 The address of the first string to compare
s21 The address of the second string to compare

Returns

A value less than, equal to, or greater than zero, if the
character-string referenced by <s1> is lexicographically less
than, equal to, or greater than the character-string referenced
by <s2>

DESCRIPTION

This function lexicographically compares the character-string
referenced by <s1> with the character-string referenced by <s2>
and returns as its result a value which indicates the result of
that comparison. That value is less than, equal to, or greater
than zero, indicating that the character-string referenced by
<s1> is lexicographically less than, equal to, or greater than
the character-string referenced by <s2>.

NOTES

The include-file "<string.h>" defines the string-handling
functions in the C library.

SEE ALSO

C Library: strncmp()

4404 Reference Manual @ 7-253

SECTION 7
'C' Compliler

Copy a character-string.

SYNOPSIS

#include <string.h>
char *strcpy(s1, s2)
char *s 1 ;
char *s2;

Arguments

strcpy

s11 The address of the target buffer
s21 The address of the character-string to copy

Returns

<s1>

DESCRIPTION

This function copies the character-string referenced by <s2> into
the buffer whose address is <s1>. It returns the address of the
target buffer as its result.

NOTES

The result of this function is always a null-terminated
character-string. The standard C library does not define the
behavior of overlapping data movement, so using overlapping data
movement may result in differing behavior on different systems.
The include-file "<string.h>" defines the string-handling
functions in the C library.

SEE ALSO

C Library: strncpy()

7-254 @ 4404 Reference Manual

SECTION 7
fC' Compliler

strcspn

Determine the unlike character-count.

SYNOPSIS

#include <string.h>
int strcspn(s1, s2)
char *s1 ;
char *s2;

Arguments

s11 The address of the character-string to examine
s21 The address of the character-string containing the

characters to search for

Returns

The length of the initial segment of <s1> containing none of the
characters found in <s2>

DESCRIPTION

This function examines the character-string whose address is <s1>
and determines the length of the initial character segment
containing none of the characters found in the character-string
whose address is <s2>. It returns this count as its result.

NOTES

The include-file "<string.h>" defines the string-handling
functions in the C library.

SEE ALSO

C Library: strspn()

4404 Reference Manual @ 7-255

SECTION 7
tC' Compliler

strlen

Determine the length of a character-string.

SYNOPSIS

#include <string.h>
int strlen(s)
char *s;

Arguments

sl The address of a character-string

Returns

The number of characters in the character-string

DESCRIPTION

This function determines the length of character-string
referenced by <s> and returns that value as its result.

It determines the length of the character-string by counting the
number of characters which are not null-characters beginning at
the address <s>, continuing until a null-character is found.

NOTES

A null-string (nn) has a length of zero. The include-file
"<string.h>" defines the string-handling functions in the C
library.

7-256 @ 4404 Reference Manual

strncat

Concatenate one character-string onto another.

SYNOPSIS

#include <string.h>
char *strncat(s1, s2, n)
char *s1 ;
char *s2;
int n;

Arguments

SECTION 7
IC' Compliler

s1\ The address of the target character-string
s21 The address of the character-string to concatenate

onto <s1>
n\ The maximum number of characters to concatenate

Returns

<s1>

DESCRIPTION

This function appends at most <n> characters from the
character-string referenced by <s2> onto the character-string
referenced by <s1>. It re- turns as its result <s1>.

NOTES

The function always appends a null-character onto the characters
appended onto <s1> from <s2>. The include-file "<string.h>"
defines the string-handling functions in the C library.

SEE ALSO

C Library: strcat()

4404 Reference Manual @ 7-257

SECTION 7
'C' Compliler

strncmp

Compare two character-strings.

SYNOPSIS

#include <string.h>
int strncmp(s1, s2, n)
char *s1;
char *s2;
int n;

Arguments

s1l The address of the first string to compare
s21 The address of the second string to compare
nl The maximum number of characters to compare

Returns

A value less than, equal to, or greater than zero, if the first
<n> characters in the character-string referenced by <s1> is
lexicographically less than, equal to, or greater than the first
<n> characters in the character-string referenced by <s2>

DESCRIPTION

This function lexicographically compares a maximum of <n>
characters from the character-string referenced by <s1> with a
maximum of <n> characters of the character-string referenced by
<s2> and returns as its result a value which indicates the result
of that comparison. That value is less than, equal to, or
greater than zero, indicating that the first <n> characters of
the character-string referenced by <s1> is lexicographically less
than, equal to, or greater than the fist <n> characters of the
character-string referenced by <s2>.

NOTES

The include-file "<string.h>" defines the string-handling
functions in the C library.

SEE ALSO

C Library: strcmp()

7-258 @ 4404 Reference Manual

strncpy

Copy a character-string.

SYNOPSIS

#include <string.h>
char *strncpy(s1, s2, n)
char *s1;
char *s2;
int n;

Arguments

s11 The address of the target buffer

SECTION 7
'C' Compliler

s2\ The address of the character-string to copy
nl The maximum number of characters to copy

Returns

<s1>

DESCRIPTION

This function copies characters from the character-string
referenced by <s2> into the buffer whose address is <s1> until a
null-character is copied or <n> characters have been copied,
which ever comes first. It returns the address of the target
buffer as its result.

NOTES

The function does not append a null-character to the copied
characters. The standard C library does not define the behavior
of overlapping data movement, so using overlapping data movement
may result in differing behavior on different systems. The
include-file "<string.h>" defines the string-handling functions
in the C library.

SEE ALSO

C Library: strcpy()

4404 Reference Manual @ 7-259

SECTION 7
'C' Compliler

strpbrk

Find the first occurrence of any of a list of characters in a
character-string.

SYNOPSIS

#include <string.h>
char *strpbrk(s1, s2)
char *s1;
char *s2;

Arguments

s11 The address of the character-string to search
s21 The address of the character-string containing the

list of characters to search for

Returns

The address of the first occurrence of any of the characters in
<s2> found in <s1>, or (char *) NULL if none of the characters in
<s2> was found in <s2>

DESCRIPTION

This function searches the character-string whose address is <s1>
for the first occurrence of any character in the character-string
whose address is <s2> and returns as its result the address of
that character in <s1>. If the function fails to find any of the
characters in <s2> in the character-string <s1> it returns (char
~) NULL as its result.

NOTES

The include-file "<string.h>" defines the string-handling
functions in the C library.

SEE ALSO

C Library: strchr()

@ 4404 Reference Manual

SECTION 7
'C' Compliler

strrchr

Find the last occurrence of a character in a character-string.

SYNOPSIS

#include <string.h>
char *strrchr(s, c)
char *s;
char c;

Arguments

sl The address of the character-string to search
cl The character to search for

Returns

The address of the last occurrence of the character in the
string, or (char *) NULL if the string does not contain the
character

DESCRIPTION

This function searches the character-string whose address is <s>
for the last occurrence of the character <c>. If the string
contains the char- acter, the function returns as its result the
address of the last oc- currence of the character. Otherwise, it
returns (char *) NULL.

NOTES

The include-file "<string.h>" defines the string-handling
functions in the C library.

SEE ALSO

C Library: rindex(), strchr()

4404 Reference Manual @ 7-261

SECTION 7
'C' Compliler

strspn

Determine the like character-count.

SYNOPSIS

#include <string.h>
int strspn(s1, s2)
char *s1;
char *s2;

Arguments

s11 The address of the character-string to examine
s21 The address of the character-string containing the

characters to search for

Returns

The length of the initial segment of <s1> containing only
characters found in <s2>

DESCRIPTION

This function examines the character-string whose address is <s1>
and determines the length of the initial character segment
containing only characters found in the character-string whose
address is <s2>. It re- turns this count as its result.

NOTES

The include-file "<string.h>" defines the string-handling
functions in the C library.

SEE ALSO

C Library: strcspn()

7-262 @ 4404 Reference Manual

strtoi

Convert the digits in a character-string to an int.

SYNOPSIS

int strtoi(str, ptr, base)
char *str;
char **ptr;.
int base;

Arguments

SECTION 7
'C' Compliler

strl The address of the character-string to convert to
an integer

ptrl

basel

Returns

The address of the char * to contain the address
of the character which terminates the conversion,
or (char **) NULL if none

The base of the digits

The value generated from the character-string.

DESCRIPTION

This function converts the character-string referenced by <str>
to an int. It considers the digits to be in the base specified
by <base> and assigns the address of the character ending the
conversion to the char * referenced by <ptr>. The character that
ends the conversion is either the null-character terminating the
string or the first character that was inconsistent with the
base. If <ptr> is (char **) NULL, the function does not make
this assignment.

If the argument <base> is greater than 0 and less than or equal
to 36, that value the base of the digits in the character-string.
(For bases between 11 and 36, the alphabetic characters 'A'
through '2' inclusive, in lexicographic order, are the digits of
the base. The function considers lower-case characters to be the
same as uppercase characters.)

4404 Reference Manual @ 7-263

SECTION 7
'C' Compliler

If the base is 0, the function examines the character-string to
determine the base. If following the optional white-space and
sign is "Ox" or "OX", the base is assumed to be 16. Otherwise,
if a '0' follows the optional white-space and sign, the base is
assumed to be 8. Otherwise, the base is assumed to be 10. If
the base is less than 0 or greater than 36, the base is assumed
to be 10.

NOTES

The function ignores overflow conditions.

SEE ALSO

7-264

C Library: atoh(), atoi(), atol(), _atoo(), _atos(),
str to 1 ()

@ 4404 Reference Manual

strtok

Extract the next token from a character-string.

SYNOPSIS

#include <string.h>
char *strtok(s1, s2)
char *s1;
char *s2;

Arguments

SECTION 7
fC' Compliler

s11 The address of the character-string to search, or
(char *) NULL

s21 The address of the character-string containing the
token separators

Returns

The address of the first character of the next token, or (char *)
NULL if none

DESCRIPTION

If the argument <s1> is not (char *) NULL, this function begins
scanning with the first character in the character-string whose
address is <s1> for the first character which is not in the
token-separator character-string whose address is <s2>.
Otherwise, the function begins scanning at the
continuation-address set by a previous call, if any.

If the function finds no characters which are not
token-separators, the function sets the continuation-address to
(char *) NULL and returns (char *) NULL as its result.
Otherwise, it remembers the address of that charac- ter, as the
value the function will return as its result and continues
scanning, looking for the next character that is a
token-separator.

If it finds a token-separator, it changes that character to a
null-character (' Of), sets the continuation-address to that of
the character following that token-separator. Otherwise, it sets
the continuation-address to (char *) NULL. The function then
returns the remembered address, the address of the token, as its
result.

4404 Reference Manual @ 7-265

SECTION 7
'C' Compliler

NOTES

The function always returns (char *) NULL if it is called with
the first argument (char *) NULL and there is no
continuation-address. There is no continuation address if the
function has not been called with the first argument something
other than (char *) NULL or the function returned (char *) NULL
the last time it was called. The separator string referenced by
<s2> need not be the same string from one call to this function
to another.

If the function returns as its result something other than (char
*) NULL, that result always references a character-string (a---
null-terminated string of characters). The include-file
"<string.h>" defines the string-handling functions in the C
library.

SEE ALSO

C Library: strchr(), strpbrk(), strrchr()

7-266 @ 4404 Reference Manual

strtol

Convert the digits in a character-string to a long.

SYNOPSIS

long strtol(str, ptr, base)
char *str;
char **ptr;
int base;

Arguments

SECTION 7
'C' Compliler

str\ The address of the character-string to convert to an
integer

ptr\

basel

Returns

The address of the char * to contain the address
of the character which terminates the conversion,
or(char **) NULL if none.

The base of the digits

The value generated from the character-string.

DESCRIPTION

This function converts the character-string referenced by <str>
to a long. It considers the digits to be in the base specified
by <base> and assigns the address of the character ending the
conversion to the char * referenced by <ptr>. The character that
ends the conversion is either the null-character terminating the
string or the first character that was inconsistent with the
base. If <ptr> is (char **) NULL, the function does not make
this assignment.

If the argument <base> is greater than 0 and less than or equal
to 36, that value the base of the digits in the character-string.
(For bases between 11 and 36, the alphabetic characters 'A'
through 'Z' inclusive, in lexicographic order, are the digits of
the base. The function considers lowercase characters to be the
same as uppercase characters.)

4404 Reference Manual @ 7-267

SECTION 7
'C' Compliler

If the base is 0, the function examines the character-string to
determine the base. If following the optional white-space and
sign is "Ox" or "OX", the base is assumed to be 16. Otherwise,
if a '0' follows the optional white-space and sign, the base is
assumed to be 8. Otherwise, the base is assumed to be 10. If
the base is less than 0 or greater than 36, the base is assumed
to be 10.

NOTES

The function ignores overflow conditions.

SEE ALSO

7-268

C Library: atoh(), atoi(), atol(), _atoo(), _atos(),
:=strtoi()

@ 4404 Reference Manual

Current time zone value.

SYNOPSIS

#include <time.h>
extern long timezone;

DESCRIPTION

timezone

SECTION 7
'C' Compliler

This variable contains the current time zone value which is the
number of seconds the zone is west of (behind) Greenwich Mean
Time (Universial Coordinated Time).

This variable is initialized automatically by "localtime()" and
"ctime()" and may be initialized explicitly by "tzset()". Before
initialization, the value is zero.

NOTES

The include-file "<time.h>" defines this external variables along
with other external variables and functions.

SEE ALSO

C Library: ctime(), daylight, localtime(), tzname, tzset()

4404 Reference Manual @ 7-269

SECTION 7
'C' Compliler

toascii

Generate a value that is within the range of valid ASCII characters.

SYNOPSIS

#include <ctype.h>
int toascii(c)
int c;

Arguments

cl Value to be examined

Returns

<c> & Ox7F

DESCRIPTION

This function generates a value that is within the range of ASCII
characters from the value <c> and returns that value as its
result. It does this by anding the value <c> with the bit-string
Ox7F (127). The result is a value between OxOO and Ox7F
inclusive, which is the range of ASCII characters.

NOTES

The argument <c> will be cast into an int if it is not already of
that type. The include-file n<ctype.h~defines this function
and other functions which test and manipulate characters. It
must be included in the C source before the first reference to
this function.

SEE ALSO

7-270

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), isgraph(), islower(), isprint(),
ispunct(), isspace(), isupper(), isxdigit(),
tolower(), _tolower(), toupper(), _toupper()

@ 4404 Reference Manual

SECTION 7
'C' Compliler

tolower

Convert an upper-case character to a lower-case character.

SYNOPSIS

#include <ctype.h>
int tolower(c)
int c;

Arguments

c\ Value to convert

Returns

The converted value

DESCRIPTION

This function converts an uppercase alphabetic ASCII character to
its equivalent lowercase alphabetic character and returns that
value as its result.

NOTES

This function is implemented as a macro. It will have no
side-effects but the result of the function is defined only for
values of <c> which are upper-case alphabetic ASCII characters.
The argument <c> will be cast into an int if it is not already of
that type. T'he include-file "<ctype.h)ildefines this function
and other functions which test and manipulate characters. It
must be included in the C source program before the first
reference to this function.

SEE ALSO

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), isgraph(), islower(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(),
tolower(), toupper(), _toupper()

4404 Reference Manual @ 7-271

SECTION 7
'C' Compliler

~toupper

Convert a lower-case character to an upper-case character.

SYNOPSIS

#include <ctype.h>
int toupper(c)
int -c;

Arguments

cl Value to convert

Returns

The converted value

DESCRIPTION

This function converts a lowercase alphabetic ASCII character to
its equivalent uppercase alphabetic character and returns that
value as its result.

NOTES

This function is implemented as a macro. It has no side-effects
but its result is only defined for values of <c> which are
lowercase alphabetic ASCII characters. The argument <c> will be
cast into an int if it is not already of that type. The
include-file n<ctype.h>" defines this function and other
functions which test and manipulate characters. It must be
included in the C source before the first reference to this
function.

SEE ALSO

7-272

C Library: isalnum(), isalpha(), isascii(), iscntrl(),
isdigit(), isgraph(), islower(), ispunct(),
isspace(), isupper(), isxdigit(), toascii(),
tolower(), _tolower(), toupper()

@ 4404 Reference Manual

ttyname

Generate the pathname for a terminal.

SYNOPSIS

char *ttyname(fildes)
int fildes;

Arguments

fildesl A file descriptor for the terminal

Returns

SECTION 7
rc' Compliler

The address of a character-string containing a pathname for the
terminal or (char *) NULL if <fildes> is not a file descriptor
for a terminal residing in the directory "/dev"

DESCRIPTION

This function determines if the file referenced by the file
descriptor <fildes> is a character-special file (a terminal), and
is reached by a pathname whose path is the directory "/dev". If
the file satisfies these conditions, the function generates a
complete pathname for the file and returns as its result the
address of a character-string containing that complete pathname.
Otherwise, it returns as its result (char *) NULL.

NOTES

The character-string addressed by the result of this function is
in static memory and is overwritten by subsequent calls to this
function. A file descriptor is an index into the operating
system's open file table. The system functions "creat()",
"dup()", "dup2()", "open()", and "pipe ()" return a file
descriptor as their result. The function "fileno()" determines
the file descriptor of a stream.

SEE ALSO

C Library: fileno(), isatty()

System Call: creat(), dup(), dup2(), open(), pipe(), ttyslot()

4404 Reference Manual @ 7-273

SECTION 7
'C' Compliler

Time-zone name abbreviations.

SYNOPSIS

#include <time.h>
extern char *tzname[2];

DESCRIPTION

tzname

This external variable is two-element array of references to
character-strings. The first element references the
three-character abbreviated name of the standard-time time zone,
contained in a character-string. The second references the
three-character abbreviated name of the daylight-time time zone,
contained in a character-string. A (char *) NULL value indicates
that "tzname" has not been initialized. A null-string indicates
that the abbreviated name is not known.

The list is initialized automatically by "localtime()" and
"ctime()" and may be initialized explicitly by "tzset()". The
values in the list are (char *) NULL before initialization.

SEE ALSO

C Library: ctime(), daylight, localtime(), timezone, tzset()

7-274 @ 4404 Reference Manual

SECTION 7
'C' Compliler

tzset

Initialize external variables containing time parameters.

SYNOPSIS

void tzse t ()

Arguments

None

Returns

Void

DESCRIPTION

This function initializes the global variables "daylight",
"timezone", and "tzname" according to the current system
configuration.

The variable "daylight" is non-zero if the standard U.S.A.
daylight-savings time conversion is to be applied to all time
conversions from system time or Greenwich Mean Time (GMT) to the
time in the local time zone, otherwise it is zero. The variable
"timezone" contains the number of seconds the current time zone
is west of GMT. The array "tzname" contains two elements, the
first is the address of a character-string containing the
abbreviation for the current standard time-zone name, the second
is the address of a character-string containing the abbreviation
for the current daylight time-zone name. If one or the other is
not known, the strings will be null-strings.

NOTES

This function is called automatically by "localtime()" and
"ctime()".

SEE ALSO

C Library: ctime(), daylight, localtime(), timezone, tzname

4404 Reference Manual @ 7-275

SECTION 7
'C' Compliler

ungetc

Push a character onto an input stream.

SYNOPSIS

int ungetc(c, stream)
int c;
FILE *stream;

Arguments

cl
streaml

The character to push onto the stream
The stream to get the character

Returns

Its argument <c> or EOF

DESCRIPTION

If <c> does not equal EOF, this function pushes (char) <c> onto
the standard I/O input stream <stream>. If the function
succeeds, it returns its argument <c>, otherwise it returns EOF.

NOTES

A stream may only have one character pushed onto it at a time.
Attempting an "ungetc()" on a stream that already has a character
pushed onto it results in losing the previously pushed character.
The function returns EOF of the stream referenced by <stream> is
not an input stream. The "fseek()" and "rewind()" functions undo
the effects of this function. The result of "ftell()" does not
reflect any character pushed onto the stream.

7~276 @ 4404 Reference Manual

SECTION 7
'C' Compliler

SEE ALSO

C Library: fdopen(), fgetc(), fopen(), fseek(), getc(),
rewind ()

THE GRAPHICS LIBRARY

The graphics library provides access to the bit-mapped display
and to the event manager. It uses the mechanisms that support
Small talk's use of the bit-mapped display, the keyboard, and the
mouse. The graphics library allows applications to use the
"bitblt" graphics primitive, change the cursor, detect button
presses, and perform simple graphics operations such as draw
lines and boxes, as well as other related abilities.

The library itself is in the file named "/lib/graphics", with a C
header file which defines the various structures in
"/lib/include/graphics.h".

The following conventions apply to the graphics library:

o All arguments are of the type int or pointer to int, unless
otherwise specified.

o In all the following descriptions, the C language
definitions of true and false are valid.

o For true/false arguments are interpreted by the functions as
true <> ° and false == 0.

o The values returned from the library functions should be
interpreted as true > 0, false == 0, and error
condition < 0.

o All functions without explicit return values will return
success/failure indications as success == 0, failure (error
condition) < O.

o Any function which returns an error condition will also set
the global variable "errno" to an appropriate error code.

4404 Reference Manual @ 7-277

SECTION 7
'C' Compliler

The following routines are included in the graphics library:

struct FORM *InitGraphics(arg)

Map the bit-mapped display into the address space of the calling
process and put the display in graphics mode. If the argument is
false, all other modes are unchanged. If the argument is true,
then in addition, the display is cleared, made visible, and set
to normal video (black on white) with both mouse and joydisk
panning enabled. This routine returns a pointer to a form which
defines the screen bit-map.

ExitGraphics() Terminate use of graphics mode.

The display may be re-initialized by the terminal emulator.

ClearScreen()
boo\

Set the full screen bit-map to zeros.

If the screen is set to normal video, this will result in a white
screen. The terminal emulator is not affected by this call,
i.e., the terminal emulator's idea of where to place its next
character is unchanged.

struct FORM *FormCreate(w, h)

Allocate memory for a bit-map of the specified size and return a
pointer to a form which defines it.

FormDestroy(struct FORM *form)

Free a form and the bit-map associated with it. The screen form,
returned by InitGraphics, cannot be destroyed.

DisplayVisible(arg)

Make the display visible or blanked. The display is made visible
if the argument is true, otherwise it is blanked. The previous
mode is returned (true for visible, false for blanked).

CursorVisible(arg)

Make the cursor visible or invisible. The cursor is made visible
if the argument is true, otherwise it is blanked. The previous
mode is returned (true for visible, false for invisible).

VideoNormal(arg)

Set the video mode of the display. The mode is set to normal
video (black on white) if the argument is true, and to inverse
video (white on black) otherwise. The previous mode is returned
(true for normal, false for inverse).

7-278 @ 4404 Reference Manual

PanCursorEnable(arg)

SECTION 7
'C' Compliler

Enable screen panning using the cursor. If the argument is true
then auto-panning with the cursor is enabled, otherwise it is
disabled. The previous mode is returned (true for cursor
auto-panning enabled, false for cursor auto-panning disabled).

PanDiskEnable(arg)

Enable screen panning using the joydisk. If the argument is true
then auto-panning with the joydisk is enabled, and otherwise it
is disabled. The previous mode is returned (true for joydisk
auto-panning enabled, false for joydisk auto-panning disabled).

ScreenSaverEnable(arg)

Enable the screen saver timeout, which causes the screen to be
blanked after 10 minutes of keyboard or mouse inactivity. If the
argument is true then the timeout is enabled, otherwise it is
disabled. The previous mode is returned (true for screen saver
enabled, false for screen saver disabled).

TerminalEnable(arg)

Enable the terminal emulator. If the terminal emulator is
disabled, no process can print characters on the screen unless it
calls PaintString. If the argument is true then the terminal
emulator is enabled, otherwise it is disabled. The previous mode
is returned (true for terminal emulator enabled, false for
terminal emulator disabled).

CursorTrack(arg)

Force the cursor to track the mouse. If the argument is true,
then moving the mouse will cause the cursor to track the mouse
position, otherwise the mouse will have no affect on the cursor.
The previous mode is returned (true for track, false for
non-tracking).

SetViewport(struct POINT *point)

Set the panning hardware to display the upper left-hand corner of
the 640x480 display at the specified position. The x and y
values defined in the point must be in the physical range of the
screen.

4404 Reference Manual @ 7-279

SECTION 7
'C' Compliler

GetViewport(struct POINT *point)

Get the position which the panning hardware is displaying as the
upper left-hand corner of the 640x480 display. The x and y values
returned in the point will be in the range 0 to 1023, inclusive.

SetCursor(struct FORM *cursor)

Install a new cursor. The cursor parameter points to a form
containing the 16x16 bit representation for the new cursor.

GetCursor(struct FORM *cursor)

Return the current cursor image. The cursor parameter must point
to a 16x16 bit form. That form will have the 16x16 bit
representation of the current cursor placed in it.

SetCPosition(struct POINT *point)

Display the cursor at the specified position. If cursor/mouse
tracking is enabled, i.e., CursorTrack(TRUE), this is the same as
SetMPosition. The x and y values defined in the point must be in
the range 0 to 1023, inclusive.

GetCPosition(struct POINT *point)

Get the position where the cursor is currently displayed. If
cursor/mouse tracking is enabled, i.e., CursorTrack(TRUE), this
is the same as GetMPosition. The x and y values returned in the
point will be in the range 0 to 1023, inclusive.

SetMPosition(struct POINT *point)

Position the mouse at the specified position. If cursor/mouse
tracking is enabled, i.e., CursorTrack(TRUE), this is the same as
SetCPosition. The x and y values defined in the point must be in
the range 0 to 1023, inclusive.

GetMPosition(struct POINT *point)

Get the position where the mouse is currently pointing. If
cursor/mouse tracking is enabled, i.e., CursorTrack(TRUE), this
is the same as DGetCPosition. The x and y values returned in the
point will be in the range 0 to 1023, inclusive.

7-280 @ 4404 Reference Manual

SetMBounds(struct POINT *p1, struct POINT *p2)

SECTION 7
'C' Compliler

Set the limits on mouse motion to be the rectangle defined by the
upper left point p1 and the lower right point p2. The x and y
values defined in the point may be in the range -32768 to 32767,
inclusive.

GetMBounds(struct POINT *p1, struct POINT *p2)

Get the limits on mouse motion. The x and y values returned in
the point will be in the range -32768 to 32767, inclusive.

SaveDisplayState(struct DISPSTATE *dp)

Copy significant parameters of the current display state into the
structure designated. These parameters will include at least the
coordinates of the viewport, the mouse bounds, the current
cursor, the keyboard code, and the display, terminal emulator,
cursor, panning, tracking, screen saver, and video modes.

RestoreDisplayState{struct DISPSTATE *dp)

The state defined by the argument structure is re-established.

ProtectCursor(struct RECT *r1, struct RECT *r2)

Tell the operating system that graphics operations will be
occurring in one or both of the screen areas defined by the two
rectangles (either rectangle pointer may be null). The operating
system will respond by removing the cursor from the screen if it
is in either of the two areas. This instruction and its release
(ReleaseCursor) should be used if the user is writing or reading
directly from the screen. This cursor protection is already
included in the routines of this library which draw on the
screen.

ReleaseCursor()

Tell the operating system to restore the cursor if it was removed
due to a ProtectCursor call. This call should be used to match
every ProtectCursor call.

GetButtons()

Return an int which indicates the state of the mouse buttons.
The buttons states are reported in the low three bits of the int,
where bit 0 is the right button, bit 1 is the middle buttons, and
bit 2 is the left button. If the bit is a a then the button is
up, if the bit is a 1 then the button is down (depressed). The
button bits are defined constants in the graphics header file.

4404 Reference Manual @ 7-281

SECTION 7
'C' Compliler

BitBlt(structG *bitbltComPtr)

Perform the bitblt command described in the record pointed to by
the parameter. The record contains the source and destination
rectangles, clipping regions, halftone mask, and combination
rule.

PaintLine(struct BBCOM *bitbltComPtr, struct POINT *p)

Paint a line on the display. A sequence of bitblt operations is
performed while stepping a pixel at a time toward the specified
position. If the one of the exclusive OR rules is specified, and
the source is null (ones), the response will instead be as if the
line was drawn by the above stepping method to a hidden bit-map
and then that hidden bit-map was combined with the destination
bit-map according to the specified rule.

PointToRC(int *row, int *col, struct POINT *p)

Convert a screen coordinate to the row, column indices which
define the terminal emulator character cell which contains that
point.

RCToRect(struct RECT *rectp, int row, int col)

Given row and column indices which define a terminal emulator
character cell, returns the rectangle which describes that cell.

EventEnable()

Enables event processing, i.e., turns on the event manager. Any
subsequent user input action will cause event values to be
created. Keyboard input through the "console" device and
terminal emulator is disabled.

EventDisable()

Disables event processing, i.e., turns off the event manager.
Keyboard input through the "console" device and terminal emulator
is re -ena bled.

ESe tSigna I ()

Request the event manager to signal the current process when
events occur. The event signal is disabled after being issued.

ESetMInterval(freq)

Specifies how frequently mouse motion events are to be created if
the mouse is continuously moving.

7-282 @ 4404 Reference Manual

EGe tCoun t ()

SECTION 7
'C' Compliler

Returns the number of event values in the event buffer waiting to
be processed. Return of a negative number indicates an error.

EGe tNewCoun t ()

Returns the number of event values in the event buffer which have
occurred since the previous call to this function.

union EVENTUNION EGetNext()

Returns the next event value in the event buffer. Since some
event values are self-contained and some are headers to the
following values, this function returns either a structure or an
unsigned short.

unsigned long EGetTime()

Returns the time, in milliseconds, since the system was powered
up. A return time of 0 indicates an error.

ESetAlarm(unsigned long time)

Requests a signal when the specified time, in milliseconds, is
reached.

EClearAlarm()

Clears any pending alarms that the process has requested.

SetKBCode(arg)

This tells the keyboard to output either event codes, if arg is
0, or ANSI character strings, if arg is 1. Other arguments are
not recognized at this time. Event processing must be enabled
before asking for event codes, and enabling events automatically
forces the keyboard into event mode. This would normally be used
after enabling the event mechanism, to force the keyboard back to
ANSI mode, while leaving the mouse generating events.

#INCLUDE FILES

The directory "/lib" contains a subdirectory "/lib/include/",
which contains the subdirectory "/lib/include/sys". In these
directories, you will find the files that are available to the
"#include" preprocessor command.

4404 Reference Manual @ 7-283

Section 8

4404 HARDWARE SUPPORT

INTRODUCTION

You can access the 4404 hardware directly, but in general, ~his
tends to be cumbersome and error-prone. The operating system has
embedded within it device drivers, or software routines that
offer a uniform interface with the operating system. Most
programs should interface with the 4404 through these device
drivers.

This section discusses the device drivers and system calls to the
4404 hardware.

DEVICE DRIVERS

Device drivers are divided into two types: block-oriented and
character-oriented. Block-oriented devices include the disks and
other peripherals on the SCSI bus. Character-oriented devices
include the console, the communications port, the sound
generator, the printer port, the optional network interface, and
special devices for "raw" access to the block-oriented devices.
Each of these devices is identified by a file in the "/dev"
directory.

The system calls "ttyget" and "ttyset" can be used with the
console, communications port, sound, and printer devices.
Descriptions of the parameters to these calls are found in
Section 6, System Calls.

SCSI PERIPHERALS

A SCSI bus gives access to the block-oriented devices. These
devices include such things as winchester disks, floppy disks, and
(optional) streaming tape drives.

The /dev SCSI peripheral devices are:

o disk The winchester disk with the system files.

o disk1 .. diskn -- Optional winchester disks.

o floppy Floppy disk drive.

The standard 4404 contains a single floppy disk (/dev/floppy) and
a 40 Megabyte winchester (/dev/disk). Option 20 contains an
additional 40 Megabyte winchester disk and a streaming tape drive.

4404 Reference Manual @ 8-1

SECTION 8
Hardware Support

Device "/dev/disk" is the standard system device and is the
default device from which to boot the system. You must use the
interactive boot procedure to boot from another device.

CONSOLE DEVICE

The device "/dev/console" supports the 4404 display and keyboard.
It is connected to a terminal emulator which acts like an
industry-standard terminal (described in Section 10 of this
manual) .

To read and write terminal settings and other parameters of this
device, use the "ttyget" and "ttyset" system calls, or the
"conset" utility.

COMMUNICATIONS PORT

The device "/dev/comm" supports the RS-232C host communications
port. You can control the baud rate, number of stop bits,
parity, and XON/XOFF or DTR flow control. You can also cause
new input or completion of output to generate a signal, as well
as read the number of characters pending in the input and output
queues.

The "ttyget" and "ttyset" system calls, and the "commset" utility
allow you to read and write the communications port parameters.

SOUND GENERATOR

The device "/dev/sound" is the 4404 sound generator. By sending
a formatted byte stream to this device (a TI 76496 sound
generator chip), you can cause the 4404 to produce sounds.

This device is a write-only device. An attempt to read it will
return an error. It is also an exclusive-use device and may be
opened by only one task at a time.

The "ttyset" and "ttyget" system calls can change operation
settings and examine device status.

Controlling the Sound Device

"/dev/sound" expects a stream of bytes in the following form:

n,c,c,c ... c,t
or
O,tempo

with the following values:

8-2 @ 4404 Reference Manual

SECTION 8
Hardware Support

n -- A single byte specifying the number of commands to
follow.

c -- A single byte binary command to the sound chip.
(See the following discussion on sound chip operation
and commands.)

t -- A byte value specifying the length of time to hold this
set of commands. T is in units of tempo set by the
second format.

tempo -- A 16-bit (word) value of time with a unit value of
16.667 ms.

"/dev/sound" Operation and Commands

The sound chip contains three frequency generators,
each coupled to a programmable attenuator. It also contains a
white-noise generator (a shift register with an exclusive-OR
feedback network) that contains a frequency control and
programmable attenuator.

Frequency Control. Changing the value in a frequency
generator requires two command bytes. Byte 1 contains the
address information (which frequency generator to alter) and the
low order 4 bits of the value to store. Byte 2 contains the high
order 6 bits to set the frequency. Thus, the two bytes contain
a 3-bit address and a 10-bit binary number to set the frequency
to be generated.

The frequency is equal to the clocking rate of the chip (which is
3.15 MHz) divided by thirty-two times the binary number that is
stored in the frequency generator.

Table 8-1 shows the bit assignments in Byte 1 and Table 8-2 shows
the bit assignments in byte 2.

4404 Reference Manual @ 8-3

SECTION 8
Hardware Support

Table 8-1

FREQUENCY SELECTION (BYTE 1)

I Bit I Type I Description

I 0 I 1 I This bit is always 1

I 1 I R2 I Register address bit 2

I 2 I R1 I Register address bit 1

I 3 I RO I Register address bit 0

I 4 I F3 I Frequency data bit 3

I 5 I F2 I Frequency data bit 2

I 6 I F1 I Frequency data bit 1

I 7 I FO I Frequency data bit 0

8-4 @ 4404 Reference Manual

Table 8-2

FREQUENCY SELECTION (BYTE 2)

I Bit I Type I Description

I 0 I 0 I This bit is always 0

I 1 I x I Unused

I 2 I F9 I Frequency data bit 9

I 3 I F8 I Frequency data bit 8

I 4 I F7 I Frequency data bit 7

I 5 I F6 I Frequency data bit 6

I 6 I F5 I Frequency data bit 5

I 7 I F4 I Frequency data bit 4

4404 Reference Manual @

SECTION 8
Hardware Support

8-5

SECTION 8
Hardware Support

Controlling Attenuation. You can control the
attenuation on any frequency generator with a single command
byte. This byte contains a 3-bit field to select the attenuator
and a 4-bit field to specify the amount of attenuation. Four
bits give you 16 possible attenuations. Table 8-3 shows the
attenuation settings and table 8-4 shows the bit assignments for
the attenuation control byte.

8-6 @

Table 8-3

ATTENUATION CONTROL

I A3 I A2 I A1 I AO I Attenuation I
I I I I I Weight (dB) I

I 0
I
I

I 0 I 0
I I
I I

I 0
I
I

I 0 I 0 I 0 I 1

I 0 I 0 I 1 I 0

I 0 I 1 I 0 I 0

I ON (Full
I Volume)

2

4

8

I 1 I 0 I 0 I 0 16

I 1 I 1 I 1 I 1 Off

4404 Reference Manual

SECTION 8
Hardware Support

Table 8-4

ATTENUATION BYTE BIT ASSIGNMENTS

I Bit I Type I Description

I 0 I 1 I Always 1

I 1 I R2 I Register address bit 0

I 2 I R1 I Register address bit 1

I 3 I RO I Register address bit 2

I 4 I A3 I Attenuation control bit 3

I 5 I A2 I Attenuation control bit 2

i 6 I A1 I Attenuation control bit 1

I 7 I AO I Attenuation control bit 0

Controlling the Noise Generator. The noise generator
consists of a noise source and an attenuator. You can control
the type of feedback in the exclusive-OR network, the shift rate,
and the attenuator itself.

Table 8-5 shows how you control the feedback, table 8-6 shows the
shift-rate control, and table 8-7 shows the bit assignments for
the noise generator command byte.

4404 Reference Manual @ 8-7

SECTION 8
Hardware Support

8-8 @

Table 8-5

NOISE FEEDBACK CONTROL

I FB I Configuration I

I 0
I
I

I 1

I Periodic
I noise

I White noise

Table 8-6

NOISE FREQUENCY CONTROL

I NF1 I NFO I Shift Rate I

I 0 I 0

I 0 I 1

I 1 I 0

1 1

I 49218

I 24609

I 12304

I Tone
I generator
I #3 output

4404 Reference Manual

Table 8-7

NOISE-CONTROL-BYTE BIT ASSIGNMENTS

I Bit I Type I Description

I 0 I 1 I Always 1

I 1 I R2 I Register address bit 2

I 2 I R1 I Register address bit 1

I 3 I RO I Register address bit 0

I 4 I x I Unused

I 5 I FB I Feedback control bit

I 6 I NF1 I Shift ra te con trol bi t 1

SECTION 8
Hardware Support

I 7 I NF2 I Shift rate control bit 0

Control Registers. The sound chip has eight internal
registers that determine whether the byte(s) sent control the
frequency or attenuation of the three tone generators or the
control or attenuation of the noise generator. The destinations
for all addressed bytes are given in Table 8-8.

4404 Reference Manual @ 8-9

SECTION 8
Hardware Support

Table 8-8

CONTROL REGISTER ADDRESSES

I R2 I R1 I RO I Address register

I 0 I 0 I 0 I Tone 1 frequency

I 0 I 0 I 1 I Tone 1 attenuation I

I 0 I 1 I 0 I Tone 2 frequency

I 0 I 1 I 1 I Tone 2 attenuation I

I 1 I 0 I 0 I Tone 3 frequency

I 1 I 0 I 1 I Tone 3 attenuation I

I 1 I 1 I 0 I Noise control

I 1 I 1 I 1 I Noise a ttenua tion

SOUND EXAMPLES

The following examples show how you can control the sound device
by sending bytes to it. You can have a program send the bytes
directly to the sound device, "/dev/sound", or you can have your
program store these bytes into a file, "noiseFile", then issue
the command:

list noiseFile >/dev/sound

Set the tempo to be 1 beat per second (1000 mil lisee/beat)

Byte 1 = 0 "Tempo word follows"

Byte 2 = 0 "high order byte = (1000 div 16.667) div 256"

Byte 3 = 59 "low order byte = (1000 div 16.667) mod 256"

8-10 @ 4404 Reference Manual

SECTION 8
Hardware Support

Set the frequency for voice 2 to be 440 Hz

Byte 4 = 2

Byte 5 =175

"2 command bytes follow"

"1 010

always 1

voice 2
frequency-

1 1 1 1"

I
I
I
I
I
I
I
I
I
I

low order 4 bits calculated as
(3,150,000 div (32 * 440» div 16"

Byte 6 = 13 "0

always 0

unused

o 001 101

I
I
I
I
I
I
I
I

high order 6 bits:
(3,150,000 div(32 * 440» div 16"

Byte 7 = 0 "hold this set of commands 0 beats"

Play voice 2 at full volume for 1 beat

"1 command follows" Byte 8 = 1

Byte 9 =176 "1 o 1 1 o 0 0 0

always 1 I
I
I

voice 2 I
a ttenua tion

leave it

I
I
I
I
I
I
I
I
I
I

all

Byte 10 = 1 "play for 1 beat"

4404 Reference Manual

the way on

@ 8-11

SECTION 8
Hardware Support

Turn the volume of voice 2 down by 12 dB and play for 2 beats

Byte 11 = 1

Byte 12 =188

"1 command byte follows"

"1 o 1 1 1 1 0 0"

always 1 I I
I
I
I
I
I
I
I
I
I

I
I

voice 2 I
attenuation

a ttenua te by 12 dB"

Byte 13 = 2 "hold for 2 beats"

Turn voice 2 off so it won't play forever"

Byte 14 = 1

Byte 15 =191

Byte 16 = 1

"1 command

"1 o 1 1

turn

"hold for 1

byte follows"

1 1 1 1 "

I
I

voice 2 off

bea t"

Play white noise (hissing sound)

Byte 17 = 1 "1 command byte follows"

Byte 18 =228 "1 1 1 0 0 1 o 0"

always 1 I shift ra te = 0 I
I coarse hissing I

noise I
!

control - I white I noise
I
I

unused

Byte 19 = 0 "hold 0 beats"

(least
sound)

8-12 @ 4404 Reference Manual

SECTION 8
Hardware Support

Turn down the volume 18 dB and hold for 2 beats

Byte 20 = 1

Byte 21 =249

"1 command follows"

"1 111 1· 0 0 1"

always 1 I I
I
I
I
I
I
I
I
I
I

I
I

noise I
attenuation

a ttenua te

Byte 22 = 2 "hold 2 beats"

Turn noise off

by 18 dB"

Byte 23 = 1

Byte 21 =255

"1 command follows"

"1 111

always 1 I
I
I

noise I
a ttenua tiOn

111 1

I
I
I
I
I
I
I
I
I
I

attenuate by 30 dB"

Byte 25 = 1

PRINTER PORT

"hold 1 beat"

The device "/dev/printer" provides interface to the 4404 parallel
interface printer port. This port provides a
Centronics-compatible parallel port that can drive most
inexpensive dot-matrix (and some letter quality) printers.

"/dev/printer" accepts character streams and recognizes the ANSI
X3.64 "Select Graphic Rendition" escape sequences for bold or
italic characters.

These devices are write-only; any attempt to read them will
return an error. They are exclusive-use devices and may be
opened by only one task at a time.

The system calls "ttyget" and "ttyset" can be used to examine
device status and change operation settings.

4404 Reference Manual @ 8-13

SECTION 8
Hardware Support

OTHER DEVICES

The /dev directory contains other entries for devices supported
by the operating system:

disk c
disk1 c •• diskn c
floppy c
tape c-
null~
pmem
smem
swap

Raw system disk
Raw optional winchester disk
Raw floppy disk drive
Raw streaming tape drive
Null device
Physical memory
System memory
Swap space on winchester disk

These devices are all character-oriented. The raw versions of
the peripheral devices provide access to them as simple character
streams without file systems. The null device may be used as a
data sink. The memory devices can be used to inspect and modify
the system's memory.

These devices, with the exception of /dev/null, are reserved for
use by system programs.

CAUTION

Use of these devices is an excellent way to
crash the operating system and destroy the
disk file structure.

DISPLAY, MOUSE, AND KEYBOARD SUPPORT

The 4404 display is a 1024 X 1024 virtual display viewed through
a 640 X 480 physical display viewport. The operating system
includes support that allows positioning and smooth panning of
the viewport over the virtual display. The operating system also
supports the creation and movement of a display cursor.

The 4404 display uses Smalltalk-80 conventions. The upper-left
corner of the display has coordinates (0,0), while the
lower-right corner has coordinates (1023,1023). X coordinates
increase toward the bottom of the screen; Y coordinates increase
to the right.

Full program access to interactive event processing is supported
through system calls to an event manager. Events include mouse
movements, and up/down transitions of the mouse, keyboard, and
joydisk contacts. The design of the event mechanism is patterned
closely after a similar mechanism described on pages 648-650 of
the book Smalltalk-80: The Language and Its Implementation.

8-14 @ 4404 Reference Manual

DISPLAY PANNING

SECTION 8
Hardware Support

The operating system allows the 640 X 480 hardware display
viewport to be positioned anywhere on the virtual display as long
as the upper left corner has an X-coordinate less than 383 and a
Y-coordinate less than 539.

The operating system supports the panning of the viewport over
the virtual display under control of the mouse and joydisk. When
joydisk panning is enabled, pushing the top of the joydisk causes
the Y-coordinate to decrease by 5 pixels during each vertical
sync interrupt, while pushing the bottom causes it to increase a
like amount. Pushing the left side of the joydisk causes the
X-coordinate to decrease 5 pixels per interrupt; while pushing
the right side of the joydisk causes it to increase. Joydisk
panning ceases in a particular direction when the coordinate for
that direction reaches zero or its maximum value.

The cursor remains at a fixed position on the virtual display
while the viewport is panned by the joydisk. When cursor panning
is enabled, moving the cursor will also cause the viewport to pan
so that the cursor is always located within the physical
viewport. This allows the mouse to pan the viewport position
because the cursor position is usually linked to mouse movement.

CURSOR AND MOUSE TRACKING

The cursor is a 16 X 16 bit-map that is displayed by logically
ORing it into the display bit-map. The contents of the area
under the cursor are saved and they are restored when the cursor
is moved. The operating system allows the cursor's position to
track the motion of the mouse. When this feature is enabled, the
operating system will automatically move the cursor whenever the
mouse is moved.

The mouse position is not allowed to exceed certain bounds when
the cursor is linked to the mouse. The default bounds are the
virtual display coordinates. The user may change these bounds
and allow the cursor to be moved off the virtual display.

DISPLAY ACCESS FUNCTIONS

The operating system provides access to display functions through
the processor's trap instruction. To invoke these functions,
load register DO with the function code (or parameters for the
function) and issue a trap #13 instruction.

On return, the carry bit will be clear if there were no errors.
If an error occurs, the carry bit will be set and register DO
will contain an error code.

4404 Reference Manual @ 8-15

SECTION 8
Hardware Support

The display functions are:

Display Function 0: cursorOn

Displays the cursor. Returns 1 in DO if the cursor was
previously enabled, 0 if it was not.

Display Function 1: cursorOff

Suspends display of the cursor. Returns 1 in DO of the
cursor was previously enabled, 0 if it was disabled.

Display Function 2: cursorLink

Causes the cursor to track the mouse. Returns 1 in DO if the
cursor was previously linked, 0 if it was not.

Display Function 3: cursorUnlink

Breaks the links that caused the cursor to track the mouse.
Returns 1 in DO if the cursor and mouse were linked, 0 if not.

Display Function 4: cursorPanOn

Causes the viewport to pan when the cursor reaches an edge.
Returns 1 in DO if previously enabled, 0 if not.

Display Function 5: cursorPanOff

Disables viewport panning via cursor movement. Returns 1 in DO
if previously enabled, 0 if not.

Display Function 6: displayOn

Makes the display visible. Returns 1 in DO if previously
visible, 0 if blanked.

Display Function 7: displayOff

Blanks the display. Returns 1 in DO if previously visible, 0 if
blanked.

Display Function 8: joyPanOn

Turns on panning via joydisk. Returns 1 in DO if previously
enabled, 0 if not.

8-16 @ 4404 Reference Manual

SECTION 8
Hardware Support

Display Function 9: joyPanOff

Disconnects the joydisk from viewport panning. Returns 1 in DO
if panning were previously enabled, 0 if not.

Display Function 10: timeoutOn

Causes the screen to automatically blank if inactive for ten
minutes. Returns 1 in DO if previously enabled, 0 if not.

Display Function 11: timeoutOff

Disables automatic blanking. Returns 1 in DO if previously
enabled, 0 if not.

Display Function 12: blackOnWhite

Sets the display to Normal Video mode. Returns 1 in DO if
previously normal, 0 if inverted.

Display Function 13: whiteOnBlack

Sets the display to Inverse Video mode. Returns 1 in DO if
previously normal, 0 if inverted.

Display Function 14: terminalOn

Enables use of the terminal emulator with the display. Returns 1
in DO if previously enabled, 0 if not.

Display Function 15: terminalOff

Disables use of the terminal emulator with the display. Returns
1 in DO if previously enabled, 0 if not.

Display Function 16: getMousePoint

The position of the mouse is returned as an (X,Y) pair in the
high and low halves of register DO. If the cursor is linked to
the mouse, this is the same as the mouse position.

Display Function 17: setMousePoint

The current mouse position is set to the position passed as an
(X,Y) pair in the high and low halves of register DO. If the
cursor is linked to the mouse, the cursor position is also set.

4404 Reference Manual @ 8-17

SECTION 8
Hardware Support

Display Function 18: getCursorPoint

The current cursor position is returned as an (X,Y) pair in the
high and low halves of register DO. If the cursor is linked to
the mouse, this is the same as the mouse position.

Display Function 19: setCursorPoint

The current cursor position is set to the position passed as an
(X,Y) pair in register DO. If the mouse is linked to the cursor,
the mouse position is also set.

Display Function 20: getButtons

The state of the mouse buttons is returned in register DO. Bit 0
corresponds to the left button, bit 1 to the middle button, and
bit 2 to the right button. Zero in a bit indicates that the
corresponding button is up, one indicates that it is pressed.

Display Function 21: setSource

The source rectangle for a bitBlt operation is passes ~s an
argument in registers D1 and D2. It is encoded as:

upper-left-corner (XO,YO) in the high and low halves of
register D1

lower-right-corner (X1,Y1) in the high and low halves of
register D2.

The operating system insures that the cursor is not displayed in
this area.

Display Funotion 22: setDest

The destination rectangle for a bitBlt operation is passed as an
argument in registers D1 and D2. It is encoded as:

upper-Ieft-corner (XO,YO) in the high and low halves of
register D1

lower-right-corner (X1,Y1) in the high and low halves of
register D2.

The operating system insures that the cursor is not displayed in
this area.

8-18 @ 4404 Reference Manual

Display Function 23: updateComplete

SECTION 8
Hardware Support

This function allows the cursor to be displayed in areas
previously specified as source or destination rectangles.

Display Function 24: getCursorform

This function gets the cursor (a 16 X 16 pixel bit-map stored as
sixteen consecutive words). You must pass a pointer to this
bit-map in register AO.

Display Function 25: setCursorform

This stores the image of the cursor (as a 16 X 16 bit-map of
sixteen consecutive words) beginning at the address passed as a
pointer in register AO.

Display Function 26: getViewport

Returns the position of the upper left corner of the physical 640
X 480 physical viewport in the 1024 X 1024 virtual display. This
position is returned as an (X,Y) pair in the high and low halves
of register DO.

Display Function 27: setViewport

Sets the display hardware to start updating from a specific
position within the display bit-map. The position is specified
as an X,Y pair passed in the high and low halves of register D1.
This is used to position the 640x480 viewport anywhere within the
1024x1024 virtual display.

Display Function 28: getDisplayState

The current state of the display is returned in a record pointed
to by register AO. The display state area must be at least ??
bytes in length (at an even address) and will contains the
following information: «to be supplied»

Display Function 29: setKeyboardCode

The form of output generated by the keyboard is set by the value
passed in D1. Valid values are:

0 sets keyboard output to event codes

1 sets keyboard output to ANSI terminal code sequences.

This call is normally only used after a "Enable Event Processing"
call which implicitly sets the keyboard code to o (event codes).
The previous keyboard code is return in DO.

4404 Reference Manual @ 8-19

SECTION 8
Hardware Support

Display Function 30: getMouseBounds

Return the limits of the rectangle within which the mouse and
cursor are constrained in DO and D1. DO contains the coordinates
of the upper left corner of the rectangle. D1 contains the
coordinates of the lower right corner.

Display Function 31: setMouseBounds

Set the limits of the rectangle within which the mouse and cursor
are constrained. D1 contains the coordinates of the upper left
corner of the rectangle. D2 contains the coordinates of the
lower right corner.

Display Function 32: XYtoRC

Convert screen coordinates to terminal row and column. D1
contains the coordinates of a point on the portion of the virtual
display used by the ANSI terminal emulator. Upon return the top
half of DO will contain the index of the terminal character row
which contains that point. The lower half of DO will contain the
index of the character column.

Display Function 32: RCtoXY

Convert terminal row and column to screen coordinates. The top
half of D1 contains the index of a terminal character row and the
lower half of D1 contains the index of the character column.
Upon return DO will contain the coordinate of the upper left
corner of the character cell. The top half of D1 will contain
the width (in pixels) of the character cell and the bottom half
will contain the height of the character cell.

8-20 @ 4404 Reference Manual

SECTION 8
Hardware Support

KEYBOARD AND MOUSE EVENT PROCESSING

The event manager creates a buffered stream of 16-bit values
which encode actual events. In general, the high-order 4 bits
of the values are event type codes and the low-order 12 bits are
event parameters. The following event-type codes are assigned:

o delta time
1 mouse X location
2 mouse Y location
3 key or button pressed
4 key or button released
5 absolute time

Whenever the keyboard or mouse changes state, a time event is
generated (either a type 0 or type 5 event) which reports the
time of the event. This is followed by an event value which
specifies the actual change which occurred.

EVENT MANAGER FUNCTIONS

The operating system provides access to the event manager
functions through the same mechanism as to the display functions.
The trap #13 instruction invokes the function whose code is
passed in register DO. The event manager functions are described
in the following paragraphs.

Event Function 40: eventsEnable

Turns on the event manager. Any subsequent user input action
wi 11 cause- even t va 1 ue s to be crea ted. Normal keyboard inpu t
through the "console" device and terminal emulator is disabled.

Event Function 41: eventsDisable

Turns off the event manager. Keyboard input through the
"console" device and terminal emulator is enabled.

Event Function 42: eventSignalOn

Requests the event manager to signal the current process when
events occur. The event signal is disabled after being issued.

4404 Reference Manual @ 8-21

SECTION 8
Hardware Support

Event Function 43: eventMouselnterval

Specifies how frequently mouse motion events are to be created if
the mouse is continuously moving. The frequency value is passed
in register DO and is specified in units of milliseconds
granularity of milliseconds). A value of 0 indicates that mouse
motion events should not be created

Event Function 44: getEventCount

Returns in register DO the number of event values in the event
buffer waiting to be processed.

Event Function 45: getNewEventCount

Returns in register DO the number of event values in the event
buffer which have occurred since the previous call to this
function.

Event Function 46: getNextEvent

Returns in register DO the next event value in the event buffer.

Event Function 47: getMillisecondTime

Returns in register DO the number of milliseconds since the
system was turned on (a 32-bit value).

Event Function 48: setAlarmTime

A 32-bit millisecond time relative to system power-up is passed
in register DO. The requesting process will be signaled when
this time is reached.

Event Function 49: clearAlarm

Clears any pending alarms that the process has requested.

8-22 @ 4404 Reference Manual

EVENT MANAGER KEY CODES

SECTION 8
Hardware Support

Each key on the keyboard, each position of the joydisk, and each
of the mouse buttons has an event driver code associated with it.
Table 8-1 shows the event code associated with each button.

I Key Label I Event Code I I Key Label I Event Code I
---------~---
I Caps lock I 139

I Shift (left) I 136

I Shift (right) I 137

I Control

I Break

I Backspace

I Tab

I Line Feed

I Return

I Escape

I (space bar)

, "

I > •
I < ,
I
I -

I / ? I •

10)

I 1 !

I 2 @

i 3 #

14$

I 138

I 140

I 141

I 8

I 9

I 10

I 13

I 27

I 32

I 39

I 46

I 44

I 45

I 47

I 48

I 49

I 50

I 51

I 52

4404 Reference Manual

I I S

I T

I u
I V

I I w

Ix

I y

I z
I [{

I \'

I]}
I
I

I Rubout

I Enter

I I Pad ,

I Pad -

I Pad •

I I Pad 0

I Pad 1

I Pad 2

I I Pad 3

I Pad 4

I 115

I 116

I 117

I 118

I 119

I 120

I 121

I 122

I 91

I 92

I 93

I 124

I 127

I 150

I 151

I 152

I 153

I 154

I 155

I 156

I 157

I 158

@ 8-23

SECTION 8
Hardware Support

------------------------~-~-----------------------~-~- -------
I 5 %

I 6 A

17&

18*

I 9 (

I • •
I , •

1=+

I A

I B

I C

I D

I E

I F

I G

I H

I I

I J

i K

I L

I M

I N

I 0

I P

I Q

I R

8-24

I 53

I 54

I 55

I 56

I 57

I 59

I 61

I 97

I 98

I 99

I 100

I 101

I 102

I 103

I 104

I 105

I 106

i 107

I 108

I 109

I 110

I 111

I 112

I 113

I 114

@

I Pad 5 I 159

I Pad 6 I 160

I Pad 7 I 161

I Pad 8 I 162

I Pad 9 I 163

I F1 I 201

I F2 I 202

I F3 I 203

I F4 I 204

I F5 I 205

I F6 I 206

I F7 I 207

I F8 I 208

I F9 I 209

I F10 I 210

I F11 I 211

I F12 I 212

I Mouse left I 130

I Mouse middle I 129

I Mouse right I 128

I Joydisk up I 213

I Joydisk down I 214

I Joydisk right I 215

I Joydisk left I 216

4404 Reference Manual

FLOATING POINT SUPPORT

SECTION 8
Hardware Support

The operating system provides access to the floating point
hardware. Floating point values are in IEEE format. Both 32-bit
single precision and 64-bit double precision formats are
supported.

These operations are invoked by a trap #12 instruction with
function code and arguments stored in registers. The floating
point function code is passed in register D2. Operands are
passed in registers DO and AO if they are single precision or
integer, or in register pairs DO/D1 and AO/A1 if they are double
precision. If only one operand is required it is passed in DO
(or DO/D1). The result is returned in register DO for single
precision, and in register pair DO/D1 for double precision.

For subtracts, compares, and divides the value in register AO (or
AO/A1) is subtracted from, compared to, and divided into the
value in register DO (or DO/D1). For compare operations the
processor's condition codes are set to reflect the result of the
comparison. The floor function converts a floating point number
to the largest integer less than or equal to it. The file
"/lib/sysfloat" contains symbolic definitions of the floating
point functions for use by assembly language programs.

FLOATING POINT FUNCTIONS

FP Function 0: FAOO

Add two single precision numbers.

FP Function 1: FSUB

Subtract two single precision numbers.

FP Function 2: FMUL

Multiply two single precision numbers.

FP Function 3: FOIV

Divide two single precision numbers.

FP Function 4: FCMP

Compare two single precision numbers.

FP Function 5: FNEG

Negate a single precision number.

4404 Reference Manual @ 8-25

SECTION 8
Hardware Support

FP Function 6: FABS

Take absolute value of a single precision number.

FP Function 7: FltoF

Convert integer to single precision floating paint.

FP Function 8: FFtolr

Round single precision floating point to integer.

FP Function 9: FTtolt

Truncate single precision floating point to integer.

FP Function 10: FFtolt

Floor function for single precision numbers.

FP Function 11: FFtoO

Convert single precision number to double precision.

FP Function 12: FOtoF

Convert double precision number to single precision.

FP Function 13: FOADD

Add two double precision numbers.

FP Function 14: FDSUB

Subtract two double precision numbers.

FP Function 15: FDMUL

Multiply two double precision numbers.

FP Function 16: FDDIV

Divide two double precision numbers.

FP Function 17: FDCMP

Compare two double precision numbers.

FP Function 18: FDNEG

Negate a double precision number.

8-26 @ 4404 Reference Manual

SECTION 8
Hardware Support

FP Function 19: FDABS

Take absolute value of a double precision number.

FP Function 20: FItoD

Convert an integer to double precision floating point.

FP Function 21: FDtoIr

Round double precision floating point to integer.

FP Function 22: FDtoIt

Truncate double precision floating point to integer.

FP Function 23: FDtoIt

Floor function for double precision numbers.

FP function 24: FsetStat

The value in DO is written into the 32081 's Status Register.
Bits 7 and 8 may be used to specify a rounding mode. Bits 9-15
may be used to store an arbitrary value. No other bits 'have any
effect if set. Note that changing the rounding modes will have a
global effect on all processes using the floating point
processor.

FP Funotion 25: FgetStat

The value of the 32081's status register is returned in DO.

FLOATING POINT RETURNS

A successfull execution of a floating point system call returns
with the V (overflow) bit cleared. If an error occurs, the
routine returns with the V bit set and the error indicated by the
contents of Register DO. The error codes are:

$8000
$4000
$0001

$0002
$0003
$0004

$0005

$0006

FPU failed to complete an operation.
Driver called with invalid operand (>25) in D2.
Result had an underflow. "Trap on underflow" was
enabled.
Result overflowed.
Divide by zero error.
Invaled op operand passed to FPU. (This error
should not ever occurr.)
FPU passed an operand that is not a valid floating
point value.
Result was inexact with "trap on inexact result"
enabled.

4404 Reference Manual @ 8-27

SECTION 8
Hardware Support

OVERALL ADDRESS SPACE

MEMORY UTILIZATION

The 68010 processor on the 4404 is capable of addressing 16 Mb of
memory. Of this, the 4404 recognizes the lower 8 Mb. (All
addresses given in this discussion will be hexadecimal unless
stated otherwise.) The 4404 operating system uses a virtual
memory scheme whereby 8 Mb of virtual memory is mapped into the
4404's physical memory in 4 Kb increments. To a programmer
working through the operating system, it appears that the entire
8 Mb address space (ranging from 000000 through 1FFFFF) is
available.

PHYSICAL MEMORY

The standard 4404 contains 1 Mb of physical RAM in addresses
000000 through OFFFFF. Option 1 adds an additional 1Mb of
physical memory in addresses 100000 through 2FFFFF.

Addresses 200000 through 5FFFFF are reserved for future
expansion.

DISPLAY MEMORY

The 4404 display memory begins at address 600000 and occupies
through address 6FFFFF. The virtual display begins in the upper
left corner at address 600000 and proceeds in 1024 (decimal)
lines of 64 (decimal) 16-bit (decimal) words. Each word has the
most significant bit first, thus each word controls 16 pixels on
the display.

I/O AND ROM MEMORY SPACE

The memory segment from 700000 through 7FFFFF is dedicated to
ROM, I/O, and various utilities. It consists of eight 128 Kb
pages arranged as:

8-28

700000
720000
740000
760000
780000
7AOOOO
7COOOO

@

71FFFF
73FFFF
75FFFF
77FFFF
79FFFF
7BFFFF
7FFFFF

Spare 0
Spare 1
Boot ROM
Debug ROM space (for factory use)
Processor Board I/O (treated later)
Peripheral Board I/O (treated later)
EPROM application space

4404 Reference Manual

Processor Board I/O

780000
782000
784000
786000
788000
78AOOO
78COOO
78EOOO

781FFF
783FFF
785FFF
787FFF
789FFF
78BFFF
78DFFF
78FFFF

Peripheral Board I/O

7AOOOO
7B1000
7B2000
7B4000
7B6000
7B8000
7BAOOO
7BCOOO
7BEOOO

7AFFFF
7B1FFF
7B3FFF
7B5FFF
7B7FFF
7B9FFF
7BBFFF
7BDFFF
7BFFFF

4404 Reference Manual

SECTION 8
Hardware Support

Map Control Registers
Video Address Registers
Video Control Registers
Spare
Sound
Floating Point Hardware
Debug ACIA
Spare

Reserved for future expansion
Diagnostic registers
Printer
Serial I/O
Mouse
Timer
Calendar
SCSI bus address registers
SCSI

@ 8-29

Section 9

"EDIT" THE TEXT EDITOR

INTRODUCTION

This section describes "edit," the standard 4404 text editor,
including how to call the editor, the interface between the
editor and the 4404 operating system, a description of each of
the editor commands (with examples), and an annotated list of the
messages that the editor may issue.

"edit" is both content-oriented and line-oriented. Lines in the
file being edited may be referenced either by specifying a line
number or by specifying some part of the content of the line.
"edit" is not a screen-oriented editor.

CALLING THE EDITOR

Example:

edit

When the editor is called with no arguments, it issues a message
that a new file is being created, and then prompts for the
information that is to be put into the file. When the editing
session is terminated (by the "stop" command, for example), the
editor will prompt for the name of the file to which to write the
information. The user responds to this prompt by typing in the
file name, including a path name if necessary.

If an end-of-file signal is typed in response to the prompt for a
file name, all information is discarded and the editing session
is terminated. (See the discussion "Operating System Interface"
later in this section for more information on the end-of-file
signal.)

Calling the Editor with a File Name

Example:

edi t test

If only one file name is given as an argument, the editor assumes
that this is the file or the name of the file that is being
edited.

4404 Reference Manual @ 9-1

SECTION 9
Text Edi tor

If the file does not exist, a new file having the specified name
is created. A message stating that fact is issued, and the
editor then prompts for the information to be stored in the file.
When the editing session is terminated, the information is
written to the file.

If the file already exists, the information in it is read into an
edit buffer and a prompt for an editor command is issued. When
the editing session is terminated, the file will contain the
revised information. The information as it was before the
editor was called is preserved in a backup file (unless the "b"
option was specified, as described later on). The name of the
backup file is normally the name of the original file with the
characters ".bak" appended to the end of it. If the original
name is too long to accommodate the additional four characters,
the name is truncated and the ".bak" appended to the shortened
name.

Calling the Editor with Two File Names

Example:

edit test newtest

When the editor is called with two file names, the first file
name is assumed to be the name of the file containing the
information to be edited, and the second name is that of the file
that is to receive the revised information. Both file names may
contain path names if necessary to adequately describe their
locations. If a path name is specified for the first file name,
it is not propagated to the second file name. In the example,
the file "test" is assumed to contain the information which is
to be edited, and the file "newtest" is going to contain the
edited information. If the first file does not exist, the editor
writes a message indicating that the edit file does not exist,
and then terminates the edit session. If the second file
already exists, a prompt is issued asking for permission to
delete the existing file. (This prompt may be avoided with the
"y" option, described below.) If an end-of-file signal is typed
in response to this prompt, it is assumed that the file is not to
be deleted, and the editing session is immediately terminated
with no changes having been made.

9-2 @ 4404 Reference Manual

Options

SECTION 9
Text Editor

Options are specified to the editor by specifying an argument
whose first character is a plus sign (+). The plus sign is
immediately followed by one or more lowercase letters indicating
the option or options selected. The options may be before,
after, or intermixed with file name arguments.

b Do not create a backup file. "b" tells the editor not
to create a backup file.

n Do not initially read the file being edited. This
option is meaningful only if an existing file is being
edited. Normally, the editor reads the file into
memory so that the information may be manipulated with
editor directives. By specifying "n" as an option, the
information is not initially read into memory. The
user may then use editor directives to enter new
information, either from the terminal or by reading
other files, which will appear in front of the
information in the file being edited. The "new"
command must be used to start the reading of the edit
file. This option is most useful if a large amount of
information is to be entered in front of the data being
read from the file being edited. To insert only a
small amount of information at the front of a file,
the "insert" command may be used.

y Delete any existing copy of the new file or the backup
file. "y" causes the editor to delete any existing
copy of the backup file (if only one file name is
specified) or the new file (if two file names are
specified), without asking permission from the user.

If the edi tor cannot recognize an argument as a valid option~, it
issues an error message and continues to look for valid
arguments.

Examples of calls including options:

edit test +b
edit test newtest +y
edit +nb test

4404 Reference Manual @ 9-3

SECTION 9
Text Editor

OPERATING SYSTEM INTERFACE

The text editor follows the operating system conventions with
regard to special characters and file names. For a discussion of
file names, see Section 1 of this manual. The special characters
and their effect on the editor are treated below.

Normally, the editor allows any character to be in a file,
including control characters. There are some characters,
however, which have special meaning to the operating system and
thus cannot be typed in from the keyboard. The special
characters with which the editor is concerned are:

o backspace character
o escape character
o line delete character
o horizontal tab character (control-i)
o control-d: keyboard signal for end-of-file
o control-c: keyboard interrupt
o control-\: "quit" signal

Backspace character

The backspace character (Back Space on the keyboard) is used when
entering commands and data to erase the last character typed.

Escape character

The ASCII "escape" character (Esc on the 4404 keyboard) is used
to temporarily stop and resuming the printing of information at
the terminal. A more detailed description of the function of the
"escape" character is described in the documentation of the 4404
Operating System. Here, it suffices to say that it is not
possible to enter the "escape" character into a file using the
editor:

Line delete oharaoter

The line delete character is used when entering commands and data
to delete the line currently being typed.

Horizontal tab character

This character (Tab from the 4404 keyboard) refers to the ASCII
horizontal tab character (HT), a hexadecimal 09. This is not the
same as the tab character that can be defined within the editor.
The editor itself is not concerned with the HT character, but the
operating system may perform special handling when this character
is typed or displayed. The editor treats the HT character as a
single character, regardless of how the 4404 displays it.

9-4 @ 4404 Reference Manual

SECTION 9
Text Editor

Control-d: keyboard signal for end-of-file

The editor treats a "control-d" as an "end-of-file". The action
taken by the editor depends on what the editor was expecting as
input. A "control-d" typed in the middle of a command has the
same effect as a line delete character. If the control-d is
typed as the first character in response to a request for a
command (that is, in response to the # prompt), it is treated as
a "stop" command. A "control-d" typed while inserting lines
has the same effect as typing the line delete character followed
by the line number character and a carriage return. That is,
it cancels the current input line and the editor requests an
editor command.

The effect of typing control-d in response to specific prompts
depends on the prompt that was issued. Each such case is treated
in the "Editor Command" discussions.

Control-c: keyboard interrupt

The editor traps the "control-c" keyboard interrupt and uses it
as a signal to stop executing an "append", "cchange", "change",
"find", or "print" command. It has no effect on other commands.
If the editor is executing multiple commands typed on a single
line, typing a "control-c" will cause the editor to stop
processing those commands and request a command from the
keyboard.

Control-\ : "quit" signal

The "quit" signal causes the editor to terminate immediately,
without making any attempt to save the edited information. If
an existing file was being edited when the "quit" signal was
typed, the original file is left intact without any of the
changes that had been made during the edit session.

4404 Reference Manual @ 9-5

SECTION 9
Text Editor

THE EDITOR'S USE OF DISK FILES

The standard 4404 text editor is a disk-oriented editor: the
information being edited is read from and written to disk files.
Other than the user's terminal, the only way to provide
information to the editor is through disk files. When the editor
is called to edit an existing file, the information in that file
is read into a large buffer in memory called the "edit buffer".
It is in this buffer that all of the changes to the information
take place. When the user is satisfied with the changes made,
the updated information is written to a disk file in response to
specific commands. If a file is larger than will fit in the edit
buffer, the file must be processed in segments. With few
exceptions, the editing commands operate only on data that is in
the edit buffer. Commands are provided which permit the user
to flush the edit buffer of updated information and read in the
next segment of data for editing. How the editor manipulates
disk files depends on whether it is creating a new file or
editing an existing file. In some cases, a temporary file is
created to hold the updated information. If used, this temporary
file is named "edit" followed by a period, 5 digits, and a single
letter; for example, "edit.00324a." Unless the editor is
termina ted by a "qui t" signal or a fa tal system error, the
temporary file is destroyed at the end of the edit session.

CREATING A NEW FILE

When the editor is called with a single file name and that file
does not already exist, the editor will create the file at the
start of the edit session and write directly into it as the edit
session progresses.

When the editor is called with no file names specified, a
temporary file in the user's current directory is created and the
information is written to it as the edit session progresses.

At the end of the edit session, this temporary file is given the
name specified in response to the "File name?" prompt.

EDITING AN EXISTING FILE

When the editor is called with a single file name, and that file
already exists, a temporary file is created and the information
is written to it as the edit session progresses. The temporary
file is created in the same directory in which the file being
edited resides. At the end of the edit session, the original
file is renamed to the backup file name, and the temporary file
is given the name of the original file. If no backup file is
requested (by specifying a "b" option), the original file is
destroyed and the temporary file is given the name of the.
original file.

9-6 @ 4404 Reference Manual

SECTION 9
Text Editor

When the editor is called with two file names specified, the
second file is created and the updated information is written
directly into it. The original file is not changed.

COMMAND INPUT FROM A FILE

It is possible to use I/O redirection to have the editor read its
commands from a file instead of from the keyboard. The editor
will process the commands as though they were entered from the
terminal's keyboard. If the end of the command file is reached
before a "stop" or "abort" command is read, the action is the
same as though a "control-d" were typed from the keyboard. (See
the discussion of "control-d earlier in this section.)

FATAL ERRORS

The text editor attempts to make an intelligent decision when
confronted with an error response to an operating system call.
However, if an error is received which is unexpected and
indicates that the editor cannot continue to function, it will
issue a message and terminate immediately. The various messages,
both fatal and nonfatal, are listed under the heading "Editor
Messages" later in this section.

4404 Reference Manual @ 9-7

SECTION 9
Text Editor

USING STRINGS

EDITOR COMMANDS

Several editor commands use character strings as arguments.
These arguments are either matched against strings in the text,
or replace a string in the text. A string argument begins after
a delimiter character and continues as a sequence of any
characters until the delimiter is again encountered. The
delimiters are not considered part of the string to be used in
the matching or replacement operations. Although the
delimiters in the following descriptions are frequently
represented as slashes, "I", nearly any non-blank,
non-alphanumeric character may be used as the delimiter such as:
* I () $, • [] : 'etc. Note that the following characters
may not be used to enclose strings unless they are preceded by
either a plus (+) or minus (-) sign: ""''' (denotes first line of
file), "!" (denotes last line of file), "_,, (denotes target is
above current line), and the character denoted by "lino"
(normally a pound sign), which is used to indicate line numbers.
The equals sign "=,, may not be used as a string delimiter. The
delimiter character is redefined in each new request by its
appearance before a string. If two strings exist in one command
(as in the "change" command), the same delimi ter character must
be used for each string.

All editor commands use the <line> information preceding the
command to position the pointer prior to any command action. The
<line> parameter may of course be null, meaning leave the pointer
at its current position. All of the following are valid <line>
designators:

Any number

+n

n

l<string>1

-1<string>1

null

9-8 @

The specific line number

The nth subsequent line

The nth previous line

The next line in the file containing the
indicated string of characters

A previous line containing the indicated
string

The first line of the file

The last line of the file

The current line

4404 Reference Manual

SECTION 9
Text Editor

Line numbers less than 1.00 must be specified with a leading
zero. For example, even though the editor may display a line
number as ".10", it should be specified as "0.10" when used in
commands. The maximum line number is 65535.99. Inserting
after this maximum line number will cause the line numbers to
"wrap around" back to zero.

Many editor commands require <target> information. This tells
the editor to operate on the "current" line and all other lines
in the file up to the line referenced by the <target>. In cases
where a <target> is required, leaving it null will make the
<target> default to one, and only the current line will be
affected. All of the following are valid <target> designators:

an integer n

#n

/<string>/

-/<string>/

+or- n

(null)

n lines should be affected by the edit
operation

The line number of the last line to be
affected. The "#" is actually the "lino"
character and may be changed by the user
with the "set" command.

The next line in the file containing the
specified character string.

The previous line containing the indicated
string

All lines up to the top of the file

All lines to the bottom or last line of the
file

Indicates that n lines should be affected and
in which direction from the current line

Defaults to 1 and only the current line is
affected

As we have seen, <target> is used to specify a range of lines to
which the command will apply. The command will be applied to
each line, starting with the line specified by <line> and
continuing until the target is reached.

4404 Reference Manual @ 9-9

SECTION 9
Text Editor

If a string <target> is specified, the command will apply to
successive lines of text until a line containing the string is
reached. Processing proceeds downward in the edit buffer unless
the target is preceded by a ,,_It (minus sign), indicating that
processing is to proceed upward (toward the first line) in the
edit buffer. Targets may also be preceded by a plus sign
(indicating downward movement). If a line number target is
specified, processing begins at <line> and proceeds toward the
target line number. Some examples of <target>s are:

2
+10
-3
/STRING/
+/STRING TARGET/
-/BACKWARD DISPLACEMENT TO A STRING/
+*ANY DELIMITER WILL WORK FOR STRING*
++EVEN PLUS SIGNS CAN WORK+
#23.00

SPECIFYING A COLUMN NUMBER

Any "/<string>/" descriptor may be postfixed with a column number
immediately after the second delimiter to indicate that the
preceding string must begin in the column specified. If the
column specified is not in the range of the zone in effect, the
request will be ignored. (See the "zone" command.) Some examples
are:

/IDENT/11
/PROGRAM/77
*LABEL*2
$COMMENT$30

USING THE DON'T-CARE CHARACTER

A "Don't-Care Character" may be set to allow indiscriminate
matches of parts of a string. When this character is placed in a
string, any character in the file will automatically match. The
Don't-Care Character will have its special meaning only in a
string being used to search the file. In other words, the
Don't-Care Character will not act as such in a replacement string
such as the second string of a "change" command. The Don't-Care
Character may be effectively disabled by setting it to a null.
Assuming we have previously set the Don't-Care Character to a
"?", here are some examples:

9-10

/A???/

@03/??/78@

/???/9

@

Matches any 4-letter string beginning with A

Matches all days in the 3rd month of 1978

Matches any 3-letter string starting in
column 9

4404 Reference Manual

SECTION 9
Text Editor

THE COMMAND REPEAT CHARACTER:

The "command repeat character," control-r, repeats the last
command in the input buffer. Some examples of commands which may
be useful to repeat are:

PRINT 15 To print a screen of lines at a time

NEXT Allows you to single step through the file with
one key

ACO!! To quickly fill the workspace

FIND/SOME STRING/

USING THE EOL CHARACTER

If the first string found is not the one
desired

The editor supports an "eol" or "End Of Line" character to allow
multiple commands in a single line. There are some commands that
cannot be followed by another command on the same line. This
fact is documented in the descriptions of those commands. The
"eol" character may be changed by using the editor's "set"
command. An example of "eol" use (with "eol" set to "$") is:

AD2$P10$T

This sequence will delete the first 2 lines of the file, then
print the next 10 lines, and finally return the pointer to the
top of the file.

USING TABS:

You may specify a tab character and up to 20 tab stops. The tab
character may then be inserted into a line, where it will be
replaced by the appropriate number of fill characters when the
end of the line is received. The fill character defaults to a
space, but may be changed to another character with the editor's
"set" command. If tab stops or the tab character have not been
previously set, but some character has been used throughout the
file as a tab, it can still be expanded by setting it to be the
tab character, setting up your tab stops and then using the
"expand" command on the file.

4404 Reference Manual @ 9-11

SECTION 9
Text Editor

Note that if the tab character has been set, subsequent uses of
the "insert" or "replace" commands will cause automatic tab
expansion. However if a tab character is added to the file by
the use of a "change", "append", or "overlay" command, that
character will remain intact in the file until the "expand"
command is invoked on the line containing that tab character.

After tabs are expanded, the tab character no longer exists in
the data. All occurrences will have been replaced by the
appropriate number of fill characters. Setting the tab character
to be the same as the fill character effectively disables the tab
feature. Note the the tab character described above is distinct
from the ASCII horizontal tab character (HT or control-i). The
effect of the HT character is described in the "Operating System
Interface" discussion earlier in this section. It is possible to
set the editor tab character to the HT character. If this is
done, the operating system may take special action when the HT
character is typed, but the character will be replaced by fill
characters when it is put into the edit buffer.

LENGTH OF TEXT LINES

Lines entered from the keyboard are limited to 255 characters.
The lines in the text file may be of any length. Lines longer
than 255 characters may be created with the "merge" and "append"
commands.

COMMANDS

There are five groups of editor commands: environment commands,
system commands, "current line" movers, edit commands, and disk
commands. A complete description of all commands in each group
is given below. In the following descriptions, quantities
enclosed in square brackets ([...]) are optional and may be
omitted: A backslash () is used to separate options: Many
commands have abbreviations. Both the full name of the command
and its abbreviation are given. A command and its abbreviation
may be used interchangeably. All commands below are in lower
case; however, in use, a command may be in either upper case or
lower case.

9-12 @ 4404 Reference Manual

SECTION 9
Text Editor

ENVIRONMENT COMMANDS

DK1

Syntax

dk1 <command string>

Description

"dk1" is used to define one of two "command constants", which can
be executed at any time by the "kl" command. The <command
string> is a single command or several commands separated by the
"eol" character (see "set" command). All of the command line,
including the carriage return is assumed to be the argument to
the "dk1" command. The "dk1" command is most useful for
remembering and re-executing a frequently used sequence of
commands.

Example

dk1 f -/.nl/1$i/.sp

DK2

Syntax

dk2 <command string>

Description

Define a command sequence of "f
-/.nl/1" followed by "i/.sp". This
assumes that "eol" is "$". This
sequence may be executed by typing
"k1".

"dk2" is used to define one of two "command constants", which can
be executed at any time the the "k2" command. The <command
string> is a single command or several commands separated by the
"eol" character (see "set" command). All of the command line,
including the carriage return is assumed to be the argument to
the "dk2" command. The "dk2" command is most useful for
remembering and re-executing a frequently used sequence of
commands.

Example

dk2 c /sample// 1 2

4404 Reference Manual

Define the command constant:
flC /sample// 1 2". This command
may be executed by typing "k2".

@ 9-13

SECTION 9
Text Editor

ESAVE

Syntax

esave [<path_name>]

Description

The "esave" command saves the current editor "environment" on an
"editor configuration" disk file named ".editconfigure" in the
user's directory. The editor environment consists of the
"header" column count; the "numbers" and "verify" flags; current
tab stops; the "tab", "dcc", "fill", "eol", and "lino"
characters; the commands saved as command constants "k1" and
"k2"; and the search zones in effect. When the editor is called,
the environment is automatically set from the configuration file
in the user's directory, if one exists. The editor environment
may also be reset from the configuration file at any time during
the edit session by the "eset" command, described below.

The environment information may be saved in a directory other
than the user's current directory by specifying a path name as an
argument to the "esave" command. This path must include only
directory names and must be terminated by the pathname separator
"/".

Examples

esave Save the current editor environment on the file
".editconfigure" in the user's directory.

esave /dde/ Save the current editor environment in file
"/dde/.editconfigure".

9-14 @ 4404 Reference Manual

SECTION 9
Text Editor

ESET

Syntax

eset [<path_name>]

Description

The "eset" command is used to reset the editor environment from
an editor "configuration" file created by the "esave" command
(see above). The configuration file is named ".editconfigure"
and is normally expected to be found in the user's current
directory. A path name may be specified as an argument to the
"eset" command to force the searching of a different directory.
This path must include only directory names and must be
terminated by the pathname separator "/".

Examples

eset Reset the editor environment from the file
".editconfigure" in the user's directory.

eset /dde/ Reset the editor environment from file
"/dde/.editconfigure".

HEADER

Syntax

header [<count>]
h [<count>]

Description

A header line of <count> columns will be displayed. The heading
consists of a line showing the column numbers by tens, followed
by a line of the form "123456789012 .•. " to indicate the column
number. Columns for which tab stops are set will contain a
hyphen instead of the normal digit. If a column count is given,
it becomes the default so that if just "h" is subsequently typed,
that number of columns will be printed.

Examples

header 72 Display column number headings for 72 columns

h 30 Display column numbers for 30 columns

4404 Reference Manual @ 9-15

SECTION 9
Text Editor

K1

Syntax

k1

Description

Execute the command constant tha t was defined by "dk1". If no
command constant was defined, the current line is printed. This
command may not be followed by another command on the same line.

Examples

k1 Execute the command constant.

K2

Syntax

k2

Description

Execute the command constant that was defined by "dk2". If no
command constant was defined, the current line is printed. This
command may not be followed by another command on the same line.

Example

k2 Execute the command constant.

LK1

Syntax

lk1

Description

Display the command constant that was defined by "dk1". If no
command constant was defined, a blank line is printed.

Example

lk1 Display the command constant.

9-16 @ 4404 Reference Manual

LK2

Syntax

lk2

Description

SECTION 9
Text Editor

Display the command constant that was defined by "dk2". If no
command constant was defined, a blank line is printed.

Example

lk2 Display the command constant.

NUMBERS

Syntax

numbers [off/on]
nu [off/on]

Description

The line number flag is turned off or on. If the flag is off,
then line numbers will never be printed. If neither "off" nor
"on" is specified, then the flag will be toggled from its current
sta te.

Examples

numbers off Turn line number printing off

nu on Turn it back on

nu Toggle from on to off or from off to on

4404 Reference Manual @ 9-17

SECTION 9
Text Editor

RENUMBER

Syntax

renumber
ren

Description

The "renumber" command will renumber all of the lines in the
current edit buffer. Lines in the renumbered buffer will start
with the line number of the first line in the buffer and will
have an increment of one. The current line does not change,
although its number will probably have been changed.

Examples

renumber Renumber the lines in the current edit buffer

ren Renumber the lines in the current edit buffer

SET

Syntax

set <name> = '<char>'

Description

set" is used to define certain special characters or symbols.
The <name>s which may be set are:

tab

fill

dcc

eol

lino

the tab character

the tab fill character

the "don't care" character for string searches

the end of line character which may be used to
separate several commands on a single line

the line number flag character which is used to
indicate that a target is a specific line number

The default values are: dcc, tab, and eol are null, fill is the
space character, lino is "#"

The default values may be initialized from a configuration file
in the user's directory. See the "esave" command.

9-18 @ 4404 Reference Manual

Examples

set tab='/'

set tab=' r

set fill=' r

set eol='$'

set lino='@'

TAB

Syntax

tab [<columns>]

Description

Set the tab character to a

Disable tabbing by setting
to a null

Set tab fill character to a

Set the EOL character to $

Set the line number flag to

slash

the tab

blank

@

SECTION 9
Text Editor

character

Used to set the tab stops. All previous tab stops are cleared.
If no columns are specified, then the only action is to clear all
tab settings. Any tab characters occurring beyond the last tab
stop are left in the text. The maximum number of tab stops
allowed is 20. Tab stops MUST be entered in ascending order.

Examples

tab 11, 18 , 30 Set tab stops at columns 11, 18, and 30

tab Clear all tab stops

VERIFY

Syntax

verify [on/off]
v [on/off]

Description

The verify flag is turned on or off. The verify flag is used by
the commands "change" and "find" (and several others) to display
their results. If neither "on" nor "off" is specified, then the
flag will be toggled from its current state.

Examples

verify off Turn verification off

v on Turn it back on

4404 Reference Manual @ 9-19

SECTION 9
Text Editor

ZONE

Syntax

zone [c1,c2]
z [c1,c2]

Description

zone" is used to restrict all sub-string searches (find, change,
<target)s, etc.) to columns "c1" through "c2" inclusive. Any
substrings beginning outside those columns will not be detected.
If "c1" and "c2" are not specified, then the zones will be reset
to their default values (columns 1 and 255). A string which
starts within the specified search zone and extends out of it
will still match a target.

Examples

zone 11,29 Restrict searches to columns 11 through 29

zone Search columns 1 through 255

9-20 @ 4404 Reference Manual

ABORT

Syntax

abort

Description

SYSTEM COMMANDS

SECTION 9
Text Editor

This command terminates the edit session without saving any of
the changes made during that session. The original file, if one
exists, is left intact. When typed, this command will prompt
"Are you sure?". If a "y" is then typed, the edit session will
be terminated. Typing an "n" or end-of-file signal will cause
the editor to look for another command. Typing any other
character will cause the prompt to be issued again.

Examples

abort Abort the editing session.

EDIT

Syntax

edit <editor arguments>
e <editor arguments>

Description

The "edit" command causes the current editing session to be
terminated (as though a "stop" or "log" command had been
entered), and another editing session started. The <editor
arguments> are any valid file names and editor options as
described earlier in this section under the heading "Calling the
Editor". This command may not be followed by another command on
the same command line. All changes to the editing environment
made by "Environment Commands" remain in effect.

Example

edit test +b Terminate the current editing session and
start editing file "test" with editor option
"b".

4404 Reference Manual @ 9-21

SECTION 9
Text Editor

LOG

Syntax

log

Description

This command ends the editing session. The updated information
is written to the new file, and, if necessary, any unprocessed
data from any existing file is copied to the new file. A backup
file is created if circumstances warrant it. (see the "Operating
System Interface" discussion earlier in this section for more
information on the editor's handling of disk files at the end of
an editing session.)

Example

log

STOP

Syntax

stop
s

Description

Same as "log".

Examples

9-22 @ 4404 Reference Manual

stop

s

u

Syntax

u <operating_system_command>

Description

SECTION 9
Text Editor

The "u" command permits the execution of an operating system
command. The specified command is passed to the "shell" program
for execution. The editor waits for the operating system command
to finish before prompting for another editor command. This
command may not be followed by another editor command on the same
line.

Examples

u list test List the file "test"

u copy test test1 Copy the file "test" to "test1"

WAIT

Syntax

wai t

Description

The "wait" command is used to wait for the completion of a
background task generated by the "x" command (described below).
This command cannot be used to wait for completion of a
background task that was not generated by the editor. The editor
will not request a command until the background task is completed
or a keyboard interrupt (control-c) is typed. When the
background task terminates, a message is displayed specifying the
task number and whether it completed normally or abnormally. In
the event of abnormal termination, the response code or interrupt
code that caused the termination is given.

Example

wai t Wait for the background task to complete

4404 Reference Manual @ 9-23

SECTION 9
Text Editor

x

Syntax

x <operating_system_command>

Description

The "x" command is used to start a background task running. The
<operating system command> which was specified as the argument is
passed to the "shell" program for execution. The task generated
must run to completion before the editor will allow the
generating of another such background task. The "wait" command
must be used to receive the termination status of a task before
the "x" command may be used again. This command may not be
followed by another command on the same line.

Example

x copy test test1

9-24 @

Copy "test" to "test1" as a background
task. A "wait" command must be used to
determine the termination status of the
task before another background task can
be generated.

4404 Reference Manual

SECTION 9
Text Editor

"CURRENT LINE" MOVERS

BOTTOM

Syntax

bottom b

Description

Moves to the last line in the file and makes it the current line.

Examples

bottom Make the last line of the file the current line

b Make the last line of the file the current line

FIND

Syntax

find <target> [<occurrence>]
f <target> [<occurrence>]

Description

Moves the current line pointer to the line specified by <target>
and makes it the current line. If the verify flag is on (see
"verify"), the line will be printed. If <occurrence> is
specified (an unsigned integer or an asterisk), the command will
be repeated <occurrence> times. If <occurrence> is an integer,
it must not start in the first column following the second
delimiter of a string <target>, as it would then appear to be a
column specifier for that string. If no column is to be
specified, insert a space after the second delimiter and before
the <occurrence>, as in the second example given below. An
asterisk means all occurrences of the <target> will be found
until the bottom or top of the edit buffer is reached. If the
target is not found, the current line pointer will not be moved.

Examples

find /string/ Find the next line containing the string
"string"

f/three lines/ 3

4404 Reference Manual

Find the next three lines containing the
string "three lines"

@ 9-25

SECTION 9
Text Editor

NEXT

f/all 'til bottom/* Find all following occurrences of
the indicated string

f-/program/7 * Find all previous lines which have the
word "program" starting in column seven

Syntax

next [<target> [<occurrence>]]
n [<target> [<occurrence>]]

Description

The line specified by the target is made the current line. If
the verify flag is on (see "verify"), the line will be printed.
If <occurrence> is specified, it must be an unsigned integer. It
indicates which occurrence of a line containing the target is to
be made the current line. If the target is not reached, the
current line pointer will be positioned at the bottom of the edit
buffer (or top of the edit buffer for a negative <target». If
no target is specified, the next line will be made the current
line.

Examples

next 5 Make the fifth following line the current line

9-26

n Make the next line the current line

n-10 Make the 10th previous line current

n/string target/ Make the next line containing "string
target" to be the current line

n/3rd occurrence/3 Make the third line containing the
indicated string the current line

@ 4404 Reference Manual

POSITION

Syntax

position <target)
pos <target)

Description

SECTION 9
Text Editor

Searches forward through the file for an occurrence of <target)
and makes the line in which it occurs the current line. If the
target is not found in the current edit buffer, the edit buffer
is flushed and the next edit buffer is read from the file being
edited. This process continues until the target is located or
the end of the file is detected. If the target cannot be
located, the current position is the first line in the last edit
buffer.

The <target) may not be a "backwards target" (preceded by a minus
sign) and may not be an integer indicating relative displacement.
Only a string or a line number (preceded by the "lino" character)
are valid targets. Search zones are honored during the search
for the target. A column number is allowed after the target, but
an occurrence specification is not permitted.

Examples

position /string/5 Position to the line containing the
string "string" in column 5.

pos #1000 Position to line number 1000

TOP

Syntax

top
t

Description

The first line of the file becomes the current line.

Examples

top Make the first line of the file the current line

4404 Reference Manual @ 9-27

SECTION 9
Text Editor

APPEND

Syntax

EDITING COMMANDS

append l<string>1 [<target>]
a l<string>1 [<target>]

Description

Appends the specified <string> after the last character of the
current line (and to successive lines until the target is
reached) .

If the string is postfixed with a column number, then the string
is added beginning at the specified column (rather than at the
end of the line). Any characters previously in the line
following the specified column are overwritten.

Examples

append 1.1

a *HELLO*

Append a period to the end of the current
line

Append the word "HELLO" to the end of the
current line and to the end of the next line.

a/sequence/73 *END*7 Append the word "sequence" starting
in column 73 of the current line
and successive lines until a line
containing the characters "END"
beginning in column seven is found.

BREAK

Syntax

break

Description

The "break" command allows the splitting of a line into two
lines. The current line is printed, then a line of input is
accepted from the terminal (the break line). When the line is
printed, all ASCII HT characters will be displayed as spaces so
that the terminal cursor will not be artificially advanced. The
break line will be positioned directly beneath the line printed
out.

9-28 @ 4404 Reference Manual

SECTION 9
Text Editor

In response to the "Break---" prompt, type any characters to move
the cursor until it is beneath the character that is to be the
first character of the second line. Then type a carriage return.

After the line is split, the second half of the broken line
becomes the current line. If you type an end-of-file signal in
response to the "Break---" prompt, the current line will not be
changed. The current line will also not be changed if the
carriage return typed in the break line is beyond the end of the
current line.

Example

break
25.00 This is the current line.

Break---xxxxxxxxxxxx

The line will be broken at the
start of the word "current".

CHANGE

Syntax

change /<string1>/<string2>/ [<target> [<occurrence>]]
c /<string1>/<string2>/ [<target> [<occurrence>]]

Description

Replaces <string1> with <string2>. If <string2> is omitted,
<string1> is deleted. If no <target> is specified, only the
current line is affected. The slashes represent any non-blank
delimiter character.

<occurrence> specifies which occurrence of <string1> is to be
replaced in each line. It is either an unsigned integer or an
asterisk (*) signifying that all occurrences of the substring
<string1> are to be replaced with <string2>. By default, only
the first occurrence will be changed. Note that if
<occurrence> is specified, and if changes are to occur to the
current line only, then the target should be "1."

Examples

change /this/that/ Replace the first occurrence of "this"
in the current line with "that"

c/A/B/ 1* Change all occurrences of "A" in the current
line to "B"

4404 Reference Manual @ 9-29

SECTION 9
Text Editor

c /first/last/10 Change the first occurrence of "first"
to "last" in the current line and also
in the nine following lines

c /new/old/ /a target/ Change the first occurrence of
"new" to "old" in each line down
through the line containing the
string "a target"

c ,a" -10 *

c*Hello*

CCHANGE

Syntax

Remove all "a"s in the current line and in
the nine preceding lines

Delete the character string "Hello" from the
current line

cchange /<string1>/<string2>/ [<target> [<occurrence>]]
cc /<string1>/<string2>/ [<target> [<occurrence>]]

Description

cchange" stands for Controlled Change. This command is exactly
like the normal "change" command except that you can
interactively specify whether each line containing <string1>
should actually be changed or left as is. This allows you to
step through the edit buffer and selectively change certain
strings. When a line containing <string1> is found, it is
displayed at the terminal and you receive a prompt, "Change?"
Type a "y" to change the line. If you type an "s" or end-of-file
signal, the command will terminate. Other characters will cause
a search for the next line containing <string1>.

Examples

cchange/ALPHA/OMEGA/!* Perform a Controlled Change on all
occurrences of "ALPHA" through the
rest of the file

cc;a;z;-20 3

9-30 @

Perform a Controlled Change on the third
occurrence of "a" in the current and previous
19 lines

4404 Reference Manual

COpy

Syntax

SECTION 9
Text Editor

copy [<destination-target> [<range-target>]]
co [<destination-target> [<range-target>]]

Description

Copies the current line through <range-target> and places the
copied text after the <destination-target>. The default
<destination-target> is 1, thereby placing a copy of the current
line after the next line. The default <range-target> is 1,
thereby copying only one line. After the command is executed,
the current line pointer will be set to the new position of the
last line copied. Some lines may be renumbered after a copy with
no renumbering message issued.

Examples

co #18 Put a copy of the current line after line 18

copy #3 4 Copy four lines beginning with the current
line and place them after line 3

co /check/ +/range/ After the next line which has the
string "check", place a copy of
each line starting with the current
line through the line containing
"range"

DELETE

Syntax

delete [<target>] d [<target>]

Description

Deletes the current line (and successive lines until the target
is reached). After the command is executed, the current line
will be the line following the last line deleted.

Examples

delete 5 Delete five lines (the current line and the
next four lines)

d Delete the current line

d /STRING/ Delete lines from the current line through
the next line that contains the string
"STRING"

4404 Reference Manual @ 9-31

SECTION 9
Text Editor

EXPAND

Syntax

expand [<target>]
ex p [< ta r ge t>]

Description

The current tab character is expanded within all lines, beginning
with the current line, continuing down to and including the line
specified by <target>. Since tabs are normally expanded as lines
are inserted into the file, this command is primarily of use when
one has forgotten to define a tab character or has inserted a tab
character with an "append," "overlay," or "change" command.

Examples

expand 100 Expand 100 lines starting with the current
line

exp Expand the current line

INSERT

Syntax

insert
i

Description

The editor will enter the input mode, prompting with line numbers
(unless line numbers have been disabled 7 with the "numbers"
command) and insert the lines below the current line. The editor
remains in "insert" until you begin a line with the "lino"
character or the end-of-file signal in column one. The editor
treats any characters following the "lino" character as an editor
command. (If you type the "line delete character," the editor
does not re-issue the prompt.

If possible, the editor will number the inserted lines with an
increment small enough to insert at least 10 lines between the
current line and the next line. The editor will renumber lines
following the inserted text if the inserted text line numbers
overlap numbers already in the file. (The current line pointer
is left at the last line inserted.)

You may insert lines at the top of the edit buffer by specifying
a line number of zero.

9-32 @ 4404 Reference Manual

SECTION 9
Text Editor

This command may not be followed by another command on the same
line.

Examples

insert Accept line input after the current line

Oi Insert at the top of the edit buffer.

INSERT

Syntax

insert <text)
i <text)

Description

Inserts <text) as a separate line below the current line of the
file. Use a space as a separator following the command name.
The line inserted becomes the current line. The editor may
renumber text lines following the inserted text if the inserted
line number overlaps line numbers already in the file.

This command may not be followed by another command on the same
line.

Examples

I This below the current line of the file

insert everything after the first blank

MERGE

Syntax

merge

Description

Merges the current line and the line immediately following it
into a single line. The merged line becomes the current line.

Examples

merge Merge the current line and the next line into a
single line.

4404 Reference Manual @ 9-33

SECTION 9
Text Editor

MOVE

Syntax

move [<destination-target> [<range-target>]]
mo [<destination-target> [<range-target>]]

Description

Moves the current line through <range-target> so that they follow
the line specified by <destination-target>. The defaults for
<destination-target> and <range-target> are both 1, so "move"
without arguments interchanges the current line and the next
line. After the command is executed, the current line pointer
will be set to the new position of the last line moved. Some
lines may be renumbered with no renumbering message issued.

Examples

9-34

move 3 Move the current line down three lines

mo #1 /TARGET STRING/ Move the current line and all lines
down thru the line containing
"TARGET STRING" after line 1

mo -/Program/ 5 Move five lines (including the current
line) up within the file so that they
follow a line containing the character
string "Program"

rna #10 -5 Move the current line and the four previous
lines below line number 10

@ 4404 Reference Manual

SECTION 9
Text Editor

OVERLAY

Syntax

overlay[<delimiter>]
o[<delimiter>]

Description

This command prints the current line, then accepts a line of
input (the overlay line). When the line is printed, all ASCII HT
characters will be displayed as spaces so that the terminal
cursor will not be artificially advanced. The overlay line will
be positioned directly beneath the line printed out. Each
character of the overlay that is different from the <delimiter>
character (which defaults to a blank) will replace the
corresponding character in the current line. The overlaid line
will be printed if verify is "on". If the end-of-file signal is
typed in response to the prompt for the overlay line, the current
line will not be changed.

Examples

overlay
25.00=THIP IS THE CORRENT LUNE.

Overlay S U
25.00=THIS IS THE CURRENT LINE.

OVERLAY

Syntax

overlay<d><text>
o<d><text>

Description

This command is similar to the previous form of the "overlay"
command with these differences: (1) The current line is not
printed. (2) The remainder of the command line (after the
delimiter character) is taken as the overlay text.

Examples

overlay--- AT-------------------- NUMBER.
25.00=THAT IS THE CURRENT LINE NUMBER.

4404 Reference Manual @ 9-35

SECTION 9
Text Editor

PRINT

Syntax

print [<target>]

Description

p [<target>]

Prints all lines from the current line through the line specified
by <target>. By default, only the current line will be printed.

Examples

p Print the current line

print 5 Print 5 lines starting with the current line

P -10 Print the current line and the nine previous lines

print *string* Print all lines down thru the next line
containing "string"

p -/string/ Print all lines up through the next previous
line containing "string"

REPLACE

Syntax

replace [<target>]
r [< ta r ge t>]

Description

This command deletes from the current line through <target>, then
places the editor in input mode, putting the new lines into the
area vacated. It is not necessary to enter the same number of
lines as were deleted. The line numbers of the lines inserted
will probably not be the same as those deleted. The current line
pointer will be positioned at the last line inserted. By
default, only the current line will be deleted. This command may
not be followed by another command on the same line.

Examples

9-36

r Replace the current line

replace 10 Replace 10 lines starting with the current
line

r /TARGET STRING/ Replace all lines from the current line
through the line containing "TARGET
STRING"

@ 4404 Reference Manual

TEXT

Syntax

=<text>

Description

SECTION 9
Text Editor

Replaces the current line with the text that follows the equal
sign. The current line pointer is not moved.

Examples

=THIS IS REPLACEMENT TEXT.

NULL

Syntax

(null)

Description

The null command (i.e., just a carriage return) prints the
current line.

4404 Reference Manual @ 9-37

SECTION 9
Text Editor

FLUSH

Syntax

flush

Description

DISK COMMANDS

The information above the current line in the edit buffer is
written to the file containing the updated data and then deleted
from the edit buffer. Use this command to make room in the edit
buffer for large insertions.

Examples

flush Flush information above the current line to
updated file.

200flush Flush information above line 200 to the
updated file.

NEW

Syntax

new

Description

The information above the current line in the edit buffer is
written to the file containing the updated data and then deleted
from the edit buffer. The available space in the edit buffer is
then filled with data read from the file being edited. This
command is used primarily to proceed to the next segment of the
file when modifications to the current edit buffer have been
completed. If a new file is being created, the "new" command is
the same as the "flush" command.

Examples

new

!new

9-38 @

Write the information above the current line to
the updated file and read more data from the file
being edited.

Write the current edit buffer (except for the
first line) to the updated file and read the next
segment from the file being edited into the edit
buffer.

4404 Reference Manual

READ

Syntax

read [<file name>]

Description

SECTION 9
Text Editor

Places the contents of the specified file after the current line.
The last line of the information read becomes the current line.
If you omit the file name, the editor prompts you for it. If you
type an end-of-file signal in response to the prompt, no data is
read. The file name may contain path information if any is
necessary to locate the file. The entire contents of the file
must fit into the remaining unused space in the edit buffer. If
the file being read will not fit into the edit buffer, the
message "Not enough room" is issued and no data is read.

Examples

read /dde/data

100read moredata

WRITE

Syntax

wri te [<target>]

Description

Reads the information in the file
"/dde/data" and places it after the
current line.

Read the information in the file
"moredata" and place it after line 100.

The editor prompts you for a file name, then writes the
information from the current line through <target> to a file. If
an end-of-file signal is typed in response to the prompt, no
information is written. If the file being written already
exists, it is destroyed and a new file created. If no <target>
is specified, only the current line is written.

Examples

write /window/

100write #200

4404 Reference Manual

Write the information from the current
line through the line containing the
string "window".

Write lines 100 through 200, inclusive,
to a scratch file.

@ 9-39

SECTION 9
Text Edi tor

EDITOR MESSAGES

A task is already running

The "x" command was used when there was already a task generated
by a previous "x" command still running. The "wait" command must
be used to wait for the previous task to complete before
initiating another background task.

Attempting to merge onto last line of text

The "merge" command joins the specified line with the following
line, and if the specified line is the last line of the file,
there is no line following the specified line to join with it.

Bottom of file reached

An informative message issued when the last line of the file is
deleted.

Cannot create configuration file

A configuration file could not be created in the directory
specified in the "esave" command (current directory if no
directory was mentioned). Usually this means that the directory
specified could not be found or you don't have write permissions
on that directory. Make sure the directory was specified with a
trailing 'I' character.

Cannot create new file

The editor was called with two file names as arguments, but the
second file could not be created. This message is preceded by a
message indicating which error was detected. This is a fatal
error and will cause an immediate exit from the editor. This
message occurs only at the beginning of an editing session.

Cannot create new backup file

The editor detected an error attempting to create a backup file.
This message is preceded by a message indicating which error was
detected. The new backup file is not created and the editing
session continues.

Cannot create task

An error was detected when trying to generate a task with the "u"
or "x" command. This message is preceded by a message indicating
which error was detected. The command is aborted and the editor
requests a new command.

9-40 @ 4404 Reference Manual

Cannot create temporary file

SECTION 9
Text Editor

The editor detected an error when trying to create the temporary
file that holds the updated information. This message is
preceded by a message indicating which error was detected. This
message occurs only at the beginning of an editing session.

Cannot delete old backup file

At the end of an editing session, the editor attempts to create a
backup file containing the information as it was prior to the
editing session. However, a file already exists with the backup
file name, and that file could not be deleted. This message is
preceded by a message indicating which error was detected. The
new backup file is not created and the editing session continues.

Cannot open configuration file

The configuration file in the directory specified in an "eset"
command could not be opened. This usually means that there was
no configuration file in the specified directory, or that the
specified directory could not be found, or that you do not have
read permission for the configuration file. Remember that the
directory name must be specified with a trailing 'I' character.

Cannot open edit file

The file that is being edited exists, but could not be opened.
This message is preceded by a message indicating which error was
detected. This is a fatal error and will cause an immediate exit
from the editor. This message occurs only at the beginning of an
editing session.

Cannot open new file

The editor was called with two file names as arguments, but could
not open the second file to determine if it already exists. This
message is preceded by a message indicating which error was
detected. This is a fatal error and will cause an immediate exit
from the editor. This message occurs only at the beginning of an
editing session.

Cannot read configuration file

The operating system reported a media error while the editor was
trying to read from the editor configuration file.

4404 Reference Manual @ 9-41

SECTION 9
Text Editor

Cannot read edit file

The operating system reported a media error while the editor was
reading from the file whose data is being edited.

Cannot rename files

The editor detected an error trying to rename the files at the
end of an editing session. This message is preceded by a message
indicating which error was detected. This is a fatal error and
will cause an immediate exit from the editor. The user should
then search for the temporary file used by the editor. This file
will contain the updated information and should be copied to
another file for safe keeping.

Cannot write configuration file

The operating system reported a media error while the editor
was writing configuration data to the configuration file in the
specified directory (current directory if the specification was
omi tted) •

Delete existing backup file?

At the end of an editing session, the editor attempts to create a
backup file containing the information as it was prior to the
editing session. However, a file with the same name as the
backup file would have already exists. This message is a request
for permission to delete the existing file, replacing it with the
new backup file. The prompt must be answered with a "y", for
"yes", or an "n", for "no". If "y" or the end-of-file signal is
typed, the file is deleted and the new backup file is created.
If "n" is typed, the file will not be deleted and no new backup
file created. If none of these are typed, the prompt is
re-issued.

Delete existing copy of new file?

The editor was called with two file names as arguments. The
second file already exists and must be deleted before the editing
session can continue. This message is a request for permission
to delete the file. The prompt must be answered with a "y", for
"yes", or an "n", for "no". If "y" is typed, the file is deleted
and the editing session continues. If "n" or the end-of-file
signal is typed, the file will not be deleted and the editing
session is terminated. If none of these are typed, the prompt is
re-issued.

9-42 @ 4404 Reference Manual

Edit file does not exist

SECTION 9
Text Editor

The editor was called with two filenames, but the first file,
which contains the data to be edited, could not be found. The
editor will terminate immediately.

Empty text buffer

The text buffer is empty (contains no text) and the requested
command could not be completed.

Error attempting to open file

The file specified in a "write" command could not be opened for
writing. This usually means that the specified file could not be
created because the path to the file was inaccessible, or the
permissions on the directory in which the file was to reside
exclude the you from creating a file there, or the file exists
but the you do not have write permission for the file.

Error copying edit file

At the end of an editing session, any unread data on the file
that is being edited is copied to the new file being written. An
error was detected during this copy process. This message is
preceded by a message indicating which error was detected. This
is a fatal error and will cause an immediate exit from the
editor.

Error creating scratch file

The file specified in a "write" command could not be created.
This message is preceded by a message indicating which error was
detected. The "write" command is aborted and the editor requests
a new command.

Error opening scratch file

The file specified in a "read" command could not be opened. This
message is preceded by a message indicating which error was
detected. The "read" command is aborted and the editor requests
a new command.

4404 Reference Manual @ 9-43

SECTION 9
Text Edi tor

Error reading data file

The editor detected an error when trying to read from the file
being edited or from a scratch file with the "read" command.
This message is preceded by a message indicating which error was
detected. The current command is aborted and the editor requests
a new command; no data read from the file is kept. If the file
being read was the file being edited, you should use the "abort"
command to abandon the editing session since the file being read
is no longer positioned correctly.

Error waiting for task to complete

An error was detected when waiting for a task generated by the
"u" or "x" command to complete. This message is preceded by a
message indicating which error was detected. The command is
aborted and the editor requests a new command.

Error writing new file

The editor detected an error when trying to write the contents of
the edit buffer to the file that holds the updated information.
This message is preceded by a message indicating which error was
detected. This is a fatal error and will cause an immediate exit
from the editor. All changes to information still in the edit
buffer are lost.

File is a directory

An attempt was made to edit a directory, not a text file. This
is a fatal error and causes an immediate exit from the editor.
This message occurs only at the beginning of an editing session.

File name?

This is the prompt used when the editor requests a file name.
Commands that may request a file name are "read" and "write".
The editor will also request a file name in response to the
"stop" and "log" commands if no file names were specified when
the editor was called.

Input error

An error status was returned by the operating system in response
to a request for input from the standard input device. This is
normally the terminal keyboard and should not generate any such
error. If the standard input has been redirected to a disk file,
an error may be generated when reading the disk for input
characters. In either case, this is a fatal error and causes an
immediate exit from the editor. All changes to information still
in the edit buffer are lost.

9-44 @ 4404 Reference Manual

Line too long

SECTION 9
Text Editor

The maximum size for a line being input to the editor is 255
characters. Lines in the file being edited may be of any length,
but those entered from the standard input device are limited to
255 characters.

Name too long

The file name entered in response to a "File name:" prompt is too
long. The maximum size of a file name, including the path
specification, is 254 characters.

New file being created

This is an informative message indicating that there is no
existing file of information to be edited and that a new file is
being created.

New file is the same as the old file

The editor was called with two file names as arguments, but both
names point to the same file. Either the file names are the
same, or the two files have been linked with the "link" system
call.

No child task exists

The "wait" command was used when no background task had been
generated by the editor.

No lines deleted

An informative message indicating that the "delete" command was
used but the target could not be located, and you answered "no"
to the prompt asking if the delete was to proceed.

No such line

A line number or target could not be found.

Not enough room

The file being read with the "read" command could not fit in the
available space in the edit buffer. None of the information read
from the file is kept. You can use the "flush" command to try to
make room for the file. If that fails, the file being read
should be split into smaller files that may be read individually.

Not found

4404 Reference Manual @ 9-45

SECTION 9
Text Editor

A target could not be found.

Output error

An error status was returned by the operating system in response
to a request to send output to the standard output device. This
is normally the terminal display and should not generate any such
error. If the standard output has been redirected to a disk
file, an error may be generated when writing the data to the disk
file. In either case, this is a fatal error and causes an
immediate exit from the editor. All changes to information still
in the edit buffer are lost.

Positioning backwards is not allowed

The "position" command was called with a target that has a
leading minus sign, indicating a backward search.

Relative positioning is not allowed

The "position" command was called with a target that is an
unsigned integer, indicating a relative displacement forward in
the file.

Some lines renumbered

An "insert," "replace," or "break" command caused some lines in
the file to be renumbered. Note that the "move" and "copy"
commands will cause renumbering without this message being
issued.

Source overlaps destination

With the "copy" or "move" commands the target line was within the
range of data being copied or moved.

Syntax error

A syntax error was detected in a command. Check the "Editor
Commands" part of this section for correct editor command syntax.

Target not reached

Are you sure? The "delete" command was used but the target could
not be located. If you want the delete to proceed to the end of
the edit buffer, answer this prompt with a "y". Answering with
an "n" or the end-of-file signal will cause the delete to be
aborted.

9-46 @ 4404 Reference Manual

SECTION 9
Text Editor

Task ttt: Abnormal Termination

Interrupt code: i The background task "ttt" generated by the "x"
command was interrupted before it could complete. The interrupt
code returned by the task is indicated by "i". This message is
returned only in response to the "wait" command.

Task ttt: Abnormal Termination

Termination response: xxx The background task "ttt" generated by
the "x" command has completed abnormally. The termination
response returned by the task is indicated by "xxx". This
message is returned only in response to the "wait" command.

Task ttt initiated

Task number "ttt" has been started by the use of the "x" command.

Task ttt: Normal termination

The background task "ttt" generated by the "x" command has
completed normally. This message is returned only in response to
the "wait" command.

Too many file names specified

More than two file names were specified as arguments to the
editor. This is an informative message only; the extra file
names and any options specified after them are ignored.

Unable to open file

The file specified in a "read" command could not be found or
could not be opened for reading because of its permissions.

Unexpected error, edit session aborted

An error response that the editor is incapable of handling was
received from a system call. The editing session is terminated
immediately.

Unknown option specified

An unrecognizable option was specified when the editor was
called. This is an informative message only; the unrecognizable
option is ignored.

4404 Reference Manual @ 9-47

SECTION 9
Text Editor

Write ends with an error

The operating system reported a media error while the editor was
writing data to the file specified in a "write" command .

.•. zones OK?

A target could not be found and the search zones were not set to
their default values. This is an informative message asking you
to check the zones becau~e they may have been the reason that the
target could not be found. This message does not require a
response from you.

?

The editor is not able to interpret the given command. Either
the command could not be recognized or the format of the
command was undecipherable.

9-48 @ 4404 Reference Manual

Seotion 10

TERMINAL EMULATION

OVERVIEW

When working on the 4404 you type on a keyboard and see messages
displayed on a screen, just as with any terminal. When using
"remote", the terminal emulator program, you can think of the
entire 4404 as a terminal which is connected via an RS-232C line
to a remote host computer. When you are using the 4404 as a
stand-alone computer, you can think of the keyboard and display
as a local terminal connected to the 4404 processor.

The 4404 appears to both the host and to it's internal software
as an ANSI X3.64 compatible terminal with a few extensions that
make it more compatible with other common ANSI X3.64 terminals.

The terminal emulator itself is a local terminal emulator which
talks to the 4404 operating system's console driver. In
conjunction with a local communication utility called "remote",
the local terminal emulator console driver, and the driver for
the communications port combine to create a remote terminal
emulator connected to the RS-232 hardware and device driver.
This makes the entire unit appear to an external host as a
terminal.

This section contains a brief description of the appearance of
the ANSI terminal emulator, a discussion of the interface between
the emulator and the operating system, information on its default
modes, and a description of how non-ASCII keys are handled. The
section is concluded by a list and short description of all the
implemented ANSI commands.

DESCRIPTION

The terminal emulator supports a display of 32 lines of 80
characters per line, using 8 by 15 pixel characters.

Compliance With ANSI and ISO Standards

The ANSI terminal emulator complies with the following ANSI
(American National Standards Institute) and ISO (International
Standards Organization) standards:

ANSI X3.4-1977,
American National Standard Code for Information Interchange.
(This defines the ASCII character set.)

4404 Reference Manual @ 10-1

SECTION 10
Terminal Emulation

ANSI X3.41-1974,
American National Standard Code Extension Techniques for Use With
the 7-Bit Coded Character Set of American National Standard Code
for Information Interchange. (This defines ways to extend the
ASCII character set, including the exact way the SO and SI
characters work to invoke GO and G1 character sets.)

ISO 2022,
Code Extension Techniques for use with the ISO 7-bit Coded
Character Set. (This is the international standard which
corresponds to ANSI X3.41.)

ANSI X3.64-1979,
Additional Controls for Use With American Standard Code for
Information Interchange. (This defines a variety of standard
commands used for displaying text, editing the display of text,
and for other functions.)

Compatibility with the DEC VT-100

The ANSI terminal emulator is NOT intended to emulate the VT-100.
Some VT-100 DEC-private features which are of use to host editors
have been included, but other DEC-private features have been
omitted. Therefore, not all programs which run correctly with a
VT-100 will run correctly with a 4404.

Compatibility with Tektronix Terminals

The ANSI terminal emulator is also NOT intended to emulate any of
the Tektronix 4100 Series terminals. Many of the 4100 Series
ANSI mode commands have been included, but some have been
intentionally omitted.

INTERFACE TO THE OPERATING SYSTEM

The interface to the 4404 operating system is with the
ttyget/ttyset system calls. These system calls are used to
examine or modify the programmable modes of the emulator. This
includes such things as autowrap on/off, screen normal/reverse,
keypad application/numeric, cursor key application/numeric,
LF/CR-LF, and tab locations.

The programmable modes of the emulator, mentioned above, all have
default states which are specified in the discussion on ANSI
commands. These defaults can be overridden by sending ANSI
escape sequences to the terminal, or by using a ttyset system
call (as in the "termset" utility).

The standard output of the non-ASCII keys on the keyboard (the
function keys, the break-key, the keypad keys, and the joydisk)
is an ANSI escape sequence (see the discussion on non-ASCII
keys) .

10-2 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

SUPPORTED ANSI COMMANDS

The following ANSI commands are supported on the 4404 terminal
emulator:

<ACK)

NOTE

The ANSI <CSI> (control sequence identifier)
is the two character sequence <Esc [>. In
this discussion, it is represented as <CSI>.

Acknowledge Character (char #6)

Syntax Form: (char #6)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<BEL) Bell Character

Syntax Form: (char #7)

Description: Sounds the terminal's bell.

If this control character is received during an ANSI command
sequence this control action occurs and the ANSI command sequence
processing continues.

<BS) Backspace Character

Syntax Form: (char #8)

Description: BS moves the active position backward by one
character position. If the cursor is already at
column 1, then BS has no effect.

If this control character is received during an ANSI command
sequence this control action occurs and the ANSI command sequence
processing continues.

<CAN) Character (#24)

Syntax Form: (Char #24)

Description: If this control character is received during an
ANSI command sequence this control function will
print a snoopy <CAN> character and resets the
command parser to an initialized state.

4404 Reference Manual @ 10-3

SECTION 10
Terminal Emulation

<CBT> Cursor Backward Tab

Syntax Form: <CSI> [Pn] Z

Descriptive Form: <CSI> [desired number of preceding tab stops] Z

Description: Moves the cursor backwards to a preceding tab stop
on the current line.

A parameter value of one moves the cursor to the preceding tab
stop. A parameter value greater than one (N) moves the cursor to
the Nth preceding tab stop on the current line. If there are
less than N preceding tab stops, the cursor moves to column 1 of
the current line.

If the parameter is zero or omitted, it defaults to 1.

<CHT) Cursor Horizontal Tab

Syntax Form: <CSI> [Pn] I

Descriptive Form: <CSI> [desired number of succeeding tab stops] I

Description: Moves the cursor forward to a succeeding tab stop on
the current line.

A parameter value of one moves the cursor to the next tab stop.
A value greater than one (N) moves the cursor to the Nth next tab
stop on the current line. If there are less than N following tab
stops, the cursor moves to the rightmost column of the current
line.

If the parameter is zero or omitted, it defaults to 1.

<CPR) Cursor Position Report

Syntax Form: <CSI> <Pn> ; <Pn> R

Descriptive Form: <CSI> <row> <column> R

Description: The <CPR> message is sent from the terminal to the
host in response to a <DSR: 6> "device status
report" command.

If the origin mode is relative, the coordinates reported are
"row, column" coordinates in the scrolling region. "Row 1,
column 1" means the upper left corner of the region.

10-4 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

If the origin mode is absolute, the coordinates reported are
"row, column" coordinates of the screen. "Row 1, column 1" means
the upper left corner of the screen.

If the <CPR> is echoed back to the terminal, the terminal treats
the echo as a no-oPe

<CR> Carriage Return Character

Syntax Form: (char #13)

Description: Moves the cursor to the first column in the current
line. If "carriage return/line feed" (CR/LF) mode
is set, then a line feed action is also performed.

If this control character is received during an ANSI command
sequence this control action occurs and the ANSI command sequence
processing continues.

<CRM> Control Representation Mode

Syntax Form: <CSI> 3 h or 1

Descriptive Form: <CSI> 3 set or reset

Description: <CRM> is a parameter of the <RM> and <SR> commands.

This command is commonly referred to as a 'snoopy' mode.

Reset: Normal operation. <RM: CRM> resets this mode.

NOTE

The implementation of this command in the
4404 requires that <RM: CRM> not be embedded
with other <RM> commands.

Set: "Snoopy" mode. CRM is set <SM: CRM>, commands are not
interpreted, but rather the characters that make up the
command are displayed.

Defaul ts: Reset

4404 Reference Manual @ 10-5

SECTION 10
Terminal Emulation

<CUB> Cursor Backward

Syntax Form: <CSI) [Pn] 0

Descriptive Form: <CSI) [number of columns] D

Description: Moves the cursor backward by the specified number of
columns. The cursor stops at column 1.

If the numeric parameter is 0 or is omitted, it defaults to 1.

<CUD> Cursor Down

Syntax Form: <CSI> [Pn] B

Descriptive Form: <CSI> [number of rows] B

Description: Moves the cursor downward by the specified number of
rows.

Margins Set Inside Screen Boundaries
(i.e., Top Margin >1 or Bottom Margin <32)

If origin mode is absolute, the cursor moves with respect to
the screen. If the cursor is on the last row of the screen
or on the Bottom Margin, Cursor Down has no effect.

If origin mode is relative, the cursor moves with respect to
the area bounded by Top and Bottom Margins. If the cursor
is on the Bottom Margin, Cursor Down has no effect.

Margins Set To Screen Boundaries
(i.e., Top Margin =1 and Bottom Margin =32)

<CUF>

The cursor moves with respect to the screen. If the cursor
is on the last row of the screen, Cursor Down has no effect.

If the <Pn> numeric parameter is zero or is omitted, it
defaults to one.

Cursor Forward

Syntax Form: <CSI> [Pn] C

Descriptive Form: <CSI> [number of columns] C

Description: Moves the cursor the specified number of columns to
the right. The cursor stops at the rightmost
column.

If the <Pn) numeric parameter is omitted, or is zero, it defaults
to one.

10-6 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

<CUP> Cursor Position

Syntax Form: <CSI) [Pn] [; [Pn]] H

Descriptive Form: <CSI) [row number] [; [column number]] H

Description: Moves the cursor to a specified row and column. The
cursor may stop at Top Margin, Bottom Margin and
the top and bottom of the screen, depending on
origin mode.

If a row or column coordinate is zero or is omitted, it defaults
to one.

<CUU> Cursor Up

Syntax Form: <CSI) [Pn] A

Descriptive Form: <CSI) [number of rows] A

Description: This command is completely analogous to <CUD),
except that the cursor moves upward instead of
downward.

<DA> Device Attributes

Syntax Form: <CSI) <Pn) c

Description: A device sends this command with a parameter of 0 to
the terminal asking it to identify the type of
VT100 terminal it is. The 4404 sends the command
<CSI) ? 1 ; 0 c back to the device which says it is
a VT100 with no options.

NOTE

The 4404 does support the following features
of the VT-100 "Advanced Video Options:"

o Bold
o Underline
o Rever se video

If the device echoes this command back to the terminal, it is
treated as a no-op.

If the parameter is omitted, it defaults to O.

4404 Reference Manual @ 10-7

SECTION 10
Terminal Emulation

<DC1> Character (Char #17)

Syntax Form: (Char #17)

Description: If this control character is received during an ANSI
command sequence this control action is a no-op and
the ANSI command sequence processing continues.
However if flagging is set in the communications
system to DC1/DC3 flagging; a flagging action will
occur within the communications system.

(OC2> Charaoter (Char #18)

Syntax Form: (Char #18)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

(OC3> Charaoter (Char #19)

Syntax Form: (Char #19)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues. However if flagging is set in the
communications system to DC1/DC3 flagging; a flagging action will
occur within the communications system.

(OC4> Character (Char #20)

Syntax Form: (Char #20)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

10-8 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

<DCH> Delete Character

Syntax Form: <CSI) [Pn] P

Descriptive Form: <CSI) [number of characters] P

Description: Deletes the character at the cursor and possibly
following characters depending on the parameter
value. Any characters to the right of the deleted
characters are moved left by the same number of
character positions; thus the gap is filled.

Only characters on the current line are affected by this command.

If the parameter is zero, or is omitted, it defaults to one.

<DEL) Character (Char #127)

Syntax Form: (Char #127)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<DL> Delete Line

Syntax Form: <CSI) [Pn] M

Descriptive Form: <CSI) [number of lines] M

Description: Deletes the current line and possibly succeeding
lines, depending on the parameter.

All following lines are shifted in a block toward the line
containing the cursor. The lines following the shifted portion
are erased. The cursor does not change position.

If split-screen scrolling is in effect, this command only affects
lines in the region that the cursor is currently in. (E.g., if
the cursor is in the top fixed region, only the lines in the top
fixed region are affected.)

If the parameter is zero, or is omitted, it defaults to one.

<OLE) Character (Char #16)

Syntax Form: (Char #16)

Description: This control function is a no-oPe

4404 Reference Manual @ 10-9

SECTION 10
Terminal Emulation

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<DMI) Disable Manual Input

Syntax Form: Esc' (Char #27 and Char #96)

Description: Locks the keyboard. This command is equivalent to
ANSI <SM: KAM>

<DSR) Device Status Report

Syntax Form: <CSI> Ps n

Description: This is a command from the host or a report from the
terminal. Table 10-1 shows the meaning of various
parameters.

Table 10-1

PARAMETER MEANINGS

I Parameter I Parameter Meaning

I 0
I
I

I 3

I 5
I
I

6

I Report from 4404. Ready, no malfunctions
I detected.

I Report from 4404. Malfunction - retry.

I Command from host. Please report status
I (using a DSR control sequence).

I Command from host. Please report cursor
I position (using a cursor position report).
I See <CPR> command.

When the 4404 receives a DSR with a parameter value of 5, it
always sends back a DSR with a parameter value of 0 or 3. When
the 4404 receives a DSR with a parameter of 6, it always sends
back a CPR report. When the 4404 receives a DSR with a parameter
value of 0 or 3 (which could be the echo of a report it has sent
to the host), it executes the <DSR: 0> or <DSR: 3> command as a
no-oPe

10-10 @ 4404 Reference Manual

<ECH) Erase Character

Syntax Form: <CSI) [Pn] X

SECTION 10
Terminal Emulation

Descriptive Form: <CSI) [number of characters] X

Description: Erases the character at the cursor, and possibly
succeeding characters, according to the parameter. The cursor
location remains unchanged.

The effect of the <ECH) command is not confined to the current
line. For example, if the cursor is in column 41, and an <ECH:
45) command is issued, the character at the active position is
erased along with the next 39 characters on the current line and
the first 5 characters of the next line.

<ED) Erase in Display

Syntax Form: <CSI) [Ps] J

Descriptive Form: <CSI) [0 or 1 or 2] J

o = from cursor to end of screen, inclusive
1 = from start of screen to cursor, inclusive
2 = entire screen.

Description: Regardless of whether margins are set, the command
erases with respect to the screen. Therefore, text
in the scrolling region and fixed regions can be
erased with the same command.

The cursor does not change position.

If the parameter is omitted, it defaults to O.

<EL) Erase in Line

Syntax Form: <CSI) [Ps] K

Descriptive Form: <CSI) [0 or 1 or 2] K

o = from cursor to end of line, inclusive
1 = from start of line to cursor, inclusive
2 = entire line

Description: Erases part or all of the current line, according to
the parameter. The cursor does not change position.

If parameter is omitted, it defaults to O.

4404 Reference Manual @ 10-11

SECTION 10
Terminal Emulation

 Character (Char #25)

Syntax Form: (Char #25)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<EMI> Enable Manual Input

Syntax Form: Esc b

Description: Unlocks the keyboard. This command is equivalent to
ANSI <RM: KAM>

(ENQ> Character (Char #5)

Syntax Form: (Char #5)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

(EOT> Charaoter (Char #4)

Syntax Form: (Char #4)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence, this control action is a no-op and the ANSI command
sequence processing continues.

(ESC> Character (Char #27)

Syntax Form: (Char #27)

Description: This control function is the introduction character
of an escape sequence or control sequence for the
ANSI command parser.

If this control character is received during an ANSI command
sequence, the ANSI command sequence parser processing is
reinitialized.

10-12 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

<ETB> Character (Char #23)

Syntax Form: (Char #23)

Description: This control function is a no-op.

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<ETX> Character (Char #3)

Syntax Form: (Char #3)

Description: This control function is a no-op.

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<FF> Form Feed Character

Syntax Form: (char #12)

Description: Page screen.

<FS> Character (Char #28)

Syntax Form: (Char #28)

Description: This control function is a no-op.

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<as> Character (Char #29)

Syntax Form: (Char #29)

Description: This control function is a no-op.

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

4404 Reference Manual @ 10-13

SECTION 10
Terminal Emulation

<HT) Horizontal Tab Character

Syntax Form: (char #9)

Description: Advances the cursor forward on the current line to
the next horizontal tab stop. If there are no
horizontal tab stops to the right of the active
position, the cursor moves to the rightmost column.

If this control character is received during an ANSI command
sequence this control action occurs and the ANSI command sequence
processing continues.

<HTS) Horizontal Tab Set

Syntax Form: ESC H

Description: Sets a tab stop at the current cursor location.

Defaults: Tab stops at columns 9, 17, 25, 33, 41, 49, 57, 65, and
73. Read from setup file on installation.

<HVP) Horizontal and Vertical Position

Syntax Form: <CSI> [Pn] [; [Pn]] f

Descriptive Form: <CSI> [row] [; [column]] f

Description: This command is identical to the <CUP>, Cursor
Position command.

<ICH) Insert Character

Syntax Form: <CSI> [Pn] @

Descriptive Form: <CSI> [number of characters] @

Description: Inserts the specified number, (N), of erased
character cells at the cursor position. The
character currently at the cursor position and all
other characters to the right of the cursor are
shifted N columns to the right. Characters shifted
off the end of the line are lost. The cursor
position remains unchanged.

If the parameter is zero, or is omitted, it defaults to one.

10-14 @ 4404 Reference Manual

<IL> Insert Line

Syntax Form: <CSI> [Pn] L

Descriptive Form: <CSI> [number of lines] L

SECTION 10
Terminal Emulation

Description: Inserts the specified number, (N), of blank lines in
place of the active line.

The active line and all succeeding lines are shifted downwards.
The last N lines of the scroll are lost. The cursor position
does not change.

If split-screen scrolling is in effect, this command only affects
lines in the region that the cursor is currently in. (E.g., if
the cursor is in the scrollable (non-fixed) region, only the
lines in the scrollable region are affected.)

If the parameter is zero or is omitted, it defaults to one.

<IND> Index

Syntax Form: ESC D

Description: Moves the active position down one line without
affecting the character position on the line.

If the cursor is at the bottom margin, but is not at the bottom
of the scroll, a scroll up function is performed. If the cursor
is at the bottom margin and is also at the bottom of the scroll,
a blank line is added to the bottom of the scroll and a scroll up
is performed.

The cursor can index into the scrolling region from the top fixed
region, but cannot index into bottom fixed region. An index on
the last line of the bottom fixed region has no effect.

<IRM> Insertion/Replacement Mode

Syntax Form: <CSI> 4 h or 1

Descriptive Form: <CSI> 4 set or reset

Description: < IRM> is a parameter for the <RM> and <SM> commands.

Reset: Normal operation. When a character is entered, it replaces
any character already at the active position.

4404 Reference Manual @ 10-15

SECTION 10
Terminal Emulation

Set: Insert mode. As each character is entered, the text at the
cursor position and to its right is moved one character
cell to the right and the cursor advances to the next
character cell. Any text which is shifted off the end of
the line is lost.

Defaults: Reset

<KAM> Keyboard Action Mode

Syntax Form: <CSI> 2 h or 1

Descriptive Form: <CSI> 2 set or reset

Description: A parameter for the <RM> and <SM> commands.

Reset: Resetting KAM enables the keyboard and is equivalent to
issuing <EMI>.

Set: Setting KAM disables the keyboard and is equivalent to
issuing <DMI>.

Defaults: Reset

(LF) Line Feed Charaoter

Syntax Form: (char #10)

Description: If LNM mode is reset, then LF has exactly the same
effect as the IND command; it advances the cursor
to the same position on the following line of text.
See the <IND> command description for details.

If LNM mode is set; then LF has the same effect as
CR IND; it advances the active position to the
first character position on the following line.

If this control character is received during an ANSI command
sequence this control action occurs and the ANSI command sequence
processing continues.

<LNM> Line-Feed/New-Line Mode

Syntax Form: <CSI> 20 h or 1

Descriptive Form: <CSI> 20 set or reset

Description: A parameter for the <RM> and <SM> commands.

10-16 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

Reset: (LF) is equivalent to <IND>; goes down one line without
changing character position within the line.

Set: (LF) is equivalent to <NEL> (which is equivalent to
(CR)<IND». Advances the cursor to the first character
position of the next line of text.

Defaults: Reset

<NAK) Character (Char #21)

Syntax Form: (Char #21)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<NEL) Next Line

Syntax Form: ESC E

Description: Moves the cursor to the start of the next line. Has
the same effect as (CR)<IND> (or as (LF) when LNM
is set).

<NUL> Character (Char #0)

Syntax Form: (Char #0)

Description: This control function is a no-oPe If this control
character is received during an ANSI command
sequence this control action is a no-op and the
ANSI command sequence processing continues.

<PU1> Private Use 1

Syntax Form: ESC Q

Description: This two-character sequence is used to introduce a
private ANSI control sequence. It introduces all
sequences which specify or request from 4404
reports on the state of the mouse buttons and the
graphic cursor position.

<Report-Syntax-Mode>

Syntax Form: ESC # ! 0

4404 Reference Manual @ 10-17

SECTION 10
Terminal Emulation

Description: This command sends a 4100 series terminal
<terminal-settings-report> to the host on the
status of the syntax mode. The form will always be
the following:

% ! <SP> <SP> 1 <CR>

NOTE

The <SP> is an ASCII space character. The <CR>
(ASCII Carriage Return Character) is the
default 4100 series EOM character.

<RI> Reverse Index

Syntax Form: ESC M

Description: Completely analogous to the IND (Index) command
except that it moves the cursor one line upward.

<RIS> Reset to Initial State

Syntax Form: ESC c

Description: Resets specified terminal attributes to their
initial default states.

This command affects terminal attributes in the following way:

o Erases screen and moves cursor to home position.
o Resets Insert/Replace mode to Replace.
o Clears edit margins.
o Turns off the character graphic rendition.
o Selects the default GO and G1 character sets.
o Shifts in the GO character set.
o Resets Auto-Repeat (TEKARM) mode := true.
o Resets Auto-Wrap (TEKAWM) mode := true.
o Resets Screen mode (TEMSCNM) to normal.
o Sets Origin mode to relative.

<RM> Reset Mode

Syntax Form: <CSI> [Ps] 1

Description: Causes one or more modes to be reset, as specified
by each selective parameter in the <Ps> parameter
list. Each mode to be reset is specified by a
separate parameter in the list. A mode is reset
until set again by a <SM>, Set Mode, control
sequence.

10-18 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

If the first character in the parameter list is n?", then all
subsequent parameters, that consist of numeric digits only, are
interpreted as if they began with a "?" character before those
numeric digits. If the first parameter consists ONLY of "?", then
its only use is to provide an implicit "?" at the start of each
subsequent numeric-digits-only parameter in the parameter list.

For example:

The control sequence: <CSI>? 5 ; 8 1
Is interpreted as if it were: <CSI>? 5 ? 8 1

The control sequence: <CSI>?; 5 ; 8 1
Is interpreted as if it were: <CSI>? 5 ; ? 8 1

Table 10-2 summarizes the meaning of the valid parameters.

Table 10-2

VALID RESET MODE PARAMETERS

I Parameter I Mode

I 2 I KAM Keyboard-Action-Mode.

I 3 I CRM Control-Representation-Mode.

I 4 I IRM Insertion-Replacement mode.

I 1 2 I SRM Send/Receive mode.

120 I LNM Line-Feed/New-Line mode.

I ? 1 I TEKCKM TEK private Cursor Key mode.

I ? 5 I TEKSCNM TEK private Screen mode (normal).

I ? 6 I TEKOM TEK private Origin Mode (viewport)

I ? 7 I TEKAWM TEK private Auto-Wrap mode.

I ? 8 I TEKARM TEK private Auto-Repeat mode.

Any parameters other than those specified here are recognized and
ignored.

4404 Reference Manual @ 10-19

SECTION 10
Terminal Emulation

<RS> Character (Char #30)

Syntax Form: (Char #30)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<ses> Select Character Set

Syntax: <SCS> = <designate-GO-set> or <designate-G1-set>.
<its designate-GO-set> = (ESC) «) <set-selector>.
<designate-G1-set> = (ESC) ()) <set-selector>.
<set-selector> = (A)or(B)or(0)or(1)or(2)or(3).

Description: Designates a particular character set as the GO set
or the G1 set.

Table 10-3 summarizes the escape sequences necessary to designate
particular character sets.

Table 10-3

CHARACTER SET SELECTION

I Escape Sequence I Escape Sequence I Character Set I
I to Designate a I to Designate a I Being Designated I
I GO Set I G1 Set I As GO Or G1 I

I ESC (A ! ESC) A I (no-op)

I ESC (B I ESC) B I U. S. (ASC I I)

I ESC (0 I ESC) 0 I Rulings

I ESC (1 I ESC) 1 I (no-op)

I ESC (2 I ESC) 2 I (no-op)

I ESC (3 I ESC) 3 I Supplementary

Defaults: On installation, the terminal emulator automatically
designates the U.S. (ASCII) character set as its GO and
G1 character set.

10-20 @ 4404 Reference Manual

<Select-Code)

Syntax Form: ESC % ! <code-selector>

Description: This control function is a no-oPe

(SGR) Select Graphic Rendition

Syntax Form: <CSI> [Ps-list] m

SECTION 10
Terminal Emulation

Parameters: The Ps-list consists of zero or more "Ps" selective
parameters, separated by semicolons. Each parameter
in the list specifies a graphic rendition for
subsequent characters.

Description: Invokes the graphic rendition specified by the
parameters in the Ps-list parameter string. All
following characters in the data stream are
displayed according to the parameter(s) until the
next occurrence of an <SGR> command in the data
stream.

In Tektronix terminals, each occurrence of the <SGR> control
function causes only those graphic rendition aspects to be
changed that are specified by that <SGR>. All other graphic
rendition aspects remain unchanged. (In other words, the GRAPHIC
RENDITION COMBINATION MODE of ISO 6429 is always set to
CUMULATIVE in Tektronix terminals.)

Parameters are:

(0) Default rendition. In the 4404, "default rendition" is:

No underscore, normal boldness, standard (not reversed)
image. That is, the effect of any preceding <SGR: 1>,
<SGR: 4> or <SGR: 7> command is canceled.

(1) Bold or increased intensity: The 4404 represents this
by simulating a bold font (it paints each character
twice, shifted one pixel horizontally).

(4) Underscore.

(7) Negative (reverse) image: black characters on white
background.

(2)(1) Not bold. Cancels the effect of <SGR: 1>.

4404 Reference Manual @ 10-21

SECTION 10
Terminal Emulation

(2)(4)

(2)(7)

Not underlined. Cancels the effect of <SGR: 4>.

Positive image. Cancels the effect of <SGR: 7>.

Defaults: An omitted parameter in the <Ps-list> defaults to zero.
The state is that of <SGR: 0>.

(SI) Shift In Character

Syntax Form: (char #15)

Description: Invokes the current GO character set.

If this control character is received during an ANSI command
sequence, the GO character is invoked and the ANSI command
sequence processing continues.

Defaults: The GO set is invoked.

(SM) Set Mode

Syntax Form: <CSI> [Ps] h

Description: Causes one or more modes to be set, as specified by
each selective parameter in the <Ps> parameter
list. Each mode to be set is specified by a
separate parameter. A mode is set until reset by a
<RM> (Reset Mode) control sequence.

If the first character in the parameter list is "?", then all
subsequent parameters, that consist of numeric digits only, are
interpreted as if they began wi th a "?" character before those
numeric digits. If the first parameter consists ONLY of "?", then
its only use is to provide an implicit "?" at the start of each
subsequent numeric-digits-only parameter in the parameter list.

For example:

The control sequence: <CSI>? 5 ; 8 h
Is interpreted as if it were: <CSI>? 5

The control sequence: <CSI>?; 5 ; 8 h

? 8 h

Is interpreted as if it were: <CSI>? 5 ; ? 8

Table 10-4 summarizes the meanings of the valid parameters to
the "set mode" command.

10-22 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

Table 10-4

SET MODE PARAMETERS

I Parameter I Mode

I 2 : KAM Keyboard-Action-Mode.

I 3 I CRM Control-Representation-Mode.

I 4 I IRM Insertion-Replacement Mode.

I 1 2 I SRM Send/Receive Mode.

120 I LNM Line-Feed/New-Line Mode.

I ? 1 I TEKCKM TEK private Cursor Key Mode.

I ? 5 I TEKSCNM TEK private Screen Mode (Normal).

I ? 6 I TEKOM TEK private Origin Mode (viewport)

I ? 7 I TEKAWM TEK private auto-wrap mode.

I ? 8 I TEKARM TEK private auto-repeat mode.

If no parameter is supplied, a parameter of zero is assumed. Any
parameters other than those specified here (including zero) are
recognized and ignored.

(SO> Shift Out Character

Syntax Form: SO = (char #14)

Description: Invokes the G1 character set. If this control
character is received during an ANSI command
sequence, the G1 character set is invoked and the
ANSI command sequence processing continues.

Defaults: The GO set is invoked (default is SO state).

4404 Reference Manual @ 10-23

SECTION 10
Terminal Emulation

<SOH) Character (Char #1)

Syn tax Form: (Char #1)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

(SP) "Space" Character

Syntax Form: (char #32)

Description: SP functions as an ordinary graphic character.
Spaces replace any characters already in the
locations where the spaces are typed.

(SRM) Send/Recelve Mode

Syntax Form: <CSI) 1 2 h or 1

Descriptive Form: <CSI> 1 2 set or reset

Description: < SRM>, Send/Receive Mode, is not a command in its
own right. Rather, it is a parameter for the <SM>,
Set Mode, and <RM>, Reset Mode, commands.

Resetting SRM mode turns the terminal's local echo on. (In the
standards documents, this is called "monitor send/receive mode.")

Setting SRM mode turns the local echo off. (In the standards
documents, this is "simultaneous send/receive mode.")

Defaults: Reset

(STX) Character (Char #2)

Syntax Form: (Char #2)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

10-24 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

<SUB> Character (Char #26)

Syntax Form: (Char $26)

Description: If this control character is received during an ANSI
command sequence this control function will print a
(SUB) character and reset the command parser to an
initialized state.

<SYN> Character (Char #22)

Syntax Form: (Char #22)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<TBC> Tabulation Clear

Syntax Form: <CSI> [PsJ g

Descriptive Form: <CSI> [0 or 2 or 3] g

Description: Clears one or more tab stops, according to the
specified parameters.

The valid parameters are:

(0) Clear the horizontal tab stop at the active position.

(2) Clear all tab stops in the active line. (In the 4404
"tab stop mode" is always reset, so <TBC: 2> has the
same effect as <TBC: 3>.)

(3) Clear all horizontal tab stops.

If no parameter is supplied, a parameter of zero is assumed. If
the supplied parameter is not 0, 2 or 3, then command is ignored.

4404 Reference Manual @ 10-25

SECTION 10
Terminal Emulation

<TEKARM) Auto-Repeat Mode

Syntax Form: <CSI>? 8 h or 1

Descriptive Form: <CSI>? 8 set or reset

Description: A TEK private parameter for the <SM> and <RM>
commands. If set, all keyboard keys repeat when
held depressed. If reset, none of the keys repeat
when held depressed.

Defaults: Reset

<TEKAWM> Auto-Wrap Mode

Syntax Form: <CSI>? 7 h or 1

Descriptive Form: <CSI>? 7 set or reset

Description: A TEK-private parameter for the <SM> and <RM>
commands. When set, the wrap-around feature is
enabled. When reset, it is disabled.

This mode determines what happens to the cursor after a character
is displayed in the rightmost column. Since a character is
always displayed at the current cursor location, this mode
determines whether text is overprinted in the rightmost column or
whether it wraps around to the next lines.

If Auto-Wrap mode is set, an index function is performed and the
cursor moves to column 1 of the next line. If Auto-Wrap mode is
reset, the cursor remains in the rightmost column.

Defaults: Reset

(TEKCKM) Cursor Key Mode

Syntax Form: <CSI>? 1 h or 1

Descriptive Form: (CSI>? 1 set or reset

Description: A TEK private parameter for the <SM> and <RM>
commands. Provides compatibility with programs
designed for the DEC VT-100 terminal. This mode is
only effective when TEKKPAM is set.

The joydisk keys assume the alternate meanings shown in Table 10-5.

10-26 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

Table 10-5

ALTERNATE JOYDISK MEANINGS

I Joydisk Key I TEKCKM Reset I TEKCKM Set I

I Up I <CSI> A I ESC 0 A

I Down I <CSI> B I ESC 0 B

\Right I <CSI> C I ESC 0 C

I Left I <CSI> D I ESC 0 D

Defaults: Reset

<TEKGCREP) Graphic Cursor Position Report

Syntax Form: ESC P S [Pn1 ; Pn2] ESC \ e

Descriptive Form: DCS S [optional position report] ST

Description: This is a report string sent to the host in
response to a <TEKRGCR> graphic cursor position
request. The form which the optional position
report takes depends on the report types specified
by a <TEKSGCRT> report type selection, or if report
types have not been specified, by the default types
defined there.

If cell coordinate reports have been specified, then Pn1 and Pn2
contain row and column values, respectively. If pixel coordinate
reports have been specified, then Pn1 and Pn2 contain x and y
screen coordinate values, respectively.

If graphics cursor position reports have been disabled by
specifying that none be returned, then no parameters are returned
for Pn1 and Pn2.

<TEKID> Identify Terminal

Syntax Form: ESC Z

This command, when sent from the host requests the terminal to
identify itself with a Device Attributes sequence. It has the
same effect as a <Device Attributes> command with no parameter or
parameter of O.

4404 Reference Manual @ 10-27

SECTION 10
Terminal Emulation

<TEKKPAM> Keypad Application Mode

Syntax Form: ESC =

Description: See (TEKKPNM>, Keypad Numeric Mode

<TEKKPNM> Keypad Numeric Mode

Syntax Form: ESC >

Description: The (TEKKPAM> and (TEKKPNM> commands set and reset
the terminal's "Keypad Application Mode,"
respectively. These commands are provided for
compatibility with applications programs designed
for the DEC VT100 terminal.

Reset State (Keypad Numeric Mode)

In the "reset" state (Keypad Numeric Mode), the keypad keys and
function keys F9 to F12 assume the values shown in the "reset
state" part of the following table. For the keypad keys, these
are the values labeled on the keys, except that the ENTER key
sends a (CR> character.

Set State (Keypad Application Mode)

In the "set" state (Keypad Application Mode), the keypad keys and
function keys F9 to F12 assume the alternate meanings shown in
the "set state" part of Table 10-6.

10-28 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

Table 10-6

KEYPAD APPLICATION MODE KEY MEANINGS

Meaning in "Reset"
State

I Key
I
I

I 0

I 1

I 2

I 3

I 4

I 5

I 6

I 7

I 8

I 9

I
I -

I
I ,

I
I •

I Keypad
I Numeric Mode

I 0

I 1

I 2

I 3

I 4

I 5

I 6

I 7

I 8

I 9

I
I -

I
I ,

I
I •

I ENTER I CR

I F9 I ESC 0 P

I F10 I ESC 0 Q

I F11 I ESC 0 R

I F12 I ESC 0 S

4404 Reference Manual

Meaning in "Set"
State

I Keypad I
I Application Mode I

I ESC 0 P

I ESC 0 q

I ESC 0 r

I ESC 0 s

I ESC 0 t

I ESC 0 u

I ESC 0 v

I ESC 0 w

I ESC 0 x

I ESC 0 Y

I ESC 0 m

I ESC 0 1

I ESC 0 n

I ESC 0 M

I ESC 0 P

I ESC 0 Q

I ESC 0 R

I ESC 0 S

@ 10-29

SECTION 10
Terminal Emulation

Defaults: Reset (Keypad Numeric Mode)

<TEKMBREP) Mouse Button and Graphic Cursor Position
Reporting

Syntax Form: DCS (Esc P)
Meta-State-Code
Mouse-Button-Number
Stroke-Info (up-down)
Optional-Position-Report
ST (Esc \)

Description: There are three buttons on the mouse and there are
different codes output for each button on it's
down-stroke and up-stroke.

Table 10-7 summarizes the Mouse Button Reports.

I DOWN
I UP

Button

I Shifted-DOWN
I Shifted-UP

I Control-DOWN
I Control-UP

Table 10-7

MOUSE BUTTON REPORTS

Lett Middle Right

I DCS A 1 D x ST I DCS A 2 D x ST I DCS A 3 D x ST I

I Des A 1 U x ST I DCS A 2 U x ST I DCS A 3 U x ST I

I DCS B 1 D x ST I DCS B 2 D x ST I DCS B 3 D x ST I

I DCS B 1 U x ST I DeS B 2 U x ST I Des B 3 U x ST I

I DCS C 1 D x ST I DCS C 2 D x ST I DCS C 3 D x ST I
I DCS C 1 U x ST I DCS C 2 U x ST I DCS C 3 U x ST I

i Cntrl-Shifted-DOWN iDeS D 1 D x ST iDes D 2 D x ST I DCS D 3 D x ST I
I Cntrl-Shifted-UP I DCS D 1 U x ST I Des D 2 U x ST I DCS D 3 U x ST I

10-30

The "x" information is the optional report of the
current graphic cursor position, i.e. "Pn1 ; Pn2"
of the Graphic Cursor Report. See <TEKRGCR).

@ 4404 Reference Manual

SECTION 10
Terminal Emulation

<TEKOM> Origin Mode

Syntax Form:

Parameters:

Description:

<CSI> ? 6 1 or h

1 - Reset (Absolute Mode)
h - Set (Relative Mode)

Margins Set To Screen Boundaries
(that is, Top Margin = 1, and Bottom Margin = 32)

Specifies Row 1, Column 1 of the screen as the
origin. Moves the cursor to the origin.

Margins Set Inside Screen Boundaries
(i.e., Top Margin >1 or Bottom Margin < 32)

If origin mode absolute is requested, specifies
Row 1, Column 1 of the screen as the origin. If
origin mode relative is requested, specifies the
row corresponding to the Top Margin, Column 1 as
the origin. In both cases, it moves the cursor
to the origin.

Defaults: Reset

<TEKRC> Restore Cursor

Syntax Form: ESC 8

Description: Restores the previously saved cursor position,
graphic rendition, character set and origin mode.

If no. preceding <Save Cursor> command has been executed, then the
power-up graphic rendition, character set, and origin mode are
restored and the cursor is homed.

(T!KR!QTPARM) Request Terminal Parameters

Syntax Form: <CSI> [PnJ x

Description: Request from the host for the terminal to send a
<Report Terminal Parameters> sequence. This command
is treated as a no-op in the 4404.

4404 Reference Manual @ 10-31

SECTION 10
Terminal Emulation

<TEKRGCR) Request Graphic Cursor Position Report

Syntax Form: ESC Q K

Description: This command requests the terminal to send a
report to the host as to the position of the
graphics cursor. This report is a <TEKGCREP>
report.

<TEKSC) Save Cursor

Syntax Form: ESC 7

Description: Saves the cursor position, graphic rendition,
character set and origin mode.

<TEKSCNM) Screen Mode

Syntax Form: <CSI>? 5 1 or h

Parameters: 1 - Reset (Normal Mode -- white on black)
h - Set (Reverse Mode -- black on white)

Description: This is a parameter for the <Set Mode> and
<Reset Mode> commands.

The reset state causes the screen to be black with white
characters. The set state causes the screen to be white with
black characters.

There is no effect if the terminal is already in the requested
mode.

Defaults: Reset

(~EKSaCRT> Select Graphic Cursor Report Type

Syntax Form: ESC Q [Pn1] [;[Pn2]] J

10-32 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

Descriptive Form:

Parameter

Pn1 = 0

Pn1 = 1

Pn1 = 2

Pn1 = 3

Pn2 = 0

Pn2 = 1

Pn2 = 2

Defaults:

ESC Q [Report When] [;[Report Type]] J

Parameter Meaning

None. Do not report mouse button action.

Down. Report to host when mouse button
is depressed.

Up. Report to host when mouse button is
released.

Both. Report to host when a mouse
button is either depressed or released.

None. Do not report graphic cursor
position.

Char. Report graphics cursor position
in character cell coordinate terms (Row,
Column) .

Pixel. Report graphics cursor position
in pixel (screen) coordinate terms
(X,Y).

Pn1 = 0: No mouse button report.
Pn2 = 1: Report graphic cursor position in
character cell coordinates

<TEKSTBM) Set Top and Bottom Margins

Syntax Form: (CSI) [Pn] [; [Pn]] r

Descriptive Form: (CSI) [top margin] [; [bottom margin]] r

Description: A TEK private command to set top and margins for a
split viewport scrolling region.

The parameter value for the top margin specifies which row of the
screen becomes the top line of the scrolling region. Similarly,
the value for the bottom margin specifies the row of the buffer
for the bottom line of the scrolling region.

The rows preceding the top margin and the rows following the
bottom margin become fixed regions. No scrolling actions occur
in the fixed regions.

4404 Reference Manual @ 10-33

SECTION 10
Terminal Emulation

If the first parameter is zero or is omitted, it defaults to one.
If the second parameter is zero or is omitted, it defaults to 32.

Defaults: Margins set to 1 and 32

<us> Character (Char #31)

Syntax Form: (Char #31)

Description: This control function is a no-oPe

If this control character is received during an ANSI command
sequence this control action is a no-op and the ANSI command
sequence processing continues.

<VT> Vertical Tab Character

Syntax Form: (char #11)

Description: VT has the same effect as (LF), linefeed.

If this control character is received during an ANSI command
sequence this control action occurs and the ANSI command sequence
processing continues.

ANSI Terminal Emulator Mouse Button and Position Reporting

Each of the three buttons on the mouse reports a different code
on its downstroke and its upstroke. The mouse reports are ANSI
standard DCS (Device Control String -- Esc-P) reports. The
reports take the form:

DCS (Esc-P) --

Meta-State-Code

Mouse-Button-Number

Lead-in to all mouse button reports

A = unshifted, B = shifted, C = control, and
D = control-shift

1 = left, 2 = middle, 3 = right

Stroke-Info (up-down) -- D = down, U = up

Optional-Position-Report Pn1, Pn2 of the current position of
the graphic cursor.

ST (ESC-\) -- Terminator for mouse button and position reports.

10-34 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

For example, the report (32;80 is the position report of Row 32,
Column 80 in Char.Cell coordinates)) of the unshifted, middle
button, in the down state would be:

DCS A 2 D 32;80 ST

<TEKSGCRT> Select Graphic Cursor Report Type
- (Tek-Private) -

Syn ta x Fo rm : ESC Q [Pn 1] [; [Pn2]] J

Descriptive Form: ESC Q [Report When] [; [Report Type]] H

{ PU1 (Pn1) ; (Pn2) J }

Pn1 specifies: 0 - None, No mouse button reports.

1 - Down, Report to host when mouse button is
depressed.

2 - Up, Report to host when mouse button is
released.

3 - Both, Report to host when a button is
depressed or released.

Powerup-Default - 0 - None

Pn2 specifies: 0 - None, No graphic cursor position
report with mouse button reports.

1 - Char, The graphics cursor report is in
character cell coordinate terms (Row,Column).

2 - Pixel, The graphics cursor report is in pixel
(i.e.. screen) coordinate terms (X, Y).

Powerup-Default - 1 - Char

<TEKRGCR) Request Graphio Cursor Position Report
(Tek Private)

Syntax Form: ESC Q K

Descriptive Form: ESC Q K { PU1 K }

This command sends a report to the host as to the position of the
graphics cursor. The form of the report is as follows:

4404 Reference Manual @ 10-35

SECTION 10
Terminal Emulation

DCS (ESC P) S Pn1 ; Pn2 ST (ESC-\)

Pn1 contains: The Row value if cell coordinates have been
selected or the X value if pixel coordinates are
selected. no parameter will be returned if so
specified in the Select Graphic Cursor Report Type
command.

Pn2 contains: The Column value if cell coordinates have been
selected or the Y value if pixel coordinates are
selected. no parameter will be returned if so
specified in the Select Graphic Cursor Report Type
command.

KEYBOARD DETAILS

SHIFT, CTRL, AND CAPS LOCK KEYS

The two SHIFT keys have identical functions. They and the CTRL
key are used to access alternate meanings for other keys.

Pressing CAPS LOCK turns on the led in the key and puts the
keyboard in "caps lock mode." Pressing the key again turns the
led off and removes the terminal from caps lock mode. While in
caps lock mode, each of the alphabetic keys has its uppercase
meaning, regardless of whether a SHIFT key is being held down.
Caps lock mode affects only the alphabetic keys.

DEFAULT ANSI MODE MEANINGS OF KEYS

Alphanumeric Keys

Table 10-8 shows the ANSI mode meanings for the main part of the
keyboard -- the "alphanumeric keys."

10-36 @ 4404 Reference Manual

SECTION 10
Terminal Emulation

In this table, control characters are represented by the standard
two-or three-letter abbreviations, given in ANSI X3.4 and ISO
646. Special symbols are represented by the four-character codes
assigned to those symbols in ISO 6937. These meanings of these
four-character codes are given in nearby notes.

Table 10-8

ANSI MEANINGS OF ALPHANUMERIC KEYS

I Row 1 Keys
I (State)

I Unshifted
I Shifted

{
[

[
{

I Ctrl I ESC
I Ctrl-Shifted I ESC

IR1 & *
IKeys 7 8

1

1

1

(
9

@

2

2
@

I 2
I NUL

)
0

I
I
I
I

3

3

3

SP09
SP10

I
I
I
I

$
4

4
$

4
$

+
=

%
5

5
%

5
%

}
]

6

6

I 6
I RS

I
I
I RUB I

U I 7 I

S I & I

C I 7
C-S I &

I Row 2 Keys
I (Sta te)

I Unshifted
I Shifted

I
I

8

*
8
*

I ESC

I ESC
I ESC

I Ctrl I ESC
I Ctrl-Shifted I ESC

I R2
I Keys y

U I y
Sly

U

u
U

9
(

9
(

I

i
I

C I EM
C-S I EM

NAK I HT
NAK I HT

4404 Reference Manual

0
)

o
)

Q

I q
Q

I SP10 I
I I =
I SP09 I + I I

I SP10 I =
I US I +

w

I w
W

E

I e
E

] I DEL I

} I DEL I

GS I DEL
GS I DEL

R

I r
R

I
I

T

t
T

I OC1 I ETB I ENQ I DC2 I DC4
I OC1 I ETB I ENQ I OC2 I DC4 I

o

o
o

SI
SI

P

p
P

OLE I FS
OLE I FS

@

I
I

BS I LF

BS I LF
BS I LF

BS I LF
BS I LF

10-37

SECTION 10
Terminal Emulation

I
I I Row 3 Keys

I (Sta te) TAB I A

I Unshifted
I Shifted

HT
HT

I Ctrl I HT
I Ctrl-Shifted I HT

I R3
I Keys J

U I j
S I J

C I LF
C-S I LF

I Row 4 Keys
I (Sta te)

I Unshifted
I Shifted

I Ctrl
I Ctrl-Shifted

I R 4
I Keys

U I
s I

C I
c-s I

<

,
<

,
<

K

k
K

VT
VT

z

z
Z

SUB I
SUB I

>

>

>

a
A

SOH I
SOH I

L

I
L

FF
FF

x

x
X

CAN I
CAN I

?
/

/
?

/
?

S

s
S

DC3 I
DC3 I

C

c
C

ETX I
ETX I

o

d
o

EaT I
EaT I

" I
I

F

f
F

ACK I
ACK I

I RTN

"

"

v

v
V

SYN I
SYN I

CR
CR

CR
CR

B

b
B

STX I
STX I

G

g
G

BEL I
BEL I

N

n
N

SO
SO

H

h
H

BS
BS

M

m
M

CR
CR

Row 5 Keys -- Spacebar is "space" in all states.

Notes:

10-38

SP09 =
SP10 =

@

"low line" or underline
hyphen or minus sign

4404 Reference Manual

SECTION 10
Terminal Emulation

Numeric Pad Keys

The numeric pad is located to the right of the main set of
alphanumeric keys. The codes send by these keys are determined
by the state of the Keypad Numeric/Applications mode setting
(TEKKPNM/TEKKPAM). In Numeric mode, the meaning of the keys is
that marked on the key tops; in Applications mode, the numeric pad
keys are defined to be a control sequence. Table 10-9 shows the
Applications mode (TEKKPAM) ANSI meanings of these keys.

Table 10-9

APPLICATIONS MODE (TEKKPAM) MEANINGS OF KEYPAD KEYS

I Key Pad Name I 0
I State I

I 1
I
I

I 2
I
I

I 3
I
I

I 4
I
I

I Unshifted
I Shifted

I ESC 0 p I ESC 0 q I ESC 0 r I ESC 0 s I ESC 0 t I

I ESC 0 p I ESC 0 q I ESC 0 r I ESC 0 s I ESC 0 t I

I Ctrl I ESC 0 p I ESC 0 q i ESC 0 r I ESC 0 s I ESC 0 t I
I Ctrl-Shifted I ESC 0 p I ESC 0 q I ESC 0 r I ESC 0 s I ESC 0 t I

I Key Pad Name I 5
I State I

I 6
I
I

I 7
I
I

I 8
I
I

I 9
I
I

I Unshifted
I Shifted

I ESC 0 u I ESC 0 v I ESC 0 w I ESC 0 x I ESC 0 y I
I ESC 0 u I ESC 0 v I ESC 0 w I ESC 0 x I ESC 0 y I

I Ctrl I ESC 0 u I ESC 0 v I ESC 0 w I ESC 0 x I ESC 0 y I
I Ctrl-Shifted I ESC 0 u I ESC 0 v I ESC 0 w I ESC 0 x I ESC 0 y I

I Key Pad Name I - I
I ,

I State I I
I

I
I • I
I

lENT
I
I

I Unshifted
I Shifted

I ESC 0 m I ESC 0 1 I ESC 0 n I ESC 0 M I
I ESC 0 m I ESC 0 1 I ESC 0 n I ESC 0 M I

I Ctrl I ESC 0 m I ESC 0 1 I ESC 0 n I ESC 0 M I

I Ctrl Shifted I ESC 0 m I ESC 0 1 I ESC 0 n I ESC 0 M I

4404 Reference Manual @ 10-39

SECTION 10
Terminal Emulation

Joydisk Keys

The joydisk is located to the upper left of the main set of
alphanumeric keys. The function of the joydisk in ANSI mode is
to act in the place of cursor keys. The codes sent by the
joydisk are affected by the Cursor Key mode in union with the
Keypad Applications mode. The default codes are sent unless both
TEKKPAM and TEKCKM are set. Table 10-10 shows the ANSI mode
meanings of its keys.

Table 10-10

ANSI JOYDISK KEY MEANINGS

1 Joyd1sk Key Name 1 Up 1 Down 1 Right 1 Left

1 (Default mode)

1 Unshifted 1 <CSI) A 1 <CSI) B 1 <CSI) C 1 <CSI) 0 1

1 Shifted 1 <CSI) A 1 <CSI) B 1 <CSI) C 1 <CSI) 0 1

ICtrl 1 <CSI) A 1 <CSI) B 1 <CSI) C 1 <CSI) 0 1

ICtrl-Shifted I <CSI) A I <CSI) B I <CSI) C 1 <CSI) 0 1

1------------------1---------1---------1---------1---------1

1 TEKKPAM and
1 TEKCKM modes

1 Unshifted 1 ESC 0 A 1 ESC 0 B 1 ESC 0 C 1 ESC 0 0 1

! Shifted I ESC 0 A ! ESC 0 B I ESC 0 C I ESC 0 D I

1 Ctrl 1 ESC 0 A 1 ESC 0 B 1 ESC 0 C 1 ESC 0 D 1

1 Ctrl-Shifted 1 ESC 0 A 1 ESC 0 B 1 ESC 0 C I ESC 0 0 1

10-40 @ 4404 Reference Manual

Function Keys

SECTION 10
Terminal Emulation

The function keys F1-F12 are grouped in three groups of four keys and are
located in a row above both the alphanumeric keys and the numeric key pad.
Table 10-11 shows the ANSI mode meanings of these keys.

Table 10-11

ANSI MEANINGS OF FUNCTION KEYS

I Function Key
I Name vs. Sta te

I Unshifted

I Shifted

I Ctrl

I Ctrl-Shifted

I Function Key
I Name vs. Sta te

I Unshifted

I Shifted

I Ctrl

I Ctrl-Shifted

I Function Key
I Name vs. State

I Unshifted

I Shifted

I Ctrl

I Ctrl-Shifted

4404 Reference Manual

I F1
I
I

I F2
I
I

I F3
I
I

I F4
I
I

I ESC 0 E I ESC 0 F I ESC 0 G I ESC 0 H I

I ESC 0 E. I ESC 0 F I ESC 0 G I ESC 0 H I

I ESC 0 E I ESC 0 F I ESC 0 G I ESC 0 H I

I ESC 0 E I ESC 0 F I ESC 0 G I ESC 0 H I

I F5
I
I

I F6
I
I

I F7
I
I

I F8
I
I

I ESC 0 I I ESC 0 J I ESC 0 K I ESC 0 L I

I ESC 0 I I ESC 0 J I ESC 0 K I ESC 0 L I

I ESC 0 I I ESC 0 J I ESC 0 K I ESC 0 L I

I ESC 0 I I ESC 0 J I ESC 0 K I ESC 0 L I

I F9
I
I

I F10
I
I

I F11
I
I

I F12
I
I

I ESC 0 P I ESC 0 Q I ESC 0 R I ESC 0 S I

I ESC 0 P I ESC 0 Q I ESC 0 R I ESC 0 S I

I ESC 0 P I ESC 0 Q I ESC 0 R I ESC 0 S I

I ESC 0 P I ESC 0 Q I ESC 0 R I ESC 0 S I

@ 10-41

SECTION 10
Terminal Emulation

Special Function Keys

There are only two special function keys on the 4404 keyboard.
One is the "up-arrow/left-arrow" key in the upper left corner of
the main key area, while the other is the BREAK key in the lower
right corner of the main key area. While most terminal emulators
do not send a character sequence when the BREAK key is pressed,
this emulator does -- under the assumption that the communication
program will recognize the sequence and perform the appropriate
break signal. Table 10-12 shows the default ANSI mode meaning of
these keys.

10-42 @

'1'ab11 10-12

ANSI MEANINGS OF SPECIAL FUNCTION KEYS

I Function Key I
I Names vs. States I

I Break
I
I

I Unshifted I ESC 0 T I ESC 0 @ I

I Shifted I ESC 0 U I ESC 0 @ I

I Ctrl I ESC 0 T I ESC 0 @ I

I Ctrl- Shifted I ESC 0 U I ESC 0 @ I

4404 Reference Manual

87 00 0 0 86
85 0 1

BITS

84 B3 82 Bl
CONTROL

01 0 0 0 NU °L 0 16

o 0 o 1 SH °1 1 17

Appendix A

ASCII CODE CHART

o 1
0

o 1
1

1 0
0

1 0

I FIGURES UPPERCASE

Sp a @ p
32 48 64

I 1 A Q
33 49 65

001 0 Sx °2 1 " 2 B R
2 50 18 34 66

o 0 1 1 Ex 03 # 3 C S
3 19 35 51 67

o 1 0 0 ET °4 $ 4 0 T
4 20 36 52 68

o 1 o 1 EQ NK 0/0 5 E U
I 5 21 37 53 691

o 1 1 0 AK Sy & 6 F V
6 22 38 54 70

o 1 1 1 BL EB / 7 G w
7 23 39 55 71

1 [0 0 0 BS CN
24

(8 H X
I 8 40 56 72

1 0 o 1 HT EM) 9 I y
9 25 41 57 ,3

1 0 1 0 LF SB !

* · J Z · 10 26 42 58 74

1 0 1 1 VT EC + · K [,
11 27 43 59 75

1 1 0 0 FF 12 FS , < L \
28 44 60 76

I

GS 1 11 o 1 CR - - M] -
13 29 45 61 77

1 1 1 0 So RS > N !\ .
I 14 30 46 62 78

1 1 1 1 SI 15 Us / 7 a -
31 47 63 79

4404 Reference Manual @

1
1 1

0
1 1

1

LOWERCASE

\ P
80 96 112

a q
81 97 113

b r
82 98 114

c S
83 99 115

d t
84 100 116

e u
85 101 117

f v
86 102 118

871
g w

103 119

h x
88 104 120

I Y
89 105 121

J z
90 106 122

k {
91 107 123

1 I
92 108 124

m }
93 109 125

n "" 94 110 126

0 °T
95 111 127

(4526)4893-18

A-1

INDEX

This material to be supplied later

4404 Reference Manual @ 1-1

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	01-01
	01-02
	02-001
	02-002
	02-003
	02-004
	02-005
	02-006
	02-007
	02-008
	02-009
	02-010
	02-011
	02-012
	02-013
	02-014
	02-015
	02-016
	02-017
	02-018
	02-019
	02-020
	02-021
	02-022
	02-023
	02-024
	02-025
	02-026
	02-027
	02-028
	02-029
	02-030
	02-031
	02-032
	02-033
	02-034
	02-035
	02-036
	02-037
	02-038
	02-039
	02-040
	02-041
	02-042
	02-043
	02-044
	02-045
	02-046
	02-047
	02-048
	02-049
	02-050
	02-051
	02-052
	02-053
	02-054
	02-055
	02-056
	02-057
	02-058
	02-059
	02-060
	02-061
	02-062
	02-063
	02-064
	02-065
	02-066
	02-067
	02-068
	02-069
	02-070
	02-071
	02-072
	02-073
	02-074
	02-075
	02-076
	02-077
	02-078
	02-079
	02-080
	02-081
	02-082
	02-083
	02-084
	02-085
	02-086
	02-087
	02-088
	02-089
	02-090
	02-091
	02-092
	02-093
	02-094
	02-095
	02-096
	02-097
	02-098
	02-099
	02-100
	02-101
	02-102
	02-103
	02-104
	02-105
	02-106
	02-107
	02-108
	02-109
	02-110
	02-111
	02-112
	02-113
	02-114
	02-115
	02-116
	02-117
	02-118
	02-119
	02-120
	02-121
	02-122
	02-123
	02-124
	02-125
	02-126
	02-127
	02-128
	02-129
	02-130
	02-131
	02-132
	02-133
	02-134
	02-135
	02-136
	02-137
	02-138
	02-139
	02-140
	02-141
	02-142
	02-143
	02-144
	02-145
	02-146
	02-147
	02-148
	02-149
	02-150
	02-151
	02-152
	02-153
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-72
	05-73
	05-74
	05-75
	05-76
	05-77
	05-78
	05-79
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	07-001
	07-002
	07-003
	07-004
	07-005
	07-006
	07-007
	07-008
	07-009
	07-010
	07-011
	07-012
	07-013
	07-014
	07-015
	07-016
	07-017
	07-018
	07-019
	07-020
	07-021
	07-022
	07-023
	07-024
	07-025
	07-026
	07-027
	07-028
	07-029
	07-030
	07-031
	07-032
	07-033
	07-034
	07-035
	07-036
	07-037
	07-038
	07-039
	07-040
	07-041
	07-042
	07-043
	07-044
	07-045
	07-046
	07-047
	07-048
	07-049
	07-050
	07-051
	07-052
	07-053
	07-054
	07-055
	07-056
	07-057
	07-058
	07-059
	07-060
	07-061
	07-062
	07-063
	07-064
	07-065
	07-066
	07-067
	07-068
	07-069
	07-070
	07-071
	07-072
	07-073
	07-074
	07-075
	07-076
	07-077
	07-078
	07-079
	07-080
	07-081
	07-082
	07-083
	07-084
	07-085
	07-086
	07-087
	07-088
	07-089
	07-090
	07-091
	07-092
	07-093
	07-094
	07-095
	07-096
	07-097
	07-098
	07-099
	07-100
	07-101
	07-102
	07-103
	07-104
	07-105
	07-106
	07-107
	07-108
	07-109
	07-110
	07-111
	07-112
	07-113
	07-114
	07-115
	07-116
	07-117
	07-118
	07-119
	07-120
	07-121
	07-122
	07-123
	07-124
	07-125
	07-126
	07-127
	07-128
	07-129
	07-130
	07-131
	07-132
	07-133
	07-134
	07-135
	07-136
	07-137
	07-138
	07-139
	07-140
	07-141
	07-142
	07-143
	07-144
	07-145
	07-146
	07-147
	07-148
	07-149
	07-150
	07-151
	07-152
	07-153
	07-154
	07-155
	07-156
	07-157
	07-158
	07-159
	07-160
	07-161
	07-162
	07-163
	07-164
	07-165
	07-166
	07-167
	07-168
	07-169
	07-170
	07-171
	07-172
	07-173
	07-174
	07-175
	07-176
	07-177
	07-178
	07-179
	07-180
	07-181
	07-182
	07-183
	07-184
	07-185
	07-186
	07-187
	07-188
	07-189
	07-190
	07-191
	07-192
	07-193
	07-194
	07-195
	07-196
	07-197
	07-198
	07-199
	07-200
	07-201
	07-202
	07-203
	07-204
	07-205
	07-206
	07-207
	07-208
	07-209
	07-210
	07-211
	07-212
	07-213
	07-214
	07-215
	07-216
	07-217
	07-218
	07-219
	07-220
	07-221
	07-222
	07-223
	07-224
	07-225
	07-226
	07-227
	07-228
	07-229
	07-230
	07-231
	07-232
	07-233
	07-234
	07-235
	07-236
	07-237
	07-238
	07-239
	07-240
	07-241
	07-242
	07-243
	07-244
	07-245
	07-246
	07-247
	07-248
	07-249
	07-250
	07-251
	07-252
	07-253
	07-254
	07-255
	07-256
	07-257
	07-258
	07-259
	07-260
	07-261
	07-262
	07-263
	07-264
	07-265
	07-266
	07-267
	07-268
	07-269
	07-270
	07-271
	07-272
	07-273
	07-274
	07-275
	07-276
	07-277
	07-278
	07-279
	07-280
	07-281
	07-282
	07-283
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	A-01
	I-01

