
Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

070-3941-00
Product Group 61

COMMITTED TO EXCELLENCE

This manual supports TNIX
versions 1.0, 1.2, 1.3, and 1.4.

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL

8560 Series
MULTI-USER SOFTWARE

DEVELOPMENT UNIT

SYSTEM REFERENCE
MANUAL

TNIX VERSION 1

Serial Number ______ _

First Printing DEC 1981
Revised MAR 1983

LIMITED RIGHTS LEGEND

Software License No.

Contractor: Tektronix, Inc.
Explanation of Limited .Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or (c) used
by a party other than the Customei, except for': (I) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work, provid­
ed that the release or disclosure hereof outside the Customer shall be made
subject to a prohibition against further use, release or disclosure; or (ii) release to
a foreign government, as the interest of the United States may require, only for
information or evaluation within such government or for emergency repair or
overhaul work by or for such government under the conditions of (i) above. This
legend, together with the indications of the portions of this data which are subject
to such limitations shall be included on any reproduction hereof which includes
any part of the portions subject ,to such limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright cs 1981 , 1983 Tektronix, Inc. All rights reserved. Contents of this publi­
cation may not be reproduced in any form without the written permission of
Tektronix, Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRONiX, TEK, SCOPE-MOBILE, and ~ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S .. A. Specification and price change privileges are reserved.

8560 MUSDU System Reference Manual

MANUAL REVISION STATUS

8560 MUSDU SYSTEM REFERENCE MANUAL (070-3941-00)
This System Users Manual supports Versions 1.0, 1.2, 1.3, and 1.4 of the 8560 TNIX operating
system.

I REV DATE

DEC 1981

NOV 1982

NOV 1982

I MAR 1983

I MAR 1983 ,

ADD APR 1983

DESCRIPTION

Original Issue

Replaced: pages 1-5-1-10, 1-61-1-64, 1-85, 1-86, 1-119, 1-120, 2-30, 4-3,
4-4, 5-10, 6-19-6-22, 8-6-8-9, 8-12, 8-15, 8-18, 8-19, 8-22-8-27.

Added: pages 1-28a, 1-28b, 1-72a, 1-72b, 4-4a, 4-4b, 5-8a, 5-8b, 5-10a-
5-1 Of, 5-22a, 5-22b, 6-56a, 6-56b, 8-4a, 8-4b, 8-12a, 8-12b, 8-14a, 8-14b,
8-18a, 8-18b, 8-20a, 8-20b.

Replaced: pages 8-4a, 8-4b, 8-6, 8-7, 8-8, 8-14b, 8-15, 8-18b, 8-19.

Added: pages 8-4c, a-7a, 8-7b, 8-7c, 8-7d, 8-19a, 8-19b.

8560 MUSDU System Reference Manual

@

OVERVIEW

Section 0
Introduction

This manual describes the publicly available features of the TNIX operating sys­
tem. It provides a terse, easily accessed summary of commands, command
options, system calls, and other information that you may require while working
within the TNIX system. Learning guides, in-depth discussions of some of the
command processors, and other Uhow-to" types of information can be found in
the 8560 MUSDU System Users Manual. Some of the commands and program­
ming packages described in this manual are not included in the base TNIX
package, but are available as optional software packages.

This manual is divided into eight sections:

Section 1 Commands
Section 2 System Calls
Section 3 Subroutines
Section 4 Special Files
Section 5 File Formats and Conventions
Section 6 Category C Software
Section 7 Macro packages and language conventions
Section 8 System Maintenance

References to specific entries or pages in this manual are of the form
command-name(section-number). For example, uconsult ed(1) " means that
you should look up the ed entry in Section 1 for further information on the topic
you are reading about. Commands are programs invoked directly by the user,
as opposed to subroutines, which are called by the user's programs. Most com­
mands reside in directory /bin (for binary programs); some, mostly the Category
C commands, reside in /usr/bin to save space in /bin. Both directories are
searched automatically by the command interpreter.

System calls are entries into the TNIX supervisor. Each system call has one or
more C language interfaces, as described in Section 2. The underlying assembly
language interface is also given.

Section 3 describes the standard system subroutines. The primary libraries in
which the subroutines are kept are described in intro (3). The subroutines are
described in terms of the C language, but most will work with Fortran.

Section 4, Special Files, discusses characteristics of system files or I/O devices.
Names in th is section refer to hardware device names rather than the name's of
the special files themselves.

Section 5, File Formats and Conventions, documents the structure of particular
types of files; for example, the output format of both the loader and assembler is
given. Files used by only one command, such as the assembler's intermediate
files, are not described.

0-1

0-2

Introduction-8560 MUSDU System Reference Manual

Section 6 describes the Category C software available with the TNIX operating
system.

Section 7 contains charts, tables, and programming tools for writing in various
specialized languages - an ASCII table, macro packages for typesetting and
document preparation, etc.

Section 8, Maintenance, outlines some of the procedures intended for use by the
system manager. Consult the Systems Maintenance section of the 8560 MUSDU
System Users Manual for complete information on system maintenance pro­
cedures.

@

8560 MUSDU System Reference Manual

@

INTRODUCTION

Section 1
Commands

A command consists of the command name followed by zero or more arguments,
each separated by a space. Arguments are either options or filenames; an argu­
ment beginning with a minus sign '-' is an option, even if it is positionally where a
file name should be. It is unwise to begin filenames with'-~

Options are of two major types - flags and parameters. Flags have an on-off
value; a parameter indicates that the following argument is a value to be used as
indicated by the parameter syntax.

Filename arguments are processed in order of occurance.

Any command that accepts multiple input files accepts a '_' in place of a filename; this
indicates that the standard input is to be used.

Several single character flags may be grouped after a single minus sign as one
argument (e.g. -xyz instead of -x -y -z).

The n.me subsection lists the exact name of the command and subrou­
tine covered and gives a short description of its purpose.

The synopsis subsection summarizes the use of the program being
described. A few conventions are used, particularly in the comm.nds
subsection:

Boldf.ce words are considered literals, and are typed just as they
appear.

Square brackets [] around an argument indicate that the argu­
ment is optional. When an argument is given as 'name', it always
refers to a file name.

Ellipses ' ... ' are used to show that the previous argument­
prototype may be repeated.

The d.scrlptlon subsection discusses in detail the subject at hand.

The fll •• subsection gives the names of files which are built into the pro­
gram.

A Iao subsection gives pointers to related information.

The dlagno.tlcs subsection discusses the diagnostic indications which
may be produced. Self-explanatory messages are not listed.

The bugs subsection lists known bugs and occasional deficiencies. A
suugested fix is sometimes offered.

In section 2 an mbl.r subsection carries the assembly language
system interface.

1-1

iNTRO(1 j Commands-8560 MUSDU System Reference Manuai

1-2

INTRO(1)

NAME
intro - introduction to commands

DESCRIPTION
This section describes publicly accessible commands in alphabetic order.

DIAGNOSTICS
Upon termination each command returns two bytes of status, one supplied by the
system giving the cause for termination, and, in the case of Inormal' termination,
one supplied by the program - see wait and exit(2). The former byte is 0 for nor­
mal termination, the latter 0 for successful execution. A nonzero return value indi­
cates problems such as erroneous parameters, bad or inaccessible data, or some
other inability to cope with the task at hand. The returned status is called lexit
code', lexit status' or Ireturn code', and is described only when special conventions
are involved.

@

Commands-8560 MUSDU System Reference Manual 8540(1)

@

8540(1)

NAME
8540, 8550 - program to run commands on an 8540 or 8550

SYNTAX
< 8540/8550 command> [flag options] [argument] ...

8540 string

8550 string

DESCRIPTION
8540 controls 8540s and/or 8550s attached to the 8560. Each 8540/8550 com­
mand is defined on the 8560 by a link, whose name is the 8540/8550 command
name, to 8540. When an 8540/8550 command is invoked, 8540 will format the
flag-options and arguments into a blank separated carriage return terminated com­
mand line which it then sends to the proper 8540. 8540 will then wait for the
8540/8550 to finish the command. 8540 will also service requests for file system
operations from the 8540i8550.

Three "channels" are always available to the 8540/8550 command (the TNIX stdin,
stdout, and stderr). Other "channels" may be opened and used by the 8540 issu­
ing an "open" request and then subsequent "read" or "write" requests.

When 8540 is terminated, whether by an interrupt or quit signal, or the 8540 pro­
gram finishing, 8540 will save information about any files that have been opened
by an HSI request and have not been closed.

When the next 8540/8550 command requests to do some I/O other than with stdin,
stdout, or stderr; 8540 will look in the file that contains the saved information and
open and position the file so that it will seem as if it was never closed.

When invoked as 8540 or 8550, 8540 will send string to the 8540/8550 without
change and without being prefixed by the name of the command which invoked
8540. All other operations will be performed as described above. This command
allows 8540/8550 string assignments and 8550 command file invocations to be
controlled from the 8560.

1-3

8540(1 j Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank.]

1-4

Commands-8560 MUSDU System Reference Manual ACE(1)

ACE(1)
NAME

ace-advanced crt-oriented editor

SYNTAX
ace inputfile [outputfile] [-c configfile]

DESCRIPTION
Ace is a screen-oriented text editor. Editing commands are read from TNIX standard input;
terminal output is sent to TNIX standard output.

OPTIONS

inputfile The file to be created or edited with ace.
outputfile The file that contains the editing changes; inputfile is not modified.
-c configfile The terminal configuration file that describes the operating characteristics of

the terminal used with ace. You can create, modify, or display configfile with
aceconfig(1).

THE DEFAULT TERMINAL CONFIGURATION FILE
Ace requires a terminal configuration file in order to operate properly. If you do not use a
TEKTRONIX CT8500 terminal with ace, or you use a modified terminal configuration file,
see aceconfig(1) or the ACE Configurator section of the 8500 Modular MOL Series ACE
Version 2 Reference Manual.

If you do not specify a configfile in the ace command line, ace determines which terminal
configuration file to use according to the following rules, in the order in which they are listed:

1. If the shell variable ACECONFIG has been assigned a value, ace uses that value for
configfile.

2. If the shell variable ACECONFIG has not been assigned a value, but the shell variable
TERM has been assigned a value, ace uses "${TERM}.cfg" for configfile.
("${TERM} .cfg" is the value of TERM with the suffix ".cfg" appended to it). If
"${TERM}.cfg" is not in the current directory, ace uses "/usr/lib/ace/${TERM}.cfg" for
con fig file. .

3. If the ACECONFIG and TERM variables are not set, or are set to the null string, then
ace uses ct8500.cfg (in the current directory) for configfile. If ct8500.cfg is not in the
current directory, ace uses "/usr/lib/ace/ct8500.cfg" for configfile.

INVOCATION EXAMPLE

REV NOV 1982

Here is an example of an ace invocation line:
$ aee wl.in wl.out -e new.efg <CR>

This example:

• executes ace from the TNIX shell;

• configures ace to the terminal you are using, with the "new.cfg" terminal configuration
file; and

• writes the editing changes made to "w1.in" to the "w1.out" file.

1-5

ACE(1) Commands-8560 MUSDU System Reference Manual

1-6

DEFAULT TERMINAL CONFIGURATION EXAMPLE
The following example shows how to set up your" .profile" file (the shell command file that is
executed each time you log in to TNIX) so that you can set the TERM variable to the name
of the terminal that you will use with ace.

Add the following lines to your" . profile" file in your home (/usr/yourname) directory:
TERM=ct8500
echo -n -terminal type (default = $!TERM!)?-
read term
test -n -$term- && TERM=-$term­
export TERM

Then, when your" .profile" file is executed, the following prompt will be displayed:
terminal type (default = ct8500)?

If you type a <CR> in response to the prompt, the TERM variable is set to "ct8500";
otherwise, TERM is set to the value that you enter in response to the prompt. If you want to
use the terminal configuration file called" /usr/lib/ace/aaa.cfg" with ace, type
terminal type (default = ct8500)? aaa <CR>

in response to the above prompt. Then, execute your" . profile " file by typing:
$ •• profile <CR>

(This can be useful if you entered the wrong terminal type). When you invoke ace with the
command line
$ ace yourfile <CR>

ace will use the" /usr/lib/ace/aaa.cfg" terminal configuration file.

NOTE

(If a file called" aaa.cfg" exists in your current directory, ace will use that file instead of
"/usr/lib/ace/aaa.cfg" .)

FILES
/usr/tmp/acetmN.pid The temporary file used by ace. N is an integer from 1 to 3, and pid

is the current process id number.
/usr/lib/ace The directory that is searched if a terminal configuration file is not

found in the current directory.
/usr/lib/ace/ct8500.cfg The default terminal configuration file supplied with ace for use with

the TEKTRONIX CT8500 terminal.

SEE ALSO
8560 MUSOU ACE Version 2 Users Booklet
8500 Modular MOL Series ACE Version 2 Reference Manual
aceconfig(1)

REV NOV 1982

Commands-8560 MUSDU System Reference Manual ACECONFIG(1)

ACECONFIG(1)
NAME

aceconfig-create, modify, or view a terminal configuration file

SYNTAX
aceconfig [-c -m -v] [configfile]

DESCRIPTION
Aceconfig is an interactive program that creates, modifies, and displays the ace terminal
configuration file. The terminal configuration file tells ace how to recognize the character
sequences that correspond to ace commands. The terminal configuration file also tells ace
which character sequences to send to the terminal to display the results of these
commands.

OPTIONS
-c Create a terminal configuration file.
-m Modify a terminal configuration file.
-v View a terminal configuration file.

If you do not specify one of these flags when you invoke aceconfig,
aceconfig views the terminal configuration file if it already exists, otherwise
aceconfig creates the terminal configuration file.

configfile The name of the file to be created, viewed, or modified.
If you do not specify a configfile in the aceconfig command line, aceconfig
determines which terminal configuration file to use according to the following
rules, in the order in which they are listed:

1. If the shell variable ACECONFIG has been assigned a value, aceconfig uses that value
for configfile.

2. If the shell variable ACECONFIG has not been assigned a value, but the shell variable
TERM has been assigned a value, aceconfig uses "${TERM} .cfg" for configfile.
("${TERM} .cfg" is the value of TERM with the suffix ".cfg" appended to it). If
"$ {TER M } .cfg" is not in the current directory, aceconfig uses
"/usr/lib/ace/${TERM} .cfg" for configfile.

3. If the ACECONFIG and TERM variables are not set, or are set to the null string, then
aceconfig uses ct8500.cfg (in the current directory) for configfile. If ct8500.cfg is not in
the current directory, aceconfig uses "/usr/lib/ace/ct8500.cfg" for configfile.

FILES
/usr/lib/ace The directory that is searched if a terminal configuration file is

not found in the current directory.
/usr/lib/ace/ct8500.cfg

/etc/termcap

The configuration file supplied with ace for use with the
TEKTRONIX CT8500 terminal.
The terminal definition file. Configuration parameters that are
defined in "/etc/termcap" are used by aceconfig when modify­
ing or creating a terminal configuration file.

SEE ALSO

REV NOV 1982

8560 MUSDU ACE Version 2 Users Booklet
8500 Modular MDL Series ACE Version 2 Reference Manual
ace(I), termcap(5)

1-7

ACECONFIG{ 1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-8 REV NOV 1982

Commands-8560 MUSDU System Reference Manual ASM(1)

ASM(1)
NAME

asm-invoke processor-dependent assembler

SYNTAX
asm objectfile listfile sourcefile1 [sourcefile2 sourcefile2 ...]

PARAMETERS
objectfile The file that you specify to receive the object code generated by the assem­

bier. If you want asm to send objectfile to the standard output, you must
specify a null string in place of objectfile by typing ".

listfile The file that you specify to receive the listing generated by the assembler. If
you want asm to send listfile to the standard output, you must specify a null
string in place of listfile by typing ".

source file The file that contains the source code to be assembled by asm. You must
specify at least one sourcefile. You can specify additional sourcefiles in the
asm command line.

DESCRIPTION
Asm is the Tektronix Assembler. The source code, residing in one or more files, is translated
into object code (machine language), which is written to the specified file or device. An
assembler listing is also generated and is written to the specified file or device.

To use a specific microprocessor with the asm command, you must set the "uP" shell
variable equal to the name of the microprocessor. For example, to use the 8085
microprocessor with the asm command, set the "uP" variable to "8085" by typing:
$ uP=8085; export uP <CR>

The proper assembler must be installed on your system in order for the asm command to
work.

EXAMPLES
The following examples assume that 8085.0 is objectfile, 8085.1 is listfile, and 8085.s is
sourcefile. If you do not want to specify objectfile, type:
$ asm " 8085.1 8085.s <CR>

If you do not want to specify listfile, type:
$ asm 8085.0 " 8085.s <CR>

If you do not want to specify both objectfile and listfile, type:
$ asm " " 8085. s <CR>

INVOKING PROCESSOR-DEPENDENT COMMANDS
Asm is also an interface to various processor-dependent commands, such as pas, ics,
iCsp, pdb, etc., that run on the 8560. Asm prefixes the processor-dependent command that
you enter with /bin/$uP, then executes the newly-created command-name with the exec
command (see exec(2)). The arguments that you entered with the original
processor-dependent command are passed unchanged to the newly-created
command-name. You can link files to the processor-dependent command-the file with the
corresponding name, /bin/${uP}asm, will be executed.

SEE ALSO
exec(2)

REV NOV 1982 1-9

ASM(1) Commands-8560 iviUSDU System Reference Manuai

[This page intentionally left blank.]

1-10 REV NOV 1982

Commands-8560 MUSDU System Reference Manual BASENAME(1)

@

BASENAME(1)

NAME
basename - strip filename affixes

SYNTAX
baaename string [suffix]

DESCRIPTION
Basename deletes any prefix ending in 'I' and the suffix, if present in string, from
string, and prints the result on the standard output. It is normally used inside sub­
stitution marks' , in shell procedures.

This shell procedure invoked with the argument lusrlsrc/cmd/cat.c compiles the
named file and moves the output to cat in the current directory:

15n cc $1

SEE ALSO
sh(1)

mv a.out 'basename $1 .c'

1-11

BASENAME(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-12 @

Commands-8560 MUSDU System Reference Manual CAT(1)

@

'CAT(1)

NAME
cat - catenate and print

SYNTAX
cat [- u] [file] ...

DESCRIPTION
Cat reads each file in sequence and writes it on the standard output. Thus

cat file

prints the file and

cat flle1 flle2 > flle3

concatenates the first two files and places the result on the third.

If no file is given, or if the argument '-' is encountered, cat reads from the standard
input.

OPTIONS
-u Output is buffered in 512-byte blocks unless the standard output is a ter­

m i nal or the - u option is present.

SEE ALSO
pr(1), cp(1)

NOTES
Beware of 'cat a b > a' and 'cat a b > b', which destroy input files before reading
them.

1-13

CAT(1) Commands-856D MUSDU System Reference Manual

[This page intentionally left blank.]

1-14 @

Commands-8560 MUSDU System Reference Manual CD(1)

@

CD(1)

NAME
cd - change working directory

SYNTAX
cd [directory]

DESCRIPTION
Directory becomes the new working directory. The process must have execute
(search) permission in directory.

Because a new process is created to execute each command, cd would be ineffec­
tive if it were written as a normal command. It is therefore recognized and exe­
cuted by the Shell.

SEE ALSO
sh(1), pwd(1), chdir(2)

1-15

CD(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-16 @

Commands-8560 MUSDU System Reference Manual CHMOD(1)

@

CHMOD(1)

NAME
chmod - change mode

SYNTAX
chmod mode file ...

DESCRIPTION
The mode of each named file is changed according to mode, which may be abso­
lute or symbolic. An absolute mode is an octal number constructed from the OR of
the following modes:

04000 set user 10 on execution
02000 set group 10 on execution
01000 save image after execution-used only for heavily used commands
00400 read by owner
00200 write by owner
00100 execute (search in directory) by owner
00070 read; write; execute (search) by group
00007 read, write, execute (search) by others

A symbolic mode has the form:

[who J op permission l [who J op permission J ...
The who part is a combination of the letters u (tor user's permissions), g (group)
and 0 (other). The letter a stands for all (ugo). If who is omitted, the default is a
but the setting of the file creation mask (see umask(2)) is taken into account. The
file creation mask shows which bits should be off.

Op can be + to add permission to the file's mode, - to take away permission and
- to assign permission absolutely (all other bits in that group will be reset).

Permission is any combination of the letters r (read), w (write), x (execute), I (set
owner or group id) and t (save image). Letters u, g or 0 indicate that permission is
to be copied from the cu·rrent mode. Omitting permission is only useful with - to
take away all permissions.

The first example denies write permission to others, the second makes a file exe­
cutable by everyone:

chmod o-w file

ch mod + x file

Multiple symbolic modes separated by commas may be given. Operations are per­
formed in the order specified. The permission I is only useful with u or g.

Only the owner of a file (or the super-user) may change its mode. Only the super­
user may set the save image (1000) bit.

SEE ALSO
Is(1), chmod(2), chown (1), stat(2), umask(2)

1-17

CHMOD{1 j Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank,]

1-18 @

Commands-8560 MUSDU System Reference Manual CHOWN(1)

@

CHOWN(1)

NAME
chown, chgrp - change owner or group

SYNTAX
chown owner file .. .

chgrp group tile .. .

DESCRIPTION
Chown changes the owner of file(s) to owner. The owner may be either a decimal
user-id or a login name found in the password file.

Chgrp changes the group-ID of file(s) to group. The group may be either a decimal
group-id or a group name found in the group-ID file.

Only the super-user can change owner or group.

FILES
letc/passwd
l~t,../nrnlln
, ",.VI 1:f1 'W'w,.,.

SEE ALSO
chown(2), passwd(5), group(5)

1-19

CHOWN(1) Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank.]

, -20

Commands-8560 MUSDU System Reference Manual CMP(1)

CMP(1)

NAME
cmp - compare two files

SYNTAX
cmp [-II] file 1 file2

DESCRIPTION
The two files are compared. (If file1 is '-', the standard i'nput is used.) Under
default options, cmp makes no comment if the files are the same; if they differ, it
announces the byte and line number at which the difference occurred. If one file
is an initial subsequence of the other, that fact is noted.

OPTIONS
-I

-I

SEE ALSO

Print the byte number (decimal) and the differing bytes (octal) for each
difference.

Print nothing for differing files; return codes only. See DIAGNOSTICS
below. -I and -I are mutually exclusive.

diff(1), comm(1)

DIAGNOSTICS
Exit code 0 is returned for identical files, 1 for different files, and 2 for an inacces­
sible or missing argument.

1-21

CMP(1 } Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-22 @

Commands-8560 MUSDU System Reference Manual COMM(1)

COMM(1)

NAME
comm - select or reject lines common to two sorted files

SYNTAX
comm [- [123]] file 1 file2

DESCRIPTION
Comm reads file 1 and file2, which should be ordered in ASCII collating sequence,
and produces a three column output: lines only in file 1 ; lines only in file2; and
lines in both files. The filename ,_' means the standard input.

Flags 1 I 2, or 3 suppress printing of the corresponding column. Thus comm -12
prints only the lines common to the two files; comm - 23 prints only lines in the
first file but not in the second; comm -123 is a no-op.

SEE ALSO
cmp(1), diff(1), uniq(1)

1-23

COMM(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-24

Commands-8560 MUSDU System Reference Manual CP(1)

CP(1)

NAME
cp - copy

SYNTAX
cp file 1 file2

cp file... directory

cp directory 1 directory2

DESCRIPTION
File1 is copied onto file2. The mode and owner of file2 are preserved if it already
existed; the mode of the source file is used otherwise.

In the second form, one or more files are copied into the directory with their origi­
nal file-names.

The third form will copy the subtree with the root at directory 1 to directory2. Direc­
tory2 must not be in the directory1 subtree.

SEE ALSO
cat(1), pr(1), mv(1)

NOTES
Cp refuses. to copy a' file onto itself.

1-25

CP(1) Commands-8560 MUSDU System Reference Manual

[ThiS page intentionally left blank.]

1-26 @

Commands-8560 MUSDU System Reference Manual DATE(1)

@

DATE{1}

NAME
date - print and set the date

SYNTAX
date [dd-mmm-yy] [hh:mm[:ss]] [-t SSS] [-d DOD] ll-w [hh:mmJJ [-e [hh:mmJJ]

date llyy]mmddhhmm [.ss11 [-t SSS] [-d DOD] ll-w [hh:mm11 [-e [hh:mm]11

DESCRIPTION
If no argument is given, the current date and time are printed. If an argument is
given, the current date is set. the first dd is the day number in the month; mmm is
the lowercase first three letters of the month; mm is the month number; yy is the
last two digits of the year; hh is the hour number (24 hour system); the second mm
is the minute number; ss is optional and is the seconds. In the first form of date
specification the time only may be set and the day-month-year string will not be
modified. If the day-month-year string only is specified the time will not be modi­
fied. Also if seconds are omitted system seconds will not be modified. For exam-
nlc.·
,."V.

date 14-nov-80 12:45

or

date 8011141245

set the date to Nov 14, 1980 12:45 PM.

date 3:45:20

sets the datetime to Nov 14, 1980 3:45: 20 AM if it were done on the same day as
the above date command.

date -t PST -d PDT -w 8:30

leaves the date the same but sets the timezone strings and the hours offset from
Greenwich Mean Time to be 8 1/2 hours. Date takes care of the conversion to and
from local standard and daylight time in the United States.

OPTIONS
-t SSS sets the system standard timezone string. If this string is not set or is null

the system will print out GMT + /- HH for the timezone. HH representing
hours west of GMT.

-d DDD
sets the system daylight timezone string. If this string is null or if it was
never set the system assumes that there is no daylight savings time.

, -27

DATE(1) Commands-8560 MUSDU System Reference Manual

-w hh:mm
sets the hours and minutes west of Greenwich Mean Time that the
timezone strings represent if you are west of the Prime Meridian.

-8 hh:mm
sets the hours and minutes east of Greenwich Mean Time that the
timezone strings represent if you are east of the Prime Meridian.

The above options may be invoked independently of setting the date, time, or the
other options.

DIAGNOSTICS

1-28

'No permission' if you aren't the super-user and you try to change the date; 'bad
conversion' if the date set is syntactically incorrect.

@

Commands-8560 MUSDU System Reference Manual DF(1)

DF(1)
NAME

df -disk free

SYNTAX
df [filesystem] ...

DESCRIPTION
Df prints out the number of free blocks available for file allocation on the filesystem(s). If no
file system is specified, the free space on each filesystem listed in the file /etc/checklist is
printed. (If /etc/checklist cannot be read by df, the "/dev/rhdO" filesystem will be used.)

FILES
/etc/checklist

SEE ALSO
checklist(5) hd(5)

ADD NOV 1982 1-288

DF(1) Commands-8S60 MUSDU System Reference Manual

[This page intentionally left blank.]

1-28b ADD NOV 1982

Commands-8560 MUSDU System Reference Manual DIFF(1)

@

DIFF(1)

NAME
diff - differential file comparator

SYNTAX
dlff [-efbh] file 1 file2

DESCRIPTION
Dlff tells what lines must be changed in two files to bring them into agreement. If
file 1 (file2) is '- I, the standard input is used. If file 1 (file2) is a directory, then a
file in that directory whose file-name is the same as the file-name of file2 (file 1)
is used. The normal output contains lines of these forms:

n1 a n3,n4

n1,n2 d n3

n1 ,n2 c n3,n4

These lines resemble ed commands to convert file 1 into file2 The -e option pro­
duces actual editor commands for use in converting files. The numbers after the
letters pertain to file2 In fact, by exchanging 'a' for 'd' and reading backward one
may ascertain equally how to convert file2 into file 1 As in ed , identical pairs
where n 1 = n2 or n3 = n4 are abbreviated as a single number.

Following each of these lines come all the lines that are affected in the first file
flagged by '<', then all the lines that are affected in the second file flagged by'> '.

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

OPTIONS
-b

-e

-f

-h

FILES

Causes trailing blanks (spaces and tabs) to be ignored and other strings of
blanks to compare equal.

Produces a script of a , c and d commands for the editor ed , which will
recreate file2 from file 1

Produces a similar script to that produced by -8 , not useful with ed , in
the opposite order.

Does a fast, Simplistic job. It works only when changed stretches are short
and well separated, but does work on files of unlimited length. Options -e,
-f, and -h are mutually exclusive.

Itmp/d???? ?
lusr/lib/diffh for-h

SEE ALSO
cmp(1), comm(1), ed(1)

DIAGNOSTICS
Exit status is 0 for no differences, 1 for some, 2 for trouble.

NOTES
Editing scripts produced under the -e or -f option will not correctly create lines
consisting of a single ','

1-29

DIFF(1 j Commands-85S0 MUSDU System Reference Manual

[This page intentionally left blank.]

1-30 @

Commands-8560 MUSDU System Reference Manual DSC50('1)

@

DSC50(1)

NAME
dsc50, mk50, wr50, de150, rd50, dir50, In50 - manipulate 8550 format diskettes

SYNTAX
dac50 [-mwdxtla] [-epbrvq] [-c path] [-0 owner]
[-n name] [-a n] [-f disk] [source ... dest]

DESCRIPTION
Oac50 performs many DOS/50 functions on an 8550 diskette. The operation to
perform can be specified as a command line option, in an interactive mode, or as
the name of the command. Specifying an operation in the command name is
equivalent to invoking "dsc50" with the corresponding operation option. For exam­
ple:

wr50 /usr/daveh/tset /SOURCES/SETUP

is the same as typing:

dsc50 -w lusr/daveh/tset ISOURCES/SETUP

Note: because dac50 deals with only one 8550 diskette at a time, 8550 pathnames
are not prefixed by /VOL/volume_name.

Source and dest are TNIX and 8550 files or directories on which the operations
are to be performed.

In 8550 pathnames, '.' refers to the current directory,' . .' to its parent directory (see
the - c option).

Any directory appearing as a source file specifies all files within that directory (see
the recursive flag, -r). Source subdirectories (if no -r and not performing a table
of contents operation) and inaccessible files are ignored. If more than one source
file is specified or if source is a directory, dest must be a directory. If dest is a
directory, the source file(s) will be copied (or linked, depending on the operation)
into the corresponding fHe(s) within that directory. For example, given that Imys­
tuff is a directory on the 8550 diskette,

dsc50 -w /usr/daveh/adb.hex /usr/src/sccs.src /mystuff

will copy into the 8550 diskette files /mystuffladb.hex and Imystuff/sccs.src. For
copy operations, if the dest file already exists, it will be overwritten. For link opera­
tions, if the dest file already exists, it will be unlinked.

Interactive mode is entered by invoking dac50 with no operation option. Once in
this mode, dac50 will read commands from standard in until the -e option is
specified or the end-of-file is encountered. Commands in interactive mode have
the same syntax as dac50 with the following exceptions:

The command name is omitted

An initial' -' is optional

Any line beginning with an exclamation mark (I) is given to sh(1) to be
interpreted as a shell command.

1-31

DSC50(1) Commands-8560 MUSDU System Reference Manual

1-32

OPTIONS
An operation is specified by one of the following letters. The default operation is to
go into interactive mode.

-w write. The TNIX source file(s) are copied to the 8550 dest file/directory. A
source file name of - refers to standard in.

-m makes a new DOS/50 volume. Similar to the -w operation, except the
8550 diskette is initialized (without physically formatting it) prior to copy­
ing the file(s).

-d deletes the 8550 source files.

-x extract. The 8550 source file(s) are copied to the TNIX dest file/directory.
A dest file name of - refers to standard out.

-t table of contents. A directory listing of the source file(s) is printed. If no
source is specified, '.' is used.

-I links the existing 8550 source file(s) to the 8550 dest file/directory.

-I prints the setup (the current state of all options) to standard out in the
form of a dsc50 command. Useful only in interactive mode.

The following options may be specified on the command line or in interactive
mode.

-cpath
Change the current 8550 directory to path. This will be the directory rela­
tive to which all 8550 path names not beginning with slash (I) are inter­
preted. An error will be reported if this directory does not exist. The
default current directory is "I', the root directory of the 8550 diskette.

-0 owner
specifies the owner name to be given to anything created on the 8550
diskette (files, directories, or the entire volume). The default owner is
"NO.NAME".

-n name
specifies the volume name to be given to the 8550 diskette when it is
created by the -m operation. The default name is "NO.NAME".

-a n specifies the number (amount) of file slots to be created on the 8550
diskette by the -m operation. The default is 256 slots.

-f disk specifies a file to use as the 8550 diskette instead of the default device,
/dev/rfdO.

The following flags may be used on the command line or in interactive mode. In
interactive mode, specification of one of these flags toggles that flag.

-e

-p

exits. Terminates interactive mode after executing the given operation.
Ignored if not in interactive mode.

prompt. Ignored if not in interactive mode. If in interactive mode, dac50
will prompt for each command with $ dash (-). The default is to not prompt
in interactive mode.

@

Commands-8560 MUSDU System Reference Manual DSC50(1)

@

-b Binary transfer. Because the "end of line" character differs between TNIX
and DOS/50 text files, some character translation must occur when a text
file is copied to or from the disk. This translation is performed by dac50
on all files unless the -b option is specified.

-r recursive action specified. If any directory appears in a source directory,
the current command will be applied recursively to that subdirectory. Nor­
mally, subdirectories are skipped.

-y Normally dac50 does its work Silently. The -y (verbose) option causes it
to type the name of each file it treats preceded by the operation name.
With the -t operation, -y prints the following information about each file:

the file type and capabilities of the file,

its modification date-time,

its owner's name,

its size,

and its link count.

-q query. Causes dac50 to pause before treating each file, type the operation
name and the file name (as with -y) and await the user's response.
Response y means Iyes', so the file is treated. Response n or a null
response means Ino', and the file does not take part in whatever is being
done. Response N is the same as answering n to this and all further ques­
tions involved in the current operation. Response Y is the same as
answering y to this and all further questions involved in the current opera­
tion. End-of-file on standard in will exit the operation. auery does not
take place for the table of contents (-t) or setup (-s) operations.

FILES
/dev/rfdO

NOTES
Invoking dac50 by any name other than those listed above is equivalent to invok­
ing it by the name dac50 with no operation option.

Interrupting dac50 while it is modifying the DOS/50 disk (I.E. during a make, write,
delete, or link operation) may corrupt that disk.

1-33

DSC50(1} Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank.]

1-34 @

Commands-8560 MUSDU System Reference Manual DU(1)

@

DU(1)

NAME
du - summarize disk usage

SYNTAX
du [-as] [file] ...

DESCRIPTION
Du gives the number of blocks contained in all files and (recursively) directories
within each specified directory or file. If file is missing, I.' is used. Absence of
arguments causes an entry to be generated for each directory only.

A file which has two links to it is only counted once.

OPTIONS
-s causes only the grand total of each file or directory specified to be given.

-8 causes an entry to be generated for each file. The -s and -a options are
mutually exclusive.

NOTES
Non-directories given as arguments (not under -8 option) are not listed.
If there are too many distinct linked files, du counts the excess files multiply.

1-35

DU(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-36 @

Commands-8560 MUSDU System Reference Manual ECHO(1)

ECHO(1)

NAME
echo - echo arguments

SYNTAX
echo [- n] [arg] ...

DESCRIPTION
Echo writes its arguments separated by blanks and terminated by a newline on the
standard output.

Echo is useful for producing diagnostics in shell programs and for writing constant
data on pipes. To send diagnostics to the standard error file, do

echo ... 1>&2

where ... is a diagnostic message.

OPTIONS
-n No newline is added to the output. This flag must preceed all other argu­

ments in order to be recognised.

NOTES
Because echo is designed to generate a wide variety of messages, extra flags and
illegal flags are treated as arguments to be echoed and do not generate an error.

1-37

ECHO(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-38

Commands-8560 MUSDU System Reference Manual ED(1)

@

ED(1)

NAME
ed - text editor

SYNTAX
ad [-Cpx] [file]

DESCRIPTION
Ed is the standard text editor.

If a file argument is given, ad simulates an e command (see below) on the named
file; that is to say, the file is read into ad's buffer so that it can be edited.

Ed operates on a copy of any file it is editing; changes made in the copy have no
effect on the file until a w (write) command is given. The copy of the text being
edited resides in a temporary file called the buffer.

Commands to ad have a simple and regular structure: zero or more addresses fol­
lowed by a single character command, possibly followed by parameters to the
command, These addresses specify one or more lines in the buffer. Missing
addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the
addition of text to the buffer. While ad is accepting text, it is said to be in
input mode. In this mode, no commands are recognized; all input is merely col­
lected. Input mode is left by typing a period '.' alone at the beginning of a line.

Ed supports a limited form of regular expression notation. A regular expression
specifies a set of strings of characters. A member of this set of strings is said to
be matched by the regular expression. In 'the following specification for regular
expressions the word 'character' means any character but newline.

1. Any character except a special character matches itself. Special charac­
ters are the regular expression delimiter plus \ [. and sometimes" • $.

2.

3.

4.

5.

8.

7.

8.

A. matches any -character.

A \ followed by any character except a digit or () matches that character.

A nonempty string s bracketed [s] (or ts J) matches any character in (or
not in) s. In s, \ has no special meaning, and] may only appear as the first
letter. A substring a-b, with a and b in ascending ASCII order, stands for
the inclusive range of ASCII characters.

A regular expression of form 1-4 followed by • matches a sequence of 0 or
more matches of the regular expression.

A regular expression, x, of form 1-8, bracketed \(x \) matches what x
matches.

A \ followed by a digit n matches a copy of the string that the bracketed
regular expression beginning with the nth \(matched.

A regular expression of form 1-8, x, followed by a regular expression of
form 1-7, y matches a match for x followed by a match for y, with the x
match being as long as possible while still permitting a y match.

1-39

ED(1)

1-40

9.

10.

11.

Commands-8560 MUSDU System Reference Manual

A regular expression of form 1-8 preceded by A (or followed by $), is con­
strained to matches that begin at the left (or end at the right) end of a line.

A regular expression of form 1-9 picks out the longest among the leftmost
matches in a line.

An empty regular expression stands for a copy of the last regular expres-
sion encountered.

Regular expressions are used in addresses to specify lines and in one command
(see s below) to specify a portion of a line which is to be replaced. If it is desired
to use one of the regular expression metacharacters as an ordinary character, that
character may be preceded by V. This also applies to the character bounding the
regular expression (often II') and to \' itself.

To understand addressing in ad it is necessary to know that at any time there is a
current line. Generally speaking, the current line is the last line affected by a com­
mand; however, the exact effect on the current line is discussed under the
description of the command. Addresses are constructed as follows.

1. The character I.' addresses the current line.

2. The character 1$' addresses the last line of the buffer.

3. A decimal number n addresses the n -th line of the buffer.

4. IIX' addresses the line marked with the name x, which must be a lower­
case letter. Lines are marked with the k command described below.

5. A regular expression enclosed in slashes II' addresses the line found by
searching forward from the current line and stopping at the first line con­
taining a string that matches the regular expression. If necessary the
search wraps around to the beginning of the buffer.

6. A regular expression enclosed in Question marks 17' addresses the line
found by searching backward from the current line and stopping at the
first line containing a string that matches the regular expression. If neces­
sary the search wraps around to the end of the buffer.

7. An address followed by a plus sign 1+' or a minus sign 1_' followed by a
decimal number specifies that address plus (or minus) the indicated
number of lines. The plus sign may be omitted.

8. If an address begins with 1+' or 1_' the addition or subtraction is taken
with respect to the current line; e.g. 1-5' is understood to mean 1.-5'.

9. If an address ends with 1+' or 1_', then 1 is added (or subtracted). As a
consequence of this rule and rule 8, the address 1_' refers to the line
before the current line. Moreover, trailing 1+' and 1_' characters have
cumulative effect, so 1 __ ' refers to the current line less 2.

10. To maintain compatibility with earlier versions of the editor, the character
lA, in addresses is equivalent to 1_'.

Commands-8560 MUSDU System Reference Manual ED(1)

Commands may require zero, one, or two addresses. Commands which require no
addresses regard the presence of an address as an error. Commands which
accept one or two addresses assume default addresses when an insufficient
number are given. If more addresses are given than such a command requires, the
last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma "'. They may also
be separated by a semicolon ';'. In this case the current line '.' is set to the first
address before the next address is interpreted. This feature can be used to deter­
mine the starting line for forward and backward searches ('/', '?'). The second
address of any two-address sequence must correspond to a line following the line
corresponding to the first address.

In the following list of ad commands, the default addresses are shown in
parentheses. The parentheses are not part of the address, but are used to show
that the given addresses are the default.

As mentioned, it is generally illegal for more than one command to appear on a
line. However, most commands may be suffixed by 'p' or by 'I', in which case the
current iine is either printed or iisted respectiveiy in the way discussed beiow.

(.) a
<text>

The append com mand reads the given text and appends it after the
addressed line. '.' is left on the last line input, if there were any, otherwise
at the addressed line. Address '0' is legal for this command; text is placed
at the beginning of the buffer.

(• I •) c
<text>

The change command deletes the addressed lines, then accepts input text
which replaces these lines. '.' is left at the last line input; If there were
none, it is left at the line preceding the deleted lines.

(• I.) d
The delete command deletes the addressed lines from the buffer. The line
originally after the last line deleted becomes the current line; if the lines
deleted were originally at the end, the new last line becomes the current
line.

e filename
The edit command causes the entire contents of the buffer to be deleted,
and then 'filename' to be read in. '.' is set to the last line of the buffer.
The number of characters read is typed. 'filename' is remembered for pos­
sible use as a default file name in a subsequent r or w command. If
'filename' is missing, the remembered name is used.

E filename
This command is the same as e, except that no diagnostic results when no
w has been given since the last buffer alteration.

1-41

ED(1)

1-42

Commands-8560 MUSDU System Reference Manual

f filename
The filename command prints the currently remembered file name. If
'filename' is given, the currently remembered file name is changed to
'filename'.

(1,$) g/regular expression/command list

(.) I
<text>

In the global command, the first step is to mark every line which matches
the given regular expression. Then for every such line, the given command
list is executed with I,' initially set to that line. A single command or the
first of multiple commands appears on the same line with the global com­
mand. All lines of a multi-line list except the last line must be ended with
\'. A, i, and c commands and associated input are permitted; the I,' ter­
minating input mode may be omitted if it would be on the last line of the
command list. The commands g and v are not permitted in the command
list.

This command inserts the given text before the addressed line. I,' is left at
the last line input, or, if there were none, at the line before the addressed
line. This command differs from the a command only in the placement of
the text.

(. ,.+1)j
This command joins the addressed lines into a single line; intermediate
newlines simply disappear. I,' is left at the resulting line.

(.) kx The mark command marks the addressed line with name x, which must be
a lower-case letter. The address form "x' then addresses this line.

(. ,.) I
The list command prints the addressed lines in an unambiguous way:
non-graphic characters are printed in two-digit octal, and long lines are
folded. The I command may be placed on the same line after any non-i/o
command.

(. ,.) ma
The move command repositions the addressed lines after the line
addressed bya. The last of the moved lines becomes the current line.

(. , .) p

p c

q

Q

The print command prints the addressed lines. I,' is left at the last line
printed. The p command may be placed on the same line after any non-i/o
command.

If c is given it becomes the new prompt character. Otherwise, toggle
prompting. The default prompt character is 1*'. Initially prompting is turned
off.

The quit command causes ed to exit. No automatic write of a file is done.

This command is the same as q, except that no diagnostic results when no
w has been given since the last buffer alteration.

@

Commands-8560 MUSDU System Reference Manual ED(1}

@

($) r filename
The read command reads in the given file after the addressed line. If no
file name is given, the remembered file name, if any, is used (see e and f
commands). The file name is remembered if there was no remembered file
name already. Address '0' is legal for r and causes the file to be read at
the beginning of the buffer. If the read is successful, the number of char­
acters read is typed. ',' is left at the last line read in from the file.

(.,.) s/regular expres.lon/replacement! or,
(., .) s/regular expre •• lon/replacementlg

The substitute command searches each addressed line for an occurrence
of the specified regular expression. On each line in which a match is
found, all matched strings are replaced by the replacement specified, if the
global replacement indicator 'g' appears after the command. If the global
indicator does not appear, only the first occurrence of the matched string
is replaced. It is an error for the substitution to fail on all addressed lines.
Any character other than space or newline may be used instead of 'I' to
delimit the regular expression and the replacement. '.' is left at the last
line substituted.

An ampersand '&' appearing in the replacement is replaced by the string
matching the regular expression. The special meaning of '&' in this con­
text may be suppressed by preceding it by ,\'. The characters '\n' where n
is a digit, are replaced by the text matched by the n -th regular subexpres­
sion enclosed between '\ (' and ,\)'. When nested, parenthesized subex­
pressions are present, n is determined by counting occurrences of '\ ('
starting from the left.

Lines may be split by substituting new-line characters into them. The
new-line in the replacement string must be escaped by preceding it by ,\'.

(. , .) t a
This command acts just like the m command, except that a copy of the
addressed lines i~ placed after address a (which may be 0). The original
lines are not deleted. '.' is left on the last line of the copy.

(. , .) u
The undo command restores the preceding contents of the current line,
which must be the last line in which a substitution was made.

(1, $) v/regular expre •• lon/command list
This command is the same as the global command g except that the com­
mand list is executed with '.' initially set to every line except those match­
ing the regular expression.

(1, $) w filename
The write command writes the addressed lines onto the given file. If the
file does not exist, it is created mode 0666 (readable and writable by
everyone). The file name is remembered if there was no remembered file
name already. If no file name is given, the remembered file name, if any, is
used (see e and f commands). ',' is unchanged. If the command is suc­
cessful, the number of characters written is printed.

(1 ,$)W filename
This command is the same as w, except that the addressed lines are
appended to the file.

1-43

ED (1) Commands-8560 MUSDU System Reference Manual

1-44

x A key string is demanded from the standard input. Later r, e and w com­
mands will encrypt and decrypt the text with this key by the algorithm of
crypt (1). An explicitly empty key turns off encryption.

($) -= The line number of the addressed line is typed. '.' is unchanged by this
command.

I < shell command>
The remainder of the line after the 'I' is sent to sh (1) to be interpreted as
a command. '.' is unchanged.

(. + 1) < newline>
An address alone on a line causes the addressed line to be printed. This
line becomes the current line. A blank line alone is equivalent to '.+ 1 p'; it
is useful for stepping through text.

If an interrupt signal (ASCII DEL) is sent, ed prints a I?' and returns to its com­
mand level.

Some size limitations: 512 characters per line, 256 characters per global command
list, 64 characters per file name, and 128K characters in the temporary file. The
limit on the number of lines depends on the amount of memory: each line takes 1
word.

When reading a file, ed discards ASCII NUL characters and all characters after the
last newline. It refuses to read files containing non-ASCI! characters.

OPTIONS
-x If -x is present, an x command is simulated first to handle an encrypted

file.

-c The optional -c suppresses the printing of character counts bye, r, and w
commands.

-p Turn on prompt (it).

FILES
/tmp/eit

ed.hup: work is saved here if terminal hangs up

SEE ALSO
sed(1), crypt(1)

DIAGNOSTICS
'?name' for inaccessible file; '?' for errors in commands; '?TMP' for temporary file
overflow.

To protect against throwing away valuable work, a q or e command is considered
to be in error, unless a w has occurred since the last buffer change. A second q or
e wiii be obeyed regardless.

NOTES
The I command mishandles DEL.
A! command cannot be subject to a g command.
Because 0 is an illegal address for a w command, it is not possible to create an
empty file with ed.

@

Commands-8560 MUSDU System Reference Manual EXPR(1)

@

EXPR(1)

NAME
expr - evaluate arguments as an expression

SYNTAX
expr expression

DESCRIPTION
The arguments are taken as an expression. After evaluation, the result is written
on the standard output. Each token of the expression is a separate argument.

The operators and keywords are listed below. The list is in order of increasing pre­
cedence, with equal precedence operators grouped.

expr lexpr
yields the first expr if it is neither null nor '0', otherwise yields the second
expr

expr & expr
yields the first expr if neither expr is null or '0', otherwise yields '0'.

expr relop expr
where relop is one- of < < = = ! = > = >, yields '1' if the indicated com­
parison is true, '0' if false. The comparison is numeric if both expr are
integers, otherwise lexicographic.

expr + expr

expr - expr
addition or subtraction of the arguments.

expr • expr

expr / expr

expr % expr
multiplication, div.ision, or remainder of the arguments.

expr : expr

(expr)

The matching operator compares the string first argument with the regular
expression second argument; regular expression syntax is the same as
that of ed (1) . The \ (... \) pattern symbols can be used to select a portion
of the first argument. Otherwise, the matching operator yields the number
of characters matched ('0' on failure).

parentheses for grouping.

Examples:

To add 1 to the Shell variable a :

a-'.xpr Sa + l'

, -45

EXPR(1) Commands-8560 MUSDU System Reference Manual

1-46

To find the filename part (least significant part) of the path name stored in variable
a , which mayor may not contain'!,:

expr $a : ' .*" C*'), 'r $a

Note the quoted Shell metacharacters.

SEE ALSO
ed (1), sh (1), te st(1)

DIAGNOSTICS
EXPi ietuins the following exit codes:

o
1

2

if the expression is neither null nor '0',

if the expression is null or '0',

for invalid expressions.

Commands-8560 MUSDU System Reference Manual FBR(1)

FBR(1)

NAME
fbr - file backup and restore

SYNTAX
fbr -{cruxtd} [-vlw] [-I comment] [-m directory] [-f archive] [-] [file] ...

DESCRIPTION
Fbr saves and restores directories and files on a floppy disk archive, preserving
aliases (multiple links to the same file). Its actions are controlled by the function
and optional arguments. Other arguments to the command are file or directory
names specifying which files are to be transferred, deleted, or listed. A parameter
consisting only of a dash indicates that file and directory names should be read
from standard in at this pOint, one name per line. If reading names from standard
in is not specified, the appearance of a directory name in the parameters refers to
all files and (recursively) subdirectories of that directory. If function is -x, -t, or
-d, filenames may contain regular expressions of the form acceptable to sh(1).
Note that such expressions must be Quoted so that the shell does not attempt to
interpret them.

EXAMPLES

To archive the subtree rooted at the current directory and use the current directory
name as the archive comment:

fbr -c -I 'pwd'

To archive all user files and directories that have changed in the last two days:

find lusr -mtime -2 -print I fbr -c -I 'incremental' -

OPTIONS
Function is one of the following letters:

-c creates a new archive. The archive is initialized prior to writing the named
files to it. If create is specified with no file argument, '.' is the default.

It is suggested that the file arguments supplied be relative to the current directory
(I.E. 'abc' rather than '/usr/dmr/abc'). Files stored in this way can be more easily
transported between users and installations.

-r "Replace." The named files are written on the archive. If files with the
same names already exist on the archive, they are replaced. 'Same' is
determined by string comparison, so 'abc' can never be the same as
'/usr/dmr/abc' even if '/usr/dmr' is the current directory. If no file argu­
ment is given, '.' is the default.

-u updates the archive. -u is like -r , but a file is replaced only if its modifi­
cation date is later than the date stored on the archive; that is to say, if it
has changed since it was last archived.

-x extracts the named files from the archive to the file system. The access
and modification date-times and the mode are restored. If fbr is being run
by the superuser, the owner and owner's group are also restored. If no file
argument is given, the entire contents of the archive are extracted.

1-47

FBR(1)

, -48

-t

-d

Commands-8560 MUSDU System Reference Manuai

"Table of Contents." Lists the names of the specified files. If no file argu­
ment is given, the entire contents of the archive are listed.

deletes the named files from the archive. If no file argument is given, no
files are deleted.

The following flags may be used in addition to the flag which selects the function
desired.

-y Normally fbr does its work silently. The -y (verbose) option, when used
with functions other than -t, causes fbr to type the name of each file it
processes preceded by the function name. With the -t function, -y prints
information from the archive label as weii as the foiiowing iniormation con­
cerning each file:

The mode of the file,

the username and groupname of its owner,

its size,

its modification date-time,

the starting block number of its data on the archive,

and the name of the file.
For all functions, -y causes an archive space usage message to be printed at the
completion of the command.

-I Errors reading the archive are noted, but no action is taken. Normally,
errors cause a return to the command level. This flag is ignored if the
function requires changes to be made to the archive (I.E. -I is only useful
for performing tables of contents and file extraction).

-w causes fbr to wait before treating each file, type the function name and the
file name (as with y) and await the user's response. Response y means
'yes', so the file is processed. Response n or a null response means 'no',
and the file does not take part in whatever is being done. Response N is
the same as answering n to this and all further questions. Response Y is
the same as answering y to this and all further questions. An end-of-file
on standard in or an interrupt at this point will terminate the program
without modifying the archive or file system.

This flag is ignored if a table of contents function (-t) is specified.

-I comment
When used in conjuction with any function which alters the archive (I.E. -
d,-r,-u, or -c) and comment is not a null string, this option causes fbr to
write the comment string into the archive label. Otherwise, -i is ignored.

-f archive
uses archive, rather than the floppy disk, as the archive. If this option is
used with the -c function and archive exists and has a non-zero size, that
size will be the size of the created archive. Otherwise, the archive created
will exactly contain the specified files (I.E. will have no free space).

Commands-8560 MUSDU System Reference Manual FBR(1)

- m directory

FILES

moves the specified files relative to directory rather than the root or
current directory by temporarily prepending directory to each path name to
be operated on. Useful only with the -x function.

/tmp/fbr????? ?
/dev/fdO
/etc/passwd
/etc/group
/bin/mkdir or /usr/bin/mkdir

SEE ALSO
fbr(5), find(1), sh(1).

DIAGNOSTICS
Several, the non-obvious ones are:

NOTES

Phase error - the file changed between the time it was selected for archiv­
ing and the time that it was archived.

Out of memory - not enough memory is available to store all the filenames
to be operated on. The number of names and/or their lengths must be
reduced.

Path names are limited to 106 characters.

Multiple links to a file can only be recognized as such if the links in question are
all backed up or restored in the same fbr invocation.

It is probably unwise to specify query (-w) and 'read names from standard in' ('-'),
since names are read until EOF and the query exits if EOF.

1-49

FBR(1 } Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank.]

, -50

Commands-8560 MUSDU System Reference Manual FILE{1)

FILE(1)

NAME
file - determine file type

SYNOPSIS
file file ...

DESCRIPTION
File performs a series of tests on each argument in an attempt to classify it. If an
argument appears to be ascii, file examines the first 512 bytes and tries to guess
its language.

BUGS
It often makes mistakes. In particular it often suggests that command files are C
programs.

1-51

FllE(1) Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank.]

1-52

Commands-8560 MUSDU System Reference Manual FINO(1 }

FIND(1)

NAME
find - find files

SYNTAX
find pathname expression

DESCRIPTION
Find recursively descends the directory hierarchy for each path name in the path­
name list seeking files that match a boolean expression written in the primaries
given below. In the descriptions, the argument n is used as a decimal integer
where +n means more than n , -n means less than nand n means exactly n .

- name filename
True if the filename argument matches the current file name. Normal Shell
argument syntax may be used if escaped (watch out for '[', I?' and '.').

-perm onum

-type x

True if the file permission flags (bits 0777) exactly match the octal number
onum (see chmod (1 j). if anum is preiixed by a minus sign, more flag bits
(017777, see stat (2)) become significant and the permission is tested for
existence of the bits in onum rather than exact match with onum .

True if the type of the file is x , where x is b , c , d or f for block special
file, character special file, directory or plain file.

-linka n
True if the file has n links.

-uaer uname
True if the file belongs to the user uname (login name or numeric user 10).

-group gname
True if the file belongs to group gname (group name or numeric group 10).

-alzen
True if the file is n blocks long (512 bytes per block).

-Inum n
True if the file has inode number n .

-stlmen
True if the file has been accessed in n days.

-mtlmen
True if the file has been modified in n days.

-exec command
True if the executed command returns a zero value as exit status. The end
of the command must be punctuated by an escaped semicolon. A com­
mand argument '{}' is replaced by the current path name.

1-53

FIND(1) Commands-8560 MUSDU System Reference Manual

1-54

-ok command
Like -exec except that the generated command is written on the standard
output, then the standard input is read and the command executed only
upon response y .

-print Always true; causes the current pathname to be printed.

-newer file
True if the current file has been modified more recently than the argument
file.

The primaries may be combined using the following operators (in order of decreas­
ing precedence):

1) A parenthesized group of primaries and operators (parentheses are special
to the Shell and must be escaped).

2) The negation of a primary ('I' is the unary not operator).

3) Concatenation of primaries (the" and" operation is implied by the juxtapo­
sition of two primaries).

4) Alternation of primaries ('-0' is the "or" operator).

EXAMPLE
To remove all files named 'a.out' or '*.0' that have not been accessed for a week:

find / \ (-name a.out -0 -name ' •. 0' \) -atlme + 1 -exec rm {} \;

FILES
letclpasswd
letc/group

SEE ALSO
sh(1), test(1), filsys(5)

Commands-8560 MUSDU System Reference Manual FORMAT(1)

FORMAT(1)

NAME
format - write disk format

SYNTAX
format [-s]

DESCRIPTION
Format writes the appropriate formatting information to prepare a flexible diskette
for subsequent data storage. It is recommended that all new diskettes be format­
ted before being used.

OPTIONS
-s Format the disk single density. Format's default is to format in double

density.

FILES
/dev/rfdO

SeE ALSO
format(8)

1-55

FORMAT(1; Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-56

Commands-8560 MUSDU System Reference Manual GREP(1)

@

GREP(1)

NAME
grep, egrep, fgrep - search a file for a pattern

SYNTAX
grep [-vclnbahy] ... [[-e] expression] [file] ...

egrep [-vclnbah]... [-f file] [[-e] expression] [file] ...

fgrep [-vclnbahx]... [-f file] [strings] [file]

DESCRIPTION
Commands of the grep family search the input files (standard input default) for
lines matching a pattern. Normally, each line found is copied to the stanQard out­
put; unless the -h flag is used, the file name is shown if there is more than one
input file.

Grep patterns are limited regular expressions in the style of ed (1) ; it uses a com­
pact nondeterministic algorithm. Egrep patterns are extended regular expressions;
it uses a fast deterministic algorithm that sometimes needs exponential space.
Fgrep patterns are fixed strings; it is fast and compact.

Care should be taken when using the characters $ * [" I ? ' " () and \ in the
expression as they are also meaningful to the Shell. It is safest to enclose the
entire expression argument in single quotes' '.

Fgrep searches for lines that contain one of the (newline-separated) strings.

Egrep accepts extended regular expressions. In the following description 'charac­
ter' excludes newline:

A \ followed by a single character matches that character.

The character" ($) matches the beginning (end) of a line.

A. matches any character.

A single character not otherwise endowed with special meaning
matches that character.

A string enclosed in brackets [] matches any single character from
the string. Ranges of ASCII character codes may be abbreviated
as in 'a-zo-S'. A] may occur only as the first character of the
string. A literal - must be placed where it can't be mistaken as a
range indicator.

A regular expression followed by * (+, ?) matches a sequence of
o or more (1 or more, 0 or 1) matches of the regular expression.

Two regular expressions concatenated match a match of the first
followed by a match of the second.

1-57

GREP(1) Commands-8560 MUSDU System Reference Manual

1-58

Two regular expressions separated by I or newline match either a
match for the first or a match for the second.

A regular expression enclosed in parentheses matches a match for
the regular expression.

The order of precedence of operators at the same parenthesis level is [] then * +?
then concatenation then I and newline.

OPTIONS
-v All lines but those matching are printed.

-c Only a count of matching iines is printed.

-I The names of files with matching lines are listed (once) separated by new-
lines.

-8 No output is produced, only status. Options -C, -I, and -I are mutually
exclusive.

-n Each line is preceded by its line number in the file.

-b Each line is preceded by the block number on which it was found. This is
sometimes useful in locating disk block numbers by context.

-h Do not print filename headers with output lines.

-y Lower case letters in the pattern wiil also match upper case letters in the
input (grep only).

-e expression
Same as a simple expression argument, but useful when the expression
begins with a-.

-f file The regular expression (egrep) or string list (fgrep) is taken from the file

-x (Exact) only lines matched in their entirety are printed (fgrep only).

SEE ALSO
ed (1), sed (1) I sh (1)

DIAGNOSTICS
Exit status is 0 if any matches are found, 1 if none, 2 for syntax errors or inacces­
sible files.

NOTES
Ideally there should be only one grep , but we don't know a single algorithm that
spans a wide enough range of space-time tradeoffs.

Lines are limited to 256 characters; longer lines are truncated.

@

Commands-8560 MUSDU System Reference Manual KILL(1)

@

KILL(1)

NAME
kill - terminate a process with extreme prejudice

SYNTAX
kill [- signal] processid ...

DESCRIPTION
Kill sends signal 15 (terminate) to the specified processes. If a signal number pre­
ceded by '-' is given as first argument, that signal is sent instead of terminate (see
signal (2)). This will kill processes that do not catch the signal; in particular 'kill
-9 ... ' is a sure kill.

By convention, if process number 0 is specified, all members in the process group
(Le. processes resulting from the current login) are signaled.

The killed processes must belong to the current user unless he is the super-user.
To shut the system down and bring it up single user the super-user may use 'kill
-1 1'; see Inlt (8).

The process number of an asynchronous process started with 'a' is reported by
the shell. Process numbers can also be found by using ps (1).

SEE ALSO
ps(1), kill(2), signal(2)

1-59

KILL(1) Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank.]

1-60 @

Commands-8S60 MUSDU System Reference Manual LIBGEN(1)

LIBGEN(1)
NAME

libgen-library generator

SYNTAX
libgen [-c commandfile] [-d modulename ...] [-h string] [-i objfile ...] [-n newlib] [-0 oldlib] [­
r objfile] [-v] [-x modulename [pathname]]

DESCRIPTION
The Library Generator libgen is a general-purpose utility program used to create and main­
tain object module libraries for use with the linker.

Ubgen collects assembler-generated or compiler-generated object modules into library files.
From these library files, the object modules can be individually accessed by the linker, based
on the information provided by each object module.

OPTIONS
-c commandfile
-d modulename ...
-h string
-i objfile ...
-n newlib
-ooldlib
-r objfile ...
-v

-x modulename [pathname]
pathname
commandfile

modulename
string

Invokes a libgen command file.
Deletes library module(s).
Specifies the header for the new library.
Inserts new module(s) into the library.
Designates a new library file.
Specifies an old library file.
Replaces an old module(s) with a new module(s).
Generate informative messages. A banner containing the
version number will be printed and switches will be listed as
they are processed.
Extracts (copies) a module to an object file.
The name of the file.
The pathname of the command file containing a series of
libgen command options.
The name of the library module.
An ASCII string that identifies the library. The string may
contain any printable ASCII characters but should not start
with a dash (-). The maximum length of string is 80
characters.

FILES
###.Iib. tmp.nn temporary file (where nn is an integer).

SEE ALSO

ADD NOV 1982

8500 Modular MDL Series B Assembler Core Users Manual
Istr(1)

1-61

LIBGEN(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-62 REV NOV 1982

Commands-8560 MUSDU System Reference Manual LINK(1)

LINK(1)
NAME

link-link object modules

SYNTAX
link [-CDLOcdmorstvx] [parameters]

DESCRIPTION
Link merges one or more independently assembled object files into a load file, suitable for
loading into memory. Assembier-generated files, library files, or linked files may be used as
linker input.

OPTIONS
-C
-0
-L
-0
-c
-d
-m
-0
-r
-s
-t
-v

-x

Assigns a classname to one or more section(s).
Defines a global symbol at link time.
Locates a class or section to a specified memory area.
Specifies the object module, library, and linked load files to be linked by link.
Invokes a linker command file.
Debug information is generated.
Defines a memory map configuration.
Designates the output file for the linked code.
Relink information is generated.
Specifies global symbol files to be linked.
Specifies relocation type of named class(es) or section(s).
Specifies a verbose listing. Prints a banner with the version number; lists switches
on the standard output as they are processed, lists the number of errors, lists the
transfer address, tells whether the file is relinkable, and whether debugging informa­
tion is in the 'file.
Specifies load module transfer address.

SEE ALSO

REV NOV 1982

8500 Modular MOL Series B Assembler Core Users Manual
Istr(1)

1-63

LINK(1) Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank.]

1-64 REV NOV 1982

Commands-8560 MUSDU System Reference Manual

LN(1)

NAME
In - make a link

SYNTAX
In name 1 [name2]

DESCRIPTION
A link is a directory entry referring to a file; the same file (together with its size, all
its protection information, etc.) may have several links to it. There is no way to dis­
tinguish a link to a file from its original directory entry; any changes in the file are
effective independently of the name by which the file is known.

Ln creates a link to an existing file name 1 . If name2 is given, the link has that
name; otherwise it is placed in the current directory and its name is the last com­
ponent of name1 .

SEE ALSO
rm(1)

NOTES
It is forbidden to link to a directory or to link across file systems.

IN(1)

, -65

IN(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-66

Commands-8560 MUSDU System Reference Manual LPR(1)

LPR(1)

NAME
Ipr - line printer spooler

SYNTAX
Ip1 r [-cmr] [file] .. .
Ip2r [-cmr] [file] .. .

DESCRIPTION
lp1 r or Ip2r cause the files to be queued for printing on line printer 1 or 2 respec­
tively. If no files are named, or if the file '-' is encountered, the standard input is
read.

OPTIONS
- r Remove the file when it has been queued.

-c Copy the file to insulate against changes that may happen before printing.

-m Report by mall(1) when printing is complete. This is automatic if Ipr can't
link to the file to print.

FILES
lusrlspooi/lp? Ilock
lusrlspoolllp? Icf* data file
lusrlspooi/lp? Idf* daemon control file
lusrlspoolllp? Itt* temporary version of control file
Idev/lp?

SEE ALSO
Ipd(8)

1-67

LPR(1 j Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-68

Commands-8S60 MUSDU System Reference Manual LOGIN(1)

LOGIN(1)

NAME
login sign on

SYNTAX
login [username]

DESCRIPTION
The login command is used when a user initially signs on, or it may be used at any
time to change from one user to another. The latter case is the one described
here.

If login is invoked without an argument, it asks for a user name, and, if appropriate,
a password. Echoing is turned off (if possible) during the typing of the password,
so it will not appear on the written record of the session.

After a successful login, the user is informed of the existence of .mail and
message-of-the-day files. Login initializes the user and group IDs and the working
directory, then executes a command interpreter (usually ah(1)) according to
specifications found in a password file. Argument 0 of the command interpreter is
'-sh'.

Login is recognized by ah(1) and executed directly (without forking).

FILES
letc/motd message-of-the-day
letc/passwd password file

SEE ALSO
init(S), newgrp(1), getty(S), maiI(1), passwd(1), passwd(5)

DIAGNOSTICS
'Login incorrect,' if the name or the password is bad.
'No Shell', 'cnnnot open password file'.

1-69

LOGIN(1) Commands-8S60 MUSDU System Reference Manual

[This page intentionally left blank.]

1-70 @

Commands-8560 MUSDU System Reference Manual

@

LS(1)

NAME
Is - list contents of directory

SYNTAX
II [-Italruclg] [file] ...
II [-Italdruclg] [directory] ...

DESCRIPTION
For each directory argument, II lists the contents of the directory; for each file
argument, II repeats its name and any other information requested. The output is
sorted alphabetically by default. When no argument is given, the current directory
is listed. When several arguments are given, the arguments are first sorted
appropriately, but file arguments appear before directories and their contents.

OPTIONS
-I List in long format, giving mode, number of links, owner, size in bytes, and

time of last modification for each file. (See below.) If the file is a special
file the size field wi!! instead contain the major and minor device numbers.

-t Sort by time modified (latest first) instead of by name, as is normal.

-8 List all entries; normally I • ' and I •• ' are suppressed.

-I Give size in blocks, including indirect blocks, for each entry.

-d If argument is a directory, list only its name, not its contents (mostly used
with -I to get status on directory).

-r Reverse the order of sort to get reverse alphabetic or oldest first as
appropriate.

- u Use time of last access instead of last modification for sorting (-t) or
printing (-I).

-c Use time of last modification to inode (mode, etc.) instead of last modifica­
tion to file for sorting (-t) or printing (-I). Options -u and -c are mutu­
ally exclusive.

-I Print i-number in first column of the report for each file listed.

-g Give group 10 instead of owner 10 in long listing.

The mode printed under the -I option contains 11 characters which are inter­
preted as follows: the first character is

d
b
c

if the entry is a directory;
if the entry is a block-type special file;
if the entry is a character-type special file;
if the entry is a plain file.

LS(1)

1-71

LS(1)

1-72

Commands-8560 MUSDU System Reference Manual

The next 9 characters are interpreted as three sets of three bits each. The first set
refers to owner permissions; the next to permissions to others in the same user­
group; and the last to all others. Within each set the three characters indicate per­
mission respectively to read, to write, or to execute the file as a program. For a
directory, 'execute' permission is interpreted to mean permission to search the
directory for a specified file. The permissions are indicated as follows:

r if the file is readable;
w if the file is writable;
x if the file is executable;

if the indicated permission is not granted.

The group-execute permission character is given as 8 if the file has set-group-IO
mode; likewise the user-execute permission character is given as 8 if the file has
set-user-IO mode.

The last character of the mode (normally 'x' or '-') is t if the 1000 bit of the mode
is on. See chmocl(1) for the meaning of this mode.

When the sizes of the files in a directory are listed, a total count of blocks, includ­
ing indirect blocks is printed.

FILES
letclpasswd to get user 10's for 'Is -I'.
letc/group to get group 10's for 'Is -g'.

Commands-8560 MUSDU System Reference Manual LSTR(1)

LSTR(1)
NAME

Istr -list symbols found in B series object format file

SYNTAX
Istr [-ghnosuv] [file ...]

DESCRIPTION
Lstr prints the symbol table of each object module in the argument list. If an argument is a
library, a listing for each object file in the library will be produced.

Each symbol is preceded by its value (zeros if undefined) and a single letter. The single letter
must be one of the following:

• U-undefined;

• A-absolute section;

• S-SECTION section;

• D-global data, entry, or constant;

• C-COMMON section;

• R-RESERVE section;

• u-undefined local data, entry, or constant; or

• I-local data, entry, or constant.
The output is sorted alphabetically.

OPTIONS
-g
-h
-n
-0
-s
-u
-v

SEE ALSO

Print only global (external) symbols.
Print the header in a library inserted with the Iibgen(1) -h switch.
Sort numerically rather than alphabetically.
Prepend file or library element name to each output line rather than only once.
Append the length of sections to their output lines.
Print only undefined symbols.
Print the version number of Istr(1).

Iibgen(1), link(1), nm(6)

ADD NOV 1982 1-728

LSTR(1) Commands-8S60 MUSDU System Reference Manual

[This page intentionally left blank.]

1-72b ADD NOV 1982

Commands-8560 MUSDU System Reference Manual MAIL(1)

@

MAIL(1)

NAME
mail - send or receive mail among users

SYNTAX
mall person ...
mall [-rQP] [-f file]

DESCRIPTION
Mall with no argument prints a user's mail, message-by-message, in last-in, first­
out order. For each message, mall reads a line from the standard input to direct
disposition of the message.

newline
Go on to next message.

d Delete message and go on to the next.

p Print message again.

Go back to previous message.

s [file J ...
Save the message in the named files ('mbox' default).

w [file J ...
Save the message, without a header, in the named files ('mbox' default).

m [person J ...
Mail the message to the named persons (yourself is default).

EOT (control-D)
Put unexamined mail back in the mailbox and stop.

Q Same as EOT.

x Exit, without changing the mailbox file.

I command
Escape to the Shell to do command .

? Print a command summary.

An interrupt stops the printing of the current letter.

When persons are named, mall takes the standard input up to an end-of-file (or a
line with just '.') and adds it to each person's 'mail' file. The message is preceded
by the sender's name and a postmark. Lines that look like postmarks are
prepended with '> '. A person is usually a user name recognized by logln(1) .

Each user owns his own mailbox, which is by default generally readable but not
writable. The command does not delete an empty mailbox nor change its mode, so
a user may make it unreadable if desired.

When a user logs in he is informed of the presence of mail.

1-73

MAIL(1) Commands-8560 MUSDU System Reference Manual

1-74

OPTIONS
-r causes the mailbox to be printed in first-in, first-out order rather than the

default.
-p prints the mailbox without questions.

-q causes mall to exit after interrupts without changing the mailbox, rather
than just stopping printing of the current letter.

-f file causes the given file to be printed as if it was the mail file.

FILES
lusrlspool/maill* mailboxes
letc/passwd to identify sender and locate persons
mbox saved mail
Itmp/ma* temp file
dead. letter unmailable text

SEE ALSO
xsend(1), write(1)

NOTES
There is a locking mechanism intended to prevent two senders from accessing the
same mailbox, but it is not perfect and races are possible.

Commands-8560 MUSDU System Reference Manual MAKE(1)

MAKE(1)

NAME
make - maintain program groups

SYNTAX
make [-Ikntrs][-f makefile][file] ...

DESCRIPTION
Make executes commands in makefile to update one or more target files . The
default is to use the script in 'makefile' (or 'Makeflle' if 'makeflle' does not exist.)

Make updates or creates a target if it depends on prerequisite files that have been
modified since the target was last modified, or if the target does not exist.

Makefile contains a sequence of entries that specify dependencies. The first line
of an entry is a blank-separated list of targets, then a colon, then a list of prere­
quisite files. Text following a semicolon, and all following lines that begin with a
tab, are shell commands to be executed to update the target.

Pound sign (#) and newline surround comments.

The following makefile says that 'pgm' depends on two files 'a.o' and 'b.o', and that
they in turn depend on '.s' files and a common file 'incl'. It gives the rule for mak­
ing "pgm" from "a.o" and "b.o", and the rules for making "a.o" and "b.o" from "a.s"
and "b.s".

pgm: a.o b.o
Id a.o b.o -I m -0 pgm

a.o: incl a.s
as -0 a.o a.s

b.o: incl b.s
as -0 b.o b.s

Makefile entries of the form

string1 = string2

are macro definitions. Subsequent appearances of $ (string 1) are replaced by
string2. If string 1 is a single character, the parentheses are optional.

Make infers prerequisites for files for which makefile gives no construction com­
mands. For example, a '.s' file may be inferred as prerequisite for a '.0' file and be
assembled to produce the '.0' file. Thus the preceding example can be done more
briefly:

pgm: a.o b.o
Id a.o b.o -I m -0 pgm

a.o b.o: incl

The make program itself does not know what file name suffixes are interesting or
how to transform a file with one suffix into a file with another suffix. This informa­
tion is stored in an internal table that has the form of a description file. If the -r
flag is used, th is table is not used.

1-75

MAKE(1) Commands-8560 MUSDU System Reference Manual

A user may add new suffixes and change or add default rules to his description
files. The format of the suffix list and the transformation rules follow.

The list of suffixes is actually the dependency list for the name "SUFFIXES"; make
looks for a file with any of the suffixes on the list. If such a file exists, and if there
is a transformation rule for that combination, make acts as described earlier.

The transformation rule names are the concatenation of the two suffixes. The
name of the rule to transform a ".r' file to a ".0" file is thus" .r.o". If the rule is
present and no explicit command sequence has been given in the user's descrip­
tion files, the command sequence for the rule" .r.o" is used. If a command is gen­
erated by using one of these suffixing rules, the macro $* is given the value of the
stem (everything except the suffix) of the name of the file to be made, $@ is the
full name of the file to be made, $< is the list of the prerequisites, and $? is the
list of prerequisites that are out of date.

The order of the suffix list is significant, since it is scanned from left to right, and
the first name that is formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can just add an entry for" SUF­
FIXES" in his own description file; the dependents will be added to the usual list.
A "SUFFIXES" line without any dependents deletes the current list. (It is necessary
to clear the current list if the order of names is to be changed).

Command lines are executed one at a time, each by its own shell. A line is printed
when it is executed unless the special target '.SILENT' is in makofi/a , or the first
character of the command is '@'.

Commands returning nonzero
the special target '.IGNORE' is in
< tab> < hyphen>.

status cause
makefile or

make to terminate unless
the command begins with

Interrupt and quit cause the target to be deleted unless the target depends on the
special name '.PRECIOUS'.

OPTIONS

1-76

-f makefile

-I

-k

-n

-t

-r

-I

the given file is used as the script rather than 'm.keflle' or 'M.keflle'. If
makefile is '-' the standard input is used as the script. More than one -f
option may appear.

Equivalent to the special entry '.IGNORE:'.

When a command returns nonzero status, abandon work on the current
entry, but continue on branches that do not depend on the current entry.

Trace and print, but do not execute the commands needed to update the
targets.

Touch, i.e. update the modified date of targets, without executing any com­
mands.

Equivalent to an initial special entry '.SUFFIXES:' with no list.

Equivalent to the special entry '.SILENT:'.

@

Commands-8560 MUSDU System Reference Manual MAKE(1)

@

FILES
makefi Ie, Makefi Ie

SEE ALSO
sh(1), touch(1)

NOTES
Some commands return nonzero status inappropriately. Use -I to overcome the
difficulty, or start that particular command with < tab> < hyphen>.
Commands that are directly executed by the shell, notably cd(1) , are ineffectual
across newlines in make.

1-77

MAKE(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-78 @

Commands-8560 MUSDU System Reference Manual MAN(1}

MAN(1)

NAME
man - print sections of this manual

SYNTAX
man [chapter] [title] ...

DESCRIPTION
Man locates and prints the section of this manual named title in the specified
chapter. (In this context, the word 'page' is often used as a synonym for 'section',)
The title is entered in lower case. The chapter number does not need a letter suf­
fix. If no chapter is specified, the whole manual is searched for title and all
occurences of it are printed.

FILES
/usr /man/cat? /*

SEE ALSO
man(7).

1-79

MAN(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-80

Commands-8560 MUSDU System Reference Manual MESG(1)

MESG(1)

NAME
mesg - permit or deny messages

SYNTAX
meag [-ny]

DESCRIPTION
Meag reports the current state of message permission.

OPTIONS
-n denies other users messages to this user via write (1) by revoking non­

user write permission on the user's terminal.

-y similarly reenstates permission. Options -y and -n are mutually
exclusive.

FILES
/dev/tty*
/dev

SEE ALSO
write(1)

DIAGNOSTICS
Exit status is 0 if messages are receivabie, 1 if not, 2 on error.

1-81

MESG(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-82

Commands-8560 MUSDU System Reference Manual MKDIR(1)

MKDIR(1)

NAME
mkdir - make a directory

SYNTAX
mkdlr dirname ...

DESCRIPTION
Mkdlr creates specified directories in mode 0777 (readable, writeable, searchable
by everyone). These default permissions can be removed by the umask (see
um •• k(2)). Standard entries, ' . ' , for the directory itself, and ' .. I for its parent,
are made automatically.

Mkdlr requires write permission in the parent directory.

SEE ALSO
rm(1),chmod(1),umask(2)

DIAGNOSTICS
Mkdlr returns exit code 0 if all directories were successfully made. Otherwise it
prints a diagnostic and returns nonzero.

1-83

MKDIR(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-84

Commands-8S60 MUSDU System Reference Manual MLOAD(1)

MLOAD(1)
NAME

mload-TEKH EX upload/download

SYNTAX
mload [-uds] [-p prompstring] name

DESCRIPTION
Mload provides the host-side protocol for memory image transfers to or from TNIX, using
the standard or extended TEKHEX transfer protocol. Name is a file containing (or to contain)
the extended TEKH EX formatted memory image.

OPTIONS
-u
-d

-p prompstring
-s

SEE ALSO
stty(1), uload(1)

NOTES

Specifies upload, e.g., 8002 to 8560.
Specifies download, e.g., 8560 to 8002 (the default). Options -u and­
d are mutually exclusive.
An optional input prompt.
Slow down the transfer. A slowed transfer is required by TEKDOS on
the 8002.

The echo and Icase modes (set with the stty(1) command) are disabled during the transfer.

REV NOV 1982 1-85

MLOAD(1) Commands-8S60 MUSDU System Reference Manual

[This page intentionally left blank.]

1-86 REV NOV 1982

Commands-8560 MUSDU System Reference Manual MV(1)

MV(1)

NAME
mv - move or rename files and directories

SYNTAX
my file 1 file2

my file ... directory

mv directory1 directory2

DESCRIPTION
My moves (changes the name of) file 1 to file2 .

If file2 already exists, it is removed before file 1 is moved. If file2 has a mode
which forbids writing, my prints the mode (see chmod (2)) and reads the standard
input to obtain a line; if the line begins with y , the move takes place; if not, my
exits.

In the second form, one or more files are moved to the directory with their original
file-names.

In the third form, the subtree rooted at directory1 is moved to directory2 . Direc­
tory2 must not be in the directory1 subtree.

SEE ALSO
cp(1), chmod(2)

NOTES
My refuses to move a file onto itself.

If file 1 and file2 lie on different file systems, my must copy the file and delete the
original. In this case the owner name becomes that of the copying process and
any linking relationship with other files is lost.

1-87

MV(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-88 @

Commands-8S60 MUSDU System Reference Manual NEWGRP(1)

@

NEWGRP(1)

NAME
newgrp - log in to a new group

SYNTAX
newgrp group

DESCRIPTION
Newgrp changes the group identification of its caller, analogously to logln(1) . The
same person remains logged in, and the current directory is unchanged, but calcu­
lations of access permissions to files are performed with respect to the new group
10.

A password is demanded if the group has a password and the user himself does
not.

When a user logs in, s/he is a member of the group specified for that user in the
password file, letc/passwd. Newgrp is known to the shell, which executes it
directly without a fork.

FILES
letc/group,/etc/passwd

SEE ALSO
login(1), group(5)

1-89

NEWGRP(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-90

Commands-8560 MUSDU System Reference Manual NICE(1)

@

NICE(1)

NAME
nice, nohup - run a command. at low priority

SYNTAX
nice [-number] command

nohup command

DESCRIPTION
Nice executes command with low scheduling priority. If the number argument Is
present, the priority is incremented (higher numbers mean lower priorities) by that
amount up to a limit of 20. The default number is 10.

The super-user may run commands with priority higher than normal by using a
negative priority, e.g. '--10'.

Nohup executes command immune to hangup and terminate signals from the con­
trolling terminal. The priority is incremented by 5. Nohup should be invoked from
the shell with 'a' in order to prevent it from responding to interrupts by or stealing
the input from the next person who logs in on the same terminal.

FILES
nohup.out standard output and standard error file under nohup

SEE ALSO
nice(2)

DIAGNOSTICS
Nice returns the exit status of the subject command.

1-91

NICE(1 } Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-92 @

Commands-8560 MUSDU System Reference Manual 00(1)

@

00(1)

NAME
od - octal dump

SYNTAX
od [- bcdox] [-I offset [.][b]] [-8 offset [.][b]] [file]

DESCRIPTION
Od dumps file in one or more formats as selected by the flags. If no flags are
present, -0 is default.

The file argument specifies which file is to be dumped. If no file argument is
specified, the standard input is used.

A dump line consisting of a lone "*' indicates repetition of the previously dumped
data.

OPTIONS
-b

-c

-d

-0

-x

Interpret bytes in octal.

Interpret bytes in ASCII. Certain non-graphic characters appear as C
escapes: null=\O, backspace=\b, formfeed=\f, newline=\n, return=\r,
tab=\t; others appear as 3-digit octal numbers.

Interpret words in decimal.

Interpret words in octal.

Interpret words in hex.

-I offset
The offset argument specifies the offset in the file where dumping is to
commence. This argument is normally interpreted as octal bytes. If ".' is
appended, the offset is interpreted in decimal. If "b' is appended, the offset
is interpreted in blocks of 512 bytes.

-8 offset

SEE ALSO
adb(1)

Same as -I but specifies where dumping is to end. Default is dumping
until end-of-file.

1-93

00(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-94 @

Commands-8560 MUSDU System Reference Manual PASSWD(1)

@

PASSWD(1)

NAME
passwd - change login password

SYNTAX
p ••• wd [name]

DESCRIPTION
This command changes (or installs) a password associated with the user name
(your own name by default).

The program prompts for the old password and then for the new one. The caller
must supply both. The new password must be typed twice, to forestall mistakes.

Only the owner of the name or the super-user may change a password; the owner
must prove he knows the old password.

FILES
letc/passwd

SEE ALSO
login(1), passwd(5), crypt(3)

1-95

PASSWD(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-96 @

Commands-8560 MUSDU System Reference Manual PR(1)

@

PR(1)

NAME
pr - print file

SYNTAX
pr [-ntm] [-h header] [-c n] [-p n] [-w n] [-I n] [-8 C] [tile] ...

DESCRIPTION
Pr produces a printed listing of one or more files . The output is separated into
pages headed by a date, the name of the file or a specified header, and the page
number. If there are no file arguments, pr prints its standard input.

Inter-terminal messages via write (1) are forbidden during a pr .

Options apply to all following files but may be reset between files.

OPTIONS
-c n Produce n -column output.

-p n Begin printing with page n .

-h header
Use header as the page header.

-w n For purposes of multi-column output, take the width of the page to be n
characters instead of the default 72.

-I n Take the length of the page to be n lines instead of the default 66.

-t Do not print the 5-line header or the 5-line trailer normally supplied for
each page.

-8 c Separate columns by the single character c instead of by the appropriate
amount of white space.

-m Print all files simultaneously, each in one column,

-n Add line numbers.

FILES
/dev/tty? to suspend messages.

SEE ALSO
cat(1)

DIAGNOSTICS
There are no diagnostics when pr is printing on a terminal.

1-97

PR(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-98 @

Commands-8S60 MUSDU System Reference Manual

@

PS(1)

NAME
ps - process status

SYNTAX
ps [-alx]

DESCRIPTION
Ps prints certain data about active processes. The short (default) listing contains
the process 10, tty number, the cumulative execution time of the process and an
approximation to the command line.

The long listing is columnar and contains

F Flags associated with the process. 01: in memory; 02: system process;
04: locked in memory (e.g. for physical 1/0); 10: being swapped; 20: being
traced by another process.

S The state of the process. 0: nonexistent; S: sleeping; W: waiting; R: run­
ning; I: intermediate; Z: terminated; T: stopped.

UID The user 10 of the process owner.

PID The process ID of the process; it is possible to kill a process if you know
its process ID.

PPID The process ID of the parent process.

CPU Processor utilization for scheduling.

PRI The priority of the process; high numbers mean low priority.

NICE Used in priority computation.

ADDR The memory address of the process if resident, otherwise the disk address.

SZ The size in blocks of the memory image of the process.

WCHAN
The event for which the process is waiting or sleeping; if blank, the pro-
cess is running.

TTY The controlling tty for the process.

TIME The cumulative execution time for the process.

The command and Its arguments.

A process that has exited and has a parent, but has not yet been waited for by the
parent is marked < defunct>. Ps makes an educated guess as to the file name
and arguments given when the process was created by examining memory or the
swap area. The method is inherently somewhat unreliable and in any event a pro­
cess is entitled to destroy this information, so the names cannot be counted on too
much.

PS(1)

1-99

PS(1)

'-100

Commands-8560 MUSDU System Reference Manual

OPTIONS
-8 display information about all processes with terminals rather than only

one's own processes.

-x even display information about processes with no terminal.

-I produce a long listing.

FILES
lunix system namelist
Idev/mem memory
lusrlsys/core alternate memory file
Idev

SEE ALSO
ki11(1)

NOTES

searched to find swap device and tty names

Things can change while ps is running; the picture it gives is only a close approxi­
mation to reality.
Some data printed for defunct processes is irrelevant.

@

Commands-8560 MUSDU System Reference Manual

@

PWD(1)

NAME
pwd - working directory name

SYNTAX
pwd

DESCRIPTION
Pwd prints the path name of the working (current) directory.

SEE ALSO
cd(1)

PWD(1)

1-101

PWD(1) Commands-8560 MUSDU System Reference Manua!

[This page intentionally left blank.]

1-102 @

Commands-8560 MUSDU System Reference Manual RM(1)

@

RM(1)

NAME
rm, rmdir - remove (unlink) files

SYNTAX
rm [-frl] file ...

rmdlr dir ...

DESCRIPTION
Rm removes the entries for one or more file(s) from a directory. If an entry was the
last link to the file, the file is destroyed. Removal of a file requires write permisSion
in its directory, but neither read nor write permission on the file itself.

If a file has no write permisSion and the standard input is a terminal, its permis­
sions are printed and a line is read from the standard input. If that line begins with
'y' the file is deleted, otherwise the file remains.

If a designated file is a directory, an error comment is printed.

OPTIONS
-f forces a file with no write permission to be deleted without question.

-r recursively delete the entire contents of the specified directory, including
the directory itself.

-I (interactive) rm asks whether to delete each file, and, under -r , whether to
examine each directory.

Rmdlr removes entries for the named directories, which must be empty.

SEE ALSO
unlink(2)

DIAGNOSTICS
Generally self-explanatory. It is forbidden to remove the file ' . .', merely to avoid the
antisocial consequences of inadvertently doing something like 'rm -r .*'.

1-103

RM(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-104 @

Commands-8560 MUSDU System Reference Manual SH(1)

@

SH(1)

NAME
sh, for, case, if, while, : ,. ,break, continue, cd, eval, exec, exit, export, login, logout,
newgrp, read, readonly, set, shift, times, trap, umask, wait - command language

SYNTAX
sh [-celknrstuvx] [arg] ...

DESCRIPTION
Sh is a command programming language that executes commands read from a ter­
minal or a file.

Commands
A simple-command is a sequence of non-blank words separated by blanks (a
blank is a tab or a space). The first word specifies the name of the command to
be executed. Except as specified below the remaining words are passed as argu­
ments to the invoked command. The command name is passed as argument 0
(see exec (2)). The value of a simple-command is its exit status if it terminates
normally or 200+status if it terminates abnormally (see signal (2) for a list of
status values).

A pipeline is a sequence of one or more commands separated by I. The standard
output of each command but the last is connected by a pipe (2) to the standard
input of the next command. Each command is run as a separate process; the shell
waits for the last command to terminate.

A list is a sequence of one or more pipelines separated by ; , I , II or II and
optionally terminated by ; or I. ; and I have equal precedence which is lower
than that of II and II . II and II also have equal precedence. A semicolon
causes sequential execution; an ampersand causes the preceding pipeline to be
executed without waiting for it to finish. The symbol II (II) causes the list follow­
ing to be executed only if the preceding pipeline returns a zero (non zero) value.
Newlines may appear in a list, instead of semicolons, to delimit commands.

A command is either a" simple-command or one of the following. The value
returned by a command is that of the last simple-command executed in the com­
mand.

for name [in word ...] do lIat done
Each time a for command is executed name is set to the next word in the
for word list. If in word ... is omitted then In "$@" is assumed. Execu­
tion ends when there are no more words in the list.

eaae word in [pattern [I pattern] ...) lIat ;;] ... eaae
A case command executes the list associated with the first pattern that
matches word . The form of the patterns is the same as that used for file
name generation.

If lIat then lIat [ellf lIat then lIat] ... [elae II at] fi
The list following if is executed and if it returns zero the list following then
is executed. Otherwise, the list following ellf is executed and if its value is
zero the list following then is executed. Failing that the elae list is exe­
cuted.

1-105

SH(1)

1-106

Commands-8560 MUSDU System Reference Manual

wh ile list [do list] done
A while command repeatedly executes the while list and if its value is zero
executes the do list; otherwise the loop terminates. The value returned by
a while command is that of the last executed command in the do list
until may be used in place of while to negate the loop termination test.

(list) Execute list in a subshell.

{ list} list is simply executed.

The following words are only recognized as the first word of a command and when
not quoted.

if then else elif fi case in esac for while until do done { }

Command substitution
The standard output from a command enclosed in a pair of grave accents (' ,)
may be used as part or all of a word; trailing newlines are removed.

Parameter substitution
The character S is used to introduce substitutable parameters. Positional parame­
ters may be assigned values by set. Variables may be set by writing

name = value [name = value] ...

S {parameter}
A parameter is a sequence of letters, digits or underscores (a name), a
digit, or any of the characters • @ # ? - S I . The value, if any, of the
parameter is substituted. The braces are required only when parameter is
followed by a letter, digit, or underscore that is not to be interpreted as part
of its name. If parameter is a digit then it is a positional parameter. If
parameter is • or @ then all the positional parameters, starting with $1 ,
are substituted separated by spaces. $0 is set from argument zero when
the shell is invoked.

S {parameter-word}
If parameter is set then substitute its value; otherwise substitute word.

S {parameter - word}
If parameter is not set then set it to word ; the value of the parameter is
then substituted. Positional parameters may not be aSSigned to in this
way.

S {parameter? word}
If parameter is set then substitute its value; otherwise, print word and exit
from the shell. If word is omitted then a standard message is printed.

$ {parameter+word}
If parameter is set then substitute word; otherwise substitute nothing.

In the above word is not evaluated unless it is to be used as the substituted string.
(So that, for example, echo ${d-'pwd'} will only execute pwd if d is unset.)

@

Commands-85S0 MUSDU System Reference Manual SH(1)

@

The following parameters are automatically set by the shell.

The number of positional parameters in decimal.

Options supplied to the shell on invocation or by .et .

? The value returned by the last executed command in decimal.

S The process number of this shell.

The process number of the last background command invoked.

The following parameters are used but not set by the shell.

HOME The default argument (home directory) for the cd command.

PATH The search path for commands (see execution).

MAIL If this variable is set to the name of a mail file then the shell informs the
user of the arrival of mail in the specified file.

PS1 Primary prompt string, by default '$ '.

PS2 Secondary prompt string; by default '> '.
IFS Internal field separators, normally space, tab, and newline.

Blank Interpretation
After parameter and command substitution, any results of substitution are scanned
for internal field separator characters (those found in $IFS) and split into distinct
arguments where such characters are found. Explicit null arguments ("" or") are
retained. Implicit null arguments (those resulting from parameters that have no
values) are removed.

File name generation
Following substitution, each command word is scanned for the characters * , ?
and [. If one of these characters appears then the word is regarded as a pattern.
The word is replaced with alphabetically sorted file names that match the pattern.
If no file name is found t.hat matches the pattern then the word is left unchanged.
The character. at the start of a file name or immediately following a I , and the
character I , must be matched explicitly .

•

?

[...]

Quoting

Matches any string, including the null string.

Matches any single character.

Matches anyone of the characters enclosed. A pair of characters
separated by - matches any character lexically between the pair.

The following characters have a special meaning to the shell and cause termina­
tion of a word unless quoted.

; & () I < > newline apace tab

A character may be quoted by preceding it with a \. \ newline is Ignored. All
characters enclosed between a pair of quote marks ("), except a single quote, are
quoted. Inside double quotes (" ") parameter and command substitution occurs
and \ quotes the characters \ • and $.

"I*" is equivalent to "$1 $2 ... " whereas
"$@" is equivalent to "$1" "$2"

1-107

SH(1 }

1-108

Commands-8560 MUSDU System Reference Manual

Prompting
When used interactively, the shell prompts with the value of PS1 before reading a
command. If at any time a newline is typed and further input is needed to com­
plete a command then the secondary prompt (SPS2) is issued.

Input output
Before a command is executed its input and output may be redirected using a spe­
cial notation interpreted by the shell. The following may appear anywhere in a
simple-command or may precede or follow a command and are not passed on to
the invoked command. Substitution occurs before word or digit is used.

< word Use file word as standard input (fi!e descriptor 0).

> word Use file word as standard output (file descriptor 1). If the file does not
exist then it is created; otherwise it is truncated to zero length.

» word
Use file word as standard output. If the file exists then output is appended
(by seeking to the end); otherwise the file is created.

« word
The shell input is read up to a line the same as word, or end of file. The
resulting document becomes the standard input. If any character of word
is Quoted then no interpretation is placed upon the characters of the docu­
ment; otherwise, parameter and command substitution occurs, \ newline is
ignored, and \ is used to quote the characters \ $ · and the first character
of word.

< & digit
The standard input is duplicated from file descriptor digit ; see dup (2) .
Similarly for the standard output using> .

< & - The standard input is closed. Similarly for the standard output using> .

If one of the above is preceded by a digit then the file descriptor created is that
specified by the digit (instead of the default 0 or 1). For example,

... 2>&1

creates file descriptor 2 to be a duplicate of file descriptor 1.

If a command is followed by & then the default standard input for the command is
the empty file (ldev/null). Otherwise, the environment for the execution of a com­
mand contains the file descriptors of the invoking shell as modified by input output
specifications.

Environment
The environment is a list of name-value pairs that is passed to an executed pro­
gram in the same way as a normal argument list; see exec (2) and environ (5) .
The shell interacts with the environment in several ways. On invocation, the shell
scans the environment and creates a parameter for each name found, giving it the
corresponding value. Executed commands inherit the same environment. If the
user modifies the values of these parameters or creates new ones, none of these
affects the environment unless the export command is used to bind the shell's
parameter to the environment. The environment seen by any executed command is
thus composed of any unmodified name-value pairs originally inherited by the
shell, plus any modifications or additions, all of which must be noted in export
commands.

@

Commands-8560 MUSDU System Reference Manual SH(1)

@

The environment for any simple-command may be augmented by prefixing it with
one or more assignments to parameters. Thus these two lines are equivalent

TERM = 450 cmd args
(export TERM; TERM=450; cmd args)

Signals
The INTERRUPT and QUIT signals for an invoked command are ignored if the com­
mand is followed by & ; otherwise signals have the values inherited by the shell
from its parent. (But see also trap .)

Execution
Each time a command is executed the above substitutions are carried out. Except
for the 'special commands' listed below a new process is created and an attempt is
made to execute the command via an exec (2) .

The shell parameter SPATH defines the search path for the directory containing
the command. Each alternative directory name is separated by a colon (:) . The
default path is :/bin:/usr/bin. If the command name contains a / then the search
path is not used. Otherwise, each directory in the path is searched for an execut­
able file. If the file has execute permission but is not an a.out file, it is assumed to
be a file containing shell commands. A subshell (Le., a separate process) is
spawned to read it. A parenthesized command is also executed in a subshell.

Special commands
The following commands are executed in the shell process and except where
specified no input output redirection is permitted for such commands.

No effect; the command does nothing .

. file Read and execute commands from file and return. The search path
SPATH is used to find the directory containing file.

break [n]
Exit from the enclosing for or while loop, if any. If n is specified then
break n levels.

continue [n]
Resume the next iteration of the enclosing for or while loop. If n is speci­
fied then resume at the n -th enclosing loop.

cd [arg]
Change the current directory to arg . The shell parameter SHOME is the
default arg .

eval [arg ...]
The arguments are read as input to the shell and the resulting command(s)
executed.

exec [arg ...]
The command specified by the arguments is executed in place of this shell
without creating a new process. Input output arguments may appear and,
if no other arguments are given, cause the shell input output to be modi­
fied.

1-109

SH(1)

exit [n]

Commands-8560 MUSDU System Reference Manua!

Causes a non interactive shell to exit with the exit status specified by n .
If n is omitted then the exit status is that of the last command executed.
(An end of file will also exit from the shell. See inYocatlon below.)

export [name ...]
The given names are marked for automatic export to the environment of
subsequently-executed commands. If no arguments are given then a list
of the names to be exported is printed.

login [arg ...]
Equivalent to lexec login arg .. .'.

logout Terminates the current shell, logging out if the current shell is a login shell.

newgrp [arg ...]
Equivalent to lexec newgrp arg .. .'.

read name ...
One line is read from the standard input; successive words of the input are
assigned to the variables name in order, with leftover words to the last
variable. The return code is 0 unless the end-of-file is encountered.

readonly [name ...]
The given names are marked readonly and the values of the these names
may not be changed by subsequent assignment. If no arguments are given
then a iist of all readoniy names is printed .

•• t [-eknptuyx [arg ...]]

-e If non interactive then exit immediately if a command fails.

-k All keyword arguments are placed in the environment for a com-
mand, not just those that precede the command name.

-n Read commands but do not execute them.

-t Exit after reading and executing one command.

-u Treat unset variables as an error when substituting.

-y Print shell input lines as they are read.

-x Print commands and their arguments as they are executed.

Turn off the -x and -y options.

These flags can also be used upon invocation of the shell. The current set
of flags may be found in $- .

Remaining arguments are positional parameters and are assigned, in order,
to $1 , $2 ,etc. If no arguments are given then the values of all names are
printed .

• hlft The positional parameters from $2 ... are renamed $1 0"

tim.. Print the accumulated user and system times for processes run from the
current shell.

1-110 @

Commands-8560 MUSDU System Reference Manual SH(1)

@

trap [arg] [n] ...
Arg is a command to be read and executed when the shell receives
signal(s) n . (Note that arg is scanned once when the trap is set and once
when the trap is taken.) Trap commands are executed in order of signal
number. If arg is absent then all trap(s) n are reset to their original values.
If arg is the null string then this signal is ignored by the shell and by
invoked commands. If n is 0 then the command arg is executed on exit
from the shell, otherwise upon receipt of signal n as numbered in sIg­
nal (2) . Trap with no arguments prints a list of commands associated with
each signal number.

umask [nnn]
The user file creation mask is set to the octal value nnn (see umask (2)).
If nnn is omitted, the current value of the mask is printed.

walt [n]
Wait for the specified process and report its termination status. If n is not
given then all currently active child processes are waited for. The return
code from this command is that of the process waited for.

Invocation
If the first character of argument zero is - , this is a login she". Commands are
read from /etc/proflle , then from SHOME/.proflle , if such files exist, before com­
mands are read from any other source. A login shell does not terminate when
end-of-file is reached on its standard in. Instead it prints a short message sug­
gesting that the logout command be used.

OPTIONS
The following flags are interpreted by the she" when it is invoked.

-c string
If the -c flag is present then commands are read from string

-s If the -a flag is .present or if no arguments remain then commands are
read from the standard input. Shell output is written to file descriptor 2.

-I If the -I flag is present or if the she" input and output are attached to a
terminal (as told by gtty() - see loctl(2)) then this she" is interactive. In
this case the terminate signal SIGTERM (see signal (2)) is ignored (so
that 'kill 0' does not kill an interactive shell) and the interrupt Signal SIG­
INT is caught and ignored (so that walt is interruptable). In a" cases
SIGaUIT is ignored by the shell.

The remaining flags and arguments are the same as for the .. t command.

-e

-k

-n
-t

If non interactive then exit immediately if a command fails.

All keyword arguments are placed in the environment for a command, not
just those that precede the command name.

Read commands but do not execute them.

Exit after reading and executing one command.

1-111

SH(1)

1-112

Commands-8560 MUSDU System Reference Manual

-u
-Y

-x

FILES

Treat unset variables as an error when substituting.

Print shell input lines as they are read.

Print commands and their arguments as they are executed.

Turn off the -x and -Y options.

letc/profile
$HOMEl.profile
Itmp/sh*
Idev/null

SEE ALSO
test(1), exec (2),

DIAGNOSTICS
Errors detected by the shell, such as syntax errors cause the shell to return a non
zero exit status. If the shell is being used non interactively then execution of the
shell file is abandoned. Otherwise, the shell returns the exit status of the last com­
mand executed (see also exit).

@

Commands-8560 MUSDU System Reference Manual SLEEP(1)

@

SLEEP(1)

NAME
sleep - suspend execution for an interval

SYNTAX
sleep time

DESCRIPTION
Sleep suspends execution for time seconds. It is used to execute a command
after a certain amount of time as in:

(sleep 105; command)&

or to execute a command every so often, as in:

while true

SEE ALSO

do
command
sleep 37

done

alarm(2), sleep(3)

NOTES
Time must be less than 65536 seconds.

1-113

SLEEP(1 } Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank.]

1-114 @

Commands-8560 MUSDU System Reference Manual SLP(1)

SLP(1)

NAME
sip - set line printer characteristics

SYNTAX
alp printer options ...

DESCRIPTION
SIp modifies the output characteristics of printer according to options, exiting with
a status of two (2) if the command was invoked improperly, one (1) if some other
problem occurred, or zero (0) if all went well.

Printer is the special file for the desired printer (e.g. Idev/lp1).

OPTIONS
nl

-nl

The attached printer processes newlines - perform no newline processing.

The attached printer does not process newlines - replace newline with
carriage return line feed on output.

nl-atrlng
Replace newline on output with string. The string is copied character for charac­
ter except that a backslash followed by one to three octal digits is copied as the
corresponding ascii character e.g. nl="\000\014" replaces newline with a null
followed by a form feed. Only the first seven characters resulting from string are
copied. A zero length string is illegal.

taba The attached printer processes tabs - perform no tab processing.

-taba The attached printer does not process tabs - replace tabs with the
appropriate number of spaces on output.

SEE ALSO
stty(1)

NOTES

REV JAN 1983

All options must follow the printer parameter.

The printer characteristics revert to the default each time the system is booted.

Because each option is processed independently, all options preceeding a bad
option have been processed even though the command "failed".

The alp command only sets characteristics for printers connected to the aux dev­
ices. Use the stty(1) command for printers on lOP ports.

1-115

SLP(1) Commands-8560 MUSDU System Reference Manual

[This page intentionaiiy left blank.j

1-116 @

Commands-8S60 MUSDU System Reference Manual SORT(1)

@

SORT(1)

NAME
sort - sort or merge fi les

SYNTAX
sort [-mubdflnrc] [-t c] [+pos 1 [-pos2]] ... [-0 file] [-T directory] [file] ...

DESCRIPTION
Sort sorts lines of all the named files together and writes the result on the stan­
dard output. The file '-' means the standard input. If no input files are named, the
standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by bytes.

OPTIONS
The ordering of the sort is affected globally by the following options.

-b Ignore leading blanks (spaces and tabs) in field comparisons.

-d 'Dictionary' order: only letters, digits and blanks are significant in com-
parisons.

-f Fold upper case letters onto lower case.

-I Ignore characters outside the ASCII range 040-0176 in nonnumeric com-
parisons.

-n An initial numeric string, consisting of optional blanks, optional minus sign,
and zero or more digits with optional decimal point, is sorted by arithmetic
value. Option -n implies option -b .

-r Reverse the sense of comparisons.

-t c 'Tab character' separating fields is c .

The notation +pos 1 -pos2 restricts a sort key to a field beginning at pos 1 and
ending just before pos2 : Pos 1 and pos2 each have the form m.n , optionally fol­
lowed by one or more of the flags bdflnr , where m tells a number of fields to skip
from the beginning of the line and n tells a number of characters to skip further. If
any flags are present they override all the global ordering options for this key. If
the b option is in effect n is counted from the first nonblank in the field; b is
attached independently to pos2 . A missing .n means .0; a missing - pol2 means
the end of the line. Under the -t c option, fields are strings separated by c ; other­
wise fields are nonempty nonblank strings separated by blanks.

When there are multiple sort keys, later keys are compared only after all earlier
keys compare equal. Lines that otherwise compare equal are ordered with all
bytes significant.

These option arguments are also understood:

-c Check that the input file is sorted according to the ordering rules; give no
output unless the file is out of sort.

-m Merge only, the input files are already sorted.

-0 file The next argument is the name of an output file to use instead of the stan-
dard output. This file may be the same as one of the inputs.

1-117

SORT(1) Commands-8560 MUSDU System Reference Manua!

1-118

- T directory
The next argument is the name of a directory in which temporary files
should be made.

-u Suppress all but one in each set of equal lines. Ignored bytes and bytes
outside keys do not participate in this comparison.

Example. Print in alphabetical order all the unique spellings in a list of words.
Capitalized words differ from uncapitalized.

sort -u +Of +0 lI.t

Print the password file (pa •• wd (5)) sorted by user id number (the 3rd colon­
separated field).

sort -t: + 2n letc/pa •• wd

Print the first instance of each month in an already sorted file of (month day)
entries. The options -um with just one input file make the choice of a unique
representative from a set of equal lines predictable .

• ort -um +0 -1 date.

FilES
lusr/tmp/stm*, Itmp/*: first and second tries for temporary files

SeE ALSO
uniq(1), comm(1), rev(1), join(1)

DIAGNOSTICS
Comments and exits with nonzero status for various trouble conditions and for
disorder discovered under option -c .

NOTES
Very long lines are silently truncated.

@

Commands-8S60 MUSDU System Reference Manual STTY(1)

STTY(1)
NAME

stty-set terminal options

SYNTAX
stty [option] ...

DESCRIPTION
Stty sets certain I/O options on the current output terminal. With no argument, it reports the
current settings of the options.

OPTIONS
An appended "i" refers to input, an "0" refers to output. An appended" {io}" represents
"eveni" and "eveno".

-f

even{io}
odd{io}
nopar{io}
mark{io}
data{io}
nocare{io}
raw

-raw
cooked
cbreak
-cbreak
-nl

nl
echo
-echo
aresm

Force the change specified to occur even if the terminal characteristic
table has been changed. The characteristic table is a larger data struc­
ture associated with the terminal. This table can be set via ioctl(2) to
change more terminal characteristics than are possible through stty.
Without this flag, you will receive a warning message if the characteristic
table has been changed and you attempt to set an option. The option will
not be set when this warning is given.
Even parity on input, output.
Odd parity on input, output.
No parity (bit 7 is always 0) on input, output.
Mark parity (bit 7 is always 1) on input, output.
Data on input, output (8th bit is not stripped).
Don't care parity on input, output.
Raw mode input (no erase, kill, interrupt, quit, logout; parity bit passed
back).
Negate raw mode.
Negate raw mode.
M.ake each character available to read(2) as received; no erase and kill.
Make characters available to read only when newline is received.
Allow carriage return for newline, and output CR-LF for carriage return or
newline.
Accept only newline (Iinefeed) to end lines.
Echo back every character typed.
Do not echo characters.
Turns on auto resume, which causes any input to resume the output, if it
has been suspended.
Turns off auto resume. -aresm

dtr . The 8560 monitors the DTR line (pin 20). The 8560 stops output when
your terminal sets the DTR line low, and resumes output when your termi­
nal sets the DTR line high. The command:

REV NOV 1982

-dtr
xonxof
-xonxof

$ stty dtr <CR>

allows you to turn off your terminal without getting logged out by the
8560.
The 8560 logs you out if the DTR line goes low.
Turns on XON/XOF (CNTL-Q/CNTL-S) flagging on input.
Turns off XON/XOF (CNTL-Q/CNTL-S) flagging on input.

1-119

STTY(1)

cts

-cts
-tabs
tabs
ek
erase c

kill c
300600 1200
2400 4800 9600
IU

-IU

DIAGNOSTICS

Commands-8S60 MUSDU System Reference Manual

The 8560 controls the CTS line (pin 5). The 8560 sets the CTS line low
when it cannot accept any more input, and sets the CTS line high when it
can accept input.
The 8560 keeps the CTS line high.
Replace tabs by a proportionate number of spaces when printing.
Preserve tabs.
Reset erase and kill characters back to normal 1\ Hand 1\ U.
Set erase character to c. C can be of the form" I\X" which is interpreted
as a CONTROL X.
Set kill character to c.
Set terminal baud rate to the number given; if possible,

Specifies that an 8540 Integration Unit (IU) or 8550 Microcomputer Devel­
opment Lab (MOL) is connected to the port. Support for an IU must be
enabled before any commands can be issued to the IU or any control
characters used by the HSI protocol can be sent to a terminal connected
to the IU. It is recommended that IU support be turned on during system
startup before any traffic occurs on the port.
Turns off IU/MDL support.

Invalid option-Warning that configuration table has been changed (see ioctl(2)).

1-120

SEE ALSO
ioctl(2)

REV NOV 1982

Commands-8560 MUSDU System Reference Manual

@

SU(1)

NAME
su - substitute user id temporarily

SYNTAX
au [userid]

DESCRIPTION
Su demands the password of the specified userid , and if it is given, changes to
that userid and invokes the Shell ah (1) without changing the current directory or
the user environment (see environ (5)). The new user 10 stays in force until the
Shell exits.

If no userid is specified, 'root' is assumed. To remind the super-user of his respon­
sibilities, the Shell substitutes '#' for its usual prompt.

SEE ALSO
sh(1)

SU(1)

1-121

SU(1 } Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-122 @

Commands-8S60 MUSDU System Reference Manual SYNC(1)

@

SYNC(1)

NAME
sync - update the super block

SYNTAX
sync

DESCRIPTION
Sync executes the sync system primitive. If the system is to be stopped, sync
must be called to insure file system integrity. See sync (2) for details.

SEE ALSO
sync(2), update(8)

1-123

SYNC(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-124 @

Commands-8560 MUSDU System Reference Manual TAIL(1)

@

TAIL(1)

NAME
tail - deliver the last part of a file

SYNTAX
tall [-Ibrc][-a number][-8 number][file]

DESCRIPTION
Tall copies the named file to the standard output beginning at a designated place.
If no file is named, the standard input is used.

OPTIONS
-a number

Print beginning at number units from the start of the file. Units defaults to
lines.

-8 number
Print beginning at number units from the end of the file. Units defaults to
lines.

-r Print lines in reversed order.

-I Number is in number of lines.

-b Number is in number of 512-byte blocks.

-c Number is in number of characters.

NOTES
Tails relative to the end of the file are treasured up in a buffer, and thus are limited
in length. Various kinds of anomalous behavior may happen with character special
files.

The -I, -b, and -c options are mutually exclusive.

1-125

TAIL(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-126 @

Commands-8560 MUSDU System Reference Manual TEE(1)

@

TEE(1)

NAME
tee - pipe fitting

SYNTAX
tee [-18] [file] ...

DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the
files.

OPTIONS
-I causes interrupts to be ignored.

-8 causes the output to be appended to the files rather than overwriting them.

1-127

TEE(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-128 @

Commands-8560 MUSDU System Reference Manual TEST(1)

@

TEST(1)

NAME
test - condition command

SYNTAX
taat expr

DESCRIPTION
t.at evaluates the expression expr , and if its value is true then returns zero exit
status; otherwise, a non zero exit status is returned. taat returns a non zero exit if
there are no arguments.

The following primitives are used to construct expr .

-r file true if the file exists and is readable.

-w file true if the file exists and is writable.

-f tile true if the file exists and is not a directory.

-d file true if the file exists and is a directory.

-a tile true if the file exists and has a size greater than zero.

-t [tildes 1
true if the open file whose file descriptor number is tildes (1 by default) is
associated with a terminal device.

-z s 1 true if the length of string s 1 is zero.

-n s 1 true if the length of the string s 1 is nonzero.

a1 - a2
true if the strings s 1 and s2 are equal.

a1 1- a2
true if the strings s 1 and s2 are not equal.

a1 true if s1 is not the null string.

n1 -aq n2
true if the integers n 1 and n2 are algebraically equal. Any of the com­
parisons -na ,-gt ,-ga ,-It, or -Ia may be used in place of -aq .

These primaries may be combined with the following operators:

unary negation operator

-a binary and operator

-0 binary or operator

(axpr) parentheses for grouping.

-a has higher precedence than -0. Notice that all the operators and flags are
separate arguments to test. Notice also that parentheses are meaningful to the
Shell and must be escaped.

SEE ALSO
sh(1), find(1)

1-129

TEST(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-130 @

Commands-8560 MUSDU System Reference Manual TIME(1)

@

TIME(1)

NAME
time - time a command

SYNTAX
time command

DESCRIPTION
The given command is executed; after it is complete, time prints the elapsed time
during the command, the time spent in the system, and the time spent in execution
of the command. Times are reported in seconds.

The times are printed on the diagnostic output stream.

NOTES
Elapsed time is accurate to the second, while the CPU times are measured to the
inverse of the line frequency. Thus the sum of the CPU times can be up to a
second larger than the elapsed time.

1-131

TIME(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-132 @

Commands-8560 MUSDU System Reference Manual TOUCH(1)

@

TOUCH(1)

NAME
touch - update date last modified of a file

SYNTAX
touch [-c] file

DESCRIPTION
Touch attempts to set the modified date of each file. This is done by reading a
character from the file and writing it back.

If a file does not exist, an attempt will be made to create it unless the -c option is
specified.

1-133

TOUCH(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-134 @

Commands-8560 MUSDU System Reference Manual

@

TR(1)

NAME
tr - translate characters

SYNTAX
tr [-cds] [string 1 [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of
selected characters. Input characters found in string 1 are mapped into the
corresponding characters of string2. When string2 is short it is padded to the
length of string 1 by duplicating its last character. Any combination of the options
-cds may be used: -c complements the set of characters in string1 with respect
to the universe of characters whose ASCII codes are 01 through 0377 octal; -d
deletes all input characters in string 1; -8 squeezes all strings of repeated output
characters that are in string2 to single characters.

In either string the notation a -b means a range of characters from a to b in increas­
ing ASC!! order. The character '\' fo!!owed by 1, 2 or 3 octa! digits stands for the
character whose ASCII code is given by those digits. A '\' followed by any other
character stands for that character.

The following example creates a list of all the words in 'file1' one per line in 'file2',
where a word is taken to be a maximal string of alphabetics. The second string is
quoted to protect '\' from the Shell. 012 is the ASCII code for newline.

tr -cs A-Za~z '\012' < file1 > file2

SEE ALSO
ed(1)

NOTES
Won't handle ASCII NUL in string 1 or string2; always deletes NUL from input.

TR(1)

1-135

TR(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-136 @

Commands-8560 MUSDU System Reference Manual TRUE(1)

@

TRUE(1)

NAME
true, false - provide truth values

SYNTAX
true
fals.

DESCRIPTION
True does nothing, successfully. False does nothing, unsuccessfully. They are
typically used in input to sh (1) such as:

while true

SEE ALSO
sh(1)

do

done

DIAGNOSTICS

command

Tru. has exit status zero, fals. nonzero.

1-137

TRUE(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-138 @

Commands-8560 MUSDU System Reference Manual TTY(1)

TTY{1)

NAME
tty - get terminal name

SYNTAX
tty

DESCRIPTION
Tty prints the pathname of the user's terminal.

DIAGNOSTICS
'not a tty' if the standard input file is not a terminal.

@ 1-139

TTY(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-140

Commands-8560 MUSDU System Reference Manual ULOAD(1)

@

ULOAD(1)

NAME
uload - unformatted up/down load

SYNTAX
uload [-ud] [-p cc ... c] [-8 nn] file

DESCRIPTION
Uload provides the host side protocol for unformatted text transfers to or from
TN IX. This is the protocol used for unformatted upload and download by the 8550
system. File contains (or will contain) the unformatted text. On uploading file will
default to standard input. On downloading file will default to standard output.

OPTIONS
-d specifies download - download is the default

-u specifies upload. Options -d and -u are mutually exclusive.

-p cc ... c
is an optional prompt, corresponding to the P= parameter on the TEKDOS
COMM command. On uploads, it is used to prompt for each line and
defaults to an empty string. On downloads, it is sent on a line by itself to
indicate end of file and defaults to '$$$$' .

-8 nn flag will slow down the transfer by padding each line with nulls, where nn
specifies the number of nulls to send. A slowed transfer may be required
by TEKDOS on the 8002.

For example, to send a 8002 file to be printed by TNIX, utter:

COMM [on the 8002 to connect to TNIX]
{TNIX login}
uload -u Ilpr {null} < {8002-fUe} [{ null} Is ascII NUU

[tranafer will now take place]
r*RIOT* EOr printed by 8002]

{ctrl-d} [TNIX end-of-file indicator]

The file will now start printing on the TNIX lineprinter.

SEE ALSO
mload(l)

NOTES
Prompt sequences (-p option) that include dollar signs ($) must be in single­
quotes because dollar signs have a special meaning to the shell.

Stty echo mode is disabled during the transfer.

1-141

ULOAD(1 } Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

@

Commands-8560 MUSDU System Reference Manual UNIQ(1)

@

UNIQ(1)

NAME
uniq - report repeated lines in a file

SYNTAX
unlq [-udc [+n] [-n]] [input [output]]

DESCRIPTION
Unlq reads the input file comparing adjacent lines. In the normal case, the second
and succeeding copies of repeated lines are removed; the remainder is written on
the output file. Note that repeated lines must be adjacent in order to be found; see
sort (1). If the -u flag is used, just the lines that are not repeated in the original
file are output. The -d option specifies that one copy of just the repeated lines is
to be written. The normal mode output is the union of the -u and -d mode out­
puts.

The -c option supersedes -u and -d and generates an output report in default
style but with each line preceded by a count of the number of times it occurred.

The n arguments specify skipping an initiai portion of each iine in the comparison:

- n The first n fields together with any blanks before each are ignored. A field
is defined as a string of non-space, non-tab characters separated by tabs
and spaces from its neighbors.

+ n The first n characters are ignored. Fields are skipped before characters.

SEE ALSO
sort(1), comm(1)

1-143

UNIQ(1 } Commands-8S60 MUSDU System Reference Manual

[This page intentionally left blank.]

1-144 @

Commands-8560 MUSDU System Reference Manual WAIT(1)

@

WAIT(1)

NAME
wait - await completion of process

SYNTAX
wait

DESCRIPTION
Wait until all processes started with & have completed, and report on abnormal ter­
minations.

Because the wait (2) system call must be executed in the parent process, the
Shell itself executes wait, without creating a new process.

SEE ALSO
sh(1)

NOTES
Not all the processes of a 3 or more stage pipeline are children of the Shell, and
thus can't be waited for.

1-145

WAIT(1) Commands-8560 MUSDU System Reference Manuai

[This page intentionally left blank.]

1 -146 @

Commands-8560 MUSDU System Reference Manual We(1)

@

WC(1)

NAME
wc - word count

SYNTAX
wc [-Iwc] [name] ...

DESCRIPTION
Wc counts lines, words and characters in the named files, or in the standard input
if no name appears. A word is a maximal string of characters delimited by spaces,
tabs or newlines.

If the optional argument is present, just the specified counts (lines, words or char­
acters) are selected by the letters I , w , or c .

1-147

We(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-148 @

Commands-8560 MUSDU System Reference Manual WHO(1)

@

WHO(1)

NAME
who - who is on the system

SYNTAX
who [file]
who [am I]

DESCRIPTION
Who, without an argument, lists the login name, terminal name, and login time for
each current TNIX user.

Without an argument, who examines the /etc/utmp file to obtain its information. If
a file is given, that file is examined. Typically the given file will be /usr/adm/wtmp,
which contains a record of all the logins since it was created. Then who lists
logins, logouts, and crashes since the creation of the wtmp file. Each login is listed
with user name, terminal name (with '/devl' suppressed), and date and time. When
an argument is given, logouts produce a similar line without a user name. Reboots
produce a line with 'x' in the place of the device name, and a fossil time indicative
of when the system went down.

With two arguments, as in 'who am I' (and also 'who are you'), who tells who you
are logged in as.

FILES
/etc/utmp

SEE ALSO
getuid(2), utmp(5)

1-149

WHO(1) Commands-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

1-150 @

Commands-8560 MUSDU System Reference Manual WRITE(1)

@

WRITE(1)

NAME
write - write to another user

SYNTAX
write user [ttyname]

DESCRIPTION
Write copies lines from your terminal to that of another user. When first called, it
sends the message

Meaaage from yourname yourttyname ...

The recipient of the message should write back at this point. Communication con­
tinues until an end of file is read from the terminal or an interrupt is sent. At that
point write writes IEOF' on the other terminal and exits.

If you want to write to a user who is logged in more than once, the ttyname argu­
ment may be used to indicate the appropriate terminal name.

Pejmission to wjite may be denied OJ gjanted by use of the m6&y(i) command. At
the outset writing is allowed. Certain commands, in particular pr disallow mes­
sages in order to prevent messy output.

If the character I!, is found at the beginning of a line, write calls the shell to exe­
cute the rest of the line as a command.

The following protocol is suggested for using write: when you first write to another
user, wait for him to write back before starting to send. Each party should end
each message with a distinctive signal-(o) for lover' is conventional-that the
other may reply. (00) for lover and out' is suggested when conversation is about to
be terminated.

FILES
letc/utmp to find user
Ibin/sh to execute .I!,

SEE ALSO
mesg(1), who(1), mail(1)

1-151

8560 MUSDU System Reference Manual

@

INTRODUCTION

Section 2
System Calls

System calls allow your program to obtain operating system services from the
TNIX kernel via a C or assembly language interface. An executing process ini­
tiates a system call by issuing a trap instruction to the operating system. The
trap instruction initiates a hardware trap, thereby switching the user process to
kernel execution mode.

Most system calls return an error status to the calling process, allowing the pro­
cess to monitor the status of the system call. Additionally, an error number is
available to the calling process as the external variable errno. Errno can be
passed to the subroutine perror(3) , which returns a terse error message for prob­
lem analysis to the standard error jiie. Consuit the "Sheir' section oj your 8560
System Users Manual for a more complete description of error message han­
dling.

2-1

INTRO(2) System Calls-8560 MUSDU System Reference Manual

2-2

INTRO(2)

NAME
intro, errno - introduction to system calls and error numbers

SYNTAX
#Include < errno.h>

DESCRIPTION
Most of the system calls listed below have an error return. An error condition is
indicated by an otherwise impossible returned value. Almost always this is -1; the
individual sections specify the details. An error number is also made available in
the external variable errno. Errno is not cleared on successful calls, so it should
be tested only after an error has occurred.

There is a table of messages associated with errno, and a routine for printing an
explanatory message; See perror (3). The possible error numbers are not recited
with each writeup in section 2, since many errors are possible for most of the calls.
Here is a list of the error numbers, their names as defined in < errno.h> , and the
messages available using perror .

o Error 0

Unused.

1 EPERM Not owner

Typically this error indicates an attempt to modify a file in some way forbidden
except to its owner or super-user. It is also returned for attempts by ordinary users
to do things allowed only to the super-user.

2 ENOENT No such file or directory

This error occurs when a file name is specified and the file should exist but
doesn't, or when one of the directories in a path name does not exist.

3 ESRCH No such process

The process whose number was given to Signal and ptrace does not exist, or is
already dead.

4 EINTR Interrupted system call

An asynchronous Signal (such as interrupt or quit), which the user has elected to
catch, occurred during a system call. If execution is resumed after processing the
signal, it will appear as if the interrupted system call returned this error condition.

5 EIO 110 error

Some physical 1/0 error occurred during a read or write. This error may in some
cases occur on a call following the one to which it actually applies.

6 ENXIO No such device or address

I/O on a special file refers to a subdevice that does not exist, or beyond the limits
of the device.

@

System Calls-8560 MUSDU System Reference Manual INTRO(2)

@

7 E2BIG Arg list too long

An argument list longer than 5120 bytes is presented to exec.

8 ENOEXEC Exec format error

A request is made to execute a file which, although it has the appropriate permis­
sions, does not start with a valid magic number, see a.out (5).

9 EBADF Bad file number

Either a file descriptor refers to no open file, or a read (resp. write) request is made
to a file that is open only for writing (resp. reading).

10 ECHILD No children

Walt and the process has no living or unwaited-for children.

11 EAGAIN No more processes

In a fork, the system's process table is full or the user is not allowed to create any
more processes.

1 2 ENOMEM Not enough core

During an exec or break, a program asks for more core than the system is able to
supply. This is not a temporary condition; the maximum core size is a system
parameter. The error may also occur if the arrangement of text, data, and stack
segments requires too many segmentation registers.

13 EACCES Permission denied

An attempt was made to access a file in a way forbidden by the protection system.

14 EFAUL T Bad address

The system encountered a hardware fault in attempting to access the arguments of
a system call.

15 ENOTBLK Block devicf1 required

A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUS Y Mount device busy

An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file (open file, current directory,
mounted-on file, active text segment).

17 EEXIST File exists

An existing file was mentioned in an inappropriate context, e.g. link.

18 EXDEV Cross-device link

A link to a file on another device was attempted.

19 ENODEV No such device

An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

2-3

INTRO(2) System Calls-8560 MUSDU System Reference Manual

2-4

20 ENOTDIR Not a directory

A non-directory was specified where a directory is required, for example in a path
name or as an argument to chdlr .

21 EISDIR Is a directory

An attempt to write on a directory.

22 EINVAL Invalid argument

Some invalid argument: dismounting a non-mounted device, mentioning an unk­
nown signal in algnal, reading or writing a file for which aeek has generated a
negative pointer. Also set by math functions.

23 ENFILE File table overflow

The system's table of open files is full, and temporarily no more opena can be
accepted.

24 EMFILE Too many open files

The current process has opened too many files. Some must be closed before
another can be opened.

25 ENOTTY Not a typewriter

The file mentioned in atty or gtty is not a terminal or one of the other devices to
which these calls apply.

26 ETXTBSY Text file busy

An attempt to execute a pure-procedure program that is currently open for writing
(or reading!). Also an attempt to open for writing a pure-procedure program that is
being executed.

27 EFBIG File too large

The size of a file exceeded the maximum (about 1.0E9 bytes).

28 ENOSPC No space left on device

During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek

An I .. ek was issued to a pipe. This error should also be issued for other non­
seekable devices.

30 EROFS Read-only file system

An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links

An attempt to make more than 32767 links to a file.

32 EPIPE Broken pipe

A write on a pipe for which there is no process to read the data. This condition
normally generates a signal; the error is returned if the signal is ignored.

@

System Calls-8560 MUSDU System Reference Manual INTRO(2)

@

33 EDOM Math argument

The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Result too large

The value of a function in the math package (3M) is unrepresentable within
machine precision.

SEE ALSO
perror(3)

ASSEMBLER
.1 IUlr/lnclude/lYI.1 file ...

The PDP11 assembly language interface is given for each system call. The assem­
bler symbols are defined in '/usr/include/sys.s'.

Return values appear in registers rO and r1; it is unwise to count on these regis­
ters being preserved when no value is expected. An erroneous cal! is always indi~
cated by turning on the c-bit of the condition codes. The error number is returned
in rOo The presence of an error is most easily tested by the instructions bes and
bee ('branch on error set (or clear)'}. These are synonyms for the bes and bee
instructions.

2-5

ACCESS(2) System Calis-8S60 MUSDU System Reference Manuai

2-6

ACCESS(2)

NAME
access - determine accessibility of file

SYNTAX
acceaa(name, mode)
char *name;

DESCRIPTION
Access checks the given file name for accessibility according to mode, which is 4
(read), 2 (write) or 1 (execute) or a combination thereof. Specifying mode 0 tests
whether the directories leading to the file can be searched and the file exists.

An appropriate error indication is returned if name cannot be found or if any of the
desired access modes would not be granted. On disallowed accesses -1 is
returned and the error code is in errno , 0 is returned from successful tests.

The user and group IDs with respect to which permission is checked are the real
UID and GID of the process, so this call is useful to set-UID programs.

Notice that it is only access bits that are checked. A directory may be announced
as writable by access , but an attempt to open it for writing will fail (although files
may be created there); a file may look executable, but exec will fail unless it is in
proper format.

SEE ALSO
stat(2)

ASSEMBLER
(access = 33.)
aya acceaa; name; mode

@

System Calls-8560 MUSDU System Reference Manual ALARM(2)

@

ALARM(2)

NAME
alarm - schedule signal after specified time

SYNTAX
alarm(seconds)
unsigned seconds;

DESCRIPTION
Alarm causes signal SIGALRM, see signal (2) , to be sent to the invoking process
in a number of seconds given by the argument. Unless caught or ignored, the sig­
nal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the
argument is 0, any alarm request is cancelled. Because the clock has a 1-second
resolution, the signal may occur up to one second early; because of scheduling
delays, resumption of execution when the signal is caught may be delayed an arbi­
trary amount. The longest specifiable delay time is 65535 seconds.

The return vaiue is the amount oj time previousiy remaining in the aiarm ciock.

SEE ALSO
pause(2), signal(2)

ASSEMBLER
(alarm = 27.)
(seconds in rO)
aya alarm
(previous amount in rO)

2-7

BRK(2) System Calls-8560 MUSDU System Reference Manual

2-8

BRK(2)

NAME
brk, sbrk, break - change memory allocation

SYNTAX
char *brk(addr)

char *abrk(incr)

DESCRIPTION
ark sets the system's idea of the lowest location not used by the program (called
the break) to addr (rounded up to the next multiple of 64 bytes) Locations not less
than addr and below the stack pointer are not in the address space and will thus
cause a memory violation if accessed.

In the alternate function sbrk ,incr more bytes are added to the program's data
space and a pointer to the start of the new area is returned.

When a program begins execution via exec the break is set at the highest location
defined by the program and data storage areas. Ordinarily, therefore, only pro­
grams with growing data areas need to use break.

SEE ALSO
exec(2)

DIAGNOSTICS
Zero is returned if the break could be set; -1 if the program requests more
memory than the system limit or if too many segmentation registers would be
required to implement the break.

Sbrk returns a pointer to the start of the new area if successful, and 0 if not.

NOTES
Setting the break in the range 0177701 to 0177777 is the same as setting it to
zero.

ASSEMBLER
(break = 1 7.)
aya break; addr

Break performs the function of brk . The name of the routine differs from that in C
for historical reasons.

System Calls-8560 MUSDU System Reference Manual CHDIR(2)

CHDIR(2)

NAME
chdir, chroot - change default directory

SYNTAX
chdlr(dlrname)
char edlrname;

chroot(dlrname)
char edirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte.
Chdir causes this directory to become the current working directory, the starting
point for path names not beginning with 'I'.

Chroot sets the root directory, the starting pOint for path names beginning with 'I'.
The call is restricted to the super-user.

Chdir and Chroot only change the working and root directories for the current pro­
cess and any of its children.

SEE ALSO
cd(1)

DIAGNOSTICS
Zero is returned if the directory is changed; -1 is returned if the given name is not
that of a directory or is not searchable.

ASSEMBLER
(chdir = 12.)
IYI ~hdlr; dlrname

(chroot = 61.)
IYI chroot; dlrname

2-9

CHMOD(2) System Caiis-8560 MUSDU System Reference Manual

2-10

CHMOD(2)

NAME
chmod - change mode of file

SYNTAX
chmod(name, mode)
char -name;

DESCRIPTION
The file whose name is given as the nUll-terminated string pOinted to by name has
its mode changed to mode . Modes are constructed by ORing together some com­
bination of the following octal values:

04000 set user 10 on execution
02000 set group 10 on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read, write, execute (search) by group
00007 read, write, execute (search) by others

If an executable file is set up for sharing then mode 01000 prevents the system
from abandoning the swap-space image of the program-text portion of the file
when its last user terminates. Thus when the next user of the file executes it, the
text need not be read from the file system but can simply be swapped in, saving
time. Ability to set this bit is restricted to the super-user since swap space is con­
sumed by the images; it is only worth while for heavily used commands.

Only the owner of a file (or the super-user) may change the mode. Only the
super-user can set the 1000 mode.

SEE ALSO
chmod(1)

DIAGNOSTICS
Zero is returned if the mode is changed; -1 is returned if name cannot be found or
if current user is neither the owner of the file nor the super-user.

ASSEMBLER
(chmod = 15.)
aya chmod; name; mode

System Calls-8560 MUSDU System Reference Manual CHOWN(2)

@

CHOWN(2)

NAME
chown - change owner and group of a file

SYNTAX
chown(name, owner, group)
char ·name;

DESCRIPTION
The file whose name is given by the null-terminated string pointed to by name has
its owner and group changed as specified. Only the super-user may execute this
call, because if users were able to give files away, they could defeat the (nonex­
istent) file-space accounting procedures.

SEE ALSO
chown(1), passwd(5)

DIAGNOSTICS
Zero is returned if the owner is changed; -1 is returned on illegal owner changes.

ASSEMBLER
(chown = 16.)
sys chown; name; owner; group

2-11

CLOSE(2) System Calls-8560 MUSDU System Reference Manual

2-12

CLOSE(2)

NAME
close - close a file

SYNTAX
close(flldes)

DESCRIPTION
Given a file descriptor such as returned from an open ,creat ,dup or pipe (2) call,
close closes the associated file. A close of all files is automatic on exit, but since
there is a limit on the number of open files per process, close is necessary for pro­
grams which deal with many files.

Files are closed upon termination of a process, and device file descriptors may be
closed automatically by a sucessful exec (2) , following an ioctl(2) call.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), exec(2), ioctl(2)

DIAGNOSTICS
Zero is returned if a file is closed; -1 is returned for an unknown file descriptor.

ASSEMBLER
(close = 6.)
(file descriptor in rO)
sya ciole

System Calls-8560 MUSDU System Reference Manual CREAT(2)

CREAT(2)

NAME
creat - create a new file

SYNTAX
creat(name, mode)
char ·name;

DESCRIPTION
Creat creates a new file or prepares to rewrite an existing file called name , given
as the address of a nUll-terminated string. If the file did not exist, it is given mode
mode , as modified by the process's mode mask (see umask (2)). Also see
chmod (2) for the construction of the mode argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0
length.

The file is also opened for writing, and its file descriptor is returned.

The mode given is arbitrary; it need not allow writing. This feature is used by pro­
grams which deal with temporary files of fixed names. The creation is done with a
mode that forbids writing. Then if a second instance of the program attempts a
creat , an error is returned and the program knows that the name is unusable for
the moment.

SEE ALSO
write(2), close(2), chmod(2), umask (2)

DIAGNOSTICS
The value -1 is returned if: a needed directory is not searchable; the file does not
exist and the directory in which it is to be created is not writable; the file does
exist and is unwritable; the file is a directory; there are already too many files
open.

ASSEMBLER
(creat = 8.)
aya creat; name; mode
(file descriptor in rO)

2-13

DUP(2) System Calls-8560 MUSDU System Reference Manual

2-14

DUP(2)

NAME
dup, dup2 - duplicate an open file descriptor

SYNTAX
dup(flldes)
int flldes;

dup2(flldes, fildes2)
int fildes, fildes2;

DESCRiPilON
Given a file descriptor returned from an open ,pipe , or creat call, dup allocates
another file descriptor synonymous with the original. The new file descriptor is
returned.

In the second form of the call, tildes is a file descriptor referring to an open file,
and ti/des2 is a non-negative integer less than the maximum value allowed for file
descriptors. Dup2 causes fildes2 to refer to the same file as tildes . If tildes2
already referred to an open file, it is closed first.

SEE ALSO
creat(2), open(2), close(2), pipe(2)

DIAGNOSTICS
The value -1 is returned if: the given fiie descriptor is invaiid; there are already
too many open files.

ASSEMBLER
(dup = 41.)
(file descriptor in rO)
(new file descriptor in r1)
sys dup
(file descriptor in rO)

The dup2 entry is implemented by adding 0100 to tildes.

System Calls-8560 MUSDU System Reference Manual EXEC(2)

@

EXEC(2)

NAME
execl, execv, execle, execve, execlp, execvp, exec, exece, environ - execute a file

SYNTAX
execl(name, argO, arg1, ... , argn, 0)
char *name, *argO, *arg1, ... , *argn;

execv(name, argv)
char *name, *argv[];

execlp(name, argO, arg1, ... , argn, 0)
char *name, *argO, *arg1, ... , *argn;

execvp(name, argv)
char *name, *argv[];

execle(name, argO, arg1, ... , argn, 0, envp)
char *name, *argO, *arg1, ... , *argn, *envp[];

execve(name, argv, envp);
char *name, *argv[], *envp[];

extern char "environ;

DESCRIPTION
Exec in all its forms overlays the calling process with the named file, then transfers
to the entry pOint of the core image of the file. There can be no return from a suc­
cessful exec; the calling core image is lost.

Files remain open across exec unless explicit arrangement has been made; see
ioct/ (2) . Ignored signals remain ignored across these calls, but signals that are
caught (see signal (2)) are reset to their default values.

Each user has a real user 10 and group 10 and an effective user 10 and group 10.
The real 10 identifies the person using the system; the effective 10 determines his
access privileges. Exec changes the effective user and group 10 to the owner of
the executed file if the file has the 'set-user-IO' or 'set-group-IO' modes. The real
user 10 and group 10 are not affected.

The name argument is a pointer to the null-terminated name of the file to be exe­
cuted. The pOinters arg [0 1 ,arg [1 1... address null-terminated strings. Conven­
tionallyarg [0 1 is the name of the file.

From C, two interfaces are available. Execl is useful when a known file with known
arguments is being called; the arguments to execl are the character strings consti­
tuting the file and the arguments; the first argument is conventionally the same as
the file name (or its last component). A a argument must end the argument list.

The execv version is useful when the number of arguments is unknown in
advance; the arguments to execv are the name of the file to be executed and a
vector of strings containing the arguments. The last argument string must be fol­
lowed by a a pointer.

2-15

EXEC(2) System Calls-8560 MUSDU System Reference Manual

2-16

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char **argv, **envp;

where argc is the argument count and argv is an array of character pOinters to the
arguments themselves. As indicated, argc is conventionally at least one and the
first member of the array points to a string containing the name of the file.

Argv is directly usable in another execv because argv [argc j is O.

Envp is a pOinter to an array of strings that constitute the environment of the pro­
cess. Each string consists of a name, an II = ", and a nUll-terminated value. The
array of pointers is terminated by a null pointer. The shell sh (1) passes an
environment entry for each global shell variable defined when the program is
called. See environ (5) for some conventionally used names. The C run-time
start-off routine places a copy of envp in the global cell environ , which is used by
execv and execl to pass the environment to any subprograms executed by the
current program. The exec routines use lower-level routines as follows to pass an
environment explicitly:
execle(file, argO, arg1 , ... , argn, 0, environ);
execve(file, argv, environ);

Execlp and execvp are called with the same arguments as execl and execv , but
duplicate the sheii's actions in searching for an executable file in a iist of direc­
tories. The directory list is obtained from the environment.

FILES
/bin/sh shell, invoked if command file found byexeclp or execvp

SEE ALSO
fork(2), environ(5)

DIAGNOSTICS
If the file cannot be found, if it is not executable, if it does not start with a valid
magic number (see a.out (5)), if maximum memory is exceeded, or if the argu­
ments require too much space, a return constitutes the diagnostic; the return value
is -1. An exception to this is with execvp and execlp which will execute a shell
command file (which does not start with a valid magic number). Even for the
super-user, at least one of the execute-permission bits must be set for a file to be
executed.

NOTES
If execvp is called to execute a file that turns out to be a shell command file, and if
it is impossible to execute the shell, the values of argv[Oj and argv[-1j will be
modified before return.

ASSEMBLER
(exec = 11.)
IYI exec; name; argv

(exece = 59.)
IYI exece; name; argv; envp

System Calls-8560 MUSDU System Reference Manual EXEC(2)

@

When the called file starts execution on the 8560, the stack pointer points to a
word containing the number of arguments. Just above this number is a list of
pointers to the argument strings, followed by a null pointer, followed by the
pOinters to the environment strings and then another null pointer. The strings
themselves follow; a 0 word is left at the very top of memory.

Addresses increase downward in the following diagram.

sp-> nargs
argO

argn
0
envO

envm
0

argO: <argO\O>

envO: <envO\O>
0

This arrangement happens to conform well to C calling conventions.

2-17

EXIT(2) System Calls-8560 MUSDU System Reference Manual

2-18

EXIT(2)

NAME
exit - terminate process

SYNTAX
exit(status)
Int status;

_ exlt(status)
Int status;

DESCRIPTION
Exit is the normal means of terminating a process. Exit closes all the process's
files and notifies the parent process if it is executing a wait. The low-order 8 bits
of status are available to the parent process.

This call can never return.

The C function exit may cause cleanup actions before the final 'sys exit'. The C
function _exit circumvents all cleanup.

SEE ALSO
wait(2)

ASSEMBLER
(exit = 1.)
(status in rO)
sys exit

System Calls-8560 MUSDU System Reference Manual FORK(2)

FORK(2)

NAME
fork spawn new process

SYNTAX
fork()

DESCRIPTION
Fork is the only way new processes are created. The new process's memory image
is a copy of that of the caller of fork. The only distinction is the fact that the value
returned in the old (parent) process contains the process 10 of the new (child) pro­
cess, while the value returned in the child is O. Process 10's range from 1 to
30,000. This process 10 is used by wait (2) .

Files open before the fork are shared, and have a common read-write pOinter. In
particular, this is the way that standard input and output files are passed and also
how pipes are set up.

SEE ALSO
wait(2), exec(2)

DIAGNOSTICS
Returns -1 and fails to create a process if: there is inadequate swap space, the
user is not super-user and has too many processes, or the system's process table
is full. Only the super-user can take the last process-table slot.

ASSEMBLER
(fork = 2.)
aya fork
(new process return)
(old process return, new process 10 in rO)

The return locations in the old and new process differ by one word. The C-bit is
set in the old process if a new process could not be created.

2-19

GETPID(2) System Calls-8560 MUSDU System Reference Manuai

2-20

GETPID(2)

NAME
getpid - get process identification

SYNTAX
getpld()

DESCRIPTION
Getpid returns the process 10 of the current process. Most often it is used to gen­
erate uniquely-named temporary files.

ASSEMBLER
(getpid = 20.)
sys getpld
(pid in rO)

System Calls-8560 MUSDU System Reference Manual GETUID(2)

GETUID(2)

NAME
getuid, getgid, geteuid, getegid - get user and group identity

SYNTAX
getuld()

geteuld()

getgld()

getegld()

DESCRIPTION
Getuid returns the real user 10 of the current process, geteuid the effective user 10.
The real user 10 identifies the person who is logged in, in contradistinction to the
effective user 10, which determines his access permission at the moment. It is
thus useful to programs which operate using the 'set user 10' mode, to find out who
invoked them.

Gatgid returns the real group ID, gategid the effective group ID.

SEE ALSO
setuid(2)

ASSEMBLER
(getuid = 24.)
aya getuld
(real user 10 in rO, effective user 10 in r1)

(getgid = 47.)
aya getgld
(real group 10 in rO, effective group 10 in r1)

2-21

INDIR(2) System Ca!ls-8560 MUSDU System Reference Manual

2-22

INDIR(2)

NAME
indir - indirect system call

ASSEMBLER
(indir = 0.)
aya Indlr; call

The system call at the location call is executed. Execution resumes after the indir
call.

The main purpose of indir is to allow a piogiam to stOie aiguments fOi system calls
and execute them out of line in the data segment. This preserves the purity of the
text segment.

If indir is executed indirectly, it is a no-op. If the instruction at the indirect location
is not a system call, indir returns error code EINVAL; see intro (2).

System Calls-8560 MUSDU System Reference Manual IOCTL(2)

IOCTL(2)

NAME
ioctl, stty, gtty - control device

SYNTAX
#Include < sgtty.h>

loctl(flldes, request, argp)
struct sgttyb *argp;

stty(flldes, argp)
struct sgttyb *argp;

gtty(flldes, argp)
struct sgttyb *argp;

DESCRIPTION
loctl performs a variety of functions on character special files (devices). The write­
ups of various devices in section 2.6.8 discuss how ioct/ applies to them.

For certain status setting and status inquiries about terminal devices, the functions
stty and gtty are equivalent to
ioctl(flldes, TIOCSETP, argp)
ioctl(flldes, TIOCGETP, argp)

respectively; see tty(4) .

The following two calls apply to any open file:

ioctl(flldea, FIOCLEX, NULL);
ioctl(flldes, FIONCLEX, NULL);

The first causes the file to be closed automatically during a successful exec
operation; the second reverses the effect of the first.

SEE ALSO
stty(1), exec(2), fd(4), hd(4), tty(4)

DIAGNOSTICS
Zero is returned if the call was successful; -1 if the file descriptor does not refer to
the kind of file for which it was intended, or if the data structure description is
invalid.

NOTES
Strictly speaking, since ioctl may be extended in different ways to devices with dif­
ferent properties, argp should have an open-ended declaration like

union { struct sgttyb ... ; ... } *argp;

The important thing is that the size is fixed by 'struct sgttyb'.

2-23

IOCTl(2)

2-24

ASSEMBLER
(ioctl = 54.)
sys ioctl; fildes; request; argp

(stty = 31.)
(file descriptor in rO)
stty; argp

(gtty = 32.)
(file descriptor in rO)
sys gtty; argp

System Calls-8560 MUSDU System Reference Manuai

(ri'

System Calls-8560 MUSDU System Reference Manual KILL(2)

KILL(2)

NAME
kill - send signal to a process

SYNTAX
kill(pid, slg);

DESCRIPTION
Kill sends the signal sig to the process specified by the process number pid. See
signal (2) for a list of signals.

The sending and receiving processes must have the same effective user 10, other­
wise this call is restricted to the super-user.

If the process number is 0, the signal is sent to all other processes in the group of
processes originating from the same terminal as the sender.

If the process number is -1, and the user is the super-user, the signal is broadcast
universally except to processes 0 and 1, the scheduler and initialization processes,
see init (8) .

Processes may send signals to themselves.

SEE ALSO
signaI(2), kill(1)

DIAGNOSTICS
Zero is returned if the process is killed; -1 is returned if the process does not
have the same effective user 10 and the user is not super-user, or if the process
does not exi st.

ASSEMBLER
(kill = 37.)
(process number in rO)
sys kill; sig

2-25

LINK(2) System Calls-8560 MUSDU System Reference Manual

2-26

LINK(2)

NAME
link - link to a file

SYNTAX
IInk(name1. name2)
char *name1. *name2;

DESCRIPTION
A link to name1 is created; the link has the name name2 . Either name may be an
arbitrary path name.

SEE ALSO
In(1), unlink(2)

DIAGNOSTICS
Zero is returned when a link is made; -1 is returned when name 1 cannot be
found; when name2 already exists; when the directory of name2 cannot be written;
when an attempt is made to link to a directory by a user other than the super-user;
when an attempt is made to link to a file on another file system; when a file has too
many links.

ASSEMBLER
(link = 9.)
sys link; name1; name2

System Calls-8560 MUSDU System Reference Manual LOCK(2)

@

LOCK(2)

NAME
lock - lock a process in primary memory

SYNTAX
lock(flag)

DESCRIPTION
If the flag argument is non-zero, the process executing this call will not be
swapped except if it is required to grow. If the argument is zero, the process is
unlocked. This call may only be executed by the super-user.

NOTES
Locked processes interfere with the compaction of primary memory and can
cause deadlock. This system call is not considered a permanent part of the sys­
tem.

ASSEMBLER
(lock = 53.)
sys lock; flag

2-27

LSEEK(2) System Calls-8560 MUSDU System Reference Manual

LSEEK(2)

NAME
Iseek, tell - move read/write pointer

SYNTAX
long Iseek(fildes, offset, whence)
long offset;

long tell (fildes)

DESCRIPTION
The file descriptor refers to a file oPen for reading or writing. The read (resp. write)
pointer for the file is set as follows:

If whence is 0, the pointer is set to offset bytes.

If whence is 1, the pointer is set to its current location plus offset.

If whence is 2, the pOinter is set to the size of the file plus offset.

The returned value is the resulting pointer location.

The function tell (tildes) is identical to Iseek (tildes, OL, 1) .

(The 'l' in 'Ol' specifies a long value in C.)

Seeking far beyond the end of a file, then writing, creates a gap or 'hole', which
occupies no physical space and reads as zeros.

SEE ALSO
open(2), creat(2)

DIAGNOSTICS
-1 is returned for an undefined file descriptor, seek on a pipe, or seek to a position
before the beginning of file.

NOTES
Lseek is a no-op on character special files.

ASSEMBLER
(lseek = 19.)
(file descriptor in rO)
sys 18eek; off8et1; off8et2; whence

Offset1 and offset2 are the high and low words of offset rO and r1 contain the
pOinter upon return.

2-28 @

System Calls-8560 MUSDU System Reference Manual MKNOD(2)

MKNOD(2)

NAME
mknod - make a directory or a special file

SYNTAX
mknod(name, mode, addr)
char ·name;

DESCRIPTION
Mknod creates a new file whose name is the null-terminated string pointed to by
name. The mode of the new file (including directory and special file bits) is initial­
ized from mode . (The protection part of the mode is modified by the process's
mode mask; see umask(2)). The first block pointer of the i-node is initialized from
addr . For ordinary files and directories addr is normally zero. In the case of a
special file, addr specifies which special file.

Mknod may be invoked only by the super-user.

SEE ALSO
mkdir(1), mknod(1), fiisys(5)

DIAGNOSTICS
Zero is returned if the file has been made; -1 if the file already exists or if the user
is not the super-user.

ASSEMBLER
(mknod = 14,)
sys mknod; name; mode; addr

2-29

MOUNT(2) System Calls-8560 MUSDU System Reference Manual

2-30

MOUNT(2)
NAME

mount, umount-mount or remove file system

SYNTAX
mount(special, name, rwflag)
char * special, * name;
umount(special)
char * special;

DESCRIPTION
Mount informs the system that a removable file system has been mounted on the
block-structured special file special. References to file name will refer to the root file on the
newly mounted file system. Special and name are pOinters to null-terminated strings contain­
ing the appropriate path' names.

Name must exist already. Name must be a directory (unless the root of the mounted file
system is not a directory). Its old contents are inaccessible while the file system is mounted.

The rwflag argument determines whether the file system can be written on. If rwflag is 0,
writing is allowed; if it is non-zero, no writing is done. Physically write-protected and mag­
netic tape file systems must be mounted read-only; otherwise, errors will occur when access
times are updated, whether or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable file
system. The associated file reverts to its ordinary interpretation.

SEE ALSO
mount(8)

DIAGNOSTICS
Mount returns 0 if the action occurred; -1 if special is inaccessible or not an appropriate file,
if name does not exist, if special is already mounted, if name is in use, or if there already are
too many file systems mounted.

Umount returns 0 if the action occurred; -1 if if the special file is inaccessible or does not
have a mounted file system, or if there are active files in the mounted file system.

ASSEMBLER
(mount = 21.)
sys mount; special; name; rwflag
(umount = 22.)
sys umount; special

REV NOV 1982

System Calls-8560 MUSDU System Reference Manual NICE(2)

@

NICE(2)

NAME
nice - set program priority

SYNTAX
nice(lncr)

DESCRIPTION
The scheduling priority of the process is augmented by incr. Positive priorities get
less service than normal. Priority 10 is recommended to users who wish to exe­
cute long-running programs without inconvienencing other users.

Negative increments are ignored except on behalf of the super-user. The priority is
limited to the range -20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by fork (2) . For a privileged
process to return to normal priority from an unknown state, nice should be called
successively with arguments -40 (goes to priority -20 because of truncation), 20
(to get to 0), then 0 (to maintain compatibility with previous versions of this call).

SEE ALSO
nice(1)

ASSEMBLER
(nice = 34.)
(priority in rO)
sys nice

2-31

OPEN(2) System Caiis-8560 MUSDU System Reference Manuai

2-32

OPEN(2)

NAME
open - open for reading or writing

SYNTAX
open (name, mode)
char -name;

DESCRIPTION
Open opens the file name for reading (if mode is 0), writing (if mode is 1) or for
both reading and writing (if mode is 2). Name is the address of a string of ASCII
characters representing a path name, terminated by a null character.

The file is positioned at the beginning (byte 0). The returned file descriptor must
be used for subsequent calls for other input-output functions on the file.

SEE ALSO
creat(2), read(2), write(2), dup(2), close(2)

DIAGNOSTICS
The value -1 is returned if the file does not exist, if one of the necessary direc­
tories does not exist or is unreadable, if the file is not readable (resp. writable), or if
too many files are open, or if the mode is invalid.

ASSEMBLER
(open = 5.)
aya open; name; mode
(file descriptor in rO)

@

System Calls-8560 MUSDU System Reference Manual PAUSE(2)

@

PAUSE(2)

NAME
pause - stop until signal

SYNTAX
pause()

DESCRIPTION
Pause never returns normally. It is used to give up control while waiting for a sig­
nal from kill (2) or alarm (2) .

SEE ALSO
kill(1), kill(2), alarm(2), signal(2)

ASSEMBLER
(pause = 29.)
sys pause

2-33

PHYS(2) System Calls-8560 MUSDU System Reference Manual

PHYS(2)

NAME
phys - allow a process to access physical addresses

SYNTAX
phYI(legreg, size, phYladr)

DESCRIPTION
The argument segreg specifies a process virtual (data-space) address range of 8K
bytes starting at virtual address segreg' xBK bytes. This address range is mapped
into physical address physadr x64 bytes. Only the first size x64 bytes of this
mapping is addressable. If size is zero, any previous mapping of this virtual
address range is nullified. For example, the call

phys(6, 1, 0177775);

will map virtual addresses 0160000-0160077 into physical addresses
017777500-017777577. In particular, virtual address 0160060 is the PDP-11
console located at physical address 017777560.

This call may only be executed by the super-user.

SEE ALSO
PDP-11 segmentation hardware

DIAGNOSTICS
The function value zero is returned if the physical mapping is in effect. The value
-1 is returned if not super-user, if segreg is not in the range 0-7, if size is not in
the range 0-1 27, or if the specified segreg is already used for other than a previ­
ous call to phys .

NOTES
This system call is obviously very machine dependent and very dangerous. This
system call is not considered a permanent part of the system.

ASSEMBLER
(phys = 52.)
IYI phYI; aegreg; Ilze; phyaadr

2-34 @

System Calls-8560 MUSDU System Reference Manual PIPE(2)

@

PIPE(2)

NAME
pipe - create an interprocess channel

SYNTAX
plpe(flldea)
Int flldea[2];

DESCRIPTION
The pipe system call creates an lID mechanism called a pipe. The file descriptors
returned can be used in read and write operations. When the pipe is written using
the descriptor tildes [1] up to 4096 bytes of data are buffered before the writing
process is suspended. A read using the descriptor tildes [0] will pick up the data.
Writes with a count of 4096 bytes or less are atomic (Le. indivisible); no other pro­
cess can intersperse data.

It is assumed that after the pipe has been set up, two (or more) cooperating
processes (created by subsequent fork calls) will pass data through the pipe with
read and write calls.

The Shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file
descriptors closed) returns an end-of-file.

SEE ALSO
sh(1), read(2), write(2), fork(2)

DiAGNOSTICS
The function value zero is returned if the pipe was created; -1 if too many files are
already open. A signal (see signa/(2)) is generated if a write on a pipe with only
one end is attempted.

NOTES
Should more than 4096 bytes be necessary in any pipe among a loop of
processes, deadlock will occur.

ASSEMBLER
(pipe = 42.)
aya pipe
(read file descriptor in rO)
(write file descriptor in r1)

2-35

PROFIL(2) System Calls-8560 MUSDU System Reference Manual

2-36

PROFIL(2)

NAME
profil - execution time profile

SYNTAX
profil(buff, bufslz, offset, scale)
char *buff;
int bufslz, offset, scale;

DESCRIPTION
Buff pOints to an area of memory whose length (in bytes) is given by bufsiz. After
this call, the user's program counter (pc) is examined each clock tick (60th or 50th
second depending on local line frequency); offset is subtracted from it, and the
result multiplied by scale . If the resulting number corresponds to a word inside
buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at
the left: 0177777(8) gives a 1-1 mapping of pc's to words in buff ; 077777(8)
maps each pair of instruction words together. 02(8) maps all instructions onto the
beginning of buff (producing a non-interrupting memory clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giv­
ing a bufsiz of O. Profiling is turned off when an exec is executed, but remains on
in child and parent both after a fork. Profiling will be turned off if an update in
buff would cause a memory fault.

SEE ALSO
prof(1)

ASSEMBLER
(profi I = 44.)
sys profil; buff; bufslz; offset; scale

@

System Calls-8560 MUSDU System Reference Manual PTRACE(2)

@

PTRACE(2)

NAME
ptrace - process trace

SYNTAX
#include < signal.h>

ptrace(request, pld, addr, data)
Int *addr;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a
child process, and examine and change its memory image. Its primary use is for
the implementation of breakpoint debugging. There are four arguments whose
interpretation depends on a request argument. Generally, pid is the process 10 of
the traced process, which must be a child (no more distant descendant) of the
tracing process. A process being traced behaves normally until it encounters
some signal whether internally generated like 'illegal instruction' or externally gen­
erated like 'interrupt.' See signal (2) for the list. Then the traced process enters a
stopped state and its parent is notified via wait (2) . When the child is in the
stopped state, its memory image can be examined and modified using ptrace . If
desired, another ptrace request can then cause the child either to terminate or to
continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

o

1

3

4

6

7

This request and (under some circumstances) request 10 are the only
ones used by the child process. It declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results
will ensue if the parent does not expect to trace the child.

The word in the child process's address space at addr is returned. Addr
must be even. The child must be stopped. The input data is ignored.

The word of the .system's per-process data area corresponding to addr is
returned. Addr must be even and less than 512. This space contains the
registers and other information about the process; its layout corresponds
to the user structure in the system.

The given data is written at the word in the process's address space
corresponding to addr , which must be even. No useful value is returned.
Attempts to write in pure text fail if another process is executing the same
file.

The process's system data is written, as it is read with request 3. Only a
few locations can be written in this way: the general registers, the floating
point status and registers, and certain bits of the processor status word.

The data argument is taken as a signal number and the child's execution
continues at location addr as if it had incurred that signal. Normally the
signal number will be either 0 to indicate that the signal that caused the
stop should be ignored, or that value fetched out of the process's image
indicating which signal caused the stop. If addr is (int *) 1 then execution
continues from where it stopped.

2-37

PTRACE(2) System Calls-8560 MUSDU System Reference Manual

2-38

8

9

10

The traced process terminates.

Execution continues as in request 7; however, as soon as possible after
execution of at least one instruction, execution stops again. The signal
number from the stop is SIGTRAP. On the PDP-11 the T-bit is used and
just one instruction is executed. This is part of the mechanism for imple­
menting breakpoints.

If data is non-zero, then subsequent system calls made below addr are
declared illegal and generate a SIGSYS. An addr of 0177777 (on the
PDP-11) effectively disables all system calls. If either data or addr is zero,
then system calls are again handled normally. This allows system calls to
be traced, and is used to simulate trap instructions when emulating DEC
environments. Unlike the other requests, pid can refer to the calling pro­
cess or a traced child. In some emulation schemes, this is the only
request used and there is in fact no child.

As indicated, requests 1 through 9 can be used only when the subject process has
stopped. The wait call is used to determine when a process stops; in such a case
the Itermination' status returned by wait has the value 0177 to indicate stoppage
rather than genuine termination.

To forestall possible fraud, ptrace inhibits the set-user-id facility on subsequent
exec (2) calls. If a traced process calls exec, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

SEE ALSO
wait(2), signal(2), adb(1)

DIAGNOSTICS
The value -1 is returned if request is invalid, pid is not a traceable process, addr is
out of bounds, or data specifies an illegal signal number.

NOTES
The request 0 call should be able to specify signals which are to be treated nor­
mally and not cause a stop. In this way, for example, programs with simulated
floating point (which use lillegal instruction' signals at a very high rate) could be
efficiently debugged.

ASSEMBLER
(ptrace = 26.)
(data in rO)
eye ptrace; pld; addr; request
(value in rO)

@

System Calls-8560 MUSDU System Reference Manual READ(2)

@

READ(2}

NAME
read - read from file

SYNTAX
read(flldea, buffer, nbytes)
char ·buffer;

DESCRIPTION
A file descriptor is a word returned from a successful open ,creat ,dup , or pipe
call. Buffer is the location of nbytes contiguous bytes into which the input will be
placed. It is not guaranteed that all nbytes bytes will be read; for example if the
file refers to a typewriter at most one line will be returned. In any event the
number of characters read is returned.

If the returned value is 0, then end-of-file has been reached.

SEE ALSO
open(2), creat(2), dup(2), pipe(2)

DIAGNOSTICS
As mentioned, 0 is returned when the end of the file has been reached. If the read
was otherwise unsuccessful the return value is -1. Many conditions can generate
an error: physical I/O errors, bad buffer address, preposterous nbytes , file descrip­
tor not that of an input file.

ASSEMBLER
(read = 3.)
(file descriptor in rO)
ays read; buffer; nbytes
(byte count in rO)

2-39

SETUID(2) System Calls-8560 MUSDU System Reference Manual

2-40

SETUID(2)

NAME
setuid, setgid - set user and group 10

SYNTAX
setuld(uld)

setgid(gid)

DESCRIPTION
The user 10 (group 10) of the current process is set to the argument. Both the
effective and the real 10 are set. These calls are only permitted to the super-user
or if the argument is the real 10.

SEE ALSO
getuid(2)

DIAGNOSTICS
Zero is returned if the user (group) 10 is set; -1 is returned otherwise.

ASSEMBLER
(setuid = 23.)
(user 10 in rO)
sya aetuid

(setgid = 48.)
(group 10 in rO)
aya setgid

@

System Calls-8560 MUSDU System Reference Manual SIGNAL(2)

@

SIGNAL(2)

NAME
signal - catch or ignore signals

SYNTAX
#Include < algnaLh>

(*algnal(alg, func)) 0
(*func)O;

DESCRIPTION
A signal is generated by some abnormal event, initiated either by user at a type­
writer (quit, interrupt), by a program error (bus error, etc,), or by request of another
program (kill). Normally all signals cause termination of the receiving process, but
a signal call allows them either to be ignored or to cause an interrupt to a specified
location. Here is the list of signals with names as in the include file.

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3* quit
SIGILL 4* illegal instruction (not reset when caught)
SIGTRAP 5* trace trap (not reset when caught)
SIGIOT 6* lOT instruction
SIGEMT 7* EMT instruction
SIGFPE 8* floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS ; 0" bus error
SIGSEGV 11 * segmentation violation
SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe or link with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal

16 unassigned

The starred signals in the list above cause a memory image if not caught or
ignored.

If tunc is SIG_DFL, the default action for signal sig is reinstated; this default is ter­
mination, sometimes with a memory image. If tunc is SIG_IGN the signal is ignored.
Otherwise when the signal occurs tunc will be called with the signal number as
argument. A return from the function will continue the process at the point it was
interrupted. Except as indicated, a signal is reset to SIG_DFL after being caught.
Thus if it is desired to catch every such signal, the catching routine must issue
another signal call.

When a caught signal occurs during certain system calls, the call terminates
prematurely. In particular this can occur during a read or write (2) on a slow dev­
ice (like a typewriter; but not a file); and during pause or wait (2) . When such a
signal occurs, the saved user status is arranged in such a way that when return
from the signal-catching takes place, it will appear that the system call returned an
error status. The user's program may then, if it wishes, re-execute the call.

2-41

SIGNAL(2) System Calls-8560 MUSDU System Reference Manual

2-42

The value of signal is the previous (or initial) value of func for the particular signal.

After a fork (2) the child inherits all signals. Exec (2) resets all caught signals to
default action.

SEE ALSO
kill(1), kill(2), ptrace(2)

DIAGNOSTICS
The value (int)-1 is returned if the given signal is out of range.

NOTES
If a repeated signal arrives before the last one can be reset, there is no chance to
catch it.

The type specification of the routine and its func argument are problematical.

ASSEMBLER
(signal = 48.)
sys Signal; slg; label
(old label in rO)

If label is 0, default action is reinstated. If label is odd, the Signal is ignored. Any
other even label specifies an address in the process where an interrupt is simu­
lated. An RTI or RTT instruction will return from the interrupt.

@

System Calls-8560 MUSDU System Reference Manual STAT(2}

@

STAT(2)

NAME
stat, fstat - get file status

SYNTAX
#Include < aya/typea.h>
#Include < aya/atat.h>

atat(name, buf)
char *name;
atruct stat *buf;

fatat(flldea, but)
atruct atat *buf;

DESCRIPTION
Stat obtains detailed information about a named file. Fstat obtains the same infor­
mation about an open file known by the file descriptor from a successful open ,
creat ,dup or pipe (2) call.

Name points to a null-terminated string naming a file; buf is the address of a buffer
into which information is placed concerning the file. It is unnecessary to have any
permissions at all with respect to the file, but all directories leading to the file must
be searchable. The layout of the structure pOinted to by buf as defined in
<stat.h> is given below. St_mode is encoded according to the '#define' state­
ments.

struct stat
{

dev_t stdev; /* device where the inode lives */
ino_t stino; /* inode number* /
unsigned short st_ mode; /* mode * /
short st_nlink; /* link count * /
short st_uid; /* set userid */
short st9id; /* set group id * /
dev_t st_rdev;/* device where data lives */
oftt stsize; /* file size * /
time t statime; /* access time * /
time t st_mtime; /* modification time * /
time t st_ ctime; /* creation time * /

};

2-43

STAT(2) System Calls-8560 MUSDU System Reference Manual

2-44

#define S_IFMT
#define S_IFDIR
#define S_IFCHR
#define S_IFBLK
#define S_IFREG
#define S_ISUID
#define S_ISGID
#define S_ISVTX

0170000
0040000

0020000
0060000
0100000

0004000
0002000
0001000

1* type of file * /
1* direct * /

1* character special * /
/* block special * /
1* regular * /

1* set user id on execution * /
1* set group id on execution * /

#define S_IREAD
#define S_IWRITE
#define S_IEXEC

1* save swapped text even * /
/ 1 after use

0000400 1* read permission, owner * /
r write permission, owner Iii 0000200

0000100
/* owner

1* execute/search permission, * /
*/

The mode bits 0000070 and 0000007 encode group and others permissions (see
chmod (2)). The defined types, ino_t ,off_t , time_t , name various width integer
values; dev t encodes major and minor device numbers; their exact definitions are
in the include file < sys/types.h> (see types (5) .

When tildes is associated with a pipe, tstat reports an ordinary file with restricted
permissions. The size is the number of bytes queued in the pipe.

st_atime is the time that the file was last read. For reasons of efficiency, it is not
set when a directory is searched, although this would be more iogical. st_mtime is
the time the file was last written or created. It is not set by changes of owner,
group, link count, or mode. st_ctime is set both by writing and changing the i­
node.

SEE ALSO
Is(1), filsys(5)

DIAGNOSTICS
Zero is returned if a status is available; -1 if the file cannot be found.

ASSEMBLER
(stat = 18.)
sys stat; name; buf

(fstat = 28.)
(file descriptor in rO)
sys fstat; buf

@

System Calls-8560 MUSDU System Reference Manual STIME(2)

@

STIME(2)

NAME
stime - set time

SYNTAX
#Include < ava/tvpea.h>
#Include < ava/tlmeb.h>
atlme(tp)
struct timeb *tp;

DESCRIPTION
Stime sets the system's idea of the time and date. Time, pOinted to by tp , is a
structure defined by <sysltimeb.h> :
struct timeb {

time_t time; 1* seconds past the epoch *1
unsigned short millitm; 1* up to 1000 milliseconds of * I

1* more precise interval * I
short timezone; 1* minutes of time westward *1

1* from Greenwich * I
short dstflg; 1* Daylight savings time flag *1

The epoch is 0000 GMT Jan 1, 1970. Dstflg is a flag which is non-zero if daylight
savings time is locally observed at some times during the year. Only the super­
user may use this call.

SEE ALSO
date(1), time(2)

DIAGNOSTICS
Zero is returned if the time was set; -1 if user is not the super-user.

ASSEMBLER
(stime = 25.)
ava ftlme; tp

2-45

SYNC(2) System Calls-8560 MUSDU System Reference Manual

2-46

SYNC(2)

NAME
sync - update super-block

SYNTAX
sync()

DESCRIPTION
Sync causes all information in core memory that should be on disk to be written
out. This includes modified super blocks, modified i-nodes, and delayed block 1/0.

It should be used by programs which examine a file system, for example icheck ,df,
etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return from sync.

SEE ALSO
sync(1), update(8)

ASSEMBLER
(sync = 36.)
sys sync

@

System Calls-8560 MUSDU System Reference Manual TIME(2)

@

TIME(2)

NAME
time, ftime - get date and time

SYNTAX
long time(O)

long time(tloc)
long -tloc;

#include < sys/types.h>
#include < sys/timeb.h>
ftime(tp)
struct timeb -tp;

DESCRIPTION
Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tloe is non null, the return value is also stored in the place to which tloe points.

The !time entry fills in a structure pOinted to by its argument, as defined by
<sys/timeb.h> :

struct timeb {
time t ttime;
unsigned short millitm;
short timezone;
short dstflag;

} ;
struct timebtz{

struct timeb t;/* The old timeb structure * /
char tzname[4];/* time zone name * /
char tzdayname[4];/* daylight timezone name * /

} ;

The timeb structure contains the time since the epoch in seconds, up to 1000 mil­
liseconds of more-precise interval, the local timezone (measured in minutes of time
westward from Greenwich), and a flag that, if nonzero, indicates that Daylight Sav­
ing time is locally observed at times during the year. The epoch is 0000 GMT Jan.
1, 1970.

If the pointer argument to !time is an odd address the timebtz structure is returned.
It is returned to where the odd address points minus one. The timebtz structure
contains the timeb structure plus the standard timezone string, and daylight
timezone string.

SEE ALSO
date(1), stime(2)

ASSEMBLER
(ftime = 35.)
sYI ftime; bufptr

(time = 13.; obsolete call)
IYI time
(time since 1970 in rO-r1)

2-47

TIMES(2) System Calls-8560 MUSDU System Reference Manual

2-48

TIMES(2)

NAME
times - get process times

SYNTAX
times (buffer)
struct tbuffer *buffer;

DESCRIPTION
Times returns time-accounting information for the current process and for the ter­
minated child processes of the current process. All times are in 11HZ seconds,
where HZ= 60 or 50 depending on local line frequency.

After the call, the buffer will appear as follows:

struct tbuffer {
long
long
long
long

} ;

proc_user_time;
proc_system_time;
child_ user_ time;
child_system_time;

The children times are the sum of the children's process times and their children's
times.

SEE ALSO
time(1), time(2)

ASSEMBLER
(times = 43.)
sys times; buffer

@

System Calls-8560 MUSDU System Reference Manual UMASK(2}

@

UMASK(2)

NAME
umask - set file creation mode mask

SYNTAX
umaak(complmode)

DESCRIPTION
Umask sets a mask used whenever a file is created by creat (2) or mknod (2) : the
actual mode (see chmod (2)) of the newly-created file is the logical and of the
mode given to chmod, creat, or mknod, and the complement of the argument given
to umask. Only the low-order 9 bits of the mask (the protection bits) participate.
In other words, the mask shows the bits to be turned off when files are created.

The previous value of the mask is returned by the call. The value is initially 0 (no
restrictions). The mask is inherited by child processes.

SEE ALSO
creat(2), mknod(2), chmod(2)

ASSEMBLER
(umask = 60.)
aya umaak; complmode

2-49

UNLINK(2) System Calls-8560 MUSDU System Reference Manual

2-50

UNLINK(2)

NAME
unlink - remove directory entry

SYNTAX
unllnk(name)
char ·name;

DESCRIPTION
Name points to a nUll-terminated string. Unlink removes the entry for the file
pointed to by name from its directory. if this entry was the iast iink to the fiie, the
contents of the file are freed and the file is destroyed. If, however, the file was
open in any process, the actual destruction is delayed until it is closed, even
though the directory entry has disappeared.

SEE ALSO
rm(1), link(2)

DIAGNOSTICS
Zero is normally returned; -1 indicates that the file does not exist, that its directory
cannot be written, or that the file contains pure procedure text that is currently in
use. Write permission is not required on the file itself. It is also illegal to unlink a
directory (except for the super-user).

ASSEMBLER
(unlink = 10.)
aye unlink; name

@

System Calls-8560 MUSDU System Reference Manual UTIME(2)

@

UTIME(2)

NAME
utime - set file times

SYNTAX
#Include < aya/types.h>
utlme(flle, tlmep)
char *flle;
tlme_t tlmep[2];

DESCRIPTION
The utime call uses the 'accessed' and 'updated' times in that order from the timep
vector to set the corresponding recorded times for file.

The timep vector is a 2 element array of time_t types.

The caller must be the owner of the file or the super-user. The 'inode-changed'
time of the file is set to the current time.

SEE ALSO
stat (2)

ASSEMBLER
(utime = 30.)
aya utlme; file; tlmep

2-51

WAIT(2) System Calls-8560 MUSDU System Reference Manual

2-52

WAIT(2)

NAME
wait - wait for process to terminate

SYNTAX
wait(status)
int *status;

wait(O)

DESCRIPTION
Wait causes its caller to delay until a signal is received or one of its child
processes terminates. If any child has died since the last wait, return is immedi­
ate; if there are no children, return is immediate with an error indication. The nor­
mal return yields the process 10 of the terminated child. In the case of several
children several wait calls are needed to learn of all the deaths.

If fint) status is nonzero, the high byte of the word pointed to receives the low byte
of the argument of exit when the child terminated. The low byte receives the termi­
nation status of the process. See signal (2) for a list of termination statuses (sig­
nals); 0 status indicates normal termination. A special status (0177) is returned
for a stopped process which has not terminated and can be restarted. See
ptrace (2) . If the 0200 bit of the termination status is set, a memory image of the
process was produced by the system.

If the parent process terminates without waiting on its children, the initialization
process (process 10 = 1) inherits the children.

SEE ALSO
exit(2), fork(2), signal (2)

DIAGNOSTICS
Returns -1 if there are no children not previously waited for.

ASSEMBLER
(wait = 7.)
sye wait
(process 10 in rO)
(status in r1)

The high byte of the status is the low byte of rO in the child at termination.

@

System Calls-8560 MUSDU System Reference Manual WRITE(2)

@

WRITE(2)

NAME
write - write on a file

SYNTAX
wrlte(flldes, buffer, nbytes)
char ·buffer;

DESCRIPTION
A file descriptor is a word returned from a successful open , creat , dup , or
pipe (2) call.

Buffer is the address of nbytes contiguous bytes which are written on the output
file. The number of characters actually written is returned. It should be regarded
as an error if this is not the same as requested.

Writes which are multiples of 512 characters long and begin on a 512-byte boun­
dary in the file are more efficient than any others.

creat(2), open(2), pipe(2)

DIAGNOSTICS
Returns -1 on error: bad descriptor, buffer address, or count; physical 1/0 errors.

ASSEMBLER
(write = 4.)
(file descriptor in rO)
sys write; buffer; nbytes
(byte count in rO)

2-53

8560 MUSDU System Reference Manual

INTRODUCTION

Section 3
Standard Subroutines

The standard subroutines described in this section are a library of programming
tools available to the user. These software development tools are intended to
simplify the task of programming by providing you with a set of standardized,
debugged routines which can be readily incorporated into your programs.

3-1

INTRO(3) Subroutines-8560 MUSDU System Reference Manual

3-2

INTRO(3)

NAME
intro - introduction to library functions

SYNTAX
#Include < stdlo.h>

#Include < math.h>

DESCRIPTION
This section describes functions that may be found in various libraries, other than
those functions that directly invoke TNIX system primitives, which are described in
section 2. Functions are divided into various libraries distinguished by the section
number at the top of the page:

(3) These functions, together with those of section 2 and those marked (3S),
constitute library Jibe, which is automatically loaded by the C compiler
ee (1) and the Fortran compiler '77 (1). The link editor Id (1) searches this
library under the I-Ic' option. Declarations for some of these functions may
be obtained from include files indicated on the appropriate pages.

(3M) These functions constitute the math library, /ibm. They are automatically
loaded as needed by the Fortran compiler '77 (1). The link editor searches
this library under the I-1m' option. Declarations for these functions may be
obtained from the include fiie < math.h>.

(3S) These functions constitute the Istandard I/O package', see stdio (3). These
functions are in the library /ibe already mentioned. Declarations for these
functions may be obtained from the include file < stdio.h>.

(3X) Various specialized libraries have not been given distinctive captions. The
files in which these libraries are found are named on the appropriate pages.

FILES
Ilib/libc.a
Ilib/libm.a, lusr/lib/libm.a (one or the other)

SEE ALSO
stdio(3), nm(1), Id(1), cc(1), f77(1), intro(2)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the func­
tion is undefined for the given arguments or when the value is not representable.
In these cases the external variable errno (see intro (2)) is set to the value EDOM
or ERANGE. The values of EDOM and ERANGE are defined in the include file
<math.h>.

Subroutines-8560 MUSDU System Reference Manual INTRO(3)

ASSEMBLER
In assembly language these functions may be accessed by simulating the C calling
sequence. For example, ecvt (3) might be called this way:

setd
mov $sign,- (sp)
mov $decpt,- (sp)
mov ndigit,- (sp)
movf value,- (sp)
jsr pc,_ ecvt
add $14.,sp

3-3

ABORT(3) Subroutines-8560 MUSDU System Reference Manual

3-4

ABORT(3)

NAME
abort - generate lOT fau It

DESCRIPTION
Abort executes the PDP11 lOT instruction. This causes a signal that normally ter­
minates the process with a core dump, which may be used for debugging.

SEE ALSO
adb(1) I signal(2) I exit(2)

DIAGNOSTICS
Usually 'lOT trap - core dumped' from the shell.

Subroutines-8560 MUSDU System Reference Manual ABS(3)

ABS(3)

NAME
abs - integer absolute value

SYNTAX
aba(l)

DESCRIPTION
Abs returns the absolute value of its integer operand.

SEE ALSO
floor(3) for tabs

NOTES
You get what the hardware gives on the largest negative integer.

@ 3-5

ASSERT(3X) Subroutines-8560 MUSDU System Reference Manual

3-6

ASSERT(3X)

NAME
assert - program verification

SYNTAX
#include < assert.h>

assert (expression)

DESCRIPTION
Assert is a macro that indicates expression is expected to be true at this point in
the program. It causes an exit (2) with a diagnostic comment on the standard out­
put when expression is false (0). Compiling with the cc (1) option -DNDEBUG
effectively deletes assert from the program.

DIAGNOSTICS
'Assertion failed: file f line n.' F is the source file and n the source line number of
the assert statement.

@

Subroutines-8560 MUSDU System Reference Manual ATOF/ATOI/ATOL(3)

@

ATOF/ATOI/ATOL(3)

NAME
atof, atoi, atol - convert ASCII to numbers

SYNTAX
double atof(nptr)
char *nptr;

atol(nptr)
char *nptr;

long atol(nptr)
char *nptr;

DESCRIPTION
These functions convert a string pOinted to by nptr to floating, integer, and long
integer representation respectively. The first unrecognized character ends the
string.

Atof recognizes an optional string of tabs and spaces, then an optional sign, then a
string of digits optionally containing a decimal point, then an optional "e' or "E' fol­
lowed by an optionally signed integer.

Atoi and atol recognize an optional string of tabs and spaces, then an optional
sign, then a string of digits.

SEE ALSO
scanf(3)

NOTES
There are no provisions for overflow.

3-7

CRYPT ISETKEY IENCRYPT(3) Subroutines-8560 MUSDU System Reference Manual

3-8

CRYPT ISETKEY IENCRYPT(3)

NAME
crypt, setkey, encrypt - DES encryption

SYNTAX
char ·crypt(key, salt)
char ·key, ·salt;

setkey(key)
char ·key;

encrypt(block, edflag)
char ·block;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption
Standard, with variations intended (among other things) to frustrate use of
hardware implementations of the DES for key search.

The first argument to crypt is a user's typed password. The second is a 2-
character string chosen from the set [a-zA-ZO-9.11. The salt string is used to per­
turb the DES algorithm in one of 4096 different ways, after which the password is
used as the key to encrypt repeatedly a constant string. The returned value pOints
to the encrypted password, in the same alphabet as the salt. The first two charac­
ters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm.
The argument of setkey is a character array of length 64 containing only the char­
acters with numerical value 0 and 1. If this string is divided into groups of 8, the
low-order bit in each group is ignored, leading to a 56-bit key which is set into the
machine.

The argument to the encrypt entry is likewise a character array of length 64 con­
taining O's and 1 'so The argument array is modified in place to a similar array
representing the bits of the argument after having been subjected to the DES algo­
rithm using the key set by setkey. If edf/ag is 0, the argument is encrypted; if
non-zero, it is decrypted.

SEE ALSO
passwd(1), passwd(5), login(1), getpass(3)

NOTES
The return value points to static data whose content is overwritten by each call.

Subroutines-8560 MUSDU System Reference Manual CTIME(3)

@

CTIME(3)

NAME
ctime, localtime, gmtime, asctime, timezone - convert date and time to ASCII

SYNTAX
char ·ctlme(clock)
long ·clock;

#Include < tlme.h>

struct tm ·Iocaltlme(clock)
long ·clock;

struct tm ·gmtlme(clock)
long ·clock;

char ·asctlme(tm)
struct tm ·tm;

char ·tlmezone(zone, dsl)

DESCRIPTION
Ctime converts a time pointed to by clock such as returned by time (2) into ASCII
and returns a pointer to a 26-character string in the following form. All the fields
have constant width.

Sun Sep 16 01 :03:52 1973\n\0

Localtime and gmtime return pointers to structures containing the broken-down
time. Loca/time corrects for the time zone and possible daylight savings time;
gmtime converts directly to GMT, which is the time TNIX uses. Asctime converts a
broken-down time to ASCII and returns a pointer to a 26-character string.

The structure declaration from the include file is:

struct tm { 1* see ctime(3) * /
int tm_sec;·
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

} ;

These quantities give the time on a 24-hour clock, day of month (1-31), month of
year (0-11), day of week (Sunday = 0), year - 1900, day of year (0-365), and a
flag that is nonzero if daylight saving time is in effect.

When local time is called for, the program consults the system to determine the
time zone and whether the standard U.S.A. daylight saving time adjustment is
appropriate. The program knows about the peculiarities of this conversion in 1974
and 1975; if necessary, a table for these years can be extended.

3-9

CTIME(3) Subroutines-8560 MUSDU System Reference· Manual

3-10

Timezone returns the name of the time zone associated with its first argument,
which is measured in minutes westward from Greenwich. If the second argument
is 0, the standard name is used, otherwise the Daylight Saving version. If the
required name does not appear in a table built into the routine, the difference from
GMT is produced; e.g. in Afghanistan timezone(-(60*4 +30), 0) is appropriate
because it is 4:30 ahead of GMT and the string GMT+4:30 is produced.

SEE ALSO
time(2)

NOTES
The return values paint to static data whose content is overwritten by each cal!.

@

Subroutines-8S60 MUSDU System Reference Manual CTVPE(3)

@

CTYPE(3)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii -
character classification

SYNTAX
#Include < ctype.h>

Isalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a
predicate returning nonzero for true, zero for false. /sascii is defined on all integer
values; the rest are defined only where isascii is true and on the single non-ASCII
value EOF (see stdio (3)).

Isalpha
c is a letter

isupper
c is an upper case letter

islower
c is a lower case letter

isdigit c is a digit

i .. lnurn
c is an alphanumeric character

issp.ce
c is a space, tab, carriage return, newline, or form feed

ispunct
c is a punctuation ·character (neither control nor alphanumeric)

isprint c is a printing character, code 040(8) (space) through 0176 (tilde)

iscntrl c is a delete character (0177) or ordinary control character (less than 040).

is.scii c is an ASCII character, code less than 0200

SEE ALSO
ascii(7)

3-11

DBM(3X) Subroutines-8560 MUSDU System Reference Manual

3-12

DBM(3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey - data base subroutines

SYNTAX
typedef struct { char *dptr; Int dslze; } datum;

dbmlnlt(flle) char *flle;

datum fetch(key) datum key;

itore(key, content) datum key, content;

delete(key) datum key;

datum flrstkeyO;

datum nextkey(key); datum key;

DESCRIPTION
These functions maintain key/content pairs in a data base. The functions will han­
dle very large (a billion blocks) databases and will access a keyed item in one or
two filesystem accesses. The functions are obtained with the loader option
-Idbm.

Keys and contents are described by the datum typedef. A datum specifies a
string of dsize bytes pointed to by dptr. Arbitrary binary data, as weli as normai
ASCII strings, are allowed. The data base is stored in two files. One file is a direc­
tory containing a bit map and has '.dir' as its suffix. The second file contains all
data and has' .pag' as its suffix.

Before a database can be accessed, it must be opened by dbminit. At the time of
this call, the files file .dir and file .pag must exist. (An empty database is created
by creating zero-length '.dir' and '.pag' files.)

Once open, the data stored under a key is accessed by fetch and data is placed
under a key by store. A key (and its associated contents) is deleted by delete. A
linear pass through all keys in a database may be made, in an (apparently) random
order, by use of firstkey and nextkey. Firstkey will return the first key in the data­
base. With any key nextkey will return the next key in the database. This code will
traverse the data base:

for(key= firstkeyO; key.dptr! = NULL; key= nextkey(key))

DIAGNOSTICS
All functions that return an int indicate errors with negative values. A zero return
indicates ok. Routines that return a datum indicate errors with a null (0) dptr.

NOTES
The '.pag' file will contain holes so that its apparent size is about four times its
actual content. Older TNIX systems may create real file blocks for these holes
when touched. These files cannot be copied by normal means (cp, cat, tp, tar, ar)
without filling in the holes.

Optr pointers returned by these subroutines point into static storage that is
changed by subsequent calls.

@

Subroutines-8560 MUSDU System Reference Manual DBM(3X)

@

The sum of the sizes of a key/content pair must not exceed the internal block size
(currently 512 bytes). Moreover all key/content pairs that hash together must fit
on a single block. Store will return an error in the event that a disk block fills with
inseparable data.

Delete does not physically reclaim file space, although it does make it available for
reuse.

The order of keys presented by firstkey and nextkey depends on a hashing func­
tion, not on anything interesting.

3-13

ECVT /FCVT /GCVT(3) Subroutines-8560 MUSDU System Reference Manual

3-14

ECVT IFCVT IGCVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNTAX
char *ecvt(value, ndlglt, decpt, sign)
double value;
Int ndlglt, *decpt, *slgn;

char *fcvt(value, ndlglt, decpt, sign)
double value;
Int ndlglt, *decpt, *slgn;

char *gcvt(value, ndiglt, but)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and
returns a pOinter thereto. The position of the decimal point relative to the begin­
ning of the string is stored indirectly through decpt (negative means to the left of
the returned digits). If the sign of the result is negative, the word pointed to by
sign is non-zero, otherwise it is zero. The low-order digit is rounded.

Fcvt is identical to ecvt, except that the correct digit has been rounded for Fortran
F-format output of the number of digits specified by ndigits .

Gcvt converts the value to a nUll-terminated ASCII string in but and returns a
pointer to but. It attempts to produce ndigit significant digits in Fortran F format if
possible, otherwise E format, ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

NOTES
The return values point to static data whose content is overwritten by each call.

@

Subroutines-8S60 MUSDU System Reference Manual END/ETEXT IEDATA(3)

@

END/ETEXT IEDATA(3)

NAME
end, etext, edata - last locations in program

SYNTAX
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents.
The address of etext is the first address above the program text, edata above the
initialized data region, and end above the uninitialized data region.

When execution begins, the program break coincides with end, but many functions
reset the program break, among them the routines of brk (2), mal/oc (3), standard
input/output (stdio (3)), the profile (-p) option of cc (1), etc. The current value
of the program break is reliably returned by 'sbrk(O)', see brk (2).

SEE ALSO
brk(2), malloc(3)

3-15

EXP flOG flOG 1 O/POW /SQRT(3M) Subroutines-8560 MUSDU System Reference Manual

3-16

EXP/LOG/LOG10/POW/SQRT(3M)

NAME
exp, log, log1 0, pow, sqrt - exponential, logarithm, power, square root

SYNTAX
#Include < math.h>

double exp(x)
double x;

double log(x)
double x;

double log10(x)
double x;

double pow (x, Y)
double x, Y;

double sqrt(x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natura! logarithm of x ; fog 1 0 returns the base 10 !ogarithm.

Pow returns xv.

Sqrt returns the square root of x.

SEE ALSO
hypot(3), sinh(3), intro(2)

DIAGNOSTICS
Exp and pow return a huge value when the correct value would overflow; errno is
set to ERANGE. Pow returns 0 and sets errno to EDOM when the second argument
is negative and non-integral and when both arguments are O.

Log returns 0 when x is zero or negative; errno is set to EDOM.

Sqrt returns 0 when x is negative; errno is set to EDOM.

@

Subroutines-8560 MUSDU System Reference Manual FCLOSE(3S)

@

FCLOSE(3S)

NAME
fclose, fflush - close or flush a stream

SYNTAX
#Include < atdlo.h>

tclos.(stream)
FILE -stream;

ttl ush (stream)
FILE -str.am;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the file to be
closed. Buffers allocated by the standard input/output system are freed.

Fclose is performed automatically upon calling exit (2).

Fflush causes any buffered data for the named output stream to be written to that
file. The stream remains open.

SEE ALSO
close(2), fopen(3), setbuf(3)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buf­
fered data cannot be transferred to that file.

3-17

FERROR/FEOF ICLEARERR/FILENO(3S) Subroutines-8560 MUSDU System Reference Manual

3-18

FERROR/FE OF /e LEARER R/FI LE NO(3S)

NAME
feof, ferror, clearerr, fIIeno - stream status inquiries

SYNTAX
#Include < stdlo.h>

feof(stream)
FILE -stream;

ferror(stream)
FILE -stream

clearerr(stream)
FILE -stream

flleno(stream)
FILE -stream;

DESCRIPTION
Feot returns non-zero when end of file is read on the named input stream, other-
wise zero.

Ferror returns non-zero when an error has occurred reading or writing the named
stream, otherwise zero. Unless cleared by clearerr, the error indication lasts until
the stream is ciosed.

Clrerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream, see open (2).

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3),open(2)

@

Subroutines-8560 MUSDU System Reference Manual

@

FLOOR(3M)

NAME
fabs, floor, ceil - absolute value, floor, ceiling functions

SYNTAX
#Include < math.h>

dou ble floor(x)
double x;

dou ble cell (x)
double x;

double faba(x)
double(x);

DESCRIPTION
Fabs returns the absolute value I x ~

Floor returns the largest integer not greater than x .

Ceil returns the smallest integer not less than x .

SEE ALSO
abs(3)

FLOOR(3M)

3-19

FOPEN/FREOPEN/FDOPEN(3S) Subroutines-8560 MUSDU System Reference Manual

3-20

FOPEN/FREOPEN/FDOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNTAX
#Include < stdlo.h>

FILE ·fopen(fllename, type)
char ·fllename, ·type;

FILE ·freopen(fllename, type, stream)
char ·fllename, ·type;
FILE ·stream;

FILE ·fdopen(flldea, type)
char ·type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen
returns a pOinter to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

r open for reading

w create for writing

a append: open for writing at end of file, or create for writing

If a + sign is included in the type string after the type identifier, then the stream
will be opened for reading and writing (Le. mode 2; see open(2)).

Freopen substitutes the named file in place of the open stream. It returns the ori­
ginal value of stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names,
atdln, atdout, stderr, to specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat,
or pipe (2). The type of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS
Fopen and freopen return the pointer NULL if filename cannot be accessed.

NOTES
Fdopen is not portable to systems other than TNIX. Types a+ r+ and w+ may not
be portable. Use with care.

Subroutines-8560 MUSDU System Reference Manual FREAO/FWRITE(3S)

@

FREAO/FWRITE(3S)

NAME
fread, fwrite - buffered binary input/output

SYNTAX
#Include < atdlo.h>

fread(ptr, alzeof(*ptr), nltema, atream)
FILE *atream;

fwrlte(ptr, aizeof(*ptr), nltema, atream)
FILE *atream;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of *ptr from
the named input stream. It returns the number of items actually read.

Fwrite appends at most nitems of data of the type of *ptr beginning at ptr to the
named output stream. It returns the number of items actually written.

SEE ALSO
read(2), write(2), fopen(3), getc(3), putc(3), gets(3), puts(3), printf(3), scanf(3)

DIAGNOSTICS
Fread and 'write return 0 upon end of file or error.

3-21

FREXP/LDEXP/MODF(3) Subroutines-85S0 MUSDU System Reference Manual

3-22

FREXP ILDEXP IMODF(3)

NAME
frexp, Idexp, modf - split into mantissa and exponent

SYNTAX
double frexp(value, eptr)
double value;
Int ·eptr;

double Idexp(value, exp)
double value;

double modf(value, Iptr)
double value, ·Iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, x, of magnitude
less than 1 and stores an integer n such that value = x *2** n indirectly through
eptr.

Ldexp returns the quantity value *2** expo

Modf returns the positive fractional part of value and stores the integer part
indirectly through iptr.

Subroutines-8560 MUSDU System Reference Manual FSEEK/FTELL/REWIND(3S)

FSEEK/FTELL/REWIND(3S)

NAME
fseek, fte II , rewind - reposition a stream

SYNTAX
#Include < stdlo.h>

fseek(stream, offset, ptrname)
FILE ·stream;
long offset;

long ftell(stream)
FILE ·stream;

rewlnd(stream)

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The
new position is at the signed distance offset bytes from the beginning, the current
position, or the end of the fi!e, according as ptrname has the va!ue 0, 1, or 2.

Fseek undoes any effects of ungetc (3).

Ftell returns the current value of the offset relative to the beginning of the file
associated with the named stream. It is measured in bytes on TNIX; on some
other systems it is a magic cookie, and the only foolproof way to obtain an offset
for fseek .

Rewind(stream) is equivalent to fseek(stream, OL, OJ

SEE ALSO
Iseek(2), fopen(3)

DIAGNOSTICS
Fseek returns -1 for improper seeks.

3-23

GETC/GETCHAR/FGETC/GETW(3S) Subroutines-8560 MUSDU System Reference Manual

3-24

GETC/GETCHAR/FGETC/GETW(3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNTAX
#Include < stdlo.h>

Int getc(stream)
FILE *stream;

Int getcharO

Int fgetc(stream)
FILE *stream;

Int getw(stream)
FILE *stream;

DESCRIPTION
Getc returns the next character from the named input stream.

Getchar() is identical to getc(stdin) .

Fgetc behaves like getc, but is a genuine function, not a macro; it may be used to
save object text.

Getw returns the next word from the named input stream. it returns the constant
EOF upon end of file or error, but since that is a good integer value, feof and fer­
ror (3) should be used to check the success of getw. Getw assumes no special
alignment in the file.

SEE ALSO
fopen(3), putc(3), gets(3) , scanf(3), fread(3), ungetc(3)

DIAGNOSTICS
These functions return the integer constant EOF at end of file or upon read error.

A stop with message, IReading bad file', means an attempt has been made to read
from a stream that has not been opened for reading by fopen .

NOTES
Because it is implemented as a macro, getc treats a stream argument with side
effects incorrectly. In particular, Igetc(*f+ +);' doesn't work sensibly.

Subroutines-8560 MUSDU System Reference Manual GETENV(3)

@

GETENV(3)

NAME
getenv - value for environment name

SYNTAX
char -getenv(name)
char -name;

DESCRIPTION
Getenv searches the environment list (see environ (5)) for a string of the form
name = value and returns value if such a string is present, otherwise 0 (NULL).

SEE ALSO
environ(5), exec(2)

3-25

GETGRENT(3) Subroutines-8560 MUSDU System Reference Manual

3-26

GETGRENT(3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNTAX
#include <grp.h>

struct group *getgrentO;

struct group *getgrgid(gld) int gid;

struct group tIIgelgrnam(name) char -name;

int setgrentO;

int endgrentO;

DESCRIPTION
Getgrent, getgrgid and getgrnam each return pointers to an object with the follow­
ing structure containing the broken-out fields of a line in the group file.

struct group { 1* see getgrent(3) *1
char *gr_name;
char *gr_passwd;
int gr_gid;
"har V"""

} ;

The members of this structure are:

gr_name
The name of the group.

gr_paaawd
The encrypted password of the group.

gr_gld The numerical group-ID.
gr_mem

Null-terminated vector of pointers to the individual member names.

Getgrent simply reads the next line while getgrgid and getgrnam search until a
matching gid or name is found (or until EOF is encountered). Each routine picks
up where the others leave off so successive calls may be used to search the entire
file.

A call to setgrent has the effect of rewinding the group file to allow repeated
searches. Endgrent may be called to close the group file when processing is com­
plete.

FILES
letc/group

SEE ALSO
getlogin(3), getpwent(3), group(5)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

NOTES
All information is contained in a static area so it must be copied if it is to be saved.

@

Subroutines-8560 MUSDU System Reference Manual GETLOGIN(3)

@

GETLOGIN(3)

NAME
getlogin - get login name

SYNTAX
char *getlogln();

DESCRIPTION
Get/ogin returns a pointer to the login name as found in letclutmp. It may be used
in conjunction with getpwnam to locate the correct password file entry when the
same userid is shared by several login names.

If getlogin is called within a process that is not attached to a typewriter, it returns
NULL. The correct procedure for determining the login name is to first call get/o­
gin and if it fails, to call getpwuid .

FILES
letc/utmp

SEE ALSO
getpwent(3), getgrent(3), utm p(S)

DIAGNOSTICS
Returns NULL (0) if name not found.

NOTES
The return values point to static data whose content is overwritten by each call.

3-27

GETPASS(3) Subroutines-8560 MUSDU System Reference Manual

3-28

GETPASS(3)

NAME
getpass - read a password

SYNTAX
char *getpaaa(prompt)
char *prompt;

DESCRIPTION
Getpass reads a password from the file /dev/tty, or if that cannot be opened, from
the standard input, after prompting with the null=terminated string prompt and disa=
bling echoing. A pOinter is returned to a nUll-terminated string of at most 8 charac­
ters.

FILES
/dev/tty

SEE ALSO
crypt(3)

NOTES
The return value pOints to static data whose content is overwritten by each call.

@

Subroutines-8560 MUSDU System Reference Manual GETPW(3)

@

GETPW(3)

NAME
getpw - get name from UID

SYNTAX
getpw(uld, but)
char ·buf;

DESCRIPTION
Getpw searches the password file for the (numerical) uid, and fills in buf with the
corresponding line; it returns non-zero if uid could not be found. The line is nulI­
terminated.

FILES
letc/passwd

SEE ALSO
getpwent(3), passwd(5)

DIAGNOSTICS
Non-zero return on error.

3-29

GETPWENT(3) Subroutines-8S60 MUSDU System Reference Manual

3-30

GETPWENT(3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNTAX
#Include < pwd.h>

struct paaawd *getpwent();

struct paaawd *getpwuid(uld) Int uld;

struct paaawd flgetpwnam(name) char flname;

Int setpwent();

Int endpwent();

DESCRIPTION
Getpwent, getpwuid and getpwnam each return a pointer to an object with the fol­
lowing structure containing the broken-out fields of a line in the password file.

struct passwd { /* see getpwent(3) *1
char *pw_name;
char *pw_passwd;
int pw_uid;
int pW_9id;
int pw_ quota;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

} ;

The fields pw _quota and pw _comment are unused; the others have meanings
described in passwd (5).

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the
file; endpwent closes it.

Getpwuid and getpwnam search from the beginning until a matching uid or name
is found (or until EOF is encountered).

FILES
letc/passwd

SEE ALSO
getlogin(3), getgrent(3), passwd(5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

NOTES
All information is contained in a static area so it must be copied if it is to be saved.

@

Subroutines-8560 MUSDU System Reference Manual GETS/FGETS(3S)

@

GETS/FGETS(3S)

NAME
gets, fgets - get a string from a stream

SYNTAX
#Include < stdlo.h>

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION
Gets reads a string into s from the standard input stream stdln. The string is ter­
minated by a newline character, which is replaced in s by a null character. Gets
returns its argument.

Fgets reads n -1 characters, or up to a newline chaiactei, whichevei comes first,
from the stream into the string s. The last character read into s is followed by a
null character. Fgets returns its first argument.

SEE ALSO
puts(3), getc(3), scanf(3), fread(3), ferror(3)

DIAGNOSTICS
Gets and 'gets return the constant pointer NULL upon end of file or error.

NOTES
Gets deletes a newline, fgets keeps it, all in the name of backward compatibility.

3-31

HYPOT ICABS(3M)

HYPOT /CABS(3M)

NAME
hypot, cabs - euclidean distance

SYNTAX
#Include < math.h>

double hypot(x, y)
double x, y;

double cabs(z)
struct { double x, y;} z;

DESCRIPTION
Hypot and cabs return

15n sqrt(x·x + y.y),

Subroutines-8560 MUSDU System Reference Manual

taking precautions against unwarranted overflows.

SEE ALSO
exp(3) for sqrt

3-32 @

Subroutines-8560 MUSDU System Reference Manual JO/J1 IJN/VO/V1 IVN(3M)

@

JO/J1 IJN/YO/Y1 IYN(3M)

NAME
jO, j1, jn, yO, y1, yn - bessel functions

SYNTAX
#include < math.h>

double jO(x)
double x;

double j1 (x)
double x;

double jn(n, x);
double x;

double yO(x)
double x;

double y1 (x)
double x;

double yn(n, x)
double x;

DESCRIPTION
These functions calculate Bessel functions of the first and second kinds for real
arguments and integer orders.

DIAGNOSTICS
Negative arguments cause yO, y1, and yn to return a huge negative value and set
errno to EDOM.

3-33

L3TOL/L TOL3(3) Subroutines-8560 MUSDU System Reference Manual

3-34

L3TOL/L TOL3(3)

NAME
13tol, Itol3 - convert between 3-byte integers and long integers

SYNTAX
13tol(lp, cp, n)
long ·Ip;
char ·cp;

ItoI3(cp, Ip, n)
char ·cp;
long ·Ip;

DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character string pointed
to by cp into a list of long integers pointed to by Ip .

Ltol3 performs the reverse conversion from long integers (Ip) to three-byte
integers (cp).

These functions are useful for file-system maintenance; disk addresses are three
bytes long.

SEE ALSO
filsys(5)

@

Subroutines-8560 MUSDU System Reference Manual MALLOC/FREE/REALLOC/CALLOC(3)

@

MALLOC/FREE/REALLOC/CALLOC(3)

NAME
malloc, free, realloc, calloc - mai n memory allocator

SYNTAX
char ·malloc(slze)
unsigned size;

free(ptr)
char ·ptr;

char ·realloc(ptr, size)
char ·ptr;
unsigned size;

char ·calloc(nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
Malloe and free provide a simple general=purpose memory allocation package.
Mal/oc returns a pOinter to a block of at least size bytes beginning on a word boun­
dary.

The argument to free is a pointer to a block previously allocated by mal/oc ; this
space is made available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by mal/oc is over­
run or if some random number is handed to free.

Mal/oc allocates the first big enough contiguous reach of free space found in a cir­
cular search from the last block allocated or freed, coalescing adjacent free blocks
as it searches. It calls sbrk (see break (2)) to get more memory from the system
when there is no suitable space already free.

Real/oc changes the size of the block pointed to by ptr to size bytes and returns a
pOinter to the (possibly moved) block. The contents will be unchanged up to the
lesser of the new and old sizes.

Real/oc also works if ptr points to a block freed since the last call of
mal/oc, real/oc or cal/oc; th us sequences of free, mal/oc and real/oc can exploit
the search strategy of mal/oc to do storage compaction.

Cal/oc allocates space for an array of ne/em elements of size e/size. The space is
initialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after
possible pointer coercion) for storage of any type of object.

DIAGNOSTICS
Mal/oc, real/oc and cal/oc return a null pointer (0) if there is no available memory
or if the arena has been detectably corrupted by storing outside the bounds of a
block. Mal/oc may be recompiled to check the arena very stringently on every
transaction; see the source code.

NOTES
When real/oc returns 0, the block pointed to by ptr may be destroyed.

3-35

MKTEMP(3) Subroutines-8560 MUSDU System Reference Manual

3-36

MKTEMP(3)

NAME
mktemp - make a unique file name

SYNTAX
char -mktemp(template)
char -template;

DESCRIPTION
Mktemp replaces template by a unique file name, and returns the address of the
template. The template should look like a file name with six trai!!ng X's, which wi!!
be replaced with the current process id and a unique letter.

SEE ALSO
getpid(2)

@

Subroutines-8560 MUSDU System Reference Manual MONITOR(3)

@

MONITOR(3)

NAME
monitor - prepare execution profile

SYNTAX
monltor(lowpc. hlghpc, buffer. bufalze. nfunc)
Int (·Iowpc)(), (·hlghpc)();
short buffer[];

DESCRIPTION
An executable program created by 'cc -p' automatically includes calls for monitor
with default parameters; monitor needn't be called explicitly except to gain fine
control over profiling.

Monitor is an interface to profil (2). Lowpc and highpc are the addresses of two
functions; buffer is the address of a (user supplied) array of bufsize short integers.
Monitor arranges to record a histogram of periodically sampled values of the pro­
gram counter, and of counts of calls of certain functions, in the buffer. The lowest
address sampled is that of lowpc and the highest is just below highpc. At most
nfunc call counts can be kept; only calls of functions compiled with the profiling
option -p of cc (1) are recorded. For the results to be significant, especially where
there are small, heavily used routines, it is suggested that the buffer be no more
than a few times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etextO;

monitor((int)2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text, see end (3).

To stop execution monitoring and write the results on the file mon.out, use

monitor(O) ;

then prof (1) can be used to examine the results.

FILES
mon.out

SEE ALSO
prof(1), profiI(2), cc(1)

3-37

MP(3X) Subroutines-8560 MUSDU System Reference Manual

3-38

MP(3X)

NAME
itom, madd, msub, mult, mdiv, min, mout, pow, gcd, rpow - multiple precision
integer arithmetic

SYNTAX
typedef struet { Int len; short -val; } mint;

madd(a, b, e) msub(a, b, e) mult(a, b, e) mdlv(a, b, q, r) mln(a) mout(a)
pow(a, b, m, e) ged(a, b, e) rpow(a, b, e) msqrt(a, b, r) mint -a, -b, -e, em, -q, -r;

sdlv(a, n, q, r) mint -a, -q; short -r;

mint -Itom(n)

DESCRIPTION
These routines perform arithmetic on integers of arbitrary length. The integers are
stored using the defined type mint. Pointers to a mint should be initialized using
the function itom, which sets the initial value to n. After that space is managed
automatically by the routines.

madd, msub , mult, assign to their third arguments the sum, difference, and pro­
duct, respectively, of their first two arguments. mdiv assigns the quotient and
remainder, respectively, to its third and fourth arguments. sdiv is like mdiv except
that the divisor is an ordinary integer. msqrt produces the square root and
remainder of its first argument. rpow calculates a raised to the power b, while
pow calculates this reduced modulo m. min and mout do decimal input and out­
put.

The functions are obtained with the loader option -Imp.

DIAGNOSTICS
Illegal operations and running out of memory produce messages and core images.

@

Subroutines-8560 MUSDU System Reference Manual NLIST(3)

@

NLIST(3)

NAME
nlist - get entries from name list

SYNTAX
#include < a.out.h>
nli.tUII.name, nl)
char -filename;
struct nlist nl [] ;

DESCRIPTION
Nlist examines the name list in the given executable output file and selectively
extracts a list of values. The name list consists of an array of structures contain­
ing names, types and values. The list is terminated with a null name. Each name
is looked up in the name list of the file. If the name is found, the type and value of
the name are inserted in the next two fields. If the name is not found, both entries
are set to O. See a.out (5) for the structure declaration.

T"';~ ~\lI"'''''I.+iPII.ft .8 .18ft'I.1 I". e.vft~i ... ; ,a ft .. ~ft+"''''''' " lift+ 1,"' + I '" ':1", J lv
IIIIQI QI"'''''I'''''''L1l1g IQI "'Qlgl"'l 1""1 g"QIIIIIIIII~ Uig Ql1Q1~glll IIQIII'I::; 1IQ1~ n.gt-'L III LlIO 1110 ''''IliA.

In this way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(5)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid namelist.

3-39

PERROR(3) Subroutines-8S60 MUSDU System Reference Manual

3-40

PERROR(3)

NAME
perror, sys_errlist, sys_nerr - system error messages

SYNTAX
perror(s)
char ·s;

int sys_nerr;
char ·sys_ errlist[];

DESCRIPTION
Perror produces a short error message on the standard error file describing the last
error encountered during a call to the system from a C program. First the argument
string s is printed, then a colon, then the message and a new-line. Most usefully,
the argument string is the name of the program which incurred the error. The error
number is taken from the external variable errno (see intro (2)), which is set when
errors occur but not cleared when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings
sys_errlist is provided; errno can be used as an index in this table to get the mes­
sage string without the newline. Sys_nerr is the number of messages provided for
in the table; it should be checked because new error codes may be added to the
system before they are added to the table.

SEE ALSO
intro(2)

@

Subroutines-8560 MUSDU System Reference Manual PKOPEN(3)

@

PKOPEN(3)

NAME
pkopen, pkclose, pkread, pkwrite, pkfail - packet driver simulator

SYNTAX
char ·pkopen(fd)

pkcloae(ptr)
char ·ptr;

pkread(ptr, buffer, count)
char ·ptr, ·buffer;

pkwrlte(ptr, buffer, count)
char ·ptr, ·buffer;

pkfall()

DESCRIPTION
These routines are a user-level implementation of the full-duplex end-to-end com­
munication protocoi described in pk (4j. if fd is a fiie descriptor open for reading
and writing, pkopen carries out the initial synchronization and returns an identify­
ing pOinter. The pointer is used as the first parameter to pkread, pkwrite, and
pkclose.

Pkread, pkwrite and pkclose behave analogously to read, write and close (2). How­
ever, a write of zero bytes is meaningful and will produce a corresponding read of
zero bytes.

SEE ALSO
pk(4), pkon(2)

DIAGNOSTICS
Pkfail is called upon persistent breakdown of communication. Pkfail must be sup­
plied by the user.

Pkopen returns a null (0) pointer if packet protocol can not be established.

Pkread returns -1 on end of file, 0 in correspondence with a O-Iength write.

NOTES
This simulation of pk (4) leaves something to be desired in needing special read
and write routines, and in not being inheritable across calls of exec (2). Its prime
use is on systems that lack pk.
These functions use alarm (2); simultaneous use of alarm for other puposes may
cause trouble.

3-41

PLOT(3X) Subroutines-8SS0 MUSDU System Reference Manual

3-42

PLOT(3X)

NAME
plot: openpl et al. - graphics interface

SYNTAX
openpt()

erase()

label (s) char s[];

IIne(x1, y1, x2, y2)

clrcle(x, y, r)

arc(x, y, xO, yO, x1, y1)

move(x, y)

cont(x, y)

polnt(x, y)

IInemod(s) char s[];

space(xO,yO,x1,y1)

cloaepl(}

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent
manner. See plot (5) for a description of their effect. Openpl must be used before
any of the others to open the device for writing. Closepl flushes the output.

String arguments to label and linemod are null-terminated, and do not contain new­
lines.

Various flavors of these functions exist for different output devices. They are
obtained by the following Id (1) options:

-Iplot device-independent graphics stream on standard output for plot (1) filters
-1300 GSI 300 terminal
-1300s

GSI 300S terminal
-1450 DASI 450 terminal
-14014

Tektronix 4014 terminal

SEE ALSO
ploU5), plot(1), graph(1)

@

Subroutines-8560 MUSDU System Reference Manual POPEN/PCLOSE(3X)

@

POPEN/PCLOSE(3S)

NAME
popen, pclose - initiate I/O to/from a process

SYNTAX
#Include < stdlo.h>

FILE *popen(command, type)
char *command, *type;

pclose(stream)
FILE *stream;

DESCRIPTION
The arguments to popen are pointers to nUll-terminated strings containing respec­
tively a shell command line and an I/O mode, either "r'I for reading or "w" for writ­
ing. It creates a pipe between the calling process and the command to be exe­
cuted. The value returned is a stream pointer that can be used (as appropriate) to
write to the standard input of the command or read from its standard output.

A stream opened by popen should be closed by pc/ose, which waits for the associ­
ated process to terminate and returns the exit status of the command.

Because open files are shared, a type "r'I command may be used as an input filter,
and a type "w" as an output filter.

SEE ALSO
pipe(2), fopen(3), fclose(3), system(3), wait(2)

DIAGNOSTICS
Popen returns a null pointer if files or processes cannot be created, or the Shell
cannot be accessed.

Pclose returns -1 if stream is not associated with a 'popened' command.

NOTES
Buffered reading before opening an input filter may leave the standard input of that
filter mispositioned. Similar problems with an output filter may be forestalled by
careful buffer flushing, e.g. with fflush, see fclose (3).

3-43

PRINTF/FPRINT ISPRINTF(3S) Subroutines-8560 MUSDU System Reference Manual

3-44

PRINTF/FPRINT ISPRINTF(3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNTAX
#include < stdio.h>

printf(format [, arg] ...
char *format;

fprintf(stream, format [, arg] ...
FILE *stream;
char *format;

sprintf(s, format [, arg] ...
char *s, format;

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places output
on the named output stream. Sprintf places 'output' in the string s, followed by the
character \0'.

Each of these functions converts, formats, and prints its arguments after the first
under control of the first argument. The first argument is a character string which
contains two types of objects: plain characters, which are simply copied to the out­
put stream, and conversion specifications, each of which causes conversion and
printing of the next successive arg printf .

Each conversion specification is introduced by the character %. Following the % ,
there may be

an optional minus sign '-' which specifies left adjustment of the converted
value in the indicated field;

an optional digit string specifying a field width; if the converted value has
fewer characters than the field width it will be blank-padded on the left (or
right, if the left-adjustment indicator has been given) to make up the field
width; if the field width begins with a zero, zero-padding will be done
instead of blank-padding;

an optional period I. ' which serves to separate the field width from the
next digit string;

an optional digit string specifying a precision which specifies the number of
digits to appear after the decimal point, for e- and f-conversion, or the max­
imum number of characters to be printed from a string;

the character I specifying that a following d , 0 , x , or u corresponds to a
long integer argo (A capitalized conversion code accomplishes the same
thing.)

a character which indicates the type of conversion to be applied.

A field width or precision may be ,*, instead of a digit string. In this case an
integer arg supplies the field width or precision.

@

Subroutines-8560 MUSDU System Reference Manual PRINTF/FPRINT ISPRINTF(3S)

@

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation
respectively.

f The float or double arg is converted to decimal notation in the style
'[-]ddd.ddd' where the number of d's after the decimal point is equal to the
precision specification for the argument. If the precision is missing, 6 digits
are given; if the precision is explicitly 0, no digits and no decimal point are
printed.

e The float or double arg is converted in the style '[-]d.ddde± dd' where there
is one digit before the decimal point and the number after is equal to the
precision specification for the argument; when the precision is missing, 6
digits are produced.

g The float or double arg is printed in style d , in style f , or in style e , which­
ever gives full precision in minimum space.

c The character arg is printed. Null characters are ignored.

8 Arg is taken to be a string (character pointer) and characters from the
string are printed until a null character or until the number of characters
indicated by the precision specification is reached; however if the precision
is 0 or missing all characters up to a null are printed.

u The unsigned integer arg is converted to decimal and printed (the result
will be in the range 0 to 65535).

% Print a '%'; no argument is converted.

In no case does a non-existent or small field width cause truncation of a field; pad­
ding takes place only if the specified field width exceeds the actual width. Char­
acters generated by printf are printed by pute (3).

Examples
To print a date and time .in the form 'Sunday, July 3, 10:02', where weekday and
month are pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print 1T' to 5 decimals:

printf("pi = %.5f', 4*atan(1.0));

SEE ALSO
putc(3), scan1(3), ecvt(3)

NOTES
Very wide fields (> 128 characters) fail.

3-45

PUTC/PUTCHAR/FPUTC/PUTW(3S) Subroutines-8560 MUSDU System Reference Manual

3-46

PUTC/PUTCHAR/FPUTC/PUTW(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNTAX
#Include < stdlo.h>

Int putc(c, stream)
char c;
FILE *stream;

putchar(c)

fputc(c, stream)
FILE *stream;

putw(W, stream)
FILE *stream;

DESCRIPTION
Putc appends the character c to the named output stream. It returns the character
written.

Putchar(c) is defined as putc(c, stdout).

Fputc behaves !ike pute, but is a genuine function rather than a macro. It may be
used to save on object text.

Putw appends word (Le. int) w to the output stream. It returns the word written.
Putw neither assumes nor causes special alignment in the file.

The standard stream stdout is normally buffered if and only if the output does not
refer to a terminal; this default may be changed by setbuf (3). The standard
stream stderr is by default unbuffered unconditionally, but use of freopen (see
fopen (3)) will cause it to become buffered; setbuf, again, will set the state to
whatever is desired. When an output stream is unbuffered information appears on
the destination file or terminal as soon as written; when it is buffered many charac­
ters are saved up and written as a block. Fflush (see fclose (3)) may be used to
force the block out early.

SEE ALSO
fopen(3), fclose(3), getc(3), puts(3), printf(3), fread(3)

DIAGNOSTICS
These functions return the constant EOF upon error. Since this is a good integer,
ferror (3) should be used to detect putw errors.

NOTES
Because it is implemented as a macro, putc treats a stream argument with side ef­
fects improperly. In particular ·putc(c, *f+ +);' doesn't work sensibly.

@

Subroutines-8S60 MUSDU System Reference Manual PUTS/FPUTS(3S)

@

PUTS/FPUTS(3S)

NAME
puts, fputs - put a string on a stream

SYNTAX
#Include <stdlo.h>

puts(s)
char -s;

fputa(s, stream)
char -s;
FILE -stream;

DESCRIPTION
Puts copies the null-terminated string s to the standard output stream stdout and
appends a newline character.

Fputs copies the nUll-terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO
fopen(3), gets(3), putc(3), printf(3), ferror(3)
fread(3) for fwrite

NOTES
Puts appends a newline, fputs does not, all in the name of backward compatibility.

3-47

QSORT(3) Subroutines-8560 MUSDU System Reference Manual

3-48

aSORT(3)

NAME
qsort - quicker sort

SYNTAX
qsort(baaa, nal, width, compar)
char -baaa;
Int (-compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argument is a
pointer to the base of the data; the second is the number of elements; the third is
the width of an element in bytes; the last is the name of the comparison routine to
be called with two arguments which are pointers to the elements being compared.
The routine must return an integer less than, equal to, or greater than 0 according
as the first argument is to be considered less than, equal to, or greater than the
second.

SEE ALSO
sort(1)

@

Subroutines-8560 MUSDU System Reference Manual RANO(3)

@

RAND(3)

NAME
rand, srand - random number generator

SYNTAX
srand(seed)
int seed;

rand()

DESCRIPTION
Rand uses a multiplicative congruential random number generator with period 232

to return successive pseudo-random numbers in the range from 0 to 215_1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to
a random starting point by calling srand with whatever you like as argument.

3-49

SCANF/FSCANF/SSCANF(3S) Subroutines-8560 MUSDU System Reference Manual

3-50

SCANF IFSCANF ISSCANF(3S)

NAME
scanf, fscanf, sscanf ~ formatted input conversion

SYNTAX
#Include < atdlo.h>

scanf(format [, pointer] ...
char -format;

fscanf(stream, format [, pointer] ...
FILE -stream;
char -format;

sscanf(a, format [, pointer] ...
char -a, -format;

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the named
input stream. Sscanf reads from the character string s. Each function reads
characters, interprets them according to a format, and stores the results in its argu­
ments. Each expects as arguments a control string format, described below, and a
set of pointer arguments indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are used to
direct interpretation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not %) which must match the next character of the
input stream.

3. Conversion specifications, consisting of. the character % , an optional as­
signment suppressing character - , an optional numerical maximum field
width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result
is placed in the variable pOinted to by the corresponding argument, unless assign­
ment suppression was indicated by -. An input field is defined as a string of
non-space characters; it extends to the next inappropriate character or until the
field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the
corresponding pOinter argument must usually be of a restricted type. The following
conversion characters are legal:

% a single '%' is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an in­
teger pointer.

o an octal integer is expected; the corresponding argument should be a in­
teger pointer.

x a hexadecimal integer is expected; the corresponding argument should be
an integer pOinter.

@

Subroutines-8SS0 MUSDU System Reference Manual SCANF/FSCANF/SSCANF(3S)

@

s a character string is expected; the corresponding argument should be a
character pOinter pointing to an array of characters large enough to accept
the string and a terminating \0', which will be added. The input field is ter­
minated by a space character or a newline.

c a character is expected; the corresponding argument should be a character
pointer. The normal skip over space characters is suppressed in this case;
to read the next non-space character, try '% 1 s'. If a field width is given, the
corresponding argument should refer to a character array, and the indicated
number of characters is read.

e a floating point number is expected; the next field is converted accordingly
f and stored through the corresponding argument, which should be a pointer

to a float. The input format for floating point numbers is an optionally
signed string of digits possibly containing a decimal pOint, followed by an
optional exponent field consisting of an E or e followed by an optionally
signed integer.

indicates a string not to be delimited by space characters. The left bracket
is followed by a set of characters and a right bracket; the characters
between the brackets define a set of characters making up the string. If the
first character is not circumflex ("), the input field is all characters until the
first character not in the set between the brackets; if the first character
after the left bracket is ", the input field is all characters until the first char­
acter which is in the remaining set of characters between the brackets.
The corresponding argument must point to a character array.

The conversion characters d , 0 and x may be capitalized or preceeded by I to in­
dicate that a pointer to long rather than to Int is in the argument list. Similarly, the
conversion characters e or f may be capitalized or preceded by I to indicate a
pOinter to double rather than to float. The conversion characters d , 0 and x may
be preceeded by h to indicate a pointer to short rather than to Int.

The scant functions return the number of successfully matched and assigned input
items. This can be used· to decide how many input items were found. The con­
stant EOF is returned upon end of input; note that this is different from 0, which
means that no conversion was done; if conversion was intended, it was frustrated
by an inappropriate character in the input.

For example, the call

10 int i; float x; char name[50];
scant("%d%f%s", &i, &x, name);

with the input line

25 54.32E-1 thompson

will assign to i the value 25, x the value 5.432, and name will contain 'thomp­
son\O'. Or,

int i; float x; char name[50];
scant("%2d%f%*d%[1234567890]", &i, &x, name);

3-51

SCAN F IFSCAN F ISSCAN F(3S) Subroutines-8560 MUSDU System Reference Manual

3-52

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip '0123', and place the string '56\0' in name.
The next call to getchar will return 'a'.

SEE ALSO
atof(3), getc(3), printf(3)

DIAGNOSTICS
The scanf functions return EOF on end of input, and a short count for missing or
illegal data items.

NOTES
The success of literal matches and suppressed assignments is not directly deter­
minable.

@

Subroutines-8560 MUSDU System Reference Manual SETBUF(3S)

@

SETBUF(3S)

NAME
setbuf - assign buffering to a stream

SYNTAX
#Include < stdlo.h>

setbuf(stream, but)
FILE -stream;
char -buf;

DESCRIPTION
Setbut is used after a stream has been opened but before it is read or written. It
causes the character array but to be used instead of an automatically allocated
buffer. If but is the constant pointer NULL, input/output will be completely unbuf­
fered.

A manifest constant BUFSIZ tells how big an array is needed:

SEE ALSO

char buf[BUFSIZ];

A buffer is normally obtained from malloe (3) upon the first
gete or pute (3) on the file, except that output streams direct­
ed to terminals, and the standard error stream stderr are nor­
mally not buffered.

fopen(3), getc(3L putc(3), malloc(3)

3-53

SET JMP ILONGJUMP(3) Subroutines-8560 MUSDU System Reference Manual

3-54

seT JMP/LONGJMP(3)

NAME
setjmp, longjmp - non-local goto

SYNTAX
#Includa < aetjmp.h>

aatjmp(anv)
jmp_buf any;

longjmp(anv, val)
jmp_buf any;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a
low-level subroutine of a program.

Setjmp saves its stack environment in env for later use by longjmp. It returns
value O.

Longjmp restores the environment saved by the last call of setjmp. It then returns
in such a way that execution continues as if the call of setjmp had just returned
the value val to the function that invoked setjmp, which must not itself have re­
turned in the interim. All accessible data have values as of the time longjmp was
cal!ed.

SEE ALSO
signal(2)

@

Subroutines-8S60 MUSDU System Reference Manual

SIN/COS/TAN/

ASIN/ACOS/ATAN2(3M)

@

SIN/COS/TAN/ASIN/ACOS/ATAN/ATAN2(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNTAX
#include < math.h>

double ain(x)
double x;

double coa(x)
double x;

double aain(x)
double x;

double acoa(x)
double x;

double atan(x)
double x;

double atan2(x, y)
double x, Y;

DESCRIPTION
Sin, cos and tan return trigonometric functions of radian arguments. The magni­
tude of the argument should be checked by the caller to make sure the result is
meaningful.

Asin returns the arc sin in the range -Tr /2 to Tr /2.

Acos returns the arc cosine in the range 0 to Tr.

Atan returns the arc tangent of x in the range -Tr /2 to Tr /2.

Atan2 returns the arc tanQent of x/y in the range -Tr to Tr.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and acos to return value 0;
errno is set to EDOM. The value of tan at its singular points is a huge number, and
errno is set to ERANGE.

NOTES
The value of tan for arguments greater than about 2**31 is garbage.

3-55

SINH/COSH/TANH(3M) Subroutines-8560 MUSDU System Reference Manual

3-56

SINH/COSHITANH(3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNTAX
#Include < math.h>

double slnh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS
Sinh and cosh return a huge value of appropriate sign when the correct value
would overflow.

@

Subroutines-8560 MUSDU System Reference Manual SLEEP(3)

@

SLEEP(3)

NAME
sleep - suspend execution for interval

SYNTAX
aleep(aeconda)
unalgned aeconda;

DESCRIPTION
The current process is suspended from execution for the number of seconds
specified by the argument. The actual suspension time may be up to 1 second
less than that requested, because scheduled wakeups occur at fixed 1-second in­
tervals, and an arbitrary amount longer because of other activity in the system.

The routine is implemented by setting an alarm clock signal and pausing until it
occurs. The previous state of this signal is saved and restored. If the sleep time
exceeds the time to the alarm signal, the process sleeps only until the signal would
have occurred, and the signal is sent 1 second later.

SEE ALSO
alarm(2), pause(2)

3-57

STDIO(3S) Subroutines-8560 MUSDU System Reference Manual

3-58

8TOIO(38)

NAME
stdio - standard buffered input/output package

SYNTAX
#include < stdio.h>

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION
The functions described in Sections 3S constitute an efficient user-level buffering
scheme. The in-line macros gete and pute (3) handle characters quickly. The
higher level routines gets, tgets, scant, tseant, tread, puts, tputs, printf, tprintt, twrite
all use gete and pute; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pOinter
to a defined type FILE. Fopen (3) creates certain descriptive data for a stream and
returns a pointer to designate the stream in all further transactions. There are
three normally open streams with constant pointers declared in the include file and
associated with the standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by integer func­
tions that deal with streams.

Any routine that uses the standard input/output package must include the header
file < stdio.h> of pertinent macro definitions. The functions and constants men­
tioned in sections labeled 3S are declared in the include file and need no further
declaration. The constants, and the following 'functions' are implemented as mac­
ros; redeclaration of these names is perilous: gete, getehar, pute, putchar, teot, ter­
ror, tileno .

SEE ALSO
open(2), close(2), read(2), write(2)

DIAGNOSTICS
The value EOF is returned uniformly to indicate that a FILE pointer has not been in­
itialized with topen, input (output) has been attempted on an output (input) stream,
or a FILE pOinter designates corrupt or otherwise unintelligible FILE data.

@

Subroutines-8560 MUSDU System Reference Manual STRING(3)

@

STRING(3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string opera­
tions

SYNTAX
char *8trcat(81, 82)
char *sl, *82;

char *strncat(81 , 82, n)
char *sl, *82;

strcmp(sl, s2)
char *sl, *82;

strncmp(s1, s2, n)
char *sl, *s2;

char *strcpy(s 1, 82)
char *81; *82;

char *strncpy(s 1, s2, n)
char *81, *s2;

8trlen(s)
char *s;

char *index(s, c)
char *s, c;

char *rlndex(s, c)
char *s;

DESCRIPTION
These functions operate on null-terminated strings. They do not check for overflow
of any receiving string.

Strcat appends a copy of string s2 to the end of string s 1. Strncat copies at most
n characters. Both return a pointer to the nUll-terminated result.

Strcmp compares its arguments and returns an integer greater than, equal to, or
less than 0, according as s 1 is lexicographically greater than, equal to, or less than
s2. Strncmp makes the same comparison but looks at at most n characters.

Strcpy copies string s2 to s 1, stopping after the null character has been moved.
Strncpy copies exactly n characters, truncating or null-padding s2; the target may
not be nUll-terminated if the length of s2 is n or more. Both return s 1 .

Strlen returns the number of non-null characters in s .

Index (rindex) returns a pointer to the first (last) occurrence of character c in
string s, or zero if c does not occur in the string.

NOTES
Strcmp uses native character comparison, which is signed on PDP11 's, unsigned
on other machines.

3-59

SWAB(3) Subroutines-8560 MUSDU System Reference Manual

3-60

SWAB(3)

NAME
swab - swap bytes

SYNTAX
swab(from, to, nbytes)
char -from, -to;

DESCRIPTION
Swab copies nbytes bytes pOinted to by from to the position pOinted to by to, ex­
changing adjacent even and odd bytes. It is useful for carrying binary data
between PDP11 's and other machines. Nbytes should be even.

@

Subroutines-8560 MUSDU System Reference Manual SYSTEM(3)

@

SYSTEM(3)

NAME
system - issue a shell command

SYNTAX
aystem(strlng)
char *atrlng;

DESCRIPTION
System causes the string to be given to sh (1) as input as if the string had been
typed as a command at a terminal. The current process waits until the shell has
completed, then returns the exit status of the shell.

SEE ALSO
popen(3), exec(2), wait(2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

3-61

TTYNAME/ISATTY ITTYSLOT(3) Subroutines-8560 MUSDU System Reference Manual

3-62

TTYNAME/ISATTY ITTYSLOT(3)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNTAX
char *ttyname(flldea)

iaatty(flldea)

ttyalotO

DESCRIPTION
Ttyname returns a pointer to the nUll-terminated path name of the terminal device
associated with file descriptor fi/des .

Isatty returns 1 if tildes is associated with a terminal device, 0 otherwise.

Ttys/ot returns the number of the entry in the ttys (5) file for the control terminal of
the current process.

FILES
/dev/*
/etc/ttys

SEE ALSO
ioctI(2), ttys(S)

DiAGNOSTICS
Ttyname returns a null pointer (0) if tildes does not describe a terminal device in
directory '/dev'.

Ttys/ot returns 0 if '/etc/ttys' is inaccessible or if it cannot determine the control
terminal.

NOTES
The return value points to static data whose content is overwritten by each call.

@

Subroutines-8560 MUSDU System Reference Manual UNGETC(3S)

@

UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNTAX
#include <stdio.h>

ungetc(c, stream)
FILE -stream;

DESCRIPTION
Ungetc pushes the character e back on an input stream. That character will be re­
turned by the next gete call on that stream. Ungete returns e .

One character of push back is guaranteed provided something has been read from
the stream and the stream is actually buffered. Attempts to push EOF are rejected.

Fseek (3) erases all memory of pushed back characters.

SEE ALSO
gate(3), satbui(Si, isaak(S)

DIAGNOSTICS
Ungete returns EOF if it can't push a character back.

3-63

8560 MUSDU System Reference Manual

. @

INTRODUCTION

Section 4
Special Files

This section discusses data transfer and access to/from special files. Special
files are hardware input/output devices that appear to the user as regular files.
Thus, inter-device file/data transfer within the TNIX operating system is straight­
forward. Terminals, printers, and disk drives are examples of some special files .

4-1

AUX(4} Special Files-8560 MUSDU System Reference Manual

4-2

AUX(4)

NAME
aux - line printer

DESCRIPTION
Aux1 and Aux2 are special files which access the line printers. They will provide
tab to space substitution for printers without hardware tabs, and will provide end of
line substitution. The most common use of end of line substitution is to change a
< CR> < LF> sequence to just < CR> or < LF> .

The command slp(1) can be used to set the end of line and tab options.

The ioctls which are needed for setting the end of line string and turning the tab
expansion on and off are LPSETNL, LPTABON, and LPTABOFF, respectively. The
formats of these requests are:

#include < Ip.h>
ioctl(fildes,LPSETNL,buf)
char buf[8];

and

#include < Ip.h>
ioctl (fi Ides,LPT ABON)

and

#include < Ip.h>
ioctl (fildes,LPT ABOFF)

where buf is a null terminated string to substitute for the end of line character,
linefeed. The string may be up to 8 characters long. Null characters may be
inserted in the string by setting the high bit. This high bit will not be sent to the
line printer.

FILES
/dev/aux1
/dev/aux2

SEE ALSO
slp(1)

@

Special Files-8S60 MUSDU System Reference Manual

FD(4)
NAME

fd-flexible disk

DESCRIPTION
The file fdO refers to the flexible disk drive. The fdO file accesses the disk via the system's
normal buffering mechanism and may be read and written without regard to physical disk
records.

There is also a 'raw' interface which provides for direct transmission between the disk and
the user's read or write buffer. A single read or write call results in exactly one I/O operation;
therefore, raw I/O is considerably more efficient (for multiple block buffers when many words
are transmitted). The name of the raw fdO file is rfdO. In raw I/O, the buffer must begin on a
word boundary.

The ioctl(2) device control system calls are available for the raw device. GETSIZ and
PMSCMD are functions executed by the ioctl(2) system call. The GETSIZ ioctl(2) request
returns the maximum block number on the device into a long integer. The PMSCMD ioctl(2)
request sends a direct command to the low-level Winchester disk controller and returns the
response in the same location.

The GETSIZ and PMSCMD ioctl(2) requests use the form:
#include <disk.h>
ioctl(fildes,GETSIZ,buf)
long *buf;

and
#include <disk.h>
ioctl(fildes,PMSCMD,buf)
unsigned bufllOl;

If the drive number in the PMSCMD request does not correspond to one of the disk drives
associated with the open disk device, ioctl(2) returns an error. This keeps people from
accessing any location on the fixed disk by opening the flexible disk or another fixed disk as
a device and issuing an ioctl(2) call.

FILES
/dev/fdO
/dev/rfdO

SEE ALSO
hd(4), ioctl(2)

NOTES

REV NOV 1982

In raw I/O, read(2) and write(2) truncate file offsets to 512-byte block boundaries, and
write(2) scribbles on the tail of incomplete blocks. Thus, in programs that are likely to access
raw devices, read(2), write(2), and Iseek(2) should always deal in 512-byte multiples.

FD(4)

4-3

HO(4)

4-4

Special Files-8S60 MUSDU System Reference Manual

HO(4)
NAME

hd-Winchester fixed disks

DESCRIPTION
The files [rftld"', for example, hdO, rhdO, and hd03 refer to the Winchester fixed disk drives.

Files without a leading r (e.g., hd03) access the disks via the system's normal buffering
mechanism and may be read and written without regard to physical disk records. Files
containing a leading r (e.g., rhd03) are the 'raw' devices, providing direct transmission be­
tween a disk and the user's read or write buffer. A single read or write call results in exactly
one I/O operation; therefore, raw I/O is considerably more efficient when many words are
transmitted.

Because a TNIX disk device can include one or more physical disk drives, the two final digits
of the filename are the drive numbers of the first and last fixed disk drives associated with
the TNIX device. The second digit is omitted if the TNIX device occupies only one fixed disk
drive. For example, the special file /dev/hd1 occupies one fixed disk drive (drive 1); the
special file /dev/hd02 includes the first three fixed disk drives (0-2, inclusive).

The minor device numbers of an hd device reflect this organization: the low two bits (0 and
1) give the first drive of the TNIX disk device; the next bit(2) is always zero; the next two bits
(3 and 4) give the final drive of the TN!X disk deviceo

The ioctl(2) system calls are available for the raw disk devices. GETSIZ and PMSCMD are
functions executed by the ioctl(2) system call. GETSIZ will return the maximum block num­
ber on the disk device. PMSCMD will give a direct command to the Winchester disk control­
ler and will return the response in the same location.

The GETSIZ and PMSCMD requests use the following form:
#include <disk.h>
ioctl(fildes,GETSIZ,buf)
long "buf;

and
#include <disk.h>
ioctl(fildes,PMSCMD,buf)
unsigned bufllOJ;

If the drive number in the PMSCMD request does not correspond to one of the physical disk
drives associated with the open disk device, the ioctl(2) system call returns an error. This
keeps people from accessing any location on the fixed disk by opening the flexible disk or
another fixed disk as a device and issuing an ioctl(2) system call.

FILES
/dev/[r]hd*

SEE ALSO
fd(4), ioctl(2).

REV NOV 1982

Special Files-8S60 MUSDU System Reference Manual HD(4)

NOTES

ADD NOV 1982

In raw I/O, read(2) and write(2) truncate file offsets to 512-byte block boundaries, and
write(2) scribbles on the tail of incomplete blocks. Thus, in programs that are likely to access
raw devices, read(2), write(2), and Iseek(2) should always deal in 512-byte multiples.

In raw I/O, the buffer must begin on a word boundary.

The result of a "get max disk block number" PMSCMD request will differ from the result of a
GETSIZ operation. This is because:

• the last track of every fixed disk is reserved for diagnostics and therefore is not included
in what GETSIZ returns,

• the Winchester disk controller thinks that each logical device occupies only one physical
drive.

4-48

HO(4) Special Files-8560 MUSDU System Reference Manual

[This page intentionaiiy ieft blank.]

4-4b ADD NOV 1982

Special Files-8560 MUSDU System Reference Manual HSI(4)

@

HSI(4}

NAME
hsi, hsix - high speed interface protocols

DESCRIPTION
Hai is the device name for the HSI protocol. The details of the HSI protocol are not
available at this printing. The HSI protocol allows an error free transfer of blocks
of data of up to 600 bytes in a block. This protocol is used in communication with
the 8540. The device, hsix, uses the hsi protocol with a few changes to allow an
end-of-file indication (a 0 length read) to be sent across the link. When the hsix
device is closed after being open for write only, a zero length chunk is sent to indi­
cate the end of file.

The hsix device may be used for transfering data from one 8560 to another. For
example, the command 'cat < /dev/hsix3 > filename' on one 8560, with the com­
mand 'cat filename > /dev/hsix3' on another 8560, would transfer a file from one
8560 to the other through the hsi cable connected to port 3 on both 8560s. The
zero length block sent when the sending 8560 closes the hsix device will correctly
terminate the command on the recieving 8560. The block size sent over the hsix
device can be up to 598 bytes. The ports being used for this hsi transfer must be
either strapped for hSi, or forced to hsi mode with a stty(1) command, such as 'stty
IU > /dev/ttyn'.

FILES
/dev/hsi, /dev/hsix

SEE ALSO
stty(1), tty(4).

4-5

MEM(4) Special Files-8560 MUSDU System Reference Manual

4-6

MEM(4)

NAME
mem,kmem - memo~

DESCRIPTION
Mem is a special file that is an image of the memory of the computer. It may be
used, for example, to examine, and even to patch the system. Kmem is the same
as mem except that kernel virtual memory rather than physical memory is
accessed.

Byte addresses are interpreted as memory addresses, References to non-existent
locations return errors.

Examining and patching device registers is likely to lead to unexpected results
when read-only or write-only bits are present.

On the 8560, the I/O page begins at location 0160000 of kmem and per-process
data for the current process begins at 0140000.

FILES
Idev/mem, Idev/kmem

NOTES
On the 8560, memory files are accessed one byte at a time, an inapproriate
method for some device registers.

@

Special Files-8560 MUSDU System Reference Manual

@

NULL(4)

NAME
null - data sink

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
Idev/null

NULL(4)

4-7

TIV(4) Special Files-8560 MUSDU System Reference Manual

4-8

TTY(4)

NAME
tty - general terminal interface

DESCRIPTION
This section describes both a particular special file, and the- general nature of the
terminal interface.

The file /dev/tty is, in each process, a synonym for the control terminal associated
with that process. It is useful for programs that wish to be sure of writing mes­
sages on the terminal no matter how output has been redirected. It can also be
used for programs that demand a file name for output, when typed output is
desired and it is tiresome to find out which terminal is currently in use.

As for terminals in general: all of the low-speed asynchronous communications
ports use the same general interface, no matter what hardware is involved. The
remainder of this section discusses the common features of the interface.

When a terminal file is opened, it causes the process to wait until a connection is
established. In practice user's programs seldom open these files; they are opened
by init and become a user's input and output file. The very first terminal file open
in a process becomes the control terminal for that process. The control terminal
plays a special role in handling quit or interrupt signals, as discussed below. The
control terminal is inherited by a child process during a fork, even if the control
terminal is closed. The set of processes that thus share a control terminal is
called a process group; all members of a process group receive certain Signals
together, see ETX below and kill (2).

A terminal associated with one of these files ordinarily operates in full-duplex
mode. Characters may be typed at any time, even while output is occurring, and
are only lost when the system's character input buffers become completely
choked, which is rare, or when the user has accumulated the maximum allowed
number of input characters that have not yet been read by some program.

Normally, terminal input is processed in units of lines. This means that a program
attempting to read will be suspended until an entire line has been typed. Also, no
matter how many characters are requested in the read call, at most one line will be
returned. It is not however necessary to read a whole line at once; any number of
characters may be requested in a read, even one, without losing information. There
are special modes, discussed below, that permit the program to read each charac­
ter as typed without waiting for a full line.

During input, erase and kill processing is normally done. By default, the character
< bs> erases the last character typed, except that it will not erase beyond the
beginning of a line or an EOT. By default, the character <" U> kills the entire line
up to the point where it was typed, but not beyond an EOT. Both these characters
operate on a keystroke basis independently of any backspacing or tabbing that
may have been done. Either < A U> or < bs> may be entered literally by preceding
it by \'; the erase or kill character remains, but the \' disappears.

The character <AR> will retype the line as input so far.

The character < A K> will retype successive characters of the previous line.

@

Special Files-8560 MUSDU System Reference Manual TTY(4)

@

Certain ASCII control characters have special meaning. These characters are not
passed to a reading program except in raw mode where they lose their special
meaning. Also, it is possible to change these characters from the default; see
below.

EOT (Control-D) may be used to generate an end of file from a terminal. When an
EOT is received, all the characters waiting to be read are immediately passed to
the program, without waiting for a new-line, and the EOT is discarded. Thus if
there are no characters waiting, which is to say the EOT occurred at the beginning
of a line, zero characters will be passed back, and this is the standard end-of-file
indication.

ETX (Control-C) is not passed to a program but generates an interrupt signal
which is sent to all processes with the associated control terminal. Normally each
such process is forced to terminate, but arrangements may be made either to
ignore the signal or to receive a trap to an agreed-upon location. See signaI(2).

FS (Control-\ or control-shift-L) generates the quit signal. Its treatment is identi­
cal to the interrupt signal except that unless a receiving process has made other
arrangements it wi!! not only be terminated but a memory image fiie wiii be gen­
erated.

DC3 (Control-S) delays all printing on the terminal until a DC1 is typed in (or when
an interrupt or quit signal is generated by typing ETX or FS)'

DC1 (Control-a) restarts printing after DC3 without generating any input to a pro­
gram.

When the carrier Signal from the dataset drops (usually because the user has hung
up his terminal) a hangup signal is sent to all processes with the terminal as con­
trol terminal. Unless other arrangements have been made, this signal causes the
processes to terminate. If the hangup Signal is ignored, any read returns with an
end-of-file indication. Thus programs that read a terminal and test for end-of-file
on their input can terminate appropriately when hung up on.

When one or more characters are written, they are actually transmitted to the ter­
minal as soon as previously-written characters have finished typing. Input charac­
ters are echoed by putting them in the output queue as they arrive. When a pro­
cess produces characters more rapidly than they can be typed, it will be
suspended when its output queue exceeds some limit. When the queue has
drained down to some threshold the program is resumed. Full documentation on
the details of character processing is not available at this printing. The EOT char­
acter is not transmitted (except in raw mode) to prevent terminals that respond to it
from hanging up.

Several ioctl(2) calls apply to terminals. Most of them use the following structure,
defined in <sgtty.h >:

struct sgttyb {

} ;

char sg_ispeed;
char sg_ ospeed;
char sg_ erase;
char sg_ kill;
int sg_flags;

4-9

TTY(4)

4-10

Special Files-8560 MUSDU System Reference Manual

This is the structure which is pointed to by argp. The sg_ispeed field describes
the input and output speeds of the device according to the following table. The
sg_ospeed field is no longer used. Symbolic values in this table are as defined in
< sgtty.h>.

B300 7
B600 8
B1200 9
B2400 11
B4800 12
B9600 13

300 baud
600 baud
1200 baud
2400 baud
4800 baud
9600 baud

The sg_erase and sg_kill fields of the argument structure specify the erase and kill
characters respectively. Setting the high bit of the erase or kill character will
cause the erase or kill function to be the non-fancy variety. (Defaults are" Hand
"U.) Full documentation on the descriptions of fancy versus non-fancy features is
not available at this printing.

The sg_flags field contains several bits that determine the system's treatment of
the terminal. Bit fields within sg_flags will be followed by the values it can take on.

TANDEM 03
possible values:
00 off
01 XON/XOFF flagging
02 DTR flagging

CBREAK 04
ECHO 010
CRMOD020
RAW 040
XTABS 0100
ARESM 0200
CTSFLG 0400
IPRTY 07000

possible values:
00000 don't care
01000 even parity
02000 odd
03000 no parity (zero)
04000 mark (one)
05000 data (8th bit not stripped)

OPRTY 070000
possible values:
000000 don't care
010000 even parity
020000 odd
030000 no parity (zero)
040000 mark (one)
050000 data (8th bit not stripped)

CHNGED 0100000

@

Special Files-8560 MUSDU System Reference Manual TTY(4)

@

Characters with the wrong parity are ignored.

In raw mode, every character is passed immediately to the program without waiting
until a full line has been typed. There is no special meaning associated with any
character. For example, no erase or kill processing is done; the end-of-file indica­
tor (EOT), the interrupt character (DEL) and the quit character (FS) are not treated
specially. There is no echoing, and no replacement of one character for another;
characters are a full 8 bits for both input and output (parity is up to the program).

CRMOD causes input carriage returns to be turned into new-lines; input of either
CR or LF causes a settable string of up to eight characters to be output in place of
the new-line character. A typical string would be "< CR> < LF>".

CBREAK is a sort of half cooked mode. Programs can read each character as soon
as typed, instead of waiting for a full line, but quit, DC1, DC3, and interrupt work;
CRMOD, XTABS, ECHO, and parity work normally. On the other hand, there is no
erase or kill, and no special treatment of the escape character, <" R>, <" K>, or
EOT.

ARESM turns on auto resume! which causes any input character to resume the
output if it has been suspended by a DC3.

XTABS turns on tab expansion, which causes tab characters to be expanded to the
appropriate number of spaces on output. Tabs are fixed at every eight columns,
starting at column nine.

The TANDEM field activates flow-control on input. When enabled, the lOP signals
whatever is on the terminal line to stop sending when its buffers begin to get full,
and signals it to start again when its buffer gets sufficiently empty.

CTSFLG turns on CTS flagging, which causes output to be stopped when CTS
goes low and to be restarted when CTS goes high.

CHNGED is set when the large characteristic table has been changed and cleared
when the data structure described above is set (since this resets the characteristic
table to a standard state).

Several loctl calls have the form:

#include < sgtty.h>
ioctl (fi Ides,code,arg)
struct sgttyb *arg;

The applicable codes are:

TIOPGETP - Fetch the parameters assoaiated with the terminal, and store in the
pOinted to sgttyb structure described earlier.

TIOPSETP - Set the parameters according to the pointed-to sgttyb structure. The
interface delays until output is quiescent, then throws away any unread characters,
before changing the modes.

TIOPSETN - Set the parameters but do not delay or flush input. Switching out of
RAW or CBREAK mode may cause some garbage input.

4-11

TTY(4)

4-12

Special Files-8S60 MUSDU System Reference Manual

TIOCGETP, TIOCSETP, and TIOCSETN perform the same functions as TIOPGETP,
TIOPSETP, and TIOPSETN but interpret the flag word of the sgttyb structure as the
old unix tty driver did. These are included for compatability with old object code.

With the following four codes the arg is ignored.

TIO - Turn on support for block mode communication (HSI) with an . This mode
may not be turned off once it is enabled.

TIOCEXCL - Set "exclusive-use" mode: no further opens are permitted until the file
has been closed.

TIOCNXCL - Turn of "exclusive-use" mode.

TIOCHPCL - When the file is closed for the last time, hang up the terminal.

TIOCNHPCL - When the file is closed for the last time, do not hang up the terminal.

TIOCFLUSH - All characters waiting in input or output Queues are flushed.

The large terminal characteristic table may be set with the following calls:

TIOTSET - Fill in the table with the values at argo Note that this also sets the
CHNGED bit in the sg_flags field of the sgttyb structure to alert the user when s/he
does a TIOPGETP that the table has been changed. This bit is cleared by a TIOP­
SET request. The TIOTSET command can change the function of any input char-
ecteL Thus, all of the chaiacteis with special meaning like DC1, DC3,
<" K>, EOT, and <" C>, may be changed to another character or removed.

TIOTGET - Fetch the values in the table and store them at argo

Full documentation on the large charcteristics table is not available at this printing.

@

8560 MUSDU System Reference Manual

@

Section 5
File Formats and Conventions

INTRODUCTION

This section describes some of the data structures, file structures, and file for­
mats that are visible to the user. Information necessary for system accounting,
such as the password file layout, can be found in this section. Disk addressing
conventions used by the operating system are also described in this section.

5-1

A.OUT(5) File Formats-8560 MUSDU System Reference Manual

5-2

A.OUT(5)

NAME
a.out - assembler and link editor output

SYNTAX
#Include < 8.out.h>

DESCRIPTION
A.out is the output file of the assembler as (1) and the link editor Id (1). Both pro­
grams make a.out executable if there were no errors and no unresolved external
references. Layout information as given in the include file for the LSI 11/23 is:

/*
* Header prepended to each a.out file.
*1

struct exec {
long

unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
} ;

a_magic; /* magic number *1
a_ text; i* size of text segment *1
a_ data; /* size of initialized data *1
a_bss; /* size of uninitialized data *1
a_syms; /* size of symbol table *1
a_entry;/* entry point *1
a_trsize; /* size of text relocation *1
a_ drsize; r size of data relocation * /

#define OMAGIC
#define NMAGIC
#define ZMAGIC

0407
0410
'0413

/* old impure format *1
/* read-on Iy text * /
/* demand load format * /

1*
* Macros which take exec structures as arguments and tell whether
* the file has a reasonable magic number or offsets to tex~symbolslstrings.
*1

#define N_BADMAG(x) (((x).a_magic)! = OMAGIC && ((x).a_magic)! = NMAGIC \
&& ((x).8_magic ZMAGIC)

#define N_ TXTOFF(x) ((x).a_magic= =ZMAGIC ? 1024 : sizeof (struct exec))
#define N_SYMOFF(x) (N_ TXTOFF(x) + (x).a_text+ (x).a_data +\

(x).a _ trsize + (x).a _ drsize)
#define N_ STROFF(x) (N_ SYMOFF(x) + (x).a_ syms)

/*
* Format of a relocation datum.
*1

struct relocationJnfo {
int r_address; /* address which is relocated */

@

File Formats-8560 MUSDU System Reference Manual A.OUT(5)

@

unsigned int r_symbolnum:24, /* local symbol ordinal * /
r_pcrel:1, /* was relocated pc relative already */
r_length:2, /* O=byte, 1 = word, 2=long */
r_extern:1, /* does not include value of sym referenced */
:4; /* nothing, yet * /

} ;

/*
* Format of a symbol table entry; this file is included by < a.out.h>
* and should be used if you aren't interested the a.out header
* or relocation information.
*/

struct nlist {
union {

char
long

*n_name;
n_strx;

/* for use when in-core * /
/* index into file string table * /

} n_un;
unsigned char

char
short

unsigned long

n_type; /* type flag; Le. N_TEXTetc; see below */
n_other;/* unused */
n_ desc; /* see < stab.h > * /
n_ value; /* value of this symbol (or sdb offset) * /

} ;
#deflne n_hash n_desc

/*
* Simple values for n_type.
*/

#define N_ UNOF OxO
#define N_ABS Ox2
#define N_ TEXTOx4
#define N_OATA Ox6
#define N_BSS Ox8
#define N_ COMM Ox12
#define N_FN Ox1 f

#define N_EXT 01
#define N_ TVPEOx1 e

/*

/* used internally by Id * /

/* undefined * /
/* absolute * /
/* text * /

/* data */
/* bss */

/* common (internal to Id) * /
/* file name symbol * /

/* external bit, or'ed in * /
/* mask for all the type bits */

* Sdb entries have some of the N_ STAB bits set.
* These are given in < stab.h>
*/

#define N_ STAB OxeO /* if any of these bits set, a SOB entry * /

/*

* Format for namelist values.
*/

#define N_FORMAT "%08x"

5-3

A.OUT(5) File Formats-8560 MUSDU System Reference Manual

5-4

The file has four sections: a header, the program and data text, relocation informa­
tion, and a symbol table (in that order). The last two may be empty if the program
was loaded with the I-S' option of Id or if the symbols and relocation have been
removed by strip (1 i-

In the header the sizes of each section are given in bytes, but are even. The size
of the header is not included in any of the other sizes.

When an a.out file is loaded into core for execution, three logical segments are set
up: the text segment, the data segment (with uninitialized data, which starts off as
all 0, following initialized), and a stack. The text segment begins at 0 in the core
image; the h~ader is not loaded. If the magic number in the headej is 0407(8), it
indicates that the text segment is not to be write-protected and shared, so the data
segment is immediately contiguous with the text segment. If the magic number is
0410, the data segment begins at the first 0 mod 8K byte boundary following the
text segment, and the text segment is not writable by the program; if other
processes are executing the same file, they will share the text segment. If the
magic number is 411, the text segment is again pure, write-protected, and shared,
and moreover instruction and data space are separated; the text and data segment
both begin at location O. If the magic number is 0405, the text segment is overlaid
on an existing (0411 or 0405) text segment and the existing data segment is
preserved.

The stack wi!! occupy the highest possible locations in the core image: from
0177776(8) and growing downwards. The stack is automatically extended as
required. The data segment is only extended as requested by brk (2).

The start of the text segment in the file is 020(8); the start of the data segment is
020+ St (the size of the text) the start of the relocation information is 020+ St + Sd;
the start of the symbol table is 020+ 2(St + Sd) if the relocation information is
present, 020+ St + Sd if not.

The layout of a symbol table entry and the principal flag values that distinguish
symbol types are given in the include file. Other flag values may occur if an
assembly language program defines machine instructions.

If a symbol's type is undefined external, and the value field is non-zero, the symbol
is interpreted by the loader Id as the name of a common region whose size is indi­
cated by the value of the symbol.

The value of a word in the text or data portions which is not a reference to an
undefined external symbol is exactly that value which will appear in core when the
file is executed. If a word in the text or data portion involves a reference to an
undefined external symbol, as indicated by the relocation information for that word,
then the value of the word as stored in the file is an offset from the associated
external symbol. When the file is processed by the link editor and the external
symbol becomes defined, the value of the symbol will be added into the word in the
file.

If relocation information is present, it amounts to one word per word of program
text or initialized data. There is no relocation information if the Ire location info
stripped' flag in the header is on.

@

File Formats-8560 MUSDU System Reference Manual A.OUT(5}

@

Bits 3-1 of a relocation word indicate the segment referred to by the text or data
word associated with the relocation word:

000 absolute number
002 reference to text segment
004 reference to initialized data
006 reference to uninitialized data (bss)
010 reference to undefined external symbol

Bit ° of the relocation word indicates, if 1, that the reference is relative to the pc
(e.g. 'clr x'); if 0, that the reference is to the actual symbol (e.g., 'clr *$x').

The remainder of the relocation word (bits 15-4) contains a symbol number in the
case of external references, and is unused otherwise. The first symbol is num­
bered 0, the second 1, etc.

SEE ALSO
as(1), Id(1), nm(1)

5-5

AR(5) File Formats-8560 MUSDU System Reference Manual

5-6

AR(5)

NAME
ar - archive (library) file format

SYNTAX
#Include < ar.h>

DESCRIPTION
The archive command ar is used to combine several files into one. Archives are
used mainly as libraries to be searched by the link-editor Id.

A file produced by ar has a magic number at the start, followed by the constituent
files, each preceded by a file header. The magic number and header layout as
described in the include file are:

#define ARMAG "!< arch> 0
#define SARMAGS

#define ARFMAG'''O

struct ar_hdr {
char
char

} ;

char
char
char
char

ar_name[1S] ;
ar_date[12];
Cii_uid[6];
ar_gid[S];
ar_mode[S] ;
ar_ size[1 0];
ar_fmag[2] ;

The name is a null-terminated string; the date is in the form of time (2); the user ID
and group ID are numbers; the mode is a bit pattern per chmod (2); the size is
counted in bytes.

Each file begins on a word boundary; a null byte is inserted between files if neces­
sary. Nevertheless the size given reflects the actual size of the file exclusive of
padding.

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar(1), Id(1), nm(1)

NOTES
Coding user and group IDs as characters is a botch.

@

File Formats-8560 MUSDU System Reference Manual BANPROTO(5)

@

BANPROTO(5)

NAME
letc/banprot01 letc/banprot02 - spooler banner page prototype files

DESCRIPTION
Prior to printing a file on a line printer the printer spooler prints a banner page,
used to separate printouts and to identify the owner of the printout. The format of
this banner page is controlled by the file letc/banprotO'1, where n is the number of
the associated printer (1 or 2).

The prototype file contains text to be literally copied to the banner page, line for­
matting characters, and string substitution characters.

The only line formatting character is the uparrow (").

causes the remainder of the line (excluding any other line formatting char­
acters) to be printed in large type on the banner page.

String substitution characters can appear anywhere in a line and are replaced in
the banner page by the cOriesponding string:

\nnn A backslash immediately followed by one to three octal digits is replaced
by the corresponding ASCII character. For example, \014 prints a
formfeed character on the banner.

\u is replaced by the username of the user who spooled the file to be printed.

\g is replaced by the groupname of the user who spooled the file to be
printed.

\d is replaced by the current date, as output by the ctlme(3) subroutine.

\newline
A backslash at the end of a line causes the end-of-line character to be
ignored. This is used to break a long prototype file line into several
shorter ones.

\ A is replaced by an uparrow character ("). This is used to escape the
interpretation of the uparrow character.

\ \ is replaced by a backslash (\).

\p(fieldspec ...)
is replaced by a field from the entry in letc/passwd associated with the
user who spooled the file to be printed.

Fie/dspec consists of a field delimiter character (e.g. a colon) immediately followed
by one decimal digit. The delimiter character is the character that delimits fields of
the line or field; The decimal digit selects one field from that line or field - 0
selects the first field.

For example, a banner prototype file might contain the following line:

printed by \p(:4)

The fieldspec ":4" is read as "field[4] of the password file line". The fifth field
(field[4]) of the password file is the comment field.

5-7

BANPROTO(5) File Formats-8560 MUSDU System Reference Manual

5-8

Some installations further divide the password comment field into subfields
separated by semicolons. One such comment field is shown below:

Alfred Fetucchini;IH-1113;60-300

The first field is the user's real name; the second, his telephone extension; the
third, his mail station. A banner prototype line to print his mail station would look
like:

mail station \p(:4;2)

The fieldspec ":4" specifies the password file comment field, just as it did in the
previous example. The fieldspec ";2" specifies the third semicolon-separated field
of the password comment field (Le. field[2], Alfred's mail station).

@

File Formats-8560 MUSDU Reference Manual CHECKLIST(5)

CHECKLIST(5)
NAME

checklist-list of normally mounted filesystems

DESCRIPTION
The "/etc/checklist" file contains, for each typically mounted filesystem, one line showing of
the name of the raw special device that corresponds to that filesystem. The" /etc/checklist"
file is used by several programs as a list of default filesystems to operate on, and is useful as
a record of how your fixed disk drives are arranged (for systems that use 8503 Disk Expan­
sion Units).

For example, consider the following "/etc/checklist" file:
/dev/rhdOl
/dev/rhd23

This file describes one filesystem occupying fixed disk drives 0 and 1 , and another filesystem
occupying drives 2 and 3.

FILES
/etc/checklist

NOTES

ADD NOV 1982

The" /etc/checklist" file should be edited after you install any 8503 Disk Expansion Units or
reconfigure your filesystems to reflect the new organization of the filesystems.

5-8a

CHECKLIST(5} File Formats-8560 MUSDU Reference Manual

[This page intentionally left blank.]

5-8b ADD NOV 1982

File Formats-8560 MUSDU System Reference Manual CORE(5)

@

CORE(5)

NAME
core - format of core image file

DESCRIPTION
TNIX writes out a core image of a terminated process when any of various errors
occur. See signal (2) for the list of reasons; the most common are memory viola­
tions, illegal instructions, bus errors, and user-generated quit signals. The core
image is called 'core' and is written in the process's working directory (provided it
can be; normal access controls apply).

The first 1024 bytes of the core image are a copy of the system's per-user data for
the process, including the registers as they were at the time of the fault; see the
system listings for the format of this area. The remainder represents the actual
contents of the user's core area when the core image was written. If the text seg­
ment is write-protected and shared, it is not dumped; otherwise the entire address
space is dumped.

in generai the debugger adb (1) is sufficient to deai with core images.

SEE ALSO
adb(1), signal(2)

5-9

CVT(5) File Formats-8560 MUSDU Reference Manual

5-10

CVT(5)
NAME

cvt-structure of kernel CVT table

SYNTAX
#include sys/cvt.h

DESCRIPTION
The cvt data structure in the TNIX kernel contains the commonly-referenced, changeable
parameters of the kernel. This allows you to reconfigure the way that the kernel uses its
data space, without recompiling the kernel.

A pOinter to the cvt structure is located at kernel address CVT _LOC. This value is defined in
the <sys/cvt.h> include file. The pointer to the actual location of the cvt structure is the
first address of the structure located at CVT _LOC.

Here is a listing of the <sys/cvt.h> include file:

#define CVT_LOC 050
struct cvt_ptr I / *

unsigned cp cvt; / .
unsigned cp kend; / *
unsigned cp end; .I *

! ;
struct cvt I / .

unsigned c_nbuf;
unsigned c_sbuf;
struct buf ·c_buf;
struct buf *c_ebuf;
char ·c_bstart;
unsigned c_iocache;
unsigned c_ninode;
unsigned c_s inode;
struct inode ·c_inode;
struct inode * CL-e inode;
unsigned c_nfile;
unsigned c_sfile;
struct file ·c_file;
struct file ·c_efile;
unsigned c_nproc;
unsigned c_sproc;
struct proc ·c-proc;
struct proc ·c_eproc;
unsigned c_nmount;
unsigned c_smount;
struct mount *CLmount;
struct mount ·c_emount;
unsigned CLntext;
unsigned c_stext;
struct text ·c_text;
struct text ·c_etext;
unsigned c_nsmap;
unsigned c_ssmap;
struct map ·c_smap;
struct map ·c_esmap;
unsigned c_ncmap;

this is at location CVT_LOC */

pointer to real CVT */

end of kernel instruction/data memory */

end of used memory */

this is at location CVT_LOC->cp_cvt . /
/ . number of buffers · /
/ . size of a buffer entry * I
I· start of buf table · /
I· end of buf table • I

/ . start of actual buffers • I

/ . number of i/o page buffers • I
I· number of inodes • I

I· size of an inode entry . /
I· start of inode table • .1

/ . end of inode table · /
I· number of file table entries • I

I· size of a file table entry • I
/ . start of file table ./

I· end of file table · /
I· number of process table entries
/ . size of a process table entry • I

/. start of proc table . /
/ . end of proc table · /
/* number of mountable filesystems
/ . size of a mount table entry • I

/. start of mount table . /
/ . end of mount table • I
/ . number of text table entries * /
I· size of a text table entry • I
/. start of text table • I

I· end of text table · /
/ * number of swapmap table entries
/ . size of a swapmap table entry . /
/ . start of swapmap table • I

I· end of swapmap table • I

/. number of coremap table entries

· /

· /

• I

· /

REV NOV 1982

File Formats-8560 MUSDU Reference Manual

unsigned
struct map
struct map
dev_t
dev_t
dev_t
unsigned
daddr_t
time_t
char
char
short
short

c_scmap;
*c_cmap;
*c_ecmap;
rootdev;
swapdev;
pipedev;
nswap;
swplo;
c_time;
tz_name [4] ;
tz_dayname[4 1 ;

tz_offgmt;
tz_flag;

/* size of a coremap table entry */
/* start of coremap table */
/* end of coremap table */
/* root device (major/minor) */

/~ swap device (major/minor) */

/* pipe device (major/minor) */
/* amount of swap space */

/* location of swap space */

/* system time of day */

/* time zone name (3 char plus nUll) */

1* daylight time zone name */

/* minutes west of GMT */

/* time zone flags */

CVT(5)

unsigned
unsigned
unsigned

maxmem;
mem_start;
mem_end;

/* bit 0: I --> daylight time in effect (US rules) */

/* maximum user process memory (clicks) */

FILES

/* start of user memory (clicks) */

/* end of user memory (clicks) */

char
char

*c_pmsg;
*c_msgbuf;

/* pOinter into buffer */

/* start of msg buffer */

char *c_emsgbuf; /* end of msg buffer */

struct IO_Info 1

long
long
long
long
long

io_info;

/* buffer cache profiling (bio.c) */

nread; /* # blocks read */

nreada; /* # blocks read ahead */

ncache; /* # blocks found in cache */

nwrite; /* # blocks written */

bufcount; / # free cache blocks (histogram) */

/tnix-a copy of <cvt.h> is located here.
/dev/kmem-a copy of <cvt.h> is located here.

SEE ALSO
cvt(8)

ADD NOV 1982 5-10a

DIR(5) File Formats-8560 MUSDU System Reference Manual

5-10b

DIR(5)

NAME
dir - format of directories

SYNTAX
#include < sys/dir.h>

DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the flag word of
its i-node entry see, filsys (5). The structure of a directory entry as given in the
include file is:

/* dir.h 4.2 81/02/19 *1

ifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{

ino t d_ino;
char d_name[DIRSIZ] ;

};

By convention, the first two entries in each directory are for '.' and ' . .'. The first is
an entry for the directory itself. The second is for the parent directory. The mean­
ing of ' . .' is modified for the root directory of the master file system and for the root
directories of removable file systems. In the first case, there is no parent, and in
the second, the system does not permit off-device references. Therefore in both
cases ' . .' has the same meaning as '.'.

SEE ALSO
filsys(5)

ADD NOV 1982

File Formats-8560 MUSDU Reference Manual DUMP(5)

DUMP(5)
NAME

dump, ddate-incremental dump format

SYNTAX
#include <sys/types.h>
#include <sys/ino.h>
include <dumprestor.h>

DESCRIPTION
Flexible disks used by dump(8) and restor(8) contain:

• a header record,

• two groups of bit map records,

• a group of records describing directories, and

• a group of records describing files.

Here is the format of the header record and of the first record of each description, as given in the
<dumprestor.h> include file:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
struct

I spcl;
struct

I:
#define

#define

ADD NOV 1982

NTREC 10
MLEN 16
MSIZ 4096
TS_TAPE 1
TS_INODE 2
TS_BITS 3
TS_ADDR 4
TS_END 5
TS_CLRI 6
MAGIC (int) 60011
CHECKSUM (int)84446
spcl 1
int c_type;
time_t c_date;
time_t c_ddate;
int c_volume;
daddr_t c_tapea;
ino_t c_inumber;
int c_magic;
int c_checksum;
struct dinode c_dinode;
int c_count;
char c_addrlBSIZEJ;

idates
char id_namel16J;
char id_incno;
time_t id_ddate;

DUMPOUTFMT -%-16s %c %s-

DUMPINFMT -%16s %c %l "00-

/* for printf */

/* name, incno, ctime(date) */

/* inverse for scant */

5-10c

DUMP(5) File Formats-8560 MUSDU Reference Manual

5-10d

DEFINITIONS
Here are the definitions of the symbolic constants defined with the" # define" statement:

NTREC the number of 512-byte records in a physical tape block.
MLEN the number of bits in a bit map word.
MSIZ the number of bit map words.

The TS entries are used in the c_type field to indicate what sort of header this is. The data types
and their definitions are:

TS_TAPE
TS_iNODE

TS_ADDR
TS_END
TS_CLRI

MAGIC
CHECKSUM

tape volume label
a file or directory foliows. The c_dinode field is a copy of the disk inode and
contains bits telling what sort of file this is.
a bit map follows. This bit map has a one bit for each inode that was
dumped.
a subrecord of a file description. See c_addr, below.
end of tape record.
a bit map follows. This bit map contains a "0" bit for all inodes that were
empty on the file system when dumped.
all header records have this number in c_magic.
header records checksum to this value.

The fields of the header structure are as follows:

c_type
c_date
c_ddate
c_volume
c_tapea
c_inumber
c_magic
c_checksum

c_dinode
c_count
c_addr

the type of the header.
the date the dump was taken.
the date the file system was dumped from.
the current volume number of the dump.
the current number of this 512-byte record.
the number of the inode being dumped if this is of type TS_'NODE.
this contains the value MAGIC above, truncated as needed.
this contains whatever value is needed to make the record sum to
CHECKSUM.
this is a copy of the inode as it appears on the file system; see filsys(5).
the count of characters in c_addr.
an array of characters describing the blocks of the dumped file. A charac­
ter is non-zero if the block associated with that character was present on
the filesystem; otherwise, the character is O. If the block was not present
on the file system, no block was dumped; the block will be restored as a
hole in the file. If there is not sufficient space in this record to describe all
of the blocks in a file, TS~DDR records will be scattered through the
file, each one picking up where the last left off.

Each volume except the last ends with a tapemark (read as an end of file). The last volume ends
with a TS_END record and then the tapemark.

ADD NOV 1982

File Formats-8560 MUSDU Reference Manual DUMP(5)

The structure idates describes an entry of the file /etc/ddate where dump history is kept. The
fields of the structure are:

id_name
id_incno
id_ddate

FILES
/etc/ddate

SEE ALSO

the dumped filesystem is '/dev/id_nam '.
the level number of the dump tape; see dump(8).
the date of the incremental dump in system format; see types(5).

dump(5), dump(8), dumpdir(8), filsys(5), restor(8), types(5)

ADD NOV 1982 5-10e

DUMP(5) File Formats-8560 MUSDU Reference Manual

[This page intentionally left blank.]

5-10f ADD NOV 1982

File Formats-8560 MUSDU System Reference Manual ENVIRON(5)

@

ENVIRON(5)

NAME
environ - user environment

SYNTAX
extern char "environ;

DESCRIPTION
An array of strings called the lenvironment' is made available by exec (2) when a
process begins. By convention these strings have the form Iname=value'. The fol­
lowing names are set automatically and are used by various commands:

PATH The sequence of directory prefixes that ah applies in searching for a file
known by an incomplete path name. The prefixes are separated by I:'.
Login (1) sets PATH= :/bin:/usr/bin.

HOME A user's login directory, set by login (1) from the password file paaawd (5).

PS1 Shell initial prompt string.

PS2 Shell secondary prompt string.

IFS Shell field separators.

Further names may be placed in the environment by the export command and
(name= value' arguments in ah (1), or by exec (2). It is unwise to conflict with cer­
tain Shell variables that are frequently exported by I.profile' files:

TERM The kind of terminal for which output is to be prepared.

The 8540 associated with th is user.

UP The currently selected target microprocessor.

MAIL The path name of incoming mail. Used by ah (1).

SEE ALSO
exec(2), sh(1), login(1)

5-11

FBR(S) File Formats-8560 MUSDU System Reference Manual

5-12

FBR(5)

NAME
fbr - file backup and restore format

SYNTAX
#include < sys/types.h>
#include < fbr.h>

DESCRIPTION
Fbr saves and restores directories and files on a floppy disk archive, preserving
aliases (multiple links to the same file). The archive consists of:

Boot block - Block zero is reserved for a copy of a stand-alone boot pro­
gram.

Directory area - This area contains directory information for all files and
directories on the archive. The first entry in this area is dedicated to the
archive label.

Data area - The data of all files on the archive is stored here.

The format of a directory entry (as given in the include file) follows. To increase
the portability of archives, this structure is read and written in PDP-11 format
regardless of what machine fbr is running on.

#define PATHLEN 106 r space for path e /

struct fbrent
{

};

char
unsigned short
short
short
off t
time t
time t
unsigned
char
char

fbr_path[PATHLEN); 1* pathname
fbr_mode;
fbr_uid; 1* owner's userlD */
fbr_gid; /* owner's grouplD * /
fbr_size; /* size in bytes * /
fbr_acct; 1* access date-time * /
fbr_modt; /* modify date-time * /
fbr_fblk; /* first data block * /
fbr_zero; /* unused * /
fbr_chks; /* checksum */

*/

The path field is the pathname of the file when archived, less any redundant
slashes or initial ''/'. It is null-terminated if less than PATHLEN bytes long. The
mode, uid, gid, size, and access and modification date-times are in the same format
as their corresponding i-node fields. As in the file system, an available entry has a
mode of zero. The fblk field contains the block number of the first data block allo­
cated to this file. The zero field is unused. The checksum field contains a number
such that the sum of the first 127 bytes of the directory entry and the complement
of the checksum is zero. Each file's data starts on a block boundary and occupies

@

File Formats-8560 MUSDU System Reference Manual FBR(S)

@

max(1,((size + 511) / 512) contiguous blocks. At least one archive block is allo­
cated to each archived file or directory so that aliases (multiple links) can be prop­
erly recorded. Each directory archived is treated as an empty file (I.E. no
directory's data is stored). All entries representing links to a given file are identi­
cal. In particular, the fblk field in each link's entry contains the same block
number.

The archive label directory entry contains the following information:

path A comment about this archive.

mode
Set by fbr to a file readable/writeable/executable by all. Otherwise unused.

uid The userlD of the user who created this archive.

gid The grouplD of the same.

size The total number of bytes in the data area of the archive. This field in combi­
nation with the fblk field, records the size of both the directory area and the
entire archive.

acct The date-time that this archive was created - not its access time.

modt
The date-time that this archive was last altered.

fblk The block number of the first archive block following the directory area.

checksum
(same as any other directory entry.)

SEE ALSO
fbr(1), stat(2).

5-13

FILSYS(5) File Formats-8560 MUSDU System Reference Manual

5-14

FILSYS(5)

NAME
filsys, flblk, ina - format of file system volume

SYNTAX
#include < sys/types.h>
#Include < sya/flbk.h>
#include < sys/filaya.h>
#include < sys/ino.h>

DESCRIPTION
Every file system storage volume (e.g. disk) has a common format for certain vital
information. Every such volume is divided into a certain number of 512-byte
blocks. Block 0 is unused and is available to contain a bootstrap program, pack
label, or other information.

Block 1 is the super block. The layout of the super block as defined by the include
file < syslfilsys.h > is:

/*
* Structure of the super-block
*/

struct filsys {
unsigned short sjsize; /* size in blocks of i-list * /
daddr_t s_fsize; /* size in blocks of entire volume * /
short s_nfree; /* number of addresses in s_free * /
daddr_t s_free[NICFREE];/* free block list * /
short s_ninode; /* number of i-nodes in s_inode * /
ino_t s_inode[NICINOD];/* free i-node list * /
char s_f1ock; /* lock during free list manipulation * /
char s_ilock; /* lock during i-list manipulation * /
char s_fmod; /* super block modified flag * /
char s_ronly; /* mounted read-only flag * /
time_t s_time; /* last super block update * /

} ;

S)size is the address of the first block after the i-list, which starts just after the
super-block, in block 2. Thus i-list is s)size-2 blocks long. SJsize is the address
of the first block not potentially available for allocation to a file. These numbers
are used by the system to check for bad block addresses; if an limpossible' block
address is allocated from the free list or is freed, a diagnostiC is written on the on­
line console. Moreover, the free array is cleared, so as to prevent further allocation
from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s free array contains,
in s_free{1}, ... , s_free{s_nfree-1}, up to NICFREE free block numbers. NICFREE is

@

File Formats-8560 MUSDU System Reference Manual FILSYS(5)

@

a configuration constant. S free[O] is the block address of the head of a chain of
blocks constituting the free list. The layout of each block of the free chain as
defined in the include file <syslfblk.h> is:

struct fblk
{

int dtnfree;
daddr_t dtfree[NICFREE];

} ;

The fields df_nfree and df_free in a free block are used exactly like s_nfree and
s_free in the super block. To allocate a block: decrement s_nfree, and the new
block number is s_free[s_nfree]. If the new block address is 0, there are no blocks
left, so give an error. If s_nfree became 0, read the new block into s_nfree and
s_free. To free a block, check if s_nfree is NICFREE; if so, copy s_nfree and the
s free array into it, write it out, and set s nfree to 0. In any event set
s=free[s_nfree] to the freed block's address and increment s_nfree.

S_ninode is the number of free i-numbers in the s}node array. To allocate an i­
node: if s_ninode is greater than 0, decrement it and return s)node[s_ninode]. If it
was 0, read the i-list and place the numbers of all free inodes (up to NICINOD) into
the s}node array, then try again. To free an i-node, provided s_ninode is less than
NICINODE, place its number into s_inode[s_ninode] and increment s_ninode. If
s _ninode is already NICINODE, don't bother to enter the freed i-node into any table.
This list of i-nodes is only to speed up the allocation process; the information as to
whether the inode is really free or not is maintained in the inode itself.

S _flock and S _ileck are flags maintained in the memory copy of the file system
while it is mounted and their values on disk are immaterial. The value of s_fmod
on disk is likewise immaterial; it is used as a flag to indicate that the super-block
has changed and should be copied to the disk during the next periodic update of
file system information. S_ronly is a write-protection indicator; its disk value is
also immaterial.

S _time is the last time the super-block of the file system was changed. During a
reboot, s_time of the super-block for the root file system is used to set the system's
idea of the time.

The fields s _tfree, s _tin ode, s _fname, s _m, s _n and s _fpack are not currently main­
tained.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. I-nodes are
64 bytes long, so 8 of them fit into a block. I-node 1 is used to group bad blocks
found on the disk. I-node 2 is reserved for the root directory of the file system, but
no other i-number has a built-in meaning. Each i-node represents one file. The
format of an i-node as given in the include file <syslino.h> is:

1*
* Inode structure as it appears on
* a disk block.
*/

struct dinode

5-15

FILSYS(5) File Formats-8560 MUSDU System Reference Manual

5-16

unsigned short di_mode; /* mode and type of file * /
short dLnlink; /* number of links to file * /
short dLuid; 1* owner's user id */
short dLgid; 1* owner's group id * /
oftt dLsize; /* number of bytes in file * /
char dLaddr[40); 1* disk block addresses */
time_t dLatime; 1* time last accessed */
time_t dLmtime; 1* time last modified * /
time t dLctime; 1* time created */

1;
#define INOPB 8 1* 8 inodes per block * /
1*
* the 40 address bytes:
* 39 used; 13 addresses
* of 3 bytes each.
*/

Oi_mode tells the kind of file; it is encoded identically to the st_mode field of
stat (2). Oi_nlink is the number of directory entries (links) that refer to this i-node.
Oi_uid and di_gid are the owner's user and group IDs. Size is the number of bytes
in the file. Oi atime and di mtime are the times of last access and modification of
the file contents (read, write or create) (see times (2)); Oi_ctime records the time of
last modification to the inode or to the me, and is used to determine whether it
should be dumped.

Special files are recognized by their modes and not by i-number. A block-type
special file is one which can potentially be mounted as a file system; a character­
type special file cannot, though it is not necessarily character-oriented. For spe­
cial files, the di_addr field is occupied by the device code (see types (5)). The
device codes of block and character special files overlap.

Disk addresses of plain files and directories are kept in the array di_addr packed
into 3 bytes each. The first 10 addresses specify device blocks directly. The last
3 addresses are singly, doubly, and triply indirect and point to blocks of 128 block
pointers. Pointers in indirect blocks have the type daddr _t (see types (5)).

For block b in a file to exist, it is not necessary that all blocks less than b exist. A
zero block number either in the address words of the i-node or in an indirect block
indicates that the corresponding block has never been allocated. Such a missing
block reads as if it contai ned all zero words.

SEE ALSO
icheck(1), dcheck(1), dir(S), stat(2), types(S)

@

File Formats-8560 MUSDU System Reference Manual GROUP(5)

@

GROUP(5)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group 10
a comma separated list of all users allowed in the group

FILES
letclgroup

SEE ALSO

This is an ASCII file. The fields are separated by colons; Each group
is separated from the next by a new-line. If the password field is null,
no password is demanded.

This file resides in directory letc. Because of the encrypted pass­
words, it can and does have general read permission and can be used,
for example, to map numerical group 10's to names.

newgrp(1), crypt(3). passwd(1), passwd(5)

5-17

GUIDE(S) File Formats-8560 MUSDU System Reference Manual

5-18

GUIDE(S)

NAME
guide - guide file formats

DESCRIPTION
GUIDE is a shell program that executes the program luar/llb/guide/menu. The
menu program displays a menu or list of options that GUIDE will execute for you.
Some of the options allow you to select specific tasks to perform; others allow you
to select another menu.

The options displayed by the menu program are controlled by a file named main,
Each directory in lusr//iblguide contains a file named main, allowing for as many
different menus as there are directories in lusr//iblguide.

Two different kinds of files are used by GUIDE: the files named main within each
directory in lusr//iblguide; and shell command files that execute the command you
have selected. GUIDE uses the TNIX directory structures to group together logi­
cally related tasks under one menu. Generally, both the main file which provides
the list of options to the menu program, and the shell command files that execute
the selected options, are located in the same directory. For consistency, the
names of the shell command files all begin with the letter "x".

DIRECTORY STRUCTURES
The directory structures used by GUIDE consist of directories in lusr//iblguide that
contain a file called main and shell command files deSignated by the main file.
The name of each shell command file begins with the letter "x". For example, the
shell command file that executes the pwd command is named xpwd. The directory
structure used by GUIDE includes:

@

File Formats-8560 MUSDU System Reference Manual GUIDE(5)

@

lusr/lib/guidel
menu - menu driver program
main - top level menu
xintro - instructions on how to use GUIDE
xprompt - determines user prompt level
xshell - shell command file that allows a

temporary escape to the shell -

lusr/lib/guide/advanl - directory containing the main file
and shell command files that provide
directory manipulation procedures.

main - contains a list of the directory
manipulation procedures and allows
a return to the top level menu or
to the file manipulation menu.

xpwd - executes a pwd command
xcd - executes a cd command
xmkdir - executes a mkdlr command
xrmdir = executes a rmd!r command

lusr/lib/guide/filel - directory containing file manipulation
procedures.

main - contains a list of the file manipulation
procedures and allows a return to the
top level menu or to the directory
manipulation menu.

xed - executes a ed command
xace - executes a ace command
xcp - executes a cp command
xcat - executes a cat command
xis - executes a Is command
xmv - executes a mv command
xrm - exe"cutes a rm command
xterm - executes a term command
xlpr - executes a Ipr command

lusr/lib/guide/(dir_n)1 - user-defined directory containing
user-defined procedures and
shell command files.

main - user-defined menu
xcmnd1 - user-defined shell file
xcmnd2 - user-defined shell file
xcmnd3 - user-defined shell file

To add a new menu, you create a new directory in the /usr/lib/guide directory, then
add the main file. The main file contains the names of the shell command flies
located in the newly created directory and the menu program to return to when you

5-19

GUIDE(5) File Formats-8560 MUSDU System Reference Manual

finish working in the newly created directory. Also, an existing main file must be
modified to allow access to the newly created menu.

FILE FORMAT--MAIN
The basic format of the main file is:

main text block
end of main text block

description:new directory:shell program:program parameters
description:new directory:shell program:program parameters
description:new directory:shell program:program parameters

optional trailing text block
end of optional trailing text block

The fields in the main file are:

1. The main text describing the menu printed on your screen.

2. A line consisting of a single colon (:) separating the descriptive text from
the commands available to you.

3. A description of s user-selectable command, d!splayed iitera.!!y, with the
following exceptions:

• "\:" generates a colon character within the displayed description.

• "\n" generates a newline followed by a tab within the displayed
description, allowing for multiple-line descriptions for single com­
mands.

• "\ t" generates a tab character within the displayed description.

• "\ \" generates a backslash (\) charater within the displayed
description.

4. The name of a directory to change to before executing the command
(current directory if no directory is specified).

5. The file name of a shell command file that executes the selected com­
mand.

• If this field is empty, a new menu program is executed with argu­
ments drawn from the main file located in the directory specified in
the new directory field.

• If the program name begins with a minus (-), the menu program
does not resume executing when the shell program you have
selected finishes executing.

5-20 @

File Formats-8560 MUSDU System Reference Manual GUIDE(5)

@

• If the name consists of a single hyphen (-), the menu program
reads the main file located in the directory specified by the new
directory field.

• Otherwise, the shell program is run, after which the menu program
regains control.

6. The parameters passed to the selected shell command file (main is the
parameter passed to the menu program).

7. A line consisting of a single colon (:) that terminates the list of user­
selectable commands.

8. A final block of descriptive text that is displayed after the available com­
mands are listed.

Items 3-5 in the above list are separated from each other by a colon (:) -- each line
contains one command.

A typical file format for a main file is:

-- Directory Manipulation

Top Level Menu: .. :-:main
File Manipulation Menu\n: .. /file:-:main
Display the name of the current directory::xpwd:
Change the current directory::xcd:
Make a new directory\n: :xmkdir:
Remove an empty directory::xrmdir:
Temporary escape to command language:: .. /xshell:

When the main file shown above is used as the argument passed to the menu pro­
gram, the following text is displayed on your screen:

-- Directory Manipulation

1) Top Level Menu
2) File Manipulation Menu

3) Display the name of the current directory
4) Change the current directory
5) Make a new directory

6) Remove an empty directory
7) Temporary escape to command language

Select by entering a number from 1 to 7:

If you enter a 3, the shell command file xpwd is executed.

5-21

GUIDE(S) File Formats-8560 MUSDU System Reference Manual

5-22

SHELL COMMAND FILES
You should be familiar with the operation of the TNIX shell before attempting to
write a shell command file for use with GUIDE. Refer to the Shell section of the
8560 MUSDU System Users Manual for further information on shell procedures.

The shell command files executed by the menu program must begin with the line:

eval '''cat $GL'"

This command synchronizes the current directory and environment with your
current directory and environment. Certain variables are made available to the
executing shell program, specifically:

$GL is the name of the temporary file containing a global environment
consisting of the "$Ievel" variable, the current directory, and the "$uP"
variable, all stored as shell commands.

$Ievel is set equal to a or b depending on the selected prompting level.

SuP is a global environment variable used by 8540.

$IU is set to the tty number of the 8540 or 8550, if you have selected it.

A simple example of a shell program that executes the pwd command is:

eval '''cat $GLjI,
sh -ex "pwd"
case "$Ievel" in

esac
read x

a) echo -n "[press return to continue]";;
b) echo -n "[continue]";;

The first line synchronizes TN IX'. idea of the global environment with your
selected environment. The second line executes a pwd command while displaying
the command on your terminal. The case statement writes a message, based on
the value of the global variable $Ievel, on your screen. The read statement returns
program control to the calling menu program when the RETURN key is pressed.

This shell command file is a simple example of a program that can be used with
GUIDE. More complex programs are possible; their implementation depends on
your knowledge of the shell command language. Examine the shell command files
provided with the 8560 as needed for specific examples of the types of command
files used by guide.

FILES
lusr/bin/guide - the top level shell program
lusr/lib/guide/menu - the menu file interpreter
lusr/lib/guide/main - the top level menu
Itmp/gl$$ - temporary file
lusr/lib/* Imain - other menus
lusr/lib/* Ix· - other shell programs

SEE ALSO
gulde(6)
The Shell section of the 8560 MUSDU System Users Manual.

@

File Formats-8560 MUSDU Reference Manual MTAB(5)

MTAB(5)
NAME

mtab-mounted file system table

DESCRIPTION
/etc/mtab is a table of currently mounted filesystems. The mount command adds entries to
this table; umount removes them.

Each entry is 64 bytes long. The first 32 are the null-padded name of the file the filesystem is
mounted on (e.g. "/usr1 "); the last 32 are the null-padded name of the special file involved
(less any directory names: /dev/hdO would be stored as "hdO").

FILES
/etc/mtab

SEE ALSO
mount(2), mount(8)

ADD NOV 1982 5-22a

MTAB(5) File Formats-8560 MUSDU Reference Manual

[This page intentionally left blank.]

5-22b ADD NOV 1982

File Formats-8560 MUSDU System Reference Manual PASSWD(5)

@

PASSWD(5)

NAME
passwd - password fi Ie

DESCRIPTION
Passwd contains for each user the following information:

login name
encrypted password
numerical user 10
numerical group 10
a spare field for future use
initial working directory
program to use as Shell

This is an ASCII file. Each field within each user's entry is separated from the next
by a colon. The spare field can contain any desired information. Each user is
separated from the next by a new-line. If the password field is null, no password is
demanded; if the Shell field is null, the Shell itself is used.

This file resides in directory letc. Because of the encrypted passwords, it can and
does have general read permission and can be used, for example, to map numeri­
cal user 10's to names.

FILES
letclpasswd

SEE ALSO
getpwent(3), login(1), crypt(3), passwd(1), group(5)

5-23

PLOT(5) File Formats-8560 MUSDU System Reference Manual

5-24

PLOT(5)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot (3), and are inter­
preted for various devices by commands described in plot (1). A graphics file is a
stream of plotting instructions. Each instruction consists of an ASCII letter usually
followed by bytes of binary information. The instructions are executed in order. A
point is designated by four bytes representing the x and y values; each value is a
Signed integer. The last designated point in an I, m, n, or p instruction becomes
the Icurrent point' for the next instruction.

Each of the following descriptions begins with the name of the corresponding rou­
tine in plot (3).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next four
bytes. See plot (1).

p point: Plot the point given by the next four bytes.

line: Draw a line from the point given by the next four bytes to the point
given by the following four bytes.

label: Place the following ASCII string so that its first character falls on the
current point. The string is terminated by a newline.

a arc: The first four bytes give the center, the next four give the starting point,
and the last four give the end point of a circular arc. The least Significant
coordinate of the end point is used only to determine the quadrant. The arc
is drawn counter-clockwise.

c circle: The first four bytes give the center of the circle, the next two the
radius.

e erase: Start another frame of output.

linemod: Take the following string, up to a newline, as the style for drawing
further lines. The styles are Idotted,' Isolid,' Iiongdashed,' Ishortdashed,' and
Idotdashed.' Effective only in plot 4014 and plot ver.

a space: The next four bytes give the lower left corner of the plotting area;
the following four give the upper right corner. The plot will be magnified or
reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear
below for devices supported by the filters of plot (1). The upper limit is just

@

File Formats-8560 MUSDU System Reference Manual PLOT(5)

@

SEE ALSO

outside the plotting area. In every case the plotting area is taken to be
square; points outside may be displayable on devices whose face isn't
square.

4014 space(O, 0, 3120, 3120);
ver space(O, 0,2048,2048);
300,3001

space(O, 0, 4096, 4096);
450 space(O, 0, 4096, 4096);

plot(1), plot(3), graph(1)

5-25

TTYS(5) File Formats-8560 MUSDU System Reference Manual

5-26

TTYS(5)

NAME
ttys - terminal initialization data

DESCRIPTION
The ttys file is read by the init program and specifies which terminal special files
are to have a process created for them which will allow people to log in. It con­
tains one line per special file.

The first character of a line is either '0' or '1'; the former causes the line to be
ignored, the latter causes it to be effective. The second character is used as an
argument to getty (S), which performs such tasks as baud-rate recognition, reading
the login name, and calling login. The characters recognized by getty(S) are
included with the description of getty.

FILES
letc/ttys

SEE ALSO
. init(8), getty(8), login(1)

@

File Formats-8560 MUSDU System Reference Manual UTMP(5)

@

UTMP(5)

NAME
utmp, wtmp - login records

SYNTAX
#Include < utmp.h>

DESCRIPTION
The utmp file allows one to discover information about who is currently using TNIX.
The file is a sequence of entries with the following structure declared in the
include file:

struct utmp {
char utJine[8];
char utname[8];
long uttime;

} ;

/* tty name *1
/* user id *1

/* time on *1

This structure gives the name of the special file associated with the user's termi­
nai, the user;s iogln name, and the time of the iogln In the form of time (2j.

The wtmp file records all logins and logouts. Its format is exactly like utmp except
that a null user name indicates a logout on the associated terminal. Furthermore,
the terminal name ,-, indicates that the system was rebooted at the indicated time;
the adjacent pair of entries with terminal names 'I' and '}' indicate the system­
maintained time just before and just after a date command has changed the
system's idea of the time.

Wtmp is maintained by login (1) and init (8). Neither of these programs creates the
file, so if it is removed record-keeping is turned off. It is summarized byac (1).

FILES
letc/utmp
lusr/adm/wtmp

SEE ALSO
login(1), init(8), who(1)

5-27

8560 MUSDU System Reference Manual

@

INTRODUCTION

Section 6
Category C Software

This Section describes the Category C software supplied by Tektronix. The
three software packges which are described in this section and which comprise
the class of software refered to as Category C software include:

1. Optional Text Processing Package 8560U01

2. Optional Native Programming Package 8560U02

3. Optional Auxiliary Utilities Package 8560U03

This section also describes software products such as GUIDE and ATO­
BASM which are included as a part of the base software package.

NOTE

The products described in this section are provided by Tektronix as
Category C software. Tektronix makes no warranty, expressed or
implied, that this software is suitable for a specific purpose or that it
performs any specific function correctly. Tektronix has determined
that this software can be installed and will execute in the specified
environment, but the suitability of the software and its correct opera­
tion are the customer's responsibility. Tektronix assumes no liability
for any damage resulting from the use of this software, either directly
or indirectly.

6-1

Category C-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

6-2

Category C-8560 MUSDU System Reference Manual ADB(6)

(0)

Optional Native Programming Package 8560U02

ADB(6)

NAME
adb - debugger

SYNTAX
adb [-w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used to examine files and
to provide a controlled environment for the execution of TNIX programs.

Objfil is normally an executable program file, preferably containing a symbol table;
if not then the symbolic features of adb cannot be used although the file can still
be examined. The default for obifil is a.out. Corfi! is assumed to be a core image
file produced after executing obifil ; the default for corfi! is cor •.

Requests to adb are read from the standard input and responses are to the stan­
dard output. If the -w flag is present then both obifi! and corfil are created if
necessary and opened for reading and writing so that files can be modified using
adb. Adb ignores QUIT; INTERRUPT causes return to the next adb command.

In general requests to adb are of the form

[address] [, count 1 [command] [;]

If address is present then dot is set to address. Initially dot is set to O. For most
commands count specifies how many times the command will be executed. The
default count is 1. Address and count are expressions,

The interpretation of an address depends on the context It Is used in. If a subpro­
cess is being debugged then addresses are interpreted in the usual way in the
address space of the subprocess. For further details of address mapping see
ADDRESSES.

EXPRESSIONS
The value of dot ..

+ The value of dot Incremented by the current increment.

The value of dot decremented by the current Increment.

" The last address typed.

Integer
An octal number If integer begins with a 0; a hexadecimal number If pre­
ceded by # ; otherwise a decimal number.

Integer . fraction
A 32 bit floating pOint number .

• ecce' The ASCII value of up to 4 characters. \ may be used to escape a '.

< name
The value of name. which Is either a variable name or a register name.
Adb maintains a number of variables (see VARIABLES) named by single
letters or digits. If name Is a register name then the value of the register Is
obtained from the system header In corfil. The register names are
rO ... r5 ap pc PI .

6-3

ADS(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

6-4

symbol
A symbol is a sequence of upper or lower case letters, underscores or
digits, not starting with a digit. The value of the symbol is taken from the
symbol table in objfil. An initial _ or - will be prepended to symbol if
needed.

_ symbol
In C, the Itrue name' of an external symbol begins with _. It may be neces­
sary to utter this name to disinguish it from internal or hidden variables of a
program.

routine. name

(exp)

The address of the variable name in the specified C routine. Both routine
and name are symbols. If name is omitted the value is the address of the
most recently activated C stack frame corresponding to routine.

The value of the expression exp .

Monadic operators

* exp The contents of the location addressed byexp in corfil .

@ exp The contents of the location addressed byexp in objfil .

- exp Integer negation.

- exp Bitwise complement.

Dyadic operators are left associative and are less binding than monadic operators.

e1 + e2
Integer addition.

e1 - e2
Integer subtraction.

e1 * e2
Integer multiplication.

e1 % e2
Integer division.

e1 & e2
Bitwise conjunction.

e11 e2
Bitwise diSjunction.

81 # 82
E1 rounded up to the next multiple of e2 .

@

Category C-8560 MUSDU System Reference Manual ADB(6}

((D

Optional Native Programming Package 8560U02

COMMANDS
Most commands consist of a verb followed by a modifier or list of modifiers. The
following verbs are available. (The commands I?' and II' may be followed by'·';
see ADDRESSES for further details.)

? f Locations starting at address in objfil are printed according to the format f .

I f Locations starting at address in corfil are printed according to the format f .

- f The value of address itself is printed in the styles indicated by the format f. (For
I format I?' is printed for the parts of the instruction that reference subsequent
words.)

A format consists of one or more characters that specify a style of printing. Each format
character may be preceded by a decimal integer that is a repeat count for the format
character. While stepping through a format dot is incremented temporarily by the
amount given for each format letter. If no format is given then the last format is used.
The format letters available are as follows.

a 2
Print 2 bytes in octs!. AI! octal numbers output byadb are preceded by O.

o 4
Print 4 bytes in octal.

Q 2
Print in signed octal.

Q 4
Print long signed octal.

d 2
Print in decimal.

o 4
Print long decimal.

x 2
Print 2 bytes in hexadecimal.

X 4
Print 4 bytes in hexadecimal.

u 2
Print as an unsigned decimal number.

U 4
Print long unsigned decimal.

f 4
Print the 32 bit value as a floating point number.

F 8
Print double floating point.

b 1
Print the addressed byte in octal.

c 1
Print the addressed character.

C 1
Print the addressed character using the following escape convention. Character
values 000 to 040 are printed as @ followed by the corresponding character in
the range 0100 to 0140. The character @ is printed as @@.

6-5

ADS(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

6-6

s n
Print the addressed characters until a zero character is reached.

S n
Print a string using the @ escape convention. n is the length of the string .
including its zero terminator.

Y 4
Print 4 bytes in date format (see ctime (3)).
n
Print as PDP11 instructions. n is the number of bytes occupied by the instruc­
tion. This style of printing causes variables 1 and 2 to be set to the offset parts
of the source and destination respectively.

a 0
Print the value of dot in symbolic form. Symbols are checked to ensure that they
have an appropriate type as indicated below.

1 local or global data symbol
? local or global text symbol

local or global absolute symbol

p 2
Print the addressed value in symbolic form using the same rules for symbol
lookup as a .

t 0
When preceded by an integer tabs to the next appropriate tab stop. For exam­
ple, 8t moves to the next a-space tab stop.

r 0
Print a space.

n 0
Print a newline.

" ... " 0 Print the enclosed string.
Dot is decremented by the current increment. Nothing is printed.

+ Dot is incremented by 1. Nothing is printed.
Dot is decremented by 1. Nothing is printed.

newline
If the previous command temporarily incremented dot, make the increment per­
manent. Repeat the previous command with a count of 1.

[11] I value mask
Words starting at dot are masked with mask and compared with value until a
match is found. If L is used then the match is for 4 bytes at a time instead of 2.
If no match is found then dot is unchanged; otherwise dot is set to the matched
location. If mask is omitted then -1 is used.

[1 I] w value ...
Write the 2-byte value into the addressed location. If the command is W , write
4 bytes. Odd addresses are not allowed when writing to the subprocess address
space.

@

Category C-8560 MUSDU System Reference Manual ADB(6)

@

Optional Native Programming Package 8560U02

[711m b1 e1 f1 [711
New values for (b1, e1, f1) are recorded. If less than three expressions are
given then the remaining map parameters are left unchanged. If the I?' or 'I' is
followed by'.' then the second segment (b2 ,e2 ,f2) of the mapping is changed.
If the list is terminated by'?' or 'I' then the file (objfi! or corfi! respectively) is
used for subsequent requests. (So that, for example, '1m?' will cause 'I' to refer
to objfil .)

> name
Dot is assigned to the variable or register named.

A shell is called to read the rest of the line following 'I'.

S modifier
Miscellaneous commands. The available modifiers are:

< f Read commands from the file f and return.
> f Send output to the file f, which is created if it does not exist.
r Print the general registers and the instruction addressed by pc. Dot is

set to pc.
f Print the floating registers in single or double length. If the floating point

status of ps is set to double (0200 bit) then double length is used any­
way.

b Print all breakpoints and their associated counts and commands.
a ALGOL 68 stack backtrace. If address is given then it is taken to be the

address of the current frame (instead of r4). If count is given then only
the first count frames are printed.

c C stack backtrace. If address is given then it is taken as the address of
the current frame (instead of r5). If C is used then the names and (16
bit) values of all automatic and static variables are printed for each
active function. If count is given then only the first count frames are
printed.

e The names and values of external variables are printed.
w Set the page width for output to address (default 80).
s Set the limit for symbol matches to address (default 255).
o All integers input are regarded as octal.
d Reset integer input as described in EXPRESSIONS.
q Exit from adb .
v Print all non zero variables in octal.
m Print the address map.

: modifier
Manage a subprocess. Available modifiers are:

b c Set breakpoint at address. The breakpoint is executed count -1 times
before causing a stop. Each time the breakpoint is encountered the com­
mand c is executed. If this command sets dot to zero then the breakpoint
causes a stop.

d Delete breakpoint at address.

6-7

ADB(6) Category C-8560 MUSDU System Reference Manual
OptIOnal Native Programming Package 8560U02

6-8

r Run objfi/ as a subprocess. If address is given explicitly then the pro­
gram is entered at this point; otherwise the program is entered at its
standard entry point. count specifies how many breakpoints are to be
ignored before stopping. Arguments to the subprocess may be supplied
on the same line as the command. An argument starting with < or >
causes the standard input or output to be established for the command.
All Signals are turned on on entry to the subprocess.

c 8 The subprocess is continued with Signal s c s, see signal (2). If address
is given then the subprocess is continued at this address. If no signal is
specified then the Signal that caused the subprocess to stop is sent.
Breakpoint skipping is the same as for r .

8 8 As for c except that the subprocess is single stepped count times. If
there is no current subprocess then objfil is run as a subprocess as for
r. In this case no signal can be sent; the remainder of the line is treated
as arguments to the subprocess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set initially by adb but
are not used subsequently. Numbered variables are reserved for communication
as follows.

o The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the corfil. If corfil does not
appear to be a core file then these values are set from objfil .

b The base address of the data segment.
d The data segment size.
e The entry poi nt.
m The Imagic' number (0405, 0407, 0410 or 0411).
8 The stack segment size.
t The text segment size.

ADDRESSES
The address in a file associated with a written address is determined by a mapping
associated with that file. Each mapping is represented by two triples (b1, e1, f1)
and (b2, e2, f2) and the file address corresponding to a written address is calcu­
lated as follows.

b1 ~ address < e1 => file address = address + f1-b1,
otherwise,

b2 ~ address < e2 => file address = address + f2-b2,

otherwise, the requested address is not legal. In some cases (e.g. for programs with
separated I and D space) the two segments for a file may overlap. If a? or / Is fol­
lowed by an· then only the second triple Is used.

(n)

Category C-8560 MUSDU System Reference Manual ADS(6)
Optional Native Programming Package 8560U02

The initial setting of both mappings is suitable for normal a.out and core files. If either
file is not of the kind expected then, for that file, b 1 is set to 0, e 1 is set to the maximum
file size and'1 is set to 0; in this way the whole file can be examined with no address
translation.

So that adb may be used on large files all appropriate values are kept as signed 32 bit
integers.

FILES
/dev/mem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(5), core(5)

DIAGNOSTICS
'Adb' when there is no current command or format. Comments about inaccessible
files, syntax errors, abnormal termination of commands, etc. Exit status is 0, unless
iast command faiied or returned nonzero status.

NOTES
A breakpoint set at the entry point is not effective on initial entry to the program.
When single stepping, system calls do not count as an executed instruction.
Local variables whose names are the same as an external variable may foul up the
accessing of the external.

6-9

ADB(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-10 ((I)

Category C-8560 MUSDU System Reference Manual AR(6)

((r)

Optional Native Programming Package 8560U02

NAME
ar - archive and library maintainer

SYNTAX
ar key [posname] afile name ...

DESCRIPTION
Af maintains groups of files combined into a single archive file. Its main use is to
create and update library files as used by the loader. It can be used, though, for
any similar purpose.

Key is one character from the set drqtpmx, optionally concatenated with one or
more of vualbcl. Atile is the archive file. The names are constituent files in the
archive file. The meanings of the key characters are:

d Delete the named files from the archive file.

r Replace the named files in the archive file. If the optional character u is
used with r, then only those files with modified dates later than the archive
files are replaced. If an optional positioning character from the set abl is
used, then the posname argument must be present and specifies that new
files are to be placed after (a) or before (b or I) posname. Otherwise
new files are placed at the end.

q Quickly append the named files to the end of the archive file. Optional
positioning characters are invalid. The command does not check whether
the added members are aiready in the archive. Useful only to avoid qua­
dratic behavior when creating a large archive piece-by-piece.

Print a table of contents of the archive file. If no names are given, all files
in the archive are tabled. If names are given, only those files are tabled.

p Print the named files in the archive.

m Move the named files to the end of the archive. If a positioning character is
present, then the posname argument must be present and, as in r, specifies
where the files are to be moved.

x Extract the named files. If no names are given, all files in the archive are
extracted. In neither case does x alter the archive file.

v Verbose. Under the verbose option, af gives a file-by-file description of the
making of a new archive file from the old archive and the constituent files.
When used with t, it gives a long listing of all information about the files.
When used with p , it precedes each file with a name.

c Create. Normally af will create atile when it needs to. The create option
suppresses the normal message that is produced when atile is created.

Local. Normally af places its temporary files in the directory Itmp. This
option causes them to be placed in the local directory.

6-11

AR(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

6-12

FILES
/tmp/v* temporaries

SEE ALSO
Id(1), ar(S), lorder(1)

NOTES
If the same file is mentioned twice in an argument list, it may be put in the archive
twice.

(Ii)

Category C-8560 MUSDU System Reference Manual ARCV(6)

(cD

Optional Native Programming Package 8560U02

ARCV(6)

NAME
arcv - convert archives to new format

SYNTAX
arcv file ...

DESCRIPTION
Arcv converts archive files (see ar (1), ar (5)) from 6th edition to 7th edition format.
The conversion is done in place, and the command refuses to alter a file not in old
archive format.

Old archives are marked with a magic number of 0177555 at the start; new
archives have 0177545.

FILES
/tmp/v*, temporary copy

SEE ALSO
orl1\ orl~\
QI \ I I, QI \oJl

6-13

ARCV(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-14 (II)

Category C-8560 MUSDU System Reference Manual AS(6)

((I)

Optional Native Programming Package 8560U02

1\8(6)

NAME
as - assembler

SYNTAX
a8 [-] [-0 objfile] file ...

DESCRIPTION
As assembles the concatenation of the named files. If the optional first argument
- is used, all undefined symbols in the assembly are treated as global.

The output of the assembly is left on the file obj/ile; if that is omitted, a.out is used.
It is executable if no errors occurred during the assembly, and if there were no
unresolved external references.

FILES
Ilib/as2 pass 2 of the assembler
Itmp/atm[1-3]? temporary
a.out object

SEE ALSO
Id(1), nm(1), adb(1), a.out(5)
TNIX Assembler Manual by D. M. Ritchie

DIAGNOSTICS
When an input file cannot be read, its name followed by a question mark is typed
and assembly ceases. When syntactic or semantic errors occur, a single-character
diagnostic is typed out together with the line number and the file name in which it
occurred. Errors in pass 1 cause cancellation of pass 2. The possible errors are:

<
*

a
b
e
f
g
i
m
o
p
r
u
x

NOTES

Parentheses error
Parentheses error
String not terminated properly
Indirection used illegally
Illegal assignment to '.'
Error in address .
Branch instruction is odd or too remote
Error in expression
Error in local ('f' or 'b') type symbol
Garbage (unknown) character
End of file inside an if
Multiply defined symbol as label
Word quantity assembled at odd address
'.' different in pass 1 and 2
Relocation error
Undefined symbol
Syntax error

Syntax errors can cause incorrect line numbers in following diagnostics.

6-15

AS(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-16 (ol

Category C-8560 MUSDU System Reference Manual AT(6)

(0)

Optional Auxiliary Utilities Package 8560U03

AT(6)

NAME
at - execute commands at a later time

SYNTAX
at time [day] [file]

DESCRIPTION
At squirrels away a copy of the named file (standard input default) to be used as
input to sh (1) at a specified later time. A cd (1) command to the current directory
is inserted at the beginning, followed by assignments to all environment variables.
When the script is run, it uses the user and group ID of the creator of the copy file.

The time is 1 to 4 digits, with an optional following 'A', 'P', 'N' or 'M' for AM, PM,
noon or midnight. One and two digit numbers are taken to be hours, three and four
digits to be hours and minutes. If no letters follow the digits, a 24 hour clock time
is understood.

The optional day is either (1) a month name followed by a day number, or (2) a day
of the week; if the word 'week' follows invocation is moved seven days further off.
Names of months and days may be recognizably truncated. Examples of legitimate
commands are

at 8am jan 24
at 1 530 fr week

At programs are executed by periodic execution of the command lusrl/iblatrun from
eron (8). The granularity of at depends upon how often atrun is executed.

Standard output or error output is lost unless redirected.

FILES
lusrispool/at/yy.ddd.hhhh.uu
activity to be performed at hour hhhh of year day ddd of year yy. uu is a unique
number.
lusrlspool/atllasttimedone contains hhhh for last hour of activity.
lusrlspool/atlpast directory of activities now in progress
lusr/lib/atrun program that executes activities that are due
pwd(1)

SEE ALSO
calendar(1), cron(8)

DIAGNOSTICS
Complains about various syntax errors and times out of range.

NOTES
Due to the granularity of the execution of lusrl/iblatrun, there may be bugs in
scheduling things almost exactly 24 hours into the future.

6-17

AT(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-18

Category C-8560 MUSDU System Reference Manual ATOBASM(6)

ATOBASM(6)
NAME

atobasm-A series to B series conversion program for non-microprocessor -specific source
code.

SYNTAX
atobasm [-0 newfilel [-n] [-m I infile

DESCRIPTION
Atobasm converts non-microprocessor-specific A series assembler source code into B se­
ries assembler source code where possible, generating conversion messages or error mes­
sages where manual intervention is necessary.

OPTIONS
-m Merge the message file with the output source.
-n Turn off the conversion for reserved words and labels.
-0 Output the B series source to newfile; otherwise, sends the B series source to

the standard output.

SOURCE DIFFERENCES

REV NOV 1982

Here is a list of source differences between the A series and B series assemblers:

1. Text substitution delimiter

A series: delimiter = '

B series: delimiter = "

2. String delimiter

A series: delimiter = "

B series: delimiter = '

Instances of 1\' and 1\" will be kept in their original (correct) form.

3. TR M list option

A series: available

B series: replaced by the LINE directive

4. Numeric operand set to a string

A series: Numeric converted to a string; truncated on right.

B series: Numeric treated as a literal; truncated on left.

Example of A series: STRING A,8(3)
A

B

B

SET 6
SET -3;
SET 1234;

sets A to -000006-
sets B to --00-
sets B to -001-

Example of B series: STRING A,8(3)
A
B
B

SET
SET

6
-3

SET 1234

sets A to -6-
sets B to --3-
sets B to -123- and a truncation error

6-19

ATOBASM(6) Category C-8560 MUSDU System Reference Manual

6-20

5. Labels allowed on the ELSE, ENDIF, ENDR, EXITM, LIST, MACRO, NAME, NOLlST,
PAGE, REPEAT, SPACE, STITLE, STRING, TITLE, and WARNING instructions

A series: labels are permitted

B series: labels are not permitted

6. Reserved words-ADDRESS, ALIGN, BITS, CLASS, ELSEIF, EXITR, FLOAT, LONG,
LINE, MACLlB, STOPS, STRINGOF, TIMES, XREF

A series: not used as reserved words

B series: reserved words

7. Variable name length

A series: only the first 8 characters of a variable name are recognized

B series: the first 16 characters of a variable name are recognized

Variable name length can be a problem if you define a variable named
"VERYLONGLABEL" in an A series program, but later refer to it within the same pro­
gram as "VERYLONG". Since the B series assembler would treat them as two distinct
variables, "VERYLONG" would be undefined in the B series assembler.

EXAMPLES
Here are some typical command invocations:
$ RtobRsm oldfile <CR>

This uses the file "oldfile" as input and produces a file on standard output with the messages
and source code merged.
$ Rtobasm -0 newfile oldfile <CR>

The file "oldfile" will be used as input. The source code will be output to "newfile" and the
messages will be sent to standard output.
$ atobasm -0 newfile -m oldfile <CR>

or
$ atobasm oldfile >newfile <CR>

The file "oldfile" will be used as input. The messages and source code will be merged into
"newfile"
$ atobasm oldfile 2>errfile <CR>

The file "oldfile" will be used as input. The conversion messages and source code merged
will be sent to standard output. The error messages will be output into "errfile".

CONVERSION MESSAGES
The following conversion messages may be generated:

atobasm: line nn Invalid A series syntax; remainder of line skipped
atobasm: line nn Include file must be converted also, check file name
atobasm: line nn <symbol> changed to <symbol>
atobasm: Substituted values may be keywords on the following lines:

atobasm:
nn, nn, nn, ...
String delimiter' is converted to " on the following lines:
nn, nn, nn, ...

REV NOV 1982

Category C-8560 MUSDU System Reference Manual ATOBASM(6)

atobasm:

atobasm:

atobasm:

atobasm:

atobasm:

String delimiter" is converted to ' on the following lines:
nn, nn, nn, ...
Numberic operand conversion done on the following lines:
nn, nn, nn, ...
Labels conversion done on the following lines:
nn, nn, nn, ...
TRM conversion done on the following lines:
nn, nn, nn, ...
String delimiter" is converted to /\" on the following lines:
nn, nn, nn, ...
nn is the line number of the B series assembler output file.

ERROR MESSAGES
The following error messages may be generated:

atobasm:
atobasm:
atobasm:
atobasm:
atobasm:
atobasm:

file read error
file write error
memory overflow
cannot open file
input <file> is output
usage: atobasm [-0 outfile] [-n] [-m] infile

NOTES

REV NOV 1982

Atobasm works for all legal A series assembler programs, subject to the following
constraints:

a. Atobasm will:

• change the text substitution delimiter to its equivalent B series form ("); and wiii

• truncate the variable name within the text substitution delimiters to 8 characters.

b. Atobasm will not:

• convert the variable name within the text substitution delimiters if it is a B series
reserved word;

• convert a B series reserved word when it is composed of substituted text and
leading and/or trailing text; or

• truncate a variable to 8 characters when it is composed of substituted text and
leading and/or trailing text.

c. Atobasm is restricted to source code that is not microprocessor-specific. For
microprocessor-specific differences between the A series and B series assemblers, refer
to the appropriate Assembler Specifics supplement to your 8500 Modular M DL Series B
Series Assembler Users Manual.

d. Atobasm will not check TRM options placed in the operand field of a LIST or NOLIST
statement via text substitution. You must manually convert the statement.

e. A numeric value set to a string variable may use an expression or constant (decimal,
binary, octal, or hexadecimal) format, but must yield a valid A series constant (a value
between -32768 and 32767).

6-21

ATOBASM(6) Category C-8560 MUSDU System Reference Manual

6-22

f. The string delimiter in the comment field is converted to 1\".

g. Variable names in the comment field are not truncated to 8 characters.

h. You must convert include files before you assemble the program. You must convert
library files before link time.

FILES
.atob.tmp-temporary file
.atob. tpmesfile-temporary file

REV NOV 1982

Category C-8560 MUSDU System Reference Manual AWK(6}
Optional Auxiliary Utilities Package 8560U03

AWK(6)

NAME
awk - pattern scanning and processing language

SYNTAX
awk [-F c] [prog] [file] ...

DESCRIPTION
Awk scans each input file for lines that match any of a set of patterns specified in
prog. With each pattern in prog there can be an associated action that will be
performed when a line of a file matches the pattern. The set of patterns may
appear literally as prog, or in a file specified as -f file.

Files are read in order; if there are no files, the standard input is read. The file
name 1_' means the standard input. Each line is matched against the pattern por­
tion of every pattern-action statement; the associated action is performed for each
matched pattern.

An input line is made up of fields separated by white space. (This default can be
changed by using FS.) The fields are denoted $1, $2, ... ; $0 refers to the entire
line.

A pattern-action statement has the form

pattern { action }

A missing { action} means print the line; a missing pattern always matches.

An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression; conditional; expression) statement
break
continue
{ [statement] ... }
variable = expression
print [expression-list] [> expression]
printf format [, expression-list] [> expression]
next # skip remaining patterns on this input line
exit # skip the rest of the input

Statements are terminated by semicolons, newlines or right braces. An empty
expression-list stands for the whole line. Expressions take on string or numeric
values as appropriate, and are built using the operators +, -, *, I, %, and concate­
nation (indicated by a blank). The C operators ++,--, +=,-=, *=, 1=, and %=
are also available in expressions. Variables may be scalars, array elements
(denoted x[i]) or fields. Variables are initialized to the null string. Array subscripts
may be any string, not necessarily numeric; this allows for a form of associative
memory. String constants are quoted" ... ".

6-23

AWK(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

6-24

The print statement prints its arguments on the standard output (or on a file if
>file is present), separated by the current output field separator, and terminated
by the output record separator. The printf statement formats its expression list
according to the format (see printf (3)).

The built-in function length returns the length of its argument taken as a string, or
of the whole line if no argument. There are also built-in functions exp, log, sqrt,
and int. The last truncates its argument to an integer. substr(s, m, n) returns the
n -character substring of s that begins at position m. The function
sprintf(fmt, expr, expr, .. J formats the expressions according to the printf (3) format
given by fmt and returns the resulting string.

Patterns are arbitrary Boolean combinations 0, II, &&, and parentheses) of regular
expressions and relational expressions. Regular expressions must be surrounded
by slashes and are as in egrep. Isolated regular expressions in a pattern apply to
the entire line. Regular expressions may also occur in relational expressions.

A pattern may consist of two patterns separated by a comma; in this case, the
action is performed for all lines between an occurrence of the first pattern and the
next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression re!op expression

where a relop is any of the six relational operators in C, and a matchop is either -
(for contains) or r (for does not contain). A conditional is an arithmetic expres­
sion, a relational expression, or a Boolean combination of these.

The special patterns BEGIN and END may be used to capture control before the
first input line is read and after the last. BEGIN must be the first pattern, END the
last.

A single character c may be used to separate the fields by starting the program
with

BEGIN { FS = "c" }

or by using the -F c option.

Other variable names with special meanings include NF, the number of fields in the
current record; NR, the ordinal number of the current record; FILENAME, the name
of the current input file; OFS, the output field separator (default blank); ORS, the
output record separator (default newline); and OFMT, the output format for
numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length> 72

Print first two fields in opposite order:

{ print $2, $1 }

Category C-8560 MUSDU System Reference Manual AWK(6)
OPtional Auxiliary Utilities Package

Add up first column, print sum and average:

{s+=$1}
END { print "sum is", s, II average is", s/NR }

Print fields in reverse order:

{ for (i = NF; i > 0; --0 print $i }

Print all lines between start/stop pairs:

Istart/, Istopl

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

SEE ALSO
lex(1), sed(1)
A. V. Aho, B. W. Kernighan, P. J. Weinberger, Awk - a pattern scanning and pro­
cessing language

NI'\TCQ . ~.~...,
There are no explicit conversions between numbers and strings. To force an
expression to be treated as a number add 0 to it; to force it to be treated as a
string concatenate "" to it.

6-25

AWK(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-26 @

Category C-8560 MUSDU System Reference Manual BAS(6)

@

Optional Native Programming Package 8560U02

BAS(6)

NAME
bas - basic

SYNTAX
bas [file]

DESCRIPTION
Bas is a dialect of Basic. If a file argument is provided, the file is used for input
before the terminal is read. Bas accepts lines of the form:

statement
integer statement

Integer numbered statements (known as internal statements) are stored for later
execution. They are stored in sorted ascending order. Non-numbered statements
are immediately executed. The result of an immediate expression statement (that
does not have '=' as its highest operator) is printed. Interrupts suspend computa­
tion.

Statements have the following syntax:

expression
The expression is executed for its side effects (assignment or function call)
or for printing as described above.

comment ...
This statement is ignored. It is used to interject commentary in a program.

done
Return to system level.

dump

edit

The name and current value of every variable is printed.

The TNIX editor, ed, is invoked with the file argument. After the editor exits,
this file is recompiled.

for name - expression expression statement
for name - expression expression

next
The for statement repetitively executes a statement (first form) or a group of
statements (second form) under control of a named variable. The variable
takes on the value of the first expression, then is incremented by one on
each loop, not to exceed the value of the second expression.

goto expression
The expression is evaluated, truncated to an integer and execution goes to
the corresponding integer numbered statment. If executed from immediate
mode, the internal statements are compiled first.

6-27

BAS(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

6-28

If expression statement
If expression

[else

fl
...]

The statement (first form) or group of statements (second form) is executed
if the expression evaluates to non-zero. In the second form, an optional
else allows for a group of statements to be executed when the first group is
not.

list [expression [expression]]
is used to print out the stored internal statements. If no arguments are
given, all internal statements are printed. If one argument is given, only that
internal statement is listed. If two arguments are given, all internal state­
ments inclusively between the arguments are printed.

print list
The list of expressions and strings are concatenated and printed. (A string
is delimited by " characters.)

prompt list
Prompt is the same as print except that no newline character is printed.

return [expression]

run

The expression is evaluated and the result is passed back as the value of a
function call. If no expression is given, zero is returned.

The internal statements are compiled. The symbol table is re-initialized.
The random number generator is reset. Control is passed to the lowest
numbered internal statement.

SBve [expression [expression]]
Save is like list except that the output is written on the file argument. If no
argument is given on the command, b.out is used.

Expressions have the following syntax:

name
A name is used to specify a variable. Names are composed of a letter fol­
lowed by letters and digits. The first four characters of a name are signifi­
cant. .

number
A number is used to represent a constant value. A number is written in
Fortran style, and contains digits, an optional decimal point, and possibly a
scale factor consisting of an e followed by a possibly signed exponent.

(expression)
Parentheses are used to alter normal order of evaluation.

_ expression
The result is the negation of the expression.

(ill

Category C-8560 MUSDU System Reference Manual BAS(6}
Optional Native Programming Package 8560U02

expression operator expression
Common functions of two arguments are abbreviated by the two arguments
separated by an operator denoting the function. A complete list of opera­
tors is given below.

expression ([expression [, expression] ...])
Functions of an arbitrary number of arguments can be called by an expres­
sion followed by the arguments in parentheses separated by commas. The
expression evaluates to the line number of the entry of the function in the
internally stored statements. This causes the internal statements to be
compiled. If the expression evaluates negative, a builtin function is called.
The list of builtin functions appears below.

name [expression [, expression] ...]
Each expression is truncated to an integer and used as a specifier for the
name. The result is syntactically identical to a name. a[1,2] is the same as
a[1)[2]. The truncated expressions are restricted to values between 0 and
32767.

The following is the list of operators:

= is the assignment operator. The left operand must be a name or an
array element. The result is the right operand. Assignment binds right
to left,

& I & (logical and) has result zero if either of its arguments are zero. It
has result one if both its arguments are non-zero. I (logical or) has
result zero if both of its arguments are zero. It has result one if either
of its arguments are non-zero.

«-»---<>
The relational operators « less than, < = less than or equal, >
greater than, > = greater than or equal, = = equal to, < > not equal
to) return one if their arguments are in the specified relation. They
return zero otherwise. Relational operators at the same level extend
as follows: a> b> c is the same as a> b&b> c.

+ - Add and subtract.

• / Multiply and divide.

Exponentiation.

The following is a list of builtin functions:

argO)
is the value of the i -th actual parameter on the current level of func­
tion call.

exp(x)
is the exponential function of x .

log(x)
is the natural logarithm of x .

aqr(x)
is the sq uare root of x .

6-29

BAS(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

6-30

FILES

sln(x)
is the sine of x (radians).

cos(x)
is the cosine of x (radians).

atn(x)
is the arctangent of x. Its value is between -7r /2 and 7r /2.

rnd()
is a uniformly distributed random number between zero and one.

expr()
is the only form of program input. A line is read from the input and
evaluated as an expression. The resultant value is returned.

abs(x)
is the absolute value of x .

InUx)
returns x truncated (towards 0) to an integer.

/tmp/btm? temporary
b.out save file
/bin/edfor edit

DIAGNOSTICS
Syntax errors cause the incorrect line to be typed with an underscore where the
parse failed. All other diagnostics are self explanatory.

NOTES
Has been known to give core images.
Catches interrupts even when they are turned off.

(iD

Category C-8560 MUSDU System Reference Manual Be(6)
Optional Auxiliary Utilities Package 8560U03

BC(6}

NAME
bc - arbitrary-precision arithmetic language

SYNTAX
bc [- c] [-I] [f i Ie...]

DESCRIPTION
Be is an interactive processor for a language which resembles C but provides
unlimited precision arithmetic. It takes input from any files given, then reads the
standard input. The -I argument stands for the name of an arbitrary precision
math library. The syntax for be programs is as follows; L means letter a-z, E means
expression, S means statement.

Comments
are enclosed in /* and * /.

Names
simple variables: L
array eiements: L [E]
The words 'ibase', 'obase', and 'scale'

Other operands
arbitrarily long numbers with optional sign and decimal point.
(E)
sqrt (E)
length (E)
scale (E)
L(E, ... ,E)

Operators

number of significant decimal digits
number of digits right of decimal point

+ - * / % " (% is remainder; " is power)
+ + -- (prefix and postfix; apply to names)
== <= >= != < >
= =+ =*. =/ =% ="

Statements
E
{S; ... ; S}
if (E) S
while (E) S
for (E ; E ; E) S
null statement
break
quit

Function definitions
define L (L , .. " L) {

auto L, ... , L
S; .. , S
return (E)

6-31

Be(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

6-32

Functions in -I math library
s(x) sine
c(x) cosine
e(x) exponential
I(x) log
a(x) arctangent
j(n,x) Bessel function

All function arguments are passed by value.

The value of a statement that is an expression is printed unless the main
operator is an assignment. Either semicolons or newlines may separate
statements. Assignment to scale influences the number of digits to be
retained on arithmetic operations in the manner of de (1). Assignments to
ibase or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable
simultaneously. All variables are global to the program. 'Auto' variables
are pushed down during function calls. When using arrays as function
arguments or defining them as automatic variables empty square brackets
must follow the array name.

For example

scale = 20
define e(x){

auto a, b, c, i, s
a = 1
b = 1
s = 1
forO = 1; 1 = = 1; i + +){

a = aex
b = bel
C = alb
if(c = = 0) return(s)
s = s+c

defines a function to compute an approximate value of the exponential
function and

for(i=1; 1<=10; i++) eO)

prints approximate values of the exponential function of the first ten
integers.

Be is actually a preprocessor for de (1), which it invokes automatically,
unless the -c (compile only) option is present. In this case the de input is
sent to the standard output instead.

Category C-8560 MUSDU System Reference Manual Be(6)
Optional Auxiliary Utilities Package 8560U03

FILES
lusr/lib/lib.b mathematical library
dc(1) desk calculator proper

SEE ALSO
dc(1)
L. L. Cherry and R. Morris, Be - An arbitrary precision desk-calculator language

NOTES
No &&, II, or ! operators.
For statement must have all three E's.
Quit is interpreted when read, not when executed.

6-33

Be(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilitlf~S Pilckage 8560U03

[This page intentionally left blank.]

6-34

Category C-8560 MUSDU System Reference Manual CAL(6)

(ul

Optional Auxiliary Utilities Package 8560U03

CAL(S)

NAME
cal - print calendar

SYNTAX
cal [month] year

DESCRIPTION
Cal prints a calendar for the specified year. If a month is also specified, a calendar
just for that month is printed. Year can be between 1 and 9999. The month is a
number between 1 and 12. The calendar produced is that for England and her
colonies.

Try September 1752.

NOTES
The year is always considered to start in January even though this is historically
naive.
Beware that 'cal 78' refers to the early Christian era, not the 20th century.

6-35

CAl(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-36 (!D

Category C-8560 MUSDU System Reference Manual CALENDAR(6)
Optional Auxiliary Utilities Package 8560U03

CALENDAR(6)

NAME
calendar - reminder service

SYNTAX
calendar [-]

DESCRIPTION
Calendar consults the file 'calendar' in the current directory and prints out lines
that contain today's or tomorrow's date anywhere in the line. Most reasonable
month-day dates such as 'Dec. 7,' 'december 7,' '12/7,' etc., are recognized, but not
'7 December' or 7/12'. On weekends 'tomorrow' extends through Monday.

When an argument is present, calendar does its job for every user who has a file
Icalendar' in his login directory and sends him any positive results by mail (1 J.
Normally this is done dally in the wee hours under control of cron (8).

FILES
calendar
iusriiib/caiendar to figure out loday's and tomoiiOW'S dates
letc/passwd
Itmp/cal*
egrep, sed, mall subprocesses

SEE ALSO
at(1), cron(8), ma11(1)

NOTES
Your calendar must be public Information for you to get reminder service.
Calendar's extended idea of 'tomorrow' doesn't account for holidays.

6-37

CALENDAR(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-38 (n)

Category C-8560 MUSDU System Reference Manual CB(6)
Optional Native Programming Package 8560U02

CB(6)

NAME
cb - C program beautifier

SYNTAX
cb

DESCRIPTION
Cb places a copy of the C program from the standard input on the standard output
with spacing and indentation that displays the structure of the program.

6-39

CB(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-40 (ril

Category C-8560 MUSDU System Reference Manual CC(6)

(0;

Optional Native Programming Package 8560U02

CC(6)

NAME
cc, pcc - C compiler

SYNTAX
ee [option] .,. file ...

pee [option] .. , file ...

DESCRIPTION
Cc is the TNIX C compiler. It accepts several types of arguments:

Arguments whose names end with '.c' are taken to be C source programs; they are
compiled, and each object program is left on the file whose name is that of the
source with '.0' substituted for '.c'. The '.0' file is normally deleted, however, if a
single C program is compiled and loaded all at one go.

In the same way, arguments whose names end with '.s' are taken to be assembly
source programs and are assembled, producing a '.0' file.

The following options are interpreted by cc. See id (1 j for ioad-time options.

-q Turn off the printing of the name of each pass of the compiler as it is called
by cc (1). The default mode is to print them. This is sometimes called
noisy and quiet mode, depending on the the value of this switch.

-e Suppress the loading phase of the compilation, and force an object file to
be produced even if only one program is compiled.

-p Arrange for the compiler to produce code which counts the number of times
each routine is called; also, if loading takes place, replace the standard
startup routine by one which automatically calls monitor (3) at the start and
arranges to write out a mon.out file at normal termination of execution of
the object program. An execution profile can then be generated by use of
prof (1).

-f In systems without hardware floating-point, use a version of the C compiler
which handles floating-point constants and loads the object program with
the floating-point interpreter. Do not use if the hardware is present.

-0 Invoke an object-code optimizer.

-8 Compile the named C programs, and leave the assembler-language output
on corresponding flies suffixed '.s'.

-p Run only the macro preprocessor and place the result for each '.c' file in a
corresponding '.I' file and has no '#' lines in it.

-E Run only the macro preprocessor and send the result to the standard out­
put. The output is intended for complier debugging; it is unacceptable as
input to cc .

-0 output
Name the final output file output. If this option is used the file 'a.out' will
be left undisturbed.

6-41

CC(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

6-42

-0 name-def
-0 name

Define the name to the preprocessor, as if by '#define'. If no definition is
given, the name is defined as 1.

-U name
Remove any initial definition of name.

-I dlr '#include' files whose names do not begin with 'I' are always sought first in
the directory of the file argument, then in directories named in -I options,
then in directories on a standard list.

-8 atrlng
Find substitute compiler passes in the files named string with the suffixes
cpp, cO, c1 and c2. If string is empty, use a standard backup version.

-t [p012]
Find only the designated compiler passes in the files whose names are
constructed by a -8 option. In the absence of a -8 option, the string is
taken to be '/usr/cl'.

Other arguments are taken to be either loader option arguments, or C-compatlble
object programs, typically produced by an earlier ee run, or perhaps libraries of C­
compatible routines. These programs, together with the results of any compilations
specified, are loaded (In the order given) to produce an executable program with
name a.out.

The major purpose of the 'portable C compiler', pee, is to serve as a model on
which to base other compliers. Pee does not support options -f , -E , -8 , and
-t. It provides, In addition to the language of ee, unsigned char type data and Ini­
tialized bit fields.

FILES
file.c
flle.o
a.out
Itmp/ctm?
llib/cpp
IlIb/c[01]
llib/bcO
lusr/c/oc[012]
lusr/c/ocpp
llib/fc[01]
llib/c2
llib/crtO.o
II I b/m crtO.o
llib/fcrtO.o
Illb/libc.a
lusr/lnclude
Itmp/pc·
lusr/lib/ccom

input file
object file
loaded output
temporaries for ee
preprocessor
complier for ee
large pass O.
backup complier for ee
backup preprocessor
floating-point complier
optional optimizer
runtime startoff
startoff for profiling
startoff for floating-point Interpretation
standard library, see intro (3)
standard directory for '#Include' flies
temporaries for pee
complier for pee

Category C-8560 MUSDU System Reference Manual CC(6)
Optional Native Programming Package 8560U02

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall,
1978
D. M. Ritchie, C Reference Manual
monitor(3), prof(1), adb(1), Id(1)

DIAGNOSTICS
The diagnostics produced by C itself are intended to be self-explanatory. Occa­
sional messages may be produced by the assembler or loader. Of these, the most
mystifying are from the assembler, as (1), in particular 'm', which means a
multiply-defined external symbol (function or data).

NOTES
Pee is little tried on the PDP11; specialized code generated for that machine has
not been well shaken down. The -0 optimizer was designed to work with ee .. its
use with pee is suspect.

6-43

CC(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-44 (0'

Category C-8560 MUSDU System Reference Manual COL(6}
Optional Text Processing Package 8560UOl

COL(6)

NAME
col - filter reverse line feeds

SYNTAX
col [-bfx]

DESCRIPTION
Col reads the standard input and writes the standard output. It performs the line
overlays implied by reverse line feeds (ESC-7 in ASCII) and by forward and
reverse half line feeds (ESC-9 and ESC-8). Col is particularly useful for filtering
multicolumn output made with the '.rt' command of nroff and output resulting from
use of the tbl (1) preprocessor.

Although col accepts half line motions in its input, it normally does not emit them
on output. Instead, text that would appear between lines is moved to the next
lower full line boundary. This treatment can be suppressed by the -f (fine) option;
in this case the output from col may contain forward half line feeds (ESC-9), but
will still never contain either kind of reverse line motion.

If the -b option is given, col assumes that the output device in use is not capable
of backspacing. In this case, if several characters are to appear in the same place,
only the last one read will be taken.

The control characters SO (ASCII code 017), and SI (016) are assumed to start
and end text in an alternate character set. The character set (primary or alternate)
associated with each printing character read is remembered; on output, SO and SI
characters are generated where necessary to maintain the correct treatment of
each character.

Col normally converts white space to tabs to shorten printing time. If the -x option
is given, this conversion is suppressed.

All control characters are removed from the input except space, backspace, tab,
return, newline, ESC (033) followed by one of 789, SI, SO, and VT (013). This last
character is an alternate form of full reverse line feed, for compatibility with some
other hardware conventions. All other non-printing characters are ignored.

SEE ALSO
troff(1), tbI(1), greek(1)

NOTES
Can't back up more than 128 lines.
No more than 800 characters, Including backspaces, on a line.

6-45

COL(6} Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560UOl

[This page intentionally left blank.]

6-46

Category C-8560 MUSDU System Reference Manual CRYPT(6)
Optional Auxiliary Utilities Package 8560U03

CRYPT(6)

NAME
crypt - encode/decode

SYNTAX
crypt [password]

DESCRIPTION
Crypt reads from the standard input and writes on the standard output. The pass­
word is a key that selects a particular transformation. If no password is given,
crypt demands a key from the terminal and turns off printing while the key is being
typed in. Crypt encrypts and decrypts with the same key:

crypt key < clear> cypher
crypt key < cypher I pr

will print the clear.

Files encrypted by crypt are compatible with those treated by the editor ad in
encryption mode,

The security of encrypted files depends on three factors: the fundamental method
must be hard to solve; direct search of the key space must be infeasible; Isneak
paths' by which keys or cleartext can become visible must be minimized.

Crypt implements a one-rotor machine designed along the lines of the German
Enigma, but with a 256-element rotor. Methods of attack on such machines are
known, but not widely; moreover the amount of work required is likely to be large.

The transformation of a key into the internal settings of the machine is deliberately
designed to be expensive, I.e. to take a substantial fraction of a second to compute.
However, If keys are restricted to (say) three lower-case letters, then encrypted
files can be read by expending only a substantial fraction of five minutes of
machine time.

Since the key is an argument to the crypt command, it is potentially visible to users
executing ps (1) or a derivative. To minimize this possibility, crypt takes care to
destroy any record of the key immediately upon entry. No doubt the choice of keys
and key security are the most vulnerable aspect of crypt.

FILES
/dev/tty for typed key

SEE ALSO
ed(1), makekey(S)

NOTES
There is no warranty of merchantability nor any warranty of fitness for a particular
purpose nor any other warranty, either express or implied, as to the accuracy of the
enclosed materials or as to their suitability for any particular purpose. Accordingly,
Tektronix, Inc. assumes no responsibility for their use by the recipient. Further,
Tektronix, Inc. assumes no obligation to furnish any assistance of any kind whatso­
ever, or to furnish any additional Information or documentation.

6-47

CRYPT(6) Category C-8560 MUSDU System R~ference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-48

Category C-8560 MUSDU System Reference Manual DC(6)
Optional Auxiliary Utilities Package 8560U03

DC(6)

NAME
dc - desk calculator

SYNTAX
de [file]

DESCRIPTION
De is an arbitrary precision arithmetic package. Ordinarily it operates on decimal
integers, but one may specify an input base, output base, and a number of frac­
tional digits to be maintained. The overall structure of de is a stacking (reverse
Polish) calculator. If an argument is given, input is taken from that file until its end,
then from the standard input. The following constructions are recognized:

number
The value of the number is pushed on the stack. A number is an unbroken
string of the digits 0-9. It may be preceded by an underscore _ to input a
negative number. Numbers may contain decimal points.

+-/-Q/o "

The top two values on the stack are added (+), subtracted (-), multiplied
(*), divided (I), remaindered (%), or exponentiated ("). The two entries are
popped off the stack; the result is pushed on the stack in their place. Any
fractional part of an exponent is ignored.

I x The top of the stack is popped and stored into a register named x,
where x may be any character. If the I is capitalized, x is treated as
a stack and the value is pushed on it.

I x The value in register x is pushed on the stack. The register x is not
altered. All registers start with zero value. If the I is capitalized,
register x is treated as a stack and its top value is popped onto the
main stack.

d The top va.lue on the stack is duplicated.

p The top value on the stack is printed. The top value remains
unchanged. P interprets the top of the stack as an ascii string,
removes it, and prints it.

f All values on the stack and in registers are printed.

q exits the program. If executing a string, the recursion level is
popped by two. If q is capitalized, the top value on the stack is
popped and the string execution level is popped by that value.

x treats the top element of the stack as a character string and exe­
cutes it as a string of dc commands.

X replaces the number on the top of the stack with its scale factor.

[...] puts the bracketed ascii string onto the top of the stack.

@ 6-49

DC(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

6-50

<x >x =x
The top two elements of the stack are popped and compared. Register x
is executed if they obey the stated relation.

v replaces the top element on the stack by its square root. Any existing
fractional part of the argument is taken into account, but otherwise the
scale factor is ignored.

interprets the rest of the line as a TNIX command.

c All values on the stack are popped.

o

o
k

Z

?

, .

The top value on the stack is popped and used as the number radix for
further input. I pushes the input base on the top of the stack.

The top value on the stack is popped and used as the number radix for
further output.

pushes the output base on the top of the stack.

the top of the stack is popped, and that value is used as a non-negative
scale factor: the appropriate number of places are printed on output, and
maintained during multiplication, division, and exponentiation. The
interaction of scale factor, input base, and output base will be reasonable
if all are changed together.

The stack level is pushed onto the stacko

replaces the number on the top of the stack with its length.

A line of input is taken from the input source (usually the terminal) and
executed.

are used by be for array operations.

An example which prints the first ten values of n! is

[Ia1 +dsa*pla1 0> y]sy
Osa1
Iyx

SEE ALSO
bc(1), which is a preprocessor for de providing infix notation and a C-like syntax
which implements functions and reasonable control structures for programs.

DIAGNOSTICS
'x is unimplemented' where x is an octal number.
'stack empty' for not enough elements on the stack to do what was asked.
'Out of space' when the free list is exhausted (too many digits).
'Out of headers' for too many numbers being kept around.
'Out of pushdown' for too many items on the stack.
'Nesting Depth' for too many levels of nested execution.

@

Category C-8560 MUSDU System Reference Manual 00(6)

@

Optional Auxiliary Utilities Package 8560U03

00(6)

NAME
dd - convert and copy a file

SYNTAX
dd [option=value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions.
The standard input and output are used by default. The input and output block
size may be specified to take advantage of raw physical I/O.

option values
If- input file name; standard input is default
of- output file name; standard output is default
Ibs- n

input block size n bytes (default 512)
obs- n

output block size (defau!t 51 2)
bs- n set both input and output block size, superseding ibs and obs; also, if no

conversion is specified, it is particularly efficient since no copy need be
done

cbs- n
conversion buffer size

sklp- n
skip n input records before starting copy

fll.s- n
copy n files from (tape) input

s •• k- n
seek n records from beginning of output file before copying

count-n
copy only n input records

conv-ascll
convert EBCDIC to ASCII
ebcdlc
convert ASCII to EBCDIC
Ibm
slightly different map of ASCII to EBCDIC
lea ••
map alphabetics to lower case
ucase
map alphabetics to upper case
swab
swap every pair of bytes
noerror
do not stop processi ng on an error
sync
pad every input record to ibs
... , ...
several comma-separated conversions

6-51

00(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

6-52

Where sizes are specified, a number of bytes is expected. A number may end with
k, b or w to specify multiplication by 1024, 512, or 2 respectively; a pair of
numbers may be separated by x to indicate a product.

Cbs is used only if ascii or ebcdic conversion is specified. In the former case cbs
characters are placed into the conversion buffer, converted to ASCII, and trailing
blanks trimmed and new-line added before sending the line to the output. In the
latter case ASCII characters are read into the conversion buffer, converted to
EBCDIC, and blanks added to make up an output record of size cbs.

After completion, dd reports the number of whole and partial input and output
biocks.

For example, to read an EBCDIC tape blocked ten 80-byte EBCDIC card images
per record into the ASCII file x :

dd if=/dev/rmtO of=x ibs=800 cbs=80 conv=ascii,lcase

Note the use of raw magtape. Dd is especially suited to 1/0 on the raw physical
devices because it allows reading and writing in arbitrary record sizes.

To skip over a file before copying from magnetic tape do

(dd of=/dev/null; dd of=x) < /dev/rmtO

SEE ALSO

DIAGNOSTICS
f+ p records in(out): numbers of full and partial records read(written)

NOTES
The ASCII/EBCDIC conversion tables are taken from the 256 character standard in
the CACM Nov, 1968. The 'ibm' conversion, while less blessed as a standard,
corresponds better to certain IBM print train conventions. There is no universal
solution.

Newlines are inserted only on conversion to ASCII; padding is done only on conversion
to EBCDIC. These should be separate options.

@

Category C-8560 MUSDU System Reference Manual DEROFF(6)

@

Optional Text Processing Package 8560U01

DEROFF(6)

NAME
deroff - remove nroff, troff, tbl and eqn constructs

SYNTAX
deroff [-w] file ...

DESCRIPTION
Deroff reads each file in sequence and removes all nroff and froff command lines,
backslash constructions, macro definitions, eqn constructs (between '.EO' and '.EN'
lines or between delimiters), and table descriptions and writes the remainder on
the standard output. Deroff follows chains of included files ('.so' and '.nx' com­
mands); if a file has already been included, a '.so' is ignored and a '.nx' terminates
execution. If no input file is given, deroff reads from the standard input file.

If the -w flag is given, the output is a word list, one 'word' (string of letters, digits,
and apostrophes, beginning with a letter; apostrophes are removed) per line, and
all other characters ignored. Otherwise, the output follows the original, with the
deietions mentioned above.

SEE ALSO
troff(1), eq n (1), tb I(1)

NOTES
Deroff is not a complete froff interpreter, so it can be confused by subtle con­
structs. Most errors result in too much rather than too little output.

6-53

DEROFF(6) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560U01

[This page intentionally left blank.]

6-54 @

Category C-8560 MUSDU System Reference Manual DIFF3(6)

@

Optional Auxiliary Utilities Package 8560U03

DIFF3(6}

NAME
diff3 - 3-way differential file comparison

SYNTAX
dlff3 [-8x3] file1 file2 file3

DESCRIPTION
Diff3 compares three versions of a file, and publishes disagreeing ranges of text
flagged with these codes:

all three files differ

----1
file 1 is different

----2
file2 is different

----3
file3 is different

The type of change suffered in converting a given range of a given file to some
other is indicated in one of these ways:

f : n1 a
Text is to be appended after line number n 1 in file f, where f = 1, 2, or 3.

f : n1 I n2 c
Text is to be changed in the range line n 1 to line n2. If n 1 = n2, the range
may be abbreviated to n 1 .

The original contents of the range follows immediately after a c indication. When
the contents of two files are identical, the contents of the lower-numbered file is
su ppressed.

Under the -8 option, diff3 publishes a script for the editor ed that will incorporate
into file 1 all changes between file2 and file3, i.e. the changes that normally would
be flagged = = = = and = = = =3. Option -x (-3) produces a script to incor­
porate only changes flagged = = = = (= = = =3). The following command will
apply the resulting script to Ifile1 '.

(cat script; echo' 1 ,$p') I ed - file1

FILES
Itmp/d3???? ?
lusr/lib/diff3

SEE ALSO
diff(1)

NOTES
Text lines that consist of a single I.' will defeat -e.
Files longer than 64K bytes won't work.

6-55

DIFF3(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-56 @

Category C-8560 MUSDU System Reference Manual EHEX(6}

EHEX(6}
NAME

ehex-multi-vendor interface program

SYNTAX
ehex [-m] [-5] [-i] [-n number] file

OPTIONS
-i
-m
-5
(default)
-n number

Converts file to Intel hexadecimal load module format.
Converts file to Motorola S-records.
Converts file to Standard Tekhex.
If no modifier is specified, the file is converted to Extended Tekhex format.
Specifies the number of characters (including EOF) per output record. Number
can be a maximum of 72 characters (30 data bytes) for standard Tekhex; 256
characters 'for Intel hexadecimal load module format, Motorola S-record, and
Extended Tekhex formats. If you do not specify number, the default value is 72
for standard Tekhex, and 80 for all other formats. The default value for number
includes the end-of-line character.

file

DESCRIPTION

Contains the Tektronix binary load module to convert.

The ehex command converts a file in Tektronix binary load module format to the specified
format.

All hexadecimal output is written to standard output.

The Intel and Motorola formats allow addresses larger than 16 bits, as does extended
TEKHEX.

Program symbols are limited to 16 characters. Symbol values (including address-space
bytes) are limited to 32 bits, and the total number of sections may not exceed 300.

EXTENDED TEKHEX
The distinction between "code" and "data" addresses (available in Extended Tekhex) is not
implemented. Any address-space byte included with an address is passed straight through
as part of the address (used with chips such as the Z8001 and MC68000).

EXAMPLES

ADD NOV 1982

$ ehex -i pros.load <CR>

Converts the file "prog.load" from Tektronix binary load module format to Intel hexadecimal
load module format.

6-568

EHEX(6) Category C-8560 MUSDU System Reference Manual

[ihis page intentionaiiy ieft biank.]

6-56b ADD NOV 1982

-
Category C-8560 MUSDU System Reference Manual EON/NEON/CHECKEON(6)

@

Optional Text Processing Package 8560U01

EQN/NEQN/CHECKEQN(6)

NAME
eqn, neqn, checkeqn - typeset mathematics

SYNTAX
eqn [-d xy] [-p n] [-8 n] [-f n] [file] ...
checkeq [fi Ie] ...

DESCRIPTION
Eqn is a troff(1) preprocessor for typesetting mathematics on a Graphic Systems
phototypesetter, neqn on terminals. Usage is almost always

eqn file ... 1 troff
neqn file ... 1 nroff

If no files are specified, these programs reads from the standard input. A line
beginning with '.EO' marks the start of an equation; the end of an equation is
marked by a line beginning with '.EN'. Neither of these lines is altered, so they may
be defined in macro packages to get centering, numbering, etc. It is also possible
to set two characters as 'delimiters'; subsequent text between delimiters is also
treated as eqn input. Delimiters may be set to characters x and y with the
command-line argument -d xy or (more commonly) with 'delim xy , between .EO
and .EN. The left and right delimiters may be identical. Delimiters are turned off
by 'delim off'. All text that is neither between delimiters nor between .EO and .EN
is passed through untouched.

The program checkeq reports missing or unbalanced delimiters and .EO/.EN pairs.

Tokens within eqn are separated by spaces, tabs, newlines, braces, double quotes,
tildes or circumflexes. Braces {} are used for grouping; generally speaking, any­
where a single character like x could appear, a complicated construction enclosed
in braces may be used instead. Tilde - represents a full space in the output, cir­
cumflex A half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus
x sub i makes Xi, a sub i sup 2 produces ai 2, and e sup {x sup 2 + Y sup 2} gives
eX 2+y 2.

Fractions are made with over: a over b yields ~ .

sqrt makes square roots: 1 over sqrt {ax sup 2 +bx+c} results in ~ 1
ax 2+bx+c

The keywords from and to introduce lower and upper limits on arbitrary things:
n

lim Lxi is made with lim from {n- > inf } sum from 0 to n x sub i.
n-oo 0

Left and right brackets, braces, etc., of the right height are made with left and

right: left [x sup 2 + Y sup 2 over alpha right]-=-1 produces [x 2+~ I = 1. The

right clause is optional. Legal characters after left and right are braces, brackets,
bars, c and f for ceiling and floor, and "" for nothing at all (useful for a rlght-side­
only bracket).

6-57

EON/NEON/CHECKEON(6) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560UOl

6-58

Vertical piles of things are made with pile, Iplle, cpile, and rplle:
a

pile {a above b above c} produces b. There can be an arbitrary number of ele­
c

ments in a pile. Iplle left-justifies, pile and cpUe center, with different vertical

spacing, and rplle right justifies.

Matrices are made with matrix:
Xi 1

matrix { Icol { x sub i above y sub 2 } ccol { 1 above 2 } } produces y 2 2' In addi-

tion, there is reol for a right-justified column.

Diacritical marks are made with dot, dotdot , hat, tilde, bar, vec , dyad , and
under: x dot = f(t) bar is x =j'"'(f), Y dotdot bar -=- n under is y = !1., and
x vec -=- y dyad isx = V.

Sizes and font can be changed with size n or size ± n, roman, Italic, bold, and
font n. Size and fonts can be changed globally in a document by galze nand gfont
n , or by the command-line arguments -s nand -f n.

Normally subscripts and superscripts are reduced by 3 point sizes from the previ­
ous size; this may be changed by the command-line argument -p n.

Successive display arguments can be lined up. Place mark before the desired
lineup point in the first equation; place lineup at the place that is to line up verti­
cally in subsequent equations.

Shorthands may be defined or existing keywords redefined with define:
define thing % replacement % defines a new token called thing which will be
replaced by replacement whenever it appears thereafter. The % may be any char­
acter that does not occur in replacement.

Keywords like sum (L)

int (f)

inf (00)

and shorthands like > = (~)

-> (-),

and 1= (~)

@

Category C-8560 MUSDU System Reference Manual EON/NEON/CHECKEON(6)
Optional Text Processing Package 8560U01

are recognized. Greek letters are spelled out in the desired case, as in alpha or
GAMMA. Mathematical words like sin, cos, log are made Roman automatically.
Trott (1) four-character escapes like \ (bs (@) can be used anywhere. Strings
enclosed in double quotes " ... " are passed through untouched; this permits key­
words to be entered as text, and can be used to communicate with troff when all
else fails.

SEE ALSO
troff(1), tbl(1), ms(7), eqnchar(7)
B. W. Kernighan and L. L. Cherry, Typesetting Mathematics-User's Guide
J. F. Ossanna, NROFFITROFF User's Manual

NOTES
To embolden digits, parens, etc., it is necessary to quote them, as in 'bold" 12.3"'.

6-59

EQN/NEQN/CHECKEQN(6) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560UOl

[This page intentionally left blank.]

6-60

Category C-8560 MUSDU System Reference Manual F77(6)
Optional Native Programming Package 8560U02

F77(6)

NAME
f77 - Fortran 77 compiler

SYNTAX
f77 [option] ... file ...

DESCRIPTION
F77 is the TNIX Fortran 77 compiler. It accepts several types of arguments:

Arguments whose names end with '.1' are taken to be Fortran 77 source programs;
they are compiled, and each object program is left on the file in the current direc­
tory whose name is that of the source with '.0' substituted for '.f'.

Arguments whose names end with '.r' or '.e' are taken to be Ratfor or EFL source
programs, respectively; these are first transformed by the appropriate preproces­
sor, then compiled by f77.

In the same way, arguments whose names end with '.c' or '.s' are taken to be C or
assembly source programs and are compiled or assembled, producing a '.0' file.

The following options have the same meaning as in cc (1). See Id (1) for load-time
options.

-c Suppress loading and produce '.0' files for each source file.

-p Prepare object files for profiling, see prof (1).

-0 Invoke an object-code optimizer.

-8 Compile the named programs, and leave the assembler-language output on
corresponding files suffixed '.s'. (No '.0' is created.).

-f Use a floating point interpreter (for PDP11's that lack 11 170-style floating
point).

-0 output
Name the final output file output instead of 'a.out'.

The following options are peculiar to f77 .

-onetrlp
Compile DO loops that are performed at least once if reached. (Fortran 77
DO loops are not performed at all if the upper limit is smaller than the lower
limit.)

-u Make the default type of a variable 'undefined' rather than using the default
Fortran rules.

-C Compile code to check that subscripts are within declared array bounds.

-w Suppress all warning messages. If the option is '-w66', only Fortran 66
compatibility warnings are suppressed.

- F Apply EFL and Ratfor preprocessor to relevant files, put the result in the file
with the suffix changed to '.f', but do not compile.

6-61

F77(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

6-62

-m Apply the M4 preprocessor to each I.r' or I.e' file before transforming it with
the RaUor or EFL preprocessor.

-E x Use the string x as an EFL option in processing I.e' files.

-R x Use the string x as a Rattor option in processing I.r' files.

Other arguments are taken to be either loader option arguments, or F77 -compatible
object programs, typically produced by an earlier run, or perhaps libraries of F77-
compatible routines. These programs, together with the results of any compilations
specified, are loaded (in the order given) to produce an executable program with
name la.out'.

FILES
file. [fresc] input file
file.o object file
a.out loaded output
/lib/f77pass1 compiler
/lib/c1 pass 2
/lib/c2 optional optimizer
/usr/lib/libF77.a intrinsic function library
/usr/lib/libI77.a Fortran I/O library
/Iib/libc.a C library, see section 3

SEE ALSO
S. I. Feldmaii; P. J. V~eifibefgef, A Portabie Fortran 77 Complier
prof(1), cc(1), Id(1)

DIAGNOSTICS
The diagnostics produced by '77 itself are intended to be self-explanatory. Occa­
sional messages may be produced by the loader.

NOTES
The Fortran 66 su bset of the language has been exercised extensively; the newer
features have not.

Category C-8560 MUSDU System Reference Manual FACTOR/PRIMES(6)

(0 1

Optional Auxiliary Utilities Package 8560U03

FACTOR/PRI MES(6)

NAME
factor, primes - factor a number, generate large primes

SYNTAX
factor [number]

primes

DESCRIPTION
When factor is invoked without an argument, it waits for a number to be typed in.
If you type in a positive number less than 256 (about 7.2x 1 016

) it will factor the
number and print its prime factors; each one is printed the proper number of times.
Then it waits for another number. It exits if it encounters a zero or any non­
numeric character.

If factor is invoked with an argument, it factors the number as above and then
exits.

Maximum time to factor is proportional to -In and occurs when n is prime or the
square of a prime. It takes 1 minute to factor a prime near 1014 on a PDP11.

When primes is invoked, it waits for a number to be typed in. If you type in a posi­
tive number less than 256 it will print all primes greater than or equal to this
number.

DIAGNOSTICS
'Ouch.' for input out of range or for garbage input.

6-63

FACTOR/PRIMES(6} Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-64

Category C-8560 MUSDU System Reference Manual GRAPH(6)
Optional Auxiliary Utilities Package 8560U03

GRAPH(6)

NAME
graph - draw a graph

SYNTAX
graph [option] ...

DESCRIPTION
Graph with no options takes pairs of numbers from the standard input as abscis­
sas and ordinates of a graph. Successive points are connected by straight lines.
The graph is encoded on the standard output for display by the plot (1) filters.

If the coordinates of a point are followed by a nonnumeric string, that string is
printed as a label beginning on the point. Labels may be surrounded with quotes
" ... ", in which case they may be empty or contain blanks and numbers; labels never
contain newlines.

The following options are recognized, each as a separate argument.

-a Supply abscissas automatically (they are missing from the input); spacing
is given by the next argument (defauit 1). A second optionai argument is
the starting point for automatic abscissas (default 0 or lower limit given by
-x).

-b Break (disconnect) the graph after each label in the input.

-c Character string given by next argument is default label for each point.

-g Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid
(default).

-I Next argument is label for graph.

-m Next argument is mode (style) of connecting lines: 0 disconnected, 1 con-
nected (default). Some devices give distinguishable line styles for other
small integers.

-I Save screen, don't erase before plotting.

-x [I]

-y [I]

If I is present, x axis is logarithmic. Next 1 (or 2) arguments are lower (and
upper) x limits. Third argument, if present, is grid spacing on x axis. Nor­
mally these quantities are determined automatically.

Similarly for y .

-h Next argument is fraction of space for height.

-w Similarly for width.

-r Next argument is fraction of space to move right before plotting.

-u Similarly to move up before plotting.

-t Transpose horizontal and vertical axes. (Option -x now applies to the vert-
ical axis.)

6-65

GRAPH(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

6-66

A legend indicating grid range is produced with a grid unless the -8 option is
present.

If a specified lower limit exceeds the upper limit, the axis is reversed.

SEE ALSO
spline(1), plot(1)

NOTES
Graph stores all points internally and drops those for which there isn't room.
Segments that run out of bounds are dropped, not windowed.
Logarithmic axes may not be reversed.

(ii\

Category C-8560 MUSDU System Reference Manual GUIDE(6)

GUIDE(6)

NAME
guide - menu-driven software development tool

SYNTAX
guide

DESCRIPTION
GUIDE is a software development tool designed to give you immediate command of
the entire range of capabilities built into the 8560 and associated workstations.
The main feature of GUIDE is a menu-driven front-end, a program that offers you a
menu consisting of a list of options that GUIDE executes for you. Some of the
options allow you to select specific tasks to be performed; others allow you to
select another menu. When you select an opotion, the menu program requests
additional information where necessary, then executes the task.

GUIDE issues the appropriate TNIX commands to execute the task selected by you.
Each TNIX command is displayed on your screen preceded by a "+", to help you
learn the actual TNIX commands required.

The menu driver approach makes GUIDE a very powerful tool--it can easily be
extended and modified to adapt to the individual needs of specific programming
environments. Knowledge of the Shell command language is required for the
modification of GUIDE.

USING GUIDE
GUIDE is a shell program that executes the program luar/llb/guide/menu. To use
GUIDE, enter the command line:

$ guide

GUIDE then prompts you through the execution of each command or procedure
desired until you exit GUIDE.

FILES
lusr Ibin/guide - the top level shell program.
lusr/lib/guide/menu - the menu file interpreter
lusr/lib/guide/main - the top level menu
Itmp/gl$$ - temporary file
lusr/lib/*/main - other menus
lusr/lib/* Ix· - other shell programs

SEE ALSO
guiderS)
The Shell section of the 8560 MUSDU System Users Manual.
The Operating Procedures section of the 8560 MUSDU System Users Manual.

6-67

GUIDE(6) Category C-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

6-68

Category C-8560 MUSDU System Reference Manual IOSTAT(6)
Optional Auxiliary Utilities Package 8560U03

IOSTAT(6)

NAME
iostat - report 1/0 statistics

SYNTAX
loatat [option] ... [interval [count]]

DESCRIPTION
lostat delves into the system and reports certain statistics kept about input-output
activity. Information is kept about up to three different disks (RF, RK, RP) and
about typewriters. For each disk, 10 completions and number of words transferred
are counted; for typewriters collectively, the number of input and output characters
are counted. Also, each sixtieth of a second, the state of each disk is examined
and a tally is made if the disk is active. The tally goes into one of four categories,
depending on whether the system is executing in user mode, in 'nice' (background)
user mode, in system mode, or idle. From all these numbers and from the known
transfer rates of the devices it is possible to determine information such as the
degree of 10 overlap and average seek times for each device.

The optional interval argument causes iostat to report once each interval seconds.
The first report is for all time since a reboot and each subsequent report is for the
last interval only.

The optional count argument restricts the number of reports.

With no option argument iostat reports for each disk the number of transfers per
minute, the milliseconds per average seek, and the milliseconds per data transfer
exciusive of seek time. it aiso gives the percentage of time the system has spend
in each of the four categories mentioned above.

The following options are available:

-t Report the number of characters of terminal 10 per second as .well.

-I Report the percentage of time spend in each of the four categories men-
tioned above, the percentage of time each disk was active (seeking or
transferring), the percentage of time any disk was active, and the percen­
tage of time spent in '10 wait:' idle, but with a disk active.

-8 Report the raw timing information: 32 numbers indicating the percentage of
time spent in each of the possible configurations of 4 system states and 8
10 states (3 disks each active or not).

- b Report on the usage of 10 buffers.

FILES
Idevlmem,lunix

6-69

IOSTAT(6} Category C-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

6-70 (cD

Category C-8560 MUSDU System Reference Manual JOIN(6)
Optional Auxiliary and Native Programming Packages 8560U02 and 8560U03

JOIN(6)

NAME
jOin - relational database operator

SYNTAX
join [options] file1 file2

DESCRIPTION
Join forms, on the standard output, a join of the two relations specified by the lines
of file 1 and file2. If file 1 is '-', the standard input is used.

FiJe1 and file2 must be sorted in increasing ASCII collating sequence on the fields
on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines in file 1 and file2 that have
identical join fields. The output line normally consists of the common field, then
the rest of the line from file 1 , then the rest of the line from file2 .

Fields are normally separated by blank, tab or newline. In this case, multiple
separators count as one, and leading separators are discarded.

These options are recognized:

-8 n In addition to the normal output, produce a line for each unpairable line in
file n , where n is 1 or 2.

-e 8 Replace empty output fields by string s .

-j n m Join on the m th field of file n. If n is missing, use the m th field in each
fiie.

-0 list Each output line comprises the fields specifed in list, each element of
which has the form n . m , where n is a file number and m is a field number.

-t c Use character c as a separator (tab character). Every appearance of c in a
line is significant.

SEE ALSO
sort(1), comm(1), awk(1)

NOTES
With default field separation, the collating sequence is that of sort -b,. with -t ,
the sequence is that of a plain sort.

The conventions of join, sort, comm, uniq, look and awk (1) are wildly incongruous.

6-71

JOIN(S) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary and Native Programming Packages 8560U02 and 8560U03

[This page intentionally left blank.]

6-72 (oj

Category C-8560 MUSDU System Reference Manual LO(6)
Optional Native Programming Package 8560U02

LD(6}

NAME
Id - loader

SYNTAX
Id [option] file ...

DESCRIPTION
Ld combines several object programs into one, resolves external references, and
searches libraries. In the simplest case several object files are given, and Id com­
bines them, producing an object module which can be either executed or become
the input for a further Id run. (In the latter case, the -r option must be given to
preserve the relocation bits.) The output of Id is left on a.out. This file is made
executable only if no errors occurred during the load.

The argument routines are concatenated in the order specified. The entry point of
the output is the beginning of the first routine.

If any argument is a library, it is searched exactly once at the point it is encoun­
tered in the argument list. Only those routines defining an unresolved external
reference are loaded. If a routine from a library references another routine in the
library, and the library has not been processed by ranlib (1), the referenced routine
must appear after the referencing routine in the library. Thus the order of pro­
grams within libraries may be important. If the first member of a library is named
'_.SYMDEF', then it is understood to be a dictionary for the library such as pro­
duced by ranlib; the dictionary is searched iteratively to satisfy as many refer­
ences as possible.

The symbols '_etext', '_edata' and '_end' ('etext', 'edata' and 'end' in C) are
reserved, and if referred to, are set to the first location above the program, the first
location above initialized data, and the first location above all data respectively. It
is erroneous to define these symbols.

Ld understands several options. Except for -I , they should appear before the file
names.

-8 'Strip' the output, that is, remove the symbol table and relocation bits to
save space (but impair the usefulness of the debugger). This information
can also be removed by strip (1).

-u Take the following argument as a symbol and enter it as undefined in the
symbol table. This is useful for loading wholly from a library, since initially
the symbol table is empty and an unresolved reference is needed to force
the loading of the first routine.

-I x This option is an abbreviation for the library name '1libllib x .a', where x is a
string. If that does not exist, Id tries 'Iusrllibl/ib x .a'. A library is searched
when its name is encountered, so the placement of a -I is significant.

-x Do not preserve local (non-.glob!) symbols in the output symbol table; only
enter external symbols. This option saves some space in the output file.

-X Save local symbols except for those whose names begin with 'L'. This
option is used by cc (1) to discard internally generated labels while retain­
ing symbols local to routines.

@ 6-73

LD(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

6-74

-r Generate relocation bits in the output file so that it can be the subject of
another Id run. This flag also prevents final definitions from being given to
common symbols, and suppresses the ·undefined symbol' diagnostics.

-d Force definition of common storage even if the -r flag is present.

-n Arrange that when the output file is executed, the text portion will be read-
only and shared among all users executing the file. This involves moving
the data areas up to the first possible 4K word boundary following the end
of the text.

-I When the output file is executed, the program text and data areas will live
in separate address spaces. The only difference between this option and
- n is that here the data starts at location O.

-0 The name argument after -0 is used as the name of the Id output file,
instead of a.out .

-8 The following argument is taken to be the name of the entry point of the
loaded program; location 0 is the default.

-0 This is an overlay file, only the text segment will be replaced by exec (2).
Shared data must have the same layout as in the program overlaid.

-0 The next argument is a decimal number that sets the size of the data seg­
ment.

FiLES
/Iib/lib*.a libraries
/usr/lib/lib*.a more libraries
a.out output file

SEE ALSO
as(1), ar(1), cc(1), ranlib(1)

NOTES

Category C-8560 MUSDU System Reference Manual LEARN(6)
Optional Auxiliary Utilities Package 8560U03

LEARN(6)

NAME
learn - computer aided instruction about TNIX

SYNOPSIS
learn [-directory] [subject [lesson [speed]]]

DESCRIPTION
Learn gives CAl courses and practice in the use of TNIX. To get started simply
type 'learn'. The program will ask questions to find out what you want to do. The
questions may be bypassed by naming a subject, and the last lesson number that
learn told you in the previous session. You may also include a speed number that
was given with the lesson number (but without the parentheses that learn places
around the speed number). If lesson is '-', learn prompts for each lesson; this is
useful for debugging.

FILES

The subjects presently handled are

editor
eqn
files
macros
morefiles
C

The special command 'bye' terminates a learn session.

The -directory option allows one to exercise a script in a nonstandard place.

lusr/learn and all dependent directories and files

BUGS
The main strength of learn, that it asks the student to use the real TNIX, also
makes possible baffling ~istakes. It is helpful, especially for nonprogrammers, to
have a TNIX initiate near at hand during the first sessions.

Occasionally lessons are incorrect, sometimes because the local version of a
command operates in a non-standard way. Such lessons may be skipped, but it
takes some sophistication to recognize the situation.

6-75

LEARN(S) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank,]

6-76

Category C-8560 MUSDU System Reference Manual LEX(6)
Optional Native Programming Package 8560U02

LEX(6)

NAME
lex - generator of lexical analysis programs

SYNTAX
lex [-tvfn] [file] ...

DESCRIPTION
Lex generates programs to be used in simple lexical analyis of text. The input files
(standard input default) contain regular expressions to be searched for, and
actions written in C to be executed when expressions are found.

A C source program, 'Iex.yy.c' is generated, to be compiled thus:

cc lex.yy.c -II

This program, when run, copies unrecognized portions of the input to the output,
and executes the associated C action for each regular expression that is recog­
nized.

The following lex piogiam convaits uppai casa to lowai, iamovas blanks at the end
of lines, and replaces multiple blanks by single blanks.

%%
[A-Z] putchar(yytext[O] +' a' -' A');
[]+$
[] + putchar(");

The options have the following meanings.

-t Place the result on the standard output instead of in file 'Iex.yy.c'.

-v Print a one-line summary of statistics of the generated analyzer.

-n Opposite of -v ; -n is default.

-f 'Faster' compilation: don't bother to pack the resulting tables; limited to

SEE ALSO
yacc(1)

small programs.

M. E. Lesk and E. Schmidt, LEX - Lexical Analyzer Generator

6-77

LEX(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-78

Category C-8560 MUSDU System Reference Manual LINT(6)
Optional Native Programming Package 8560U02

LINT(6)

NAME
lint - a C program verifier

SYNTAX
lint [-abchnpuvxB] file ...

DESCRIPTION
Lint attempts to detect features of the C program files which are likely to be bugs,
or non-portable, or wasteful. It also checks the type usage of the program more
strictly than the compilers. Among the things which are currently found are
unreachable statements, loops not entered at the top, automatic variables declared
and not used, and logical expressions whose value is constant. Moreover, the
usage of functions is checked to find functions which return values in some places
and not in others, functions called with varying numbers of arguments, and func­
tions whose values are not used.

By default, it is assumed that all the files are to be loaded together; they are
checked for mutual compatibility. Function definitions for certain libraries are
available to lint .. these libraries are referred to by a conventional name, such as l_

Im', in the style of Id (1).

Any number of the options in the following list may be used. The -0 , -U , and -I
options of cc (1) are also recognized as separate arguments.

p Attempt to check portability to the IBM and GCOS dialects of C.

h Apply a number of heuristic tests to attempt to intuit bugs, improve style:
and reduce waste.

b Report break statements that cannot be reached. (This is not the default
because, unfortunately, most lex and many yacc outputs produce dozens of
such comments.)

v Suppress complai.nts about unused arguments in functions.

x Report variables referred to by extern declarations, but never used.

a Report assignments of long values to int variables.

c Complain about casts which have questionable portability.

u Do not complain about functions and variables used and not defined, or
defined and not used (this is suitable for running lint on a subset of files
out of a larger program).

n Do not check compatibility against the standard library.

B Use the backup C preprocessor which allows a greater number of defines.

Exit (2) and other functions which do not return are not understood; this causes
various lies.

Certain conventional comments in the C source will change the behavior of lint:

/*NOTREACHEO* /
at appropriate paints stops comments about unreachable code.

6-79

LINT(6)
Optional Native Programming Package 8560U02 Category C-8560 MUSDU System Reference Manual

6-80

I*VARARGS n * I
suppresses the usual checking for variable numbers of arguments in the
following function declaration. The data types of the first n arguments are
checked; a missing n is taken to be o.

I*NOSTRICT* /
shuts off strict type checking in the next expression.

1* ARGSUSED* /
turns on the -y option for the next function.

I*LlNTLIBRARY* /

FilES

at the beginning of a file shuts off complaints about unused functions in
this file.

lusr/lib/lint[12] programs
lusr/lib/llib-Ic declarations for standard functions
lusr/lib/llib-port declarations for portable functions

SEE ALSO
cc(1)
S. C. Johnson, Lint, a C Program Checker

Category C-8560 MUSDU System Reference Manual LOOK(6)
Optional Text Processing Package 8560U01

LOOK(6)

NAME
look - find lines in a sorted list

SYNTAX
look [-df] string [file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses
binary search.

The options d and f affect comparisons as in sort (1):

d 'Dictionary' order: only letters, digits, tabs and blanks participate in com­
parisons.

f Fold. Upper case letters compare equal to lower case.

If no file is specified,lusrldictlwords is assumed with collating sequence -df.

FILES
/usr/dictlwords

SEE ALSO
sort(1), grep(1)

6-81

LOOK(S) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560U01

[This page intentionally left blank.]

6-82

Category C-8560 MUSDU System Reference Manual LOOKALL(6)
Optional Text Processing Package 8560UOl

LOOKALL(6)

NAME
lookall - look through all text files on TNIX

SYNTAX
look.1I [-C n]

DESCRIPTION
Lookall accepts keywords from the standard input, performs a search similar to
that of refer (1), and writes the result on the standard output. Lookall consults,
however, an index to all the text files on the system rather than just bibliographies.
Only the first 50 words of each file (roughly) were used to make the indexes.
Blank lines are taken as delimiters between queries.

The -C n option specifies a coordination level search: up to n keywords may be
missing from the answers, and the answers are listed with those containing the
most keywords first.

The command sequence in lusridicti/ookallimakindex regenerates the index.

FILES
The directory lusrldictl/ookall contains the index files.

DIAGNOSTICS
·Warning: index precedes file .. .' means that a file has been changed since the
index was made and it may be retrieved (or not retrieved) erroneously.

NOTES
Coordination level searching doesn't work as described: only those acceptable
items with the smallest number of missing keywords are retreived.

6-83

LOOKALL(6) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560UOl

[This page intentionally left blank.]

6-84

Category C-8560 MUSDU System Reference Manual LORDER(6)
Optional Native Programming Package 8560U02

LORDER(6)

NAME
lorder - find ordering relation for an object library

SYNTAX
lorder fi Ie .. ,

DESCRIPTION
The input is one or more object or library archive (see ar (1)) files. The standard
output is a list of pairs of object file names, meaning that the first file of the pair
refers to external identifiers defined in the second. The output may be processed
by tsort (1) to find an ordering of a library suitable for one-pass access by Id (1).

This brash one-liner intends to build a new library from existing '.0' files.

ar cr library' lorder *.0 I tsort'

FILES
*symref, *symdef
nm(1), sed(1), sort(1), join(1)

SEE ALSO
tsort(1), Id(1), ar(1)

NOTES
The names of object files, in and out of libraries, must end with '.0'; nonsense
results otherwise.

6-85

LORDER(6} Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-86

Category C-8560 MUSDU System Reference Manual M4(6)

@

Optional Auxiliary Utilities Package 8560U03

M4(6)

NAME
m4 - macro processor

SYNTAX
m4 [files]

DESCRIPTION
M4 is a macro processor intended as a front end for Rattor, C, and other languages.
Each of the argument files is processed in order; if there are no arguments, or if an
argument is '-', the standard input is read. The processed text is written on the
standard output.

Macro calls have the form

name(arg1 ,arg2, ... , argn)

The '(' must immediately follow the name of the macro. If a defined macro name is
not followed by a '(', it is deemed to have no arguments. Leading unquoted blanks,
tabs, and newlines are ignored while collecting arguments. Potential macro names
consist of aiphabetic ietters, digits, and underscore '_', where the first character is
not a digit.

Left and right single quotes (") are used to quote strings. The value of a quoted
string is the string stripped of the quotes.

When a macro name is recognized, its arguments are collected by searching for a
matching right parenthesis. Macro evaluation proceeds normally during the collec­
tion of the arguments, and any commas or right parentheses which happen to turn
up within the value of a nested call are as effective as those in the original input
text. After argument collection, the value of the macro is pushed back onto the
input stream and rescanned.

M4 makes available the following built-in macros. They may be redefined, but
once this is done the original meaning is lost. Their values are null unless other­
wise stated.

define The second argument is installed as the value of the macro whose name is
the first argument. Each occurrence of $n in the replacement text, where n
is a digit, is replaced by the n -th argument. Argument 0 is the name of the
macro; missing arguments are replaced by the null string.

undeflne
removes the definition of the macro named in its argument.

Ifdef If the first argument is defined, the value is the second argument, otherwise
the third. If there is no third argument, the value is null. The word unix is
predefined on TNIX versions of m4 .

changequote
Change quote characters to the first and second arguments. Changequote
without arguments restores the original values (i.e., ")'

6-87

M4(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

6-88

divert M4 maintains 10 output streams, numbered 0-9. The final output is the
concatenation of the streams in numerical order; initially stream 0 is the
current stream. The divert macro changes the current output stream to its
(digit-string) argument. Output diverted to a stream other than 0 through 9
is discarded.

undlvert

dlvnum

causes immediate output of text from diversions named as arguments, or all
diversions if no argument. Text may be undiverted into another diversion.
Undiverting discards the diverted text.

returns the value of the current output stream.

dnl reads and discards characters up to and including the next newline.

Ifelse has three or more arguments. If the first argument is the same string as the
second, then the value is the third argument. If not, and if there are more
than four arguments, the process is repeated with arguments 4, 5, 6 and 7.
Otherwise, the value is either the fourth string, or, if it is not present, null.

Incr returns the value of its argument incremented by 1. The value of the argu­
ment is calculated by interpreting an initial digit-string as a decimal
number.

eval evaluates its argument as an arithmetic expression, using 32-bit arithmetic.
Operators include +, -, ., /, %, A {exponentiation); reiationais; parentheses.

len returns the number of characters in its argument.

Index returns the pOSition in its first argument where the second argument begins
(zero origin), or -1 if the second argument does not occur.

substr returns a substring of its first argument. The second argument is a zero ori­
gin number selecting the first character; the third argument indicates the
length of the substring. A missing third argument is taken to be large
enough to extend to the end of the first string.

transllt
transliterates the characters in its first argument from the set given by the
second argument to the set given by the third. No abbreviations are permit­
ted.

Include
returns the contents of the file named in the argument.

slnclude
is identical to include, except that it says nothing if the file is inaccessible.

syscmd
executes the TNIX command given in the first argument. No value is
returned.

maketemp
fills in a string of XXXXX in its argument with the current process id.

Category C-8560 MUSDU System Reference Manual M4(6)
Optional Auxiliary Utilities Package 8560U03

errprint
prints its argument on the diagnostic output file.

dumpdef
prints current names and definitions, for the named items, or for all if no
arguments are given.

SEE ALSO
B. W. Kernighan and D. M. Ritchie, The M4 Macro Processor

6-89

M4(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

(ThiS page intentionally left blank.]

6-90 @

Category C-8560 MUSDU System Reference Manual NM(6)

@

Optional Native Programming Package 8560U02

NM(6)

NAME
nm - print name list

SYNTAX
nm [-gnopruh] [file ...]

DESCRIPTION
Nm prints the name list (symbol table) of each object file in the argument list. If an
argument is an archive, a listing for each object file in the archive will be produced.
If no file is given, the symbols in 'a.out' are listed.

Each symbol name is preceded by its value (blanks if undefined) and one of the
letters U (undefined), A (absolute), T (text segment symbol), D (data segment sym­
boO, B (bss segment symbol), or C (common symbol). If the symbol is local (non­
external) the type letter is in lower case. The output is sorted alphabetically.

Options are:

-g Print only global (external) symbols.

-n Sort numerically rather than alphabetically.

-0 Prepend file or archive element name to each output line rather than only
once.

-p Don't sort; print in symbol-table order.

-r Sort in reverse order.

-u Print only undefined symbols.

-h Print values in hex notation instead of octal.

SEE ALSO
ar(1), ar(5), a.out(5)

6-91

NM(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-92

Category C-8560 MUSDU System Reference Manual PLOT(6)

@

Optional Auxiliary Utilities Package a-560U03

PLOT(6}

NAME
plot - graphics filters

SYNTAX
plot [- T terminal [raster]]

DESCRIPTION
These commands read plotting instructions (see plot (5)) from the standard input,
and in general produce plotting instructions suitable for a particular terminal on
the standard output.

If no terminal type is specified, the environment parameter $TERM (see
environ (5)) is used. Known terminals are:

4014 Tektronix 4014 storage scope.

450 DASI Hyterm 4S0 terminal (Diablo mechanism).

300 DASI 300 or GSI terminal (Diablo mechanism).

300S DASI 300S terminal (Diablo mechanism).

ver Versatec D1200A printer-plotter. This version of plot places a scan­
converted image in '/usr/tmp/raster' and sends the result directly to the
plotter device rather than to the standard output. The optional argument
causes a previously scan-converted file raster to be sent to the plotter.

FILES
Ibin/tek
Ibin/t4S0
Ibin/t300
Ibin/t300s
Ibin/vplot
lusr/tmp/raster

SEE ALSO
plot(3), plot(S)

NOTES
There is no lockout protection for lusr/tmp/raster.

6-93

PLOT(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-94 @

Category C-8560 MUSDU System Reference Manual PREP(6)

@

Optional Auxiliary Utilities Package 8560U03

PREP(6)

NAME
prep - prepare text for statistical processing

SYNTAX
prep [-dlo] file ...

DESCRIPTION
Prep reads each file in sequence and writes it on the standard output, one 'word' to
a line. A word is a string of alphabetic characters and imbedded apostrophes, del­
imited by space or punctuation. Hyphented words are broken apart; hyphens at
the end of lines are removed and the hyphenated parts are joined. Strings of digits
are discarded.

The following option letters may appear in any order:

-d Print the word number (in the input stream) with each word.

-I Take the next file as an 'ignore' file. These words will not appear in the
output. (They will be counted, for purposes of the -d count.)

-0 Take the next file as an 'only' file. Only these words will appear in the out­
put. (All other words will also be counted for the -d count.)

-p Include punctuation marks (single nonalphanumeric characters) as
separate output lines. The punctuation marks are not counted for the -d
count.

Ignore and only files contain words: one per line.

SEE ALSO
deroff(1)

6-95

PREP(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-96

Category C-8560 MUSDU System Reference Manual PROF(6)

@

Optional Native Programming Package 8560U02

PROF(6)

NAME
prof - display profile data

SYNTAX
prof [-y] [-8] [-I] [- low [-high]] [file]

DESCRIPTION
Prof interprets the file mon.out produced by the monitor subroutine. Under default
modes, the symbol table in the named object file (a.out default) is read and corre­
lated with the mon.out profile file. For each external symbol, the percentage of
time spent executing between that symbol and the next is printed (in decreasing
order), together with the number of times that routine was called and the number of
milliseconds per call.

If the -8 option is used, all symbols are reported rather than just external symbols.
If the -I option is used, the output is listed by symbol value rather than decreasing
percentage.

if the -y option is used, ali printing is suppressed and a graphic version of the pro­
file is produced on the standard output for display by the plot (1) filters. The
numbers low and high, by default a and 100, cause a selected percentage of the
profile to be plotted with accordingly higher resolution.

In order for the number of calls to a routine to be tallied, the -p option of cc must
have been given when the file containing the routine was compiled. This option
also arranges for the mon.out file to be produced automatically.

FILES
mon.out for profi Ie
a.out for namelist

SEE ALSO
monitor(3), profil(2) , cc(1), plot(1)

NOTES
Beware of quantization errors.

6-97

PROF(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-98

Category C-8560 MUSDU System Reference Manual PSTAT(6)
Optional Auxiliary Utilities Package 8560U03

PSTAT(6)

NAME
pstat - print system facts

SYNOPSIS
p8tat [-alxptuf] [suboptions] [file]

DESCRIPTION
Pstat interprets the contents of certain system tables. If file is given, the tables are
sought there, otherwise in Ide vim em. The required namelist is taken from lunix.
Options are

-a Under -p, describe all process slots rather than just active ones.

-I Print the inode table with the these headings:

LaC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:
L locked
U update time filsys (5)) must be corrected
A access time must be corrected
M file system is mounted here
W wanted by another process (L flag is on)
T contains a text file
C changed time must be corrected
CNT Number of open file table entries for this inode.
DEV Major and minor device number of file system in which this inode

resides.
INa I-number within the device.
MODE Mode bits, see chmod (2).
NLK Number of links to this inode.
UID User 10 of owner.
SIZ/DEV

-x
LaC
FLAGS
T
W
L
K
w

Number of byt~s in an ordinary file, or major and minor device of special
file.

Print the text table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded th us:
ptrace (2) in effect
text not yet written on swap device
loading in progress
locked
wanted (L flag is on)

DADDR Disk address in swap, measured in multiples of 512 bytes.

CADDR Core address, measured in multiples of 64 bytes.

SIZE Size of text segment, measured in multiples of 64 bytes.

IPTR Core location of corresponding inode.

CNT Number of processes using this text segment.

6-99

PSTAT(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

6-100

CCNT

-p

LOC
S
o

Number of processes in core using this text segment.

Print process table for active processes with these headings:

The core location of this table entry.
Run state encoded thus:
no process

1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace
F Miscellaneous state variables, or-ed together:
01 loaded
02 the scheduler process
04 locked
010 swapped out
020 traced
040 used in tracing
0100 locked in by lock (2).
PRI Scheduling priority, see nice (2).
SIGNAL Signals received (signals 1-16 coded in bits 0-15),
UIO Real user 10.
TIM Time resident in seconds; times over 127 coded as 127.
CPU Weighted integrai of CPU time, for scheduier.
NI Nice level, see nice (2).
PGRP Process number of root of process group (the opener of the controlling

terminal).
PIO The process 10 number.

PPIO The process 10 of parent process
AOOR If in core, the physical address of the ·u-area' of the process measured

in multiples of 64 bytes. If swapped out, the position in the swap area
measured in multiples of 512 bytes.

SIZE Size of process image in multiples of 64 bytes.
WCHAN Wait channel number of a waiting process.
LINK Link pointer in list of runnable processes.
TEXTP If text is pure, pointer to location of text table entry.
CLKT Countdown for alarm (2) measured in seconds.

-t Print table for terminals (only DH11 and OL 11 handled) with these
headings:

RAW
CAN
OUT
MODE
ADOR
DEL
COL
STATE
W

Number of characters in raw input queue.
Number of characters in canonicalized input queue.
Number of characters in putput queue.
See tty(4).
Physical device address.
Number of delimiters (newlines) in canonicalized input queue.
Calculated column position of terminal.
Miscellaneous state variables encoded thus:
waiting for open to complete

Category C-8560 MUSDU System Reference Manual PSTAT(6)

@

Optional Auxiliary Utilities Package 8560U03

FILES

o
S
C
B
A
X
H
PGRP

-u

-f

LOC
FLG
R
W
P
CNT
INO
OFFS

open
has special (output) start routine
carrier is on
busy doing output
process is awaiting output
open for exclusive use
hangup on close
Process group for which this is controlling terminal.

print information about a user process; the next argument is its address
as given by ps (1). The process must be in main memory, or the file
used can be a core image and the address O.

Print the open file table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:
open for reading
open for writing
pipe
Numbei of piocesses that know this open file.
The location of the inode table entry for this file.
The file offset, see Iseek (2).

/unix namelist
/dev/mem default source of tables

SEE ALSO
ps(1), stat(2), filsys(S)

6-101

PSTAT(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank,j

Category C-8560 MUSDU System Reference Manual PTX(6)

@

Optional Text Processing Package 8560U01

PTX(6)

NAME
ptx - permuted index

SYNTAX
ptx [option] ... [input [output]]

DESCRIPTION
Ptx generates a permuted index to file input on file output (standard input and out­
put default). It has three phases: the first does the permutation, generating one
line for each keyword in an input line. The keyword is rotated to the front. The
permuted file is then sorted. Finally, the sorted lines are rotated so the keyword
comes at the middle of the page. Ptx produces output in the form:

.xx "tail" "before keyword" "keyword and after" "head"

where .xx may be an nroff or troff (1) macro for user-defined formatting. The
before keyword and keyword and after fields incorporate as much of the line as will
fit around the keyword when it is printed at the middle of the page. Tail and head,
at least one of which is an empty string "", are wrapped-around pieces small
enough to fit in the unused space at the opposite end of the line. When original
text must be discarded, 'I' marks the spot.

The following options can be applied:

-f Fold upper and lower case letters for sorting.

-t Prepare the output for the phototypesetter; the default line length is 100
characters.

-w n Use the next argument, n, as the width of the output line. The default line
length is 72 characters.

-g n Use the next argument, n, as the number of characters to allow for each
gap among the four parts of the line as finally printed. The default gap is 3
characters.

-0 only
Use as keywords only the words given in the only file.

-I Ignore
Do not use as keywords any words given in the ignore file. If the -i and -0

options are miSSing, use lusrllibleign as the ignore file.

-b break
Use the characters in the break file to separate words. In any case, tab,
newline, and space characters are always used as break characters.

-r Take any leading non blank characters of each input line to be a reference
identifier (as to a page or chapter) separate from the text of the line. Attach
that identifier as a 5th field on each output line.

6-103

PTX(6)
Optional Text Processing Package 8560U01

FILES
/bin/sort
/usr/lib/eign

NOTES

Category C-8560 MUSDU System Reference Manual

Line length counts do not account for overstriking or proportional spacing.

6-104 @

Category C-8560 MUSDU System Reference Manual PUBINDEX(6)

@

Optional Text Processing Package 8560U01

PUBINDEX(6)

NAME
pubindex - make inverted bibliographic index

SYNTAX
publndex [file] ...

DESCRIPTION
Pubindex makes a hashed inverted index to the named files for use by refer (1).
The files contain bibliographic references separated by blank lines. A biblio­
graphic reference is a set of lines that contain bibliographic information fields.
Each field starts on a line beginning with a '%', followed by a key-letter, followed by
a blank, and followed by the contents of the field, which continues until the next
line starting with '%'. The most common key-letters and the corresponding fields
are:

A Author name
8 Title of book containing article referenced
C City
o Date
d Alternate date
E Editor of book containing article referenced
G Government (CFSTI) order number
I Issuer (publisher)
J Journal
K Other keywords to use in locating reference
M Technical memorandum number
N Issue number within volume
a Other commentary to be printed at end of reference
P Page numbers
R Report n umber
r Alternate report number
T Title of article, book, etc.
V Volume number
X Commentary unused by pubindex

Except for 'A', each field should only be given once. Only relevant fields should be
supplied. An example is:

FILES

% T 5-by-5 Palindromic Word Squares
%A M. D. Mcilroy
%J Word Ways
%V9
%P 199-202
%0 1976

x.ia, x.ib, x.ic where x is the first argument.

SEE ALSO
refer(1)

6-105

PUBINDEX(6) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560U01

[This page intentionally left blank.]

6-106 @

Category C-8560 MUSDU System Reference Manual RANLIB(6}
Optional Native Programming Package 8560U02

RANLIB(6)

NAME
ranlib - convert archives to random libraries

SYNTAX
ranlib archive ...

DESCRIPTION
Ranlib converts each archive to a form which can be loaded more rapidly by the
loader, by adding a table of contents named _.SYMDEF to the beginning of the
archive. It uses ar (1) to reconstruct the archive, so that sufficient temporary file
space must be available in the file system containing the current directory.

SEE ALSO
Id (1), ar(1)

NOTES
Because generation of a library by ar and randomization by ranlib are separate,
phase errors are possible. The loader Id warns when the modification date of a
library is more recent than the creation of its dictionary; but this means you get the
warning even if you only copy the library.

6-107

RANLIB(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

iThis page intentionaiiy ieft blank.j

6-108

Category C-8560 MUSDU System Reference Manual RATFOR(6)
Optional Native Programming Package 8560U02

RATFOR(6)

NAME
ratfor - rational Fortran dialect

SYNTAX
rattor [option ...] [filename ...]

DESCRIPTION
Ratfor converts a rational dialect of Fortran into ordinary irrational Fortran. Rattor
provides control flow constructs essentially identical to those in C:

statement grouping:
{ statement; statement; statement}

decision-making:
if (condition) statement [else statement]
switch (integer value) { case integer:statement
default:]statement }

loops: while (condition) statement for (expression; condition; expression) state­
ment do limits statement repeat statement [until (condition)] break [n] next
[n]

and some syntactic sugar to make programs easier to read and write:

free form Input:
multiple statements/line; automatic continuation

comments:
this is a comment

translation of relatlonals:
>, > =, etc., become .GT., .GE., etc.

return (expression)
returns expressio~ to caller from function

define:
define name replacement

Include:
include filename

The option -h causes quoted strings to be turned into 27H constructs. -C copies
comments to the output, and attempts to format it neatly. Normally, continuation
lines are marked with a & in column 1; the option -ex makes the continuation
character x and places it in column 6.

Raffor is best used with f77 (1 J.
SEE ALSO

f77(1)
B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

6-109

RATFOR(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-110

Category C-8560 MUSDU System Reference Manual REFER/LOOKBIB(6)
Optional Text Processing Package 8560U01

REFER/LOOKBIB(6)

NAME
refer, lookbib - find and insert literature references in documents

SYNTAX
refer [option] ...

lookblb [file] ...

DESCRIPTION
Lookbib accepts keywords from the standard input and searches a bibliographic
data base for references that contain those keywords anywhere in title, author,
journal name, etc. Matching references are printed on the standard output. Blank
lines are taken as delimiters between queries.

Refer is a preprocessor for nroff or troff (1) that finds and formats references. The
input files (standard input default) are copied to the standard output, except for
lines between .[and.] command lines, which are assumed to contain keywords as
for lookbib, and are replaced by information from the bibliographic data base. The
user may avoid the search, override fields from it, or add new fields. The reference
data, from whatever source, are assigned to a set of troff strings. Macro packages
such as ms (7) print the finished reference text from these strings. A flag is placed
in the text at the point of reference; by default the references are indicated by
numbers.

The following options are available:

-8 r Reverse the first r author names (Jones, J. A. instead of J. A. Jones). If r is
omitted all author names are reversed.

-b Bare mode: do not put any flags in text (neither numbers nor labels).

-c string
Capitalize (with CAPS SMALL CAPS) the fields whose key-letters are in
string.

-e Instead of leaving the references where encountered, accumulate them
until a sequence of the form

.[
$LlST$
.]

is encountered, and then write out all references collected so far. Collapse
references to the same source. .

-k x Instead of numbering references, use labels as specified in a reference
data line beginning %x; by default x is L.

-I m, n
Instead of numbering references, use labels made from the senior author's
last name and the year of publication. Only the first m letters of the last
name and the last n digits of the date are used. If either m or , n is omitted
the entire name or date respectively is used.

6-111

REFER/LOOKBIB(6) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560U01

6-112

-p Take the next argument as a file of references to be searched. The default
file is searched last.

-n Do not search the default file.

-8 keys
Sort references by fields whose key-letters are in the keys string; permute
reference numbers in text accordingly. Implies -e. The key-letters in keys
may be followed by a number to indicate how many such fields are used,
with + taken as a very large number. The default is AD which sorts on the
senior author and then date; to sort, for example, on all authors and then
title use -sA + T .

To use your own references, put them in the format described in pubindex (1) They
can be searched more rapidly by running pubindex (1) on them before using refer;
failure to index results in a linear search.

When refer is used with eqn, neqn or tbl, refer should be first, to minimize the
volume of data passed through pipes.

FILES
lusrldictlpapers directory of default publication lists and indexes
lusrl/iblrefer directory of programs

SEE ALSO

REV(6)

NAME
rev - reverse lines of a file

SYNTAX
rev [file] ...

DESCRIPTION
Rev copies the named files to the standard output, reversing the order of charac­
ters in every line. If no file is specified, the standard input is copied.

Category C-8560 MUSDU System Reference Manual SED(6)
Optional Auxiliary and Native Programming Packages 8560U02 and 8560U03

SED(6)

NAME
sed - stream editor

SYNTAX
sed [-n] [-8 script] [-f stile] [file] ...

DESCRIPTION
Sed copies the named tiles (standard input default) to the standard output, edited
according to a script of commands. The -f option causes the script to be taken
from file stile; these options accumulate. If there is just one -8 option and no
-f 's, the flag -8 may be omitted. The -n option suppresses the default output.

A script consists of editing commands, one per line, of the following form:

[address L address]] function [arguments]

In normal operation sed cyclically copies a line of input into a pattern space
(unless there is something left after a '0' command), applies in sequence all com­
mands whose addresses select that pattern space, and at the end of the script
copies the pattern space to the standard output (except under -n j and deletes
the pattern space.

An address is either a decimal number that counts input lines cumulatively across
files, a '$' that addresses the last line of input, or a context address, '/regular
expression/', in the style of ed (1) modified thus:

The escape sequence '\n' matches a newline embedded in the pattern
space.

A command line with no addresses selects every pattern space.

A command line with one address selects each pattern space that matches the
address.

A command line with two addresses selects the inclusive range from the first pat­
tern space that matches the first address through the next pattern space that
matches the second. (If the second address is a number less than or equal to the
line number first selected, only one line is selected.) Thereafter the process is
repeated, looking again for the first address.

Editing commands can be applied only to non-selected pattern spaces by use of
the negation function '!' (below).

In the following list of functions the maximum number of permissible addresses for
each function is indicated in parentheses.

An argument denoted text consists of one or more lines, all but the last of which
end with '\' to hide the newline. Backslashes in text are treated like backslashes
in the replacement string of an's' command, and may be used to protect initial
blanks and tabs against the stripping that is done on every script line.

6-113

SED(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary and Native Programming Packages 8560U02 and 8560U03

6-114

An argument denoted rfile or wfile must terminate the command line and must be
preceded by exactly one blank. Each wfile is created before processing begins.
There can be at most 10 distinct wfile arguments.

(1) a\
text

Append. Place text on the output before reading the next input line.

(2) b label

(2) c\
text

Branch to the ':' command bearing the label. If label is empty, branch to
the end of the script.

Change. Delete the pattern space. With 0 or 1 address or at the end of a
2-address range, place text on the output. Start the next cycle.

(2) d Delete the pattern space. Start the next cycle.

(2) 0 Delete the initial segment of the pattern space through the first newline.
Start the next cycle.

(2) g Replace the contents of the pattern space by the contents of the hold
space.

(2) G Append the contents of the hold space to the pattern space.

(2; h Repiace the contents of the hoid space by the contents of the pattern
space.

(2) H Append the contents of the pattern space to the hold space.

(1) 1\
text Insert. Place text on the standard output.

(2) I List the pattern space on the standard output in an unambiguous form.
Non-printing characters are spelled in two digit ascii, and long lines are
folded.

(2) n Copy the pattern space to the standard output. Replace the pattern space
with the next line of input.

(2) N Append the next line of input to the pattern space with an embedded new­
line. (The current line number changes.)

(2) p Print. Copy the pattern space to the standard output.

(2) P Copy the initial segment of the pattern space through the first newline to
the standard output.

(1) q Quit. Branch to the end of the script. Do not start a new cycle.

(2) r rflle
Read the contents of rfile. Place them on the output before reading the
next input line.

Category C-8560 MUSDU System Reference Manual SED(6)
Optional Auxiliary and Native Programming Packages 8560U02 and 8560U03

(2) 8 /regular expression/replacement/flags
Substitute the replacement string for instances of the regular expression in
the pattern space. Any character may be used instead of 't'. For a fuller
description see ed (1). Flags is zero or more of

g Global. Substitute for all nonoverlapping instances of the
regular expression rather than just the first one.

p Print the pattern space if a replacement was made.

w wflle
Write. Append the pattern space to wfi/e if a replacement was
made.

(2) t label
Test. Branch to the ':' command bearing the label if any substitutions have
been made since the most recent reading of an input line or execution of a
't'. If label is empty, branch to the end of the script.

(2) w wflle
Write. Append the pattern space to wfile .

(2) x Exchange the contents of the pattern and hold spaces.

(2) y /strlng1 /strlng2/
Transform. Replace all occurrences of characters in string 1 with the
corresponding character in string2. The lengths of string 1 and string2 must
be equal.

(2) I function
Don't. Apply the function (or group, if function is '{') only to lines not
selected by the addressees).

(0): label
This command does nothing; it bears a label for 'b' and 't' commands to
branch to.

(1) - Place the current iine number on the standard output as a line.

(2) { Execute the following commands through a matching '}' only when the pat­
tern space is selected.

(0) An empty command is ignored.

SEE ALSO
ed(1), grep(1), awk(1)

6-115

SED(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary and Native Programming Packages 8560U02 and 8560U03

[ThiS page intentionally left biank.j

6-116

Category C-8560 MUSDU System Reference Manual SIZE(6)
Optional Native Programming Package 8560U02

SIZE(6)

NAME
size - size of an object file

SYNTAX
size [object ...]

DESCRIPTION
Size prints the (decimal) number of bytes required by the text, data, and bss por­
tions, and their sum in octal and decimal, of each object-file argument. If no file is
specified, a.out is used.

SEE ALSO
a.out(S)

6-117

SIZE(6)
Optional Native Programming Package 8560U02

Category C-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

6-118

Category C-8560 MUSDU System Reference Manual SPELL(6}
Optional Text Processing Package 8560U01

SPELL(6)

NAME
spell, spellin, spellout - find spelling errors

SYNTAX
spell [option]... [file] ...

lusr/dlctlspellin [list]

lusr/dlctlspellout [-d] list

DESCRIPTION
Spell collects words from the named documents, and looks them up in a spelling
list. Words that neither occur among nor are derivable (by applying certain inflec­
tions, prefixes or suffixes) from words in the spelling list are printed on the stan­
dard output. If no files are named, words are collected from the standard input.

Spell ignores most troff, tbl and eqn (1) constructions.

Under the -v option, all words not literally in the spelling list are printed, and plau­
sible derivations from spelling list words are indicated.

Under the -b option, British spelling is checked. Besides preferring centre, colour,
speciality, travellad, etc., this option insists upon -ise in words like standardise,
Fowler and the OED to the contrary notwithstanding.

Under the -x option, every plausible stem is printed with '=' for each word.

The spelling list is based on many sources, and while more haphazard than an
ordinary dictionary, is also more effective in respect to proper names and popular
technical words. Coverage of the specialized vocabularies of biology, medicine
and chemistry is light.

Pertinent auxiliary files may be specified by name arguments, indicated below with
their default settings. Copies of all output are accumulated in the history file. The
stop list filters out missp~lIings (e.g. thier=thy-y+ ier) that would otherwise pass.

Two routines help maintain the hash lists used by spell. Both expect a list of
words, one per line, from the standard input. Spallin adds the words on the stan­
dard input to the preexisting list and places a new list on the standard output. If
no list is specified, the new list is created from scratch. Spellout looks up each
word in the standard input and prints on the standard output those that are miss­
ing from (or present on, with option -d) the hash list.

FILES
D=/usr/dictlhlist[ab]: hashed spelling lists, American & British
S=/usr/dictlhstop: hashed stop list
H=/usr/dictlspelihist: history file
lusr/lib/spell
deroff(1), sort(1), teet 1), sed (1)

NOTES
The spelling list's coverage is uneven; new installations will probably wish to moni­
tor the output for several months to gather local additions.
British spelling was done by an American.

6-119

SPELL(6) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560U01

[This page intentionaliy ieft blank.)

6-120

Category C-8560 MUSDU System Reference Manual SPLINE(6)

@

Optional Auxiliary Utilities Package 8560U03

SPLINE(6)

NAME
spline - interpolate smooth curve

SYNTAX
spline [option] ...

DESCRIPTION
Spline takes pairs of numbers from the standard input as abcissas and ordinates
of a function. It produces a similar set, which is approximately equally spaced and
includes the input set, on the standard output. The cubic spline output (R. W.
Hamming, Numerical Methods for Scientists and Engineers, 2nd ed., 349ff) has two
continuous derivatives, and sufficiently many points to look smooth when plotted,
for example by graph (1).

The following options are recognized, each as a separate argument.

-8 Supply abscissas automatically (they are missing from the input); spacing
is given by the next argument, or is assumed to be 1 if next argument is not
a number.

-k The constant k used in the boundary value computation

is set by the next argument. By default k = o.
-n Space output points so that approximately n intervals occur between the

lower and upper x limits. (Default n = 100.)

-p Make output periodic, i.e. match derivatives at ends. First and last input
values should normally agree.

-x Next 1 (or 2) arguments are lower (and upper) x limits. Normally these lim­
its are calculated from the data. Automatic abcissas start at lower limit
(default 0).

SEE ALSO
graph(1)

DIAGNOSTICS
When data is not strictly monotone in x, spline reproduces the input without inter­
polating extra pOints.

NOTES
A limit of 1000 input points is enforced silently.

6-121

SPLINE(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-122

Category C-8560 MUSDU System Reference Manual SPLIT(6)
Optional Auxiliary Utilities Package 8560U03

SPLIT(6)

NAME
split - split a file into pieces

SYNTAX
split [-n] [file [name]]

DESCRIPTION
Split reads file and writes it in n -line pieces (default 1000), as many as necessary,
onto a set of output files. The name of the first output file is name with aa
appended, and so on lexicographically. If no output name is given, x is default.

If no input file is given, or if - is given in its stead, then the standard input file is
used.

6-123

SPLIT(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

(This page intentionaiiy iaft biankJ

6-124

Category C-8560 MUSDU System Reference Manual STRIP(6)
Optional Native Programming Package 8560U02

STRIP(6)

NAME
strip - remove symbols and relocation bits

SYNTAX
strip name ...

DESCRIPTION
Strip removes the symbol table and relocation bits ordinarily attached to the output
of the assembler and loader. This is useful to save space after a program has
been debugged.

The effect of strip is the same as use of the -s option of Id .

FILES
Itmp/stm? temporary file

SEE ALSO
Id(1)

6-125

STRIP(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

[This page intentionally left blank.]

6-126

Category C-8560 MUSDU System Reference Manual STRUCT(6)
Optional Native Programming Package 8560U02

STRUCT(6)

NAME
struct - structure Fortran programs

SYNTAX
Itruct [option]... fi Ie

DESCRIPTION
Struct translates the Fortran program specified by file (standard input default) into
a Ratfor program. Wherever possible, Ratfor control constructs replace the original
Fortran. Statement numbers appear only where still necessary. Cosmetic changes
are made, including changing Hollerith strings into quoted strings and relational
operators into symbols (.e.g. '.GT.' into '> '). The output is appropriately indented.

The following options may occur in any order.

-8 Input is accepted in standard format, i.e. comments are specified by a c, C,
or * in column 1, and continuation lines are specified by a nonzero, non­
blank character in column 6. Normally, a statement whose first non blank
character is net alphanumeric is treated as a continuation,

-I Do not turn computed goto statements into switches. (Ratfor does not turn
switches back into computed goto statements.)

-8 Turn sequences of else ifs into a non-Ratfor switch of the form

switch {
case pred1: code
case pred2: code
case pred3: code
default: code

The case predicates are tested in order; the code appropriate to only one
case is executed". This generalized form of switch statement does not
occur in Ratfor.

-b Generate goto's instead of multilevel break statements.

-n Generate goto's instead of multilevel next statements.

-8 n If n is 0 (default), place code within a loop only if it can lead to an

FILES

iteration of the loop. If n is nonzero, admit code segments with fewer than n
statements to a loop if otherwise the loop would have exits to several
places including the segment, and the segment can be reached only from
the loop.

Itmp/struct*
lusr/lib/structl*

SEE ALSO
f77(1)

6-127

STRUCT(6) Category C-8560 MUSDU System Reference Manual
Optional Native Programming Package 8560U02

6-128

NOTES
Struct knows Fortran 66 syntax, but not full Fortran 77 (alternate returns,
IF ... NMEN ... ELSE, etc.)
If an input Fortran program contains identifiers which are reserved words in Ratfor,
the structured version of the program wiil not be a valid Ratfor program.
Extended range DO's generate cryptic errors.
Columns 73-80 are not special even when -8 is in effect.
Will not generate Ratfor FOR statements.

Category C-8560 MUSDU System Reference Manual SUM(6)
Optional Auxiliary Utilities Package 8560U03

SUM(S)

NAME
sum - sum and count blocks in a file

SYNTAX
sum file

DESCRIPTION
Sum calculates and prints a 16-bit checksum for the named file, and also prints
the number of blocks in the file. It is typically used to look for bad spots, or to vali­
date a file communicated over some transmission line.

SEE ALSO
wc(1)

DIAGNOSTICS
'Read error' is indistinuishable from end of file on most devices; check the block
count.

6-129

SUM(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-130

Category C-8560 MUSDU System Reference Manual TABS(6)
Optional Auxiliary Utilities Package 8560U03

TABS(6)

NAME
tabs - set terminal tabs

SYNTAX
tabs [-n] [terminal]

DESCRIPTION
Tabs sets the tabs on a variety of terminals. Various of the terminal names given
in term (7) are recognized; the default is, however, suitable for most 300 baud ter­
minals. If the -n flag is present then the left margin is not indented as is normal.

SEE ALSO
stty(1), term(7)

6-131

TABS(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

(This page intentionaiiy ieri biank,j

6-132

Category C-8560 MUSDU System Reference Manual TAR(6}

@

Optional Auxiliary Utilities Package 8560U03

TAR(6)

NAME
tar - tape archiver

SYNTAX
tar [key] [name ...]

DESCRIPTION
Tar saves and restores files on magtape. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter
and possibly one or more function modifiers. Other arguments to the command are
file or directory names specifying which files are to be dumped or restored. In all
cases, appearance of a directory name refers to the files and (recursively) sub­
directories of that directory.

The function portion of the key is specified by one of the following letters:

r The named files are written on the end of the tape. The c function implies
this.

x The named fiies are extracted from the tape. if the named fiie matches a
directory whose contents had been written onto the tape, this directory is
(recursively) extracted. The owner, modification time, and mode are
restored (if possible). If no file argument is given, the entire content of the
tape is extracted. Note that if multiple entries specifying the same file are
on the tape, the last one overwrites all earlier.

t The names of the specified files are listed each time they occur on the
tape. If no file argument is given, all of the names on the tape are listed.

u The named files are added to the tape if either they are not already there or
have been modified since last put on the tape.

c Create a new tape; writing begins on the beginning of the tape instead of
after the last file. This command implies r.

The following characters may be used in addition to the letter which selects the
function desired.

0, ... ,7 This modifier selects the drive on which the tape is mounted. The default is
1 .

v Normally tar does its work silently. The v (verbose) option causes it to type
the name of each file it treats preceded by the function letter. With the t
function, v gives more information about the tape entries than just the
name.

w causes tar to print the action to be taken followed by file name, then wait
for user confirmation. If a word beginning with 'y' is given, the action is per­
formed. Any other input means don't do it.

6-133

TAR(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

6-134

f causes tar to use the next argument as the name of the archive instead of
/dev/mt? If the name of the file is '-', tar writes to standard output or reads
from standard input, whichever is appropriate. Thus, tar can be used as the
head or tail of a filter chain Tar can also be used to move hierarchies with
the command

cd fromdir; tar cf - .1 (cd todir; tar xf -)

b causes tar to use the next argument as the blocking factor for tape records.
The default is 1, the maximum is 20. This option should only be used with
raw magnetic tape archives (See f above). The block size is determined
automatically when reading tapes (key letters 'x' and It').

tells tar to complain if it cannot resolve all of the links to the files dumped.
If this is not specified, no error messages are printed.

m tells tar to not restore the modification times. The mod time will be the time
of extraction.

FILES
/dev/mt?
/tmp/tar*

DIAGNOSTICS
Complaints about bad key characters and tape read/write errors.
Complaints if enough memory is not available to hold the link tables.

NOTES
There is no way to ask for the n -th occurrence of a file.
Tape errors are handled ungracefully.
The u option can be slow.
The b option should not be used with archives that are going to be updated. The
current magtape driver cannot backspace raw magtape. If the archive is on a disk
file the b option should not be used at all, as updating an archive stored in this
manner can destroy it.
The current limit on file name length is 100 characters.

Category C-8560 MUSDU System Reference Manual TBl(6)

@

Optional Text Processing Package 8560U01

TBL(6)

NAME
tbl - format tables for nroff or troff

SYNTAX
tbl [files] ...

DESCRIPTION
Tbl is a preprocessor for formatting tables for nroff or troff (1). The input files are
copied to the standard output, except for lines between .TS and .TE command
lines, which are assumed to describe tables and reformatted. Details are given in
the reference manual.

As an example, letting \t represent a tab (which should be typed as a genuine tab)
the input

.TS
css
ccs
ccc
Inn.
Household Population
Town\tHouseholds
\tNumber\tSize
Bedminster\t789\t3.26
Bernards Twp.\ t308 7\ t3. 74
Bernardsvi Ile\ t20 1 8\ t3.30
Bound B roo k\ t3425\ t3.04
Branchburg\t1644\t3.49
Bridgewater\ t7897\ t3.81
Far Hills\t240\t3.19
.TE

yields
Household Population

Town Households

Bedminster
Bernards Twp.
Bernardsville
Bound Brook
Branchburg
Bridgewater
Far Hills

Number Size
789 3.26

3087 3.74
2018 3.30
3425 3.04
1644 3.49
7897 3.81

240 3.19

If no arguments are given, tbl reads the standard input, so it may be used as a
filter. When it is used with eqn or neqn the tbl command should be first, to minim­
ize the volume of data passed through pipes.

SEE ALSO
trott (1), eQ n (1)
M. E. Lesk, TBL.

6-135

TBl(6)
Optional Text Processing Package 8560U01

Category C-8560 MUSDU System Reference Manual

[This p~ge intentionally left blank.]

6-136

Category C-8560 MUSDU System Reference Manual TC(6)

@

Optional Text Processing Package 8560U01

TC(6)

NAME
tc - photypesetter simulator

SYNTAX
tc [-t] [-aN] [-pL] [file]

DESCRIPTION
Tc interprets its input (standard input default) as device codes for a Graphic Sys­
tems phototypesetter (cat). The standard output of tc is intended for a Tektronix
4015 (a 4014 teminal with ASCII and APL character sets). The sixteen typesetter
sizes are mapped into the 4014's four sizes; the entire TROFF character set is
drawn using the 4014's character generator, using overstruck combinations where
necessary. Typical usage:

15 troff -t file I tc

At the end of each page tc waits for a newline (empty line) from the keyboard
before continuing on to the next page. In this wait state, the command e will
suppress the screen erase before the next page; aN will cause the next N pages to
be skipped; and Iline wili send line to the shell.

The command line options are:

-t Don't wait between pages; for directing output into a file.

-a N Skip the first N pages.

-p L Set page length to L. L may include the scale factors p (points), i (inches),
c (centimeters), and P (picas); default is picas.

'-Iw'
Multiply the default aspect ratio, 1.5, of a displayed page by /tw.

SEE ALSO
troff(1), plot(1)

NOTES
Font distinctions are lost.
The aspect ratio option is un bel ievable.

6-137

TC(6) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560U01

[This page intentionally left blank.]

6-138

Category C-8560 MUSDU System Reference Manual TK(6)

@

Optional Auxiliary Utilities Package 8560U03

TK(S)

NAME
tk - paginator for the Tektronix 4014

SYNTAX
tk [-t] [-N] [-pL] [file]

DESCRIPTION
The output of tk is intended for a Tektronix 4014 terminal. Tk arranges for 66 lines
to fit on the screen, divides the screen into N columns, and contributes an eight
space page offset in the (default) single-column case. Tabs, spaces, and back­
spaces are collected and plotted when necessary. Teletype Model 37 half- and
reverse-line sequences are interpreted and plotted. At the end of each page tk
waits for a newline (empty line) from the keyboard before continuing on to the next
page. In this wait state, the command I command will send the command to the
shell.

The command line options are:

~t' Don't wait between pages; for directing output into a file.

- N Divide the screen into N columns and wait after the last column.

-p L Set page length to L lines.

seE ALSO
pr(1)

6-139

TK(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-140 @

Category C-8560 MUSDU System Reference Manual TROFF/NROFF(6)

@

Optional Text Processing Package 8560U01

TROFF/NROFF(6)

NAME
troff, nroft - text formatting and typesetting

SYNTAX
nroff [option]... [file] .. .

troff [option]... [fi Ie] .. .

DESCRIPTION
Trott formats text in the named files for printing on a Graphic Systems C/A/T pho­
totypesetter; nroff for typewriter-like devices. Their capabilities are described in
the NrottlTroff User's Manual. Nroff and troff are normally used in conjunction with
a predefined macro package; for example, see ms (1). .

If no file argument is present, the standard input is read. An argument consisting
of a single minus (-) is taken to be a file name corresponding to the standard
input. The options, which may appear in any order so long as they appear before
the files, are:

-0 lilt Print only pages whose page numbers appear in the comma-separated list
of numbers and ranges. A range N - M means pages N through M ; an ini­
tial -N means from the beginning to page N ; and a final N - means from N
to the end.

-n N Number first generated page N .

-8 N Stop every N pages. Nroff will halt prior to every N pages (default N = 1) to
allow paper loading or changing, and will resume upon receipt of a newline.
Troff will stop the phototypesetter every N pages, produce a trailer to allow
changing cassettes, and resume when the typesetter's start button is
pressed.

-m name
Prepend the macr9 file IUlr/llb/tmac/tmacname to the input files.

- r aN Set register a (one-character) to N .

-I Read standard input after the input files are exhausted.

-q Invoke the simultaneous input-output mode of the rd request.

Nroff only

-T name

-e

-h

Prepare output for specified terminal. For example, - Tq specifies a
Qume Sprint-5 printer and - T4025 a Tektronix 4025 terminal. See
lusrlliblntermllist for a complete list.

Produce equally-spaced words in adjusted lines, using full terminal reso­
lution.

Use output tabs during horizontal spacing to speed output and reduce
output character count. Tab settings are assumed to be every 8 nominal
character widths.

6-141

TROFF/NROFF(6) Category C-8560 MUSDU System Reference Manual
Optional Text Processing Package 8560U01

6-142

FILES

Trott only

-t Direct output to the standard output instead of the phototypesetter.

-f Refrain from feeding out paper and stopping phototypesetter at the end
of the run.

-w Wait until phototypesetter is available, if currently busy.

-b Report whether the phototypesetter is busy or available. No text process-
ing is done.

-8 Send a printable ASCII approximation of the results to the standard out­
put.

-p N Print all characters in point size N while retaining all prescribed spacings
and motions, to reduce phototypesetter elasped time.

-g Prepare output for a GCOS phototypesetter and direct it to the standard
output (see gcat (1)).

If the file lusrladmltracct is writable, troff keeps phototypesetter accounting
records there. The integrity of that file may be secured by making troff a 'set
user-id' program.

lusr Ilib/suftab(?) suffix hyphenation tables
Itmp/ta*
lusr Ilib/tmac/tmac. *
lusr/lib/nterml*
lusr/lib/fontl*
Idev/cat
lusr/adm/tracct

SEE ALSO

temporary file
standard macro files
terminal driving tables for nroff
font width tables for troff
phototypesetter
accounting statistics for Idev/cat

J. F. Ossanna, NrofflTroff User's Manual
B. W. Kernighan, A TROFF Tutorial
R. A. LeFaivre, Addendum: Tektronix Modifications to NrofflTroff
eqn(1), tbl(1), ms(1)
col(1), tk(1) (nroff only)
tc(1), gcat(1), vcat(1) (troff only)

@

Category C-8560 MUSDU System Reference Manual TSORT(6)

@

Optional Auxiliary and Native Programming Packages 8560U02 and 8560U03

TSORT(6)

NAME
tsort - topological sort

SYNTAX
tsort [fi Ie]

DESCRIPTION
Tsort produces on the standard output a totally ordered list of items consistent
with a partial ordering of items mentioned in the input file. If no file is specified,
the standard input is understood.

The input consists of pairs of items (nonempty strings) separated by blanks. Pairs
of different items indicate ordering. Pairs of identical items indicate presence, but
not ordering.

SEE ALSO
lorder(1)

DIAGNOSTICS
Odd data: theie is an odd number of fields in the input file.

NOTES
Uses a quadratic algorithm; not worth fixing for the typical use of ordering a library
arch ive fi Ie.

6-143

TSORT(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary and Native Programming Packages 8560U02 and 8560U03

[This page intentionally left blank.]

6-144 @

Category C-8560 MUSDU System Reference Manual UNITS(6)

@

Optional Auxiliary Utilities Package 8560U03

UNITS(6)

NAME
units - conversion program

SYNTAX
units

DESCRIPTION
Units converts quantities expressed in various standard scales to their equivalents
in other scales. It works interactively in this fashion:

You have: inch
You want: cm

* 2.54000e +00
I 3.9370 1e-01

A quantity is specified as a multiplicative combination of units optionally preceded
by a numeric multiplier. Powers are indicated by suffixed positive integers, divi­
sion by the usual sign:

You have: 15 pounds force/in2
You want: atm

* 1.0206ge+00
I 9.79 730e-0 1

Units only does multiplicative scale changes. Thus it can convert Kelvin to Rank­
ine, but not Centigrade to Fahrenheit. Most familiar units, abbreviations, and metric
prefixes are recognized, together with a generous leavening of exotica and a few
constants of nature including:

pi
c
e
g
force
mole
water
au

ratio of circumference to diameter
speed of light
charge on an electron
acceleration of gravity
same as g
Avogadro's number
pressure head per unit height of water
astronomical unit

'Pound' is a unit of mass. Compound names are run together, e.g. 'light year'. Brit­
ish units that differ from their US counterparts are prefixed thus: 'brgallon'.
Currency is denoted 'belgiumfranc', 'britainpound', ...

For a complete list of units, 'cat lusr/lib/units'.

FILES
lusr/lib/units

NOTES
Don't base your financial plans on the currency conversions.

6-145

UNITS(6)
Optional Auxiliary Utilities Package 8560U03

Category C-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

6-146

Category C-8560 MUSDU System Reference Manual XSENO/XGET IENROLL(6)

@

XSENO/XGET IENROLL(6)

NAME
xsend, xget, enroll - secret mail

SYNOPSIS
x.end person
xget
enroll

DESCRIPTION

Optional Auxiliary Utilities Package 8560U03

These commands implement a secure communication channel; it is like mail(1),
but no one can read the messages except the intended recipient. The method
embodies a public-key cryptosystem using knapsacks.

FILES

To receive messages, use enroll; it asks you for a password that you must sub­
sequently quote in order to receive secret mail.

To receive secret mail, use xget. It asks for your password, then gives you the
messages.

To send secret maii, use xsend in the same manner as the ordinary mail com­
mand. (However, it will accept only one target). A message announcing the
receipt of secret mail is also sent by ordinary mail.

lusrlspool/secretmaill* .key: keys lusrlspool!secretmaill*.[O-9]: messages

SEE ALSO
mail (1)

BUGS
It should be integrated with ordinary mail. The announcement of secret mail
makes traffic analysis possible.

6-147

XSENO/XGET IENROll(6) Category C-8560 MUSDU System Reference Manual
Optional Auxiliary Utilities Package 8560U03

[This page intentionally left blank.]

6-148 @

Category C-8560 MUSDU System Reference Manual YACC(6)

@

Optional Native Programming Package 8560U02

YACC(6)

NAME
yacc - yet another compiler-compiler

SYNTAX
yacc [-yd] grammar

DESCRIPTION
Yacc converts a context-free grammar into a set of tables for a simple automaton
which executes an LR(1) parsing algorithm. The grammar may be ambiguous;
specified precedence rules are used to break ambiguities.

The output file, y.tab.c, must be compiled by the C compiler to produce a program
yyparse. This program must be loaded with the lexical analyzer program, yylex,
as well as main and yyerror, an error handling routine. These routines must be
supplied by the user; Lex (1) is useful for creating lexical analyzers usable by
yacc.

If the -y flag is given, the file y.output is prepared, which contains a description of
the parsing tables and a report on conflicts generated by ambiguities in the gram­
mar.

If the -d flag is used, the file y.tab.h is generated with the define statements that
associate the yacc -assigned 'token codes' with the user-declared 'token names'.
This allows source files other than y.tab.c to access the token codes.

FILES
y.output
y.tab.c
y.tab.h defines for token names
yacc.tmp, yacc.acts temporary files
lusr/lib/yaccpar parser prototype for C programs
llib/liby.a library with default 'main' and 'yyerror'

SEE ALSO
lex (1)
LR Parsing by A. V. Aho and S. C. Johnson, Computing Surveys, June, 1974.
YACC - Yet Another Compiler Compiler by S. C. Johnson.

DIAGNOSTICS
The number of reduce-reduce and shift-reduce conflicts is reported on the stan­
dard output; a more detailed report is found in the y.output file. Similarly, if some
rules are not reachable from the start symbol, this is also reported.

NOTES
Because file names are fixed, at most one yacc process can be active in a given
directory at a time.

6-149

YACC(6)
Optional Native Programming Package 8560U02

Category C-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

6-150 @

8560 MUSDU System Reference Manual

@

Section 7
Macros and other Packages

INTRODUCTION

This section briefly describes the various macro packages intended for use with
the nroff/troff text processors. This section includes other useful information,
such as an ASCII character set and a listing of the TNIX directory hierarchy.

7-1

ASCII(7) Macros, Packages-8560 MUSDU System Reference Manual

7-2

ASCI1(7)

NAME
ascii - map of ASCII character set

SYNTAX
cat lusr/pub/ascll

DESCRIPTION
Ascii is a map of the ASCII character set, to be printed as needed. It contains:

1000 nu II 001 soh 1002 stx I 003 etx I 004 eet 1005 enq 1 006 ack 007 bel
1010 bs 1011 ht 1012 nl 1013 vt 1014 np 1015 cr 1016 so 017 si
1020 dlel021 dc1 1022 dc21023 dc31024 dc41025 nakl026 syn 027 etb
1030 can 1031 an 1032 sub 1 033 esc I 034 f s 1035 gs 1036 rs 037 us
1 040 sp 1 041 ! 1 042 " I 043 # I 044 $ 1 045 % I 046 & 047 '
1050 (1051) 1052 * 1053 + 1054 , 1055 - 1056 057 I
I 060 0 I 061 1 I 062 2 I 063 3 I 064 4 I 065 5 I 066 6 067 7
1070 8 1071 9 1072 : 1073 ; 1074 < 1075 = 1076 > 077 ?
1100 @ 1101 A 1102 8 1103 C 1104 0 1105 E 1106 F 107 G
1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 117 0
1120 P 1121 Q 1122 R 1123 S 1124 T 1125 U 1126 V 127 W
1130 X 1131 Y 1132 Z 1133 [1134 \ 1135] 1136 ~ 137
1140 ' 1141 a 1142 b 1143 c 1144 d 1145 e 1146 f 147 9
i 150 h i 151 i 152 i 153 k i 154 i 155 m i 156 n 1157 0

1160 P 1161 q 1162 r 1163 s 1164 1165 u 1166 v 1167 w 1
1170 x 1171 y 1172 z 1173 {1174 1175} 1176 - 1177 dell

FILES
/usr/pub/ascii

@

Macros, Packages-8560 MUSDU System Reference Manual
EONCHAR(7)

Optional Text Processing Package 8560U01

@

EONCHAR(7)

Name
eqnchar - special character definitions for eqn

SYNTAX
eqn lusr/pub/eqnchar [files] I troff [options]

neqn luar/pub/eqnchar [files] I nroff [options]

DESCRIPTION
Eqnchar contains troff and nroff character definitions for constructing characters
that are not available on the Graphic Systems typesetter. These definitions are pri­
marily intended for use with eqn and neqn. It contains definitions for the following
characters

ciplus EB II II square 0

citimes ® langle circle 0

wig .. ~"",../I"'\ \ Jo./,..+ n
I QII l::J1 V / ""V, L.J

-wig - hbar 11 bullet •
> wig ~ ppd -L prop ex:

<wig ~ <-> - empty 0

= wig - <=> ~ member E

star * <: nomem ~

bigstar * I> :> cup U

=dot - ang L cap n
orsign V rang L incl I:

andsign A. 3dot subset c

=del ~ thf supset :::)

oppA V quarter 1/4 !subset ~

oppE :3 3quarter 3/4 !supset ~

angstrom A degree 0

FILES
lusr/pub/eqnchar

SEE ALSO
troff(1), eqn(1)

7-3

HIER(7) Macros, Packages-8560 MUSDU System Reference Manual

7-4

HIER(7)

NAME
hier - file system hierarchy

DESCRIPTION
The following outline gives a quick tour through a representative directory hierar­
chy.

I root

Idevl devices (4)

console
main console, tty (4)

tty· terminals, tty (4)

Iblnl utility programs, cf lusr/binl (1)

aa assembler first pass, cf lusr/lib/as2

cc C compiler executive, cf lusrllib/c[012]

IUbl object libiiaries and other stuff; cf lusr/lib!

IIbc.a system calls, standard 1/0, etc. (2,3,38)

IIbm.a math routines (3M)

IIbplot.a
plotting routines, plot (3)

IIbF77.a
Fortran runtime support

IIb177.a
Fortran I/O

•• 2 second pass of as (1)

c[01 2] passes of cc (1)

letcl essential data and dangerous maintenance utilities

pa •• wd
password file, passwd (5)

group group file, group (5)

motd message of the day, login (1)

mtab mounted file table, mtab (5)

ddate dump history, dump (1)

@

Macros, Packages-8560 MUSDU System Reference Manual

@

ttya properties of terminals, ttys (5)

getty part of login, getty (8)

inlt the father of all processes, init (8)

rc shell program to bring the system up

cron the clock daemon, cron (8)

mount mount (1)

wall wall (1)

Itmpl temporary files, usually on a fast device, cf lusr/tmpl

e- used by ed (1)

etm- used by cc (1)

luarl general-pupose directory, usuaiiy a mounted fiie system

luar Ibln
utility programs, to keep Ibinl small

tmpl temporaries, to keep Itmpl small

atm- used by sort (1)

raster used by plot (1)

diet! word lists, etc.

words principal word list, used by look (1)

spellhlst
history file for spell (1)

Ineludel
standard #include files

a.out.h object file layout, a.out (5)

stdlo.h
standard 1/0, stdio (3)

math.h
(3M)

sysl system-defined layouts, cf lusrlsys/h

aeet.h process accounts, acct (5)

buf.h internal system buffers

HIER(7)

7-5

HIER(7}

7-6

Macros, Packages-8560 MUSDU System Reference Manual

libl

lusrl manl

object libraries and stuff, to keep llibl small

IInt[12]
subprocesses for lint (1)

IIIb-lc dummy declarations for Ilib/libc.a, used by lint (1)

IIIb-lm dummy declarations for Ilib/libc.m

atrun scheduler for at (1)

structl
passes of struct (1)

tmacl macros for troff (1)

tmac.an
macros for man (7)

tmac.s macros for ms (7)

fontl fonts for troff (1)

R Times Roman

8 Times 80ld

uucpl programs and data for uucp (1)

L.sys remote system names and numbers

uuclco
the real copy program

suftab table of suffixes for hyphenation, used by troff (1)

units conversion tables for units (1)

elgn list of English words to be ignored by ptx (1)

on-line reference manual, man (1)

cat11 preprinted pages for man 11

as.1

mount.1 m

@

Macros, Packages-8560 MUSDU System Reference Manual

@

spooll delayed execution files

at! used by at (1)

Ipdl used by Ipr (1)

lock present when line printer is active

cf* copy of file to be printed, if necessary

df* daemon control file, Ipd (8)

tf* transient control file, while Ipr is working

malll mailboxes for mail (1)

uld mail file for user uid

uld .lock
lock file while uid is receiving mail

wd initial working directory of a user, typically wd is the user's login name

. profile
set environment for sh (1), environ (5)

calendar
user's datebook for calendar (1)

SEE ALSO
Is(1), ncheck(1), find(1), grep(1)

NOTES
The position of files is subject to change without notice.

HIER(7)

7-7

MAN(7)
Optional Text Processing Package 8560U01 Macros, Packages-8560 MUSDU System Reference Manual

7-8

MAN(7)

NAME
man - macros to typeset manual

SYNTAX
nroff -man file .. .

troff - man fi Ie .. .

DESCRIPTION
These macros are used to layout pages of this manual. A skeleton page may be
found in the file lusr/man/manO/xx.

Any text argument t may be zero to six words. Quotes may be used to include
blanks in a 'word'. If text is empty, the special treatment is applied to the next
input line with text to be printed. In this way. I may be used to italicize a whole
line, or . SM followed by . B to make small bold letters.

A prevailing indent distance is remembered between successive indented
paragraphs, and is reset to default value upon reaching a non-indented paragraph.
Default units for indents i are ens.

Type font and size are reset to default values before each paragraph, and after
processing font and size setting macros.

\·R l.ft R .,if t .1 nroff.

\·S Change to default type size.

FILES
lusr Ilib/tmac/tmac.an
lusr/man/manO/xx

SEE ALSO
troff(1), man(1)

NOTES
Relative indents don't nest.

REQUESTS
Request Cause If no Explanation

Break Argument
.Bo t no t=n.t.I.* Text t is bold.
. Bi t no t = n.t.1. Join words of t alternating bold and italic .
.Br t no t = n.t.1. Join words of t alternating bold and Roman.
.Dt no . 5i 1 i... Restore default tabs .
.Hp i yes i=p.i.* Set prevailing indent to i. Begin paragraph

indent.
.10 t no t = n.t.1. Text t is italic.
.lb t no t =n.t.1. Join words of t alternating italic and bold.
.Ir t no t = n.t.1. Join words of t alternating italic and Roman.
. Lp yes Same as .Pp .
.10 d.

with hanging

@

MAN(7)
Macros, Packages-8560 MUSDU System Reference Manual Optional Text Processing Package 8560U01

@

.Pp

.RE

. Rb t

. Ri t

.RS i

yes

no
no
yes

. Sh t yes

.Sm t no

. NM n c x yes

Begin paragraph. Set prevailing indent to .5i.
End of relative indent. Set prevailing indent to amount of
starting .in + 5.

t = n.t.1. Join words of t alternating Roman and bold .
t = n.t.1. Join words of t alternating Roman and italic .
i=p.i. Start relative indent, move left margin in distance i. Set

prevailing indent to .5i for nested indents.
t = n.t.1. Subhead .
t = n.t.1. Text t is small.

Begin page named n of chapter c; x is extra commentary, e.g .
'local', for page foot. Set prevailing indent and tabs to .5i.

.Hn i. Begin indented paragraph with hanging tag given by next text line. If tag doesn't
fit, place it on separate line.

* n.t.1. = next text line; p.i. = prevailing indent

7-9

MS(7)
Optional Text Processing Package 8560U01 Macros, Packages-8560 MUSDU System Reference Manual

7-10

MS(7)

NAME
ms - macros for formating manuscripts

SYNTAX
nroft -rna [options] file .. .
troff -rna [options] file .. .

or

rna [options] file ...

DESCRIPTION
This package of nroff and troff macro definitions provides a canned formating
facility for technical papers in various formats. When producing 2-column output
on a terminal, filter the output through col (1). Output of the eqn (1), neqn (1),
refer (1), and tbl (1) preprocessors for equations and tables is acceptable as input.

FILES
/usr/lib/tmac/tmac.s*

SEE ALSO
nroff/troff(1), ms(1), eqn(1), refer(1), tbl(1)

REQUESTS

Following is a complete list of available ms formatinQ reQuests. See the menue!(s) fer
detailed descriptions of the various requests .

. 1 C One column format on a new page .

. 2C Two column format.

.AB Begin abstract.

.AD f Set right margin adjustment on (f= 1 or missing) or off (f=O) .

. AE End abstract.

.AI Author's institution follows .

. AN c Define auto increment number c .

. AU Author's name follows .

. B x Print x in boldface; if no argument switch to boldface .

. BC Begin new column when in .2C mode .

. BD Start centered block display which may extend over page boundaries .

. BE End text to be boxed; print it (also known as .B2) .

. BP Begin a new page .

. BR Begin a new line ("break" the line) .

. BS Start text to be enclosed in a box (also known as .B1) .

. BT Print page footer at bottom of page. May be redefined .

. BU Start a bullet item (indented paragraph with bullet label) .

. BX word Print word in a box .

. CD Start centered display which may extend over page boundaries .

. COL Pipe output through co/(1) if necessary. Must be first.

.CS f Enter constant spacing mode if f is missing; leave constant spacing mode if f
is O. Ignored in nroff .

. DA Place current date at bottom of each page .

. DE End displayed text.

@

MS(7)
Macros, Packages-8560 MUSDU System Reference Manual Optional Text Processing Package 8560U01

@

.DR

.DSx

. EH

. EN

.EOx y

. FE

. FSx

. HL

.HSx y

. HYf

. Ix

. 10

.IE

.iOe

.IP I X Y

. IS

.JU 'J'c'r'

. KE

.KF

.KS

. LD

. LG

. LP

.LSn

.LT

. ND date

. NEn

.NHn

. NL

. P1

. PC

. PNn

. PP

. PT

. PX

.OE

.OP

.OS

. R

. RD file

This is a draft document.
Start of displayed text, to appear verbatim line-by-line. x = I for indented
display (default), x = L for left-justified on the page, x = C for centered, x = B
for make left-justified block, then center whole block. Implies .KS.
End heading .
End equation .
Begin an equation. Equation number is y. The optional argument x may be I
to indent the equation, L to left-justify the equation, or C to center the
equation (default).
End footnote .
Start footnote. x is optional label to be placed to the left of the footnote .
Draw a horizontal line across the page .
Specify heading style. 0 indicates outline form; I indicates indented
numbered sections.
Set hyphenation on (f= 1 or missing) or off (f=O) .
Italicize x. If no argument switch to italics. Underline in nroff .
Start indented display which may extend over page boundaries .
End an indented section .
iOe styie. Must be first. .TO, .FR, .CC, .SU, .DA, .ii, .PL give information for
IOC header.
Start indented paragraph, with hanging label I. Text indentation is x spaces;
label is indented y spaces.
Start indented section .
Justify line, with I left-justified, c centered, and r right-justified.
End keep. Put preceding text on next page if not enough room .
Start floating keep. If the kept text must be moved to the next page, float
later text back to this page.
Start keeping following text.
Start left-justified display which may extend over page boundaries .
Make letters larger. Ignored in nroff .
Start left-blocked paragraph .
Set line spacing to I? lines (2 for double-spacing).
Business letter style. Must be first.
Use date supplied in place of actual date .
Need n lines on page; page eject if not enough .
Same as .SH, with section number supplied automatically. Numbers are
multilevel, like 1.2.3, where n tells what level is wanted (default is 1).
Make letters normal size .
Include header at top of page 1 (normally suppressed) .
Print header preceding table of contents. May be redefined .
Set page n umber of next page to n .
Start paragraph. First line indented .
Print page header at top of page. May be redefined .
Print header preceding index. May be redefined .
End quoted material.
Start quoted paragraph (indented and shorter).
Start quoted material (indented and shorter).
Roman text follows .
Read input from file .

7-11

MS(7)
Optional Text Processing Package 8560U01 Macros, Packages-8560 MUSDU System Reference Manual

7-12

. RE

.RP

.RS

. SE

. SH

. SM

.SO

. SPn

. SZn

. TAx ...

.TC text

.TE

. TH

. TL

.TMx

.TRx

. TSx

. UL word

.UX

End relative indent section .
Released paper style. Must be first.
Start level of relative indentation. Following .AR's are measured from current
indentation.
End a section of text to be sorted .
Section head follows; font automatically bold .
Make letters smaller. Ignored in nroff .
Sort following text.
Space n lines (1 if missing) .
Set character size. Ignored in nroff .
Set tabs .
Place text in the table of contents and also include in text.
End table.
End heading section of table .
Title of docu ment follows .
Technical memo style, with optional number x. Must be first.
Technical report style, with optional number x. Must be first.
Start table; if x is H table has repeated heading .
Underline argument (even in troff) .
'UNIX'; first time used, add footnote 'UNIX is a trademark of Bell
Laboratories. '

.XN text Add text to index without a page number .

. XX text Add text to index with current page number.

IN-LINE COMMANDS

\space Unpaddable Space Character
\ e Echo 8ackslash Character

. \ % Suppress Hyphenation
\ Fx Switch to Font x (Also \ f)
\F(xy Switch to Font xy (Also \f)
\sn Set Character Size to n Points
\s±n Increase/Decrease Size by n Points
\ (xy Special Character xy
\0' .. : Overstrike Characters
\" Ignore Rest of Input Line (For Comments)
*{ Start Superscript
*} End Superscript
*[Start Subscript
*] End Subscript
*x Increment and Print Auto Number x
\nx Print Auto Number x (no incr.)
*(DT Today's Date
* (DY Today's Date (Changeable via .ND)
*(DW Day of the Week
\n(PN Current Page Number

STRING/NUMBER REGISTERS

.ds LH Left Portion of Page Header (Initially Null)

.ds CH - \\n(PN - Center Portion of Page Header

.ds RH Right Portion of Page Header

MS(7)
Macros, Packages-8560 MUSDU System Reference Manual Optional Text Processing Package 8560UOl

@

.ds LF

.ds CF

.ds RF

.ds NF R

.ds HF B

.ds PD 1v

.ds DI Distribution

.nr LL Si

.nr LT Si

.nr FL Si-3n

.nr PO 0

.nr HM 1 i

.nr FM 1 i

.nr PI Sn

.nr al Sn

.nr NI 4n

.nr PS 10

.nr VS 12

.nr CS 24

Left Portion of Page Footer
Center Portion of Page Footer (\ * (DY if .DA)
Right Portion of Page Footer
Normal Text Font
Heading Font (.SH/.NH)
Paragraph Separation (.P/.DS/.SP -- O.Sv if - Tvpr)
Default for Missing .TO Argument in IOC
Line Length (S.Si for IOC)
Header/Footer Length (S.Si for IOC)
Footnote Line Length
Page Offset (Appropriate Value if - Tvpr)
Top Margin (Header in Middle of Margin)
Bottom Margin (Footer in Middle of Margin)
Paragraph (.P/.AR/.IS) Indent
auoted Section cap/.aS) Indent
Auto Indent for Numbered Sections (.HS I)

Character Point Size (Range S to about 18)
Vertical Spacing (Normally PS+ 2)
Constant spacing character width LeS)

7-13

TERM(7) Macros, Packages-8560 MUSDU System Reference Manual

7-14

TERM(7)

NAME
terminals- conventional names

DESCRIPTION
These names are used by certain commands and are maintained as part of the
shell environment (see sh (1), environ (5)).

1620 DIABLO 1620 (and others using HyType II)
1620-12 same, in 12-pitch mode
300 DASI/DTC/GSI 300 (and others using HyType I)
300-12 same, in 12-pitch mode
300s DASI/DTC 300/S
300s-12 same, in 12-pitch mode
33 TELETYPE.ft R
Model 33

37
40-2
43
4S0
4S0-12
4S0-12-8
73S
745
dumb
hp
4014
tn1200
tn300
vtOs

TELETYPE Model 37
TELETYPE Model 40/2
TELETYPE Model 43
DASI 4S0 (same as Diablo 1620)
same, in 12-pitch mode
same, in 1 2-pitch, 8 lines/inch mode
Texas Instruments TI73S (and T172S)
Texas instruments Ti745
terminals with no special features
Hewlett-Packard HP264? series terminals
Tektronix 4014
General Electric TermiNet 1200
General Electric TermiNet 300
Digital Equipment Corp. VTOS

Commands whose behavior may depend on the terminal accept arguments of the
form - Tterm, where term is one of the names given above. If no such argument is
present, a command may consult the shell environment for the terminal type.

SEE ALSO
stty(1), tabs(1), plot(1), sh(1), environ(S)
troff(1) for nroff

NOTES
The programs that ought to adhere to this nomenclature do so only fitfully.

@

8560 MUSDU System Reference Manual

@

INTRODUCTION

Section 8
System Maintenance

This section describes commands intended for use by the system manager in
performing routine software maintenance and problem analysis. Also described
here are commands for disaster recovery, system accounting and administration,
and those commands which help you to keep your system alive and well. For
procedural and tutorial information consult your 8560 MUSDU System Users
Manual.

8-1

CRASH(8) System Maintenance-8560 MUSDU System Reference Manual

8-2

CRASH(8)

NAME
crash - what to do if the system crashs

DESCRIPTION
This section will give an idea of what went wrong if the system crashes. These
errors should never happen. Also in this section is an explanation of how to take a
disc dump of the system to send in along with the standard problem report.

TNIX will write a message to the console terminal when it detects a fatal error
before crashing. Following is a list of these messages.

Messages with * are indicative of a possible system software problem. A dump of
the system at the time of the panic is desirable. The other errors can be caused by
such things as a too heavily loaded system, and if they happed too frequently may
require system tuning.

tnix: panic: blkdev *

The getblk routine was called with a nonexistent major device as an argument.
This is definitely a hardware or software error.

tnix: panic: devtab *

The device table entry for the device passed to getblk is null. Definitely a
hardware or software error.

tnix: panic: iinit

An 1/0 error occured while reading the super-block for the root file system during
initialization.

tnix: panic: 10 err in swap

An unrecoverable 1/0 error occured during a swap.

tnix: panic: no fs *

A device has disappeared from the mounted-device table. Definitely a hardware or
software error.

tnix: panic: no imt *

This is like 'no fs' but it is produced elsewhere. Definitely a hardware or software
error.

tnix: panic: no procs *

A process slot has disappeared after just being checked for. Definitely a hardware
or software error.

tnix: panic: Out of swap

There are no available entries in the swap map.

tnix: panic: out of swap space

A program needs to be swapped out, and there is no more swap space.

@

System Maintenance-8560 MUSDU System Reference Manual CRASH(S)

@

tnix: panic: parity

A memory parity error has occured while in system space.

tnix: panic: Running a dead proc *

A dead process was about to be set running. Definiitely a hardware or software
error.

tnix: panic: Sleeping on wchan 0 *

An invalid 0 parameter was passed to sleep. Definiitely a hardware or software
error.

tnix: panic: trap *

An unexpected trap has occurred within the system. This is accompanied by three
numbers: a 'ka6', which is the contents of the segmentation register for the area in
which the system's stack is kept; 'aps', which is the location where the hardware
stored the program status word during the trap; 'pc' and 'ps', which are the pro­
gram counter and program status at the time of the trap; and a 'trap type' which
encodes which trap occured. The trap types are:

0 bus error

1 illegal instruction

2 BPT/trace

3 lOT

4 power fail

5 EMT

6 recursive sytem call

10 floating point trap

11 segmentation violati.on

In some of these cases it is possible for octal 20 to be added to the trap type; this
indicates that the processor was in user mode when the trap occured.

NOTE: The following should be done on a scratch floppy disk.

To get a dump of the system at the time of the crash:

Halt the system and plug a terminal into the line printer 2 port. (do not power
down or toggle restart!)

Type 'R7 I' and then '44', followed by a carriage return.

Type 'P'. The system will now write to the floppy disc for about 40 seconds.
When this is done the dump is complete and you may restart the system as
ususal, being sure to check the file system for possible errors.

8-3

CRON(8) System Maintenance-8560 MUSDU System Reference Manual

8-4

CRON(8)

NAME
cron - clock daemon

SYNTAX
/etc/cron

DESCRIPTION
Gron executes commands at specified dates and times according to the instruc­
tions in the file lusr/lib/crontab. Since eron never exits, it should only be executed
once. This is best done by running eron from the initialization process through the
file letc/rc; see init (8).

Crontab consists of lines of six fields each. The fields are separated by spaces or
tabs. The first five are integer patterns to specify the minute (0-59), hour (0-23),
day of the month (1-31), month of the year (1-12), and day of the week (1-7 with
1 = monday). Each of these patterns may contain a number in the range above;
two numbers separated by a minus meaning a range inclusive; a list of numbers
separated by commas meaning any of the numbers; or an asterisk meaning all
legal values. The sixth field is a string that is executed by the Shell at the speci­
fied times. A percent character in this field is translated to a new-line character.
Only the first line (up to a % or end of line) of the command field is executed by
the Shell. The other lines are made available to the command as standard input.

Ciontab is examined by Cion every minute.

FILES
lusr llib/crontab

(ri:'

System Mainte~ance -- 8560 HUSDU System Reference Manual CVT(8)

CVT(8)

cvt - examine or alter kernel parameters

SYNTAX
cvt [-w] [-f tnixname] [script]

PARAMETERS

-w Write the new parameters. Normally, cvt can only be used to examine
the current TN IX configuration or test the feasibility of a new con­
figuration (e.g., "Will I run out of memory if I add three cache
buffers?"). -w makes any changes to TNIX permanent.

-f tnixname
Examine/modify tnixname rather than the default kernel, "/tnix".

script A file that contains lines directing cvt to examine or set various
configuration parameters. If script cannot be found in the current
directory, and does not begin with a slash, the file
"/etc/cvtscript/script" is checked for. Standard-input is used if no
script is given. (Terminate standard input by typing a CTRL-D.)

Any blank lines in the script and any lines beginning with a pound­
sign (II) are ignored. A line beginning wi th " !" is passed to the
shell to be executed. Other lines are of the form:

parameter
or

parameter value

where parameter is the name of the parameter to be set/examined and
value (if· specified) is the new value to give the parameter. If
value is not specified, the current value of parameter is printed.

EXPLANATION
Cvt alters various TNIX kernel parameters. TNIX must be reconfigured when­
ever you change the size of the root filesystem (the one beginning on fixed
disk 0). The following table lists the parameters that you must set when you
change the size of the root filesystem:

Root Filesystem I device name I swplo I nswap I swapdev I pipedev
===

13.6 MByte
35.6 MByte
71.2 MByte

106.8 MByte
142.4 MByte

/dev/rhdO
/dev/rhdO
/dev/rhd01
/dev/rhd02
/dev/rhd03

24360
65000

134576
204152
273728

2250
4576
4576
4576
4576

o 0 o 0
o 0 o 0
o 8 o 8
o 16 o 16
o 24 o 24

It is also desirable to reconfigure to take full advantage of newly extended
memory or to tune the system for optimal performance.

REV MAR 1983 8-4a

CVT(8) System Maintenance -- 8560 MUSDU System Reference Manual

Cvt is available both as a standalone command (to be used when a kernel
reconfiguration must be synchronized with a change in the size of the root
filesystem) and as a normal command (to be used in other circumstances). See
standalone(8).

SCRIPT PARAMETERS
You can specify the following parameters:

buffer Value is the total number of cache buffers.

inode Value is the number of inode table entries -- the maximum number of
inodes that can be in use at anyone time.

file Value is the number of open file table entries -- the maximum number
of files that can be open at anyone time.

proc Value is the number of process table entries -- the maximum number of
active processes.

mount

text

Value is the number of mount table entries -- the maximum number of
devices that can be mounted at anyone time.

Value is the number of text table entries -- the maximum number of
read-only text segments that can be active at anyone time.

swapmap Value is the number of swap map entries -- the maximum allowable
fragmentation of the available swap space. Each discontiguous sec-
tion of unused swap space requires one swap map entry.

coremap Value is the number of core map entries -- the maximum allowable
fragmentation of the available memory. Each discontiguous section of
unused user memory requires one core map entry.

rootdev Value is the major and minor device numbers of the root device -- two
integers separated by blanks or tabs.

swapdev Value is the major and minor device numbers of the swap device -- two
integers separated by blanks or tabs.

pipedev Value is the major and minor device numbers of the pipe device (the

nswap

swplo

time zone

place to store data piped between processes) two integers
separated by blanks or tabs.

Value is the size of the swap space, in blocks.

Value is the block number of the first block of the swap space.

Value is the offset in minutes from Greenwich Mean Time to the
current timezone.

tzname Value is the three-character name of the current timezone.

8-4b REV MAR 1983

System Maintenance -- 8560 MUSDU System Reference Manual CVT(8)

tzdstname
Value is the three-character name of the current timezone during day­
light savings time.

tzflag Value is either '1', indicating that the current timezone follows the
U.S. rules for daylight time, or '0', indicating that it does not.

* Display the values of all of the above parameters. No value field is
allowed for this parameter.

ERROR MESSAGES

preposterous cvt address
if tnixname is not in the appropriate format.

SYSTEM TOO BIG: number BYTES OVER
if the new configuration will not fit in the available
memory.

Other messages are self-explanatory.

FILES

Itnix the default tnix kernel

letc/cvtscript directory containing distributed cvt scripts

SEE ALSO
cvt(5), standalone(8)

NOTES
The 8560 should be shut down and restarted after you reconfigure "/tnix", so
that the new TNIX will be loaded into memory.

Because cvt deals with the low-level configuration parameters of the kernel,
it is possible to generate a kernel that will not run properly. The use of
configuration scripts is encouraged.

If you change the size of your root filesystem, the cvt swplo parameter must
match the mkfs file system size parameter that you supply to the stand-alone
version of mkfs.

ADD MAR 1983 8-4c

System Maintenance-8560 MUSDU System Reference Manual

DF(8)

NAME
df - disk free

SYNTAX
df [filesystem] ...

DESCRIPTION
Of prints out the number of free blocks available on the filesystem(s). If no file
system is specified, the free space on all of the normally mounted file systems is
printed.

OF(8)

8-5

DUMP(8) System Maintenance -- 8560 MUSDU System Reference Manual

DUMP(8)

dump - incremental file system dump

SYNTAX
dump [level[u] logical-device] [-f dumpdev] [-8 block-size] [-m] [-v]

PARAMETERS
u If the dump completes successfully, write the date of the

beginning of the dump into the /etc/ddate file. This file
records a separate date for each logical device and for each
dump level.

level A single, decimal digit (0, 1, 2, 3, 4, 5, 6, 1, 8, or 9)
that specifies the "dump level". All files modified since
the last dump of a lesser level from a logical-device, as
determined by the date stored in the file /etc/ddate, will be
dumped. If no date is determined by the "level", the begin­
ning of time is assumed; thus the option 0 causes the entire
logical device to be dumped.

logical-device Specifies the pathname of the device containing the filesys­
tem you want to dump. The pathname must begin with /dev/.
For example, if the root filesystem is located on the 8560's
internal disk, then the logical device name of the root

-f dumpdev

-8 block-size

-m

-v

.(:'.;loouo o_ ';0 I~ou/ "'~"

.&. ~} ..;,)VC1U ..L~ , \"Iv ¥'.L L.&UV.

Specifies the complete pathname of the dump device (the dev­
ice upon which the dump will be written). The pathname must
begin with /dev/. If you don't specify dumpdev, dump dumps
to /dev/rfdO (the flexible disk drive).

Specifies the size (in blocks) of the dump medium. If you
don't specify size, dump assumes that you're dumping to
1995-block volumes.

Causes dump to write and read back a test record on the tar­
get medium before attempting a dump. This option gives you
the opportunity to replace a bad or improperly mounted volume
without restarting the dump procedure.

Causes dump to verify each volume can be read, after the
volume is completely written. When you include -v in the
command line, dump automatically includes the -m option as
well.

Using dump without specifying any arguments is equivalent to typing:

dump 9u /dev/rhdO -f /dev/rfdO -s 1995 <CR)

8-6 REV MAR 1983

System Maintenance -- 8560 MUSDU System Reference Manual DUMP(8)

EXPLANATION
Dump copies all files on logical-device that have changed after a certain
date to flexible disk(s) or magnetic tape(s).

Dump tells you the current date, the earliest date the dump starts at (the
earliest possible date if this is a level 0 dump), the devices being dumped
from and to, and when each of the four internal steps of the dump~procedure
begin. If the dump requires more than one volume (a single flexible disk or
magnetic tape), dump will ask you to change volumes; after changing the
volume, press the RETURN key. The first volume should be installed before
you invoke dump.

PERFORMING A FULL BACKUP
This procedure tells how to create a full backup of your system, referred to
as a "level-O dump", using double-sided, double-density flexible disks (dump
allows you to use single-density flexible disks, magnetic tapes, magnetic
cartridges, etc. by specifying the device that dump writes to and/or the max­
imum number of blocks on each dump volume).

1. Log into the "root" account on the system console:

login: root
[you may be asked for a password]

2. Make sure that you are the only person logged into your system.
3. Determine how many formatted, double-density, double-sided flexible

disks you will need in order to perform a full backup of your system.
To do this, open the flexible disk drive's door, then enter the follow­
ing dump command to determine how many disks you will need:

dump 0 /dev/rhdO

[several messages are displayed before dump
prints the following message]

dump: estimated 16259 blocks on 9 volume(s)

[according to this example, you should have
9 formatted disks available before
starting the backup procedure]

[several error messages are displayed because the
flexible disk drive door is open]

(To format a flexible disk, cover the disk's write-protect slot, insert
the disk into the disk drive, then type the format command.)

REV MAR 1983
8-7

DUMP(8) System Maintenance -- 8560 MUSDU System Reference Manual

4. To start the backup procedure, insert a formatted disk into the disk
drive, then type the following command:

dump Ou /dev/rhdO

The dump command will guide you through the backup process, asking you
to insert new disks into the disk drive when necessary. If an addi­
tional disk is necessary, dump prints the following message:

dump: change volumes, current inode = XXX
[XXX is the starting inode number

of the next volume.]

Before inserting the new disk into the disk drive, label it with the
following information:

• date

• dump level (0)

• volume number (the first disk is volume 1, the second is volume 2,
and so on)

starting inode number
"0")

(the starting inode for volume is

Once you have labeled the disk with the above information, insert it into the
disk drive, close the drive's door, then press the RETURN key.

PERFORMING INCREMENTAL DUMPS
The 10 dump levels allow you to perform a complete backup of your filesystem
with a level 0 dump, followed by fast, incremental dumps (levels 1--9) that
store only those files that have changed since the last backup (incremental
or complete).

When performing incremental backups, the rule of thumb is to perform the
incremental backup at the same dump level until the incremental backup at
that dump level takes longer than 15 minutes or more than one dump volume
(one flexible diskette, for example). At that point, proceed to the next
higher dump level. Tnus, a level 1 dump is followed by either a level 1 or
level 2 dump; a level 2 dump is always followed by a level 2 or level 3 dump,
and so on up to level 9. When a level 9 dump takes longer than 15 minutes or
more than one dump volume, you perform a complete backup (a level 0 dump),
and start over again.

Let's assume that your company has a corporate archive policy that requires
you to perform a complete backup of the data on your system at the beginning
of each month for permanent, off-line storage. Let's also assume that you
want a fast method of backing up your system once each day, so that you never
have to worry about losing more than one day's worth of data. Figure 1
presents an algorithm for performing an incremental backup. Let's look at

8-7a ADD MAR 1983

System Maintenance -- 8560 MUSDU System Reference Manual DUMP(8)

each step:

1 •. At the beginning of each month, perform a level 0 dump of your entire
system. The level 0 dump copies all data on a single filesystem onto
the backup media (flexible disk or magnetic tape).

2. On the next day, perform an incremental backup using dump level 1. This
dump copies all files that have changed since the last level 0 dump onto
the backup media.

3. On the next day, perform an incremental backup at the same dump level as
the last incremental backup that you performed. This dump copies all
files that have changed since the last incremental backup performed at a
lesser dump level. Repeat this step each day until the incremental
backup takes longer than 15 minutes or more than one dump volume to com­
plete. Then advance to step 4.

4. If have been performing a level 9 dump, perform a level 0 dump, then
return to step 2. If you have not been performing a level 9 dump, per­
form the next level dump, then return to step 3.

Continue the above process until the beginning of the next month, when when
you start from step 1 again. The following chart illustrates this process:

ADD MAR 1983 8-7b

DUMP(8)

EXAMPLES

System Maintenance -- 8560 MUSDU System Reference Manual

+----------------------+
IBeginning of the Month I
+----------------------+

1

V
+----------+

+--------------->Ilevel := 01
+----------+

1

V
+-------------------+
Iperform_dump(level)1
+-------------------+

1

V

+----~~-~-~--~------+
1 level := level + 11<--------------+

1
V

+-------------------+
Iperform dump(level) 1<-----------+
+-------=-----------+ 1

I 1
V 1

-~--~--~~--------~----------------------+
is 1

I(time_to-perform_dump(level) > 15 Min.)1 1
or 1--+

I(number_of_volumes_dumped(level) > 1) ?I no
+---------------------------------------+

1 yes
V

+-------------+
yes 1 is no

+---------------1 (level = 9) ?I------------------+
+-------------+

Figure 1. An algorithm for performing incremental dumps.

To perform a complete dump of the root filesystem onto flexible disks, updat­
ing /etc/ddate, type:

dump Ou Idev/rhdO <CR>

To perform a complete dump of the non-root filesystem Idev/rhd23 onto flexi­
ble disks, updating letc/ddate, type:

dump Ou Idev/rhd23 <CR>

To do a full dump of /dev/rhd1, updating letc/ddate, onto 10,000-block tapes
(using Idev/mtO), verifying each volume before and after it is written, type:

8-7c ADD MAR 1983

System Maintenance -- 8560 MUSDU System Reference Manual DUMP(8)

dump Ou /dev/rhd1 -f /dev/mtO -s 10000 -v <CR>

To dump all files on /dev/rhdO that have changed since the last level 0 dump,
updating /etc/ddate, onto 20,000 block tapes (using /dev/mtO), verifying each
volume before it is written, type:

dump 1u /dev/rhdO -f /dev/mtO -s 20000 -m <CR>

To dump all files on /dev/rhdO that have changes since the last level 7 or
earlier dump, onto flexible disks, updating /etc/ddate, type:

U dump 8u /dev/rhdO <CR>

To do a full dump of the filesystem on /dev/rhdO, updating /etc/ddate, onto
single-sided, single-density flexible disks, type:

dump Ou /dev/rhdO -s 500 <CR>

FILES
/etc/ddate -- record dump dates of filesystem/level.

SEE ALSO
dump(5), dumpdir(8), restor(8).

NOTES
Read errors on logical-device are ignored. Write errors on the dump
volume(s) are usually fatal.

Single-densi ty flexible disks have a 500 block capacity. Double-densi ty
flexible disks have a 1995 block capacity.

A magnetic tape's block capacity depends on the tape length (in feet) and the
blocking factor (the number of blocks-per-record). The following tables show
the approximate maximum block capacities dump allows for different tape
lengths (to compensate for varying ~ape lengths, use a smaller number):

Reel-to-Reel Magnetic Tape Drive

Blocking
Factor

1 Tape Length (Feet)

1-----------------------------
1 600 1 1200 1 2400

--
8
7
6
5 (*a)
4
3
2
1

18016
17125
16469
15930
14521
12985
10718
7034

35128
34087
32780
30940
28903
25846
21333
14000

70944
68740
66106
62740
58287
52122
43021
28339

(*a) dump uses a blocking factor of 5.

ADD MAR 1983 8-7d

DUMP(8) System Maintenance -- 8560 MUSDU System Reference Manual

Cartridge Magnetic Tape Drive

Blocking
Factor

I Tape Length (Feet)

1-------------------
I 300 I 450

==================================
8 5310 8060
1 5320 1980
6 5280 1920
5 (*b) 5180 1110
4 5080 1630
3 4880 1320
2 4550 6820
1 3110 5650

(*b) dump uses a blocking factor of 5.

DUMPDIR(8}
NAME

dumpdir -print the names of files on dump diskette(s)

SYNTAX
dumpdir

DESCRIPTION
Dumpdir reads flexible diskette(s) dumped with the dump command. Dumpdir lists the
names and inode numbers of all the files and directories on the diskette(s).

If the dump extends over more than one diskette, it may ask you to change diskettes. Press
RETURN after you have inserted the next diskette.

FILES
rst*

SEE ALSO
dump(8), restor(8)

8-8
REV MAR 1983

System Maintenance-8560 MUSDU System Reference Manual FORMAT(8)

FORMAT(8)
NAME

format-write fixed disk format in standalone mode

SYNTAX
format drive

DESCRIPTION
Format writes the appropriate formatting information to prepare the fixed disk drive (physi­
cal drive number in the range 0-3, inclusive) for subsequent data storage. See format(1)
for information on formatting flexible disks.

This version of the format command is executed by booting the "standalone utilities"
diskette. Type
fbr filename to boot> format <CR>

Respond with the drive number to format when queried.

Format will search for bad disk blocks and attempt to make them invisible by telling the disk
controller to use the spare block available on each track. If format reports that there is more
than one bad block in a track, first use mkfs(8) to buide a new filesystem, then run
syschk(8) to put the additional bad blocks in the bad block file.

SEE ALSO
format(1), mkfs(8), standalone(8), syschk(8)

REV NOV 1982 8-9

GETTY(8) System Maintenance-8560 MUSDU System Reference Manual

8-10

GETTY(8)

NAME
getty - set typewriter mode

SYNTAX
letelgetty [char]

DESCRIPTION
Getty is invoked by init (8) immediately after a typewriter comes on line. It reads
the user's login name and calls login (1) with the name as argument. While read­
ing the name getty attempts to adapt the system to the speed and type of terminal
being used.

Init calls getty with a single character argument taken from the ttys (S) file entry
for the terminal line. This argument determines a sequence of line speeds through
which getty cycles.

The user's name is terminated by a new-line or carriage-return character. In the
second case CRMOD mode is set (see ioetl (2)).

If the terminal's 'break' key is depressed, getty cycles to the next speed appropri­
ate to the type of line and prints the greeting message again.

Finally, login is called with the user's name as argument.

The fO!!o'l/ing arguments from the ttys file are understood.

o Cycles through 9600-4800-2400-1200-600-300 baud. Useful as a default
for a variety of on-line terminals.

Same as '0' but starting at 4800 baud.

2 Same as '0' but starting at 2400 baud.

3 Same as '0' but starting at 1200 baud.

4 Same as '0' but starting at 600 baud.

S Same as '0' but starting at 300 baud.

6 Starts at 1200 baud, cycles to 300 and back. Useful with 212 datasets
where most terminals run at 1200 speed.

7 Same as '6' but starts at 300.

A Intended for on-line CRT terminals such as TEK CT8S00 at 9600 baud.

S Same as A except 4800 baud.

C Same as A except 2400 baud.

o Same as A except 1200 baud.

E Same as A except 600 baud.

F Same as A except 300 baud.

a-f Same as A-F except HSI protocol will be forced on line even if jumped for
RS-232.

SEe ALSO
init(8), login (1), ioct! (2), ttys(S)

System Maintenance-8560 MUSDU System Reference Manual INIT(8)

@

INIT(8)

NAME
init, rc - process control initialization

SYNTAX
letc/init
letc/rc

DESCRIPTION
Init is invoked as the last step of the boot procedure. Generally its role is to create
a process for each typewriter on which a user may log in.

First init invokes a shell with input taken from the file letc/rc. This command file
performs housekeeping like removing temporary files, mounting file systems, and
starti ng daemons.

Then init reads the file letc/ttys and forks several times to create a process for
each typewriter specified in the file. Each of these processes opens the appropri­
ate typewriter for reading and writing. These channels thus receive file descriptors
0, 1 and 2, the standard input, output and error files. Opening the typewriter may
involve a delay, since the open is not completed until someone is dialed up and
carrier established on the channel. Then letc/getty is called with argument as
specified by the second character of the ttys file line. Getty reads the user's name
and invokes login (1) to log in the user and execute the shell.

Ultimately the shell will terminate because of an end-of-file either typed explicitly
or generated as a result of hanging up. The main path of init , which has been
waiting for such an event, wakes up and removes the appropriate entry from the
file utmp , which 'records current users, and makes an entry in lusrladmlwtmp ,
which maintains a history of logins and logouts. Then the appropriate typewriter is
reopened and getty is reinvoked.

Init catches the hangup signal SIGHUP and interprets it to mean that the system
should be brought from m.ulti user to single user. Use 'kill -1 l' to send the hangup
signal.

Init also catches the interrupt signal SIGINT. This signal is interpreted to mean
that init is to re-read letc/ttys and close any files that have been disabled. It will
also open any NEW files that have been just opened. This allows you to reset your
terminal configuration on the fly. Use 'kill -2 l' to send the interrupt signal.

FILES
Idev/tty?, letc/utmp, lusr/adm/wtmp, letc/ttys, letc/rc

SEE ALSO
login(1), kill(1), sh(1), ttys(5), getty(B)

8-11

INIT(8) System Maintenance-8S60 MUSDU System Reference Manual

[This page intentionally left blank.]

8-12 REV NOV 1982

System Maintenance-8S60 MUSDU System Reference Manual INSTALL(8)

INSTALL(8}
NAME

install-install software

SYNTAX
install

DESCRIPTION

ADD NOV 1982

Install installs new or updated software supplied on a TEKTRONIX software distribution
diskette on your 8560. To install TEKTRONIX-supplied software on your 8560:

1. Log in to the root account on your system console.

2. Make sure that you are the only one logged in to your 8560.

3. Change your current directory to the "r directory. Type:
~ <CR>

Insert the Software Distribution Diskette into the 8560's flexible disk drive and close the
drive door.

4. Install the software by typing:
install <CR>

5. When the" #" prompt is displayed, the software is installed.

6. Remove the Software Distribution Diskette from the flexible disk drive.

7. Shut down your 8560 by typing:
shutdown <CR>

8. Reboot your 8560 and resume normal operations.

8-128

LPD(8) System Maintenance-8560 MUSDU System Reference Manual

8-12b

LPD(8)

NAME
Ip1 d, Ip2d - line printer daemons

SYNTAX
/usr/lib/lp?d

DESCRIPTION
Each Ip?d is the daemon for a line printer, responsible for printing files spooled to
that printer. Each Ip?d uses the directory /usr/spooll/p? to communicate with the
corresponding spooler (lp?r). The file lock in that directory is used to prevent two
daemons from becoming active simultaneously. After the program has success­
fully set the lock, it forks and the main path exits, thus spawning the daemon. The
directory is scanned for files beginning with df Each such file is submitted as a job
by the spooler (lp?r). Each line of a job file begins with a key character to specify
what to do with the remainder of the line.

L is followed by the decimal uid and gid of the user who spooled this job.
This line causes the banner page for this job to be printed.

B specifies that the rest of the line is the name of a file to be printed.

F is the same as B except a form feed is prepended to the file.

U specifies that the rest of the line is a file name. After the job has been
transmitted, the file is unlinked.

M is followed by a user 10; after the job is sent, a message is mailed to the
user via the mail (1) command to verify the sending of the job.

Any error encountered will cause the daemon to wait and start over. This means
that an improperly constructed df file may cause the same job to be submitted
repeatedly.

The appropriate Lp?d is automatically initiated by the line printer command, Ip1 r
or Ip2r.

Each daemon writes to the corresponding /dev/lp? file. To provide a flexible line
printer interface, the /dev/lp? files are actually links to either a /dev/aux ("line
printer" port) or a /dev/tty ("terminal" port). Perform the following procedure as the
superuser to move the line printer link from an aux device to a tty:

Choose what /dev/tty?? is going to be the new line printer. For example,
choose /dev/Uy03 as the new /dev/lp1.

change the file /etc/ttys so that there will be no login run for the terminal
(tty03). (see ttys(5))

Change the Ip link to the new tty from the old aux. For example:

rm /dev/lp1
In Idev/tty03 /dev/lp1

Move your line printer plug from the" line printer 1" port to the" HSI I/O -3"
port.

ADD NOV 1982

System Maintenance-8560 MUSDU System Reference Manual LPD(8)

@

If you choose to move the line printer back to the aux port, reverse the above pro­
cess.

To restart a daemon (in the case of hardware or software malfunction), it is neces­
sary to first kill the old daemon (if still alive), and remove the lock file before initiat­
ing the new daemon. This is done automatically when the system is brought up, by
letc/rc, in case there were any jobs left in the spooling directory when the system
last went down.

FILES
lusrlspooi/lp? spool area for a line printer daemon
letc/passwd to get information required to print the banner page.
Idev/lp1 Idev/lp2 line printer devices

SEE ALSO
Ipr(1)
banproto(5)
slp(1)
stty(1)

8-13

MAKEKEY(8) System Maintenance-8560 MUSDU System Reference Manual

8-14

MAKEKEY(8)

NAME
makekey - generate encryption key

SYNTAX
lusr III b/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by
increasing the amount of time required to search the key space. It reads 10 bytes
from its standard input, and writes 13 bytes on its standard output The output
depends on the input in a way intended to be difficult to compute (i.e. to require a
su bstantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The
last two (the salt) are best chosen from the set of digits, upper- and lower-case
letters, and '.' and 'I'. The salt characters are repeated as the first two characters
of the output. The remaining 11 output characters are chosen from the same set
as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select
one of 4096 cryptographic machines all based on the National Bureau of Stan­
dards DES algorithm, but modified in 4096 different ways. Using the input key as
key, a constant string is fed into the machine and recirculated a number of times.
The 64 bits that come out are distributed into the 66 useful key bits in the result.

Makekey is intended for programs that perform encryption (e.g. ed and crypt (1)).
Usually its input and output will be pipes.

SEE ALSO
crypt(1), ed(1)

System Maintenance-8560 MUSDU System Reference Manual MKBOOT(8)

MKBOOT(8)
NAME

mkboot-copy a boot block to the fixed disk in standalone mode

SYNTAX
mkboot

DESCRIPTION
Mkboot installs a boot block on the fixed disk. To invoke mkboot, insert the standalone
utilities diskette into the flexible disk drive, boot the 8560, then type:
fbr filename to boot> mkboot <CR>

Once invoked, mkboot searches the fbr(1) format flexible disk for a file named pmuboot. If
such a file exists, its first block is copied to the first block (block 0) of the fixed disk.

DIAGNOSTICS
'cannot find pmuboot' if the boot file is not on the standalone utilities disk; other diagnostics
similar to those generated by fbr(1).

SEE ALSO
fbr(1), init(8) standalone(8)

REV NOV 1982 8-148

MKFS(8) System Maintenance -- 8560 MUSDU System Reference Manual

MKFS(8)

mkfs - construct a file system

SYNTAX
mkfs logical-device blocks

EXAMPLES
fbr filename to boot> mkfs
mkfs arguments: 65000

Creates a root filesystem on Idev/hdO, the 8560's internal disk.
Execute this command while operating the 8560 in standalone mode.

mkfs Idev/hd1 69576
Creates a filesystem on the Idev/hd1 8503 Disk Expansion Unit.
Execute this command while operating the 8560 in multi-user mode.

PARAMETERS
logical-device

blocks

The software driver that interfaces TNIX to the physical disk
drive. For example, Idev/hdO'is the name of the logical device
that is associated with the root ("I") filesystem.

The number of blocks on the logical device. The following table
shows you the number of blocks per logical device:

Disk Drive Number of I Number of Blocks Number of Blocks
Capacity (MBytes) I Disk Drives I (root filesystem) I (non-root filesystem)
===

13.6
35.6
35.6
35.6
35.6

EXPLANATION

1
1
2
3
4

24360
65000

134576
204152
273728

not supported
69576

139576
208728

not supported

Mkfs constructs an empty file system consisting of the given decimal number
of blocks, on the given logical-device, and announces the number of inodes it
created for the filesystem (based on the number of blocks).

Mkfs is available as either a standalone command or a normal command. The
standalone version is used for creating the root filesystem (the one begin­
ning on fixed disk drive 0). The normal command version is used for creating
any other filesystem. See standalone (8) for instructions on running stan­
dalone programs.

The standalone version prompts for blks. It assumes that the filesystem
begins on fixed disk drive zero and occupies as many fixed disks as are
required.

REV MAR 1983
8-14b

System Maintenance -- B560 MUSDU System Reference Manual MKFS(B)

SEE ALSO
cvt(B), dir(5), filsys(5), mkboot(B), restor(B) standalone(B), syschk(B)

NOTES
Mkfs will destroy any data on the specified logical device.

Mkfs should not be performed on a mounted filesystem.

If you change the size of the root filesystem (the one beginning on fixed
disk 0), you must reconfigure your system using the cvt(B) program.

REV MAR 1983

B-15

MKGROUP(8) System Maintenance-8560 MUSDU System Reference Manual

8-16

MKGROUP(S)

NAME
mkgroup - add new group to system

SYNTAX
mkgroup groupname username [username] ...
mkgroup -r groupname

DESCRIPTION
This command will add the new groupname to the system, and make the
username(s) members of that group. The -r option will remove the named group­
name from the system.

DIAGNOSTICS
Groupname already exists, username does not exist

SEE ALSO
mkuser(S), group(5), passwd(5)

NOTES
Mkgroup needs to open the passwd and group files exclusively.

(a:

System Maintenance-8560 MUSDU System Reference Manual MKU5ER(8)

MKUSER(8)

NAME
mkuser - install new user on system or modify existing user

SYNTAX
mkuser [-r] username [groupname] .. ,

DESCRIPTION
If the given username does not already exist, this command will install username
on the system as a member of the groupname(s) given. If username already exists,
each existing parameter will be displayed and may be optionally replaced.

The -r option will remove the user from the named groupnames with no change to
the password file. If no groupname is given the user will be removed from the
password file, and from any groups in the group file.

In the first case, this includes creating the directory lusrlusername as the default
directory, adding username to the password file, and adding username to the
groupname group file(s). Username will have a null password and will be set up to
execute the default shell when he logs in.

If username did exist, the default group membership and the comment field will be
displayed and optionally changed. These parameters may be changed by typing a
new value for them. A carriage return will leave them unchanged.

DIAGNOSTICS
Groupname does not exist, invalid parameter

SEE ALSO
mkgroup(1), passw'd(S), group(S)

NOTES
Mkuser needs to open the passwd and group files exclusively.

FILES
letc/passwd
letc/group
letc/grplock
Itmp/pwdXXXXXX

8-17

MKUSER(8) System Maintenance-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

8-18 REV NOV 1982

System Maintenance-8S60 MUSDU System Reference Manual MOUNT(8)

MOUNT(8)
NAME

mount, umount-mount and dismount file system

SYNTAX
/etc/mount [device filesystem [-r]]
/etc/umount filesystem

DESCRIPTION
Mount announces to the system that a removable filesystem, device, is present on the 8560.
Data can be written to and read from filesystem after it is mounted. The file filesystem must
exist before using mount. Filesystem must also be a directory (unless the root of the mount­
ed file system is not a directory). Filesystem becomes the name of the newly mounted root.
If mount is invoked without an argument, it prints the table of currently mounted filesystems
available to the mount and umount commands.

Umount announces to the system that the removable file system previously mounted on
device filesystem is to be removed.

OPTIONS
-r The file system is to be mounted read-only.

EXAMPLE
The following example mounts the device" /dev/hd23" as the filesystem called" /usr1 ":
mount Idev/hd23 lusrl <CR>

All files on device" /dev/hd23" are located in a subdirectory of "/usr1".

FILES
/etc/mtab-table of mountable devices

SEE ALSO
mount(2), mtab(5)

NOTES

ADD NOV 1982

Physically write-protected filesystems must be mounted read-only; otherwise, errors will
occur when access times are updated, whether or not any explicit write is attempted.

Mounting a device that does not contain a valid filesystem will crash the system.

Flexible disks cannot be mounted as filesystems.

8-188

RESTOR(S) System Maintenance -- S560 MUSDU System Reference Manual

RESTOR(S)

restor - restore data from backups

SYNTAX
restor [-f logical-device] -rxt [filename •••]

or

restor [-f mt(O,addr)]

or

restor [-f mt(1,addr)]

EXAMPLES
restor -f /dev/rfdO -t

Print the date and dump level of the dump volume in-the flexible
disk drive.

umount /usr1; restor -f /dev/rfdO -r /usr1
Unmounts the /usr1 filesystem, then copies the contents of the
dump volume(s) into the /usr1 filesystem.

fbr filename to boot> restor
restor arguments: -f mt(0,1)

PARAMETERS
-f device

-r

-x

-t

8-1Sb

Restores-the root filesystem from a Dylon Corporation 2001/9001
1/9 track magnetic tape unit located at GPIB primary address 1.
Execute this command while the system is in stand-alone mode.

Specifies that device is the device containing the dump volume.
The device name must begin with /dev/. If you don't specify dev­
ice, restor assumes that /dev/rfdO contains the dump volume.

Writes the contents of the dump volume(s) into the filesystem
specified by filename. This operation recreates a filesystem
from either full or incremental backups. You should unmount
filename before performing the restore operation. See mount(S)
for information about mounting and unmounting filesystems. ---

You cannot use the -r option to restore the root filesystem
you must use the standalone version of restor (described later)
to restore the root filesystem from backups.

Extracts each filename from the dump volume, and places
filename's contents into a file in the current directory. The
resulting file is named with filename's inode number.

Print the date the volume was written and the date the filesystem
was dumped.

REV MAR 1983

System Maintenance -- 8560 MUSDU System Reference Manual RESTOR(8)

EXPLANATION
Restor is used to read flexible disks or magnetic tapes dumped with the
dump(8) command. (These flexible disks or magnetic tapes are known generi­
cally-as dump volumes.) The option that you select·specifies what action is
to be taken.

RESTORING A COMPLETE FILESYSTEM
.I

To restore a complete file system from backups, perform the following steps:

1. Restore the most recent complete (dump level 0) backup.

2. Restore the lowest-level incremental backup that is more recent than the
level 0 backup. For example, if level 1, 2, and 3 backups have been
performed since the latest level 0 backup, restore the most recent level
1 backup.

3. Restore the next-higher-Ievel backup that is more recent than the previ­
ous incremental backup restored. Repeat this step until all incremental
backups that meet this condition have been restored.

Tne following algorithm shows how to perform a restore operation:

level := 0;
restore(level);
last_level := level;

for level := 1 to 9 do
begin

end

if (date_of(level) > date_of(last_level» then
begin

r~store(level);
last_level := level;

end

If you are restoring a non-root filesystem, the restore operation can be per­
formed while TNIX is running. Otherwise, you must use the standalone restor
program to restore the root filesystem.

RESTORING THE ROOT FILESYSTEM
There is a standalone version of restor available for restoring a complete or
incremental dump to the root filesystem (the one that includes fixed disk
drive 0). The standalone version is invoked by booting the "standalone util­
ities" qisk and replying restor when prompted for the filename to boot.

When restor prompts you for arguments, it expects a carriage return if you
are using flexible disks, or a response in the form -f mt(type,address) if
you are using magnetic tape. ~ must be either a "0" (indicating a Dylon
2001/9001 7/9 track Magnetic Tape System) or a "1" (indicating a Dylon 4000A
Digi tal Cartridge Recording System); address is the tape drive's primary
address. For example, if you have Dylon 9-track tape drive at GPIB primary
address 3, respond to the prompt with "mt(O,3)<CR>".

REV MAR 1983 8-19

RESTOR(8) System Maintenance -- 8560 MUSDU System Reference Manual

Restor will issue an appropriate warning message before starting the restore
operation, to allow the first volume to be installed. If more than one
volume is involved in the dump, restor will tell you when to mount the next
volume.

EXAMPLES
This example is a procedure for restoring files from either a full or incre~
mental backup.

Assume that you need to restore all files belonging to user bjorng. The
files may be on any or all of three dump volumes (in this case, flexible
disks) • The dump volumes are labeled by inode numbers: volume I contains
2--1006, volume II contains 1001--4628, and volume III contains 4629--1268.

Your first task is to find all files belonging to bjorng on the dump set, and
to sort the filenames in order of increasing inode numbers. To make things
easy, you can put the sorted list into the file list. One command line per­
forms the task (be sure to put the first dump volume into the drive):

$ dumpdir -f Idev/rfdO I grep lusr/bjorng I sort +2) list<CR)

The file list now contains the following text:

dumpdir:
dumpdir:
dumpdir:
dumpdir:
dumpdir:

lusr/bjorng/file.cabinet
lusr/bjorng/file.single
lusr/bjorng/file.rasp
/usr/bjorng/file.nail
lusr/bjorng/file.round

231
516
2813
2815
6912

According to list, the dump set contains five files that belong to bjorng.
For each entry in list, the file's inode number follows the file's name.

Your next task is to divide the filenames in list among three new files,
vol. 1 , vol. 2, and vol. 3. These new files correspond to the three dump
volumes, and contain the names of bjorng's files that reside on each volume.
That is, you want vol.1 to contain

lusr/bjorng/file.cabinet
lusr/bjorng/file.single

and vol.2 to contain:

lusr/bjorng/file.rasp
lusr/bjorng/file.nail

and vol.3 to contain:

lusr/bjorng/file.round

Use the following command lines to edit list and create vol. 1, vol. 2, and
vol.3:

$ ed list<CR)
g/n.*\/usrlsll\/usr/<CR)

8-19a ADD MAR 1983

System Maintenance -- B560 MUSDU System Reference Manual

8L .*$/s///g<CR)
w<CR)
1,2w!vol.1<CR)
3,4w!vol.2<CR)
5w!vol.3<CR)
S<CR)
$

RESTOR(B)

Now, you can use vol.1, vol.2, and vol.3 with restor to write bjorng's files
into the current directory. Install the first dump volume into the flexible
disk drive, and type:

$ restor -xf /dev/rfdO 'cat vol.1'<CR)

Install the second dump volume, and type:

$ restor -xf /dev/rfdO 'cat vol.2'<CR)

Install the third dump volume, and type:

$ restor -xf /dev/rfdO 'cat vol@3'<CR>

The current directory now contains bjorng's five files. You can move these
files to whatever other directory you wish.

FILES

rst* temporary files used by restor

SEE ALSO
dump(B), mkfs(B), dumpdir(B), mount(B)

ERROR MESSAGES
There are various diagnostics involved with reading the dump volume and writ­
ing the hard disk. There are also diagnostics if the i-list or the free list
of the file system is not large enough to hold the dump.

If the process extends over more than one volume, restor will ask you to
change volumes. Press RETURN when the next volume has been mounted.

NOTES
Restoring a complete dump to a filesystem (via a standalone restor for the
root filesystem or a "restor r ••• " to any other filesystem) will destroy any
information previously on that filesystem.

ADD l1AR 1983
B-19b

SHUTDOWN(S) System Maintenance-8560 MUSDU System Reference Manual

8-20

SHUTDOWN(S)

NAME
shutdown - bring the system down gracefully

SYNTAX
shutdown

DESCRIPTION
Shutdown will kill any outstanding user and daemon processes if there is not more
than one user logged in. After killing all processes but the scheduler and initializa­
tion processes, it does a sync(2) , and writes to the console terminal that the sys­
tem may be turned off.

If there is more than one user logged in, shutdown will report this, list who is
logged in, and say to try again later. Shutdown will also complain if the user run­
ning shutdown is not the super user.

System Maintenance-8S60 MUSDU System Reference Manual STANDALONE(8)

STANDALONE(8)
NAME

standalone-how to run standalone utilities

DESCRIPTION
There are a number of standalone programs, which perform functions that cannot or should
not be performed while TNIX is running. These programs are located on the TNIX
Standalone Utilities Diskette. This diskette uses the fbr(l) disk format. To invoke one of
these programs:

1. If TNIX is running, shut the system down -log in to the root account and type:
shutdown <CR>

2. Put the Standalone Utilities Diskette in the flexible disk drive and toggle the RESTART
switch.

3. The system will display:
fbr filename to boot>

Type the name of the particular standalone program that you want to run (for example,
syschk). !f the program is not on the diskette, the system wi!! again display:

fbr filename to boot>

4. The standalone program will ask for any additional information it requires (for example,
syschk displays:
syschk flags:

5. When the program has finished executing, the system will again display:
fbr filename to boot>

6. To return to normal operations, take the standalone utilities diskette out of the disk drive
and reboot the system.

SEE ALSO
cvt(8), format(8), mkboot(8), mkfs(8), restor(8). syschk(8)

ADD NOV 1982 8-208

STANDALONE(8) System Maintenance-8560 MUSDU System Reference Manual

[This page intentionally left blank.]

8-20b ADD NOV 1982

System Maintenance-8560 MUSDU System Reference Manual SYNC(S)

SYNC(8)

NAME
sync - update the super block

SYNTAX
sync

DESCRIPTION
Sync executes the sync system primitive. If the system is to be stopped, sync
must be called to insure file system integrity. See sync (2) for details.

SEE ALSO
sync(2), update(8)

REV NOV 1982 8-21

SYSCHK(8) System Maintenance-8560 MUSDU System Reference Manual

8·22

SYSCHK(8)
NAME

syschk-check (and optionally repair) file system integrity

SYNTAX
syschk [-bmw] [-t tempdir] [filesystem ...]

DESCRIPTION
There are two syschk programs, a standalone version and a command version. The com­
mand version is invoked as shown here; see standalone(B) for information on how to run
standalone programs.

For each filesystem that you specify, syschk performs a number of checks on the integrity
of that filesystem. If you do not specify a filesystem the root filesystem is checked. The
standalone version of syschk checks the root filesystem (the filesystem beginning on fixed
disk 0). The command version filesystem defaults are listed in the file /etc/checklist. (If
/etc/checklist cannot be read by syschk, /dev/rhdO will be used as the default.)

The command version will check any filesystem, or repair any filesystem that is not currently
mounted. The standalone version is provided to repair the root filesystem, which is always
mounted whenever TNIX is running.

The command version of syschk exits with a status of zero (0) if no problems occurred,
oiie(1j 1f some tHe system corruption was detected, or other vaiues if some other problem
occurred (such as invocation of syschk with an illegal option). The standalone version com­
pletes after displaying the message:

syschk

OPTIONS
-b

-m

-w

-t tempdir

complete. halt or reboot.

Scan for and remove bad blocks from the device. Typing the -b option is the
same as typing both the -b and -m options together. Syschk's default is to
not scan for bad blocks. As many bad blocks as possible (up to one per track)
are removed by formatting the bad track(s). Syschk's method of formatting
tracks preserves any good data that was on the track prior to formatting. Any
bad blocks remaining after formatting are allocated to the bad block inode
(i-number 1) and deallocated from their original structure.
Allow modifications (repairs) to be performed on the file system. Syschk's
default is to not attempt to repair any faults it finds in the file system.
The filesystem being repaired must be umounted before you use the -m or -b
options.
Print warnings. Syschk's default is to not warn of unusual file system condi­
tions that are not necessarily errors.
Use tempdir as a directory for temp files, rather than the default, /tmp. This
option is ignored by the standalone version.

REV NOV 1982

System Maintenance-8560 MUSDU System Reference Manual SYSCHK(8)

MESSAGES

REV NOV 1982

The following pages provide a list of syschk's responses to file system corruptions. When a
message ends in a question mark, you can choose not to perform the given repair by typing
an IOn" or <CR>. Any message regarding a particular inode (file) is preceded by the name of
the file (as well as can be determined), the size and mode of the file, the names or id's of the
file's owner, and the times associated with the file (given in GMT by the standalone syschk,
local time by the command version). Any message regarding a corrupt link is preceded by
the same information (about the directory involved) and the name of the link.

'filename' IS NOT A BLOCK OR CHARACTER DEVICE check regardless?

The filesystem that syschk was told to check is not a device. Probably the wrong name was
typed when syschk was invoked. Syschk is offering to check the file anyway.

TOO MANY BAD BLOCKS ignoring bad block 'block'

There are more bad blocks on the disk than syschk can record. The given bad block is not
being recorded as bad. This message indicates a serious problem with the disk. Perhaps the
disk is not ready for I/O or the disk controller is at fault.

'count' NEW BAD BLOCKS add to bad block inode?

There are blocks on the disk that have become bad since the last addition to the bad block
inode. Syschk is offering to allocate the newly bad blocks to the bad block inode, preventing
them from being used in the future.

TOO MANY I-NODES ('count')

The superblock (block 0 on the disk device) indicates that there are more inodes than can be
represented in an i-number (more than 65535). This is a fatal error.

TOO FEW I-NODES ('count')

The superblock (block 0 on the disk device) indicates that there are fewer than two inodes
on the file system. This is a fatal error.

I-NODE AREA OVERFLOWS FILE SYSTEM

The superblock (block 0 on the disk device) indicates that the entire file system is consumed
or overflowed by the inode area. This is a fatal error.

BAD SUPERBLOCK UPDATE TIME 'time' update?

The superblock's (block 0 on the disk device) indication of the last time it was changed
doesn't make sense. Syschk is offering to replace this value with the current time. This
check is omitted by the standalone version.

ROOT I-NODE IS UNALLOCATED

The inode dedicated to the root directory is not allocated. This is a fatal error.

8-23

SVSCHK(8) System Maintenance-8S60 MUSDU System Reference Manual

8-24

ROOT I-NODE IS NOT A DIRECTORY

The inode dedicated to the root directory is allocated, but is something other than a directo­
ry. This is a fatal error.

BAD BLOCK I-NODE IS NOT A REGULAR FILE put one there?

The inode dedicated to storing bad blocks should be an ordinary file. It is not. Syschk is
offering to rewrite that inode with one representing an ordinary file.

CANNOT ACCESS BAD BLOCK I-NODE

The bad block file cannot be opened (one possibility is that the inode itself is in a bad block
and cannot be read). The previous record of what blocks were bad is ignored.

BAD MODE destroy?

The given file is allocated, but it is not one of the following types: directory, regular file,
character special file, block special file. Syschk is offering to deallocate the file, destroying
its contents.

BAD SIZE destroy?

The size of the given file does not make sense (is negative or greater than what can be
.. ,.. ,.. ... ,.. +,..,...\ C""."h[' i U,.. .. i ... ,.. + ,...,.,. ... 11 "' ... +,.,. +h,.,. oFil"" ,... ".+ .. ,.."i ,.. i+". "' + +".
'01'-"0;::";;;;11\0\,11' V1;;''-''''' ,;;, v"o",,~ \V VOQIIV'-'cno '''0 "'0, VO;;'''V}'II'~ H;;' ,-,V"'O,,,;;,.

DIRECTORY MISALIGNED shrink?

The size of the given directory is not a multiple of the size of a directory entry. Syschk is
offering to discard away the partial entry.

REFERS TO A BAD BLOCK zero pointer?

The given file contains a bad block. Syschk is offering to change the file so that it refers to a
block of O's instead of the bad block.
(warning) has 'count' fewer blocks than are required

The given file has "holes" in it - blocks that have never been written to. No action is taken.
Because a file can legitimately have such holes, a warning is produced only if the -w switch
was specified when syschk was invoked.

NO '.' ENTRY add one?

The given directory has no entry to refer to itself. Syschk is offering to build one. NOTE:
Some programs assume that the "." and " entries are the first two entries in each directo­
ry. A directory repaired in this way may no longer fit that assumption, and thus may not be
treated properly by such programs.

HAS NO ' . .' ENTRY make one?

The given directory has no entry to refer to its parent directory. Syschk is offering to build
one. (See the NOTE under "NO '.' ENTRY".)

REV NOV 1982

System Maintenance-8560 MUSDU System Reference Manual SVSCHK(8)

REV NOV 1982

I-NUMBER 'number' OUT OF RANGE remove entry?

The given directory entry refers to a nonexistent inode. Syschk is offering to remove the
offending link.

ASSOCIATED I-NODE IS UNALLOCATED remove entry?

The given directory entry refers to a deleted file. Syschk is offering to remove the offending
link.

'.' ENTRY IS INCORRECT fix?

The"." directory entry does not refer to this directory. Syschk is offering to replace the
offending link with a correct one.

' . .' ENTRY IS INCORRECT fix?

The " .. " directory entry does not refer to the parent of this directory. Syschk is offering to
replace the offending link with a correct one.

IS AN ORPHAN connect to Ilost+found?

The given file, although allocated, has no directory entries referring to it. Syschk is offering
to create a link to this file in the lost and found directory (the directory "Iost+found" on the
filesystem being repaired). The link created will have the form "Innn" where nnn is the
i-number of the orphan file.

CANNOT EXTEND DIRECTORY TO MAKE 'filename'

The given filename cannot be put in the directory. Either the directory cannot be read reli­
ably; or there are no free blocks available for allocation. A subsequent message offers an
alternative.

NO Ilost+found DIRECTORY

A link cannot be made in the lost and found directory because there is no such directory on
the filesystem. Manual intervention is required if you want to recover orphan files. Here is
the procedure:

1. Using syschk, fix all problems on the filesystem except any dealing with orphan files.

2. Running TNIX normally, create the directory "Iost+found" on the appropriate filesystem.
For example, the "Iost+found" directory on the filesystem mounted as lusr1 would be
called "/usr1 Ilost + found" .

3. Run syschk again, this time attempting to recover orphan files.

CONNECTION FAILED destroy orphan?

Either the orphan file cannot be linked to, or you typed "n" in response to the "connect to
lost+found" message. Syschk is offering to delete the file.

INCORRECT LINK COUNT record = 'count', actual = 'count' fix?

The inode record of the number of directory entries referring to it is not correct. Syschk is
offering to correct the inode's record.

8-25

SYSCHK(8) System Maintenance-8560 MUSDU System Reference Manual

8-26

HAS 'count' BLOCKS OUT OF BOUNDS, 'count' DUPLICATED BLOCKS consider
removal?

The given file contains blocks that are also members of other structures. Syschk is offering
to remove the file (in terms of total number of block allocation problems on the disk). If you
type "y", syschk will eventually display the message:

If that inode is removed, total out-of bounds will be count
total duplicates will be count remove it?

or:
If that inode is removed, no block allocation problems will
remain here. remove it?

In either case, typing "y" will delete the file. A file should only be deleted if the deletion would
reduce the number of block allocation problems on the disk. The initial "consider removal"
message prints the current totals; the later "remove it" message prints the resulting totals.

BAD COUNT IN FREELIST BLOCK rebuild free list?

The free list is corrupt. More precisely, the "number of blocks pOinted to by this block" field
in a free list block is negative or greater than the maximum allowed. Syschk is offering to
replace the free list with a good one.

FREE BLOCK POINTER OUT OF RANGE rebuild free list?

The free list is corrupt. More precisely, one of the block pOinters in the free list refers to
something other than a data block. Syschk is offering to replace the free list with a good
one.

FREELIST CONTAINS A BAD BLOCK rebuild free list?

One of the blocks in the free list cannot be reliably read. Syschk is offering to replace the
free list with a good one.

FREELIST DUPLICATES A BLOCK rebuild free list?

The free list is corrupt. More precisely, one block is a member of the free list more than once,
. or is a member of the free list and some other structure (e.g., a file). Syschk is offering to
replace the free list with a good one.

BLOCKS ARE MISSING rebuild free list?

After all filesystem structures have been examined, some blocks remain unaccounted for.
Syschk is offering to replace the free list with a good one.

free list is ok. rebuild free list?

Syschk is offering to replace the good free list with a sorted one. Although this action is not
necessary to repair a filesystem, sorting the free list may improve performance Slightly.

changes were made to the filesystem. check again?

This message indicates that syschk has corrected some filesystem problems and that the
filesystem should be checked again. A "n" response to this question will avoid the check.

REV NOV 1982

System Maintenance-8S60 MUSDU System Reference Manual SYSCHK(8)

FILES
lost+found The directory into which orphan files (allocated files that have no links

to them) are linked. A lost + found directory should be created under
the root directory of each filesystem.

/etc/passwd
/etc/group
/etc/checklist
/tmp/sysc????

The password file.
Used to convert user and group I Ds to names.
The file of default file systems to check.
Temp file used by the command version of syschk. The standalone
version uses for its temp file the last 1001 blocks of the disk on which
the root filesystem (the one beginning on fixed disk 0) ends. runs in
either of two environments:

NOTES
Syschk runs in one of two environments:

• as a standalone program running to check or repair the root file system, syschk uses
the swap space (which must reside on the last disk drive occupied by the root filesystem)
as temporary storage.

• as a user command running to check the root file system or repair some other file
system, syschk wiii creaie a fiie under limp to store its intermediate data.

Because of the heuristic nature of file system repair, syschk can only make reasonable
guesses concerning the cause of a set of file system corruptions. The files that syschk
offers to remove should first be examined to avoid unnecessary file deletion.

Any errors described in this document as "fatal" are severe enough that further checking of
the filesystem is pOintless - syschk cannot repair such a filesystem. The filesystem must be
completely restored from the most recent backup, using restor(B).

Since the i-list is a fixed array on the disk, bad blocks in the i-list cannot be deallocated from
it.

Intermittent read errors during checking will give confusing results.

A single corruption may result in several errors, all of which will disappear when the corrup­
tion is repaired. For example, a block allocation problem involving a directory may cause
many link count errors that will disappear when the block allocation problem is corrected.

SEE ALSO
standalone(B)

REV NOV 1982 8-27

UPDATE(S) System Maintenance-8560 MUSDU System Reference Manual

8-28

UPDATE(8)

NAME
update - periodically update the super block

SYNTAX
letclupdate

DESCRIPTION
Update is a program that executes the sync (2) primitive every 30 seconds. This
insures that the file system is fairly up to date in case of a crash. This command
should not be executed directly, but should be executed out of the initialization
shell command file.

SEE ALSO
sync(2), sync(1), init(8)

NOTES
With update running, if the CPU is halted just as the sync is executed, a file sys­
tem can be damaged.

System Maintenance-8560 MUSDU System Reference Manual WALL(S)

@

WALL(S)

NAME
wall - write to all users

SYNTAX
letclwall

DESCRIPTION
Wall reads its standard input until an end-of-file. It then sends this message, pre­
ceded by 'Broadcast Message ... ', to all logged in users.

The sender should be super-user to override any protections the users may have
invoked.

FILES
Idev/tty?
letc/utmp

SEE ALSO
mesg(1), write(1)

DIAGNOSTICS
'Cannot send to ... ' when the open on a user's tty file fails.

8-29

	0001
	0002
	001
	002
	003
	004
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-028a
	1-028b
	1-029
	1-030
	1-031_DSC50
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047_FBR
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-072a
	1-072b
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	1-125
	1-126
	1-127
	1-128
	1-129
	1-130
	1-131
	1-132
	1-133
	1-134
	1-135
	1-136
	1-137
	1-138
	1-139
	1-140
	1-141
	1-142
	1-143
	1-144
	1-145
	1-146
	1-147
	1-148
	1-149
	1-150
	1-151
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	3-62
	3-63
	4-01
	4-02
	4-03
	4-04
	4-04a
	4-04b
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-08a
	5-08b
	5-09
	5-10
	5-10a
	5-10b
	5-10c
	5-10d
	5-10e
	5-10f
	5-11
	5-12_FBR
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-22a
	5-22b
	5-23
	5-24
	5-25
	5-26
	5-27
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-007
	6-008
	6-009
	6-010
	6-011
	6-012
	6-013
	6-014
	6-015
	6-016
	6-017
	6-018
	6-019
	6-020
	6-021
	6-022
	6-023
	6-024
	6-025
	6-026
	6-027
	6-028
	6-029
	6-030
	6-031
	6-032
	6-033
	6-034
	6-035
	6-036
	6-037
	6-038
	6-039
	6-040
	6-041
	6-042
	6-043
	6-044
	6-045
	6-046
	6-047
	6-048
	6-049
	6-050
	6-051
	6-052
	6-053
	6-054
	6-055
	6-056
	6-056a
	6-056b
	6-057
	6-058
	6-059
	6-060
	6-061
	6-062
	6-063
	6-064
	6-065
	6-066
	6-067
	6-068
	6-069
	6-070
	6-071
	6-072
	6-073
	6-074
	6-075
	6-076
	6-077
	6-078
	6-079
	6-080
	6-081
	6-082
	6-083
	6-084
	6-085
	6-086
	6-087
	6-088
	6-089
	6-090
	6-091
	6-092
	6-093
	6-094
	6-095
	6-096
	6-097
	6-098
	6-099
	6-100
	6-101
	6-102
	6-103
	6-104
	6-105
	6-106
	6-107
	6-108
	6-109
	6-110
	6-111
	6-112
	6-113
	6-114
	6-115
	6-116
	6-117
	6-118
	6-119
	6-120
	6-121
	6-122
	6-123
	6-124
	6-125
	6-126
	6-127
	6-128
	6-129
	6-130
	6-131
	6-132
	6-133
	6-134
	6-135
	6-136
	6-137
	6-138
	6-139
	6-140
	6-141
	6-142
	6-143
	6-144
	6-145
	6-146
	6-147
	6-148
	6-149
	6-150
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	8-01
	8-02
	8-03
	8-04
	8-04a
	8-04b
	8-04c
	8-05
	8-06
	8-07
	8-07a
	8-07b
	8-07c
	8-07d
	8-08
	8-09
	8-10
	8-11
	8-12
	8-12a
	8-12b
	8-13
	8-14
	8-14a
	8-14b
	8-15
	8-16
	8-17
	8-18
	8-18a
	8-18b
	8-19
	8-19a
	8-19b
	8-20
	8-20a
	8-20b
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29

