
The
Connection Machine
System

CM Fortran
Optimization Notes: Slicewise Model

.... ,, } gj~~~~~~ii~~~i~~~

Version 1.0
March 1991

Thinking Machines Corporation
Cambridge, Massachusetts



First printing, March 1991

The information in this document is subject to change without notice and should not be construed
as a commitment by Thinking Machines Corporation. Thinking Machines Corporation reserves the
right to make changes to any products described herein to improve functioning or design. Although
the information in this document has been reviewed and is believed to be reliable, Thinking
Machines Corporation does not assume responsibility or liability for any errors that may appear in
this document. Thinking Machines Corporation does not assume any liability arising from the
application or use of any information or product described herein.

Coectio Machie is a registered trademark of Thikig Machies Corporatio.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
C*®is a registered trademark of Thinking Machines Corporation.
CM, CM-1, CM-2, CM-2a, and DataVault are trademarks of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
C/Paris, Lisp/Paris, and Fortran/Paris are trademarks of Thinking Machines Corporation.
In Parallel® is a registered trademark of Thinking Machines Corporation.
VAX and ULTRIX are trademarks of Digital Equipment Corporation.
Sun, Sun-4, and Sun Workstation are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of AT&T Bell Laboratories.
The X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright © 1991 by Thinking Machines Corporation. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000/876-1111



Customer Support ..........................................................
About This Manual .........................................................

Chapter 1

1.1

1.2

1.3

1.4

vi

vii

The Slicewise Model ......

FPUs as Processors ............

Slicewise Execution ...........

Slicewise Array Layout ........

A Note on Precision of Numbers

1

2

2

3

4

Chapter 2 Elemental Code Blocks ....................................

2.1 Segregating Computation and Communication .......................

* Group elemental operations on conformable arrays to maximize
the size of elemental code blocks ..............................

2.2 Communication Temporaries: A Compiler Blind Spot .................

· Introduce temporaries for communication operations and place
them so as to increase the size of elemental blocks ................

2.3 Limit on Elemental Block Size: A Compiler Blind Spot ...............

* Split up elemental code blocks that reference more than about
18 CM arrays (or serial dimension coordinates) ...................

Chapter 3

3.1

Temporary Arrays .........................................

User Temporaries ..............................................

+ Write large expressions to avoid unnecessary temporary arrays
in computation .............................................

3.2 Communication Temporaries: A Compiler Blind Spot .................

* Reduce memory usage by sharing your temporaries with the
compiler for communication ..................................

5

5

5

8

8

9

9

13

13

13

14

14

Version 1.0, March 1991

Contents
-:. :. -:. S .. ; ............... .... ............... - , - , -, .. S ......... . .

i111



:... ,:' ... :::: :: : :'.; . ~.·............ ..... . ............. I ........ .......... .: : : : : : : :

Chapter 4 Effects of Array Size ....................................... 17

4.1 Padded Arrays ................................................. 17

* The effect of array padding on computational efficiency is
trivial except for very small arrays ............................. 18

* Try to avoid padding on arrays that are used heavily in
communication operations ................................... 19

* CSHIFT takes more time on a padded array dimension than on a
nonpadded dimension, but the time difference is less under slicewise
than under Paris. ........................................... 20

4.2 Subgrid Looping ............................................... 20

* Peak CM efficiency is achieved with smaller array sizes
under slicewise than under Paris ............................... 21

* If you can vary array size, try to achieve a subgrid length of
at least 32 on a Sun-driven CM and at least 64 on a VAX-driven CM .. 22

* If possible, time some elemental code blocks with various array
sizes to determine more precisely what size array is needed to
reach peak speed on your CM system ........................... 22

* If possible, time your communication operations with various array
sizes to determine what size array is needed to reach peak efficiency .. 23

Chapter 5 Effects of Array Layout ................................... 25

5.1 Array Shapes in Elemental Computation ........................... 25

· Avoid needless communication by declaring similarly shaped arrays
in exactly the same shape (or by aligning them) ................... 25

5.2 Array Rank and Virtual Grid Rank ................................ 26

5.3 Dimension Weights and Communication Speed ...................... 27

* When using weights to influence the layout of parallel dimensions,
declare those dimension extents as powers of 2 ................... 27

5.4 Declaring Serial Dimensions: A Compiler Blind Spot ................. 28

* Declare all serial dimensions of an array before any parallel dimension 28

5.5 Communication on Serial Dimensions: A Compiler Blind Spot ......... 28

* Use serial loops to express communication along serial dimensions ... 29

* Unwind the loops that express communication along serial dimensions 30

* Avoid using serial loops to express computation on serial dimensions . 32

Version 1.0, March 1991

iv CM Fortran Optimization Notes: Slicewise Model



n. .. . ... .. .. iViS .f s, f

Chapter 6 Example: Complex Matrix Multiply ....................... 33

6.1 Source Programs ............................................... 33

6.2 Peak Flops Rates ............................................... 36

6.3 Timings ............................................ 36

Appendix A Calculating Peak Flops Rate ............................... 39

Index ................................................................... 43

dn

Version 1.0, March 1991

Contents v



Customer Support

Thinking Machines Customer Support encourages customers to report errors in Connection Machine
operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help us identify and
correct the problem. A code example that failed to execute, a session transcript, the record of a
backtrace, or other such information can greatly reduce the time it takes Thinking Machines to
respond to the report.

To contact Thinking Machines Customer Support:

U.S. Mail: Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

Internet
Electronic Mail:

uucp
Electronic Mail:

Telephone:

customer-support@think.com

ames!think!customer-support

(617) 234-4000

(617) 876-1111

vi

0



About This Manual

Objectives

This manual provides hints on how to program in CM Fortran for best performance under the
slicewise execution model.

Intended Audience

Readers of this manual are assumed to have programming experience in CM Fortran, including the
use of the compiler directive LAYOUT.

Revision Information

This is a new manual.

Associated Documents

* CM Fortran Reference Manual Version 1.0

* CMFortran Programming Guide Version 1.0

* CMFortran User Guide Version 1.0

* CM Fortran Release Notes Version 1.0

S
Version 1.0, March 1991 vii



Chapter 1

The Slicewise Model

Beginning with Version 1.0, the CM Fortran compiler generates significantly improved
code targeted for CM systems with the optional 64-bit floating-point accelerator. Two key
improvements are that elemental computation can be speeded up by as much as a factor of
two, and much less memory (and time) is used up working with compiler temporaries. The
compiler generates code for this new execution model when invoked with the switch
-alicevise. For convenience, we use the term slicewise compiler to refer to the CM For-
tran compiler when it is invoked in this way.

*r) ~ ~ The new execution model is source-code-compatible with the alternative model, called the
Paris orfieldwise model. Thus, changing compiler output requires no action from the user
other than recompiling old and new code with the appropriate switch. However, there are
certain styles of usage in CM Fortran that enhance performance further under the slicewise
model.

This document provides hints for writing CM Fortran programs in a way that optimizes
compiler-generated slicewise code. It also notes some workarounds for performance blind
spots in this early implementation of the slicewise compiler. Future versions will remove
many of these deficiencies, at which point the workaround may have no effect or a negative
effect. The CM Fortran Release Notes and future editions of this document will enhance
the list of programming hints and keep you informed of the status of compiler blind spots.

Most of these hints are specific to the slicewise model, and thus confer no benefit if the
program is compiled for the Paris model. (An exception is the recommendation to unwind
loops that express communication on serially ordered dimensions; this practice coinciden-
tally helps Paris output as well.)

This document is based largely on work done by Gary Sabot of the CM Fortran compiler group.•0 ~ ~ ~ ~~~..... ...... ....... ..
Version 1.0, March 1991 1



1.1 FPUs as Processors

The driving factor behind the development of the slicewise model is the performance po-
tential of using the registers and vector-processing capabilities of the units (chips) of the
64-bit floating-point accelerator. All CM-2s are organized into processing nodes, each con-

taining 32 bit-serial processors, some memory, one (optional) FPU chip, and other
associated hardware. Under the Paris model, the basic processing elements (PEs) are the
bit-serial processors, although the FPA and other hardware are used in some operations.
Under the slicewise model, the PEs are the processing nodes themselves. Thus, a CM ex-
ecuting in the slicewise model is using machine-size/32 PEs- 2K PEs for a 64K CM.

When the CM Fortran compiler generates the Paris instruction set, it does not use the FPU
registers to pass values between different Paris instructions. Since all Paris operations are
memory-to-memory, their theoretical peak performance is limited by memory bandwidth
to 1.5 Gflops (for a full-sized 64K CM-2).

Special microcode can make explicit use of the FPU registers as the source of operands and
the destination of results for elemental computation, thus avoiding memory loads and
stores. Also, the 64-bit FPA can be used as a vector processor - actually, a set of vector
processors, each with a vector length of 4. The theoretical peak performance of such code
(that is, code without loads and stores and without communication) is 14 Gflops for a full-
sized CM-2. The goal of the slicewise execution model is to allow CM Fortran programs
to exploit this performance enhancement.

1.2 Slicewise Execution

When invoked for slicewise, the compiler views the CM as a set of vector processors. In-
stead of generating Paris instructions, it generates a new RISC-like instruction set (called
PEAC, for PE assembly code), which translates into microcode that executes on the FPU
chips. To facilitate transfers between PE memory and FPU registers, data is stored in
memory as 32-bit words - the memory of each of a node's 32 bit-serial processors holds
a one-bit slice of a word, rather than the whole word (hence the term slicewise).

The compiler itself does not perform CM memory management or interprocessor (meaning
inter-PE) communication. Instead, it calls the functions of a newly written run-time library.
Because the slicewise data format is not compatible with the previously written communi-
cation microcode, all the communication functions have been reimplemented to support
CM Fortran Version 1.0.

0

Version 1.0, March 1991

2 CM Fortran Oimization Notes: Slicewdse Model



hait Th"e',"bS Slei S Moe 3,.S .

NOTE: Some CM library routines expect their input/output to be in the Paris, or field-
wise, data format. When such routines are called from a CM Fortran program that is
executing slicewise, the data format needs to be transposed frequently. This transposi-
tion exacts a performance cost. Please consult the documentation for the various
libraries to see which versions can be called from slicewise CM Fortran and which of
these execute more slowly under slicewise than under the Paris model.

1.3 Slicewise Array Layout

The run-time system lays out arrays in CM memory differently depending on the number
of PEs available to execute the program. Since array layout is not determined at compile
time, you can run a CM Fortran program on any size CM system without recoding or re-
compiling. As with the Paris model, the (physical) PE loops over the array elements
assigned to it, repeating each instruction as many times as necessary.

To lay out an array, the run-time system first takes the available PEs and organizes them
into a physical grid. It then specifies subgrids of allocated memory within the PEs. The
subgrids that hold a given array are all the same size and are located at the same memory
address in each PE. Since the FPU's vector length is 4, the length of each subgrid must be
a multiple of 4. Thus, the total number of memory locations allocated is a multiple of 4
times the number of PEs executing the program.

An array that is not a suitable size is padded up to the next multiple of 4 times number-of-
PEs. For example, an array of 32,768 elements requires no padding; on a 64K machine,
each subgrid contains 16 elements. An array that is 32,769 is rounded up to 40,960; on a
64K machine, each subgrid contains 20 elements. (Note that power-of-2 axis extents are
not required.)

The allocated memory is described by a machine geometry, which specifies its physical
grid and subgrids, as well as its logical rank and shape. (We use the term virtual grid as a
convenient way to refer to the allocated memory across PEs - analogous to a Paris VP
set - although a virtual grid does not exist as an object in CM memory.) The run-time
system uses a complicated algorithm to determine the logical shape of subgrids and to map
declared array dimensions onto the virtual grid. Features of the layout algorithm are noted
in this document in connection with optimization hints that relate to them.

Version 1.0, March 1991

Chapter . he Sliceise.Adodel 3



1.4 A Note on Precision of Numbers

Under the Paris model, where all array operations are memory-to-memory, operations on
double-precision numbers are twice as expensive as operations on single-precision num-
bers. Under slicewise, double-precision computation (that is, elemental operations
performed by the floating-point accelerator) does not cost any more than single-precision
computation. Loads and stores to memory of double-precision quantities still cost twice as
much as single-precision loads and stores. Since the slicewise model typically does fewer
loads and stores to memory than the Paris model, the use of double-precision real or com-
plex values often increases execution time by less than twice the time for single-precision
values. For example, in the timed programs shown in Chapter 6, changing the values from
single-precision to double-precision increased the computation time by 1.4.

Version 1.0, March 1991

4 CM Fortran Otimizaion Notes: Slicewise Model



Chapter 2

Elemental Code Blocks

The slicewise compiler excels when it deals with large blocks of elemental operations on
one or more conformable CM arrays. Since these blocks execute entirely within the respec-
tive processing nodes, they enable the compiler to make best use of the FPU registers and
pipelined vector processing.

An elemental block is broken when the compiler needs to deal with some other kind of
instruction. The constructs that break up elemental code blocks are:

Any kind of transformation (including data motion) on CM arrays.

* Any elemental operation that involves a differently shaped array from the previous
elemental operation.

* Any code that executes on the front end, such as scalar assignment statements,
calls to external functions, and control flow changes.

This chapter provides hints for optimizing the compiler's handling of computation within
elemental code blocks.

2.1 Segregating Computation and Communication

* Group elemental operations on conformable arrays to maximize the size of elemental
code blocks.

The compiler does not perform any code motion on user code to increase the size of ele-
mental blocks, so it is up to the programmer to make them as large as possible.

S.,

Version 1.0, March 1991 5



6 CM Frtran Optimizato'~ Not.: .Modl::

For example, the following program needlessly interposes a communication operation (a
vector-valued subscript, which always entails data motion) between two elemental array
assignments:

PROGRAM BAD 1

INTEGER DATA(120000),DEST(120000),INCOMING(120000)

INTEGER UNRELATED(120000)

DATA = DATA * 2

INCOMING - DATA(DEST)
UNRELATED = UNRELATED * 2

You can increase the elemental block size and improve performance by moving the com-
munication operation out from between the two computation statements:

PROGRAM GOOD 1

INTEGER DATA(120000),DEST(120000),INCOMING(12000)

INTEGER UNRELATED(120000)

DATA = DATA * 2

UNRELATED = UNRELATED * 2

INCOMING = DATA(DEST)

Similarly, the following program interposes a data transposition between an elemental add
and an elemental multiply:

PROGRAM BAD 2

INTEGER M(1000,1000),N(1000,1000)

N = 2 * TRANSPOSE(M+1)

It is better to do all the computation at the source and then transpose the elements:

PROGRAM GOOD 2
INTEGER M(1000,1000),N(1000,1000)

N = TRANSPOSE( 2 * (M+1) )

Or, equivalently, do all the computation at the destination after the transposition:

N = 2 * (TRANSPOSE(M) + 1)

Version 1.0, March 1991

6 CM Fonran ptimization Notes: Slzcewse Model



.:..z: ....... e.................. ......

An elemental code block involves only one array shape. Hence, grouping a series of ele-
mental operations according to shape increases block size. For example, instead of this:

PROGRAM BAD 3

INTEGER SIZE1A(100), SIZE1B(100)

INTEGER SIZE2A(128,128), SIZE2B(128,128)

SIZE1A = 0

SIZE2A = 0
SIZE1B = 0

SIZE2B = 0

Use this:

PROGRAM GOOD 3

INTEGER SIZE1A(100), SIZE1B(100)

INTEGER SIZE2A(128,128), SIZE2B(128,128)

SIZE1A = 0

SIZE1B = 0

SIZE2A = 0

SIZE2B = 0

As always, the shape to consider is the shape of the parent array, not of the section. Opera-
tions that involve conformable sections of nonconformable parents require communication
to line up the operands in the same PEs, since the parents occupy different virtual grids.
The same is true of arrays that are of the same shape but whose layouts differ because of
different axis orderings or weights. For example, given the declarations above, the middle
statement here breaks up the elemental code block even though the operands are the same
shape:

SIZE1A = 0

SIZE1A = SIZE1B + SIZE2A(1, 1:100)
SIZE1B = 0

You could avoid communication in this case only by aligning the two vectors with the first
row of SIZE2A (using the compiler directive ALIGN).

.K

Version 1.0, March 1991

Chapter 2. emetal Code Blocks~ 7



2.2 Communication Temporaries: A Compiler Blind Spot

* Introduce temporaries for communication operations and place them so as to increase
the size of elemental blocks.

The slicewise compiler routinely removes communication from within elemental expres-
sions. It creates a temporary array in memory and then performs the communication
operation, using the temporary as the destination. Then, using the temporary in place of the
communication, the compiler evaluates the now fully elemental expression.

A blind spot in the current compiler is that the communication is performed immediately
before the statement. The compiler never moves statements earlier than this to avoid break-
ing up an elemental code block, even though this is often possible. In effect, the compiler
transforms this program:

PROGRAM BADI4

INTEGER M(:L000,1000),N(1000,1000),P(1000,1000)

P = M

N = TRANSPOSE(M) * 10

into this program, which contains two elemental code blocks:

PROGRAM BAD_4 INTERNAL

INTEGER M(:LOOO000,1000),N(1000,1000),P(1000,1000)

INTEGER COMPILERTEMP(1000,1000)

P = M

COMPILERTEMP = TRANSPOSE(M)
N = COMPILERTEMP * 10

You can reveal a single elemental block to the compiler by declaring a temporary yourself
and performing the communication before the two elemental operations:

PROGRAM GOOD_4

INTEGER M(:L000,1000),N(1000,1000),P(1000,1000)

INTEGER USERTEMP(1000,1000)

USERTEMP = TRANSPOSE(M)
P = M

N = USERTEMP * 10

Version 1.0, March 1991

8 CM Fortran 0otimization Notes: Slicewise Model



C p t.er..'::.: : ... :::::: . .:. ~. ~: ::::::::: : .§::: ~ i ::::::::::::: X: 2 : ' : : .- ! A k .~ : * ¢ ::: l :~ :E C B lo.'k :. -:-: ."I.-I.I."...".1"' X:%--1'-'1.'--"':..x

For the Future

In a future release, the compiler will be able to perform code motion itself, and it may be
less constrained to separate communication from computation via temporaries. At that
point, the approach of the original program, BAD_4, will be preferred to that of GOOD_4.
For the short term (perhaps two years), GOOD 4 gives better performance.

2.3 Limit on Elemental Block Size: A Compiler Blind Spot

* Split up elemental code blocks that reference more than about 18 CM arrays (or serial
dimension coordinates).

To identify each CM array to be used in an elemental code block, the front end broadcasts
a parallel memory address to the CM, where it is stored in an address register in the se-
quencer during the execution of the block. A separate parallel memory address is provided
for each specified coordinate in a serial axis. For example, the following loop uses two
parallel memory addresses:

INTEGER A(10,1000), I

CMF$LAYOUT A (:SERIAL,:NEWS)

DO I=1,10

A(I,:) = A(I+1,:) + 1

ENDDO

Excessive Parallel Addresses

When too many parallel memory addresses are used in a code block, the CM sequencer
runs out of address registers and is forced to spill the addresses to memory. Normally, the
sequencer can receive an address broadcast from the front end in less time than it takes to
spill and then reload an address register. Therefore, it is usually better to broadcast a value
redundantly (that is, use it again in a separate code block) than to allow the sequencer to
run out of registers in a single code block. The overall gain from avoiding unnecessary
spill/reloads is on the order of 5 to 10 percent.

Redundant address broadcasting is preferable as long as the elemental code block is large
enough to keep the CM busy while the front end races ahead. As long as the front end is

Version 1.0, March 1991

Chapter 2. Elemental Code Blocks 9



1B0 1.CWt2M, Fortran...................................... Optimzation Notes: Slicewise Model..... 
CMFortran Optimization Notes: Slicewise Model

operating ahead of the CM, it can have the addresses ready at the CM when needed. If the
CM is not kept busy, the front end might not be far enough ahead to have the needed ad-
dresses ready, and the performance advantage is lost as the CM waits for them.

Optimal Number of Parallel Addresses

The optimal number of parallel memory addresses per elemental code block is between 15
and 19, depending on some internal considerations. This number is small enough to avoid
spilling sequencer registers, and large enough to indicate that the code block probably con-
tains enough operations to keep the CM busy.

Reducing the Number of Parallel Addresses

Elemental code blocks can be split by reordering your code to violate the restrictions de-
scribed in Section 2.1. Moving a communication operation, or an operation on a
nonconformable array, into the middle of an elemental code block will split the block, as
will any scalar operation or control flow statement. Also, you should probably stop un-
winding loops on serially ordered dimensions once about 18 parallel memory addresses are
used (see Section 5.5).

Some Caveats on Splitting Code Blocks

Splitting up an elemental code block is an optimization only if its pattern of CM array
usage allows you to produce blocks that use disjoint, smaller sets of arrays. If a large block
uses 30 parallel memory addresses, it does not make sense to split it into two halves that
each use 28 addresses. If each half uses 18 addresses, however, splitting the block may
improve performance.

It is often convenient to use a scalar assignment to break up an elemental block. However,
if the scalar variable that is assigned is never used, the optimizer may kill the apparently
useless statements. You must use the variable in a way that tricks the optimizer into not
eliminating the block-breaking statements:

Version 1.0, March 1991

10



Chapter 2. Elemental Code Blocks 11

PROGRAM BREAKBLOCK

C ... declarations
INTEGER BREAKBLOCK

ARRAY = ... parallel code

C Break the block
BREAKBLOCK = 1

ARRAY = ... more parallel code

C Break the block again, using previous value
BREAKBLOCK = BREAKBLOCK + 1

ARRAY = ... still more parallel code

C Use the variable so the optimizer does not remove it.

CALL USE VARIABLE( BREAKBLOCK )

END

SUBROUTINE USE VARIABLE( X )
J0 END

For the Future

Eventually, the compiler may be able to break code blocks itself to avoid overloading the
sequencer address registers. At that point, the user's explicit block-breaking efforts will
become a pessimization. The compiler will have better information about register usage
and exact spill/reload costs than will the user, so it will be more effective at picking the
optimal breaking points. Alternatively, if the sequencer's spill/reload performance im-
proves, the compiler may choose to avoid breaking blocks in some cases.

Future release notes and updates to this manual will provide information on the status of
this compiler blind spot.

9,
Version 1.0, March 1991



S



Chapter 3

Temporary Arrays

An important innovation of slicewise compilation, compared with the Paris model, is the
compiler's use of FPU registers. The compiler may need to allocate temporaries when eval-
uating expressions, but, as long as the temporary is not the destination of a communication
operation, it is held in an FPU vector register. In contrast, compiler temporaries created
under the Paris model are held in memory.

Compiler temporaries created for use in elemental computation thus make fewer demands
on system resources (memory and memory bandwidth) under the slicewise model than
they do under the Paris model. Even if the compiler needs to spill a register to memory, it
spills only number-of-nodes * 4 values (that is, the number of PEs executing the program
times the internal vector length), rather than the full array size, which may be much larger,

Temporaries created for use in communication do reside in memory under the slicewise
model, as they do under Paris (see Section 2.2).

3.1 User Temporaries

* Write large expressions to avoid unnecessary temporary arrays in computation.

In the following program, the array TEP is not really necessary. This program needs to
allocate space in memory to hold 120,000 extra integer values and needs to perform three
extra writes to memory:

PROGRAM BAD 5

INTEGER A(120000), TEMP(120000)

Version 1.0, March 1991 13



14-Id a Otm

TEMP = A + 1
TEMP = TEMP/2
A = TEMP

Instead, write this:

PROGRAM GOOD 5

INTEGER A(120000)

A = (A+1)/2

The GOOD_5 program allocates memory only for array A (the literal constants are provided
as immediate operands), and it requires only one write to memory. If, under the worst case,
the compiler is forced to spill a register to memory, it needs to write only 8192 values
(2048*4, assuming a full-sized CM) rather than 120,000 values (plus padding, as described
in Chapter 4).

3.2 Communication Temporaries: A Compiler Blind Spot

* Reduce memory usage by sharing your temporaries with the compiler for communi-
cation.

The compiler allocates memory temporarily to isolate communication operations from
computation. A blind spot in the current implementation is that the compiler uses only its
own temporaries for this purpose: it never "borrows" an array created by the program,
even though this is occasionally possible. In effect, the compiler transforms this program:

PROGRAM OAY_6
INTEGER M(I1000,1000), N(1000,1000)

N TRANSPOSE(2 * (M+1))

into this program:

PROGRAM OKAY_6 INTERNAL

INTEGER M,(1000,1000), N(1000,1000)

INTEGER COMPILERTEMP(1000,1000)

Version 1.0, March 1991

14 CM Fortran Optimization Notes: Slicewise Model



Chapter 3. Temporary Anrays 15

COMPILERTEMP = 2 * (M+1)

N = TRANSPOSE(COMPILERTEMP)

You could restructure this program to eliminate the compiler temporary by borrowing N:

PROGRAM ]3ETTER 6

INTEGER M(1000,1000), N(1000,1000)

N = 2 * (M+1)

N = TRANSPOSE(N)

This restructuring saves memory by working around a blind spot of the compiler, which
currently never uses a user array to hold compiler temporaries.

Naturally, there would be no memory savings if you created a new temporary and then
moved communication results into it. In fact, creating a new temporary for this purpose
might be a pessimization, because the compiler currently does a better job of deallocating
its own temporaries as early as possible than it does with user temporaries.

For the Future

In the future the compiler will be able to do this transformation (borrowing user memory)
itself. It may also begin to overlap communication with computation, which would reduce
the need for temporary memory in performing communication. At that point, the approach
of program OKAY_6 will be preferred to that of BETTER_6. For the near term (say two
years), BETTER 6 is more space-efficient.

Version 1.0, March 1991



9



Chapter 4

Effects of Array Size

Both the slicewise and Paris execution models place certain requirements on the amount
of CM memory allocated to hold a Fortran array. Fortran arrays can be any arbitrary size,
but virtual grids (and Paris VP sets) must meet certain constraints. In both models, an array
that is not an acceptable size for a grid in CM memory is "padded" up to an acceptable size,
and the CM may operate on the padding elements as well as on the elements containing
user data. Naturally, the padding translates into both wasted memory and wasted process-
ing time.

At the same time, both execution models operate more efficiently on large arrays than on
small arrays, because a processing element better amortizes its start-up overhead over a
large number of loop iterations than over only a few. The efficiency of computa,
tions - given here in Flops rates, although integer operations also benefit - rises with the
number of subgrid iterations (or VP ratio) until it hits a peak, and then stays about the same
as subgrid length increases further.

This chapter provides information on the performance effects of array padding and sug-
gests ways of discovering the array size at which performance peaks. As in the CM Fortran
language manuals, we use the term array size to mean the product of its axis extents.

4.1 Padded Arrays

Under the slicewise model the best performance occurs on a much broader class of arrays
than under the Paris model. Because the constraints on virtual grid size are less severe,
array dimensions are less likely to be padded, and are usually padded less heavily under
slicewise than under Paris.

S
Version 1.0, March 1991 17



Computation on Padded Arrays

* The effect of array padding on computational efficiency is trivial except for very
small arrays.

An array of size s that is padded up to size p takes as long to process as if it were size p
to begin with. Under the Paris model, where each dimension that is not a power of 2 is
padded up to the next power of 2, the worst-case performance degradation can be a factor
of 2 on every dimension. This fact leads performance-minded programmers to write their
code in unnatural ways to avoid non-power-of-2 arrays.

Under the slicewise model, padding is needed only to make the product of the dimension
extents (for non-serial axes) equal a multiple of 4 times the number of PEs executing the
program. There is no length constraint on any particular axis.

The padded size p is determined by an algorithm that seeks to minimize the amount of
memory used (as well as to place the same number of elements for a given dimension in
each of the PEs). This fact places a simple upper bound on the total amount of padding that
is much lower than the potential padding under Paris. For a 1-dimensional array (that is,
ignoring the second constraint above), the maximum amount the dimension can be padded
is (n * 4) -1 elements, where n is the number of PEs executing the program. This amounts
to only 8191 elements for a 64K CM. Thus, the difference in efficiency between the best
and worst array sizes is much smaller with slicewise execution than with Paris.

NOTE: Padding may exceed (n * 4) -1 elements for multidimensional arrays because
of the need to give each PE the same number of elements from a given array dimension.
That is, a multidimensional array may sometimes, depending on its shape, be padded
beyond the next multiple of (n*4). The total padding is still comparatively small, how-
ever. You can use the CM Fortran utility procedure CMF_DESCRIBE_ARRAY to
determine how much a particular array is padded. This procedure prints information
about the array geometry and the machine geometry (the shape of the virtual grid),
among other things, to stdout. Any difference between their sizes is padding.

Because the amount of padding added to arrays is fairly small, its effect on computational
efficiency is significant only for very small arrays. For example, for a 1-dimensional array
with 200,000 elements, the maximum possible padding is around 4 percent, which is prob-
ably not worth worrying about. In most cases, of course, padding will be less than the
maximum possible. For example, if a 1-dimensional array is of size 120,000, the padded
size is 122,880 (60 * 2048, assuming a full-size CM), so that padding makes up only 2.3
percent of the virtual grid. Thus, except for arrays that are much smaller than (or not much
larger than) 4 times the number of PEs, the slicewise model removes the programmer's
incentive to warp the natural sizes of arrays to improve computational performance.

9.
Version 1.0, March 1991

CM Fonran Optimization Notes: Slicewise Model18



Communication on Padded Arrays

* Try to avoid padding on arrays that are used heavily in communication operations.

Communication operations on an array of size s that is padded to size p is slower than it
would be if the array were size p to begin with. It does not matter which dimensions are
padded or which dimensions are used in the communication.

The slicewise model, which does not have a notion of virtual processors, does not associate
as much state information with each array element as does the Paris model. Under Paris,
each array element is mapped to a virtual processor that has a state bit (called the context
flag) whose setting indicates whether that processor is to participate in the next instruction.
In the slicewise model, all the elements participate, but some may be ignored.

This approach causes no problem for elemental computation: it is faster to process an ele-
ment and later ignore the results than it is to have a virtual processor check its state before
each instruction. (The same rationale underlies the fast always instructions in Paris.) The
garbage data in such an element does no harm - unless a communication operation al-
lows it to get out.

Therefore, when an array has any padding at all, a communication function must check
every element before moving data from it, and skip the communication if the element con-
tains garbage data. This checking slows the algorithm down, by different proportions for
the different communication functions. For example, the sum intrinsic is slower by about
a factor of 2 when applied to a padded array.

Because the library of run-time communication functions is new with Version 1.0 of CM
Fortran, little comparative timing information is available. Also, timings are likely to
change frequently, since performance tuning of the run-time library is a current focus of the
development effort..

The safest approach to communication for performance-minded programmers is to declare
arrays such that they will not need to be padded. An array whose declared size (that is, the
product of its non-serial dimension extents) equals a multiple of 4 times the number of PEs
executing the program is never padded.

.6

Version 1.0, March 19.91

Ilhantpr4 Effprtcvnfdrrfm.WYP 19



20 CM Fortran Optimization Notes: S::ce::se Model:: :

CSHIFT Wrapping Performance

* CSHIFT takes more time on a padded array dimension than on a nonpadded dimen-
sion, but the time difference is less under slicewise than under Paris.

Dimension padding has a particular effect on the intrinsic function CSHIFT because the
function wraps the last element(s) in the shift direction around to the beginning. If the di-
mension is not padded and if its extent is a power of 2, the wrapping occurs in hardware
(that is, the last element on a power-of-2 virtual grid axis is connected to the first element
on that axis). In this situation, wrapping takes no more time than simply discarding the last
element '(as EOSHIFT does). If the dimension contains garbage elements, however, or ifits
extent is not a power of 2, the wrapping entails moving data more than one "hop" in hard-
ware.

Under the Paris model, CSHiFT may use an expensive general communication instruction
(a Paris send) to perform the wrap. Under slicewise, the wrapping is always performed
with one or more power-of-'2 NEWS operations. At most seven NEWS hops are required to

do the wrapping for any array on the CM. Most CSHIFT operations require fewer than

seven, but even seven NEWS operations can be completed faster than one send.

Because arrays are less likely to be padded at all under slicewise than under Paris, there are

more cases when the best CSHIFT performance is possible. And, because of the difference
in implementing wrapping, the best and worst cases of CSHIFT performance are closer
together.

4.2 Subgrid Looping

A major effect of array size on performance arises from the length of the subgrid that the
PE iterates over. Every elemental code block or communication operation involves some
overhead - for instance, the time required for the CM to receive addresses and data from
the front end. The overhead is incurred at the beginning of the code block, before the sub-
grid loop begins to execute. 'The larger the subgrid, the more iterations in the loop and thus
the greater the time over which to amortize the overhead.

Version 1.0, March 1991

CM Fortran Optimization Notes: Sliceise Model20



·:·2:·: ::·:·:·.i:: ··:·:::·::.·:·:·: i:. ....... ...... . .... ...... ......

* Peak CM efficiency is achieved with smaller array sizes under slicewise than under
Paris.

It is immediately obvious that the slicewise model has an efficiency advantage over Paris
because the iteration count is 32 times larger for a given array size. For example, an array
of size 128K on a 64K CM translates under Paris to a VP ratio of 2, since each bit-serial

processor holds 2 elements. Under slicewise, the same array translates to a subgrid length
of 64, since the number of PEs is 64K/32. In fact, 64 loop iterations is enough to reach peak

efficiency for even the worst-behaved elemental code, whereas the timing of the 2 itera-
tions that occur under Paris is still heavily influenced by the start-up overhead.

An important question to users who can vary the size of their data sets is what subgrid
length (that is, data set size) they must operate on to use a particular size of CM efficiently.

The best answer comes from timing your code with various array sizes on an actual CM,
and noting at what point the Flops rate stops rising with increasing array size. This section
gives some hints for estimating what the optimal subgrid length might be for a particular
elemental code block.

The discussion that follows assumes, for convenience, that no padding is present on the
array in question. If padding is a significant concern (say, if one-quarter of the virtual grid
is padding), then the fact that available computation time is lost to operating on garbage
data is a more important source of inefficiency than insufficient amortization of overhead.
If the subgrid is large enough to achieve peak efficiency, then it is likely that the padding
is insignificant (at least for elemental computation).

Array Size and Computation

Given a particular size of CM, the peak Flops rate of a block of elemental code is a fixed
value. For inspiration, you can calculate the peak rate from information contained in the
.peac intermediate file (see Appendix A). The peak can be achieved, however, only if the
overhead required to start execution of the code block is amortized over a sufficiently large
amount of computation. Once efficiency peaks, it remains about the same if array size is

increased further.

For example, suppose the peak for a piece of code is reached at subgrid size s. Our prelimi-

nary timings indicate that doubling the array size so that the subgrid size is 2s does not

measurably improve performance. A subgrid size of s/2, however, reduces performance to
about 70 percent of the peak, and a subgrid size of s/4 reduces performance to about 30
percent of the peak.

Version 1.0, March 1991

21Chiapter 4. Eects of rray Size



22 CMFortran Optimization Notes: Slicewise Model

I:f you can vary array size, try to achieve a subgrid length of at least 32 on a Sun-driven
CM and at least 64 on a VAX-driven CM.

In some cases, an even smaller subgrid length (about 16 for CM/Sun or 32 for CM/VAX) is

sufficient to reach peak efficiency for an elemental code block. The key factor determining
the array size needed to amortize overhead for a code block is the ratio of floating-point

(or integer) operations in the block to the number of values (including CM array addresses)
received from the front end..

* The number of floating-point operations in a code block can be determined from
the .peac intermediate file, which gives a Flops count per line of the block and
totals them at the end.

* The number of values received from the front end can be determined from the
source code: it is the number of scalar variables, constants, and CM arrays that the
elemental code block uses. (When a serially ordered dimension of a CM array is
referenced with scalar subscripts, each such coordinate should be counted as a sep-
arate array, since it is sent to the CM as a separate parallel memory address.)

The significance of these factors is that a block that uses a large number of values once each
(for example, A=B+C+D+E+F) has higher overhead and thus requires a larger subgrid size
to reach its peak Flops rate than does a block that performs the same number of operations
on a smaller number of values (for example, A=A+A+A+A+A).

Preliminary timings on a CM with a Sun front end indicate that if the Flops/values ratio of
an elemental code block is near 1, the peak Flops rate is first reached at a subgrid size of
32 - hence the recommendation at the beginning of this subsection. However, for blocks
with a Flops/values ratio of 3, the peak is reached at subgrid size 16.

Preliminary timings on a CM with a VAX front end indicate that this configuration reaches
its peak efficiency with about twice as many subgrid elements as does a Sun-driven CM.
Thus, for a Flops/values ratio of 3, a VAX-driven CM comes near its peak with a subgrid

size of 32 (compared with 1.6 for the Sun-driven CM). Since the same CM hardware is in-
volved, the peak rates are the same. The Sun-driven CM is able to achieve them on smaller
array sizes because the Sun is able to send the CM a given set of values in less time than
a VAX.

* If possible, time some elemental code blocks with various array sizes to determine
more precisely what size array is needed to reach peak speed on your CM system.

The suggestions for target array sizes given different Flops/values ratios are merely rules
of thumb based on preliminary timings. Also, we have not yet isolated all the factors that

Version 1.0, March 1991



chate .Efe ra Size 23..?..::,:. txffy.>./~~ . f :::... . :g.~.,..:f.

might affect slicewise performance on a particular CM system configuration. For best per-
formance, you might want to conduct some further timing experiments on your own CM
system. Also, it is only by timing experiments that you can optimize your entire program,
including both its computation and its communication.

Array Size and Communication

The time required for communication is very dependent upon the particular function and
the particular pattern involved. The execution time of a communication function can be
thought of as having a constant base cost plus a linear cost per subgrid element that moves
off the PE. (That is, the cost of communicating between elements stored on different PEs
is added to the base cost of overhead plus communicating among elements that all reside
on the same PE.) The number of elements that move off the PE can be determined from the
description of an array's corresponding machine geometry given by the CM Fortran utility
library procedure Co'_DESCRIE ARRAY. See the CM Fortran User Guide.

The base cost can be much larger than the linear cost. For example, the function that imple-
ments CSHIaET of an unpadded integer array takes a constant 475 microseconds plus about
19 microseconds per subgrid element that moves off the PE. This means that a much larger
subgrid size is needed to effectively amortize the overhead than is the case for elemental
code. With a subgrid size of 32, a CSHIFT might take a millisecond: almost half is due to
the overhead.

* If possible, time your communication operations with various array sizes to deter-
mine what size array is needed to reach peak efficiency.

We do not yet have systematic information on the timings of the communication functions.
At present, we urge you to time the communication parts of your programs with various
array sizes on a fixerd-size CM to determine what array size optimizes their performance.

Version 1.0, March 1991

Chapter 4. Effets of~ray Size 23



#2



Chapter 5

Effects of Array Layout

The layout of a CM Fortran array in CM memory is determined by a run-time system algo-
rithm that considers the array's shape (that is, its rank and dimension extents) in relation
to machine size, along with the array's dimension orderings and weights. (The latter two
factors might be affected by the compiler directive LAYOUT.) This chapter examines some
performance factors that relate to array layout.

Under the Paris model, an array's shape also determines the amount of padding added to
it - a major factor in Paris execution speed. Under the slicewise layout strategy, the need
for padding is determined by the array's total size, not by its shape. The performance ef-
fects of array size and padding are described in Chapter 4.

5.1 Array Shapes in Elemental Computation

* Avoid needless communication by declaring similarly shaped arrays in exactly the
same shape (or by aligning them).

The slicewise compiler assumes that CM arrays share a machine geometry only ifthe arrays
have exactly the same layout, and this requires that they have exactly the same shape. If
you use two or more nearly conformable arrays together in elemental computations, you
are incurring a communication cost.

Under the Paris model, it is often easy to see that two or more nearly conformable arrays
do in fact share a VP set, and therefore that they can be used together without incurring a
communication cost. Users can rely on the fact that each padded dimension extent is the
next power of 2 beyond its declared extent, and that arrays that are rounded up to the same

Version 1.0, March 1991 25



26 CM Fortran Optimization Notes: Slicewise Model

shape are in the same VP set. For example, the following assignment does not require com-
munication, since SMALL and BIG are in the same Paris VP set.

PROGRAM PARIS

INTEGER SMALL(2047)

INTEGER BIG(2048)

SMALL = BIG(1:2047)

Under the slicewise model, however, each distinct array shape is given its own array
geometry, which the run-time system later relates to a machine geometry that describes the
memory allocated. The compiler cannot predict the machine geometry because it cannot
predict how the run-time system will pad arrays or lay out their subgrids. Although it is
likely in an example as simple as this that the two machine geometries will be identical, the
compiler does not make this assumption. Therefore, the assignment statement requires
communication to move data from one area in memory (virtual grid) to the other.

If you want to use SMALL and BIG together without communication, make them exactly the
same shape. When performing communication, you will need to mask out the element you
added to SMALL to prevent garbage data from escaping. There is no need to mask the ele-
ment for elemental computations, since the garbage data causes no problems.

Better still, you could use the compiler directive ALIGN to force a smaller array to have the
same machine geometry as a larger one. In this case, the run-time communication functions
do the necessary masking of the garbage elements.

5.2 Array Rank and Virtual Grid Rank

Under the slicewise model, the rank of a virtual grid is the same as the rank of the array(s)
mapped onto it. If the compiler needs to pad an array up to a legal size, it does so by extend-

ing one or more of the existing array dimensions, not by extending an additional hidden
dimension as in the Paris model.

This information is useful only when using CM libraries that do not have a CM Fortran
interface - that is, when using procedures that operate on lower-level data structures. Un-
der the Paris model, the programmer needs to be aware that the rank of a VP set is one
greater than the rank of the arrays it holds. Under the slicewise model, arrays and their
virtual grids have the same rank.

a
Version 1.0, March 1991



ChapterS. Effects of.y$rra,* Layout 27 

Virtual grid axes are numbered from 0 rather than from 1 in the machine geometry that
describes the grid. In the description of machine geometry generated by the CM Fortran
utility procedure CMIFDESCRIBE ARAY, the grid axis numbered 0 corresponds to array
dimension 1, axis 1 corresponds to dimension 2, and so on. However, in the Utility Library
procedures that take array dimensions as arguments, the dimensions are numbered from 1,
as they are in CM Fortran itself.

5.3 Dimension Weights and Communication Speed

* When using weights to influence the layout of parallel dimensions, declare those di-
mension extents as powers of 2.

Communication speed along an array dimension is influenced by the relative number of
on-node and off-node elements on that dimension. That is, the system needs extra time to
communicate between elements that reside on different PEs. By default, no array dimen-
sion is particularly favored for communication under the slicewise layout strategy: any or
all parallel (NEWS-ordered or send-ordered) dimensions might contain some on-node and
some off-node elements.

The compiler directive LAYOUT allows you to specify that certain dimensions will be used
more heavily than others in communication operations by giving them higher weights. The
run-time system responds as follows:

* A parallel dimension tends to be laid out such that communication along that axis
requires less movement off-node.

* Serial dimensions are always laid out entirely on-node. Therefore, weights applied
to a serial dimension are ignored.

* There is an advantage in declaring all parallel dimensions in power-of-2 extents.
In this case, weights have the same effect as in the Paris model: they cause the
higher-weighted axes to be favored for communication, although not necessarily
in proportion to their respective weights.

* If any parallel dimension extent in an array is not a power of 2, weights are not
guaranteed to affect that array's layout. The run-time system might find that high-
er-priority goals, such as minimizing the amount of memory allocated (and thus
reducing padding), completely determine the array's layout, and that it has no lati-
tude to factor in an effect from weights.

Version 1.0, March 1991

Chapter 5. fects ofArray Layout 27



28ea''R.B.'.M'*'Nv..'l2,>t~j>,l¢;'-So~de~g" CM ortn' ' Optmizato ..o.tes iiiisi ........... l·~~~~~~~s·~~~~~~~~:~~~~~~·~~~~~~s·:·:~~~~~~~~~~~~~~~~~:gi~~~~~~~~~~~~~~ x' " ~ '~ "'~~~: '. ' ..":~i

5.4 Declaring Serial Dimensions: A Compiler Blind Spot

* Declare all serial dimensions of an array before any parallel dimension.

CM Fortran gives best performance on an array with serially ordered dimensions when all
such dimensions are declared to the left of any of the parallel dimensions.

This on-going restriction is permanent under the Paris model, since it is enforced by the
Paris run-time system. Under slicewise, this restriction will be removed in a future release,
and performance will not be affected by the placement of serial dimensions in the array
declaration. The CMFortran Release Notes and future editions of this document will alert
you when this restriction has been removed.

5.5 Communication on Serial Dimensions:
A Compiler Blind Spot

A serial array dimension has the distinctive property that it is always allocated entirely
within - never across - PEs. Even for very small arrays, the run-time system configures
a virtual grid, determining subgrid layout and adding padding if necessary, by considering
only the parallel dimensions of an array. After the machine geometry is determined, the
system extends the subgrids to accommodate any serial dimensions (always unpadded).

This strategy optimizes elemental computation on sections of an array that are referenced
with scalar subscripts along a serial dimension. Such operations are guaranteed to be
entirely on-node.

For communication operations, however, the slicewise CM Fortran compiler shares a defi-
ciency with previous and current releases of the Paris model. The compiler fails to see that
a serial dimension is a special case: it handles communication on a serial dimension as if
it were any other dimension. Thus, it creates communication temporaries in memory and
performs needless moves within a PE's memory to initialize them.

This section provides hints on working around this compiler blind spot.

Version 1.0, March 1991

28 CMFortran Optimization Notes: Slicewise Model



,eL-g-- C _ at All. r,...-
,nuplr J. jj~ec oqj Array LUyou U

Using Loops

* Use serial loops to express communication along serial dimensions.

You can prevent the compiler from creating temporaries to perform communication on a
serial dimension by explicitly coding such operations as serial loops. This action saves
memory and saves the time that would otherwise be spent writing to and reading from that
memory.

For example, consider this shift operation on a serial dimension:

PROGRAM OKAY 7

INTEGER A(10,1000)

CMF$LAYOUT A(:SERIAL,:NEWS)

A(1:9,:) = A(2:10,:) + 1

The compiler transforms the program into this:

PROGRAM OKAY_7_INTERNAL

INTEGER A(10,1000)

INTEGER COMPILERTEMP(10,1000)

CMF$LAYOUT A(:SERIAL,:NEWS)

CMF$LAYOUT COMPILERTEMP(:SERIAL,:NEWS)

COMPILERTEMP(1:9,:) = A(2:10,:)
A(1:10,:) = COMPILERTEMP(1:10,:) + 1

You can prevent the transformation by coding the shift as a serial loop:

PROGRAM BETTER 7

INTEGER A(10,1000), I

CMF$LAYOUT A(:SERIAL,:NEWS)

DO I=1,9

A(I,:) = A(I+1,:) + 1

ENDDO

A caveat for using loops to perform communication: As with any serial in-place algorithm
for array movement, the loop direction must match the direction of data. In BETTER_7, if
the right-hand side had used I-1 instead of I+1, the loop would have had to gone from 9
to 1 rather than 1 to 9.

Version 1.0, March 1991

on 9



LM rarran pnmzzanon votes: a3lcewhe Moae 

Unwinding Loops

* Unwind the loops that express communication along serial dimensions.

You can improve communication performance further on serial dimensions by unwinding
the serial loops. This action increases elemental code block size and thus helps amortize
the start-up overhead for the subgrid loop. (Recall from Section 2.3, however, that you
should probably not unwind beyond about 18 serial coordinates, since using too many
coordinates might cause a register spill.)

PROGRAM BEST 7

INTEGER A(10,1000), I

CMF$LAYOUT A(:SERIAL,:NEWS)

DO I=1,9,5

A(I,:) = A(I+1,:) + 1
A(I+1,:) = A(I+2,:) + 1

A(I+2,:) = A(I+3,:) + 1
A(I+3,:) = A(I+4,:) + 1
A(I+4,:) = A(I+5,:) + 1 " 

ENDDO

The reason for the improved performance is that the optimizer is currently unable to move
the serial axis address calculations out of the inner loop. If you unwind the loop, the address
calculations can be shared across the whole computation, which reduces the workload on
the front end.

Note that in unwinding a loop, you may need to add cleanup code to handle any leftover
elements. For example, if the serial dimension in program BETTER_7 were size 11 and the
program moved data from 1:11 instead of from 1: 10, you would need an extra assign-
ment statement after the unwound loop to handle the leftover element 11.

For the Future

A future release of CM Fortran will implement communication along serial dimensions
more efficiently. At that point, the original approach, shown in program OxAY_7, will
become preferable to both BETTER_7 and BEST_7.

Version 1.0, March 1991

- -- 21-7-7.~__I-r~~ina



Chapter:' .... '<.: """' ', .......................................... ':""':3:5:.S: ': "' ' '. ...... Lyout 3"' -.;:·:·:·:·:·:·::·:·:~~~~~~~~~~~~..... ....... .....

Another Example

Here is another example of coding communication along serial axes as a loop to improve
performance. This program sums along the serial dimension of a 2-dimensional array, pro-
ducing a 1-dimensional output array:

PROGRAM SLOWSUM
INTEGER A(16,10), B(16,10), C(10)

CMF$LAYOUT A(:SERIAL,:NEWS), B(:SERIAL,:NEWS), C(:NEWS)

C = SUM(A*B,DIM=1)

Left to its own devices, the compiler will calculate A*B into a temporary and then perform
the summation. However, you can use a serial loop to perform the same operation without
the temporary:

PROGRAM FASTSUM
INTEGER A(16,10), B(16,10), C(10), I

CMF$LAYOUT A(:SERIAL,:NEWS), B(:SERIAL,:NEWS), C(:NEWS)

C=O

DO I=1,16

C = C + A(I,:) * B(I,:)

ENDDO

Finally, unwind the loop for even better performance:

PROGRAM FASTESTSUM

INTEGER A(16,10), B(16,10), C(10), I

CMF$LAYOUT A(:SERIAL,:NEWS), B(:SERIAL,:NEWS), C(:NEWS)

C=O

DO I=1,16,4

C = C + A(I,:) * B(I,:)

C = C + A(I+1,:) * B(I+1,:)

C = C + A(I+2,:) * B(I+2,:)

C = C + A(I+3,:) * B(I+3,:)
ENDDO

Version 1.0, March 1991

Chapter 5. Effecs ofArray Layout 31



32 CMFortran Optimization Notes: Slicewise Model

Computation on Serial Dimensions

* Avoid using serial loops to express computation on serial dimensions.

The compiler excels at performing elemental computation (as opposed to communication)
along serial dimensions - this is the rationale not only for serial dimensions but for the
slicewise model itself. It is a pessimization to use serial loops to express such computation.
For example, this non-looping program:

PROGRAM FASTCOMPUTE
INTEGER A(16,10), B(16,10)

CMF$LAYOUT. A(:SERIAL, :NEWS), B(: SERIAL, :NEWS)

A = A * B

executes significantly faster than this looping program:

PROGRAM SLOWCOMPUTE
INTEGER A(16,10), B(16,10), I

CMF$LAYOUT A(:SERIAL,:NEWS), B(:SERIAL,:NEWS)

DO I=1,16
A(I,:) = A(I,:) * B(I,:)

ENDDO

Version 1.0, March 1991

' I 'll , " .., :: :: I , .. ::1�._-,H - 1�'.-�".'-'.�-11 "I'l�vc,�'�I."..""'....'.."�l.�.,i:.,.,."."....,,..,".."..".'..,::.',�



Chapter 6

Example: Complex Matrix Multiply

This chapter contains an example of elemental code that illustrates some of the perform-
ance factors described in this manual. This subroutine multiplies, within each PE, a 3 x 3
matrix of complex numbers by a vector of 3 complex numbers. The computation occurs
in AxinswL positions on a parallel dimension; no communication takes place. The pro-
gram performs this operation 1000 times and prints out the overall time. It repeats this
timing operation 3 times.

This chapter shows a plain and optimized version of the source program, as well as the
timings for these programs under a variety of conditions: single-precision and double-
precision complex values, varying array sizes (that is, different values for AXISLEI), and
slicewise versus Paris compilation.

6.1 Source Programs

Here is the "plain" program. Since a complex add takes two operations and a complex mul-
tiply takes six, the timed section of this program performs 1000 * 8 * 3 * 3 = 72,000
floating-point operations for each of the AnXISEN elements.

Example 1. Subroutine MM PLAIN source code

SUBROUTINE MMPLAIN
IMPLICIT NONE

INTEGER N,AXISLEN,TIMES,I,J,K
PARAMETER (N=3)

PARAMETER (AXISLEN=16384)
COMPLEX A(N,N,AXISLEN), B(N,AXISLEN), C(N,AXISLEN)

Version 1.0, March 1991 33



CMF$LAYOUT A(:SERIAL,:SERIAL,:NEWS)

CMF$LAYOUT B(:SERIAL,:NEWS)

CMF$LAYOUT C(:SERIAL,:NEWS)

FORALL(I=1:3, J=1:3) A(I,J,:) = I+1000*J

FORALL(I=1:3) B(I,:) = I

C = 0
DO TIMES =1,3

CALL CM TIMER CLEAR(1)

CALL CMTIMERSTART(1)

DO I= 1,1000

DO J=1,3

DO K=1,3

C(J,:) = C(J,:)+A(J,K,:)*B(K,:)
ENDDO

ENDDO

C Without the following, the optimizer would move the
C computations out of the timing loop, or even eliminate
C them, since their results are never used.

CALL TOUCH( C,A,B )
ENDDO

CALL CM TIMER STOP(1)
CALL CM TIMER PRINT(1)

ENDDO

RETURN

END

SUBROUTINE TOUCH( C,A,B )

INTEGER C,A,B
RETURN

END

Version 1.0, March 1991

34 CM Fortran Oimization Notes: Slicewise Model



C p 6!! . S.. °'" " .. ZI.$.. :xp: Co pe M M ;.i:

The following subroutine performs the same operations and produces the same results as
the one above. The difference is that the serial loops are unwound. This program's inner
core also performs 72,000 floating-point operations per parallel element.

Example 2. Subroutine NM UNWOUND source code

SUBROUTINE MMUNWOUND
IMPLICIT NONE

INTEGER N,AXISLEN,TIMES,I,J,K

PARAMETER (N=3)

PARAMETER (AXISLEN=16384)

COMPLEX A(N,N,AXISLEN), B(N,AXISLEN),

CMF$LAYOUT A(:SERIAL,:SERIAL, :NEWS)

CMF$LAYOUT B(:SERIAL,:NEWS)
CMF$LAYOUT C(:SERIAL,:NEWS)

FORALL(I=1:3, J=1:3) A(I,J,:) = I+1OC(

FORALL(I=1:3) B(I,:) = I

C = 0
DO TIMES =1,3

CALL CMTIMERCLEAR(1)
CALL CMTIMERSTART(1)

C(N,AXISLEN)

)0*J

DO I= 1,1000

$

$

$

C(1, :) = A(1,1,:) *

+ A(1,3,:)

C(2, :) = A(2,1,:) *

+ A(2,3,:)

C(3, :) = A(3,1,:) *

+ A(3,3,:)

CALL TOUCH(C,A,B)

B(1, :)

* B(3,:)

B(1, :)

* B(3,:)

B(1, :)

* B(3,:)

+ A(1,2,:)

+ C(1,:)

+ A(2,2,:)
+ C(2,:)

+ A(3,2,:)

+ C(3,:)

* B(2,:)

* B(2,:)

* B(2,:)

ENDDO

CALL CMTIMER STOP(1)
CALL CMTIMERPRINT(1)

ENDDO

RETURN

END

Version 1.0, March 1991

0
Chater 6. Example: Complex Matrix Multiply 35



36 > v ~ e X :| CMp Forans Optmiztio Notes S'cws Model .5!X' rg *

6.2 Peak Flops Rates

This section shows the peak Flops rates for the timed sections of the two programs, calcu-
lated with the technique shown in Appendix A. When compiled with single-precision
complex values, the cycle counts for the respective elemental code blocks are:

MM_PLAIN, elemental

MM_UNWOUND,elemental

code block

code block

total:

total:

101 cycles

607 cycles

The elemental block from MM PLAIN performs 8 vector operations, each of length 4. The
block from MMUNWOUND code performs 72 vector operations. Assuming a clock rate of
150 nanoseconds and a 64K CM (2048 PEs), the peak Flops rate:

MMPLAIN: ((2048 * 4 * 8)

MM UNWOUND: ((2048 * 4 * 72)

/ (101 * 150))
/ (607 * 150))

= 4.326 Gflops

= 6.478 Gflops

When the programs are recompiled using double-precision complex values, the peak Flops
rates are:

MM_PLAIN_DBL,

MM UNWOUND_DBL,

elemental

elemental
code block total:149 cycles

code block total:875 cycles

MMPLAINDBL:
MMUNWND DBL:

((2048 * 4 * 8)

((2048 * 4 * 72)

/ (149 * 150))

/ (875 * 150))

= 2.932 Gflops

= 4.494 Gflops

6.3 Timings

The timings shown below for the two programs are for a 64K CM with a VAX front end. The
programs were executed on an 8K CM and the results extrapolated (the extrapolation is
linear).

These tables allow you to compare timings for the plain versus unwound loops, for single-
precision and double-precision complex values, for various array sizes, and for the Paris
and slicewise execution models.

The array sizes shown reflect AXISLEN values that are large and small, as well as
power-of-2 and non-power-of-2. Sizes smaller than 8K for the parallel dimension would
be unfair to the Paris model, since Paris would begin to leave some of the FPUs unused

Version 1.0, March 1991

CMFonran Optimization Notes: Slicewise Model36



Chaper-6 Example:fx Complex Matr Multiply 37>ME

while the slicewise model would continue to use all the FPUs until the AXISLEN shrank
below 256. (Slicewise would thus outperform Paris by an absurdly large number).

The Flops ratings are in Gflops. The first Gflop rate in each pair is based on CM busy time;
the second is for wallclock time.

Table 1. Single-precision Gflops for
complex 3 x 3 matrix-vector multiply

AXIS Sllcewise
LENGTH Paris Plain Paris Unwound Slicewise Plain Unwound

8192 .923/.340 1.15/.763 2.89/2.26 6.03/6.03

10000 .720/.380 1.03/.902 3.39/3.30 5.88/5.88

16384 1.36/.660 1.74/1.48 3.98/3.98 5.99/5.99

32768 1.69/1.31 2.18/2.18 4.03/4.03 6.01/6.01

65536 1.89.1.87 2.35/2.35 4.05/4.05 6.00/6.00

80000 .985/.980 1.44/1.43 4.01/4.01 5.89/5.89

Calculated
Kernel Peak ? ? 4.33 6.48

Table 2. Double-precision Gflops for
complex 3 x 3 matrix-vector multiply

AXIS Slicewise
LENGTH Paris Plain Paris Unwound Slicewise Plain Unwound

8192 .689/.302 .837/.623 1.15/.740 2.42/2.27
10000 .467/.347 .618/.607 1.21/.86 2.48/2.48
16384 .852/.601 1.03/1.00 2.05/1.89 4.30/4.30
32768 .965/.965 1.08/1.08 2.83/2.83 4.32/4.32
65536 1.0/1.0 1.11/1.11 2.86/2.86 4.33/4.33
80000 .561/.550 .670/.647 2.81/2.81 4.28/4.28

Calculated
Kernel Peak ? ? 2.93 4.49

Version 1.0, March 1991

Chapter 6. Eample: Complex Matrix Multiply 37



0



Appendix A

Calculating Peak Flops RateEE:$ ....g .. ..........!. .......
To calculate the peak Flops rate of a section of elemental code, begin by compiling using
the switches -s, -pecode, and -slice. The generated .peac file contains compiled rou-
tines for the PEs (PECODE procedures) corresponding to each section of elemental code.
The PECODEs have names of the form $.pname_pe_ coden where pname is the user's
procedure name and n is a number. You can use the . a file, which contains line number
information, to figure out which PECODE your elemental code block has been compiled
into. (For a small program, the relationship between source and compiled code may be
obvious in the .peac file.)

Locate the PECODE in the .peac file. Each line has a vector Flops count and cycle count,
and they are totalled at the end of the PECODE (do not be misled by the totals for the POPs
that come closer to the beginning).

The peak Flops rate can be calculated from TOTAL-FLOPS, TOTAL-CYCLES, and the num-
ber of FPUs executing the program:

Flops rate = number-FPUs * Flops-rate-per-FPU

Flops-rate-per-FPU = vector-length
* TOTAL-FLOPS/(TOTAL-CYCLES * cycle-time)

where:

number-FPUs = number-processors/32

vector-length = 4

cycle-time = 150ns

Thus, if the .peac file indicates that an elemental code block contains 72 vector Flops and
is 607 cycles in length, the Flops rate for a 64K CM is:

2048 * 4 * 72 / (607 * 150) = 6.478 Gflops

Version 1.0, March 1991 39



S



Index
..~~..:.:.:.:...~~~ ;;....:..:.~~~....... .......... ....... . ...... ........... ...~~~~~.-l·:::~i:.::,:r:::.· ::: . ..... ....i::ili~·:·::::

Version 1.0, March 1991 41



S



A

arrays
rank of, 26
shape of, 25
size of, 17
temporary, 8, 13

C

communication, run-time library, 2
computation, defined, 4
conformable arrays, in elemental code blocks,

7
CSnrIz intrinsic function, performance of, 20

E

elemental code blocks, 5
calculating peak performance, 39

execution models, 1
theoretical peak performance, 2

G

garbage data, in slicewise arrays, 19

M

machine geometry, in slicewise array layout,
3,25

P
parallel memory addresses, 9
Paris execution model, 1
PEAC instruction set, 2
physical grids, in slicewise array layout, 3
precision, and performance, 4
processing node, 2

S
serial arrays, optimizing performance on, 10,

28
slicewise execution model, 1
subgrid looping, in slicewise array layout, 20
subgrids, in slicewise array layout, 3

V

virtual grids, in slicewise array layout, 3

Version 1.0, March 1991

0
Index

S

S
43


