
The
Connection Machine
System

pndbx Release Notes
mm m m iiiiiim

Version 1.2
March 1993

Thinking Machines Corporation
Cambridge, Massachusetts

First printing, March 1993

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines reserves the right to make changes to any
product described herein

Although the information in this document has been reviewed and is believed to be reliable, Thinking Machines
Corporation assumes no liability for errors in this document. Thinking Machines does not assume any liability
arising from the application or use of any information or product described herein.

4***

CM, CM-S, CMost, Prism, and CM Fortran are trademarks of Thinking Machines Corporation.
C*®is a registered trademark of Thihking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation.
SPARC is a trademark of SPARC International, Inc.

Copyright © 1993 by Thinking Machines Corporation All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

Customer Support
...... ___. - -----------------

Thinking Machines Customer Support encourages customers to report errors in
Connection Machine operation and to suggest improvements in our products.

When reporting an error, please provide as much information as possible to help
us identify and correct the problem. A code example that failed to execute, a
session transcript, the record of a backtrace, or other such information can
greatly reduce the time it takes Thinlding Machines to respond to the report.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for support. Otherwise, please contact Thinking Machines'
home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-supportthink.com

ames ! think! customer-suppor t

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

Version 1.2, March 1993
Copyright C 1993 Thinking Machines Corporation iii

in"i

pndbx Version 1.2
Release Notes

1 About Version 1.2

Version 1.2 of pndbx works on CM-5 systems (with or without vector units), and
runs under either CMOST 7.1.5 or CMOST 7.2. New features include:

* support for debugging of message-passing CM Fortran and C* programs

· support for debugging DPEAC code

In addition, pndbx Version 1.2 contains a number of bug fixes.

You can find out information about pndbx bugs by consulting its on-line bug-up-
date file, pndbx-1.2. bugupdate. By default, this file is in the directory
/usr/doc; if it isn't there, ask your system administrator for its location at your
site. The file will be updated monthly.

2 Debugging Message-Passing
CM Fortran Code

Starting with CMMD Version 3.0, you will be able to write programs consisting
of CM Fortran code running on each node, passing messages between the nodes
using CMMD. This capability provides one way of making use of the vector units
from message-passing code.

Version 1.2, March 1993
Copyright C) 1993 Thinking Machines Corporation 1

i a = -------------------- ---------------- 1 1 1111

2 pndbx Release Notes

To build such node-level CM Fortran programs, specify the -node option to the
CM Fortran compiler. To build a debuggable version of a message-passing CM
Fortran program, be sure to also specify the -g option to the CM Fortran
compiler, on both the compile and the link steps.

Here is a sample compilation:

% cmf -g -node -o samp.x samp.fcm

And here is how you would start a pndbx session for the resulting executable
program:

[In one window:]
% prism -C samp.x
(prism) stop in cmmd_debug
(prism) run

[In another window:]
% cmps
% pndbx samp.x pid
(pndbx O)

pndbx understands all CM Fortran data types: integer, real, double, complex,
double complex, and character. Arrays are printed in their entirety, one element
per line. (The built-in variable $printwidth can be used to change this
default.) You can specify array sections using CM Fortran syntax. Arbitrary
expressions can be evaluated, with some restrictions. You can use assign to
modify variables.

The following example illustrates these features:

(pndbx 0) whatis u
(CM based) double precision U(1:10)
(pndbx 0) print. u
(1) 1.1
(2) 1.1

(3) 1.1

(4) 1.1

(5) 1.1

(6) 1.1

(7) 1.1

(8) 1.1

(9) 1.1
(10) 1.1
(pndbx 0) print u(1:4)

Version 1.2, March 1993
Copyright Q 1993 Thinking Machines Corporation

pndbx Release Notes2

pn-bx Release Notes--

(1) 1.1

(2) 1.1
(3) 1.1

(4) 1.1

(pndbx 0) set Sprint width - 2
(pndbx 0) print u

(1:2) 1.1 1.1
(3:4) 1.1 1.1
(5:6) 1.1 1.1

(7:8) 1.1 1.1

(9:10) 1.1 1.1

(pndbx 0) print u(1:4)+1

(1:2) 2.1 2.1

(3:4) 2.1 2.1

(pndbx 0) assign u 2.2

(pndbx 0) print u

(1:2) 2.2 2.2

(3:4) 2.2 2.2

(5:6) 2.2 2.2

(7:8) 2.2 2.2

(9:10) 2.2 2.2

If you need to get at the lower-level details of CM Fortran array descriptors, this

feature may be helpful:

(pndbx 0) print &u

CM array, descriptor address = Oxb8aa4 (print *&U to see
the entire descriptor)

(pndbx O) print *&u

(desc_orobject_kind 1025, debug_info_ptr = Oxb8a98,
element_type = 5, sparel - 0, spare2 - 0, cm_location

1342187272, userrank = 1, spare4 = 757192, spare5 =
757084, home = 3, initialdata = -1, is modified = 0,

array_geometry 1468752, spare6 -1, spare7 = 1,
spare8 = 757080, spare9 = -1, is_slicewise = 1, ele-
ment size = 8)

Because of the way that pndbx accesses data in CM Fortran programs, you may

notice that printing expressions involving CM Fortran arrays is slow. You can

work around this, to some extent, by using indexing to select only those array

sections you want to see.

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

3pndbx Release Notes

4 pndbx Release Notesrp~

3 Debugging Message-Passing C* Code

pndbx Version 1.2 contains some support for debugging message-passing C*
code.

To debug message-passing C* code, supply the -node and -g options to the
compiler, as described in the previous section.

pndbx can print parallel variables of any of the scalar base types (for example,
char, short, int, float, double). The result is treated as if it were an array.
You can look at the resulting array in its entirety, or you can use CM Fortran
array syntax to look at sections or individual elements. Here is an example of
looking at a parallel int in its entirety, then looking at a section of it:

The C* source code:

shape [16]s;

int:s il = 2 ;

The pndbx session:

(pndbx O) whatis ii
parallel int ii;

(pndbx O) print ii

(2, 2, 2, 2, 2, 2, 2, 2,

(pndbx 0) print il(0:8)
(2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2)

2)

You can view parallel arrays (that is, per-processor arrays) in their entirety, but
at this time sections of these arrays cannot be printed. Also, parallel structs cur-
rently cannot be printed. For unsupported objects, pndbzx will print out an error
message of the form:

(pndbx 0) print tI

Sorry, at this time pndbx does
parallel structs.

not support printing of

Version 1.2, March 1993
Copyright C) 1993 Thinking Machines Corporation

4 pndbx Release Notes

dBx~ elea-e Notes-5

4 Debugging DPEAC Code

If you specify the -g flag to the DPAS assembler when you assemble your
DPEAC code, pndbx Version 1.2 automatically displays DPEAC instructions

when they are encountered. The example below shows pndbx displaying a
dpwrt instruction after a stepi and on an examine-instruction command:

(pndbx 0) stepi

stopped in cmpe_floatarray_O_ at Ox2a44

cmpe_floatarray_0_+Oxc: dpwrt *, %g5, S2

(pndbx O) print $pc

10820

(pndbx 0) 10820/i

cmpe_floatarray_O_+Oxc: dpwrt *, %g5, S2

You can disable the display of DPEAC using the dpeac toggle. In the example

below, DPEAC display is turned off and we see the underlying SPARC instruc-

tions:

(pndbx 0) dpeac
dpeac mode turned off

(pndbx 0) 10820/4i
cmpe_floatarray_0_+Oxc: sethi %hi(OxdOOOOOOO), %g3
cmpe_floatarray_0_+Ox10: st %gO, [%g3 + 296]

cmpe_floatarray_O_+Ox14: sethi %hi(OxdO800000), %g3

cmpe_floatarray_0_+Ox18: st %g5, [%g3 + 8]

To get at vector-unit registers, there is a built-in variable called $dp_state. This
is an array of four structures (one for each vector unit). It can be printed in the

usual ways. In the example below, we've used $dp_state to see the state of
vector unit 0:

(pndbx O) set $hexints - 1
(pndbx O) print $d _state [01
(alu_mode - OxO, vector_length OxO, stridersl - OxO,

stride memory - OxO, instruction ext - 0x80100000, instruc-

tion ext enb - OxO, vector mask - OxO, vector mask buffer -

OxO, vector mask mode - OxO, vector maskdirection - OxO, sta-

tus_enable - OxO, status - OxO, heap_limits - OxO,

stack limits - Ox16fO16f, memory_access_mode - Oxl, inter-

rupt_enable_green - OxO, interrupt_enable - Ox73f,

interrupt_cause_green - OxO, interrupt_cause - OxO,

badaddress_high - OxO, bad_address_low - Oxl3eOOO,
badinstructionhigh - OxO, bad_instruction_low - Ox87f8020,
currentelement - Oxl, interrupt_cause_greenstored - OxO,

interruptcause_stored - OxO, dataregs -
(O) OxO

Version 1.2, March 1993
Copyright 0 1993 Thinking Machines Corporation

pndbx Release Notes 5

6 pndbx Release Notes

(1) OxO

(2) OxO

(3) OxO

(4) OxO

(5) OxO

(127) OxO

To look at the vector registers in a format other than integer, $dp_state can be
used as the "address" in a memory-examine command. For example, the
following pndbx command looks at the 128 registers of DP 0 in single-precision
float format:

(pndbx O) $dp state [0] .data_regs/128f
0: OxOO00000000 +0.000000e+00

1: 0x00010000 +9.183550e-41

2: Ox00000000 +0.000000e+00
3: 0x00000030 +6.726233e-44
4: Oxffffff00 -NaN

Version 1.2, March 1993
Copyright © 1993 Thinking Machines Corporation

6 pndbx Release Notes

