
68xxx UnifLEX®

Introduction to UniFLEX® System Calls

COPYRIGHT © 1984 by
Technical Systems Consultants, Inc.

111 Providence Road
Chapel Hill, North Carolina 27514

All Rights Reserved

t.n1A..EX@reglstEred In U.S. Patent end Traiemark Office.

Revision Date

A 05/84

B 03/86

C 09/86

MANUAL REVISION HISTORY

Change

Original release

Revised and updated documentation for all system
calls. Added new calls.

Manual Update for Version 2.0 of 68xxx UniFLEX.
New system calls: stack_limit
Revised software: cpint, spint
Revised text only: control-pty, create_contiguous,
crpipe, crtsd, defacc, fcntl, FPU_exception, link,
mount, ms&-attach, ms&-receive, ms&-send, ms&-status,
of stat , sacct, setpr, status, time, ttime, ttyget,
ttyset, yield_CPU

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and' enj oyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program and manual, or any part
thereof, for any purpose other than single end use by the purchaser is prohibited.

DISCLAIMER

The supplied software is in tended for use only as desc rlbed in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages inc'Jrred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

Introduction

All programs interface with the 68xxx UniFLEX Operating System
(UniFLEX Registered in U.S. Patent and Trademark Office) through
system calls. The operating system supports a variety of calls, which
allow the manipulation of files, the control of tasks, and other system
functions. The assemblers have a built-in instruction, "sys", to make
system calls to the operating system. The syntax for this system call

follows: f tViJp :#IS C(·,-\:.1 ;; ,.,

"ll'b syS~12 c;~, (l) fr71·"
"/ 6~ $' tl~ ;0:' .' .. ;.\l)(\ sys <function_code> [<param_list>] d~; ';'" ~'-'.>, ,J; !,

where <function_code> is a l6-bit code for the desired system call (the
file "/lib/sysdef" defines the correspondence between function codes and
system calls). The number and type of parameters in the list may range
from 0 to 4 inclusive. The parameters are always 32-bit values.

Many of the system calls expect certain values or parameters to be in
one or more of the 68xxx CPU's registers. The documentation for a
system call shows any such items in the section entitled ASSEMBLY
LANGUAGE SYNTAX under the subheading "Expected". In such cases it is
the programmer's responsibility to load the proper values before
invoking the system call.

When the "sys" instruction completes execution, control generally pass~s
to the next instruction in the program. In some cases the system call
must return one or more values to the calling program. Generally, a
system call places such a value in a register although in some cases. it
places it in a location specified in <param_list>. The documentation
for a system call shows any values returned in a register in the section
entitled ASSEMBLY LANGUAGE SYNTAX under the subheading "Returns".

The operating
a successful
register. If
number of the

system preserves all registers throughout the execution of
system call unless the system call returns a value in a

the system call fails, the call always returns the error
error that caused the failure in the DO register.

The operating system also preserves all condition codes throughout a
system call with the exception of the error (or carry) bit. If an error
occurs, the system call sets the error bit; otherwise, the bit is
cleared. The assemblers support the mnemonics "bes" (branch ~f error
set) and "bec" (branch if error clear), which are synonymous with "bcs"
and "bc c " •

-1-

Several system. calls, such as "read" and "ttime" return data to
whose address is specified when the call is invoked. In such a
buffer must be in either the data segment or the stack. It may
located in the text segment.

a buffer
case the
not be

Several files containing definitions used by the operating system. reside
in the directory "/lib". The user can include any of these definitions
in a program by using the appropriate file as a library. A description
of each of these files follows:

sysdef

syserrors

sysfcntl

sysints

sysmessages

syspty

sysrump

sysstat

systime

systty

sys68881

Defines the correspondence between the names and
numbers of UniFLEX system calls.
Defines the correspondence between the names and
numbers of UniFLEX errors. Also contains a
brief definition of the most general cause of
each error.
Defines the correspondence between the names and
numbers of the subfunctions used by the "fcntl"
system call. Also defines the constants used by
this system. call.
Defines the correspondence between the names and
numbers of UniFLEX interrupts. Also contains a
brief definition of each interrupt.
Defines the structure of the buffer returned by
the "msLstatus" system call.
Defines the correspondence between the names and
the numbers of the subfunctions used by the
"control-pty" system call. Also defines the
constants used by this system. call.
Defines the correspondence between the names and
the numbers of the subfunctions used by the
"rump" system call.
Defines the structure of the buffer returned by
the "of stat" and "status" system calls. Also
defines the file-permission flags.
Defines the structures of the buffers returned
by the "time" and "ttime" system calls.
Defines the structure of the buffer returned by
the "ttyget" and "ttyset" system calls. Also
defines the constants used by these system
calls.
Defines the structure of the buffer used by the
"FPU_exception" system. call.

-2-

Syntax Conventions

The following conventions
throughout this manual.

are used in syntax statements

1. Items that are not enclosed in angle brackets, '<'
and '>', . or square brackets, '[' and ']' , are
"keywords" and should be typed as shown.

2. Angle brackets, '<' and '>', enclose
which the user must replace with
argument. Expressions enclosed only
brackets are essential parts of the
example, in the system call

sys ind,<call_address>

desc·riptions
a specific
in angle

syntax. For

the address of the system call to execute must
replace the term <call_address>.

3. Square brackets, '[' and ']', indicate optional
items. These items may be omitted if their effect
is not desired.

4. The underscore character, " is used to link
separate words that describe one term, such as
"call" and "address".

5. Characters other than spaces that are not enclosed
in angle brackets or square brackets must appear in
the command line as they appear in the syntax
statement.

TSC 3/17/86

alarm

break

cdata

chacc

chdir

chown
chprm

close
controlJty

cpint

create

create_contiguous
create...,pty
crpipe
crtsd

defacc

dup
dups

exec
exece
fcntl
fil tim

fork
FPU_exception

gpid

gtid
guid

TSC, 9/2/86

System Call Summaries

Send an alarm interrupt to the current
task after the specified interval.
Change the size of the data segment
associated~ith the task.
Change the amount of physically contiguous
memory associated with the task.
Check the permissions on the specified
file.
Make the specified directory the user's
working directory.
Change the owner of a file.
Change the access permissions of the
specif ied file.
Close an open file.
Adjust or report the modes of operation of
a pseudoterminal.
Inform the operating system how to behave
when the current task receives one kind of
interrupt.
Create a new file or truncate an existing
file to a length of O.
Create a new contiguous file.
Open an unused pseudoterminal channel.
Create a pipe.
Create a special file (a device) or a new
directory.
Set the default access permissions for all
files created by this task.
Duplicate the specified file descriptor.
Duplicate a file descriptor onto the
specified file descriptor.
Execute a program.
Execute a program.
Change or query the behavior of a file.
Change the time of last modification of
the specified file.
Create a new task.
Return or update information about an
exception generated by the MC68881
floating-point coprocessor.
Resume execution of the MC68881
instruction that generated an exception.
Get the task ID of the parent of the
current task.
Get the task ID of the current task.
Return the user ID and the effective user
ID of the person executing the current
task.

(continued)

System call'summaries-2

ind

indx

link
lock
lrec

make_realtime

memman
mount

mSLattach
msg_detach
mSLreceive

mSLstatus

of stat
open
phys

profile
read
rwnp

sacct
seek
setpr
set_high_address_mask

spint
stack
stack_limit
status
stime
stop
suid
term
time
truncate
ttime

ttyget

TSC '9/2/86

Execute the system call located at the specified
address.
Execute the system call located at the specified
address.
Creat'e a link to a file.
Lock a task in memory or unlock a locked task.
Add an entry to the operating system's lock
table.
Make a non-real-time task a real-time task and
set its relative priority, or make a real-time
task a non-real-time task.
Perform a memory-management operation.
Insert the medium in the specified block device
at the node of the directory tree specified by
<diryame>.
Attach a task to a message exchange.
Detach a task from a message exchange.
Receive a message from another task via a message
exchange.
Send a message to another task via a message
exchange.
Obtain information about the status of a message
exchange.
Get the status of an open file.
Open an existing file.
Obtain or release access to a section of system
memory.
Start or stop monitoring the current task.
Read data from an open file.
Create, destroy, access, or relinquish access to
a named resource.
Enable or disable system accounting procedures.
Change the current file position of an open file.
Change the priority bias of the current task.
Load the specified value into the register for
the hardware address mask.
Send an interrupt to a task.
Extend the stack space of the current task.
Specify a limit to the task's stack segment.
Get the status of a file.
Set the system date and time.
Suspend the current task.
Set both the user ID and the effective user ID.
Terminate the current task.
Get the system time and other related parameters.
Set the size of an open file.
Get the information on the use of the CPU by the
current task and its child tasks.
Get information on the configuration of a
terminal.

(continued)

ttynum

ttyset
unlink
unmnt
update
urec

vfork
wait
write
yield_CPU

TSC 9/2/86

System call summaries-3

Get the terminal number of the task's controlling
terminal.
Set the configuration of a terminal.
Remove a link to a file.
Unmount the medium in a device.
Update all disks on the system.
Remove an entry from the operating system's lock
table.
Create a new task.
Suspend the task until a child task terminates.
Write data to an open file.
Yield the CPU to another task of equal priority.

Syntax Summaries

Expected: <seconds> in DO
Syntax: sys alarm
Returned: <previous_seconds> in DO

Syntax: sys break,<high_address>

Syntax: sys cdata,<high_address>

Syntax: sys chacc,<file_name>,<perm_mask>

Syntax: sys chdir,<dir_name>

Syntax: sys chown,<file_name>,<owner_ID>

Syntax: sys chprm,<file_name>,<perm_mask>

Expected: <file_des> in DO
Syntax: sys close

Expected: <file_des> in DO
Syntax: sys control-pty,<function_code>,<mode_flag>
Returns: <state_flag> in DO

Syntax:
Returns:

Syntax:
Returns:

sys cpint,<interrupt>,<address>
<old_address> in DO

sys create,<file_name>,<perm_mask>
<file_des> in DO

Syntax: sys create_contiguous, <file_name>, <perm_mask>,<file_size>,
<zero_flag>

Returns: <file_des> in DO

. Expected: <slave_file_des> in DO
<master_file_des> in AO

Syntax:

Syntax:
Returns:

Syntax:

Syntax:
Returns:

sys create-pty

sys crpipe
<read_file_des> in DO
<write_file_des> in AO

sys crtsd,<file_name>,<descriptor>,<dev_num>

sys defacc,<perm_mask>
<previous_mask> in DO

TSC 3/17/86 (continued)

Syntax sUmmaries-2

Expected: <file_des> in DO
Syntax: sys dup
Returns: <new_file_des> in DO

Expected:

Syntax:
Returns:

Syntax:

Syntax:

<file_des> inDO
<requested_file_des> in AO
sys dups
<requested_file~des> in DO

sys exec,<file_name>,<arK-list>

sys exece,<file_name>,<arK-list>,<env_list>

Expected: <file_des_1> in DO
Syntax: sys fcntl,<functio~code>
Returns: <access_flag> in DO

or

Expected: <time> in DO
Syntax: sys filtim,<file_name>

Syntax:
Returns:

Syntax:

Syntax:

Syntax:
Returns:

Syntax:
Returns:

Syntax:
Returns:

Syntax:

sys fork
To parent task: <child_task's_ID> in DO
To child task: 0 in DO

sys FPU_exception,<function_code>,<buf_add>

sys gpid
<parent_task_ID> in DO

sys gtid
<task_ID> in DO

sys guid
<user_ID> in DO
<effective_user_ID> in AO

sys ind,<call_address>

Expected: <call_address> in AO
Syntax: sys indx

Syntax:

Syntax: lock, <function_code>

Expected: <file_des> in DO
Syntax: sys lrec,<count>

TSC 3/17/86 (continued)

Expected: <relative-priority> in DO
Syntax: sys make_realtime

Syntax summaries-3

Syntax: sys memman,<function_code>,<start_address>,<end_address>

Syntax: sys mount,<dev_name>,<dir_name>,<mode>

Syntax: sys ms&-attach,<exchange_name>,<mode>
Returns: <exchange_ID> in DO

Expected: <exchange_ID> in DO
Syntax: sys ms&-detach

Expected: <exchange_ID> in DO
Syntax: sys ms&-receive,<buf_add>,<mode>

Expected: <exchange_ID> in DO
Syntax: sys msg_send,<buf_add>,<mode>

Expected: <exchange_ID> in DO
Syntax: sys ms&-status,<buf_add>

Expected: <file_des> in DO
Syntax: sys ofstat,<buf_add>

Syntax:
Returns:

Syntax:

sys open,<file_name>,<mode>
<file_des> in DO

sys phys,[-]<code>
Returns: <lo&-base_add> in DO (only when obtaining access to memory)

Syntax: sys profile,<start_add>,<buf_add>,<size>,<scale>

Expected: <file_des> in DO
Syntax: sys read,<buf_add>,<count>
Returns: <bytes_read>

Expected: <function_code> 1n DO
<resource_name> in AO

Syntax: sys rump

Syntax: sys sacct,<file_name>

Expected: <file_des> in DO
Syntax: sys seek, <count>, <pt_of_origin>
Returns: <new-position>

Expected: <priority_bias> in DO
Syntax: sys setpr

TSC 9/2/86 (continued)

Syntax summaries-4

Expected: <address_mask> in DO
Syntax: sys set_high_address_mask

Expected: <task_ID> in DO
Syntax: sys spint,<interrupt>

Expected: <address> in DO
Syntax: sys stack

Expected: <address> in AO
Syntax: sys stack_ limit
Returns: <previous_ limit> in DO

Syntax: sys status,<file_name>,<buf_add>

Expected: <time> in DO
Syntax: sys stime

Syntax: sys stop

Expected: <user _ID> in DO
Syntax: sys suid

Expected: <term_status> in DO
Syntax: sys term

Syntax: sys time, <buf_add>

Expected: <f il e_des> in DO
Syntax: sys truncate

Syntax: sys ttime, <buf_add>

Expected: <f il e_de s> in DO
Syntax: sys ttyget,<buf_add>

Syntax: sys ttynum
Returns: <tty_num> in DO

Expected: <file_des> in DO
Syntax: sys ttyset,<buf_add>

Syntax: sys unlink, <file_name>

Syntax: sys unmnt,<dev_name>

Syntax: sys update

Expected: <file_des> in DO
Syntax: sys urec

TSC 9/2/86 (continued)

Syntax summaries-5

Syntax: sys vfork
Returns: To parent task: <child_task's_ID> in DO

To child task: o in DO

Syntax: sys wait
Returns: <task_ID> in DO

<term_status> in AO

Expected: <file_des> in DO
Syntax: sys write, <buf_add>,<count>
Returns: <bytes_written>

Syntax: sys yield_CPU

TSC 9/2/86

I I

alarm-l

alarm

Send an alarm interrupt to the current task after the specified
interval.

ASSEMBLY LANGUAGE SYNTAX

Expected

<seconds> in DO

Syntax Statement

sys alarm

Returns

<previous_seconds> in DO

Arguments

<seconds>

<previous_seconds>

DESCRIPTION

The number of seconds to wait before
sending the alarm interrupt. A value of
o cancels any existing request for an
alarm interrupt and does not generate a
new one.
The number of seconds remaining from the
previous request for an alarm interrupt
or 0 if the user made no previous
request.

The "alarm" system call sets the task's alarm clock to sena an alarm
interrupt (SIGALARM) after the interval specified in the DO register has
elapsed. If the alarm clock is already set, the call overrides the
previous setting. Unless the program catches or ignores it, the
interrupt terminates the task. The system call returns control to the
caller immediately after execution.

NOTES

• The time that elapses before the system sends the alarm interrupt
may be slightly less than the requested time because the system
ticks occur at one-second intervals.

TSC 3/17/86 (continued)

alarm-2

• The time that elapses before the system sends an alarm interrupt to
a task that invoked the call with a value of 1 for <seconds> may be
more than 1 second if the time until the next 1-second interval in
the system is small.

SEE ALSO

cpint
stop

TSC 3/17/86

break-l

break

Change the size of the data segment associated with the task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys break,<high_address>

Arguments

<high_address> The highest address to be used by the task for
data space.

DESCRIPTION

The "break" system call sets the end-of-segment address for the data
segment of the task. If <high_address> is higher than the data
segment's current end-of-segment address, "break" allocates memory to
the segment; if it is lower, "break" reI inquishes memory to the system.

ERRORS REPORTED

EDTOF
Not enough memory is available to honor the request.

SEE ALSO

cdata

TSC 3/17/86

cdata-l

cdata

Change the amount of physically contiguous memory associated with the
task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys cdata,<high_address>

Arguments

<high_address> The highest address to be used by the task for
data space.

DESCRIPTION

The "cdata" system call sets the end-of-segment address for the data
segment of the task. The system allocates physically contiguous memory
to the task and locks the contiguous pages in memory so that they will
remain contiguous. If <high_address> is higher than the data segment's
current end-of-segment address, "cdata" alloca tes memory to the segment;
if it is lower than the data segment's current address but higher than
the lowest address in the data segment, "cdata" relinquishes memory to
the system; if it is lower than the lowest address in the data segment,
"cdata" neither allocates nor releases memory.

ERRORS REPORTED

EDTOF
Not enoug~ memory is available to honor the request.

SEE ALSO

break

TSC 3/17/86

I I

I I

I I

I I

II

II

chacc-l

chacc

Check the permissions on the specified file.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys chacc,<file_name>,<perm_mask>

Arguments

DESCRIPTION

The address of the null-terminated name of the
file to check.
An 8-bit mask specifying which permissions to
check for. If the value of <perm_mask> is 0,
the system call checks for the existence of the
specified file and for execute permission on all
directories in the path leading to the file.
The following table shows the correspondence
between other values of <perm~ask> and the
permissions to check. The file "/lib/sysstat"
defines the constants whose names are shown in
parentheses. Any combination of these values is
valid.

Permission to Check
=================~===========~===========

0001
0010
0100

Read (FACUR or FACOR)
Write (FACUW or FACOW)
Execute (FACUE or FACOE)

The "chace" system call checks to see whether or not the specified
permissions are set for the user on <file_name>.

ERRORS REPORTED

EMSDR
The path to <file_name> cannot be followed.

ENDR
A part of the path to <file_name> is not a directory.

TSC 3/17/86 (continued)

chacc-2

ENOFL
No file on the system corresponds to the specified name.

EPRM
The permissions set on tbe specified file do not grant the requested
type of access.

SEE ALSO

chprm

.TSC 3/17/86

chdir-l

chdir

Make the specified directory the user's working directory.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys chdir,<dir_name>

Arguments

The address of the null-terminated name of the
directory to be the working directory.

DESCRIPTION

The "chdir" system call changes the working directory to that specified
by <dir_name>.

ERRORS REPORTED

EMS DR
The path to <file_name> cannot be followed.

ENDR
A part of the path to <file_name> is not a directory.

TSC 3/17/86

chown-l

chown

Change the owner of a file.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys chown,<file_name>,<owner_ID>

Arguments

<file_name> The address of the null-terminated name of the
file whose owner is to change.

<owner_ID> The user identification number (ID) of the new
owner of the specified file. It need not be an
ID found in the password file. The maximum
permissible value is hexadecimal FFFF.

DESCRIPTION

The "chown" system call changes the owner of the specified file to the
user specified by <owner_ID>. Only the system manager may invoke this
system call.

ERRORS REPORTED

EMS DR
The path to <file_name> cannot be followed.

ENDR
A part of the path to <file_name> is not a directory.

ENOFL
No file on the system corresponds to the specified name.

EPRM
The current effective user lS not the system manager.

SEE ALSO

chprm
of stat
stat

TSC 3/17/86

chprm-1

chprm

Change the access permissions of the specified file.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys chprm, <f il e_name> , <perm_mask>

Arguments

DESCRIPTION

The address of the null-terminated name of the
file whose permissions are to change.
An 8-bit mask specifying the new permissions for
the file. The following table shows the
permission that is assigned to the file as each
bit is set. The file "/lib/sysstat" defines the
constants whose names are show~ in parentheses.
Any combination of bits is valid.

<permyask> Permission Assigned
===

00000001
00000010
00000100
00001000
00010000
00100000
01000000

Owner read permission (FACUR)
Owner write permission (FACUW)
Owner execute permission (FACUE)
Others read permission (FACOR)
Others write permission (FACOW)
Others execute permission (FACOE)
Set user-ID bit for execute (FXSET)

If the specified file is a directory, FACUE
grants permissions to the user who owns the file
to search the directory for the name of a file;
FACOE grants the same permission to other users.
When the user-ID bit is set, the operating
system grants to any user who executes the file
the same permissions as it grants to the owner
of the file for the duration of the task.

The "chprm" system call changes the set of access permissions associated
with the specified file to those described in <perm_mask>. Only the
system manager or the owner of the specified file may execute this
system call.

TSC 3/17/86 (continued)

chprm-2

ERRORS REPORTED

EMS DR
The path to <file_name> cannot be followed.

ENDR
A part of the path to <file_name> is not a directory.

ENOFL
No file on the system corresponds to the specified name.

EPRM
The current effective user is neither the system manager nor the
owner of the specified file.

SEE ALSO

chown
of stat
stat

TSC 3/17/86

close-l

close

Close an open file.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys close

Arguments

The file descriptor of the file to close.

DESCRIPTION

The "close" system call closes the specified open file. The operating
system automatically closes all files used by a task when the task
terminates, but it is good practice to explicitly close a file as soon
as the task is finished with it. As it closes a file, "close" checks
its link count. If the link count is 0, "close" deletes the file from
the system.

ERRORS REPORTED

EBADF
The file descriptor does not reference an open file.

EBARG
An argument to the system call is invalid.

SEE ALSO

create
createJty
crpipe ~
dup
dups
open

TSC 3/17/86

I'

I'

I

control.J>ty-l

control.J>ty

Adjust or report the modes of operation of a pseudoterminal.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys control.J>ty,<function_code>,<mode_flag>

Returns

<state_flag> in DO

Arguments

<function_code>
<mode_flag>

DESCRIPTION

The file descriptor of the master task of
the pseudoterminal to control.
The subfunction to perform.
A flag used with PTY_SET_MODE to describe
the desired modes of behavior of the
pseudoterminal. All other subfunctions
ignore this flag, but because the system
call expects this argument, a value of 0
should be used in the syntax statement.
A flag describing the current state of the
specified pseudoterminal.

The operating system creates .a pseudoterminal in a particular state
which includes both modes of behavior which the user can directly alter
and conditions reflecting the current usage of the pseudoterminal, which
the user cannot directly alter.. The "control.J>ty" system call adjusts
or reports the state of the specified pseudoterminal.

The modes of behavior are defined in the low-order byte of <state_flag>.
which is always returned to DO by "control.J>ty". When the operating
system creates a pseudoterminal, none of these bits is set--that is,
none of the modes of behavior is in effect. The structure of this byte,
which is defined in the file" /lib/syspty", is as follows:

TSC 9/2/86 (continued)

control...,pty-2

-----------------------------~---
1.716!514!312Il!O!
--------------------~-----------~

I, -----... ---

------~------

PTY_PACKET_MODE
PTY_REMOTE_MODE
PTY_READ_WAIT
spare
PTY_HANDSHAKE_MODE
spare
spare
PTY_SLAVE_HOLD

By default, a "read" call from the master task returns only
written by the slave task. If PTY_PACKET_MODE is in effect
set), a "read" system call returns two brtes of information in
to any data read. If data are available, these additional
both null. Otherwise, they contain information describing the
the pseudoterminal--that is, <state_flag>.

the data
(bit 0 is
addition

bytes are
state of

By default, characters written from the master task to the
pseudoterminal are processed normally, not as if the channel to the
master task were in raw mode. If PTY_REMOTE_MODE is in effect, the
pseudoterminal treats all input it receives from the master task as if
the channel to the master task were in raw mode.

By default, the operating system performs a "read" system call from the
master task whether or not data are available and completes a ''write''
system call before a slave has consumed the data. If PTY_READ_WAIT mode
is in effect, the system puts a "read" system call from the master task
to sleep until data are available. Similarly, if PTY_HANDSHAKEj10DE is
in effect, it puts a "write" system call from the master task to sleep
until a slave has consumed the data.

Finally, by default the system does
from writing to the pseudoterminal.
in effect, the system prohibits all
pseudotermina 1.

nothing to prevent any slave -task
If, however, PTY_SLAVE_HOLD mode is

slave tasks from writing to the

The high-order byte of <state_flag> reflects cQnditions that the user
cannot alter with the "control...,pty" command. The structure of this
byte, which is defined in the file "/lib/syspty", is as follows:

TSC 9/2/86 (continued)

contrbl...,pty-3

17161514131211101

1
1

r ---------
I -------------
I -----------------

PTY_EOF
PTY_OUTPUT_QUEUED
PTY_INPUT_QUEUED
spare
spare
spare
spare
spare

When bit ° (PTY_EOF) is set, all accesses to the pseudoterminal from
slave tasks are closed. When bit 1 (PTY_OUTPUT_QUEUED) is set, a slave
task has written data to the pseudoterminal, but the master task has not
yet consumed it. When bit 2 (PTY_INPUT~QUEUED) is set, the master has
written data to the pseudoterminal, but a slave task has not yet
consumed it.

The "control...,pty" system call supports six subfunctions, which are
defined in the file "/lib/syspty" as follows:

Code Subfunction
========================= ° PTY_INQUIRY

1 PTY_SET_MODE
2 not used
3 PTY_FLUSH_READ
4 PTY_FLUSH_WRITE
5 PTY_STOP_OUTPUT
6 PTY_S TART_OU TPUT

A description of each of these subfunctions follows:

TSC 3/17/86

Report the current state of the
pseudoterminal, but alter nothing.
Rewrite the low-order byte of <state_flag>
from the value of <mode_flag> specified by
the user. This subfunct ion allows the user
to alter all modes of behavior
simultaneously.
Delete any data written by the master task
that has not yet been consumed by a slave
task.
Delete any
that has not
master task.

data
yet

written
been

by a. slav,e task
consumed by the

(continued)

control-.J)ty-4

NOTES

Prevent all slave tasks from writing any
more data to the master task (enable
PTY_SLAVE_HOLD mode).
Allow all slave tasks to write data to the
master task (disable PTY_SLAVE_HOLD mode).

Pseudoterminals are a vendor-dependent option and may not be
supported by all systems.

ERRORS REPORTED

EBARG
An argument to the function 1S invalid.

EIO
The file· descriptor specified corresponds to access in slave mode;
it must correspond to access in master mode.

SEE ALSO

createJty

TSC 3/17/86

cpint-l

cpint

Inform the operating system how to behave when the current task receives
one kind of interrupt.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys cpint,<interrupt>,<address>

Returns

<old_address> in DO

Arguments

<interrupt> The kind of interrupt to be handled by this
system call.

<address> The interrupt-handling address for
<interrupt>--that is, the address to which
control should pass whenever the current task
receives the specified kind of interrupt. A
value of 0 tells the operating system to take
the default action for the interrupt (usually
termination of the task). A value of 1 or any
other odd address tells the operating system to
ignore the interrupt.

<old_address> The previous interrupt-handling address for the
specified kind of interrupt.

DESCRIPTION

The "cpint" system call tells the operating system how to behave when
the current task receives the specified interrupt. When the
interrupt-handling address is an even, nonzero address, the operating
system passes control to that address when the current task receives the
specified interrupt. After processing the interrupt as specified at the
interrupt-handling address, the operating system resets itself so as to
take the default action the next time the current task receives the same
kind of interrupt. Therefore, in order to continue to catch the same
kind of interrupt, the code at the interrupt-handling address should
reinvoke "cpint" before returning control to the point at which the
interrupt occurred.

When the interrupt-handling address is 0 or any odd address, the
operating system does not actually pass control to that address (see
Arguments) and does not reset itself to take the default action the next
time the same kind of interrupt occurs.

TSC 3/17/86 (continued)

cpint-2

The file "/lib/sysints" defines the interrupts whose names are shown in
the table accompanying this document.

If not caught or ignored, the default behavior of each program interrupt
(except SIGDEAD and SIGDUMP) is to terminate the task to which it is
sent. As shown in the table. some also produce a "core dump". A core
dump -is a file called "core" in the working directory which contains the
task's image of the- contents of memory. Each byte in the program and
stack space is written to the core file immediately after receipt of the
interrupt. The user can examine this file to determine the state of
memory at the time the interrupt was received. A core file is often
useful for diagnostic purposes. The operating system will not create a
core file if the working directory contains a file named "core" which
denies write permission to the current effective user or if the working
directory denies write permission to the current effective user.

The default action for the SIGDUMP interrupt is to create a core dump
and return control to the task. The task is not terminated.

A vendor may use a TRAP instruction with a number greater than 6. In
such a case the user should not issue the instruction.

User-defined interrupts are available to the end user.

For further information on program interrupts see Section 6.4 of the
68xxx UniFLEX Programmer'~ Guide.

TSC 3/17/86 (continued)

Table 1. Table of Interrupts

Name

SIGHUP
SIGINT
SIGQUIT
SIGEMI
SIGKILL
SIGPIPE
SIGSWAP
SIGTRACE
SIGTIME
SIGALRM
SIGTERM
SIGTRAPV
SIGCHK
SIGEMr2
SIGTRAPI
SIGTRAP2
SIGTRAP3
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGPAR
SIGILL
SIGDIV
SIGPRIV
SIGADDR
SIGDEAD
SIGWRIT
SIGEXEC
SIGBND
SIGUSRI
SIGUSR2
SIGUSRJ
SIGABORT
SIGSPLR
SIGINPUT
SIGDUMP

SIGUNORDERED

SIGINEXACT
SIGFPDIVIDE
SIGUNDERFLOW
SIGOPERAND
SIGOVERFLOW
SIGSNAN

Number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37-41
42

43
44
45
46
47
48

49-63

Description

Hangup
Keyboard
Quit
A-line (Axxx) emulation trap
Task kill
Broken pipe
Swap error
Trace
Time 1 imit
Alarm
Task terminate
TRAPV instruction
CHK instruction
F-line (Fxxx) emulation trap
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6-14 instruction
Parity error
Illegal instruction
Division by 0
Privileged instruction
Address error
A child task terminated
Write to read-only memory
Data or stack space violation
Segmentation violation
User-defined interrupt #1
User-defined interrupt #2
User-defined interrupt #3
Program abort
Spooler signal
Input is ready
Take memory dump
System-defined interrupts
MC68881 branch or set on
unordered operand
MC68881 inexact result
MC68881 division by 0
MC68881 underflow
MC68881 invalid operand
MC68881 overflow
MC68881 signaling not-a-number
Vendor-defined irtterrupts

Notes: A = Default state is "abort" (otherwise, "ignore")
C = Interrupt can be caught
D = Produces a core dump
I = Interrupt can be ignored
R = Resets to default state when triggered
o = See text

A C D I R

+ + - + +
+ + - + +
+ + + + +
+ + + + +
+ - +
+ + - + +
+ + +
+ + - + -
+ + + - +
+ + - + +
+ + - + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + - +
+ + + - +
+ + + + +
+ + + - +
+ + + - +
- + - + +
+ + + - +
+ + + - +
+ + + - +
+ + - + +
+ + - + +
+ + - + +
+ - - - +
+ + - + +
+ + - + +
o + + + +

+ + - + +

+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +

cpint-3

(continued)

cpint-4

NOTES

• The SIGTlME interrupt is not currently Unplemented.

ERRORS REPORTED

EBARG
The value of <interrupt> is not a valid interrupt number.

SEE ALSO

spint
Commands: qdb

TSC 9/2./86

create-l

create

Create a new file or truncate an existing file to a length of O.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys create,<file_name>,<perm_mask>

Returns

Arguments

TSC 3/17/86

The address of the null-terminated name to
assign to the file.
An 8-bit mask specifying the permissions to
assign to the file. The following table shows
the permission that is assigned to the file as
each bit is set. The file "/lib/sysstat"
defines the constants whose names are shown in
parentheses. Any combination of bits is valid.

Permission Assigned
=====================::========================:=
00000001
00000010
00000100
00001000
00010000
00100000
01000000

Owner read permission (FACUR)
Owner write permission (FACUW)
Owner execute permission (FACUE)
Others read permission (FACOR)
Others write permission (FACOW)
Others execute permission (FACOE)
Set user-'ID bit for execute, (FXSET)

If the specified file is a directory, FACUE
grants permissions to the user who owns the file
to search the directory for the name of a file;
FACOE grants the same permission to other users.
When the user-ID bit is set, the operating
system grants to any user who executes the file
the same permissions as it grants to the owner
of the file for the duration of the task.

(continued)

create-2

DESCRIPTION

The "create" system call creates a new file or truncates an existing
file to a length of O. If the file already exists, the system ignores
<perm_mask> and, instead, leaves the original permissions intact. In
such a case the owner of the file also remains the same. The effective
user must have write permission in the specified existing file in order
for the system call to succeed.

If the file does not exist, the operating system creates a new file with
the permissions specified by "anding" <perm_mask> with the 1 ' s
complement of the mask defining the default permissions for creating a
file with the current task. The owner of the file is the effective user
when the task invokes the system call. The effective user must have
write permission in the parent directory of the new file in order for
the system call to succeed.

In either case the "create" system call opens the
writing whether or not the permissions grant
effective user, and sets the current file position
the file.

NOTES

specified file for
such access to the

to the beginning of

If the current task has the maximum permissible number of files open
and the specified file does not exist, the "create" system call
creates the file but does not open it.

ERRORS REPORTED

EDFUL
The device which was to contain the file has no file descriptor
nodes (fdns) available.

EMS DR
The path to <file_name> cannot be followed.

ENDR
A part of the path to <file_name> is not a directory.

EPRM
The existing file or the parent of the new file does not grant the
user write permission.

ETMFL
The current task already has open as many files as the operating
system will allow. If the specified file does not already exist,
the "create" system call creates it but cannot open it.

TSC 3/17/86 (continued)

SEE ALSO

chacc
chprm
create_contiguous
defacc
open

TSC 3/17/86

create-3

create_contiguous-l

create_contiguous

Create anew contiguous file.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

Returns

Arguments

<perm_mask>

The address of the null-terminated name to
assign to the file.
An 8-bit mask specifying the permissions to
assign to the ,file. The following table shows
the permission that is assigned to the file as
each bit is set. The file "/lib!sysstat"
defines the constants whose names are shown in
parentheses. Any combination of bits is valid.

Permission Assigned
==-====--==
00000001
00000010
00000100
00001000
00010000
00100000
01000000

Owner read permission (FACUR)
Owner write permission (FACUW)
Owner execute permission (FACUE)
Others read permission (FACOR)
Others write permission (FACOW)
Others execute permission (FACOE)
Set user-ID bit for execute (FXSET)

When the user-ID bit is set, the operating
system grants to any user who executes the file
the same permissions as it grants to the owner
of the file for the duration of the task.

<file_size> The number of bytes to reserve for the file •.
This number must be a multiple of 512.

<zero_flag> A flag which tells the operating system whether
or not to fill the space allocated for the file
with null bytes. Unless the specified value is
0, the operating system does so.

TSC 9/2/86 (continued)

create_contiguous-2

DESCRIPTION

The "create_contiguous" system call creates a new contiguous file. If
the file already exists, the system ignores <perm_mask> and, instead,
leaves the original permissions intact. In such a case the owner of the
file also remains the same, and all information in the file at the time
the system call is invoked is lost. The effective user must have write
permission in the specified existing file in order for the system call
to succeed.

If the file does not exist and the disk has enough unused
contiguous-file space, the operating system creates a new file with the
permissions specified by "anding" <perm_mask> with the I' s complement of
the mask defining the default permissions for creating a file with the
current task. The owner of the file is the effective user when the task
invokes the system call. The effective user must have write permission
in the parent directory of the new file in order for the system call to
succeed.

In either case the "create_contiguous" system call opens the specified
file for writing whether or not the permissions grant such access to the
effective user, and sets the current file position to the beginning of
the file.

NOTES

• If ·the current task has the maximum permissible number of files open
and the specified file does not exist, the "create_contiguous"
system call creates the file but does not open it •

• Contiguous files are a vendor-dependent option and may not be
supported by all systems.

ERRORS REPORTED

EBARG
The value of <file_size> must be a multiple of 512.

EBDCL
The operating system does not support contiguous files.

EDFUL
The device which was to contain the file does not have enough
contiguous-file space.

EMS DR
The path to <file_name> cannot be followed.

TSC 9/2/86 (continued)

create_contiguous-3

ENDR
A part of the path to <file_name> is not a directory.

EPRM
The existing file or the parent directory of the new file does not
grant the user write permission.

ETMFL
The current task already has open as many files as the operating
system will allow. If the specified file does not already exist,
the "create_contiguous" system call creates it but cannot open it.

SEE ALSO

create
defacc

TSC 3/17/86

createJty-l

createJty

Open an unused pseudoterminal channel.

ASSEMBLY LANGUAGE SYNTAX

Expected

<slave_file_des> in DO
<master_file_des> in AO

Syntax Statement

sys createJty

Arguments

DESCRIPTION

The file descriptor for access to the
pseudoterminal by a slave task.
The file descriptor for access to the
pseudoterminal by a master task.

The "createJty" system call opens an unused pseudoterminal channel. A
pseudoterminal is a mechanism which allows one program to communicate
with another task as if it were communicating with a terminal. The
operating system treats a pseudoterminal like a device. The task which
creates the pseudoterminal is the "master task"; the task or tasks with
which the master task communicates are the "slave tasks".

Before any task can open a channel to a pseudoterminal, the directory
"/dev" must contain at least one pseudoterminal device. The system
manager can create such a device with the "makdev" command as follows:

makdev /dev/pty<num> p 1 <num>

where <num> is a two-digit number between 00 and 99 inclusive. (The
maximum number of pseudoterminals any system can support is 100;
however, this maximum is system-dependent and may be less than 100 for
any given system.) The numbers used to create all pseudoterminals on a
system must be continuous and must start with 00. The "createJty"
system call returns access to the unused pseudoterminal with the lowest
number.

The
as a
not

operating system opens a pseudoterminal with the same configuration
terminal. That is, the pseudoterminal is not in raw mode; it does
map upper- to lowercase; it is not in single character input mode.

TSC 3/17/86 (continued)

It does echo input, echo the backspace character, expand tabs on output,
output a line-feed character (hexadecimal OA) after each carriage
return, and ignore control characters except for the carriage return,
the horizontal tab character, control-C, control-D, control-\, the
backspace character, and the line-cancel character. By default the
backspace character is contr·ol-Hj the line-cancel character, control-X.
The master task or any slave task can alter these parameters with the
"ttyset" system call. The configuration of the pseudoterminal reflects
the most recent invocation of "ttyset". (For further details on the
configuration of a terminal see the 68xxx UniFLEX Programmer'~ Guide).

The operating system creates a pseudo terminal with particular modes of
operation in effect. This paragraph describes the default modes of
operation. The operating system performs a "read" system call from the
master task whether or not data are available. The "read" call from the
master task returns only the data written by the slave task. Characters
written from the master task to the pseudoterminal are processed
normally, not as if the channel to the master task were in raw mode.
The operating system completes a "write" system call from the master
task before a slave task has consumed the data. Slave tasks may send
data to the pseudoterminal. The state of all these modes can be altered
with the "controlJty" system call.

Once a channel to a pseudoterminal is open, additional slave tasks may
access that pseudoterminal by invoking the "open" system call for the
appropriate device. All tasks using a pseudoterminal can treat it
exactly as they would treat a terminal.

The "of stat" system call may be used with a pseudoterminal. The call
returns a status of FPMPTY for a master task and FPSPTY for a slave
task.

NOTES

• Pseudo terminals are a vendor-dependent option and may not be
supported by all systems.

ERRORS REPORTED

EBADF
The device specified is not a pseudoterminal.

EDFUL
All available pseudoterminal channels are already open. If the
number of pseudoterminals in the device directory is less than the
maximum the system can support, the system manager can create more
of them.

TSC 3/17/86 (continued)

SEE ALSO

contro1Jty
of stat
ttyget
68xxx UniFLEX Programmer'~ Guide

TSC 3/17/86

createJty-3

Create a pipe.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys crpipe

Returns

<read_file_des> in DO
<write_file_des> in AO

Arguments

DESCRIPTION

crpipe-l

crpipe

The file descriptor for reading from
the pipe.
The file descriptor for writing to the
pipe.

A UniFLEX pipe is a special kind of file which passes the output from
one task to another task as input. The "crpipe" system call creates a
pipe. Typically, a task invokes this system call before a "fork" system
call so that the child task and its parent task can communicate. The
"fork" system call duplicates both of the pipe's file descriptors for
the child task. After the fork is complete, the task that is going to
write to the pipe should close <read_file_des>, and the task that -is
going to read from it should close <write_file_des>.

The operating system sets the end-of-file condition for a pipe when the
pipe is empty and no file descriptors for writing are open. It returns
a "broken pipe" conditiori if the writing task tries to write to the pipe
when no file descriptors for reading are open.

The operating system allows the task that is writing to the pipe to
write up to 4,096 bytes before suspending that task. After the task
that is reading from the pipe has read all of the data, the operating
system wakes the first task and allows it to continue writing to the
pipe. The operating system allows the task that is reading from the
pipe to read whenever any data are in the pipe. If the task tries to
read when the pipe is empty and a file descriptor for writing is open,
the operating system puts the reading task to sleep until either the
writing task sends data to the pipe or the end-of-file condition is set.
If the writing task sends data to the pipe, the operating system wakes
the reading task and allows it to read the data. If end-of-file is set,

TSC 9/2/86 (continued)

crpipe-2

the operating system wakes the task, and the "read" system call returns
having read 0 bytes.

NOTES

• Because of the way in which the operating system determines the
end-of-file and broken-pipe conditions, it is crucial for each task
using the pipe to close the file descriptor it is not using.
Failure to close the unused file descriptor for writing prevents the
operating system from ever setting the end-of-file condition;
failure to close the unused file descriptor for reading prevents the
operating system from recognizing a broken pipe •

• Either task associated with the pipe may use the "of stat" system
call to determine whether or not the pipe contains any data. If the
file size of the pipe is 0, no data are in the pipe. Otherwise, the
pipe contains data.

Either task associated with the pipe may use the "of stat" system
call to determine whether or not the other end of the pipe is
closed. The value of the variable "st_cnt" returned by "of stat" is
the number of file descriptors open for the pipe. If this number is
less than 2, one end of the pipe is closed.

ERRORS REPORTED

ETMFL
The current task has open more than two less than the maximum number
of open files the operating system permits a single task. Opening
the two file descriptors required for a pipe would exceed this
maximum.

SEE ALSO

close
fork
of stat
open
read
write

TSC 9/2/86

crtsd-1

crtsd

Create a special file (a device) or a new directory.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys crtsd,<file_name>,<descriptor>,<dev_num>

Arguments

The address of the null-terminated name of the
new device or directory.

<descriptor> A 16-bit flag specifying the type of the new
file and the access permissions to set for it.
The low-order byte specifies the permissions.
The following table shows the permission that
is assigned to the file as each bit is set.
The file "/lib/sysstat" defines the constants
whose names are shown in parentheses. Any
combination of bits is valid.

TSC 9/2/86

Permission Assigned
===
00000001
00000010
00000100
00001000
00010000
00100000
01000000

Owner read permission (FACUR)
Owner write permission (FACUW)
Owner execute permission (FACUE)
Others read permission (FACOR)
Others write permission (FACOW)
Others execute permission (FACOE)
Set user-ID bit for execute (FXSET)

If the specified file is a directory, FACUE
grants permissions to the user who owns the
file to search the directory for the name of a
file; FACOE grants the same permission to other
users. When the user-ID bit is set, the
operating system grants to any user who
executes the file the same permissions as it
grants to the owner of the file for the
duration of the task.

The high-order byte specifies the type of file
to create. The following table shows the valid
bit patterns and the type of file each one
creates:

(continued)

crtsd-2

DESCRIPTION

Bit Pattern Type of File
============~===================

00000010
00000100
00000110
00001000

Block device
Character device
Pseudoterminal
Directory

A 16-bit flag containing the major and minor
device number for a block device, a character
device, or a pseudoterminal. The high-order
byte contains the major device number; the
low-order byte, the minor device number. The
major device number tells the operating system
which set of device drivers to use for the
device; the minor device number indicates which
particular physical device to associate with
the specified file. If the device being
created is a directory, the "crtsd" call
ignores this argument.

The "crtsd" creates a block device, a character device, a pseudoterminal
device, or a new directory. A block device transfers and receives data
one block (512 K) at a time; a character device, one character at a
time. A pseudoterminal is a mechanism which allows one program to
communicate with another task as if it were communicating with a
terminal. A directory is a file that contains a series of entries, each
one consisting of the name of a file and a polnter to the file
descriptor node (fdn) for that file.

Only the system manager may invoke this system call.

ERRORS REPORTED

EBARG
Either <descriptor> or <dev_num> is invalid.

EDFUL
The device on which the user tried to create the special file is
full.

EFLX
A file by the specified name already exists.

EMS DR
The path to <file_name> cannot be followed.

TSC 9/2/86 (continued)

ENDR
A part of the path to <file_name> is not a directory.

EPRM
The current effective user ~s not the system manager.

SEE ALSO

create
createJty

TSC 3/17/86

crtsd-3

defacc-l

defacc

Set the default access permissions for all files created by this task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys defacc,<perm_mask>

Returns

<previous_mask> in DO

Arguments

<previous_mask>

TSC 9/2/86

An 8-bit mask specifying the default
permissions for all files created by the
task invoking the "defacc" system call. The
following table shows the permission that is
assigned to the file as each bit is set.
Only the low-order 6 bits are set by
"defacc". The file "/lib/sysstat" defines
the constants whose names are shown in
parentheses. Any combination of bits is
valid.

<perm_mask> Permission Assigned
===
00000001
00000010
00000100
00001000
00010000
00100000

Owner read permission (FACUR)
Owner write permission (FACUW)
Owner execute permission (FACUE)
Others read permission (FACOR)
Others write permission (FACOW)
Others execute permission (FACOE)

If the specified file is a directory, FACUE
grants permissions to the user who owns the
file to search the directory for the name of
a file; FACOE grants the same permission to
other users.
The mask for default permissions that was in
use prior to this invocation of the "defacc"
system call.

(continued)

defacc-i

DES~IPTION

The "deface" system call sets the defaul t access permissions for all
files created by the task invoking the call. When the operating system
executes the "create" system' call, it "ands" the value of the l' s
complement of the default permissions mask with the permissions mask
specified by the user with the "create" system call. Thus, the
operating system always disables permissions disabled by the default
permissions mask regardless of the permission mask specified with
"cr ea te".

A "fork" or "exec" system call passes its <perm_mask> to every task it
spawns.

SEE ALSO

create
exec
fork
of stat
stat
vfork

TSC 9/2/86

dup

Duplicate the specified file descriptor.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys dup

Returns

Arguments

<file_des>
<new_file_des>

DESCRIPTION

The file descriptor to duplicate.
The new file descriptor.

dup-l

The "dup" system call duplicates the specified file descriptor. To the
user it appears that the operating system has again opened the file
referenced by <file_des> in the same mode and with the same current
position in the file.

ERRORS REPORTED

EBADF
The file descriptor <file_des> does not reference an open file.

EBARG
An argument to the system call is invalid.

ETMFL
The operating system already has open as many files as it can. The
system manager can alter the number of open files allowed with the
"tune" cOIIDlland up to the system-dependent maximum.

SEE ALSO

dups
open
Commands: tune

TSC 3/17/86

dups

Duplicate a file descriptor onto the specified file descriptor.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO
<requested_file_des> in AO

Syntax Statement

sys dups

Returns

Arguments

The file descriptor to duplicate.

dups-l

<f ile_des>
<requested_file_des> The file descriptor to use as the

duplicate.

DESCRIPTION

The "dups" system ~all duplicates the specified file descriptor onto a
specific file descriptor requested by the user. If the requested file
descriptor references an open file, "dups" closes that file before
proceeding. To the user it appears that the operating system has again
opened the file referenced by <file_de.s> in the same mode and with the
same current position in the file.

ERRORS REPORTED

EBADF
The file descriptor <file_des> does not reference an open file.

EBARG
One or both of the file descriptors specified are out of range.

SEE ALSO

dup

TSC 3/17/86

I'

I'

I

exec-1

exec

Execute a program.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys exec,<file_name>,<ar&-list>

Arguments

<ar&-list>

DESCRIPTION

The address of the null-terminated name of the
file containing the program to execute.
The address of the list of addresses of the
arguments to pass to the new program. Each
argument must be a null-terminated character
string. The list of arguments must be
terminated by a null long-word.

The "exec" system call tells the operating system to replace the program
that is currently executing with the program found in the specified
file. The operating system passes to the new program the arguments
referenced by <ar&-list> and begins executing the new program at its
transfer address.

The operating system sets up the new program's stack so
the number of arguments to the new program, the
argument, and the arguments themselves. Following is a
stack as execution begins:

TSC 3/17/86

that it contains
address of each

picture of the

<continued}

exec-2

highest address in task space

00

argn: <argn>

argO: <argO>
00000000
00000000
argn

argO
sp -> <argent>

. . . low memory •••

(The last null-terminated argument string)

(The first null-terminated argument string)

(A pointer to the last null-terminated
argument string)

(A pointer to the first argument string)
(The number of arguments passed to the new
task--a 4-byte quantity)

At least two null bytes are left at the top of the task's address space.

When the new program begins, it inherits the following attributes and
resources from the calling program:

The task's priority
The task ID
The parent task's ID
The controlling terminal number
The mask specifying the default permissions for creating a file
The time remaining on an armed alarm clock
The working directory
All open files
System and user time information

If the user-ID bit is set on the file containing the calling program,
the new program has as its effective user ID the ID of the owner of the
file containing the new program. Otherwise, it inherits the user ID of
the calling program.

The new task ignores any interrupts that the calling program ignored.
All other interrupts sent to the new task result in their default
action, which is usually termination of the task. The operating system
disables profiling in the new program.

TSC 3/17/86 (continued)

exec-3

The "exec" system call returns to the calling program only if it fails.

ERRORS REPORTED

EARGC
The user specified too many arguments.
approximately 4K for passing arguments.

EBBIG

The system allots

The executable file is too large. The limit on the size of a file
is machine-dependent.

EISDR
The specified file is a directory.

EMS DR
The path to <file_name> cannot be followed.

EN DR
A part of the path to <file_name> is not a directory.

ENOFL
No file on the system corresponds to the specified name.

ENOTB
The file containing the new program is not an executable file or
cannot be executed on the hardware. For example, a program which
contains 68020-specific instructions cannot be executed by a
680l0-based machine.

EPRM
The permissions set on the specified file do not grant the requested
type of access.

SEE ALSO

cpint
exece
fork
profile
vfork

TSC 3/17/86

exece-l

exece

Execute a program.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys exece,<file_name>,<arK-list>,<env_list>

Arguments

<arK-list>

DESCRIPTION

The address of the null-terminated name of the
file containing the program to execute.
The address of the list of addresses of the
arguments to pass to the new program. Each
argument must be a null-terminated character
string. The list of arguments must be
terminated by a null long-word.
The address of the list of addresses of the
environment parameters to pass to the new
program. Each environment parameter must be a
null-terminated character string. The list of
environment parameters must be terminated by a
null long-word.

The "exece" system call tells the operating system to replace the
program that is currently executing with the program found in the
specified file. The operating system passes to the new program the
arguments referenced by <arK-list> and the environment parameters
referenced by <env_Iist>. It then begins executing the new program at
its transfer address.

The operating system sets up the new program's stack so that it contains
the number of arguments to the new program. the address of each
argument, the arguments themselves, the address of each environment
parameter, and the parameters themselves. Following is a picture of the
stack as execution begins:

TSC 3/17/86 (continued)

eXece-2

. . . highest address in task space •••

00

envn: <envn>

envO: <env>
00000000

argn: <argn>

argO: <argO>
00000000
envn

envO

00000000
argn

sp -> <argcnt>

. . . low memory •••

(The last null-terminated environment string)

(The first null-terminated environment string)

(The last null-terminated argument string)

(The first null-terminated argument string)

(A pointer to the last null-terminated
environment string)

(A pointer to the first null-terminated
environment string)

(A pointer to the last null-terminated
argument string)

(A pointer to the first null-terminated
argument string)

(The number of arguments passed to the new
task--a 4-byte quantity)

At least two null bytes are left at the top of the task's address space.

When the new program begins, it inherits the following attributes and
resources from the calling program:

The task's priority
The task ID
The parent task's ID
The controlling terminal number
The mask specifying the default permissions for creating a file
The time remaining on an armed alarm clock
The working directory
All open files
System and user time information

TSC 3/17/86 (continued)

exece-3

If the user-ID bit is set on the file containing the calling program,
the new program has as its effective user 1D the 1D of the owner of the
file containing the new program. Otherwise, it inherits the user 1D of
the calling program.

The new task ignores any interrupts that the calling program ignored.
All other interrupts sent to the new task result in their default
action, which is usually termination of the task. The operating system
disables profiling in the new program.

The "exece" system call returns to the calling program only if it fails.

ERRORS REPORTED

EARGe
The user specified too many arguments.
approximately 4K for passing arguments.

EBBIG

The system allots

The executable file is too large. The limit on the size of a file
is machine-dependent.

E1SDR
The specified file is a directory.

EMS DR
The path to <file_name> cannot be followed.

ENDR
A part of the path to <file_name> is not a directory.

ENOFL
No file on the system corresponds to the specified name.

ENOTB
The file containing the new program is
cannot be executed on the hardware.
contains 68020-specific instructions
68010-based machine.

EPRM

not an executable file or
For example, a program which
cannot be executed by a

The permissions set on the specified file do not grant the requested
type of access.

SEE ALSO

cpint
exec
fork
profile
vfork

TSC 3/17/86

fcntl-I

fcntl

Change or query the behavior of a file.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des 1> in DO

Syntax Statement

sys fcntI,<function_code>

Returns

<access_flag> in DO
or

Arguments

<function_code>
<access_flag>

DESCRIPTION

The file descriptor of the file whose
behavior to change or query.
The subfunction to perform.
A one-byte flag describing the mode of access
to the fil e.
The file descriptor of the last file which
sent the signal INPUT READY to the current
task.

The "fcntl" system call queries or changes the way in which a task may
access the specified file. The method of access is defined in
<access_flag>, which may be returned to DO by "fcntl". When the
operating system creates a file, none of these bits is set. Currently,
the system uses only one bit of this flag, bit O. By default, when a
"read" system call tries to access a file, the operating system puts the
task that issued the "read" call to sleep until data are available.
When this bit is set, however, the operating system completes the system
call whether or not data are available.

The "fcntl" system call supports four subfunctions, which are def ined in
the file" /lib/sysfcntl". The following table shows the function code
associated with each of these subfunctions:

TSC 9/2/86 (continued)

fcntl-2

Code Subfunction
===========================

o FCNTL_GET_PARAMS
I not used
2 FCNTL_INPUT_FD
3 FCNTL_NOBLOCK
4 FCNTL_BLOCK

A description of each of these subfunctions follows:

NOTES

Return <access_flag> without altering any
parameters.
Return the file descriptor of the last file
which sent the signal INPUT READY. When
the user specifies this subfunction, the
"fcntl" system call ignores <file_des_I>.
Complete any "read" system call that
attempts to access the file whether or not
da ta are available. Return the error
ENOINPUT if no data are available, and send
the signal INPUT READY to the task when
data become available.
If no data are available, put to sleep
until data become available any task
issuing a "read" system call that attempts
to access the specified file.

• The INPUT READY signal is not sent to a task until a request to read
from a file ln NOBLOCK mode has been unsuccessful due to
insufficient data.

ERRORS REPORTED

EBADF
The value of <file_des_l> does not reference an open file.

EBARG
The subfunction code is invalid.

TSC 9/2/86

filtim

Change the time of last modification of the specified file.

ASSEMBLY LANGUAGE SYNTAX

Expected

<time> in DO

Syntax Statement

sys filtim,<file_name>

Arguments

<time>

DESCRIPTION

The number of seconds that elapsed
midnight (00: 00) , January l, 1980 ,
desired last time of modification.
The address of the null-terminated name
file to alter.

fil tim-l

between
and the

of the

The "filtim" system call changes the time of
specified file. It does not compare the
either the time the file was created or the
possible to set the file's modification
creation or to a time in the future.

last modification of the
new time of modification to

current time, so it is
time to a time before its

Only the system manager may invoke this system call.

ERRORS REPORTED

EBARG
An argument to the system call is invalid.

EBSY
The specified file is currently open.

ENDR
A part of the path to <file_name> is not a directory.

ENOFL
No file on the system corresponds to the specified name.

TSC 3/17/86 (continued)

filtim-2

EPRM
Either the file is on a device that is mounted for reading only or
the current effective user is not the system manager.

SEE ALSO

of stat
stat

TSC 3/17/86

fork

Create a new task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys fork

Returns

To parent task: <child_task's_ID> in DO
To child task: 0 in DO

Arguments

fork-l

The task ID assigned to the child task.

DESCRIPTION

The "fork" system call creates a new task (the child task) that is a
copy of the current task (the parent task). The child task has the same
priority, user ID, effective user-ID, controlling terminal information,
default permissions-mask, working directory, signal handling set-up, and
profiling information as the parent task. However, it differs from the
parent task in the following ways: its task ID is different; its parent
task-ID is the task ID of the parent task; its data are the same, but
they are located in a different place in memory; its file descriptors
are the same, but they are located in a different place in memory; its
system and user CPU times are set to 0; its alarm clock is turned off.

After a "fork" system call the child task resumes executions at the
instruction immediately following the "fork" call. The parent task, on
the other hand, resumes execution 2 bytes after the "fork" call.
Obviously, then, the first instruction in the new task must be a short
branch (requiring only 2 bytes). Each task determines where to resume
by looking at the contents of the DO register immediately after
execution of the "fork" call.

ERRORS REPORTED

ETMTS
Either the maximum number of tasks allowed to a user or the
number of tasks allowed to the operating system has been
The system manager can alter either or both of these limits
"tune" command up to the system-dependent maxima.

maximum
reached.
with the

TSC 3/17/86 (continued)

fork-2

EVFORK
The current task shares its memory with its parent and may not
invoke this system call.

SEE ALSO

vfork

TSC 3/17/86

FPU_exception-l

FPU_exception

Return or update information about an exception generated by the MC68881
floating-point coprocessor.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys FPU_exception,<function_code>,<buf_add>

Arguments

<function_code>

DESCRIPTION

The subfunction to perform. A value of 0
tells the operating system to copy the
exception information from its location in
memory into the specified buffer; a value of
1, to copy the exception information in the
buffer back to its location in memory.
The address of the buffer for the exception
information.

In order for the "FPU_exception" system call to. function, the user must
have enabled exception processing by setting the appropriate bits in the
MC68881 control register. A usable subset of exception processing can
be enabled by setting a bit in the header of the binary file after
assembly with the "headset" command. This subset is system-dependent,
but in general it includes processing for exceptions generated by
division by 0, overflow, and operand errors. A user who wishes to
define exception processing directly from the assembly language program
may do so with the "fmove" or "fmovem" instruction.

If exception processing is enabled, the "FPU_exception" system call
either copies the exception information from its location in memory into
the specified buffer or copies the exception information in the buffer
back to its location in memory.

The file "/lib/sys68881" def ines the structure of the buffer as follows:

TSC 9/2/86 (continued)

FPU_exception-2

* Buffer structure

struct 0

FPUstate
FPCR
FPSR
FPIAR
FPregs

ds.l 46
ds.l 1
ds.l 1
ds.l 1
ds.x 8

State frame
Control register
Status register

CPU_registers
CPU_D_registers
CPU_A_registers

CPU_sta ck_frame
CPU_SR
CPU_PC
CPU_SFT
CPU_PCX
CPU_IR
CPU_OP
CPU_EA

Interrupt address register
Data registers

ds.l 0
ds.l 8
ds.l 8

ds.w 0
ds.w 1
ds. 1 1
ds.w 1
ds.1
ds.w 1
ds.w 1
ds. 1

Data registers
Address registers

Status register
Program counter
Stack frame type
Program counter
Internal register
Operation word
Effective address

* Definitions for control registers

* Symbols ending in "_b" are bit numbers.
* Symbols ending in "_bf" are bit-field specifications.

FPCR BSUN_b equ 15 Branch or set on unordered operand
FPCR_SNAN_b equ 14 Signaling Not-a-Number
FPCR_OPERR_b equ 13 Invalid operand
FPCR_OVFL_b equ 12 Overflow
FPCR_UNFL_b equ 11 Underflow
FPCR_DZ_b equ 10 Division by 0
FPCR_INEX2_b equ 9 Inexact result generated by an operation
FPCR_INEXl_b equ 8 Inexact result generated by decimal input
FPCR_PREC_bf bfequ 24:2 Rounding precision (see below)
FPCR_RND_bf bfequ 26: 2 Rounding mode (see below)

* Rounding precisions (FPCR_PREC_bf)

PREC_EXTENDED equ 0 Extended precision
PREC_SINGLE equ 1 Single preCl.S1On
PREC_DOUBLE equ 2 Double precision

TSC 9/2/86 (continued)

NOTES

FPU_exception-3

RND_TO_NEAREST eq u
RND_TO_ZERO equ

o Round toward nearest
1 Round toward zero

RND_TO_MlNUS equ
RND_TO_PLUS equ

2 Round toward minus infinity
3 Round toward plus infinity

* Definitions for status registers

* Symbols ending in "_b" are bit numbers.
* Symbols ending in "_bf" are bit-field specifications.

FPSR_N_b
FPSR_Z_b
FPSR_I_b
FPSR_NAN_b
FPSR_S_b
FPSR_QUOTIENT_bf
FPSR_BSUN_b
FPSR_SNAN_b
FPSR_OPERR_b
FPSR_OVFL_b
FPSR_UNFL_b
FPSR_DZ_b
FPSR_INEX2_b
FPSR_INEX1_b
FPSR_IOP_b
FPSR_AOVFL_b
FPSR-.AUNFL_b
FPSR_ADZ_b
FPSR_INEX_b

equ
equ
equ
equ
equ

bfequ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

27 Negative
26 Zero
25 Inf inity
24 Not-a-Number or unordered
23 Sign of quotient

9:7 Seven least-significant bits of quotient
15 Branch or set on unordered operand
14 Signaling Not-a-Number
13 Invalid operand
12 Overflow
11 Underflow
10 Division by 0

9 Inexact result generated by an operation
8 Inexact result generated by decimal input
7 Invalid operation
6 Accrued overflow
5 Accrued underflow
4 Accrued division by 0
3 Accrued inexact

• The user should use the IFPU_resume" system call to resume execut ion
of the interrupted MC68881 instruction and to exit from the
exception-handling routine. Using the "rtr" instruction may lead to
unpredictable results because the program counter stored on the
stack may be incorrect.

ERRORS REPORTED

ENOFPUDATA
No exception information is available.

TSC 9/2/86 (continued)

SEE ALSO

FPU_resume
Commands: headset
68xxx UniFLEX Relocating -Assembler and Linking-Loader
Motorola, 1985. MC68881 Floating-Point Coprocessor User'~ Manual.

Austin: Motorola.

TSC 9/2/86

Resume execution of the MC68881 instruction that generated an exception.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys FPU_resume

DESCRIPTION

The "FPU_resume" system call resumes execution of an MC68881 instruction
that generated an exception. It should be used at the end of an
exception-handling routine instead of the "rtr" instruction. Use of the
"rtr" instruction to exit from an exception-handling routine may lead to
unpredictable results because the program counter stored on the stack
may be incorrect.

ERRORS REPORTED

ENOFPUDATA
No exception information is available.

SEE ALSO

FPU_exception

TSC 3/17/86

gpid-l

gpid

Get the task ID of the parent of the current task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys gpid

Returns

Arguments

DESCRIPTION

The task ID of the parent of the current
task.

The "gpid" system call gets the task ID of the parent of the current
task and returns it to the DO register.

SEE ALSO

gtid

TSC 3/17/86

I I

I I

II

II

gtid-1

gtid

Get the task ID of the current task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys gtid

Returns

<task_ID> in DO

Arguments

<task_ID> The task ID of the current task.

DESCRIPTI,DN

The "gtid" system call gets the task ID of the current task and returns
it to the DO register.

SEE ALSO

exec
fork
gpid
vfork

TSC 3/17/86

guid-1

guid

Return the user ID and the effective user ID of the person executing the
current task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys guid

Returns

<user_ID> in DO
<effective_user_ID> in AO

Arguments

DESCRIPTION

The user ID of the person who is logged
in on the terminal from which the
current task is being run.
The user ID that defines the access
permissions of the current task. If the
task's user-ID bit is set, the effective
user ID and the user ID may not be the
same.

The "guid" system call returns the user ID and the effective user ID of
the person executing the current task.

SEE ALSO

suid

TSC 3/17/86

ind

Execute the system call located at the specified address.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys ind,<call_address>

Arguments

<call_address>

DESCRIPTION

The address at which the system call to
execute is located.

ind-l

The "ind" system call passes control to the specified address, which
contains the system call to execute. This call is useful when the
values of the arguments to the desired system call are not known prior
to execution of the program. The user allocates space for the arguments
in the assembly language program, and during execution the program moves
the appropriate values to the proper location.

The code located at <call_address> may invoke neither an "ind" nor an
"indx" system call.

ERRORS REPORTED

EBDCL
Either the code located at <call_address> does not invoke a valid
UniFLEX system call, or it invokes an "ind" or "indx" system call.

SEE ALSO

indx

TSC 3/17/86

I I
II
II
II

I

indx-l

indx

Execute the system call located at the specified address.

ASSEMBLY LANGUAGE SYNTAX

Expected

<call_address> in AO

Syntax Statement

sys indx

Arguments

<call_address> The address at which the system call to
execute is located.

DESCRIPTION

The lIindx ll system call passes control to the address in the AO register,
which contains the system call to execute. It is similar to the "ind"
system call, but it allows the system call and its arguments to be
located anywhere in memory, including the stack. This call is useful
when the values of the arguments to the desired system call are not
known prior to execution of the program. During execution the program
moves the appropriate values to the proper location.

The code located at <call_address> may invoke neither an lIindx" nor an
"ind ll system call.

ERRORS REPORTED

EBDCL
Either the code located at <call_address> does not invoke a valid
UniFLEX system call, or it invokes an "ind" or "indx" system call.

SEE ALSO

ind

TSC 3/17/86

I'

I'

I

link-l

link

Create a link to a file.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

Arguments

DESCRIPTION

The address of the null-terminated name of an
existing file. The file may not be a
directory unless the current effective user 1S

the system manager.
The address of the null-terminated name of the
file to link to <file_name_l>. This file must
be nonexistent at the time the user invokes
the sy st em call.

The "1 ink" system call establ ishes a link between the specified existing
file, <file_name_l> , and <file_name_2>. After the link is created, any
reference to <file_name_2> references <file_name_l>. Creation of the
link does not al ter the original file in any way except that the time of
last modification is updated to the time the link was created.

The operating system cannot link a file on one device to a file on
another device.

The directory containing the new link must grant write permission to the
current effective user. The user must also have execute permission in
all but the last component of both specified file names.

NOTES

• The maximum link count is 127. More than 127 links may exist, but
the count itself neither increases nor decreases once it reaches
127. Therefore, once a link count reaches 127, neither the "kill"
command nor the "unlink" system call can remove the file from the
system because the link count cannot reach O. The removal of the
last link will, therefore, result in an unreferenced file, which can
be deleted by the "diskr epair" command.

TSC 9/2/86 (continued)

link-2

ERRORS REPORTED

EFLX
The file <file_name~2> already exists.

EISDR
The file <file_name_l> is a directory, but the current effective
user is not the system manager.

EMS DR
The path to either <file_name_l> or <file_name_2> or both cannot be
followed.

ENDR
A part of the path to one or both of the specified files is not a
directory.

ENOFL
No file on the system corresponds to <file_name_l>.

EPRM
Either the directory to contain the new link, <file_name_2>, does
not grant write permission to the effective user, or the user does
not have execute permission in all but the last component of both
specified file names.

EXDEV
The specified files are not on the same device; therefore, the
system cannot link them.

SEE ALSO

unlink
Commands: diskrepair, kill

TSC 9/2/86

lock-l

lock

Lock a task in memory or unlock a locked task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

lock, <function_code>

Arguments

<function_code> A number indicating the subfunction to
perform. A nonzero value tells the operating
system to lock the task in memory; a value of
0, to unlock it.

DESCRIPTION

The "lock" system call locks a task in memory or unlocks a locked task.
The operating system cannot take memory from a locked task to use for
another task.

Only the system manager may invoke this system call.

NOTES

• Unlocking a task that is not locked is not an error.

ERRORS REPORTED

EPRM
The current effective user is not the system manager.

SEE ALSO

memman

TSC 3/17/86

lrec-l

lrec

Add an entry to the operating system's lock table.

ASSEMBLY LANGUAGE SYNTAX

Expected

Syntax Statement

sys lrec, <count>

Arguments

<count>

DESCRIPTION

The file descriptor for the file containing the
record to lock.
The number of bytes to lock from the current
position in the file.

The "lrec" system call adds to the operating system's lock table an
entry for the open file referenced by <file_des>. If the current task
already has an entry for that file descriptor in the system's lock
table, "lrec" removes that entry. If another task has an entry for the
file descriptor in the system's lock table, and that entry contains all
or part of the record the current task is trying to lock, the system
call fails.

Locking a record only prevents other users from locking any of the data
in that record. It does not prevent anyone from reading or modifying
the record or any other part of the file.

The operating system removes all entries a task makes in the lock table
when the task terminates.

ERRORS REPORTED

EBADF
The file descriptor does not
references a pipe, a character
pseudo terminal.

EBARG

reference an open
device, a block

An argument to the system call lS invalid.

TSC 3/17/86

file,
device,

or
or

it
a

(continued)

lrec-2

ELOCK
The specified record cannot be locked either because all or part of
the record is already locked by another task or because the system's
lock table is full. The system manager may use the "tune" command
to alter the number of entries the lock table can contain.

SEE ALSO

urec

TSC 3/17/86

make_realtime-l

Make a non-real-time task a real-time task and set its relative
priority, or make a real-time task a non-real-time task.

ASSEMBLY LANGUAGE SYNTAX

Expected

<relative-priority> in DO

Syntax Statement

sys make_realtime

Arguments

<relative_priority>

DESCRIPTION

A value used by the system scheduler to
set the relative priority of a real-time
task in case it must schedule the CPU
among several real-time tasks. The
value must be in the range of -25 to 25.
The operating system ignores a value
which is outside this range. A value of
o tells the system scheduler that the
task is no longer a real-time task.

The "make_realtime" system call either makes a non-real-time task a
real-time task or makes a real-time task a non-real-time task.. It also
sets the priority of a real-time task in case the system scheduler must
share the CPU among more than one real-time task. The priority of a
real-time task is fixed by the "make_realtime" or the "setpr" system
cail. Any real-time task has a higher priority than any non-real-time
task. Only a real-time task of higher priority can usurp the CPU from a
real-time task.

If the system call is used to make a real-time task a non-real-time task
(the user specifies a relative priority of 0), the operating system sets
the priority of that task as it would normally.

Only the system manager may invoke this system call.

TSC 3/17/86 (continued)

make_realtime-2

NOTES

• Real-time tasks are a vendor-dependent option and may not be
supported by all systems.

ERRORS REPORTED

EBDCL
The system does not support real-time tasks.

EPRM
The current effective user is not the system manager.

SEE ALSO

TSC 3/17/86

memman-l

memman

Perform a memory-management operation.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys memman,<function_code>,<start_address>,<end_address>

Arguments

The subfunction to ·perform. <function_code>
<start_address> The first address in the region of memory to

control (but see DESCRIPTION). The value of
<start_address> must be less than the value
of <end_address).

<end_address> The last address in the region of memory to
control (but see DESCRIPTION). The value of
<end_address> must be greater than the value
of <start_address).

DESCRIPTION

The "memman" system call performs a memory-management operation
specified region of memory. It supports five subfunctions.
following table shows the function code associated with each of
functions. Some subfunctions, however, may not be available
particular implementation.

Code Subfunction
===

o Clear the region's "dirty bit". When set, the
dirty bit tells the operating system that the copy
of the page in the paging space is out of date.

1 Lock the region in memory.
2 Unlock the region from memory.
3 Write protect the region.
4 Remove write protection from the region.
S Release the memory allocated to the region.

on the
The

these
on a

Regardless of the addresses specified, the region that the "memman"
system call acts on is a set of pages. Each page contains 4K of memory.
By default,the region ranges from the beginning of the page containing
<start_address> to the end of the page containing <end_address>. For
example, if the user specifies $1020 as <start_address> and $iOAO as
<end_address>, "memman" acts on the region from $1000 through $lFFF
inclusive. However, if the user adds 32 to the function code, the

TSC 3/17/86 (continued)

memman-2

region that "memman" acts on includes only those complete pages within
the specified range. The addresses specified in the previous example do
not encompass a complete page. Therefore, if the function code is in
the range of 32 through 36 inclusive, they specify a null range. A
<start_address> of $0040 and an <end_address> of $2FFF with a function
code between 32 and 36 s-pecify the region from $1000 through $2FFF
inclusive.

ERRORS -REPORTED

EBARG
The function code is invalid; <start address> is greater than
<end_address>; or the address range specified by <start_address> and
<end_address> is outside the task's address space.

EVFORK
The current task shares its memory with its parent and may not
invoke this system call.

SEE ALSO

lrec

TSC 3/17/86

mount-l

mount

Insert the medium in the specified block device at the node of the
directory tree specified by <dir_name>.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys mount,<dev_name>,<dir_name>,<mode>

Arguments

<mode>

DESCRIPTION

The address of the null-terminated name of the
device containing the medium to mount. The
specified device must be a block device.
The address of the null-terminated name of the
directory on which to mount the specified device.
A value indicating whether or not to
write-protect the mounted medium. A value of 0
specifies to mount the medium for reading and
writing; a nonzero value, for reading only.

The "mount" system call temporarily inserts the medium in the specified
block device at the node of the directory tree specified by <dir_name>.
As long as the medium is mounted, any references to <dir_name> actually
access the root directory of the mounted medium. If the medium is
mounted for reading and writing, the "mount" function sets an indicator
on the medium indicating that it is currently mounted. The "unmnt"
system call clears this indicator.

Any files in the directory on which the device is mounted are
inaccessible for the duration of the mount.

Only the system manager may invoke this system call.

NOTES

• Disks written by the "backup" command cannot be mounted.

ERRORS REPORTED

EBSY
Either the operating system's mount table is full or something is
already mounted on <dir_name>.

TSC 9/2/86 (continued)

mount-2

EDIRTY
The last time the medium in the specified device was mounted, it was
not properly unmounted. It may, therefore, be corrupt. The user
should try to salvage· the data by executing the "diskrepair"
conunand.

EFLX
The medium in the specified device is already mounted.

EIO
The operating system cannot read the data on the medium in the
specified device; no medium is in the specified device; or the
medium is not correctly formatted. If "mount" returns this error
when a properly formatted medium is in the device, the user should
try to salvage the data on the medium by executing the "diskrepair"
command.

EMSDR
The path to either <dev_name> or <dir_name> or both cannot be
followed.

ENBLK
The specified device is not a block device.

ENDR
Either <dir_name> is not a directory or a part of the path to
<dev_name> or <dir~name> is not a directory.

ENOFL
No file on the system corresponds to the specified name.

EPRM
The current effective user is not the system manager.

EWRTPROT
The specified device is write-protected.

SEE ALSO

crtsd
unmnt
Commands: backup, diskrepair

TSC 9/2/86

mSLattach-1

mSLattach

Attach a task to a message exchange.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys mSLattach,<exchange_name>,<mode>

Returns

<exchange_ID> in DO

Arguments

<exchange_name>

<mode>

DESCRIPTION

The 4-byte name of the message exchange to
attach to the task. The name may contain
any unique value, for example four ASCII
characters.
The access mode to use. A value of 0
indicates that the task is to send messages
to the exchange; a value of 1, that it is to
receive messages from the exchange. The
file "/lib/sysmessages" defines the
following constants:

Value Constant
==========================

o MSG_send_mode
1 MSG_receive_mode

An identification number to associate' with
this particular exchange. All other system
calls referencing the exchange use this ID
rather than the name of the exchange.

A message exchange is a section of memory set aside as a repository for
messages. Such exchanges allow intertask communication. An individual
task can attach to no more than 32 message exchanges at the same time.
The number of exchanges the system can support is system-dependent. The
system manager can adjust this number within the permissible limits with
the "tune" command.

TSC 9/2/86 (continued)

mSL-attach-2

The "mss-attach" system call attaches a message exchange to the
task. The first attempt to attach toa nonexistent exchange in
mode creates the exchange. The operating system does not allow
to attach to a nonexistent exchange in send mode.

NOTES

current
receive
a task

• Message exchanges are a vendor-dependent option and may not be
supported by all systems.

ERRORS REPORTED

EDFUL
The operating system is already using the maximum permissible number
of message exchanges. The system manager can alter this limit with
the "tune" command up to the system-dependent maximum.

ENOFL
No message exchange on the system corresponds to the specified name,
and the mode is MSG_Send_mode.

ETMFL
The task attempted to attach to more than 32 message exchanges at
the same time.

SEE ALSO

mSL-detach
mSL-send
mSL-receive
mSL-status
Commands: tune

TSC 9/2/86

mSLdetach-l

mSLdetach

Detach a task from a message exchange.

ASSEMBLY LANGUAGE SYNTAX

Expected

<exchange_ID> in DO

Syntax Statement

sys mSLdetach

Arguments

<exchange_ID>

DESCRIPTION

The identification number of the exchange to
detach from. This ID must be one returned
from an "msLat tach" system call.

The "msLdetach" system call detaches the task from a message exchange.
After the last task attached to a message exchange has been detached
from it, the exchange is released to the system. It may then be
reallocated with the "msLattach" system call.

NOTES

• Message exchanges are a vendor-dependent option and may not be
supported by all systems.

ERRORS REPORTED

EBADF
The value of <exchange_ID> does not correspond to any message
exchange which is attached to the task.

SEE ALSO

mSLattach
mSLsend
mSLreceive
mSLstatus

TSC 3/17/86

mSLreceive

Receive a message from another task,via a message exchange.

ASSEMBLY LANGUAGE SYNTAX

Expected

<exchange_~D> in DO

Syntax Statement

sys mSLreceive,<buf_add>,<mode>

Arg\lments

<exchange_ID> The identification number of the exchange from
which to fetch a message. This ID must be one
returned from an "msLattach" system call.

<buf_add> The address of the buffer to receive the text
of the message. This buffer should contain at
least as many characters as are used for
messages in the system. By default, the size
of messages on any system is 64 bytes. The
system manager can change this value with the
"tune" command.

<mode> The mode to use while fetching the message. A
value of 0 tells the operating system to
return an error if no messages are at the
specified message exchange. A value of 1
tells the operating system to suspend the
receiving task until a message has been queued
at the exchange. The file" /lib/sysmessages"
defines the following constants:

Value Constant
==================================

o MSG_no_wait_for_messages
1 MSG_wait_for_messages

DESCRIPTION

The "msLreceive" system call receives a message from another task via a
message exchange. The operating system writes the first message in the
queue associated with the specified exchange to the buffer at <buf_add>.

TSC 9/2/86 (continued)

NOTES

• Message exchanges are a vendor-dependent option and may not be
supported by all systems •

• Because the size of messages on any system is fixed, the operating
system always moves the same number of bytes into the message
buffer. If the buffer is not large enough to hold the message, the
operating system simply writes past the end of the buffer,
destroying any information located there. The destruction of such
information could result in an address error, which would cause the
program to abort.

ERRORS REPORTED

EBADF
The value of <exchange_ID> does not correspond to any message
exchange which is attached to the task.

EINTR
The task caught an interrupt, which caused the system call to end
abnormally.

ENOINPUT
No messages are available at the exchange, and the task did not
elect to wait for one.

SEE ALSO

mSLattach
mSLdetach
mSLsend
mSLstatus
Commands: tune

TSC 9/2/86

mSLsend-1

Send a message to another task via a message exchange.

ASSEMBLY LANGUAGE SYNTAX

Expected

<exchange_ID> in DO

Syntax Statement

sys mSLsend,<buf_add>,<mode>

Arguments

<exchange_ID> The identification number of the exchange to
which to send a message. This ID must be one
returned from an "msLattach" system call.

<buf_add> The address of the buffer containing the text
of the message to send. This buffer should
contain at least as many characters as are
used for messages in the system. By default,
the size of messages on any system is 64
bytes. The system manager can change this
value with the "tune" command.

<mode> A 2-bit mask specifying the mode to use while
sending the message. The following table
shows the correspondence between the values of
<mode> and the mode in which to operate. Any
combination of bits is valid.

TSC 9/2/86

Value Constant
=====================================

00 MSG_no_wait
01 MSG_wait_for_consumption
10 MSG_wait_for_space

When MSG_no_wait mode is in effect, the
operating system does not wait for a task to
consume the message. Nor does it wait for
space to send a message if the system is
saturated with messages (rather, it returns an
error). If MSG_wait_for_consumption is ln
effect, the operating system suspends the
sending task until some other task consumes
this particular message. If
MSG_wait_for_space is in effect, the operating
system suspends the sending task until the

(continued)

mSLsend-2

system is not saturated with messages.

DESCRIPTION

The "msLsend" system call sends a message to another task via a message
exchange. The operating system writes the text in the buffer at
<buf_add> to the queue for the specified message exchange.

The operating system limits the total number of messages that can be
queued at all message exchanges. The system manager can adjust this
1 imit with the "tune" counnand. A user can avoid this limit by invoking
the counnand in MSG_wait_for_space mode.

NOTES

• Message exchanges are a vendor-dependent option and may not be
supported by all systems.

Because the size of messages on any system is fixed, the operating
system always moves the same number of bytes from the beginning of
the message buffer to the appropriate, message exchange. If the
buffer is not as large as this fixed size, the operating system
simply uses information located past the end of the buffer.
Obviously if such information is used, the latter part of the
message will probably not make sense.

ERRORS REPORTED

EBADF
The value of <exchange_ID> does not correspond to any message
exchange which is attached to the task.

EINTR
The task caught an interrupt, which caused the system call to end
abnormally. The operating system returns this error if a task
invokes the system call when MSG_wait_for_consumption or
MSG_wait_for_space mode is in effect and receives an interrupt while
it is waiting. In such a case the system call aborts with no ill
effects. Thus, by using the waiting modes in conjunction with an
alarm interrupt, the task may specify the maximum amount of time to
wait.

ENOINPUT
The maximum number of messages allowed in all queues has been
reached. The system manager can a.lter this limit with the "tune"
command up to the system-dependent maximum.

TSC 9/2/86 (continued)

SEE ALSO

mSLattach
mSLdetach
mSLreceive
mSLstatus
Commands: tune

TSC 9/2/86

I I

I I

I I

I I

II

"

mSLstatus

Obtain information about the status of a message exchange.

ASSEMBLY LANGUAGE SYNTAX

Expected

<exchange_ID> in DO

Syntax Statement

sys mSLstatus,<buf_add>

Arguments

<exchange_ID>

DESCRIPTION

The identification number of the exchange to
report on. This ID must be one returned from
an "msLattach" system call.
The address of the buffer to contain the
information about the status of the message
exchange. The buffer should contain at least
MBX_STAT_SIZE characters, where MBX_STAT_SIZE
is defined in the file "/lib/sysmessages".

The "msLstatus" system call obtains information about the status of a
message exchange and writes that information to the buffer specified by
<buf_add>. The information includes the name of the message exchange,
the number of tasks currently attached to the exchange as senders, the
number of tasks currently attached to the exchange as receivers, the
number of messages in the queue, and the size of each message."

The structure of this buffer is defined in the file "/lib/sysmessages"
as follows:

* Structure of buffer for status of exchange

struct 0

mS.Lname
mSLsenders
mSLreceivers
mSLLcount
mSLsize

MBX STAT_SIZ E

TSC 9/2/86

ds. 1 1
ds.w 1
ds.w 1
ds.w 1
ds. w 1

ds.w 0

Name of exchange
Number of tasks attached as senders
Number of tasks attached as receivers
Number of messages in the queue
Size of each message on the system

(continued)

mSLstatus-2

The size of all messages on a system is fixed, but varies from system to
system because the system. manager can adjust the size with the "tune"
command. The "mss-status" system call returns the value of the size so
that a task may adjust its buffers to conform to the value on the system
in use.

NOTES

• Message exchanges are a vendor-dependent option and may not be
supported by all systems.

ERRORS REPORTED

EBADF
The value of <exchange_ID> does not correspond to any message
exchange which is attached to the task.

SEE ALSO

mSLattach
mSS-detach
mss-receive
mSLsend
Commands: tune

TSC 9/2/86

of stat-l

of stat

Get the status of an open file.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys ofstat,<buf_add>

Arguments

The address of the buffer to contain the
information on the status of the file.

DESCRIPTION

The "of stat" system call writes to <buf_add> the information describing
the status of the file referenced by <file_des>. The file
"/lib/sysstat" defines the structure of this buffer as follows:

* Definition of buffer for "status" and "of stat"

base 0 Set initial values

st_mod
stJrm
st_cnt
st_own
st_siz
st_mtm
st_spr

ds.w 1
ds.w 1
ds. b 1
ds. b 1
ds. b 1
ds. b 1
ds.w 1
ds.l 1
ds. 1 1
ds.b 4

ds.w 0

Device number
Fdn number
Filler
File mode
Permission bits
File 1 ink count
File owner's user ID
File size in bytes
Time of file's last modification
Spare--for future use only

Size of status buffer

The value "st_dev" is the dev ice number of the dev ice containing the
file referenced by <file_des>; "st_fdn" is the file descriptor number
(fdn) of the spec<ified file. The variable list_mod" is an 8-bit mask
describing the type of the file; the low-order bit is ignored. The
following table shows the valid values for this mask and the type of
file associated with each value. The file "/lib/sysstat" defines the

TS.C 9/2/86 (continued)

ofstat-2

constants whose names are shown in parentheses.

Type of File
===
OOOOOOOx
0000001x
0000010x
0000100x
1000011x
OOOOOllx
0100000x

Regular file (FSREG)
Block device (FSBLK)
Character device (FSCHR)
Directory (FSDIR)
Master pseudoterminal (FSMPTY)
Slave pseudotermina1 (FSSPTY)
Pipe (FSPIPE)

The variable "st-prm" is an 8-bit mask describing the access permissions
for the file. The following table shows the type of permission that is
associated with each bit in the mask. The file "/lib/sysstat" def ines
the constants whose names are shown in parentheses. Any combination of
bi ts is valid.

Permission Assigned
===
00000001
00000010
00000100
00001000
00010000
00100000
01000000

Owner read permission (FACUR)
Owner write permission (FACUW)
Owner execute permission (FACUE)
Others read permission (FACOR)
Others write permission (FACOW)
Others execute permission (FACOE)
Set user-ID bit for execute (FXSET)

If the specified file is a directory, FACUE grants permissions to the
user who owns the file to search the directory for the name of a file;
FACOE grants the same permission to other users. When the user-ID bit
is set, the operating system grants to any user who executes the file
the same permissions as it grants to the owner of the file for the
duration of the task.

The value of "st_cnt" is the number of links to the specified file, or
in the case of a pipe, the number of file descriptors open for the pipe;
"st_own" is the user ID of the owner of the file; "st_siz" is the number
of bytes in the file, or in the case a of a pipe, a flag indicating
whether or not the pipe contains any data (if the file size of the pipe
is 0, no data are in the pipe); "st_mtm" is the time (expressed as the
number of seconds that had elapsed since midnight (00:00), January 1,
1980) the file was last modified; "st_spr" is currently unused.

TSC 9/2/86 (continued)

ofstat-3

ERRORS REPORTED

EBADF
The file descriptor does not reference an open file.

EBARG
An argument to the system call is invalid.

SEE ALSO

status

TSC 9/2/86

open-l

open

Open an existing file.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys open,<file_name>,<mode>

Returns

Arguments

<mode>

DESCRIPTION

The address of the null-terminated name to
assign to the open file.
A value which tells the operating system what
sort of access to allow to the file. If <mode>
LS 0, the operating system opens the file for
reading only; if 1, for writing only; if 2, for
both reading and writing. If <file_name>
references a character device, the user may add
hexadecimal 8000 to this value to specify
exclusive access. Exclusive access, which is
only supported by some character devices, is
useful, for example, in the case of a port that
is used both as a terminal and for
communications.
A number by which all other system calls must
reference the ope~ file.

The "open" system call opens the specified file in the mode described by
<mode>, sets the current file position to the beginning of the file, and
assigns a file descriptor to the file.

ERRORS REPORTED

EBARG
The value for <mode> is invalid.

EMSDR
The path to <file_name> cannot be followed.

TSC 3/17/86 (continued)

open-2

ENDR
A part of the path to <file_name> is not a directory.

ENOFL.
No file on the system corresponds to the specified name.

;

EPRM
The file's access permissions do not grant the user the type of
access requested by <mode>.

ETMFL
The current task already has open as many files as
system will allow. The system manager can alter this
"tune" command up to the system-dependent maximum.

SEE ALSO

close
create
Commands: tune

TSC 3/17/86

the operating
limit with the

phys-l

phys

Obtain or release access to a section of system memory.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys phys,[-]<code>

Returns

<lo&-base_add> in DO (only when obtaining access to memory)

Arguments

<code>

DESCRIPTION

Release access to the specified
memory. In the absence of a minus
system obtains access to the
section of memory.

section of
sign the
specified

A number specifying the section of system
memory to obtain or release access to. The
correspondence between <code> and" a
particular system resource is part of the
configuration of the system. A value of 0
releases all sections of memory allocated by
the current task through the "phys" system
call.
The logical address of the base of a resource
that is mapped into the task's address space.

The "phys II system call accesses or releases
<code>. If the specified resource has already
task, "phys" ignores a request to allocate
ignores any request to release a resource that
the task.

the resource specified by
been allocated by the

it. The system call also
has not been allocated to

ERRORS REPORTED

EBARG
The value of <code> is invalid.

SEE ALSO
,

Commands: tune

TSC 3/17/86

profile-1

profile

Start or stop monitoring the current task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys profile,<start_add>,<buf_add>,<size>,<scale>

Arguments

<size>
<scale>

DESCRIPTION

The address at which to begin monitoring the
task.
The address of the buffer to contain the results
of the monitoring.
The number of bytes in the buffer at <buf_add>.
A number determining the granularity of the
monitoring procedure. A value of 0 or I tells
the operating system to stop monitoring the
task. Other valid values are 2, 4, 8, 16, 32,
64, and 128. If the user specifies an invalid
value, "profile" uses the largest valid value
that does not exceed the specified value.

The "profile" system call starts or stops monitoring the current task.
If the value of <scale> is 0 or 1, monitoring stops; otherwise, it
begins.

While monitoring a task the operating system examines the task at each
tick of the system clock, which occurs every tenth of a secon4. If the
program counter is at an address less than <start_add>, the operating
system does nothing; otherwise, it subtracts the value of <start_add>
from the value of the current program counter, divides the result by
<scale>, and multiplies the quotient by 2. If this product is less than
<size>, the operating system adds its value to <buf_add> and increments
the word at the resulting address by 1. If the product is greater than
<size>, no change is made in the buffer at <buf_add>.

NOTES

• The operating system automatically stops monitoring a task when that
task invokes any "exec" system call, but not when it invokes the
"fork" or "vfork" system call.

TSC 3/17/86 (continued)

profile-2

SEE ALSO

exec
exece
fork

TSC 3/17/86

read-l

read

Read data from an open file.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys read,<buf_add>,<count>

Returns

Arguments

<file_des>
<buf_add>

<count>

DESCRIPTION

The file descriptor of the open file to read.
The address of the buffer to contain the data
that are read.
The number of bytes to read. The system call
performs more efficiently if this number is
greater than 512 and less than 4,096.

The "read" system call reads data from the open file referenced by
<file_des>. It begins reading at the current file position and
continues until it has read <count> bytes, has reached the end of the
file, or, if the specified file is a terminal, has read an end-of-line
character. It writes the data it reads into the buffer located at
<buf_add>. If the specified file is one that the user can randomly
access, "read" sets the current file position to the byte immediately
following the last byte read.

ERRORS REPORTED

EBADF
The file descriptor does not reference an open file, or the file ~s
not open for- reading.

EBARG
The value for either <count> or <file_des> is invalid.

TSC 3/17/86 (continued)

read-2

EINTR
The task received and caught an interrupt while the function was
reading from a slow device.

EIO
The operating system returned an I/O error. In such a case the data
in the buffer may not be the same as the data in the file.

SEE ALSO

create
crpipe
dup
dups
open
write

TSC 3/17/86

rump-l

rump

Create, destroy, access, or relinquish access to a named resource.

ASSEMBLY LANGUAGE SYNTAX

Expected

<function_code> in DO
<resource_name> in AO

Syntax Statement

sys rump

Arguments

<function_code>
<resource_name>

DESCRIPTION

The subfunction to perform.
The name of the resource to act on. It must
be a null-terminated character string
containing between 2 and 16 characters
(including the null character).

The "rump" (resource utilization management protocol) system call
provides a means of supplying exclusive access to physical resources
such as I/O devices and special shared memory. It does so by allowing
the user to create a named resource associated with a particular
physical resource. The association is purely in the mind of the user.
Because the operating system does not recognize the association between
the physical resource and the named resource, any user who does not know
of the existence of the named resource or who chooses to ignore its
existence can access the device directly. All users should, therefore,
be advised of the existence of any named resources so that they can
honor the protocol of asking for access to those resources before using
them.

The number of
system-dependent.

named resources that a system can support is

The "rump" system call supports four subfunctions. The following table
.shows the function code associated with each of these subfunctions:

TSC 3/17/86 (continued)

rump-2

Code Subfunction
'==c=======c==============

1 RUMP_ENQUEUE
2 RUMP_DEQUEUE
3 RUMP_CREATE
4 RUMP_DESTROY

A description of each of these subfunctions follows:

NOTES

RUMP_ENQUEUE Obtain exclusive access to the specified named
resource. If another task currently has access
to the resource, the operating system puts the
calling task to sleep until the resource
becomes available. If more than one task is
waiting for access to a resource, the operating
system provides access in the order in which
the requests were made.

RUMP_DEQUEUE Relinquish. access to the. specified named
resource.

RUMP_CREATE Create a named resource. This subfunction does
not provide access to the resource.

RUMP_DESTROY Destroy the specified named resource. Any
user, not only the user who created it, may
destroy a resource. A resource cannot.
however. be destroyed while any User has access
to it.

• Named resources are a vendor-dependent option and may not be
supported by all systems.

ERRORS REPORTED

EBADF
The user tried to relinquish access to a named resource but did not
have access to the specified resource.

EBSY
The user tried to destroy a named resource, but the specified
resource was in use.

EDFUL
The user tried to create a named resource, but the system is already
supporting as many resources as it can.

TSC 3/17/86 (continued)

rump-3

EFLX
The specified named resource already exists.

EINTR
The user tried to obtain access to a named resource, but the "rump"
system call terminated abnormally. The operating system returns
this error if a task invokes the RUMP_ENQUEUE subfunction on a busy
resource and receives an interrupt while it is waiting for the
resource. In such a case the subfunction aborts with no ill
effects. Thus, by using the RUMP_ENQUEUE subfunction in conjunction
with an alarm interrupt, the task may specify the maximum amount of
time to wait for a busy resource. .

ENOFL
The specified named resource does not exist.

TSC 3/17/86

sacct-l

sacct

Enable or disable system accounting procedures.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys sacct,<file_name>

Arguments

DESCRIPTION

The address of the null-terminated name of the
file to contain the data collected by the
accounting process. The specified file must
already exist. A null address ($0000) tells the
operating system to disable the accounting
procedures.

The "sacct" system call enables or disables the system's accounting
procedures. When the accounting procedures are enabled, the operating
system appends a record to the specified file each time a task
terminates. Each record is of the following structure, which is defined
in the file "/lib/sysacct". A tick is one one-hundredth of a second.

* Structure for accounting record

struct 0

2 User ID
4 Starting time of ,task
4 Ending time of task
3 System time used by task (in ticks)
3 User time used by task (in ticks)
2 Termination status of task
1 Number of terminal where task originated
I Maximum memory used by task (4K blocks)

acuid
acstrt
acend
acsyst
acusrt
acstat
actty
acmem
acblks
acspar
acname

ds.b
ds. b
ds.b
ds.b
ds. b
ds. b
ds. b
ds.b
ds. b
ds. b
ds. b

2 I/O units used (measure of blocks read or written)
2 Spare
8 Name of command executed by task

AC_SIZ ds.b 0 Size of accounting record

Only the system manager may invoke this system call.

TSC 9/2/86 (continued)

sacct-2

ERRO:a.S REPORTED

EBADF
The specified file is not a regular file.

EFLX
The system accounting procedures are already enabled.

ENOFL
No file on the system corresponds to the specified name.

EPRM
The current effective user is not the system manager.

TSC 9/.2/.86

seek-l

seek

Change the current file position of an open file.
\ : .. ~~

ASSEMBLY LANGUAGE SYNTAX

Expected

<f il e_des> in DO , .".,

Syntax Statement

sys seek,<count>,<pt_of_origin>

Returns

<new..,.position>

Arguments

The file descriptor of the file to
reposition.

<count> A four-byte, signed number specifying the
number of bytes to shift the current file
position from the point of origin (see
following argum,ent).

<pt_of_origin> A value indicating where in the file to begin
the specified shift. A value of 0 specifies
the beginning of the file; of 1, the current
position in the file; of 2, the end of the
file.

<new..,.position> The new current file position, which is
expressed as the number of bytes beyond the
beginning of the file. The first byte 'in the
file is byte o.

DESCRIPTION

The "seek" system call changes the current file position in the file
referenced by <file_des>. If the specified position is beyond the
current end of the file, the system sets the current file position
accordingly, but does not actually allocate any new blocks if the file
resides on a block device. A "read" system call returns null bytes for
the data in the resulting gap in the file.

TSC 3/17/86 (continued)

seek-2

ERRORS REPORTED

EBADF
The file descriptor ~,iqo~ r.fere~ce an open file or the file is
not open in the proper 11104 ••. .

EBARG
An argument to the .yat .. cal. i. invalid.

ESEEK
Either the requested file ,...ition is before the beginning of the
file or the file d,.cript~r references a file which cannot be
randomly accessed, such ai •. pipe.

SEE ALSO

create
dup
dups
open

TSC 3/17/86

setpr-1

setpr

Change the priority bias of the current task.

ASSEMBLY LANGUAGE SYNTAX

Expected

<priority_bias> in DO

Syntax Statement

sys setpr

Arguments

<priority_bias> If the current task is a non-real-time task,
<priority_bias> is a bias used by the system
scheduler for scheduling the sharing of the
CPU among several non-real-time tasks. If
the task is a real-time task,
<priority_bias> is a value used by the
scheduler to set the relative priority of
that task in case it must schedule the
sharing of the CPU among several real-time
tasks. In all cases the value of
<priority_bias> must be in the range of -25
to 25 inclusive. The operating system
ignores a value which is outside this range.
Only the system manager may use a negative
number.

DESCRIPTION

The "setpr" system call changes the priority bias of the current
non-real-time task or sets the priority of a real-time task.

The priority of a non-real-time task may range from -128 to 127, with a
task with a priority of -128 having the highest priority on the system;
one with 127, the lowest. The system determines the priority by summing
two values: a dynamic value, which it calculates based on what the task
is currently doing, and a static value, the priority bias, which is
initially O. If the Sum of these two components is less than -128, the
operating system sets the priority to -128; if greater than 127, to 127.
Two non-real-time tasks with the same priority alternate their use of
the CPU.

TSC 9/2/86 (continued)

setpr-2

The priority of a real-time task does ~ot include a dynamic component;
rather, it is fixed by the "setpr" 9r the "make_real time" system call.
Any real-time task has a higher priority than any non-real-time task.
Only a real-time task of higher priority can usurp the CPU from a
real-time task. .

ERRORS REPORTED

EPRM
The value specified for <l>riorit1_bias> is negative, but the current
effective user is not the system manager.

SEE ALSO

make_real time
yield_CPU

TSC 9/2/86

Load the specified value into the register for the hardware address
mask.

ASSEMBLY LANGUAGE SYNTAX

Expected

<address_mask> in DO

Syntax Statement

Arguments

<address_mask> A 32~bit value used to mask the high-order
byte of all addresses from the
microprocessor. The default is OxFFFFFFFF.
The user must supply a 32-bit value, but only
the high-order byte is significant. The
operating system sets bits 0 through 23
inclusive.

DESCRIPTION

The "set_high_address_mask" system call loads the specified value into
the register for the hardware address mask.

NOTES

• The operating system supports the "set_high_address_mask" system
call only on the Tektronix 4406.

TSC 3/17/86

spint-l

spint

Send an interrupt to a task.

ASSEMBLY LANGUAGE SYNTAX

Expected

<task_ID> in DO

Syntax Statement

sys spint,<interrupt>

Arguments

<interrupt>

DESCRIPTION

The task ID of the task to interrupt. A value
of 0 tells the operating system to send the
interrupt to all tasks associated with the
caller's controlling terminal. If <task_ID> is
-1 and the current effective user is the system
manager, the system sends the interrupt to all
tasks on the system except 0 and 1, which are
the scheduler and the initializer.
The kind of interrupt to send (see table).

The "spint" interrupt sends the specif ied interrupt to the task whose ID
I.S <task_ID> if that task has the same effective user as the ta&k
sending the interrupt or if the effective user of the calling task "is
the system manager. The file "/lib/sysints" defines the interrupts
whose names are shown in the table accompanying this document.

If not caught or ignored, the default behavior of each program interrupt
(except SIGDEAD and SIGDUMP) is to terminate the task to which it is
sent. As shown in the table, some also produce a "core dump". A core
dump, which is a file in the working directory called "core", contains
an image of the contents of the task's memory. Each byte in the program
and stack space is written to a disk file immediately after receipt of
the interrupt. The user can examine this file to determine the state of
memory at the time the interrupt was received. A core dump is often
useful for diagnostic purposes. The operating system will not create
such a file.if the working directory contains a file named "core" which
denies write permission to the current effective user or if the working
directory denies write permission to the current effective user. -

TSC 9/2/86 (continued)

spint-2

Table 1. Table of Interrupts

Name

SIGHUP
SIGINT
SIGQUIT
SIGEMl'
SIGKlLL
SIGPIPE
SIGSWAP
SIGTRACE
SIGTIME
SIGALRM
SIGTERM
SIGTRAPV
SIGCHK
SIGEMT2
SIGTRAPI
SIGTRAP2
SIGTRAP3
SIGTRAP4
SIGTRAP5
SIGTRAP6
SIGPAR
SIGILL
SIGDIV
SIGPRIV
SIGADDR
SIGDEAD
SIGWRIT
SIGEXEC
SIGBND
SIGUSRI
SIGUSR2
SIGUSR3
SIGABORT
SIGSPLR
SIGINPUT
SIGDUMP

SIGUNORDERED

SIGINEXACT
SIGFPDIVIDE
SIGUNDERFLOW
SIGOPERAND
SIGOVERFLOW
SIGSNAN

Number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37-41
42

43
44
45
46
47
48

49-63

Description

Hangup
Keyboard
Qu{t
A-line (Axxx) emulation trap
Task kill
Broken pipe
Swap error
Trace
Time limit
Alarm
Task terminate
TRAP V instruction
CHK instruction
F-line (Fxxx) emulation trap
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6-14 instruction
Parity error
Illegal instruction
Division by 0
Privileged instruction

< Addr ess error
A child task terminated
Write to read-only memory
Da~a or s~ack space violation
Segmentation violation
User-defined interrupt #1
User-defined interrupt #2
User-defined interrupt #3
Program abort
Spooler signal
Input is ready
Take memory dump
System-defined interrupts
MC68881 branch or set on
unordered operand
MC68881 inexact result
MC68881 division by 0
MC68881 underflow
MC68881 invalid operand
MC68881 overflow
MC68881 signaling not-a-number
Vendor-defined interrupts

A C D I R

+ + - + +
+ + - + +
+ + + + +
+ + + + +
+ - - - +
+ + - + +
+ + - - +
+ + - + -
+ + + - +
+ + - + +
+ + - + +
+ + + + +
+ + + + +
+ + + + +
+ ++ + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + + +
+ + + - <+
+ + + - +
+ + + + +
+ + + - +
+ + + - +
- + - + +
+ + + - +
+ + + - +
+ + + - +
+ + - + +
+ + - + +
+ + - + +
+ - - - +
+ + - + +
+ + - + +
o + + + +

+ + - + +

+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +
+ + - + +

--~------
Notes: A = Default state is "abort" (otherwise, "ignore")

C = Interrupt can be caught
D = Produces a core dump
I = Interrupt can be ignored
R = Resets to default state when triggered
o = See text < (continued)

spint-3

The default action for the SIGDUMP interrupt is to create a core dump
and return control to the task. The task is not terminated.

A vendor may use a TRAP instruction with a number greater than 6. In
such a case the user should not issue the instruction.

User-defined interrupts are available to the end user.

NOTES

• A controlling terminal is normally the terminal' that started the
task or one of the task's ancestors. A task can change its
controlling terminal by closing all files that refer to terminals
and then opening a terminal device. This device becomes the
controlling terminal •

• The SIGTlME interrupt is not currently implemented.

ERRORS REPORTED

EBARG
The value of <interrupt> is not a valid interrupt number.

ENTSK
The value of <task_ID> is not a valid task ID.

EPRM
The current effective user is neither the system manager nor the
current effective user of the specified task.

SEE ALSO

cpint

TSC 3/17/86

stack-1

stack

Extend the stack space of the current task.

ASSEMBLY LANGUAGE SYNTAX

Expected

<address> in AO

Syntax Statement

sys stack

Arguments

<address>

DESCRIPTION

The address to which to extend the stack. If
<address> is greater than the address that LS

currently the end of the stack, the task
relinquishes to the operating system all memory up
to and including <address>.

The "stack" system call extends the stack space of the current task.
Initially the operating system assigns between 100 and 3,000 bytes to
the stack, depending on the number of arguments passed with the "exec"
system call.

ERRORS REPORTED

ESTOF
The stack space of the current task is as large as it can "get. The.
user can change the maximum size of the program with the "headset"
command.

EVFORK
The current task shares its memory with its parent and may not
invoke this system call.

SEE ALSO

break
Commands: headset

TSC 3/17/86

Specify a limit to the task's stack segment.

ASSEMBLY LANGUAGE SYNTAX

Expected

<address> in AO

Syntax Statement

sys stack_limit

Returns

<previous_limit> in DO

Arguments

<address>

<previous_limit>

DESCRIPTION

The desired lowest address for the stack.
The operating system truncates the
specified value to the address of the
first byte in the page containing
<address>. Specifying an address of a
removes the limit on the size of the
stack. If the specified address is in a
page that is higher than the page
currently referenced by the stack
pointer, the operating system immediately
sends the task a SIGEXEC interrupt.
The value of the previous stack limit.
The system call returns 0 if no previous
stack limit was in effect.

The "stack_limit" system call sets a lower limit on the growth of the
program's stack segment. The specified value is truncated to the lowest
address in the page. If the operating system attempts to allocate a
page of memory for the stack which is below the limit" the memory is not
allocated and a SIGEXEC interrupt is sent to the task.

NOTES

• The operating system checks the stack limit only when processing the
"stack" system call or expanding the task' s logic~l address space as
part of the automatic growth of the stack. If the memory page

TSC 9/2/86 (continued)

immediately below the stack limit is already part of the task's
logical address space the limit is checked only when processing the
"stack" system call. If the user is raising the stack limit, it is
good programming practice to issue a "stack" system call with the
same argument as passed to the "stack_limit" system call in order to
remove those stack pages that are below the stack limit from the
task's logical address space.

ERRORS REPORTED

EBARG
The specified address is larger than the maximum valid value for the
stack.

SEE ALSO

stack

TSC 9/2/86

status-l

status

Get the status of a file.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys status.<file_name>.<buf_add>

Arguments

The address of the null-terminated name of the
file to examine.

DESCRIPTION

The address of the buffer to contain
information on the status of the file.

the

The "status" system call writes to <buf_add> the information describing
the status of the file referenced by <file_name>. The file
"/lib/sysstat" defines the structure of this buffer as follows:

* Definition of buffer for "status" and "of stat"

base 0 Set initial values

st_mod
stJrm
st_cnt
st_own
st_siz
st_mtm
st_spr

ds. w 1
ds.w 1
ds.b 1
ds. b 1
ds. b 1
ds. b 1
ds. w 1
ds. I 1
ds. 1 1
ds. b 4

ds.w 0

Device number
Fdn number
Filler
File mode
Permission bits
File link count
File owner's user ID
File size in bytes
Time of file's last modification
Spare--for future use only

Size of status buffer

The value of "st_dev" is the device number of the device contalnlng the
file referenced by <file_des>; "st_fdn" is the file descriptor number
(fdn) of the specified file. The variable "st_mod" is an 8-bit mask
describing the type of the file; the low-order bit is ignored. The
following table shows the valid values for this mask and the type of
file associated with each value. The file "/lib/sysstat" defines the
constants whose names are shown in parentheses.

TSC 9/2/ 86 (continued)

status-2

Type of File
===
OOOOOOOx
OOOOOOlx
OOOOOlOx
0000100x
1000011x
OOOOOllx
0100000x

Regular file (FSREG)
Blo'ck device (FSBLK)
Character device (FSCHR)
Directory (FSDIR)
Master pseudoterminal (FSMPTY)
Slave pseudoterminal (FSSPTY)
Pipe (FSPIPE)

The variable "st-prm" is an 8-bit mask describing the access permissions
for the file. The following table shows the type of permission that is
associated with each bit in the mask. The file "/lib/sysstat" defines
the constants whose names are shown in parentheses. Any combination of
bits is valid.

Permission Assigned
===
00000001
00000010
00000100
00001000
00010000
00100000
01000000

Owner read permission (FACUR)
Owner write permission (FACuW)
Owner execute permission (FACUE)
Others read permission (FACOR)
Others write permission (FACOW)
Others execute permission (FACOE)
Set user-ID bit for execute (FXSET)

If the specified file is a directory, FACUE grants permissions to the
user who owns the file to search the directory for the name of a file;
FACOE grants the same permission to other users. When the user-ID bit
is set, the operating system grants to any user who executes the file
the same permissions as it grants to the owner of the file for the
duration of the task.

The value of "st_cnt" is the number of links to the specified file;
"st_own" is the user ID of the owner of the file; IIst_siz ll is the number
of bytes in the file; IIst_mtm" is the time (expressed as the number of
seconds that had elapsed since midnight (00:00), January 1, 1980) the
file was last modified; "st_spr" is currently unused.

ERRORS REPORTED

EMS DR
The path to <file_name> cannot be followed.

ENDR
A part of the path to <file_name> is not a directory.

TSC 9/2/86 (continued)

status-3

ENOFL
No file on the system corresponds to the specified name.

SEE ALSO

of stat

TSC 3/17/86

stime

Set the system date and time.

ASSEMBLY LANGUAGE SYNTAX

Expected

<time> in DO

Syntax Statement

sys stime

Arguments

<time> The number of seconds that have
midnight (00:00), January 1, 1980,
meridian (Greenwich, England).

DESCRIPTION

elapsed
at the

stime-l

since
zeroth

The "stime" system call sets the system time and date to the value
specified by <time>.

Only the system manager may invoke this system call.

NOTES

• The operating system converts <time> to the system time based on its
perception of the time zone, which by default is 300 minutes west of
Greenwich, England. The system manager may use the "tune" command
to alter the time zone.

ERRORS REPORTED

EPRM
The current effective user is not the system manager.

SEE ALSO

Commands: date, tune

TSC 3/17/86

stop-1

stop

Suspend the current task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys stop

DESCRIPTION

The "stop" system call suspends the current task indefinitely. The
system call returns only if the task receives an interrupt, catches it,
and returns from the interrupt-handling routine. If "stop" does return,
it always returns the error EINTR.

ERRORS REPORTED

EINTR
If the "stop" system call returns, it returns this error.

SEE ALSO

alarm
cpint
spint

TSC 3/17/86

suid-l

suid

Set both the user ID and the effective user ID.

ASSEMBLY LANGUAGE SYNTAX

Expected

<user_ID> in DO

Syntax Statement

sys suid

Arguments

The user ID to assign to both the user and the
effective user.

DESCRIPTION

The "suid" system call sets the user ID of both the user and the
effective user. At the time the task invokes the system call, either
the user or the effective user must be the system manager.

ERRORS REPORTED

EPRM
Neither the user nor the effective user is the system manager.

SEE ALSO

guid

TSC 3/17/86

term

Terminate the current task.

ASSEMBLY LANGUAGE SYNTAX

Expected

<term_status> in DO

Syntax Statement

sys term

Arguments

DESCRIPTION

The termination
as it terminates.
indicate an error.

term-l

status to assign to the task
A nonzero status should

The "term" system call terminates the current task. It never returns to
the caller. The termination status is available to the parent task
through the "wai til system call.

SEE ALSO

wait

TSC 3/17/86

I

I

I I

I I

I I

II

II

!I

time

Get the system time and other related parameters.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys time,<buf_add>

Arguments

DESCRIPTION

The address of the buffer to contain
information obtained by the system call.

time-1

the

The "time" system call returns the
parameters to the specified buffer.
structure of the buffer at <buf_add>

system time and several related
The file "/lib/systim" defines the

as follows:

* Buffer for "time"

base 0

tm_sec ds. I 1 Time in seconds since 00:00, January 1, 1980
tm_tik ds. b 1 Number of ticks into the current second
tm_dst ds. b 1 Flag for Daylight Savings Time
tm_zon ds.w 1 Time zone

TM_SIZ ds.w 0 Size of buffer

The operating system stores the time as a 4-byte value, "tm_sec", which
represents the number of seconds that have elapsed since midnight
(00:00), January 1, 1980, at the zeroth meridian (Greenwich, England).
The value in "tm_tik" represents the number of ticks that had passed in
the current second when the system call was invoked. Each tick
represents one one-hundredth of a second.

The Daylight Savings Time flag, "tm_dst" indicates whether or not
Daylight Savings Time is observed locally. A value of 0 indicates that
it is not; a value of 1, that it is. The default value is O. The
operating system assumes that Daylight Savings Time begins and ends
according tOo the dates used in the United States--the last Sunday in
April and the last Sunday in October. The system manager may al~er the
value of "tm_dst" with the "tune" command.

TSC 9/2/86 (continued)

time-2

The value stored in "tm_zon" represents the time difference in minutes
between local time and Universal Time. A positive value of "tm_zon"
indicates the number of minutes west of Greenwich, England; a negative
value, the number of minutes east. The default value is 300. The
system manager may alter the value of "tm_zon" with the "tune" command.

SEE ALSO

Commands: tune

TSC 9/2/86

Set the size of an open file.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys truncate

Arguments

<file_des> The file
alter. It

DESCRIPTION

truncate-l

truncate

descriptor of the file whose size to
must reference a regular file.

The "truncate" system call sets the size of the file refe'renced by
<file_des> so that its end-of-file is the current file pos1t10n. The
file must be open for writing. If the current file position is before
the existing end-of-file, the system call truncates the file. If the
current file position is beyond the existing end-of-file, the system
call extends the file. When "truncate" extends a file, it does not
actually allocate any new blocks if the file resides on a block device.
A "read" system call returns null bytes for the data in the resulting
gap in the file.

NOTES

• If <f He_des> references a device or a pipe, the "truncate" system
call does nothing.

ERRORS REPORTED

EBADF
The file descriptor does not reference an open file, or the file is
not open for writing.

EBARG
An argument to the system call 1S invalid.

TSC ,3/17/86 (continued)

truncate-2

EISDR
The file referenced by <file_des> is a directory.

SEE ALSO

seek

TSC 3/17/86

ttime-l

ttime

Get the information on the use of the CPU by the current task and its
child tasks.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys ttime,<buf_add>

Arguments

<buf.-:.add> The address of the buffer to contain the
information obtained by the system call.

DESCRIPTION

The "ttime" system call obtains information about the use of the central
processing unit (CPU) by the current task, by the operating system on
behalf of the current task, by all child tasks, and by the operating
system on behalf of all child tasks. The operating system continuously
updates the information about usage of the CPU by the current task and
by the operating system on behalf of the current task. It updates the
information about usage of the CPU by child tasks and by the operating
system on behalf of all child tasks whenever a child task terminates.

The following table shows the structure of the buffer at <buf_add> as
defined in the file" /lib/systim". All numbers represent ticks. A tick
is one one-hundredth of a second.

* Buf f er for "t time"

base 0

ti_usr
ti_sys
ti_chu
ti_chs

TM_SIZ

SEE ALSO

fork
vfork

TSC 9/2/86

ds. I
ds. I
ds. I
ds. I

ds.w

I CPU use
1 CPU use
1 CPU use
1 CPU use

0 Size of

by current task
by system on behalf of current task
by all descendants of current task
by system on behalf of all descendants

buffer for "ttime"

ttyget-l

ttyget

Get information on the configuration of a terminal.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys ttyget,<buf_add>

Arguments

<file_des> The file descriptor of the file associated with
the terminal to examine.

<buf _add> The address of the buffer to contain the
information about the conf iguration of the
specified terminal.

DESCRIPTION

The "ttyget" system call obtains information about the configuration of
the terminal referenced by <file_des> and writes that information into
the buffer at <buf_add>. The file "/lib/systty" defines the structure
of this buffer as follows:

* Definition of buffer for "ttyset" and "ttyget"

base 0

tt_flg ds.b 1 Flags
tt_dly ds.b 1 Delays
tt_cnc ds. b 1 Line-cancel character (defaul t is control-X)
tt_bks ds. b 1 Backspace character (default is control-H)
tt_spd ds. b 1 Terminal speed
tt_spr ds. b 1 Stop output byte

TT_SIZ ds.w 0 Size of buffer

The information contained in the "first byte of the buffer, "tt_flg",
describes the way in which the terminal handles input and output. The
following table shows the type of behavior governed by each bit. The
file "/lib/systty" defines the constants whose names are shown 1.n
parentheses. Any combination of bits is valid.

TSC 9/2/86 (continued)

ttyget-2

Bit Pattern Behavior
==

00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

Raw I/O mode (RAW)
Echo input (ECHO)
Expand tabs on output (XTABS)
Map upper- to lowercase (LCASE)
Automatic line-feed (CRMOD)
Echo backspace-echo character (BSECH)
Single-character input mode (SCHR)
Ignore control characters

These modes are described in detail in Section 6.2 of the 68xxx UniFLEX
Programmer'~ Guide.

The information contained in the second byte of the buffer, "tt_dly",
defines the length of the delay the system uses after outputting a
new-line character, a carriage return, a tab character, a vertical tab
character, or a form-feed character. A delay is useful in cases where a
slow output device such as a teleprinter, which requires a delay for
carriage returns, is attached to the system. The following table shows
the kind of delay implemented by each bit. Any combination of bits is
valid although the system ignores bits 6 and 7.

Bit Pattern Kind of Delay Affected Length of Delay (msec)
===

00000001 New-line 10
00000010 New-line 20
00000100 Carriage return 10
00001000 Carriage return 20
00010000 Tab 20
00100000 Vertical tab 240

The file "/lib/systty" defines certain combinations of bits in the delay
byte as follows:

Bit Pattern Constant Kind of Delay Length of Delay (msec)
==
00000011
00001100
00010000
00100000
00100000

DELNL
DELCR
DELTB
DELVT
DELFF

New-line
Carriage
Tab
Vertical
Form-feed

return

tab

30
30
20

240
240

The third and fourth bytes of the buffer define the line-cancel and
backspace characters. The default line-cancel character is control-X;
the default backspace, control-H.

TSC 9/2/86 (continued)

ttyget-3

The fifth byte of the "ttyset" buffer is the terminal speed byte. This
byte presently implements only four bits. Bits 2, 3, and 4 define the
configuration of the terminal; bit 7 1S a flag which, when set,
indicates that the terminal has input characters waiting to be consumed
by the program. This bit is only meaningful when read--that is, t"he
input-ready condition should not be set with the "ttyset" system call.
A picture of this byte follows. The file "/lib/systty" defines the
constant INCHR.

Terminal speed byte (tt_spd):

!7!6!5!4!3!2!1!O!

spare
spare
first bit of terminal configuration
second bit of terminal configuration
third bit of terminal configuration
spare
spare
input ready to be consumed (INCHR)

Under normal input operations the "input ready to be consumed" bit does
not come on until an entire line has been input and terminated by a
carriage return. There are special input modes which can be
established, however, where the "input ready to be consumed" bit will
come on as soon as a single character is input. These modes, "raw I/O
mode" and "single character input mode" are described in Section 6.2 of
the 68xxx UniFLEX Programmer'~ Guide.

The following table shows the configuration of the terminal for all
possible settings of the terminal configuration bits:

Terminal Configuration
(Bit Pattern)

Data Bits Stop Bits Parity

===

000 7 2 Even
o 0 1 7 2 Odd
010 7 1 Even
011 7 1 Odd
1 0 0 8 2 None
1 0 1 8 1 None
110 8 1 Even
III 8 1 Odd

TSC 9/2/86 (continued)

ttyget-4

The last byte in the "ttyset" buffer is the stop output byte, which
defines the baud rate and which characters may be used to stop and start
output. A user may stop and start output to a terminal by one of two
methods: using the escape key or using XON/XOFF processing.

The escape key method permits a user to type an escape character
(hexadecimal 1B) to stop output. A subsequent escape character restarts
the output. The XON/XOFF method permits a user to type an XOFF
character (hexadecimal 13) to stop output and a subsequent XON character
(hexadecimal 11) to restart it. Many terminals produce XON and XOFF
characters automatically to prevent the computer from sending too many
characters to the terminal at once. The escape and XON/XOFF mechanisms
can be independently enabled or disabled by setting or clearing the
appropriate bits in the byte "tt_spr". A picture of the byte follows.
The file "/lib/systty" defines the constants whose names are shown in
parentheses.

Stop output byte (tt_spr):

--------------------------~------
!7!6!5!4!3!2!1!0!

first bit of baud rate
second bit of baud rate
third bit of baud rate
fourth bit of baud rate
spare
any character restarts output (XANY)
enable XON/XOFF for output (XONXOF)
disable escape for output (ESCOFF)

If XANY LS in effect, the terminal drivers restart output stopped by
either an escape or an XOFF character when the user types any character.

The following table shows the baud rate defined by all possible settings
of the first four bits of the stop output byte:

Bit Pattern Baud Rate Bit Pattern Baud Rate
===

o 000 1 o 0 0 1200
o 0 0 1 75 1 0 o 1 1800
001 0 110 1 0 1 0 12400
001 1 134.5 1 011 3600
o 1 0 0 150 1 100 4800
o 1 0 1 200 1 1 0 1 7200
o 1 1 0 300 1 110 9600
o 1 1 1 600 1 111 19200

TSC 9/2/86 (continued)

ttyget-S

Not all hardware supports all of these baud rates, and not all hardware
allows the dynamic changing of baud rates.

ERRORS REPORTED

EBADF
The file descriptor does not reference an open file.

EBARG
An argument to the system call is invalid.

EN TTY
The file referenced by <file_des> is not a character device.

SEE ALSO

ttyset
68xxx UniFLEX Programmer'~ Guide

TSC 9/2/86

ttynum-l

ttynum

Get the terminal number of the task's controlling terminal.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys ttynum

Returns

Arguments

DESCRIPTION

The number of the task's controlling terminal.
The controlling terminal is normally the terminal
that started the task or one of the task's
ancestors. A task can change its controlling
terminal by closing all files that refer to
terminals and then opening a terminal device.
This device becomes the controlling terminal.

The "ttynum" system call returns the number of the task's controlling
terminal. If the task has no controlling terminal (standard input,
standard output, and standard error are all closed), the system call
returns O. Of course, "ttynum" also returns·O if the controlling
terminal is "/dev/ttyOO", the console. It is impossible to distinguish
between these two cases.

TSC 3/17/86

ttyset-l

ttyset

Set the configuration of a terminal.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys ttyset,<buf_add>

Arguments

<file_des> The file descriptor of the file associated with
the terminal to alter.

<buf _add> The address of the buffer containing the
information about how to set the configuration of
the specified terminal.

DESCRIPTION

The "ttyset" system call reads the information in the buffer at
<buf_add> and changes the configuration of the terminal referenced by
<file_des> accordingly. Normally, the user should invoke the "ttyget"
system call prior to the "ttyset" system call in order to obtain
information about' the current configuration of the terminal. The
desired bits should be set or cleared using the logical operators "and"
and "or". The file "/lib/systty" defines the structure of this buffer
as follows:

* Definition of buffer for "ttyset" and "ttyget"

base 0

tt_flg ds. b 1 Flags
tt_dly ds.b 1 Delays
tt_cnc ds. b 1 Line-cancel character (default is control-X)
tt_bks ds. b 1 Backspace character (default is control-H)
tt_spd ds. b 1 Terminal speed
tt_spr ds.b 1 Stop output byte

TT_SIZ ds.w 0 Size of buffer

The information contained in the first byte of the buffer, "tt_fig" ,
describes the way in which the terminal handles input and output. The

TSC 9/2/86 (continued)

ttyset-2

following table shows the type of behavior governed by each bit. The
file "/lib/systty" defines the constants whose names are shown in
parentheses. Any combination of bits is valid.

Bit Pattern Behavior
===
00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000

Raw I/O mode (RAW)
Echo input (ECHO)
Expand tabs on output (XTABS)
Map upper- to lowercase (LCASE)
Automatic line-feed (CRMOD)
Echo backspace-echo character (BSECH)
Single-character input mode (SCHR)
Ignore control characters

These modes are described in detail in Section 6.2 of the 68xxx UniFLEX
Programmer'~ Guide.

The information contained In the second byte of the buffer, "tt_dly" ,
defines the length of the delay the system uses after outputting a
new-line character, a carriage return, a tab character, a vertical tab
character, or a form-feed character. A delay is useful in cases where a
slow output device such as a teleprinter, which requires a delay for
carriage returns, is attached to the system. The following table shows
the kind of delay implemented by each bit. Any combination of bits is
valid although the system ignores bits 6 and 7.

Bit Pattern Kind of Delay Affected Length of Delay (msec)
==
00000001 New-line 10
00000010 New-line 20
00000100 Carriage return 10
00001000 Carriage return 20
00010000 Tab 20
00100000 Vertical tab 240

The file" /lib/systty" defines certain combinations of bits in the delay
byte as follows:

Bit Pattern Constant Kind of Delay Length of Delay (msec)
==
00000011 DELNL
00001100 DELCR
00010000 DELTB
00100000 DELVT
00100000 DELFF

TSC 9/2/86

New-line
Carriage return
Tab
Vertica 1 tab
Form-feed

30
30
20

240
240

(continued)

ttyset-3

The third and fourth bytes of the buffer define the line-cancel and
backspace characters. The default line-cancel character is control-X;
the default backspace, control-H.

The fifth byte of the "ttyset" buffer is the terminal speed byte. This
byte presently implements only four bits. Bits 2, 3, and 4 define the
conf iguration of the terminal; bit 7 is a flag which, when set,
indicates that the terminal has input characters waiting to be consumed
by the program. This bit is only meaningful when read--that is, the
input-ready condition should not be set with the "ttyset" system call.
A picture of this byte follows.

Terminal speed byte (tt_spd);

!7!6!5!4!3!2IlI0!

spare
spare
first bit of terminal configuration
second bit of terminal configuration
third bit of terminal configuration
spare
sPare
Cannot be set by the user

Under normal input operations the "input ready to be consumed" bit does
not come on until an entire line has been input and terminated by a
carr1age return. There are special input modes which can be
established, however, where the "input ready to be consumed" bit will
come on as soon as a single character is input. These modes, "raw I/O
mode" and "single character input mode" are described in Section 6.2 of
the 68xxx UniFLEX Programmer'~ Guide.

The following table shows the configuration of the terminal for all
possible settings of the terminal configuration bits;

Terminal Configuration
(Bit Pattern)

Data Bits Stop Bits Parity

===

o 0 0 7 2 Even
o 0 1 7 2 Odd
o 1 0 7 1 Even
0 1 1 7 1 Odd
1 o 0 8 2 None
1 o 1 8 1 None
1 1 0 8 1 Even
1 1 1 8 1 Odd

TSC 9/2/86 (continued)

ttyset-4

The last byte in the "ttyset" buffer is the stop output byte, which
defines the baud rate and which characters may be used to stop and start
output. A user may stop and start output to a terminal by one of two
methods: using the escape ke~ or using XON/XOFF processing.

The escape key method permits a user to type an escape character
(hexadecimal IB) to stop output. A subsequent escape character restarts
the output. The XON/XOFF method permits a user to type an XOFF
character (hexadecimal 13) to stop output and a subsequent XON character
(hexadecimal 11) to restart it. Many terminals produce XON and XOFF
characters automatically to prevent the computer from sending too many
characters to the terminal at once. The escape and XON/XOFF mechanisms
can be independently enabled or disabled by setting or clearing the
appropriate bits in the byte "tt_spr". A picture of the byte follows.
The file "/lib/systty" defines the constants whose names are shown J.n
parentheses.

Terminal output byte (tt_spr):

17!6!5!4!3!211.101

first bit of baud rate
second bit of baud rate
third bit of baud rate
fourth bit of baud rate
spare
any character restarts output (XANY)
enable XON/XOFF for output (XONXOF)
disable escape for output (ESCOFF)

When XANY is in effect, the terminal drivers restart output stopped by
either an escape or anXOFF character when the user types any character.

The following table shows the baud rate defined by all possible settings
of the first four bits of the stop output byte:

Bit Pattern Baud Rate Bit Pattern Baud Rate
===

o 000 1 000 1200
o 0 0 1 75 1 001 1800
001 0 110 1 010 2400
001 1 134.5 1 011 3600
o 1 0 0 150 1 100 4800
o 1 0 1 200 1 1 0 1 7200
o 1 J 0 300 1 1 1 0 9600
o 1 1 1 600 1 III 19200

TSC 9/2/86 (continued)

ttyset-S

Not all hardware supports all of these baud rates, and not all hardware
allows the dynamic changing of baud rates.

ERRORS REPORTED

EBADF
The file descriptor does not reference an open file.

EBARG
An argument to the system call is invalid.

ENTTY
The file referenced by <file_des> is not a character device.

SEE ALSO

ttyget
68xxx UoiFLEX Programmer'~ Guide

TSC 9/2/86

unlink-l

unlink

Remove a link to a file.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys unlink,<file_name>

Arguments

The address of the null-terminated name to
unlink.

DESCRIPTION

The "unlink" system call removes the entry specified by <file_name> from
its parent directory. If that entry was the only one on the system that
referenced the file (i.e., the link count is 0 after the link is
removed) and the file is closed, the operating system deletes the file.
If the system call removes the last link to an open file, the operating
system postpones deleting the file until it is closed.

The current effective user must have write permission in the directory
containing the specified file.

ERRORS REPORTED

EMSDR
The path to <file_name> cannot be followed.

ENDR
A part of the path to <file_name> is not a directory.

ENOFL
No file on the system corresponds to the specified name.

EPRM
The directory containing the specified file does not grant write
permission to the current effective user.

SEE ALSO

link
Commands: diskrepair

TSC 3/17/86

unmnt-l

unmnt

Unmount the medium in a device.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys unmnt,<dev_name>

Arguments

The address of the null-terminated name of the
device containing the medium to unmount. The
specified device must be a block device.

DESCRIPTION

The "unmnt" system call unmounts the medium in the specified block
device from a node of the directory tre'e. If the indicator that the
medium is mounted for reading and writing is set, the "unmn,t" system
call clears it.

Only the system manager may invoke this system call.

NOTES

• A medium that was mounted for reading and writing but was not
unmounted correctly cannot be mounted again until it has been
repaired by the "diskrepair" command.

ERRORS REPORTED

EBDEV
The argument <dev_name> does not reference a device.

EBSY
A file on the medium Ln the specified device is currently open or a
task has a directory on the medium as its working directory.

EMS DR
The path to <file_name> cannot be followed.

ENMNT
The medium in the specified device is not mounted.

TSC 3/17/86 (continued)

unmnt-2

ENOFL
No file on the system corresponds to the specified name.

EPRM
Only the system manager may invoke this system call.

SEE ALSO

mount
Commands: diskrepair

TSC 3/17/86

update-l

update

Update all disks on the system.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys update

DESCRIPTION

The "update" system call writes all data in memory that are destined for
a disk to the appropriate disk.

TSC 3/17/86

urec-l

urec

Remove an entry from the operating system's lock table.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys urec

Arguments

DESCRIPTION

The file descriptor for the file containing the
record to unlock.

The "urec" system call removes from the operating system's lock table
the current task's entry for the open file referenced by <file_des>.

The operating system removes all entries a task makes in the lock table
when the task terminates.

ERRORS REPORTED

EBADF
The file descriptor does not reference
references a pipe, a character device,
pseudotermina 1.

EBARG
An argument to the system call is invalid.

SEE ALSO

lrec

TSC 3/17/86

an open file,
a block device,

or
or

it
a

vfork

Create a new task.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys vfork

Returns

To parent task: <child_task's_ID> in DO
To child task: 0 in DO

Arguments

vfork-l

The task ID assigned to the child task.

DESCRIPTION

The "vfork" system call creates a new task (the child task) that is a
copy of the current task (the parent task). This system call, which is
available only on systems with virtual memory, is more efficient than
the "fork" system call because the child task shares the parent task's
user-accessible memory. After invoking "vfork", the parent task sleeps
until the child task either terminates or invokes the "exec" or "exece"
system call.

The child task has the same priority, user ID, effective user-ID,
controlling terminal information, default permissions-mask, working
directory, signal handling set-up, profiling information, and
user-accessible memory as the parent task. However, it differs from the
parent task in the following ways: its task ID is different; its parent
task-ID is the task ID of the parent task; its file descriptors are the
same, but they are located in a different place in memory; its system
and user CPU times are set to O. The child task may neither change the
size of its memory nor invoke the "memman", "fork", or "vfork" system
call.

The operating system prevents the parent task from executing until the
child task executes an "exec" or an "exece" system call or until the
child task terminates. The parent task then resumes execution 2 bytes
after the "vfork" call. Obviously, then, the first instruction in the
new task must be a short branch (requiring only 2 bytes). Each task
determines where to resume by looking at the contents of the DO register
immediately after execution of the "vfork" call.

TSC 3/17/86 (continued)

vfork-2

NOTES

• The user should make sure that the child task does
stack frame in any way or change data that the
expect to change. • If invoked on a system that
virtual memory, the "vfork" sy.stE!lIl call behaves
system call.

ERRORS REPORTED

ETMTS

not alter the
parent does not
does not have
like the "fork"

Either the maximum number of tasks allowed to a user or the maximum
number of tasks allowed to the operating system has been reached.
The system manager can alter either or both of these limits with the
"tune" couunand up to the system-dependent maxima.

EVFORK
The current task shares its memory with its parent and may not
invoke this system call.

SEE ALSO

fork

TSC 3/17/86

wait-l

wait

Suspend the task until a child task terminates.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

sys wait

Returns

<task_ID> in DO
<term_status> in AO

Arguments

<task_ID>
<term_status>

DESCRIPTION

The task ID of the terminated child task.
The termination status of the terminated child
task. If the "term" system call terminated
the task, the upper byte of the word is 0, and
the lower byte has the value that was in the
DO register when "term" was invoked (1. e.) the
termination status set by "term"). If the
system terminated the child task abnormally)
the upper byte is nonzero. The low-order 7
bits of this byte contain the number of the
signal that terminated the task. The
high-order bit is 1 if the system produced a
core dump; 0, if it did not. The value of the
lower byte is unpredictable.

The "wait" system call suspends the task until a child task terminates.
If more than one child task has terminated-at the time the task invokes
the system call, the user cannot determine ahead of time to which task
the values returned refer.

ERRORS REPORTED

ENCHD
No child tasks are active.

EINTR
The task caught an interrupt which caused this system-call to
terminate abnormally.

TSC 3/17/86 (continued)

wait-2

SEE ALSO

cpint

TSC 3/17/86

write-l

write

Write data to an open file.

ASSEMBLY LANGUAGE SYNTAX

Expected

<file_des> in DO

Syntax Statement

sys write,<buf_add>,<count>

Returns

<bytes_written>

Arguments

<count>

<bytes_written>

DESCRIPTION

The address of the null-terminated name of
the file to which to write.
The address of the buffer containing' the
data to write.
The number of bytes of data to write from
the buffer to the file.
The number of bytes of data actually written
to the file.

The "write" system call writes data from the buffer at <buf_add> to the
file referenced by <file_des>. It writes at most <count> bytes of data.
The system call may write less data than requested if it is writing to a
slow device, such as a terminal, and the task catches an interrupt.

The "write" system call is most efficient when both <buf_add> and
<count> are multiples of 512.

ERRORS REPORTED

EBADF
The file descriptor does not reference an open file.

EBARG
An argument to the system call is invalid.

TSC 3/17/86 (continued)

write-2

EDFUL
The device containing the specified file is full.

EINTR
The task caught an int~rrupt, which caused the system call to end
abnormally.

EIO
The operating system returned an I/O error.

EPIPE
The system call attempted to write to a broken pipe (a pipe whose
file descriptor for reading is closed.

SEE ALSO

read

TSC 3/17/86

yield the CPU to another task of equal priority.

ASSEMBLY LANGUAGE SYNTAX

Syntax Statement

DESCRIPTION

The "yield_CPU" system call yields the central processing unit (CPU) to
another task of equal priority if such a task is waiting to execute.
The ability to yield the CPU is especially important for real-time tasks
but may also be of some use to non-real-time tasks.

Normally, the operating system lowers the priority of a non-real-time
task as time passes so that all tasks can have more or less equal access
to the system's resources. The system does, however, increase the
priority of a task that has been suspended. For instance, if a task
requests information from a file and the operating system must fetch
that information from a disk, the system suspends the task until the
information 1S transferred from the disk to memory. Once the
information is available, the operating system wakes the task and
increases its priority. A task that performs many I/O operations may
take over the system as its priority is repeatedly increased unless it
deliberately surrenders the CPU with the "yield_CPU" system call.

Real-time tasks have fixed priorities, and any real-time task has a
higher priority than any non-rea1-time task. Therefore, unless a
real-time task requests a service from the operating system which causes
the system to put the task to sleep, the task can continue to execute
until a real-time task of higher priority usurps the CPU. The
"yield_CPU" system call allows two or more real-time tasks with the same
priority to share the CPU.

NOTES

• If a task tries to execute when the CPU is in use by a task of equal
or higher priority, the operating system places the task at the end
of a queue of tasks of equal priority. When a task yields the CPU,
the operating system places that task at the end of the queue of
tasks of the same priority and executes the first task in that
queue. Thus, if no tasks of equal priority are in the queue when
the task invokes "yield~CPU", the system cal1 has no obvious effect.

TSC 9/2/86 (continued)

SEE ALSO

make_realtime

TSC 9/2/86

