
68xxx
UnifLEX®
Relocating
Allembler &
Linking· Loader

COPYRIGHT © 1984 by
Technical Systems Consultants, Inc.

111 Providence Road
Chapel Hill, North Carolina 27514

All Righ ts Reserved

LhIA.EX®rE9lstered In U.S. Pata"lt a'ld Tra:lanarl< OffIce.

Revision Date

A 10/84

B 01/86

C 09/86

MANUAL REVISION HISTORY

Change

Original Release, 68000 Relocating Assembler
and Linking-Loader Version 1.00

Manual Update, Added documentation for the
68020 assembler

Manual update for Version 2.0 of 68xxx UniFLEX.
Added command-line parameters, macros, new
instructions for assembler, new options for both
assembler and linking-loader. Miscellaneous minor
changes and corrections.

COPYRIGHT INFORMATION

This entire manual is provided for the personal use and enj oyment of the purchaser. Its
contents are copyrighted by Technical Systems Consultants, Inc., and reproduction, in
whole or in part, by any means is prohibited. Use of this program and manual, or any part
thereof, for any purpose other than single end use by the purchaser is prohibited.

DISa...AIMER

The supplied software is intended for use only as described in this manual. Use of
undocumented features or parameters may cause unpredictable results for which Technical
Systems Consultants, Inc. cannot assume responsibility. Although every effort has been
made to make the supplied software and its documentation as accurate and functional as
possible, Technical Systems Consultants, Inc. will not assume responsibility for any
damages incurred or generated by such material. Technical Systems Consultants, Inc.
reserves the right to make changes in such material at any time without notice.

Contents

Preface ix

Chapter 1 Introduction to the 68xxx Relocating Assembler and
Linking-Loader

Input to the 68xxx Relocating Assembler 1.1

Output from the 68xxx Relocating Assembler 1.1

Segmentation of Binary Files 1.2

Input to the 68xxx Linking-Loader 1.3

Output from the 68xxx Linking-Loader 1.3

Chapter 2 Invoking the Relocating Assembler

Introduction 2.1

The Command Line 2.1
Command-Line Parameters 2.1

Specifying parameters 2.2
Substitutable parameters 2.2
Ignoring a substitutable parameter

Options Available 2.3
The 'a' option 2.4
The 'b' option 2.4
The ' e' option 2.5
The ' f' option 2.5
The 'F' option 2.5
The ' .,

l. option 2.5
The 'I' option 2.5
The ' J' option 2.6
The ' l' option 2.6
The 'L' option 2.6
The 'n' option 2.6
The '0' option 2.7
The 's , option 2.7
The 'S' option 2.7
The 't' option 2.7
The 'u

,
option 2.8

Examples 2.8

Chapter 3 Components of the Source Code

Introduction

The Label Field
Ordinary Labels
Local Labels

3.1

3.2
3.2

3.2

iii

2.3
I

68xxx Relocating Assembler and Linking-Loader

The Opcode Field 3.3

The Operand Field 3.4

The Comment Field 3.4

Automatic Formatting 3.4

Specification of Registers by Operands 3.5

Expressions 3.6

Chapter 4

Items 3.6
Numerical constants 3.7
ASCII constants 3.7
Labels 3.7
Current address

Operators 3.8
Arithmetic operators
Logical operators
Relational operators

Operator Precedence

3.7

3.8
3.8

3.9
3.9
3.10

3.10
Types of Expression

Absolute expressions
Relocatable expressions
External expressions

3.10
3.11

68xxx Opcodes

Deviations from Motorola Standard 4.1

Available Registers 4.2

Introduction to Addressing Modes 4.3
Length of Assembled Instructions 4.3
Use of Index Registers 4.3
Syntax Conventions 4.4

Descriptions of Addressing Modes 4.5
Data Register Direct 4.5
Address Register Direct 4.5
Address Register Indirect 4.5
Address Register Indirect with Post increment 4.6
Address Register Indirect with Predecrement 4.6
Address Register Indirect with Displacement 4.6
Address Register Indirect with Index 4.7
Address Register Indirect with Index (Base Displacement) 4.7
Memory Indirect Postindexed 4.8
Memory Indirect Preindexed 4.9
Absolute Short Address 4.10
Absolute Long Address 4.10
Program-Counter Relative 4.11
Program Counter with Index 4.11

iv

Contents

Program Counter
Program Counter
Program Counter
Immediate Data

Opcodes 4.16

Indirect with Index (Base Displacement)
Memory Indirect Post indexed 4.12
Memory Indirect Preindexed 4.14

4.15

Convenience Mnemonics 4.39

Chapter 5 Directives

Introduction 5.1

The Directives 5.3
base 5.3
bfequ 5.4
bss 5.5
cnop 5.5
common 5.6
cpid 5.6
data 5.7
dc 5.7
define s.S
ds s.S
else 5.9
end 5.9
endcom 5.10
enddef 5.10
end if 5.10
endm 5.11
equ 5.11
err 5.11
even 5.12
exitm 5.12
extern 5.13
fcb 5.13
fcc 5.13
fdb 5.14
fqb 5.14
global 5.15
if 5.15
ifc 5.16
ifeq 5.16
ifge 5.17
ifgt 5.17
ifle 5.1S
iflt 5~lS
ifn 5.19
ifnc 5.19
ifne 5.20
info 5.20

v

4.12

68xxx Relocating Assembler .and Linking-Loader

lib 5.21
log 5.21
macro 5.22
name -S.23
opt 5.24
pag 5.24
quad 5.25
rab 5.25
rmb 5.25
rzb 5.26
set 5.26
spc 5.26
struct 5.27
sttl 5.28
sys 5.28
text 5.29
tstmp 5.29
ttl 5.30

Parameter Substitution in Macros 5.30
Specifying Parameters 5.30
Substitutable Parameters 5.31
Ignoring a Substitutable Parameter 5.31
Examples 5.32

Nesting of Macro Definitions 5.33
Avoiding a Duplicate Definition 5.33
Parameter Substitution within Nested Definitions 5.34

Chapter 6 Error Messages from the Relocating Assembler

Introduction 6.1

Nonfatal Errors 6.1

Fatal Errors 6.9

Chapter 7 Invoking the Linking-Loader

Introduction 7.1

The Standard Environment 7.1

The Command Line 7.1
The 'a' option 7.3
The 'A' Option 7.4
The 'b' Option 7.4
The 'B' Option 7.5
The 'c' Option 7.5
The 'C' Option 7.5
The 'd' Option 7.5

vi

:ontents

The 'D' Option
The 'e' Option
The 'f' Option
The 'F' Option
The 'i' Option
The 'I' Option
The '1' Option
The 'L' Option
The 'm' Option
The 'M' Option
The 'n' Option
The 'N' Option
The '0' Option
The 'p' Option
The 'q' Option
The 'r' Option
The 'R' Option
The's' Option
the'S' Opt ion
The 't' Option
The 'T' Option
The 'u' Option
The 'u' Option
The 'w' Option
The 'w' Option
The 'x' Option
The 'X' Option
The 'y' Option
The 'Y' Option
The 'z' Option

Examples 7.14

7.6
7.6
7.6
7.6
7.7
7.7
7.8
7.8
7.8
7.9
7.9
7.9
7.9
7.10
7.10
7.10
7.11
7.11
7.11
7.11
7.12
7.12
7.12
7.12
7.13
7.13
7.13
7.14
7.14
7.14

Chapter 8 Libraries

Introduction 8.1

Library Generation
Th e Command Line
The Arguments

8.2
8.2

8.2
The 'n' argument
The '0' argument
The 'u' argument
The deletion list

Options Available
The 'a' option
The '1' option

Examples 8.4

8.2
8.3
8.3
8.3

8.4
8.4
8.4

vii

I

68xxx Relocating Assembler and Linking-Loader

Chapter 9 Segmentation and Address Assignment

Introduction 9.1

Segmentation 9.1
Combination of Segments for a New Module 9.1
End-of-segment Addresses 9.2
Load and Module Maps 9.2

Address Assignment 9.4

Chapter 10 Error Messages from the Linking-Loader

Introduction 10.1

Nonfatal Errors 10.1

Fatal Errors 10.2

Appendix A Syntax Conventions

Appendix B Syntax for 68020 Addressing Modes

Introduction B.1

Syntaxes Recommended by Motorola B.1

Other Acceptable Syntaxes B.2

Elliptical Syntax Statements B.2

References

Index

viii

Preface

This manual describes the operation of both the UniFLEX$ 68xxx
Relocating Assembler and the 68xxx Linking-Loader. It is by no means
intended to teach the reader assembly language programming; nor does it
present the full details of the 68xxx instruction set, which are
available elsewhere (Motorola, 1984 and 1985a).

®UniFLEX registered in u.s. Patent and Trademark Office.

ix

x

Chapter 1

Introduction to the 68xxx Relocating Assembler and Linking-Loader

1.1 Input ~ the 68xxx Relocating Assembler

The relocating assembler accepts as input a text file written in 68xxx
assembly language as described in the M68000 !Qj32-Bit Microprocessor
Programmer'~ Reference Manual (Motorola, 1984), the MC68020 32-Bit
Microprocessor User'~ Manual (Motorola, 1985a), and the MC68881
Floating-Point Coprocessor User'~ Manual (Motorola, 1985b), with the
modifications described in this manual. The code need not contain any
absolute addresses. Instead, the program may use relocatable
addresses--addresses which cannot be evaluated until the linking-loader
processes the code.

1.2 Output from the 68xxx Relocating Assembler

By default, the assembler produces as output a binary file containing
object code. The assembler generates this object code so that
relocatable addresses are not bound to absolute locations at assembly
time. This binding, which is called relocation, is accomplished later
by the linking-loader. Relocation is necessary whenever the operand
field of an instruction which expects an absolute address contains a
relocatable address. The assembler writes a "relocation record" for
each relocatable reference in the source code. The relocation record
contains the information necessary to the linking-loader, which adjusts
the address at load time. Relocation records are written to a temporary
file. At the end of the assembly, the contents of this file are
appended to the end of the object code. An assembled file with
relocation records is called a relocatable object-code module or, more
simply, a relocatable module. A relocatable module must be processed by
the linking-loader in order to transform it into an executable file.

It is often desirable for parts of a program (called modules) to be
developed separately. In such a case each module is assembled
separately prior to the final merging of all modules, which is done by
the linking-loader. A module that is part of a larger program may
'contain references to symbols which are not defined in that module.
Such a reference is called an external reference. The assembler
generates an external record for each external reference ln the source
code. The external record contains the information necessary to the
linking-loader, which resolves these references at load time. The

1.1

I

68xxx Relocating Assembler and Linking-Loader

assembler writes external records to the same temporary file that
contains the relocation records.

1.3 Segmentation of Binary Files

The UniFLEX Operating System supports the segmentation of binary files.
Therefore, during assembly, the assembler may break the file up into as
many as three segments--text, data, and bss--each of which contains
different kinds of material.

The text segment contains both
during execution and executable
write protect the text segment.

initialized data that do not
instructions. Some hardware

change
systems

The data segment contains initialized data which are likely to change
during execution. Regardless of the hardware, the user may access or
change a value in the data segment at any time during execution.

The bss segment, also known as uninitialized data, does not actually
contain any code. Rather, the binary header for the file contains a
number which tells the operating system how much memory to reserve for
bss when it loads the module. Only those instructions which do not
generate code may be used in the bss segment. At any point during
execution of the program, data in the bss segment of memory can be
accessed or altered.

The assembler segments a file by maintaining three distinct program
counters, one for each segment. At any point in the assembly only one
of these counters is in effect. The user determines which counter is in
effect by entering the appropriate segmentation directive--"text",
"data", or "bss"-in the opcode field (see Section 3.3). The assembler
generates code in the segment specified until it encounters another
segmentation directive, an "end" directive, or an end-of-flle character.
The assembler does not assume a default segment. Therefore, the user
must include a segmentation directive in the source code before using
any instructions which generate code or reserve memory.

1.2

Introduction

1.4 Input ~ the 68xxx Linking-Loader

The linking-loader accepts as input independently assembled, relocatable
object-code modules generated by the assembler or the linking-loader
itself •

1.5 Output from the 68xxx Linking-Loader

The linking-loader combines the segments of object code from one or more
relocatable modules to produce a single object-code module and,
optionally, a load map, a module map, and a symbol table. As it
combines the modules, the loader uses the relocation records generated
by the assembler to bind relocatable addresses to absolute locations.
It adjusts each relocatable address by the "relocation constant", which
1S the address at which the module is loaded for execution. It uses the
external records to resolve all external references.

Depending on the user's preference, the loader can produce either an
executable or a relocatable module. A relocatable module produced by
the linking-loader is indistinguishable from a relocatable module
produced by the assembler. Only the loader, however, can transform one
or more relocatable modules into an executable program.

1.3

1.4

Chapter 2

Invoking the Relocating Assembler

2.1 Introduction

The UniFLEX. 68xxx Relocating Assembler s, "reI68k" and "reI20", accept as
input one or more files containing the source code. These files must be
standard UniFLEX. text files--that is, they must consist solely of lines
of text, each of which ends with a carriage return. The source code
should not contain line numbers. The only control characters allowed in
the source code are the horizontal tab character (hexadecimal 09) and
the carriage return (hexadecimal OD). An assembler processes these
files and, depending on the options specified, produces a single
relocatable object-code module (also called a relocatable module), a
listing of the assembled source code, or both.

2.2 The Command Line

Syntax statements for invoking the relocating assemblers follow:

re120 <file_name_list> [<param_list>] [+abefFiIILnosSu]
rel68k <file_name_list> [<param_Iist>] [+befFiIlLnosStu]

where <file_name_list> is a list of the names of the files to assemble
and <param_list> is a list of parameters for the shell program to pass
to the assembler source code. Files are assembled in the order in which
they appear on the command line. Assembly ends when the assembler
processes the last line of the last file.

2.2.1 Command-line Parameters

With each invocation of the assembler the user may pass it up to three
parameters for use in the source code. Thus, the code generated by the
assemb~er may differ from one invocation to the next.

2.1

I

68xxx Relocating Assembler

2.2.1.1 Specifying parameters

The parameters passed to the assembler are ASCII strings which the user
places in a particular format anywhere on the command line. The syntax
for passing a parameter is

+<char >=[<s t r >]

where valid values for <char> are 'a', 'b', and 'c'. Normally, the
shell program interprets a space character as a character separating two
elements on the command line. A user may, however, include a space
character in a command-line parameter by enclosing either the string or
the entir~ parameter in a pair of delimiter characters (either single or
double quotation marks) as shown in the following examples:

+a="test string"
'+b=Good-bye, Larry!'

The user may specify the null string by leaving the string out
altogether:

+a=
'+a='
+a=""

2.2.1.2 Substitutable parameters

If the user specifies one or more command-line parameters, the assembler
searches the source code for the sequence

&<char>

where valid values of <char> are once again 'a', 'b', and 'c'. Such a
sequence is called a substitutable parameter. The assembler replaces
the substitutable parameter "&a" with the string passed in as an
argument to the command-line parameter 'a'. Similarly, it replaces the
sequences ~'&b" and "&c" with the corresponding command-line parameter.

2.2

Invoking the Relocating Assembler

2.2.1.3 Ignoring a substitutable parameter

A user who uses command-line parameters but wishes to avoid substitution
in the source code in a particular instance must precede the ampersand,
'&', with a backslash character, '\'. Thus, if it is performing
substitution with command-line parameters, the assembler sees the
following line of source code

value equ mask\&count
as

value equ mask&count

Parameter substitution may occur in any field in the source code.

Unless the user specifies one or more elements in the parameter list,
the assembler does not search the source code for substitutable
parameters. If the user does specify one or more command-line
parameters and the assembler finds a substitutable parameter for which
the user did not specify the corresponding command-line parameter, the
assembler replaces that sequence with a null string.

2.2.2 Options Available

Brief descriptions of the options which are available follow:

a

b
e
f

F

i

I

J

1
L

listing
only) •

Produce an abbreviated
assembled source ("rel20"
Suppress binary output.
Suppress summary information.

of the

Disable formatting of the listing of the
assembled source code.
Enable "fix" mode. In fix mode, comments
which begin with a semicolon, 'j', are
assembled.
Ignore the suffix ":w", which forces an
address to the size of a word.
Ignore the suffix ":w", which forces an
address to the size of a word, unless it is
part of a "jmp" or a "jsr" instruction.
Ignore the suffix ":w", which forces an
address to the size of a word, when it is part
of a "jmp" or "j sr" instruction.
Produce a listing of the assembled source.
Produce a listing of the input file or files
during the first pass.

2.3

68xxx Relocating Assembler

s
S
t

u

Produce line numbers with the listing.
Specifies the name of the file containing the
re10catab1e module produced by the assembler.
Produce a listing of the symbol table.
Limit symbols internally to 8 characters.
Assemble for 68000 rather than 68010 ("re168k"
only). This option only affects the code
generation of the ''move from CCR/SR"
instruction.
Classify all unresolved symbols as external.

Detailed descriptions of the options follow.

2.2.2.1 The 'a' option ("re120" only)

The 'a' option tells the assembler to send a condensed listing of the
entire assembled source to standard output. Some complicated addressing
modes supported by the 68020 generate large amounts of code, which can
make a listing difficult to read and can force the truncation of
comments on printers which support only eighty columns. The 'a' option
attempts to remedy this situation by producing an abbreviated listing
which contains only one line of output for each instruction.

As the assembler produces the listing, it may insert a single character
before the first character of a line of code to indicate something
special about that line. A plus sign, '+', indicates that the line
contains a relocatable address; an 'X', that it contains an external
reference. If a line of code contains both an external and a
relocatable reference, the assembler inserts the character corresponding
to the last reference on the line. The assembler also marks the
beginning of each line in which the user can replace a long branch with
a short branch. These excessive branches are flagged so that the user
can optimize the final code. The indicator character is a greater-than
sign, '>'. All three indicator characters are part of the listing only;
they do not exist in the binary file.

Each line of the listing generated
indicator character, the program
code generated by the instruction,
operands, and as much of any comment

2.2.2.2 The 'b' option

by the 'a' option includes any
counter, the first two bytes of the
the label, the instruction, the
as possible.

The 'b' option suppresses the creation of a binary file (even if the
user invokes the '0' option to specify a name for the file). This
option is useful when the user wants either to check for errors in an
incomplete program or to obtain only a listing of the assembled source
(see Section 2.2.2.9).

2.4

Invoking the Relocating Assembler

2.2.2.3 The 'e' option

By default, at the end of an assembly the assembler reports the size of
each segment in the relocatable module as well as the number of error
messages and excessive branches (see Section 2.2.2.1) generated by the
source code. The 'e' option suppresses this summary information if the
source code is free of errors. If the code is not error-free, the
report is not suppressed (excessive branching is not considered an
error) •

2.2.2.4 The 'f' option

By default, the assembler formats the fields in the file containing the
assembled source code (see Section 3.6). The 'f' option suppresses the
field-formatting feature. Therefore, when the 'f' option is in effect,
the text of the assembled source code is identical to the input file.

2.2.2.5 The 'F' option

The 'F' option enables "fix" mode. By default, the assembler processes
as a comment (see Section 3.1) any line of code that contains a
semicolon, ';', in the first column. However, when the assembler is in
fix mode, it ignores a semicolon in the first column of a line and
treats the remainder of the line as normal source code. If the second
column contains a semicolon, an asterisk, or a carriage return, the line
of code is still considered a comment.

2.2.2.6 The 'i' option

The 'i' option tells the assembler to ignore the suffix ":w", which
forces an address to be the size of a word.

2.2.2.7 The 'I' option

The 'I' option tells the assembler to ignore the suffix" :w", which
forces an address to be the size of a word, unless it is part of a "jmp"
or a "jsr" instruction.

2.5

68xxx Relocating Assembler

2.2.2.8 The 'J' option

The' J' option tells the assembler to ignore the suffix ":w", which
forces an. address to be the size· of a word, when it is part of a "jmp"
or a "j sr" instruction.

2.2.2.9 The '1' option

By default, the assembler writes each line of the assembled file
containing an error to standard output. The '1' option, like the 'a'
option, tells the assembler to send a listing of the entire assembled
source to standard output. As the assembler produces the listing, it
may insert a single character before the first character of a line of
code to indicate something special about that line. A plus sign, '+',
indicates that the line contains a relocatable address; an 'X', that it
contains an external reference. If a line of code contains both an
external and a relocatable reference, the assembler inserts the
character corresponding to the last reference on the line. The
assembler also marks the beginning of each line in which the user can
replace a long branch with a short branch. These excessive branches are
flagged so that the user can optimize the final code. The indicator
character is a greater-than sign, '>'. All three indicator characters
are part of the listing only; they do not exist in the binary file.

The assembler produces the listing during the second pass over the file.
It honors the "lis" and "nol" options to the "opt" directive (see
Section 5.2.42).

2.2.2.10 The 'L' option

If the user specifies the 'L' option, the assembler sends
output a listing of the file containing the source code.
numbers the lines as it writes them.

2.2.2.11 The 'n' option

to standard
The assembler

This option, which must be used with the '1' option in order to be
effective (see Section 2.2.2.9), tells the assembler to assign line
numbers to each line of the assembled source code. Line numbers begin
with 1 and are incremented by 1.

2.6

Invoking the Relocating Assembler

2.2.2.12 The '0' option

By default, the assembler names the file containing the relocatable
module it creates "<file_name_1>.r", where <file name_1> is the name of
the first file specified on the command line. The user may, however,
override the selection of this name by using the '0' option. The syntax
for this option is

where <file_name> is the name to give to the file containing the
relocatable module.

2.2.2.13 The's' option

The's' option tells the assembler to write the symbol table to standard
output at the end of the assembly. If the name of the symbol is
preceded by an asterisk, '*', the symbol is global; otherwise, it ~s
local.

2.2.2.14 The'S' option

By default, the assembler allows the user to define and
any length but recognizes only the first 255 characters.
invokes the'S' option, the assembler limits the internal
of each symbol to eight characters.

2.2.2.15 The 't' option ("rel68k" only)

use symbols of
If the user

representation

By default, "rel68k" produces code for the 68010 rather than the 68000.
Assemblies for the 68000 and the 68010 differ only in the code
generation for the instruction ''Move from CCR", which is not supported
by the 68000 microprocessor. A user assembling code which uses this
instruction and is intended for use on a 68000-based machine, should
invoke the 't' option. When this option is in effect, the assembler
generates a ''Move from SRI! instruction for "Move from CCR". In
addi tion, it disallows the use of any instructions which are not
supported by the 68000.

2.7

68xxx Relocating Assembler

2.2.2.16 The 'u' option

By default, the assembler reports as undefined any symbol which is
neither defined nor declared as an external symbol in the source code.
The 'u' option tells the assembler to treat all references to such
symbols as external references.

2.3 Examples

1. re168k asmfile
2. re168k test.a +euo=test.r +a=DO
3. re120 test.a test2.a test3.a +blns

The first example uses the 68000/68010 assembler to assemble the source
file "asmfile" and produces the relocatable binary file "asmfile.r".
The assembler sends summary information to standard output but produces
no source listing. Any nonfatal errors detected are sent to standard
output. The assembler does not search the source for substitutable
parameters because the user did not specify any command-line parameters.

The second example uses the 68000/68010 assembler to assemble the file
"test.a" and produces the relocatable file "test.r". No summary
information is produced, and all unresolved references are classified as
external. If the assembler detects no errors during the assembly, the
user sees no output from this command. The assembler searches the
source code for all substitutable parameters and replaces the sequence
"&a" with the string "DO". It replaces any occurrences of "&b" and "&c"
with the null string.

The third example uses the 68020 assembler to assemble the three files
specified but produces no binary output. A listing with a symbol table
is sent to standard output. The listing includes line numbers. The
assembler does not search the source for substitutable parameters
because the user did not specify any command-line parameters.

2.8

Chapter 3

Components of the Source Code

3.1 Introduction

The 68xxx Relocating Assembler is a two-pass assembler. During the
first pass the assembler constructs a symbolic reference table; during
the second pass, it assembles the source code. Each line of code must
consist of a series of ASCII characters terminated by a carriage return
(hexadecimal OD). Certain ASCII characters have special meanings to the
assembler (see both the discussion of comments in this section and
Section 3.8.1). Control characters (hexadecimal 00 to IF) other than
the carriage return and the horizontal tab character (hexadecimal 09)
may not be used in the code (their inclusion produces unpredictable
results) •

A line of code may consist of up to four fields as shown here:

<label>
or

[<label>] <opcode> [<operand_list>] [<comment>]
or

<label> <opcode> [<operand_list>] [<comment>]

Each field is separated from the following field by one or more spaces
or tab characters. If the opcode does not take an operand, the
assembler treats the third field as the comment field. No field except
the comment field may contain a space character.

The user may designate entire lines of the source as comments. These
comments are ignored by the assembler when it is generating object code.
They do, however, appear in the listing of the assembled source code (if
the user requests one) exactly as they appear in the source code itself.
The assembler recognizes ~s a comment any line which (1) contains an
aster isk, '*', in the first column, (2) contains a semicolon, '; , , in
the first column (see Section 2.2.2.5), or (3) contains only a carriage
return.

3.1

I

68xxx Relocating Assembler

3.2 The Label Field

The label field contains a symbolic label which is assigned the
instruction's address. The user may reference such a label anywhere in
the source code. Each label must begin in the first column of the line
on which it appears. If a line does not contain a label, it must begin
with either a space or a tab character. The assembler supports two
types of label: ordinary and local.

3.2.1 Ordinary Labels

An ordinary label must be unique to the program unless it is a label
associated with the "log", "set", or "struct" directive. The label may
consist of uppercase letters ('A' through 'Z'), lowercase letters ('a'
through 'z'), the underscore character, (hexadecimal SF), the
question mark, '7' (hexadecimal 3F), and the digits ('0' through '9').
However, the first character of an ordinary label may not be a digit.
The assembler does distinguish between upper- and lowercase letters in a
label. Thus, the label "ABC" is different from the label "Abc".
Ordinary labels may be of any length, but the assembler recognizes only
the first two hundred fifty-five characters.

3.2.2 Local Labels

Local labels may be used just like ordinary labels with the following
exceptions: they may not be global; they may not be external; they may
not be used in the label field of a "bfeq u", "common", "eq u", "log",
"macro", or "set" directive. Local labels are used primarily for
branching or jumping around small sections of code. They free the
programmer from the necessity of thinking of a symbolic name for every
label. They require less internal storage than ordinary labels, and the
assembler processes them faster.

A local label consists of a string of one or two digits ('0' through
'9'). Both digits are significant. Thus, the label "00" is different
from the label "0".

The user references a local label by adding one of two letters to the
label: an 'f', for forwards, indicates the first occurrence of the label
following the reference; a 'b', for backwards, indicates the first
occurrence preceding the reference. Such a reference never refers to
the same line it is on. For example, ~n the following example both

3.2

Components of the Source Code

references point to the same line of code:

2
2
2

beq 2f
jsr xx
bra 2b

"2f" => following occurrence of local label 2
both branches point to this line of code
"2b" => preceding occurrence of local label 2

3.3 The Opcode Field

The opcode field contains the instruction--an opcode (mnemonic), a
directive (pseudo-op), or the name of a macro--which specifies the
operation to be performed. Valid opcodes are detailed in Chapter 4;
valid directives, in Chapter 5. Upper- and lowercase letters may be .
used interchangeably in the opcode field.

The user may append a suffix, which indicates the size of the operand on
which the operation is to be performed, to certain instructions. The
choices are shown in the following tables:

Table 3-1. Suffixes Common to the 68000/68010 and 68020
Assemblers

Suffix

.b or .B

.1 or • L
• w or • W

Meaning

Byte (8 bits)
Long word (32 bits)
Word (16 bits)

Table 3-2. Suffixes Supported Only by the 68020 Assembler

Suffix

.d or

.p or

.s or

.x or

.D

.P
• S
.X

Meaning

Double-precision floating-point (64 bits)
Packed-decimal floating-point (96 bits)
Single-precision floating-point (32 bits)
Extended-precision floating-point (96 bits)

If the instruction imposes no restraints on the size of the operand and
the user does not specify a size, the assembler performs the operation
on a word.

3.3

68xxx Relocating Assembler

The user can force the generation of a short branch (S-bit offset) by
appending the suffix ".s" or ".S" to a branch instruction. By default,
the assembler generates a word-length branch (16-bit offset) for each
forward reference and the shortest possible branch for a backward
reference. The user of "rel20 1J can force the generation of a long
branch for a forward or backward reference by appending the suffix '1'
or 'L' to the branch instruction.

3.4 The Operand Field

The operand field contains information on how to locate the operands
necessary for the instruction in the opcode field. An operand consists
of a combina~ion of register specifications and mathematical expressions
(see Sections 3.7-8). The assembler determines whether or not the
instruction ~n the opcode field requires an operand. If it ~oes, it
interprets the following field as the operand field; otherwise, it
interprets it as the comment field.

3.5 The Comment Field

The programmer may use the comment field to insert a comment on any line
of the source code. Comments are only for the programmer's convenience;
the assembler ignores them. Comments may contain any characters ranging
from the space character (hexadecimal 20) to the delete character
(hexadecimal 7F), as well as the tab character (hexadecimal 09),

3.6 Automatic Formatting

The "reI68k" assembler automatically formats the listing of the
assembled source code as follows: the label field begins in column 25;
the opcode field, in 34; the operand field, in 42; and the comment
field, in 56--assuming that the operand field does not extend into the
comment field. By default, the "reI20" assembler automatically formats
the listing of the assembled source code as follows: the label field
begins in column 29; the opcode field, in 38; the operand field, in 42;
and the comment field, in 62--assuming that the operand field does not
extend into the comment field. If the user invokes the a option,
"reI20" automatically formats the listing as follows: the label field
begins in column 17; the opcode field, in 26; the operand field, in 36;

3.4

Components of the Source Code

and the comment field, in SO--assuming that the operand field does not
extend into the comment field.

Thus, the programmer can edit the source file without impairing the
readability of the listing of the assembled code. The assembler prints
any label that contains more than eight characters on a line by itself,
just above any code generated by the same line of source code.

In a few cases, such as lines containing errors,
formatting may break down. Such cases, however, are
general they should cause no problems.

3.7 Specification £t Registers ~ Operands

the automatic
rare, and in

Many opcodes require that the corresponding operand specify one or more
registers. Upper- and lowercase letters may be used interchangeably in
the specification of registers. The following tables describe the
available registers.

Table 3-3. Registers Common to the 68000/68010 and 68020
Assemblers

Name

DO-D7
AO-A6
A7 or SP
CCR
PC
SR
SSP
USP

Application

Data registers
Address registers
Current stack-pointer
Condition-code register (part of SR)
Program counter
Status register
Supervisor stack-pointer
User stack-pointer

Table 3-4. Registers Common to the 68010 and 68020 Assemblers

Name

DFC
SFC
VBR

Application

Destination function-code register
Source function-code register
Vector-base register

3.S

I

68xxx Relocating Assembler

Table 3-5. Registers Available Only for the 68020 Assembler

Name Application
-------------~---
CAAR
CACR
FPCR
FPIAR
FPSR
ISP
MSP

3.8 Expressions

Cache-address register
Cache control-register
Floating-point control-register
Floating-point instruction address register
Floating-point status-register
Interrupt stack-pointer
Master stack-pointer

Many instructions require that the corresponding operand supply further
information in the form of an expression. An expression consists of one
or more items (see Section 3.8.1) combined by any of the four kinds of
operator: arithmetic, logical, relational, and shift (see Section
3.8.2). It may contain neither space nor tab characters. An expression
is evaluated during the assembly, and the result becomes a permanent
part of the program.

The 68020 assembler
precision (64 bits).
bits. The assembler
is to be a byte or a
the expression.

3.8.1 Items

evaluates floating-point expressions using double
Otherwise, expressions are always evaluated to 32

ignores overflow. If the result of the operation
word, the assembler uses the low-order portion of

An expression consists of up to four kinds of item--numerical constants,
ASCII constants, labels, and addresses. An item may stand alone as an
operand or may be combined with other items by the use of operators.

3.6

Components of the Source Code

3.8.1.1 Numerical constants

The programmer can supply a numerical constant to the assembler in any
of four bases: binary, decimal, hexadecimal, or octal. The desired base
is specified by a character preceding the number, as illustrated in the
following table. By default, the assembler assumes that a number is
decimal.

Base Prefix Characters Allowed
===
Binary
Decimal
Hexadecimal
Octal

%
None
$
@

o and 1
0-9
o - 9, A - F, a - f
0-7

A floating-point constant consists of a mantissa optionally followed by
an exponent. The mantissa consists of an optionally signed string of
decimal digits, which mayor may not contain a decimal point in any
position. The exponent consists of an 'E' or an 'e' character
optionally followed by a sign and a string of decimal digits.

3.8.1.2 ASCII constants

The programmer can supply an ASCII constant to the assembler by
enclosing the desired string in single or double quotation marks. The
string may consist of from one to four characters, depending on the size
attribute associated with the instruction. The characters in the string
may not include control characters.

3.8.1.3 Labels

Any ordinary or local label (see Section 3.2) may be used in an
expression.

3.8.1.4 Current address

The asterisk, '*', when used as an item in an expression, denotes the
address of the current instruction (the content of the program counter).
Depending on the context in which it is used, the asterisk may represent
either a relocatable or an absolute value.

3.7

68xxx Relocating Assembler

3.8.2 Operators

Four classes of operator are available for use in an expression:
arithmetic, logical, relational, and shift., Only the addition and
subtraction operators may be used with relocatable and external symbols
and expressions (see Section 3.8.4). Only the arithmetic operators may
be applied to floating-point expressions and constants. An operation on
operands of mixed modes produces a floating-point value as the result.

3.8.2.1 Arithmetic operators

The arithmetic operators are shown in the following table:

Operator Meaning
==

+

*
/

3.8.2.2 Logical operators

Unary or binary addition
Unary or binary subtraction
Multiplication
Division

The logical operators are shown in the following table:

Operator Meaning
===================================

&
I

»
«

Logical "and" operator
Logical "or" operator
Logical IInot" operator
Shift right operator
Shift left operator

The assembler performs logical operations bit-by-bit on 32-bit values.
For example, in an "and" operation, every bit from the first operand is
lIandedll with the corresponding bit from the second operand. The shift
operators shift the left-hand term by the number of places indicated by
the right-hand term. Zeros are shifted in, and any digits shifted out
are lost.

3.8

Components of the Source Code

3.8.2.3 Relational operators

The following table summarizes the relational operators:

Operator Meaning
====================================

= Equal to
< Less than
> Greater than
<> Not equal to
<= Less than or equal to
>= Greater than or equal to

A relational operator yields a result that is true or false. If the
expression evaluates to true, each bit of the result is set to 1; if
false, to O. Relational operators are generally used in conjunction
with conditional assembly.

3.8.3 Operator Precedence

The assembler evaluates certain operators in an expression before
evaluating others. It evaluates operators of equal precedence from left
to right. The user can overcome the default precedence by using
parentheses.

The following list shows the overall operator precedence. The operator
at the top of the list has the highest precedence; the one at the
bottom, the lowest.

1. Expressions in parentheses
2. Unary addition and subtraction
3. Shift operators
4. Multiplication and division
5. Binary addition and subtraction
6. Relational operators
7. Logical "not"
8. Logical "and" and "or"

3.9

68xxx Relocating Assembler

3.8.4 Types of Expression

The user can combine items and operators to produce three types of
expression: absolute, relocatable, and external. It is essential to be
able to distinguish between the different types of expression because
certain instructions require the use of a certain type of expression.
For example, the operand of the "rmb" instruction must be an absolute
expression.

3.8.4.1 Absolute expressions

An expression is absolute if its value is unaffected by program
relocation. An absolute expression may contain relocatable items as
long as those items are grouped in pairs which represent the difference
between two addresses in the same segment. For example, if "text_I" and
"text_2" are both relocatable symbols in the text segment and "data_I"
and "data_2" are relocatable symbols in the data segment, the following
expressions are absolute:

t ext_I-text_2
S*(text_17text_2)
S*(text_l-text_2)+(data_l-data_2)

The following expressions are not legal absolute expressions:

t ext_l - text_2
text_l+text_2
(text_l-data_l)

(Spaces not allowed in an expression.)
(Sum of two relocatables is not absolute.)
(Paired symbols must be from the same segment.)

3.8.4.2 Relocatable expressions

An expression is relocatable if its value is affected by program
relocation. A relocatable expression must contain an odd number of
relocatable symbols. All relocatable symbols except one must be grouped
in pairs that represent the difference between two addresses in the same
segment. The single unpaired symbol may have a positive or negative
sign. The following expressions are all relocatable:

-bss_2+3*S+(data_I-data_2)
textl+(data_l-data_2)+(bss_l-bss_2)
data_I-(bss_2-bss_l)
*+5

3.10

Components of the Source Code

The first example represents negative relocation from the bss segment;
the second, positive relocation from the text segment; the third,
positive relocation from the data segment; and the fourth, positive
relocation from the current segment, whatever that may be.

3.8.4.3 External expressions

An expression is external if its value depends on the value of a symbol
defined outside the source module. An external expression may contain
only one external symbol. It may also contain relocatable and absolute
symbols as long as the relocatable symbols are grouped in pairs which
represent the difference between two addresses in the same segment. The
following are valid external expressions:

ext_l +(bss_l-bss_2) +(data_l-data_2)
ext_1-3

3.11

I

3.12

Chapter 4

68xxx Opcodes

4.1 Deviations from Motorola Standard

This section describes the differences in the mnemonics accepted by the
68xxx Relocating Assembler and the Motorola standard as defined in the
M68000l§j32-Bit Microprocessor Programmer'~ Reference Manual (Motorola,
1984) and the MC68020 32-Bit Microprocessor User'~ Manual (Motorola,
1985a). It is assumed that the reader is familiar with the contents of
Chapter 2 ("Data Organization and Addressing Capabilities") and Chapter
3 ("Instruction Set Summary") of the relevant manual. In particular,
the user should be familiar with the description of the assembler syntax
that accompanies the discussion of the individual instructions.

The 68xxx Relocating Assembler recognizes the standard instruction set
with the exception of the "address", "quick", and "immediate"
variations. Rather than having a specific opcode for these variations,
the assembler infers their existence from an analysis of the operands
and generates the proper code. Therefore, even though the assembler
does not recognize these mnemonics, it can generate code for address,
quick, and immediate instructions. This process frees the progrrunmer
from the need for remembering individual variations of each opcode. The
following table shows the standard instructions which are not recognized
by the assembler and the opcode that should be used in place of each
one. Note that the "extend" variation is supported.

Opcode Variation Opcode to Use
====================================
adda, addq, addi add
andi and
cmpa, cmpi, cmpm cmp
eori eor
movea, moveq move
ori or
suba, subq, subi sub

4.1

68xxx Relocating Assembler

4.2 Available Registers

The 68xxx microprocessor has sixteen 32-bit general-purpose registers
and several special registers, including a 32-bit program counter and an
8-bit condition-code register. Table 4-1 shows the registers that are
available in user state.

Table 4-1. Registers Available in User State

Register . Application Microprocessor

68000 68010 68020
--
DO-D7 Data registers X X X
AO-A6 Address registers X X X
A7 or SP Current stack-pointer X X X
CCR Condition-code register X X X
FPO-FP7 Floating-point registers X
FPCR Floating-point control register X
FPIAR Floating-point instruction

address register X
FPSR Floating-point status register X
PC Program counter X X X

Table 4-2 shows the registers available in supervisor state.

Table 4-2. Registers Available in Supervisor State

Register Application Microprocessor

68000 68010 68020

CAAR Cache-address register X
CACR Cache control-register X
DFC Destination function-code

register X X
ISP Interrupt stack-pointer X
NSP Master stack-pointer X
SFC Source function-code register X X
SR Status register X X X
SSP Supervisor stack-pointer X X X
USP User stack-pointer X X X
VBR Vector-base register X X

4.2

Data registers may
Address registers, on
32-bit operations.
Both address and data

68xxx Opcodes

be used for 8-bit, 16-bit, and 32-bit operations.
the other hand, may only be used for 16-bit and
Address registers may be used as base registers.
registers may be used as index registers.

4.3 Introduction!£ Addressing Modes

Most opcodes require one or more operands, which may be stored either in
memory or in a register. An addressing mode is a means of supplying the
machine with the information it needs to calculate the address of the
operand. The user specifies the addressing mode by combining data
registers, expressions, or both in a particular way in the operand field
of the code.

4.3.1 Length of Assembled Instructions

An assembled instruction uses a m1n1mum of one word of storage, but
depending on the addressing modes, it may use as many as five words on
the 68000 and 68010 microprocessors and as many as eleven words on the
68020. The first word of the instruction defines the operation and the
length of the instruction. Different addressing modes generate
instructions of different length depending on the information needed to
calculate the address of the operand or operands. The words beyond the
first word of an instruction are called words of extension.

4.3.2 Use of Index Registers

The 68xxx assembler allows the user to specify how much of an index
register to use by appending a suffix to the specification of the index
register as follows:

• <size>

where <size> may be an 'L' or an '1' for the entire 32 bits or a 'w' or
a w for the low-order 16 bits. By default, the assembler uses the
low-order 16 bits.

4.3

68xxx Relocating Assembler

The 68020 assembler allows the user to
factor of 1, 2, 4, or 8. In such a
contents of the index register by the
calculating the effective address.
expression

"scale" the index register by a
case the assembler multipl ies the
specified scale factor before
The user simply appends the

*<scale>

where <scale> is the scale factor, to the description of the index
register.

4.3.3 Syntax Conventions

various conventions are used in the syntax statements which describe the
addressing modes. Registers are designated by a 'D' where a data
register is required, by an 'A' where an address register is required,
or by an 'R', where either type of register may be used. Lowercase
letters may also be used. The letter designating the register must be
followed by a digit between 0 and 7 inclusive, indicated in the syntax
statements by the letter 'n'. The user can always use the SP register
instead of A7. Angle brackets enclose descriptive words which the user
must replace with a specific item which answers to the description. For
example, the term <displ> must be replaced by an expression specifying
the displacement, which the machine sign-extends to a 32-bit integer.
Uniess otherwise stated, an addressing mode generates a one-word
instruction. In cases where two operands are specified, the first
operand is always the source; the second, the destination.

Documentation for the UniFLEX Operating System usually uses square
brackets, '[' and ']', to delineate optional items in a syntax
statement. However, this document does not because certain addressing
modes use square brackets as part of their required syntax. The text
describing each addressing mode identifies optional items except for the
use of a size specification, a scaling factor, or both with an index
register. These items are always optional.

Twelve addressing modes are available for use with all 68xxx assemblers.
Some of these modes may be used in some form with all assemblers but
have one or more additional forms which may only be used with the 68020.
The word "Syntax" is preceded by an asterisk, '*', if the syntax
statement or statements which follow it apply only to the 68020
assembler. Six addressing modes are completely restricted to use with
the 68020 assembler and are labeled as such in the subheading that
introduces them. Their syntax statements are also marked with an
asterisk.

4.4

68xxx Opcodes

4.4 Descriptions of Addressing Modes

This section contains descriptions, syntax statements, and examples of
all addressing modes available on the 68xxx assemblers. Appendix B
contains a summary of all addressing modes available for use with the
68020 assembler. Further details are available in Appendix D of the
MC68020 32-Bit Microprocessor User'~ Manual (Motorola, 1985a).

4.4.1 Data Register Direct

The operand is in the data register specified.

Syntax: Dn
Examples:

ext.l DO Sign-extend data register 0 to 32 bits.

4.4.2 Address Register Direct

The operand is in the address register specified.

Syntax: An
Examples:

add.l Al,A2 Add the content of address register 1 to the
content of address register 2, using all
32-bits of each operand.

4.4.3 Address Register Indirect

The address of the operand is in the address register specified.

Syntax: (An)
Examples:

sub.l D5,(A4) Subtract the content of
from the long operand at
address register 4.

4.5

data register 5
the address ~n

I

68xxx Relocating Assembler

4.4.4 Address Register Indirect with Postincrement

The address of the operand is in the address register specified. After
using the address, the microprocessor normally increments it by I if the
operand is a byte, by 2 if it is a word, or by 4 if it is a long word.
If, however, the register is the current stack-pointer (A7 or SP) and
the operand is a byte, the microprocessor increments the address by 2.

Syntax: (An)+
Examples:

clr.w (A5)+ Clear the word at the
register 5. Then increment
the register by 2.

address in address
the content of

4.4.5 Address Register Indirect with Predecrement

The address of the operand is in the address register specified. Before
using the address, the microprocessor normally decrements it by 1 if the
operand is a byte, by 2 if it is a word, or by 4 if it is a long word.
If, however, the register is the current stack-pointer (A7 or SP) and
the operand is a byte, the microprocessor decrements the address by 2.

Syntax: -(An)
Examples:

clr.b -(A3) Decrement the content of address register 3
by 1. Then clear the byte at the address in
register 3.

4.4.6 Address Register Indirect with Displacement

The address of the operand is the sum of the displacement plus the
address in the address register. The displacement must be an absolute,
16-bit expression. This addressing mode requires one word of extension.

Syntax:
*Syntax:

<displ>(An)
«displ>,An)

4.6

Examples:

move.l 6(AO) ,D1

68xxx Opcodes

Move the four bytes at the address that
is the sum of 6 and the address 1n
address register 0 into data register 1.

4.4.7 Address Register Indirect with Index

The address of the operand is the sum of the displacement, the address
in the address register, and the content (possibly scaled) of the index
register. The displacement is optional. If specified, it must be an
absolute, 8-bit expression. If the user does not specify a value for
the displacement, it defaults to O. This addressing mode requires one
word of extension.

Syntax: <displ>(An,Rn.<size»
Syntax: «displ>,An,Rn.<size><scale»

Examples:

clr.l $A(A1,D1.W) Clear the four bytes at the address
specified by the sum of the
displacement (hexadecimal A), the
address in address register 1, and the
low-order 16 bits of the content of
data register 1.

tst.l (A2,A3.L) Test the four bytes at the address
specified by the sum of the contents of
address registers 2 and 3. The value
of the displacement defaults to O.

68020 only:
clr.w (4,A2,D2.L*2) Clear the two bytes at the address

specified by the sum of the
displacement (4) , the content of
address register 2, and 2 times the
32-bit content of data register 2.

4.4.8 Address Register Indirect with Index (Base-displacement)
(68020 only)

The address of the operand is the sum of the displacement, the address
in the address register, and the contents (possibly scaled) of the index
register. The displacement is either 16 or 32 bits. This addressing

4.7

I

68xxx Relocating Assembler

mode requires one, two,
components are optional.
does not specify is o.

or three words of extension. All three
The default for any component which the user

Syntax: <displ>(An,Rn.<size><scale»
«displ>,An,Rn.<size>*<scale»

Examples:

clr.L ($9A,AO,DO.L*2) Clear the four bytes at the address
specified by the sum of the
displacement (hexadecimal 9A), the
address in address register 0, and
two times the 32-bit value stored in
data register O.

clr.l (S,D2) Clear the four bytes at the address
specified by the sum of the
displacement (S) and the low-order 16
bits of the value stored in data
register 2. The value of the address
register defaults to O.

4.4.9 Memory Indirect Postindexed (68020 only)

The processor first calculates an intermediate address, which is the sum
of the content of the address register and the sign-extended
displacement. It then calculates the effective address by adding the
long word at the intermediate address to the outer displacement and the
(possibly scaled) content of the index register. All four components
are optional. The default for any component which the user does not
specify is O. This addressing mode requires from one to five words of
extension.

Syntax: ([<displ>,An],Rn.<size><scale>,<outer_displ»
Examples:

tst.l ([$IO,A3] ,DI.W*4,$lA)

4.8

Calculate an intermediate
address by adding the content
of address register 3 to the
displacement (hexadecimal
10). Multiply the low-order
sixteen bits in data register
1 by 4, and add the result to
the outer displacement
(hexadecimal lA) and the long
word stored at the

clr.w ([A21 ,D2.L)

68xxx Opcodes

intermediate address to
determine the effective
address. Test the four bytes
at the effective address.

Calculate an intermediate
address by adding the content
of address register 2 to the
default displacement of O.
Add the long word stored 1n
data register 2 to the
default outer displacement of
o and the long word stored at
the intermediate address to
determine the effective
address. Clear the low-order
sixteen bits stored at the
effective address.

4.4.10 Memory Indirect Preindexed (68020 only)

The processor first calculates an intermediate address. which is the sum
of the address in the address register. the sign-extended displacement,
and the (possibly scaled) content of the index register. It then
calculates the effective address by adding the long word at the
intermediate address to the outer displacement. All four components are
optional. The default for any component which the user does not specify
is 0. This addressing mode requires from one to five words of
extension.

Syntax: ([<displ>,An,Rn.<size><scale>],<outer_displ»
Examples:

tst.l ([$10,A3,Dl.W*4] ,$lA)

4.9

Calculate the intermediate
address by multiplying the
low-order sixteen bits in
data register I by 4 and
adding the result to the
content of address register 3
and to the displacement
(hexadecimal 10). Add the
long word stored at the
intermediate address to the
outer displacement to
determine the effective
address. Test the four bytes
at the effective address.

I

68xxx Relocating Assembler

clr.w ([A2,D2.L])

4.4.11 Absolute Short Address

Calculate an intermediate
address by adding the content
of address register 2 to the
default displacement of 0 and
to the long word stored in
data register 2. Add the
long word stored at the
intermediate address to the
default outer displacement of
o to determine the effective
address. Clear the low-order
sixteen bits stored at the
effective address.

The address of the operand is the value of the absolute or relocatable
label specified or, for the 68020 only, the value of the 16-bit
expression specified. The value of a label must be less than 7FFF
because the machine sign-extends it before use. This addressing mode
requires one word of extension.

Syntax: <label>:W
*Syntax: <expr>:W

Examples:

jsr sqrt:w Jump to the subroutine "sqrt" using a 16-bit
address.

jsr table+8:w Jump to the subroutine at the 16-bit address
specified by the sum of the value of the
label "table" and 8.

4.4.12 Absolute Long Address

The address of the operand is the value of the expression or of the
absolute or relocatable label specified. This addressing mode requires
two words of extension.

Syntax: <1 abe l_or_expr>
Examples:

jsr sqrt Jump to the subroutine "sqrt" using a 32-bit
address.

4.10

68xxx Opcodes

jsr $400300 Jump to the subroutine at hexadecimal
location 400300.

4.4.13 Program-Counter Relative

This addressing mode, which 1S sometimes called program counter with
displacement, requires one word of extension. That word contains the
value of the difference between the address of the label and the program
counter. The label must be a relocatable label in the same segment as
the program counter. The difference between the two must be a 16-bit
value. The address of the operand is the sum of the address in the
program counter and the word of extension. Thus, the displacement
calculated is the address of the label relative to the program counter.

The operand field for a branch instruction requires only a label. All
other instructions wishing to use this addressing mode must include the
program counter in the operand field to distinguish this addressing mode
from the absolute-long addressing~ode.

Syntax: <label>{PC)
*Syntax: «label>,PC)

Examples:

jmp table(PC) Jump to the address of the label "table".

4.4.14 Program Counter with Index

This addressing mode requires one word of extension. That word contains
the value of the difference between the address of the label and the
program counter. The label must be a relocatable label in the same
segment as the program counter. The difference between the two must be
an 8-bit value. The address of the operand is the sum of the address in
the program counter, the low-order 8 bits of the word of extension, and
the content of the index register. Thus, the displacement calculated is
the address of the label relative to the program counter, offset by the
value in the index register.

4.11

I

68xxx Relocating Assembler

Syntax:
*Syntax:

<label>(PC,Rn.<size»
«label>,PC,Rn.<size>*<scale»

Examples

jmp table(PC,Dl.L) Jump to the address that is the sum of
the relative address of the label
"table" with respect to the program
counter and the content of data
register 1.

4.4.15 Program Counter Indirect with Index (Base Displacement)
(68020 only)

The address of the operand is the sum of the displacement, the program
counter, and the content (possibly scaled) of the index register. The
displacement is either 16 or 32 bits. This addressing mode requires
one, two, or three words of extension. The index register is optional,
and its default value is O. The program counter and displacement.
however, are required. A user who wants to use a value of 0 for the
program counter yet wants to generate a program-space reference must use
the string "ZPC" (zero program counter) in the instruction.

Syntax: <displ>(PC,Rn.<size><scale»
«displ>,PC,Rn.<size>*<scale»

Examples:

clr.L $A(PC,DO.L*2)

clr.l (5,ZPC,D2)

Clear the four bytes at the
specified by the sum
displacement (hexadecimal
program counter, and two
32-bit value stored in data
O.

address
of the

A). the
times the
register

Clear the four
specified by
displacement (5)
in data register

bytes at the address
the sum of the
and the value stored
2.

4.4.16 Program Counter Memory Indirect Postindexed (68020 only)

The processor first calculates an intermediate address, which is the sum
of the program counter and the sign-extended displacement. It then
calculates the effective address by adding the long word at the
intermediate address to the outer displacement and the (possibly scaled)

4.12

68xxx Opcodes

content of the index register. This addressing mode requires
to five words of extension. The index register and
displacement are optional, and the default value for both is

from
the

O.

one
outer

The
program counter and the displacement, however, are required. A user who
wants to use a value of 0 for the program counter yet wants to generate
a program-space reference must use the string "ZPC" (zero program
counter) in the instruction.

Syntax: ([<displ>,PC],Rn.<size><scale>,<outer_displ»
Examples:

tst.l ([$10,PC],Dl.W*4,$lA)

c 1 r • w ([0 , PC] , D 2. L)

clr.l ([S,ZPC],D2,$lA)

4.13

Calculate an intermediate
address by adding the
contents of the program
counter to the displacement
(hexadecimal 10). Multiply
the low-order sixteen bits in
data register 1 by 4, and add
the result to the outer
displacement (hexadecimal lA)
and the long word stored at
the intermediate address to
determine the effective
address. Test the four bytes
at the effective address.

Calculate an intermediate
address by adding the content
of the program counter to the
default displacement of O.
Add the long word stored 1n
data register 2 to the
default outer displacement of
o and the long word stored at
the intermediate address to
determine the effective
address. Clear the low-order
sixteen bits stored at the
effective address.

Calculate an intermediate
address by adding the
displacement (S) to the
contents of the program
counter (0). Add the long
word stored in data register
2 to the outer displacement
(hexadecimal lA) and the long
word stored at the
intermediate address to

I

68xxx Relocating Assembler

determine the effective
address. Clear the four
bytes stored at the effective
address.

4.4.17 Program Counter Memory Indirect Preindexed (68020 only)

The processor first calculates an intermediate address, which is the sum
of the program counter, the sign-extended displacement, and the
(possibly scaled) content of the index register. It then calculates the
effective address by adding the long word at the intermediate address to
the outer displacement. This addressing mode requires from one to five
words of extension. The outer displacement and the index register are
optional, and the default value in both cases is O. The program counter
and the displacement, however, are required. A user who wants to use a
value of 0 for the program counter yet wants to generate a program-space
reference must use the string "ZPC" (zero program counter) in the
instruction.

Syntax: ([<displ>,An,Rn.<size><scale>],<outer_displ»
Examples:

tst.l ([SI0,PC,Dl.W*4] ,SlA)

4.14

Calculate an intermediate
address by multiplying the
low-order sixteen bits in
data register 1 by 4 and
adding the result to the
program counter and to the
displacement (hexadecimal
10). Add the long word
stored at the intermediate
address to the outer
displacement to determine the
effective address. Test the
four bytes at the effective
address.

clr.w ([O,PC,D2.L])

clr.l ([5,ZPC,D2] ,$lA)

4.4.18 Immediate Data

68xxx Opcodes

Calculate an intermediate
address by adding the program
counter to the displacement
(0) and to the long word
stored in data register 2.
Add the long word stored at
the intermediate address to
the default outer
displacement of 0 to
determine the effective
address. Clear the low-order
sixteen bits stored at the
effective address.

Calculate an intermediate
address by adding the
displacement (5) to the
program counter (0) and to
the long word stored in data
register 2. Add the long
word stored at the
intermediate address to the
outer displacement
(hexadecimal lA) to determine
the effective address. Clear
the four bytes stored at the
effective address.

The operand is the constant in the operand field. This addressing mode
requires one or two words of extension depending on the size of the
operation.

Syntax: 11<expr>
Examples:

move.w 1140% ,D2 Move the decimal value 40% into data
register 2.

4.15

68xxx Relocating Assembler

4.5 Opcodes

This section contains a brief listing of all the opcodes accepted by the
68xxx assembler. The following conventions appear 1n the syntax
statements:

An

<bit _mask>

Address register 'n' ('n' between 0 and 7
inclusive)
A l6-bit mask specifying which registers to move
in a ''movem'' or an "fmovem" (68020 only)
instruction. In predecrement addressing mode,
the bit correspondence for the "movem"
instruction is as follows:

Bit Register
==========================~=====

o Address register 7
1 Address register 6

7 Address register 0
8 Data register 7
9 Data register 6

15 Data register 0

In predecrement addressing mode, the bit
correspondence for the "fmovem" instruction is as
follows:

Bit Register
=======================================

o
1

7
8-15

Floating-point register 0
Floating-point register 1

Floating-point register 7
Unused

In all addressing modes other than predecrement,
the "movem" the bit correspondence for

4.16

<cc>
Dc

Dh
Dl
Dn

{Dn}
Dq
Dr
Du

<data>
<data(8»

68xxx Opcodes

instruction is as follows:

Bit Register
-==========-====-==========-====

o Data register 0
1 Data register 1

7 Data register 7
8 Address register 0
9 Address register 1

15 Address register 7

In all addressing modes other than predecrement,
the bit correspondence for the "fmovem"
instruction is as follows:

Bit Register
=======================================

o Floating-point register 7
1 Floating-point register 6

7 Floating-point register 0
8-15 Unused

This rightmost bit is bit 0; the leftmost, bit
15.
A character string representing a condition code.
Data register used as compare operand for the
"cas" opcode.
Data register for high-order 32 bits.
Data register for low-order 32 bits.
Data register 'n' ('n' between 0 and 7
inclusive) •
K-factor for move packed-decimal data ("fmove").
Data register for quotient.
Data register for remainder.
Data register used as update operand for the
"cas" opcode.
8-, 16- or 32-bit data value.
8-bit data value.

4.17

I

68xxx Relocating Assembler

<data (16 »
<data(32»
<disp>
<disp(S»
<disp (16) >
<disp(32»
<ea>
FPcr

FPm

FPn

{#k}
<label>
{o :w}

<quick>

Rc

<reLlist>

16-bit data value.
32-bit data value.
8-, 16- or 32-bit displacement value.
8-bit displacement value.
16-bit displacement value.
32-bit displacement value.
Effective address.
Floating-point control register (FPCR, FP1AR, or
FPSR) •
A floating-point control-register list is used
with certain opcodes supported by the 68020
assembler. Such a list may consist of any
combination of floating-point control registers
(FPCR, FP1AR, and FRSR)in any order. Each
element in the list except the last one must be
followed by a slash character, 'I'.
Floating-point register 'm' ('m' between 0 and 7
inclusive) •
Floating-point register 'n' ('n' between 0 and 7
inclusive) •
K-factor for move packed-decimal data ("fmove").
A label in the source code.
Offset (0) and width (w) for bit-field
instructions where '0' is between 0 and 31
inclusive, or is a data register, and 'w' is
between 1 and 32 inclusive, or is a data
register.
A data value between 1 and 8 inclusive (quick
value) •
Control register CDFC, SFC, USP, or VBR; also
CAAR, CACR, ISP, or MSP for 68020).
A register list is used with the "movem" and
"fmovem" (6S020 only) opcodes. Such a list can
be formed in two ways. The programmer may use
the slash character, '1', to separate the names
of the registers whose contents are to be moved.
With this method, the user must list each
register individually:

DI/D3/D5/A2/A3

Alternatively, the programmer may specify a range
of contiguous registers by separating two names
with a hyphen, '-':

D 1-D 51 AI-A3

This register list includes registers Dl, D2, D3,
D4, D5, AI, A2, and A3.

4.18

68xxx Opcodes

Rn Either data or address register 'n' ('n' between
o and 7 inclusive).

<rom_offset> A data value between 0 and 63 inclusive.
<vector> A vector number between 0 and 15 inclusive.

Table 4-1 shows the addressing modes available on the 68xxx assembler.
The table groups these modes into the categories referred to in the
descriptions accompanying the list.

Table 4-1. Categories of Addressing Modes

Mode Category

Data register direct x x x

Address register direct x

Address register indirect x x x x x x

Address register indirect
with post increment x X X X

Address register indirect
with predecrem.ent X X X X

Address register indirect
with displacement X X X X X X

Address register indirect
with index X X X X X X

Absolute short address X X X X X X

Absolute long address X X X X X X

Program-counter relative X X

Program counter with index X X

Immediate data X

4.19

68xxx Relocating Assembler

Table 4-2 shows the addressing modes available only on the 68020
assembler. The table groups these modes into the categories referred to
in the descriptions accompanying the list.

Table 4-2. Categories of Addressing Modes Available for 68020

Mode Category

Address register indirect X X X X X X
with index (base disp)

Memory indirect post indexed X X X X X X

Memory indirect preindexed X X X X X X

Program-counter with index X X
(base displacement)

Program counter memory X X
indirect po st indexed

Program counter memory X X
indirect preindexed

An alphabetic list of the available opcodes follows. The names of
opcodes which may only be used on the 68020 assembler are preceded by an
asterisk, '*'. The names of opcodes which may be used on the 68010 and
68020 assemblers but not on the 68000 assembler are preceded by a plus
sign, '+'. Similarly, the headings "Syntax", "Source", and "Dest." are
preceded by an asterisk if the following text applies only to the 68020
assembler; with a plus sign, if only to the 68010 and 68020 assemblers.
Opcodes and headings which appear without either of these indicators
apply to all 68xxx assemblers.

abed Function:
Syntax:

Add decimal with extend
abed Dy,Dx
abed -(Ay),-(Ax)

4.20

add Function:
Syntax:

Source <ea>:
Dest. <ea>:

addx Function:
Syntax:

and Function:
Syntax:

Source <ea>:
Dest. <ea>:

asl Function:
Syntax:

Source <ea>:

asr Function:
Syntax:

Source <ea>:

b<cc> Function:
Syntax:
Choices:

68xxx Opcodes

Add binary
add <ea>,Dn
add Dn,<ea>
add <ea>,An
add fF<data>,<ea>
All addressing modes
Data alterable addressing modes

Add extended
addx Dy,Dx
addx -(Ay), -(Ax)

and logical
and <ea>,Dn
and Dn,<ea>
and fF<data>,<ea>
and #<data(8»,CCR
and #<data(16»,SR
Data addressing modes
Data alterable addressing modes

Arithmetic shift left
asl Dx,Dy
asl fF<quick> ,Dn
asl <ea>
Memory alterable addressing modes
only)

Arithmetic shift right
asr Dx,Dy
asr 1F<quick> ,Dn
asr <ea>
Memory alterable addressing modes
only)

Branch conditionally
b<cc> <label>
bcc Branch on carry clear
bcs Branch on carry set
beq Branch on equal
bge Branch on greater or equal
bgt Branch on greater
bhi Branch on high
bhs Branch on high or same (bcc)
ble Branch on less or equal
blo Branch on low (bcs)
bls Branch on low or same
bIt Branch on less than
bmi Branch on minus
bne Branch on not equal
bpI Branch on plus

4.21

(word

(word

68xxx Relocating Assembler

bchg Function:
Syntax:

Dest. <ea>:

bcIr Function:
Syntax:

Dest. <ea>:

*bfchg Function:
Syntax:
Source <ea>:

*bfclr Function:
Syntax:
Source <ea>:

*bfexts Function:
Syntax:
Source <ea>:

*bfextu Function:
Syntax:
Source <ea>:

*bfffo Function:
Syntax:
Source <ea>:

*bfins Function:
Syntax:
Dest. <ea>:

*bfset Function:
Syntax:
Source <ea>:

bra Branch always (unconditionally)
bvc Branch on overflow clear
bvs Branch on overflow set

Test a bit and change
bchg Dn,<ea>
bchg #<data(S»,<ea>
Data alterable addressing modes

Test a bit and clear
bclr Dn,<ea>
bclr #<data(S»,<ea>
Data alterable addressing modes

Test a bit field and change
bfcbg <ea>{o:w}
Control alterable or data direct
modes

Test a bit field and clear
bfclr <ea>{o :w}
Control alterable or data direct
modes

Extract bit field signed
bfexts <ea>{o:w},Dn

addressing

addressing

Control alterable or data direct addressing
modes

Extract bit field unsigned
bfextu <ea>{o:w},Dn
Control alterable or data direct addressing
modes

Find first 1 in bit field
bfffo <ea>{o:w},Dn
Control alterable or data direct addressing
modes

Insert bit field
bfins Dn,<ea>{o:w}
Control alterable or data direct addressing
modes

Set bit field
bfset <ea>{o:w}
Control alterable or data direct addressing
modes

4.22

*bftst Function:
Syntax:
Source <ea>:

*bkpt Function:
Syntax:

bset Function:
Syntax:

Dest. <ea>:

bsr Function:
Syntax:

btst Function:
Syntax:

Dest. <ea>:

*callm Function:
Syntax:
Dest. <ea>:

*cas Function:
Syntax:
Dest. <ea>:

*cas2 Function:
Syntax:

chk Function:
Syntax:
Source <ea>:

*chk2 Function:
Syntax:
Source <ea>:

clr Function:
Syntax:
Source <ea>:

Test bit field
bftst <ea>{o :w}

68xxx Opcodes

Control alterable or data direct addressing
modes

Break point
bkpt 1f<vector>

Test a bit and set
bset Dn,<ea>
bset #<data(8»,<ea>
Data alterable addressing modes

Branch to subroutine
bsr <label>

Test a bit
btst Dn,<ea>
btst #<data(8»,<ea>
Data addressing modes

Call module
callm #<data(8»,<ea>
Control addressing modes

Compare and swap with operand
cas Dc,Dn,<ea>
Memory alterable addressing modes

Compare and swap with operand
cas2 Dcl:Dc2,Dnl:Dn2,(Rnl):(Rn2)

Check register against bounds
chk <ea>,Dn
Data addressing modes

Check register against bounds
chk2 <ea>,Rn
Control addressing modes

Clear an operand
clr <ea>
Data alterable addressing modes

4.23

68xxx Relocating Assembler

cmp Function: Compare
Syntax: cmp <ea>,Dn

cmp <ea> ,An
cmp 1F<da ta > , <ea >
cmp (Ay) + , (Ax) +

Source <ea>: All addressing modes
Dest. <ea>: Data alterable addressing modes

*Dest. <ea>: Data addressing modes

*cmp2 Function: Compare register against bounds
Syntax: cmp2 <ea>,Rn
Source <ea>: Control addressing modes

db<cc> Function: Test condition, decrement, and branch
Syntax: db<cc> Dn,<label>
Choices: dbcc Decrement and branch on carry clear

dbcs Decrement and branch on carry set
dbeq Decrement and branch on equal
dbf Decrement and branch on false (never

branches)
dbge Decrement and branch on greater or

equal
dbgt Decrement and branch on greater
dbhi Decrement and branch on high
dble Decrement and branch on less or equal
dbls Decrement and branch on low or same
dblt Decrement and branch on less than
dbmi Decrement and branch on minus
dbne Decrement and branch on not equal
dbpl Decrement and branch on plus
dbra Decrement and branch always (dbf)
dbt Decrement and branch on true (never

branches)
dbvc Decrement and branch on overflow

clear
dbvs Decrement and branch on overflow set

divs Function: Signed divide
Syntax: divs <ea> ,Dn (32/16 = 16 r, 16 q)

*Syntax: div s. L <ea> ,Dq (32/32 = 32 q)
divs.L <ea>,Dr:Dq (64/32 = 32 r, 32 q)
divsl.L <ea>,Dr:Dq (32/32 = 32 r, 32 1)

Source <ea>: Data addressing modes

divu Function: Unsigned divide
Syntax: divu <ea> ,Dn (32/16 = 16 r, 16 q)

*Syntax: divu.L <ea>,Dq (32/32 = 32 q)
divu.L <ea>,Dr:Dq (64/32 = 32 r, 32 q)
divul.L <ea>,Dr:Dq 02/32 = 32 r, 32 1)

Source <ea>: Data addressing modes

4.24

eor

exg

ext

*extb

*fabs

*facos

*fadd

*fasin

*fatan

*fatanh

Function:
Syntax:

Exclusive or logical
eor Dn, <ea>
eor #<data>,<ea>
eor #<data(8»,CCR
eor #<data(16»,SR

68xxx Opcodes

Dest. <ea>: Data alterable addressing modes

Function:
Syntax:

Function:
Syntax:

Function:
Syntax:

Function:
Syntax:

Exchange registers
exg Rx,Ry

Sign extend
ext Dn

Sign extend byte to a long
extb Dn

Floating-point absolute value
fabs <ea>,FPn
fabs FPm,FPn
fabs FPn

Source <ea>: Data addressing modes

Function:
Syntax:

Floating-point arc cosine
facos <ea> ,FPn
facos FPm,FPn
facos FPn

Source <ea>: Data addressing modes

Function:
Syntax:

Floating-point add
fadd <ea>.FPn
fadd FPm,FPn
fadd FPn

Source <ea>: Data addressing modes

Function:
Syntax:

Source <ea>:

Function:
Syntax:

Source <ea>:

Function:
Syntax:

Floating-point sine
fasin <ea> ,FPn
fasin FPm,FPn
fasin FPn
Data addressing modes

Floating-point arc tangent
fatan <ea> ,FPn
fatan FPm,FPn
fatan FPn
Data addressing modes

Floating-point hyperbolic arc tangent
fatanh <ea>,FPn
fatanh FPm,FPn
fatanh FPn

Source <ea>: Data addressing modes

4.25

68xxx Relocating Assembler

*fb<cc> Function:
Syntax:
Choices:

*fcmp Function:
Syntax:

Source <ea>:

*fcos Function:
Syntax:

Source <ea>:

Branch
fb<cc>
fbeq
fbf
fbge
fbgl
fbgle
fbgt
fble
fblt
fbne
fbnge
fbngl
fbngle

fbngt
fbnle
fbnlt
fboge
fbogl
fbogt
fbole
fbolt
fbor
fbseq
fbsf

conditionally
<label>
Branch on equal
Branch on false (never branches)
Branch on greater or equal
Branch on greater or less
Branch on greater, less, or equal
Branch on greater
Branch on less or equal
Branch on less
Branch on not equal
Branch on not (greater or equal)
Branch on not (greater or less)
Branch on not (greater, less,
equal)
Branch on not greater
Branch on not (less or equal)
Branch on not less
Branch on ordered
Branch on ordered
Branch on ordered

greater or equal
greater or less
greater

Branch on ordered less or equal
Branch on ordered less
Branch on ordered

or

Branch on signaling equal
Branch on signaling false
branches)

(never

Branch on signaling not equal fbsne
fbst Branch on signaling true (always

branches)
fbt
fbueq
fbuge
fbugt
fbule
fbult
fbun

Branch on true (always branches)
Branch on unordered equal
Branch on unordered greater or equal
Branch on unordered greater
Branch on unordered greater or equal
Branch on unordered less
Branch on unordered

Floating-point compare
fcmp <ea>,FPn
fcmp FPm,FPn
fcmp FPn
Data addressing modes

Floating-point cosine
fcos <ea> ,FPn
fcos FPm,FPn
fcos FPn
Data addressing modes

4.26

*fcosh Function:
Syntax:

Source <ea>:

*fdb<cc> Function:
Syntax:
Choices:

68xxx Opcodes

Floating-point hyperbolic cosine
fcosh <ea>,FPn
fcosh FPm,FPn
fcosh FPn
Data addressing modes

Decrement and branch on condition
fdb<cc> Dn,<label>
fdbeq Decrement and branch on equal
fdbf Decrement and branch on false

(never branches)
fdbge Decrement and branch on greater or

equal
fdbgl Decrement and branch on greater or

less
fdbgle

fdbgt
fdble

fdblt
fdbne
fdbnge

fdbngl

fdbngle

fdbngt
fdbnle

fdbnlt
fdboge

fdbogl

fdbogt

fdbole

fdbolt

fdbor
fdbseq

fdbsf

fdbsne

fdbst

Decrement and branch on greater,
less, or equal
Decrement and branch on greater
Decrement and branch on less or
equal
Decrement and branch on less
Decrement and branch on not equal
Decrement and branch on not
(greater or equal)
Decrement and branch
(greater or less)
Decrement and branch
(greater, less, or equal)

on

on

not

not

Decrement and branch on not greater
Decrement and branch on not (less

and branch on not less
and branch on ordered
equal

or equal)
Decrement
Decrement
greater or
Decrement
greater or
Decrement
greater
Decrement and
less or equal
Decrement and
less

and branch on ordered
less
and branch on ordered

branch on ordered

branch on ordered

Decrement and branch on ordered
Decrement and branch on signaling
equal
Decrement and branch on signaling
false (never branches)
Decrement and branch on signaling
not equal
Decrement and branch on signaling
true (always branches)

4.27

68xxx Relocating Assembler

*fdiv Function:
Syntax:

fdbt Decrement and branch on true
. (always branches)

fdbueq Decrement and branch
equal

fdbuge Decrement and branch
greater ,or equal

fdbugt Decrement and branch
greater

fdbule Decrement and branch
greater or equal

fdbult Decrement and branch
less

fdbun Decrement and branch

Floating-point divide
fdiv <ea>)FPn
fdiv FPm)FPn
fdiv FPn

on unordered

on unordered

on unordered

on unordered

on unordered

on unordered

Source <ea>: Data addressing modes

*fetox Function:
Syntax:

Source <ea>:

*fetoxml Function:
Syntax:

Source <ea>:

*fgetexp Function:
Syntax:

Source <ea>:

*fgetman Function:
Syntax:

Source <ea>:

*fint Function:
Syntax:

Source <ea>:

Floating-point eAx
fetox <ea»FPn
fetox FPm)FPn
fetox FPn
Data addressing modes

Floating-point eAx - 1
fetoxml <ea»FPn
fetoxml FPm)FPn
fetoxml FPn
Data addressing modes

Floating-point get exponent
fgetexp <ea>)FPn
fgetexp FPm,FPn
fgetexp FPn
Data addressing modes

Floating-point get mantissa
fgetman <ea»FPn
fgetman FPm)FPn
fgetman FPn
Data addressing modes

Floating-point integer part
fint <ea»FPn
£lnt FPm)FPn
fint FPn .
Data addressing modes

4.28

*fintrz

*£1og10

*£1og2

*£1ogn

*flognp1

*fmod

*fmove

*fmove

Function:
Syntax:

Source <ea>:

Function:
Syntax:

Source <ea>:

Function:
Syntax:

Source <ea>:

Function:
Syntax:

Source <ea>:

Function:
Syntax:

Source <ea>:

Function:
Syntax:

68xxx Opcodes

Floating-point integer part, round to 0
fintrz <ea>,FPn
fintrz FPm,FPn
fintrz FPn
Data addressing modes

Floating-point log base 10
£1og10 <ea>,FPn
flog10 FPm,FPn
£log10 FPn
Data addressing modes

Floating-point log base 2
flog2 <ea> ,FPn
£1og2 FPm,FPn
£log2 FPn
Data addressing modes

Floating-point natural log (log base 'e')
£1ogn <ea> ,FPn
£logn FPm,FPn
£logn FPn
Data addressing modes

Floating-point natural log plus 1
flognp1 <ea>,FPn
flognp1 FPm,FPn
£lognp1 FPn
Data addressing modes

Floating-point modulo remainder
fmod <ea>,FPn
fmod FPm,FPn
fmod FPn

Source <ea>: Data addressing modes

Function:
Syntax:

Source <ea>:
Dest. <ea>:

Function:
Syntax:

Source <ea>:
Dest. <ea>:

Move floating-point data register
fmove <ea>,FPn
fmove FPn,<ea>
fmove.P FPn,<ea>{Dn}
fmove.P FPn,<ea>{#k}
Data addressable addressing modes
Data alterable addressing modes

Move system control-registers
fmove <ea> ,FPcr
fmove FPcr,<ea>
All addressing modes
Alterable addressing modes
Also address register direct if moving
FPIAR

4.29

68xxx Relocating Assembler

*fmovecr

*fmovem

*fmovem

Function:
Syntax:
Defined

Move from constant ROM
fmovecr 1t<rom_of f se t > ,FPn

constants: Offset Value

Function:
Syntax:

===========================
$00 pi
SOB Log base 10 of 2
SOC e
SOD Log base 2 of e
$OE Log base 10 of e
$OF 0.0
$30 • Natural log 2
$31 Natural log 10
$32 10"0
$33 10"1
$34 10"2
$35 10"4
$36 10"8
$37 10"16
$38 10"32
$39 10"64
$3A 10"128
$3B 10"256
$3C 10"512
$3D 10"1024
$3E 10~2048

$3F 10"4096

Move mUltiple floating-point registers
fmovem <reg_list>,<ea>
fmovem #<bit_mask>,<ea>
fmovem Dn,<ea>
fmovem <ea>,<re&-list>
fmovem <ea>,#<bit_mask>
fmovem <ea>, Dn

Source <ea>: Post increment and control addressing

Dest. <ea>:

Function:
Syntax:

Source <ea>:
Dest. <ea>:

modes
Predecrement and control alterable
addressing modes

Move mUltiple control registers
fmovem <FPcr_list>,<ea>
fmovem <ea>,<FPcr_list>
All addressing modes
Alterable addressing modes
Also address register direct if moving
FPIAR
Also data register direct if moving a
single FPcr

4.30

68xxx Opcodes

*fmul Function: Floating-point multiply
Syntax: fmul <ea> .FPn

fnrul FPm.FPn
fmul FPn

Source <ea>: Data addressing modes

*fneg Function: Floating-point negate
Syntax: fneg <ea>.FPn

fneg FPm. FPn
fneg FPn

Source <ea>: Data addressing modes

*fnop Function: Floating-point no operation
Syntax: fnop

*frem Function: Floating-point IEEE remainder
Syntax: frem <ea> ,FPn

frem FPm.FPn
frem FPn

Source <ea>: Data addressing modes

*frestore Function: Restore internal state

*fsave

*fscale

*fs<cc>

Syntax: frestore <ea>
Source <ea>: Postincrement or control addressing modes

Function:
Syntax:
Source <ea>:

Function:
Syntax:

Source <ea>:

Function:
Syntax:
Source <ea>:
Choices:

Save internal state
fsave <ea>
Preincrement or
addressing modes

control

Floating-point scale exponent
f scale <ea> ,FPn
fscale FPm.FPn
fscale FPn
Data addressing modes

Set according to condition
fs<cc> <ea>
Data alterable addressing modes
fseq Set on equal

alterable

fsf Set on false (never branches)
fsge Set on greater or equal
fsgl Set on greater or less
fsgle Set on greater, less. or equal
fsgt Set on greater
fsle Set on less or equal
fslt Set on less
fsne Set on not equal
fsnge Set on not (greater or equal)
fsngl Set on not (greater or less)

4.31

68xxx Relocating Assembler

*fsgldiv Function:
Syntax:

Source <ea>:

*fsglmul Function:
Syntax:

Source <ea>:

*fsin Function:
Syntax:

Source <ea>:

*fsincos Function:
Syntax:

*fsinh Function:
Syntax:

Source <ea>:

fsngle Set on not (greater, less, or equal)
fsngt Set on not greater
fsnle Set on not (less or equal)
fsnlt Set on not less
fsoge Set on ordered greater or equal
fsogl Set on ordered greater or less
fsogt Set on ordered greater
fsole Set on ordered less or equal
£Solt Set on ordered less
fsor Set on ordered
fsseq Set on signaling equal
fssf Set on signaling false (never

branches)
fssne Set on signaling not equal
fsst Set on signaling true (always

branches)
fst Set on true (always branches)
fsueq Set on unordered equal
£Suge Set on unordered greater or equal
fsugt Set on unordered greater
fsule Set on unordered greater or equal
fsult Set on unordered less
fsun Set on unordered

Floating-point single-precision divide
fsgldiv <ea> ,FPn
fsgldiv FPm,FPn
fsgldiv FPn
Data addressing modes

Floating-point single-precision mUltiply
fsglmul <ea>,FPn
fsglmul FPm,FPn
fsglmul FPn
Data addressing modes

Floating-point sine
fsin <ea>,FPn
fsin FPm,FPn
fsin FPn
Data addressing modes

Simultaneous sine and cosine
fsincos <ea>,FPc:FPs
fsincos FPm,FPc:FPs

Floating-point hyperbolic sine
fsinh <ea> ,FPn
fsinh FPm,FPn
fsinh FPn
Data addressing modes

4.32

*fsqrt Function:
Syntax:

Source <ea>:

*fsub Function:
Syntax:

Source <ea>:

*ftan Function:
Syntax:

Source <ea>:

*ftanh Function:
Syntax:

Source <ea>:

*ftentox Function:
Syntax:

Source <ea>:

*ftrap<cc> Function:
Syntax:
Choices:

68xxx Opcode s

Floa ting-point square root
fsqrt <ea>,FPn
fsqrt FPm,FPn
fsqrt FPn
Data addressing modes

Floating-point subtract
fsub <ea>,FPn
fsub FPm,FPn
fsub FPn
Data addressing modes

Floating-point tangent
ftan <ea> ,FPn
ftan FPm,FPn
ftan FPn
Data addressing modes

Floating-point hyperbolic tangent
ftanh <ea> ,FPn
ftanh FPm,FPn
ftanh FPn
Data addressing modes

Floating-point 10 to the 'x' power (lO~x)
ftentox <ea>,FPn
ftentox FPm,FPn
ftentox FPn
Data addressing modes

Trap conditionally
ftrap<cc> [#<data>]
ftrapeq Trap on equal
ftrapf Branch on false (never branches)
ftrapge Branch on greater or equal
ftrapgl Branch on greater or less
ftrapgle Branch on greater, less, or equal
ftrapgt Branch on greater
ftraple Branch on less or equal
ftraplt Branch on less
ftrapne Branch on not equal
ftrapnge Branch on not (greater or equal)
ftrapngl Branch on not (greater or less)
ftrapngle Branch on not (greater, less, or

ftrapngt
ftrapnle
ftrapnlt
ftrapoge

ftrapogl

4.33

equal)
Branch on not greater
Branch on not (less or equal)
Branch on not less
Branch
equal

on ordered greater or:

Branch on ordered greater or less

68xxx Relocating Assembler

*ftst ,Function:
Syntax:

ftrapogt Branch on ordered greater
ftrapo Ie Branch on ordered less or equal
ftrapolt Branch on ordered less
ftrapor Branch on ordered
ftrapseq Branch on signaling equal
ftrapsf Branch on signaling false (never

branches)
ftrapsne Branch on signaling not equal
ftrapst Branch on signaling true (always

branches)
ftrapt Branch on true (always branches)
ftrapueq Branch on unordered equal
ftrapuge Branch on unordered greater or

equal
ftrapugt Branch on unordered greater
ftrapule Branch on unordered greater or

equal
ftrapult Branch on unordered less
ftrapun Branch on unordered

Floating-point test operand
ftst <ea>
ftst FPn

Source <ea>: Data addressing modes

*ftwotox Function:
Syntax:

Floating-point 2 to the 'x' power (2~x)

ftwotox <ea>,FPn
ftwotox FPm,FPn
ftwotox FPn

Source <ea>: Data addressing modes

illegal Function:
Syntax:

jmp Function:
Syntax:
Source <ea>:

jsr Function:
Syntax:
Source <ea>:

lea Function:
Syntax:
Source <ea>:

link Function:
Syntax:

*Syntax:

Illegal instruction
illegal

Jump
jmp <ea>
Control addressing modes

Jump to subroutine
jsr <ea>
Control addressing modes

Load effective address
lea <ea>,An
Control addressing modes

Link and allocate
link An,#<disp(16»
link An,#<disp(32»

4.34

lsI

lsr

move

+movec

movem

movep

+moves

Function:
Syntax:

Logical shift left
lsI Dx,Dy
lsI #<quick> ,Dn
lsI <ea>

68xxx Opcodes

Source <ea>: Memory alterable addressing modes (word
only)

Function:
Syntax:

Source <ea>:

Function:
Syntax:

Source <ea>:

Dest. <ea>:

Function:
Syntax:

Function:
Syntax:

Source <ea>:

Dest. <ea>:

Function:
Syntax:

Function:
Syntax:

Source <ea>:
Dest. <ea>:

Logical shift right
Isr Dx,Dy
lsr ifo<quick> ,Dn
lsr <ea>
Memory alterable addressing. modes
only)

Move data from source to destination
move <ea>,<ea>
move CCR, <ea>
move <ea>,CCR
move <ea>, SR
move SR, <ea>
move USP,An
move An,USP

(word

All addressing modes except for "move to
CCR" and "move to SR", which require data
addressing
Data alterable addressing modes

Move to or from control register
movec Rc,Rn
movec Rn,Rc

Move multiple registers
movem <re&-list>,<ea>
movem <ea>,<reg_list>
movem #<bit_mask>,<ea>
movem <ea> ,ifo<bi t_mask>
Control addressing and
addressing modes
Control alterable and
addressing modes

Move peripheral data
movep Dx,<disp(16»(Ay)
movep <disp(16»(Ax),Dy

Move to or from address space
moves Rn,<ea>
moves <ea>,Rn

post increment

predecrement

Memory alterable addressing modes
Memory alterable addressing modes

4.35

I

68xxx Relocating Assembler

muls

mulu

nbcd

neg

negx

nop

not

or

*pack

pea

reset

Function:
Syntax:

*Syntax:

Source <ea>:

Function:
Syntax:

*Syntax:

Source <ea>:

Function:
Syntax:
Sour ce <ea>:

Function:
Syntax:
Source <ea>:

Function:
Syntax:
Source <ea>:

Function:
Syntax:

Function:
Syntax:
Source <ea>:

Function:
Syntax:

Source <ea>:
Dest. <ea>:

Function:
Syntax:

Function:
Syntax:
Source <ea>:

Function:
Syntax:

Signed multiply
muls.W <ea>,Dn (16*16 = 32)
muls. L <ea> ,Dn 02*32 = 32)
muls.L <ea>,Dh:Dl (32*32'" 64)
Data addressing modes

Unsigned multipl-y
mulu.W <ea>,Dn (16*16 = 32)
mulu.L <ea>,Dn 02*32 = 32)
mulu.L <ea>,Dh:DI (32*32 = 64)
Data addressing modes

Negate decimal with extend
nbcd <ea>
Data alterable addressing modes

Negate
neg <ea>
Data alterable addressing modes

Negate with extend
negx <ea>
Data alterable addressing modes

No operation
nop

Logical complement
not <ea>
Data alterable addressing modes

Inclusive or logical
or <ea> ,Dn
or Dn,<ea>
or tfo<data>, <ea>
or #<data(S»,CCR
or #<data(16»,SR
Data addressing modes
Data alterable addressing modes

pack binary data
pack -(Ax),-(Ay),#<data(16»
pack Dx~Dy,#<data(16»

Push effective address
pea <ea>
Control addressing modes

Reset external devices
reset

4.36

rol

ror

roxl

roxr

*rtd

rte

*rtm

rtr

rts

sbcd

s<cc>

Function:
Syntax:

Rotate left
rol Dx,Dy
rol II<quick> ,Dn
rol <ea>

68xxx Opcodes

Source <ea>: Memory alterable addressing modes (word
only)

Function:
Syntax:

Source <ea>:

Function:
Syntax:

Source <ea>:

Function:
Syntax:

Rotate right
ror Dx,Dy
ror #<quick> ,Dn
ror <ea>
Memory alterable addressing modes
only)

Rotate left with extend
roxl DX,Dy
roxl #<quick>,Dn
roxl <ea>
Memory alterable addressing modes
only)

Rotate right with extend
roxr Dx,Dy
roxr II<quick> ,Dn
roxr <ea>

(word

(word

Source <ea>: Memory alterable addressing modes (word
only)

Function:
Syntax:

Function:
Syntax:

Function:
Syntax:

Function:
Syntax:

Function:
Syntax:

Function:
Syntax:

Function:
Syntax:
Choices:

Return and deallocate parameters
rtd IJ<disp(6) >

Return from exception
rte

Return from module
rtm Rn

Return and restore condition codes
rtr

Return from subroutine
rts

Subtract decimal with extend
sbcd Dy,Dx
sbcd -(Ay) ,-(Ax)

Set according to condition
s<cc> <ea>
scc Set on carry clear
scs Set on carry set

4.37

I

68xxx Relocating Assembler

Source <ea>:

stop Function:
Syntax:

sub Function:
Syntax:

Source <ea>:
Dest. <ea>:

subx Function:
Syntax:

swap Function:
Syntax:

tas Function:
Syntax:
Source <ea>:

trap Function:
Syntax:

*trap<cc> Function:
Syntax:
Choices:

seq Set on equal
sf Set on false (clear)
sge Set on greater or equal
sgt Set on greater
shi Set on high
sle Set on less or equal
sIs Set on low or same
sIt Set on less than
smi Set on minus
sne Set on not equal
spi Set on plus
st Set on true (always set)
svc Set on overflow clear
svs Set on overflow set
Data alterable addressing modes

Load status register and stop
stop if<data(16»

Subtract binary
sub <ea>,Dn
sub Dn,<ea>
sub <ea>,An
sub {f<data>, <ea>
All addressing modes
Data alterable addressing modes

Subtract with extend
subx Dy,Dx
subx -(Ay), -(Ax)

Swap register halves
swap Dn

Test and set an operand
tas <ea>
Data alterable addressing modes

Trap
trap #<vector>

Trap on condition
trap<cc> [ifo<data>]
trapcc Trap on carry clear
trapcs Trap on carry set
trapeq Trap on equal
trap£ Trap on false (never traps)
trapge Trap on greater or equal
trapgt Trap on greater than
traphi Trap on high
traple Trap on less than or equal

4.38

trapv

tst

unlk

*unpk

Function:
Syntax:

Function:
Syntax:
Source <ea>:

*Source <ea>:

Function:
Syntax:

Function:
Syntax:

4.6 Convenience Mnemonics

68xxx Opcodes

trapls Trap on low or same
traplt Trap on less than
trapmi Trap on minus
trapne Trap on not equal
trappl Trap on plus
trapt Trap on true (always traps)
trapvc Trap on
trapvs Trap on

Trap on overflow
trapv

Test an operand
tst <ea>

overflow clear
overflow set

Data alterable addressing modes
Data addressing modes

Unlink
unlk An

Unpack binary-coded decimal
unpk -(Ax),-(Ay),#<data(16»
unpk Dx,Dy,#<data(16»

The assembler also supports the mnemonics shown in Table 4-3. These
mnemonics provide convenient ways of clearing and setting the bits 1n
the condition-code register.

Table 4-3. Convenience Mnemonics

lv'.nemonic Function Target Bit in CCR Code Generated

clc Clear Carry and 1ft$FE, CCR
cln Clear Negative and 1J$F 7 , CCR
clv Clear Overflow and 1J$FD, CCR
clx Clear Extend and 1J$EF, CCR
clz Clear Zero and #$FB,CCR
sec Set Carry or 1J$01 , CCR
sen Set Negative or 11$08,CCR
sev Set Overflow or 11$02,CCR
sex Set Extend or 1f$10 , CCR
sez Set Zero or 1f$04, CCR

4.39

4.40

Chapter 5

Directives

5.1 Introduction

In addition to the standard mnemonics discussed in Chapter 4, the
assembler supports numerous directives. These directives, which are
also known as pseudo-ops, instruct the assembler to perform certain
operations. They mayor may not generate code.

A directive is used in the opcode field of a line of code (see Section
3.3). It mayor may not be followed by an operand. If the operand is
composed of a list of elements, the items in the list must be separated
by commas. No spaces may appear in the operand field unless the entire
field must be enclosed by quotation marks or unless specifically noted
in the documentation of a particular directive. Unless otherwise noted
the label field and the comment field are optional.

A brief description of each directive follows
indicates that the directive may be used only on
detailed descriptions appear later in this chapter.

(an
the

asterisk,
68020) •

base

*bfequ

bss

*cnop
common

*cpid
data

dc
define
ds
else

,end
end com
enddef
end if
endm

Set a program counter outside the text, data, and
bss segments.
Equate the offset/width pair of a bit field to a
symbol.
Relocate the following instructions to the end of
the bss segment.
Align the next instruction on a quad-word boundary.
Begin a common block.
Set the current coprocessor identification number.
Relocate the following instructions to the end of
the data segment.
Define a constant in memory.
Begin defining a set of labels as global variables.
Reserve uninitialized memory.
Switch the sense of the preceding "if" or "ifn"
directive.
Stop assembly.
End a common block.
End the definition of a set of global symbols.
End a block of conditional assembly.
End the definition of a macro.

5.1

'*' ,
More

68xxx Relocat,ing Assembler

equ Equate a symbol to the expression in the operand
field.

err

even
exitm

extern
fcb

fcc

fdb

fqb

global

if

ifc

ifnc

ifeq

ifge

ifgt

ifle

iflt

ifn

ifne

info

lib
log

macro
name

Insert a user-defined error message in the listing
of the assembled source and increment the error
count by 1.
Align the following data on an even boundary.
Terminate expansion of the macro and jump to the
next "endm" instruction.
Define the symbols in the operand field as external.
Set memory bytes to the values of the 8-bit
expressions in the operand field.
Set memory bytes to the values specified by the
delimited ASCII string.
Set memory bytes to the values of the l6-bit
expressions in the operand field.
Set memory bytes to the values of the 32-bit
expressions in the operand field.
Define the symbols in the operand field as global
symbols.
Execute the
condition in
Execute the
two strings
same.

first block of conditional code if the
the operand field is true.
first block of conditional code if the

specified in the operand field are the

Execute the first block of conditional code
two strings specified in the operand field
the same.

if the
are not

Execute the
condition in
Execute the
condition in
equal to O.

first block of conditional code if the
the operand field is equal to O.
first block of conditional code if the

the operand field is greater than or

Execute the first block of conditional code if the
condition in the operand field is greater than O.
Execute the first block of conditional code if the
condition in the operand field is less than or equal
to O.
Execute the first block of conditional code if the
condition in the operand field is less than O.
Execute the first block of conditional code if the
condition in the operand field is false.
Execute the first block of conditional code if the
condition in the operand field is not equal to O.
Store text in the information field of the file
containing the assembled source code.
Incorporate the source code from the specified file.
Calculate the base-2 logarithm of an absolute
expr es s ion.
Begin the definition of a macro.
Assign the specified name to the binary module
generated by the assembly.

5.2

Directives

opt Alter the format of the listing of the assembled

pag

*quad
rab

rmb
rzb
set

spc

struct

sttl

sys
text

tstmp

ttl

source code.
Perform a page eject in the listing of the assembled
source code and write a header at the top of the new
page.
Align the following data on a quad-word boundary.
Reserve memory for storage of data, forcing the
first byte to an even boundary.
Reserve memory for storage of data.
Reserve and clear memory for storage of data.
Set a symbol to the value of the expression in the
operand field. May be used more than once for the
same symbo 1.
Write the specified number of blank lines to the
listing of the assembled source code.
Set a program counter outside the text, data, and
bss segments.
Set the subtitle
the assembled source
operand field.

for the header of the listing of
code to the string in the

Perform a system call.
Relocate the following instructions to the end of
the text segment.
Create in the information field of the assembled
file a time stamp with the current date and time.
Set the title for the header of the listing of the
assembled source code to the string in the operand
field.

5.2 The Directives

A more detailed description of each directive follows.

5.2.1 base

The "base" directive sets a program counter outside the text, data, and
bss segments. The syntax for this directive is simply

ba se [<expr >]

where <expr> is an absolute or relocatable expression. If the user does
not specify an operand, it defaults to O.

5.3

68xxx Relocating Assembler

This type of program counter is used to establ ish a label for a
particular offset from a fixed address. Generally, it is used in
conjunction with storing information on a stack. The following example
illustrates the use of the "base" directive:

A6_link
ret_addr
arg_l
arL2
arL3

base
ds.l
ds.l
ds. 1
ds.l
ds.l
text

move.l
add. 1
sub.l
add.l

1
1
1
1
1

aTLl (A6) ,DO
DO,DO
arg_3 (A6) ,DO
arg_2(A6) ,DO

Symbols declared with a "base" statement may be absolute or relocatable,
depending on the attributes of the operand. The user may not reuse a
symbol defined in a base segment.

5.2.2 bfequ (68020 only)

The "bfequ" instruction equates the offset/width pair of a bit field to
a symbol. It requires an ordinary label in the label field. The syntax
for this directive is

<label> bfequ <offset>:<width>

where <offset> is between 0 and 31 inclusive, and <width> is between 1
and 32 inclusive. As for all bit-field instructions, the bits in the
register or effective address are numbered from left to right with the
leftmost bit being bit O. The following example illustrates the use of
the "bfequ" directive:

5.4

Directives

AMODE bfequ 10:3

bfclr dO{AMODE}

This code first equates the label AMODE to a bit field whose offset is
10 and whose width is 3. It then clears from data register 0 the
twenty-first, twentieth, and nineteenth bits.

5.2.3 bss

The "bss" directive relocates the instructions which follow it to the
end of the bss segment. The syntax for this directive is simply

bss

A ''bss'' directive remains 1n effect until the assembler encounters· a
"base", "data", "struct", or "text" directive.

5.2.4 cnop (68020 only)

The 68020 microprocessor executes an instruction more
it is aligned on a quad-word boundary (a boundary
multiple of 4). The "cnop" directive aligns the next
quad-word boundary if it is not already so aligned.
generating the following two-byte instruction which
condition codes:

move. 1 AO ,AO

efficiently when
whose address is a
instruction on a

It does so by
does not alter the

(The "nop" opcode cannot be used because it causes the 68020 to flush
its instruction pipel ine.) The syntax for the "cnop" directive is simply

cnop

5.5

68xxx Relocating Assembler

5.2.5 common

The "common" di~ective marks the beginning of a block of memory that can
be shared by more than one module. Common blocks allow various modules
to share information without having to pass it back and forth. The
syntax for this directive is

<label> common

The user must- place an ordinary label in the label field. The user must
terminate a declaration of a common block with the directive "endcom".
The only instructions which may appear between the "common" and "endcom"
directives are those which define the size of the common block--"rmb",
"rab" , and "ds". Only one common block of a particular name should
appear in any given module. A module may not consist solely of blocks
of common code. The assembler treats common blocks as external
references.

The following example illustrates the use of the "common" directive:

test
var_l
var_2

This code
variables,

common
ds.w
ds.l
endcom

defines
"var_l "

5
10

a common block named "test" which contains two
and "var_2". The block is 50 bytes long.

5.2.6 cpid (68020 only)

The "cpid" directive tells the assembler which coprocessor to use. The
syntax for this directive is

cpid [<ID_num>]

where <ID_num> is a number between 0 and 7 inclusive. The default value
is 1. The following table shows the correlation between each number and
the coprocessor it designates:

5.6

Directives

Number Coprocessor
==

o MC68851 paged-memory management unit (PMMU)
1 MC68881 floating-point coprocessor

2-5 Reserved for future Motorola coprocessors
6-7 User-defined

5.2.7 data

The "data" directive relocates the instructions which follow it to the
end of the data segment. The syntax for this directive is simply

data

A "data" directive remains in effect until the assembler encounters a
"base", "bss", "struct", or "text" directive.

5.2.8 dc

The "dc" directive defines a constant in memory. The user may append
one of the standard suffixes to the directive to indicate the size of
the constant or constants defined by that line of code. In addition,
the 68020 assembler supports the 'q' suffix with this directive. The
'q' suffix tells the assembler to align long words on a boundary that 1S
a multiple of 4. The assembler pads any memory that it passes over 1n
the process with null bytes. The syntax for this directive is

where the elements of <expr_Iist> may be either actual values (constants
or ASCII strings) or expressions. The user must enclose ASCII strings
in single or double quotation marks. An ASCII string used with the
"dc. b" directive may be of any length. A string used with the "dc.w"
directive may not contain more than two characters. One used with the
"dc.l" directive may not contain more than four characters. If more
than one element appears in the list, the assembler treats each
successive element as if it were the lone operand of another "dc"
directive.

The assembler always aligns the constant on the
specified by the suffix used with the directive.
not large enough to fill the space allocated to

5.7

proper boundary, as
If an ASCII string is
it, the assembler pads

I

68xxx Relocating Assembler

on the left with null bytes. The following lines of code illustrate
valid uses of the "dc" directive:

label_1 dc.b 3,7,'String'
label_2 dc.w 12,'a' ,98

dc.l 'ab' ,131072
Pads 'a' on the left with 1 null byte
Pads 'ab' on the left with 3 null bytes

The directive "dc. b" is functionally equivalent to the directive "fcb";
"dc.w", to "fdb"; and "dc.l", to "fqb".

5.2.9 def ine

The "define" directive instructs the assembler to treat the labels in
the label fields of the statements which follow it as global symbols.
It provides a convenient way of simultaneously defining symbols and
declaring them to be global. The assembler put s all global variables
into the symbol table, which is used by the linking-loader. The syntax
of this directive is simply

def ine

The statements following a "define" directive must be terminated with an
"enddef" directive. The following lines of code illustrate the use of
the "def ine" directive:

data
define
fdb
move. I
enddef

O,$FFFF
iF! ,Dl

This section of code defines the labels "temp_I" and "start" as global.

5.2.10 ds

The "ds" directive reserves an uninitialized area of memory. The user
may append one of the standard suffixes to the directive to indicate the
size of each unit of memory. In addition, the 68020 assembler supports
the 'q' suffix with this directive. The 'q' suffix tells the assembler
to align long words on a boundary that is a multiple of 4. The
assembler pads any memory that it passes over in the process with null
bytes. The syntax for this directive is

5.8

Directives

ds <expr>

where <expr> is an absolute expression specifying the number of units of
memory to reserve. The operand field may not contain a forward
reference. If the value of the operand is 0, the assembler reserves no
memory unless it is necessary to force the specified alignment. If a
label is present, its value is the address of the lowest memory location
reserved by that directive. The following lines of code illustrate
valid uses of the "ds" directive:

5.2.11 else

ds. b 20
ds
ds.l
ds. 1
ds.x

10
5
o
2

Reserve 20 bytes
Reserve 10 words
Reserve 5 long words
Force alignment to a even boundary
Reserve space for 2 extended-precision
floating-point numbers

The "else" directive switches the sense
directive. It must appear somewhere
directive and an "endif" directive.
simply

of the preceding "if" or "ifn"
between an "if" or an "ifn"
The syntax for this directive is

else

If the assembler processed the code preceding the "else" directive in
that conditional block, it sk.ips the code between the "else" directive
and the next "endif". Otherwise, it processes it.

5.2.12 end

The "end" directive, which must be used without a label, signif ies the
end of a module of source code. It generates no code. The syntax for
this directive is

end [<expr>]

where <expr> is an absolute or relocatable expression which defines a
transfer address.

5.9

I

68xxx Relocating Assembler

An "end" directive is not required, but it is the only means of
appending a transfer address to an object-code module and of separating
modules within a file. The assembler ignores "end" directives in any
modules brought into the program with the "lib" directive (see Section
5.2.38) •

5.2.13 endcom

The "endcom'" directive marks the end of the definition of a block of
common memory. It is always used in conjunction with the "common"
directive. The syntax for this directive is simply

endcom

5.2.14 enddef

The "enddef" directive marks the end of a section of code which defines
one or more symbols as global. The syntax for this directive is simply

enddef

It is always used in conjunction with the "define" directive •

•
5.2.15 endif

The "endif" directive marks the end of a block of conditional code. The
syntax for this directive is simply

endif

It is always used in conjunction with an "if" or an "ifn" directive.

5.10

Directives

5.2.16 endm

The "endm" directive marks the end of the definition of a macro. The
syntax for this directive is simply

endm

It is always used in conjunction with the "macro" instruction.

5.2.17 equ

The "equ" directive equates a symbol to the expression 1n the operand
field. It requires an ordinary label in the label field. This
directive generates no code. The syntax for the "equ" directive is

<label> equ <expr>

where <expr> is an absolute, relocatable, or, on the 68020 only, a
floating-point expression. The assembler assigns the attribute of the
expression to the label.

5.2.18 err

The "err" directive inserts a user-defined error message
listing of the assembled source code and increments the error
1. The syntax for this directive is

err <message_to-print>

into the
count by

where the message specified is a string of ASCII characters. The user
need not enclose the message in quotation marks. The message may
contain space characters. When executing the "err" directive, the
assembler prints the remainder of the line except leading spaces,
preceding the message with three aster isks. The "err" directive is
commonly used in conjunction with conditional code, so that a
user-defined illegal condition is reported as an error.

5.11

68xxx Relocating Assembler

5.2.19 even

The 68000 microprocessor requires that the data for all operations on a
word or a long begin on an even boundary. The MC68020 does not require
that such data begin on an even boundary, but it does perform more
efficiently if they do. The "even" directive forces the following piece
of data to an even boundary by filling in with null bytes if necessary.
Its syntax is simply

even

5.2.20 exitm

The "exitm" directive tells the assembler to terminate macro expansion
and skip to the next "endm" instruction. The syntax for this directive
is simply

exitm

The only reasonable way to use the "exitm" instruction is in conjunction
with conditional assembly and parameter substitution (see Section 5.3).
The following example illustrates the use of the "exitm" instruction:

example macro

Code that is always generated

ifnc &2,yes Use of parameter substitution
exitm
end if

Code that is sometimes generated

endm

If the parameter passed in to the macro in this example is not equal to
"yes", the assembler executes the "exitm" instruction, jumping to the
next "endm" instruction and terminating macro expansion. Otherwise, the
assembler executes the code between the "endif" and "endm" instructions.

5 .12

Directives

5.2.21 extern

The "extern" directive tells
symbols as external references.

the assembler to treat the specified
The syntax for this directive is

extern <label_list>

where each element in the list of labels is an ordinary, not a local,
label (see Section 3.2). When the assembler encounters one of the
labels 'specified in <label_list>, it writes an external record for that
label. The "extern" directive usually appears at the beginning of a
module. It should appear before any external references.

5.2.22 fcb

The "fcb" directive forms a constant
memory with the value represented
syntax of the directive is

byte by associating a byte in
by the corresponding operand. The

feb <expr_list>

where each item in the list of expressions is an absolute, relocatable,
or external expression. The assembler evaluates each expression to 8
bits and stores the resulting quantities in successive memory locations.
The directive "feb" is functionally equivalent to the directive "ds. bIt
(see Section 5.2.10).

5.2.23 fcc

The "fcc" directive forms a constant character by
memory with the corresponding character in the
syntax of the directive is

fcc <del imiter><str><del imiter>

associating a byte in
operand field. The

where' a delimiter is any nonalphanumeric character except the dollar
sign, '$'. The assembler converts each character in the string to its
ASCII value and stores those values in successive memory locations. The
string specified may include space characters. The following lines of
code illustrate val id uses of the "fcc" directive:

5.13

I

68xxx Relocating Assembler

fcc
fcc
fcc

'This is an "fcc" string.'
,So is this.,
/The label is not necessary./

The assembler supports a second kind of use of the "fcc" directive which
is a deviation from the standard Motorola definition of the directive.
The user may include in the operand field certain expressions as well as
delimited strings. The expressions used must be external or absolute;
they must start with a letter, digit, or dollar sign (indicating a
hexadecimal value); and they must represent a value that fits into one
byte. The following lines of code illustrate this kind of use of the
"fcc" directive:

intro fcc
fcc
fcc

'This string has CR & LF.',$OD,$OA
;strinLl;,O, : strinL2:
$04,ext_label,/string/

Note that more than one delimited string may be placed on a line as in
the second example.

5.2.24 fdb

The "fdb" directive forms a two-byte quantity in memory by associating
two bytes with the value represented by the corresponding operand. The
syntax of the directive is

fdb <expr_list>

where each item in the list of expressions is an absolute, relocatable,
or external expression. The assembler evaluates each expression to 16
bits and stores the resulting quantities in successive memory locations.
The directive "fdb" is functionally equivalent to the directive "ds.w"
(see Section 5.2.10).

S.2.2S fqb

The "fqb" directive forms a four-byte quantity in memory by associating
four bytes with the value represented by the corresponding operand. The
syntax of the directive is

fqb <expr_list>

5.14

Directives

where each item in the list of expressions is an absolute, relocatable,
or external expression. The assembler evaluates each expression to 32
bits and stores the resulting quantities in successive memory locations.
The directive "fqb" is functionally equivalent to the directive "ds.l"
(see Section 5.2.10).

5.2.26 global

The "global" directive instructs the
follow the directive into the symbol
which is used by the linking-loader.

global <label_list>

assembler to put the labels which
table of the assembled source code,
The syntax for this directive is

where each element in the list of labels is an ordinary, not a local,
label (see Section 3.2).

5.2.27 if

The "if" directive marks the beginning of a block of conditional code.
The syntax for this directive is

if <expr>

where <expr> is an absolute expression that the assembler can evaluate
during its first pass over the source code (the expression may not
contain a forward reference). When processing an "if" directive, the
assembler evaluates the expression associated with it. If the
expression is true (not equal to 0), the assembler processes all the
code between the "if" directive and the next conditional directive (an
"else" or an "endif"). If it is false (equal to 0), the assembler skips
the code between the "if" directive and the next conditional directive.
Every "if" directive must eventually be followed by an "endif"
directive. One "else" directive may also be part of the conditional
block. The user can nest blocks of conditional code up to twenty levels
deep.

5.15

68xxx Relocating Assembler

5.2.28 Hc

The "ifc" directive marks the beginning of a block of conditional code.
The syntax for this directive is

where <str_1> and <str_2> are ASCII strings. Unless the user encloses a
string in a pair of delimiter characters (either single or double
quotation marks), the assembler interprets the string as a group of
characters beginning with a nons pace character and ending with a space
character or a comma. A string enclosed in quotation marks may include
space characters and commas; in such a case the assembler interprets the
string as all the characters between the quotation marks. The user may
specify the null string either by leaving the string out completely or
by placing a pair of delimiter characters side-by-side.

When processing an "ifc" directive, the assembler compares the two
strings associated with it. If the strings are identical, the assembler
processes all the code between the "ifc" directive and the next
conditional directive (an "else" or an "endif"). If the strings are not
identical, the assembler skips the code between the "ifc" directive and
the next conditional directive. Every "ifc" directive must eventually
be followed by an "endif" directive. One "else" directive may also be
part of the conditional block. The user can nest blocks of conditional
code up to twenty levels deep.

5.2.29 ifeq

The "ifeq" directive marks the beginning of a block of conditional code.
The syntax for this directive is

ifeq <expr>

where <expr> is an absolute expression that the assembler can evaluate
during its first pass over the source code (the expression may not
contain a forward reference). When processing an "ifeq" directive, the
assembler evaluates the expression associated with it. If the
expression is equal to 0, the assembler processes all the code between
the "ifeq" directive and the next conditional directive (an "else" or an
"endif"). If it is not equal to 0, the assembler skips the code be tween
the "ifeq" directive and the next conditional directive. Every "ifeq"
directive must eventually be followed by an "endif" directive. One
"else" directive may also be part of the conditional block. The user

5.16

Directives

can nest blocks of conditional code up to twenty levels deep.

5.2.30 ifge

The "ifge" directive marks the beginning of a block of conditional code.
The syntax for this directive is

ifge <expr>

where <expr> is an absolute expression that the assembler can evaluate
during its first pass over the source code (the expression may not
contain a forward ref erence). When processing an "ifge" directive, the
assembler evaluates the expression associated with it. If the
expression is greater than or equal to 0, the assembler processes all
the code between the "ifge" directive and the next conditional directive
(an "else" or an "endif"). If it is less than 0, the assembler skips
the code between the "ifge" directive and the next conditional
directive. Every "ifge" directive must eventually be followed by an
"endif" directive. One "else" directive may also be part of the
conditional block. The user can nest blocks of conditional code up to
twenty levels deep.

5.2.31 ifgt

The "ifgt" directive marks the beginning of a block of conditional code.
The syntax for this directive is

ifgt <expr>

where <expr> is an absolute expression that the assembler can evaluate
during its first pass over the source code (the expression may not
contain a forward reference). When processing an "ifgt" directive, the
assembler evaluates the expression associated with it. If the
expression is greater than 0, the assembler processes all the code
between the "ifgt" directive and the next conditional directive (an
"else" or an "endif"). If it is less than or equal to 0, the assembler
skips the code .between the "ifgt" directive and the next conditional
directive. Every "ifgt" directive must eventually be followed by an
"endif" directive. One "else" directive may also be part of the
conditional block. The user can nest blocks of conditional code up to
twenty levels deep.

5.17

I

68xxx Relocating Assembler

5.2.32 i£1e

The "if Ie" directive marks the beginning of a block of conditional code.
The syntax for this directive is

if Ie <expr>

where <expr> is an absolute expression that the assembler can evaluate
during its first pass over the source code (the expression may not
contain a forward reference). When processing an "if1e" directive, the
assembler evaluates the expression associated with it. If the
expression is less than or equal to 0, the assembler processes all the
code between the "if1e" directive and the next conditional directive (an
"else" or an "endif"). If it is false greater than 0, the assembler
skips the code between the "if1e" directive and the next conditional
directive. Every "if1e" directive must eventually be followed by an
"endif" directive. One "else" directive may also be part of the
conditional block. The user can nest blocks of conditional code up to
twenty levels deep.

5.2.33 iflt

The "i£1 t" directive marks the beginning of a block of conditional code.
The syntax for this directive is

i£1t <expr>

where <expr> is an absolute expression that the assembler can evaluate
during its first pass over the source code (the expression may not
contain a forward reference). When processing an "if1t" directive, the
assembler evaluates the expression associated with it. If the
expression is less than 0, the assembler processes all the code between
the "if1t" directive and the next conditional directive (an "else" or an
"endif"). If it is greater than or equal to 0, the assembler skips the
code between the "if1t" directive and the next conditional directive.
Every "if1t" directive must eventually be followed by an "endif"
directive. One "else" directive may also be part of the conditional
block. The user can nest blocks of conditional code up to twenty levels
deep.

5.18

Directives

5.2.34 ifn

The "ifn" directive marks the beginning of a block of conditional code.
The syntax for this directive is

ifn <expr>

where <expr> is an absolute expression that the assembler can evaluate
during ~ts first pass over the source code (the expression may not
contain a forward reference). When processing an "ifn" directive, the
assembler evaluates the expression associated with it. If the
expression is false (equal to 0), the assembler processes all the code
between the "ifn" directive and the next conditional directive (an
"else" or an "endif"). If it is true (not equal to 0), the assembler
skips the code between the "ifn" directive and the next conditional
directive. Every "ifn" directive must eventually be followed by an
"endif" directive. One "else" directive may also be part of the
conditional block. The user can nest blocks of conditional code up to
twenty levels deep.

5.2.35 ifnc

The "ifnc" directive marks the beginning of a block of conditional code.
The syntax for this directive is

where <str_l> and <str_2> are ASCII strings. Unless the user encloses a
string in a pair of delimiter characters (either single or double
quotation marks), the assembler interprets the string as a group of
characters beginning with a nonspace character and ending with a space
character or a comma. A string enclosed in quotation marks may include
space characters and commas; in such a case the assembler interprets the
string as all the characters between the quotation marks. The user may
specify the null string either by leaving the string out completely or
by placing a pair of delimiter characters side-by-side.

When processing an "ifnc" directive, the assembler compares the two
strings associated with it. If the strings are not identical, the
assembler processes all the code between the "ifnc" directive and the
next conditional directive (an "else" or an "endif"). If the strings
are identical, the assembler skips the code between the "ifnc" directive
and the next conditional directive. Every "ifnc" directive must
eventually be followed by an "endif" directive. One "else" directive

5.19

68xxx Relocating Assembler

may also be part of the conditional block. The user can nest blocks of
conditional code up to twenty levels deep.

5.2.36 ifne

The "ifne" directive marks the beginning of a block of conditional code.
The syntax for this directive is

ifne <expr>

where <expr> is an absolute expression that the assembler can evaluate
during its first pass over the source code (the expression may not
contain a forward reference). When processing an "ifne" directive, the
assembler evaluates the expression associated with it. If the
expression is not equal to 0, the assembler processes all the code
between the "ifne" directive and the next conditional directive (an
"else" or an "endif"). If it is equal to 0, the assembler skips the
code between the "ifne" directive and the next conditional directive.
Every "ifne" directive must eventually be followed by an "endif"
directive. One "else" directive may also be part of the conditional
block. The user can nest blocks of conditional code up to twenty levels
deep.

5.2.37 info

The "info" directive stores textual material in the information field of
a binary file. The user may retrieve this information by using the
UniFLEX command "info". The syntax for this directive is

info <str>

where <str> may be any sequence of ASCII characters, including the space
character. The user need not enclose the string in quotation marks. No
comment field may be used with this directive. The directive does not
generate any binary code. Any number of "info" directives may appear at
any point in the source code.

When the assembler processes the "info" directive, it places the text of
the operand field (except leading spaces) at the end of a temporary file
named" /tmp/asmbinfo<task_ID>". At the end of the assembly, all text
from this temporary file 1S appended to the binary file, and the
temporary file is deleted.

5.20

Directives

5.2.38 lib

The "lib" directive specifies an external, assembly-language source file
for the assembler to include in the assembled source code. When the
assembler processes a "lib" directive, it reads and assembles code from
the specified file, adding it to the assembled source code. The line of
code containing the "lib" directive does not appear in the assembled
code. When the assembler has read and assembled all lines from that
file, it resumes reading the original source code. The syntax for this
directive is

If the file name specified begins with a slash character, 'I', the
assembler first looks for the file as specified. If it is not found or
if the name does not begin with a slash, the assembler looks for the
specified file in the working directory. If it does not find the
library there, it looks for the directory "lib" in the working
directory. If found, the assembler attempts to find the library in that
"lib" directory. If it is not found there, the assembler makes a final
attempt to find the library by looking in the directory "/lib". If the
library is not in any of these places, the assembler issues an error
message and aborts.

The assembler ignores any "end" directive that appears in a file called
with the "lib" directive. The user may place any number of "lib"
directives in the source code. A file called with the "lib" directive
may contain another "lib" directive. The assembler supports this
nesting of "1 ib" directives up to six levels deep.

The user may not include the "lib" directive l.n the definition of a
macro (see Section 5.2.40).

5.2.39 log

The "log" directive calculates the base-2 logarithm of the value
represented in the operand field and assigns the integer part of that
logarithm to the specified label. The syntax for this directive is

<label> log <expr>

where <expr> is an absolute expression and <label> is an ordinary label.
The user may redef ine the label with other "log" directives or with the

5.21

68xxx Relocating Assembler

"set" directive. The "log" directive generates no code.

5.2.40 macro

The "macro" instruction marks the beginning of the definition of a
macro. A macro is a section of code that the assembler can access by
name. It differs from a subroutine in that when the assembler sees a
call to a macro, it actually inserts the designated code into the
program rather than executing it at run-time. Thus, five calls to a
subroutine require only one copy of the subroutine whereas five calls to
a macro result in five copies of that code. On the other hand, a macro
involves less overhead than does a subroutine. Consequently, using a
macro may be more efficient than using a subroutine.

The definition of a macro must always precede the first call to that
macro. It is good practice to define all macros near the beginning of a
program.

The syntax for the "macro" directive is

<macro_name> macro

where <macro_name> is an ordinary label (see Section 3.2.1). Only the
first seven characters of the name are significant. A ''macro''
instruction is followed by the appropriate instructions, which may
include any instruction except the "lib" directive. The definition of a
macro must always end with the "endm" instruction (see Section 5.2.16).
The length of the definition of a single macro must be less than or
equal to 6K. This limit applies to the unexpanded code (see Section
5.3) between the "macro" and "endm" instructions exclusive.

When the assembler encounters a "macro" instruction during its first
pass over the source code, it enters the name in a table of macro names
and copies the instructions which comprise the macro into a buffer for
future reference. The user can then call the macro simply by using
<macro_name> in the opcode field. Whenever the user calls the macro,
the assembler replaces the call with the appropriate code. This process
LS called macro expansion. The assembler searches the table containing
the names of all macros in a program before it searches the mnemonic
table. Thus, the user may redefine a standard instruction by replacing
it with a macro of the s~me name. However, a macro, once defined, can
be neither purged nor redefined.

5.22

Directives

The following example defines a macro which calculates the absolute
value of the value in data register 0:

abs macro
tst.l DO
bge. s OOf
neg. 1 DO

00
endm

The user may pass up to ten parameters to a macro: nine as operands on
the line calling the macro; one as a label (see Section 5.3). A macro
can both call and define other macros (see Section 5.4).

If any line within a macro contains an ordinary label and the user calls
that macro more than once, the assembler returns the following nonfatal
error:

Duplicate label found.

The user can avoid this situation by either using local labels within
the macro or by making the label a substitutable parameter and passing
~n a different string each time the macro is called.

5.2.41 name

The "name" directive
assembled source code.

name <module_name>

assigns a name to the module containing the
The syntax for this directive is

where <module_name> may contain a maximum of fourteen characters.

If a module has a name, the linking-loader uses that name when it
reports errors and information about addresses. Otherwise, it uses the
name of the file containing the module. Because a file may contain more
than one module, it is wise to name every module. A module that does
not have a name cannot be included in a library (see Section 8.2).

5.23

68xxx Relocating Assembler

5.2.42 opt

The "opt" directive selects various options related to the format of the
listing of the assembled source code. It is effective only if the user
invokes the '1' option on the command line. The syntax for this
directive is

opt [<option_list>]

rhe options available include the following:

con Include skipped conditional code in the listing of the
assembled source code. (Such code is not assembled.)

exp Expand macros in the listing.
lis Begin listing the assembled source code.
noc Do not include skipped conditional code 1n the listing

of the assembled source code.
noe Do not expand macros in the listing.
nol Suppress the listing of the assembled source code •

• t the beginning of an assembly the default options "noc" and "lis" are
.n effect. The options are set during the second pass of the assembler
~er the source code. If the user specifies contradictory options, the
.ast one takes precedence •

• 2.43 pag

y default, the assembler inserts a page eject into the listing of the
ssembled source code after fifty-five lines of code and prints a header
t the top of the next page. The header consists of four lines: the
irst line contains the title, date, time, and page number; the second
ontains the subtitle; and the third and fourth are blank. If the user
oes not specify a title or subtitle, that field remains blank. The
pag" directive performs a page eject in the listing of the assembled
~urce code and writes a header at the top of the new page. The syntax
~r this directive is simply

pag

lis directive produces no code, and the line containing it does not
>pear in the listing of the assembled source code unless it contains an
:ror.

5.24

Directives

The first page of a listing is page O. It has no header. Thus, the
user can set all options, the title, and the subtitle before using the
"pag" directive for the first time. The listing of the assembled source
code then begins on page 1, after the assembler has processed the
directives affecting the formatting.

5.2.44 quad (68020 only)

The 6 8020
aligned
of 4).
quad-word
syntax is

quad

microprocessor functions more efficiently when the data are
on a quad-word boundary (a boundary whose address is a multiple

The "quad" directive forces the following piece of data to a
boundary by filling in with null characters if necessary. Its
simply

5.2.45 rab

The "rab" directive reserves memory for the storage of data. It ensures
that the first reserved byte is on an even boundary. The syntax for
this directive is

rab <expr>

where <expr> is an absolute expression which is evaluated to 32 bits.
The operand field may not contain a forward reference. An "rab"
directive in the text or data segment puts out a null byte if necessary
to position the program counter at an even boundary, then sets the
reserved memory to O. In the bss segment, it simply increases the size
of the segment.

5.2.46 rmb

The "rmb" directive reserves memory for the storage of data. The syntax
for this directive is

rmb <expr>

where <expr> is an absolute expression which is evaluated to 32 bits.

5.25

Bxxx Relocating Assembler

tie operand field may not contain a forward reference. An "rmb"
irective in the text or data segment sets the reserved memory to O. In
tie bss segment, it simply increases the size of the segment. It is
Ilnctionally equivalent to the "rzb" directive •

• 2.47 rzb

tie "rzb" directive initializes an area of memory with null (zero)
ytes. The syntax for this directive is

rzb <expr>

here <expr> is an absolute expression evaluated to 32 bits. The
perand field may not contain a forward reference. An "rzb" directive
n the text or data segment sets the reserved memory to O. In the bss
egment, it simply increases the size of the segment. It is
unctionally equivalent to the "rmb" directive •

• 2.48 set

he "set" directive sets a symbol to the value specified by the
xpression in the operand field, just as the "equ" directive does. The
ifference between the two directives is that the user may set a symbol
everal times within the source code but may equate a symbol only once.
f the user does set a symbol more than once, its current value is the
ne most recently set. The syntax for this directive is

<label> set <expr>

here <expr> is an absolute, relocatable, or, on the 68020 only, a
loating-point expression. The label must be an ordinary label. This
irective generates no code •

• 2.49 spc

he "SpC,I directive
ssembled source code.

inserts blank lines into the listing
The syntax for this directive is

spc <blank_lines>[,<count>]

5.26

of the

Direct ives

where <blank_lines> and <count> are both numbers between 0 and 255
inclusive. The first operand specifies the number of blank lines to
insert. The optional operand <count> offers the user more control. If
less than <count> lines remain on the page. the assembler performs a
page eject rather than inserting any blank lines. In any case. when a
page eject occurs. processing of the "s·pc" directive terminates. This
feature prevents a block of lines from being split across a page.

5.2.50 struct

The "struct" directive sets a program counter outside the text. data.
and bss segments. The syntax for this directive is simply

struct [<expr>]

where <expr> is an absolute or relocatable expression.
not specify an operand. it def aults to O. The
continues until the assembler encounters a "base".
"text" directive.

If the user does
"struct" segment
"bs s". "da ta". or

This type of program counter LS used to establish a label for a
particular offset from a fixed address. Generally, it is used in
conjunction with storing information on a stack. The following example
illustrates the use of the "struct" directive:

A6 _link
ret_addr
arg_l
arg_2
arg_3

struct
ds.l
ds. 1
ds.l
ds.l
ds.l
text

move. 1
add. 1
sub. 1
add.l

1
1
1
1
1

arg_l(A6) ,DO
DO,DO
arg_3(A6) ,DO
arg_2(A6) ,DO

Symbols declared within a "struct" statement may
relocatable. depending on the attributes of the operand.

5.27

be absolute
The user

or
may

68xxx Relocating Assembler

reuse a symbol defined in a struct segment.

5.2.51 stt!

The "sttl" directive specifies the subtitle to print in the header at
the top of the page. The syntax for this directive is

where the text of the subtitle 1S an ASCII string which may include
between 0 and 52 characters inclusive. The assembler ignores excess
characters. The user need not enclose the string in quotation marks.
The string may contain space characters. The line of code containing
the "sttl" directive may not contain a comment field. Any number of
"sttl" directives may appear in one program. The subtitle that appears
in the header of a given page is the argument to the most recently
processed "st tl" directive.

5.2.52 sys

The "sys" directive sets up a call to the operating system. The syntax
for this directive is

sys <function_code>[,<param_list>]

where both operands may be any legal expression. The assembler stores
the function code in 16 bits; each parameter in 32 bits.

The function codes for the system calls are defined in the file
"/lib/sysdef". The user may place either the function code or the name
of the system call in the "sys" directive. If the name is used, the
user must either define the name to match the information in
"/lib/sysdef" or include the entire file in the source code by using the
"lib" directive.

5.28

Directives

5.2.53 text

The "text" directive relocates the instructions which follow it to the
end of the text segment. The syntax for this directive is simply

text

A "text" directive remains in effect until the assembler encounters a
"base"~ "bss", "data", or "struct" directive.

5.2.54 tstmp

The "tstmp" instruction uses the current date and time to write a time
stamp to the information field of the assembled file. The syntax for
this directive is

tstmp [<str>]

By default, the assembler creates a time stamp of the following form:

-- Created: <time_stamp>

The optional argument <str> allows the user to choose a string to
replace "-- Created". The string specified by the user may be any
sequence of ASCII characters, including spaces. The user need not
enclose the string in quotation marks.

No comment field may be used with this directive. It generates no
binary code. Any number of "tstmp" directives may appear at any point
in the source code.

When the assembler processes the "tstmp" directive, it places the text
of the operand field (except leading spaces) at the end of a temporary
file named "/tmp/asmbinfo<task_ID>". At the end of the assembly, all
text from this temporary file is appended to the binary file, and the
temporary file is deleted.

5.29

I

68xxx Relocating Assembler

5.2.55 ttl

The "ttl" directive specifies the title to print in the header at the
top of the page. The syntax for this directive is

where the text of the title is an ASCII string which may include between
o and 32 characters inclusive. The assembler ignores excess characters.
The user nee-d not enclose the string in quotation marks. The string may
contain space characters. The line of code containing the "ttl"
directive may not contain a comment field. Any number of "ttl"
directives may appear in one program. The title that appears in the
header of a given page is the argument to the most recently processed
"ttl" directive.

5.3 Parameter Substitution ~ Macros

With each call to a macro the user may pass up to ten parameters to the
assembler for use during macro expansion: nine as operands on the line
calling the macro; one as a label. Thus, the code actually generated by
the call to the macro may differ from one call to the next. It is this
feature. known as parameter substitution, that makes the use of macros a
powerful tool for the assembly language programmer.

5.3.1 Specifying Parameters

The parameters
in the oper and
of a str ing is
must fit on
immediately be

passed to a macro are ASCII strings which the user places
field of the line of code that calls the macro. The size
limited only by the fact that the code making the call
one line. Every parameter except the last one must
followed by a comma.

Normally, the assembler interprets a space character that is not
enclosed in quotation marks as the end of the list of parameters; a
comma, as the character that separates parameters. A user may include
either of these characters in a parameter by enclosing the string in a
pair of matching delimiter characters (either single or double quotation
marks). Placing a pair of delimiter characters side-by-side or leaving
a string out altogether (resulting in two commas side-by-side) specifies
the null string.

5.30

Directives

5.3.2 Substitutable Parameters

If the user specifies one or more strings in the operand field of a call
to a macro, the assembler searches the source code for the sequence

&<digit>

where <digit> may be any digit from '1' to '9' inclusive. Such a
sequence is called a substitutable parameter. The assembler replaces
the substitutable parameter "&1" with the first string in the operand
field; the parameter "&2", with the second, and so forth.

The user may also specify a tenth substitutable parameter, "&0". The
assembler replaces this parameter with the string in the label field of
the line calling the macro. The assembler treats this string like an
ordinary label, placing it in the symbol table so that a user can
reference it like any other label. It must, of course, conform to the
rules for ordinary labels (see Section 3.2.1).

5.3.3 Ignoring a Substitutable Parameter

A user who ~s passing parameters to a macro but wishes to avoid
substitution in the source code in a particular instance must precede
the ampersand, '&', with a backslash character, '\'. Thus, if it is
substituting parameters in a macro, the assembler sees the following
line of source code

mask\&4
as

mask&4

If the user specifies one or more parameters in the operand field of a
call to a macro and the assembler finds a substitutable parameter for
which the user did not specify a corresponding string (e.g., the
assembler finds the sequence "&4" but the user specifies only three
parameters in the call to the macro), the assembler replaces the
sequence with the null string.

5.31

I

68xxx Relocating Assembler

5.3.4 Examples

To illustrate the principles of parameter substitution, consider the
following macro, which adds three 32-bit numbers found in memory and
stores the result in a fourth location:

add3 macro
move. I
add. I
add. I
move. I
endm

loc_1,DO
loc_2,DO
loc_3,DO
DO,sum

Move first value to DO
Add in second value
Add in third value
Store sum

The user calls this macro by placing its name, "add3", in the opcode
field of a line of source code. Identical code results each time the
user calls "add3".

This macro is specific to certain locations in memory. The user can
make the macro more versatile by rewriting it to take advantage of
parameter substitution:

add3 macro
move. I
add.l
add.l
move. I
endm

&1,DO
&2,DO
&3,DO
DO,&4

Move first value to DO
Add in second value
Add in third value
Store sum

To call this version of the macro, the user not only places the name of
the macro in the opcode field but also specifies four parameters in the
operand field:

When the assembler expands this call to the macro, it produces the same
code as it does for the first example. However, numbers at any three
locations can easily be added and stored 1n a fourth location by
changing the parameters in the operand field, as the following call
illustrates:

5.32

Directives

5.4 Nesting of Macro Definitions

Macros may be nested--that is, one macro may both call and define other
macros. When a user defines one macro within another, the assembler
defines the inner macro as it expands the outer macro, at which time it
also performs parameter substitution. The user must take care to avoid
duplicating the definition of the inner macro and to ensure that
parameter substitution occurs as intended.

5.4.1 Avoiding a Duplicate Definition

A user who defines one macro within another must be certain that the the
assembler does not define the inner macro more than once. Such
duplication may be avoided by calling the outer macro only once, by
using a substitutable parameter for the name of the inner macro, or by
placing the definition of the inner macro within a block of conditional
code that is assembled only once. Consider, for example, the following
definition:

mac_l macro
nop

mac_2 macro
move. I &1,&2
endm
endm

The first call to "mac_I" defines the inner macro, "mac_2".
call to "mac_I" results in a second definition of "mac_2" ,
illegal. The following example avoids this problem by
substitutable parameter as the name of the second macro:

mac_l macro
nop

&1 macro
move. 1 &2,&3
endm
endm

A second
which is
using a

In order to successfully define the inner macro, the user must specify
the string to use as its name as the first element of the operand field
of the line making the call to "mac_I". Each successive call to "mac_I"
must pass a different string to use as the name of the inner macro in
order to avoid a duplicate definition.

5.33

8xxx Relocating Assembler

'he following example uses a block of conditional code to ensure that
he assembler defines "mac_2" only once:

flag set o

mac_l macro
nop
if flag=O

mac_2 macro
move. I &1,&2
endm

flag set I
endif
endm

.4.2 Parameter Substitution within Nested Definitions

arameter substitution takes place during the expansion of a macro.
hus, if one macro is defined within another, the assembler replaces any
ubstitutable parameters used in the definition of the inner macro as it
xpands the outer macro. Parameter substitution can, as usual, be
voided by preceding the ampersand, '&', with a backslash, '\'. Doing
o delays the parameter substitution until the user calls the lnner
aero. For example, consider the following definition:

makstat macro
clr.l &1

setstat macro
bset 1f\&1, &1
endm
endm

he first call to the outer macro, "makstat", defines the inner macro,
setstat". As the assembler defines "setstat", it replaces the second
perand of the "bset" instruction with the first parameter in the
per and field of the call to "makstat". The first operand of the "bset"
nstruct ion, however, enters the def inition as "&1", awaiting parameter
ubstitution by a call to "setstat". Therefore, the assembler expands
he following code:

5 .34

Directives

makstat my_word
setstat 3
setstat 4

to

cIr.1 my_word
bset #3,my_word
bset #4, my_word

5.35

68xxx Relocating Assembler

5.36

Chapter 6

Error Messages from the Relocating Assembler

6.1 Introduction

The assembler produces two types of error messages: nonfatal and fatal.
All me~sages are English phrases rather than error numbers.

If the assembler encounters a nonfatal error, it inserts an error
message into the listing of the assembled source code and, if the error
is in a line that generates code, assembles it into some default code.
Even if the user suppresses the listing of the assembled code, the
assembler sends those lines containing errors to standard output. All
messages produced by nonfatal errors are preceded by three asterisks so
that the user can easily locate them.

A fatal error is one which causes immediate termination of the assembly.
The assembler sends fatal error messages to standard error in the
following format:

Last Line = <last_line_read>
Line Number <num>
Fatal Error - <error_message>

6.2 Nonfatal Errors

16-bit expression expected.
The assembler expected a l6-bit expression in the operand field, but
the expression found is too large to represent in 16 bits.

8-bit expression expected.
The assembler expected an 8-bit expression in the operand field, but
the expression found is too large to represent in 8 bits.

A label declared "global" was not found in the program.
All labels declared with the "global" direct ive must be def ined in
the same module.

Absolute expression required.
The assembler requires an absolute expression in this context.

6.1

68xxx Relocating Assembler

Address register direct allowed only with FPIAR.
If the source or destination of an "fmovem" instruction is an
address register, the register being moved must be FPIAR.

Assembling for
When the 't'
instructions
''moves'', and

68000 but 68010 instruction specified.
option is in effect, "re168k" does not accept those

which are suppor ted only by the 680 1 O--"movec" ,
"rtd".

Branches not allowed across segment boundaries.
Branches cannot be made to labels in other segments or to external
ref erences.

Cannot evaluate conditional expression in pass 1-
The assembler must be able to evaluate during pass 1 the expression
used as an operand with a directive that introduces a block of
conditional code. Such an expression, therefore, cannot contain a
forward reference to any label.

Cannot evaluate expression.
The assembler could not evaluate the expression.

Cannot evaluate expression in pass 1.
Assembler directives which reserve memory, such as "ds" and "rmb",
must be evaluated during both passes of the assembler. Therefore,
with such directives, only constant operands are legal, and forward
references are not allowed.

Cannot find that local label.
The local label specified in the expression is not defined in the
source code. Note that the two local labels "0" and "00" are
distinct.

Data register required.
A data register is required as one of the operands for the
instruction specified.

Data register required as source/destination of bit-field instruction.
Depending on the instruction, either the source or the destination
of a bit-field instruction with two operands must be a data
register.

Duplicate label found.
The label on this line is defined more than once.

Evaluator : attempt to divide by zero.
The divisor of an expression is equal to O.

Evaluator : invalid operation for relocatable or external expression.
Only absolute expressions can be added to a relocatable or external
expression.

6.2

Error Messages

Evaluator : more than one external found in an expression.
Only one external reference may appear in an expression.

Evaluator : must shift by positive, nonzero quantity.
The second operand in the operand field of a shift instruction must
be greater than O.

Evaluator : operator only valid for absolute expressions which are not
floating-point expressions.

The following operations may be performed only on absolute
expressions: and, or, exclusive or, not, multiply, divide, shift,
and logical.

Evaluator: unbalanced expression (with respect to segments).
A pair of relocatable items used in an expression must both be from
the same segment of the program (see 3.8.4.2).

Evaluator : unbalanced parentheses.
The parentheses in the expression are not properly balanced.

External expression not allowed.
An external expression is not allowed in this context.

Extra arguments found.
The assembler found more arguments than it expected.

Floating-point number not allowed.
A floating-point number is not allowed in the context in which it
was used.

Floating-point register-pair required.
A pair of floating-point registers must be specified for the
"fsincos" instruction.

Floating-point values cannot be used with relocatables or externals.
An expression involving floating-point values was mixed with
externals or relocatables.

Forced short but long expression found.
The programmer used absolute-short addressing mode, but the
corresponding expression is too large to fit into 16 bits.

Found zero branch length on short branch.
The destination of a short branch cannot be the next instruction.

Illegal addressing mode for instruction.
An addressing mode used in the operand field is not legal for this
instruct ion.

6.3

68xxx Relocating Assembler

Illegal character in label.
Labels must consist solely of alphabetic characters, digits, the
question mark, and the underscore character. The first character
may not be a digit.

Illegal expression or missing operand.
The expression evaluator cannot parse the expression.

Illegal instruction for this segment.
Instructions which generate code cannot be used in a base, struct,
or bss s~gment.

Illegal nesting of conditionals.
Conditional code is incorrectly nested. An "endif" directive must
follow any directive that introduces a block of conditional code.
Only one "else" statement may apply to such a directive.

Illegal register list for "movem".
The specification for the register list in a "movem" instruction is
invalid (see Section 4.5).

Illegal size for instruction.
The suffix specified (".b", ".1", or ".w" for "reI68k"; also ".d",
". p", ".s", or ".x" for "re120") may not be used with this
instruction.

Illegal special register for instruction.
The special register specified as an operand may not be used with
this instruction.

Illegal use of a "bfequ" symbol.
A symbol used in a "bfequ" instruction is only valid with a
bit-field instruction.

Illegal use of a macro name.
When a user invokes a macro, the name of the macro must appear in
the opcode field.

Immediate size does not match instruction
The immediate operand is larger than
implicit in the instruction.

Inva1 id argument to "bfequ".

size.
the size specified by or

The "bfequ" directive requires as arguments two absolute constants
separated by a colon, ';'.

Invalid bit-field offset specified.
The bit-field offset must be either a number between 0 and 31
inclusive, or a data register.

6.4

Error Messages

Invalid bit-field width specified.
The bit-field width must be either a number between 1 and 32
inclusive, or a data register.

Invalid breakpoint vector specified.
A breakpoint vector must be between 0 and 7 inclusive.

Invalid coprocessor ID.
A coprocessor ID must be between 0 and 7 inclusive.

Invalid floating-point constant.
The floating-point constant does not have the correct format.

Invalid instruction size for use with a floating-point constant.
The instruction size is not valid for use with a floating-point
constant.

Invalid local label.
A local label must consist of a string of one or two digits ('0'
through '9').

Invalid number of operands.
The number of operands specified is incorrect for the instruction.

Invalid offset/width pair.
The assembler could not interpret the specified offset and width of
a bit-field instruction.

Invalid option to the "opt" directive.
The option specified is not a valid option to the "opt" directive.
Valid options are "con", "noc", "lis", and "no1".

Invalid or missing K-factor.
The user must specify the K-factor for packed-decima1 floating-point
move operations. The value of the K-factor must be between -64 and
+17 inclusive.

Invalid register ~n control-register list.
The only valid control registers for the "fmovem" instruction are
FPCR, FPIAR, and FPSR.

Invalid ROM constant number.
A ROM constant must be between 0 and 63 inclusive.

Invalid scale factor specified.
The scale factor for an index register must be 1, 2, 4, or 8.

Invalid transfer address found (external).
The assembler does not support external transfer addresses.

6.5

68xxx Relocating Assembler

Invalid trap vector specified.
The trap vector must be between 0 and 15 inclusive.

Inval id use of "endm" directive.
The only val id use of the "endm" directive is at the end of the
definition of a macro.

Inval id use of "exitm" directive.
The only valid use of the "exitm" directive is within the definition
of a macro.

Label declared as both external and global.
A label cannot be both external and global.

Label required.
The directives "common", "equ", "log", "macro", and "set" require a
label in the label field.

Long branch required.
The assembler found
By default, the
displacements.

Missing argument.

a branch that requires
assembler generates

a 32,...bit
branches

displacement.
with 16-bit

The assembler expected more arguments than the user specified.

More than nine macro parameters specified.
The user may use a maximum of nine parameters in the operand field
of a line calling a macro.

Negative value not allowed.
The operand for this instruction must represent a nonnegative
number.

Nested "common" directives not supported.
Common blocks cannot be nested.

No closing delimiter found.
The assembler encountered an
encountered the closing delimiter

No "endcom" directive found.

end-of-line character
of a str ing.

before it

A common block declaration must be bracketed by the two directives
"common" and "endcom" and must all be within one segment.

No lahel allowed on "endm" directive.
The label field of. the "endm"directive must be blank.

6.6

Error Messages

Odd branch address found.
The assembler detected a branch to a label on an odd address. The
assembler forces each opcode and some directives to start on an even
boundary. However, this error can occur if a label is on a line by
itself after some odd number of bytes of data or if a label is on
the same line as a directive whose operand need not be aligned.

Offset and width must be absolute expressions.
The offset and width of a bit-field instruction
relocatable, external, or floating-point expressions.

cannot

Offset and width must be specified in a bit-field instruction.

be

The user must specify the offset and width in a bit-field
instruction; the assembler does not provide default values.

Only one control register allowed.
If the source or destination of an "fmovem" instruction is a data
register, the user may specify only one control register.

Operand out of range.
The instruction specified requires a "quick" number (a number
between land 8 inclusive) for the immediate operand in the operand
field.

Overlapping register list specified.
One or more registers appear more than once in the re-gister list of
a "movem" instruction.

Phasing error.
The two passes of the assembler do not agree on the address of the
label on the current line. This error can only be caused by other
errors in the assembly and should not appear as the only error in a
given module. Only the first phasing error is reported. The
assembler checks only those lines that contain labels.

Register-pair specifies the same register.
The pair of registers used in a divide instruction specifies the
same register for both the remainder and the quotient.

Relocatable displacement from the same segment required.
The label used in program-counter-relative addressing mode must be a
relocatable label from the same segment as the program counter.

Relocatable displacement not allowed.
A relocatable displacement is not allowed in this context.

Relocatable expression required.
A relocatable expression is required in this context.

6.7

I

68xxx Relocating Assembler

Short branch not allowed.
Floating-point branches must be long branches.

Symbol found in "extern" also found as program label.
A symbol declared external with the "extern" directive is also
defined elsewhere in the module.

The operand was too large for the size specified.
The size specified in the instruction is smaller than the size of
the immediate operand specified as the first operand.

Too far for a branch instruction.
A branch cannot be made over a distance that cannot be represented
by a l6-bit expression. A jump must replace the branch instruction.

Too far for a short branch.
A short branch cannot be made
represented by an 8-bit expression.
short branch.

over a distance that cannot be
A long branch must replace the

Undefined symbol found.
A symbol in an expression is not defined anywhere in the module.

Unknown addressing mode.
The assembler cannot interpret the addressing mode specified.

Unknown instruction.
The string in the opcode field is not a known instruction (see
Chapters 4 and 5).

Unknown length modifier specified.
The only legal size specifications for an index register are 'L',
'1', 'W', and 'w'.

Unknown size specified.
The only legal size extensions for instructions are ". bl!, ".1",
".s", and ".w" for "re168k"; also ".d", ".p", and ".x" for "re120".

Word operand required for system call name.
The system call specified is not a legal system
call number must fit into a word (16 bits). See
UniFLEX System Calls for a list of system calls.

6.8

ca 11. Th e sy stem
the Introduction 1£

Error Messages

6.3 Fatal Errors

Allocating table of local labels.
The system does not have enough memory to allow initial
for the table of local labels. This situation should not
it does, the user should contact the vendor.

Conditional nesting too deep.

allocation
arise. If

The user may not nest conditional code more than twenty levels deep.

EOF during macro definition.
The assembler reached the end of the file in the definition of a
macro. Most probably, the user forgot to use the "endm" directive
at the end of the definition.

Growing table of local labels.
The table of local labels, which grows dynamically, has grown to the
limit imposed by the operating system.

Incompatible options: 'J' and 'I'
The ' J' option, which tells the assembler to ignore the ":w" suffix
unless it is part of a "jmp" or "j sr" instruction, cannot be used
with the 'I' option, which tells the assembler to ignore the ":w"
suffix if it is part of a "jmp" or "jsr" instruction.

Invalid option: '<char>'
The option specified by <char> is not a valid option to the command
invoked by the user.

"lib" directive in macro.
The definition of a macro may not contain a "lib" directive.

Library file "<file_name>" not found.
The assembler cannot locate the library file specified. It searches
the working directory, the directory "lib" in the working directory,
and the directory "/lib".

Library nesting too deep.
Libraries may not be nested more than six levels deep.

Macro buffer overflow.
The length of the definition of a single macro must be less than or
equal to 6K.

No file specified.
The user did not specify a source file on the command line.

Opening "<f ile_name>": <reason>
The operating system returned an error when the assembler tried to
open the specified file. This message is followed by an
interpretation of the error returned by the operating system.

6.9

68xxx Relocating Assembler

Out of space.
The assembler's symbol table, which grows dynamically, has grown to
the limit imposed by the operating system. The restr iction on the
size of the symbol table depends on both the hardware and the
configuration of the operating system. -The simplest solution is to
raise the size limit if possible. Otherwise, the user must break
the source code into smaller modules and assemble them separately.

Reading "<file_name>": <reason>
The operating system returned an error when the assembler tried to
read the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Seeking in "<file_name>": <reason>
The operating system returned an error when the assembler tried to
seek to a particular location in the specified file. This message
is followed by an interpretation of the error returned by the
operating system.

Writing to "<file_name>": <reason>
The operating system returned an error when the assembler tried to
write to the specified file. This message is followed by an
interpretation of the error returned by the operating system.

6.10

Chapter 7

Invoking the Linking-Loader

7.1 Introduction

The "load68k" command accepts as input one or more relocatable binary
modules and produces as output either a relocatable module or an
executable module. The relocatable modules used as input must have been
produced by the relocating assembler or the linking-loader.

7.2 The Standard Environment

A file named "/lib/std_env" is supplied with every UniFLEX Operating
System. This file. which describes the standard hardware-specific
environment of the particular system. contains a series of options which
the linking-loader automatically processes before it processes any
options from the command line. The options specify information about
such things as the hardware page-size and the starting address of the
text and data segments. The linking-loader uses the file to get the
basic information it needs in order to load any module. If necessary.
the user may override the options in this file by specifying the same
options with different arguments on the command line.

7.3 The Command Line

The syntax for invoking the linking-loader is as follows:

load68k <file_name_list> [+aAbBcCdDefFiIlLmMnNoPqrRsStTuUwWxXyYZ]

where <file_name_list> is a list of the names of the files to load.
Files are loaded in the order in which they appear on the command line.
Brief descriptions of the options which are available follow. Those
options which do not take an argument can be disabled by preceding the
character with a minus sign. '-'. instead of the usual plus sign. '+'.
The linking-loader ignores the minus sign if it precedes an option which
takes an argument.

7.1

68xxx Linking-Loader

a=<num>

A=<num>

B

c=<sour<7e_ t ype>

C=<confiLnum>

d

D[=<hex_num>]

e

f

F [=<f il e_name>]

i

I

1=<1 ibrary_name>
L

m

n

N=<module_name>
o=<f ile_name>

r

Specifies the mlnlmum number of pages to
allocate to this task at all times.
Specifies the maximum number of pages to
alloc~te to this task at all times.
Specifies the maximum size to which the task
may grow.
Set a bit in the binary header of the output
m.odule which tells the operating system to
zero neither the bss segment nor any memory
allocated while the task is running.
Specifies the source code from which the
module was created.
Specifies the configuration number of the
hardware.
Set the "no core dump" bit in the binary
header.
Specifies the starting address of the data
segment.
Print each occurrence of all unresolved
external references.
Produce a demand-load executable module as
output.
Specifies the name of a file of options to
process.
Write all global symbols to the symbol table
of the binary file.
Enable processing of
interrupts (exceptions).
only useful on a system
floating-point coprocessor.

floating-point
This opt ion is
with an MC68881

Specifies the name of a library to search.
Do not search any libraries for unresolved
external references.
Produce load and module maps and write them
to standard output.
Specifies the name of the file in which to
put the output of the 'm' option (load and
module maps) and the's' option (a global
symbol table).
Produce an executable module with separate
instruction and data space.
Specifies the internal module name.
Specifies the name to give to the binary
file.
Specifies the page size.
Suppress quad-word alignment
segments.

of all

Produce a relocatable module as output. Do
not search any libraries.

7.2

R

s

t

u

U=<trap_num>
w

W

y

y

z

Invoking the Linking-Loader

Produce a relocatable
Search "/lib/sysl ib68k"
specified by the user
external references.

module as output.
and any libraries

for unresolved

Write the global symbol table to standard
output.
Specifies
Produce a
Specifies
segment.

the initial stack size.
shared-text executable module.
the starting address of the text

Do not produce any "unresolved" messages
when producing a relocatable module.
Specifies the trap number for system calls.
Load modules containing instructions
specific to the MC68020.
Do not load modules containing instructions
specific to the MC68020.
Specifies the name of the file whose symbol
table is to form the basis of the new symbol
table. The new module loads into memory
immediately after the specified file.
Specifies a 32-bit hexadecimal number, of
which only the high-order 7 bits are used,
which is used to mask out any of the
high-order 7 bits in all addresses in the
file.
Load modules containing instructions
specific to the MC68881 coprocessor.
Do not load modules containing instructions
specific to the MC68881 coprocessor.
Align text and data segments on 5l2-byte
boundaries.

Detailed descriptions of the options follow.

7.3.1 The 'a' Option

The 'a' option specifies the m~n~mum number of pages to be allocated to
the task at all times. The syntax for this option is

a=<num>

where <num> is between 0 and 32767 inclusive. The default ~s O. The
operating system tries to honor the specified number, but if it cannot,
it uses as many pages as it needs. This option is only effective on
virtual-memory systems.

7.3

68xxx Linking-Loader

7.3.2 The 'A' Option

The 'A' option specifies the maximum number of pages to be allocated to
the task at all times. The syntax for this option is

A=<num>

where <num>.is between ° and 32767 inclusive. The default is 0. The
value specified should be greater than or equal to the value specified
for the 'a' option. The operating system tries to honor the specified
number; but if it cannot, it uses as many pages as it needs. This
option is only effective on virtual-memory systems.

If the minimum and maximum values for page allocation provided by the
user make no sense, the linking-loader automatically adjusts them
according to the following rules. The value for the maximum is always
greater than or equal to the value for the m~n~mum. The value for the
maximum may be 0, but if it is greater than 0, it must be at least 4.

7.3.3 The 'b' Option

The 'b' option specifies the maximum size to which the task may grow
during execution. The syntax for this option is

where <task_size> may be one of the following: "128K", "256K", "512K",
"1M", "2M", "8M", "16M", "32M", "64M", "128M", "256M", "51 2M", "IG",
"2G", "4G", "S", "M", ''L'', "small", "medium", or "large". All letters
may be in upper- or lowercase. The size of a task specified by'S' (or
"small"), 'M' (or "medium"), or 'L' (or "large") is vendor-dependent.
Typically, however, 's' specifies 128Kj 'M', the size of physical
memory; 'L', the maximum size allowed to a task. The default task size
is 128K.

If the task size specified by the user (or the default) is not large
enough to hold the code from all the modules being loaded, the
linking-loader automatically adjusts the size to the smallest value that
can contain all the code.

7.4

2.

Invoking the Linking-Loader

7.3.4 The 'B' Option

The 'B' option sets a bit in the binary header of the output module
which tells the operating system to zero neither the bss segment nor any
memory allocated while the task is running. This option may not be
effective on all machines.

7.3.5 The 'c' Option

The 'c' option sets a flag in the module produced by the linking-loader
which indicates the type of source code from which the module was
created. This information is useful for debugging purposes. The syntax
for this option is

c=<source_type>
i

The value for <source_type> must be
"c" "COBOL" "FORTRAN" or "PASCAL"
~ • t '.1' •

one of the following: "ASSEMBLER",
The names may be specified in

el.ther upper- or'\ lowercase letters.
"'1

7.3.6 The 'c' Option

By default, the linking-loader uses the configuration number of the
current hardware. The user may, however, use the 'c' option to specify
a configuration number which overrides the default. This option is
useful when loading a module for a machine other than the one on which
it is running. The syntax for this option is

C=<config_num>

7.3.7 The 'd' Option

The ' d' option sets the "no core dump" bit in the binary header
module produced by the linking-loader. If this bit is set, the
can never produce a core dump. This option may not be effective
machines.

7.5

of the
module
on all

68xxx Linking-Loader

7.3.8 The 'D' Option

The 'D' option specifies the starting address of the data segment. If
the user does not specify the option, the starting address defaults to
the address specified in the file "/lib/std_env". It may, however, be
necessary to override this address if the user wishes to load a module
for execution on another machine with different hardware requirements.
The syntax for this option is

D [=<hex~num> J

where <hex_num> is a hardware-dependent hexadecimal number. If the user
does not specify an argument, the data segment starts immediately after
the text segment.

7.3.9 The 'e' Option

The 'e' option tells the linking-loader to print each occurrence of all
unresolved external references. By default, the linking-loader prints
only the first occurrence.

7.3.10 The 'f' Option

The 'f' option tells the linking-loader to produce as output a
demand-load executable module. In such a module the text and data
segments each begin on a 512-byte boundary. By default, when the
operating system executes a module, it loads the entire data and text
segments. When executing a demand-load module, it loads the entire data
segment but loads the text segment only as it is needed. The operating
system locks a demand-load module during execution.

7.3.11 The 'F' Option

The 'F' option specifies the name of a file of options for the
linking-toader to process. Thus, the user may place the desired options
in a file rather than listing them on the command line each time the
1 inking-loader is invoked. (The file "/ lib/std_env", which is suppl ied
with the operating system, is a file of options which the linking-loader
always reads before processing any options specified by the user.) The
last occurrence of an option always overrides previous occurrences.

7.6

Invoking the Linking-Loader

Therefore, if a file of options is specified at the beginning of the
command line, any options which follow override the specifications of
the same options in that file of options. The 'F' option may be used
repeatedly on the command line, but it may not be used inside a file of
options. The syntax of this option is

If the user does not specify an argument, the linking-loader reads the
file "~dr_opts" in the working directory.

Each option string specified in a file must be separated from the
preceding one by one or more spaces and must begin with a plus sign,
'+'. The linking-loader discards all characters up the first plus sign
on each line of the file. Thus, the user may insert comments before the
first option string on any given line. For example, the following is a
valid file of options:

System XYZ File of Options for Loader
Starting Addresses of Data and Text +D=400000 +T=O
Produce Maps +msM=mapout
Produce a Shared-Text Module +t

7.3.12 The
, .,

1. Option

If the user specifies the 'i' option, the linking-loader includes a
symbol table in the module it produces. By default, the linking-loader
includes a symbol table in a relocatable module but not in an executable
one.

7.3.13 The 'I' Option

The 'I' option sets a bit in the binary header of the file, which
enables the processing of floating-point exceptions. In order to
process such exceptions, the user must specify in the source code which
exceptions to process and how to process them. If the bit in the header
is not set, the operating system ignores floating-point exceptions.

7.7

68xxx Linking-Loader

7.3.14 The '1' Option

The '1' option, which may be used up to twelve times in a single
invocation of the linking-loader, specifies the name of a library for
the linking-loader to search when it is trying to resolve unresolved
external references. The syntax for this option is

1=<1 ibr ary_name >

If the library name specified begins with a slash character, ' r, the
linking-loader first looks for the library as specified. If it is not
found or if the name does not begin with a slash, the linking-loader
searches the working directory, then the directory "lib" in the working
directory, and finally the directory "/lib" for the specified 1 ibrary.
If the user specifies less than twelve libraries, the linking-loader
automatically searches the library "Syslib68k" in the working directory
after it has finished searching the libraries specified by the user.
The linking-loader always processes the libraries in the order in which
the user specifies them on the command line.

7.3.15 The 'L' Option

The 'L' option tells the linking-loader not to search any libraries for
unresolved external references.

7.3.16 The
, ,
m Option

When the user specifies the 'm' option, the linking-loader produces a
load map and a module map. A load map contains information about the
type of module being produced as well as the starting addresses of the
text and data segments, the initial stack size, the page size
(granularity), and the binary transfer address. It also tells how many
modules the linking-loader combined to produce the new module. A module
map contains the name of each module loaded, the name of the file
containing each module, and the starting addresses of each segment
(text, data, and bss) of each module. It also contains the final
address of each segment of the new module.

7.8

Invoking the Linking-Loader

7.3.17 The 'M' Option

The 'M' option specifies the name of the file in which the
I inking-loader is to put the output from the 'm' option (load and module
maps) and the output from the's' option (a global symbol table). The
syntax of this option is

The information in this file is purely textual. The user may edit or
list the file like any other text file. If the 'm' or's' option is
used without the 'M' option, the linking-loader sends the information to
standard output.

7.3.18 The 'n' Option

This option sets a bit in the binary header of the module produced by
the linking-loader which tells the operating system that the hardware
can support separate data and instruction spaces. The operating system
handles addressing accordingly.

7.3.19 The 'N' Option

The 'N' option is used to specify the internal name of the module
produced by the linking-loader. It is similar to the "name" directive
of the relocating assembler. The syntax for this option is

N= <module_name >

where <module_name> is limited to fourteen characters. If the user does
not specify the 'N' option, the linking-loader does not name the module.

7.3.20 The '0' Option

The '0' option specifies the
produced by the linking-loader.

name of the file containing the module
The syntax for this option is

7.9

68xxx Linking-Loader

If the user does not specify the '0' option, the
defaults to <file_name>.o in the working directory
the first argument to the "10ad68k" command. If a
already exists, it is deleted without warning.

7.3.21 The 'p' Option

name of the file
where <file_name> is
file by this name

The 'p' opt~on specifies the page size of the hardware. The syntax for
this option is

The hexadecimal number used should always be a power of 2; otherwise,
the results are unpredictable.

The "10ad68k" command uses the page siz e to determine the starting
address of the data segment when it immediately follows the text segment
(the data segment starts at the next page boundary). The default is 0
(i.e., the linking-loader rounds the starting address to the next even
location after the end of the text segment).

7.3.22 The 'q' Option

By default, as it loads each segment of a module, the linking-loader
ensures that it starts on a quad-word boundary (a boundary whose address
is a multiple of 4). It does so because quad-word alignment makes
access to data more efficient on the MC68020. In doing so, the
linking-loader wastes at most three bytes per module, per segment. This
waste can be avoided by suppressing the alignment with the 'q' option.

7.3.23 The 'r' Option

The 'r' option tells the linking-loader to produce a relocatable module
without searching any libraries (even if the user has specified some
with the '1' option) for unresolved external references. By default,
the linking-loader produces an executable module. If the user specifies
the 'r' option, the linking-loader produces a module identical to the
module that would have been produced if all the modules had been in one
source file and that file had been assembled by the relocating
assembler.

7.10

Invoking the Linking-Loader

7.3.24 The 'R' Option

The 'R' option tells the linking-loader to produce a relocatable module
and to search "/lib/syslib68k" and any libraries specified by the user
for unresolved external references. By default, the linking-loader
produces an executable module. If the user specifies the 'R' option,
the linking-loader produces a module that is identical to the module
that would have been produced if all the modules had been in one source
file and that file had been assembled by the relocating assembler.

7.3.25 The's' Option

The's' option tells the linking-loader to write
standard output or, if the 'M' option is in
specified by that option.

7.3.26 the'S' Option

the symbol
effect, to

The'S' option writes the initial stack size for the task
binary header of the module produced by the linking-loader.
of this option is

table to
the file

into the
The syntax

where <hex_num> is the number of bytes to reserve. The default is 0, In
which case the system determines the initial stack size.

The operating system reads this information from the header and assigns
a mlnlmum of 4K to the stack of any task. Thus, the user can specify
more than the usual amount of stack space but not less. The operating
system always assigns stack space in multiples of 4K, using the value of
the next multiple if the number in the header is not an even multiple.

7.3.27 The 't' Option

The 't' option sets a bit in the binary header of the module produced by
the linking-loader which tells the operating system that it is a
shared-text module (see Section 9.1).

7.11

68xxx Linking-Loader

7.3.28 The 'T' Option

The 'T' option specifies the sta,rting address of the text segment. The
syntax for this option is

T [=<hexyum>]

If the user does not specify the 'T' option, the linking-loader uses the
starting address specified in the file" llib/std_env". If no address is
specified there, the starting address defaults to O. If the user
specifies the 'T' option without an argument, the starting address also
defaults to O. If, however, the 'x' option is in effect, the starting
address never defaults to 0, but instead defaults to the first page
boundary following the bss segment of the file specified by the 'x'
option (see Section 7.3.33).

7.3.29 The 'u' Option

The 'u' option causes the linking-loader to suppress messages concerning
unresolved external references when producing a relocatable module.

7.3.30 The 'u' Option

The 'u' option sets the trap number for system calls.
this option is

The syntax for

Trap vectors must have one of two forms: "TRAPn", where 'n' is a number
between o and 15 inclusive, or a 4-digit hexadecimal number which
represent a bit pattern to use as the system call. The word "TRAP" may
be specified in either upper- or lowercase letters.

7.3.31 The 'w' Option

The 'w' option tells the linking-loader to load modules containing
instructions specific to the MC68020 microprocessor regardless of the
hardware configuration. This option allows the user to produce binary
files for the MC68020 on an MC68000-based machine.

7.12

Invoking the Linking-Loader

7.3.32 The 'w' Option

The 'w' option tells the linking-loader not to load modules containing
instructions specific to the MC68020 microprocessor regardless of the
hardware configuration. This option allows the user to produce binary
files for the MC68000 on an MC68020-based machine. It also allows the
user to produce binary files on a 68000-based machine without
accidentally loading some modules that contain instructions specific to
the MC68020.

7.3.33 The 'x' Option

The 'x' option specifies the name of a file whose symbol table is to
form the basis of the new symbol table. The syntax for this option is

x=<file_name>

where <file_name> must be the name of a file conta1n1ng an executable
module. The linking-loader uses the symbol table from <file_name>, if
one exists, as the basis of the symbol table for the new module. The
user can, as usual, specify the address at which to begin loading the
new module with the 'T' option. However, when the x option is in
effect, the starting address never defaults to 0, but instead defaults
to the first page boundary following the bss segment of the file
specified by the 'x' option (see Section 7.3.28)' To be safe, in
conjunction with the 'x' option the user should always specify the 'T'
option without an argument, so that it overrides any starting address 1n
the file "/lib/std_env".

7.3.34 The 'X' Option

The 'X' option specifies a mask, which is used to mask out any of the
high-order 7 bits in all addresses in the file. The syntax for this
option is

where <add_mask> is a 32-bit hexadecimal number. Not all hardware
supports this option.

7.13

68xxx Linking-Loader

7.3.35 The 'y' Option

The 'y' option tells the linking-loader to load modules containing
instructions specific to the MC68881 coprocessor regardless of the
hardware configuration. This option allows the user to produce binary
files for the a machine with the coprocessor on a machine that does not
have one.

7.3.36 The 'Y' Option

The 'Y' option tells the linking-loader not to load modules containing
instructions specific to the MC68881 coprocessor regardless of the
hardware configuration. This option allows the user to produce binary
files for the a machine that does not have an MC68881 coprocessor on a
machine that does. It also allows the user to produce binary files on a
machine without a coprocessor without accidentally loading some modules
~hat contain instrtictions specific to the MC68881.

7.3.37 The 'z' Option

The 'z' option instructs the loader to align the text and data segments
on 512-byte boundaries, padding with null bytes as necessary. This type
of alignment uses more space, but it makes the loading of the executable
module by the operating system more efficient.

7.4 Examp les

The following examples illustrate some of the uses of the "10ad68k"
command.

1. load68k *.r +F=/lib/ldr_environ +t +l=Clib +o=tester
2. load68k tl.r t2.r +T=20000 +iN=mod +P=2000 +c=C +o=test
3. 10ad68k sqrt +msM=loadmap +l=mathlib +i
4. 10ad68k temp?r +reo=combined.r
5. 10ad68k tl.r t2.r +a=lO +A=lOO +b=2M +l=testlib +do=test

The first example loads all files in the working directory whose names
end with ".r". The linking-loader reads the file "/lib/ldr_environ" and
processes the options therein. It uses the library "Clib" to resolve

7 .14

Invoking the Linking-Loader

external references. The executable output module, which is a
shared-text module, is named "tester".

The second example loads the files specified and produces a binary file
named "test". The internal module-name is "mod". The text segment
begins at 20000 hexadecimal, and the data segment follows it at the next
page boundary (page size 2000 hexadecimal). The source code is C. All
global symbols are inserted in the symbol table of the binary file.

The th[rd example loads the file "sqrt" and, by default, produces a
binary file named "sqrt.o". The linking-loader searches the library
''mathlib'' for unresolved external references. It produces load and
module maps, as well as a symbol table, and writes them to the file
"loadmap". All global symbols are added to the symbol table of the
binary file.

The fourth example loads the files in the working directory whose names
match the pattern "temp?r" and produces a relocatable module named
"combined. r". The linking-loader prints each occurrence of all
unresolved external references rather than only the first occurrence of
each. Because the 'r' option is specified, the linking-loader does not
search any libraries.

The fifth example loads the files "tl.r" and "t2.r" and produces the
binary file named "test". The minimum page alloca tion is set to 10; the
maximum, to 100. The task size of the module is set to 2 Megabytes.
The executable module cannot produce a core dump.

7.15

68xxx Linking-Loader

7.16

Chapter 8

Libraries

8.1 Introduction

A library is a specially organized collection of relocatable modules
used by the linking-loader to resolve external references. The user
can, with the '1' option, specify the names of up to twelve libraries
for the loader to search. The loader searches the libraries in the
order in which the user specifies them on the command line. If the user
specifies less than twelve libraries, the loader automatically searches
the system library, "Syslib68k", after it finishes searching the
libraries specified by the user.

When searching for a user-specified library whose name begins with a
slash, 'I', the linking-loader first looks for the library as specified.
If it does not find it or if it is searching for either a user-specified
library whose name does not begin with a slash or the system library,
the linking-loader looks in the working directory. If it does not find
the library there, it looks for the directory "lib" in the working
directory. If found, the linking-loader attempts to find the library in
that "lib" directory. If it is not found there, the loader makes a
final attempt to find the library by looking in the directory "/lib".
If the library is not in any of these directories, the loader issues an
error message and aborts.

The loader first makes one pass through the newly created module, trying
to resolve all unresolved external references (primary references).
When an external reference is resolved from a module contained in a
library, that module is loaded and is then considered a "user" module.
Library modules can, therefore, reference other library modules.
However, the addition of a library module may introduce new unresolved
references. Such references are called secondary references. The
loader tries to resolve secondary references in the same way it resolves
primary references--that is, it processes, in order, the libraries
specified by the user on the command line. It makes as many passes as
are necessary to resolve all secondary references, beginning the search
for each unresolved external reference in the first library. Thus, even
if two modules with the same name exist in different libraries, the
loader uses only the first occurrence of the module. The version of the
module to use can be changed by changing the order in which the
libraries are specified.

8.1

68xxx Linking-Loader

The search for an external reference can be summarized as follows:

1. Search the user's modules.
2. Search the libraries specified by the user.
3. If the user specifies less than twelve libraries

to search, search the system library.

8.2 Library Generation

Library generation is accomplished by the "lib-gen68k" command. This
command either creates a new library of relocatable or executable
modules or updates an existing library. Each module in a library must
have a name. The name is assigned to a module by either the "name"
directive of the relocating assembler or the 'N' option of the
linking-loader. The "Hb-gen68k" command does not accept a module
without a name. As it runs, "lib-gen68k" produces a report describing
the action that it takes for each module in the library. The report
includes the name of the module and the file from which it was read (the
old library or one of the update files).

8.2.1 The Command Line

The syntax for the "1 ib-gen68k" command is as follows:

lib-gen68k o=<old_Iib> n=<new_Iib> [u=<update>] [<del_list>] [+al]

8.2.2 The Arguments

8.2.2.1 The 'n' argument

The 'n' argument specifies the name of a new library. If a file with
this name already exists, "lib-gen68k" deletes it without warning before
writing the new library. If the user does not specify a name for the
new library, it defaults to the name of the old library. In such a case
"lib-gen68k" puts the new library in a scratch file, deletes the old
library, and renames the scratch file with the name of the old library.
The syntax for this argument is

8.2

Libraries

The 'n' argument, the '0' argument, or both must appear on the command
line.

8.2.2.2 The '0' argument

The '0' argument specifies the name of an existing library file which
was previously created by the "lib-gen68k" command. If "lib-gen68k" is
being called to create a new library, rather than to update an existing
one, this argument is inappropriate. The syntax for this argument is

The '0' argument, the 'n' argument, or both must appear on the command
line.

8.2.2.3 The 'u' argument

The 'u' argument specifies the name of a file conta1n1ng modules to add
to the library. If a module in the library has the same name as a
module in an update file, the loader replaces the existing module with
the one in the update file. The user may specify up to 255 update files
by repeating the "u=<update>" argument for each one. However, when
updating a large number of modules, it may be simpler to concatenate the
modules by listing all of them with the "list" command 'and redirecting
the output to a file. The user can then update all the modules with
only one invocation of the 'u' option rather than having to invoke it
for each module.

8.2.2.4 The deletion list

The argument <del_list> is a list of the names of modules to delete from
the old library. By default, if "lib-gen68k" cannot find one of the
files specified in the old library, it issues a warning message and
continues operation.

8.3

68xxx Linking-Loader

8.2.3 Options Available

By default, "lib-gen68k" produces a report which includes the name of
each module and the file from which it was read (the old library or one
of the update files). The options are used to shorten or to eliminate
this report.

8.2.3.1 The 'a' option

If the user" specifies the 'a' option, the report contains information
only about modules that were replaced, added, or deleted.

8.2.3.2 The '1' option

The '1' option suppresses the production of any report.

8.2.4 Examples

The following examples illustrate some uses of the "1ib-gen68k" command.

1. lib-gen68k n=binlib u=one u=two u=three
2. 1ib-gen68k o=binlib u=new +a
3. lib-gen68k o=binlib u=newmods n=new1ib transpose add +1

The first example creates a new library named "bin1 ib" which contains
all the modules from the files "one", "two", and "three".

The second example updates the library "bin1ib" by adding or replacing
modules from the file "new". The command produces an abbreviated
report.

The third example updateS the library "binlib" by adding or replacing
modules from the file "newmods" and by deleting the modules named
"transpose" and "add". The updated library is written to the file
"new lib" • The old 1 ibrary is deleted.

8.4

Chapter 9

Segmentation and Address Assignment

9.1 Introduction

If the user specifies the 'r' option to the "load68k" command, the
linking-loader produces a relocatable module; otherwise, it produces an
executable module. An executable module can be one of two types:
shared-text or non-shared-text. The only difference between the two
types of executable modules is the presence of a bit in the binary
header of a shared-text module which tells the operating system that it
need load only one copy of the-text portion of the program into memory,
no matter how may users wish to access the program simultaneously. Some
overhead expense is involved in the use of a shared-text program.
Therefore, only those programs which are large and are used by more than
one user at a time should be shared-text.

Basically, the linking-loader produces all three kinds of modules ln the
same way.

9.2 Segmentation
~-I'l hy

. /
Any module consists of a combination of the following parts: a blnary
header, a text segment, a data segment, relocation information, symbol
table, an information field, and a name. All of these components except
the binary header are optional. The relocation information, of course,
only appears in a relocatable file. Note that the module itself does
not contain the bss segment; rather the binary header contains a number
which tells the operating system how much memory to reserve for bss when
it loads the module.

9.2.1 Combination of Segments for a New Module

When the linking-loader combines modules to form a new module, it uses
the information in all the modules it combines to write a binary header
for the new module. It then concatenates the information from each
similar segment in the input modules and places it in the new module.
For instance, it concatenates the text segments of all component modules
to form the text segment of the new module, concatenates the data

9.1

68xxx Linking-Loader

segments to form the new data segment, and so forth. Concatenation
occurs in the order in which the user specifies the modules on the
command line. Material culled from any libraries lS appended to the
material from the modules specified by the user. For instance, the text
segment of a library is ap.pended to the text segment produced by
combining the information from the user-specified modules.

The linking-loader treats common blocks within the modules it is
combining slightly differently depending or whether the output is a
relocatable or an executable file. In either case, because common
blocks are a·· part of the bss, the linking-loader adjusts the number in
the binary header which def ines the size of the bss segment so that it
includes the common blocks. If the module being created is an
executable module, the linking-loader combines all common blocks of the
same name and allocates enough space for the largest one. If the module
is relocatable, the linking-loader does not combine common blocks.

9.2.2 End-of-segment Addresses

The linking-loader defines three global symbols--ETEXT, EDATA, and
END--which mark the ends of the text, data, and bss segments. These
constants, which behave like user-defined global symbols, always appear
in the listing of the global symbol table. They may be used like any
user-defined global symbol. Because these symbols are predefined, the
user should not define any global symbols with the same names.

9.2.3 Load and Module Haps

If the user specifies the m option to the "load68k" command, the
linking-loader writes both a module map and a load map to standard
output.

A load map contains information about the type of module being produced
as well as the starting addresses of the text and data segments, the
initial stack size, the page size (granularity), and the binary transfer
address. (The binary transfer address is the address at which the
operating system is to start execution of the program. A transfer
address is created with the "end" directive of the relocating assembler.
Only one of the modules being included in a program may contain such an
address. If more than one module contains a transfer address, the
linking-loader reports the error and aborts.) The load map also tells
how many modules the linking-loader combined to produce the new module.

9.2

Segmentation and Memory Assignment

A module map contains the name of each module loaded, the name of the
file containing each module, and the starting addresses of each segment
(text, data, and bss) of each module. It also contains the final
address of each segment of the new module.

For example, the following maps were produced by the linking-loader from
a small "c" program.

* LOAD MAP *
Produced - executable, not overlapped TEXT and DATA.
MOdule is not shared text.
Starting TEXT address = 000000
Starting DATA address = 400000
Initial stack size = 000000
Granularity = 000000
Binary transfer address = 000B38
Number of input modules = 5

* MODULE MAP *

TEXT DATA BSS MODULE NAME
000000 400000 400204 test
000050 40000C 400204 Long Mul/Div
00032A 40000C 400204 C System Calls
000004 4000AO 400204 strlen
000B38 4000AO 400204 C Wrapper

000B52 400204 400604 * Final Segment

FILE NAME
test.r
/ lib/Clib
/lib/Clib
/lib/Clib
/ lib/Clib

Addresses *

As explained earlier, the text segments from each of the modules are
combined and relocated to form the text segment of the final executable
module. The starting address of the text segment is 0; the starting
address of the data segment is 400000. The data in the module map show
that all modules have' text segments, that the "Long Mul/Div" and the
"strlen" modules have no data segments, and that only the "C Wrapper"
module has a bss segment. Note that the bss segment immediately follows
the data segment. The linking-loader found the routines called by the
module "test" in the library "/lib/Clib". The binary transfer address
is located in the module "c Wrapper" (address $000B38).

The following map was produced using the same file as the previous map.
However, because the user did not specify a starting address for the
data segment, the data segment follows the text as closely as possible.
The distance between the text and data segments is determined by the
page size (granularity), which was specified with the 'P' option as
hexadecimal 1000. Therefore, the data segment starts at the first page
boundary following the text segment. The output module is a shared-text
module.

9.3

68xxx Linking-Loader

* LOAD MAP *
Produced - executable,not overlapped TEXT and DATA.
Module is shared text.
Starting TEXT- address = 000000
Starting DATA address = 1000
Initial stack size = 000000
Granularity = 001000
Binary transfer address = 000B38
Number of input modules = 5

* MODULE MAP *
TEXT DATA BSS MODULE NAME
000000 001000 001204 test
000050 OOIOOC 001204 Long Mul/Div R
00032A OOIOOC 001204 C System Calls
000B04 OOlOAO 001204 strlen
000B38 OOlOAO 001204 C Wrapper

000B52 001204 001604 * Final Segment

9.3 Address Assignment

FILE NAME
test.r
/lib/Clib
/lib/Clib
/lib/Clib
/ lib/Cl ib

Addresses *

When the operating system loads a module produced by the linking-loader.
it puts only the text, data, and bss segments into memory. The
following map illustrates how a module resulting from the loading of 'm'
modules, 'n' libraries, and 'x' common blocks would be loaded into
memory by the operating system.

9.4

Segmentation and Memory Assignment

Starting address is
hardware-dependent --> Text of module 1

Text of module 2

Starting address 1.S

hardware-dependent -->

Text of module 'm'
Text of library 1
Text of library 2

Text of library 'n'
<--+

I
<--+

Data of module 1
Data of module 2

Data of module m
Data of library 1
Data of library 2

Data of library n
Bss of module 1
Bss of module 2

Bss of module m
Bss of common 1
Bss of common 2

•
Bss of common x
Bss of library 1
Bss of library 2

Bss of library n

9.5

Space between text and
data depends on the 'p'
option, which depends
on the hardware.

9.6

Chapter 10

Error Hessages from the Linking-Loader

10.1 Introduction

The linking-loader produces two types of error messages: nonfatal and
fatal. It sends all error messages to standard error. If the
linking-loader encounters a nonfatal error, it prints the appropriate
message and continues execution. Nonfatal errors include warning
messages. If it encounters a fatal error, it aborts after printing a
message of the following form:

Fatal Error: <description_of_error>
Loader aborted!

10.2 Nonfatal Errors

Address overf low at $<addr> in <type> segment of module "<mod_name>".
The relocation or linking of the two-byte address in the field at
the specified address in <mod_name> resulted in a number which does
not fit in the field. A two-byte address must be a positive, l6-bit
expression. The assembler generates such an address if and only if
the programmer forces it into absolute word-addressing mode. This
message indicates that the programmer forced an address into a word
when the address needed more than 16 bits.

Maximum page allocation set to <num>.
The minimum and maximum page allocations specified by the user
conflict. The linking-loader has adjusted the maximum as indicated.

Maximum task size set to <num>.
The maximum task size specified by the user (or by the default) is
not large enough for the code being loaded. The linking-loader has
changed the maximum task size as indicated.

Overflow at $<addr> in <type> segment of module "<mod_name>".
The relocation or linking of the field at the specified address in
<mod_name> resulted in a number which does not fit in the field.
This situation is not always an error. If the relocation or linking
results in a change of the sign of the number, this message may be
produced even though the result of the procedure is correct and does
fit in the field provided. The user must carefully inspect the code
being loaded to determine whether or not the message should be
ignored.

1 0.1

68xxx Linking-Loader

Symbol name clash: "<symbol_name>" in module "<mod name>".
The specified symbol has been globally declared in more than one
module. The module specified is the module containing the second
(or later) declaration of the symbol. The name of the symbol must
be changed in one of the modules, and that module must be
reassembled.

"<symbol_name>" unresolved in module "<mod name>".
The specified symbol was referenced in <mod_name>, but the
linking-loader could not locate it in any of the modules supplied by
the user or in any of the libraries. This message may be expected
if the linking-loader is producing a relocatable file. If an
executabre file is being produced, it is an error.

Warning: "/lib/std_env" not found.
The file" /lib/std_env" is suppl ied with every UniFLEX system. It
is a file of options which is specific to the hardware. If the file
has not been deliberately deleted or renamed, contact the vendor.

10.3 Fatal Errors

Bad library format for "<library_name>"!
The library specified does not have the correct format for a library
created by the "lib-gen68k" utility.

BSS instruction segment!
This message, which is a check for internal consistency, should not
appear. If it does, contact the vendor.

BSS transfer address!
This message, which is a check for internal consistency, should not
appear. If it does, contact the vendor.

"<file_name>" contains MC68020- and MC6888l-specific instructions.
Incompatible module types--no output file produced.

The specified relocatable module contains instructions specific to
the MC68020 microprocessor and the MC68881 coprocessor, but the
linking-loader will not load this type of module either because the
machine in use does not contain the MC68020 and the MC68881 or
because the user specified the 'w' and the 'Y' options. If the
machine in use contains neither an MC68020 microprocessor nor an
MC68881 coprocessor, the user may load such modules by specifying
the 'w' and the 'y' options.

"<fil e_name>" contains MC68020-specific instructions.
Incompatible module types--no output file produced.

The specified relocatable module contains instructions
the MC68020 microprocessor, but the linking-loader

10.2

specific to
will not load

Error Messages

this type of module either because the machine in use does not
contain an MC68020 or because the user specified the 'w' option. If
the machine in use does not contain an MC68020 microprocessor, the
user may load such modules by specifying the 'w' option.

"<file_name>1I contains MC68881-specific instructions.
Incompatible module types--no output file produced.

The specified relocatable module contains instructions specific to
the MC68881 coprocessor, but the linking-loader will not load this
type of module either because the machine in use does not contain an
MC68881 or because the user specified the 'Y' option. If the
machine in use does not contain an MC68881 coprocessor, the user may
load such modules by specifying the 'y' option.

Illegal configuration specified!
The argument to the 'c' option is not a valid UniFLEX configuration.

Illegal input file lI<file_name>lI!
The specified file is not a relocatable file.

Illegal maximum page allocation!
The number used as an argument to the 'A' option must be between 0
an 32767 inclusive.

Illegal minimum page allocation!
The number used as an argument to the 'a' option must be between 0
an 32767 inclusive.

Illegal relocation!
This message, which is an check for internal consistency, should not
appear. If it does, contact the vendor.

Illegal task size!
The argument to the 'b' option is not a valid task size. Valid
arguments are "128K", 11256K", "512K", "1M", "2M", "4M", "8M", "16M",
"32M", "64M" , "128M", "256M", "512M", "IG", "2G", "4G II , "S", "M",
and "L". All letters may be either upper- or lowercase.

Illegal trap vector!
The trap vector specified on the command line is illegal. Trap
vectors must have one of two forms: "TRAPn", where 'n' is a number
between 0 and 15 inclusive, or a 4-digit hexadecimal number
representing an instruction.

Incompatible options: 'D' and 'r' or 'R'
The 'D' option, which specifies the starting address of the data
segment, may not be used with either the 'r' or 'R' option, both of
which tell the linking-loader to produce a relocatable file.

10.3

68xxx Linking-Loader

Incompatible options: 'f' and 'z'
The 'f' and 'z' options cannot be specified simultaneously.

Incompatible options: 'r' and 'R'
The 'r' option, which tells the linking-loader to produce a
relocatable file without searching any libraries for external
references, may not be used with the 'R' option which tells the
linking-loader to produce a relocatable file and to search
"/lib/syslib.68k" and any libraries specified by the user for
external references.

Incompatible options: 'T' and 'r' or 'R'
The 'T' option, which specifies the 'starting address of the text
segment, may not be used with the 'r' or 'R' option, both of which
tell the linking-loader to produce a relocatable file.

Incompatible options: 'w' and 'w'
The 'w' option, which tells the linking-loader to load modules
containing MC68020-specific instructions, may not be used with the
'w' option, which tells the linking-loader not to load such modules.

Incompatible options: 'x' and 'r' or 'R'
The 'x' option, which forces the linking-loader to produce an
executable file, may not be used with the 'r' or 'R' option, both of
which tell the linking-loader to produce a relocatable file.

Incompatible options: 'y' and 'y'
The 'y' option, which tells the linking-loader to load modules
containing MC6888l-specific instructions, may not be used with the
'y' option, which tells the linking-loader not to load such modules.

Incremental load file must be executable.
The file specified as an argument to the 'x' option must be an
executable file.

Invalid option: '<char>'!
The character specified is not a valid option to the "10ad68k"
command.

Library "<1 ibrary_name>" not found!
The linking-loader could not locate the specified library in the
working directory, in the directory called "1 ib" in the working
directory, or in the directory "/lib".

Multiple transfer addresses!
Only one module may contain a binary transfer address. The user
specified two or more modules which contain a transfer address.

Multiple 'x' options specified!
The 'x' option may be used only once each time the linking-loader 1S

invoked.

10.4

Error Messages

Nested 'F' options!
The 'F' option may not be used inside a file of options. It may,
however, be used repeatedly on the command line.

No files givenl
The user specified no files on the command line.

Opening "<file_name>": <reason>
The operating system returned an error when the linking-loader
to open the specified file. This message is followed
interpretation of the error returned by the operating system.

Reading "<f il e_name>": <reason>

tried
by an

The operating system returned an error when the linking-loader tried
to read the specified file. This message is followed by an
interpretation of the error returned by the operating system.

Seeking to <location> in "<f il e_name>": <reason>
The operating system returned an error when the linking-loader tried
to seek to the specified location in <file_name>. This message is
followed by an interpretation of the error returned by the operating
system.

Too many libraries!
A maximum of twelve libraries may be specified on the command line.

Unknown source type!
The argument to the 'c' option is not valid. The linking-loader
only recognizes "FORTRAN", "C", "PASCAL", "COBOL", and "ASSENBLER".

Writing to "<f il e_name>": <reason>
The operating system returned an error when the linking-loader tried
to write to the specified file. This message is followed by an
interpretation of the error returned by the operating system.

10.5

10.6

Appendix A

Syntax Conventions

The following conventions are used in syntax statements throughout this
manual.

1. Items that are not enclosed in angle brackets, '<'
and '>', or square brackets, '[' and ']', are
"keywords" and should be typed as shown.

2. Angle brackets, '<' and '>', enclose
which the user must replace with
argument. For example, in the line

descriptions
a specific

the name of a file must be specified in the place
indicated by <file_name>.

3. Square brackets, '[' and ']', indicate optional
items. These items may be omitted if their effect
is not desired. In the section on addressing
modes, square brackets are not used to delineate
optional items because certain addressing modes
use square brackets as part of their required
syntax (see Section 4.3.3).

4~ The underscore character, , _' , is used to link
separate words that describe one term, such as
Iff il e" and "name".

5. Characters other than spaces that are not enclosed
in angle. brackets or square brackets must appear
as they appear in the syntax statement.

6. If the word "1 ist" appears as part of a term in a
syntax statement, that term consists of one or
more of the elements described by the rest of the
term, separated by commas or spaces. For example,
the term

represents a list of command-line
separated by spaces.

parameters

7. The "re16 8k", "re120", and "load68k" commands
support several optional features, known as
options, which alter the effect of the command.

A.I

68xxx Relocating Assembler and Linking-Loader

Options consist of either a single character or a
single character followed by an equals sign, '=',
followed by an argument. An "option string" is a
plus sign followed by one or more options. An
option string may contain any number of
single-character options but only one option which
takes an argument. An option requlrlng an
argument must be the last option in an option
string. Thus, the command line must contain a
separate option string for each option requiring
an argument. It mayor may not contain a separate
option string for each single-character option.

The following commands contain
strings:

valid option

rel68k <file_name> +blns
re168k <file_name> +b +1 +n +s
load68k <file name_I> +msM=<file_name 2>
load68k <file_name_l> +msM=<file_name_2> +l=mathlib +i

The following commands contain invalid option
strings:

load68k <file_name_l> +mM=<file_name_2>s
load68k <file_name_l> +msM=<file_name_2>1=<file_name 3>

Option strings may appear anywhere on the command
line after the "reI68k" or "load68k" command.

Many common terms appear (often as abbreviations) in
syntax statement. The manual does not explain these
they appear; however, the following table describes each

Table A-I. Common Terms Used in Syntax
Statements

Term

char
file_name
hex_num
list
num

Meaning

Character
A valid file name
Hexadecimal number
Term is a list of elements
Number

A.2

more than one
terms each time
one.

Appendix B

Syntax for 68020 Addressing Modes

B.1 Introduction

This appendix lists the syntaxes recommended by ~~torola (Motorola,
1985a) for the addressing modes available for the 68020 microprocessor
and other acceptable syntaxes. The string ZPC may be used anywhere in
place of the string pc; SP may replace A7 anywhere.

B.2 Syntaxes Recommended kY Motorola

The following syntaxes are accepted by the "rel20" command and follow
the guidelines for recommended syntax in Appendix D of Motorola's manual
for the 68020 (Motorola, 1985a).

#data
Rn
disp
(Rn)
(An)+
-(An)
(disp,An)
(disp,An,Rn)
([dispJ)
([Rn))
([An,Rn])
([disp,Rn])
([disp,An,Rn])
([disp] ,Rn)
([disp,An] ,Rn)
([An] ,Rn)
([disp] ,disp)
([Rn] ,disp)
([An,Rn] ,disp)
([disp,Rn],disp)
([disp,An,Rn],disp)
([disp],Rn,disp)
([disp,An],Rn,disp)
([An] ,Rn,disp)
(disp,PC)
(disp,PC,Rn)

B.1

68xxx Re~ocating Assembler and Linking-Loader

([disp,PC])
([disp, PC,Rn])
([disp, PC] ,Rn)
([disp,PC1,disp)
([disp, PC, Rn1 ,disp)
([disp,PC1,Rn,disp)

B.3 Other Acceptable Syntaxes

Also accepted are the following forms:

[Rn]
[disp]
disp(An)
disp(An,Rn)
(disp,Rn]
[disp,PC]
disp(PC)
disp(PC,Rn)
[disp,An,Rn]
[disp,PC,Rn]
[An,Rn]
[PC,Rn]

B.4 Elliptical Syntax Statements

In addition to the syntaxes described in Sections B-1 and B-2, the
assembler accepts the full form of the addressing mode with any or all
parts missing. For example, the following are valid addressing modes:

(L,]')
([,],)
(,,)

All of these forms generate effective addresses of O.

B.2

References

MOtorola. 1984. M68000 !2J32-Bit Microprocessor Programmer'~ Reference
Manual. 4th ed. Englewood Cliffs: Prentice Hall.

1985a. MC68020 32-Bit Microprocessor User'~ Manual. 2nd ed.
Englewood Cliffs: Prentice Hall.

1985b. MC68881 Floating-Point Coprocessor User'~ Manual.
Austin: Motorola.

a option ("lib-gen68k"), 8.4
a option (loader), 7.3-4
a option ("re120"), 2.4

automatic formatting with,
3.4

A option (loader), 7.4
abcd instruction, 4.20
Absolute address in input to the
relocating assembler, 1.1

Absolute expression, 3.10
Absolute location, binding

address to. See Relocation
Absolute symbol, in external

expression, 3.11
add instruction, 4.1, 4.21
Addition operator, 3.8
Address

assignment, 9.4-5
binding relocatable to
absolute, 1.3

in expression, 3.6
of instruction in label
field, 3.2

masking high-order 7 bits,
7.3, 7.13

Address register, 4.2-3
address variation, 4.1
Addressing modes, 4.3-15

absolute long address,
4.10-11

absolute short address, 4.10
address register direct, 4.5
address register indirect,
4.5

address register indirect
with displacement, 4.6

address register indirect
with index, 4.7

address register indirect
with index
(base-displacement), 4.7

address register indirect
with postincrement, 4.6

address register indirect
with predecrement, 4.6

data register direct, 4.5
definition of, 4.3
elliptical syntax statements,

B.2
immediate data, 4.15
memory indirect postindexed,
4.8-9

Index

Index-1

Addressing mode (cont.)
memory indirect preindexed,
4.9-10

optional items in, 4.4
program counter with index,
4.11-12

program counter indirect with
index (base displacement)

program counter memory
indirect postindexed,
4.12-14

program counter memory
indirect preindexed, 4.14-15

program-counter relative,
4.11

restricted to the 68020,4.7,
4.8, 4.9, 4.12, 4.14

scale factor, 4.4
size specification, 4.4
syntax

conventions, 4.4
recommended by Motorola
for the 68020, B.1-2

addx instruction, 4.21
Alignment

memory. See Memory, alignment
of

quad-word. See Quad-word
alignment

Ampersand
with command-line parameters,
2.2, 2.3

with macros
in nested definitions,
5.34

in substitutable
parameters, 5.31

as operator, 3.8
and instruction, 4.1, 4.21
and operator, 3.8
Angle brackets, 4.4, A.l
Arithmetic operators, 3.8
ASCII constant, 3.6-7

designation of, 3.7
ASCII string

padding with null bytes,
5.7-5.8

size with "de" directive, 5.-7
asl instruction, 4.21
asr instruction, 4.21
Assembled instruction, length

of, 4.3

68xxx Relocating Assembler and Linking-Loader

Assembled source code
abbreviated listing of, 2.4
assigning line numbers to,
2.6

excessive branches in, 2.4,
2.5, 2.6

external reference in, 2.4,
2.6

indicator characters in, 2.4,
2.6

listing of, 2.4, 2.6
abbrevIated, 2.4, 3.4
blank lines in, 5.26
date, 5.24
error messages in, 5.11
formatting, 2.5,3.4-5,
5.24

header, 5.24
page eject, 5.24
page number, 5.24, 5.25
subtitle, 5.24, 5.28
time, 5.24
title, 5.24, 5.30

relocatable address in, 2.4,
2.6

ASSEMBLER, 7.5
Assembly

end of, 2.1
time of, 3.1
68000, 2.7
68010, 2.7

Asterisk, 4.20, 5.1
with comments, 2.5, 3.1
with error messages from

assembler, 6.1
in expression, 3.7
as operator, 3.8
in symbol table, 2.7
in syntax statements, 4.4
with user-defined error
messages (assembler), 5.11

at sign, in numerical constant,
3.7

Automatic formatting, 3.4-5
breakdown of, 3.5

b

by "re120", 3.4
by "re168k", 3.4

as suffix to instruction, 3.3
as suffix for local label,
3.2

Index-2

B as suffix to instruction, 3.3
b option (assembler), 2.4
b option (loader), 7.4
B option (loader), 7.5
Backslash character

in nested macro definitions,
5.34

in substitutable parameters
with command-line
parameters, 2.3

with macros, 5.31
Backward reference, branching
to, 3.4

base instruction, 5.1, 5.3, 5.5,
5.7, 5.29

Base in numerical constants, 3.7
Base register, 4.3
Base-2 logarithm, 5.21
bcc instruction, 4.21
bchg instruction, 4.21
bclr instruction, 4.22
bcs instruction, 4.21
beq instruction, 4.21
bfchg instruction, 4.22
bfclr instruction, 4.22
bfequ instruction, 3.2, 5.1,5.4
bfexts instruction, 4.22
bfextu instruction, 4.22
bfffo instruction, 4.22
bfins instruction, 4.22
bfset instruction, 4.22
bfst instruction, 4.26
bftst instruction, 4.22
bge instruction, 4.21
bgt instruction, 4.21
bhi instruction, 4.21
bhs instruction, 4.21
Binary file

header, 7.2, 7.5, 7.7, 7.9,
7.11,9.1

information field of, 5.20
name of, 7.2
segmentation of, 1.2

Binary header. See Binary file,
header

Binary transfer address. See
Transf er address

Binding relocatable address to
absolute location. See
Relocation

Bit field, 4.18, 5.4
Bit mask, 4.16

bkpt instruction, 4.22
ble instruction, 4.21
blo instruction, 4.21
bls instruction, 4.21
bIt instruction, 4.21
bmi instruction, 4.21
bne instruction, 4.21
Boundary

multiple of four, 5.7, 5.8,
5.25, 7.10

quad-word. See Boundary,
muftiple of four

512-byte, 7.3, 7.6, 7.14
bpI instruction, 4.21
bra instruction, 4.21
Branch generation, 3.4
Branch instruction, default

length, 3.4
Branching, 3.2. See also Branch
generation; Branch instruction

bset instruction, 4.22
bsr instruction, 4.23
bss instruction, 1.2, 5.1, 5.5,
5.7, 5.29

Bss segment, 1.2, 5.3, 5.5,
5.25, 5.26, 5.27, 7.2, 7.5,
7.13, 9.1

final address of, 7.8, 9.2
instructions permitted in,
l.2

reserving memory for, 1.2
starting address of, 7.8

btst instruction, 4.23
bvc instruction, 4.21
bvs instruction, 4.21
Byte, 3,3, 3.6

C language, 7.5
c option (loader), 7.5
C option (loader), 7.5
Call to the operating system,

5.28
callm instruction, 4.23
Carriage return, 2.1, 3.1

with comments, 2.5, 3.1
cas instruction, 4.23
cas2 instruction, 4.23
chk instruction, 4.23
chk2 instruction, 4.23
clc instruction, 4.39
cln instruction, 4.39
clr instruction, 4.23

Index-3

clv instruction, 4.39
clx instruction, 4.39
clz instruction, 4.39

Index

cmp instruction, 4.1, 4.23
cmp2 instruction, 4.23
cnop instruction, 5.1, 5.5
COBOL, 7.5
Command-line parameters, 2.1-3

example of, 2.8
null string in, 2.1
specifying, 2.2
syntax for passing, 2.2

Comma
with "ifc" instruction, 5.16
with "ifnc" instruction, 5.19
in operand field, 5.1
in parameter substitution in
macros, 5.30

Comment
in abbreviated listing of
assembled source code, 2.4

assembling, 2.5
designating, 3.1
treatment by assembler, 3.1

Comment field, 3.4
disallowed, 5.20, 5.28, 5.29,

5.30
in formatted listing from
"rel20", 3.4

in formatted listing from
"re16 8k", 3.4

location of, 3.1
treatment by the relocating
assembler, 3.4

Common block
beginning of, 5.6
defining size of, 5.6
end of, 5.10
treatment by assembler, 5.6
treatment by linking-loader,
9.2

common instruction, 3.2, 5.1,
5.6, 5.10

con option, 5.24
Conditional assembly, 3.9, 5.12
Conditional code, 5.9, 5.11

beginning of, 5.15, 5.16,
5.17, 5.18, 5.19, 5.20

end of, 5.10
in nested definition of a
macro, 5.33-34

nesting, 5.15,5.16,5.17,

68xxx Relocating Assembler and Linking-Loader

Conditional code,nesting (cont.)
5.18, 5.19, 5.20

Condition-code register, 4.39
Configuration of hardware, 7.5
Configuration number, 7.2, 7.5
Constant

ASCII. See ASCII constant
defining in memory, 5.7
floating-point. See
Floating-point constant
numerical~ See Numerical

constant
Control characters

in ASCII constant, 3.7
in comment field, 3.4
in source code, 2.1, 3.1

Control register, 4.18
Coprocessor 1D

setting, 5.6
table of values, 5.7

Core dump, preventing, 7.2, 7.5
cpid instruction, 5.1, 5.6
Current address, designation of
in an expression, 3.7

Current stack-pointer, 4.6

d as suffix to instruction, 3.3
D as suffix to instruction, 3.3
d option (loader), 7.5
D option (loader), 7.6
data instruction, 1.2, 5.1, 5.5,
5.7,5.29

Data register, 4.2-3
Data segment, 1.2, 5.3, 5.7,
5.25,5.26,5.27,9.1

al igning, 7.3
contents of, 1.2
in demand-load executable
module, 7.6

final address of, 7.8, 9.2
starting address of, 7.1,
7.2, 7.6, 7.8, 7.10

dbcc instruction, 4.23
dbcs instruction, 4.23
dbeq instruction, 4.23
dbf instruction, 4.24

. dbge instruction, 4.24
dbgt instruction, 4.24
dbhi instruction, 4.24
dbhs instruction, 4.24
dble instruction, 4.24
dblo instruction, 4.24

1ndex-4

dbls instruction, 4.24
dblt instruction, 4.24
dbmi instruction, 4.24
dbne instruction, 4.24
dbpl instruction; 4.24
dbra instruction, 4.24
dbt instruction, 4.24
dbvc instruction, 4.24
dbvs instruction, 4.24
dc instruction, 5.1, 5.7-8
define instruction, 5.1, 5.8,

5.10
Delete character, 3.4
Deletion 1 ist for "Hb-gen68k",

8.3
Delimiter

with "fcc" instruction, 5.13
in parameter substitution in
macros, 5.30

Demand-load executable module.
See Module, demand-load
executable

Digits
with "fcc" instruction, 5.14
in local label, 3.2
in ordinary label, 3.2
in substitutable parameters,
5.31

Directives 3.3, 5.1-35. See also
individual names

Division operator, 3.8
divs instruction, 4.24
divu instruction, 4.24
Dollar sign

with "fcc" instruction, 5.13,
5.14

in numerical constant, 3.7
Double-precision floating-point,

3.3
ds instruction, 5.1, 5.6, 5.8-9,

5.13, 5.14, 5.15,

e option (assembler), 2.5
e option (loader), 7.6
EDATA, 9.2
else instruction, 5.1, 5.9,
5.15, 5.16, 5.17, 5.18, 5.19,
5.20

END (of bss), 9.2
end instruction, 1.2, 5.1,

5.9-10
with "lib" directive, 5.21

endcom instruction, 5.1, 5.6,
5.10

enddef instruction, 5.1, 5.8,
5.10

endif instruction, 5.1, 5.9,
5.10,5.15,5.16,5.17,5.18,
5.19, 5.20

endm instruction, 5.1, 5.11,
5.12, 5.22

End-of-file character, 1.2
End-of-segment addresses, 9.2
Env ironment

hardware-specific, 7.1
standard, 7.1, 7.6, 7.12

eor instruction, 4.1, 4.24
equ instruction, 3.2, 5.2, 5.11,
5.26

Equal-to operator, 3.9
err instruction, 5.2, 5.11
Error count, 5.11
Error messages

from assembler, 6.1-10
fatal, 6.1, 6.9-10
nonfatal, 6.1-8
user-defined, 5.11

from loader, 10.1-5
fatal, 10.1, 10.2-5
nonfatal, 10.1-2

Errors in source code, number
of, 2.5

ETEXT, 9.2
even instruction, 5.2, 5.12
Examples

absolute expression, 3.10
external expression, 3.11
load map, 9.3
module map, 9.3
relocatable expression, 3.10
use of assembler, 2.8
use of "iib-gen68k", 8.4
use of linking-loader,

7.14-15
Excessive branches. See
Assembled source code,
excessive branches in

Exclamation pOint, as operator,
3.8

Executable instruction, in text
segment, 1.2

exg instruction, 4.24
exitm instruction, 5.2, 5.12
exp option, 5.24

Index-5

Index

Expansion of macros. See Macro,
expansion

Exponent of floating-point
constant, 3.7

Expression
absolute. See Absolute
expression

in addressing modes, 4.3
contents of, 3.6
evaluation of, 3.6
external. See External
expression

relocatable. See Relocatable
expression

types of, 3.10
use of the low-order portion,
3.6

ext instruction, 4.24
extb instruction, 4.24
extend variation, 4.1
Extended-precision
floating~point, 3.3

Extension word. See Word of
extension

extern instruction, 5.2, 5.13
External expression, 3.11
External record

contents of, 1.1-2
from "extern" instruction,

5.13
generation of, 1.1
use by loader, 1.3

External reference
definition of, 1.1
from "extern" instruction,

5.13
listing each occurrence, 7.6
messages concerning, 7.12
resolving, 1.1, 1.3, 7.8,
7.10, 7.11, 8.1, 8.2. See
also External record

undefined symbols as, 2.8
unresolved, 7.2, 7.3

External symbol, in external
expression, 3.11

f as suffix for local label, 3.2
f option (assembler), 2.5
f option (loader), 7.6
F option (assembler), 2.5
F option (loader), 7.6-7
fabs instruction, 4.25

68xxx Relocating Assembler and Linking-Loader

facos instruction, 4.25
fadd instruction, 4.25
fasin instruction, 4.25
fatan instruction, 4.25
fatanh instruction, 4.25
fbeq instruct ion, 4.25
fbf instruction, 4.25
fbge instruction, 4.25
fbgl instruction, 4.25
fbgle instruction, 4.25
fbgt instruction, 4.25
fble instruction, 4.25
fblt instruction, 4.25
fbne instruction, 4.25
fbnge instruction, 4.25
fbngl instruction, 4.25
fbngle instruction, 4.25
fbngt instruction, 4.26
fbnle instruction, 4.26
fbnlt instruction, 4.26
fboge instruction, 4.26
fbogl instruction, 4.26
fbogt instruction, 4.26
fbole instruction, 4.26
fbolt instruction, 4.26
fbor instruction, 4.26
fbseq instruction, 4.26
fbsf instruct ion, 4.26
fbsne instruction, 4.26
fbt instruction, 4.26
fbueq instruction, 4.26
fbuge instruction, 4.26
fbugt instruction, 4.26
fbule instruction, 4.26
fbult instruction, 4.26
fbun instruction, 4;26
fcb instruction, 5.2, 5.8. 5.13
fcc instruction, 5.2, 5.13-14
fcmp instruction, 4.26
fcos instruction, 4.26
fcosh instruction, 4.26
fdb instruction, 5.2, 5.8. 5.14
fdbeq instruction, 4.26
fdbf instruction, 4.26
fdbge instruction, 4.26
fdbgl instruction, 4.26
fdbgle instruction, 4.26
fdbgt instruction, 4.27
fdble instruction, 4.27
fdblt instruction, 4.27
fdbne instruction, 4.27
fdbnge instruction, 4.27

Index-6

fdbngl instruction, 4.27
fdbngle instruction, 4.27
fdbngt instruction, 4.27
fdbnle instruction, 4.27
fdbnlt instruction, 4.27
fdboge instruction, 4.27
fdbogl instruction, 4.27
fdbogt instruction, 4.27
fdbole instruction, 4.27
fdbolt instruction, 4.27
fdbor instruction, 4.27
fdbseq instruction, 4.27
fdbsf instruction, 4.27
fdbsne instruction, 4.27
fdbst instruction, 4.27
fdbt instruction, 4.27
fdbueq instruction, 4.27
fdbuge instruction, 4.27
fdbugt instruction, 4.27
fdbule instruction, 4.27
fdbult instruction, 4.27
fdbun instruction, 4.27
fdiv instruction, 4.28
fetox instruction, 4.28
fetoxm1 instruction, 4.28
fgetexp instruction, 4.28
fgetman instruction, 4.28
Fields in source code,3.1-4
File name, use by

linking-loader, 5.23
fint instruction, 4.28
fintrz instruction, 4.28
First pass of the assembler,
3.1. See also Pass one of the
assembler

Fix mode, 2.5
fle instruction, 5.2
Floating-point constant, 3.7
Floating-point control-register,

4.18
Floating-point control-register
list, forming, 4.19

Floating-point coprocessor, 7.2,
7.3

Floating-point exceptions,
processing, 7.2, 7.7

flogn instruction, 4.29
flognpl instruction, 4.29
flogl0 instruction, 4.28
f10g2 instruction, 4.29
fmod instruction, 4.29
fmove instruction, 4.17,4.29

fmovecr instruction, 4.29
fmovem instruction, 4.16, 4.1S,
4.30

fmul instruction, 4.30
fneg instruction, 4.30
fnop instruction, 4.31
Formatted fields in assembled

source code, suppressing, 2.5
FORTRAN, 7.5
Forward reference

branching to, 3.4
disallowed, 5.9,5.15,5.16,

5.17, 5.1S, 5.19, 5.20,
5.25, 5.26

fqb instruction, 5.2,5.8,5.14
frem instruction, 4.31
frestore instruction, 4.31
fsave instruction, 4.31
fscale instruction, 4.31
fseq instruction, 4.31
fsf instruction, 4.31
fsge instruction, 4.31
fsgl instruction, 4.31
fsgldiv instruction, 4.32
fsgle instruction, 4.31
fsglmul instruction, 4.32
fsgt instruction, 4.31
fsin instruction, 4.32
fsincos instruction, 4.32
fsinh instruction, 4.32
fsle instruction, 4.31
fslt instruction, 4.31
fsne instruction, 4.31
fsnge instruction, 4.31
fsngl instruction, 4.31
fsngle instruction, 4.31
fsngt instruction, 4.31
fsnle instruction, 4.31
fsnlt instruction, 4.31
fsoge instruction, 4.31
fsogl instruction, 4.31
fsogt instruction, 4.31
fsole instruction, 4.31
fsolt instruction, 4.31
fsor instruction, 4.31
fsqrt instruction, 4.32
fsseq instruction, 4.31
fssf instruction, 4.31
fssne instruction, 4.32
fsst instruction, 4.32
fst instruction, 4.32
fsub instruction, 4.32

Index-7

Index

fsueq instruction, 4.32
fsuge instruction, 4.32
fsugt instruction, 4.32
fsule instruction, 4.32
fsult instruction, 4.32
fsun instruction, 4.32
ftan instruction, 4.33
ftanh instruction, 4.33
ftentox instruction, 4.33
ftrapeq instruction, 4.33
ftrapf instruction, 4.33
ftrapge instruction, 4.33
ftrapgl instruction, 4.33
ftrapgle instruction, 4.33
ftrapgt instruction, 4.33
ftraple instruction, 4.33
ftraplt instruction, 4.33
ftrapne instruction, 4.33
ftrapnge instruction, 4.33
ftrapngl instruction, 4.33
ftrapngle instruction, 4.33
ftrapngt instruction, 4.33
ftrapnle instruction, 4.33
ftrapnlt instruction, 4.33
ftrapoge instruction, 4.33
ftrapogle instruction, 4.33
ftrapogt instruction, 4.33
ftrapole instruction, 4.33
ftrapolt instruction, 4.33
ftrapor instruction, 4.33
ftrapseq instruction, 4.33
ftrapsf instruction, 4.33
ftrapsne instruction, 4.33
ftrapst instruction, 4.33
ftrapt instruction, 4.33
ftrapueq instruction, 4.33
ftrapuge instruction, 4.34
ftrapugt instruction, 4.34
ftrapule instruction, 4.34
ftrapult instruction, 4.34
ftrapun instruction, 4.34
ftst instruction, 4.34
ftwotox instruction, 4.34
Function codes for system calls,

5.28

global instruction, 5.2, 5.15
Global symbol, 2.7, 7.2

defining, 5.8, 5.10
Granularity, 7.S
Greater-than operator, 3.9
Greater-than sign, 2.4

68xxx Relocating Assembler and Linking-Loader

Greater-than sign (cont.)
two as operator, 3.8

Greater-than-or-equal-to
operator, 3.9

Hardware
configuration of, 7.5
page size. 7.10

Horizontal tab character. See
Tab character

Hyphen, in re~ister list, 4.18.
4.19

i option (assembler), 2.5
i option (loader). 7.7
I option (assembler), 2.5
I option (loader). 7.7
if ins t r uc t i on, 5. 2, 5. 9, 5. I 0 ,
5.15

ifc instruction, 5.2, 5.16
ifeq instruction, 5.2. 5.16
ifge instruction, 5.2, 5.17
ifgt instruction, 5.2, 5.17
if Ie instruction, 5.2, 5.18
if It instruction. 5.2. 5.18
ifn instruction, 5.2, 5.9, 5.10,
5.19

iinc instruction, 5.2, 5.19-20
ifne instruction, 5.2, 5.20
illegal instruction, 4.34
immediate variation, 4.1
Index register, 4.3-4
info command, 5.20
info instruction. 5.2. 5.20
Information field, 5.20, 5.29.

9.1
Initialized data, 1.2
Input to the linking-loader,
1.3,7.1

Input to the relocating
assembler, 1.1, 2.1

absolute address in, 1.1
control characters in, 2.1
relocatable address in, 1.1

Instruct ion
in' abbreviated 1 isting of
assembled source code, 2.4

address of, 3.2
alignment of, 5.5
redefining, 5.22

Instructions for the relocating
assembler. See also Directives;

Index-8

Instructions (cont.) See also
Opcodes; individual names

restricted to the 68010 and
68020, 4.35

restricted to the 68020.
4.22. 4.23. 4.24. 4.25,
4.26, 4.28, 4.29, 4.30,
4.31, 4.32, 4.33, 4.34.
4.35, 4.36, 4.37, 4.38, 4.39

Invoking the linking-loader.
7.1-15

Invoking the relocating
assembler. 2.1-8

Item, 3.6

J option (assembler), 2.6
jmp instruction, 2.5, 2.6, 4.34
jsr instruction, 2.5, 2.6, 4.34
Jumping, 3.2

Keywords, A.1

I

L

as suffix for branch
instruction, 3.4

as suffix for index register,
4.3

as suffix to instruction, 3.3

as suffix for branch
instruction, 3.4

as suffix for index register,
4.3

as suffix to instruction, 3.3
1 option (assembler), 2.6, 5.24
I option ("Hb-gen68k"), 8.4
I option (loader), 7.8. 7.10
L option (assembler), 2.6
L option (loader), 7.8
Label

in abbreviated listing of
assembled source code, 2.4

disallowed, 5.9
in expression, 3.6, 3.7
local. See Local label
location of, 3.2
ordinary. See Ordinary label
ref erence to, 3.2-3
required, 5.6, 5.11,5.21,

5.26
types of, 3.2

Label field, 3.2-3

Label field (cont.)
contents of, 3.2
in formatted listing, 3.4

lea instruction, 4.34
Less-than operator, 3.9
Less-than sign, two as operator,
3.8

Less-than-or-equal-to operator,
3.9

Letter
distinction between upper

and "lowercase by the
linking-loader, 7.5, 7.12

distinction between upper
and lowercase by the
relocating assembler, 3.2,
3.3, 3.5, 4.4

with "fcc" instruction, 5.14
in opcode field, 3.3
in ordinary label, 3.2

lib instruction, 5.2, 5.10,
5.21, 5.28

disallowed in macro, 5.22
nesting of, 5.21

Libraries, 8.1-4
for the linking-loader to
search, 7.2, 8.2

Library
definition of, 8.1
generation, 8.2-4
system, 8.1

lib-gen68k command, 8.2-4
Line numbers in assembled source
code, 2.6

link instruction, 4.34
Linking-loader, function of, 1.3
lis opt ion,S. 24
Load map, 1.3, 7.2, 7.8, 9.2

contents of, 9.2
example of, 9.3
file containing, 7.9

load68k command, 7.1-15
Local label, 3.2-3, 5.13, 5.15

contents of, 3.2
examples of, 3.3
handling compared to ordinary

label, 3.2
internal storage used, 3.2
within macro definition, 5.23
referencing; 3.2
restrictions on, 3.2
speed of processing, 3.2

Index-9

Local label (cont.)
suffixes for, 3.2
uses of, 3.2

Local symbols, 2.7

Index

log instruction, 3.2, 5.2,
5.21-22

Logarithm, base 2, 5.21
Logical operators, 3.8
Long branch, generation of, 3.4
Long word, 3.3
lsI instruction, 4.34
1sr instruction, 4.34

m option (loader), 7.2, 7.8, 7.9
M option (loader), 7.9, 7.11
macro instruction, 3.2, 5.2,

5.11, 5.22-23
Macro

compared to subroutine, 5.22
definition, 5.22

avoiding duplication,
5.23, 5.33-34

end of, 5.11
length of, 5.22
nesting, 5.33

exiting, 5.12
expansion, 5.22, 5.34
name of, 5.22
nesting of, 5.23
parameter substitution in,
5.12, 5.30

comma in, 5.30
examples of, 5.32
within nested definitions,
5.34

null string in, 5.30
quotation marks in, 5.30
space character in, 5.30
specifying parameters,
5.30

passing parameters to, 5.23
substitutable parameters in,
5.23, 5.31

table of names, 5.22
Mantissa of floating-point

constant, 3.7
Masking high-order 7 bits of an
address, 7.3, 7.13

MC68020-specific modules
avoiding, 7.3, 7.13
loading, 7.3, 7.12

68xxx Relocating Assembler and Linking-Loader

MC6888l-specific modules
avoiding, 7.1, 7.14
loading, 7.3! 7.14

Memory
alignment of, 5.5, 5.7, 5.9,
5.12, 5.25

allocation, 5.25, 7.3, 7.4,
7.5

initialized, 5.26
size of page, 7.10
uninitialized, 5.8

common block. See Common
block

defining a constant in, 5.7
forming a constant byte in,
5.13

forming a constant character
in, 5.13

forming a four-byte quantity
in, 5.14

forming a two-byte quantity
in, 5.14

padding with null bytes, 5.7,
5.8

shared among modules, 5.6,
5.10

Minus sign with options to
linking-loader, 7.1

Mnemonic table, 5.22
Mnemonics. See Opcodes
Mnemonics, convenience, 4.39
Module

composition of, 9.1
definition of, 1.1
demand~load executable, 7.2,

7.6
end of, 5.9
executable, as output from

linking-loader, 7.10, 7.11
locking during execution, 7.6
name of, 9.1
naming, 5.23, 7.9
naming file containing,

7.9-10
non-shared-text, 9.1
relocatable, as output from

linking-loader, 7.10, 7.11
shared-text, 7.3, 7.11, 9.1

Module map, 1.3, 7.2, 7.8, 7.9,
9.2-4

Module name, use by
linking-loader, 5.23

Index-1 0

Modules, separating within a
HIe, 5.10

move instruction, 4.1, 4.35
movec instruction, 4.35
movem instruction, 4.16-17,

4.18, 4.35
movep instruction, 4.35
moves instruction, 4.35
muls instruction, 4.35
Multiplication operator, 3.8
mulu instruction, 4.35

n argument ("lib-gen68k"), 8.2-3
n option (assembler), 2.6
n option (loader), 7.9
N option (loader), 7.9
name instruction, 5.2, 5.23, 7.9
Name of internal module, 7.2,

7.9
Naming

file containing a relocatable
module, 2.7

module produced by
linking-loader, 7.9-10

module produced by relocating
assembler, 5.23

nbcd instruction, 4.36
neg instruction, 4.36
negx instruction, 4.36
Nesting

conditional code, 5.15, 5.16,
5.17, 5.18, 5.19, 5.20

"lib" instruction, 5.21
macro definitions, 5.33

noc option, 5.24
noe option, 5.24
nol option, 5.24
nop instruction, 4.36, 5.5
not instruction, 4.36
not operator, 3.8
Not-equal-to operator, 3.9
Null byte, padding with 5.1,
5.8. 5.12, 5.25, 5.26, 7.14

Null string
with command-line parameters,
2.2, 2.3

with "ifc" instruction, 5.16
with "ifnc" instruction, 5.19
in parameter substitution in
macros, 5.30

in substitutable parameters,
5.31

Numerical constant, 3.6, 3.7

o argument ("!ib-gen68k), 8.3
o option (assembler), 2.4, 2.7
o option (loader), 7.9-10
Offset for bit-field
instruction, 4.18, 5.4

Opcode field, 3.3-4
Opcodes, 3.3, 4.16-39. See also

individual names
syntax conventions for,
4.16-19

Operand
in abbreviated listing of
assembled source code, 2.4

contents of, 3.4
default size, 3.3
expression as, 3.6
locating, 3.4
mixed modes, 3.8
to specify register, 3.5-6
specifying size of, 3.3
storage of, 4.3

Operand field, 3.4,4.3,5.1
Operating system, call to, 5.28
Operator

classes of, 3.8
in expression, 3.6, 3.8
with external expression, 3.8
with external symbols, 3.8
with floating-point constant,
3.8

with floating-point
expression, 3.S

logical. See Logical
operators

precedence of. See Operator
precedence

relational. See Relational
operators

with relocatable expression,
3.S

with relocatable symbols, 3.8
Operator precedence, 3.9
opt instruction, 2.6, 5.3, 5.24
Option strings, A.2
Options

file of for linking-loader,
7.2, 7.6-7

for "lib-gen68k", 8.4
limited to "rel20", 2.4
limited to "re168k", 2.7

Index-ll

Index

Options (cont.)
for linking-loader, brief
descriptions, 7.2-3

to "opt" instruction, 5.24
for relocating assembler,
2.3-4. See also individual
names

syntax for, A.2
or instruction, 4.1, 4.36
or operator, 3.8
Ordinary label, 3.2

as macro name, 5.22
Output from the linking-loader,
1.3, 7.1

Output from the relocating
assembler, 1.1-2, 2.1

suppressing, 2.4
Overflow in expression, 3.6

p as suffix to instruction, 3.3
P as suffix to instruction, 3.3
P option (loader), 7.10
pack instruction, 4.36
Packed-decimal floating-point.
3.3

pag instruction, 5.3, 5.24-25
Page allocation

maximum, 7.2, 7.4
minimum, 7.2, 7.3

Page eject, 5.24
with "spc" instruction, 5.27

Page size, of hardware, 7.1,
7.10

Parameter substitution
in command line. See
Command-line parameters

in macro. See Macro,
parameter substitution in

null string in, 2.1, 5.30
Parentheses, 3.9
PASCAL, 7.5
Pass one of the assembler, 3.1,
5.15, 5.16,5.17, 5.1S, 5.19,
5.20, 5.22

Pass two of the assembler, 3.1,
5.24

pea instruction, 4.36
Percent sign, in numerical
constant, 3.7

Plus sign, 4.20
in file of options for the
linking-loader, 7.7

68xxx Relocating Assembler and Linking-Loader

Plus sign (cont.)
in listing of assembled
source code, 2.4, 2.6

Primary references, resolution
of, 8.1-2

Program counter, 1.2, 3.7, 4.11,
4.12-13,4.14-15,5.25

in abbreviated listing of
assembled source code, 2.4

with "base" instruction, 5.4
forcing to even address, 5.12
forcing to·· quad-word address,
5.5, 5.25

with "struct" instruction,
5.27

outside text, data, and bss
segments, 5.3

Pseudo-ops. See Directives

q
as suffix with "de"

instruction, 5.7
as suffix with "ds"

instruction, 5.8
q option (loader), 7.10
quad instruction, 5.3, 5.25
Quad-word alignment, 7.10

suppressing, 7.2, 7.10
Quad-word boundary. See

Boundary, mUltiple of four
Question mark, in ordinary
label, 3.2

quick variation, 4.1
Quotation marks

with ASCII constant, 3.7
with command-line parameters,

2.2
with "de" instruction, 5.7
with "err" instruction, 5.11
with "ifc" instruction, 5.16
with "ifnc" instruction, 5.19
with "info" instruct ion, 5.20
in operand field, 5.1
in parameter substitution in
macros, 5.30

with "sttlll instruction, 5.28
with "tstmp" instruction,
5.29

with "ttl" instruction, 5.30

r option (loader), 7.10
R option (loader), 7.11

Index-12

rab instruction, 5.3, 5.6, 5.25
Register

address. See Address register
base. See Base register
data. See Data register
index. See Index register

Register list, 4.18
Registers·

in addressing modes, 4.3
available in supervisor
state, 4.2

available in user state, 4.2
available for 68020
assembler, 3.6

common to the 68000/68010 and
68020, 3.5

common to the 68010 and
68020, 3.5

specification of by operands,
3.5

Relational operators, 3.9
Relocatable address in input to
the relocating assembler, 1.1

Relocatable expression, 3.10
Relocatable item, 3.10
Relocatable module, 2.1

definition of, 1.1
as input to linking-loader,
1.3

naming file containing, 2.7
transforming to executable
module, 1.1

transforming to executable
program, 1.3

Relocatable object-code module.
See Relocatable module

Relocatable symbol, in external
expression, 3.11

Relocating assembler
invoking, 2.1-8
syntax for, 2.1

Relocation, 1.1
Relocation constant, 1.3
Relocation information, 9.1
Relocation record

contents of, 1.1
use by the linking-loader,
1.3

rel20 command, 2.1
re168k command, 2.1
Report produced by the
relocating assembler, 2.5

reset instruction, 4.36
rmb instruction, 3.10, 5.3, 5.6,
5.25-26

rol instruction, 4.36
ror instruction, 4.37
roxl instruction, 4.37
roxr instruction, 4.37
rtd instruction, 4.37
rte instruction, 4.37
rtm instruction, 4.37
rtr instruction, 4.37
rts instruction, 4.37
rzb instruction, 5.3, 5.26

s

S

as suffix to branch
instruction, 3.4

as suffix to instruction, 3.3

as suff ix to branch
instruction, 3.4

as suffix to instruction, 3.3
s option (assembler), 2.7
s option (loader), 7.2, 7.9,
7.11

S option (assembler), 2.7
S option (loader), 7.11
sbcd instruction, 4.37
Scale factor, 4.4
Scaling of index register, 4.4
scc instruction, 4.37
scs instruction, 4.37
Search path

for '1' option
(linking-loader), 7.8

for "lib" instruction, 5.21
sec instruction, 4.39
Second pass of the assembler,
3.1. See also Pass two

Secondary references, resolution
of, 8.1

Segment. See also bss segment;
data segment; text segment

default, 1.2
final address of, 7.8
size of, 2.5
starting address of, 7.8

Segmentation, 9.1
Segmentation of binary file, 1.2
Segmentation directives, 1.2.
See also bss instruction; data
instruction; text instruction

Index-13

Segments, combining, 9.1
Semicolon

Index

with comments, 2.5, 3.1
ignoring, 2.5

sen instruction, 4.39
seq instruction, 4.37
set instruction, 3.2, 5.3, 5.22,

5.26
sev instruction, 4.39
sex instruction, 4.39
sez instruction, 4.39
sf instruction, 4.37
sge instruction, 4.37
sgt instruction, 4.37
Shared-text. See Module,
shared-text

shi instruction, 4.37
Shift operators, 3.8
Short branch, forcing, 3.4
Single-precision floating-point,
3.3

Size of operand, 3.3. See also
suffix

Size
of page, 7.2, 7.8
of stack, 7.3, 7.8
of task

automatic adjustment by
linking-loader, 7.4

default, 7.4
maximum, 7.2, 7.4

Size factor, in addressing
modes, 4.4

Slash character, 5.21, 7.8
in floating-point control
register list, 4.19

in register list, 4.18, 4.19
sle instruction, 4.37
sIs instruction, 4.37
sIt instruction, 4.38
smi instruction, 4.38
sne instruction, 4.38
Source code

another file in assembly of,
5.21

components of, 3.1-11
contents of, 3.1
control characters in, 2.1,
3.1

fields in. See also Fields in
source code, 3.1-4

line numbers in, 2.1

68xxx Relocating Assembler and Linking-Loader

Source code (cont.)
listing of, 2.6
substitutable parameters in,

2.2-3
valid types, 7.2,7.5

Space character, 3.1,3.2
with command-line parameters,

2.2
in comment field, 3.4
with "err" instruction, 5.11
in expression, 3.6
with "fcc"- instruction, 5.13
in file of options for the
linking-loader, 7.7

with "ifc" instruction, 5.16
with "ifnc" instruction, 5.19
with "info" instruction, 5.20
in operand field, 5.1
in parameter substitution in
macros, 5.30

with "sttl" instruction, 5.28
with "tstmp" instruction,

5.29
with "ttl" instruction, 5.30

spc instruction, 5.3, 5.26-27
spl instruction, 4.38
Square brackets, 4.4, A.l
st instruction, 4.38
Stack, 5.4, 5.27

s iz e of, 7.3, 7 .11
Stack-pointer, current. See
Current s~ack-pointer

Standard environment, 7.1, 7.6,
7.12

Standard instruction set,
deviations from, 4.1

stop instruction, 4.38
Strings, comparison of, 5~16,

5.19
struct instruction, 3.2, 5.3,
5.5, 5.7, 5.27-28, 5.29

sttl instruction, 5.3, 5.28
sub instruction, 4.1, 4.38
Subroutine, compared to macro,

5.22
Substitutable parameters

in command-line, 2.2-3
in macros, 5.31-3

Subtitle, 5.28
Subtraction operator, 3.8
subx instruction, 4.38

Index-14

Suff ix
COmmon to all assemblers, 3.3
with "de" instruction,S. 7
with "ds" instruction, 5.8
for forcing a branch, 3.4
to instruction, 3.3
for local label, 3.2
for size of index register,
4.3

supported only by the 68020
assembler, 3.3

:w, ignoring, 2.5, 2.6
Supervisor state, registers
available in, 4.2

svc instruction, 4.38
svs instruction, 4.38
swap instruction, 4.38
Symbol

assigning values to, 5.26
defining, 5.8
equating to an expression,

5.11
as external reference, 5.13
length of, 2.7
undefined, treating as

external reference, 2.8
Symbol table, 1.3, 5.8,5.15,
9.1-2

from another file, 7 dJ
file containing, 7.9
listing of, 2.7
produced by the
linking-loader, 7.7, 7.11

Symbolic reference table, 3.1.
See also Symbol table

Syntax conventions, A.1-2
for addressing modes, 4.4
for opcodes, 4.16-19

sys instruction, 5.3, 5~28
System calls, 7.3

function codes for, 5.28
from relocating assembler,
5.28

setting trap number for, 7.12
System library, 8.1

t option (assembler), 2)7
t option (loader), 7.11
T option (loader), 7.12,7.13
Tab character

in comment field, 3.4.:
in expression, 3.6

Tab character (cont.)
in label field, 3.2
in source code, 2.1, 3.1

tas instruction, 4.38
Temporary file

for external records, 1.2
with "info" instruction, 5.20
for relocation records, 1.1
with "tstmp" instruction,

5.29
text i~struction, 1.2, 5.3, 5.5,
5.7, 5.29

Text segment, 1.2, 5.3, 5.25,
5.26, 5.27, 5.29, 9.1

aligning, 7.3
contents of, 1.2
in demand-load executable
module, 7.6

final address of, 7.8, 9.2
starting address of, 7.1,
. 7.3,7.8,7.12
write protection of, 1.2

Time stamp, insertion in
information field, 5.29

Title, 5.30
Transfer address, 7.8, 9.2

appending to an object-code
module, 5.9-10

trap instruction, 4.38
Trap number for system calls,
7.3, 7.12

trapcc instruction, 4.38
trapcs instruction, 4.38
trapeq instruction, 4.38
trapf instruction, 4.38
trapge instruction, 4.38
trapgt instruction, 4.38
traphi instruction, 4.38
traple instruction, 4.38
trapls instruction, 4.38
traplt instruction, 4.38
trapmi instruction, 4.38
trapne instruction, 4.38
ttappl instruction, 4.38
trapt instruction, 4.38
trapv instruction, 4.39
tiapvc instruction, 4.38
trapvs instruction, 4.39
tst instruction, 4.39
tstmp instruction, 5.3, 5.29
ttl' instruction, 5.3, 5.30

Index-IS

Index

u argument (lIlib-gen68k"), S.3
u option (assembler), 2.8
u option (loader), 7.12
U option (loader), 7.12
Underscore character

in ordinary label, 3.2
in syntax statements, A.l

Uninitialized data, 1.2
unlk instruction, 4.39
unpk instruction, 4.39
Upda te fil es for "1 ib-gen6 Sk II ,

8.3
User state, registers available

in, 4.2

Vertical bar, as operator, 3.8
Virtual-memory systems, 7.3, 7.4

w

W

as suffix for index register,
4.3

as suffix to instruction, 3.3
ignoring, 2.5, 2.6

as suffix for index register,
4.3

as suffix to instruction, 3.3
w option (loader), 7.12
W option (loader), 7.13
Width of bit field, 4.1S, 5.4
Wor d, 3.3, 3.6
Word of extension, 4.3, 4.6,
4.7,4.8,4.9,4.10,4.11,
4.12, 4.13, 4.14, 4.15

Word-length branch: generation
of, 3.4

Write protection of text
segment, 1.2

x as suffix to instruction, 3.3
X

as suffix to instruction, 3.3
in listing of assembled
source code, 2.4, 2.6

x option (loader), 7.13
X option (loader), 7.13

y option (loader), 7.14
Y option (loader), 7.14

Z option (loader), 7.14
Zero program counter, 4.12-14

Index-16

